src/share/vm/opto/type.cpp

Thu, 21 Nov 2013 19:00:57 -0800

author
goetz
date
Thu, 21 Nov 2013 19:00:57 -0800
changeset 6487
15120a36272d
parent 6043
6c2f07d1495f
child 6503
a9becfeecd1b
permissions
-rw-r--r--

8028767: PPC64: (part 121): smaller shared changes needed to build C2
Summary: smaller shared changes required to build the C2 compiler on PPC64.
Reviewed-by: kvn

duke@435 1 /*
hseigel@4465 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
coleenp@4037 26 #include "ci/ciMethodData.hpp"
stefank@2314 27 #include "ci/ciTypeFlow.hpp"
stefank@2314 28 #include "classfile/symbolTable.hpp"
stefank@2314 29 #include "classfile/systemDictionary.hpp"
stefank@2314 30 #include "compiler/compileLog.hpp"
stefank@2314 31 #include "libadt/dict.hpp"
stefank@2314 32 #include "memory/gcLocker.hpp"
stefank@2314 33 #include "memory/oopFactory.hpp"
stefank@2314 34 #include "memory/resourceArea.hpp"
stefank@2314 35 #include "oops/instanceKlass.hpp"
never@2658 36 #include "oops/instanceMirrorKlass.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "oops/typeArrayKlass.hpp"
stefank@2314 39 #include "opto/matcher.hpp"
stefank@2314 40 #include "opto/node.hpp"
stefank@2314 41 #include "opto/opcodes.hpp"
stefank@2314 42 #include "opto/type.hpp"
stefank@2314 43
duke@435 44 // Portions of code courtesy of Clifford Click
duke@435 45
duke@435 46 // Optimization - Graph Style
duke@435 47
duke@435 48 // Dictionary of types shared among compilations.
duke@435 49 Dict* Type::_shared_type_dict = NULL;
duke@435 50
duke@435 51 // Array which maps compiler types to Basic Types
coleenp@4037 52 Type::TypeInfo Type::_type_info[Type::lastype] = {
coleenp@4037 53 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
coleenp@4037 54 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
coleenp@4037 55 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
coleenp@4037 56 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
coleenp@4037 57 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
coleenp@4037 58 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
coleenp@4037 59 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
roland@4159 60 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass
coleenp@4037 61 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
coleenp@4037 62 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
coleenp@4037 63
goetz@6487 64 #ifdef SPARC
goetz@6487 65 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
goetz@6487 66 { Bad, T_ILLEGAL, "vectord:", false, Op_RegD, relocInfo::none }, // VectorD
goetz@6487 67 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
goetz@6487 68 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
goetz@6487 69 #elif defined(PPC64)
goetz@6487 70 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
goetz@6487 71 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD
goetz@6487 72 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
goetz@6487 73 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
goetz@6487 74 #else // all other
coleenp@4037 75 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS
coleenp@4037 76 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
coleenp@4037 77 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
coleenp@4037 78 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY
goetz@6487 79 #endif
coleenp@4037 80 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr
coleenp@4037 81 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr
coleenp@4037 82 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr
coleenp@4037 83 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr
coleenp@4037 84 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr
coleenp@4037 85 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr
coleenp@4037 86 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr
coleenp@4037 87 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function
coleenp@4037 88 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio
coleenp@4037 89 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address
coleenp@4037 90 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory
coleenp@4037 91 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop
coleenp@4037 92 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon
coleenp@4037 93 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot
coleenp@4037 94 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop
coleenp@4037 95 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon
coleenp@4037 96 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot
coleenp@4037 97 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom
duke@435 98 };
duke@435 99
duke@435 100 // Map ideal registers (machine types) to ideal types
duke@435 101 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 102
duke@435 103 // Map basic types to canonical Type* pointers.
duke@435 104 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 105
duke@435 106 // Map basic types to constant-zero Types.
duke@435 107 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 108
duke@435 109 // Map basic types to array-body alias types.
duke@435 110 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 111
duke@435 112 //=============================================================================
duke@435 113 // Convenience common pre-built types.
duke@435 114 const Type *Type::ABIO; // State-of-machine only
duke@435 115 const Type *Type::BOTTOM; // All values
duke@435 116 const Type *Type::CONTROL; // Control only
duke@435 117 const Type *Type::DOUBLE; // All doubles
duke@435 118 const Type *Type::FLOAT; // All floats
duke@435 119 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 120 const Type *Type::MEMORY; // Abstract store only
duke@435 121 const Type *Type::RETURN_ADDRESS;
duke@435 122 const Type *Type::TOP; // No values in set
duke@435 123
duke@435 124 //------------------------------get_const_type---------------------------
duke@435 125 const Type* Type::get_const_type(ciType* type) {
duke@435 126 if (type == NULL) {
duke@435 127 return NULL;
duke@435 128 } else if (type->is_primitive_type()) {
duke@435 129 return get_const_basic_type(type->basic_type());
duke@435 130 } else {
duke@435 131 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 132 }
duke@435 133 }
duke@435 134
duke@435 135 //---------------------------array_element_basic_type---------------------------------
duke@435 136 // Mapping to the array element's basic type.
duke@435 137 BasicType Type::array_element_basic_type() const {
duke@435 138 BasicType bt = basic_type();
duke@435 139 if (bt == T_INT) {
duke@435 140 if (this == TypeInt::INT) return T_INT;
duke@435 141 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 142 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 143 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 144 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 145 return T_VOID;
duke@435 146 }
duke@435 147 return bt;
duke@435 148 }
duke@435 149
duke@435 150 //---------------------------get_typeflow_type---------------------------------
duke@435 151 // Import a type produced by ciTypeFlow.
duke@435 152 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 153 switch (type->basic_type()) {
duke@435 154
duke@435 155 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 156 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 157 return Type::BOTTOM;
duke@435 158
duke@435 159 case ciTypeFlow::StateVector::T_TOP:
duke@435 160 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 161 return Type::TOP;
duke@435 162
duke@435 163 case ciTypeFlow::StateVector::T_NULL:
duke@435 164 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 165 return TypePtr::NULL_PTR;
duke@435 166
duke@435 167 case ciTypeFlow::StateVector::T_LONG2:
duke@435 168 // The ciTypeFlow pass pushes a long, then the half.
duke@435 169 // We do the same.
duke@435 170 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 171 return TypeInt::TOP;
duke@435 172
duke@435 173 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 174 // The ciTypeFlow pass pushes double, then the half.
duke@435 175 // Our convention is the same.
duke@435 176 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 177 return Type::TOP;
duke@435 178
duke@435 179 case T_ADDRESS:
duke@435 180 assert(type->is_return_address(), "");
duke@435 181 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 182
duke@435 183 default:
duke@435 184 // make sure we did not mix up the cases:
duke@435 185 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 186 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 187 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 188 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 189 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 190 assert(!type->is_return_address(), "");
duke@435 191
duke@435 192 return Type::get_const_type(type);
duke@435 193 }
duke@435 194 }
duke@435 195
duke@435 196
vlivanov@5658 197 //-----------------------make_from_constant------------------------------------
vlivanov@5658 198 const Type* Type::make_from_constant(ciConstant constant,
vlivanov@5658 199 bool require_constant, bool is_autobox_cache) {
vlivanov@5658 200 switch (constant.basic_type()) {
vlivanov@5658 201 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
vlivanov@5658 202 case T_CHAR: return TypeInt::make(constant.as_char());
vlivanov@5658 203 case T_BYTE: return TypeInt::make(constant.as_byte());
vlivanov@5658 204 case T_SHORT: return TypeInt::make(constant.as_short());
vlivanov@5658 205 case T_INT: return TypeInt::make(constant.as_int());
vlivanov@5658 206 case T_LONG: return TypeLong::make(constant.as_long());
vlivanov@5658 207 case T_FLOAT: return TypeF::make(constant.as_float());
vlivanov@5658 208 case T_DOUBLE: return TypeD::make(constant.as_double());
vlivanov@5658 209 case T_ARRAY:
vlivanov@5658 210 case T_OBJECT:
vlivanov@5658 211 {
vlivanov@5658 212 // cases:
vlivanov@5658 213 // can_be_constant = (oop not scavengable || ScavengeRootsInCode != 0)
vlivanov@5658 214 // should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
vlivanov@5658 215 // An oop is not scavengable if it is in the perm gen.
vlivanov@5658 216 ciObject* oop_constant = constant.as_object();
vlivanov@5658 217 if (oop_constant->is_null_object()) {
vlivanov@5658 218 return Type::get_zero_type(T_OBJECT);
vlivanov@5658 219 } else if (require_constant || oop_constant->should_be_constant()) {
vlivanov@5658 220 return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
vlivanov@5658 221 }
vlivanov@5658 222 }
vlivanov@5658 223 }
vlivanov@5658 224 // Fall through to failure
vlivanov@5658 225 return NULL;
vlivanov@5658 226 }
vlivanov@5658 227
vlivanov@5658 228
duke@435 229 //------------------------------make-------------------------------------------
duke@435 230 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 231 // and look for an existing copy in the type dictionary.
duke@435 232 const Type *Type::make( enum TYPES t ) {
duke@435 233 return (new Type(t))->hashcons();
duke@435 234 }
kvn@658 235
duke@435 236 //------------------------------cmp--------------------------------------------
duke@435 237 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 238 if( t1->_base != t2->_base )
duke@435 239 return 1; // Missed badly
duke@435 240 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 241 return !t1->eq(t2); // Return ZERO if equal
duke@435 242 }
duke@435 243
duke@435 244 //------------------------------hash-------------------------------------------
duke@435 245 int Type::uhash( const Type *const t ) {
duke@435 246 return t->hash();
duke@435 247 }
duke@435 248
kvn@1975 249 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
kvn@1975 250
duke@435 251 //--------------------------Initialize_shared----------------------------------
duke@435 252 void Type::Initialize_shared(Compile* current) {
duke@435 253 // This method does not need to be locked because the first system
duke@435 254 // compilations (stub compilations) occur serially. If they are
duke@435 255 // changed to proceed in parallel, then this section will need
duke@435 256 // locking.
duke@435 257
duke@435 258 Arena* save = current->type_arena();
zgu@3900 259 Arena* shared_type_arena = new (mtCompiler)Arena();
duke@435 260
duke@435 261 current->set_type_arena(shared_type_arena);
duke@435 262 _shared_type_dict =
duke@435 263 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 264 shared_type_arena, 128 );
duke@435 265 current->set_type_dict(_shared_type_dict);
duke@435 266
duke@435 267 // Make shared pre-built types.
duke@435 268 CONTROL = make(Control); // Control only
duke@435 269 TOP = make(Top); // No values in set
duke@435 270 MEMORY = make(Memory); // Abstract store only
duke@435 271 ABIO = make(Abio); // State-of-machine only
duke@435 272 RETURN_ADDRESS=make(Return_Address);
duke@435 273 FLOAT = make(FloatBot); // All floats
duke@435 274 DOUBLE = make(DoubleBot); // All doubles
duke@435 275 BOTTOM = make(Bottom); // Everything
duke@435 276 HALF = make(Half); // Placeholder half of doublewide type
duke@435 277
duke@435 278 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 279 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 280
duke@435 281 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 282 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 283
duke@435 284 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 285 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 286 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 287 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 288 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 289 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 290 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 291 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 292 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 293 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 294 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
twisti@1059 295 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
duke@435 296 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 297 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 298 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 299 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 300 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 301 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
duke@435 302 // CmpL is overloaded both as the bytecode computation returning
duke@435 303 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 304 // compare returning optimizer ideal-type flags.
duke@435 305 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 306 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 307 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 308 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
kvn@1975 309 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 310
duke@435 311 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 312 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 313 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 314 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 315 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 316 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 317 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
duke@435 318
duke@435 319 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 320 fboth[0] = Type::CONTROL;
duke@435 321 fboth[1] = Type::CONTROL;
duke@435 322 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 323
duke@435 324 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 325 ffalse[0] = Type::CONTROL;
duke@435 326 ffalse[1] = Type::TOP;
duke@435 327 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 328
duke@435 329 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 330 fneither[0] = Type::TOP;
duke@435 331 fneither[1] = Type::TOP;
duke@435 332 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 333
duke@435 334 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 335 ftrue[0] = Type::TOP;
duke@435 336 ftrue[1] = Type::CONTROL;
duke@435 337 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 338
duke@435 339 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 340 floop[0] = Type::CONTROL;
duke@435 341 floop[1] = TypeInt::INT;
duke@435 342 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 343
duke@435 344 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 345 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 346 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 347
duke@435 348 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 349 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 350
duke@435 351 const Type **fmembar = TypeTuple::fields(0);
duke@435 352 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 353
duke@435 354 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 355 fsc[0] = TypeInt::CC;
duke@435 356 fsc[1] = Type::MEMORY;
duke@435 357 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 358
duke@435 359 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 360 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 361 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 362 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 363 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 364 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 365 false, 0, oopDesc::klass_offset_in_bytes());
roland@5991 366 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
duke@435 367
coleenp@4037 368 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
coleenp@4037 369
coleenp@548 370 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 371 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 372
roland@4159 373 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
roland@4159 374
coleenp@548 375 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 376 mreg2type[Op_Set ] = 0;
coleenp@548 377 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 378 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 379 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 380 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 381 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 382 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 383 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 384
kvn@2116 385 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
kvn@598 386
kvn@598 387 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 388
kvn@598 389 #ifdef _LP64
kvn@598 390 if (UseCompressedOops) {
coleenp@4037 391 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
kvn@598 392 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 393 } else
kvn@598 394 #endif
kvn@598 395 {
kvn@598 396 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 397 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 398 }
duke@435 399 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 400 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 401 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 402 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 403 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 404 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 405 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 406
kvn@598 407 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 408 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 409 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 410 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 411 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 412 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 413 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 414 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 415 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 416 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 417 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 418 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 419
duke@435 420 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 421 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 422
duke@435 423 const Type **fi2c = TypeTuple::fields(2);
coleenp@4037 424 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
duke@435 425 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 426 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 427
duke@435 428 const Type **intpair = TypeTuple::fields(2);
duke@435 429 intpair[0] = TypeInt::INT;
duke@435 430 intpair[1] = TypeInt::INT;
duke@435 431 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 432
duke@435 433 const Type **longpair = TypeTuple::fields(2);
duke@435 434 longpair[0] = TypeLong::LONG;
duke@435 435 longpair[1] = TypeLong::LONG;
duke@435 436 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 437
rbackman@5791 438 const Type **intccpair = TypeTuple::fields(2);
rbackman@5791 439 intccpair[0] = TypeInt::INT;
rbackman@5791 440 intccpair[1] = TypeInt::CC;
rbackman@5791 441 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
rbackman@5791 442
rbackman@5997 443 const Type **longccpair = TypeTuple::fields(2);
rbackman@5997 444 longccpair[0] = TypeLong::LONG;
rbackman@5997 445 longccpair[1] = TypeInt::CC;
rbackman@5997 446 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
rbackman@5997 447
roland@4159 448 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
roland@4159 449 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
roland@4159 450 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
roland@4159 451 _const_basic_type[T_CHAR] = TypeInt::CHAR;
roland@4159 452 _const_basic_type[T_BYTE] = TypeInt::BYTE;
roland@4159 453 _const_basic_type[T_SHORT] = TypeInt::SHORT;
roland@4159 454 _const_basic_type[T_INT] = TypeInt::INT;
roland@4159 455 _const_basic_type[T_LONG] = TypeLong::LONG;
roland@4159 456 _const_basic_type[T_FLOAT] = Type::FLOAT;
roland@4159 457 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
roland@4159 458 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
roland@4159 459 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
roland@4159 460 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
roland@4159 461 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
roland@4159 462 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not?
roland@4159 463
roland@4159 464 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
roland@4159 465 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
roland@4159 466 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
roland@4159 467 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
roland@4159 468 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
roland@4159 469 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
roland@4159 470 _zero_type[T_INT] = TypeInt::ZERO;
roland@4159 471 _zero_type[T_LONG] = TypeLong::ZERO;
roland@4159 472 _zero_type[T_FLOAT] = TypeF::ZERO;
roland@4159 473 _zero_type[T_DOUBLE] = TypeD::ZERO;
roland@4159 474 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
roland@4159 475 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
roland@4159 476 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
roland@4159 477 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 478
duke@435 479 // get_zero_type() should not happen for T_CONFLICT
duke@435 480 _zero_type[T_CONFLICT]= NULL;
duke@435 481
kvn@3882 482 // Vector predefined types, it needs initialized _const_basic_type[].
kvn@3882 483 if (Matcher::vector_size_supported(T_BYTE,4)) {
kvn@3882 484 TypeVect::VECTS = TypeVect::make(T_BYTE,4);
kvn@3882 485 }
kvn@3882 486 if (Matcher::vector_size_supported(T_FLOAT,2)) {
kvn@3882 487 TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
kvn@3882 488 }
kvn@3882 489 if (Matcher::vector_size_supported(T_FLOAT,4)) {
kvn@3882 490 TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
kvn@3882 491 }
kvn@3882 492 if (Matcher::vector_size_supported(T_FLOAT,8)) {
kvn@3882 493 TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
kvn@3882 494 }
kvn@3882 495 mreg2type[Op_VecS] = TypeVect::VECTS;
kvn@3882 496 mreg2type[Op_VecD] = TypeVect::VECTD;
kvn@3882 497 mreg2type[Op_VecX] = TypeVect::VECTX;
kvn@3882 498 mreg2type[Op_VecY] = TypeVect::VECTY;
kvn@3882 499
duke@435 500 // Restore working type arena.
duke@435 501 current->set_type_arena(save);
duke@435 502 current->set_type_dict(NULL);
duke@435 503 }
duke@435 504
duke@435 505 //------------------------------Initialize-------------------------------------
duke@435 506 void Type::Initialize(Compile* current) {
duke@435 507 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 508
duke@435 509 if (_shared_type_dict == NULL) {
duke@435 510 Initialize_shared(current);
duke@435 511 }
duke@435 512
duke@435 513 Arena* type_arena = current->type_arena();
duke@435 514
duke@435 515 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 516 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 517 current->set_type_dict(tdic);
duke@435 518
duke@435 519 // Transfer the shared types.
duke@435 520 DictI i(_shared_type_dict);
duke@435 521 for( ; i.test(); ++i ) {
duke@435 522 Type* t = (Type*)i._value;
duke@435 523 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 524 }
duke@435 525 }
duke@435 526
duke@435 527 //------------------------------hashcons---------------------------------------
duke@435 528 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 529 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 530 // current Type in the Type table.
duke@435 531 const Type *Type::hashcons(void) {
duke@435 532 debug_only(base()); // Check the assertion in Type::base().
duke@435 533 // Look up the Type in the Type dictionary
duke@435 534 Dict *tdic = type_dict();
duke@435 535 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 536 if( old ) { // Pre-existing Type?
duke@435 537 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 538 delete this; // Yes, Nuke this guy
duke@435 539 assert( old->_dual, "" );
duke@435 540 return old; // Return pre-existing
duke@435 541 }
duke@435 542
duke@435 543 // Every type has a dual (to make my lattice symmetric).
duke@435 544 // Since we just discovered a new Type, compute its dual right now.
duke@435 545 assert( !_dual, "" ); // No dual yet
duke@435 546 _dual = xdual(); // Compute the dual
duke@435 547 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 548 _dual = this;
duke@435 549 return this;
duke@435 550 }
duke@435 551 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 552 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 553 // New Type, insert into Type table
duke@435 554 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 555 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 556 #ifdef ASSERT
duke@435 557 Type *dual_dual = (Type*)_dual->xdual();
duke@435 558 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 559 delete dual_dual;
duke@435 560 #endif
duke@435 561 return this; // Return new Type
duke@435 562 }
duke@435 563
duke@435 564 //------------------------------eq---------------------------------------------
duke@435 565 // Structural equality check for Type representations
duke@435 566 bool Type::eq( const Type * ) const {
duke@435 567 return true; // Nothing else can go wrong
duke@435 568 }
duke@435 569
duke@435 570 //------------------------------hash-------------------------------------------
duke@435 571 // Type-specific hashing function.
duke@435 572 int Type::hash(void) const {
duke@435 573 return _base;
duke@435 574 }
duke@435 575
duke@435 576 //------------------------------is_finite--------------------------------------
duke@435 577 // Has a finite value
duke@435 578 bool Type::is_finite() const {
duke@435 579 return false;
duke@435 580 }
duke@435 581
duke@435 582 //------------------------------is_nan-----------------------------------------
duke@435 583 // Is not a number (NaN)
duke@435 584 bool Type::is_nan() const {
duke@435 585 return false;
duke@435 586 }
duke@435 587
kvn@1255 588 //----------------------interface_vs_oop---------------------------------------
kvn@1255 589 #ifdef ASSERT
roland@5991 590 bool Type::interface_vs_oop_helper(const Type *t) const {
kvn@1255 591 bool result = false;
kvn@1255 592
kvn@1427 593 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
kvn@1427 594 const TypePtr* t_ptr = t->make_ptr();
kvn@1427 595 if( this_ptr == NULL || t_ptr == NULL )
kvn@1427 596 return result;
kvn@1427 597
kvn@1427 598 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
kvn@1427 599 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
kvn@1255 600 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
kvn@1255 601 bool this_interface = this_inst->klass()->is_interface();
kvn@1255 602 bool t_interface = t_inst->klass()->is_interface();
kvn@1255 603 result = this_interface ^ t_interface;
kvn@1255 604 }
kvn@1255 605
kvn@1255 606 return result;
kvn@1255 607 }
roland@5991 608
roland@5991 609 bool Type::interface_vs_oop(const Type *t) const {
roland@5991 610 if (interface_vs_oop_helper(t)) {
roland@5991 611 return true;
roland@5991 612 }
roland@5991 613 // Now check the speculative parts as well
roland@5991 614 const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
roland@5991 615 const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
roland@5991 616 if (this_spec != NULL && t_spec != NULL) {
roland@5991 617 if (this_spec->interface_vs_oop_helper(t_spec)) {
roland@5991 618 return true;
roland@5991 619 }
roland@5991 620 return false;
roland@5991 621 }
roland@5991 622 if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
roland@5991 623 return true;
roland@5991 624 }
roland@5991 625 if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
roland@5991 626 return true;
roland@5991 627 }
roland@5991 628 return false;
roland@5991 629 }
roland@5991 630
kvn@1255 631 #endif
kvn@1255 632
duke@435 633 //------------------------------meet-------------------------------------------
duke@435 634 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 635 // commutative and the lattice is symmetric.
duke@435 636 const Type *Type::meet( const Type *t ) const {
coleenp@548 637 if (isa_narrowoop() && t->isa_narrowoop()) {
kvn@656 638 const Type* result = make_ptr()->meet(t->make_ptr());
kvn@656 639 return result->make_narrowoop();
coleenp@548 640 }
roland@4159 641 if (isa_narrowklass() && t->isa_narrowklass()) {
roland@4159 642 const Type* result = make_ptr()->meet(t->make_ptr());
roland@4159 643 return result->make_narrowklass();
roland@4159 644 }
coleenp@548 645
duke@435 646 const Type *mt = xmeet(t);
coleenp@548 647 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
roland@4159 648 if (isa_narrowklass() || t->isa_narrowklass()) return mt;
duke@435 649 #ifdef ASSERT
duke@435 650 assert( mt == t->xmeet(this), "meet not commutative" );
duke@435 651 const Type* dual_join = mt->_dual;
duke@435 652 const Type *t2t = dual_join->xmeet(t->_dual);
duke@435 653 const Type *t2this = dual_join->xmeet( _dual);
duke@435 654
duke@435 655 // Interface meet Oop is Not Symmetric:
duke@435 656 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 657 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
kvn@1255 658
kvn@1255 659 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
duke@435 660 tty->print_cr("=== Meet Not Symmetric ===");
duke@435 661 tty->print("t = "); t->dump(); tty->cr();
duke@435 662 tty->print("this= "); dump(); tty->cr();
duke@435 663 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
duke@435 664
duke@435 665 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
duke@435 666 tty->print("this_dual= "); _dual->dump(); tty->cr();
duke@435 667 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
duke@435 668
duke@435 669 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
duke@435 670 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 671
duke@435 672 fatal("meet not symmetric" );
duke@435 673 }
duke@435 674 #endif
duke@435 675 return mt;
duke@435 676 }
duke@435 677
duke@435 678 //------------------------------xmeet------------------------------------------
duke@435 679 // Compute the MEET of two types. It returns a new Type object.
duke@435 680 const Type *Type::xmeet( const Type *t ) const {
duke@435 681 // Perform a fast test for common case; meeting the same types together.
duke@435 682 if( this == t ) return this; // Meeting same type-rep?
duke@435 683
duke@435 684 // Meeting TOP with anything?
duke@435 685 if( _base == Top ) return t;
duke@435 686
duke@435 687 // Meeting BOTTOM with anything?
duke@435 688 if( _base == Bottom ) return BOTTOM;
duke@435 689
duke@435 690 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 691 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 692 switch (t->base()) { // Switch on original type
duke@435 693
duke@435 694 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 695 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 696 case FloatCon:
duke@435 697 case DoubleCon:
duke@435 698 case Int:
duke@435 699 case Long:
duke@435 700 return t->xmeet(this);
duke@435 701
duke@435 702 case OopPtr:
duke@435 703 return t->xmeet(this);
duke@435 704
duke@435 705 case InstPtr:
duke@435 706 return t->xmeet(this);
duke@435 707
coleenp@4037 708 case MetadataPtr:
duke@435 709 case KlassPtr:
duke@435 710 return t->xmeet(this);
duke@435 711
duke@435 712 case AryPtr:
duke@435 713 return t->xmeet(this);
duke@435 714
coleenp@548 715 case NarrowOop:
coleenp@548 716 return t->xmeet(this);
coleenp@548 717
roland@4159 718 case NarrowKlass:
roland@4159 719 return t->xmeet(this);
roland@4159 720
duke@435 721 case Bad: // Type check
duke@435 722 default: // Bogus type not in lattice
duke@435 723 typerr(t);
duke@435 724 return Type::BOTTOM;
duke@435 725
duke@435 726 case Bottom: // Ye Olde Default
duke@435 727 return t;
duke@435 728
duke@435 729 case FloatTop:
duke@435 730 if( _base == FloatTop ) return this;
duke@435 731 case FloatBot: // Float
duke@435 732 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 733 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 734 typerr(t);
duke@435 735 return Type::BOTTOM;
duke@435 736
duke@435 737 case DoubleTop:
duke@435 738 if( _base == DoubleTop ) return this;
duke@435 739 case DoubleBot: // Double
duke@435 740 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 741 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 742 typerr(t);
duke@435 743 return Type::BOTTOM;
duke@435 744
duke@435 745 // These next few cases must match exactly or it is a compile-time error.
duke@435 746 case Control: // Control of code
duke@435 747 case Abio: // State of world outside of program
duke@435 748 case Memory:
duke@435 749 if( _base == t->_base ) return this;
duke@435 750 typerr(t);
duke@435 751 return Type::BOTTOM;
duke@435 752
duke@435 753 case Top: // Top of the lattice
duke@435 754 return this;
duke@435 755 }
duke@435 756
duke@435 757 // The type is unchanged
duke@435 758 return this;
duke@435 759 }
duke@435 760
duke@435 761 //-----------------------------filter------------------------------------------
duke@435 762 const Type *Type::filter( const Type *kills ) const {
duke@435 763 const Type* ft = join(kills);
duke@435 764 if (ft->empty())
duke@435 765 return Type::TOP; // Canonical empty value
duke@435 766 return ft;
duke@435 767 }
duke@435 768
duke@435 769 //------------------------------xdual------------------------------------------
duke@435 770 // Compute dual right now.
duke@435 771 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 772 Bad, // Bad
duke@435 773 Control, // Control
duke@435 774 Bottom, // Top
duke@435 775 Bad, // Int - handled in v-call
duke@435 776 Bad, // Long - handled in v-call
duke@435 777 Half, // Half
coleenp@548 778 Bad, // NarrowOop - handled in v-call
roland@4159 779 Bad, // NarrowKlass - handled in v-call
duke@435 780
duke@435 781 Bad, // Tuple - handled in v-call
duke@435 782 Bad, // Array - handled in v-call
kvn@3882 783 Bad, // VectorS - handled in v-call
kvn@3882 784 Bad, // VectorD - handled in v-call
kvn@3882 785 Bad, // VectorX - handled in v-call
kvn@3882 786 Bad, // VectorY - handled in v-call
duke@435 787
duke@435 788 Bad, // AnyPtr - handled in v-call
duke@435 789 Bad, // RawPtr - handled in v-call
duke@435 790 Bad, // OopPtr - handled in v-call
duke@435 791 Bad, // InstPtr - handled in v-call
duke@435 792 Bad, // AryPtr - handled in v-call
coleenp@4037 793
coleenp@4037 794 Bad, // MetadataPtr - handled in v-call
duke@435 795 Bad, // KlassPtr - handled in v-call
duke@435 796
duke@435 797 Bad, // Function - handled in v-call
duke@435 798 Abio, // Abio
duke@435 799 Return_Address,// Return_Address
duke@435 800 Memory, // Memory
duke@435 801 FloatBot, // FloatTop
duke@435 802 FloatCon, // FloatCon
duke@435 803 FloatTop, // FloatBot
duke@435 804 DoubleBot, // DoubleTop
duke@435 805 DoubleCon, // DoubleCon
duke@435 806 DoubleTop, // DoubleBot
duke@435 807 Top // Bottom
duke@435 808 };
duke@435 809
duke@435 810 const Type *Type::xdual() const {
duke@435 811 // Note: the base() accessor asserts the sanity of _base.
coleenp@4037 812 assert(_type_info[base()].dual_type != Bad, "implement with v-call");
coleenp@4037 813 return new Type(_type_info[_base].dual_type);
duke@435 814 }
duke@435 815
duke@435 816 //------------------------------has_memory-------------------------------------
duke@435 817 bool Type::has_memory() const {
duke@435 818 Type::TYPES tx = base();
duke@435 819 if (tx == Memory) return true;
duke@435 820 if (tx == Tuple) {
duke@435 821 const TypeTuple *t = is_tuple();
duke@435 822 for (uint i=0; i < t->cnt(); i++) {
duke@435 823 tx = t->field_at(i)->base();
duke@435 824 if (tx == Memory) return true;
duke@435 825 }
duke@435 826 }
duke@435 827 return false;
duke@435 828 }
duke@435 829
duke@435 830 #ifndef PRODUCT
duke@435 831 //------------------------------dump2------------------------------------------
duke@435 832 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
coleenp@4037 833 st->print(_type_info[_base].msg);
duke@435 834 }
duke@435 835
duke@435 836 //------------------------------dump-------------------------------------------
duke@435 837 void Type::dump_on(outputStream *st) const {
duke@435 838 ResourceMark rm;
duke@435 839 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 840 dump2(d,1, st);
kvn@598 841 if (is_ptr_to_narrowoop()) {
coleenp@548 842 st->print(" [narrow]");
roland@4159 843 } else if (is_ptr_to_narrowklass()) {
roland@4159 844 st->print(" [narrowklass]");
coleenp@548 845 }
duke@435 846 }
duke@435 847 #endif
duke@435 848
duke@435 849 //------------------------------singleton--------------------------------------
duke@435 850 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 851 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 852 bool Type::singleton(void) const {
duke@435 853 return _base == Top || _base == Half;
duke@435 854 }
duke@435 855
duke@435 856 //------------------------------empty------------------------------------------
duke@435 857 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 858 bool Type::empty(void) const {
duke@435 859 switch (_base) {
duke@435 860 case DoubleTop:
duke@435 861 case FloatTop:
duke@435 862 case Top:
duke@435 863 return true;
duke@435 864
duke@435 865 case Half:
duke@435 866 case Abio:
duke@435 867 case Return_Address:
duke@435 868 case Memory:
duke@435 869 case Bottom:
duke@435 870 case FloatBot:
duke@435 871 case DoubleBot:
duke@435 872 return false; // never a singleton, therefore never empty
duke@435 873 }
duke@435 874
duke@435 875 ShouldNotReachHere();
duke@435 876 return false;
duke@435 877 }
duke@435 878
duke@435 879 //------------------------------dump_stats-------------------------------------
duke@435 880 // Dump collected statistics to stderr
duke@435 881 #ifndef PRODUCT
duke@435 882 void Type::dump_stats() {
duke@435 883 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 884 }
duke@435 885 #endif
duke@435 886
duke@435 887 //------------------------------typerr-----------------------------------------
duke@435 888 void Type::typerr( const Type *t ) const {
duke@435 889 #ifndef PRODUCT
duke@435 890 tty->print("\nError mixing types: ");
duke@435 891 dump();
duke@435 892 tty->print(" and ");
duke@435 893 t->dump();
duke@435 894 tty->print("\n");
duke@435 895 #endif
duke@435 896 ShouldNotReachHere();
duke@435 897 }
duke@435 898
duke@435 899
duke@435 900 //=============================================================================
duke@435 901 // Convenience common pre-built types.
duke@435 902 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 903 const TypeF *TypeF::ONE; // Floating point one
duke@435 904
duke@435 905 //------------------------------make-------------------------------------------
duke@435 906 // Create a float constant
duke@435 907 const TypeF *TypeF::make(float f) {
duke@435 908 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 909 }
duke@435 910
duke@435 911 //------------------------------meet-------------------------------------------
duke@435 912 // Compute the MEET of two types. It returns a new Type object.
duke@435 913 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 914 // Perform a fast test for common case; meeting the same types together.
duke@435 915 if( this == t ) return this; // Meeting same type-rep?
duke@435 916
duke@435 917 // Current "this->_base" is FloatCon
duke@435 918 switch (t->base()) { // Switch on original type
duke@435 919 case AnyPtr: // Mixing with oops happens when javac
duke@435 920 case RawPtr: // reuses local variables
duke@435 921 case OopPtr:
duke@435 922 case InstPtr:
coleenp@4037 923 case AryPtr:
coleenp@4037 924 case MetadataPtr:
duke@435 925 case KlassPtr:
kvn@728 926 case NarrowOop:
roland@4159 927 case NarrowKlass:
duke@435 928 case Int:
duke@435 929 case Long:
duke@435 930 case DoubleTop:
duke@435 931 case DoubleCon:
duke@435 932 case DoubleBot:
duke@435 933 case Bottom: // Ye Olde Default
duke@435 934 return Type::BOTTOM;
duke@435 935
duke@435 936 case FloatBot:
duke@435 937 return t;
duke@435 938
duke@435 939 default: // All else is a mistake
duke@435 940 typerr(t);
duke@435 941
duke@435 942 case FloatCon: // Float-constant vs Float-constant?
duke@435 943 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 944 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 945 // all the same representation in C++
duke@435 946 return FLOAT; // Return generic float
duke@435 947 // Equal constants
duke@435 948 case Top:
duke@435 949 case FloatTop:
duke@435 950 break; // Return the float constant
duke@435 951 }
duke@435 952 return this; // Return the float constant
duke@435 953 }
duke@435 954
duke@435 955 //------------------------------xdual------------------------------------------
duke@435 956 // Dual: symmetric
duke@435 957 const Type *TypeF::xdual() const {
duke@435 958 return this;
duke@435 959 }
duke@435 960
duke@435 961 //------------------------------eq---------------------------------------------
duke@435 962 // Structural equality check for Type representations
duke@435 963 bool TypeF::eq( const Type *t ) const {
duke@435 964 if( g_isnan(_f) ||
duke@435 965 g_isnan(t->getf()) ) {
duke@435 966 // One or both are NANs. If both are NANs return true, else false.
duke@435 967 return (g_isnan(_f) && g_isnan(t->getf()));
duke@435 968 }
duke@435 969 if (_f == t->getf()) {
duke@435 970 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 971 if (_f == 0.0) {
duke@435 972 // difference between positive and negative zero
duke@435 973 if (jint_cast(_f) != jint_cast(t->getf())) return false;
duke@435 974 }
duke@435 975 return true;
duke@435 976 }
duke@435 977 return false;
duke@435 978 }
duke@435 979
duke@435 980 //------------------------------hash-------------------------------------------
duke@435 981 // Type-specific hashing function.
duke@435 982 int TypeF::hash(void) const {
duke@435 983 return *(int*)(&_f);
duke@435 984 }
duke@435 985
duke@435 986 //------------------------------is_finite--------------------------------------
duke@435 987 // Has a finite value
duke@435 988 bool TypeF::is_finite() const {
duke@435 989 return g_isfinite(getf()) != 0;
duke@435 990 }
duke@435 991
duke@435 992 //------------------------------is_nan-----------------------------------------
duke@435 993 // Is not a number (NaN)
duke@435 994 bool TypeF::is_nan() const {
duke@435 995 return g_isnan(getf()) != 0;
duke@435 996 }
duke@435 997
duke@435 998 //------------------------------dump2------------------------------------------
duke@435 999 // Dump float constant Type
duke@435 1000 #ifndef PRODUCT
duke@435 1001 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1002 Type::dump2(d,depth, st);
duke@435 1003 st->print("%f", _f);
duke@435 1004 }
duke@435 1005 #endif
duke@435 1006
duke@435 1007 //------------------------------singleton--------------------------------------
duke@435 1008 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1009 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1010 // or a single symbol.
duke@435 1011 bool TypeF::singleton(void) const {
duke@435 1012 return true; // Always a singleton
duke@435 1013 }
duke@435 1014
duke@435 1015 bool TypeF::empty(void) const {
duke@435 1016 return false; // always exactly a singleton
duke@435 1017 }
duke@435 1018
duke@435 1019 //=============================================================================
duke@435 1020 // Convenience common pre-built types.
duke@435 1021 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 1022 const TypeD *TypeD::ONE; // Floating point one
duke@435 1023
duke@435 1024 //------------------------------make-------------------------------------------
duke@435 1025 const TypeD *TypeD::make(double d) {
duke@435 1026 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 1027 }
duke@435 1028
duke@435 1029 //------------------------------meet-------------------------------------------
duke@435 1030 // Compute the MEET of two types. It returns a new Type object.
duke@435 1031 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 1032 // Perform a fast test for common case; meeting the same types together.
duke@435 1033 if( this == t ) return this; // Meeting same type-rep?
duke@435 1034
duke@435 1035 // Current "this->_base" is DoubleCon
duke@435 1036 switch (t->base()) { // Switch on original type
duke@435 1037 case AnyPtr: // Mixing with oops happens when javac
duke@435 1038 case RawPtr: // reuses local variables
duke@435 1039 case OopPtr:
duke@435 1040 case InstPtr:
coleenp@4037 1041 case AryPtr:
coleenp@4037 1042 case MetadataPtr:
duke@435 1043 case KlassPtr:
never@618 1044 case NarrowOop:
roland@4159 1045 case NarrowKlass:
duke@435 1046 case Int:
duke@435 1047 case Long:
duke@435 1048 case FloatTop:
duke@435 1049 case FloatCon:
duke@435 1050 case FloatBot:
duke@435 1051 case Bottom: // Ye Olde Default
duke@435 1052 return Type::BOTTOM;
duke@435 1053
duke@435 1054 case DoubleBot:
duke@435 1055 return t;
duke@435 1056
duke@435 1057 default: // All else is a mistake
duke@435 1058 typerr(t);
duke@435 1059
duke@435 1060 case DoubleCon: // Double-constant vs Double-constant?
duke@435 1061 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 1062 return DOUBLE; // Return generic double
duke@435 1063 case Top:
duke@435 1064 case DoubleTop:
duke@435 1065 break;
duke@435 1066 }
duke@435 1067 return this; // Return the double constant
duke@435 1068 }
duke@435 1069
duke@435 1070 //------------------------------xdual------------------------------------------
duke@435 1071 // Dual: symmetric
duke@435 1072 const Type *TypeD::xdual() const {
duke@435 1073 return this;
duke@435 1074 }
duke@435 1075
duke@435 1076 //------------------------------eq---------------------------------------------
duke@435 1077 // Structural equality check for Type representations
duke@435 1078 bool TypeD::eq( const Type *t ) const {
duke@435 1079 if( g_isnan(_d) ||
duke@435 1080 g_isnan(t->getd()) ) {
duke@435 1081 // One or both are NANs. If both are NANs return true, else false.
duke@435 1082 return (g_isnan(_d) && g_isnan(t->getd()));
duke@435 1083 }
duke@435 1084 if (_d == t->getd()) {
duke@435 1085 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 1086 if (_d == 0.0) {
duke@435 1087 // difference between positive and negative zero
duke@435 1088 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
duke@435 1089 }
duke@435 1090 return true;
duke@435 1091 }
duke@435 1092 return false;
duke@435 1093 }
duke@435 1094
duke@435 1095 //------------------------------hash-------------------------------------------
duke@435 1096 // Type-specific hashing function.
duke@435 1097 int TypeD::hash(void) const {
duke@435 1098 return *(int*)(&_d);
duke@435 1099 }
duke@435 1100
duke@435 1101 //------------------------------is_finite--------------------------------------
duke@435 1102 // Has a finite value
duke@435 1103 bool TypeD::is_finite() const {
duke@435 1104 return g_isfinite(getd()) != 0;
duke@435 1105 }
duke@435 1106
duke@435 1107 //------------------------------is_nan-----------------------------------------
duke@435 1108 // Is not a number (NaN)
duke@435 1109 bool TypeD::is_nan() const {
duke@435 1110 return g_isnan(getd()) != 0;
duke@435 1111 }
duke@435 1112
duke@435 1113 //------------------------------dump2------------------------------------------
duke@435 1114 // Dump double constant Type
duke@435 1115 #ifndef PRODUCT
duke@435 1116 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1117 Type::dump2(d,depth,st);
duke@435 1118 st->print("%f", _d);
duke@435 1119 }
duke@435 1120 #endif
duke@435 1121
duke@435 1122 //------------------------------singleton--------------------------------------
duke@435 1123 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1124 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1125 // or a single symbol.
duke@435 1126 bool TypeD::singleton(void) const {
duke@435 1127 return true; // Always a singleton
duke@435 1128 }
duke@435 1129
duke@435 1130 bool TypeD::empty(void) const {
duke@435 1131 return false; // always exactly a singleton
duke@435 1132 }
duke@435 1133
duke@435 1134 //=============================================================================
duke@435 1135 // Convience common pre-built types.
duke@435 1136 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1137 const TypeInt *TypeInt::ZERO; // 0
duke@435 1138 const TypeInt *TypeInt::ONE; // 1
duke@435 1139 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1140 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1141 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1142 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1143 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1144 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1145 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1146 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
twisti@1059 1147 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
duke@435 1148 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1149 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1150 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1151 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1152 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1153 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 1154
duke@435 1155 //------------------------------TypeInt----------------------------------------
duke@435 1156 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1157 }
duke@435 1158
duke@435 1159 //------------------------------make-------------------------------------------
duke@435 1160 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1161 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1162 }
duke@435 1163
kvn@1975 1164 static int normalize_int_widen( jint lo, jint hi, int w ) {
duke@435 1165 // Certain normalizations keep us sane when comparing types.
duke@435 1166 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1167 if (lo <= hi) {
kvn@1975 1168 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1169 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
kvn@1975 1170 } else {
kvn@1975 1171 if ((juint)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1172 if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
duke@435 1173 }
kvn@1975 1174 return w;
kvn@1975 1175 }
kvn@1975 1176
kvn@1975 1177 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
kvn@1975 1178 w = normalize_int_widen(lo, hi, w);
duke@435 1179 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1180 }
duke@435 1181
duke@435 1182 //------------------------------meet-------------------------------------------
duke@435 1183 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1184 // with reference count equal to the number of Types pointing at it.
duke@435 1185 // Caller should wrap a Types around it.
duke@435 1186 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1187 // Perform a fast test for common case; meeting the same types together.
duke@435 1188 if( this == t ) return this; // Meeting same type?
duke@435 1189
duke@435 1190 // Currently "this->_base" is a TypeInt
duke@435 1191 switch (t->base()) { // Switch on original type
duke@435 1192 case AnyPtr: // Mixing with oops happens when javac
duke@435 1193 case RawPtr: // reuses local variables
duke@435 1194 case OopPtr:
duke@435 1195 case InstPtr:
coleenp@4037 1196 case AryPtr:
coleenp@4037 1197 case MetadataPtr:
duke@435 1198 case KlassPtr:
never@618 1199 case NarrowOop:
roland@4159 1200 case NarrowKlass:
duke@435 1201 case Long:
duke@435 1202 case FloatTop:
duke@435 1203 case FloatCon:
duke@435 1204 case FloatBot:
duke@435 1205 case DoubleTop:
duke@435 1206 case DoubleCon:
duke@435 1207 case DoubleBot:
duke@435 1208 case Bottom: // Ye Olde Default
duke@435 1209 return Type::BOTTOM;
duke@435 1210 default: // All else is a mistake
duke@435 1211 typerr(t);
duke@435 1212 case Top: // No change
duke@435 1213 return this;
duke@435 1214 case Int: // Int vs Int?
duke@435 1215 break;
duke@435 1216 }
duke@435 1217
duke@435 1218 // Expand covered set
duke@435 1219 const TypeInt *r = t->is_int();
kvn@1975 1220 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1221 }
duke@435 1222
duke@435 1223 //------------------------------xdual------------------------------------------
duke@435 1224 // Dual: reverse hi & lo; flip widen
duke@435 1225 const Type *TypeInt::xdual() const {
kvn@1975 1226 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1227 return new TypeInt(_hi,_lo,w);
duke@435 1228 }
duke@435 1229
duke@435 1230 //------------------------------widen------------------------------------------
duke@435 1231 // Only happens for optimistic top-down optimizations.
never@1444 1232 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
duke@435 1233 // Coming from TOP or such; no widening
duke@435 1234 if( old->base() != Int ) return this;
duke@435 1235 const TypeInt *ot = old->is_int();
duke@435 1236
duke@435 1237 // If new guy is equal to old guy, no widening
duke@435 1238 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1239 return old;
duke@435 1240
duke@435 1241 // If new guy contains old, then we widened
duke@435 1242 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1243 // New contains old
duke@435 1244 // If new guy is already wider than old, no widening
duke@435 1245 if( _widen > ot->_widen ) return this;
duke@435 1246 // If old guy was a constant, do not bother
duke@435 1247 if (ot->_lo == ot->_hi) return this;
duke@435 1248 // Now widen new guy.
duke@435 1249 // Check for widening too far
duke@435 1250 if (_widen == WidenMax) {
never@1444 1251 int max = max_jint;
never@1444 1252 int min = min_jint;
never@1444 1253 if (limit->isa_int()) {
never@1444 1254 max = limit->is_int()->_hi;
never@1444 1255 min = limit->is_int()->_lo;
never@1444 1256 }
never@1444 1257 if (min < _lo && _hi < max) {
duke@435 1258 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1259 // which is closer to its respective limit.
duke@435 1260 if (_lo >= 0 || // easy common case
never@1444 1261 (juint)(_lo - min) >= (juint)(max - _hi)) {
duke@435 1262 // Try to widen to an unsigned range type of 31 bits:
never@1444 1263 return make(_lo, max, WidenMax);
duke@435 1264 } else {
never@1444 1265 return make(min, _hi, WidenMax);
duke@435 1266 }
duke@435 1267 }
duke@435 1268 return TypeInt::INT;
duke@435 1269 }
duke@435 1270 // Returned widened new guy
duke@435 1271 return make(_lo,_hi,_widen+1);
duke@435 1272 }
duke@435 1273
duke@435 1274 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1275 // bottom. Return the wider fellow.
duke@435 1276 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1277 return old;
duke@435 1278
duke@435 1279 //fatal("Integer value range is not subset");
duke@435 1280 //return this;
duke@435 1281 return TypeInt::INT;
duke@435 1282 }
duke@435 1283
duke@435 1284 //------------------------------narrow---------------------------------------
duke@435 1285 // Only happens for pessimistic optimizations.
duke@435 1286 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1287 if (_lo >= _hi) return this; // already narrow enough
duke@435 1288 if (old == NULL) return this;
duke@435 1289 const TypeInt* ot = old->isa_int();
duke@435 1290 if (ot == NULL) return this;
duke@435 1291 jint olo = ot->_lo;
duke@435 1292 jint ohi = ot->_hi;
duke@435 1293
duke@435 1294 // If new guy is equal to old guy, no narrowing
duke@435 1295 if (_lo == olo && _hi == ohi) return old;
duke@435 1296
duke@435 1297 // If old guy was maximum range, allow the narrowing
duke@435 1298 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1299
duke@435 1300 if (_lo < olo || _hi > ohi)
duke@435 1301 return this; // doesn't narrow; pretty wierd
duke@435 1302
duke@435 1303 // The new type narrows the old type, so look for a "death march".
duke@435 1304 // See comments on PhaseTransform::saturate.
duke@435 1305 juint nrange = _hi - _lo;
duke@435 1306 juint orange = ohi - olo;
duke@435 1307 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1308 // Use the new type only if the range shrinks a lot.
duke@435 1309 // We do not want the optimizer computing 2^31 point by point.
duke@435 1310 return old;
duke@435 1311 }
duke@435 1312
duke@435 1313 return this;
duke@435 1314 }
duke@435 1315
duke@435 1316 //-----------------------------filter------------------------------------------
duke@435 1317 const Type *TypeInt::filter( const Type *kills ) const {
duke@435 1318 const TypeInt* ft = join(kills)->isa_int();
kvn@1975 1319 if (ft == NULL || ft->empty())
duke@435 1320 return Type::TOP; // Canonical empty value
duke@435 1321 if (ft->_widen < this->_widen) {
duke@435 1322 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1323 // The widen bits must be allowed to run freely through the graph.
duke@435 1324 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1325 }
duke@435 1326 return ft;
duke@435 1327 }
duke@435 1328
duke@435 1329 //------------------------------eq---------------------------------------------
duke@435 1330 // Structural equality check for Type representations
duke@435 1331 bool TypeInt::eq( const Type *t ) const {
duke@435 1332 const TypeInt *r = t->is_int(); // Handy access
duke@435 1333 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1334 }
duke@435 1335
duke@435 1336 //------------------------------hash-------------------------------------------
duke@435 1337 // Type-specific hashing function.
duke@435 1338 int TypeInt::hash(void) const {
duke@435 1339 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1340 }
duke@435 1341
duke@435 1342 //------------------------------is_finite--------------------------------------
duke@435 1343 // Has a finite value
duke@435 1344 bool TypeInt::is_finite() const {
duke@435 1345 return true;
duke@435 1346 }
duke@435 1347
duke@435 1348 //------------------------------dump2------------------------------------------
duke@435 1349 // Dump TypeInt
duke@435 1350 #ifndef PRODUCT
duke@435 1351 static const char* intname(char* buf, jint n) {
duke@435 1352 if (n == min_jint)
duke@435 1353 return "min";
duke@435 1354 else if (n < min_jint + 10000)
duke@435 1355 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1356 else if (n == max_jint)
duke@435 1357 return "max";
duke@435 1358 else if (n > max_jint - 10000)
duke@435 1359 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1360 else
duke@435 1361 sprintf(buf, INT32_FORMAT, n);
duke@435 1362 return buf;
duke@435 1363 }
duke@435 1364
duke@435 1365 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1366 char buf[40], buf2[40];
duke@435 1367 if (_lo == min_jint && _hi == max_jint)
duke@435 1368 st->print("int");
duke@435 1369 else if (is_con())
duke@435 1370 st->print("int:%s", intname(buf, get_con()));
duke@435 1371 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1372 st->print("bool");
duke@435 1373 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1374 st->print("byte");
duke@435 1375 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1376 st->print("char");
duke@435 1377 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1378 st->print("short");
duke@435 1379 else if (_hi == max_jint)
duke@435 1380 st->print("int:>=%s", intname(buf, _lo));
duke@435 1381 else if (_lo == min_jint)
duke@435 1382 st->print("int:<=%s", intname(buf, _hi));
duke@435 1383 else
duke@435 1384 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1385
duke@435 1386 if (_widen != 0 && this != TypeInt::INT)
duke@435 1387 st->print(":%.*s", _widen, "wwww");
duke@435 1388 }
duke@435 1389 #endif
duke@435 1390
duke@435 1391 //------------------------------singleton--------------------------------------
duke@435 1392 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1393 // constants.
duke@435 1394 bool TypeInt::singleton(void) const {
duke@435 1395 return _lo >= _hi;
duke@435 1396 }
duke@435 1397
duke@435 1398 bool TypeInt::empty(void) const {
duke@435 1399 return _lo > _hi;
duke@435 1400 }
duke@435 1401
duke@435 1402 //=============================================================================
duke@435 1403 // Convenience common pre-built types.
duke@435 1404 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1405 const TypeLong *TypeLong::ZERO; // 0
duke@435 1406 const TypeLong *TypeLong::ONE; // 1
duke@435 1407 const TypeLong *TypeLong::POS; // >=0
duke@435 1408 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1409 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1410 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
duke@435 1411
duke@435 1412 //------------------------------TypeLong---------------------------------------
duke@435 1413 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1414 }
duke@435 1415
duke@435 1416 //------------------------------make-------------------------------------------
duke@435 1417 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1418 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1419 }
duke@435 1420
kvn@1975 1421 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
kvn@1975 1422 // Certain normalizations keep us sane when comparing types.
kvn@1975 1423 // The 'SMALLINT' covers constants.
kvn@1975 1424 if (lo <= hi) {
kvn@1975 1425 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1426 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
kvn@1975 1427 } else {
kvn@1975 1428 if ((julong)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1429 if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
kvn@1975 1430 }
kvn@1975 1431 return w;
kvn@1975 1432 }
kvn@1975 1433
duke@435 1434 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
kvn@1975 1435 w = normalize_long_widen(lo, hi, w);
duke@435 1436 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1437 }
duke@435 1438
duke@435 1439
duke@435 1440 //------------------------------meet-------------------------------------------
duke@435 1441 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1442 // with reference count equal to the number of Types pointing at it.
duke@435 1443 // Caller should wrap a Types around it.
duke@435 1444 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1445 // Perform a fast test for common case; meeting the same types together.
duke@435 1446 if( this == t ) return this; // Meeting same type?
duke@435 1447
duke@435 1448 // Currently "this->_base" is a TypeLong
duke@435 1449 switch (t->base()) { // Switch on original type
duke@435 1450 case AnyPtr: // Mixing with oops happens when javac
duke@435 1451 case RawPtr: // reuses local variables
duke@435 1452 case OopPtr:
duke@435 1453 case InstPtr:
coleenp@4037 1454 case AryPtr:
coleenp@4037 1455 case MetadataPtr:
duke@435 1456 case KlassPtr:
never@618 1457 case NarrowOop:
roland@4159 1458 case NarrowKlass:
duke@435 1459 case Int:
duke@435 1460 case FloatTop:
duke@435 1461 case FloatCon:
duke@435 1462 case FloatBot:
duke@435 1463 case DoubleTop:
duke@435 1464 case DoubleCon:
duke@435 1465 case DoubleBot:
duke@435 1466 case Bottom: // Ye Olde Default
duke@435 1467 return Type::BOTTOM;
duke@435 1468 default: // All else is a mistake
duke@435 1469 typerr(t);
duke@435 1470 case Top: // No change
duke@435 1471 return this;
duke@435 1472 case Long: // Long vs Long?
duke@435 1473 break;
duke@435 1474 }
duke@435 1475
duke@435 1476 // Expand covered set
duke@435 1477 const TypeLong *r = t->is_long(); // Turn into a TypeLong
kvn@1975 1478 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1479 }
duke@435 1480
duke@435 1481 //------------------------------xdual------------------------------------------
duke@435 1482 // Dual: reverse hi & lo; flip widen
duke@435 1483 const Type *TypeLong::xdual() const {
kvn@1975 1484 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1485 return new TypeLong(_hi,_lo,w);
duke@435 1486 }
duke@435 1487
duke@435 1488 //------------------------------widen------------------------------------------
duke@435 1489 // Only happens for optimistic top-down optimizations.
never@1444 1490 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
duke@435 1491 // Coming from TOP or such; no widening
duke@435 1492 if( old->base() != Long ) return this;
duke@435 1493 const TypeLong *ot = old->is_long();
duke@435 1494
duke@435 1495 // If new guy is equal to old guy, no widening
duke@435 1496 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1497 return old;
duke@435 1498
duke@435 1499 // If new guy contains old, then we widened
duke@435 1500 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1501 // New contains old
duke@435 1502 // If new guy is already wider than old, no widening
duke@435 1503 if( _widen > ot->_widen ) return this;
duke@435 1504 // If old guy was a constant, do not bother
duke@435 1505 if (ot->_lo == ot->_hi) return this;
duke@435 1506 // Now widen new guy.
duke@435 1507 // Check for widening too far
duke@435 1508 if (_widen == WidenMax) {
never@1444 1509 jlong max = max_jlong;
never@1444 1510 jlong min = min_jlong;
never@1444 1511 if (limit->isa_long()) {
never@1444 1512 max = limit->is_long()->_hi;
never@1444 1513 min = limit->is_long()->_lo;
never@1444 1514 }
never@1444 1515 if (min < _lo && _hi < max) {
duke@435 1516 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1517 // which is closer to its respective limit.
duke@435 1518 if (_lo >= 0 || // easy common case
never@1444 1519 (julong)(_lo - min) >= (julong)(max - _hi)) {
duke@435 1520 // Try to widen to an unsigned range type of 32/63 bits:
never@1444 1521 if (max >= max_juint && _hi < max_juint)
duke@435 1522 return make(_lo, max_juint, WidenMax);
duke@435 1523 else
never@1444 1524 return make(_lo, max, WidenMax);
duke@435 1525 } else {
never@1444 1526 return make(min, _hi, WidenMax);
duke@435 1527 }
duke@435 1528 }
duke@435 1529 return TypeLong::LONG;
duke@435 1530 }
duke@435 1531 // Returned widened new guy
duke@435 1532 return make(_lo,_hi,_widen+1);
duke@435 1533 }
duke@435 1534
duke@435 1535 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1536 // bottom. Return the wider fellow.
duke@435 1537 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1538 return old;
duke@435 1539
duke@435 1540 // fatal("Long value range is not subset");
duke@435 1541 // return this;
duke@435 1542 return TypeLong::LONG;
duke@435 1543 }
duke@435 1544
duke@435 1545 //------------------------------narrow----------------------------------------
duke@435 1546 // Only happens for pessimistic optimizations.
duke@435 1547 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1548 if (_lo >= _hi) return this; // already narrow enough
duke@435 1549 if (old == NULL) return this;
duke@435 1550 const TypeLong* ot = old->isa_long();
duke@435 1551 if (ot == NULL) return this;
duke@435 1552 jlong olo = ot->_lo;
duke@435 1553 jlong ohi = ot->_hi;
duke@435 1554
duke@435 1555 // If new guy is equal to old guy, no narrowing
duke@435 1556 if (_lo == olo && _hi == ohi) return old;
duke@435 1557
duke@435 1558 // If old guy was maximum range, allow the narrowing
duke@435 1559 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1560
duke@435 1561 if (_lo < olo || _hi > ohi)
duke@435 1562 return this; // doesn't narrow; pretty wierd
duke@435 1563
duke@435 1564 // The new type narrows the old type, so look for a "death march".
duke@435 1565 // See comments on PhaseTransform::saturate.
duke@435 1566 julong nrange = _hi - _lo;
duke@435 1567 julong orange = ohi - olo;
duke@435 1568 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1569 // Use the new type only if the range shrinks a lot.
duke@435 1570 // We do not want the optimizer computing 2^31 point by point.
duke@435 1571 return old;
duke@435 1572 }
duke@435 1573
duke@435 1574 return this;
duke@435 1575 }
duke@435 1576
duke@435 1577 //-----------------------------filter------------------------------------------
duke@435 1578 const Type *TypeLong::filter( const Type *kills ) const {
duke@435 1579 const TypeLong* ft = join(kills)->isa_long();
kvn@1975 1580 if (ft == NULL || ft->empty())
duke@435 1581 return Type::TOP; // Canonical empty value
duke@435 1582 if (ft->_widen < this->_widen) {
duke@435 1583 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1584 // The widen bits must be allowed to run freely through the graph.
duke@435 1585 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1586 }
duke@435 1587 return ft;
duke@435 1588 }
duke@435 1589
duke@435 1590 //------------------------------eq---------------------------------------------
duke@435 1591 // Structural equality check for Type representations
duke@435 1592 bool TypeLong::eq( const Type *t ) const {
duke@435 1593 const TypeLong *r = t->is_long(); // Handy access
duke@435 1594 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1595 }
duke@435 1596
duke@435 1597 //------------------------------hash-------------------------------------------
duke@435 1598 // Type-specific hashing function.
duke@435 1599 int TypeLong::hash(void) const {
duke@435 1600 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1601 }
duke@435 1602
duke@435 1603 //------------------------------is_finite--------------------------------------
duke@435 1604 // Has a finite value
duke@435 1605 bool TypeLong::is_finite() const {
duke@435 1606 return true;
duke@435 1607 }
duke@435 1608
duke@435 1609 //------------------------------dump2------------------------------------------
duke@435 1610 // Dump TypeLong
duke@435 1611 #ifndef PRODUCT
duke@435 1612 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1613 if (n > x) {
duke@435 1614 if (n >= x + 10000) return NULL;
hseigel@4465 1615 sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
duke@435 1616 } else if (n < x) {
duke@435 1617 if (n <= x - 10000) return NULL;
hseigel@4465 1618 sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
duke@435 1619 } else {
duke@435 1620 return xname;
duke@435 1621 }
duke@435 1622 return buf;
duke@435 1623 }
duke@435 1624
duke@435 1625 static const char* longname(char* buf, jlong n) {
duke@435 1626 const char* str;
duke@435 1627 if (n == min_jlong)
duke@435 1628 return "min";
duke@435 1629 else if (n < min_jlong + 10000)
hseigel@4465 1630 sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
duke@435 1631 else if (n == max_jlong)
duke@435 1632 return "max";
duke@435 1633 else if (n > max_jlong - 10000)
hseigel@4465 1634 sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
duke@435 1635 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1636 return str;
duke@435 1637 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1638 return str;
duke@435 1639 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1640 return str;
duke@435 1641 else
hseigel@4465 1642 sprintf(buf, JLONG_FORMAT, n);
duke@435 1643 return buf;
duke@435 1644 }
duke@435 1645
duke@435 1646 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1647 char buf[80], buf2[80];
duke@435 1648 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1649 st->print("long");
duke@435 1650 else if (is_con())
duke@435 1651 st->print("long:%s", longname(buf, get_con()));
duke@435 1652 else if (_hi == max_jlong)
duke@435 1653 st->print("long:>=%s", longname(buf, _lo));
duke@435 1654 else if (_lo == min_jlong)
duke@435 1655 st->print("long:<=%s", longname(buf, _hi));
duke@435 1656 else
duke@435 1657 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1658
duke@435 1659 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1660 st->print(":%.*s", _widen, "wwww");
duke@435 1661 }
duke@435 1662 #endif
duke@435 1663
duke@435 1664 //------------------------------singleton--------------------------------------
duke@435 1665 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1666 // constants
duke@435 1667 bool TypeLong::singleton(void) const {
duke@435 1668 return _lo >= _hi;
duke@435 1669 }
duke@435 1670
duke@435 1671 bool TypeLong::empty(void) const {
duke@435 1672 return _lo > _hi;
duke@435 1673 }
duke@435 1674
duke@435 1675 //=============================================================================
duke@435 1676 // Convenience common pre-built types.
duke@435 1677 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1678 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1679 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1680 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1681 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1682 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1683 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1684 const TypeTuple *TypeTuple::START_I2C;
duke@435 1685 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1686 const TypeTuple *TypeTuple::LONG_PAIR;
rbackman@5791 1687 const TypeTuple *TypeTuple::INT_CC_PAIR;
rbackman@5997 1688 const TypeTuple *TypeTuple::LONG_CC_PAIR;
duke@435 1689
duke@435 1690
duke@435 1691 //------------------------------make-------------------------------------------
duke@435 1692 // Make a TypeTuple from the range of a method signature
duke@435 1693 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1694 ciType* return_type = sig->return_type();
duke@435 1695 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1696 const Type **field_array = fields(total_fields);
duke@435 1697 switch (return_type->basic_type()) {
duke@435 1698 case T_LONG:
duke@435 1699 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1700 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1701 break;
duke@435 1702 case T_DOUBLE:
duke@435 1703 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1704 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1705 break;
duke@435 1706 case T_OBJECT:
duke@435 1707 case T_ARRAY:
duke@435 1708 case T_BOOLEAN:
duke@435 1709 case T_CHAR:
duke@435 1710 case T_FLOAT:
duke@435 1711 case T_BYTE:
duke@435 1712 case T_SHORT:
duke@435 1713 case T_INT:
duke@435 1714 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1715 break;
duke@435 1716 case T_VOID:
duke@435 1717 break;
duke@435 1718 default:
duke@435 1719 ShouldNotReachHere();
duke@435 1720 }
duke@435 1721 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1722 }
duke@435 1723
duke@435 1724 // Make a TypeTuple from the domain of a method signature
duke@435 1725 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1726 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1727
duke@435 1728 uint pos = TypeFunc::Parms;
duke@435 1729 const Type **field_array;
duke@435 1730 if (recv != NULL) {
duke@435 1731 total_fields++;
duke@435 1732 field_array = fields(total_fields);
duke@435 1733 // Use get_const_type here because it respects UseUniqueSubclasses:
duke@435 1734 field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
duke@435 1735 } else {
duke@435 1736 field_array = fields(total_fields);
duke@435 1737 }
duke@435 1738
duke@435 1739 int i = 0;
duke@435 1740 while (pos < total_fields) {
duke@435 1741 ciType* type = sig->type_at(i);
duke@435 1742
duke@435 1743 switch (type->basic_type()) {
duke@435 1744 case T_LONG:
duke@435 1745 field_array[pos++] = TypeLong::LONG;
duke@435 1746 field_array[pos++] = Type::HALF;
duke@435 1747 break;
duke@435 1748 case T_DOUBLE:
duke@435 1749 field_array[pos++] = Type::DOUBLE;
duke@435 1750 field_array[pos++] = Type::HALF;
duke@435 1751 break;
duke@435 1752 case T_OBJECT:
duke@435 1753 case T_ARRAY:
duke@435 1754 case T_BOOLEAN:
duke@435 1755 case T_CHAR:
duke@435 1756 case T_FLOAT:
duke@435 1757 case T_BYTE:
duke@435 1758 case T_SHORT:
duke@435 1759 case T_INT:
duke@435 1760 field_array[pos++] = get_const_type(type);
duke@435 1761 break;
duke@435 1762 default:
duke@435 1763 ShouldNotReachHere();
duke@435 1764 }
duke@435 1765 i++;
duke@435 1766 }
duke@435 1767 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1768 }
duke@435 1769
duke@435 1770 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1771 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1772 }
duke@435 1773
duke@435 1774 //------------------------------fields-----------------------------------------
duke@435 1775 // Subroutine call type with space allocated for argument types
duke@435 1776 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1777 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1778 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1779 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1780 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1781 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1782 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1783
duke@435 1784 return flds;
duke@435 1785 }
duke@435 1786
duke@435 1787 //------------------------------meet-------------------------------------------
duke@435 1788 // Compute the MEET of two types. It returns a new Type object.
duke@435 1789 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1790 // Perform a fast test for common case; meeting the same types together.
duke@435 1791 if( this == t ) return this; // Meeting same type-rep?
duke@435 1792
duke@435 1793 // Current "this->_base" is Tuple
duke@435 1794 switch (t->base()) { // switch on original type
duke@435 1795
duke@435 1796 case Bottom: // Ye Olde Default
duke@435 1797 return t;
duke@435 1798
duke@435 1799 default: // All else is a mistake
duke@435 1800 typerr(t);
duke@435 1801
duke@435 1802 case Tuple: { // Meeting 2 signatures?
duke@435 1803 const TypeTuple *x = t->is_tuple();
duke@435 1804 assert( _cnt == x->_cnt, "" );
duke@435 1805 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1806 for( uint i=0; i<_cnt; i++ )
duke@435 1807 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1808 return TypeTuple::make(_cnt,fields);
duke@435 1809 }
duke@435 1810 case Top:
duke@435 1811 break;
duke@435 1812 }
duke@435 1813 return this; // Return the double constant
duke@435 1814 }
duke@435 1815
duke@435 1816 //------------------------------xdual------------------------------------------
duke@435 1817 // Dual: compute field-by-field dual
duke@435 1818 const Type *TypeTuple::xdual() const {
duke@435 1819 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1820 for( uint i=0; i<_cnt; i++ )
duke@435 1821 fields[i] = _fields[i]->dual();
duke@435 1822 return new TypeTuple(_cnt,fields);
duke@435 1823 }
duke@435 1824
duke@435 1825 //------------------------------eq---------------------------------------------
duke@435 1826 // Structural equality check for Type representations
duke@435 1827 bool TypeTuple::eq( const Type *t ) const {
duke@435 1828 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1829 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1830 for (uint i = 0; i < _cnt; i++)
duke@435 1831 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1832 return false; // Missed
duke@435 1833 return true;
duke@435 1834 }
duke@435 1835
duke@435 1836 //------------------------------hash-------------------------------------------
duke@435 1837 // Type-specific hashing function.
duke@435 1838 int TypeTuple::hash(void) const {
duke@435 1839 intptr_t sum = _cnt;
duke@435 1840 for( uint i=0; i<_cnt; i++ )
duke@435 1841 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1842 return sum;
duke@435 1843 }
duke@435 1844
duke@435 1845 //------------------------------dump2------------------------------------------
duke@435 1846 // Dump signature Type
duke@435 1847 #ifndef PRODUCT
duke@435 1848 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1849 st->print("{");
duke@435 1850 if( !depth || d[this] ) { // Check for recursive print
duke@435 1851 st->print("...}");
duke@435 1852 return;
duke@435 1853 }
duke@435 1854 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1855 if( _cnt ) {
duke@435 1856 uint i;
duke@435 1857 for( i=0; i<_cnt-1; i++ ) {
duke@435 1858 st->print("%d:", i);
duke@435 1859 _fields[i]->dump2(d, depth-1, st);
duke@435 1860 st->print(", ");
duke@435 1861 }
duke@435 1862 st->print("%d:", i);
duke@435 1863 _fields[i]->dump2(d, depth-1, st);
duke@435 1864 }
duke@435 1865 st->print("}");
duke@435 1866 }
duke@435 1867 #endif
duke@435 1868
duke@435 1869 //------------------------------singleton--------------------------------------
duke@435 1870 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1871 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1872 // or a single symbol.
duke@435 1873 bool TypeTuple::singleton(void) const {
duke@435 1874 return false; // Never a singleton
duke@435 1875 }
duke@435 1876
duke@435 1877 bool TypeTuple::empty(void) const {
duke@435 1878 for( uint i=0; i<_cnt; i++ ) {
duke@435 1879 if (_fields[i]->empty()) return true;
duke@435 1880 }
duke@435 1881 return false;
duke@435 1882 }
duke@435 1883
duke@435 1884 //=============================================================================
duke@435 1885 // Convenience common pre-built types.
duke@435 1886
duke@435 1887 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1888 // Certain normalizations keep us sane when comparing types.
duke@435 1889 // We do not want arrayOop variables to differ only by the wideness
duke@435 1890 // of their index types. Pick minimum wideness, since that is the
duke@435 1891 // forced wideness of small ranges anyway.
duke@435 1892 if (size->_widen != Type::WidenMin)
duke@435 1893 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1894 else
duke@435 1895 return size;
duke@435 1896 }
duke@435 1897
duke@435 1898 //------------------------------make-------------------------------------------
vlivanov@5658 1899 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
coleenp@548 1900 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1901 elem = elem->make_narrowoop();
coleenp@548 1902 }
duke@435 1903 size = normalize_array_size(size);
vlivanov@5658 1904 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
duke@435 1905 }
duke@435 1906
duke@435 1907 //------------------------------meet-------------------------------------------
duke@435 1908 // Compute the MEET of two types. It returns a new Type object.
duke@435 1909 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1910 // Perform a fast test for common case; meeting the same types together.
duke@435 1911 if( this == t ) return this; // Meeting same type-rep?
duke@435 1912
duke@435 1913 // Current "this->_base" is Ary
duke@435 1914 switch (t->base()) { // switch on original type
duke@435 1915
duke@435 1916 case Bottom: // Ye Olde Default
duke@435 1917 return t;
duke@435 1918
duke@435 1919 default: // All else is a mistake
duke@435 1920 typerr(t);
duke@435 1921
duke@435 1922 case Array: { // Meeting 2 arrays?
duke@435 1923 const TypeAry *a = t->is_ary();
duke@435 1924 return TypeAry::make(_elem->meet(a->_elem),
vlivanov@5658 1925 _size->xmeet(a->_size)->is_int(),
vlivanov@5658 1926 _stable & a->_stable);
duke@435 1927 }
duke@435 1928 case Top:
duke@435 1929 break;
duke@435 1930 }
duke@435 1931 return this; // Return the double constant
duke@435 1932 }
duke@435 1933
duke@435 1934 //------------------------------xdual------------------------------------------
duke@435 1935 // Dual: compute field-by-field dual
duke@435 1936 const Type *TypeAry::xdual() const {
duke@435 1937 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1938 size_dual = normalize_array_size(size_dual);
vlivanov@5658 1939 return new TypeAry(_elem->dual(), size_dual, !_stable);
duke@435 1940 }
duke@435 1941
duke@435 1942 //------------------------------eq---------------------------------------------
duke@435 1943 // Structural equality check for Type representations
duke@435 1944 bool TypeAry::eq( const Type *t ) const {
duke@435 1945 const TypeAry *a = (const TypeAry*)t;
duke@435 1946 return _elem == a->_elem &&
vlivanov@5658 1947 _stable == a->_stable &&
duke@435 1948 _size == a->_size;
duke@435 1949 }
duke@435 1950
duke@435 1951 //------------------------------hash-------------------------------------------
duke@435 1952 // Type-specific hashing function.
duke@435 1953 int TypeAry::hash(void) const {
vlivanov@5658 1954 return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
duke@435 1955 }
duke@435 1956
kvn@1255 1957 //----------------------interface_vs_oop---------------------------------------
kvn@1255 1958 #ifdef ASSERT
kvn@1255 1959 bool TypeAry::interface_vs_oop(const Type *t) const {
kvn@1255 1960 const TypeAry* t_ary = t->is_ary();
kvn@1255 1961 if (t_ary) {
kvn@1255 1962 return _elem->interface_vs_oop(t_ary->_elem);
kvn@1255 1963 }
kvn@1255 1964 return false;
kvn@1255 1965 }
kvn@1255 1966 #endif
kvn@1255 1967
duke@435 1968 //------------------------------dump2------------------------------------------
duke@435 1969 #ifndef PRODUCT
duke@435 1970 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
vlivanov@5658 1971 if (_stable) st->print("stable:");
duke@435 1972 _elem->dump2(d, depth, st);
duke@435 1973 st->print("[");
duke@435 1974 _size->dump2(d, depth, st);
duke@435 1975 st->print("]");
duke@435 1976 }
duke@435 1977 #endif
duke@435 1978
duke@435 1979 //------------------------------singleton--------------------------------------
duke@435 1980 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1981 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1982 // or a single symbol.
duke@435 1983 bool TypeAry::singleton(void) const {
duke@435 1984 return false; // Never a singleton
duke@435 1985 }
duke@435 1986
duke@435 1987 bool TypeAry::empty(void) const {
duke@435 1988 return _elem->empty() || _size->empty();
duke@435 1989 }
duke@435 1990
duke@435 1991 //--------------------------ary_must_be_exact----------------------------------
duke@435 1992 bool TypeAry::ary_must_be_exact() const {
duke@435 1993 if (!UseExactTypes) return false;
duke@435 1994 // This logic looks at the element type of an array, and returns true
duke@435 1995 // if the element type is either a primitive or a final instance class.
duke@435 1996 // In such cases, an array built on this ary must have no subclasses.
duke@435 1997 if (_elem == BOTTOM) return false; // general array not exact
duke@435 1998 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 1999 const TypeOopPtr* toop = NULL;
kvn@656 2000 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 2001 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 2002 } else {
coleenp@548 2003 toop = _elem->isa_oopptr();
coleenp@548 2004 }
duke@435 2005 if (!toop) return true; // a primitive type, like int
duke@435 2006 ciKlass* tklass = toop->klass();
duke@435 2007 if (tklass == NULL) return false; // unloaded class
duke@435 2008 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 2009 const TypeInstPtr* tinst;
coleenp@548 2010 if (_elem->isa_narrowoop())
kvn@656 2011 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 2012 else
coleenp@548 2013 tinst = _elem->isa_instptr();
kvn@656 2014 if (tinst)
kvn@656 2015 return tklass->as_instance_klass()->is_final();
coleenp@548 2016 const TypeAryPtr* tap;
coleenp@548 2017 if (_elem->isa_narrowoop())
kvn@656 2018 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 2019 else
coleenp@548 2020 tap = _elem->isa_aryptr();
kvn@656 2021 if (tap)
kvn@656 2022 return tap->ary()->ary_must_be_exact();
duke@435 2023 return false;
duke@435 2024 }
duke@435 2025
kvn@3882 2026 //==============================TypeVect=======================================
kvn@3882 2027 // Convenience common pre-built types.
kvn@3882 2028 const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors
kvn@3882 2029 const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors
kvn@3882 2030 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
kvn@3882 2031 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
kvn@3882 2032
kvn@3882 2033 //------------------------------make-------------------------------------------
kvn@3882 2034 const TypeVect* TypeVect::make(const Type *elem, uint length) {
kvn@3882 2035 BasicType elem_bt = elem->array_element_basic_type();
kvn@3882 2036 assert(is_java_primitive(elem_bt), "only primitive types in vector");
kvn@3882 2037 assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
kvn@3882 2038 assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
kvn@3882 2039 int size = length * type2aelembytes(elem_bt);
kvn@3882 2040 switch (Matcher::vector_ideal_reg(size)) {
kvn@3882 2041 case Op_VecS:
kvn@3882 2042 return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
goetz@6487 2043 case Op_RegL:
kvn@3882 2044 case Op_VecD:
kvn@3882 2045 case Op_RegD:
kvn@3882 2046 return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
kvn@3882 2047 case Op_VecX:
kvn@3882 2048 return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
kvn@3882 2049 case Op_VecY:
kvn@3882 2050 return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
kvn@3882 2051 }
kvn@3882 2052 ShouldNotReachHere();
kvn@3882 2053 return NULL;
kvn@3882 2054 }
kvn@3882 2055
kvn@3882 2056 //------------------------------meet-------------------------------------------
kvn@3882 2057 // Compute the MEET of two types. It returns a new Type object.
kvn@3882 2058 const Type *TypeVect::xmeet( const Type *t ) const {
kvn@3882 2059 // Perform a fast test for common case; meeting the same types together.
kvn@3882 2060 if( this == t ) return this; // Meeting same type-rep?
kvn@3882 2061
kvn@3882 2062 // Current "this->_base" is Vector
kvn@3882 2063 switch (t->base()) { // switch on original type
kvn@3882 2064
kvn@3882 2065 case Bottom: // Ye Olde Default
kvn@3882 2066 return t;
kvn@3882 2067
kvn@3882 2068 default: // All else is a mistake
kvn@3882 2069 typerr(t);
kvn@3882 2070
kvn@3882 2071 case VectorS:
kvn@3882 2072 case VectorD:
kvn@3882 2073 case VectorX:
kvn@3882 2074 case VectorY: { // Meeting 2 vectors?
kvn@3882 2075 const TypeVect* v = t->is_vect();
kvn@3882 2076 assert( base() == v->base(), "");
kvn@3882 2077 assert(length() == v->length(), "");
kvn@3882 2078 assert(element_basic_type() == v->element_basic_type(), "");
kvn@3882 2079 return TypeVect::make(_elem->xmeet(v->_elem), _length);
kvn@3882 2080 }
kvn@3882 2081 case Top:
kvn@3882 2082 break;
kvn@3882 2083 }
kvn@3882 2084 return this;
kvn@3882 2085 }
kvn@3882 2086
kvn@3882 2087 //------------------------------xdual------------------------------------------
kvn@3882 2088 // Dual: compute field-by-field dual
kvn@3882 2089 const Type *TypeVect::xdual() const {
kvn@3882 2090 return new TypeVect(base(), _elem->dual(), _length);
kvn@3882 2091 }
kvn@3882 2092
kvn@3882 2093 //------------------------------eq---------------------------------------------
kvn@3882 2094 // Structural equality check for Type representations
kvn@3882 2095 bool TypeVect::eq(const Type *t) const {
kvn@3882 2096 const TypeVect *v = t->is_vect();
kvn@3882 2097 return (_elem == v->_elem) && (_length == v->_length);
kvn@3882 2098 }
kvn@3882 2099
kvn@3882 2100 //------------------------------hash-------------------------------------------
kvn@3882 2101 // Type-specific hashing function.
kvn@3882 2102 int TypeVect::hash(void) const {
kvn@3882 2103 return (intptr_t)_elem + (intptr_t)_length;
kvn@3882 2104 }
kvn@3882 2105
kvn@3882 2106 //------------------------------singleton--------------------------------------
kvn@3882 2107 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
kvn@3882 2108 // constants (Ldi nodes). Vector is singleton if all elements are the same
kvn@3882 2109 // constant value (when vector is created with Replicate code).
kvn@3882 2110 bool TypeVect::singleton(void) const {
kvn@3882 2111 // There is no Con node for vectors yet.
kvn@3882 2112 // return _elem->singleton();
kvn@3882 2113 return false;
kvn@3882 2114 }
kvn@3882 2115
kvn@3882 2116 bool TypeVect::empty(void) const {
kvn@3882 2117 return _elem->empty();
kvn@3882 2118 }
kvn@3882 2119
kvn@3882 2120 //------------------------------dump2------------------------------------------
kvn@3882 2121 #ifndef PRODUCT
kvn@3882 2122 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
kvn@3882 2123 switch (base()) {
kvn@3882 2124 case VectorS:
kvn@3882 2125 st->print("vectors["); break;
kvn@3882 2126 case VectorD:
kvn@3882 2127 st->print("vectord["); break;
kvn@3882 2128 case VectorX:
kvn@3882 2129 st->print("vectorx["); break;
kvn@3882 2130 case VectorY:
kvn@3882 2131 st->print("vectory["); break;
kvn@3882 2132 default:
kvn@3882 2133 ShouldNotReachHere();
kvn@3882 2134 }
kvn@3882 2135 st->print("%d]:{", _length);
kvn@3882 2136 _elem->dump2(d, depth, st);
kvn@3882 2137 st->print("}");
kvn@3882 2138 }
kvn@3882 2139 #endif
kvn@3882 2140
kvn@3882 2141
duke@435 2142 //=============================================================================
duke@435 2143 // Convenience common pre-built types.
duke@435 2144 const TypePtr *TypePtr::NULL_PTR;
duke@435 2145 const TypePtr *TypePtr::NOTNULL;
duke@435 2146 const TypePtr *TypePtr::BOTTOM;
duke@435 2147
duke@435 2148 //------------------------------meet-------------------------------------------
duke@435 2149 // Meet over the PTR enum
duke@435 2150 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 2151 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 2152 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 2153 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2154 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2155 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 2156 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 2157 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 2158 };
duke@435 2159
duke@435 2160 //------------------------------make-------------------------------------------
duke@435 2161 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 2162 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 2163 }
duke@435 2164
duke@435 2165 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2166 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2167 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 2168 if( ptr == _ptr ) return this;
duke@435 2169 return make(_base, ptr, _offset);
duke@435 2170 }
duke@435 2171
duke@435 2172 //------------------------------get_con----------------------------------------
duke@435 2173 intptr_t TypePtr::get_con() const {
duke@435 2174 assert( _ptr == Null, "" );
duke@435 2175 return _offset;
duke@435 2176 }
duke@435 2177
duke@435 2178 //------------------------------meet-------------------------------------------
duke@435 2179 // Compute the MEET of two types. It returns a new Type object.
duke@435 2180 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 2181 // Perform a fast test for common case; meeting the same types together.
duke@435 2182 if( this == t ) return this; // Meeting same type-rep?
duke@435 2183
duke@435 2184 // Current "this->_base" is AnyPtr
duke@435 2185 switch (t->base()) { // switch on original type
duke@435 2186 case Int: // Mixing ints & oops happens when javac
duke@435 2187 case Long: // reuses local variables
duke@435 2188 case FloatTop:
duke@435 2189 case FloatCon:
duke@435 2190 case FloatBot:
duke@435 2191 case DoubleTop:
duke@435 2192 case DoubleCon:
duke@435 2193 case DoubleBot:
coleenp@548 2194 case NarrowOop:
roland@4159 2195 case NarrowKlass:
duke@435 2196 case Bottom: // Ye Olde Default
duke@435 2197 return Type::BOTTOM;
duke@435 2198 case Top:
duke@435 2199 return this;
duke@435 2200
duke@435 2201 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2202 const TypePtr *tp = t->is_ptr();
duke@435 2203 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 2204 }
duke@435 2205 case RawPtr: // For these, flip the call around to cut down
duke@435 2206 case OopPtr:
duke@435 2207 case InstPtr: // on the cases I have to handle.
coleenp@4037 2208 case AryPtr:
coleenp@4037 2209 case MetadataPtr:
duke@435 2210 case KlassPtr:
duke@435 2211 return t->xmeet(this); // Call in reverse direction
duke@435 2212 default: // All else is a mistake
duke@435 2213 typerr(t);
duke@435 2214
duke@435 2215 }
duke@435 2216 return this;
duke@435 2217 }
duke@435 2218
duke@435 2219 //------------------------------meet_offset------------------------------------
duke@435 2220 int TypePtr::meet_offset( int offset ) const {
duke@435 2221 // Either is 'TOP' offset? Return the other offset!
duke@435 2222 if( _offset == OffsetTop ) return offset;
duke@435 2223 if( offset == OffsetTop ) return _offset;
duke@435 2224 // If either is different, return 'BOTTOM' offset
duke@435 2225 if( _offset != offset ) return OffsetBot;
duke@435 2226 return _offset;
duke@435 2227 }
duke@435 2228
duke@435 2229 //------------------------------dual_offset------------------------------------
duke@435 2230 int TypePtr::dual_offset( ) const {
duke@435 2231 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 2232 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 2233 return _offset; // Map everything else into self
duke@435 2234 }
duke@435 2235
duke@435 2236 //------------------------------xdual------------------------------------------
duke@435 2237 // Dual: compute field-by-field dual
duke@435 2238 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 2239 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 2240 };
duke@435 2241 const Type *TypePtr::xdual() const {
duke@435 2242 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 2243 }
duke@435 2244
kvn@741 2245 //------------------------------xadd_offset------------------------------------
kvn@741 2246 int TypePtr::xadd_offset( intptr_t offset ) const {
kvn@741 2247 // Adding to 'TOP' offset? Return 'TOP'!
kvn@741 2248 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
kvn@741 2249 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
kvn@741 2250 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
kvn@741 2251 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
kvn@741 2252 offset += (intptr_t)_offset;
kvn@741 2253 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
kvn@741 2254
kvn@741 2255 // assert( _offset >= 0 && _offset+offset >= 0, "" );
kvn@741 2256 // It is possible to construct a negative offset during PhaseCCP
kvn@741 2257
kvn@741 2258 return (int)offset; // Sum valid offsets
kvn@741 2259 }
kvn@741 2260
duke@435 2261 //------------------------------add_offset-------------------------------------
kvn@741 2262 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
kvn@741 2263 return make( AnyPtr, _ptr, xadd_offset(offset) );
duke@435 2264 }
duke@435 2265
duke@435 2266 //------------------------------eq---------------------------------------------
duke@435 2267 // Structural equality check for Type representations
duke@435 2268 bool TypePtr::eq( const Type *t ) const {
duke@435 2269 const TypePtr *a = (const TypePtr*)t;
duke@435 2270 return _ptr == a->ptr() && _offset == a->offset();
duke@435 2271 }
duke@435 2272
duke@435 2273 //------------------------------hash-------------------------------------------
duke@435 2274 // Type-specific hashing function.
duke@435 2275 int TypePtr::hash(void) const {
duke@435 2276 return _ptr + _offset;
duke@435 2277 }
duke@435 2278
duke@435 2279 //------------------------------dump2------------------------------------------
duke@435 2280 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 2281 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 2282 };
duke@435 2283
duke@435 2284 #ifndef PRODUCT
duke@435 2285 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2286 if( _ptr == Null ) st->print("NULL");
duke@435 2287 else st->print("%s *", ptr_msg[_ptr]);
duke@435 2288 if( _offset == OffsetTop ) st->print("+top");
duke@435 2289 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 2290 else if( _offset ) st->print("+%d", _offset);
duke@435 2291 }
duke@435 2292 #endif
duke@435 2293
duke@435 2294 //------------------------------singleton--------------------------------------
duke@435 2295 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2296 // constants
duke@435 2297 bool TypePtr::singleton(void) const {
duke@435 2298 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2299 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2300 }
duke@435 2301
duke@435 2302 bool TypePtr::empty(void) const {
duke@435 2303 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2304 }
duke@435 2305
duke@435 2306 //=============================================================================
duke@435 2307 // Convenience common pre-built types.
duke@435 2308 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2309 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2310
duke@435 2311 //------------------------------make-------------------------------------------
duke@435 2312 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2313 assert( ptr != Constant, "what is the constant?" );
duke@435 2314 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2315 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2316 }
duke@435 2317
duke@435 2318 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2319 assert( bits, "Use TypePtr for NULL" );
duke@435 2320 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2321 }
duke@435 2322
duke@435 2323 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2324 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2325 assert( ptr != Constant, "what is the constant?" );
duke@435 2326 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2327 assert( _bits==0, "Why cast a constant address?");
duke@435 2328 if( ptr == _ptr ) return this;
duke@435 2329 return make(ptr);
duke@435 2330 }
duke@435 2331
duke@435 2332 //------------------------------get_con----------------------------------------
duke@435 2333 intptr_t TypeRawPtr::get_con() const {
duke@435 2334 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2335 return (intptr_t)_bits;
duke@435 2336 }
duke@435 2337
duke@435 2338 //------------------------------meet-------------------------------------------
duke@435 2339 // Compute the MEET of two types. It returns a new Type object.
duke@435 2340 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2341 // Perform a fast test for common case; meeting the same types together.
duke@435 2342 if( this == t ) return this; // Meeting same type-rep?
duke@435 2343
duke@435 2344 // Current "this->_base" is RawPtr
duke@435 2345 switch( t->base() ) { // switch on original type
duke@435 2346 case Bottom: // Ye Olde Default
duke@435 2347 return t;
duke@435 2348 case Top:
duke@435 2349 return this;
duke@435 2350 case AnyPtr: // Meeting to AnyPtrs
duke@435 2351 break;
duke@435 2352 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2353 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2354 enum PTR ptr = meet_ptr( tptr );
duke@435 2355 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2356 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2357 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2358 ptr = NotNull; // Fall down in lattice
duke@435 2359 }
duke@435 2360 return make( ptr );
duke@435 2361 }
duke@435 2362
duke@435 2363 case OopPtr:
duke@435 2364 case InstPtr:
coleenp@4037 2365 case AryPtr:
coleenp@4037 2366 case MetadataPtr:
duke@435 2367 case KlassPtr:
duke@435 2368 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2369 default: // All else is a mistake
duke@435 2370 typerr(t);
duke@435 2371 }
duke@435 2372
duke@435 2373 // Found an AnyPtr type vs self-RawPtr type
duke@435 2374 const TypePtr *tp = t->is_ptr();
duke@435 2375 switch (tp->ptr()) {
duke@435 2376 case TypePtr::TopPTR: return this;
duke@435 2377 case TypePtr::BotPTR: return t;
duke@435 2378 case TypePtr::Null:
duke@435 2379 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2380 return TypeRawPtr::BOTTOM;
duke@435 2381 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2382 case TypePtr::AnyNull:
duke@435 2383 if( _ptr == TypePtr::Constant) return this;
duke@435 2384 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2385 default: ShouldNotReachHere();
duke@435 2386 }
duke@435 2387 return this;
duke@435 2388 }
duke@435 2389
duke@435 2390 //------------------------------xdual------------------------------------------
duke@435 2391 // Dual: compute field-by-field dual
duke@435 2392 const Type *TypeRawPtr::xdual() const {
duke@435 2393 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2394 }
duke@435 2395
duke@435 2396 //------------------------------add_offset-------------------------------------
kvn@741 2397 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
duke@435 2398 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2399 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2400 if( offset == 0 ) return this; // No change
duke@435 2401 switch (_ptr) {
duke@435 2402 case TypePtr::TopPTR:
duke@435 2403 case TypePtr::BotPTR:
duke@435 2404 case TypePtr::NotNull:
duke@435 2405 return this;
duke@435 2406 case TypePtr::Null:
kvn@2435 2407 case TypePtr::Constant: {
kvn@2435 2408 address bits = _bits+offset;
kvn@2435 2409 if ( bits == 0 ) return TypePtr::NULL_PTR;
kvn@2435 2410 return make( bits );
kvn@2435 2411 }
duke@435 2412 default: ShouldNotReachHere();
duke@435 2413 }
duke@435 2414 return NULL; // Lint noise
duke@435 2415 }
duke@435 2416
duke@435 2417 //------------------------------eq---------------------------------------------
duke@435 2418 // Structural equality check for Type representations
duke@435 2419 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2420 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2421 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2422 }
duke@435 2423
duke@435 2424 //------------------------------hash-------------------------------------------
duke@435 2425 // Type-specific hashing function.
duke@435 2426 int TypeRawPtr::hash(void) const {
duke@435 2427 return (intptr_t)_bits + TypePtr::hash();
duke@435 2428 }
duke@435 2429
duke@435 2430 //------------------------------dump2------------------------------------------
duke@435 2431 #ifndef PRODUCT
duke@435 2432 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2433 if( _ptr == Constant )
duke@435 2434 st->print(INTPTR_FORMAT, _bits);
duke@435 2435 else
duke@435 2436 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2437 }
duke@435 2438 #endif
duke@435 2439
duke@435 2440 //=============================================================================
duke@435 2441 // Convenience common pre-built type.
duke@435 2442 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2443
kvn@598 2444 //------------------------------TypeOopPtr-------------------------------------
roland@5991 2445 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative)
kvn@598 2446 : TypePtr(t, ptr, offset),
kvn@598 2447 _const_oop(o), _klass(k),
kvn@598 2448 _klass_is_exact(xk),
kvn@598 2449 _is_ptr_to_narrowoop(false),
roland@4159 2450 _is_ptr_to_narrowklass(false),
kvn@5110 2451 _is_ptr_to_boxed_value(false),
roland@5991 2452 _instance_id(instance_id),
roland@5991 2453 _speculative(speculative) {
kvn@5110 2454 if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
kvn@5110 2455 (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
kvn@5110 2456 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
kvn@5110 2457 }
kvn@598 2458 #ifdef _LP64
roland@4159 2459 if (_offset != 0) {
coleenp@4037 2460 if (_offset == oopDesc::klass_offset_in_bytes()) {
ehelin@5694 2461 _is_ptr_to_narrowklass = UseCompressedClassPointers;
coleenp@4037 2462 } else if (klass() == NULL) {
coleenp@4037 2463 // Array with unknown body type
kvn@598 2464 assert(this->isa_aryptr(), "only arrays without klass");
roland@4159 2465 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2466 } else if (this->isa_aryptr()) {
roland@4159 2467 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
kvn@598 2468 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2469 } else if (klass()->is_instance_klass()) {
kvn@598 2470 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2471 ciField* field = NULL;
kvn@598 2472 if (this->isa_klassptr()) {
never@2658 2473 // Perm objects don't use compressed references
kvn@598 2474 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2475 // unsafe access
roland@4159 2476 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2477 } else { // exclude unsafe ops
kvn@598 2478 assert(this->isa_instptr(), "must be an instance ptr.");
never@2658 2479
never@2658 2480 if (klass() == ciEnv::current()->Class_klass() &&
never@2658 2481 (_offset == java_lang_Class::klass_offset_in_bytes() ||
never@2658 2482 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
never@2658 2483 // Special hidden fields from the Class.
never@2658 2484 assert(this->isa_instptr(), "must be an instance ptr.");
coleenp@4037 2485 _is_ptr_to_narrowoop = false;
never@2658 2486 } else if (klass() == ciEnv::current()->Class_klass() &&
coleenp@4047 2487 _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
never@2658 2488 // Static fields
never@2658 2489 assert(o != NULL, "must be constant");
never@2658 2490 ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 2491 ciField* field = k->get_field_by_offset(_offset, true);
never@2658 2492 assert(field != NULL, "missing field");
kvn@598 2493 BasicType basic_elem_type = field->layout_type();
roland@4159 2494 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2495 basic_elem_type == T_ARRAY);
kvn@598 2496 } else {
never@2658 2497 // Instance fields which contains a compressed oop references.
never@2658 2498 field = ik->get_field_by_offset(_offset, false);
never@2658 2499 if (field != NULL) {
never@2658 2500 BasicType basic_elem_type = field->layout_type();
roland@4159 2501 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2502 basic_elem_type == T_ARRAY);
never@2658 2503 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
never@2658 2504 // Compile::find_alias_type() cast exactness on all types to verify
never@2658 2505 // that it does not affect alias type.
roland@4159 2506 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2507 } else {
never@2658 2508 // Type for the copy start in LibraryCallKit::inline_native_clone().
roland@4159 2509 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2510 }
kvn@598 2511 }
kvn@598 2512 }
kvn@598 2513 }
kvn@598 2514 }
kvn@598 2515 #endif
kvn@598 2516 }
kvn@598 2517
duke@435 2518 //------------------------------make-------------------------------------------
duke@435 2519 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
roland@5991 2520 int offset, int instance_id, const TypeOopPtr* speculative) {
duke@435 2521 assert(ptr != Constant, "no constant generic pointers");
coleenp@4037 2522 ciKlass* k = Compile::current()->env()->Object_klass();
duke@435 2523 bool xk = false;
duke@435 2524 ciObject* o = NULL;
roland@5991 2525 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative))->hashcons();
duke@435 2526 }
duke@435 2527
duke@435 2528
duke@435 2529 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2530 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2531 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2532 if( ptr == _ptr ) return this;
roland@5991 2533 return make(ptr, _offset, _instance_id, _speculative);
duke@435 2534 }
duke@435 2535
kvn@682 2536 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2537 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2538 // There are no instances of a general oop.
duke@435 2539 // Return self unchanged.
duke@435 2540 return this;
duke@435 2541 }
duke@435 2542
duke@435 2543 //-----------------------------cast_to_exactness-------------------------------
duke@435 2544 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2545 // There is no such thing as an exact general oop.
duke@435 2546 // Return self unchanged.
duke@435 2547 return this;
duke@435 2548 }
duke@435 2549
duke@435 2550
duke@435 2551 //------------------------------as_klass_type----------------------------------
duke@435 2552 // Return the klass type corresponding to this instance or array type.
duke@435 2553 // It is the type that is loaded from an object of this type.
duke@435 2554 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2555 ciKlass* k = klass();
duke@435 2556 bool xk = klass_is_exact();
coleenp@4037 2557 if (k == NULL)
duke@435 2558 return TypeKlassPtr::OBJECT;
duke@435 2559 else
duke@435 2560 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2561 }
duke@435 2562
roland@5991 2563 const Type *TypeOopPtr::xmeet(const Type *t) const {
roland@5991 2564 const Type* res = xmeet_helper(t);
roland@5991 2565 if (res->isa_oopptr() == NULL) {
roland@5991 2566 return res;
roland@5991 2567 }
roland@5991 2568
roland@5991 2569 if (res->isa_oopptr() != NULL) {
roland@5991 2570 // type->speculative() == NULL means that speculation is no better
roland@5991 2571 // than type, i.e. type->speculative() == type. So there are 2
roland@5991 2572 // ways to represent the fact that we have no useful speculative
roland@5991 2573 // data and we should use a single one to be able to test for
roland@5991 2574 // equality between types. Check whether type->speculative() ==
roland@5991 2575 // type and set speculative to NULL if it is the case.
roland@5991 2576 const TypeOopPtr* res_oopptr = res->is_oopptr();
roland@5991 2577 if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
roland@5991 2578 return res_oopptr->remove_speculative();
roland@5991 2579 }
roland@5991 2580 }
roland@5991 2581
roland@5991 2582 return res;
roland@5991 2583 }
duke@435 2584
duke@435 2585 //------------------------------meet-------------------------------------------
duke@435 2586 // Compute the MEET of two types. It returns a new Type object.
roland@5991 2587 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
duke@435 2588 // Perform a fast test for common case; meeting the same types together.
duke@435 2589 if( this == t ) return this; // Meeting same type-rep?
duke@435 2590
duke@435 2591 // Current "this->_base" is OopPtr
duke@435 2592 switch (t->base()) { // switch on original type
duke@435 2593
duke@435 2594 case Int: // Mixing ints & oops happens when javac
duke@435 2595 case Long: // reuses local variables
duke@435 2596 case FloatTop:
duke@435 2597 case FloatCon:
duke@435 2598 case FloatBot:
duke@435 2599 case DoubleTop:
duke@435 2600 case DoubleCon:
duke@435 2601 case DoubleBot:
kvn@728 2602 case NarrowOop:
roland@4159 2603 case NarrowKlass:
duke@435 2604 case Bottom: // Ye Olde Default
duke@435 2605 return Type::BOTTOM;
duke@435 2606 case Top:
duke@435 2607 return this;
duke@435 2608
duke@435 2609 default: // All else is a mistake
duke@435 2610 typerr(t);
duke@435 2611
duke@435 2612 case RawPtr:
coleenp@4037 2613 case MetadataPtr:
coleenp@4037 2614 case KlassPtr:
duke@435 2615 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2616
duke@435 2617 case AnyPtr: {
duke@435 2618 // Found an AnyPtr type vs self-OopPtr type
duke@435 2619 const TypePtr *tp = t->is_ptr();
duke@435 2620 int offset = meet_offset(tp->offset());
duke@435 2621 PTR ptr = meet_ptr(tp->ptr());
duke@435 2622 switch (tp->ptr()) {
duke@435 2623 case Null:
duke@435 2624 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2625 // else fall through:
duke@435 2626 case TopPTR:
kvn@1427 2627 case AnyNull: {
kvn@1427 2628 int instance_id = meet_instance_id(InstanceTop);
roland@5991 2629 const TypeOopPtr* speculative = _speculative;
roland@5991 2630 return make(ptr, offset, instance_id, speculative);
kvn@1427 2631 }
duke@435 2632 case BotPTR:
duke@435 2633 case NotNull:
duke@435 2634 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2635 default: typerr(t);
duke@435 2636 }
duke@435 2637 }
duke@435 2638
duke@435 2639 case OopPtr: { // Meeting to other OopPtrs
duke@435 2640 const TypeOopPtr *tp = t->is_oopptr();
kvn@1393 2641 int instance_id = meet_instance_id(tp->instance_id());
roland@5991 2642 const TypeOopPtr* speculative = meet_speculative(tp);
roland@5991 2643 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative);
duke@435 2644 }
duke@435 2645
duke@435 2646 case InstPtr: // For these, flip the call around to cut down
duke@435 2647 case AryPtr:
duke@435 2648 return t->xmeet(this); // Call in reverse direction
duke@435 2649
duke@435 2650 } // End of switch
duke@435 2651 return this; // Return the double constant
duke@435 2652 }
duke@435 2653
duke@435 2654
duke@435 2655 //------------------------------xdual------------------------------------------
duke@435 2656 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2657 const Type *TypeOopPtr::xdual() const {
coleenp@4037 2658 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
duke@435 2659 assert(const_oop() == NULL, "no constants here");
roland@5991 2660 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative());
duke@435 2661 }
duke@435 2662
duke@435 2663 //--------------------------make_from_klass_common-----------------------------
duke@435 2664 // Computes the element-type given a klass.
duke@435 2665 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2666 if (klass->is_instance_klass()) {
duke@435 2667 Compile* C = Compile::current();
duke@435 2668 Dependencies* deps = C->dependencies();
duke@435 2669 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2670 // Element is an instance
duke@435 2671 bool klass_is_exact = false;
duke@435 2672 if (klass->is_loaded()) {
duke@435 2673 // Try to set klass_is_exact.
duke@435 2674 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2675 klass_is_exact = ik->is_final();
duke@435 2676 if (!klass_is_exact && klass_change
duke@435 2677 && deps != NULL && UseUniqueSubclasses) {
duke@435 2678 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2679 if (sub != NULL) {
duke@435 2680 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2681 klass = ik = sub;
duke@435 2682 klass_is_exact = sub->is_final();
duke@435 2683 }
duke@435 2684 }
duke@435 2685 if (!klass_is_exact && try_for_exact
duke@435 2686 && deps != NULL && UseExactTypes) {
duke@435 2687 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2688 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2689 deps->assert_leaf_type(ik);
duke@435 2690 klass_is_exact = true;
duke@435 2691 }
duke@435 2692 }
duke@435 2693 }
duke@435 2694 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2695 } else if (klass->is_obj_array_klass()) {
duke@435 2696 // Element is an object array. Recursively call ourself.
duke@435 2697 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2698 bool xk = etype->klass_is_exact();
duke@435 2699 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2700 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2701 // are all not-null. This is not true in generally, as code can
duke@435 2702 // slam NULLs down in the subarrays.
duke@435 2703 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2704 return arr;
duke@435 2705 } else if (klass->is_type_array_klass()) {
duke@435 2706 // Element is an typeArray
duke@435 2707 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2708 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2709 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2710 // is not-null. That was not true in general.
duke@435 2711 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2712 return arr;
duke@435 2713 } else {
duke@435 2714 ShouldNotReachHere();
duke@435 2715 return NULL;
duke@435 2716 }
duke@435 2717 }
duke@435 2718
duke@435 2719 //------------------------------make_from_constant-----------------------------
duke@435 2720 // Make a java pointer from an oop constant
kvn@5110 2721 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
kvn@5110 2722 bool require_constant,
kvn@5110 2723 bool is_autobox_cache) {
kvn@5110 2724 assert(!o->is_null_object(), "null object not yet handled here.");
kvn@5110 2725 ciKlass* klass = o->klass();
kvn@5110 2726 if (klass->is_instance_klass()) {
kvn@5110 2727 // Element is an instance
kvn@5110 2728 if (require_constant) {
kvn@5110 2729 if (!o->can_be_constant()) return NULL;
kvn@5110 2730 } else if (!o->should_be_constant()) {
kvn@5110 2731 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
kvn@5110 2732 }
kvn@5110 2733 return TypeInstPtr::make(o);
kvn@5110 2734 } else if (klass->is_obj_array_klass()) {
kvn@5110 2735 // Element is an object array. Recursively call ourself.
kvn@5110 2736 const TypeOopPtr *etype =
coleenp@4037 2737 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
kvn@5110 2738 if (is_autobox_cache) {
kvn@5110 2739 // The pointers in the autobox arrays are always non-null.
kvn@5110 2740 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
kvn@5110 2741 }
kvn@5110 2742 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
kvn@5110 2743 // We used to pass NotNull in here, asserting that the sub-arrays
kvn@5110 2744 // are all not-null. This is not true in generally, as code can
kvn@5110 2745 // slam NULLs down in the subarrays.
kvn@5110 2746 if (require_constant) {
kvn@5110 2747 if (!o->can_be_constant()) return NULL;
kvn@5110 2748 } else if (!o->should_be_constant()) {
kvn@5110 2749 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
kvn@5110 2750 }
roland@5991 2751 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, is_autobox_cache);
coleenp@4037 2752 return arr;
kvn@5110 2753 } else if (klass->is_type_array_klass()) {
kvn@5110 2754 // Element is an typeArray
coleenp@4037 2755 const Type* etype =
coleenp@4037 2756 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
kvn@5110 2757 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
kvn@5110 2758 // We used to pass NotNull in here, asserting that the array pointer
kvn@5110 2759 // is not-null. That was not true in general.
kvn@5110 2760 if (require_constant) {
kvn@5110 2761 if (!o->can_be_constant()) return NULL;
kvn@5110 2762 } else if (!o->should_be_constant()) {
kvn@5110 2763 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
kvn@5110 2764 }
coleenp@4037 2765 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
coleenp@4037 2766 return arr;
duke@435 2767 }
duke@435 2768
twisti@3885 2769 fatal("unhandled object type");
duke@435 2770 return NULL;
duke@435 2771 }
duke@435 2772
duke@435 2773 //------------------------------get_con----------------------------------------
duke@435 2774 intptr_t TypeOopPtr::get_con() const {
duke@435 2775 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2776 assert( _offset >= 0, "" );
duke@435 2777
duke@435 2778 if (_offset != 0) {
duke@435 2779 // After being ported to the compiler interface, the compiler no longer
duke@435 2780 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2781 // to a handle at compile time. This handle is embedded in the generated
duke@435 2782 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2783 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2784 // have access to the addresses!). This does not seem to currently happen,
twisti@1040 2785 // but this assertion here is to help prevent its occurence.
duke@435 2786 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2787 ShouldNotReachHere();
duke@435 2788 }
duke@435 2789
jrose@1424 2790 return (intptr_t)const_oop()->constant_encoding();
duke@435 2791 }
duke@435 2792
duke@435 2793
duke@435 2794 //-----------------------------filter------------------------------------------
duke@435 2795 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6043 2796 const Type *TypeOopPtr::filter(const Type *kills) const {
duke@435 2797
duke@435 2798 const Type* ft = join(kills);
duke@435 2799 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2800 const TypeInstPtr* ktip = kills->isa_instptr();
duke@435 2801
duke@435 2802 if (ft->empty()) {
duke@435 2803 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2804 // interface. This can happen because the bytecodes do not contain
duke@435 2805 // enough type info to distinguish a Java-level interface variable
duke@435 2806 // from a Java-level object variable. If we meet 2 classes which
duke@435 2807 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2808 // doesn't implement I, we have no way to tell if the result should
duke@435 2809 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2810 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2811 // uplift the type.
duke@435 2812 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
duke@435 2813 return kills; // Uplift to interface
duke@435 2814
duke@435 2815 return Type::TOP; // Canonical empty value
duke@435 2816 }
duke@435 2817
duke@435 2818 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2819 // the join should report back the class. However, if we have a J/L/Object
duke@435 2820 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2821 // join report an interface back out. This isn't possible but happens
duke@435 2822 // because the type system doesn't interact well with interfaces.
duke@435 2823 if (ftip != NULL && ktip != NULL &&
duke@435 2824 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2825 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2826 // Happens in a CTW of rt.jar, 320-341, no extra flags
kvn@1770 2827 assert(!ftip->klass_is_exact(), "interface could not be exact");
duke@435 2828 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2829 }
duke@435 2830
duke@435 2831 return ft;
duke@435 2832 }
duke@435 2833
duke@435 2834 //------------------------------eq---------------------------------------------
duke@435 2835 // Structural equality check for Type representations
duke@435 2836 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2837 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2838 if (_klass_is_exact != a->_klass_is_exact ||
roland@5991 2839 _instance_id != a->_instance_id ||
roland@5991 2840 !eq_speculative(a)) return false;
duke@435 2841 ciObject* one = const_oop();
duke@435 2842 ciObject* two = a->const_oop();
duke@435 2843 if (one == NULL || two == NULL) {
duke@435 2844 return (one == two) && TypePtr::eq(t);
duke@435 2845 } else {
duke@435 2846 return one->equals(two) && TypePtr::eq(t);
duke@435 2847 }
duke@435 2848 }
duke@435 2849
duke@435 2850 //------------------------------hash-------------------------------------------
duke@435 2851 // Type-specific hashing function.
duke@435 2852 int TypeOopPtr::hash(void) const {
duke@435 2853 return
duke@435 2854 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2855 _klass_is_exact +
duke@435 2856 _instance_id +
roland@5991 2857 hash_speculative() +
duke@435 2858 TypePtr::hash();
duke@435 2859 }
duke@435 2860
duke@435 2861 //------------------------------dump2------------------------------------------
duke@435 2862 #ifndef PRODUCT
duke@435 2863 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2864 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2865 if( _klass_is_exact ) st->print(":exact");
duke@435 2866 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2867 switch( _offset ) {
duke@435 2868 case OffsetTop: st->print("+top"); break;
duke@435 2869 case OffsetBot: st->print("+any"); break;
duke@435 2870 case 0: break;
duke@435 2871 default: st->print("+%d",_offset); break;
duke@435 2872 }
kvn@658 2873 if (_instance_id == InstanceTop)
kvn@658 2874 st->print(",iid=top");
kvn@658 2875 else if (_instance_id != InstanceBot)
duke@435 2876 st->print(",iid=%d",_instance_id);
roland@5991 2877
roland@5991 2878 dump_speculative(st);
roland@5991 2879 }
roland@5991 2880
roland@5991 2881 /**
roland@5991 2882 *dump the speculative part of the type
roland@5991 2883 */
roland@5991 2884 void TypeOopPtr::dump_speculative(outputStream *st) const {
roland@5991 2885 if (_speculative != NULL) {
roland@5991 2886 st->print(" (speculative=");
roland@5991 2887 _speculative->dump_on(st);
roland@5991 2888 st->print(")");
roland@5991 2889 }
duke@435 2890 }
duke@435 2891 #endif
duke@435 2892
duke@435 2893 //------------------------------singleton--------------------------------------
duke@435 2894 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2895 // constants
duke@435 2896 bool TypeOopPtr::singleton(void) const {
duke@435 2897 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2898 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2899 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2900 }
duke@435 2901
duke@435 2902 //------------------------------add_offset-------------------------------------
roland@5991 2903 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
roland@5991 2904 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset));
roland@5991 2905 }
roland@5991 2906
roland@5991 2907 /**
roland@5991 2908 * Return same type without a speculative part
roland@5991 2909 */
roland@5991 2910 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
roland@5991 2911 return make(_ptr, _offset, _instance_id, NULL);
duke@435 2912 }
duke@435 2913
kvn@658 2914 //------------------------------meet_instance_id--------------------------------
kvn@658 2915 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 2916 // Either is 'TOP' instance? Return the other instance!
kvn@658 2917 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 2918 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 2919 // If either is different, return 'BOTTOM' instance
kvn@658 2920 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 2921 return _instance_id;
duke@435 2922 }
duke@435 2923
kvn@658 2924 //------------------------------dual_instance_id--------------------------------
kvn@658 2925 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 2926 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 2927 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 2928 return _instance_id; // Map everything else into self
kvn@658 2929 }
kvn@658 2930
roland@5991 2931 /**
roland@5991 2932 * meet of the speculative parts of 2 types
roland@5991 2933 *
roland@5991 2934 * @param other type to meet with
roland@5991 2935 */
roland@5991 2936 const TypeOopPtr* TypeOopPtr::meet_speculative(const TypeOopPtr* other) const {
roland@5991 2937 bool this_has_spec = (_speculative != NULL);
roland@5991 2938 bool other_has_spec = (other->speculative() != NULL);
roland@5991 2939
roland@5991 2940 if (!this_has_spec && !other_has_spec) {
roland@5991 2941 return NULL;
roland@5991 2942 }
roland@5991 2943
roland@5991 2944 // If we are at a point where control flow meets and one branch has
roland@5991 2945 // a speculative type and the other has not, we meet the speculative
roland@5991 2946 // type of one branch with the actual type of the other. If the
roland@5991 2947 // actual type is exact and the speculative is as well, then the
roland@5991 2948 // result is a speculative type which is exact and we can continue
roland@5991 2949 // speculation further.
roland@5991 2950 const TypeOopPtr* this_spec = _speculative;
roland@5991 2951 const TypeOopPtr* other_spec = other->speculative();
roland@5991 2952
roland@5991 2953 if (!this_has_spec) {
roland@5991 2954 this_spec = this;
roland@5991 2955 }
roland@5991 2956
roland@5991 2957 if (!other_has_spec) {
roland@5991 2958 other_spec = other;
roland@5991 2959 }
roland@5991 2960
roland@5991 2961 return this_spec->meet(other_spec)->is_oopptr();
roland@5991 2962 }
roland@5991 2963
roland@5991 2964 /**
roland@5991 2965 * dual of the speculative part of the type
roland@5991 2966 */
roland@5991 2967 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
roland@5991 2968 if (_speculative == NULL) {
roland@5991 2969 return NULL;
roland@5991 2970 }
roland@5991 2971 return _speculative->dual()->is_oopptr();
roland@5991 2972 }
roland@5991 2973
roland@5991 2974 /**
roland@5991 2975 * add offset to the speculative part of the type
roland@5991 2976 *
roland@5991 2977 * @param offset offset to add
roland@5991 2978 */
roland@5991 2979 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
roland@5991 2980 if (_speculative == NULL) {
roland@5991 2981 return NULL;
roland@5991 2982 }
roland@5991 2983 return _speculative->add_offset(offset)->is_oopptr();
roland@5991 2984 }
roland@5991 2985
roland@5991 2986 /**
roland@5991 2987 * Are the speculative parts of 2 types equal?
roland@5991 2988 *
roland@5991 2989 * @param other type to compare this one to
roland@5991 2990 */
roland@5991 2991 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
roland@5991 2992 if (_speculative == NULL || other->speculative() == NULL) {
roland@5991 2993 return _speculative == other->speculative();
roland@5991 2994 }
roland@5991 2995
roland@5991 2996 if (_speculative->base() != other->speculative()->base()) {
roland@5991 2997 return false;
roland@5991 2998 }
roland@5991 2999
roland@5991 3000 return _speculative->eq(other->speculative());
roland@5991 3001 }
roland@5991 3002
roland@5991 3003 /**
roland@5991 3004 * Hash of the speculative part of the type
roland@5991 3005 */
roland@5991 3006 int TypeOopPtr::hash_speculative() const {
roland@5991 3007 if (_speculative == NULL) {
roland@5991 3008 return 0;
roland@5991 3009 }
roland@5991 3010
roland@5991 3011 return _speculative->hash();
roland@5991 3012 }
roland@5991 3013
kvn@658 3014
duke@435 3015 //=============================================================================
duke@435 3016 // Convenience common pre-built types.
duke@435 3017 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 3018 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 3019 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 3020 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 3021 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 3022
duke@435 3023 //------------------------------TypeInstPtr-------------------------------------
roland@5991 3024 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative)
roland@5991 3025 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative), _name(k->name()) {
duke@435 3026 assert(k != NULL &&
duke@435 3027 (k->is_loaded() || o == NULL),
duke@435 3028 "cannot have constants with non-loaded klass");
duke@435 3029 };
duke@435 3030
duke@435 3031 //------------------------------make-------------------------------------------
duke@435 3032 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 3033 ciKlass* k,
duke@435 3034 bool xk,
duke@435 3035 ciObject* o,
duke@435 3036 int offset,
roland@5991 3037 int instance_id,
roland@5991 3038 const TypeOopPtr* speculative) {
coleenp@4037 3039 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
duke@435 3040 // Either const_oop() is NULL or else ptr is Constant
duke@435 3041 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 3042 "constant pointers must have a value supplied" );
duke@435 3043 // Ptr is never Null
duke@435 3044 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 3045
kvn@682 3046 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3047 if (!UseExactTypes) xk = false;
duke@435 3048 if (ptr == Constant) {
duke@435 3049 // Note: This case includes meta-object constants, such as methods.
duke@435 3050 xk = true;
duke@435 3051 } else if (k->is_loaded()) {
duke@435 3052 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 3053 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 3054 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 3055 }
duke@435 3056
duke@435 3057 // Now hash this baby
duke@435 3058 TypeInstPtr *result =
roland@5991 3059 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative))->hashcons();
duke@435 3060
duke@435 3061 return result;
duke@435 3062 }
duke@435 3063
kvn@5110 3064 /**
kvn@5110 3065 * Create constant type for a constant boxed value
kvn@5110 3066 */
kvn@5110 3067 const Type* TypeInstPtr::get_const_boxed_value() const {
kvn@5110 3068 assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
kvn@5110 3069 assert((const_oop() != NULL), "should be called only for constant object");
kvn@5110 3070 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
kvn@5110 3071 BasicType bt = constant.basic_type();
kvn@5110 3072 switch (bt) {
kvn@5110 3073 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
kvn@5110 3074 case T_INT: return TypeInt::make(constant.as_int());
kvn@5110 3075 case T_CHAR: return TypeInt::make(constant.as_char());
kvn@5110 3076 case T_BYTE: return TypeInt::make(constant.as_byte());
kvn@5110 3077 case T_SHORT: return TypeInt::make(constant.as_short());
kvn@5110 3078 case T_FLOAT: return TypeF::make(constant.as_float());
kvn@5110 3079 case T_DOUBLE: return TypeD::make(constant.as_double());
kvn@5110 3080 case T_LONG: return TypeLong::make(constant.as_long());
kvn@5110 3081 default: break;
kvn@5110 3082 }
kvn@5110 3083 fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
kvn@5110 3084 return NULL;
kvn@5110 3085 }
duke@435 3086
duke@435 3087 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3088 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3089 if( ptr == _ptr ) return this;
duke@435 3090 // Reconstruct _sig info here since not a problem with later lazy
duke@435 3091 // construction, _sig will show up on demand.
roland@5991 3092 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative);
duke@435 3093 }
duke@435 3094
duke@435 3095
duke@435 3096 //-----------------------------cast_to_exactness-------------------------------
duke@435 3097 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3098 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3099 if (!UseExactTypes) return this;
duke@435 3100 if (!_klass->is_loaded()) return this;
duke@435 3101 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 3102 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 3103 if( ik->is_interface() ) return this; // cannot set xk
roland@5991 3104 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative);
duke@435 3105 }
duke@435 3106
kvn@682 3107 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3108 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3109 if( instance_id == _instance_id ) return this;
roland@5991 3110 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative);
duke@435 3111 }
duke@435 3112
duke@435 3113 //------------------------------xmeet_unloaded---------------------------------
duke@435 3114 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 3115 // Assume classes are different since called after check for same name/class-loader
duke@435 3116 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 3117 int off = meet_offset(tinst->offset());
duke@435 3118 PTR ptr = meet_ptr(tinst->ptr());
kvn@1427 3119 int instance_id = meet_instance_id(tinst->instance_id());
roland@5991 3120 const TypeOopPtr* speculative = meet_speculative(tinst);
duke@435 3121
duke@435 3122 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 3123 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 3124 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3125 //
duke@435 3126 // Meet unloaded class with java/lang/Object
duke@435 3127 //
duke@435 3128 // Meet
duke@435 3129 // | Unloaded Class
duke@435 3130 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 3131 // ===================================================================
duke@435 3132 // TOP | ..........................Unloaded......................|
duke@435 3133 // AnyNull | U-AN |................Unloaded......................|
duke@435 3134 // Constant | ... O-NN .................................. | O-BOT |
duke@435 3135 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 3136 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 3137 //
duke@435 3138 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 3139 //
duke@435 3140 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
roland@5991 3141 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative); }
duke@435 3142 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 3143 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 3144 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 3145 else { return TypeInstPtr::NOTNULL; }
duke@435 3146 }
duke@435 3147 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 3148
duke@435 3149 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 3150 }
duke@435 3151
duke@435 3152 // Both are unloaded, not the same class, not Object
duke@435 3153 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 3154 if( ptr != TypePtr::BotPTR ) {
duke@435 3155 return TypeInstPtr::NOTNULL;
duke@435 3156 }
duke@435 3157 return TypeInstPtr::BOTTOM;
duke@435 3158 }
duke@435 3159
duke@435 3160
duke@435 3161 //------------------------------meet-------------------------------------------
duke@435 3162 // Compute the MEET of two types. It returns a new Type object.
roland@5991 3163 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
duke@435 3164 // Perform a fast test for common case; meeting the same types together.
duke@435 3165 if( this == t ) return this; // Meeting same type-rep?
duke@435 3166
duke@435 3167 // Current "this->_base" is Pointer
duke@435 3168 switch (t->base()) { // switch on original type
duke@435 3169
duke@435 3170 case Int: // Mixing ints & oops happens when javac
duke@435 3171 case Long: // reuses local variables
duke@435 3172 case FloatTop:
duke@435 3173 case FloatCon:
duke@435 3174 case FloatBot:
duke@435 3175 case DoubleTop:
duke@435 3176 case DoubleCon:
duke@435 3177 case DoubleBot:
coleenp@548 3178 case NarrowOop:
roland@4159 3179 case NarrowKlass:
duke@435 3180 case Bottom: // Ye Olde Default
duke@435 3181 return Type::BOTTOM;
duke@435 3182 case Top:
duke@435 3183 return this;
duke@435 3184
duke@435 3185 default: // All else is a mistake
duke@435 3186 typerr(t);
duke@435 3187
coleenp@4037 3188 case MetadataPtr:
coleenp@4037 3189 case KlassPtr:
duke@435 3190 case RawPtr: return TypePtr::BOTTOM;
duke@435 3191
duke@435 3192 case AryPtr: { // All arrays inherit from Object class
duke@435 3193 const TypeAryPtr *tp = t->is_aryptr();
duke@435 3194 int offset = meet_offset(tp->offset());
duke@435 3195 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3196 int instance_id = meet_instance_id(tp->instance_id());
roland@5991 3197 const TypeOopPtr* speculative = meet_speculative(tp);
duke@435 3198 switch (ptr) {
duke@435 3199 case TopPTR:
duke@435 3200 case AnyNull: // Fall 'down' to dual of object klass
roland@5991 3201 // For instances when a subclass meets a superclass we fall
roland@5991 3202 // below the centerline when the superclass is exact. We need to
roland@5991 3203 // do the same here.
roland@5991 3204 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
roland@5991 3205 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative);
duke@435 3206 } else {
duke@435 3207 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3208 ptr = NotNull;
kvn@658 3209 instance_id = InstanceBot;
roland@5991 3210 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative);
duke@435 3211 }
duke@435 3212 case Constant:
duke@435 3213 case NotNull:
duke@435 3214 case BotPTR: // Fall down to object klass
duke@435 3215 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3216 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 3217 // If 'this' (InstPtr) is above the centerline and it is Object class
twisti@1040 3218 // then we can subclass in the Java class hierarchy.
roland@5991 3219 // For instances when a subclass meets a superclass we fall
roland@5991 3220 // below the centerline when the superclass is exact. We need
roland@5991 3221 // to do the same here.
roland@5991 3222 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
duke@435 3223 // that is, tp's array type is a subtype of my klass
kvn@1714 3224 return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
roland@5991 3225 tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative);
duke@435 3226 }
duke@435 3227 }
duke@435 3228 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 3229 // The meet falls down to Object class below centerline.
duke@435 3230 if( ptr == Constant )
duke@435 3231 ptr = NotNull;
kvn@658 3232 instance_id = InstanceBot;
roland@5991 3233 return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative);
duke@435 3234 default: typerr(t);
duke@435 3235 }
duke@435 3236 }
duke@435 3237
duke@435 3238 case OopPtr: { // Meeting to OopPtrs
duke@435 3239 // Found a OopPtr type vs self-InstPtr type
kvn@1393 3240 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3241 int offset = meet_offset(tp->offset());
duke@435 3242 PTR ptr = meet_ptr(tp->ptr());
duke@435 3243 switch (tp->ptr()) {
duke@435 3244 case TopPTR:
kvn@658 3245 case AnyNull: {
kvn@658 3246 int instance_id = meet_instance_id(InstanceTop);
roland@5991 3247 const TypeOopPtr* speculative = meet_speculative(tp);
duke@435 3248 return make(ptr, klass(), klass_is_exact(),
roland@5991 3249 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative);
kvn@658 3250 }
duke@435 3251 case NotNull:
kvn@1393 3252 case BotPTR: {
kvn@1393 3253 int instance_id = meet_instance_id(tp->instance_id());
roland@5991 3254 const TypeOopPtr* speculative = meet_speculative(tp);
roland@5991 3255 return TypeOopPtr::make(ptr, offset, instance_id, speculative);
kvn@1393 3256 }
duke@435 3257 default: typerr(t);
duke@435 3258 }
duke@435 3259 }
duke@435 3260
duke@435 3261 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3262 // Found an AnyPtr type vs self-InstPtr type
duke@435 3263 const TypePtr *tp = t->is_ptr();
duke@435 3264 int offset = meet_offset(tp->offset());
duke@435 3265 PTR ptr = meet_ptr(tp->ptr());
duke@435 3266 switch (tp->ptr()) {
duke@435 3267 case Null:
roland@5991 3268 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3269 // else fall through to AnyNull
duke@435 3270 case TopPTR:
kvn@658 3271 case AnyNull: {
kvn@658 3272 int instance_id = meet_instance_id(InstanceTop);
roland@5991 3273 const TypeOopPtr* speculative = _speculative;
roland@5991 3274 return make(ptr, klass(), klass_is_exact(),
roland@5991 3275 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative);
kvn@658 3276 }
duke@435 3277 case NotNull:
duke@435 3278 case BotPTR:
roland@5991 3279 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3280 default: typerr(t);
duke@435 3281 }
duke@435 3282 }
duke@435 3283
duke@435 3284 /*
duke@435 3285 A-top }
duke@435 3286 / | \ } Tops
duke@435 3287 B-top A-any C-top }
duke@435 3288 | / | \ | } Any-nulls
duke@435 3289 B-any | C-any }
duke@435 3290 | | |
duke@435 3291 B-con A-con C-con } constants; not comparable across classes
duke@435 3292 | | |
duke@435 3293 B-not | C-not }
duke@435 3294 | \ | / | } not-nulls
duke@435 3295 B-bot A-not C-bot }
duke@435 3296 \ | / } Bottoms
duke@435 3297 A-bot }
duke@435 3298 */
duke@435 3299
duke@435 3300 case InstPtr: { // Meeting 2 Oops?
duke@435 3301 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 3302 const TypeInstPtr *tinst = t->is_instptr();
duke@435 3303 int off = meet_offset( tinst->offset() );
duke@435 3304 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 3305 int instance_id = meet_instance_id(tinst->instance_id());
roland@5991 3306 const TypeOopPtr* speculative = meet_speculative(tinst);
duke@435 3307
duke@435 3308 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3309 // If we have constants, then we created oops so classes are loaded
duke@435 3310 // and we can handle the constants further down. This case handles
duke@435 3311 // both-not-loaded or both-loaded classes
duke@435 3312 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
roland@5991 3313 return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative);
duke@435 3314 }
duke@435 3315
duke@435 3316 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3317 ciKlass* tinst_klass = tinst->klass();
duke@435 3318 ciKlass* this_klass = this->klass();
duke@435 3319 bool tinst_xk = tinst->klass_is_exact();
duke@435 3320 bool this_xk = this->klass_is_exact();
duke@435 3321 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 3322 // One of these classes has not been loaded
duke@435 3323 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 3324 #ifndef PRODUCT
duke@435 3325 if( PrintOpto && Verbose ) {
duke@435 3326 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 3327 tty->print(" this == "); this->dump(); tty->cr();
duke@435 3328 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 3329 }
duke@435 3330 #endif
duke@435 3331 return unloaded_meet;
duke@435 3332 }
duke@435 3333
duke@435 3334 // Handle mixing oops and interfaces first.
roland@5991 3335 if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
roland@5991 3336 tinst_klass == ciEnv::current()->Object_klass())) {
duke@435 3337 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 3338 tinst_klass = this_klass;
duke@435 3339 this_klass = tmp;
duke@435 3340 bool tmp2 = tinst_xk;
duke@435 3341 tinst_xk = this_xk;
duke@435 3342 this_xk = tmp2;
duke@435 3343 }
duke@435 3344 if (tinst_klass->is_interface() &&
duke@435 3345 !(this_klass->is_interface() ||
duke@435 3346 // Treat java/lang/Object as an honorary interface,
duke@435 3347 // because we need a bottom for the interface hierarchy.
duke@435 3348 this_klass == ciEnv::current()->Object_klass())) {
duke@435 3349 // Oop meets interface!
duke@435 3350
duke@435 3351 // See if the oop subtypes (implements) interface.
duke@435 3352 ciKlass *k;
duke@435 3353 bool xk;
duke@435 3354 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3355 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 3356 // on whether we are both above the centerline or either is
duke@435 3357 // below the centerline. If we are on the centerline
duke@435 3358 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 3359 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 3360 // If we are keeping this_klass, keep its exactness too.
duke@435 3361 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 3362 } else { // Does not implement, fall to Object
duke@435 3363 // Oop does not implement interface, so mixing falls to Object
duke@435 3364 // just like the verifier does (if both are above the
duke@435 3365 // centerline fall to interface)
duke@435 3366 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 3367 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 3368 // Watch out for Constant vs. AnyNull interface.
duke@435 3369 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 3370 instance_id = InstanceBot;
duke@435 3371 }
duke@435 3372 ciObject* o = NULL; // the Constant value, if any
duke@435 3373 if (ptr == Constant) {
duke@435 3374 // Find out which constant.
duke@435 3375 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 3376 }
roland@5991 3377 return make(ptr, k, xk, o, off, instance_id, speculative);
duke@435 3378 }
duke@435 3379
duke@435 3380 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 3381
duke@435 3382 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 3383 // If we split one up & one down AND they subtype, take the down man.
duke@435 3384 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3385 // If both are up and they subtype, take the subtype class.
duke@435 3386 // If both are up and they do NOT subtype, "fall hard".
duke@435 3387 // If both are down and they subtype, take the supertype class.
duke@435 3388 // If both are down and they do NOT subtype, "fall hard".
duke@435 3389 // Constants treated as down.
duke@435 3390
duke@435 3391 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 3392 // "fall hard"; "fall hard" becomes the default case:
duke@435 3393 // If we split one up & one down AND they subtype, take the down man.
duke@435 3394 // If both are up and they subtype, take the subtype class.
duke@435 3395
duke@435 3396 // If both are down and they subtype, "fall hard".
duke@435 3397 // If both are down and they do NOT subtype, "fall hard".
duke@435 3398 // If both are up and they do NOT subtype, "fall hard".
duke@435 3399 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3400
duke@435 3401 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 3402 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 3403 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 3404 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 3405
duke@435 3406 // Check for subtyping:
duke@435 3407 ciKlass *subtype = NULL;
duke@435 3408 bool subtype_exact = false;
duke@435 3409 if( tinst_klass->equals(this_klass) ) {
duke@435 3410 subtype = this_klass;
duke@435 3411 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 3412 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3413 subtype = this_klass; // Pick subtyping class
duke@435 3414 subtype_exact = this_xk;
duke@435 3415 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 3416 subtype = tinst_klass; // Pick subtyping class
duke@435 3417 subtype_exact = tinst_xk;
duke@435 3418 }
duke@435 3419
duke@435 3420 if( subtype ) {
duke@435 3421 if( above_centerline(ptr) ) { // both are up?
duke@435 3422 this_klass = tinst_klass = subtype;
duke@435 3423 this_xk = tinst_xk = subtype_exact;
duke@435 3424 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 3425 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 3426 this_xk = tinst_xk;
duke@435 3427 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 3428 tinst_klass = this_klass; // this is down; keep down man
duke@435 3429 tinst_xk = this_xk;
duke@435 3430 } else {
duke@435 3431 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 3432 }
duke@435 3433 }
duke@435 3434
duke@435 3435 // Check for classes now being equal
duke@435 3436 if (tinst_klass->equals(this_klass)) {
duke@435 3437 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3438 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3439 // handled elsewhere).
duke@435 3440 ciObject* o = NULL; // Assume not constant when done
duke@435 3441 ciObject* this_oop = const_oop();
duke@435 3442 ciObject* tinst_oop = tinst->const_oop();
duke@435 3443 if( ptr == Constant ) {
duke@435 3444 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 3445 this_oop->equals(tinst_oop) )
duke@435 3446 o = this_oop;
duke@435 3447 else if (above_centerline(this ->_ptr))
duke@435 3448 o = tinst_oop;
duke@435 3449 else if (above_centerline(tinst ->_ptr))
duke@435 3450 o = this_oop;
duke@435 3451 else
duke@435 3452 ptr = NotNull;
duke@435 3453 }
roland@5991 3454 return make(ptr, this_klass, this_xk, o, off, instance_id, speculative);
duke@435 3455 } // Else classes are not equal
duke@435 3456
duke@435 3457 // Since klasses are different, we require a LCA in the Java
duke@435 3458 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3459 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3460 ptr = NotNull;
kvn@682 3461 instance_id = InstanceBot;
duke@435 3462
duke@435 3463 // Now we find the LCA of Java classes
duke@435 3464 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
roland@5991 3465 return make(ptr, k, false, NULL, off, instance_id, speculative);
duke@435 3466 } // End of case InstPtr
duke@435 3467
duke@435 3468 } // End of switch
duke@435 3469 return this; // Return the double constant
duke@435 3470 }
duke@435 3471
duke@435 3472
duke@435 3473 //------------------------java_mirror_type--------------------------------------
duke@435 3474 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3475 // must be a singleton type
duke@435 3476 if( const_oop() == NULL ) return NULL;
duke@435 3477
duke@435 3478 // must be of type java.lang.Class
duke@435 3479 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3480
duke@435 3481 return const_oop()->as_instance()->java_mirror_type();
duke@435 3482 }
duke@435 3483
duke@435 3484
duke@435 3485 //------------------------------xdual------------------------------------------
duke@435 3486 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
twisti@1040 3487 // inheritance mechanism.
duke@435 3488 const Type *TypeInstPtr::xdual() const {
roland@5991 3489 return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative());
duke@435 3490 }
duke@435 3491
duke@435 3492 //------------------------------eq---------------------------------------------
duke@435 3493 // Structural equality check for Type representations
duke@435 3494 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3495 const TypeInstPtr *p = t->is_instptr();
duke@435 3496 return
duke@435 3497 klass()->equals(p->klass()) &&
duke@435 3498 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3499 }
duke@435 3500
duke@435 3501 //------------------------------hash-------------------------------------------
duke@435 3502 // Type-specific hashing function.
duke@435 3503 int TypeInstPtr::hash(void) const {
duke@435 3504 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 3505 return hash;
duke@435 3506 }
duke@435 3507
duke@435 3508 //------------------------------dump2------------------------------------------
duke@435 3509 // Dump oop Type
duke@435 3510 #ifndef PRODUCT
duke@435 3511 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3512 // Print the name of the klass.
duke@435 3513 klass()->print_name_on(st);
duke@435 3514
duke@435 3515 switch( _ptr ) {
duke@435 3516 case Constant:
duke@435 3517 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3518 if (WizardMode || Verbose) {
duke@435 3519 const_oop()->print_oop(st);
duke@435 3520 }
duke@435 3521 case BotPTR:
duke@435 3522 if (!WizardMode && !Verbose) {
duke@435 3523 if( _klass_is_exact ) st->print(":exact");
duke@435 3524 break;
duke@435 3525 }
duke@435 3526 case TopPTR:
duke@435 3527 case AnyNull:
duke@435 3528 case NotNull:
duke@435 3529 st->print(":%s", ptr_msg[_ptr]);
duke@435 3530 if( _klass_is_exact ) st->print(":exact");
duke@435 3531 break;
duke@435 3532 }
duke@435 3533
duke@435 3534 if( _offset ) { // Dump offset, if any
duke@435 3535 if( _offset == OffsetBot ) st->print("+any");
duke@435 3536 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3537 else st->print("+%d", _offset);
duke@435 3538 }
duke@435 3539
duke@435 3540 st->print(" *");
kvn@658 3541 if (_instance_id == InstanceTop)
kvn@658 3542 st->print(",iid=top");
kvn@658 3543 else if (_instance_id != InstanceBot)
duke@435 3544 st->print(",iid=%d",_instance_id);
roland@5991 3545
roland@5991 3546 dump_speculative(st);
duke@435 3547 }
duke@435 3548 #endif
duke@435 3549
duke@435 3550 //------------------------------add_offset-------------------------------------
roland@5991 3551 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
roland@5991 3552 return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
roland@5991 3553 }
roland@5991 3554
roland@5991 3555 const TypeOopPtr *TypeInstPtr::remove_speculative() const {
roland@5991 3556 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL);
duke@435 3557 }
duke@435 3558
duke@435 3559 //=============================================================================
duke@435 3560 // Convenience common pre-built types.
duke@435 3561 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3562 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3563 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3564 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3565 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3566 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3567 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3568 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3569 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3570 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3571
duke@435 3572 //------------------------------make-------------------------------------------
roland@5991 3573 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative) {
duke@435 3574 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3575 "integral arrays must be pre-equipped with a class");
duke@435 3576 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3577 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3578 if (!UseExactTypes) xk = (ptr == Constant);
roland@5991 3579 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative))->hashcons();
duke@435 3580 }
duke@435 3581
duke@435 3582 //------------------------------make-------------------------------------------
roland@5991 3583 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, bool is_autobox_cache) {
duke@435 3584 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3585 "integral arrays must be pre-equipped with a class");
duke@435 3586 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3587 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3588 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3589 if (!UseExactTypes) xk = (ptr == Constant);
roland@5991 3590 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative))->hashcons();
duke@435 3591 }
duke@435 3592
duke@435 3593 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3594 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3595 if( ptr == _ptr ) return this;
roland@5991 3596 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative);
duke@435 3597 }
duke@435 3598
duke@435 3599
duke@435 3600 //-----------------------------cast_to_exactness-------------------------------
duke@435 3601 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3602 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3603 if (!UseExactTypes) return this;
duke@435 3604 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
roland@5991 3605 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative);
duke@435 3606 }
duke@435 3607
kvn@682 3608 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3609 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3610 if( instance_id == _instance_id ) return this;
roland@5991 3611 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative);
duke@435 3612 }
duke@435 3613
duke@435 3614 //-----------------------------narrow_size_type-------------------------------
duke@435 3615 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3616 // which is kind of slow (and cached elsewhere by other users).
duke@435 3617 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3618 static jint max_array_length(BasicType etype) {
duke@435 3619 jint& cache = max_array_length_cache[etype];
duke@435 3620 jint res = cache;
duke@435 3621 if (res == 0) {
duke@435 3622 switch (etype) {
coleenp@548 3623 case T_NARROWOOP:
coleenp@548 3624 etype = T_OBJECT;
coleenp@548 3625 break;
roland@4159 3626 case T_NARROWKLASS:
duke@435 3627 case T_CONFLICT:
duke@435 3628 case T_ILLEGAL:
duke@435 3629 case T_VOID:
duke@435 3630 etype = T_BYTE; // will produce conservatively high value
duke@435 3631 }
duke@435 3632 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3633 }
duke@435 3634 return res;
duke@435 3635 }
duke@435 3636
duke@435 3637 // Narrow the given size type to the index range for the given array base type.
duke@435 3638 // Return NULL if the resulting int type becomes empty.
rasbold@801 3639 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
duke@435 3640 jint hi = size->_hi;
duke@435 3641 jint lo = size->_lo;
duke@435 3642 jint min_lo = 0;
rasbold@801 3643 jint max_hi = max_array_length(elem()->basic_type());
duke@435 3644 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3645 bool chg = false;
kvn@5110 3646 if (lo < min_lo) {
kvn@5110 3647 lo = min_lo;
kvn@5110 3648 if (size->is_con()) {
kvn@5110 3649 hi = lo;
kvn@5110 3650 }
kvn@5110 3651 chg = true;
kvn@5110 3652 }
kvn@5110 3653 if (hi > max_hi) {
kvn@5110 3654 hi = max_hi;
kvn@5110 3655 if (size->is_con()) {
kvn@5110 3656 lo = hi;
kvn@5110 3657 }
kvn@5110 3658 chg = true;
kvn@5110 3659 }
twisti@1040 3660 // Negative length arrays will produce weird intermediate dead fast-path code
duke@435 3661 if (lo > hi)
rasbold@801 3662 return TypeInt::ZERO;
duke@435 3663 if (!chg)
duke@435 3664 return size;
duke@435 3665 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3666 }
duke@435 3667
duke@435 3668 //-------------------------------cast_to_size----------------------------------
duke@435 3669 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3670 assert(new_size != NULL, "");
rasbold@801 3671 new_size = narrow_size_type(new_size);
duke@435 3672 if (new_size == size()) return this;
vlivanov@5658 3673 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
roland@5991 3674 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative);
duke@435 3675 }
duke@435 3676
duke@435 3677
vlivanov@5658 3678 //------------------------------cast_to_stable---------------------------------
vlivanov@5658 3679 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
vlivanov@5658 3680 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
vlivanov@5658 3681 return this;
vlivanov@5658 3682
vlivanov@5658 3683 const Type* elem = this->elem();
vlivanov@5658 3684 const TypePtr* elem_ptr = elem->make_ptr();
vlivanov@5658 3685
vlivanov@5658 3686 if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
vlivanov@5658 3687 // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
vlivanov@5658 3688 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
vlivanov@5658 3689 }
vlivanov@5658 3690
vlivanov@5658 3691 const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
vlivanov@5658 3692
vlivanov@5658 3693 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
vlivanov@5658 3694 }
vlivanov@5658 3695
vlivanov@5658 3696 //-----------------------------stable_dimension--------------------------------
vlivanov@5658 3697 int TypeAryPtr::stable_dimension() const {
vlivanov@5658 3698 if (!is_stable()) return 0;
vlivanov@5658 3699 int dim = 1;
vlivanov@5658 3700 const TypePtr* elem_ptr = elem()->make_ptr();
vlivanov@5658 3701 if (elem_ptr != NULL && elem_ptr->isa_aryptr())
vlivanov@5658 3702 dim += elem_ptr->is_aryptr()->stable_dimension();
vlivanov@5658 3703 return dim;
vlivanov@5658 3704 }
vlivanov@5658 3705
duke@435 3706 //------------------------------eq---------------------------------------------
duke@435 3707 // Structural equality check for Type representations
duke@435 3708 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3709 const TypeAryPtr *p = t->is_aryptr();
duke@435 3710 return
duke@435 3711 _ary == p->_ary && // Check array
duke@435 3712 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3713 }
duke@435 3714
duke@435 3715 //------------------------------hash-------------------------------------------
duke@435 3716 // Type-specific hashing function.
duke@435 3717 int TypeAryPtr::hash(void) const {
duke@435 3718 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3719 }
duke@435 3720
duke@435 3721 //------------------------------meet-------------------------------------------
duke@435 3722 // Compute the MEET of two types. It returns a new Type object.
roland@5991 3723 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
duke@435 3724 // Perform a fast test for common case; meeting the same types together.
duke@435 3725 if( this == t ) return this; // Meeting same type-rep?
duke@435 3726 // Current "this->_base" is Pointer
duke@435 3727 switch (t->base()) { // switch on original type
duke@435 3728
duke@435 3729 // Mixing ints & oops happens when javac reuses local variables
duke@435 3730 case Int:
duke@435 3731 case Long:
duke@435 3732 case FloatTop:
duke@435 3733 case FloatCon:
duke@435 3734 case FloatBot:
duke@435 3735 case DoubleTop:
duke@435 3736 case DoubleCon:
duke@435 3737 case DoubleBot:
coleenp@548 3738 case NarrowOop:
roland@4159 3739 case NarrowKlass:
duke@435 3740 case Bottom: // Ye Olde Default
duke@435 3741 return Type::BOTTOM;
duke@435 3742 case Top:
duke@435 3743 return this;
duke@435 3744
duke@435 3745 default: // All else is a mistake
duke@435 3746 typerr(t);
duke@435 3747
duke@435 3748 case OopPtr: { // Meeting to OopPtrs
duke@435 3749 // Found a OopPtr type vs self-AryPtr type
kvn@1393 3750 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3751 int offset = meet_offset(tp->offset());
duke@435 3752 PTR ptr = meet_ptr(tp->ptr());
duke@435 3753 switch (tp->ptr()) {
duke@435 3754 case TopPTR:
kvn@658 3755 case AnyNull: {
kvn@658 3756 int instance_id = meet_instance_id(InstanceTop);
roland@5991 3757 const TypeOopPtr* speculative = meet_speculative(tp);
kvn@658 3758 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@5991 3759 _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
kvn@658 3760 }
duke@435 3761 case BotPTR:
kvn@1393 3762 case NotNull: {
kvn@1393 3763 int instance_id = meet_instance_id(tp->instance_id());
roland@5991 3764 const TypeOopPtr* speculative = meet_speculative(tp);
roland@5991 3765 return TypeOopPtr::make(ptr, offset, instance_id, speculative);
kvn@1393 3766 }
duke@435 3767 default: ShouldNotReachHere();
duke@435 3768 }
duke@435 3769 }
duke@435 3770
duke@435 3771 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3772 // Found an AnyPtr type vs self-AryPtr type
duke@435 3773 const TypePtr *tp = t->is_ptr();
duke@435 3774 int offset = meet_offset(tp->offset());
duke@435 3775 PTR ptr = meet_ptr(tp->ptr());
duke@435 3776 switch (tp->ptr()) {
duke@435 3777 case TopPTR:
duke@435 3778 return this;
duke@435 3779 case BotPTR:
duke@435 3780 case NotNull:
duke@435 3781 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3782 case Null:
duke@435 3783 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3784 // else fall through to AnyNull
kvn@658 3785 case AnyNull: {
kvn@658 3786 int instance_id = meet_instance_id(InstanceTop);
roland@5991 3787 const TypeOopPtr* speculative = _speculative;
roland@5991 3788 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@5991 3789 _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
kvn@658 3790 }
duke@435 3791 default: ShouldNotReachHere();
duke@435 3792 }
duke@435 3793 }
duke@435 3794
coleenp@4037 3795 case MetadataPtr:
coleenp@4037 3796 case KlassPtr:
duke@435 3797 case RawPtr: return TypePtr::BOTTOM;
duke@435 3798
duke@435 3799 case AryPtr: { // Meeting 2 references?
duke@435 3800 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3801 int off = meet_offset(tap->offset());
duke@435 3802 const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
duke@435 3803 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3804 int instance_id = meet_instance_id(tap->instance_id());
roland@5991 3805 const TypeOopPtr* speculative = meet_speculative(tap);
duke@435 3806 ciKlass* lazy_klass = NULL;
duke@435 3807 if (tary->_elem->isa_int()) {
duke@435 3808 // Integral array element types have irrelevant lattice relations.
duke@435 3809 // It is the klass that determines array layout, not the element type.
duke@435 3810 if (_klass == NULL)
duke@435 3811 lazy_klass = tap->_klass;
duke@435 3812 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3813 lazy_klass = _klass;
duke@435 3814 } else {
duke@435 3815 // Something like byte[int+] meets char[int+].
duke@435 3816 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3817 instance_id = InstanceBot;
vlivanov@5658 3818 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
duke@435 3819 }
kvn@2633 3820 } else // Non integral arrays.
kvn@2633 3821 // Must fall to bottom if exact klasses in upper lattice
kvn@2633 3822 // are not equal or super klass is exact.
kvn@2633 3823 if ( above_centerline(ptr) && klass() != tap->klass() &&
kvn@2633 3824 // meet with top[] and bottom[] are processed further down:
kvn@2633 3825 tap ->_klass != NULL && this->_klass != NULL &&
kvn@2633 3826 // both are exact and not equal:
kvn@2633 3827 ((tap ->_klass_is_exact && this->_klass_is_exact) ||
kvn@2633 3828 // 'tap' is exact and super or unrelated:
kvn@2633 3829 (tap ->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
kvn@2633 3830 // 'this' is exact and super or unrelated:
kvn@2633 3831 (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
vlivanov@5658 3832 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
roland@5991 3833 return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
duke@435 3834 }
kvn@2633 3835
kvn@2120 3836 bool xk = false;
duke@435 3837 switch (tap->ptr()) {
duke@435 3838 case AnyNull:
duke@435 3839 case TopPTR:
duke@435 3840 // Compute new klass on demand, do not use tap->_klass
roland@5991 3841 if (below_centerline(this->_ptr)) {
roland@5991 3842 xk = this->_klass_is_exact;
roland@5991 3843 } else {
roland@5991 3844 xk = (tap->_klass_is_exact | this->_klass_is_exact);
roland@5991 3845 }
roland@5991 3846 return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative);
duke@435 3847 case Constant: {
duke@435 3848 ciObject* o = const_oop();
duke@435 3849 if( _ptr == Constant ) {
duke@435 3850 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
jrose@1424 3851 xk = (klass() == tap->klass());
duke@435 3852 ptr = NotNull;
duke@435 3853 o = NULL;
kvn@682 3854 instance_id = InstanceBot;
jrose@1424 3855 } else {
jrose@1424 3856 xk = true;
duke@435 3857 }
roland@5991 3858 } else if(above_centerline(_ptr)) {
duke@435 3859 o = tap->const_oop();
jrose@1424 3860 xk = true;
jrose@1424 3861 } else {
kvn@2120 3862 // Only precise for identical arrays
kvn@2120 3863 xk = this->_klass_is_exact && (klass() == tap->klass());
duke@435 3864 }
roland@5991 3865 return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative);
duke@435 3866 }
duke@435 3867 case NotNull:
duke@435 3868 case BotPTR:
duke@435 3869 // Compute new klass on demand, do not use tap->_klass
duke@435 3870 if (above_centerline(this->_ptr))
duke@435 3871 xk = tap->_klass_is_exact;
duke@435 3872 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 3873 (klass() == tap->klass()); // Only precise for identical arrays
roland@5991 3874 return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative);
duke@435 3875 default: ShouldNotReachHere();
duke@435 3876 }
duke@435 3877 }
duke@435 3878
duke@435 3879 // All arrays inherit from Object class
duke@435 3880 case InstPtr: {
duke@435 3881 const TypeInstPtr *tp = t->is_instptr();
duke@435 3882 int offset = meet_offset(tp->offset());
duke@435 3883 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3884 int instance_id = meet_instance_id(tp->instance_id());
roland@5991 3885 const TypeOopPtr* speculative = meet_speculative(tp);
duke@435 3886 switch (ptr) {
duke@435 3887 case TopPTR:
duke@435 3888 case AnyNull: // Fall 'down' to dual of object klass
roland@5991 3889 // For instances when a subclass meets a superclass we fall
roland@5991 3890 // below the centerline when the superclass is exact. We need to
roland@5991 3891 // do the same here.
roland@5991 3892 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
roland@5991 3893 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
duke@435 3894 } else {
duke@435 3895 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3896 ptr = NotNull;
kvn@658 3897 instance_id = InstanceBot;
roland@5991 3898 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative);
duke@435 3899 }
duke@435 3900 case Constant:
duke@435 3901 case NotNull:
duke@435 3902 case BotPTR: // Fall down to object klass
duke@435 3903 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3904 if (above_centerline(tp->ptr())) {
duke@435 3905 // If 'tp' is above the centerline and it is Object class
twisti@1040 3906 // then we can subclass in the Java class hierarchy.
roland@5991 3907 // For instances when a subclass meets a superclass we fall
roland@5991 3908 // below the centerline when the superclass is exact. We need
roland@5991 3909 // to do the same here.
roland@5991 3910 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
duke@435 3911 // that is, my array type is a subtype of 'tp' klass
roland@5991 3912 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@5991 3913 _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
duke@435 3914 }
duke@435 3915 }
duke@435 3916 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 3917 // The meet falls down to Object class below centerline.
duke@435 3918 if( ptr == Constant )
duke@435 3919 ptr = NotNull;
kvn@658 3920 instance_id = InstanceBot;
roland@5991 3921 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative);
duke@435 3922 default: typerr(t);
duke@435 3923 }
duke@435 3924 }
duke@435 3925 }
duke@435 3926 return this; // Lint noise
duke@435 3927 }
duke@435 3928
duke@435 3929 //------------------------------xdual------------------------------------------
duke@435 3930 // Dual: compute field-by-field dual
duke@435 3931 const Type *TypeAryPtr::xdual() const {
roland@5991 3932 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative());
duke@435 3933 }
duke@435 3934
kvn@1255 3935 //----------------------interface_vs_oop---------------------------------------
kvn@1255 3936 #ifdef ASSERT
kvn@1255 3937 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
kvn@1255 3938 const TypeAryPtr* t_aryptr = t->isa_aryptr();
kvn@1255 3939 if (t_aryptr) {
kvn@1255 3940 return _ary->interface_vs_oop(t_aryptr->_ary);
kvn@1255 3941 }
kvn@1255 3942 return false;
kvn@1255 3943 }
kvn@1255 3944 #endif
kvn@1255 3945
duke@435 3946 //------------------------------dump2------------------------------------------
duke@435 3947 #ifndef PRODUCT
duke@435 3948 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3949 _ary->dump2(d,depth,st);
duke@435 3950 switch( _ptr ) {
duke@435 3951 case Constant:
duke@435 3952 const_oop()->print(st);
duke@435 3953 break;
duke@435 3954 case BotPTR:
duke@435 3955 if (!WizardMode && !Verbose) {
duke@435 3956 if( _klass_is_exact ) st->print(":exact");
duke@435 3957 break;
duke@435 3958 }
duke@435 3959 case TopPTR:
duke@435 3960 case AnyNull:
duke@435 3961 case NotNull:
duke@435 3962 st->print(":%s", ptr_msg[_ptr]);
duke@435 3963 if( _klass_is_exact ) st->print(":exact");
duke@435 3964 break;
duke@435 3965 }
duke@435 3966
kvn@499 3967 if( _offset != 0 ) {
kvn@499 3968 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 3969 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 3970 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 3971 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 3972 else {
kvn@499 3973 BasicType basic_elem_type = elem()->basic_type();
kvn@499 3974 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 3975 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 3976 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 3977 }
kvn@499 3978 }
kvn@499 3979 st->print(" *");
kvn@658 3980 if (_instance_id == InstanceTop)
kvn@658 3981 st->print(",iid=top");
kvn@658 3982 else if (_instance_id != InstanceBot)
duke@435 3983 st->print(",iid=%d",_instance_id);
roland@5991 3984
roland@5991 3985 dump_speculative(st);
duke@435 3986 }
duke@435 3987 #endif
duke@435 3988
duke@435 3989 bool TypeAryPtr::empty(void) const {
duke@435 3990 if (_ary->empty()) return true;
duke@435 3991 return TypeOopPtr::empty();
duke@435 3992 }
duke@435 3993
duke@435 3994 //------------------------------add_offset-------------------------------------
roland@5991 3995 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
roland@5991 3996 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset));
roland@5991 3997 }
roland@5991 3998
roland@5991 3999 const TypeOopPtr *TypeAryPtr::remove_speculative() const {
roland@5991 4000 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, _offset, _instance_id, NULL);
roland@5991 4001 }
duke@435 4002
duke@435 4003 //=============================================================================
coleenp@548 4004
coleenp@548 4005 //------------------------------hash-------------------------------------------
coleenp@548 4006 // Type-specific hashing function.
roland@4159 4007 int TypeNarrowPtr::hash(void) const {
never@1262 4008 return _ptrtype->hash() + 7;
coleenp@548 4009 }
coleenp@548 4010
roland@4159 4011 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton
roland@4159 4012 return _ptrtype->singleton();
roland@4159 4013 }
roland@4159 4014
roland@4159 4015 bool TypeNarrowPtr::empty(void) const {
roland@4159 4016 return _ptrtype->empty();
roland@4159 4017 }
roland@4159 4018
roland@4159 4019 intptr_t TypeNarrowPtr::get_con() const {
roland@4159 4020 return _ptrtype->get_con();
roland@4159 4021 }
roland@4159 4022
roland@4159 4023 bool TypeNarrowPtr::eq( const Type *t ) const {
roland@4159 4024 const TypeNarrowPtr* tc = isa_same_narrowptr(t);
coleenp@548 4025 if (tc != NULL) {
never@1262 4026 if (_ptrtype->base() != tc->_ptrtype->base()) {
coleenp@548 4027 return false;
coleenp@548 4028 }
never@1262 4029 return tc->_ptrtype->eq(_ptrtype);
coleenp@548 4030 }
coleenp@548 4031 return false;
coleenp@548 4032 }
coleenp@548 4033
roland@4159 4034 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now.
roland@4159 4035 const TypePtr* odual = _ptrtype->dual()->is_ptr();
roland@4159 4036 return make_same_narrowptr(odual);
roland@4159 4037 }
roland@4159 4038
roland@4159 4039
roland@4159 4040 const Type *TypeNarrowPtr::filter( const Type *kills ) const {
roland@4159 4041 if (isa_same_narrowptr(kills)) {
roland@4159 4042 const Type* ft =_ptrtype->filter(is_same_narrowptr(kills)->_ptrtype);
roland@4159 4043 if (ft->empty())
roland@4159 4044 return Type::TOP; // Canonical empty value
roland@4159 4045 if (ft->isa_ptr()) {
roland@4159 4046 return make_hash_same_narrowptr(ft->isa_ptr());
roland@4159 4047 }
roland@4159 4048 return ft;
roland@4159 4049 } else if (kills->isa_ptr()) {
roland@4159 4050 const Type* ft = _ptrtype->join(kills);
roland@4159 4051 if (ft->empty())
roland@4159 4052 return Type::TOP; // Canonical empty value
roland@4159 4053 return ft;
roland@4159 4054 } else {
roland@4159 4055 return Type::TOP;
roland@4159 4056 }
coleenp@548 4057 }
coleenp@548 4058
kvn@728 4059 //------------------------------xmeet------------------------------------------
coleenp@548 4060 // Compute the MEET of two types. It returns a new Type object.
roland@4159 4061 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
coleenp@548 4062 // Perform a fast test for common case; meeting the same types together.
coleenp@548 4063 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 4064
roland@4159 4065 if (t->base() == base()) {
roland@4159 4066 const Type* result = _ptrtype->xmeet(t->make_ptr());
roland@4159 4067 if (result->isa_ptr()) {
roland@4159 4068 return make_hash_same_narrowptr(result->is_ptr());
roland@4159 4069 }
roland@4159 4070 return result;
roland@4159 4071 }
roland@4159 4072
roland@4159 4073 // Current "this->_base" is NarrowKlass or NarrowOop
coleenp@548 4074 switch (t->base()) { // switch on original type
coleenp@548 4075
coleenp@548 4076 case Int: // Mixing ints & oops happens when javac
coleenp@548 4077 case Long: // reuses local variables
coleenp@548 4078 case FloatTop:
coleenp@548 4079 case FloatCon:
coleenp@548 4080 case FloatBot:
coleenp@548 4081 case DoubleTop:
coleenp@548 4082 case DoubleCon:
coleenp@548 4083 case DoubleBot:
kvn@728 4084 case AnyPtr:
kvn@728 4085 case RawPtr:
kvn@728 4086 case OopPtr:
kvn@728 4087 case InstPtr:
coleenp@4037 4088 case AryPtr:
coleenp@4037 4089 case MetadataPtr:
kvn@728 4090 case KlassPtr:
roland@4159 4091 case NarrowOop:
roland@4159 4092 case NarrowKlass:
kvn@728 4093
coleenp@548 4094 case Bottom: // Ye Olde Default
coleenp@548 4095 return Type::BOTTOM;
coleenp@548 4096 case Top:
coleenp@548 4097 return this;
coleenp@548 4098
coleenp@548 4099 default: // All else is a mistake
coleenp@548 4100 typerr(t);
coleenp@548 4101
coleenp@548 4102 } // End of switch
kvn@728 4103
kvn@728 4104 return this;
coleenp@548 4105 }
coleenp@548 4106
roland@4159 4107 #ifndef PRODUCT
roland@4159 4108 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 4109 _ptrtype->dump2(d, depth, st);
roland@4159 4110 }
roland@4159 4111 #endif
roland@4159 4112
roland@4159 4113 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
roland@4159 4114 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
roland@4159 4115
roland@4159 4116
roland@4159 4117 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
roland@4159 4118 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
roland@4159 4119 }
roland@4159 4120
coleenp@548 4121
coleenp@548 4122 #ifndef PRODUCT
coleenp@548 4123 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
never@852 4124 st->print("narrowoop: ");
roland@4159 4125 TypeNarrowPtr::dump2(d, depth, st);
coleenp@548 4126 }
coleenp@548 4127 #endif
coleenp@548 4128
roland@4159 4129 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
roland@4159 4130
roland@4159 4131 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
roland@4159 4132 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
roland@4159 4133 }
roland@4159 4134
roland@4159 4135 #ifndef PRODUCT
roland@4159 4136 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 4137 st->print("narrowklass: ");
roland@4159 4138 TypeNarrowPtr::dump2(d, depth, st);
roland@4159 4139 }
roland@4159 4140 #endif
coleenp@548 4141
coleenp@4037 4142
coleenp@4037 4143 //------------------------------eq---------------------------------------------
coleenp@4037 4144 // Structural equality check for Type representations
coleenp@4037 4145 bool TypeMetadataPtr::eq( const Type *t ) const {
coleenp@4037 4146 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
coleenp@4037 4147 ciMetadata* one = metadata();
coleenp@4037 4148 ciMetadata* two = a->metadata();
coleenp@4037 4149 if (one == NULL || two == NULL) {
coleenp@4037 4150 return (one == two) && TypePtr::eq(t);
coleenp@4037 4151 } else {
coleenp@4037 4152 return one->equals(two) && TypePtr::eq(t);
coleenp@4037 4153 }
coleenp@4037 4154 }
coleenp@4037 4155
coleenp@4037 4156 //------------------------------hash-------------------------------------------
coleenp@4037 4157 // Type-specific hashing function.
coleenp@4037 4158 int TypeMetadataPtr::hash(void) const {
coleenp@4037 4159 return
coleenp@4037 4160 (metadata() ? metadata()->hash() : 0) +
coleenp@4037 4161 TypePtr::hash();
coleenp@4037 4162 }
coleenp@4037 4163
coleenp@4037 4164 //------------------------------singleton--------------------------------------
coleenp@4037 4165 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 4166 // constants
coleenp@4037 4167 bool TypeMetadataPtr::singleton(void) const {
coleenp@4037 4168 // detune optimizer to not generate constant metadta + constant offset as a constant!
coleenp@4037 4169 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 4170 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 4171 }
coleenp@4037 4172
coleenp@4037 4173 //------------------------------add_offset-------------------------------------
coleenp@4037 4174 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
coleenp@4037 4175 return make( _ptr, _metadata, xadd_offset(offset));
coleenp@4037 4176 }
coleenp@4037 4177
coleenp@4037 4178 //-----------------------------filter------------------------------------------
coleenp@4037 4179 // Do not allow interface-vs.-noninterface joins to collapse to top.
coleenp@4037 4180 const Type *TypeMetadataPtr::filter( const Type *kills ) const {
coleenp@4037 4181 const TypeMetadataPtr* ft = join(kills)->isa_metadataptr();
coleenp@4037 4182 if (ft == NULL || ft->empty())
coleenp@4037 4183 return Type::TOP; // Canonical empty value
coleenp@4037 4184 return ft;
coleenp@4037 4185 }
coleenp@4037 4186
coleenp@4037 4187 //------------------------------get_con----------------------------------------
coleenp@4037 4188 intptr_t TypeMetadataPtr::get_con() const {
coleenp@4037 4189 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4190 assert( _offset >= 0, "" );
coleenp@4037 4191
coleenp@4037 4192 if (_offset != 0) {
coleenp@4037 4193 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4194 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4195 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4196 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4197 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4198 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4199 // but this assertion here is to help prevent its occurence.
coleenp@4037 4200 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4201 ShouldNotReachHere();
coleenp@4037 4202 }
coleenp@4037 4203
coleenp@4037 4204 return (intptr_t)metadata()->constant_encoding();
coleenp@4037 4205 }
coleenp@4037 4206
coleenp@4037 4207 //------------------------------cast_to_ptr_type-------------------------------
coleenp@4037 4208 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
coleenp@4037 4209 if( ptr == _ptr ) return this;
coleenp@4037 4210 return make(ptr, metadata(), _offset);
coleenp@4037 4211 }
coleenp@4037 4212
coleenp@4037 4213 //------------------------------meet-------------------------------------------
coleenp@4037 4214 // Compute the MEET of two types. It returns a new Type object.
coleenp@4037 4215 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
coleenp@4037 4216 // Perform a fast test for common case; meeting the same types together.
coleenp@4037 4217 if( this == t ) return this; // Meeting same type-rep?
coleenp@4037 4218
coleenp@4037 4219 // Current "this->_base" is OopPtr
coleenp@4037 4220 switch (t->base()) { // switch on original type
coleenp@4037 4221
coleenp@4037 4222 case Int: // Mixing ints & oops happens when javac
coleenp@4037 4223 case Long: // reuses local variables
coleenp@4037 4224 case FloatTop:
coleenp@4037 4225 case FloatCon:
coleenp@4037 4226 case FloatBot:
coleenp@4037 4227 case DoubleTop:
coleenp@4037 4228 case DoubleCon:
coleenp@4037 4229 case DoubleBot:
coleenp@4037 4230 case NarrowOop:
roland@4159 4231 case NarrowKlass:
coleenp@4037 4232 case Bottom: // Ye Olde Default
coleenp@4037 4233 return Type::BOTTOM;
coleenp@4037 4234 case Top:
coleenp@4037 4235 return this;
coleenp@4037 4236
coleenp@4037 4237 default: // All else is a mistake
coleenp@4037 4238 typerr(t);
coleenp@4037 4239
coleenp@4037 4240 case AnyPtr: {
coleenp@4037 4241 // Found an AnyPtr type vs self-OopPtr type
coleenp@4037 4242 const TypePtr *tp = t->is_ptr();
coleenp@4037 4243 int offset = meet_offset(tp->offset());
coleenp@4037 4244 PTR ptr = meet_ptr(tp->ptr());
coleenp@4037 4245 switch (tp->ptr()) {
coleenp@4037 4246 case Null:
coleenp@4037 4247 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 4248 // else fall through:
coleenp@4037 4249 case TopPTR:
coleenp@4037 4250 case AnyNull: {
coleenp@4037 4251 return make(ptr, NULL, offset);
coleenp@4037 4252 }
coleenp@4037 4253 case BotPTR:
coleenp@4037 4254 case NotNull:
coleenp@4037 4255 return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 4256 default: typerr(t);
coleenp@4037 4257 }
coleenp@4037 4258 }
coleenp@4037 4259
coleenp@4037 4260 case RawPtr:
coleenp@4037 4261 case KlassPtr:
coleenp@4037 4262 case OopPtr:
coleenp@4037 4263 case InstPtr:
coleenp@4037 4264 case AryPtr:
coleenp@4037 4265 return TypePtr::BOTTOM; // Oop meet raw is not well defined
coleenp@4037 4266
roland@4040 4267 case MetadataPtr: {
roland@4040 4268 const TypeMetadataPtr *tp = t->is_metadataptr();
roland@4040 4269 int offset = meet_offset(tp->offset());
roland@4040 4270 PTR tptr = tp->ptr();
roland@4040 4271 PTR ptr = meet_ptr(tptr);
roland@4040 4272 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
roland@4040 4273 if (tptr == TopPTR || _ptr == TopPTR ||
roland@4040 4274 metadata()->equals(tp->metadata())) {
roland@4040 4275 return make(ptr, md, offset);
roland@4040 4276 }
roland@4040 4277 // metadata is different
roland@4040 4278 if( ptr == Constant ) { // Cannot be equal constants, so...
roland@4040 4279 if( tptr == Constant && _ptr != Constant) return t;
roland@4040 4280 if( _ptr == Constant && tptr != Constant) return this;
roland@4040 4281 ptr = NotNull; // Fall down in lattice
roland@4040 4282 }
roland@4040 4283 return make(ptr, NULL, offset);
coleenp@4037 4284 break;
roland@4040 4285 }
coleenp@4037 4286 } // End of switch
coleenp@4037 4287 return this; // Return the double constant
coleenp@4037 4288 }
coleenp@4037 4289
coleenp@4037 4290
coleenp@4037 4291 //------------------------------xdual------------------------------------------
coleenp@4037 4292 // Dual of a pure metadata pointer.
coleenp@4037 4293 const Type *TypeMetadataPtr::xdual() const {
coleenp@4037 4294 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
coleenp@4037 4295 }
coleenp@4037 4296
coleenp@4037 4297 //------------------------------dump2------------------------------------------
coleenp@4037 4298 #ifndef PRODUCT
coleenp@4037 4299 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
coleenp@4037 4300 st->print("metadataptr:%s", ptr_msg[_ptr]);
coleenp@4037 4301 if( metadata() ) st->print(INTPTR_FORMAT, metadata());
coleenp@4037 4302 switch( _offset ) {
coleenp@4037 4303 case OffsetTop: st->print("+top"); break;
coleenp@4037 4304 case OffsetBot: st->print("+any"); break;
coleenp@4037 4305 case 0: break;
coleenp@4037 4306 default: st->print("+%d",_offset); break;
coleenp@4037 4307 }
coleenp@4037 4308 }
coleenp@4037 4309 #endif
coleenp@4037 4310
coleenp@4037 4311
coleenp@4037 4312 //=============================================================================
coleenp@4037 4313 // Convenience common pre-built type.
coleenp@4037 4314 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
coleenp@4037 4315
coleenp@4037 4316 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
coleenp@4037 4317 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
coleenp@4037 4318 }
coleenp@4037 4319
coleenp@4037 4320 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
coleenp@4037 4321 return make(Constant, m, 0);
coleenp@4037 4322 }
coleenp@4037 4323 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
coleenp@4037 4324 return make(Constant, m, 0);
coleenp@4037 4325 }
coleenp@4037 4326
coleenp@4037 4327 //------------------------------make-------------------------------------------
coleenp@4037 4328 // Create a meta data constant
coleenp@4037 4329 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
coleenp@4037 4330 assert(m == NULL || !m->is_klass(), "wrong type");
coleenp@4037 4331 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
coleenp@4037 4332 }
coleenp@4037 4333
coleenp@4037 4334
coleenp@548 4335 //=============================================================================
duke@435 4336 // Convenience common pre-built types.
duke@435 4337
duke@435 4338 // Not-null object klass or below
duke@435 4339 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 4340 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 4341
coleenp@4037 4342 //------------------------------TypeKlassPtr-----------------------------------
duke@435 4343 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
coleenp@4037 4344 : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
duke@435 4345 }
duke@435 4346
duke@435 4347 //------------------------------make-------------------------------------------
duke@435 4348 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 4349 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 4350 assert( k != NULL, "Expect a non-NULL klass");
coleenp@4037 4351 assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
duke@435 4352 TypeKlassPtr *r =
duke@435 4353 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 4354
duke@435 4355 return r;
duke@435 4356 }
duke@435 4357
duke@435 4358 //------------------------------eq---------------------------------------------
duke@435 4359 // Structural equality check for Type representations
duke@435 4360 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 4361 const TypeKlassPtr *p = t->is_klassptr();
duke@435 4362 return
duke@435 4363 klass()->equals(p->klass()) &&
coleenp@4037 4364 TypePtr::eq(p);
duke@435 4365 }
duke@435 4366
duke@435 4367 //------------------------------hash-------------------------------------------
duke@435 4368 // Type-specific hashing function.
duke@435 4369 int TypeKlassPtr::hash(void) const {
coleenp@4037 4370 return klass()->hash() + TypePtr::hash();
coleenp@4037 4371 }
coleenp@4037 4372
coleenp@4037 4373 //------------------------------singleton--------------------------------------
coleenp@4037 4374 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 4375 // constants
coleenp@4037 4376 bool TypeKlassPtr::singleton(void) const {
coleenp@4037 4377 // detune optimizer to not generate constant klass + constant offset as a constant!
coleenp@4037 4378 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 4379 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 4380 }
duke@435 4381
roland@6043 4382 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6043 4383 const Type *TypeKlassPtr::filter(const Type *kills) const {
roland@6043 4384 // logic here mirrors the one from TypeOopPtr::filter. See comments
roland@6043 4385 // there.
roland@6043 4386 const Type* ft = join(kills);
roland@6043 4387 const TypeKlassPtr* ftkp = ft->isa_klassptr();
roland@6043 4388 const TypeKlassPtr* ktkp = kills->isa_klassptr();
roland@6043 4389
roland@6043 4390 if (ft->empty()) {
roland@6043 4391 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
roland@6043 4392 return kills; // Uplift to interface
roland@6043 4393
roland@6043 4394 return Type::TOP; // Canonical empty value
roland@6043 4395 }
roland@6043 4396
roland@6043 4397 // Interface klass type could be exact in opposite to interface type,
roland@6043 4398 // return it here instead of incorrect Constant ptr J/L/Object (6894807).
roland@6043 4399 if (ftkp != NULL && ktkp != NULL &&
roland@6043 4400 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
roland@6043 4401 !ftkp->klass_is_exact() && // Keep exact interface klass
roland@6043 4402 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
roland@6043 4403 return ktkp->cast_to_ptr_type(ftkp->ptr());
roland@6043 4404 }
roland@6043 4405
roland@6043 4406 return ft;
roland@6043 4407 }
roland@6043 4408
kvn@2116 4409 //----------------------compute_klass------------------------------------------
kvn@2116 4410 // Compute the defining klass for this class
kvn@2116 4411 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
kvn@2116 4412 // Compute _klass based on element type.
duke@435 4413 ciKlass* k_ary = NULL;
duke@435 4414 const TypeInstPtr *tinst;
duke@435 4415 const TypeAryPtr *tary;
coleenp@548 4416 const Type* el = elem();
coleenp@548 4417 if (el->isa_narrowoop()) {
kvn@656 4418 el = el->make_ptr();
coleenp@548 4419 }
coleenp@548 4420
duke@435 4421 // Get element klass
coleenp@548 4422 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 4423 // Compute array klass from element klass
duke@435 4424 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 4425 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 4426 // Compute array klass from element klass
duke@435 4427 ciKlass* k_elem = tary->klass();
duke@435 4428 // If element type is something like bottom[], k_elem will be null.
duke@435 4429 if (k_elem != NULL)
duke@435 4430 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 4431 } else if ((el->base() == Type::Top) ||
coleenp@548 4432 (el->base() == Type::Bottom)) {
duke@435 4433 // element type of Bottom occurs from meet of basic type
duke@435 4434 // and object; Top occurs when doing join on Bottom.
duke@435 4435 // Leave k_ary at NULL.
duke@435 4436 } else {
duke@435 4437 // Cannot compute array klass directly from basic type,
duke@435 4438 // since subtypes of TypeInt all have basic type T_INT.
kvn@2116 4439 #ifdef ASSERT
kvn@2116 4440 if (verify && el->isa_int()) {
kvn@2116 4441 // Check simple cases when verifying klass.
kvn@2116 4442 BasicType bt = T_ILLEGAL;
kvn@2116 4443 if (el == TypeInt::BYTE) {
kvn@2116 4444 bt = T_BYTE;
kvn@2116 4445 } else if (el == TypeInt::SHORT) {
kvn@2116 4446 bt = T_SHORT;
kvn@2116 4447 } else if (el == TypeInt::CHAR) {
kvn@2116 4448 bt = T_CHAR;
kvn@2116 4449 } else if (el == TypeInt::INT) {
kvn@2116 4450 bt = T_INT;
kvn@2116 4451 } else {
kvn@2116 4452 return _klass; // just return specified klass
kvn@2116 4453 }
kvn@2116 4454 return ciTypeArrayKlass::make(bt);
kvn@2116 4455 }
kvn@2116 4456 #endif
coleenp@548 4457 assert(!el->isa_int(),
duke@435 4458 "integral arrays must be pre-equipped with a class");
duke@435 4459 // Compute array klass directly from basic type
coleenp@548 4460 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 4461 }
kvn@2116 4462 return k_ary;
kvn@2116 4463 }
kvn@2116 4464
kvn@2116 4465 //------------------------------klass------------------------------------------
kvn@2116 4466 // Return the defining klass for this class
kvn@2116 4467 ciKlass* TypeAryPtr::klass() const {
kvn@2116 4468 if( _klass ) return _klass; // Return cached value, if possible
kvn@2116 4469
kvn@2116 4470 // Oops, need to compute _klass and cache it
kvn@2116 4471 ciKlass* k_ary = compute_klass();
duke@435 4472
kvn@2636 4473 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
duke@435 4474 // The _klass field acts as a cache of the underlying
duke@435 4475 // ciKlass for this array type. In order to set the field,
duke@435 4476 // we need to cast away const-ness.
duke@435 4477 //
duke@435 4478 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 4479 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 4480 // active compilations. However, the ciKlass which represents
duke@435 4481 // this Type is *not* shared between compilations, so caching
duke@435 4482 // this value would result in fetching a dangling pointer.
duke@435 4483 //
duke@435 4484 // Recomputing the underlying ciKlass for each request is
duke@435 4485 // a bit less efficient than caching, but calls to
duke@435 4486 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 4487 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 4488 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 4489 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 4490 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 4491 }
kvn@598 4492 }
duke@435 4493 return k_ary;
duke@435 4494 }
duke@435 4495
duke@435 4496
duke@435 4497 //------------------------------add_offset-------------------------------------
duke@435 4498 // Access internals of klass object
kvn@741 4499 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
duke@435 4500 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 4501 }
duke@435 4502
duke@435 4503 //------------------------------cast_to_ptr_type-------------------------------
duke@435 4504 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
kvn@992 4505 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
duke@435 4506 if( ptr == _ptr ) return this;
duke@435 4507 return make(ptr, _klass, _offset);
duke@435 4508 }
duke@435 4509
duke@435 4510
duke@435 4511 //-----------------------------cast_to_exactness-------------------------------
duke@435 4512 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 4513 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 4514 if (!UseExactTypes) return this;
duke@435 4515 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 4516 }
duke@435 4517
duke@435 4518
duke@435 4519 //-----------------------------as_instance_type--------------------------------
duke@435 4520 // Corresponding type for an instance of the given class.
duke@435 4521 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 4522 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 4523 ciKlass* k = klass();
duke@435 4524 bool xk = klass_is_exact();
duke@435 4525 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 4526 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
morris@4760 4527 guarantee(toop != NULL, "need type for given klass");
duke@435 4528 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 4529 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 4530 }
duke@435 4531
duke@435 4532
duke@435 4533 //------------------------------xmeet------------------------------------------
duke@435 4534 // Compute the MEET of two types, return a new Type object.
duke@435 4535 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 4536 // Perform a fast test for common case; meeting the same types together.
duke@435 4537 if( this == t ) return this; // Meeting same type-rep?
duke@435 4538
duke@435 4539 // Current "this->_base" is Pointer
duke@435 4540 switch (t->base()) { // switch on original type
duke@435 4541
duke@435 4542 case Int: // Mixing ints & oops happens when javac
duke@435 4543 case Long: // reuses local variables
duke@435 4544 case FloatTop:
duke@435 4545 case FloatCon:
duke@435 4546 case FloatBot:
duke@435 4547 case DoubleTop:
duke@435 4548 case DoubleCon:
duke@435 4549 case DoubleBot:
kvn@728 4550 case NarrowOop:
roland@4159 4551 case NarrowKlass:
duke@435 4552 case Bottom: // Ye Olde Default
duke@435 4553 return Type::BOTTOM;
duke@435 4554 case Top:
duke@435 4555 return this;
duke@435 4556
duke@435 4557 default: // All else is a mistake
duke@435 4558 typerr(t);
duke@435 4559
duke@435 4560 case AnyPtr: { // Meeting to AnyPtrs
duke@435 4561 // Found an AnyPtr type vs self-KlassPtr type
duke@435 4562 const TypePtr *tp = t->is_ptr();
duke@435 4563 int offset = meet_offset(tp->offset());
duke@435 4564 PTR ptr = meet_ptr(tp->ptr());
duke@435 4565 switch (tp->ptr()) {
duke@435 4566 case TopPTR:
duke@435 4567 return this;
duke@435 4568 case Null:
duke@435 4569 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 4570 case AnyNull:
duke@435 4571 return make( ptr, klass(), offset );
duke@435 4572 case BotPTR:
duke@435 4573 case NotNull:
duke@435 4574 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 4575 default: typerr(t);
duke@435 4576 }
duke@435 4577 }
duke@435 4578
coleenp@4037 4579 case RawPtr:
coleenp@4037 4580 case MetadataPtr:
coleenp@4037 4581 case OopPtr:
duke@435 4582 case AryPtr: // Meet with AryPtr
duke@435 4583 case InstPtr: // Meet with InstPtr
coleenp@4037 4584 return TypePtr::BOTTOM;
duke@435 4585
duke@435 4586 //
duke@435 4587 // A-top }
duke@435 4588 // / | \ } Tops
duke@435 4589 // B-top A-any C-top }
duke@435 4590 // | / | \ | } Any-nulls
duke@435 4591 // B-any | C-any }
duke@435 4592 // | | |
duke@435 4593 // B-con A-con C-con } constants; not comparable across classes
duke@435 4594 // | | |
duke@435 4595 // B-not | C-not }
duke@435 4596 // | \ | / | } not-nulls
duke@435 4597 // B-bot A-not C-bot }
duke@435 4598 // \ | / } Bottoms
duke@435 4599 // A-bot }
duke@435 4600 //
duke@435 4601
duke@435 4602 case KlassPtr: { // Meet two KlassPtr types
duke@435 4603 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 4604 int off = meet_offset(tkls->offset());
duke@435 4605 PTR ptr = meet_ptr(tkls->ptr());
duke@435 4606
duke@435 4607 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 4608 // If we have constants, then we created oops so classes are loaded
duke@435 4609 // and we can handle the constants further down. This case handles
duke@435 4610 // not-loaded classes
duke@435 4611 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 4612 return make( ptr, klass(), off );
duke@435 4613 }
duke@435 4614
duke@435 4615 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 4616 ciKlass* tkls_klass = tkls->klass();
duke@435 4617 ciKlass* this_klass = this->klass();
duke@435 4618 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 4619 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 4620
duke@435 4621 // If 'this' type is above the centerline and is a superclass of the
duke@435 4622 // other, we can treat 'this' as having the same type as the other.
duke@435 4623 if ((above_centerline(this->ptr())) &&
duke@435 4624 tkls_klass->is_subtype_of(this_klass)) {
duke@435 4625 this_klass = tkls_klass;
duke@435 4626 }
duke@435 4627 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 4628 // other, we can treat 'tinst' as having the same type as the other.
duke@435 4629 if ((above_centerline(tkls->ptr())) &&
duke@435 4630 this_klass->is_subtype_of(tkls_klass)) {
duke@435 4631 tkls_klass = this_klass;
duke@435 4632 }
duke@435 4633
duke@435 4634 // Check for classes now being equal
duke@435 4635 if (tkls_klass->equals(this_klass)) {
duke@435 4636 // If the klasses are equal, the constants may still differ. Fall to
duke@435 4637 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 4638 // handled elsewhere).
duke@435 4639 if( ptr == Constant ) {
coleenp@4037 4640 if (this->_ptr == Constant && tkls->_ptr == Constant &&
coleenp@4037 4641 this->klass()->equals(tkls->klass()));
coleenp@4037 4642 else if (above_centerline(this->ptr()));
coleenp@4037 4643 else if (above_centerline(tkls->ptr()));
duke@435 4644 else
duke@435 4645 ptr = NotNull;
duke@435 4646 }
duke@435 4647 return make( ptr, this_klass, off );
duke@435 4648 } // Else classes are not equal
duke@435 4649
duke@435 4650 // Since klasses are different, we require the LCA in the Java
duke@435 4651 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 4652 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 4653 ptr = NotNull;
duke@435 4654 // Now we find the LCA of Java classes
duke@435 4655 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 4656 return make( ptr, k, off );
duke@435 4657 } // End of case KlassPtr
duke@435 4658
duke@435 4659 } // End of switch
duke@435 4660 return this; // Return the double constant
duke@435 4661 }
duke@435 4662
duke@435 4663 //------------------------------xdual------------------------------------------
duke@435 4664 // Dual: compute field-by-field dual
duke@435 4665 const Type *TypeKlassPtr::xdual() const {
duke@435 4666 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 4667 }
duke@435 4668
coleenp@4037 4669 //------------------------------get_con----------------------------------------
coleenp@4037 4670 intptr_t TypeKlassPtr::get_con() const {
coleenp@4037 4671 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4672 assert( _offset >= 0, "" );
coleenp@4037 4673
coleenp@4037 4674 if (_offset != 0) {
coleenp@4037 4675 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4676 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4677 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4678 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4679 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4680 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4681 // but this assertion here is to help prevent its occurence.
coleenp@4037 4682 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4683 ShouldNotReachHere();
coleenp@4037 4684 }
coleenp@4037 4685
coleenp@4037 4686 return (intptr_t)klass()->constant_encoding();
coleenp@4037 4687 }
duke@435 4688 //------------------------------dump2------------------------------------------
duke@435 4689 // Dump Klass Type
duke@435 4690 #ifndef PRODUCT
duke@435 4691 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 4692 switch( _ptr ) {
duke@435 4693 case Constant:
duke@435 4694 st->print("precise ");
duke@435 4695 case NotNull:
duke@435 4696 {
duke@435 4697 const char *name = klass()->name()->as_utf8();
duke@435 4698 if( name ) {
duke@435 4699 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 4700 } else {
duke@435 4701 ShouldNotReachHere();
duke@435 4702 }
duke@435 4703 }
duke@435 4704 case BotPTR:
duke@435 4705 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 4706 case TopPTR:
duke@435 4707 case AnyNull:
duke@435 4708 st->print(":%s", ptr_msg[_ptr]);
duke@435 4709 if( _klass_is_exact ) st->print(":exact");
duke@435 4710 break;
duke@435 4711 }
duke@435 4712
duke@435 4713 if( _offset ) { // Dump offset, if any
duke@435 4714 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 4715 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 4716 else { st->print("+%d", _offset); }
duke@435 4717 }
duke@435 4718
duke@435 4719 st->print(" *");
duke@435 4720 }
duke@435 4721 #endif
duke@435 4722
duke@435 4723
duke@435 4724
duke@435 4725 //=============================================================================
duke@435 4726 // Convenience common pre-built types.
duke@435 4727
duke@435 4728 //------------------------------make-------------------------------------------
duke@435 4729 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 4730 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 4731 }
duke@435 4732
duke@435 4733 //------------------------------make-------------------------------------------
duke@435 4734 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 4735 Compile* C = Compile::current();
duke@435 4736 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 4737 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 4738 const TypeTuple *domain;
twisti@1572 4739 if (method->is_static()) {
duke@435 4740 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 4741 } else {
duke@435 4742 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 4743 }
duke@435 4744 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 4745 tf = TypeFunc::make(domain, range);
duke@435 4746 C->set_last_tf(method, tf); // fill cache
duke@435 4747 return tf;
duke@435 4748 }
duke@435 4749
duke@435 4750 //------------------------------meet-------------------------------------------
duke@435 4751 // Compute the MEET of two types. It returns a new Type object.
duke@435 4752 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 4753 // Perform a fast test for common case; meeting the same types together.
duke@435 4754 if( this == t ) return this; // Meeting same type-rep?
duke@435 4755
duke@435 4756 // Current "this->_base" is Func
duke@435 4757 switch (t->base()) { // switch on original type
duke@435 4758
duke@435 4759 case Bottom: // Ye Olde Default
duke@435 4760 return t;
duke@435 4761
duke@435 4762 default: // All else is a mistake
duke@435 4763 typerr(t);
duke@435 4764
duke@435 4765 case Top:
duke@435 4766 break;
duke@435 4767 }
duke@435 4768 return this; // Return the double constant
duke@435 4769 }
duke@435 4770
duke@435 4771 //------------------------------xdual------------------------------------------
duke@435 4772 // Dual: compute field-by-field dual
duke@435 4773 const Type *TypeFunc::xdual() const {
duke@435 4774 return this;
duke@435 4775 }
duke@435 4776
duke@435 4777 //------------------------------eq---------------------------------------------
duke@435 4778 // Structural equality check for Type representations
duke@435 4779 bool TypeFunc::eq( const Type *t ) const {
duke@435 4780 const TypeFunc *a = (const TypeFunc*)t;
duke@435 4781 return _domain == a->_domain &&
duke@435 4782 _range == a->_range;
duke@435 4783 }
duke@435 4784
duke@435 4785 //------------------------------hash-------------------------------------------
duke@435 4786 // Type-specific hashing function.
duke@435 4787 int TypeFunc::hash(void) const {
duke@435 4788 return (intptr_t)_domain + (intptr_t)_range;
duke@435 4789 }
duke@435 4790
duke@435 4791 //------------------------------dump2------------------------------------------
duke@435 4792 // Dump Function Type
duke@435 4793 #ifndef PRODUCT
duke@435 4794 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4795 if( _range->_cnt <= Parms )
duke@435 4796 st->print("void");
duke@435 4797 else {
duke@435 4798 uint i;
duke@435 4799 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 4800 _range->field_at(i)->dump2(d,depth,st);
duke@435 4801 st->print("/");
duke@435 4802 }
duke@435 4803 _range->field_at(i)->dump2(d,depth,st);
duke@435 4804 }
duke@435 4805 st->print(" ");
duke@435 4806 st->print("( ");
duke@435 4807 if( !depth || d[this] ) { // Check for recursive dump
duke@435 4808 st->print("...)");
duke@435 4809 return;
duke@435 4810 }
duke@435 4811 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 4812 if (Parms < _domain->_cnt)
duke@435 4813 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 4814 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 4815 st->print(", ");
duke@435 4816 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 4817 }
duke@435 4818 st->print(" )");
duke@435 4819 }
duke@435 4820 #endif
duke@435 4821
duke@435 4822 //------------------------------singleton--------------------------------------
duke@435 4823 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 4824 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 4825 // or a single symbol.
duke@435 4826 bool TypeFunc::singleton(void) const {
duke@435 4827 return false; // Never a singleton
duke@435 4828 }
duke@435 4829
duke@435 4830 bool TypeFunc::empty(void) const {
duke@435 4831 return false; // Never empty
duke@435 4832 }
duke@435 4833
duke@435 4834
duke@435 4835 BasicType TypeFunc::return_type() const{
duke@435 4836 if (range()->cnt() == TypeFunc::Parms) {
duke@435 4837 return T_VOID;
duke@435 4838 }
duke@435 4839 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 4840 }

mercurial