src/share/vm/opto/type.cpp

Fri, 11 Aug 2017 03:30:28 -0400

author
dbuck
date
Fri, 11 Aug 2017 03:30:28 -0400
changeset 8886
fbb8f75498f4
parent 8424
2094cac55c59
child 9041
95a08233f46c
child 9333
2fccf735a116
permissions
-rw-r--r--

8073670: TypeF::eq and TypeD::eq do not handle NaNs correctly
Summary: Change TypeF:eq and TypeD:eq to compare NaN values using a bitwise comparison.
Reviewed-by: kvn
Contributed-by: Stefan Anzinger <stefan.anzinger@oracle.com>

duke@435 1 /*
kevinw@8368 2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
coleenp@4037 26 #include "ci/ciMethodData.hpp"
stefank@2314 27 #include "ci/ciTypeFlow.hpp"
stefank@2314 28 #include "classfile/symbolTable.hpp"
stefank@2314 29 #include "classfile/systemDictionary.hpp"
stefank@2314 30 #include "compiler/compileLog.hpp"
stefank@2314 31 #include "libadt/dict.hpp"
stefank@2314 32 #include "memory/gcLocker.hpp"
stefank@2314 33 #include "memory/oopFactory.hpp"
stefank@2314 34 #include "memory/resourceArea.hpp"
stefank@2314 35 #include "oops/instanceKlass.hpp"
never@2658 36 #include "oops/instanceMirrorKlass.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "oops/typeArrayKlass.hpp"
stefank@2314 39 #include "opto/matcher.hpp"
stefank@2314 40 #include "opto/node.hpp"
stefank@2314 41 #include "opto/opcodes.hpp"
stefank@2314 42 #include "opto/type.hpp"
stefank@2314 43
drchase@6680 44 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6680 45
duke@435 46 // Portions of code courtesy of Clifford Click
duke@435 47
duke@435 48 // Optimization - Graph Style
duke@435 49
duke@435 50 // Dictionary of types shared among compilations.
duke@435 51 Dict* Type::_shared_type_dict = NULL;
duke@435 52
duke@435 53 // Array which maps compiler types to Basic Types
coleenp@4037 54 Type::TypeInfo Type::_type_info[Type::lastype] = {
coleenp@4037 55 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
coleenp@4037 56 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
coleenp@4037 57 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
coleenp@4037 58 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
coleenp@4037 59 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
coleenp@4037 60 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
coleenp@4037 61 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
roland@4159 62 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass
coleenp@4037 63 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
coleenp@4037 64 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
coleenp@4037 65
goetz@6487 66 #ifdef SPARC
goetz@6487 67 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
goetz@6487 68 { Bad, T_ILLEGAL, "vectord:", false, Op_RegD, relocInfo::none }, // VectorD
goetz@6487 69 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
goetz@6487 70 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
goetz@6487 71 #elif defined(PPC64)
goetz@6487 72 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
goetz@6487 73 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD
goetz@6487 74 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
goetz@6487 75 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
goetz@6487 76 #else // all other
coleenp@4037 77 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS
coleenp@4037 78 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
coleenp@4037 79 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
coleenp@4037 80 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY
goetz@6487 81 #endif
coleenp@4037 82 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr
coleenp@4037 83 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr
coleenp@4037 84 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr
coleenp@4037 85 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr
coleenp@4037 86 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr
coleenp@4037 87 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr
coleenp@4037 88 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr
coleenp@4037 89 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function
coleenp@4037 90 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio
coleenp@4037 91 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address
coleenp@4037 92 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory
coleenp@4037 93 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop
coleenp@4037 94 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon
coleenp@4037 95 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot
coleenp@4037 96 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop
coleenp@4037 97 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon
coleenp@4037 98 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot
coleenp@4037 99 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom
duke@435 100 };
duke@435 101
duke@435 102 // Map ideal registers (machine types) to ideal types
duke@435 103 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 104
duke@435 105 // Map basic types to canonical Type* pointers.
duke@435 106 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 107
duke@435 108 // Map basic types to constant-zero Types.
duke@435 109 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 110
duke@435 111 // Map basic types to array-body alias types.
duke@435 112 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 113
duke@435 114 //=============================================================================
duke@435 115 // Convenience common pre-built types.
duke@435 116 const Type *Type::ABIO; // State-of-machine only
duke@435 117 const Type *Type::BOTTOM; // All values
duke@435 118 const Type *Type::CONTROL; // Control only
duke@435 119 const Type *Type::DOUBLE; // All doubles
duke@435 120 const Type *Type::FLOAT; // All floats
duke@435 121 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 122 const Type *Type::MEMORY; // Abstract store only
duke@435 123 const Type *Type::RETURN_ADDRESS;
duke@435 124 const Type *Type::TOP; // No values in set
duke@435 125
duke@435 126 //------------------------------get_const_type---------------------------
duke@435 127 const Type* Type::get_const_type(ciType* type) {
duke@435 128 if (type == NULL) {
duke@435 129 return NULL;
duke@435 130 } else if (type->is_primitive_type()) {
duke@435 131 return get_const_basic_type(type->basic_type());
duke@435 132 } else {
duke@435 133 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 134 }
duke@435 135 }
duke@435 136
duke@435 137 //---------------------------array_element_basic_type---------------------------------
duke@435 138 // Mapping to the array element's basic type.
duke@435 139 BasicType Type::array_element_basic_type() const {
duke@435 140 BasicType bt = basic_type();
duke@435 141 if (bt == T_INT) {
duke@435 142 if (this == TypeInt::INT) return T_INT;
duke@435 143 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 144 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 145 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 146 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 147 return T_VOID;
duke@435 148 }
duke@435 149 return bt;
duke@435 150 }
duke@435 151
shshahma@8422 152 // For two instance arrays of same dimension, return the base element types.
shshahma@8422 153 // Otherwise or if the arrays have different dimensions, return NULL.
shshahma@8422 154 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
shshahma@8422 155 const TypeInstPtr **e1, const TypeInstPtr **e2) {
shshahma@8422 156
shshahma@8422 157 if (e1) *e1 = NULL;
shshahma@8422 158 if (e2) *e2 = NULL;
shshahma@8422 159 const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
shshahma@8422 160 const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
shshahma@8422 161
shshahma@8422 162 if (a1tap != NULL && a2tap != NULL) {
shshahma@8422 163 // Handle multidimensional arrays
shshahma@8422 164 const TypePtr* a1tp = a1tap->elem()->make_ptr();
shshahma@8422 165 const TypePtr* a2tp = a2tap->elem()->make_ptr();
shshahma@8422 166 while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
shshahma@8422 167 a1tap = a1tp->is_aryptr();
shshahma@8422 168 a2tap = a2tp->is_aryptr();
shshahma@8422 169 a1tp = a1tap->elem()->make_ptr();
shshahma@8422 170 a2tp = a2tap->elem()->make_ptr();
shshahma@8422 171 }
shshahma@8422 172 if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
shshahma@8422 173 if (e1) *e1 = a1tp->is_instptr();
shshahma@8422 174 if (e2) *e2 = a2tp->is_instptr();
shshahma@8422 175 }
shshahma@8422 176 }
shshahma@8422 177 }
shshahma@8422 178
duke@435 179 //---------------------------get_typeflow_type---------------------------------
duke@435 180 // Import a type produced by ciTypeFlow.
duke@435 181 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 182 switch (type->basic_type()) {
duke@435 183
duke@435 184 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 185 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 186 return Type::BOTTOM;
duke@435 187
duke@435 188 case ciTypeFlow::StateVector::T_TOP:
duke@435 189 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 190 return Type::TOP;
duke@435 191
duke@435 192 case ciTypeFlow::StateVector::T_NULL:
duke@435 193 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 194 return TypePtr::NULL_PTR;
duke@435 195
duke@435 196 case ciTypeFlow::StateVector::T_LONG2:
duke@435 197 // The ciTypeFlow pass pushes a long, then the half.
duke@435 198 // We do the same.
duke@435 199 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 200 return TypeInt::TOP;
duke@435 201
duke@435 202 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 203 // The ciTypeFlow pass pushes double, then the half.
duke@435 204 // Our convention is the same.
duke@435 205 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 206 return Type::TOP;
duke@435 207
duke@435 208 case T_ADDRESS:
duke@435 209 assert(type->is_return_address(), "");
duke@435 210 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 211
duke@435 212 default:
duke@435 213 // make sure we did not mix up the cases:
duke@435 214 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 215 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 216 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 217 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 218 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 219 assert(!type->is_return_address(), "");
duke@435 220
duke@435 221 return Type::get_const_type(type);
duke@435 222 }
duke@435 223 }
duke@435 224
duke@435 225
vlivanov@5658 226 //-----------------------make_from_constant------------------------------------
vlivanov@5658 227 const Type* Type::make_from_constant(ciConstant constant,
vlivanov@5658 228 bool require_constant, bool is_autobox_cache) {
vlivanov@5658 229 switch (constant.basic_type()) {
vlivanov@5658 230 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
vlivanov@5658 231 case T_CHAR: return TypeInt::make(constant.as_char());
vlivanov@5658 232 case T_BYTE: return TypeInt::make(constant.as_byte());
vlivanov@5658 233 case T_SHORT: return TypeInt::make(constant.as_short());
vlivanov@5658 234 case T_INT: return TypeInt::make(constant.as_int());
vlivanov@5658 235 case T_LONG: return TypeLong::make(constant.as_long());
vlivanov@5658 236 case T_FLOAT: return TypeF::make(constant.as_float());
vlivanov@5658 237 case T_DOUBLE: return TypeD::make(constant.as_double());
vlivanov@5658 238 case T_ARRAY:
vlivanov@5658 239 case T_OBJECT:
vlivanov@5658 240 {
vlivanov@5658 241 // cases:
vlivanov@5658 242 // can_be_constant = (oop not scavengable || ScavengeRootsInCode != 0)
vlivanov@5658 243 // should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
vlivanov@5658 244 // An oop is not scavengable if it is in the perm gen.
vlivanov@5658 245 ciObject* oop_constant = constant.as_object();
vlivanov@5658 246 if (oop_constant->is_null_object()) {
vlivanov@5658 247 return Type::get_zero_type(T_OBJECT);
vlivanov@5658 248 } else if (require_constant || oop_constant->should_be_constant()) {
vlivanov@5658 249 return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
vlivanov@5658 250 }
vlivanov@5658 251 }
vlivanov@5658 252 }
vlivanov@5658 253 // Fall through to failure
vlivanov@5658 254 return NULL;
vlivanov@5658 255 }
vlivanov@5658 256
vlivanov@5658 257
duke@435 258 //------------------------------make-------------------------------------------
duke@435 259 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 260 // and look for an existing copy in the type dictionary.
duke@435 261 const Type *Type::make( enum TYPES t ) {
duke@435 262 return (new Type(t))->hashcons();
duke@435 263 }
kvn@658 264
duke@435 265 //------------------------------cmp--------------------------------------------
duke@435 266 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 267 if( t1->_base != t2->_base )
duke@435 268 return 1; // Missed badly
duke@435 269 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 270 return !t1->eq(t2); // Return ZERO if equal
duke@435 271 }
duke@435 272
roland@6313 273 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
roland@6313 274 if (!include_speculative) {
roland@6313 275 return remove_speculative();
roland@6313 276 }
roland@6313 277 return this;
roland@6313 278 }
roland@6313 279
duke@435 280 //------------------------------hash-------------------------------------------
duke@435 281 int Type::uhash( const Type *const t ) {
duke@435 282 return t->hash();
duke@435 283 }
duke@435 284
kvn@1975 285 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
kvn@1975 286
duke@435 287 //--------------------------Initialize_shared----------------------------------
duke@435 288 void Type::Initialize_shared(Compile* current) {
duke@435 289 // This method does not need to be locked because the first system
duke@435 290 // compilations (stub compilations) occur serially. If they are
duke@435 291 // changed to proceed in parallel, then this section will need
duke@435 292 // locking.
duke@435 293
duke@435 294 Arena* save = current->type_arena();
zgu@7074 295 Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
duke@435 296
duke@435 297 current->set_type_arena(shared_type_arena);
duke@435 298 _shared_type_dict =
duke@435 299 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 300 shared_type_arena, 128 );
duke@435 301 current->set_type_dict(_shared_type_dict);
duke@435 302
duke@435 303 // Make shared pre-built types.
duke@435 304 CONTROL = make(Control); // Control only
duke@435 305 TOP = make(Top); // No values in set
duke@435 306 MEMORY = make(Memory); // Abstract store only
duke@435 307 ABIO = make(Abio); // State-of-machine only
duke@435 308 RETURN_ADDRESS=make(Return_Address);
duke@435 309 FLOAT = make(FloatBot); // All floats
duke@435 310 DOUBLE = make(DoubleBot); // All doubles
duke@435 311 BOTTOM = make(Bottom); // Everything
duke@435 312 HALF = make(Half); // Placeholder half of doublewide type
duke@435 313
duke@435 314 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 315 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 316
duke@435 317 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 318 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 319
duke@435 320 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 321 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 322 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 323 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 324 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 325 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 326 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 327 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 328 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 329 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 330 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
twisti@1059 331 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
duke@435 332 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 333 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 334 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 335 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 336 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 337 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
rbackman@6375 338 TypeInt::TYPE_DOMAIN = TypeInt::INT;
duke@435 339 // CmpL is overloaded both as the bytecode computation returning
duke@435 340 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 341 // compare returning optimizer ideal-type flags.
duke@435 342 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 343 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 344 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 345 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
kvn@1975 346 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 347
duke@435 348 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 349 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 350 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 351 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 352 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 353 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 354 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
rbackman@6375 355 TypeLong::TYPE_DOMAIN = TypeLong::LONG;
duke@435 356
duke@435 357 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 358 fboth[0] = Type::CONTROL;
duke@435 359 fboth[1] = Type::CONTROL;
duke@435 360 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 361
duke@435 362 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 363 ffalse[0] = Type::CONTROL;
duke@435 364 ffalse[1] = Type::TOP;
duke@435 365 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 366
duke@435 367 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 368 fneither[0] = Type::TOP;
duke@435 369 fneither[1] = Type::TOP;
duke@435 370 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 371
duke@435 372 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 373 ftrue[0] = Type::TOP;
duke@435 374 ftrue[1] = Type::CONTROL;
duke@435 375 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 376
duke@435 377 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 378 floop[0] = Type::CONTROL;
duke@435 379 floop[1] = TypeInt::INT;
duke@435 380 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 381
duke@435 382 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 383 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 384 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 385
duke@435 386 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 387 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 388
duke@435 389 const Type **fmembar = TypeTuple::fields(0);
duke@435 390 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 391
duke@435 392 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 393 fsc[0] = TypeInt::CC;
duke@435 394 fsc[1] = Type::MEMORY;
duke@435 395 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 396
duke@435 397 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 398 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 399 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 400 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 401 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 402 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 403 false, 0, oopDesc::klass_offset_in_bytes());
roland@5991 404 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
duke@435 405
coleenp@4037 406 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
coleenp@4037 407
coleenp@548 408 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 409 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 410
roland@4159 411 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
roland@4159 412
coleenp@548 413 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 414 mreg2type[Op_Set ] = 0;
coleenp@548 415 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 416 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 417 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 418 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 419 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 420 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 421 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 422
kvn@2116 423 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
kvn@598 424
kvn@598 425 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 426
kvn@598 427 #ifdef _LP64
kvn@598 428 if (UseCompressedOops) {
coleenp@4037 429 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
kvn@598 430 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 431 } else
kvn@598 432 #endif
kvn@598 433 {
kvn@598 434 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 435 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 436 }
duke@435 437 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 438 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 439 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 440 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 441 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 442 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 443 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 444
kvn@598 445 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 446 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 447 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 448 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 449 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 450 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 451 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 452 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 453 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 454 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 455 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 456 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 457
duke@435 458 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 459 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 460
duke@435 461 const Type **fi2c = TypeTuple::fields(2);
coleenp@4037 462 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
duke@435 463 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 464 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 465
duke@435 466 const Type **intpair = TypeTuple::fields(2);
duke@435 467 intpair[0] = TypeInt::INT;
duke@435 468 intpair[1] = TypeInt::INT;
duke@435 469 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 470
duke@435 471 const Type **longpair = TypeTuple::fields(2);
duke@435 472 longpair[0] = TypeLong::LONG;
duke@435 473 longpair[1] = TypeLong::LONG;
duke@435 474 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 475
rbackman@5791 476 const Type **intccpair = TypeTuple::fields(2);
rbackman@5791 477 intccpair[0] = TypeInt::INT;
rbackman@5791 478 intccpair[1] = TypeInt::CC;
rbackman@5791 479 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
rbackman@5791 480
rbackman@5997 481 const Type **longccpair = TypeTuple::fields(2);
rbackman@5997 482 longccpair[0] = TypeLong::LONG;
rbackman@5997 483 longccpair[1] = TypeInt::CC;
rbackman@5997 484 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
rbackman@5997 485
roland@4159 486 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
roland@4159 487 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
roland@4159 488 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
roland@4159 489 _const_basic_type[T_CHAR] = TypeInt::CHAR;
roland@4159 490 _const_basic_type[T_BYTE] = TypeInt::BYTE;
roland@4159 491 _const_basic_type[T_SHORT] = TypeInt::SHORT;
roland@4159 492 _const_basic_type[T_INT] = TypeInt::INT;
roland@4159 493 _const_basic_type[T_LONG] = TypeLong::LONG;
roland@4159 494 _const_basic_type[T_FLOAT] = Type::FLOAT;
roland@4159 495 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
roland@4159 496 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
roland@4159 497 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
roland@4159 498 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
roland@4159 499 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
roland@4159 500 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not?
roland@4159 501
roland@4159 502 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
roland@4159 503 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
roland@4159 504 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
roland@4159 505 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
roland@4159 506 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
roland@4159 507 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
roland@4159 508 _zero_type[T_INT] = TypeInt::ZERO;
roland@4159 509 _zero_type[T_LONG] = TypeLong::ZERO;
roland@4159 510 _zero_type[T_FLOAT] = TypeF::ZERO;
roland@4159 511 _zero_type[T_DOUBLE] = TypeD::ZERO;
roland@4159 512 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
roland@4159 513 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
roland@4159 514 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
roland@4159 515 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 516
duke@435 517 // get_zero_type() should not happen for T_CONFLICT
duke@435 518 _zero_type[T_CONFLICT]= NULL;
duke@435 519
kvn@3882 520 // Vector predefined types, it needs initialized _const_basic_type[].
kvn@3882 521 if (Matcher::vector_size_supported(T_BYTE,4)) {
kvn@3882 522 TypeVect::VECTS = TypeVect::make(T_BYTE,4);
kvn@3882 523 }
kvn@3882 524 if (Matcher::vector_size_supported(T_FLOAT,2)) {
kvn@3882 525 TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
kvn@3882 526 }
kvn@3882 527 if (Matcher::vector_size_supported(T_FLOAT,4)) {
kvn@3882 528 TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
kvn@3882 529 }
kvn@3882 530 if (Matcher::vector_size_supported(T_FLOAT,8)) {
kvn@3882 531 TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
kvn@3882 532 }
kvn@3882 533 mreg2type[Op_VecS] = TypeVect::VECTS;
kvn@3882 534 mreg2type[Op_VecD] = TypeVect::VECTD;
kvn@3882 535 mreg2type[Op_VecX] = TypeVect::VECTX;
kvn@3882 536 mreg2type[Op_VecY] = TypeVect::VECTY;
kvn@3882 537
duke@435 538 // Restore working type arena.
duke@435 539 current->set_type_arena(save);
duke@435 540 current->set_type_dict(NULL);
duke@435 541 }
duke@435 542
duke@435 543 //------------------------------Initialize-------------------------------------
duke@435 544 void Type::Initialize(Compile* current) {
duke@435 545 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 546
duke@435 547 if (_shared_type_dict == NULL) {
duke@435 548 Initialize_shared(current);
duke@435 549 }
duke@435 550
duke@435 551 Arena* type_arena = current->type_arena();
duke@435 552
duke@435 553 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 554 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 555 current->set_type_dict(tdic);
duke@435 556
duke@435 557 // Transfer the shared types.
duke@435 558 DictI i(_shared_type_dict);
duke@435 559 for( ; i.test(); ++i ) {
duke@435 560 Type* t = (Type*)i._value;
duke@435 561 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 562 }
duke@435 563 }
duke@435 564
duke@435 565 //------------------------------hashcons---------------------------------------
duke@435 566 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 567 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 568 // current Type in the Type table.
duke@435 569 const Type *Type::hashcons(void) {
duke@435 570 debug_only(base()); // Check the assertion in Type::base().
duke@435 571 // Look up the Type in the Type dictionary
duke@435 572 Dict *tdic = type_dict();
duke@435 573 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 574 if( old ) { // Pre-existing Type?
duke@435 575 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 576 delete this; // Yes, Nuke this guy
duke@435 577 assert( old->_dual, "" );
duke@435 578 return old; // Return pre-existing
duke@435 579 }
duke@435 580
duke@435 581 // Every type has a dual (to make my lattice symmetric).
duke@435 582 // Since we just discovered a new Type, compute its dual right now.
duke@435 583 assert( !_dual, "" ); // No dual yet
duke@435 584 _dual = xdual(); // Compute the dual
duke@435 585 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 586 _dual = this;
duke@435 587 return this;
duke@435 588 }
duke@435 589 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 590 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 591 // New Type, insert into Type table
duke@435 592 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 593 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 594 #ifdef ASSERT
duke@435 595 Type *dual_dual = (Type*)_dual->xdual();
duke@435 596 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 597 delete dual_dual;
duke@435 598 #endif
duke@435 599 return this; // Return new Type
duke@435 600 }
duke@435 601
duke@435 602 //------------------------------eq---------------------------------------------
duke@435 603 // Structural equality check for Type representations
duke@435 604 bool Type::eq( const Type * ) const {
duke@435 605 return true; // Nothing else can go wrong
duke@435 606 }
duke@435 607
duke@435 608 //------------------------------hash-------------------------------------------
duke@435 609 // Type-specific hashing function.
duke@435 610 int Type::hash(void) const {
duke@435 611 return _base;
duke@435 612 }
duke@435 613
duke@435 614 //------------------------------is_finite--------------------------------------
duke@435 615 // Has a finite value
duke@435 616 bool Type::is_finite() const {
duke@435 617 return false;
duke@435 618 }
duke@435 619
duke@435 620 //------------------------------is_nan-----------------------------------------
duke@435 621 // Is not a number (NaN)
duke@435 622 bool Type::is_nan() const {
duke@435 623 return false;
duke@435 624 }
duke@435 625
kvn@1255 626 //----------------------interface_vs_oop---------------------------------------
kvn@1255 627 #ifdef ASSERT
roland@5991 628 bool Type::interface_vs_oop_helper(const Type *t) const {
kvn@1255 629 bool result = false;
kvn@1255 630
kvn@1427 631 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
kvn@1427 632 const TypePtr* t_ptr = t->make_ptr();
kvn@1427 633 if( this_ptr == NULL || t_ptr == NULL )
kvn@1427 634 return result;
kvn@1427 635
kvn@1427 636 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
kvn@1427 637 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
kvn@1255 638 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
kvn@1255 639 bool this_interface = this_inst->klass()->is_interface();
kvn@1255 640 bool t_interface = t_inst->klass()->is_interface();
kvn@1255 641 result = this_interface ^ t_interface;
kvn@1255 642 }
kvn@1255 643
kvn@1255 644 return result;
kvn@1255 645 }
roland@5991 646
roland@5991 647 bool Type::interface_vs_oop(const Type *t) const {
roland@5991 648 if (interface_vs_oop_helper(t)) {
roland@5991 649 return true;
roland@5991 650 }
roland@5991 651 // Now check the speculative parts as well
roland@5991 652 const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
roland@5991 653 const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
roland@5991 654 if (this_spec != NULL && t_spec != NULL) {
roland@5991 655 if (this_spec->interface_vs_oop_helper(t_spec)) {
roland@5991 656 return true;
roland@5991 657 }
roland@5991 658 return false;
roland@5991 659 }
roland@5991 660 if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
roland@5991 661 return true;
roland@5991 662 }
roland@5991 663 if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
roland@5991 664 return true;
roland@5991 665 }
roland@5991 666 return false;
roland@5991 667 }
roland@5991 668
kvn@1255 669 #endif
kvn@1255 670
duke@435 671 //------------------------------meet-------------------------------------------
duke@435 672 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 673 // commutative and the lattice is symmetric.
roland@6313 674 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
coleenp@548 675 if (isa_narrowoop() && t->isa_narrowoop()) {
roland@6313 676 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
kvn@656 677 return result->make_narrowoop();
coleenp@548 678 }
roland@4159 679 if (isa_narrowklass() && t->isa_narrowklass()) {
roland@6313 680 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
roland@4159 681 return result->make_narrowklass();
roland@4159 682 }
coleenp@548 683
roland@6313 684 const Type *this_t = maybe_remove_speculative(include_speculative);
roland@6313 685 t = t->maybe_remove_speculative(include_speculative);
roland@6313 686
roland@6313 687 const Type *mt = this_t->xmeet(t);
coleenp@548 688 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
roland@4159 689 if (isa_narrowklass() || t->isa_narrowklass()) return mt;
duke@435 690 #ifdef ASSERT
roland@6313 691 assert(mt == t->xmeet(this_t), "meet not commutative");
duke@435 692 const Type* dual_join = mt->_dual;
duke@435 693 const Type *t2t = dual_join->xmeet(t->_dual);
roland@6313 694 const Type *t2this = dual_join->xmeet(this_t->_dual);
duke@435 695
duke@435 696 // Interface meet Oop is Not Symmetric:
duke@435 697 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 698 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
kvn@1255 699
roland@6313 700 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
duke@435 701 tty->print_cr("=== Meet Not Symmetric ===");
roland@6313 702 tty->print("t = "); t->dump(); tty->cr();
roland@6313 703 tty->print("this= "); this_t->dump(); tty->cr();
roland@6313 704 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
roland@6313 705
roland@6313 706 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
roland@6313 707 tty->print("this_dual= "); this_t->_dual->dump(); tty->cr();
roland@6313 708 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
roland@6313 709
roland@6313 710 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
roland@6313 711 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 712
duke@435 713 fatal("meet not symmetric" );
duke@435 714 }
duke@435 715 #endif
duke@435 716 return mt;
duke@435 717 }
duke@435 718
duke@435 719 //------------------------------xmeet------------------------------------------
duke@435 720 // Compute the MEET of two types. It returns a new Type object.
duke@435 721 const Type *Type::xmeet( const Type *t ) const {
duke@435 722 // Perform a fast test for common case; meeting the same types together.
duke@435 723 if( this == t ) return this; // Meeting same type-rep?
duke@435 724
duke@435 725 // Meeting TOP with anything?
duke@435 726 if( _base == Top ) return t;
duke@435 727
duke@435 728 // Meeting BOTTOM with anything?
duke@435 729 if( _base == Bottom ) return BOTTOM;
duke@435 730
duke@435 731 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 732 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 733 switch (t->base()) { // Switch on original type
duke@435 734
duke@435 735 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 736 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 737 case FloatCon:
duke@435 738 case DoubleCon:
duke@435 739 case Int:
duke@435 740 case Long:
duke@435 741 return t->xmeet(this);
duke@435 742
duke@435 743 case OopPtr:
duke@435 744 return t->xmeet(this);
duke@435 745
duke@435 746 case InstPtr:
duke@435 747 return t->xmeet(this);
duke@435 748
coleenp@4037 749 case MetadataPtr:
duke@435 750 case KlassPtr:
duke@435 751 return t->xmeet(this);
duke@435 752
duke@435 753 case AryPtr:
duke@435 754 return t->xmeet(this);
duke@435 755
coleenp@548 756 case NarrowOop:
coleenp@548 757 return t->xmeet(this);
coleenp@548 758
roland@4159 759 case NarrowKlass:
roland@4159 760 return t->xmeet(this);
roland@4159 761
duke@435 762 case Bad: // Type check
duke@435 763 default: // Bogus type not in lattice
duke@435 764 typerr(t);
duke@435 765 return Type::BOTTOM;
duke@435 766
duke@435 767 case Bottom: // Ye Olde Default
duke@435 768 return t;
duke@435 769
duke@435 770 case FloatTop:
duke@435 771 if( _base == FloatTop ) return this;
duke@435 772 case FloatBot: // Float
duke@435 773 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 774 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 775 typerr(t);
duke@435 776 return Type::BOTTOM;
duke@435 777
duke@435 778 case DoubleTop:
duke@435 779 if( _base == DoubleTop ) return this;
duke@435 780 case DoubleBot: // Double
duke@435 781 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 782 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 783 typerr(t);
duke@435 784 return Type::BOTTOM;
duke@435 785
duke@435 786 // These next few cases must match exactly or it is a compile-time error.
duke@435 787 case Control: // Control of code
duke@435 788 case Abio: // State of world outside of program
duke@435 789 case Memory:
duke@435 790 if( _base == t->_base ) return this;
duke@435 791 typerr(t);
duke@435 792 return Type::BOTTOM;
duke@435 793
duke@435 794 case Top: // Top of the lattice
duke@435 795 return this;
duke@435 796 }
duke@435 797
duke@435 798 // The type is unchanged
duke@435 799 return this;
duke@435 800 }
duke@435 801
duke@435 802 //-----------------------------filter------------------------------------------
roland@6313 803 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 804 const Type* ft = join_helper(kills, include_speculative);
duke@435 805 if (ft->empty())
duke@435 806 return Type::TOP; // Canonical empty value
duke@435 807 return ft;
duke@435 808 }
duke@435 809
duke@435 810 //------------------------------xdual------------------------------------------
duke@435 811 // Compute dual right now.
duke@435 812 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 813 Bad, // Bad
duke@435 814 Control, // Control
duke@435 815 Bottom, // Top
duke@435 816 Bad, // Int - handled in v-call
duke@435 817 Bad, // Long - handled in v-call
duke@435 818 Half, // Half
coleenp@548 819 Bad, // NarrowOop - handled in v-call
roland@4159 820 Bad, // NarrowKlass - handled in v-call
duke@435 821
duke@435 822 Bad, // Tuple - handled in v-call
duke@435 823 Bad, // Array - handled in v-call
kvn@3882 824 Bad, // VectorS - handled in v-call
kvn@3882 825 Bad, // VectorD - handled in v-call
kvn@3882 826 Bad, // VectorX - handled in v-call
kvn@3882 827 Bad, // VectorY - handled in v-call
duke@435 828
duke@435 829 Bad, // AnyPtr - handled in v-call
duke@435 830 Bad, // RawPtr - handled in v-call
duke@435 831 Bad, // OopPtr - handled in v-call
duke@435 832 Bad, // InstPtr - handled in v-call
duke@435 833 Bad, // AryPtr - handled in v-call
coleenp@4037 834
coleenp@4037 835 Bad, // MetadataPtr - handled in v-call
duke@435 836 Bad, // KlassPtr - handled in v-call
duke@435 837
duke@435 838 Bad, // Function - handled in v-call
duke@435 839 Abio, // Abio
duke@435 840 Return_Address,// Return_Address
duke@435 841 Memory, // Memory
duke@435 842 FloatBot, // FloatTop
duke@435 843 FloatCon, // FloatCon
duke@435 844 FloatTop, // FloatBot
duke@435 845 DoubleBot, // DoubleTop
duke@435 846 DoubleCon, // DoubleCon
duke@435 847 DoubleTop, // DoubleBot
duke@435 848 Top // Bottom
duke@435 849 };
duke@435 850
duke@435 851 const Type *Type::xdual() const {
duke@435 852 // Note: the base() accessor asserts the sanity of _base.
coleenp@4037 853 assert(_type_info[base()].dual_type != Bad, "implement with v-call");
coleenp@4037 854 return new Type(_type_info[_base].dual_type);
duke@435 855 }
duke@435 856
duke@435 857 //------------------------------has_memory-------------------------------------
duke@435 858 bool Type::has_memory() const {
duke@435 859 Type::TYPES tx = base();
duke@435 860 if (tx == Memory) return true;
duke@435 861 if (tx == Tuple) {
duke@435 862 const TypeTuple *t = is_tuple();
duke@435 863 for (uint i=0; i < t->cnt(); i++) {
duke@435 864 tx = t->field_at(i)->base();
duke@435 865 if (tx == Memory) return true;
duke@435 866 }
duke@435 867 }
duke@435 868 return false;
duke@435 869 }
duke@435 870
duke@435 871 #ifndef PRODUCT
duke@435 872 //------------------------------dump2------------------------------------------
duke@435 873 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
drchase@6680 874 st->print("%s", _type_info[_base].msg);
duke@435 875 }
duke@435 876
duke@435 877 //------------------------------dump-------------------------------------------
duke@435 878 void Type::dump_on(outputStream *st) const {
duke@435 879 ResourceMark rm;
duke@435 880 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 881 dump2(d,1, st);
kvn@598 882 if (is_ptr_to_narrowoop()) {
coleenp@548 883 st->print(" [narrow]");
roland@4159 884 } else if (is_ptr_to_narrowklass()) {
roland@4159 885 st->print(" [narrowklass]");
coleenp@548 886 }
duke@435 887 }
duke@435 888 #endif
duke@435 889
duke@435 890 //------------------------------singleton--------------------------------------
duke@435 891 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 892 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 893 bool Type::singleton(void) const {
duke@435 894 return _base == Top || _base == Half;
duke@435 895 }
duke@435 896
duke@435 897 //------------------------------empty------------------------------------------
duke@435 898 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 899 bool Type::empty(void) const {
duke@435 900 switch (_base) {
duke@435 901 case DoubleTop:
duke@435 902 case FloatTop:
duke@435 903 case Top:
duke@435 904 return true;
duke@435 905
duke@435 906 case Half:
duke@435 907 case Abio:
duke@435 908 case Return_Address:
duke@435 909 case Memory:
duke@435 910 case Bottom:
duke@435 911 case FloatBot:
duke@435 912 case DoubleBot:
duke@435 913 return false; // never a singleton, therefore never empty
duke@435 914 }
duke@435 915
duke@435 916 ShouldNotReachHere();
duke@435 917 return false;
duke@435 918 }
duke@435 919
duke@435 920 //------------------------------dump_stats-------------------------------------
duke@435 921 // Dump collected statistics to stderr
duke@435 922 #ifndef PRODUCT
duke@435 923 void Type::dump_stats() {
duke@435 924 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 925 }
duke@435 926 #endif
duke@435 927
duke@435 928 //------------------------------typerr-----------------------------------------
duke@435 929 void Type::typerr( const Type *t ) const {
duke@435 930 #ifndef PRODUCT
duke@435 931 tty->print("\nError mixing types: ");
duke@435 932 dump();
duke@435 933 tty->print(" and ");
duke@435 934 t->dump();
duke@435 935 tty->print("\n");
duke@435 936 #endif
duke@435 937 ShouldNotReachHere();
duke@435 938 }
duke@435 939
duke@435 940
duke@435 941 //=============================================================================
duke@435 942 // Convenience common pre-built types.
duke@435 943 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 944 const TypeF *TypeF::ONE; // Floating point one
duke@435 945
duke@435 946 //------------------------------make-------------------------------------------
duke@435 947 // Create a float constant
duke@435 948 const TypeF *TypeF::make(float f) {
duke@435 949 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 950 }
duke@435 951
duke@435 952 //------------------------------meet-------------------------------------------
duke@435 953 // Compute the MEET of two types. It returns a new Type object.
duke@435 954 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 955 // Perform a fast test for common case; meeting the same types together.
duke@435 956 if( this == t ) return this; // Meeting same type-rep?
duke@435 957
duke@435 958 // Current "this->_base" is FloatCon
duke@435 959 switch (t->base()) { // Switch on original type
duke@435 960 case AnyPtr: // Mixing with oops happens when javac
duke@435 961 case RawPtr: // reuses local variables
duke@435 962 case OopPtr:
duke@435 963 case InstPtr:
coleenp@4037 964 case AryPtr:
coleenp@4037 965 case MetadataPtr:
duke@435 966 case KlassPtr:
kvn@728 967 case NarrowOop:
roland@4159 968 case NarrowKlass:
duke@435 969 case Int:
duke@435 970 case Long:
duke@435 971 case DoubleTop:
duke@435 972 case DoubleCon:
duke@435 973 case DoubleBot:
duke@435 974 case Bottom: // Ye Olde Default
duke@435 975 return Type::BOTTOM;
duke@435 976
duke@435 977 case FloatBot:
duke@435 978 return t;
duke@435 979
duke@435 980 default: // All else is a mistake
duke@435 981 typerr(t);
duke@435 982
duke@435 983 case FloatCon: // Float-constant vs Float-constant?
duke@435 984 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 985 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 986 // all the same representation in C++
duke@435 987 return FLOAT; // Return generic float
duke@435 988 // Equal constants
duke@435 989 case Top:
duke@435 990 case FloatTop:
duke@435 991 break; // Return the float constant
duke@435 992 }
duke@435 993 return this; // Return the float constant
duke@435 994 }
duke@435 995
duke@435 996 //------------------------------xdual------------------------------------------
duke@435 997 // Dual: symmetric
duke@435 998 const Type *TypeF::xdual() const {
duke@435 999 return this;
duke@435 1000 }
duke@435 1001
duke@435 1002 //------------------------------eq---------------------------------------------
duke@435 1003 // Structural equality check for Type representations
dbuck@8886 1004 bool TypeF::eq(const Type *t) const {
dbuck@8886 1005 // Bitwise comparison to distinguish between +/-0. These values must be treated
dbuck@8886 1006 // as different to be consistent with C1 and the interpreter.
dbuck@8886 1007 return (jint_cast(_f) == jint_cast(t->getf()));
duke@435 1008 }
duke@435 1009
duke@435 1010 //------------------------------hash-------------------------------------------
duke@435 1011 // Type-specific hashing function.
duke@435 1012 int TypeF::hash(void) const {
duke@435 1013 return *(int*)(&_f);
duke@435 1014 }
duke@435 1015
duke@435 1016 //------------------------------is_finite--------------------------------------
duke@435 1017 // Has a finite value
duke@435 1018 bool TypeF::is_finite() const {
duke@435 1019 return g_isfinite(getf()) != 0;
duke@435 1020 }
duke@435 1021
duke@435 1022 //------------------------------is_nan-----------------------------------------
duke@435 1023 // Is not a number (NaN)
duke@435 1024 bool TypeF::is_nan() const {
duke@435 1025 return g_isnan(getf()) != 0;
duke@435 1026 }
duke@435 1027
duke@435 1028 //------------------------------dump2------------------------------------------
duke@435 1029 // Dump float constant Type
duke@435 1030 #ifndef PRODUCT
duke@435 1031 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1032 Type::dump2(d,depth, st);
duke@435 1033 st->print("%f", _f);
duke@435 1034 }
duke@435 1035 #endif
duke@435 1036
duke@435 1037 //------------------------------singleton--------------------------------------
duke@435 1038 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1039 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1040 // or a single symbol.
duke@435 1041 bool TypeF::singleton(void) const {
duke@435 1042 return true; // Always a singleton
duke@435 1043 }
duke@435 1044
duke@435 1045 bool TypeF::empty(void) const {
duke@435 1046 return false; // always exactly a singleton
duke@435 1047 }
duke@435 1048
duke@435 1049 //=============================================================================
duke@435 1050 // Convenience common pre-built types.
duke@435 1051 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 1052 const TypeD *TypeD::ONE; // Floating point one
duke@435 1053
duke@435 1054 //------------------------------make-------------------------------------------
duke@435 1055 const TypeD *TypeD::make(double d) {
duke@435 1056 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 1057 }
duke@435 1058
duke@435 1059 //------------------------------meet-------------------------------------------
duke@435 1060 // Compute the MEET of two types. It returns a new Type object.
duke@435 1061 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 1062 // Perform a fast test for common case; meeting the same types together.
duke@435 1063 if( this == t ) return this; // Meeting same type-rep?
duke@435 1064
duke@435 1065 // Current "this->_base" is DoubleCon
duke@435 1066 switch (t->base()) { // Switch on original type
duke@435 1067 case AnyPtr: // Mixing with oops happens when javac
duke@435 1068 case RawPtr: // reuses local variables
duke@435 1069 case OopPtr:
duke@435 1070 case InstPtr:
coleenp@4037 1071 case AryPtr:
coleenp@4037 1072 case MetadataPtr:
duke@435 1073 case KlassPtr:
never@618 1074 case NarrowOop:
roland@4159 1075 case NarrowKlass:
duke@435 1076 case Int:
duke@435 1077 case Long:
duke@435 1078 case FloatTop:
duke@435 1079 case FloatCon:
duke@435 1080 case FloatBot:
duke@435 1081 case Bottom: // Ye Olde Default
duke@435 1082 return Type::BOTTOM;
duke@435 1083
duke@435 1084 case DoubleBot:
duke@435 1085 return t;
duke@435 1086
duke@435 1087 default: // All else is a mistake
duke@435 1088 typerr(t);
duke@435 1089
duke@435 1090 case DoubleCon: // Double-constant vs Double-constant?
duke@435 1091 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 1092 return DOUBLE; // Return generic double
duke@435 1093 case Top:
duke@435 1094 case DoubleTop:
duke@435 1095 break;
duke@435 1096 }
duke@435 1097 return this; // Return the double constant
duke@435 1098 }
duke@435 1099
duke@435 1100 //------------------------------xdual------------------------------------------
duke@435 1101 // Dual: symmetric
duke@435 1102 const Type *TypeD::xdual() const {
duke@435 1103 return this;
duke@435 1104 }
duke@435 1105
duke@435 1106 //------------------------------eq---------------------------------------------
duke@435 1107 // Structural equality check for Type representations
dbuck@8886 1108 bool TypeD::eq(const Type *t) const {
dbuck@8886 1109 // Bitwise comparison to distinguish between +/-0. These values must be treated
dbuck@8886 1110 // as different to be consistent with C1 and the interpreter.
dbuck@8886 1111 return (jlong_cast(_d) == jlong_cast(t->getd()));
duke@435 1112 }
duke@435 1113
duke@435 1114 //------------------------------hash-------------------------------------------
duke@435 1115 // Type-specific hashing function.
duke@435 1116 int TypeD::hash(void) const {
duke@435 1117 return *(int*)(&_d);
duke@435 1118 }
duke@435 1119
duke@435 1120 //------------------------------is_finite--------------------------------------
duke@435 1121 // Has a finite value
duke@435 1122 bool TypeD::is_finite() const {
duke@435 1123 return g_isfinite(getd()) != 0;
duke@435 1124 }
duke@435 1125
duke@435 1126 //------------------------------is_nan-----------------------------------------
duke@435 1127 // Is not a number (NaN)
duke@435 1128 bool TypeD::is_nan() const {
duke@435 1129 return g_isnan(getd()) != 0;
duke@435 1130 }
duke@435 1131
duke@435 1132 //------------------------------dump2------------------------------------------
duke@435 1133 // Dump double constant Type
duke@435 1134 #ifndef PRODUCT
duke@435 1135 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1136 Type::dump2(d,depth,st);
duke@435 1137 st->print("%f", _d);
duke@435 1138 }
duke@435 1139 #endif
duke@435 1140
duke@435 1141 //------------------------------singleton--------------------------------------
duke@435 1142 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1143 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1144 // or a single symbol.
duke@435 1145 bool TypeD::singleton(void) const {
duke@435 1146 return true; // Always a singleton
duke@435 1147 }
duke@435 1148
duke@435 1149 bool TypeD::empty(void) const {
duke@435 1150 return false; // always exactly a singleton
duke@435 1151 }
duke@435 1152
duke@435 1153 //=============================================================================
duke@435 1154 // Convience common pre-built types.
duke@435 1155 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1156 const TypeInt *TypeInt::ZERO; // 0
duke@435 1157 const TypeInt *TypeInt::ONE; // 1
duke@435 1158 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1159 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1160 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1161 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1162 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1163 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1164 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1165 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
twisti@1059 1166 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
duke@435 1167 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1168 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1169 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1170 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1171 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1172 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
rbackman@6375 1173 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
duke@435 1174
duke@435 1175 //------------------------------TypeInt----------------------------------------
duke@435 1176 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1177 }
duke@435 1178
duke@435 1179 //------------------------------make-------------------------------------------
duke@435 1180 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1181 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1182 }
duke@435 1183
kvn@1975 1184 static int normalize_int_widen( jint lo, jint hi, int w ) {
duke@435 1185 // Certain normalizations keep us sane when comparing types.
duke@435 1186 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1187 if (lo <= hi) {
sgehwolf@7873 1188 if (((juint)hi - lo) <= SMALLINT) w = Type::WidenMin;
sgehwolf@7873 1189 if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
kvn@1975 1190 } else {
sgehwolf@7873 1191 if (((juint)lo - hi) <= SMALLINT) w = Type::WidenMin;
sgehwolf@7873 1192 if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
duke@435 1193 }
kvn@1975 1194 return w;
kvn@1975 1195 }
kvn@1975 1196
kvn@1975 1197 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
kvn@1975 1198 w = normalize_int_widen(lo, hi, w);
duke@435 1199 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1200 }
duke@435 1201
duke@435 1202 //------------------------------meet-------------------------------------------
duke@435 1203 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1204 // with reference count equal to the number of Types pointing at it.
duke@435 1205 // Caller should wrap a Types around it.
duke@435 1206 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1207 // Perform a fast test for common case; meeting the same types together.
duke@435 1208 if( this == t ) return this; // Meeting same type?
duke@435 1209
duke@435 1210 // Currently "this->_base" is a TypeInt
duke@435 1211 switch (t->base()) { // Switch on original type
duke@435 1212 case AnyPtr: // Mixing with oops happens when javac
duke@435 1213 case RawPtr: // reuses local variables
duke@435 1214 case OopPtr:
duke@435 1215 case InstPtr:
coleenp@4037 1216 case AryPtr:
coleenp@4037 1217 case MetadataPtr:
duke@435 1218 case KlassPtr:
never@618 1219 case NarrowOop:
roland@4159 1220 case NarrowKlass:
duke@435 1221 case Long:
duke@435 1222 case FloatTop:
duke@435 1223 case FloatCon:
duke@435 1224 case FloatBot:
duke@435 1225 case DoubleTop:
duke@435 1226 case DoubleCon:
duke@435 1227 case DoubleBot:
duke@435 1228 case Bottom: // Ye Olde Default
duke@435 1229 return Type::BOTTOM;
duke@435 1230 default: // All else is a mistake
duke@435 1231 typerr(t);
duke@435 1232 case Top: // No change
duke@435 1233 return this;
duke@435 1234 case Int: // Int vs Int?
duke@435 1235 break;
duke@435 1236 }
duke@435 1237
duke@435 1238 // Expand covered set
duke@435 1239 const TypeInt *r = t->is_int();
kvn@1975 1240 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1241 }
duke@435 1242
duke@435 1243 //------------------------------xdual------------------------------------------
duke@435 1244 // Dual: reverse hi & lo; flip widen
duke@435 1245 const Type *TypeInt::xdual() const {
kvn@1975 1246 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1247 return new TypeInt(_hi,_lo,w);
duke@435 1248 }
duke@435 1249
duke@435 1250 //------------------------------widen------------------------------------------
duke@435 1251 // Only happens for optimistic top-down optimizations.
never@1444 1252 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
duke@435 1253 // Coming from TOP or such; no widening
duke@435 1254 if( old->base() != Int ) return this;
duke@435 1255 const TypeInt *ot = old->is_int();
duke@435 1256
duke@435 1257 // If new guy is equal to old guy, no widening
duke@435 1258 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1259 return old;
duke@435 1260
duke@435 1261 // If new guy contains old, then we widened
duke@435 1262 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1263 // New contains old
duke@435 1264 // If new guy is already wider than old, no widening
duke@435 1265 if( _widen > ot->_widen ) return this;
duke@435 1266 // If old guy was a constant, do not bother
duke@435 1267 if (ot->_lo == ot->_hi) return this;
duke@435 1268 // Now widen new guy.
duke@435 1269 // Check for widening too far
duke@435 1270 if (_widen == WidenMax) {
never@1444 1271 int max = max_jint;
never@1444 1272 int min = min_jint;
never@1444 1273 if (limit->isa_int()) {
never@1444 1274 max = limit->is_int()->_hi;
never@1444 1275 min = limit->is_int()->_lo;
never@1444 1276 }
never@1444 1277 if (min < _lo && _hi < max) {
duke@435 1278 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1279 // which is closer to its respective limit.
duke@435 1280 if (_lo >= 0 || // easy common case
never@1444 1281 (juint)(_lo - min) >= (juint)(max - _hi)) {
duke@435 1282 // Try to widen to an unsigned range type of 31 bits:
never@1444 1283 return make(_lo, max, WidenMax);
duke@435 1284 } else {
never@1444 1285 return make(min, _hi, WidenMax);
duke@435 1286 }
duke@435 1287 }
duke@435 1288 return TypeInt::INT;
duke@435 1289 }
duke@435 1290 // Returned widened new guy
duke@435 1291 return make(_lo,_hi,_widen+1);
duke@435 1292 }
duke@435 1293
duke@435 1294 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1295 // bottom. Return the wider fellow.
duke@435 1296 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1297 return old;
duke@435 1298
duke@435 1299 //fatal("Integer value range is not subset");
duke@435 1300 //return this;
duke@435 1301 return TypeInt::INT;
duke@435 1302 }
duke@435 1303
duke@435 1304 //------------------------------narrow---------------------------------------
duke@435 1305 // Only happens for pessimistic optimizations.
duke@435 1306 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1307 if (_lo >= _hi) return this; // already narrow enough
duke@435 1308 if (old == NULL) return this;
duke@435 1309 const TypeInt* ot = old->isa_int();
duke@435 1310 if (ot == NULL) return this;
duke@435 1311 jint olo = ot->_lo;
duke@435 1312 jint ohi = ot->_hi;
duke@435 1313
duke@435 1314 // If new guy is equal to old guy, no narrowing
duke@435 1315 if (_lo == olo && _hi == ohi) return old;
duke@435 1316
duke@435 1317 // If old guy was maximum range, allow the narrowing
duke@435 1318 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1319
duke@435 1320 if (_lo < olo || _hi > ohi)
duke@435 1321 return this; // doesn't narrow; pretty wierd
duke@435 1322
duke@435 1323 // The new type narrows the old type, so look for a "death march".
duke@435 1324 // See comments on PhaseTransform::saturate.
duke@435 1325 juint nrange = _hi - _lo;
duke@435 1326 juint orange = ohi - olo;
duke@435 1327 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1328 // Use the new type only if the range shrinks a lot.
duke@435 1329 // We do not want the optimizer computing 2^31 point by point.
duke@435 1330 return old;
duke@435 1331 }
duke@435 1332
duke@435 1333 return this;
duke@435 1334 }
duke@435 1335
duke@435 1336 //-----------------------------filter------------------------------------------
roland@6313 1337 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 1338 const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
kvn@1975 1339 if (ft == NULL || ft->empty())
duke@435 1340 return Type::TOP; // Canonical empty value
duke@435 1341 if (ft->_widen < this->_widen) {
duke@435 1342 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1343 // The widen bits must be allowed to run freely through the graph.
duke@435 1344 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1345 }
duke@435 1346 return ft;
duke@435 1347 }
duke@435 1348
duke@435 1349 //------------------------------eq---------------------------------------------
duke@435 1350 // Structural equality check for Type representations
duke@435 1351 bool TypeInt::eq( const Type *t ) const {
duke@435 1352 const TypeInt *r = t->is_int(); // Handy access
duke@435 1353 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1354 }
duke@435 1355
duke@435 1356 //------------------------------hash-------------------------------------------
duke@435 1357 // Type-specific hashing function.
duke@435 1358 int TypeInt::hash(void) const {
duke@435 1359 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1360 }
duke@435 1361
duke@435 1362 //------------------------------is_finite--------------------------------------
duke@435 1363 // Has a finite value
duke@435 1364 bool TypeInt::is_finite() const {
duke@435 1365 return true;
duke@435 1366 }
duke@435 1367
duke@435 1368 //------------------------------dump2------------------------------------------
duke@435 1369 // Dump TypeInt
duke@435 1370 #ifndef PRODUCT
duke@435 1371 static const char* intname(char* buf, jint n) {
duke@435 1372 if (n == min_jint)
duke@435 1373 return "min";
duke@435 1374 else if (n < min_jint + 10000)
duke@435 1375 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1376 else if (n == max_jint)
duke@435 1377 return "max";
duke@435 1378 else if (n > max_jint - 10000)
duke@435 1379 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1380 else
duke@435 1381 sprintf(buf, INT32_FORMAT, n);
duke@435 1382 return buf;
duke@435 1383 }
duke@435 1384
duke@435 1385 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1386 char buf[40], buf2[40];
duke@435 1387 if (_lo == min_jint && _hi == max_jint)
duke@435 1388 st->print("int");
duke@435 1389 else if (is_con())
duke@435 1390 st->print("int:%s", intname(buf, get_con()));
duke@435 1391 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1392 st->print("bool");
duke@435 1393 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1394 st->print("byte");
duke@435 1395 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1396 st->print("char");
duke@435 1397 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1398 st->print("short");
duke@435 1399 else if (_hi == max_jint)
duke@435 1400 st->print("int:>=%s", intname(buf, _lo));
duke@435 1401 else if (_lo == min_jint)
duke@435 1402 st->print("int:<=%s", intname(buf, _hi));
duke@435 1403 else
duke@435 1404 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1405
duke@435 1406 if (_widen != 0 && this != TypeInt::INT)
duke@435 1407 st->print(":%.*s", _widen, "wwww");
duke@435 1408 }
duke@435 1409 #endif
duke@435 1410
duke@435 1411 //------------------------------singleton--------------------------------------
duke@435 1412 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1413 // constants.
duke@435 1414 bool TypeInt::singleton(void) const {
duke@435 1415 return _lo >= _hi;
duke@435 1416 }
duke@435 1417
duke@435 1418 bool TypeInt::empty(void) const {
duke@435 1419 return _lo > _hi;
duke@435 1420 }
duke@435 1421
duke@435 1422 //=============================================================================
duke@435 1423 // Convenience common pre-built types.
duke@435 1424 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1425 const TypeLong *TypeLong::ZERO; // 0
duke@435 1426 const TypeLong *TypeLong::ONE; // 1
duke@435 1427 const TypeLong *TypeLong::POS; // >=0
duke@435 1428 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1429 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1430 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
rbackman@6375 1431 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
duke@435 1432
duke@435 1433 //------------------------------TypeLong---------------------------------------
duke@435 1434 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1435 }
duke@435 1436
duke@435 1437 //------------------------------make-------------------------------------------
duke@435 1438 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1439 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1440 }
duke@435 1441
kvn@1975 1442 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
kvn@1975 1443 // Certain normalizations keep us sane when comparing types.
kvn@1975 1444 // The 'SMALLINT' covers constants.
kvn@1975 1445 if (lo <= hi) {
sgehwolf@7873 1446 if (((julong)hi - lo) <= SMALLINT) w = Type::WidenMin;
sgehwolf@7873 1447 if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
kvn@1975 1448 } else {
sgehwolf@7873 1449 if (((julong)lo - hi) <= SMALLINT) w = Type::WidenMin;
sgehwolf@7873 1450 if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
kvn@1975 1451 }
kvn@1975 1452 return w;
kvn@1975 1453 }
kvn@1975 1454
duke@435 1455 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
kvn@1975 1456 w = normalize_long_widen(lo, hi, w);
duke@435 1457 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1458 }
duke@435 1459
duke@435 1460
duke@435 1461 //------------------------------meet-------------------------------------------
duke@435 1462 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1463 // with reference count equal to the number of Types pointing at it.
duke@435 1464 // Caller should wrap a Types around it.
duke@435 1465 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1466 // Perform a fast test for common case; meeting the same types together.
duke@435 1467 if( this == t ) return this; // Meeting same type?
duke@435 1468
duke@435 1469 // Currently "this->_base" is a TypeLong
duke@435 1470 switch (t->base()) { // Switch on original type
duke@435 1471 case AnyPtr: // Mixing with oops happens when javac
duke@435 1472 case RawPtr: // reuses local variables
duke@435 1473 case OopPtr:
duke@435 1474 case InstPtr:
coleenp@4037 1475 case AryPtr:
coleenp@4037 1476 case MetadataPtr:
duke@435 1477 case KlassPtr:
never@618 1478 case NarrowOop:
roland@4159 1479 case NarrowKlass:
duke@435 1480 case Int:
duke@435 1481 case FloatTop:
duke@435 1482 case FloatCon:
duke@435 1483 case FloatBot:
duke@435 1484 case DoubleTop:
duke@435 1485 case DoubleCon:
duke@435 1486 case DoubleBot:
duke@435 1487 case Bottom: // Ye Olde Default
duke@435 1488 return Type::BOTTOM;
duke@435 1489 default: // All else is a mistake
duke@435 1490 typerr(t);
duke@435 1491 case Top: // No change
duke@435 1492 return this;
duke@435 1493 case Long: // Long vs Long?
duke@435 1494 break;
duke@435 1495 }
duke@435 1496
duke@435 1497 // Expand covered set
duke@435 1498 const TypeLong *r = t->is_long(); // Turn into a TypeLong
kvn@1975 1499 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1500 }
duke@435 1501
duke@435 1502 //------------------------------xdual------------------------------------------
duke@435 1503 // Dual: reverse hi & lo; flip widen
duke@435 1504 const Type *TypeLong::xdual() const {
kvn@1975 1505 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1506 return new TypeLong(_hi,_lo,w);
duke@435 1507 }
duke@435 1508
duke@435 1509 //------------------------------widen------------------------------------------
duke@435 1510 // Only happens for optimistic top-down optimizations.
never@1444 1511 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
duke@435 1512 // Coming from TOP or such; no widening
duke@435 1513 if( old->base() != Long ) return this;
duke@435 1514 const TypeLong *ot = old->is_long();
duke@435 1515
duke@435 1516 // If new guy is equal to old guy, no widening
duke@435 1517 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1518 return old;
duke@435 1519
duke@435 1520 // If new guy contains old, then we widened
duke@435 1521 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1522 // New contains old
duke@435 1523 // If new guy is already wider than old, no widening
duke@435 1524 if( _widen > ot->_widen ) return this;
duke@435 1525 // If old guy was a constant, do not bother
duke@435 1526 if (ot->_lo == ot->_hi) return this;
duke@435 1527 // Now widen new guy.
duke@435 1528 // Check for widening too far
duke@435 1529 if (_widen == WidenMax) {
never@1444 1530 jlong max = max_jlong;
never@1444 1531 jlong min = min_jlong;
never@1444 1532 if (limit->isa_long()) {
never@1444 1533 max = limit->is_long()->_hi;
never@1444 1534 min = limit->is_long()->_lo;
never@1444 1535 }
never@1444 1536 if (min < _lo && _hi < max) {
duke@435 1537 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1538 // which is closer to its respective limit.
duke@435 1539 if (_lo >= 0 || // easy common case
never@1444 1540 (julong)(_lo - min) >= (julong)(max - _hi)) {
duke@435 1541 // Try to widen to an unsigned range type of 32/63 bits:
never@1444 1542 if (max >= max_juint && _hi < max_juint)
duke@435 1543 return make(_lo, max_juint, WidenMax);
duke@435 1544 else
never@1444 1545 return make(_lo, max, WidenMax);
duke@435 1546 } else {
never@1444 1547 return make(min, _hi, WidenMax);
duke@435 1548 }
duke@435 1549 }
duke@435 1550 return TypeLong::LONG;
duke@435 1551 }
duke@435 1552 // Returned widened new guy
duke@435 1553 return make(_lo,_hi,_widen+1);
duke@435 1554 }
duke@435 1555
duke@435 1556 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1557 // bottom. Return the wider fellow.
duke@435 1558 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1559 return old;
duke@435 1560
duke@435 1561 // fatal("Long value range is not subset");
duke@435 1562 // return this;
duke@435 1563 return TypeLong::LONG;
duke@435 1564 }
duke@435 1565
duke@435 1566 //------------------------------narrow----------------------------------------
duke@435 1567 // Only happens for pessimistic optimizations.
duke@435 1568 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1569 if (_lo >= _hi) return this; // already narrow enough
duke@435 1570 if (old == NULL) return this;
duke@435 1571 const TypeLong* ot = old->isa_long();
duke@435 1572 if (ot == NULL) return this;
duke@435 1573 jlong olo = ot->_lo;
duke@435 1574 jlong ohi = ot->_hi;
duke@435 1575
duke@435 1576 // If new guy is equal to old guy, no narrowing
duke@435 1577 if (_lo == olo && _hi == ohi) return old;
duke@435 1578
duke@435 1579 // If old guy was maximum range, allow the narrowing
duke@435 1580 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1581
duke@435 1582 if (_lo < olo || _hi > ohi)
duke@435 1583 return this; // doesn't narrow; pretty wierd
duke@435 1584
duke@435 1585 // The new type narrows the old type, so look for a "death march".
duke@435 1586 // See comments on PhaseTransform::saturate.
duke@435 1587 julong nrange = _hi - _lo;
duke@435 1588 julong orange = ohi - olo;
duke@435 1589 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1590 // Use the new type only if the range shrinks a lot.
duke@435 1591 // We do not want the optimizer computing 2^31 point by point.
duke@435 1592 return old;
duke@435 1593 }
duke@435 1594
duke@435 1595 return this;
duke@435 1596 }
duke@435 1597
duke@435 1598 //-----------------------------filter------------------------------------------
roland@6313 1599 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 1600 const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
kvn@1975 1601 if (ft == NULL || ft->empty())
duke@435 1602 return Type::TOP; // Canonical empty value
duke@435 1603 if (ft->_widen < this->_widen) {
duke@435 1604 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1605 // The widen bits must be allowed to run freely through the graph.
duke@435 1606 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1607 }
duke@435 1608 return ft;
duke@435 1609 }
duke@435 1610
duke@435 1611 //------------------------------eq---------------------------------------------
duke@435 1612 // Structural equality check for Type representations
duke@435 1613 bool TypeLong::eq( const Type *t ) const {
duke@435 1614 const TypeLong *r = t->is_long(); // Handy access
duke@435 1615 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1616 }
duke@435 1617
duke@435 1618 //------------------------------hash-------------------------------------------
duke@435 1619 // Type-specific hashing function.
duke@435 1620 int TypeLong::hash(void) const {
duke@435 1621 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1622 }
duke@435 1623
duke@435 1624 //------------------------------is_finite--------------------------------------
duke@435 1625 // Has a finite value
duke@435 1626 bool TypeLong::is_finite() const {
duke@435 1627 return true;
duke@435 1628 }
duke@435 1629
duke@435 1630 //------------------------------dump2------------------------------------------
duke@435 1631 // Dump TypeLong
duke@435 1632 #ifndef PRODUCT
duke@435 1633 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1634 if (n > x) {
duke@435 1635 if (n >= x + 10000) return NULL;
hseigel@4465 1636 sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
duke@435 1637 } else if (n < x) {
duke@435 1638 if (n <= x - 10000) return NULL;
hseigel@4465 1639 sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
duke@435 1640 } else {
duke@435 1641 return xname;
duke@435 1642 }
duke@435 1643 return buf;
duke@435 1644 }
duke@435 1645
duke@435 1646 static const char* longname(char* buf, jlong n) {
duke@435 1647 const char* str;
duke@435 1648 if (n == min_jlong)
duke@435 1649 return "min";
duke@435 1650 else if (n < min_jlong + 10000)
hseigel@4465 1651 sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
duke@435 1652 else if (n == max_jlong)
duke@435 1653 return "max";
duke@435 1654 else if (n > max_jlong - 10000)
hseigel@4465 1655 sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
duke@435 1656 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1657 return str;
duke@435 1658 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1659 return str;
duke@435 1660 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1661 return str;
duke@435 1662 else
hseigel@4465 1663 sprintf(buf, JLONG_FORMAT, n);
duke@435 1664 return buf;
duke@435 1665 }
duke@435 1666
duke@435 1667 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1668 char buf[80], buf2[80];
duke@435 1669 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1670 st->print("long");
duke@435 1671 else if (is_con())
duke@435 1672 st->print("long:%s", longname(buf, get_con()));
duke@435 1673 else if (_hi == max_jlong)
duke@435 1674 st->print("long:>=%s", longname(buf, _lo));
duke@435 1675 else if (_lo == min_jlong)
duke@435 1676 st->print("long:<=%s", longname(buf, _hi));
duke@435 1677 else
duke@435 1678 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1679
duke@435 1680 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1681 st->print(":%.*s", _widen, "wwww");
duke@435 1682 }
duke@435 1683 #endif
duke@435 1684
duke@435 1685 //------------------------------singleton--------------------------------------
duke@435 1686 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1687 // constants
duke@435 1688 bool TypeLong::singleton(void) const {
duke@435 1689 return _lo >= _hi;
duke@435 1690 }
duke@435 1691
duke@435 1692 bool TypeLong::empty(void) const {
duke@435 1693 return _lo > _hi;
duke@435 1694 }
duke@435 1695
duke@435 1696 //=============================================================================
duke@435 1697 // Convenience common pre-built types.
duke@435 1698 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1699 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1700 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1701 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1702 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1703 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1704 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1705 const TypeTuple *TypeTuple::START_I2C;
duke@435 1706 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1707 const TypeTuple *TypeTuple::LONG_PAIR;
rbackman@5791 1708 const TypeTuple *TypeTuple::INT_CC_PAIR;
rbackman@5997 1709 const TypeTuple *TypeTuple::LONG_CC_PAIR;
duke@435 1710
duke@435 1711
duke@435 1712 //------------------------------make-------------------------------------------
duke@435 1713 // Make a TypeTuple from the range of a method signature
duke@435 1714 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1715 ciType* return_type = sig->return_type();
duke@435 1716 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1717 const Type **field_array = fields(total_fields);
duke@435 1718 switch (return_type->basic_type()) {
duke@435 1719 case T_LONG:
duke@435 1720 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1721 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1722 break;
duke@435 1723 case T_DOUBLE:
duke@435 1724 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1725 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1726 break;
duke@435 1727 case T_OBJECT:
duke@435 1728 case T_ARRAY:
duke@435 1729 case T_BOOLEAN:
duke@435 1730 case T_CHAR:
duke@435 1731 case T_FLOAT:
duke@435 1732 case T_BYTE:
duke@435 1733 case T_SHORT:
duke@435 1734 case T_INT:
duke@435 1735 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1736 break;
duke@435 1737 case T_VOID:
duke@435 1738 break;
duke@435 1739 default:
duke@435 1740 ShouldNotReachHere();
duke@435 1741 }
duke@435 1742 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1743 }
duke@435 1744
duke@435 1745 // Make a TypeTuple from the domain of a method signature
duke@435 1746 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1747 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1748
duke@435 1749 uint pos = TypeFunc::Parms;
duke@435 1750 const Type **field_array;
duke@435 1751 if (recv != NULL) {
duke@435 1752 total_fields++;
duke@435 1753 field_array = fields(total_fields);
duke@435 1754 // Use get_const_type here because it respects UseUniqueSubclasses:
roland@6313 1755 field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
duke@435 1756 } else {
duke@435 1757 field_array = fields(total_fields);
duke@435 1758 }
duke@435 1759
duke@435 1760 int i = 0;
duke@435 1761 while (pos < total_fields) {
duke@435 1762 ciType* type = sig->type_at(i);
duke@435 1763
duke@435 1764 switch (type->basic_type()) {
duke@435 1765 case T_LONG:
duke@435 1766 field_array[pos++] = TypeLong::LONG;
duke@435 1767 field_array[pos++] = Type::HALF;
duke@435 1768 break;
duke@435 1769 case T_DOUBLE:
duke@435 1770 field_array[pos++] = Type::DOUBLE;
duke@435 1771 field_array[pos++] = Type::HALF;
duke@435 1772 break;
duke@435 1773 case T_OBJECT:
duke@435 1774 case T_ARRAY:
kevinw@8368 1775 case T_FLOAT:
kevinw@8368 1776 case T_INT:
kevinw@8368 1777 field_array[pos++] = get_const_type(type);
kevinw@8368 1778 break;
duke@435 1779 case T_BOOLEAN:
duke@435 1780 case T_CHAR:
duke@435 1781 case T_BYTE:
duke@435 1782 case T_SHORT:
kevinw@8368 1783 field_array[pos++] = TypeInt::INT;
duke@435 1784 break;
duke@435 1785 default:
duke@435 1786 ShouldNotReachHere();
duke@435 1787 }
duke@435 1788 i++;
duke@435 1789 }
duke@435 1790 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1791 }
duke@435 1792
duke@435 1793 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1794 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1795 }
duke@435 1796
duke@435 1797 //------------------------------fields-----------------------------------------
duke@435 1798 // Subroutine call type with space allocated for argument types
duke@435 1799 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1800 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1801 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1802 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1803 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1804 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1805 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1806
duke@435 1807 return flds;
duke@435 1808 }
duke@435 1809
duke@435 1810 //------------------------------meet-------------------------------------------
duke@435 1811 // Compute the MEET of two types. It returns a new Type object.
duke@435 1812 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1813 // Perform a fast test for common case; meeting the same types together.
duke@435 1814 if( this == t ) return this; // Meeting same type-rep?
duke@435 1815
duke@435 1816 // Current "this->_base" is Tuple
duke@435 1817 switch (t->base()) { // switch on original type
duke@435 1818
duke@435 1819 case Bottom: // Ye Olde Default
duke@435 1820 return t;
duke@435 1821
duke@435 1822 default: // All else is a mistake
duke@435 1823 typerr(t);
duke@435 1824
duke@435 1825 case Tuple: { // Meeting 2 signatures?
duke@435 1826 const TypeTuple *x = t->is_tuple();
duke@435 1827 assert( _cnt == x->_cnt, "" );
duke@435 1828 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1829 for( uint i=0; i<_cnt; i++ )
duke@435 1830 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1831 return TypeTuple::make(_cnt,fields);
duke@435 1832 }
duke@435 1833 case Top:
duke@435 1834 break;
duke@435 1835 }
duke@435 1836 return this; // Return the double constant
duke@435 1837 }
duke@435 1838
duke@435 1839 //------------------------------xdual------------------------------------------
duke@435 1840 // Dual: compute field-by-field dual
duke@435 1841 const Type *TypeTuple::xdual() const {
duke@435 1842 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1843 for( uint i=0; i<_cnt; i++ )
duke@435 1844 fields[i] = _fields[i]->dual();
duke@435 1845 return new TypeTuple(_cnt,fields);
duke@435 1846 }
duke@435 1847
duke@435 1848 //------------------------------eq---------------------------------------------
duke@435 1849 // Structural equality check for Type representations
duke@435 1850 bool TypeTuple::eq( const Type *t ) const {
duke@435 1851 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1852 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1853 for (uint i = 0; i < _cnt; i++)
duke@435 1854 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1855 return false; // Missed
duke@435 1856 return true;
duke@435 1857 }
duke@435 1858
duke@435 1859 //------------------------------hash-------------------------------------------
duke@435 1860 // Type-specific hashing function.
duke@435 1861 int TypeTuple::hash(void) const {
duke@435 1862 intptr_t sum = _cnt;
duke@435 1863 for( uint i=0; i<_cnt; i++ )
duke@435 1864 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1865 return sum;
duke@435 1866 }
duke@435 1867
duke@435 1868 //------------------------------dump2------------------------------------------
duke@435 1869 // Dump signature Type
duke@435 1870 #ifndef PRODUCT
duke@435 1871 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1872 st->print("{");
duke@435 1873 if( !depth || d[this] ) { // Check for recursive print
duke@435 1874 st->print("...}");
duke@435 1875 return;
duke@435 1876 }
duke@435 1877 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1878 if( _cnt ) {
duke@435 1879 uint i;
duke@435 1880 for( i=0; i<_cnt-1; i++ ) {
duke@435 1881 st->print("%d:", i);
duke@435 1882 _fields[i]->dump2(d, depth-1, st);
duke@435 1883 st->print(", ");
duke@435 1884 }
duke@435 1885 st->print("%d:", i);
duke@435 1886 _fields[i]->dump2(d, depth-1, st);
duke@435 1887 }
duke@435 1888 st->print("}");
duke@435 1889 }
duke@435 1890 #endif
duke@435 1891
duke@435 1892 //------------------------------singleton--------------------------------------
duke@435 1893 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1894 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1895 // or a single symbol.
duke@435 1896 bool TypeTuple::singleton(void) const {
duke@435 1897 return false; // Never a singleton
duke@435 1898 }
duke@435 1899
duke@435 1900 bool TypeTuple::empty(void) const {
duke@435 1901 for( uint i=0; i<_cnt; i++ ) {
duke@435 1902 if (_fields[i]->empty()) return true;
duke@435 1903 }
duke@435 1904 return false;
duke@435 1905 }
duke@435 1906
duke@435 1907 //=============================================================================
duke@435 1908 // Convenience common pre-built types.
duke@435 1909
duke@435 1910 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1911 // Certain normalizations keep us sane when comparing types.
duke@435 1912 // We do not want arrayOop variables to differ only by the wideness
duke@435 1913 // of their index types. Pick minimum wideness, since that is the
duke@435 1914 // forced wideness of small ranges anyway.
duke@435 1915 if (size->_widen != Type::WidenMin)
duke@435 1916 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1917 else
duke@435 1918 return size;
duke@435 1919 }
duke@435 1920
duke@435 1921 //------------------------------make-------------------------------------------
vlivanov@5658 1922 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
coleenp@548 1923 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1924 elem = elem->make_narrowoop();
coleenp@548 1925 }
duke@435 1926 size = normalize_array_size(size);
vlivanov@5658 1927 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
duke@435 1928 }
duke@435 1929
duke@435 1930 //------------------------------meet-------------------------------------------
duke@435 1931 // Compute the MEET of two types. It returns a new Type object.
duke@435 1932 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1933 // Perform a fast test for common case; meeting the same types together.
duke@435 1934 if( this == t ) return this; // Meeting same type-rep?
duke@435 1935
duke@435 1936 // Current "this->_base" is Ary
duke@435 1937 switch (t->base()) { // switch on original type
duke@435 1938
duke@435 1939 case Bottom: // Ye Olde Default
duke@435 1940 return t;
duke@435 1941
duke@435 1942 default: // All else is a mistake
duke@435 1943 typerr(t);
duke@435 1944
duke@435 1945 case Array: { // Meeting 2 arrays?
duke@435 1946 const TypeAry *a = t->is_ary();
roland@6313 1947 return TypeAry::make(_elem->meet_speculative(a->_elem),
vlivanov@5658 1948 _size->xmeet(a->_size)->is_int(),
vlivanov@5658 1949 _stable & a->_stable);
duke@435 1950 }
duke@435 1951 case Top:
duke@435 1952 break;
duke@435 1953 }
duke@435 1954 return this; // Return the double constant
duke@435 1955 }
duke@435 1956
duke@435 1957 //------------------------------xdual------------------------------------------
duke@435 1958 // Dual: compute field-by-field dual
duke@435 1959 const Type *TypeAry::xdual() const {
duke@435 1960 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1961 size_dual = normalize_array_size(size_dual);
vlivanov@5658 1962 return new TypeAry(_elem->dual(), size_dual, !_stable);
duke@435 1963 }
duke@435 1964
duke@435 1965 //------------------------------eq---------------------------------------------
duke@435 1966 // Structural equality check for Type representations
duke@435 1967 bool TypeAry::eq( const Type *t ) const {
duke@435 1968 const TypeAry *a = (const TypeAry*)t;
duke@435 1969 return _elem == a->_elem &&
vlivanov@5658 1970 _stable == a->_stable &&
duke@435 1971 _size == a->_size;
duke@435 1972 }
duke@435 1973
duke@435 1974 //------------------------------hash-------------------------------------------
duke@435 1975 // Type-specific hashing function.
duke@435 1976 int TypeAry::hash(void) const {
vlivanov@5658 1977 return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
duke@435 1978 }
duke@435 1979
roland@6313 1980 /**
roland@6313 1981 * Return same type without a speculative part in the element
roland@6313 1982 */
roland@6313 1983 const Type* TypeAry::remove_speculative() const {
roland@6313 1984 return make(_elem->remove_speculative(), _size, _stable);
roland@6313 1985 }
roland@6313 1986
kvn@1255 1987 //----------------------interface_vs_oop---------------------------------------
kvn@1255 1988 #ifdef ASSERT
kvn@1255 1989 bool TypeAry::interface_vs_oop(const Type *t) const {
kvn@1255 1990 const TypeAry* t_ary = t->is_ary();
kvn@1255 1991 if (t_ary) {
shshahma@8422 1992 const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
shshahma@8422 1993 const TypePtr* t_ptr = t_ary->_elem->make_ptr();
shshahma@8422 1994 if(this_ptr != NULL && t_ptr != NULL) {
shshahma@8422 1995 return this_ptr->interface_vs_oop(t_ptr);
shshahma@8422 1996 }
kvn@1255 1997 }
kvn@1255 1998 return false;
kvn@1255 1999 }
kvn@1255 2000 #endif
kvn@1255 2001
duke@435 2002 //------------------------------dump2------------------------------------------
duke@435 2003 #ifndef PRODUCT
duke@435 2004 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
vlivanov@5658 2005 if (_stable) st->print("stable:");
duke@435 2006 _elem->dump2(d, depth, st);
duke@435 2007 st->print("[");
duke@435 2008 _size->dump2(d, depth, st);
duke@435 2009 st->print("]");
duke@435 2010 }
duke@435 2011 #endif
duke@435 2012
duke@435 2013 //------------------------------singleton--------------------------------------
duke@435 2014 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2015 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 2016 // or a single symbol.
duke@435 2017 bool TypeAry::singleton(void) const {
duke@435 2018 return false; // Never a singleton
duke@435 2019 }
duke@435 2020
duke@435 2021 bool TypeAry::empty(void) const {
duke@435 2022 return _elem->empty() || _size->empty();
duke@435 2023 }
duke@435 2024
duke@435 2025 //--------------------------ary_must_be_exact----------------------------------
duke@435 2026 bool TypeAry::ary_must_be_exact() const {
duke@435 2027 if (!UseExactTypes) return false;
duke@435 2028 // This logic looks at the element type of an array, and returns true
duke@435 2029 // if the element type is either a primitive or a final instance class.
duke@435 2030 // In such cases, an array built on this ary must have no subclasses.
duke@435 2031 if (_elem == BOTTOM) return false; // general array not exact
duke@435 2032 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 2033 const TypeOopPtr* toop = NULL;
kvn@656 2034 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 2035 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 2036 } else {
coleenp@548 2037 toop = _elem->isa_oopptr();
coleenp@548 2038 }
duke@435 2039 if (!toop) return true; // a primitive type, like int
duke@435 2040 ciKlass* tklass = toop->klass();
duke@435 2041 if (tklass == NULL) return false; // unloaded class
duke@435 2042 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 2043 const TypeInstPtr* tinst;
coleenp@548 2044 if (_elem->isa_narrowoop())
kvn@656 2045 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 2046 else
coleenp@548 2047 tinst = _elem->isa_instptr();
kvn@656 2048 if (tinst)
kvn@656 2049 return tklass->as_instance_klass()->is_final();
coleenp@548 2050 const TypeAryPtr* tap;
coleenp@548 2051 if (_elem->isa_narrowoop())
kvn@656 2052 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 2053 else
coleenp@548 2054 tap = _elem->isa_aryptr();
kvn@656 2055 if (tap)
kvn@656 2056 return tap->ary()->ary_must_be_exact();
duke@435 2057 return false;
duke@435 2058 }
duke@435 2059
kvn@3882 2060 //==============================TypeVect=======================================
kvn@3882 2061 // Convenience common pre-built types.
kvn@3882 2062 const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors
kvn@3882 2063 const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors
kvn@3882 2064 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
kvn@3882 2065 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
kvn@3882 2066
kvn@3882 2067 //------------------------------make-------------------------------------------
kvn@3882 2068 const TypeVect* TypeVect::make(const Type *elem, uint length) {
kvn@3882 2069 BasicType elem_bt = elem->array_element_basic_type();
kvn@3882 2070 assert(is_java_primitive(elem_bt), "only primitive types in vector");
kvn@3882 2071 assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
kvn@3882 2072 assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
kvn@3882 2073 int size = length * type2aelembytes(elem_bt);
kvn@3882 2074 switch (Matcher::vector_ideal_reg(size)) {
kvn@3882 2075 case Op_VecS:
kvn@3882 2076 return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
goetz@6487 2077 case Op_RegL:
kvn@3882 2078 case Op_VecD:
kvn@3882 2079 case Op_RegD:
kvn@3882 2080 return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
kvn@3882 2081 case Op_VecX:
kvn@3882 2082 return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
kvn@3882 2083 case Op_VecY:
kvn@3882 2084 return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
kvn@3882 2085 }
kvn@3882 2086 ShouldNotReachHere();
kvn@3882 2087 return NULL;
kvn@3882 2088 }
kvn@3882 2089
kvn@3882 2090 //------------------------------meet-------------------------------------------
kvn@3882 2091 // Compute the MEET of two types. It returns a new Type object.
kvn@3882 2092 const Type *TypeVect::xmeet( const Type *t ) const {
kvn@3882 2093 // Perform a fast test for common case; meeting the same types together.
kvn@3882 2094 if( this == t ) return this; // Meeting same type-rep?
kvn@3882 2095
kvn@3882 2096 // Current "this->_base" is Vector
kvn@3882 2097 switch (t->base()) { // switch on original type
kvn@3882 2098
kvn@3882 2099 case Bottom: // Ye Olde Default
kvn@3882 2100 return t;
kvn@3882 2101
kvn@3882 2102 default: // All else is a mistake
kvn@3882 2103 typerr(t);
kvn@3882 2104
kvn@3882 2105 case VectorS:
kvn@3882 2106 case VectorD:
kvn@3882 2107 case VectorX:
kvn@3882 2108 case VectorY: { // Meeting 2 vectors?
kvn@3882 2109 const TypeVect* v = t->is_vect();
kvn@3882 2110 assert( base() == v->base(), "");
kvn@3882 2111 assert(length() == v->length(), "");
kvn@3882 2112 assert(element_basic_type() == v->element_basic_type(), "");
kvn@3882 2113 return TypeVect::make(_elem->xmeet(v->_elem), _length);
kvn@3882 2114 }
kvn@3882 2115 case Top:
kvn@3882 2116 break;
kvn@3882 2117 }
kvn@3882 2118 return this;
kvn@3882 2119 }
kvn@3882 2120
kvn@3882 2121 //------------------------------xdual------------------------------------------
kvn@3882 2122 // Dual: compute field-by-field dual
kvn@3882 2123 const Type *TypeVect::xdual() const {
kvn@3882 2124 return new TypeVect(base(), _elem->dual(), _length);
kvn@3882 2125 }
kvn@3882 2126
kvn@3882 2127 //------------------------------eq---------------------------------------------
kvn@3882 2128 // Structural equality check for Type representations
kvn@3882 2129 bool TypeVect::eq(const Type *t) const {
kvn@3882 2130 const TypeVect *v = t->is_vect();
kvn@3882 2131 return (_elem == v->_elem) && (_length == v->_length);
kvn@3882 2132 }
kvn@3882 2133
kvn@3882 2134 //------------------------------hash-------------------------------------------
kvn@3882 2135 // Type-specific hashing function.
kvn@3882 2136 int TypeVect::hash(void) const {
kvn@3882 2137 return (intptr_t)_elem + (intptr_t)_length;
kvn@3882 2138 }
kvn@3882 2139
kvn@3882 2140 //------------------------------singleton--------------------------------------
kvn@3882 2141 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
kvn@3882 2142 // constants (Ldi nodes). Vector is singleton if all elements are the same
kvn@3882 2143 // constant value (when vector is created with Replicate code).
kvn@3882 2144 bool TypeVect::singleton(void) const {
kvn@3882 2145 // There is no Con node for vectors yet.
kvn@3882 2146 // return _elem->singleton();
kvn@3882 2147 return false;
kvn@3882 2148 }
kvn@3882 2149
kvn@3882 2150 bool TypeVect::empty(void) const {
kvn@3882 2151 return _elem->empty();
kvn@3882 2152 }
kvn@3882 2153
kvn@3882 2154 //------------------------------dump2------------------------------------------
kvn@3882 2155 #ifndef PRODUCT
kvn@3882 2156 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
kvn@3882 2157 switch (base()) {
kvn@3882 2158 case VectorS:
kvn@3882 2159 st->print("vectors["); break;
kvn@3882 2160 case VectorD:
kvn@3882 2161 st->print("vectord["); break;
kvn@3882 2162 case VectorX:
kvn@3882 2163 st->print("vectorx["); break;
kvn@3882 2164 case VectorY:
kvn@3882 2165 st->print("vectory["); break;
kvn@3882 2166 default:
kvn@3882 2167 ShouldNotReachHere();
kvn@3882 2168 }
kvn@3882 2169 st->print("%d]:{", _length);
kvn@3882 2170 _elem->dump2(d, depth, st);
kvn@3882 2171 st->print("}");
kvn@3882 2172 }
kvn@3882 2173 #endif
kvn@3882 2174
kvn@3882 2175
duke@435 2176 //=============================================================================
duke@435 2177 // Convenience common pre-built types.
duke@435 2178 const TypePtr *TypePtr::NULL_PTR;
duke@435 2179 const TypePtr *TypePtr::NOTNULL;
duke@435 2180 const TypePtr *TypePtr::BOTTOM;
duke@435 2181
duke@435 2182 //------------------------------meet-------------------------------------------
duke@435 2183 // Meet over the PTR enum
duke@435 2184 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 2185 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 2186 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 2187 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2188 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2189 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 2190 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 2191 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 2192 };
duke@435 2193
duke@435 2194 //------------------------------make-------------------------------------------
duke@435 2195 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 2196 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 2197 }
duke@435 2198
duke@435 2199 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2200 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2201 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 2202 if( ptr == _ptr ) return this;
duke@435 2203 return make(_base, ptr, _offset);
duke@435 2204 }
duke@435 2205
duke@435 2206 //------------------------------get_con----------------------------------------
duke@435 2207 intptr_t TypePtr::get_con() const {
duke@435 2208 assert( _ptr == Null, "" );
duke@435 2209 return _offset;
duke@435 2210 }
duke@435 2211
duke@435 2212 //------------------------------meet-------------------------------------------
duke@435 2213 // Compute the MEET of two types. It returns a new Type object.
duke@435 2214 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 2215 // Perform a fast test for common case; meeting the same types together.
duke@435 2216 if( this == t ) return this; // Meeting same type-rep?
duke@435 2217
duke@435 2218 // Current "this->_base" is AnyPtr
duke@435 2219 switch (t->base()) { // switch on original type
duke@435 2220 case Int: // Mixing ints & oops happens when javac
duke@435 2221 case Long: // reuses local variables
duke@435 2222 case FloatTop:
duke@435 2223 case FloatCon:
duke@435 2224 case FloatBot:
duke@435 2225 case DoubleTop:
duke@435 2226 case DoubleCon:
duke@435 2227 case DoubleBot:
coleenp@548 2228 case NarrowOop:
roland@4159 2229 case NarrowKlass:
duke@435 2230 case Bottom: // Ye Olde Default
duke@435 2231 return Type::BOTTOM;
duke@435 2232 case Top:
duke@435 2233 return this;
duke@435 2234
duke@435 2235 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2236 const TypePtr *tp = t->is_ptr();
duke@435 2237 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 2238 }
duke@435 2239 case RawPtr: // For these, flip the call around to cut down
duke@435 2240 case OopPtr:
duke@435 2241 case InstPtr: // on the cases I have to handle.
coleenp@4037 2242 case AryPtr:
coleenp@4037 2243 case MetadataPtr:
duke@435 2244 case KlassPtr:
duke@435 2245 return t->xmeet(this); // Call in reverse direction
duke@435 2246 default: // All else is a mistake
duke@435 2247 typerr(t);
duke@435 2248
duke@435 2249 }
duke@435 2250 return this;
duke@435 2251 }
duke@435 2252
duke@435 2253 //------------------------------meet_offset------------------------------------
duke@435 2254 int TypePtr::meet_offset( int offset ) const {
duke@435 2255 // Either is 'TOP' offset? Return the other offset!
duke@435 2256 if( _offset == OffsetTop ) return offset;
duke@435 2257 if( offset == OffsetTop ) return _offset;
duke@435 2258 // If either is different, return 'BOTTOM' offset
duke@435 2259 if( _offset != offset ) return OffsetBot;
duke@435 2260 return _offset;
duke@435 2261 }
duke@435 2262
duke@435 2263 //------------------------------dual_offset------------------------------------
duke@435 2264 int TypePtr::dual_offset( ) const {
duke@435 2265 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 2266 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 2267 return _offset; // Map everything else into self
duke@435 2268 }
duke@435 2269
duke@435 2270 //------------------------------xdual------------------------------------------
duke@435 2271 // Dual: compute field-by-field dual
duke@435 2272 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 2273 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 2274 };
duke@435 2275 const Type *TypePtr::xdual() const {
duke@435 2276 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 2277 }
duke@435 2278
kvn@741 2279 //------------------------------xadd_offset------------------------------------
kvn@741 2280 int TypePtr::xadd_offset( intptr_t offset ) const {
kvn@741 2281 // Adding to 'TOP' offset? Return 'TOP'!
kvn@741 2282 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
kvn@741 2283 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
kvn@741 2284 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
kvn@741 2285 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
kvn@741 2286 offset += (intptr_t)_offset;
kvn@741 2287 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
kvn@741 2288
kvn@741 2289 // assert( _offset >= 0 && _offset+offset >= 0, "" );
kvn@741 2290 // It is possible to construct a negative offset during PhaseCCP
kvn@741 2291
kvn@741 2292 return (int)offset; // Sum valid offsets
kvn@741 2293 }
kvn@741 2294
duke@435 2295 //------------------------------add_offset-------------------------------------
kvn@741 2296 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
kvn@741 2297 return make( AnyPtr, _ptr, xadd_offset(offset) );
duke@435 2298 }
duke@435 2299
duke@435 2300 //------------------------------eq---------------------------------------------
duke@435 2301 // Structural equality check for Type representations
duke@435 2302 bool TypePtr::eq( const Type *t ) const {
duke@435 2303 const TypePtr *a = (const TypePtr*)t;
duke@435 2304 return _ptr == a->ptr() && _offset == a->offset();
duke@435 2305 }
duke@435 2306
duke@435 2307 //------------------------------hash-------------------------------------------
duke@435 2308 // Type-specific hashing function.
duke@435 2309 int TypePtr::hash(void) const {
duke@435 2310 return _ptr + _offset;
duke@435 2311 }
duke@435 2312
duke@435 2313 //------------------------------dump2------------------------------------------
duke@435 2314 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 2315 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 2316 };
duke@435 2317
duke@435 2318 #ifndef PRODUCT
duke@435 2319 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2320 if( _ptr == Null ) st->print("NULL");
duke@435 2321 else st->print("%s *", ptr_msg[_ptr]);
duke@435 2322 if( _offset == OffsetTop ) st->print("+top");
duke@435 2323 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 2324 else if( _offset ) st->print("+%d", _offset);
duke@435 2325 }
duke@435 2326 #endif
duke@435 2327
duke@435 2328 //------------------------------singleton--------------------------------------
duke@435 2329 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2330 // constants
duke@435 2331 bool TypePtr::singleton(void) const {
duke@435 2332 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2333 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2334 }
duke@435 2335
duke@435 2336 bool TypePtr::empty(void) const {
duke@435 2337 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2338 }
duke@435 2339
duke@435 2340 //=============================================================================
duke@435 2341 // Convenience common pre-built types.
duke@435 2342 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2343 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2344
duke@435 2345 //------------------------------make-------------------------------------------
duke@435 2346 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2347 assert( ptr != Constant, "what is the constant?" );
duke@435 2348 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2349 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2350 }
duke@435 2351
duke@435 2352 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2353 assert( bits, "Use TypePtr for NULL" );
duke@435 2354 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2355 }
duke@435 2356
duke@435 2357 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2358 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2359 assert( ptr != Constant, "what is the constant?" );
duke@435 2360 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2361 assert( _bits==0, "Why cast a constant address?");
duke@435 2362 if( ptr == _ptr ) return this;
duke@435 2363 return make(ptr);
duke@435 2364 }
duke@435 2365
duke@435 2366 //------------------------------get_con----------------------------------------
duke@435 2367 intptr_t TypeRawPtr::get_con() const {
duke@435 2368 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2369 return (intptr_t)_bits;
duke@435 2370 }
duke@435 2371
duke@435 2372 //------------------------------meet-------------------------------------------
duke@435 2373 // Compute the MEET of two types. It returns a new Type object.
duke@435 2374 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2375 // Perform a fast test for common case; meeting the same types together.
duke@435 2376 if( this == t ) return this; // Meeting same type-rep?
duke@435 2377
duke@435 2378 // Current "this->_base" is RawPtr
duke@435 2379 switch( t->base() ) { // switch on original type
duke@435 2380 case Bottom: // Ye Olde Default
duke@435 2381 return t;
duke@435 2382 case Top:
duke@435 2383 return this;
duke@435 2384 case AnyPtr: // Meeting to AnyPtrs
duke@435 2385 break;
duke@435 2386 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2387 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2388 enum PTR ptr = meet_ptr( tptr );
duke@435 2389 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2390 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2391 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2392 ptr = NotNull; // Fall down in lattice
duke@435 2393 }
duke@435 2394 return make( ptr );
duke@435 2395 }
duke@435 2396
duke@435 2397 case OopPtr:
duke@435 2398 case InstPtr:
coleenp@4037 2399 case AryPtr:
coleenp@4037 2400 case MetadataPtr:
duke@435 2401 case KlassPtr:
duke@435 2402 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2403 default: // All else is a mistake
duke@435 2404 typerr(t);
duke@435 2405 }
duke@435 2406
duke@435 2407 // Found an AnyPtr type vs self-RawPtr type
duke@435 2408 const TypePtr *tp = t->is_ptr();
duke@435 2409 switch (tp->ptr()) {
duke@435 2410 case TypePtr::TopPTR: return this;
duke@435 2411 case TypePtr::BotPTR: return t;
duke@435 2412 case TypePtr::Null:
duke@435 2413 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2414 return TypeRawPtr::BOTTOM;
duke@435 2415 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2416 case TypePtr::AnyNull:
duke@435 2417 if( _ptr == TypePtr::Constant) return this;
duke@435 2418 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2419 default: ShouldNotReachHere();
duke@435 2420 }
duke@435 2421 return this;
duke@435 2422 }
duke@435 2423
duke@435 2424 //------------------------------xdual------------------------------------------
duke@435 2425 // Dual: compute field-by-field dual
duke@435 2426 const Type *TypeRawPtr::xdual() const {
duke@435 2427 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2428 }
duke@435 2429
duke@435 2430 //------------------------------add_offset-------------------------------------
kvn@741 2431 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
duke@435 2432 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2433 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2434 if( offset == 0 ) return this; // No change
duke@435 2435 switch (_ptr) {
duke@435 2436 case TypePtr::TopPTR:
duke@435 2437 case TypePtr::BotPTR:
duke@435 2438 case TypePtr::NotNull:
duke@435 2439 return this;
duke@435 2440 case TypePtr::Null:
kvn@2435 2441 case TypePtr::Constant: {
kvn@2435 2442 address bits = _bits+offset;
kvn@2435 2443 if ( bits == 0 ) return TypePtr::NULL_PTR;
kvn@2435 2444 return make( bits );
kvn@2435 2445 }
duke@435 2446 default: ShouldNotReachHere();
duke@435 2447 }
duke@435 2448 return NULL; // Lint noise
duke@435 2449 }
duke@435 2450
duke@435 2451 //------------------------------eq---------------------------------------------
duke@435 2452 // Structural equality check for Type representations
duke@435 2453 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2454 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2455 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2456 }
duke@435 2457
duke@435 2458 //------------------------------hash-------------------------------------------
duke@435 2459 // Type-specific hashing function.
duke@435 2460 int TypeRawPtr::hash(void) const {
duke@435 2461 return (intptr_t)_bits + TypePtr::hash();
duke@435 2462 }
duke@435 2463
duke@435 2464 //------------------------------dump2------------------------------------------
duke@435 2465 #ifndef PRODUCT
duke@435 2466 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2467 if( _ptr == Constant )
duke@435 2468 st->print(INTPTR_FORMAT, _bits);
duke@435 2469 else
duke@435 2470 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2471 }
duke@435 2472 #endif
duke@435 2473
duke@435 2474 //=============================================================================
duke@435 2475 // Convenience common pre-built type.
duke@435 2476 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2477
kvn@598 2478 //------------------------------TypeOopPtr-------------------------------------
roland@6380 2479 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth)
kvn@598 2480 : TypePtr(t, ptr, offset),
kvn@598 2481 _const_oop(o), _klass(k),
kvn@598 2482 _klass_is_exact(xk),
kvn@598 2483 _is_ptr_to_narrowoop(false),
roland@4159 2484 _is_ptr_to_narrowklass(false),
kvn@5110 2485 _is_ptr_to_boxed_value(false),
roland@5991 2486 _instance_id(instance_id),
roland@6380 2487 _speculative(speculative),
roland@6380 2488 _inline_depth(inline_depth){
kvn@5110 2489 if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
kvn@5110 2490 (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
kvn@5110 2491 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
kvn@5110 2492 }
kvn@598 2493 #ifdef _LP64
roland@4159 2494 if (_offset != 0) {
coleenp@4037 2495 if (_offset == oopDesc::klass_offset_in_bytes()) {
ehelin@5694 2496 _is_ptr_to_narrowklass = UseCompressedClassPointers;
coleenp@4037 2497 } else if (klass() == NULL) {
coleenp@4037 2498 // Array with unknown body type
kvn@598 2499 assert(this->isa_aryptr(), "only arrays without klass");
roland@4159 2500 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2501 } else if (this->isa_aryptr()) {
roland@4159 2502 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
kvn@598 2503 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2504 } else if (klass()->is_instance_klass()) {
kvn@598 2505 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2506 ciField* field = NULL;
kvn@598 2507 if (this->isa_klassptr()) {
never@2658 2508 // Perm objects don't use compressed references
kvn@598 2509 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2510 // unsafe access
roland@4159 2511 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2512 } else { // exclude unsafe ops
kvn@598 2513 assert(this->isa_instptr(), "must be an instance ptr.");
never@2658 2514
never@2658 2515 if (klass() == ciEnv::current()->Class_klass() &&
never@2658 2516 (_offset == java_lang_Class::klass_offset_in_bytes() ||
never@2658 2517 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
never@2658 2518 // Special hidden fields from the Class.
never@2658 2519 assert(this->isa_instptr(), "must be an instance ptr.");
coleenp@4037 2520 _is_ptr_to_narrowoop = false;
never@2658 2521 } else if (klass() == ciEnv::current()->Class_klass() &&
coleenp@4047 2522 _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
never@2658 2523 // Static fields
never@2658 2524 assert(o != NULL, "must be constant");
never@2658 2525 ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 2526 ciField* field = k->get_field_by_offset(_offset, true);
never@2658 2527 assert(field != NULL, "missing field");
kvn@598 2528 BasicType basic_elem_type = field->layout_type();
roland@4159 2529 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2530 basic_elem_type == T_ARRAY);
kvn@598 2531 } else {
never@2658 2532 // Instance fields which contains a compressed oop references.
never@2658 2533 field = ik->get_field_by_offset(_offset, false);
never@2658 2534 if (field != NULL) {
never@2658 2535 BasicType basic_elem_type = field->layout_type();
roland@4159 2536 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2537 basic_elem_type == T_ARRAY);
never@2658 2538 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
never@2658 2539 // Compile::find_alias_type() cast exactness on all types to verify
never@2658 2540 // that it does not affect alias type.
roland@4159 2541 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2542 } else {
never@2658 2543 // Type for the copy start in LibraryCallKit::inline_native_clone().
roland@4159 2544 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2545 }
kvn@598 2546 }
kvn@598 2547 }
kvn@598 2548 }
kvn@598 2549 }
kvn@598 2550 #endif
kvn@598 2551 }
kvn@598 2552
duke@435 2553 //------------------------------make-------------------------------------------
duke@435 2554 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
roland@6380 2555 int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
duke@435 2556 assert(ptr != Constant, "no constant generic pointers");
coleenp@4037 2557 ciKlass* k = Compile::current()->env()->Object_klass();
duke@435 2558 bool xk = false;
duke@435 2559 ciObject* o = NULL;
roland@6380 2560 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
duke@435 2561 }
duke@435 2562
duke@435 2563
duke@435 2564 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2565 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2566 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2567 if( ptr == _ptr ) return this;
roland@6380 2568 return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
duke@435 2569 }
duke@435 2570
kvn@682 2571 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2572 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2573 // There are no instances of a general oop.
duke@435 2574 // Return self unchanged.
duke@435 2575 return this;
duke@435 2576 }
duke@435 2577
duke@435 2578 //-----------------------------cast_to_exactness-------------------------------
duke@435 2579 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2580 // There is no such thing as an exact general oop.
duke@435 2581 // Return self unchanged.
duke@435 2582 return this;
duke@435 2583 }
duke@435 2584
duke@435 2585
duke@435 2586 //------------------------------as_klass_type----------------------------------
duke@435 2587 // Return the klass type corresponding to this instance or array type.
duke@435 2588 // It is the type that is loaded from an object of this type.
duke@435 2589 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2590 ciKlass* k = klass();
duke@435 2591 bool xk = klass_is_exact();
coleenp@4037 2592 if (k == NULL)
duke@435 2593 return TypeKlassPtr::OBJECT;
duke@435 2594 else
duke@435 2595 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2596 }
duke@435 2597
roland@5991 2598 const Type *TypeOopPtr::xmeet(const Type *t) const {
roland@5991 2599 const Type* res = xmeet_helper(t);
roland@5991 2600 if (res->isa_oopptr() == NULL) {
roland@5991 2601 return res;
roland@5991 2602 }
roland@5991 2603
roland@6313 2604 const TypeOopPtr* res_oopptr = res->is_oopptr();
roland@6313 2605 if (res_oopptr->speculative() != NULL) {
roland@5991 2606 // type->speculative() == NULL means that speculation is no better
roland@5991 2607 // than type, i.e. type->speculative() == type. So there are 2
roland@5991 2608 // ways to represent the fact that we have no useful speculative
roland@5991 2609 // data and we should use a single one to be able to test for
roland@5991 2610 // equality between types. Check whether type->speculative() ==
roland@5991 2611 // type and set speculative to NULL if it is the case.
roland@5991 2612 if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
roland@5991 2613 return res_oopptr->remove_speculative();
roland@5991 2614 }
roland@5991 2615 }
roland@5991 2616
roland@5991 2617 return res;
roland@5991 2618 }
duke@435 2619
duke@435 2620 //------------------------------meet-------------------------------------------
duke@435 2621 // Compute the MEET of two types. It returns a new Type object.
roland@5991 2622 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
duke@435 2623 // Perform a fast test for common case; meeting the same types together.
duke@435 2624 if( this == t ) return this; // Meeting same type-rep?
duke@435 2625
duke@435 2626 // Current "this->_base" is OopPtr
duke@435 2627 switch (t->base()) { // switch on original type
duke@435 2628
duke@435 2629 case Int: // Mixing ints & oops happens when javac
duke@435 2630 case Long: // reuses local variables
duke@435 2631 case FloatTop:
duke@435 2632 case FloatCon:
duke@435 2633 case FloatBot:
duke@435 2634 case DoubleTop:
duke@435 2635 case DoubleCon:
duke@435 2636 case DoubleBot:
kvn@728 2637 case NarrowOop:
roland@4159 2638 case NarrowKlass:
duke@435 2639 case Bottom: // Ye Olde Default
duke@435 2640 return Type::BOTTOM;
duke@435 2641 case Top:
duke@435 2642 return this;
duke@435 2643
duke@435 2644 default: // All else is a mistake
duke@435 2645 typerr(t);
duke@435 2646
duke@435 2647 case RawPtr:
coleenp@4037 2648 case MetadataPtr:
coleenp@4037 2649 case KlassPtr:
duke@435 2650 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2651
duke@435 2652 case AnyPtr: {
duke@435 2653 // Found an AnyPtr type vs self-OopPtr type
duke@435 2654 const TypePtr *tp = t->is_ptr();
duke@435 2655 int offset = meet_offset(tp->offset());
duke@435 2656 PTR ptr = meet_ptr(tp->ptr());
duke@435 2657 switch (tp->ptr()) {
duke@435 2658 case Null:
duke@435 2659 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2660 // else fall through:
duke@435 2661 case TopPTR:
kvn@1427 2662 case AnyNull: {
kvn@1427 2663 int instance_id = meet_instance_id(InstanceTop);
roland@5991 2664 const TypeOopPtr* speculative = _speculative;
roland@6380 2665 return make(ptr, offset, instance_id, speculative, _inline_depth);
kvn@1427 2666 }
duke@435 2667 case BotPTR:
duke@435 2668 case NotNull:
duke@435 2669 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2670 default: typerr(t);
duke@435 2671 }
duke@435 2672 }
duke@435 2673
duke@435 2674 case OopPtr: { // Meeting to other OopPtrs
duke@435 2675 const TypeOopPtr *tp = t->is_oopptr();
kvn@1393 2676 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 2677 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 2678 int depth = meet_inline_depth(tp->inline_depth());
roland@6380 2679 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
duke@435 2680 }
duke@435 2681
duke@435 2682 case InstPtr: // For these, flip the call around to cut down
duke@435 2683 case AryPtr:
duke@435 2684 return t->xmeet(this); // Call in reverse direction
duke@435 2685
duke@435 2686 } // End of switch
duke@435 2687 return this; // Return the double constant
duke@435 2688 }
duke@435 2689
duke@435 2690
duke@435 2691 //------------------------------xdual------------------------------------------
duke@435 2692 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2693 const Type *TypeOopPtr::xdual() const {
coleenp@4037 2694 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
duke@435 2695 assert(const_oop() == NULL, "no constants here");
roland@6380 2696 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
duke@435 2697 }
duke@435 2698
duke@435 2699 //--------------------------make_from_klass_common-----------------------------
duke@435 2700 // Computes the element-type given a klass.
duke@435 2701 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2702 if (klass->is_instance_klass()) {
duke@435 2703 Compile* C = Compile::current();
duke@435 2704 Dependencies* deps = C->dependencies();
duke@435 2705 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2706 // Element is an instance
duke@435 2707 bool klass_is_exact = false;
duke@435 2708 if (klass->is_loaded()) {
duke@435 2709 // Try to set klass_is_exact.
duke@435 2710 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2711 klass_is_exact = ik->is_final();
duke@435 2712 if (!klass_is_exact && klass_change
duke@435 2713 && deps != NULL && UseUniqueSubclasses) {
duke@435 2714 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2715 if (sub != NULL) {
duke@435 2716 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2717 klass = ik = sub;
duke@435 2718 klass_is_exact = sub->is_final();
duke@435 2719 }
duke@435 2720 }
duke@435 2721 if (!klass_is_exact && try_for_exact
duke@435 2722 && deps != NULL && UseExactTypes) {
duke@435 2723 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2724 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2725 deps->assert_leaf_type(ik);
duke@435 2726 klass_is_exact = true;
duke@435 2727 }
duke@435 2728 }
duke@435 2729 }
duke@435 2730 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2731 } else if (klass->is_obj_array_klass()) {
duke@435 2732 // Element is an object array. Recursively call ourself.
duke@435 2733 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2734 bool xk = etype->klass_is_exact();
duke@435 2735 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2736 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2737 // are all not-null. This is not true in generally, as code can
duke@435 2738 // slam NULLs down in the subarrays.
duke@435 2739 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2740 return arr;
duke@435 2741 } else if (klass->is_type_array_klass()) {
duke@435 2742 // Element is an typeArray
duke@435 2743 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2744 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2745 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2746 // is not-null. That was not true in general.
duke@435 2747 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2748 return arr;
duke@435 2749 } else {
duke@435 2750 ShouldNotReachHere();
duke@435 2751 return NULL;
duke@435 2752 }
duke@435 2753 }
duke@435 2754
duke@435 2755 //------------------------------make_from_constant-----------------------------
duke@435 2756 // Make a java pointer from an oop constant
kvn@5110 2757 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
kvn@5110 2758 bool require_constant,
kvn@5110 2759 bool is_autobox_cache) {
kvn@5110 2760 assert(!o->is_null_object(), "null object not yet handled here.");
kvn@5110 2761 ciKlass* klass = o->klass();
kvn@5110 2762 if (klass->is_instance_klass()) {
kvn@5110 2763 // Element is an instance
kvn@5110 2764 if (require_constant) {
kvn@5110 2765 if (!o->can_be_constant()) return NULL;
kvn@5110 2766 } else if (!o->should_be_constant()) {
kvn@5110 2767 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
kvn@5110 2768 }
kvn@5110 2769 return TypeInstPtr::make(o);
kvn@5110 2770 } else if (klass->is_obj_array_klass()) {
kvn@5110 2771 // Element is an object array. Recursively call ourself.
kvn@5110 2772 const TypeOopPtr *etype =
coleenp@4037 2773 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
kvn@5110 2774 if (is_autobox_cache) {
kvn@5110 2775 // The pointers in the autobox arrays are always non-null.
kvn@5110 2776 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
kvn@5110 2777 }
kvn@5110 2778 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
kvn@5110 2779 // We used to pass NotNull in here, asserting that the sub-arrays
kvn@5110 2780 // are all not-null. This is not true in generally, as code can
kvn@5110 2781 // slam NULLs down in the subarrays.
kvn@5110 2782 if (require_constant) {
kvn@5110 2783 if (!o->can_be_constant()) return NULL;
kvn@5110 2784 } else if (!o->should_be_constant()) {
kvn@5110 2785 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
kvn@5110 2786 }
roland@6380 2787 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, InlineDepthBottom, is_autobox_cache);
coleenp@4037 2788 return arr;
kvn@5110 2789 } else if (klass->is_type_array_klass()) {
kvn@5110 2790 // Element is an typeArray
coleenp@4037 2791 const Type* etype =
coleenp@4037 2792 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
kvn@5110 2793 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
kvn@5110 2794 // We used to pass NotNull in here, asserting that the array pointer
kvn@5110 2795 // is not-null. That was not true in general.
kvn@5110 2796 if (require_constant) {
kvn@5110 2797 if (!o->can_be_constant()) return NULL;
kvn@5110 2798 } else if (!o->should_be_constant()) {
kvn@5110 2799 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
kvn@5110 2800 }
coleenp@4037 2801 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
coleenp@4037 2802 return arr;
duke@435 2803 }
duke@435 2804
twisti@3885 2805 fatal("unhandled object type");
duke@435 2806 return NULL;
duke@435 2807 }
duke@435 2808
duke@435 2809 //------------------------------get_con----------------------------------------
duke@435 2810 intptr_t TypeOopPtr::get_con() const {
duke@435 2811 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2812 assert( _offset >= 0, "" );
duke@435 2813
duke@435 2814 if (_offset != 0) {
duke@435 2815 // After being ported to the compiler interface, the compiler no longer
duke@435 2816 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2817 // to a handle at compile time. This handle is embedded in the generated
duke@435 2818 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2819 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2820 // have access to the addresses!). This does not seem to currently happen,
twisti@1040 2821 // but this assertion here is to help prevent its occurence.
duke@435 2822 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2823 ShouldNotReachHere();
duke@435 2824 }
duke@435 2825
jrose@1424 2826 return (intptr_t)const_oop()->constant_encoding();
duke@435 2827 }
duke@435 2828
duke@435 2829
duke@435 2830 //-----------------------------filter------------------------------------------
duke@435 2831 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 2832 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 2833
roland@6313 2834 const Type* ft = join_helper(kills, include_speculative);
duke@435 2835 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2836 const TypeInstPtr* ktip = kills->isa_instptr();
duke@435 2837
duke@435 2838 if (ft->empty()) {
duke@435 2839 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2840 // interface. This can happen because the bytecodes do not contain
duke@435 2841 // enough type info to distinguish a Java-level interface variable
duke@435 2842 // from a Java-level object variable. If we meet 2 classes which
duke@435 2843 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2844 // doesn't implement I, we have no way to tell if the result should
duke@435 2845 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2846 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2847 // uplift the type.
shshahma@8422 2848 if (!empty()) {
shshahma@8422 2849 if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
shshahma@8422 2850 return kills; // Uplift to interface
shshahma@8422 2851 }
shshahma@8422 2852 // Also check for evil cases of 'this' being a class array
shshahma@8422 2853 // and 'kills' expecting an array of interfaces.
shshahma@8422 2854 Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
shshahma@8422 2855 if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
shshahma@8422 2856 return kills; // Uplift to array of interface
shshahma@8422 2857 }
shshahma@8422 2858 }
duke@435 2859
duke@435 2860 return Type::TOP; // Canonical empty value
duke@435 2861 }
duke@435 2862
duke@435 2863 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2864 // the join should report back the class. However, if we have a J/L/Object
duke@435 2865 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2866 // join report an interface back out. This isn't possible but happens
duke@435 2867 // because the type system doesn't interact well with interfaces.
duke@435 2868 if (ftip != NULL && ktip != NULL &&
duke@435 2869 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2870 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2871 // Happens in a CTW of rt.jar, 320-341, no extra flags
kvn@1770 2872 assert(!ftip->klass_is_exact(), "interface could not be exact");
duke@435 2873 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2874 }
duke@435 2875
duke@435 2876 return ft;
duke@435 2877 }
duke@435 2878
duke@435 2879 //------------------------------eq---------------------------------------------
duke@435 2880 // Structural equality check for Type representations
duke@435 2881 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2882 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2883 if (_klass_is_exact != a->_klass_is_exact ||
roland@5991 2884 _instance_id != a->_instance_id ||
roland@6380 2885 !eq_speculative(a) ||
roland@6380 2886 _inline_depth != a->_inline_depth) return false;
duke@435 2887 ciObject* one = const_oop();
duke@435 2888 ciObject* two = a->const_oop();
duke@435 2889 if (one == NULL || two == NULL) {
duke@435 2890 return (one == two) && TypePtr::eq(t);
duke@435 2891 } else {
duke@435 2892 return one->equals(two) && TypePtr::eq(t);
duke@435 2893 }
duke@435 2894 }
duke@435 2895
duke@435 2896 //------------------------------hash-------------------------------------------
duke@435 2897 // Type-specific hashing function.
duke@435 2898 int TypeOopPtr::hash(void) const {
duke@435 2899 return
duke@435 2900 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2901 _klass_is_exact +
duke@435 2902 _instance_id +
roland@5991 2903 hash_speculative() +
roland@6380 2904 _inline_depth +
duke@435 2905 TypePtr::hash();
duke@435 2906 }
duke@435 2907
duke@435 2908 //------------------------------dump2------------------------------------------
duke@435 2909 #ifndef PRODUCT
duke@435 2910 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2911 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2912 if( _klass_is_exact ) st->print(":exact");
duke@435 2913 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2914 switch( _offset ) {
duke@435 2915 case OffsetTop: st->print("+top"); break;
duke@435 2916 case OffsetBot: st->print("+any"); break;
duke@435 2917 case 0: break;
duke@435 2918 default: st->print("+%d",_offset); break;
duke@435 2919 }
kvn@658 2920 if (_instance_id == InstanceTop)
kvn@658 2921 st->print(",iid=top");
kvn@658 2922 else if (_instance_id != InstanceBot)
duke@435 2923 st->print(",iid=%d",_instance_id);
roland@5991 2924
roland@6380 2925 dump_inline_depth(st);
roland@5991 2926 dump_speculative(st);
roland@5991 2927 }
roland@5991 2928
roland@5991 2929 /**
roland@5991 2930 *dump the speculative part of the type
roland@5991 2931 */
roland@5991 2932 void TypeOopPtr::dump_speculative(outputStream *st) const {
roland@5991 2933 if (_speculative != NULL) {
roland@5991 2934 st->print(" (speculative=");
roland@5991 2935 _speculative->dump_on(st);
roland@5991 2936 st->print(")");
roland@5991 2937 }
duke@435 2938 }
roland@6380 2939
roland@6380 2940 void TypeOopPtr::dump_inline_depth(outputStream *st) const {
roland@6380 2941 if (_inline_depth != InlineDepthBottom) {
roland@6380 2942 if (_inline_depth == InlineDepthTop) {
roland@6380 2943 st->print(" (inline_depth=InlineDepthTop)");
roland@6380 2944 } else {
roland@6380 2945 st->print(" (inline_depth=%d)", _inline_depth);
roland@6380 2946 }
roland@6380 2947 }
roland@6380 2948 }
duke@435 2949 #endif
duke@435 2950
duke@435 2951 //------------------------------singleton--------------------------------------
duke@435 2952 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2953 // constants
duke@435 2954 bool TypeOopPtr::singleton(void) const {
duke@435 2955 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2956 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2957 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2958 }
duke@435 2959
duke@435 2960 //------------------------------add_offset-------------------------------------
roland@5991 2961 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
roland@6380 2962 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
roland@5991 2963 }
roland@5991 2964
roland@5991 2965 /**
roland@5991 2966 * Return same type without a speculative part
roland@5991 2967 */
roland@6313 2968 const Type* TypeOopPtr::remove_speculative() const {
roland@6313 2969 if (_speculative == NULL) {
roland@6313 2970 return this;
roland@6313 2971 }
roland@6380 2972 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
roland@6380 2973 return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
roland@6380 2974 }
roland@6380 2975
roland@6380 2976 /**
roland@6380 2977 * Return same type but with a different inline depth (used for speculation)
roland@6380 2978 *
roland@6380 2979 * @param depth depth to meet with
roland@6380 2980 */
roland@6380 2981 const TypeOopPtr* TypeOopPtr::with_inline_depth(int depth) const {
roland@6380 2982 if (!UseInlineDepthForSpeculativeTypes) {
roland@6380 2983 return this;
roland@6380 2984 }
roland@6380 2985 return make(_ptr, _offset, _instance_id, _speculative, depth);
roland@6380 2986 }
roland@6380 2987
roland@6380 2988 /**
roland@6380 2989 * Check whether new profiling would improve speculative type
roland@6380 2990 *
roland@6380 2991 * @param exact_kls class from profiling
roland@6380 2992 * @param inline_depth inlining depth of profile point
roland@6380 2993 *
roland@6380 2994 * @return true if type profile is valuable
roland@6380 2995 */
roland@6380 2996 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
roland@6380 2997 // no way to improve an already exact type
roland@6380 2998 if (klass_is_exact()) {
roland@6380 2999 return false;
roland@6380 3000 }
roland@6380 3001 // no profiling?
roland@6380 3002 if (exact_kls == NULL) {
roland@6380 3003 return false;
roland@6380 3004 }
roland@6380 3005 // no speculative type or non exact speculative type?
roland@6380 3006 if (speculative_type() == NULL) {
roland@6380 3007 return true;
roland@6380 3008 }
roland@6380 3009 // If the node already has an exact speculative type keep it,
roland@6380 3010 // unless it was provided by profiling that is at a deeper
roland@6380 3011 // inlining level. Profiling at a higher inlining depth is
roland@6380 3012 // expected to be less accurate.
roland@6380 3013 if (_speculative->inline_depth() == InlineDepthBottom) {
roland@6380 3014 return false;
roland@6380 3015 }
roland@6380 3016 assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
roland@6380 3017 return inline_depth < _speculative->inline_depth();
duke@435 3018 }
duke@435 3019
kvn@658 3020 //------------------------------meet_instance_id--------------------------------
kvn@658 3021 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 3022 // Either is 'TOP' instance? Return the other instance!
kvn@658 3023 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 3024 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 3025 // If either is different, return 'BOTTOM' instance
kvn@658 3026 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 3027 return _instance_id;
duke@435 3028 }
duke@435 3029
kvn@658 3030 //------------------------------dual_instance_id--------------------------------
kvn@658 3031 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 3032 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 3033 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 3034 return _instance_id; // Map everything else into self
kvn@658 3035 }
kvn@658 3036
roland@5991 3037 /**
roland@5991 3038 * meet of the speculative parts of 2 types
roland@5991 3039 *
roland@5991 3040 * @param other type to meet with
roland@5991 3041 */
roland@6313 3042 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
roland@5991 3043 bool this_has_spec = (_speculative != NULL);
roland@5991 3044 bool other_has_spec = (other->speculative() != NULL);
roland@5991 3045
roland@5991 3046 if (!this_has_spec && !other_has_spec) {
roland@5991 3047 return NULL;
roland@5991 3048 }
roland@5991 3049
roland@5991 3050 // If we are at a point where control flow meets and one branch has
roland@5991 3051 // a speculative type and the other has not, we meet the speculative
roland@5991 3052 // type of one branch with the actual type of the other. If the
roland@5991 3053 // actual type is exact and the speculative is as well, then the
roland@5991 3054 // result is a speculative type which is exact and we can continue
roland@5991 3055 // speculation further.
roland@5991 3056 const TypeOopPtr* this_spec = _speculative;
roland@5991 3057 const TypeOopPtr* other_spec = other->speculative();
roland@5991 3058
roland@5991 3059 if (!this_has_spec) {
roland@5991 3060 this_spec = this;
roland@5991 3061 }
roland@5991 3062
roland@5991 3063 if (!other_has_spec) {
roland@5991 3064 other_spec = other;
roland@5991 3065 }
roland@5991 3066
roland@6313 3067 return this_spec->meet_speculative(other_spec)->is_oopptr();
roland@5991 3068 }
roland@5991 3069
roland@5991 3070 /**
roland@5991 3071 * dual of the speculative part of the type
roland@5991 3072 */
roland@5991 3073 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
roland@5991 3074 if (_speculative == NULL) {
roland@5991 3075 return NULL;
roland@5991 3076 }
roland@5991 3077 return _speculative->dual()->is_oopptr();
roland@5991 3078 }
roland@5991 3079
roland@5991 3080 /**
roland@5991 3081 * add offset to the speculative part of the type
roland@5991 3082 *
roland@5991 3083 * @param offset offset to add
roland@5991 3084 */
roland@5991 3085 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
roland@5991 3086 if (_speculative == NULL) {
roland@5991 3087 return NULL;
roland@5991 3088 }
roland@5991 3089 return _speculative->add_offset(offset)->is_oopptr();
roland@5991 3090 }
roland@5991 3091
roland@5991 3092 /**
roland@5991 3093 * Are the speculative parts of 2 types equal?
roland@5991 3094 *
roland@5991 3095 * @param other type to compare this one to
roland@5991 3096 */
roland@5991 3097 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
roland@5991 3098 if (_speculative == NULL || other->speculative() == NULL) {
roland@5991 3099 return _speculative == other->speculative();
roland@5991 3100 }
roland@5991 3101
roland@5991 3102 if (_speculative->base() != other->speculative()->base()) {
roland@5991 3103 return false;
roland@5991 3104 }
roland@5991 3105
roland@5991 3106 return _speculative->eq(other->speculative());
roland@5991 3107 }
roland@5991 3108
roland@5991 3109 /**
roland@5991 3110 * Hash of the speculative part of the type
roland@5991 3111 */
roland@5991 3112 int TypeOopPtr::hash_speculative() const {
roland@5991 3113 if (_speculative == NULL) {
roland@5991 3114 return 0;
roland@5991 3115 }
roland@5991 3116
roland@5991 3117 return _speculative->hash();
roland@5991 3118 }
roland@5991 3119
roland@6380 3120 /**
roland@6380 3121 * dual of the inline depth for this type (used for speculation)
roland@6380 3122 */
roland@6380 3123 int TypeOopPtr::dual_inline_depth() const {
roland@6380 3124 return -inline_depth();
roland@6380 3125 }
roland@6380 3126
roland@6380 3127 /**
roland@6380 3128 * meet of 2 inline depth (used for speculation)
roland@6380 3129 *
roland@6380 3130 * @param depth depth to meet with
roland@6380 3131 */
roland@6380 3132 int TypeOopPtr::meet_inline_depth(int depth) const {
roland@6380 3133 return MAX2(inline_depth(), depth);
roland@6380 3134 }
kvn@658 3135
duke@435 3136 //=============================================================================
duke@435 3137 // Convenience common pre-built types.
duke@435 3138 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 3139 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 3140 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 3141 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 3142 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 3143
duke@435 3144 //------------------------------TypeInstPtr-------------------------------------
roland@6380 3145 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative, int inline_depth)
roland@6380 3146 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth), _name(k->name()) {
duke@435 3147 assert(k != NULL &&
duke@435 3148 (k->is_loaded() || o == NULL),
duke@435 3149 "cannot have constants with non-loaded klass");
duke@435 3150 };
duke@435 3151
duke@435 3152 //------------------------------make-------------------------------------------
duke@435 3153 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 3154 ciKlass* k,
duke@435 3155 bool xk,
duke@435 3156 ciObject* o,
duke@435 3157 int offset,
roland@5991 3158 int instance_id,
roland@6380 3159 const TypeOopPtr* speculative,
roland@6380 3160 int inline_depth) {
coleenp@4037 3161 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
duke@435 3162 // Either const_oop() is NULL or else ptr is Constant
duke@435 3163 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 3164 "constant pointers must have a value supplied" );
duke@435 3165 // Ptr is never Null
duke@435 3166 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 3167
kvn@682 3168 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3169 if (!UseExactTypes) xk = false;
duke@435 3170 if (ptr == Constant) {
duke@435 3171 // Note: This case includes meta-object constants, such as methods.
duke@435 3172 xk = true;
duke@435 3173 } else if (k->is_loaded()) {
duke@435 3174 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 3175 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 3176 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 3177 }
duke@435 3178
duke@435 3179 // Now hash this baby
duke@435 3180 TypeInstPtr *result =
roland@6380 3181 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
duke@435 3182
duke@435 3183 return result;
duke@435 3184 }
duke@435 3185
kvn@5110 3186 /**
kvn@5110 3187 * Create constant type for a constant boxed value
kvn@5110 3188 */
kvn@5110 3189 const Type* TypeInstPtr::get_const_boxed_value() const {
kvn@5110 3190 assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
kvn@5110 3191 assert((const_oop() != NULL), "should be called only for constant object");
kvn@5110 3192 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
kvn@5110 3193 BasicType bt = constant.basic_type();
kvn@5110 3194 switch (bt) {
kvn@5110 3195 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
kvn@5110 3196 case T_INT: return TypeInt::make(constant.as_int());
kvn@5110 3197 case T_CHAR: return TypeInt::make(constant.as_char());
kvn@5110 3198 case T_BYTE: return TypeInt::make(constant.as_byte());
kvn@5110 3199 case T_SHORT: return TypeInt::make(constant.as_short());
kvn@5110 3200 case T_FLOAT: return TypeF::make(constant.as_float());
kvn@5110 3201 case T_DOUBLE: return TypeD::make(constant.as_double());
kvn@5110 3202 case T_LONG: return TypeLong::make(constant.as_long());
kvn@5110 3203 default: break;
kvn@5110 3204 }
kvn@5110 3205 fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
kvn@5110 3206 return NULL;
kvn@5110 3207 }
duke@435 3208
duke@435 3209 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3210 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3211 if( ptr == _ptr ) return this;
duke@435 3212 // Reconstruct _sig info here since not a problem with later lazy
duke@435 3213 // construction, _sig will show up on demand.
roland@6380 3214 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
duke@435 3215 }
duke@435 3216
duke@435 3217
duke@435 3218 //-----------------------------cast_to_exactness-------------------------------
duke@435 3219 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3220 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3221 if (!UseExactTypes) return this;
duke@435 3222 if (!_klass->is_loaded()) return this;
duke@435 3223 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 3224 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 3225 if( ik->is_interface() ) return this; // cannot set xk
roland@6380 3226 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
duke@435 3227 }
duke@435 3228
kvn@682 3229 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3230 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3231 if( instance_id == _instance_id ) return this;
roland@6380 3232 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
duke@435 3233 }
duke@435 3234
duke@435 3235 //------------------------------xmeet_unloaded---------------------------------
duke@435 3236 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 3237 // Assume classes are different since called after check for same name/class-loader
duke@435 3238 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 3239 int off = meet_offset(tinst->offset());
duke@435 3240 PTR ptr = meet_ptr(tinst->ptr());
kvn@1427 3241 int instance_id = meet_instance_id(tinst->instance_id());
roland@6313 3242 const TypeOopPtr* speculative = xmeet_speculative(tinst);
roland@6380 3243 int depth = meet_inline_depth(tinst->inline_depth());
duke@435 3244
duke@435 3245 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 3246 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 3247 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3248 //
duke@435 3249 // Meet unloaded class with java/lang/Object
duke@435 3250 //
duke@435 3251 // Meet
duke@435 3252 // | Unloaded Class
duke@435 3253 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 3254 // ===================================================================
duke@435 3255 // TOP | ..........................Unloaded......................|
duke@435 3256 // AnyNull | U-AN |................Unloaded......................|
duke@435 3257 // Constant | ... O-NN .................................. | O-BOT |
duke@435 3258 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 3259 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 3260 //
duke@435 3261 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 3262 //
duke@435 3263 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
roland@6380 3264 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
duke@435 3265 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 3266 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 3267 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 3268 else { return TypeInstPtr::NOTNULL; }
duke@435 3269 }
duke@435 3270 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 3271
duke@435 3272 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 3273 }
duke@435 3274
duke@435 3275 // Both are unloaded, not the same class, not Object
duke@435 3276 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 3277 if( ptr != TypePtr::BotPTR ) {
duke@435 3278 return TypeInstPtr::NOTNULL;
duke@435 3279 }
duke@435 3280 return TypeInstPtr::BOTTOM;
duke@435 3281 }
duke@435 3282
duke@435 3283
duke@435 3284 //------------------------------meet-------------------------------------------
duke@435 3285 // Compute the MEET of two types. It returns a new Type object.
roland@5991 3286 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
duke@435 3287 // Perform a fast test for common case; meeting the same types together.
duke@435 3288 if( this == t ) return this; // Meeting same type-rep?
duke@435 3289
duke@435 3290 // Current "this->_base" is Pointer
duke@435 3291 switch (t->base()) { // switch on original type
duke@435 3292
duke@435 3293 case Int: // Mixing ints & oops happens when javac
duke@435 3294 case Long: // reuses local variables
duke@435 3295 case FloatTop:
duke@435 3296 case FloatCon:
duke@435 3297 case FloatBot:
duke@435 3298 case DoubleTop:
duke@435 3299 case DoubleCon:
duke@435 3300 case DoubleBot:
coleenp@548 3301 case NarrowOop:
roland@4159 3302 case NarrowKlass:
duke@435 3303 case Bottom: // Ye Olde Default
duke@435 3304 return Type::BOTTOM;
duke@435 3305 case Top:
duke@435 3306 return this;
duke@435 3307
duke@435 3308 default: // All else is a mistake
duke@435 3309 typerr(t);
duke@435 3310
coleenp@4037 3311 case MetadataPtr:
coleenp@4037 3312 case KlassPtr:
duke@435 3313 case RawPtr: return TypePtr::BOTTOM;
duke@435 3314
duke@435 3315 case AryPtr: { // All arrays inherit from Object class
duke@435 3316 const TypeAryPtr *tp = t->is_aryptr();
duke@435 3317 int offset = meet_offset(tp->offset());
duke@435 3318 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3319 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3320 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 3321 int depth = meet_inline_depth(tp->inline_depth());
duke@435 3322 switch (ptr) {
duke@435 3323 case TopPTR:
duke@435 3324 case AnyNull: // Fall 'down' to dual of object klass
roland@5991 3325 // For instances when a subclass meets a superclass we fall
roland@5991 3326 // below the centerline when the superclass is exact. We need to
roland@5991 3327 // do the same here.
roland@5991 3328 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
roland@6380 3329 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
duke@435 3330 } else {
duke@435 3331 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3332 ptr = NotNull;
kvn@658 3333 instance_id = InstanceBot;
roland@6380 3334 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
duke@435 3335 }
duke@435 3336 case Constant:
duke@435 3337 case NotNull:
duke@435 3338 case BotPTR: // Fall down to object klass
duke@435 3339 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3340 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 3341 // If 'this' (InstPtr) is above the centerline and it is Object class
twisti@1040 3342 // then we can subclass in the Java class hierarchy.
roland@5991 3343 // For instances when a subclass meets a superclass we fall
roland@5991 3344 // below the centerline when the superclass is exact. We need
roland@5991 3345 // to do the same here.
roland@5991 3346 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
duke@435 3347 // that is, tp's array type is a subtype of my klass
kvn@1714 3348 return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
roland@6380 3349 tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
duke@435 3350 }
duke@435 3351 }
duke@435 3352 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 3353 // The meet falls down to Object class below centerline.
duke@435 3354 if( ptr == Constant )
duke@435 3355 ptr = NotNull;
kvn@658 3356 instance_id = InstanceBot;
roland@6380 3357 return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
duke@435 3358 default: typerr(t);
duke@435 3359 }
duke@435 3360 }
duke@435 3361
duke@435 3362 case OopPtr: { // Meeting to OopPtrs
duke@435 3363 // Found a OopPtr type vs self-InstPtr type
kvn@1393 3364 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3365 int offset = meet_offset(tp->offset());
duke@435 3366 PTR ptr = meet_ptr(tp->ptr());
duke@435 3367 switch (tp->ptr()) {
duke@435 3368 case TopPTR:
kvn@658 3369 case AnyNull: {
kvn@658 3370 int instance_id = meet_instance_id(InstanceTop);
roland@6313 3371 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 3372 int depth = meet_inline_depth(tp->inline_depth());
duke@435 3373 return make(ptr, klass(), klass_is_exact(),
roland@6380 3374 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
kvn@658 3375 }
duke@435 3376 case NotNull:
kvn@1393 3377 case BotPTR: {
kvn@1393 3378 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3379 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 3380 int depth = meet_inline_depth(tp->inline_depth());
roland@6380 3381 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
kvn@1393 3382 }
duke@435 3383 default: typerr(t);
duke@435 3384 }
duke@435 3385 }
duke@435 3386
duke@435 3387 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3388 // Found an AnyPtr type vs self-InstPtr type
duke@435 3389 const TypePtr *tp = t->is_ptr();
duke@435 3390 int offset = meet_offset(tp->offset());
duke@435 3391 PTR ptr = meet_ptr(tp->ptr());
duke@435 3392 switch (tp->ptr()) {
duke@435 3393 case Null:
roland@5991 3394 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3395 // else fall through to AnyNull
duke@435 3396 case TopPTR:
kvn@658 3397 case AnyNull: {
kvn@658 3398 int instance_id = meet_instance_id(InstanceTop);
roland@5991 3399 const TypeOopPtr* speculative = _speculative;
roland@5991 3400 return make(ptr, klass(), klass_is_exact(),
roland@6380 3401 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, _inline_depth);
kvn@658 3402 }
duke@435 3403 case NotNull:
duke@435 3404 case BotPTR:
roland@5991 3405 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3406 default: typerr(t);
duke@435 3407 }
duke@435 3408 }
duke@435 3409
duke@435 3410 /*
duke@435 3411 A-top }
duke@435 3412 / | \ } Tops
duke@435 3413 B-top A-any C-top }
duke@435 3414 | / | \ | } Any-nulls
duke@435 3415 B-any | C-any }
duke@435 3416 | | |
duke@435 3417 B-con A-con C-con } constants; not comparable across classes
duke@435 3418 | | |
duke@435 3419 B-not | C-not }
duke@435 3420 | \ | / | } not-nulls
duke@435 3421 B-bot A-not C-bot }
duke@435 3422 \ | / } Bottoms
duke@435 3423 A-bot }
duke@435 3424 */
duke@435 3425
duke@435 3426 case InstPtr: { // Meeting 2 Oops?
duke@435 3427 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 3428 const TypeInstPtr *tinst = t->is_instptr();
duke@435 3429 int off = meet_offset( tinst->offset() );
duke@435 3430 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 3431 int instance_id = meet_instance_id(tinst->instance_id());
roland@6313 3432 const TypeOopPtr* speculative = xmeet_speculative(tinst);
roland@6380 3433 int depth = meet_inline_depth(tinst->inline_depth());
duke@435 3434
duke@435 3435 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3436 // If we have constants, then we created oops so classes are loaded
duke@435 3437 // and we can handle the constants further down. This case handles
duke@435 3438 // both-not-loaded or both-loaded classes
duke@435 3439 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
roland@6380 3440 return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
duke@435 3441 }
duke@435 3442
duke@435 3443 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3444 ciKlass* tinst_klass = tinst->klass();
duke@435 3445 ciKlass* this_klass = this->klass();
duke@435 3446 bool tinst_xk = tinst->klass_is_exact();
duke@435 3447 bool this_xk = this->klass_is_exact();
duke@435 3448 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 3449 // One of these classes has not been loaded
duke@435 3450 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 3451 #ifndef PRODUCT
duke@435 3452 if( PrintOpto && Verbose ) {
duke@435 3453 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 3454 tty->print(" this == "); this->dump(); tty->cr();
duke@435 3455 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 3456 }
duke@435 3457 #endif
duke@435 3458 return unloaded_meet;
duke@435 3459 }
duke@435 3460
duke@435 3461 // Handle mixing oops and interfaces first.
roland@5991 3462 if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
roland@5991 3463 tinst_klass == ciEnv::current()->Object_klass())) {
duke@435 3464 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 3465 tinst_klass = this_klass;
duke@435 3466 this_klass = tmp;
duke@435 3467 bool tmp2 = tinst_xk;
duke@435 3468 tinst_xk = this_xk;
duke@435 3469 this_xk = tmp2;
duke@435 3470 }
duke@435 3471 if (tinst_klass->is_interface() &&
duke@435 3472 !(this_klass->is_interface() ||
duke@435 3473 // Treat java/lang/Object as an honorary interface,
duke@435 3474 // because we need a bottom for the interface hierarchy.
duke@435 3475 this_klass == ciEnv::current()->Object_klass())) {
duke@435 3476 // Oop meets interface!
duke@435 3477
duke@435 3478 // See if the oop subtypes (implements) interface.
duke@435 3479 ciKlass *k;
duke@435 3480 bool xk;
duke@435 3481 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3482 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 3483 // on whether we are both above the centerline or either is
duke@435 3484 // below the centerline. If we are on the centerline
duke@435 3485 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 3486 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 3487 // If we are keeping this_klass, keep its exactness too.
duke@435 3488 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 3489 } else { // Does not implement, fall to Object
duke@435 3490 // Oop does not implement interface, so mixing falls to Object
duke@435 3491 // just like the verifier does (if both are above the
duke@435 3492 // centerline fall to interface)
duke@435 3493 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 3494 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 3495 // Watch out for Constant vs. AnyNull interface.
duke@435 3496 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 3497 instance_id = InstanceBot;
duke@435 3498 }
duke@435 3499 ciObject* o = NULL; // the Constant value, if any
duke@435 3500 if (ptr == Constant) {
duke@435 3501 // Find out which constant.
duke@435 3502 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 3503 }
roland@6380 3504 return make(ptr, k, xk, o, off, instance_id, speculative, depth);
duke@435 3505 }
duke@435 3506
duke@435 3507 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 3508
duke@435 3509 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 3510 // If we split one up & one down AND they subtype, take the down man.
duke@435 3511 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3512 // If both are up and they subtype, take the subtype class.
duke@435 3513 // If both are up and they do NOT subtype, "fall hard".
duke@435 3514 // If both are down and they subtype, take the supertype class.
duke@435 3515 // If both are down and they do NOT subtype, "fall hard".
duke@435 3516 // Constants treated as down.
duke@435 3517
duke@435 3518 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 3519 // "fall hard"; "fall hard" becomes the default case:
duke@435 3520 // If we split one up & one down AND they subtype, take the down man.
duke@435 3521 // If both are up and they subtype, take the subtype class.
duke@435 3522
duke@435 3523 // If both are down and they subtype, "fall hard".
duke@435 3524 // If both are down and they do NOT subtype, "fall hard".
duke@435 3525 // If both are up and they do NOT subtype, "fall hard".
duke@435 3526 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3527
duke@435 3528 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 3529 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 3530 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 3531 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 3532
duke@435 3533 // Check for subtyping:
duke@435 3534 ciKlass *subtype = NULL;
duke@435 3535 bool subtype_exact = false;
duke@435 3536 if( tinst_klass->equals(this_klass) ) {
duke@435 3537 subtype = this_klass;
duke@435 3538 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 3539 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3540 subtype = this_klass; // Pick subtyping class
duke@435 3541 subtype_exact = this_xk;
duke@435 3542 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 3543 subtype = tinst_klass; // Pick subtyping class
duke@435 3544 subtype_exact = tinst_xk;
duke@435 3545 }
duke@435 3546
duke@435 3547 if( subtype ) {
duke@435 3548 if( above_centerline(ptr) ) { // both are up?
duke@435 3549 this_klass = tinst_klass = subtype;
duke@435 3550 this_xk = tinst_xk = subtype_exact;
duke@435 3551 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 3552 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 3553 this_xk = tinst_xk;
duke@435 3554 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 3555 tinst_klass = this_klass; // this is down; keep down man
duke@435 3556 tinst_xk = this_xk;
duke@435 3557 } else {
duke@435 3558 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 3559 }
duke@435 3560 }
duke@435 3561
duke@435 3562 // Check for classes now being equal
duke@435 3563 if (tinst_klass->equals(this_klass)) {
duke@435 3564 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3565 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3566 // handled elsewhere).
duke@435 3567 ciObject* o = NULL; // Assume not constant when done
duke@435 3568 ciObject* this_oop = const_oop();
duke@435 3569 ciObject* tinst_oop = tinst->const_oop();
duke@435 3570 if( ptr == Constant ) {
duke@435 3571 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 3572 this_oop->equals(tinst_oop) )
duke@435 3573 o = this_oop;
duke@435 3574 else if (above_centerline(this ->_ptr))
duke@435 3575 o = tinst_oop;
duke@435 3576 else if (above_centerline(tinst ->_ptr))
duke@435 3577 o = this_oop;
duke@435 3578 else
duke@435 3579 ptr = NotNull;
duke@435 3580 }
roland@6380 3581 return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
duke@435 3582 } // Else classes are not equal
duke@435 3583
duke@435 3584 // Since klasses are different, we require a LCA in the Java
duke@435 3585 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3586 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3587 ptr = NotNull;
kvn@682 3588 instance_id = InstanceBot;
duke@435 3589
duke@435 3590 // Now we find the LCA of Java classes
duke@435 3591 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
roland@6380 3592 return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
duke@435 3593 } // End of case InstPtr
duke@435 3594
duke@435 3595 } // End of switch
duke@435 3596 return this; // Return the double constant
duke@435 3597 }
duke@435 3598
duke@435 3599
duke@435 3600 //------------------------java_mirror_type--------------------------------------
duke@435 3601 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3602 // must be a singleton type
duke@435 3603 if( const_oop() == NULL ) return NULL;
duke@435 3604
duke@435 3605 // must be of type java.lang.Class
duke@435 3606 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3607
duke@435 3608 return const_oop()->as_instance()->java_mirror_type();
duke@435 3609 }
duke@435 3610
duke@435 3611
duke@435 3612 //------------------------------xdual------------------------------------------
duke@435 3613 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
twisti@1040 3614 // inheritance mechanism.
duke@435 3615 const Type *TypeInstPtr::xdual() const {
roland@6380 3616 return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
duke@435 3617 }
duke@435 3618
duke@435 3619 //------------------------------eq---------------------------------------------
duke@435 3620 // Structural equality check for Type representations
duke@435 3621 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3622 const TypeInstPtr *p = t->is_instptr();
duke@435 3623 return
duke@435 3624 klass()->equals(p->klass()) &&
duke@435 3625 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3626 }
duke@435 3627
duke@435 3628 //------------------------------hash-------------------------------------------
duke@435 3629 // Type-specific hashing function.
duke@435 3630 int TypeInstPtr::hash(void) const {
duke@435 3631 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 3632 return hash;
duke@435 3633 }
duke@435 3634
duke@435 3635 //------------------------------dump2------------------------------------------
duke@435 3636 // Dump oop Type
duke@435 3637 #ifndef PRODUCT
duke@435 3638 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3639 // Print the name of the klass.
duke@435 3640 klass()->print_name_on(st);
duke@435 3641
duke@435 3642 switch( _ptr ) {
duke@435 3643 case Constant:
duke@435 3644 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3645 if (WizardMode || Verbose) {
duke@435 3646 const_oop()->print_oop(st);
duke@435 3647 }
duke@435 3648 case BotPTR:
duke@435 3649 if (!WizardMode && !Verbose) {
duke@435 3650 if( _klass_is_exact ) st->print(":exact");
duke@435 3651 break;
duke@435 3652 }
duke@435 3653 case TopPTR:
duke@435 3654 case AnyNull:
duke@435 3655 case NotNull:
duke@435 3656 st->print(":%s", ptr_msg[_ptr]);
duke@435 3657 if( _klass_is_exact ) st->print(":exact");
duke@435 3658 break;
duke@435 3659 }
duke@435 3660
duke@435 3661 if( _offset ) { // Dump offset, if any
duke@435 3662 if( _offset == OffsetBot ) st->print("+any");
duke@435 3663 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3664 else st->print("+%d", _offset);
duke@435 3665 }
duke@435 3666
duke@435 3667 st->print(" *");
kvn@658 3668 if (_instance_id == InstanceTop)
kvn@658 3669 st->print(",iid=top");
kvn@658 3670 else if (_instance_id != InstanceBot)
duke@435 3671 st->print(",iid=%d",_instance_id);
roland@5991 3672
roland@6380 3673 dump_inline_depth(st);
roland@5991 3674 dump_speculative(st);
duke@435 3675 }
duke@435 3676 #endif
duke@435 3677
duke@435 3678 //------------------------------add_offset-------------------------------------
roland@5991 3679 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
roland@5991 3680 return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
roland@5991 3681 }
roland@5991 3682
roland@6313 3683 const Type *TypeInstPtr::remove_speculative() const {
roland@6313 3684 if (_speculative == NULL) {
roland@6313 3685 return this;
roland@6313 3686 }
roland@6380 3687 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
roland@6380 3688 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL, _inline_depth);
roland@6380 3689 }
roland@6380 3690
roland@6380 3691 const TypeOopPtr *TypeInstPtr::with_inline_depth(int depth) const {
roland@6380 3692 if (!UseInlineDepthForSpeculativeTypes) {
roland@6380 3693 return this;
roland@6380 3694 }
roland@6380 3695 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
duke@435 3696 }
duke@435 3697
duke@435 3698 //=============================================================================
duke@435 3699 // Convenience common pre-built types.
duke@435 3700 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3701 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3702 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3703 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3704 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3705 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3706 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3707 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3708 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3709 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3710
duke@435 3711 //------------------------------make-------------------------------------------
roland@6380 3712 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
duke@435 3713 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3714 "integral arrays must be pre-equipped with a class");
duke@435 3715 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3716 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3717 if (!UseExactTypes) xk = (ptr == Constant);
roland@6380 3718 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
duke@435 3719 }
duke@435 3720
duke@435 3721 //------------------------------make-------------------------------------------
roland@6380 3722 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth, bool is_autobox_cache) {
duke@435 3723 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3724 "integral arrays must be pre-equipped with a class");
duke@435 3725 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3726 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3727 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3728 if (!UseExactTypes) xk = (ptr == Constant);
roland@6380 3729 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
duke@435 3730 }
duke@435 3731
duke@435 3732 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3733 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3734 if( ptr == _ptr ) return this;
roland@6380 3735 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
duke@435 3736 }
duke@435 3737
duke@435 3738
duke@435 3739 //-----------------------------cast_to_exactness-------------------------------
duke@435 3740 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3741 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3742 if (!UseExactTypes) return this;
duke@435 3743 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
roland@6380 3744 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
duke@435 3745 }
duke@435 3746
kvn@682 3747 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3748 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3749 if( instance_id == _instance_id ) return this;
roland@6380 3750 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
duke@435 3751 }
duke@435 3752
duke@435 3753 //-----------------------------narrow_size_type-------------------------------
duke@435 3754 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3755 // which is kind of slow (and cached elsewhere by other users).
duke@435 3756 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3757 static jint max_array_length(BasicType etype) {
duke@435 3758 jint& cache = max_array_length_cache[etype];
duke@435 3759 jint res = cache;
duke@435 3760 if (res == 0) {
duke@435 3761 switch (etype) {
coleenp@548 3762 case T_NARROWOOP:
coleenp@548 3763 etype = T_OBJECT;
coleenp@548 3764 break;
roland@4159 3765 case T_NARROWKLASS:
duke@435 3766 case T_CONFLICT:
duke@435 3767 case T_ILLEGAL:
duke@435 3768 case T_VOID:
duke@435 3769 etype = T_BYTE; // will produce conservatively high value
duke@435 3770 }
duke@435 3771 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3772 }
duke@435 3773 return res;
duke@435 3774 }
duke@435 3775
duke@435 3776 // Narrow the given size type to the index range for the given array base type.
duke@435 3777 // Return NULL if the resulting int type becomes empty.
rasbold@801 3778 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
duke@435 3779 jint hi = size->_hi;
duke@435 3780 jint lo = size->_lo;
duke@435 3781 jint min_lo = 0;
rasbold@801 3782 jint max_hi = max_array_length(elem()->basic_type());
duke@435 3783 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3784 bool chg = false;
kvn@5110 3785 if (lo < min_lo) {
kvn@5110 3786 lo = min_lo;
kvn@5110 3787 if (size->is_con()) {
kvn@5110 3788 hi = lo;
kvn@5110 3789 }
kvn@5110 3790 chg = true;
kvn@5110 3791 }
kvn@5110 3792 if (hi > max_hi) {
kvn@5110 3793 hi = max_hi;
kvn@5110 3794 if (size->is_con()) {
kvn@5110 3795 lo = hi;
kvn@5110 3796 }
kvn@5110 3797 chg = true;
kvn@5110 3798 }
twisti@1040 3799 // Negative length arrays will produce weird intermediate dead fast-path code
duke@435 3800 if (lo > hi)
rasbold@801 3801 return TypeInt::ZERO;
duke@435 3802 if (!chg)
duke@435 3803 return size;
duke@435 3804 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3805 }
duke@435 3806
duke@435 3807 //-------------------------------cast_to_size----------------------------------
duke@435 3808 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3809 assert(new_size != NULL, "");
rasbold@801 3810 new_size = narrow_size_type(new_size);
duke@435 3811 if (new_size == size()) return this;
vlivanov@5658 3812 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
roland@6380 3813 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
duke@435 3814 }
duke@435 3815
duke@435 3816
vlivanov@5658 3817 //------------------------------cast_to_stable---------------------------------
vlivanov@5658 3818 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
vlivanov@5658 3819 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
vlivanov@5658 3820 return this;
vlivanov@5658 3821
vlivanov@5658 3822 const Type* elem = this->elem();
vlivanov@5658 3823 const TypePtr* elem_ptr = elem->make_ptr();
vlivanov@5658 3824
vlivanov@5658 3825 if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
vlivanov@5658 3826 // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
vlivanov@5658 3827 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
vlivanov@5658 3828 }
vlivanov@5658 3829
vlivanov@5658 3830 const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
vlivanov@5658 3831
vlivanov@5658 3832 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
vlivanov@5658 3833 }
vlivanov@5658 3834
vlivanov@5658 3835 //-----------------------------stable_dimension--------------------------------
vlivanov@5658 3836 int TypeAryPtr::stable_dimension() const {
vlivanov@5658 3837 if (!is_stable()) return 0;
vlivanov@5658 3838 int dim = 1;
vlivanov@5658 3839 const TypePtr* elem_ptr = elem()->make_ptr();
vlivanov@5658 3840 if (elem_ptr != NULL && elem_ptr->isa_aryptr())
vlivanov@5658 3841 dim += elem_ptr->is_aryptr()->stable_dimension();
vlivanov@5658 3842 return dim;
vlivanov@5658 3843 }
vlivanov@5658 3844
duke@435 3845 //------------------------------eq---------------------------------------------
duke@435 3846 // Structural equality check for Type representations
duke@435 3847 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3848 const TypeAryPtr *p = t->is_aryptr();
duke@435 3849 return
duke@435 3850 _ary == p->_ary && // Check array
duke@435 3851 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3852 }
duke@435 3853
duke@435 3854 //------------------------------hash-------------------------------------------
duke@435 3855 // Type-specific hashing function.
duke@435 3856 int TypeAryPtr::hash(void) const {
duke@435 3857 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3858 }
duke@435 3859
duke@435 3860 //------------------------------meet-------------------------------------------
duke@435 3861 // Compute the MEET of two types. It returns a new Type object.
roland@5991 3862 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
duke@435 3863 // Perform a fast test for common case; meeting the same types together.
duke@435 3864 if( this == t ) return this; // Meeting same type-rep?
duke@435 3865 // Current "this->_base" is Pointer
duke@435 3866 switch (t->base()) { // switch on original type
duke@435 3867
duke@435 3868 // Mixing ints & oops happens when javac reuses local variables
duke@435 3869 case Int:
duke@435 3870 case Long:
duke@435 3871 case FloatTop:
duke@435 3872 case FloatCon:
duke@435 3873 case FloatBot:
duke@435 3874 case DoubleTop:
duke@435 3875 case DoubleCon:
duke@435 3876 case DoubleBot:
coleenp@548 3877 case NarrowOop:
roland@4159 3878 case NarrowKlass:
duke@435 3879 case Bottom: // Ye Olde Default
duke@435 3880 return Type::BOTTOM;
duke@435 3881 case Top:
duke@435 3882 return this;
duke@435 3883
duke@435 3884 default: // All else is a mistake
duke@435 3885 typerr(t);
duke@435 3886
duke@435 3887 case OopPtr: { // Meeting to OopPtrs
duke@435 3888 // Found a OopPtr type vs self-AryPtr type
kvn@1393 3889 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3890 int offset = meet_offset(tp->offset());
duke@435 3891 PTR ptr = meet_ptr(tp->ptr());
roland@6380 3892 int depth = meet_inline_depth(tp->inline_depth());
duke@435 3893 switch (tp->ptr()) {
duke@435 3894 case TopPTR:
kvn@658 3895 case AnyNull: {
kvn@658 3896 int instance_id = meet_instance_id(InstanceTop);
roland@6313 3897 const TypeOopPtr* speculative = xmeet_speculative(tp);
kvn@658 3898 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@6380 3899 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
kvn@658 3900 }
duke@435 3901 case BotPTR:
kvn@1393 3902 case NotNull: {
kvn@1393 3903 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3904 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 3905 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
kvn@1393 3906 }
duke@435 3907 default: ShouldNotReachHere();
duke@435 3908 }
duke@435 3909 }
duke@435 3910
duke@435 3911 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3912 // Found an AnyPtr type vs self-AryPtr type
duke@435 3913 const TypePtr *tp = t->is_ptr();
duke@435 3914 int offset = meet_offset(tp->offset());
duke@435 3915 PTR ptr = meet_ptr(tp->ptr());
duke@435 3916 switch (tp->ptr()) {
duke@435 3917 case TopPTR:
duke@435 3918 return this;
duke@435 3919 case BotPTR:
duke@435 3920 case NotNull:
duke@435 3921 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3922 case Null:
duke@435 3923 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3924 // else fall through to AnyNull
kvn@658 3925 case AnyNull: {
kvn@658 3926 int instance_id = meet_instance_id(InstanceTop);
roland@5991 3927 const TypeOopPtr* speculative = _speculative;
roland@5991 3928 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@6380 3929 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, _inline_depth);
kvn@658 3930 }
duke@435 3931 default: ShouldNotReachHere();
duke@435 3932 }
duke@435 3933 }
duke@435 3934
coleenp@4037 3935 case MetadataPtr:
coleenp@4037 3936 case KlassPtr:
duke@435 3937 case RawPtr: return TypePtr::BOTTOM;
duke@435 3938
duke@435 3939 case AryPtr: { // Meeting 2 references?
duke@435 3940 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3941 int off = meet_offset(tap->offset());
roland@6313 3942 const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
duke@435 3943 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3944 int instance_id = meet_instance_id(tap->instance_id());
roland@6313 3945 const TypeOopPtr* speculative = xmeet_speculative(tap);
roland@6380 3946 int depth = meet_inline_depth(tap->inline_depth());
duke@435 3947 ciKlass* lazy_klass = NULL;
duke@435 3948 if (tary->_elem->isa_int()) {
duke@435 3949 // Integral array element types have irrelevant lattice relations.
duke@435 3950 // It is the klass that determines array layout, not the element type.
duke@435 3951 if (_klass == NULL)
duke@435 3952 lazy_klass = tap->_klass;
duke@435 3953 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3954 lazy_klass = _klass;
duke@435 3955 } else {
duke@435 3956 // Something like byte[int+] meets char[int+].
duke@435 3957 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3958 instance_id = InstanceBot;
vlivanov@5658 3959 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
duke@435 3960 }
kvn@2633 3961 } else // Non integral arrays.
roland@6214 3962 // Must fall to bottom if exact klasses in upper lattice
roland@6214 3963 // are not equal or super klass is exact.
roland@6214 3964 if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
roland@6214 3965 // meet with top[] and bottom[] are processed further down:
roland@6214 3966 tap->_klass != NULL && this->_klass != NULL &&
roland@6214 3967 // both are exact and not equal:
roland@6214 3968 ((tap->_klass_is_exact && this->_klass_is_exact) ||
roland@6214 3969 // 'tap' is exact and super or unrelated:
roland@6214 3970 (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
roland@6214 3971 // 'this' is exact and super or unrelated:
roland@6214 3972 (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
roland@7693 3973 if (above_centerline(ptr)) {
roland@7693 3974 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
roland@7693 3975 }
roland@5991 3976 return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
duke@435 3977 }
kvn@2633 3978
kvn@2120 3979 bool xk = false;
duke@435 3980 switch (tap->ptr()) {
duke@435 3981 case AnyNull:
duke@435 3982 case TopPTR:
duke@435 3983 // Compute new klass on demand, do not use tap->_klass
roland@5991 3984 if (below_centerline(this->_ptr)) {
roland@5991 3985 xk = this->_klass_is_exact;
roland@5991 3986 } else {
roland@5991 3987 xk = (tap->_klass_is_exact | this->_klass_is_exact);
roland@5991 3988 }
roland@6380 3989 return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
duke@435 3990 case Constant: {
duke@435 3991 ciObject* o = const_oop();
duke@435 3992 if( _ptr == Constant ) {
duke@435 3993 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
jrose@1424 3994 xk = (klass() == tap->klass());
duke@435 3995 ptr = NotNull;
duke@435 3996 o = NULL;
kvn@682 3997 instance_id = InstanceBot;
jrose@1424 3998 } else {
jrose@1424 3999 xk = true;
duke@435 4000 }
roland@5991 4001 } else if(above_centerline(_ptr)) {
duke@435 4002 o = tap->const_oop();
jrose@1424 4003 xk = true;
jrose@1424 4004 } else {
kvn@2120 4005 // Only precise for identical arrays
kvn@2120 4006 xk = this->_klass_is_exact && (klass() == tap->klass());
duke@435 4007 }
roland@6380 4008 return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
duke@435 4009 }
duke@435 4010 case NotNull:
duke@435 4011 case BotPTR:
duke@435 4012 // Compute new klass on demand, do not use tap->_klass
duke@435 4013 if (above_centerline(this->_ptr))
duke@435 4014 xk = tap->_klass_is_exact;
duke@435 4015 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 4016 (klass() == tap->klass()); // Only precise for identical arrays
roland@6380 4017 return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
duke@435 4018 default: ShouldNotReachHere();
duke@435 4019 }
duke@435 4020 }
duke@435 4021
duke@435 4022 // All arrays inherit from Object class
duke@435 4023 case InstPtr: {
duke@435 4024 const TypeInstPtr *tp = t->is_instptr();
duke@435 4025 int offset = meet_offset(tp->offset());
duke@435 4026 PTR ptr = meet_ptr(tp->ptr());
kvn@658 4027 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 4028 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 4029 int depth = meet_inline_depth(tp->inline_depth());
duke@435 4030 switch (ptr) {
duke@435 4031 case TopPTR:
duke@435 4032 case AnyNull: // Fall 'down' to dual of object klass
roland@5991 4033 // For instances when a subclass meets a superclass we fall
roland@5991 4034 // below the centerline when the superclass is exact. We need to
roland@5991 4035 // do the same here.
roland@5991 4036 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
roland@6380 4037 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
duke@435 4038 } else {
duke@435 4039 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 4040 ptr = NotNull;
kvn@658 4041 instance_id = InstanceBot;
roland@6380 4042 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
duke@435 4043 }
duke@435 4044 case Constant:
duke@435 4045 case NotNull:
duke@435 4046 case BotPTR: // Fall down to object klass
duke@435 4047 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 4048 if (above_centerline(tp->ptr())) {
duke@435 4049 // If 'tp' is above the centerline and it is Object class
twisti@1040 4050 // then we can subclass in the Java class hierarchy.
roland@5991 4051 // For instances when a subclass meets a superclass we fall
roland@5991 4052 // below the centerline when the superclass is exact. We need
roland@5991 4053 // to do the same here.
roland@5991 4054 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
duke@435 4055 // that is, my array type is a subtype of 'tp' klass
roland@5991 4056 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@6380 4057 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
duke@435 4058 }
duke@435 4059 }
duke@435 4060 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 4061 // The meet falls down to Object class below centerline.
duke@435 4062 if( ptr == Constant )
duke@435 4063 ptr = NotNull;
kvn@658 4064 instance_id = InstanceBot;
roland@6380 4065 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
duke@435 4066 default: typerr(t);
duke@435 4067 }
duke@435 4068 }
duke@435 4069 }
duke@435 4070 return this; // Lint noise
duke@435 4071 }
duke@435 4072
duke@435 4073 //------------------------------xdual------------------------------------------
duke@435 4074 // Dual: compute field-by-field dual
duke@435 4075 const Type *TypeAryPtr::xdual() const {
roland@6380 4076 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
duke@435 4077 }
duke@435 4078
kvn@1255 4079 //----------------------interface_vs_oop---------------------------------------
kvn@1255 4080 #ifdef ASSERT
kvn@1255 4081 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
kvn@1255 4082 const TypeAryPtr* t_aryptr = t->isa_aryptr();
kvn@1255 4083 if (t_aryptr) {
kvn@1255 4084 return _ary->interface_vs_oop(t_aryptr->_ary);
kvn@1255 4085 }
kvn@1255 4086 return false;
kvn@1255 4087 }
kvn@1255 4088 #endif
kvn@1255 4089
duke@435 4090 //------------------------------dump2------------------------------------------
duke@435 4091 #ifndef PRODUCT
duke@435 4092 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4093 _ary->dump2(d,depth,st);
duke@435 4094 switch( _ptr ) {
duke@435 4095 case Constant:
duke@435 4096 const_oop()->print(st);
duke@435 4097 break;
duke@435 4098 case BotPTR:
duke@435 4099 if (!WizardMode && !Verbose) {
duke@435 4100 if( _klass_is_exact ) st->print(":exact");
duke@435 4101 break;
duke@435 4102 }
duke@435 4103 case TopPTR:
duke@435 4104 case AnyNull:
duke@435 4105 case NotNull:
duke@435 4106 st->print(":%s", ptr_msg[_ptr]);
duke@435 4107 if( _klass_is_exact ) st->print(":exact");
duke@435 4108 break;
duke@435 4109 }
duke@435 4110
kvn@499 4111 if( _offset != 0 ) {
kvn@499 4112 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 4113 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 4114 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 4115 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 4116 else {
kvn@499 4117 BasicType basic_elem_type = elem()->basic_type();
kvn@499 4118 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 4119 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 4120 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 4121 }
kvn@499 4122 }
kvn@499 4123 st->print(" *");
kvn@658 4124 if (_instance_id == InstanceTop)
kvn@658 4125 st->print(",iid=top");
kvn@658 4126 else if (_instance_id != InstanceBot)
duke@435 4127 st->print(",iid=%d",_instance_id);
roland@5991 4128
roland@6380 4129 dump_inline_depth(st);
roland@5991 4130 dump_speculative(st);
duke@435 4131 }
duke@435 4132 #endif
duke@435 4133
duke@435 4134 bool TypeAryPtr::empty(void) const {
duke@435 4135 if (_ary->empty()) return true;
duke@435 4136 return TypeOopPtr::empty();
duke@435 4137 }
duke@435 4138
duke@435 4139 //------------------------------add_offset-------------------------------------
roland@5991 4140 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
roland@6380 4141 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
roland@5991 4142 }
roland@5991 4143
roland@6313 4144 const Type *TypeAryPtr::remove_speculative() const {
roland@6380 4145 if (_speculative == NULL) {
roland@6380 4146 return this;
roland@6380 4147 }
roland@6380 4148 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
roland@6380 4149 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
roland@6380 4150 }
roland@6380 4151
roland@6380 4152 const TypeOopPtr *TypeAryPtr::with_inline_depth(int depth) const {
roland@6380 4153 if (!UseInlineDepthForSpeculativeTypes) {
roland@6380 4154 return this;
roland@6380 4155 }
roland@6380 4156 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
roland@5991 4157 }
duke@435 4158
duke@435 4159 //=============================================================================
coleenp@548 4160
coleenp@548 4161 //------------------------------hash-------------------------------------------
coleenp@548 4162 // Type-specific hashing function.
roland@4159 4163 int TypeNarrowPtr::hash(void) const {
never@1262 4164 return _ptrtype->hash() + 7;
coleenp@548 4165 }
coleenp@548 4166
roland@4159 4167 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton
roland@4159 4168 return _ptrtype->singleton();
roland@4159 4169 }
roland@4159 4170
roland@4159 4171 bool TypeNarrowPtr::empty(void) const {
roland@4159 4172 return _ptrtype->empty();
roland@4159 4173 }
roland@4159 4174
roland@4159 4175 intptr_t TypeNarrowPtr::get_con() const {
roland@4159 4176 return _ptrtype->get_con();
roland@4159 4177 }
roland@4159 4178
roland@4159 4179 bool TypeNarrowPtr::eq( const Type *t ) const {
roland@4159 4180 const TypeNarrowPtr* tc = isa_same_narrowptr(t);
coleenp@548 4181 if (tc != NULL) {
never@1262 4182 if (_ptrtype->base() != tc->_ptrtype->base()) {
coleenp@548 4183 return false;
coleenp@548 4184 }
never@1262 4185 return tc->_ptrtype->eq(_ptrtype);
coleenp@548 4186 }
coleenp@548 4187 return false;
coleenp@548 4188 }
coleenp@548 4189
roland@4159 4190 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now.
roland@4159 4191 const TypePtr* odual = _ptrtype->dual()->is_ptr();
roland@4159 4192 return make_same_narrowptr(odual);
roland@4159 4193 }
roland@4159 4194
roland@4159 4195
roland@6313 4196 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@4159 4197 if (isa_same_narrowptr(kills)) {
roland@6313 4198 const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
roland@4159 4199 if (ft->empty())
roland@4159 4200 return Type::TOP; // Canonical empty value
roland@4159 4201 if (ft->isa_ptr()) {
roland@4159 4202 return make_hash_same_narrowptr(ft->isa_ptr());
roland@4159 4203 }
roland@4159 4204 return ft;
roland@4159 4205 } else if (kills->isa_ptr()) {
roland@6313 4206 const Type* ft = _ptrtype->join_helper(kills, include_speculative);
roland@4159 4207 if (ft->empty())
roland@4159 4208 return Type::TOP; // Canonical empty value
roland@4159 4209 return ft;
roland@4159 4210 } else {
roland@4159 4211 return Type::TOP;
roland@4159 4212 }
coleenp@548 4213 }
coleenp@548 4214
kvn@728 4215 //------------------------------xmeet------------------------------------------
coleenp@548 4216 // Compute the MEET of two types. It returns a new Type object.
roland@4159 4217 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
coleenp@548 4218 // Perform a fast test for common case; meeting the same types together.
coleenp@548 4219 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 4220
roland@4159 4221 if (t->base() == base()) {
roland@4159 4222 const Type* result = _ptrtype->xmeet(t->make_ptr());
roland@4159 4223 if (result->isa_ptr()) {
roland@4159 4224 return make_hash_same_narrowptr(result->is_ptr());
roland@4159 4225 }
roland@4159 4226 return result;
roland@4159 4227 }
roland@4159 4228
roland@4159 4229 // Current "this->_base" is NarrowKlass or NarrowOop
coleenp@548 4230 switch (t->base()) { // switch on original type
coleenp@548 4231
coleenp@548 4232 case Int: // Mixing ints & oops happens when javac
coleenp@548 4233 case Long: // reuses local variables
coleenp@548 4234 case FloatTop:
coleenp@548 4235 case FloatCon:
coleenp@548 4236 case FloatBot:
coleenp@548 4237 case DoubleTop:
coleenp@548 4238 case DoubleCon:
coleenp@548 4239 case DoubleBot:
kvn@728 4240 case AnyPtr:
kvn@728 4241 case RawPtr:
kvn@728 4242 case OopPtr:
kvn@728 4243 case InstPtr:
coleenp@4037 4244 case AryPtr:
coleenp@4037 4245 case MetadataPtr:
kvn@728 4246 case KlassPtr:
roland@4159 4247 case NarrowOop:
roland@4159 4248 case NarrowKlass:
kvn@728 4249
coleenp@548 4250 case Bottom: // Ye Olde Default
coleenp@548 4251 return Type::BOTTOM;
coleenp@548 4252 case Top:
coleenp@548 4253 return this;
coleenp@548 4254
coleenp@548 4255 default: // All else is a mistake
coleenp@548 4256 typerr(t);
coleenp@548 4257
coleenp@548 4258 } // End of switch
kvn@728 4259
kvn@728 4260 return this;
coleenp@548 4261 }
coleenp@548 4262
roland@4159 4263 #ifndef PRODUCT
roland@4159 4264 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 4265 _ptrtype->dump2(d, depth, st);
roland@4159 4266 }
roland@4159 4267 #endif
roland@4159 4268
roland@4159 4269 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
roland@4159 4270 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
roland@4159 4271
roland@4159 4272
roland@4159 4273 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
roland@4159 4274 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
roland@4159 4275 }
roland@4159 4276
coleenp@548 4277
coleenp@548 4278 #ifndef PRODUCT
coleenp@548 4279 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
never@852 4280 st->print("narrowoop: ");
roland@4159 4281 TypeNarrowPtr::dump2(d, depth, st);
coleenp@548 4282 }
coleenp@548 4283 #endif
coleenp@548 4284
roland@4159 4285 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
roland@4159 4286
roland@4159 4287 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
roland@4159 4288 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
roland@4159 4289 }
roland@4159 4290
roland@4159 4291 #ifndef PRODUCT
roland@4159 4292 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 4293 st->print("narrowklass: ");
roland@4159 4294 TypeNarrowPtr::dump2(d, depth, st);
roland@4159 4295 }
roland@4159 4296 #endif
coleenp@548 4297
coleenp@4037 4298
coleenp@4037 4299 //------------------------------eq---------------------------------------------
coleenp@4037 4300 // Structural equality check for Type representations
coleenp@4037 4301 bool TypeMetadataPtr::eq( const Type *t ) const {
coleenp@4037 4302 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
coleenp@4037 4303 ciMetadata* one = metadata();
coleenp@4037 4304 ciMetadata* two = a->metadata();
coleenp@4037 4305 if (one == NULL || two == NULL) {
coleenp@4037 4306 return (one == two) && TypePtr::eq(t);
coleenp@4037 4307 } else {
coleenp@4037 4308 return one->equals(two) && TypePtr::eq(t);
coleenp@4037 4309 }
coleenp@4037 4310 }
coleenp@4037 4311
coleenp@4037 4312 //------------------------------hash-------------------------------------------
coleenp@4037 4313 // Type-specific hashing function.
coleenp@4037 4314 int TypeMetadataPtr::hash(void) const {
coleenp@4037 4315 return
coleenp@4037 4316 (metadata() ? metadata()->hash() : 0) +
coleenp@4037 4317 TypePtr::hash();
coleenp@4037 4318 }
coleenp@4037 4319
coleenp@4037 4320 //------------------------------singleton--------------------------------------
coleenp@4037 4321 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 4322 // constants
coleenp@4037 4323 bool TypeMetadataPtr::singleton(void) const {
coleenp@4037 4324 // detune optimizer to not generate constant metadta + constant offset as a constant!
coleenp@4037 4325 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 4326 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 4327 }
coleenp@4037 4328
coleenp@4037 4329 //------------------------------add_offset-------------------------------------
coleenp@4037 4330 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
coleenp@4037 4331 return make( _ptr, _metadata, xadd_offset(offset));
coleenp@4037 4332 }
coleenp@4037 4333
coleenp@4037 4334 //-----------------------------filter------------------------------------------
coleenp@4037 4335 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 4336 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 4337 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
coleenp@4037 4338 if (ft == NULL || ft->empty())
coleenp@4037 4339 return Type::TOP; // Canonical empty value
coleenp@4037 4340 return ft;
coleenp@4037 4341 }
coleenp@4037 4342
coleenp@4037 4343 //------------------------------get_con----------------------------------------
coleenp@4037 4344 intptr_t TypeMetadataPtr::get_con() const {
coleenp@4037 4345 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4346 assert( _offset >= 0, "" );
coleenp@4037 4347
coleenp@4037 4348 if (_offset != 0) {
coleenp@4037 4349 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4350 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4351 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4352 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4353 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4354 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4355 // but this assertion here is to help prevent its occurence.
coleenp@4037 4356 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4357 ShouldNotReachHere();
coleenp@4037 4358 }
coleenp@4037 4359
coleenp@4037 4360 return (intptr_t)metadata()->constant_encoding();
coleenp@4037 4361 }
coleenp@4037 4362
coleenp@4037 4363 //------------------------------cast_to_ptr_type-------------------------------
coleenp@4037 4364 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
coleenp@4037 4365 if( ptr == _ptr ) return this;
coleenp@4037 4366 return make(ptr, metadata(), _offset);
coleenp@4037 4367 }
coleenp@4037 4368
coleenp@4037 4369 //------------------------------meet-------------------------------------------
coleenp@4037 4370 // Compute the MEET of two types. It returns a new Type object.
coleenp@4037 4371 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
coleenp@4037 4372 // Perform a fast test for common case; meeting the same types together.
coleenp@4037 4373 if( this == t ) return this; // Meeting same type-rep?
coleenp@4037 4374
coleenp@4037 4375 // Current "this->_base" is OopPtr
coleenp@4037 4376 switch (t->base()) { // switch on original type
coleenp@4037 4377
coleenp@4037 4378 case Int: // Mixing ints & oops happens when javac
coleenp@4037 4379 case Long: // reuses local variables
coleenp@4037 4380 case FloatTop:
coleenp@4037 4381 case FloatCon:
coleenp@4037 4382 case FloatBot:
coleenp@4037 4383 case DoubleTop:
coleenp@4037 4384 case DoubleCon:
coleenp@4037 4385 case DoubleBot:
coleenp@4037 4386 case NarrowOop:
roland@4159 4387 case NarrowKlass:
coleenp@4037 4388 case Bottom: // Ye Olde Default
coleenp@4037 4389 return Type::BOTTOM;
coleenp@4037 4390 case Top:
coleenp@4037 4391 return this;
coleenp@4037 4392
coleenp@4037 4393 default: // All else is a mistake
coleenp@4037 4394 typerr(t);
coleenp@4037 4395
coleenp@4037 4396 case AnyPtr: {
coleenp@4037 4397 // Found an AnyPtr type vs self-OopPtr type
coleenp@4037 4398 const TypePtr *tp = t->is_ptr();
coleenp@4037 4399 int offset = meet_offset(tp->offset());
coleenp@4037 4400 PTR ptr = meet_ptr(tp->ptr());
coleenp@4037 4401 switch (tp->ptr()) {
coleenp@4037 4402 case Null:
coleenp@4037 4403 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 4404 // else fall through:
coleenp@4037 4405 case TopPTR:
coleenp@4037 4406 case AnyNull: {
kvn@6429 4407 return make(ptr, _metadata, offset);
coleenp@4037 4408 }
coleenp@4037 4409 case BotPTR:
coleenp@4037 4410 case NotNull:
coleenp@4037 4411 return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 4412 default: typerr(t);
coleenp@4037 4413 }
coleenp@4037 4414 }
coleenp@4037 4415
coleenp@4037 4416 case RawPtr:
coleenp@4037 4417 case KlassPtr:
coleenp@4037 4418 case OopPtr:
coleenp@4037 4419 case InstPtr:
coleenp@4037 4420 case AryPtr:
coleenp@4037 4421 return TypePtr::BOTTOM; // Oop meet raw is not well defined
coleenp@4037 4422
roland@4040 4423 case MetadataPtr: {
roland@4040 4424 const TypeMetadataPtr *tp = t->is_metadataptr();
roland@4040 4425 int offset = meet_offset(tp->offset());
roland@4040 4426 PTR tptr = tp->ptr();
roland@4040 4427 PTR ptr = meet_ptr(tptr);
roland@4040 4428 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
roland@4040 4429 if (tptr == TopPTR || _ptr == TopPTR ||
roland@4040 4430 metadata()->equals(tp->metadata())) {
roland@4040 4431 return make(ptr, md, offset);
roland@4040 4432 }
roland@4040 4433 // metadata is different
roland@4040 4434 if( ptr == Constant ) { // Cannot be equal constants, so...
roland@4040 4435 if( tptr == Constant && _ptr != Constant) return t;
roland@4040 4436 if( _ptr == Constant && tptr != Constant) return this;
roland@4040 4437 ptr = NotNull; // Fall down in lattice
roland@4040 4438 }
roland@4040 4439 return make(ptr, NULL, offset);
coleenp@4037 4440 break;
roland@4040 4441 }
coleenp@4037 4442 } // End of switch
coleenp@4037 4443 return this; // Return the double constant
coleenp@4037 4444 }
coleenp@4037 4445
coleenp@4037 4446
coleenp@4037 4447 //------------------------------xdual------------------------------------------
coleenp@4037 4448 // Dual of a pure metadata pointer.
coleenp@4037 4449 const Type *TypeMetadataPtr::xdual() const {
coleenp@4037 4450 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
coleenp@4037 4451 }
coleenp@4037 4452
coleenp@4037 4453 //------------------------------dump2------------------------------------------
coleenp@4037 4454 #ifndef PRODUCT
coleenp@4037 4455 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
coleenp@4037 4456 st->print("metadataptr:%s", ptr_msg[_ptr]);
coleenp@4037 4457 if( metadata() ) st->print(INTPTR_FORMAT, metadata());
coleenp@4037 4458 switch( _offset ) {
coleenp@4037 4459 case OffsetTop: st->print("+top"); break;
coleenp@4037 4460 case OffsetBot: st->print("+any"); break;
coleenp@4037 4461 case 0: break;
coleenp@4037 4462 default: st->print("+%d",_offset); break;
coleenp@4037 4463 }
coleenp@4037 4464 }
coleenp@4037 4465 #endif
coleenp@4037 4466
coleenp@4037 4467
coleenp@4037 4468 //=============================================================================
coleenp@4037 4469 // Convenience common pre-built type.
coleenp@4037 4470 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
coleenp@4037 4471
coleenp@4037 4472 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
coleenp@4037 4473 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
coleenp@4037 4474 }
coleenp@4037 4475
coleenp@4037 4476 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
coleenp@4037 4477 return make(Constant, m, 0);
coleenp@4037 4478 }
coleenp@4037 4479 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
coleenp@4037 4480 return make(Constant, m, 0);
coleenp@4037 4481 }
coleenp@4037 4482
coleenp@4037 4483 //------------------------------make-------------------------------------------
coleenp@4037 4484 // Create a meta data constant
coleenp@4037 4485 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
coleenp@4037 4486 assert(m == NULL || !m->is_klass(), "wrong type");
coleenp@4037 4487 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
coleenp@4037 4488 }
coleenp@4037 4489
coleenp@4037 4490
coleenp@548 4491 //=============================================================================
duke@435 4492 // Convenience common pre-built types.
duke@435 4493
duke@435 4494 // Not-null object klass or below
duke@435 4495 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 4496 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 4497
coleenp@4037 4498 //------------------------------TypeKlassPtr-----------------------------------
duke@435 4499 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
coleenp@4037 4500 : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
duke@435 4501 }
duke@435 4502
duke@435 4503 //------------------------------make-------------------------------------------
duke@435 4504 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 4505 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 4506 assert( k != NULL, "Expect a non-NULL klass");
coleenp@4037 4507 assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
duke@435 4508 TypeKlassPtr *r =
duke@435 4509 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 4510
duke@435 4511 return r;
duke@435 4512 }
duke@435 4513
duke@435 4514 //------------------------------eq---------------------------------------------
duke@435 4515 // Structural equality check for Type representations
duke@435 4516 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 4517 const TypeKlassPtr *p = t->is_klassptr();
duke@435 4518 return
duke@435 4519 klass()->equals(p->klass()) &&
coleenp@4037 4520 TypePtr::eq(p);
duke@435 4521 }
duke@435 4522
duke@435 4523 //------------------------------hash-------------------------------------------
duke@435 4524 // Type-specific hashing function.
duke@435 4525 int TypeKlassPtr::hash(void) const {
coleenp@4037 4526 return klass()->hash() + TypePtr::hash();
coleenp@4037 4527 }
coleenp@4037 4528
coleenp@4037 4529 //------------------------------singleton--------------------------------------
coleenp@4037 4530 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 4531 // constants
coleenp@4037 4532 bool TypeKlassPtr::singleton(void) const {
coleenp@4037 4533 // detune optimizer to not generate constant klass + constant offset as a constant!
coleenp@4037 4534 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 4535 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 4536 }
duke@435 4537
roland@6043 4538 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 4539 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@6043 4540 // logic here mirrors the one from TypeOopPtr::filter. See comments
roland@6043 4541 // there.
roland@6313 4542 const Type* ft = join_helper(kills, include_speculative);
roland@6043 4543 const TypeKlassPtr* ftkp = ft->isa_klassptr();
roland@6043 4544 const TypeKlassPtr* ktkp = kills->isa_klassptr();
roland@6043 4545
roland@6043 4546 if (ft->empty()) {
roland@6043 4547 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
roland@6043 4548 return kills; // Uplift to interface
roland@6043 4549
roland@6043 4550 return Type::TOP; // Canonical empty value
roland@6043 4551 }
roland@6043 4552
roland@6043 4553 // Interface klass type could be exact in opposite to interface type,
roland@6043 4554 // return it here instead of incorrect Constant ptr J/L/Object (6894807).
roland@6043 4555 if (ftkp != NULL && ktkp != NULL &&
roland@6043 4556 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
roland@6043 4557 !ftkp->klass_is_exact() && // Keep exact interface klass
roland@6043 4558 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
roland@6043 4559 return ktkp->cast_to_ptr_type(ftkp->ptr());
roland@6043 4560 }
roland@6043 4561
roland@6043 4562 return ft;
roland@6043 4563 }
roland@6043 4564
kvn@2116 4565 //----------------------compute_klass------------------------------------------
kvn@2116 4566 // Compute the defining klass for this class
kvn@2116 4567 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
kvn@2116 4568 // Compute _klass based on element type.
duke@435 4569 ciKlass* k_ary = NULL;
duke@435 4570 const TypeInstPtr *tinst;
duke@435 4571 const TypeAryPtr *tary;
coleenp@548 4572 const Type* el = elem();
coleenp@548 4573 if (el->isa_narrowoop()) {
kvn@656 4574 el = el->make_ptr();
coleenp@548 4575 }
coleenp@548 4576
duke@435 4577 // Get element klass
coleenp@548 4578 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 4579 // Compute array klass from element klass
duke@435 4580 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 4581 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 4582 // Compute array klass from element klass
duke@435 4583 ciKlass* k_elem = tary->klass();
duke@435 4584 // If element type is something like bottom[], k_elem will be null.
duke@435 4585 if (k_elem != NULL)
duke@435 4586 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 4587 } else if ((el->base() == Type::Top) ||
coleenp@548 4588 (el->base() == Type::Bottom)) {
duke@435 4589 // element type of Bottom occurs from meet of basic type
duke@435 4590 // and object; Top occurs when doing join on Bottom.
duke@435 4591 // Leave k_ary at NULL.
duke@435 4592 } else {
duke@435 4593 // Cannot compute array klass directly from basic type,
duke@435 4594 // since subtypes of TypeInt all have basic type T_INT.
kvn@2116 4595 #ifdef ASSERT
kvn@2116 4596 if (verify && el->isa_int()) {
kvn@2116 4597 // Check simple cases when verifying klass.
kvn@2116 4598 BasicType bt = T_ILLEGAL;
kvn@2116 4599 if (el == TypeInt::BYTE) {
kvn@2116 4600 bt = T_BYTE;
kvn@2116 4601 } else if (el == TypeInt::SHORT) {
kvn@2116 4602 bt = T_SHORT;
kvn@2116 4603 } else if (el == TypeInt::CHAR) {
kvn@2116 4604 bt = T_CHAR;
kvn@2116 4605 } else if (el == TypeInt::INT) {
kvn@2116 4606 bt = T_INT;
kvn@2116 4607 } else {
kvn@2116 4608 return _klass; // just return specified klass
kvn@2116 4609 }
kvn@2116 4610 return ciTypeArrayKlass::make(bt);
kvn@2116 4611 }
kvn@2116 4612 #endif
coleenp@548 4613 assert(!el->isa_int(),
duke@435 4614 "integral arrays must be pre-equipped with a class");
duke@435 4615 // Compute array klass directly from basic type
coleenp@548 4616 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 4617 }
kvn@2116 4618 return k_ary;
kvn@2116 4619 }
kvn@2116 4620
kvn@2116 4621 //------------------------------klass------------------------------------------
kvn@2116 4622 // Return the defining klass for this class
kvn@2116 4623 ciKlass* TypeAryPtr::klass() const {
kvn@2116 4624 if( _klass ) return _klass; // Return cached value, if possible
kvn@2116 4625
kvn@2116 4626 // Oops, need to compute _klass and cache it
kvn@2116 4627 ciKlass* k_ary = compute_klass();
duke@435 4628
kvn@2636 4629 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
duke@435 4630 // The _klass field acts as a cache of the underlying
duke@435 4631 // ciKlass for this array type. In order to set the field,
duke@435 4632 // we need to cast away const-ness.
duke@435 4633 //
duke@435 4634 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 4635 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 4636 // active compilations. However, the ciKlass which represents
duke@435 4637 // this Type is *not* shared between compilations, so caching
duke@435 4638 // this value would result in fetching a dangling pointer.
duke@435 4639 //
duke@435 4640 // Recomputing the underlying ciKlass for each request is
duke@435 4641 // a bit less efficient than caching, but calls to
duke@435 4642 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 4643 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 4644 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 4645 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 4646 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 4647 }
kvn@598 4648 }
duke@435 4649 return k_ary;
duke@435 4650 }
duke@435 4651
duke@435 4652
duke@435 4653 //------------------------------add_offset-------------------------------------
duke@435 4654 // Access internals of klass object
kvn@741 4655 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
duke@435 4656 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 4657 }
duke@435 4658
duke@435 4659 //------------------------------cast_to_ptr_type-------------------------------
duke@435 4660 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
kvn@992 4661 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
duke@435 4662 if( ptr == _ptr ) return this;
duke@435 4663 return make(ptr, _klass, _offset);
duke@435 4664 }
duke@435 4665
duke@435 4666
duke@435 4667 //-----------------------------cast_to_exactness-------------------------------
duke@435 4668 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 4669 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 4670 if (!UseExactTypes) return this;
duke@435 4671 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 4672 }
duke@435 4673
duke@435 4674
duke@435 4675 //-----------------------------as_instance_type--------------------------------
duke@435 4676 // Corresponding type for an instance of the given class.
duke@435 4677 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 4678 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 4679 ciKlass* k = klass();
duke@435 4680 bool xk = klass_is_exact();
duke@435 4681 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 4682 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
morris@4760 4683 guarantee(toop != NULL, "need type for given klass");
duke@435 4684 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 4685 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 4686 }
duke@435 4687
duke@435 4688
duke@435 4689 //------------------------------xmeet------------------------------------------
duke@435 4690 // Compute the MEET of two types, return a new Type object.
duke@435 4691 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 4692 // Perform a fast test for common case; meeting the same types together.
duke@435 4693 if( this == t ) return this; // Meeting same type-rep?
duke@435 4694
duke@435 4695 // Current "this->_base" is Pointer
duke@435 4696 switch (t->base()) { // switch on original type
duke@435 4697
duke@435 4698 case Int: // Mixing ints & oops happens when javac
duke@435 4699 case Long: // reuses local variables
duke@435 4700 case FloatTop:
duke@435 4701 case FloatCon:
duke@435 4702 case FloatBot:
duke@435 4703 case DoubleTop:
duke@435 4704 case DoubleCon:
duke@435 4705 case DoubleBot:
kvn@728 4706 case NarrowOop:
roland@4159 4707 case NarrowKlass:
duke@435 4708 case Bottom: // Ye Olde Default
duke@435 4709 return Type::BOTTOM;
duke@435 4710 case Top:
duke@435 4711 return this;
duke@435 4712
duke@435 4713 default: // All else is a mistake
duke@435 4714 typerr(t);
duke@435 4715
duke@435 4716 case AnyPtr: { // Meeting to AnyPtrs
duke@435 4717 // Found an AnyPtr type vs self-KlassPtr type
duke@435 4718 const TypePtr *tp = t->is_ptr();
duke@435 4719 int offset = meet_offset(tp->offset());
duke@435 4720 PTR ptr = meet_ptr(tp->ptr());
duke@435 4721 switch (tp->ptr()) {
duke@435 4722 case TopPTR:
duke@435 4723 return this;
duke@435 4724 case Null:
duke@435 4725 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 4726 case AnyNull:
duke@435 4727 return make( ptr, klass(), offset );
duke@435 4728 case BotPTR:
duke@435 4729 case NotNull:
duke@435 4730 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 4731 default: typerr(t);
duke@435 4732 }
duke@435 4733 }
duke@435 4734
coleenp@4037 4735 case RawPtr:
coleenp@4037 4736 case MetadataPtr:
coleenp@4037 4737 case OopPtr:
duke@435 4738 case AryPtr: // Meet with AryPtr
duke@435 4739 case InstPtr: // Meet with InstPtr
coleenp@4037 4740 return TypePtr::BOTTOM;
duke@435 4741
duke@435 4742 //
duke@435 4743 // A-top }
duke@435 4744 // / | \ } Tops
duke@435 4745 // B-top A-any C-top }
duke@435 4746 // | / | \ | } Any-nulls
duke@435 4747 // B-any | C-any }
duke@435 4748 // | | |
duke@435 4749 // B-con A-con C-con } constants; not comparable across classes
duke@435 4750 // | | |
duke@435 4751 // B-not | C-not }
duke@435 4752 // | \ | / | } not-nulls
duke@435 4753 // B-bot A-not C-bot }
duke@435 4754 // \ | / } Bottoms
duke@435 4755 // A-bot }
duke@435 4756 //
duke@435 4757
duke@435 4758 case KlassPtr: { // Meet two KlassPtr types
duke@435 4759 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 4760 int off = meet_offset(tkls->offset());
duke@435 4761 PTR ptr = meet_ptr(tkls->ptr());
duke@435 4762
duke@435 4763 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 4764 // If we have constants, then we created oops so classes are loaded
duke@435 4765 // and we can handle the constants further down. This case handles
duke@435 4766 // not-loaded classes
duke@435 4767 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 4768 return make( ptr, klass(), off );
duke@435 4769 }
duke@435 4770
duke@435 4771 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 4772 ciKlass* tkls_klass = tkls->klass();
duke@435 4773 ciKlass* this_klass = this->klass();
duke@435 4774 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 4775 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 4776
duke@435 4777 // If 'this' type is above the centerline and is a superclass of the
duke@435 4778 // other, we can treat 'this' as having the same type as the other.
duke@435 4779 if ((above_centerline(this->ptr())) &&
duke@435 4780 tkls_klass->is_subtype_of(this_klass)) {
duke@435 4781 this_klass = tkls_klass;
duke@435 4782 }
duke@435 4783 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 4784 // other, we can treat 'tinst' as having the same type as the other.
duke@435 4785 if ((above_centerline(tkls->ptr())) &&
duke@435 4786 this_klass->is_subtype_of(tkls_klass)) {
duke@435 4787 tkls_klass = this_klass;
duke@435 4788 }
duke@435 4789
duke@435 4790 // Check for classes now being equal
duke@435 4791 if (tkls_klass->equals(this_klass)) {
duke@435 4792 // If the klasses are equal, the constants may still differ. Fall to
duke@435 4793 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 4794 // handled elsewhere).
duke@435 4795 if( ptr == Constant ) {
coleenp@4037 4796 if (this->_ptr == Constant && tkls->_ptr == Constant &&
coleenp@4037 4797 this->klass()->equals(tkls->klass()));
coleenp@4037 4798 else if (above_centerline(this->ptr()));
coleenp@4037 4799 else if (above_centerline(tkls->ptr()));
duke@435 4800 else
duke@435 4801 ptr = NotNull;
duke@435 4802 }
duke@435 4803 return make( ptr, this_klass, off );
duke@435 4804 } // Else classes are not equal
duke@435 4805
duke@435 4806 // Since klasses are different, we require the LCA in the Java
duke@435 4807 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 4808 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 4809 ptr = NotNull;
duke@435 4810 // Now we find the LCA of Java classes
duke@435 4811 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 4812 return make( ptr, k, off );
duke@435 4813 } // End of case KlassPtr
duke@435 4814
duke@435 4815 } // End of switch
duke@435 4816 return this; // Return the double constant
duke@435 4817 }
duke@435 4818
duke@435 4819 //------------------------------xdual------------------------------------------
duke@435 4820 // Dual: compute field-by-field dual
duke@435 4821 const Type *TypeKlassPtr::xdual() const {
duke@435 4822 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 4823 }
duke@435 4824
coleenp@4037 4825 //------------------------------get_con----------------------------------------
coleenp@4037 4826 intptr_t TypeKlassPtr::get_con() const {
coleenp@4037 4827 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4828 assert( _offset >= 0, "" );
coleenp@4037 4829
coleenp@4037 4830 if (_offset != 0) {
coleenp@4037 4831 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4832 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4833 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4834 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4835 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4836 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4837 // but this assertion here is to help prevent its occurence.
coleenp@4037 4838 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4839 ShouldNotReachHere();
coleenp@4037 4840 }
coleenp@4037 4841
coleenp@4037 4842 return (intptr_t)klass()->constant_encoding();
coleenp@4037 4843 }
duke@435 4844 //------------------------------dump2------------------------------------------
duke@435 4845 // Dump Klass Type
duke@435 4846 #ifndef PRODUCT
duke@435 4847 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 4848 switch( _ptr ) {
duke@435 4849 case Constant:
duke@435 4850 st->print("precise ");
duke@435 4851 case NotNull:
duke@435 4852 {
duke@435 4853 const char *name = klass()->name()->as_utf8();
duke@435 4854 if( name ) {
duke@435 4855 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 4856 } else {
duke@435 4857 ShouldNotReachHere();
duke@435 4858 }
duke@435 4859 }
duke@435 4860 case BotPTR:
duke@435 4861 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 4862 case TopPTR:
duke@435 4863 case AnyNull:
duke@435 4864 st->print(":%s", ptr_msg[_ptr]);
duke@435 4865 if( _klass_is_exact ) st->print(":exact");
duke@435 4866 break;
duke@435 4867 }
duke@435 4868
duke@435 4869 if( _offset ) { // Dump offset, if any
duke@435 4870 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 4871 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 4872 else { st->print("+%d", _offset); }
duke@435 4873 }
duke@435 4874
duke@435 4875 st->print(" *");
duke@435 4876 }
duke@435 4877 #endif
duke@435 4878
duke@435 4879
duke@435 4880
duke@435 4881 //=============================================================================
duke@435 4882 // Convenience common pre-built types.
duke@435 4883
duke@435 4884 //------------------------------make-------------------------------------------
duke@435 4885 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 4886 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 4887 }
duke@435 4888
duke@435 4889 //------------------------------make-------------------------------------------
duke@435 4890 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 4891 Compile* C = Compile::current();
duke@435 4892 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 4893 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 4894 const TypeTuple *domain;
twisti@1572 4895 if (method->is_static()) {
duke@435 4896 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 4897 } else {
duke@435 4898 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 4899 }
duke@435 4900 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 4901 tf = TypeFunc::make(domain, range);
duke@435 4902 C->set_last_tf(method, tf); // fill cache
duke@435 4903 return tf;
duke@435 4904 }
duke@435 4905
duke@435 4906 //------------------------------meet-------------------------------------------
duke@435 4907 // Compute the MEET of two types. It returns a new Type object.
duke@435 4908 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 4909 // Perform a fast test for common case; meeting the same types together.
duke@435 4910 if( this == t ) return this; // Meeting same type-rep?
duke@435 4911
duke@435 4912 // Current "this->_base" is Func
duke@435 4913 switch (t->base()) { // switch on original type
duke@435 4914
duke@435 4915 case Bottom: // Ye Olde Default
duke@435 4916 return t;
duke@435 4917
duke@435 4918 default: // All else is a mistake
duke@435 4919 typerr(t);
duke@435 4920
duke@435 4921 case Top:
duke@435 4922 break;
duke@435 4923 }
duke@435 4924 return this; // Return the double constant
duke@435 4925 }
duke@435 4926
duke@435 4927 //------------------------------xdual------------------------------------------
duke@435 4928 // Dual: compute field-by-field dual
duke@435 4929 const Type *TypeFunc::xdual() const {
duke@435 4930 return this;
duke@435 4931 }
duke@435 4932
duke@435 4933 //------------------------------eq---------------------------------------------
duke@435 4934 // Structural equality check for Type representations
duke@435 4935 bool TypeFunc::eq( const Type *t ) const {
duke@435 4936 const TypeFunc *a = (const TypeFunc*)t;
duke@435 4937 return _domain == a->_domain &&
duke@435 4938 _range == a->_range;
duke@435 4939 }
duke@435 4940
duke@435 4941 //------------------------------hash-------------------------------------------
duke@435 4942 // Type-specific hashing function.
duke@435 4943 int TypeFunc::hash(void) const {
duke@435 4944 return (intptr_t)_domain + (intptr_t)_range;
duke@435 4945 }
duke@435 4946
duke@435 4947 //------------------------------dump2------------------------------------------
duke@435 4948 // Dump Function Type
duke@435 4949 #ifndef PRODUCT
duke@435 4950 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4951 if( _range->_cnt <= Parms )
duke@435 4952 st->print("void");
duke@435 4953 else {
duke@435 4954 uint i;
duke@435 4955 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 4956 _range->field_at(i)->dump2(d,depth,st);
duke@435 4957 st->print("/");
duke@435 4958 }
duke@435 4959 _range->field_at(i)->dump2(d,depth,st);
duke@435 4960 }
duke@435 4961 st->print(" ");
duke@435 4962 st->print("( ");
duke@435 4963 if( !depth || d[this] ) { // Check for recursive dump
duke@435 4964 st->print("...)");
duke@435 4965 return;
duke@435 4966 }
duke@435 4967 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 4968 if (Parms < _domain->_cnt)
duke@435 4969 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 4970 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 4971 st->print(", ");
duke@435 4972 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 4973 }
duke@435 4974 st->print(" )");
duke@435 4975 }
duke@435 4976 #endif
duke@435 4977
duke@435 4978 //------------------------------singleton--------------------------------------
duke@435 4979 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 4980 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 4981 // or a single symbol.
duke@435 4982 bool TypeFunc::singleton(void) const {
duke@435 4983 return false; // Never a singleton
duke@435 4984 }
duke@435 4985
duke@435 4986 bool TypeFunc::empty(void) const {
duke@435 4987 return false; // Never empty
duke@435 4988 }
duke@435 4989
duke@435 4990
duke@435 4991 BasicType TypeFunc::return_type() const{
duke@435 4992 if (range()->cnt() == TypeFunc::Parms) {
duke@435 4993 return T_VOID;
duke@435 4994 }
duke@435 4995 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 4996 }

mercurial