src/share/vm/opto/type.cpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1775
5b29c2368d93
child 1975
d678e3277048
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

duke@435 1 /*
trims@1907 2 * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 // Optimization - Graph Style
duke@435 28
duke@435 29 #include "incls/_precompiled.incl"
duke@435 30 #include "incls/_type.cpp.incl"
duke@435 31
duke@435 32 // Dictionary of types shared among compilations.
duke@435 33 Dict* Type::_shared_type_dict = NULL;
duke@435 34
duke@435 35 // Array which maps compiler types to Basic Types
duke@435 36 const BasicType Type::_basic_type[Type::lastype] = {
duke@435 37 T_ILLEGAL, // Bad
duke@435 38 T_ILLEGAL, // Control
duke@435 39 T_VOID, // Top
duke@435 40 T_INT, // Int
duke@435 41 T_LONG, // Long
duke@435 42 T_VOID, // Half
coleenp@548 43 T_NARROWOOP, // NarrowOop
duke@435 44
duke@435 45 T_ILLEGAL, // Tuple
duke@435 46 T_ARRAY, // Array
duke@435 47
duke@435 48 T_ADDRESS, // AnyPtr // shows up in factory methods for NULL_PTR
duke@435 49 T_ADDRESS, // RawPtr
duke@435 50 T_OBJECT, // OopPtr
duke@435 51 T_OBJECT, // InstPtr
duke@435 52 T_OBJECT, // AryPtr
duke@435 53 T_OBJECT, // KlassPtr
duke@435 54
duke@435 55 T_OBJECT, // Function
duke@435 56 T_ILLEGAL, // Abio
duke@435 57 T_ADDRESS, // Return_Address
duke@435 58 T_ILLEGAL, // Memory
duke@435 59 T_FLOAT, // FloatTop
duke@435 60 T_FLOAT, // FloatCon
duke@435 61 T_FLOAT, // FloatBot
duke@435 62 T_DOUBLE, // DoubleTop
duke@435 63 T_DOUBLE, // DoubleCon
duke@435 64 T_DOUBLE, // DoubleBot
duke@435 65 T_ILLEGAL, // Bottom
duke@435 66 };
duke@435 67
duke@435 68 // Map ideal registers (machine types) to ideal types
duke@435 69 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 70
duke@435 71 // Map basic types to canonical Type* pointers.
duke@435 72 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 73
duke@435 74 // Map basic types to constant-zero Types.
duke@435 75 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 76
duke@435 77 // Map basic types to array-body alias types.
duke@435 78 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 79
duke@435 80 //=============================================================================
duke@435 81 // Convenience common pre-built types.
duke@435 82 const Type *Type::ABIO; // State-of-machine only
duke@435 83 const Type *Type::BOTTOM; // All values
duke@435 84 const Type *Type::CONTROL; // Control only
duke@435 85 const Type *Type::DOUBLE; // All doubles
duke@435 86 const Type *Type::FLOAT; // All floats
duke@435 87 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 88 const Type *Type::MEMORY; // Abstract store only
duke@435 89 const Type *Type::RETURN_ADDRESS;
duke@435 90 const Type *Type::TOP; // No values in set
duke@435 91
duke@435 92 //------------------------------get_const_type---------------------------
duke@435 93 const Type* Type::get_const_type(ciType* type) {
duke@435 94 if (type == NULL) {
duke@435 95 return NULL;
duke@435 96 } else if (type->is_primitive_type()) {
duke@435 97 return get_const_basic_type(type->basic_type());
duke@435 98 } else {
duke@435 99 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 100 }
duke@435 101 }
duke@435 102
duke@435 103 //---------------------------array_element_basic_type---------------------------------
duke@435 104 // Mapping to the array element's basic type.
duke@435 105 BasicType Type::array_element_basic_type() const {
duke@435 106 BasicType bt = basic_type();
duke@435 107 if (bt == T_INT) {
duke@435 108 if (this == TypeInt::INT) return T_INT;
duke@435 109 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 110 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 111 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 112 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 113 return T_VOID;
duke@435 114 }
duke@435 115 return bt;
duke@435 116 }
duke@435 117
duke@435 118 //---------------------------get_typeflow_type---------------------------------
duke@435 119 // Import a type produced by ciTypeFlow.
duke@435 120 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 121 switch (type->basic_type()) {
duke@435 122
duke@435 123 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 124 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 125 return Type::BOTTOM;
duke@435 126
duke@435 127 case ciTypeFlow::StateVector::T_TOP:
duke@435 128 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 129 return Type::TOP;
duke@435 130
duke@435 131 case ciTypeFlow::StateVector::T_NULL:
duke@435 132 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 133 return TypePtr::NULL_PTR;
duke@435 134
duke@435 135 case ciTypeFlow::StateVector::T_LONG2:
duke@435 136 // The ciTypeFlow pass pushes a long, then the half.
duke@435 137 // We do the same.
duke@435 138 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 139 return TypeInt::TOP;
duke@435 140
duke@435 141 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 142 // The ciTypeFlow pass pushes double, then the half.
duke@435 143 // Our convention is the same.
duke@435 144 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 145 return Type::TOP;
duke@435 146
duke@435 147 case T_ADDRESS:
duke@435 148 assert(type->is_return_address(), "");
duke@435 149 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 150
duke@435 151 default:
duke@435 152 // make sure we did not mix up the cases:
duke@435 153 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 154 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 155 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 156 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 157 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 158 assert(!type->is_return_address(), "");
duke@435 159
duke@435 160 return Type::get_const_type(type);
duke@435 161 }
duke@435 162 }
duke@435 163
duke@435 164
duke@435 165 //------------------------------make-------------------------------------------
duke@435 166 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 167 // and look for an existing copy in the type dictionary.
duke@435 168 const Type *Type::make( enum TYPES t ) {
duke@435 169 return (new Type(t))->hashcons();
duke@435 170 }
kvn@658 171
duke@435 172 //------------------------------cmp--------------------------------------------
duke@435 173 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 174 if( t1->_base != t2->_base )
duke@435 175 return 1; // Missed badly
duke@435 176 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 177 return !t1->eq(t2); // Return ZERO if equal
duke@435 178 }
duke@435 179
duke@435 180 //------------------------------hash-------------------------------------------
duke@435 181 int Type::uhash( const Type *const t ) {
duke@435 182 return t->hash();
duke@435 183 }
duke@435 184
duke@435 185 //--------------------------Initialize_shared----------------------------------
duke@435 186 void Type::Initialize_shared(Compile* current) {
duke@435 187 // This method does not need to be locked because the first system
duke@435 188 // compilations (stub compilations) occur serially. If they are
duke@435 189 // changed to proceed in parallel, then this section will need
duke@435 190 // locking.
duke@435 191
duke@435 192 Arena* save = current->type_arena();
duke@435 193 Arena* shared_type_arena = new Arena();
duke@435 194
duke@435 195 current->set_type_arena(shared_type_arena);
duke@435 196 _shared_type_dict =
duke@435 197 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 198 shared_type_arena, 128 );
duke@435 199 current->set_type_dict(_shared_type_dict);
duke@435 200
duke@435 201 // Make shared pre-built types.
duke@435 202 CONTROL = make(Control); // Control only
duke@435 203 TOP = make(Top); // No values in set
duke@435 204 MEMORY = make(Memory); // Abstract store only
duke@435 205 ABIO = make(Abio); // State-of-machine only
duke@435 206 RETURN_ADDRESS=make(Return_Address);
duke@435 207 FLOAT = make(FloatBot); // All floats
duke@435 208 DOUBLE = make(DoubleBot); // All doubles
duke@435 209 BOTTOM = make(Bottom); // Everything
duke@435 210 HALF = make(Half); // Placeholder half of doublewide type
duke@435 211
duke@435 212 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 213 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 214
duke@435 215 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 216 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 217
duke@435 218 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 219 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 220 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 221 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 222 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 223 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 224 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 225 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 226 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 227 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 228 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
twisti@1059 229 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
duke@435 230 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 231 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 232 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 233 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 234 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 235 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
duke@435 236 // CmpL is overloaded both as the bytecode computation returning
duke@435 237 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 238 // compare returning optimizer ideal-type flags.
duke@435 239 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 240 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 241 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 242 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
duke@435 243
duke@435 244 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 245 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 246 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 247 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 248 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 249 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 250 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
duke@435 251
duke@435 252 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 253 fboth[0] = Type::CONTROL;
duke@435 254 fboth[1] = Type::CONTROL;
duke@435 255 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 256
duke@435 257 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 258 ffalse[0] = Type::CONTROL;
duke@435 259 ffalse[1] = Type::TOP;
duke@435 260 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 261
duke@435 262 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 263 fneither[0] = Type::TOP;
duke@435 264 fneither[1] = Type::TOP;
duke@435 265 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 266
duke@435 267 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 268 ftrue[0] = Type::TOP;
duke@435 269 ftrue[1] = Type::CONTROL;
duke@435 270 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 271
duke@435 272 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 273 floop[0] = Type::CONTROL;
duke@435 274 floop[1] = TypeInt::INT;
duke@435 275 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 276
duke@435 277 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 278 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 279 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 280
duke@435 281 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 282 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 283
duke@435 284 const Type **fmembar = TypeTuple::fields(0);
duke@435 285 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 286
duke@435 287 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 288 fsc[0] = TypeInt::CC;
duke@435 289 fsc[1] = Type::MEMORY;
duke@435 290 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 291
duke@435 292 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 293 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 294 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 295 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 296 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 297 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 298 false, 0, oopDesc::klass_offset_in_bytes());
kvn@1427 299 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
duke@435 300
coleenp@548 301 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 302 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 303
coleenp@548 304 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 305 mreg2type[Op_Set ] = 0;
coleenp@548 306 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 307 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 308 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 309 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 310 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 311 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 312 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 313
duke@435 314 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), current->env()->Object_klass(), false, arrayOopDesc::length_offset_in_bytes());
kvn@598 315
kvn@598 316 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 317
kvn@598 318 #ifdef _LP64
kvn@598 319 if (UseCompressedOops) {
kvn@598 320 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 321 } else
kvn@598 322 #endif
kvn@598 323 {
kvn@598 324 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 325 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 326 }
duke@435 327 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 328 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 329 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 330 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 331 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 332 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 333 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 334
kvn@598 335 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 336 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 337 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 338 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 339 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 340 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 341 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 342 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 343 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 344 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 345 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 346 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 347
duke@435 348 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 349 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 350
duke@435 351 const Type **fi2c = TypeTuple::fields(2);
duke@435 352 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
duke@435 353 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 354 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 355
duke@435 356 const Type **intpair = TypeTuple::fields(2);
duke@435 357 intpair[0] = TypeInt::INT;
duke@435 358 intpair[1] = TypeInt::INT;
duke@435 359 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 360
duke@435 361 const Type **longpair = TypeTuple::fields(2);
duke@435 362 longpair[0] = TypeLong::LONG;
duke@435 363 longpair[1] = TypeLong::LONG;
duke@435 364 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 365
coleenp@548 366 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
duke@435 367 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
duke@435 368 _const_basic_type[T_CHAR] = TypeInt::CHAR;
duke@435 369 _const_basic_type[T_BYTE] = TypeInt::BYTE;
duke@435 370 _const_basic_type[T_SHORT] = TypeInt::SHORT;
duke@435 371 _const_basic_type[T_INT] = TypeInt::INT;
duke@435 372 _const_basic_type[T_LONG] = TypeLong::LONG;
duke@435 373 _const_basic_type[T_FLOAT] = Type::FLOAT;
duke@435 374 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
duke@435 375 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
duke@435 376 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
duke@435 377 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
duke@435 378 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
duke@435 379 _const_basic_type[T_CONFLICT]= Type::BOTTOM; // why not?
duke@435 380
coleenp@548 381 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
duke@435 382 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
duke@435 383 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
duke@435 384 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
duke@435 385 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
duke@435 386 _zero_type[T_INT] = TypeInt::ZERO;
duke@435 387 _zero_type[T_LONG] = TypeLong::ZERO;
duke@435 388 _zero_type[T_FLOAT] = TypeF::ZERO;
duke@435 389 _zero_type[T_DOUBLE] = TypeD::ZERO;
duke@435 390 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
duke@435 391 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
duke@435 392 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
duke@435 393 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 394
duke@435 395 // get_zero_type() should not happen for T_CONFLICT
duke@435 396 _zero_type[T_CONFLICT]= NULL;
duke@435 397
duke@435 398 // Restore working type arena.
duke@435 399 current->set_type_arena(save);
duke@435 400 current->set_type_dict(NULL);
duke@435 401 }
duke@435 402
duke@435 403 //------------------------------Initialize-------------------------------------
duke@435 404 void Type::Initialize(Compile* current) {
duke@435 405 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 406
duke@435 407 if (_shared_type_dict == NULL) {
duke@435 408 Initialize_shared(current);
duke@435 409 }
duke@435 410
duke@435 411 Arena* type_arena = current->type_arena();
duke@435 412
duke@435 413 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 414 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 415 current->set_type_dict(tdic);
duke@435 416
duke@435 417 // Transfer the shared types.
duke@435 418 DictI i(_shared_type_dict);
duke@435 419 for( ; i.test(); ++i ) {
duke@435 420 Type* t = (Type*)i._value;
duke@435 421 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 422 }
coleenp@548 423
coleenp@548 424 #ifdef ASSERT
coleenp@548 425 verify_lastype();
coleenp@548 426 #endif
duke@435 427 }
duke@435 428
duke@435 429 //------------------------------hashcons---------------------------------------
duke@435 430 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 431 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 432 // current Type in the Type table.
duke@435 433 const Type *Type::hashcons(void) {
duke@435 434 debug_only(base()); // Check the assertion in Type::base().
duke@435 435 // Look up the Type in the Type dictionary
duke@435 436 Dict *tdic = type_dict();
duke@435 437 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 438 if( old ) { // Pre-existing Type?
duke@435 439 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 440 delete this; // Yes, Nuke this guy
duke@435 441 assert( old->_dual, "" );
duke@435 442 return old; // Return pre-existing
duke@435 443 }
duke@435 444
duke@435 445 // Every type has a dual (to make my lattice symmetric).
duke@435 446 // Since we just discovered a new Type, compute its dual right now.
duke@435 447 assert( !_dual, "" ); // No dual yet
duke@435 448 _dual = xdual(); // Compute the dual
duke@435 449 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 450 _dual = this;
duke@435 451 return this;
duke@435 452 }
duke@435 453 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 454 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 455 // New Type, insert into Type table
duke@435 456 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 457 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 458 #ifdef ASSERT
duke@435 459 Type *dual_dual = (Type*)_dual->xdual();
duke@435 460 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 461 delete dual_dual;
duke@435 462 #endif
duke@435 463 return this; // Return new Type
duke@435 464 }
duke@435 465
duke@435 466 //------------------------------eq---------------------------------------------
duke@435 467 // Structural equality check for Type representations
duke@435 468 bool Type::eq( const Type * ) const {
duke@435 469 return true; // Nothing else can go wrong
duke@435 470 }
duke@435 471
duke@435 472 //------------------------------hash-------------------------------------------
duke@435 473 // Type-specific hashing function.
duke@435 474 int Type::hash(void) const {
duke@435 475 return _base;
duke@435 476 }
duke@435 477
duke@435 478 //------------------------------is_finite--------------------------------------
duke@435 479 // Has a finite value
duke@435 480 bool Type::is_finite() const {
duke@435 481 return false;
duke@435 482 }
duke@435 483
duke@435 484 //------------------------------is_nan-----------------------------------------
duke@435 485 // Is not a number (NaN)
duke@435 486 bool Type::is_nan() const {
duke@435 487 return false;
duke@435 488 }
duke@435 489
kvn@1255 490 //----------------------interface_vs_oop---------------------------------------
kvn@1255 491 #ifdef ASSERT
kvn@1255 492 bool Type::interface_vs_oop(const Type *t) const {
kvn@1255 493 bool result = false;
kvn@1255 494
kvn@1427 495 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
kvn@1427 496 const TypePtr* t_ptr = t->make_ptr();
kvn@1427 497 if( this_ptr == NULL || t_ptr == NULL )
kvn@1427 498 return result;
kvn@1427 499
kvn@1427 500 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
kvn@1427 501 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
kvn@1255 502 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
kvn@1255 503 bool this_interface = this_inst->klass()->is_interface();
kvn@1255 504 bool t_interface = t_inst->klass()->is_interface();
kvn@1255 505 result = this_interface ^ t_interface;
kvn@1255 506 }
kvn@1255 507
kvn@1255 508 return result;
kvn@1255 509 }
kvn@1255 510 #endif
kvn@1255 511
duke@435 512 //------------------------------meet-------------------------------------------
duke@435 513 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 514 // commutative and the lattice is symmetric.
duke@435 515 const Type *Type::meet( const Type *t ) const {
coleenp@548 516 if (isa_narrowoop() && t->isa_narrowoop()) {
kvn@656 517 const Type* result = make_ptr()->meet(t->make_ptr());
kvn@656 518 return result->make_narrowoop();
coleenp@548 519 }
coleenp@548 520
duke@435 521 const Type *mt = xmeet(t);
coleenp@548 522 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
duke@435 523 #ifdef ASSERT
duke@435 524 assert( mt == t->xmeet(this), "meet not commutative" );
duke@435 525 const Type* dual_join = mt->_dual;
duke@435 526 const Type *t2t = dual_join->xmeet(t->_dual);
duke@435 527 const Type *t2this = dual_join->xmeet( _dual);
duke@435 528
duke@435 529 // Interface meet Oop is Not Symmetric:
duke@435 530 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 531 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
kvn@1255 532
kvn@1255 533 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
duke@435 534 tty->print_cr("=== Meet Not Symmetric ===");
duke@435 535 tty->print("t = "); t->dump(); tty->cr();
duke@435 536 tty->print("this= "); dump(); tty->cr();
duke@435 537 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
duke@435 538
duke@435 539 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
duke@435 540 tty->print("this_dual= "); _dual->dump(); tty->cr();
duke@435 541 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
duke@435 542
duke@435 543 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
duke@435 544 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 545
duke@435 546 fatal("meet not symmetric" );
duke@435 547 }
duke@435 548 #endif
duke@435 549 return mt;
duke@435 550 }
duke@435 551
duke@435 552 //------------------------------xmeet------------------------------------------
duke@435 553 // Compute the MEET of two types. It returns a new Type object.
duke@435 554 const Type *Type::xmeet( const Type *t ) const {
duke@435 555 // Perform a fast test for common case; meeting the same types together.
duke@435 556 if( this == t ) return this; // Meeting same type-rep?
duke@435 557
duke@435 558 // Meeting TOP with anything?
duke@435 559 if( _base == Top ) return t;
duke@435 560
duke@435 561 // Meeting BOTTOM with anything?
duke@435 562 if( _base == Bottom ) return BOTTOM;
duke@435 563
duke@435 564 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 565 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 566 switch (t->base()) { // Switch on original type
duke@435 567
duke@435 568 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 569 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 570 case FloatCon:
duke@435 571 case DoubleCon:
duke@435 572 case Int:
duke@435 573 case Long:
duke@435 574 return t->xmeet(this);
duke@435 575
duke@435 576 case OopPtr:
duke@435 577 return t->xmeet(this);
duke@435 578
duke@435 579 case InstPtr:
duke@435 580 return t->xmeet(this);
duke@435 581
duke@435 582 case KlassPtr:
duke@435 583 return t->xmeet(this);
duke@435 584
duke@435 585 case AryPtr:
duke@435 586 return t->xmeet(this);
duke@435 587
coleenp@548 588 case NarrowOop:
coleenp@548 589 return t->xmeet(this);
coleenp@548 590
duke@435 591 case Bad: // Type check
duke@435 592 default: // Bogus type not in lattice
duke@435 593 typerr(t);
duke@435 594 return Type::BOTTOM;
duke@435 595
duke@435 596 case Bottom: // Ye Olde Default
duke@435 597 return t;
duke@435 598
duke@435 599 case FloatTop:
duke@435 600 if( _base == FloatTop ) return this;
duke@435 601 case FloatBot: // Float
duke@435 602 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 603 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 604 typerr(t);
duke@435 605 return Type::BOTTOM;
duke@435 606
duke@435 607 case DoubleTop:
duke@435 608 if( _base == DoubleTop ) return this;
duke@435 609 case DoubleBot: // Double
duke@435 610 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 611 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 612 typerr(t);
duke@435 613 return Type::BOTTOM;
duke@435 614
duke@435 615 // These next few cases must match exactly or it is a compile-time error.
duke@435 616 case Control: // Control of code
duke@435 617 case Abio: // State of world outside of program
duke@435 618 case Memory:
duke@435 619 if( _base == t->_base ) return this;
duke@435 620 typerr(t);
duke@435 621 return Type::BOTTOM;
duke@435 622
duke@435 623 case Top: // Top of the lattice
duke@435 624 return this;
duke@435 625 }
duke@435 626
duke@435 627 // The type is unchanged
duke@435 628 return this;
duke@435 629 }
duke@435 630
duke@435 631 //-----------------------------filter------------------------------------------
duke@435 632 const Type *Type::filter( const Type *kills ) const {
duke@435 633 const Type* ft = join(kills);
duke@435 634 if (ft->empty())
duke@435 635 return Type::TOP; // Canonical empty value
duke@435 636 return ft;
duke@435 637 }
duke@435 638
duke@435 639 //------------------------------xdual------------------------------------------
duke@435 640 // Compute dual right now.
duke@435 641 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 642 Bad, // Bad
duke@435 643 Control, // Control
duke@435 644 Bottom, // Top
duke@435 645 Bad, // Int - handled in v-call
duke@435 646 Bad, // Long - handled in v-call
duke@435 647 Half, // Half
coleenp@548 648 Bad, // NarrowOop - handled in v-call
duke@435 649
duke@435 650 Bad, // Tuple - handled in v-call
duke@435 651 Bad, // Array - handled in v-call
duke@435 652
duke@435 653 Bad, // AnyPtr - handled in v-call
duke@435 654 Bad, // RawPtr - handled in v-call
duke@435 655 Bad, // OopPtr - handled in v-call
duke@435 656 Bad, // InstPtr - handled in v-call
duke@435 657 Bad, // AryPtr - handled in v-call
duke@435 658 Bad, // KlassPtr - handled in v-call
duke@435 659
duke@435 660 Bad, // Function - handled in v-call
duke@435 661 Abio, // Abio
duke@435 662 Return_Address,// Return_Address
duke@435 663 Memory, // Memory
duke@435 664 FloatBot, // FloatTop
duke@435 665 FloatCon, // FloatCon
duke@435 666 FloatTop, // FloatBot
duke@435 667 DoubleBot, // DoubleTop
duke@435 668 DoubleCon, // DoubleCon
duke@435 669 DoubleTop, // DoubleBot
duke@435 670 Top // Bottom
duke@435 671 };
duke@435 672
duke@435 673 const Type *Type::xdual() const {
duke@435 674 // Note: the base() accessor asserts the sanity of _base.
duke@435 675 assert(dual_type[base()] != Bad, "implement with v-call");
duke@435 676 return new Type(dual_type[_base]);
duke@435 677 }
duke@435 678
duke@435 679 //------------------------------has_memory-------------------------------------
duke@435 680 bool Type::has_memory() const {
duke@435 681 Type::TYPES tx = base();
duke@435 682 if (tx == Memory) return true;
duke@435 683 if (tx == Tuple) {
duke@435 684 const TypeTuple *t = is_tuple();
duke@435 685 for (uint i=0; i < t->cnt(); i++) {
duke@435 686 tx = t->field_at(i)->base();
duke@435 687 if (tx == Memory) return true;
duke@435 688 }
duke@435 689 }
duke@435 690 return false;
duke@435 691 }
duke@435 692
duke@435 693 #ifndef PRODUCT
duke@435 694 //------------------------------dump2------------------------------------------
duke@435 695 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 696 st->print(msg[_base]);
duke@435 697 }
duke@435 698
duke@435 699 //------------------------------dump-------------------------------------------
duke@435 700 void Type::dump_on(outputStream *st) const {
duke@435 701 ResourceMark rm;
duke@435 702 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 703 dump2(d,1, st);
kvn@598 704 if (is_ptr_to_narrowoop()) {
coleenp@548 705 st->print(" [narrow]");
coleenp@548 706 }
duke@435 707 }
duke@435 708
duke@435 709 //------------------------------data-------------------------------------------
duke@435 710 const char * const Type::msg[Type::lastype] = {
coleenp@548 711 "bad","control","top","int:","long:","half", "narrowoop:",
duke@435 712 "tuple:", "aryptr",
duke@435 713 "anyptr:", "rawptr:", "java:", "inst:", "ary:", "klass:",
duke@435 714 "func", "abIO", "return_address", "memory",
duke@435 715 "float_top", "ftcon:", "float",
duke@435 716 "double_top", "dblcon:", "double",
duke@435 717 "bottom"
duke@435 718 };
duke@435 719 #endif
duke@435 720
duke@435 721 //------------------------------singleton--------------------------------------
duke@435 722 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 723 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 724 bool Type::singleton(void) const {
duke@435 725 return _base == Top || _base == Half;
duke@435 726 }
duke@435 727
duke@435 728 //------------------------------empty------------------------------------------
duke@435 729 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 730 bool Type::empty(void) const {
duke@435 731 switch (_base) {
duke@435 732 case DoubleTop:
duke@435 733 case FloatTop:
duke@435 734 case Top:
duke@435 735 return true;
duke@435 736
duke@435 737 case Half:
duke@435 738 case Abio:
duke@435 739 case Return_Address:
duke@435 740 case Memory:
duke@435 741 case Bottom:
duke@435 742 case FloatBot:
duke@435 743 case DoubleBot:
duke@435 744 return false; // never a singleton, therefore never empty
duke@435 745 }
duke@435 746
duke@435 747 ShouldNotReachHere();
duke@435 748 return false;
duke@435 749 }
duke@435 750
duke@435 751 //------------------------------dump_stats-------------------------------------
duke@435 752 // Dump collected statistics to stderr
duke@435 753 #ifndef PRODUCT
duke@435 754 void Type::dump_stats() {
duke@435 755 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 756 }
duke@435 757 #endif
duke@435 758
duke@435 759 //------------------------------typerr-----------------------------------------
duke@435 760 void Type::typerr( const Type *t ) const {
duke@435 761 #ifndef PRODUCT
duke@435 762 tty->print("\nError mixing types: ");
duke@435 763 dump();
duke@435 764 tty->print(" and ");
duke@435 765 t->dump();
duke@435 766 tty->print("\n");
duke@435 767 #endif
duke@435 768 ShouldNotReachHere();
duke@435 769 }
duke@435 770
duke@435 771 //------------------------------isa_oop_ptr------------------------------------
duke@435 772 // Return true if type is an oop pointer type. False for raw pointers.
duke@435 773 static char isa_oop_ptr_tbl[Type::lastype] = {
coleenp@548 774 0,0,0,0,0,0,0/*narrowoop*/,0/*tuple*/, 0/*ary*/,
duke@435 775 0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
duke@435 776 0/*func*/,0,0/*return_address*/,0,
duke@435 777 /*floats*/0,0,0, /*doubles*/0,0,0,
duke@435 778 0
duke@435 779 };
duke@435 780 bool Type::isa_oop_ptr() const {
duke@435 781 return isa_oop_ptr_tbl[_base] != 0;
duke@435 782 }
duke@435 783
duke@435 784 //------------------------------dump_stats-------------------------------------
duke@435 785 // // Check that arrays match type enum
duke@435 786 #ifndef PRODUCT
duke@435 787 void Type::verify_lastype() {
duke@435 788 // Check that arrays match enumeration
duke@435 789 assert( Type::dual_type [Type::lastype - 1] == Type::Top, "did not update array");
duke@435 790 assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
duke@435 791 // assert( PhiNode::tbl [Type::lastype - 1] == NULL, "did not update array");
duke@435 792 assert( Matcher::base2reg[Type::lastype - 1] == 0, "did not update array");
duke@435 793 assert( isa_oop_ptr_tbl [Type::lastype - 1] == (char)0, "did not update array");
duke@435 794 }
duke@435 795 #endif
duke@435 796
duke@435 797 //=============================================================================
duke@435 798 // Convenience common pre-built types.
duke@435 799 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 800 const TypeF *TypeF::ONE; // Floating point one
duke@435 801
duke@435 802 //------------------------------make-------------------------------------------
duke@435 803 // Create a float constant
duke@435 804 const TypeF *TypeF::make(float f) {
duke@435 805 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 806 }
duke@435 807
duke@435 808 //------------------------------meet-------------------------------------------
duke@435 809 // Compute the MEET of two types. It returns a new Type object.
duke@435 810 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 811 // Perform a fast test for common case; meeting the same types together.
duke@435 812 if( this == t ) return this; // Meeting same type-rep?
duke@435 813
duke@435 814 // Current "this->_base" is FloatCon
duke@435 815 switch (t->base()) { // Switch on original type
duke@435 816 case AnyPtr: // Mixing with oops happens when javac
duke@435 817 case RawPtr: // reuses local variables
duke@435 818 case OopPtr:
duke@435 819 case InstPtr:
duke@435 820 case KlassPtr:
duke@435 821 case AryPtr:
kvn@728 822 case NarrowOop:
duke@435 823 case Int:
duke@435 824 case Long:
duke@435 825 case DoubleTop:
duke@435 826 case DoubleCon:
duke@435 827 case DoubleBot:
duke@435 828 case Bottom: // Ye Olde Default
duke@435 829 return Type::BOTTOM;
duke@435 830
duke@435 831 case FloatBot:
duke@435 832 return t;
duke@435 833
duke@435 834 default: // All else is a mistake
duke@435 835 typerr(t);
duke@435 836
duke@435 837 case FloatCon: // Float-constant vs Float-constant?
duke@435 838 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 839 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 840 // all the same representation in C++
duke@435 841 return FLOAT; // Return generic float
duke@435 842 // Equal constants
duke@435 843 case Top:
duke@435 844 case FloatTop:
duke@435 845 break; // Return the float constant
duke@435 846 }
duke@435 847 return this; // Return the float constant
duke@435 848 }
duke@435 849
duke@435 850 //------------------------------xdual------------------------------------------
duke@435 851 // Dual: symmetric
duke@435 852 const Type *TypeF::xdual() const {
duke@435 853 return this;
duke@435 854 }
duke@435 855
duke@435 856 //------------------------------eq---------------------------------------------
duke@435 857 // Structural equality check for Type representations
duke@435 858 bool TypeF::eq( const Type *t ) const {
duke@435 859 if( g_isnan(_f) ||
duke@435 860 g_isnan(t->getf()) ) {
duke@435 861 // One or both are NANs. If both are NANs return true, else false.
duke@435 862 return (g_isnan(_f) && g_isnan(t->getf()));
duke@435 863 }
duke@435 864 if (_f == t->getf()) {
duke@435 865 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 866 if (_f == 0.0) {
duke@435 867 // difference between positive and negative zero
duke@435 868 if (jint_cast(_f) != jint_cast(t->getf())) return false;
duke@435 869 }
duke@435 870 return true;
duke@435 871 }
duke@435 872 return false;
duke@435 873 }
duke@435 874
duke@435 875 //------------------------------hash-------------------------------------------
duke@435 876 // Type-specific hashing function.
duke@435 877 int TypeF::hash(void) const {
duke@435 878 return *(int*)(&_f);
duke@435 879 }
duke@435 880
duke@435 881 //------------------------------is_finite--------------------------------------
duke@435 882 // Has a finite value
duke@435 883 bool TypeF::is_finite() const {
duke@435 884 return g_isfinite(getf()) != 0;
duke@435 885 }
duke@435 886
duke@435 887 //------------------------------is_nan-----------------------------------------
duke@435 888 // Is not a number (NaN)
duke@435 889 bool TypeF::is_nan() const {
duke@435 890 return g_isnan(getf()) != 0;
duke@435 891 }
duke@435 892
duke@435 893 //------------------------------dump2------------------------------------------
duke@435 894 // Dump float constant Type
duke@435 895 #ifndef PRODUCT
duke@435 896 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 897 Type::dump2(d,depth, st);
duke@435 898 st->print("%f", _f);
duke@435 899 }
duke@435 900 #endif
duke@435 901
duke@435 902 //------------------------------singleton--------------------------------------
duke@435 903 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 904 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 905 // or a single symbol.
duke@435 906 bool TypeF::singleton(void) const {
duke@435 907 return true; // Always a singleton
duke@435 908 }
duke@435 909
duke@435 910 bool TypeF::empty(void) const {
duke@435 911 return false; // always exactly a singleton
duke@435 912 }
duke@435 913
duke@435 914 //=============================================================================
duke@435 915 // Convenience common pre-built types.
duke@435 916 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 917 const TypeD *TypeD::ONE; // Floating point one
duke@435 918
duke@435 919 //------------------------------make-------------------------------------------
duke@435 920 const TypeD *TypeD::make(double d) {
duke@435 921 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 922 }
duke@435 923
duke@435 924 //------------------------------meet-------------------------------------------
duke@435 925 // Compute the MEET of two types. It returns a new Type object.
duke@435 926 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 927 // Perform a fast test for common case; meeting the same types together.
duke@435 928 if( this == t ) return this; // Meeting same type-rep?
duke@435 929
duke@435 930 // Current "this->_base" is DoubleCon
duke@435 931 switch (t->base()) { // Switch on original type
duke@435 932 case AnyPtr: // Mixing with oops happens when javac
duke@435 933 case RawPtr: // reuses local variables
duke@435 934 case OopPtr:
duke@435 935 case InstPtr:
duke@435 936 case KlassPtr:
duke@435 937 case AryPtr:
never@618 938 case NarrowOop:
duke@435 939 case Int:
duke@435 940 case Long:
duke@435 941 case FloatTop:
duke@435 942 case FloatCon:
duke@435 943 case FloatBot:
duke@435 944 case Bottom: // Ye Olde Default
duke@435 945 return Type::BOTTOM;
duke@435 946
duke@435 947 case DoubleBot:
duke@435 948 return t;
duke@435 949
duke@435 950 default: // All else is a mistake
duke@435 951 typerr(t);
duke@435 952
duke@435 953 case DoubleCon: // Double-constant vs Double-constant?
duke@435 954 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 955 return DOUBLE; // Return generic double
duke@435 956 case Top:
duke@435 957 case DoubleTop:
duke@435 958 break;
duke@435 959 }
duke@435 960 return this; // Return the double constant
duke@435 961 }
duke@435 962
duke@435 963 //------------------------------xdual------------------------------------------
duke@435 964 // Dual: symmetric
duke@435 965 const Type *TypeD::xdual() const {
duke@435 966 return this;
duke@435 967 }
duke@435 968
duke@435 969 //------------------------------eq---------------------------------------------
duke@435 970 // Structural equality check for Type representations
duke@435 971 bool TypeD::eq( const Type *t ) const {
duke@435 972 if( g_isnan(_d) ||
duke@435 973 g_isnan(t->getd()) ) {
duke@435 974 // One or both are NANs. If both are NANs return true, else false.
duke@435 975 return (g_isnan(_d) && g_isnan(t->getd()));
duke@435 976 }
duke@435 977 if (_d == t->getd()) {
duke@435 978 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 979 if (_d == 0.0) {
duke@435 980 // difference between positive and negative zero
duke@435 981 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
duke@435 982 }
duke@435 983 return true;
duke@435 984 }
duke@435 985 return false;
duke@435 986 }
duke@435 987
duke@435 988 //------------------------------hash-------------------------------------------
duke@435 989 // Type-specific hashing function.
duke@435 990 int TypeD::hash(void) const {
duke@435 991 return *(int*)(&_d);
duke@435 992 }
duke@435 993
duke@435 994 //------------------------------is_finite--------------------------------------
duke@435 995 // Has a finite value
duke@435 996 bool TypeD::is_finite() const {
duke@435 997 return g_isfinite(getd()) != 0;
duke@435 998 }
duke@435 999
duke@435 1000 //------------------------------is_nan-----------------------------------------
duke@435 1001 // Is not a number (NaN)
duke@435 1002 bool TypeD::is_nan() const {
duke@435 1003 return g_isnan(getd()) != 0;
duke@435 1004 }
duke@435 1005
duke@435 1006 //------------------------------dump2------------------------------------------
duke@435 1007 // Dump double constant Type
duke@435 1008 #ifndef PRODUCT
duke@435 1009 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1010 Type::dump2(d,depth,st);
duke@435 1011 st->print("%f", _d);
duke@435 1012 }
duke@435 1013 #endif
duke@435 1014
duke@435 1015 //------------------------------singleton--------------------------------------
duke@435 1016 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1017 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1018 // or a single symbol.
duke@435 1019 bool TypeD::singleton(void) const {
duke@435 1020 return true; // Always a singleton
duke@435 1021 }
duke@435 1022
duke@435 1023 bool TypeD::empty(void) const {
duke@435 1024 return false; // always exactly a singleton
duke@435 1025 }
duke@435 1026
duke@435 1027 //=============================================================================
duke@435 1028 // Convience common pre-built types.
duke@435 1029 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1030 const TypeInt *TypeInt::ZERO; // 0
duke@435 1031 const TypeInt *TypeInt::ONE; // 1
duke@435 1032 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1033 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1034 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1035 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1036 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1037 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1038 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1039 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
twisti@1059 1040 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
duke@435 1041 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1042 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1043 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1044 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1045 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1046 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 1047
duke@435 1048 //------------------------------TypeInt----------------------------------------
duke@435 1049 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1050 }
duke@435 1051
duke@435 1052 //------------------------------make-------------------------------------------
duke@435 1053 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1054 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1055 }
duke@435 1056
duke@435 1057 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
duke@435 1058
duke@435 1059 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
duke@435 1060 // Certain normalizations keep us sane when comparing types.
duke@435 1061 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1062 assert(CC == NULL || (juint)(CC->_hi - CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 1063 if (lo <= hi) {
duke@435 1064 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
duke@435 1065 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // plain int
duke@435 1066 }
duke@435 1067 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1068 }
duke@435 1069
duke@435 1070 //------------------------------meet-------------------------------------------
duke@435 1071 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1072 // with reference count equal to the number of Types pointing at it.
duke@435 1073 // Caller should wrap a Types around it.
duke@435 1074 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1075 // Perform a fast test for common case; meeting the same types together.
duke@435 1076 if( this == t ) return this; // Meeting same type?
duke@435 1077
duke@435 1078 // Currently "this->_base" is a TypeInt
duke@435 1079 switch (t->base()) { // Switch on original type
duke@435 1080 case AnyPtr: // Mixing with oops happens when javac
duke@435 1081 case RawPtr: // reuses local variables
duke@435 1082 case OopPtr:
duke@435 1083 case InstPtr:
duke@435 1084 case KlassPtr:
duke@435 1085 case AryPtr:
never@618 1086 case NarrowOop:
duke@435 1087 case Long:
duke@435 1088 case FloatTop:
duke@435 1089 case FloatCon:
duke@435 1090 case FloatBot:
duke@435 1091 case DoubleTop:
duke@435 1092 case DoubleCon:
duke@435 1093 case DoubleBot:
duke@435 1094 case Bottom: // Ye Olde Default
duke@435 1095 return Type::BOTTOM;
duke@435 1096 default: // All else is a mistake
duke@435 1097 typerr(t);
duke@435 1098 case Top: // No change
duke@435 1099 return this;
duke@435 1100 case Int: // Int vs Int?
duke@435 1101 break;
duke@435 1102 }
duke@435 1103
duke@435 1104 // Expand covered set
duke@435 1105 const TypeInt *r = t->is_int();
duke@435 1106 // (Avoid TypeInt::make, to avoid the argument normalizations it enforces.)
duke@435 1107 return (new TypeInt( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
duke@435 1108 }
duke@435 1109
duke@435 1110 //------------------------------xdual------------------------------------------
duke@435 1111 // Dual: reverse hi & lo; flip widen
duke@435 1112 const Type *TypeInt::xdual() const {
duke@435 1113 return new TypeInt(_hi,_lo,WidenMax-_widen);
duke@435 1114 }
duke@435 1115
duke@435 1116 //------------------------------widen------------------------------------------
duke@435 1117 // Only happens for optimistic top-down optimizations.
never@1444 1118 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
duke@435 1119 // Coming from TOP or such; no widening
duke@435 1120 if( old->base() != Int ) return this;
duke@435 1121 const TypeInt *ot = old->is_int();
duke@435 1122
duke@435 1123 // If new guy is equal to old guy, no widening
duke@435 1124 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1125 return old;
duke@435 1126
duke@435 1127 // If new guy contains old, then we widened
duke@435 1128 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1129 // New contains old
duke@435 1130 // If new guy is already wider than old, no widening
duke@435 1131 if( _widen > ot->_widen ) return this;
duke@435 1132 // If old guy was a constant, do not bother
duke@435 1133 if (ot->_lo == ot->_hi) return this;
duke@435 1134 // Now widen new guy.
duke@435 1135 // Check for widening too far
duke@435 1136 if (_widen == WidenMax) {
never@1444 1137 int max = max_jint;
never@1444 1138 int min = min_jint;
never@1444 1139 if (limit->isa_int()) {
never@1444 1140 max = limit->is_int()->_hi;
never@1444 1141 min = limit->is_int()->_lo;
never@1444 1142 }
never@1444 1143 if (min < _lo && _hi < max) {
duke@435 1144 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1145 // which is closer to its respective limit.
duke@435 1146 if (_lo >= 0 || // easy common case
never@1444 1147 (juint)(_lo - min) >= (juint)(max - _hi)) {
duke@435 1148 // Try to widen to an unsigned range type of 31 bits:
never@1444 1149 return make(_lo, max, WidenMax);
duke@435 1150 } else {
never@1444 1151 return make(min, _hi, WidenMax);
duke@435 1152 }
duke@435 1153 }
duke@435 1154 return TypeInt::INT;
duke@435 1155 }
duke@435 1156 // Returned widened new guy
duke@435 1157 return make(_lo,_hi,_widen+1);
duke@435 1158 }
duke@435 1159
duke@435 1160 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1161 // bottom. Return the wider fellow.
duke@435 1162 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1163 return old;
duke@435 1164
duke@435 1165 //fatal("Integer value range is not subset");
duke@435 1166 //return this;
duke@435 1167 return TypeInt::INT;
duke@435 1168 }
duke@435 1169
duke@435 1170 //------------------------------narrow---------------------------------------
duke@435 1171 // Only happens for pessimistic optimizations.
duke@435 1172 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1173 if (_lo >= _hi) return this; // already narrow enough
duke@435 1174 if (old == NULL) return this;
duke@435 1175 const TypeInt* ot = old->isa_int();
duke@435 1176 if (ot == NULL) return this;
duke@435 1177 jint olo = ot->_lo;
duke@435 1178 jint ohi = ot->_hi;
duke@435 1179
duke@435 1180 // If new guy is equal to old guy, no narrowing
duke@435 1181 if (_lo == olo && _hi == ohi) return old;
duke@435 1182
duke@435 1183 // If old guy was maximum range, allow the narrowing
duke@435 1184 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1185
duke@435 1186 if (_lo < olo || _hi > ohi)
duke@435 1187 return this; // doesn't narrow; pretty wierd
duke@435 1188
duke@435 1189 // The new type narrows the old type, so look for a "death march".
duke@435 1190 // See comments on PhaseTransform::saturate.
duke@435 1191 juint nrange = _hi - _lo;
duke@435 1192 juint orange = ohi - olo;
duke@435 1193 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1194 // Use the new type only if the range shrinks a lot.
duke@435 1195 // We do not want the optimizer computing 2^31 point by point.
duke@435 1196 return old;
duke@435 1197 }
duke@435 1198
duke@435 1199 return this;
duke@435 1200 }
duke@435 1201
duke@435 1202 //-----------------------------filter------------------------------------------
duke@435 1203 const Type *TypeInt::filter( const Type *kills ) const {
duke@435 1204 const TypeInt* ft = join(kills)->isa_int();
duke@435 1205 if (ft == NULL || ft->_lo > ft->_hi)
duke@435 1206 return Type::TOP; // Canonical empty value
duke@435 1207 if (ft->_widen < this->_widen) {
duke@435 1208 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1209 // The widen bits must be allowed to run freely through the graph.
duke@435 1210 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1211 }
duke@435 1212 return ft;
duke@435 1213 }
duke@435 1214
duke@435 1215 //------------------------------eq---------------------------------------------
duke@435 1216 // Structural equality check for Type representations
duke@435 1217 bool TypeInt::eq( const Type *t ) const {
duke@435 1218 const TypeInt *r = t->is_int(); // Handy access
duke@435 1219 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1220 }
duke@435 1221
duke@435 1222 //------------------------------hash-------------------------------------------
duke@435 1223 // Type-specific hashing function.
duke@435 1224 int TypeInt::hash(void) const {
duke@435 1225 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1226 }
duke@435 1227
duke@435 1228 //------------------------------is_finite--------------------------------------
duke@435 1229 // Has a finite value
duke@435 1230 bool TypeInt::is_finite() const {
duke@435 1231 return true;
duke@435 1232 }
duke@435 1233
duke@435 1234 //------------------------------dump2------------------------------------------
duke@435 1235 // Dump TypeInt
duke@435 1236 #ifndef PRODUCT
duke@435 1237 static const char* intname(char* buf, jint n) {
duke@435 1238 if (n == min_jint)
duke@435 1239 return "min";
duke@435 1240 else if (n < min_jint + 10000)
duke@435 1241 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1242 else if (n == max_jint)
duke@435 1243 return "max";
duke@435 1244 else if (n > max_jint - 10000)
duke@435 1245 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1246 else
duke@435 1247 sprintf(buf, INT32_FORMAT, n);
duke@435 1248 return buf;
duke@435 1249 }
duke@435 1250
duke@435 1251 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1252 char buf[40], buf2[40];
duke@435 1253 if (_lo == min_jint && _hi == max_jint)
duke@435 1254 st->print("int");
duke@435 1255 else if (is_con())
duke@435 1256 st->print("int:%s", intname(buf, get_con()));
duke@435 1257 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1258 st->print("bool");
duke@435 1259 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1260 st->print("byte");
duke@435 1261 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1262 st->print("char");
duke@435 1263 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1264 st->print("short");
duke@435 1265 else if (_hi == max_jint)
duke@435 1266 st->print("int:>=%s", intname(buf, _lo));
duke@435 1267 else if (_lo == min_jint)
duke@435 1268 st->print("int:<=%s", intname(buf, _hi));
duke@435 1269 else
duke@435 1270 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1271
duke@435 1272 if (_widen != 0 && this != TypeInt::INT)
duke@435 1273 st->print(":%.*s", _widen, "wwww");
duke@435 1274 }
duke@435 1275 #endif
duke@435 1276
duke@435 1277 //------------------------------singleton--------------------------------------
duke@435 1278 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1279 // constants.
duke@435 1280 bool TypeInt::singleton(void) const {
duke@435 1281 return _lo >= _hi;
duke@435 1282 }
duke@435 1283
duke@435 1284 bool TypeInt::empty(void) const {
duke@435 1285 return _lo > _hi;
duke@435 1286 }
duke@435 1287
duke@435 1288 //=============================================================================
duke@435 1289 // Convenience common pre-built types.
duke@435 1290 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1291 const TypeLong *TypeLong::ZERO; // 0
duke@435 1292 const TypeLong *TypeLong::ONE; // 1
duke@435 1293 const TypeLong *TypeLong::POS; // >=0
duke@435 1294 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1295 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1296 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
duke@435 1297
duke@435 1298 //------------------------------TypeLong---------------------------------------
duke@435 1299 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1300 }
duke@435 1301
duke@435 1302 //------------------------------make-------------------------------------------
duke@435 1303 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1304 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1305 }
duke@435 1306
duke@435 1307 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
duke@435 1308 // Certain normalizations keep us sane when comparing types.
duke@435 1309 // The '1' covers constants.
duke@435 1310 if (lo <= hi) {
duke@435 1311 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
duke@435 1312 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // plain long
duke@435 1313 }
duke@435 1314 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1315 }
duke@435 1316
duke@435 1317
duke@435 1318 //------------------------------meet-------------------------------------------
duke@435 1319 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1320 // with reference count equal to the number of Types pointing at it.
duke@435 1321 // Caller should wrap a Types around it.
duke@435 1322 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1323 // Perform a fast test for common case; meeting the same types together.
duke@435 1324 if( this == t ) return this; // Meeting same type?
duke@435 1325
duke@435 1326 // Currently "this->_base" is a TypeLong
duke@435 1327 switch (t->base()) { // Switch on original type
duke@435 1328 case AnyPtr: // Mixing with oops happens when javac
duke@435 1329 case RawPtr: // reuses local variables
duke@435 1330 case OopPtr:
duke@435 1331 case InstPtr:
duke@435 1332 case KlassPtr:
duke@435 1333 case AryPtr:
never@618 1334 case NarrowOop:
duke@435 1335 case Int:
duke@435 1336 case FloatTop:
duke@435 1337 case FloatCon:
duke@435 1338 case FloatBot:
duke@435 1339 case DoubleTop:
duke@435 1340 case DoubleCon:
duke@435 1341 case DoubleBot:
duke@435 1342 case Bottom: // Ye Olde Default
duke@435 1343 return Type::BOTTOM;
duke@435 1344 default: // All else is a mistake
duke@435 1345 typerr(t);
duke@435 1346 case Top: // No change
duke@435 1347 return this;
duke@435 1348 case Long: // Long vs Long?
duke@435 1349 break;
duke@435 1350 }
duke@435 1351
duke@435 1352 // Expand covered set
duke@435 1353 const TypeLong *r = t->is_long(); // Turn into a TypeLong
duke@435 1354 // (Avoid TypeLong::make, to avoid the argument normalizations it enforces.)
duke@435 1355 return (new TypeLong( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
duke@435 1356 }
duke@435 1357
duke@435 1358 //------------------------------xdual------------------------------------------
duke@435 1359 // Dual: reverse hi & lo; flip widen
duke@435 1360 const Type *TypeLong::xdual() const {
duke@435 1361 return new TypeLong(_hi,_lo,WidenMax-_widen);
duke@435 1362 }
duke@435 1363
duke@435 1364 //------------------------------widen------------------------------------------
duke@435 1365 // Only happens for optimistic top-down optimizations.
never@1444 1366 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
duke@435 1367 // Coming from TOP or such; no widening
duke@435 1368 if( old->base() != Long ) return this;
duke@435 1369 const TypeLong *ot = old->is_long();
duke@435 1370
duke@435 1371 // If new guy is equal to old guy, no widening
duke@435 1372 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1373 return old;
duke@435 1374
duke@435 1375 // If new guy contains old, then we widened
duke@435 1376 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1377 // New contains old
duke@435 1378 // If new guy is already wider than old, no widening
duke@435 1379 if( _widen > ot->_widen ) return this;
duke@435 1380 // If old guy was a constant, do not bother
duke@435 1381 if (ot->_lo == ot->_hi) return this;
duke@435 1382 // Now widen new guy.
duke@435 1383 // Check for widening too far
duke@435 1384 if (_widen == WidenMax) {
never@1444 1385 jlong max = max_jlong;
never@1444 1386 jlong min = min_jlong;
never@1444 1387 if (limit->isa_long()) {
never@1444 1388 max = limit->is_long()->_hi;
never@1444 1389 min = limit->is_long()->_lo;
never@1444 1390 }
never@1444 1391 if (min < _lo && _hi < max) {
duke@435 1392 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1393 // which is closer to its respective limit.
duke@435 1394 if (_lo >= 0 || // easy common case
never@1444 1395 (julong)(_lo - min) >= (julong)(max - _hi)) {
duke@435 1396 // Try to widen to an unsigned range type of 32/63 bits:
never@1444 1397 if (max >= max_juint && _hi < max_juint)
duke@435 1398 return make(_lo, max_juint, WidenMax);
duke@435 1399 else
never@1444 1400 return make(_lo, max, WidenMax);
duke@435 1401 } else {
never@1444 1402 return make(min, _hi, WidenMax);
duke@435 1403 }
duke@435 1404 }
duke@435 1405 return TypeLong::LONG;
duke@435 1406 }
duke@435 1407 // Returned widened new guy
duke@435 1408 return make(_lo,_hi,_widen+1);
duke@435 1409 }
duke@435 1410
duke@435 1411 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1412 // bottom. Return the wider fellow.
duke@435 1413 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1414 return old;
duke@435 1415
duke@435 1416 // fatal("Long value range is not subset");
duke@435 1417 // return this;
duke@435 1418 return TypeLong::LONG;
duke@435 1419 }
duke@435 1420
duke@435 1421 //------------------------------narrow----------------------------------------
duke@435 1422 // Only happens for pessimistic optimizations.
duke@435 1423 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1424 if (_lo >= _hi) return this; // already narrow enough
duke@435 1425 if (old == NULL) return this;
duke@435 1426 const TypeLong* ot = old->isa_long();
duke@435 1427 if (ot == NULL) return this;
duke@435 1428 jlong olo = ot->_lo;
duke@435 1429 jlong ohi = ot->_hi;
duke@435 1430
duke@435 1431 // If new guy is equal to old guy, no narrowing
duke@435 1432 if (_lo == olo && _hi == ohi) return old;
duke@435 1433
duke@435 1434 // If old guy was maximum range, allow the narrowing
duke@435 1435 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1436
duke@435 1437 if (_lo < olo || _hi > ohi)
duke@435 1438 return this; // doesn't narrow; pretty wierd
duke@435 1439
duke@435 1440 // The new type narrows the old type, so look for a "death march".
duke@435 1441 // See comments on PhaseTransform::saturate.
duke@435 1442 julong nrange = _hi - _lo;
duke@435 1443 julong orange = ohi - olo;
duke@435 1444 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1445 // Use the new type only if the range shrinks a lot.
duke@435 1446 // We do not want the optimizer computing 2^31 point by point.
duke@435 1447 return old;
duke@435 1448 }
duke@435 1449
duke@435 1450 return this;
duke@435 1451 }
duke@435 1452
duke@435 1453 //-----------------------------filter------------------------------------------
duke@435 1454 const Type *TypeLong::filter( const Type *kills ) const {
duke@435 1455 const TypeLong* ft = join(kills)->isa_long();
duke@435 1456 if (ft == NULL || ft->_lo > ft->_hi)
duke@435 1457 return Type::TOP; // Canonical empty value
duke@435 1458 if (ft->_widen < this->_widen) {
duke@435 1459 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1460 // The widen bits must be allowed to run freely through the graph.
duke@435 1461 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1462 }
duke@435 1463 return ft;
duke@435 1464 }
duke@435 1465
duke@435 1466 //------------------------------eq---------------------------------------------
duke@435 1467 // Structural equality check for Type representations
duke@435 1468 bool TypeLong::eq( const Type *t ) const {
duke@435 1469 const TypeLong *r = t->is_long(); // Handy access
duke@435 1470 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1471 }
duke@435 1472
duke@435 1473 //------------------------------hash-------------------------------------------
duke@435 1474 // Type-specific hashing function.
duke@435 1475 int TypeLong::hash(void) const {
duke@435 1476 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1477 }
duke@435 1478
duke@435 1479 //------------------------------is_finite--------------------------------------
duke@435 1480 // Has a finite value
duke@435 1481 bool TypeLong::is_finite() const {
duke@435 1482 return true;
duke@435 1483 }
duke@435 1484
duke@435 1485 //------------------------------dump2------------------------------------------
duke@435 1486 // Dump TypeLong
duke@435 1487 #ifndef PRODUCT
duke@435 1488 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1489 if (n > x) {
duke@435 1490 if (n >= x + 10000) return NULL;
duke@435 1491 sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
duke@435 1492 } else if (n < x) {
duke@435 1493 if (n <= x - 10000) return NULL;
duke@435 1494 sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
duke@435 1495 } else {
duke@435 1496 return xname;
duke@435 1497 }
duke@435 1498 return buf;
duke@435 1499 }
duke@435 1500
duke@435 1501 static const char* longname(char* buf, jlong n) {
duke@435 1502 const char* str;
duke@435 1503 if (n == min_jlong)
duke@435 1504 return "min";
duke@435 1505 else if (n < min_jlong + 10000)
duke@435 1506 sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
duke@435 1507 else if (n == max_jlong)
duke@435 1508 return "max";
duke@435 1509 else if (n > max_jlong - 10000)
duke@435 1510 sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
duke@435 1511 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1512 return str;
duke@435 1513 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1514 return str;
duke@435 1515 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1516 return str;
duke@435 1517 else
duke@435 1518 sprintf(buf, INT64_FORMAT, n);
duke@435 1519 return buf;
duke@435 1520 }
duke@435 1521
duke@435 1522 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1523 char buf[80], buf2[80];
duke@435 1524 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1525 st->print("long");
duke@435 1526 else if (is_con())
duke@435 1527 st->print("long:%s", longname(buf, get_con()));
duke@435 1528 else if (_hi == max_jlong)
duke@435 1529 st->print("long:>=%s", longname(buf, _lo));
duke@435 1530 else if (_lo == min_jlong)
duke@435 1531 st->print("long:<=%s", longname(buf, _hi));
duke@435 1532 else
duke@435 1533 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1534
duke@435 1535 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1536 st->print(":%.*s", _widen, "wwww");
duke@435 1537 }
duke@435 1538 #endif
duke@435 1539
duke@435 1540 //------------------------------singleton--------------------------------------
duke@435 1541 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1542 // constants
duke@435 1543 bool TypeLong::singleton(void) const {
duke@435 1544 return _lo >= _hi;
duke@435 1545 }
duke@435 1546
duke@435 1547 bool TypeLong::empty(void) const {
duke@435 1548 return _lo > _hi;
duke@435 1549 }
duke@435 1550
duke@435 1551 //=============================================================================
duke@435 1552 // Convenience common pre-built types.
duke@435 1553 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1554 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1555 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1556 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1557 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1558 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1559 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1560 const TypeTuple *TypeTuple::START_I2C;
duke@435 1561 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1562 const TypeTuple *TypeTuple::LONG_PAIR;
duke@435 1563
duke@435 1564
duke@435 1565 //------------------------------make-------------------------------------------
duke@435 1566 // Make a TypeTuple from the range of a method signature
duke@435 1567 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1568 ciType* return_type = sig->return_type();
duke@435 1569 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1570 const Type **field_array = fields(total_fields);
duke@435 1571 switch (return_type->basic_type()) {
duke@435 1572 case T_LONG:
duke@435 1573 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1574 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1575 break;
duke@435 1576 case T_DOUBLE:
duke@435 1577 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1578 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1579 break;
duke@435 1580 case T_OBJECT:
duke@435 1581 case T_ARRAY:
duke@435 1582 case T_BOOLEAN:
duke@435 1583 case T_CHAR:
duke@435 1584 case T_FLOAT:
duke@435 1585 case T_BYTE:
duke@435 1586 case T_SHORT:
duke@435 1587 case T_INT:
duke@435 1588 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1589 break;
duke@435 1590 case T_VOID:
duke@435 1591 break;
duke@435 1592 default:
duke@435 1593 ShouldNotReachHere();
duke@435 1594 }
duke@435 1595 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1596 }
duke@435 1597
duke@435 1598 // Make a TypeTuple from the domain of a method signature
duke@435 1599 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1600 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1601
duke@435 1602 uint pos = TypeFunc::Parms;
duke@435 1603 const Type **field_array;
duke@435 1604 if (recv != NULL) {
duke@435 1605 total_fields++;
duke@435 1606 field_array = fields(total_fields);
duke@435 1607 // Use get_const_type here because it respects UseUniqueSubclasses:
duke@435 1608 field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
duke@435 1609 } else {
duke@435 1610 field_array = fields(total_fields);
duke@435 1611 }
duke@435 1612
duke@435 1613 int i = 0;
duke@435 1614 while (pos < total_fields) {
duke@435 1615 ciType* type = sig->type_at(i);
duke@435 1616
duke@435 1617 switch (type->basic_type()) {
duke@435 1618 case T_LONG:
duke@435 1619 field_array[pos++] = TypeLong::LONG;
duke@435 1620 field_array[pos++] = Type::HALF;
duke@435 1621 break;
duke@435 1622 case T_DOUBLE:
duke@435 1623 field_array[pos++] = Type::DOUBLE;
duke@435 1624 field_array[pos++] = Type::HALF;
duke@435 1625 break;
duke@435 1626 case T_OBJECT:
duke@435 1627 case T_ARRAY:
duke@435 1628 case T_BOOLEAN:
duke@435 1629 case T_CHAR:
duke@435 1630 case T_FLOAT:
duke@435 1631 case T_BYTE:
duke@435 1632 case T_SHORT:
duke@435 1633 case T_INT:
duke@435 1634 field_array[pos++] = get_const_type(type);
duke@435 1635 break;
duke@435 1636 default:
duke@435 1637 ShouldNotReachHere();
duke@435 1638 }
duke@435 1639 i++;
duke@435 1640 }
duke@435 1641 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1642 }
duke@435 1643
duke@435 1644 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1645 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1646 }
duke@435 1647
duke@435 1648 //------------------------------fields-----------------------------------------
duke@435 1649 // Subroutine call type with space allocated for argument types
duke@435 1650 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1651 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1652 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1653 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1654 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1655 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1656 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1657
duke@435 1658 return flds;
duke@435 1659 }
duke@435 1660
duke@435 1661 //------------------------------meet-------------------------------------------
duke@435 1662 // Compute the MEET of two types. It returns a new Type object.
duke@435 1663 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1664 // Perform a fast test for common case; meeting the same types together.
duke@435 1665 if( this == t ) return this; // Meeting same type-rep?
duke@435 1666
duke@435 1667 // Current "this->_base" is Tuple
duke@435 1668 switch (t->base()) { // switch on original type
duke@435 1669
duke@435 1670 case Bottom: // Ye Olde Default
duke@435 1671 return t;
duke@435 1672
duke@435 1673 default: // All else is a mistake
duke@435 1674 typerr(t);
duke@435 1675
duke@435 1676 case Tuple: { // Meeting 2 signatures?
duke@435 1677 const TypeTuple *x = t->is_tuple();
duke@435 1678 assert( _cnt == x->_cnt, "" );
duke@435 1679 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1680 for( uint i=0; i<_cnt; i++ )
duke@435 1681 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1682 return TypeTuple::make(_cnt,fields);
duke@435 1683 }
duke@435 1684 case Top:
duke@435 1685 break;
duke@435 1686 }
duke@435 1687 return this; // Return the double constant
duke@435 1688 }
duke@435 1689
duke@435 1690 //------------------------------xdual------------------------------------------
duke@435 1691 // Dual: compute field-by-field dual
duke@435 1692 const Type *TypeTuple::xdual() const {
duke@435 1693 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1694 for( uint i=0; i<_cnt; i++ )
duke@435 1695 fields[i] = _fields[i]->dual();
duke@435 1696 return new TypeTuple(_cnt,fields);
duke@435 1697 }
duke@435 1698
duke@435 1699 //------------------------------eq---------------------------------------------
duke@435 1700 // Structural equality check for Type representations
duke@435 1701 bool TypeTuple::eq( const Type *t ) const {
duke@435 1702 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1703 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1704 for (uint i = 0; i < _cnt; i++)
duke@435 1705 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1706 return false; // Missed
duke@435 1707 return true;
duke@435 1708 }
duke@435 1709
duke@435 1710 //------------------------------hash-------------------------------------------
duke@435 1711 // Type-specific hashing function.
duke@435 1712 int TypeTuple::hash(void) const {
duke@435 1713 intptr_t sum = _cnt;
duke@435 1714 for( uint i=0; i<_cnt; i++ )
duke@435 1715 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1716 return sum;
duke@435 1717 }
duke@435 1718
duke@435 1719 //------------------------------dump2------------------------------------------
duke@435 1720 // Dump signature Type
duke@435 1721 #ifndef PRODUCT
duke@435 1722 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1723 st->print("{");
duke@435 1724 if( !depth || d[this] ) { // Check for recursive print
duke@435 1725 st->print("...}");
duke@435 1726 return;
duke@435 1727 }
duke@435 1728 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1729 if( _cnt ) {
duke@435 1730 uint i;
duke@435 1731 for( i=0; i<_cnt-1; i++ ) {
duke@435 1732 st->print("%d:", i);
duke@435 1733 _fields[i]->dump2(d, depth-1, st);
duke@435 1734 st->print(", ");
duke@435 1735 }
duke@435 1736 st->print("%d:", i);
duke@435 1737 _fields[i]->dump2(d, depth-1, st);
duke@435 1738 }
duke@435 1739 st->print("}");
duke@435 1740 }
duke@435 1741 #endif
duke@435 1742
duke@435 1743 //------------------------------singleton--------------------------------------
duke@435 1744 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1745 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1746 // or a single symbol.
duke@435 1747 bool TypeTuple::singleton(void) const {
duke@435 1748 return false; // Never a singleton
duke@435 1749 }
duke@435 1750
duke@435 1751 bool TypeTuple::empty(void) const {
duke@435 1752 for( uint i=0; i<_cnt; i++ ) {
duke@435 1753 if (_fields[i]->empty()) return true;
duke@435 1754 }
duke@435 1755 return false;
duke@435 1756 }
duke@435 1757
duke@435 1758 //=============================================================================
duke@435 1759 // Convenience common pre-built types.
duke@435 1760
duke@435 1761 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1762 // Certain normalizations keep us sane when comparing types.
duke@435 1763 // We do not want arrayOop variables to differ only by the wideness
duke@435 1764 // of their index types. Pick minimum wideness, since that is the
duke@435 1765 // forced wideness of small ranges anyway.
duke@435 1766 if (size->_widen != Type::WidenMin)
duke@435 1767 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1768 else
duke@435 1769 return size;
duke@435 1770 }
duke@435 1771
duke@435 1772 //------------------------------make-------------------------------------------
duke@435 1773 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
coleenp@548 1774 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1775 elem = elem->make_narrowoop();
coleenp@548 1776 }
duke@435 1777 size = normalize_array_size(size);
duke@435 1778 return (TypeAry*)(new TypeAry(elem,size))->hashcons();
duke@435 1779 }
duke@435 1780
duke@435 1781 //------------------------------meet-------------------------------------------
duke@435 1782 // Compute the MEET of two types. It returns a new Type object.
duke@435 1783 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1784 // Perform a fast test for common case; meeting the same types together.
duke@435 1785 if( this == t ) return this; // Meeting same type-rep?
duke@435 1786
duke@435 1787 // Current "this->_base" is Ary
duke@435 1788 switch (t->base()) { // switch on original type
duke@435 1789
duke@435 1790 case Bottom: // Ye Olde Default
duke@435 1791 return t;
duke@435 1792
duke@435 1793 default: // All else is a mistake
duke@435 1794 typerr(t);
duke@435 1795
duke@435 1796 case Array: { // Meeting 2 arrays?
duke@435 1797 const TypeAry *a = t->is_ary();
duke@435 1798 return TypeAry::make(_elem->meet(a->_elem),
duke@435 1799 _size->xmeet(a->_size)->is_int());
duke@435 1800 }
duke@435 1801 case Top:
duke@435 1802 break;
duke@435 1803 }
duke@435 1804 return this; // Return the double constant
duke@435 1805 }
duke@435 1806
duke@435 1807 //------------------------------xdual------------------------------------------
duke@435 1808 // Dual: compute field-by-field dual
duke@435 1809 const Type *TypeAry::xdual() const {
duke@435 1810 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1811 size_dual = normalize_array_size(size_dual);
duke@435 1812 return new TypeAry( _elem->dual(), size_dual);
duke@435 1813 }
duke@435 1814
duke@435 1815 //------------------------------eq---------------------------------------------
duke@435 1816 // Structural equality check for Type representations
duke@435 1817 bool TypeAry::eq( const Type *t ) const {
duke@435 1818 const TypeAry *a = (const TypeAry*)t;
duke@435 1819 return _elem == a->_elem &&
duke@435 1820 _size == a->_size;
duke@435 1821 }
duke@435 1822
duke@435 1823 //------------------------------hash-------------------------------------------
duke@435 1824 // Type-specific hashing function.
duke@435 1825 int TypeAry::hash(void) const {
duke@435 1826 return (intptr_t)_elem + (intptr_t)_size;
duke@435 1827 }
duke@435 1828
kvn@1255 1829 //----------------------interface_vs_oop---------------------------------------
kvn@1255 1830 #ifdef ASSERT
kvn@1255 1831 bool TypeAry::interface_vs_oop(const Type *t) const {
kvn@1255 1832 const TypeAry* t_ary = t->is_ary();
kvn@1255 1833 if (t_ary) {
kvn@1255 1834 return _elem->interface_vs_oop(t_ary->_elem);
kvn@1255 1835 }
kvn@1255 1836 return false;
kvn@1255 1837 }
kvn@1255 1838 #endif
kvn@1255 1839
duke@435 1840 //------------------------------dump2------------------------------------------
duke@435 1841 #ifndef PRODUCT
duke@435 1842 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1843 _elem->dump2(d, depth, st);
duke@435 1844 st->print("[");
duke@435 1845 _size->dump2(d, depth, st);
duke@435 1846 st->print("]");
duke@435 1847 }
duke@435 1848 #endif
duke@435 1849
duke@435 1850 //------------------------------singleton--------------------------------------
duke@435 1851 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1852 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1853 // or a single symbol.
duke@435 1854 bool TypeAry::singleton(void) const {
duke@435 1855 return false; // Never a singleton
duke@435 1856 }
duke@435 1857
duke@435 1858 bool TypeAry::empty(void) const {
duke@435 1859 return _elem->empty() || _size->empty();
duke@435 1860 }
duke@435 1861
duke@435 1862 //--------------------------ary_must_be_exact----------------------------------
duke@435 1863 bool TypeAry::ary_must_be_exact() const {
duke@435 1864 if (!UseExactTypes) return false;
duke@435 1865 // This logic looks at the element type of an array, and returns true
duke@435 1866 // if the element type is either a primitive or a final instance class.
duke@435 1867 // In such cases, an array built on this ary must have no subclasses.
duke@435 1868 if (_elem == BOTTOM) return false; // general array not exact
duke@435 1869 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 1870 const TypeOopPtr* toop = NULL;
kvn@656 1871 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 1872 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 1873 } else {
coleenp@548 1874 toop = _elem->isa_oopptr();
coleenp@548 1875 }
duke@435 1876 if (!toop) return true; // a primitive type, like int
duke@435 1877 ciKlass* tklass = toop->klass();
duke@435 1878 if (tklass == NULL) return false; // unloaded class
duke@435 1879 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 1880 const TypeInstPtr* tinst;
coleenp@548 1881 if (_elem->isa_narrowoop())
kvn@656 1882 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 1883 else
coleenp@548 1884 tinst = _elem->isa_instptr();
kvn@656 1885 if (tinst)
kvn@656 1886 return tklass->as_instance_klass()->is_final();
coleenp@548 1887 const TypeAryPtr* tap;
coleenp@548 1888 if (_elem->isa_narrowoop())
kvn@656 1889 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 1890 else
coleenp@548 1891 tap = _elem->isa_aryptr();
kvn@656 1892 if (tap)
kvn@656 1893 return tap->ary()->ary_must_be_exact();
duke@435 1894 return false;
duke@435 1895 }
duke@435 1896
duke@435 1897 //=============================================================================
duke@435 1898 // Convenience common pre-built types.
duke@435 1899 const TypePtr *TypePtr::NULL_PTR;
duke@435 1900 const TypePtr *TypePtr::NOTNULL;
duke@435 1901 const TypePtr *TypePtr::BOTTOM;
duke@435 1902
duke@435 1903 //------------------------------meet-------------------------------------------
duke@435 1904 // Meet over the PTR enum
duke@435 1905 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 1906 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 1907 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 1908 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 1909 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 1910 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 1911 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 1912 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 1913 };
duke@435 1914
duke@435 1915 //------------------------------make-------------------------------------------
duke@435 1916 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 1917 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 1918 }
duke@435 1919
duke@435 1920 //------------------------------cast_to_ptr_type-------------------------------
duke@435 1921 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 1922 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 1923 if( ptr == _ptr ) return this;
duke@435 1924 return make(_base, ptr, _offset);
duke@435 1925 }
duke@435 1926
duke@435 1927 //------------------------------get_con----------------------------------------
duke@435 1928 intptr_t TypePtr::get_con() const {
duke@435 1929 assert( _ptr == Null, "" );
duke@435 1930 return _offset;
duke@435 1931 }
duke@435 1932
duke@435 1933 //------------------------------meet-------------------------------------------
duke@435 1934 // Compute the MEET of two types. It returns a new Type object.
duke@435 1935 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 1936 // Perform a fast test for common case; meeting the same types together.
duke@435 1937 if( this == t ) return this; // Meeting same type-rep?
duke@435 1938
duke@435 1939 // Current "this->_base" is AnyPtr
duke@435 1940 switch (t->base()) { // switch on original type
duke@435 1941 case Int: // Mixing ints & oops happens when javac
duke@435 1942 case Long: // reuses local variables
duke@435 1943 case FloatTop:
duke@435 1944 case FloatCon:
duke@435 1945 case FloatBot:
duke@435 1946 case DoubleTop:
duke@435 1947 case DoubleCon:
duke@435 1948 case DoubleBot:
coleenp@548 1949 case NarrowOop:
duke@435 1950 case Bottom: // Ye Olde Default
duke@435 1951 return Type::BOTTOM;
duke@435 1952 case Top:
duke@435 1953 return this;
duke@435 1954
duke@435 1955 case AnyPtr: { // Meeting to AnyPtrs
duke@435 1956 const TypePtr *tp = t->is_ptr();
duke@435 1957 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 1958 }
duke@435 1959 case RawPtr: // For these, flip the call around to cut down
duke@435 1960 case OopPtr:
duke@435 1961 case InstPtr: // on the cases I have to handle.
duke@435 1962 case KlassPtr:
duke@435 1963 case AryPtr:
duke@435 1964 return t->xmeet(this); // Call in reverse direction
duke@435 1965 default: // All else is a mistake
duke@435 1966 typerr(t);
duke@435 1967
duke@435 1968 }
duke@435 1969 return this;
duke@435 1970 }
duke@435 1971
duke@435 1972 //------------------------------meet_offset------------------------------------
duke@435 1973 int TypePtr::meet_offset( int offset ) const {
duke@435 1974 // Either is 'TOP' offset? Return the other offset!
duke@435 1975 if( _offset == OffsetTop ) return offset;
duke@435 1976 if( offset == OffsetTop ) return _offset;
duke@435 1977 // If either is different, return 'BOTTOM' offset
duke@435 1978 if( _offset != offset ) return OffsetBot;
duke@435 1979 return _offset;
duke@435 1980 }
duke@435 1981
duke@435 1982 //------------------------------dual_offset------------------------------------
duke@435 1983 int TypePtr::dual_offset( ) const {
duke@435 1984 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 1985 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 1986 return _offset; // Map everything else into self
duke@435 1987 }
duke@435 1988
duke@435 1989 //------------------------------xdual------------------------------------------
duke@435 1990 // Dual: compute field-by-field dual
duke@435 1991 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 1992 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 1993 };
duke@435 1994 const Type *TypePtr::xdual() const {
duke@435 1995 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 1996 }
duke@435 1997
kvn@741 1998 //------------------------------xadd_offset------------------------------------
kvn@741 1999 int TypePtr::xadd_offset( intptr_t offset ) const {
kvn@741 2000 // Adding to 'TOP' offset? Return 'TOP'!
kvn@741 2001 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
kvn@741 2002 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
kvn@741 2003 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
kvn@741 2004 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
kvn@741 2005 offset += (intptr_t)_offset;
kvn@741 2006 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
kvn@741 2007
kvn@741 2008 // assert( _offset >= 0 && _offset+offset >= 0, "" );
kvn@741 2009 // It is possible to construct a negative offset during PhaseCCP
kvn@741 2010
kvn@741 2011 return (int)offset; // Sum valid offsets
kvn@741 2012 }
kvn@741 2013
duke@435 2014 //------------------------------add_offset-------------------------------------
kvn@741 2015 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
kvn@741 2016 return make( AnyPtr, _ptr, xadd_offset(offset) );
duke@435 2017 }
duke@435 2018
duke@435 2019 //------------------------------eq---------------------------------------------
duke@435 2020 // Structural equality check for Type representations
duke@435 2021 bool TypePtr::eq( const Type *t ) const {
duke@435 2022 const TypePtr *a = (const TypePtr*)t;
duke@435 2023 return _ptr == a->ptr() && _offset == a->offset();
duke@435 2024 }
duke@435 2025
duke@435 2026 //------------------------------hash-------------------------------------------
duke@435 2027 // Type-specific hashing function.
duke@435 2028 int TypePtr::hash(void) const {
duke@435 2029 return _ptr + _offset;
duke@435 2030 }
duke@435 2031
duke@435 2032 //------------------------------dump2------------------------------------------
duke@435 2033 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 2034 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 2035 };
duke@435 2036
duke@435 2037 #ifndef PRODUCT
duke@435 2038 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2039 if( _ptr == Null ) st->print("NULL");
duke@435 2040 else st->print("%s *", ptr_msg[_ptr]);
duke@435 2041 if( _offset == OffsetTop ) st->print("+top");
duke@435 2042 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 2043 else if( _offset ) st->print("+%d", _offset);
duke@435 2044 }
duke@435 2045 #endif
duke@435 2046
duke@435 2047 //------------------------------singleton--------------------------------------
duke@435 2048 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2049 // constants
duke@435 2050 bool TypePtr::singleton(void) const {
duke@435 2051 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2052 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2053 }
duke@435 2054
duke@435 2055 bool TypePtr::empty(void) const {
duke@435 2056 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2057 }
duke@435 2058
duke@435 2059 //=============================================================================
duke@435 2060 // Convenience common pre-built types.
duke@435 2061 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2062 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2063
duke@435 2064 //------------------------------make-------------------------------------------
duke@435 2065 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2066 assert( ptr != Constant, "what is the constant?" );
duke@435 2067 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2068 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2069 }
duke@435 2070
duke@435 2071 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2072 assert( bits, "Use TypePtr for NULL" );
duke@435 2073 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2074 }
duke@435 2075
duke@435 2076 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2077 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2078 assert( ptr != Constant, "what is the constant?" );
duke@435 2079 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2080 assert( _bits==0, "Why cast a constant address?");
duke@435 2081 if( ptr == _ptr ) return this;
duke@435 2082 return make(ptr);
duke@435 2083 }
duke@435 2084
duke@435 2085 //------------------------------get_con----------------------------------------
duke@435 2086 intptr_t TypeRawPtr::get_con() const {
duke@435 2087 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2088 return (intptr_t)_bits;
duke@435 2089 }
duke@435 2090
duke@435 2091 //------------------------------meet-------------------------------------------
duke@435 2092 // Compute the MEET of two types. It returns a new Type object.
duke@435 2093 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2094 // Perform a fast test for common case; meeting the same types together.
duke@435 2095 if( this == t ) return this; // Meeting same type-rep?
duke@435 2096
duke@435 2097 // Current "this->_base" is RawPtr
duke@435 2098 switch( t->base() ) { // switch on original type
duke@435 2099 case Bottom: // Ye Olde Default
duke@435 2100 return t;
duke@435 2101 case Top:
duke@435 2102 return this;
duke@435 2103 case AnyPtr: // Meeting to AnyPtrs
duke@435 2104 break;
duke@435 2105 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2106 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2107 enum PTR ptr = meet_ptr( tptr );
duke@435 2108 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2109 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2110 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2111 ptr = NotNull; // Fall down in lattice
duke@435 2112 }
duke@435 2113 return make( ptr );
duke@435 2114 }
duke@435 2115
duke@435 2116 case OopPtr:
duke@435 2117 case InstPtr:
duke@435 2118 case KlassPtr:
duke@435 2119 case AryPtr:
duke@435 2120 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2121 default: // All else is a mistake
duke@435 2122 typerr(t);
duke@435 2123 }
duke@435 2124
duke@435 2125 // Found an AnyPtr type vs self-RawPtr type
duke@435 2126 const TypePtr *tp = t->is_ptr();
duke@435 2127 switch (tp->ptr()) {
duke@435 2128 case TypePtr::TopPTR: return this;
duke@435 2129 case TypePtr::BotPTR: return t;
duke@435 2130 case TypePtr::Null:
duke@435 2131 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2132 return TypeRawPtr::BOTTOM;
duke@435 2133 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2134 case TypePtr::AnyNull:
duke@435 2135 if( _ptr == TypePtr::Constant) return this;
duke@435 2136 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2137 default: ShouldNotReachHere();
duke@435 2138 }
duke@435 2139 return this;
duke@435 2140 }
duke@435 2141
duke@435 2142 //------------------------------xdual------------------------------------------
duke@435 2143 // Dual: compute field-by-field dual
duke@435 2144 const Type *TypeRawPtr::xdual() const {
duke@435 2145 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2146 }
duke@435 2147
duke@435 2148 //------------------------------add_offset-------------------------------------
kvn@741 2149 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
duke@435 2150 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2151 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2152 if( offset == 0 ) return this; // No change
duke@435 2153 switch (_ptr) {
duke@435 2154 case TypePtr::TopPTR:
duke@435 2155 case TypePtr::BotPTR:
duke@435 2156 case TypePtr::NotNull:
duke@435 2157 return this;
duke@435 2158 case TypePtr::Null:
duke@435 2159 case TypePtr::Constant:
duke@435 2160 return make( _bits+offset );
duke@435 2161 default: ShouldNotReachHere();
duke@435 2162 }
duke@435 2163 return NULL; // Lint noise
duke@435 2164 }
duke@435 2165
duke@435 2166 //------------------------------eq---------------------------------------------
duke@435 2167 // Structural equality check for Type representations
duke@435 2168 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2169 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2170 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2171 }
duke@435 2172
duke@435 2173 //------------------------------hash-------------------------------------------
duke@435 2174 // Type-specific hashing function.
duke@435 2175 int TypeRawPtr::hash(void) const {
duke@435 2176 return (intptr_t)_bits + TypePtr::hash();
duke@435 2177 }
duke@435 2178
duke@435 2179 //------------------------------dump2------------------------------------------
duke@435 2180 #ifndef PRODUCT
duke@435 2181 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2182 if( _ptr == Constant )
duke@435 2183 st->print(INTPTR_FORMAT, _bits);
duke@435 2184 else
duke@435 2185 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2186 }
duke@435 2187 #endif
duke@435 2188
duke@435 2189 //=============================================================================
duke@435 2190 // Convenience common pre-built type.
duke@435 2191 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2192
kvn@598 2193 //------------------------------TypeOopPtr-------------------------------------
kvn@598 2194 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
kvn@598 2195 : TypePtr(t, ptr, offset),
kvn@598 2196 _const_oop(o), _klass(k),
kvn@598 2197 _klass_is_exact(xk),
kvn@598 2198 _is_ptr_to_narrowoop(false),
kvn@598 2199 _instance_id(instance_id) {
kvn@598 2200 #ifdef _LP64
kvn@598 2201 if (UseCompressedOops && _offset != 0) {
kvn@598 2202 if (klass() == NULL) {
kvn@598 2203 assert(this->isa_aryptr(), "only arrays without klass");
kvn@598 2204 _is_ptr_to_narrowoop = true;
kvn@598 2205 } else if (_offset == oopDesc::klass_offset_in_bytes()) {
kvn@598 2206 _is_ptr_to_narrowoop = true;
kvn@598 2207 } else if (this->isa_aryptr()) {
kvn@598 2208 _is_ptr_to_narrowoop = (klass()->is_obj_array_klass() &&
kvn@598 2209 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2210 } else if (klass() == ciEnv::current()->Class_klass() &&
kvn@598 2211 (_offset == java_lang_Class::klass_offset_in_bytes() ||
kvn@598 2212 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
kvn@598 2213 // Special hidden fields from the Class.
kvn@598 2214 assert(this->isa_instptr(), "must be an instance ptr.");
kvn@598 2215 _is_ptr_to_narrowoop = true;
kvn@598 2216 } else if (klass()->is_instance_klass()) {
kvn@598 2217 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2218 ciField* field = NULL;
kvn@598 2219 if (this->isa_klassptr()) {
kvn@598 2220 // Perm objects don't use compressed references, except for
kvn@598 2221 // static fields which are currently compressed.
kvn@598 2222 field = ik->get_field_by_offset(_offset, true);
kvn@598 2223 if (field != NULL) {
kvn@598 2224 BasicType basic_elem_type = field->layout_type();
kvn@598 2225 _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
kvn@598 2226 basic_elem_type == T_ARRAY);
kvn@598 2227 }
kvn@598 2228 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2229 // unsafe access
kvn@598 2230 _is_ptr_to_narrowoop = true;
kvn@598 2231 } else { // exclude unsafe ops
kvn@598 2232 assert(this->isa_instptr(), "must be an instance ptr.");
kvn@598 2233 // Field which contains a compressed oop references.
kvn@598 2234 field = ik->get_field_by_offset(_offset, false);
kvn@598 2235 if (field != NULL) {
kvn@598 2236 BasicType basic_elem_type = field->layout_type();
kvn@598 2237 _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
kvn@598 2238 basic_elem_type == T_ARRAY);
kvn@598 2239 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
kvn@598 2240 // Compile::find_alias_type() cast exactness on all types to verify
kvn@598 2241 // that it does not affect alias type.
kvn@598 2242 _is_ptr_to_narrowoop = true;
kvn@598 2243 } else {
kvn@598 2244 // Type for the copy start in LibraryCallKit::inline_native_clone().
kvn@598 2245 assert(!klass_is_exact(), "only non-exact klass");
kvn@598 2246 _is_ptr_to_narrowoop = true;
kvn@598 2247 }
kvn@598 2248 }
kvn@598 2249 }
kvn@598 2250 }
kvn@598 2251 #endif
kvn@598 2252 }
kvn@598 2253
duke@435 2254 //------------------------------make-------------------------------------------
duke@435 2255 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
kvn@1393 2256 int offset, int instance_id) {
duke@435 2257 assert(ptr != Constant, "no constant generic pointers");
duke@435 2258 ciKlass* k = ciKlassKlass::make();
duke@435 2259 bool xk = false;
duke@435 2260 ciObject* o = NULL;
kvn@1393 2261 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
duke@435 2262 }
duke@435 2263
duke@435 2264
duke@435 2265 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2266 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2267 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2268 if( ptr == _ptr ) return this;
kvn@1427 2269 return make(ptr, _offset, _instance_id);
duke@435 2270 }
duke@435 2271
kvn@682 2272 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2273 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2274 // There are no instances of a general oop.
duke@435 2275 // Return self unchanged.
duke@435 2276 return this;
duke@435 2277 }
duke@435 2278
duke@435 2279 //-----------------------------cast_to_exactness-------------------------------
duke@435 2280 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2281 // There is no such thing as an exact general oop.
duke@435 2282 // Return self unchanged.
duke@435 2283 return this;
duke@435 2284 }
duke@435 2285
duke@435 2286
duke@435 2287 //------------------------------as_klass_type----------------------------------
duke@435 2288 // Return the klass type corresponding to this instance or array type.
duke@435 2289 // It is the type that is loaded from an object of this type.
duke@435 2290 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2291 ciKlass* k = klass();
duke@435 2292 bool xk = klass_is_exact();
duke@435 2293 if (k == NULL || !k->is_java_klass())
duke@435 2294 return TypeKlassPtr::OBJECT;
duke@435 2295 else
duke@435 2296 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2297 }
duke@435 2298
duke@435 2299
duke@435 2300 //------------------------------meet-------------------------------------------
duke@435 2301 // Compute the MEET of two types. It returns a new Type object.
duke@435 2302 const Type *TypeOopPtr::xmeet( const Type *t ) const {
duke@435 2303 // Perform a fast test for common case; meeting the same types together.
duke@435 2304 if( this == t ) return this; // Meeting same type-rep?
duke@435 2305
duke@435 2306 // Current "this->_base" is OopPtr
duke@435 2307 switch (t->base()) { // switch on original type
duke@435 2308
duke@435 2309 case Int: // Mixing ints & oops happens when javac
duke@435 2310 case Long: // reuses local variables
duke@435 2311 case FloatTop:
duke@435 2312 case FloatCon:
duke@435 2313 case FloatBot:
duke@435 2314 case DoubleTop:
duke@435 2315 case DoubleCon:
duke@435 2316 case DoubleBot:
kvn@728 2317 case NarrowOop:
duke@435 2318 case Bottom: // Ye Olde Default
duke@435 2319 return Type::BOTTOM;
duke@435 2320 case Top:
duke@435 2321 return this;
duke@435 2322
duke@435 2323 default: // All else is a mistake
duke@435 2324 typerr(t);
duke@435 2325
duke@435 2326 case RawPtr:
duke@435 2327 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2328
duke@435 2329 case AnyPtr: {
duke@435 2330 // Found an AnyPtr type vs self-OopPtr type
duke@435 2331 const TypePtr *tp = t->is_ptr();
duke@435 2332 int offset = meet_offset(tp->offset());
duke@435 2333 PTR ptr = meet_ptr(tp->ptr());
duke@435 2334 switch (tp->ptr()) {
duke@435 2335 case Null:
duke@435 2336 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2337 // else fall through:
duke@435 2338 case TopPTR:
kvn@1427 2339 case AnyNull: {
kvn@1427 2340 int instance_id = meet_instance_id(InstanceTop);
kvn@1427 2341 return make(ptr, offset, instance_id);
kvn@1427 2342 }
duke@435 2343 case BotPTR:
duke@435 2344 case NotNull:
duke@435 2345 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2346 default: typerr(t);
duke@435 2347 }
duke@435 2348 }
duke@435 2349
duke@435 2350 case OopPtr: { // Meeting to other OopPtrs
duke@435 2351 const TypeOopPtr *tp = t->is_oopptr();
kvn@1393 2352 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 2353 return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
duke@435 2354 }
duke@435 2355
duke@435 2356 case InstPtr: // For these, flip the call around to cut down
duke@435 2357 case KlassPtr: // on the cases I have to handle.
duke@435 2358 case AryPtr:
duke@435 2359 return t->xmeet(this); // Call in reverse direction
duke@435 2360
duke@435 2361 } // End of switch
duke@435 2362 return this; // Return the double constant
duke@435 2363 }
duke@435 2364
duke@435 2365
duke@435 2366 //------------------------------xdual------------------------------------------
duke@435 2367 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2368 const Type *TypeOopPtr::xdual() const {
duke@435 2369 assert(klass() == ciKlassKlass::make(), "no klasses here");
duke@435 2370 assert(const_oop() == NULL, "no constants here");
kvn@658 2371 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 2372 }
duke@435 2373
duke@435 2374 //--------------------------make_from_klass_common-----------------------------
duke@435 2375 // Computes the element-type given a klass.
duke@435 2376 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2377 assert(klass->is_java_klass(), "must be java language klass");
duke@435 2378 if (klass->is_instance_klass()) {
duke@435 2379 Compile* C = Compile::current();
duke@435 2380 Dependencies* deps = C->dependencies();
duke@435 2381 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2382 // Element is an instance
duke@435 2383 bool klass_is_exact = false;
duke@435 2384 if (klass->is_loaded()) {
duke@435 2385 // Try to set klass_is_exact.
duke@435 2386 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2387 klass_is_exact = ik->is_final();
duke@435 2388 if (!klass_is_exact && klass_change
duke@435 2389 && deps != NULL && UseUniqueSubclasses) {
duke@435 2390 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2391 if (sub != NULL) {
duke@435 2392 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2393 klass = ik = sub;
duke@435 2394 klass_is_exact = sub->is_final();
duke@435 2395 }
duke@435 2396 }
duke@435 2397 if (!klass_is_exact && try_for_exact
duke@435 2398 && deps != NULL && UseExactTypes) {
duke@435 2399 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2400 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2401 deps->assert_leaf_type(ik);
duke@435 2402 klass_is_exact = true;
duke@435 2403 }
duke@435 2404 }
duke@435 2405 }
duke@435 2406 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2407 } else if (klass->is_obj_array_klass()) {
duke@435 2408 // Element is an object array. Recursively call ourself.
duke@435 2409 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2410 bool xk = etype->klass_is_exact();
duke@435 2411 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2412 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2413 // are all not-null. This is not true in generally, as code can
duke@435 2414 // slam NULLs down in the subarrays.
duke@435 2415 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2416 return arr;
duke@435 2417 } else if (klass->is_type_array_klass()) {
duke@435 2418 // Element is an typeArray
duke@435 2419 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2420 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2421 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2422 // is not-null. That was not true in general.
duke@435 2423 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2424 return arr;
duke@435 2425 } else {
duke@435 2426 ShouldNotReachHere();
duke@435 2427 return NULL;
duke@435 2428 }
duke@435 2429 }
duke@435 2430
duke@435 2431 //------------------------------make_from_constant-----------------------------
duke@435 2432 // Make a java pointer from an oop constant
jrose@1424 2433 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
twisti@1572 2434 if (o->is_method_data() || o->is_method() || o->is_cpcache()) {
duke@435 2435 // Treat much like a typeArray of bytes, like below, but fake the type...
duke@435 2436 const Type* etype = (Type*)get_const_basic_type(T_BYTE);
duke@435 2437 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2438 ciKlass *klass = ciTypeArrayKlass::make((BasicType) T_BYTE);
jrose@1424 2439 assert(o->can_be_constant(), "method data oops should be tenured");
duke@435 2440 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2441 return arr;
duke@435 2442 } else {
duke@435 2443 assert(o->is_java_object(), "must be java language object");
duke@435 2444 assert(!o->is_null_object(), "null object not yet handled here.");
duke@435 2445 ciKlass *klass = o->klass();
duke@435 2446 if (klass->is_instance_klass()) {
duke@435 2447 // Element is an instance
jrose@1424 2448 if (require_constant) {
jrose@1424 2449 if (!o->can_be_constant()) return NULL;
jrose@1424 2450 } else if (!o->should_be_constant()) {
duke@435 2451 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
duke@435 2452 }
duke@435 2453 return TypeInstPtr::make(o);
duke@435 2454 } else if (klass->is_obj_array_klass()) {
duke@435 2455 // Element is an object array. Recursively call ourself.
duke@435 2456 const Type *etype =
duke@435 2457 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
duke@435 2458 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2459 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2460 // are all not-null. This is not true in generally, as code can
duke@435 2461 // slam NULLs down in the subarrays.
jrose@1424 2462 if (require_constant) {
jrose@1424 2463 if (!o->can_be_constant()) return NULL;
jrose@1424 2464 } else if (!o->should_be_constant()) {
duke@435 2465 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2466 }
duke@435 2467 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2468 return arr;
duke@435 2469 } else if (klass->is_type_array_klass()) {
duke@435 2470 // Element is an typeArray
duke@435 2471 const Type* etype =
duke@435 2472 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2473 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2474 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2475 // is not-null. That was not true in general.
jrose@1424 2476 if (require_constant) {
jrose@1424 2477 if (!o->can_be_constant()) return NULL;
jrose@1424 2478 } else if (!o->should_be_constant()) {
duke@435 2479 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2480 }
duke@435 2481 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2482 return arr;
duke@435 2483 }
duke@435 2484 }
duke@435 2485
duke@435 2486 ShouldNotReachHere();
duke@435 2487 return NULL;
duke@435 2488 }
duke@435 2489
duke@435 2490 //------------------------------get_con----------------------------------------
duke@435 2491 intptr_t TypeOopPtr::get_con() const {
duke@435 2492 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2493 assert( _offset >= 0, "" );
duke@435 2494
duke@435 2495 if (_offset != 0) {
duke@435 2496 // After being ported to the compiler interface, the compiler no longer
duke@435 2497 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2498 // to a handle at compile time. This handle is embedded in the generated
duke@435 2499 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2500 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2501 // have access to the addresses!). This does not seem to currently happen,
twisti@1040 2502 // but this assertion here is to help prevent its occurence.
duke@435 2503 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2504 ShouldNotReachHere();
duke@435 2505 }
duke@435 2506
jrose@1424 2507 return (intptr_t)const_oop()->constant_encoding();
duke@435 2508 }
duke@435 2509
duke@435 2510
duke@435 2511 //-----------------------------filter------------------------------------------
duke@435 2512 // Do not allow interface-vs.-noninterface joins to collapse to top.
duke@435 2513 const Type *TypeOopPtr::filter( const Type *kills ) const {
duke@435 2514
duke@435 2515 const Type* ft = join(kills);
duke@435 2516 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2517 const TypeInstPtr* ktip = kills->isa_instptr();
never@990 2518 const TypeKlassPtr* ftkp = ft->isa_klassptr();
never@990 2519 const TypeKlassPtr* ktkp = kills->isa_klassptr();
duke@435 2520
duke@435 2521 if (ft->empty()) {
duke@435 2522 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2523 // interface. This can happen because the bytecodes do not contain
duke@435 2524 // enough type info to distinguish a Java-level interface variable
duke@435 2525 // from a Java-level object variable. If we meet 2 classes which
duke@435 2526 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2527 // doesn't implement I, we have no way to tell if the result should
duke@435 2528 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2529 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2530 // uplift the type.
duke@435 2531 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
duke@435 2532 return kills; // Uplift to interface
never@990 2533 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
never@990 2534 return kills; // Uplift to interface
duke@435 2535
duke@435 2536 return Type::TOP; // Canonical empty value
duke@435 2537 }
duke@435 2538
duke@435 2539 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2540 // the join should report back the class. However, if we have a J/L/Object
duke@435 2541 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2542 // join report an interface back out. This isn't possible but happens
duke@435 2543 // because the type system doesn't interact well with interfaces.
duke@435 2544 if (ftip != NULL && ktip != NULL &&
duke@435 2545 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2546 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2547 // Happens in a CTW of rt.jar, 320-341, no extra flags
kvn@1770 2548 assert(!ftip->klass_is_exact(), "interface could not be exact");
duke@435 2549 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2550 }
kvn@1770 2551 // Interface klass type could be exact in opposite to interface type,
kvn@1770 2552 // return it here instead of incorrect Constant ptr J/L/Object (6894807).
never@990 2553 if (ftkp != NULL && ktkp != NULL &&
never@990 2554 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
kvn@1770 2555 !ftkp->klass_is_exact() && // Keep exact interface klass
never@990 2556 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
never@990 2557 return ktkp->cast_to_ptr_type(ftkp->ptr());
never@990 2558 }
duke@435 2559
duke@435 2560 return ft;
duke@435 2561 }
duke@435 2562
duke@435 2563 //------------------------------eq---------------------------------------------
duke@435 2564 // Structural equality check for Type representations
duke@435 2565 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2566 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2567 if (_klass_is_exact != a->_klass_is_exact ||
duke@435 2568 _instance_id != a->_instance_id) return false;
duke@435 2569 ciObject* one = const_oop();
duke@435 2570 ciObject* two = a->const_oop();
duke@435 2571 if (one == NULL || two == NULL) {
duke@435 2572 return (one == two) && TypePtr::eq(t);
duke@435 2573 } else {
duke@435 2574 return one->equals(two) && TypePtr::eq(t);
duke@435 2575 }
duke@435 2576 }
duke@435 2577
duke@435 2578 //------------------------------hash-------------------------------------------
duke@435 2579 // Type-specific hashing function.
duke@435 2580 int TypeOopPtr::hash(void) const {
duke@435 2581 return
duke@435 2582 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2583 _klass_is_exact +
duke@435 2584 _instance_id +
duke@435 2585 TypePtr::hash();
duke@435 2586 }
duke@435 2587
duke@435 2588 //------------------------------dump2------------------------------------------
duke@435 2589 #ifndef PRODUCT
duke@435 2590 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2591 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2592 if( _klass_is_exact ) st->print(":exact");
duke@435 2593 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2594 switch( _offset ) {
duke@435 2595 case OffsetTop: st->print("+top"); break;
duke@435 2596 case OffsetBot: st->print("+any"); break;
duke@435 2597 case 0: break;
duke@435 2598 default: st->print("+%d",_offset); break;
duke@435 2599 }
kvn@658 2600 if (_instance_id == InstanceTop)
kvn@658 2601 st->print(",iid=top");
kvn@658 2602 else if (_instance_id != InstanceBot)
duke@435 2603 st->print(",iid=%d",_instance_id);
duke@435 2604 }
duke@435 2605 #endif
duke@435 2606
duke@435 2607 //------------------------------singleton--------------------------------------
duke@435 2608 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2609 // constants
duke@435 2610 bool TypeOopPtr::singleton(void) const {
duke@435 2611 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2612 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2613 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2614 }
duke@435 2615
duke@435 2616 //------------------------------add_offset-------------------------------------
kvn@741 2617 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
kvn@1427 2618 return make( _ptr, xadd_offset(offset), _instance_id);
duke@435 2619 }
duke@435 2620
kvn@658 2621 //------------------------------meet_instance_id--------------------------------
kvn@658 2622 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 2623 // Either is 'TOP' instance? Return the other instance!
kvn@658 2624 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 2625 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 2626 // If either is different, return 'BOTTOM' instance
kvn@658 2627 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 2628 return _instance_id;
duke@435 2629 }
duke@435 2630
kvn@658 2631 //------------------------------dual_instance_id--------------------------------
kvn@658 2632 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 2633 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 2634 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 2635 return _instance_id; // Map everything else into self
kvn@658 2636 }
kvn@658 2637
kvn@658 2638
duke@435 2639 //=============================================================================
duke@435 2640 // Convenience common pre-built types.
duke@435 2641 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 2642 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 2643 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 2644 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 2645 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 2646
duke@435 2647 //------------------------------TypeInstPtr-------------------------------------
duke@435 2648 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
duke@435 2649 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
duke@435 2650 assert(k != NULL &&
duke@435 2651 (k->is_loaded() || o == NULL),
duke@435 2652 "cannot have constants with non-loaded klass");
duke@435 2653 };
duke@435 2654
duke@435 2655 //------------------------------make-------------------------------------------
duke@435 2656 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 2657 ciKlass* k,
duke@435 2658 bool xk,
duke@435 2659 ciObject* o,
duke@435 2660 int offset,
duke@435 2661 int instance_id) {
duke@435 2662 assert( !k->is_loaded() || k->is_instance_klass() ||
duke@435 2663 k->is_method_klass(), "Must be for instance or method");
duke@435 2664 // Either const_oop() is NULL or else ptr is Constant
duke@435 2665 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 2666 "constant pointers must have a value supplied" );
duke@435 2667 // Ptr is never Null
duke@435 2668 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 2669
kvn@682 2670 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 2671 if (!UseExactTypes) xk = false;
duke@435 2672 if (ptr == Constant) {
duke@435 2673 // Note: This case includes meta-object constants, such as methods.
duke@435 2674 xk = true;
duke@435 2675 } else if (k->is_loaded()) {
duke@435 2676 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 2677 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 2678 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 2679 }
duke@435 2680
duke@435 2681 // Now hash this baby
duke@435 2682 TypeInstPtr *result =
duke@435 2683 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
duke@435 2684
duke@435 2685 return result;
duke@435 2686 }
duke@435 2687
duke@435 2688
duke@435 2689 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2690 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2691 if( ptr == _ptr ) return this;
duke@435 2692 // Reconstruct _sig info here since not a problem with later lazy
duke@435 2693 // construction, _sig will show up on demand.
kvn@658 2694 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
duke@435 2695 }
duke@435 2696
duke@435 2697
duke@435 2698 //-----------------------------cast_to_exactness-------------------------------
duke@435 2699 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2700 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 2701 if (!UseExactTypes) return this;
duke@435 2702 if (!_klass->is_loaded()) return this;
duke@435 2703 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 2704 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 2705 if( ik->is_interface() ) return this; // cannot set xk
duke@435 2706 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
duke@435 2707 }
duke@435 2708
kvn@682 2709 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2710 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 2711 if( instance_id == _instance_id ) return this;
kvn@682 2712 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
duke@435 2713 }
duke@435 2714
duke@435 2715 //------------------------------xmeet_unloaded---------------------------------
duke@435 2716 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 2717 // Assume classes are different since called after check for same name/class-loader
duke@435 2718 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 2719 int off = meet_offset(tinst->offset());
duke@435 2720 PTR ptr = meet_ptr(tinst->ptr());
kvn@1427 2721 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 2722
duke@435 2723 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 2724 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 2725 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 2726 //
duke@435 2727 // Meet unloaded class with java/lang/Object
duke@435 2728 //
duke@435 2729 // Meet
duke@435 2730 // | Unloaded Class
duke@435 2731 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 2732 // ===================================================================
duke@435 2733 // TOP | ..........................Unloaded......................|
duke@435 2734 // AnyNull | U-AN |................Unloaded......................|
duke@435 2735 // Constant | ... O-NN .................................. | O-BOT |
duke@435 2736 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 2737 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 2738 //
duke@435 2739 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 2740 //
duke@435 2741 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
kvn@1427 2742 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
duke@435 2743 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2744 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 2745 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2746 else { return TypeInstPtr::NOTNULL; }
duke@435 2747 }
duke@435 2748 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 2749
duke@435 2750 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 2751 }
duke@435 2752
duke@435 2753 // Both are unloaded, not the same class, not Object
duke@435 2754 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 2755 if( ptr != TypePtr::BotPTR ) {
duke@435 2756 return TypeInstPtr::NOTNULL;
duke@435 2757 }
duke@435 2758 return TypeInstPtr::BOTTOM;
duke@435 2759 }
duke@435 2760
duke@435 2761
duke@435 2762 //------------------------------meet-------------------------------------------
duke@435 2763 // Compute the MEET of two types. It returns a new Type object.
duke@435 2764 const Type *TypeInstPtr::xmeet( const Type *t ) const {
duke@435 2765 // Perform a fast test for common case; meeting the same types together.
duke@435 2766 if( this == t ) return this; // Meeting same type-rep?
duke@435 2767
duke@435 2768 // Current "this->_base" is Pointer
duke@435 2769 switch (t->base()) { // switch on original type
duke@435 2770
duke@435 2771 case Int: // Mixing ints & oops happens when javac
duke@435 2772 case Long: // reuses local variables
duke@435 2773 case FloatTop:
duke@435 2774 case FloatCon:
duke@435 2775 case FloatBot:
duke@435 2776 case DoubleTop:
duke@435 2777 case DoubleCon:
duke@435 2778 case DoubleBot:
coleenp@548 2779 case NarrowOop:
duke@435 2780 case Bottom: // Ye Olde Default
duke@435 2781 return Type::BOTTOM;
duke@435 2782 case Top:
duke@435 2783 return this;
duke@435 2784
duke@435 2785 default: // All else is a mistake
duke@435 2786 typerr(t);
duke@435 2787
duke@435 2788 case RawPtr: return TypePtr::BOTTOM;
duke@435 2789
duke@435 2790 case AryPtr: { // All arrays inherit from Object class
duke@435 2791 const TypeAryPtr *tp = t->is_aryptr();
duke@435 2792 int offset = meet_offset(tp->offset());
duke@435 2793 PTR ptr = meet_ptr(tp->ptr());
kvn@658 2794 int instance_id = meet_instance_id(tp->instance_id());
duke@435 2795 switch (ptr) {
duke@435 2796 case TopPTR:
duke@435 2797 case AnyNull: // Fall 'down' to dual of object klass
duke@435 2798 if (klass()->equals(ciEnv::current()->Object_klass())) {
kvn@658 2799 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2800 } else {
duke@435 2801 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 2802 ptr = NotNull;
kvn@658 2803 instance_id = InstanceBot;
kvn@658 2804 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
duke@435 2805 }
duke@435 2806 case Constant:
duke@435 2807 case NotNull:
duke@435 2808 case BotPTR: // Fall down to object klass
duke@435 2809 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 2810 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 2811 // If 'this' (InstPtr) is above the centerline and it is Object class
twisti@1040 2812 // then we can subclass in the Java class hierarchy.
duke@435 2813 if (klass()->equals(ciEnv::current()->Object_klass())) {
duke@435 2814 // that is, tp's array type is a subtype of my klass
kvn@1714 2815 return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
kvn@1714 2816 tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2817 }
duke@435 2818 }
duke@435 2819 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 2820 // The meet falls down to Object class below centerline.
duke@435 2821 if( ptr == Constant )
duke@435 2822 ptr = NotNull;
kvn@658 2823 instance_id = InstanceBot;
kvn@658 2824 return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
duke@435 2825 default: typerr(t);
duke@435 2826 }
duke@435 2827 }
duke@435 2828
duke@435 2829 case OopPtr: { // Meeting to OopPtrs
duke@435 2830 // Found a OopPtr type vs self-InstPtr type
kvn@1393 2831 const TypeOopPtr *tp = t->is_oopptr();
duke@435 2832 int offset = meet_offset(tp->offset());
duke@435 2833 PTR ptr = meet_ptr(tp->ptr());
duke@435 2834 switch (tp->ptr()) {
duke@435 2835 case TopPTR:
kvn@658 2836 case AnyNull: {
kvn@658 2837 int instance_id = meet_instance_id(InstanceTop);
duke@435 2838 return make(ptr, klass(), klass_is_exact(),
kvn@658 2839 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 2840 }
duke@435 2841 case NotNull:
kvn@1393 2842 case BotPTR: {
kvn@1393 2843 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 2844 return TypeOopPtr::make(ptr, offset, instance_id);
kvn@1393 2845 }
duke@435 2846 default: typerr(t);
duke@435 2847 }
duke@435 2848 }
duke@435 2849
duke@435 2850 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2851 // Found an AnyPtr type vs self-InstPtr type
duke@435 2852 const TypePtr *tp = t->is_ptr();
duke@435 2853 int offset = meet_offset(tp->offset());
duke@435 2854 PTR ptr = meet_ptr(tp->ptr());
duke@435 2855 switch (tp->ptr()) {
duke@435 2856 case Null:
duke@435 2857 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
kvn@658 2858 // else fall through to AnyNull
duke@435 2859 case TopPTR:
kvn@658 2860 case AnyNull: {
kvn@658 2861 int instance_id = meet_instance_id(InstanceTop);
duke@435 2862 return make( ptr, klass(), klass_is_exact(),
kvn@658 2863 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 2864 }
duke@435 2865 case NotNull:
duke@435 2866 case BotPTR:
duke@435 2867 return TypePtr::make( AnyPtr, ptr, offset );
duke@435 2868 default: typerr(t);
duke@435 2869 }
duke@435 2870 }
duke@435 2871
duke@435 2872 /*
duke@435 2873 A-top }
duke@435 2874 / | \ } Tops
duke@435 2875 B-top A-any C-top }
duke@435 2876 | / | \ | } Any-nulls
duke@435 2877 B-any | C-any }
duke@435 2878 | | |
duke@435 2879 B-con A-con C-con } constants; not comparable across classes
duke@435 2880 | | |
duke@435 2881 B-not | C-not }
duke@435 2882 | \ | / | } not-nulls
duke@435 2883 B-bot A-not C-bot }
duke@435 2884 \ | / } Bottoms
duke@435 2885 A-bot }
duke@435 2886 */
duke@435 2887
duke@435 2888 case InstPtr: { // Meeting 2 Oops?
duke@435 2889 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 2890 const TypeInstPtr *tinst = t->is_instptr();
duke@435 2891 int off = meet_offset( tinst->offset() );
duke@435 2892 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 2893 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 2894
duke@435 2895 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 2896 // If we have constants, then we created oops so classes are loaded
duke@435 2897 // and we can handle the constants further down. This case handles
duke@435 2898 // both-not-loaded or both-loaded classes
duke@435 2899 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
duke@435 2900 return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
duke@435 2901 }
duke@435 2902
duke@435 2903 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 2904 ciKlass* tinst_klass = tinst->klass();
duke@435 2905 ciKlass* this_klass = this->klass();
duke@435 2906 bool tinst_xk = tinst->klass_is_exact();
duke@435 2907 bool this_xk = this->klass_is_exact();
duke@435 2908 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 2909 // One of these classes has not been loaded
duke@435 2910 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 2911 #ifndef PRODUCT
duke@435 2912 if( PrintOpto && Verbose ) {
duke@435 2913 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 2914 tty->print(" this == "); this->dump(); tty->cr();
duke@435 2915 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 2916 }
duke@435 2917 #endif
duke@435 2918 return unloaded_meet;
duke@435 2919 }
duke@435 2920
duke@435 2921 // Handle mixing oops and interfaces first.
duke@435 2922 if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
duke@435 2923 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 2924 tinst_klass = this_klass;
duke@435 2925 this_klass = tmp;
duke@435 2926 bool tmp2 = tinst_xk;
duke@435 2927 tinst_xk = this_xk;
duke@435 2928 this_xk = tmp2;
duke@435 2929 }
duke@435 2930 if (tinst_klass->is_interface() &&
duke@435 2931 !(this_klass->is_interface() ||
duke@435 2932 // Treat java/lang/Object as an honorary interface,
duke@435 2933 // because we need a bottom for the interface hierarchy.
duke@435 2934 this_klass == ciEnv::current()->Object_klass())) {
duke@435 2935 // Oop meets interface!
duke@435 2936
duke@435 2937 // See if the oop subtypes (implements) interface.
duke@435 2938 ciKlass *k;
duke@435 2939 bool xk;
duke@435 2940 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 2941 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 2942 // on whether we are both above the centerline or either is
duke@435 2943 // below the centerline. If we are on the centerline
duke@435 2944 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 2945 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 2946 // If we are keeping this_klass, keep its exactness too.
duke@435 2947 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 2948 } else { // Does not implement, fall to Object
duke@435 2949 // Oop does not implement interface, so mixing falls to Object
duke@435 2950 // just like the verifier does (if both are above the
duke@435 2951 // centerline fall to interface)
duke@435 2952 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 2953 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 2954 // Watch out for Constant vs. AnyNull interface.
duke@435 2955 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 2956 instance_id = InstanceBot;
duke@435 2957 }
duke@435 2958 ciObject* o = NULL; // the Constant value, if any
duke@435 2959 if (ptr == Constant) {
duke@435 2960 // Find out which constant.
duke@435 2961 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 2962 }
kvn@658 2963 return make( ptr, k, xk, o, off, instance_id );
duke@435 2964 }
duke@435 2965
duke@435 2966 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 2967
duke@435 2968 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 2969 // If we split one up & one down AND they subtype, take the down man.
duke@435 2970 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 2971 // If both are up and they subtype, take the subtype class.
duke@435 2972 // If both are up and they do NOT subtype, "fall hard".
duke@435 2973 // If both are down and they subtype, take the supertype class.
duke@435 2974 // If both are down and they do NOT subtype, "fall hard".
duke@435 2975 // Constants treated as down.
duke@435 2976
duke@435 2977 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 2978 // "fall hard"; "fall hard" becomes the default case:
duke@435 2979 // If we split one up & one down AND they subtype, take the down man.
duke@435 2980 // If both are up and they subtype, take the subtype class.
duke@435 2981
duke@435 2982 // If both are down and they subtype, "fall hard".
duke@435 2983 // If both are down and they do NOT subtype, "fall hard".
duke@435 2984 // If both are up and they do NOT subtype, "fall hard".
duke@435 2985 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 2986
duke@435 2987 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 2988 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 2989 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 2990 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 2991
duke@435 2992 // Check for subtyping:
duke@435 2993 ciKlass *subtype = NULL;
duke@435 2994 bool subtype_exact = false;
duke@435 2995 if( tinst_klass->equals(this_klass) ) {
duke@435 2996 subtype = this_klass;
duke@435 2997 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 2998 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 2999 subtype = this_klass; // Pick subtyping class
duke@435 3000 subtype_exact = this_xk;
duke@435 3001 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 3002 subtype = tinst_klass; // Pick subtyping class
duke@435 3003 subtype_exact = tinst_xk;
duke@435 3004 }
duke@435 3005
duke@435 3006 if( subtype ) {
duke@435 3007 if( above_centerline(ptr) ) { // both are up?
duke@435 3008 this_klass = tinst_klass = subtype;
duke@435 3009 this_xk = tinst_xk = subtype_exact;
duke@435 3010 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 3011 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 3012 this_xk = tinst_xk;
duke@435 3013 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 3014 tinst_klass = this_klass; // this is down; keep down man
duke@435 3015 tinst_xk = this_xk;
duke@435 3016 } else {
duke@435 3017 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 3018 }
duke@435 3019 }
duke@435 3020
duke@435 3021 // Check for classes now being equal
duke@435 3022 if (tinst_klass->equals(this_klass)) {
duke@435 3023 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3024 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3025 // handled elsewhere).
duke@435 3026 ciObject* o = NULL; // Assume not constant when done
duke@435 3027 ciObject* this_oop = const_oop();
duke@435 3028 ciObject* tinst_oop = tinst->const_oop();
duke@435 3029 if( ptr == Constant ) {
duke@435 3030 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 3031 this_oop->equals(tinst_oop) )
duke@435 3032 o = this_oop;
duke@435 3033 else if (above_centerline(this ->_ptr))
duke@435 3034 o = tinst_oop;
duke@435 3035 else if (above_centerline(tinst ->_ptr))
duke@435 3036 o = this_oop;
duke@435 3037 else
duke@435 3038 ptr = NotNull;
duke@435 3039 }
duke@435 3040 return make( ptr, this_klass, this_xk, o, off, instance_id );
duke@435 3041 } // Else classes are not equal
duke@435 3042
duke@435 3043 // Since klasses are different, we require a LCA in the Java
duke@435 3044 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3045 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3046 ptr = NotNull;
kvn@682 3047 instance_id = InstanceBot;
duke@435 3048
duke@435 3049 // Now we find the LCA of Java classes
duke@435 3050 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
kvn@658 3051 return make( ptr, k, false, NULL, off, instance_id );
duke@435 3052 } // End of case InstPtr
duke@435 3053
duke@435 3054 case KlassPtr:
duke@435 3055 return TypeInstPtr::BOTTOM;
duke@435 3056
duke@435 3057 } // End of switch
duke@435 3058 return this; // Return the double constant
duke@435 3059 }
duke@435 3060
duke@435 3061
duke@435 3062 //------------------------java_mirror_type--------------------------------------
duke@435 3063 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3064 // must be a singleton type
duke@435 3065 if( const_oop() == NULL ) return NULL;
duke@435 3066
duke@435 3067 // must be of type java.lang.Class
duke@435 3068 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3069
duke@435 3070 return const_oop()->as_instance()->java_mirror_type();
duke@435 3071 }
duke@435 3072
duke@435 3073
duke@435 3074 //------------------------------xdual------------------------------------------
duke@435 3075 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
twisti@1040 3076 // inheritance mechanism.
duke@435 3077 const Type *TypeInstPtr::xdual() const {
kvn@658 3078 return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 3079 }
duke@435 3080
duke@435 3081 //------------------------------eq---------------------------------------------
duke@435 3082 // Structural equality check for Type representations
duke@435 3083 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3084 const TypeInstPtr *p = t->is_instptr();
duke@435 3085 return
duke@435 3086 klass()->equals(p->klass()) &&
duke@435 3087 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3088 }
duke@435 3089
duke@435 3090 //------------------------------hash-------------------------------------------
duke@435 3091 // Type-specific hashing function.
duke@435 3092 int TypeInstPtr::hash(void) const {
duke@435 3093 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 3094 return hash;
duke@435 3095 }
duke@435 3096
duke@435 3097 //------------------------------dump2------------------------------------------
duke@435 3098 // Dump oop Type
duke@435 3099 #ifndef PRODUCT
duke@435 3100 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3101 // Print the name of the klass.
duke@435 3102 klass()->print_name_on(st);
duke@435 3103
duke@435 3104 switch( _ptr ) {
duke@435 3105 case Constant:
duke@435 3106 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3107 if (WizardMode || Verbose) {
duke@435 3108 const_oop()->print_oop(st);
duke@435 3109 }
duke@435 3110 case BotPTR:
duke@435 3111 if (!WizardMode && !Verbose) {
duke@435 3112 if( _klass_is_exact ) st->print(":exact");
duke@435 3113 break;
duke@435 3114 }
duke@435 3115 case TopPTR:
duke@435 3116 case AnyNull:
duke@435 3117 case NotNull:
duke@435 3118 st->print(":%s", ptr_msg[_ptr]);
duke@435 3119 if( _klass_is_exact ) st->print(":exact");
duke@435 3120 break;
duke@435 3121 }
duke@435 3122
duke@435 3123 if( _offset ) { // Dump offset, if any
duke@435 3124 if( _offset == OffsetBot ) st->print("+any");
duke@435 3125 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3126 else st->print("+%d", _offset);
duke@435 3127 }
duke@435 3128
duke@435 3129 st->print(" *");
kvn@658 3130 if (_instance_id == InstanceTop)
kvn@658 3131 st->print(",iid=top");
kvn@658 3132 else if (_instance_id != InstanceBot)
duke@435 3133 st->print(",iid=%d",_instance_id);
duke@435 3134 }
duke@435 3135 #endif
duke@435 3136
duke@435 3137 //------------------------------add_offset-------------------------------------
kvn@741 3138 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
duke@435 3139 return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
duke@435 3140 }
duke@435 3141
duke@435 3142 //=============================================================================
duke@435 3143 // Convenience common pre-built types.
duke@435 3144 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3145 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3146 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3147 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3148 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3149 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3150 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3151 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3152 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3153 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3154
duke@435 3155 //------------------------------make-------------------------------------------
duke@435 3156 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3157 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3158 "integral arrays must be pre-equipped with a class");
duke@435 3159 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3160 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3161 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3162 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3163 }
duke@435 3164
duke@435 3165 //------------------------------make-------------------------------------------
duke@435 3166 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3167 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3168 "integral arrays must be pre-equipped with a class");
duke@435 3169 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3170 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3171 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3172 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3173 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3174 }
duke@435 3175
duke@435 3176 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3177 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3178 if( ptr == _ptr ) return this;
kvn@658 3179 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3180 }
duke@435 3181
duke@435 3182
duke@435 3183 //-----------------------------cast_to_exactness-------------------------------
duke@435 3184 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3185 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3186 if (!UseExactTypes) return this;
duke@435 3187 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
duke@435 3188 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
duke@435 3189 }
duke@435 3190
kvn@682 3191 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3192 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3193 if( instance_id == _instance_id ) return this;
kvn@682 3194 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
duke@435 3195 }
duke@435 3196
duke@435 3197 //-----------------------------narrow_size_type-------------------------------
duke@435 3198 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3199 // which is kind of slow (and cached elsewhere by other users).
duke@435 3200 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3201 static jint max_array_length(BasicType etype) {
duke@435 3202 jint& cache = max_array_length_cache[etype];
duke@435 3203 jint res = cache;
duke@435 3204 if (res == 0) {
duke@435 3205 switch (etype) {
coleenp@548 3206 case T_NARROWOOP:
coleenp@548 3207 etype = T_OBJECT;
coleenp@548 3208 break;
duke@435 3209 case T_CONFLICT:
duke@435 3210 case T_ILLEGAL:
duke@435 3211 case T_VOID:
duke@435 3212 etype = T_BYTE; // will produce conservatively high value
duke@435 3213 }
duke@435 3214 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3215 }
duke@435 3216 return res;
duke@435 3217 }
duke@435 3218
duke@435 3219 // Narrow the given size type to the index range for the given array base type.
duke@435 3220 // Return NULL if the resulting int type becomes empty.
rasbold@801 3221 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
duke@435 3222 jint hi = size->_hi;
duke@435 3223 jint lo = size->_lo;
duke@435 3224 jint min_lo = 0;
rasbold@801 3225 jint max_hi = max_array_length(elem()->basic_type());
duke@435 3226 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3227 bool chg = false;
duke@435 3228 if (lo < min_lo) { lo = min_lo; chg = true; }
duke@435 3229 if (hi > max_hi) { hi = max_hi; chg = true; }
twisti@1040 3230 // Negative length arrays will produce weird intermediate dead fast-path code
duke@435 3231 if (lo > hi)
rasbold@801 3232 return TypeInt::ZERO;
duke@435 3233 if (!chg)
duke@435 3234 return size;
duke@435 3235 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3236 }
duke@435 3237
duke@435 3238 //-------------------------------cast_to_size----------------------------------
duke@435 3239 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3240 assert(new_size != NULL, "");
rasbold@801 3241 new_size = narrow_size_type(new_size);
duke@435 3242 if (new_size == size()) return this;
duke@435 3243 const TypeAry* new_ary = TypeAry::make(elem(), new_size);
kvn@658 3244 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3245 }
duke@435 3246
duke@435 3247
duke@435 3248 //------------------------------eq---------------------------------------------
duke@435 3249 // Structural equality check for Type representations
duke@435 3250 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3251 const TypeAryPtr *p = t->is_aryptr();
duke@435 3252 return
duke@435 3253 _ary == p->_ary && // Check array
duke@435 3254 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3255 }
duke@435 3256
duke@435 3257 //------------------------------hash-------------------------------------------
duke@435 3258 // Type-specific hashing function.
duke@435 3259 int TypeAryPtr::hash(void) const {
duke@435 3260 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3261 }
duke@435 3262
duke@435 3263 //------------------------------meet-------------------------------------------
duke@435 3264 // Compute the MEET of two types. It returns a new Type object.
duke@435 3265 const Type *TypeAryPtr::xmeet( const Type *t ) const {
duke@435 3266 // Perform a fast test for common case; meeting the same types together.
duke@435 3267 if( this == t ) return this; // Meeting same type-rep?
duke@435 3268 // Current "this->_base" is Pointer
duke@435 3269 switch (t->base()) { // switch on original type
duke@435 3270
duke@435 3271 // Mixing ints & oops happens when javac reuses local variables
duke@435 3272 case Int:
duke@435 3273 case Long:
duke@435 3274 case FloatTop:
duke@435 3275 case FloatCon:
duke@435 3276 case FloatBot:
duke@435 3277 case DoubleTop:
duke@435 3278 case DoubleCon:
duke@435 3279 case DoubleBot:
coleenp@548 3280 case NarrowOop:
duke@435 3281 case Bottom: // Ye Olde Default
duke@435 3282 return Type::BOTTOM;
duke@435 3283 case Top:
duke@435 3284 return this;
duke@435 3285
duke@435 3286 default: // All else is a mistake
duke@435 3287 typerr(t);
duke@435 3288
duke@435 3289 case OopPtr: { // Meeting to OopPtrs
duke@435 3290 // Found a OopPtr type vs self-AryPtr type
kvn@1393 3291 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3292 int offset = meet_offset(tp->offset());
duke@435 3293 PTR ptr = meet_ptr(tp->ptr());
duke@435 3294 switch (tp->ptr()) {
duke@435 3295 case TopPTR:
kvn@658 3296 case AnyNull: {
kvn@658 3297 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3298 return make(ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3299 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3300 }
duke@435 3301 case BotPTR:
kvn@1393 3302 case NotNull: {
kvn@1393 3303 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 3304 return TypeOopPtr::make(ptr, offset, instance_id);
kvn@1393 3305 }
duke@435 3306 default: ShouldNotReachHere();
duke@435 3307 }
duke@435 3308 }
duke@435 3309
duke@435 3310 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3311 // Found an AnyPtr type vs self-AryPtr type
duke@435 3312 const TypePtr *tp = t->is_ptr();
duke@435 3313 int offset = meet_offset(tp->offset());
duke@435 3314 PTR ptr = meet_ptr(tp->ptr());
duke@435 3315 switch (tp->ptr()) {
duke@435 3316 case TopPTR:
duke@435 3317 return this;
duke@435 3318 case BotPTR:
duke@435 3319 case NotNull:
duke@435 3320 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3321 case Null:
duke@435 3322 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3323 // else fall through to AnyNull
kvn@658 3324 case AnyNull: {
kvn@658 3325 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3326 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3327 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3328 }
duke@435 3329 default: ShouldNotReachHere();
duke@435 3330 }
duke@435 3331 }
duke@435 3332
duke@435 3333 case RawPtr: return TypePtr::BOTTOM;
duke@435 3334
duke@435 3335 case AryPtr: { // Meeting 2 references?
duke@435 3336 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3337 int off = meet_offset(tap->offset());
duke@435 3338 const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
duke@435 3339 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3340 int instance_id = meet_instance_id(tap->instance_id());
duke@435 3341 ciKlass* lazy_klass = NULL;
duke@435 3342 if (tary->_elem->isa_int()) {
duke@435 3343 // Integral array element types have irrelevant lattice relations.
duke@435 3344 // It is the klass that determines array layout, not the element type.
duke@435 3345 if (_klass == NULL)
duke@435 3346 lazy_klass = tap->_klass;
duke@435 3347 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3348 lazy_klass = _klass;
duke@435 3349 } else {
duke@435 3350 // Something like byte[int+] meets char[int+].
duke@435 3351 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3352 instance_id = InstanceBot;
duke@435 3353 tary = TypeAry::make(Type::BOTTOM, tary->_size);
duke@435 3354 }
duke@435 3355 }
duke@435 3356 bool xk;
duke@435 3357 switch (tap->ptr()) {
duke@435 3358 case AnyNull:
duke@435 3359 case TopPTR:
duke@435 3360 // Compute new klass on demand, do not use tap->_klass
duke@435 3361 xk = (tap->_klass_is_exact | this->_klass_is_exact);
kvn@658 3362 return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
duke@435 3363 case Constant: {
duke@435 3364 ciObject* o = const_oop();
duke@435 3365 if( _ptr == Constant ) {
duke@435 3366 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
jrose@1424 3367 xk = (klass() == tap->klass());
duke@435 3368 ptr = NotNull;
duke@435 3369 o = NULL;
kvn@682 3370 instance_id = InstanceBot;
jrose@1424 3371 } else {
jrose@1424 3372 xk = true;
duke@435 3373 }
duke@435 3374 } else if( above_centerline(_ptr) ) {
duke@435 3375 o = tap->const_oop();
jrose@1424 3376 xk = true;
jrose@1424 3377 } else {
jrose@1424 3378 xk = this->_klass_is_exact;
duke@435 3379 }
kvn@658 3380 return TypeAryPtr::make( ptr, o, tary, tap->_klass, xk, off, instance_id );
duke@435 3381 }
duke@435 3382 case NotNull:
duke@435 3383 case BotPTR:
duke@435 3384 // Compute new klass on demand, do not use tap->_klass
duke@435 3385 if (above_centerline(this->_ptr))
duke@435 3386 xk = tap->_klass_is_exact;
duke@435 3387 else if (above_centerline(tap->_ptr))
duke@435 3388 xk = this->_klass_is_exact;
duke@435 3389 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 3390 (klass() == tap->klass()); // Only precise for identical arrays
kvn@658 3391 return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
duke@435 3392 default: ShouldNotReachHere();
duke@435 3393 }
duke@435 3394 }
duke@435 3395
duke@435 3396 // All arrays inherit from Object class
duke@435 3397 case InstPtr: {
duke@435 3398 const TypeInstPtr *tp = t->is_instptr();
duke@435 3399 int offset = meet_offset(tp->offset());
duke@435 3400 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3401 int instance_id = meet_instance_id(tp->instance_id());
duke@435 3402 switch (ptr) {
duke@435 3403 case TopPTR:
duke@435 3404 case AnyNull: // Fall 'down' to dual of object klass
duke@435 3405 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
kvn@658 3406 return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3407 } else {
duke@435 3408 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3409 ptr = NotNull;
kvn@658 3410 instance_id = InstanceBot;
kvn@658 3411 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3412 }
duke@435 3413 case Constant:
duke@435 3414 case NotNull:
duke@435 3415 case BotPTR: // Fall down to object klass
duke@435 3416 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3417 if (above_centerline(tp->ptr())) {
duke@435 3418 // If 'tp' is above the centerline and it is Object class
twisti@1040 3419 // then we can subclass in the Java class hierarchy.
duke@435 3420 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3421 // that is, my array type is a subtype of 'tp' klass
kvn@1714 3422 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@1714 3423 _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3424 }
duke@435 3425 }
duke@435 3426 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 3427 // The meet falls down to Object class below centerline.
duke@435 3428 if( ptr == Constant )
duke@435 3429 ptr = NotNull;
kvn@658 3430 instance_id = InstanceBot;
kvn@658 3431 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3432 default: typerr(t);
duke@435 3433 }
duke@435 3434 }
duke@435 3435
duke@435 3436 case KlassPtr:
duke@435 3437 return TypeInstPtr::BOTTOM;
duke@435 3438
duke@435 3439 }
duke@435 3440 return this; // Lint noise
duke@435 3441 }
duke@435 3442
duke@435 3443 //------------------------------xdual------------------------------------------
duke@435 3444 // Dual: compute field-by-field dual
duke@435 3445 const Type *TypeAryPtr::xdual() const {
kvn@658 3446 return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
duke@435 3447 }
duke@435 3448
kvn@1255 3449 //----------------------interface_vs_oop---------------------------------------
kvn@1255 3450 #ifdef ASSERT
kvn@1255 3451 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
kvn@1255 3452 const TypeAryPtr* t_aryptr = t->isa_aryptr();
kvn@1255 3453 if (t_aryptr) {
kvn@1255 3454 return _ary->interface_vs_oop(t_aryptr->_ary);
kvn@1255 3455 }
kvn@1255 3456 return false;
kvn@1255 3457 }
kvn@1255 3458 #endif
kvn@1255 3459
duke@435 3460 //------------------------------dump2------------------------------------------
duke@435 3461 #ifndef PRODUCT
duke@435 3462 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3463 _ary->dump2(d,depth,st);
duke@435 3464 switch( _ptr ) {
duke@435 3465 case Constant:
duke@435 3466 const_oop()->print(st);
duke@435 3467 break;
duke@435 3468 case BotPTR:
duke@435 3469 if (!WizardMode && !Verbose) {
duke@435 3470 if( _klass_is_exact ) st->print(":exact");
duke@435 3471 break;
duke@435 3472 }
duke@435 3473 case TopPTR:
duke@435 3474 case AnyNull:
duke@435 3475 case NotNull:
duke@435 3476 st->print(":%s", ptr_msg[_ptr]);
duke@435 3477 if( _klass_is_exact ) st->print(":exact");
duke@435 3478 break;
duke@435 3479 }
duke@435 3480
kvn@499 3481 if( _offset != 0 ) {
kvn@499 3482 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 3483 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 3484 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 3485 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 3486 else {
kvn@499 3487 BasicType basic_elem_type = elem()->basic_type();
kvn@499 3488 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 3489 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 3490 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 3491 }
kvn@499 3492 }
kvn@499 3493 st->print(" *");
kvn@658 3494 if (_instance_id == InstanceTop)
kvn@658 3495 st->print(",iid=top");
kvn@658 3496 else if (_instance_id != InstanceBot)
duke@435 3497 st->print(",iid=%d",_instance_id);
duke@435 3498 }
duke@435 3499 #endif
duke@435 3500
duke@435 3501 bool TypeAryPtr::empty(void) const {
duke@435 3502 if (_ary->empty()) return true;
duke@435 3503 return TypeOopPtr::empty();
duke@435 3504 }
duke@435 3505
duke@435 3506 //------------------------------add_offset-------------------------------------
kvn@741 3507 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
duke@435 3508 return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
duke@435 3509 }
duke@435 3510
duke@435 3511
duke@435 3512 //=============================================================================
coleenp@548 3513 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
coleenp@548 3514 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
coleenp@548 3515
coleenp@548 3516
coleenp@548 3517 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
coleenp@548 3518 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
coleenp@548 3519 }
coleenp@548 3520
coleenp@548 3521 //------------------------------hash-------------------------------------------
coleenp@548 3522 // Type-specific hashing function.
coleenp@548 3523 int TypeNarrowOop::hash(void) const {
never@1262 3524 return _ptrtype->hash() + 7;
coleenp@548 3525 }
coleenp@548 3526
coleenp@548 3527
coleenp@548 3528 bool TypeNarrowOop::eq( const Type *t ) const {
coleenp@548 3529 const TypeNarrowOop* tc = t->isa_narrowoop();
coleenp@548 3530 if (tc != NULL) {
never@1262 3531 if (_ptrtype->base() != tc->_ptrtype->base()) {
coleenp@548 3532 return false;
coleenp@548 3533 }
never@1262 3534 return tc->_ptrtype->eq(_ptrtype);
coleenp@548 3535 }
coleenp@548 3536 return false;
coleenp@548 3537 }
coleenp@548 3538
coleenp@548 3539 bool TypeNarrowOop::singleton(void) const { // TRUE if type is a singleton
never@1262 3540 return _ptrtype->singleton();
coleenp@548 3541 }
coleenp@548 3542
coleenp@548 3543 bool TypeNarrowOop::empty(void) const {
never@1262 3544 return _ptrtype->empty();
coleenp@548 3545 }
coleenp@548 3546
kvn@728 3547 //------------------------------xmeet------------------------------------------
coleenp@548 3548 // Compute the MEET of two types. It returns a new Type object.
coleenp@548 3549 const Type *TypeNarrowOop::xmeet( const Type *t ) const {
coleenp@548 3550 // Perform a fast test for common case; meeting the same types together.
coleenp@548 3551 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 3552
coleenp@548 3553
coleenp@548 3554 // Current "this->_base" is OopPtr
coleenp@548 3555 switch (t->base()) { // switch on original type
coleenp@548 3556
coleenp@548 3557 case Int: // Mixing ints & oops happens when javac
coleenp@548 3558 case Long: // reuses local variables
coleenp@548 3559 case FloatTop:
coleenp@548 3560 case FloatCon:
coleenp@548 3561 case FloatBot:
coleenp@548 3562 case DoubleTop:
coleenp@548 3563 case DoubleCon:
coleenp@548 3564 case DoubleBot:
kvn@728 3565 case AnyPtr:
kvn@728 3566 case RawPtr:
kvn@728 3567 case OopPtr:
kvn@728 3568 case InstPtr:
kvn@728 3569 case KlassPtr:
kvn@728 3570 case AryPtr:
kvn@728 3571
coleenp@548 3572 case Bottom: // Ye Olde Default
coleenp@548 3573 return Type::BOTTOM;
coleenp@548 3574 case Top:
coleenp@548 3575 return this;
coleenp@548 3576
coleenp@548 3577 case NarrowOop: {
never@1262 3578 const Type* result = _ptrtype->xmeet(t->make_ptr());
coleenp@548 3579 if (result->isa_ptr()) {
coleenp@548 3580 return TypeNarrowOop::make(result->is_ptr());
coleenp@548 3581 }
coleenp@548 3582 return result;
coleenp@548 3583 }
coleenp@548 3584
coleenp@548 3585 default: // All else is a mistake
coleenp@548 3586 typerr(t);
coleenp@548 3587
coleenp@548 3588 } // End of switch
kvn@728 3589
kvn@728 3590 return this;
coleenp@548 3591 }
coleenp@548 3592
coleenp@548 3593 const Type *TypeNarrowOop::xdual() const { // Compute dual right now.
never@1262 3594 const TypePtr* odual = _ptrtype->dual()->is_ptr();
coleenp@548 3595 return new TypeNarrowOop(odual);
coleenp@548 3596 }
coleenp@548 3597
coleenp@548 3598 const Type *TypeNarrowOop::filter( const Type *kills ) const {
coleenp@548 3599 if (kills->isa_narrowoop()) {
never@1262 3600 const Type* ft =_ptrtype->filter(kills->is_narrowoop()->_ptrtype);
coleenp@548 3601 if (ft->empty())
coleenp@548 3602 return Type::TOP; // Canonical empty value
coleenp@548 3603 if (ft->isa_ptr()) {
coleenp@548 3604 return make(ft->isa_ptr());
coleenp@548 3605 }
coleenp@548 3606 return ft;
coleenp@548 3607 } else if (kills->isa_ptr()) {
never@1262 3608 const Type* ft = _ptrtype->join(kills);
coleenp@548 3609 if (ft->empty())
coleenp@548 3610 return Type::TOP; // Canonical empty value
coleenp@548 3611 return ft;
coleenp@548 3612 } else {
coleenp@548 3613 return Type::TOP;
coleenp@548 3614 }
coleenp@548 3615 }
coleenp@548 3616
coleenp@548 3617
coleenp@548 3618 intptr_t TypeNarrowOop::get_con() const {
never@1262 3619 return _ptrtype->get_con();
coleenp@548 3620 }
coleenp@548 3621
coleenp@548 3622 #ifndef PRODUCT
coleenp@548 3623 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
never@852 3624 st->print("narrowoop: ");
never@1262 3625 _ptrtype->dump2(d, depth, st);
coleenp@548 3626 }
coleenp@548 3627 #endif
coleenp@548 3628
coleenp@548 3629
coleenp@548 3630 //=============================================================================
duke@435 3631 // Convenience common pre-built types.
duke@435 3632
duke@435 3633 // Not-null object klass or below
duke@435 3634 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 3635 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 3636
duke@435 3637 //------------------------------TypeKlasPtr------------------------------------
duke@435 3638 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
duke@435 3639 : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
duke@435 3640 }
duke@435 3641
duke@435 3642 //------------------------------make-------------------------------------------
duke@435 3643 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 3644 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 3645 assert( k != NULL, "Expect a non-NULL klass");
duke@435 3646 assert(k->is_instance_klass() || k->is_array_klass() ||
duke@435 3647 k->is_method_klass(), "Incorrect type of klass oop");
duke@435 3648 TypeKlassPtr *r =
duke@435 3649 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 3650
duke@435 3651 return r;
duke@435 3652 }
duke@435 3653
duke@435 3654 //------------------------------eq---------------------------------------------
duke@435 3655 // Structural equality check for Type representations
duke@435 3656 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 3657 const TypeKlassPtr *p = t->is_klassptr();
duke@435 3658 return
duke@435 3659 klass()->equals(p->klass()) &&
duke@435 3660 TypeOopPtr::eq(p);
duke@435 3661 }
duke@435 3662
duke@435 3663 //------------------------------hash-------------------------------------------
duke@435 3664 // Type-specific hashing function.
duke@435 3665 int TypeKlassPtr::hash(void) const {
duke@435 3666 return klass()->hash() + TypeOopPtr::hash();
duke@435 3667 }
duke@435 3668
duke@435 3669
duke@435 3670 //------------------------------klass------------------------------------------
duke@435 3671 // Return the defining klass for this class
duke@435 3672 ciKlass* TypeAryPtr::klass() const {
duke@435 3673 if( _klass ) return _klass; // Return cached value, if possible
duke@435 3674
duke@435 3675 // Oops, need to compute _klass and cache it
duke@435 3676 ciKlass* k_ary = NULL;
duke@435 3677 const TypeInstPtr *tinst;
duke@435 3678 const TypeAryPtr *tary;
coleenp@548 3679 const Type* el = elem();
coleenp@548 3680 if (el->isa_narrowoop()) {
kvn@656 3681 el = el->make_ptr();
coleenp@548 3682 }
coleenp@548 3683
duke@435 3684 // Get element klass
coleenp@548 3685 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 3686 // Compute array klass from element klass
duke@435 3687 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 3688 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 3689 // Compute array klass from element klass
duke@435 3690 ciKlass* k_elem = tary->klass();
duke@435 3691 // If element type is something like bottom[], k_elem will be null.
duke@435 3692 if (k_elem != NULL)
duke@435 3693 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 3694 } else if ((el->base() == Type::Top) ||
coleenp@548 3695 (el->base() == Type::Bottom)) {
duke@435 3696 // element type of Bottom occurs from meet of basic type
duke@435 3697 // and object; Top occurs when doing join on Bottom.
duke@435 3698 // Leave k_ary at NULL.
duke@435 3699 } else {
duke@435 3700 // Cannot compute array klass directly from basic type,
duke@435 3701 // since subtypes of TypeInt all have basic type T_INT.
coleenp@548 3702 assert(!el->isa_int(),
duke@435 3703 "integral arrays must be pre-equipped with a class");
duke@435 3704 // Compute array klass directly from basic type
coleenp@548 3705 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 3706 }
duke@435 3707
kvn@598 3708 if( this != TypeAryPtr::OOPS ) {
duke@435 3709 // The _klass field acts as a cache of the underlying
duke@435 3710 // ciKlass for this array type. In order to set the field,
duke@435 3711 // we need to cast away const-ness.
duke@435 3712 //
duke@435 3713 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 3714 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 3715 // active compilations. However, the ciKlass which represents
duke@435 3716 // this Type is *not* shared between compilations, so caching
duke@435 3717 // this value would result in fetching a dangling pointer.
duke@435 3718 //
duke@435 3719 // Recomputing the underlying ciKlass for each request is
duke@435 3720 // a bit less efficient than caching, but calls to
duke@435 3721 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 3722 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 3723 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 3724 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 3725 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 3726 }
kvn@598 3727 }
duke@435 3728 return k_ary;
duke@435 3729 }
duke@435 3730
duke@435 3731
duke@435 3732 //------------------------------add_offset-------------------------------------
duke@435 3733 // Access internals of klass object
kvn@741 3734 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
duke@435 3735 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 3736 }
duke@435 3737
duke@435 3738 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3739 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
kvn@992 3740 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
duke@435 3741 if( ptr == _ptr ) return this;
duke@435 3742 return make(ptr, _klass, _offset);
duke@435 3743 }
duke@435 3744
duke@435 3745
duke@435 3746 //-----------------------------cast_to_exactness-------------------------------
duke@435 3747 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3748 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3749 if (!UseExactTypes) return this;
duke@435 3750 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 3751 }
duke@435 3752
duke@435 3753
duke@435 3754 //-----------------------------as_instance_type--------------------------------
duke@435 3755 // Corresponding type for an instance of the given class.
duke@435 3756 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 3757 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 3758 ciKlass* k = klass();
duke@435 3759 bool xk = klass_is_exact();
duke@435 3760 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 3761 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
duke@435 3762 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 3763 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 3764 }
duke@435 3765
duke@435 3766
duke@435 3767 //------------------------------xmeet------------------------------------------
duke@435 3768 // Compute the MEET of two types, return a new Type object.
duke@435 3769 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 3770 // Perform a fast test for common case; meeting the same types together.
duke@435 3771 if( this == t ) return this; // Meeting same type-rep?
duke@435 3772
duke@435 3773 // Current "this->_base" is Pointer
duke@435 3774 switch (t->base()) { // switch on original type
duke@435 3775
duke@435 3776 case Int: // Mixing ints & oops happens when javac
duke@435 3777 case Long: // reuses local variables
duke@435 3778 case FloatTop:
duke@435 3779 case FloatCon:
duke@435 3780 case FloatBot:
duke@435 3781 case DoubleTop:
duke@435 3782 case DoubleCon:
duke@435 3783 case DoubleBot:
kvn@728 3784 case NarrowOop:
duke@435 3785 case Bottom: // Ye Olde Default
duke@435 3786 return Type::BOTTOM;
duke@435 3787 case Top:
duke@435 3788 return this;
duke@435 3789
duke@435 3790 default: // All else is a mistake
duke@435 3791 typerr(t);
duke@435 3792
duke@435 3793 case RawPtr: return TypePtr::BOTTOM;
duke@435 3794
duke@435 3795 case OopPtr: { // Meeting to OopPtrs
duke@435 3796 // Found a OopPtr type vs self-KlassPtr type
duke@435 3797 const TypePtr *tp = t->is_oopptr();
duke@435 3798 int offset = meet_offset(tp->offset());
duke@435 3799 PTR ptr = meet_ptr(tp->ptr());
duke@435 3800 switch (tp->ptr()) {
duke@435 3801 case TopPTR:
duke@435 3802 case AnyNull:
duke@435 3803 return make(ptr, klass(), offset);
duke@435 3804 case BotPTR:
duke@435 3805 case NotNull:
duke@435 3806 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3807 default: typerr(t);
duke@435 3808 }
duke@435 3809 }
duke@435 3810
duke@435 3811 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3812 // Found an AnyPtr type vs self-KlassPtr type
duke@435 3813 const TypePtr *tp = t->is_ptr();
duke@435 3814 int offset = meet_offset(tp->offset());
duke@435 3815 PTR ptr = meet_ptr(tp->ptr());
duke@435 3816 switch (tp->ptr()) {
duke@435 3817 case TopPTR:
duke@435 3818 return this;
duke@435 3819 case Null:
duke@435 3820 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 3821 case AnyNull:
duke@435 3822 return make( ptr, klass(), offset );
duke@435 3823 case BotPTR:
duke@435 3824 case NotNull:
duke@435 3825 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3826 default: typerr(t);
duke@435 3827 }
duke@435 3828 }
duke@435 3829
duke@435 3830 case AryPtr: // Meet with AryPtr
duke@435 3831 case InstPtr: // Meet with InstPtr
duke@435 3832 return TypeInstPtr::BOTTOM;
duke@435 3833
duke@435 3834 //
duke@435 3835 // A-top }
duke@435 3836 // / | \ } Tops
duke@435 3837 // B-top A-any C-top }
duke@435 3838 // | / | \ | } Any-nulls
duke@435 3839 // B-any | C-any }
duke@435 3840 // | | |
duke@435 3841 // B-con A-con C-con } constants; not comparable across classes
duke@435 3842 // | | |
duke@435 3843 // B-not | C-not }
duke@435 3844 // | \ | / | } not-nulls
duke@435 3845 // B-bot A-not C-bot }
duke@435 3846 // \ | / } Bottoms
duke@435 3847 // A-bot }
duke@435 3848 //
duke@435 3849
duke@435 3850 case KlassPtr: { // Meet two KlassPtr types
duke@435 3851 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 3852 int off = meet_offset(tkls->offset());
duke@435 3853 PTR ptr = meet_ptr(tkls->ptr());
duke@435 3854
duke@435 3855 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3856 // If we have constants, then we created oops so classes are loaded
duke@435 3857 // and we can handle the constants further down. This case handles
duke@435 3858 // not-loaded classes
duke@435 3859 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 3860 return make( ptr, klass(), off );
duke@435 3861 }
duke@435 3862
duke@435 3863 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3864 ciKlass* tkls_klass = tkls->klass();
duke@435 3865 ciKlass* this_klass = this->klass();
duke@435 3866 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 3867 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 3868
duke@435 3869 // If 'this' type is above the centerline and is a superclass of the
duke@435 3870 // other, we can treat 'this' as having the same type as the other.
duke@435 3871 if ((above_centerline(this->ptr())) &&
duke@435 3872 tkls_klass->is_subtype_of(this_klass)) {
duke@435 3873 this_klass = tkls_klass;
duke@435 3874 }
duke@435 3875 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 3876 // other, we can treat 'tinst' as having the same type as the other.
duke@435 3877 if ((above_centerline(tkls->ptr())) &&
duke@435 3878 this_klass->is_subtype_of(tkls_klass)) {
duke@435 3879 tkls_klass = this_klass;
duke@435 3880 }
duke@435 3881
duke@435 3882 // Check for classes now being equal
duke@435 3883 if (tkls_klass->equals(this_klass)) {
duke@435 3884 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3885 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3886 // handled elsewhere).
duke@435 3887 ciObject* o = NULL; // Assume not constant when done
duke@435 3888 ciObject* this_oop = const_oop();
duke@435 3889 ciObject* tkls_oop = tkls->const_oop();
duke@435 3890 if( ptr == Constant ) {
duke@435 3891 if (this_oop != NULL && tkls_oop != NULL &&
duke@435 3892 this_oop->equals(tkls_oop) )
duke@435 3893 o = this_oop;
duke@435 3894 else if (above_centerline(this->ptr()))
duke@435 3895 o = tkls_oop;
duke@435 3896 else if (above_centerline(tkls->ptr()))
duke@435 3897 o = this_oop;
duke@435 3898 else
duke@435 3899 ptr = NotNull;
duke@435 3900 }
duke@435 3901 return make( ptr, this_klass, off );
duke@435 3902 } // Else classes are not equal
duke@435 3903
duke@435 3904 // Since klasses are different, we require the LCA in the Java
duke@435 3905 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3906 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3907 ptr = NotNull;
duke@435 3908 // Now we find the LCA of Java classes
duke@435 3909 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 3910 return make( ptr, k, off );
duke@435 3911 } // End of case KlassPtr
duke@435 3912
duke@435 3913 } // End of switch
duke@435 3914 return this; // Return the double constant
duke@435 3915 }
duke@435 3916
duke@435 3917 //------------------------------xdual------------------------------------------
duke@435 3918 // Dual: compute field-by-field dual
duke@435 3919 const Type *TypeKlassPtr::xdual() const {
duke@435 3920 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 3921 }
duke@435 3922
duke@435 3923 //------------------------------dump2------------------------------------------
duke@435 3924 // Dump Klass Type
duke@435 3925 #ifndef PRODUCT
duke@435 3926 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 3927 switch( _ptr ) {
duke@435 3928 case Constant:
duke@435 3929 st->print("precise ");
duke@435 3930 case NotNull:
duke@435 3931 {
duke@435 3932 const char *name = klass()->name()->as_utf8();
duke@435 3933 if( name ) {
duke@435 3934 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 3935 } else {
duke@435 3936 ShouldNotReachHere();
duke@435 3937 }
duke@435 3938 }
duke@435 3939 case BotPTR:
duke@435 3940 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 3941 case TopPTR:
duke@435 3942 case AnyNull:
duke@435 3943 st->print(":%s", ptr_msg[_ptr]);
duke@435 3944 if( _klass_is_exact ) st->print(":exact");
duke@435 3945 break;
duke@435 3946 }
duke@435 3947
duke@435 3948 if( _offset ) { // Dump offset, if any
duke@435 3949 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 3950 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 3951 else { st->print("+%d", _offset); }
duke@435 3952 }
duke@435 3953
duke@435 3954 st->print(" *");
duke@435 3955 }
duke@435 3956 #endif
duke@435 3957
duke@435 3958
duke@435 3959
duke@435 3960 //=============================================================================
duke@435 3961 // Convenience common pre-built types.
duke@435 3962
duke@435 3963 //------------------------------make-------------------------------------------
duke@435 3964 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 3965 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 3966 }
duke@435 3967
duke@435 3968 //------------------------------make-------------------------------------------
duke@435 3969 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 3970 Compile* C = Compile::current();
duke@435 3971 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 3972 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 3973 const TypeTuple *domain;
twisti@1572 3974 if (method->is_static()) {
duke@435 3975 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 3976 } else {
duke@435 3977 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 3978 }
duke@435 3979 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 3980 tf = TypeFunc::make(domain, range);
duke@435 3981 C->set_last_tf(method, tf); // fill cache
duke@435 3982 return tf;
duke@435 3983 }
duke@435 3984
duke@435 3985 //------------------------------meet-------------------------------------------
duke@435 3986 // Compute the MEET of two types. It returns a new Type object.
duke@435 3987 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 3988 // Perform a fast test for common case; meeting the same types together.
duke@435 3989 if( this == t ) return this; // Meeting same type-rep?
duke@435 3990
duke@435 3991 // Current "this->_base" is Func
duke@435 3992 switch (t->base()) { // switch on original type
duke@435 3993
duke@435 3994 case Bottom: // Ye Olde Default
duke@435 3995 return t;
duke@435 3996
duke@435 3997 default: // All else is a mistake
duke@435 3998 typerr(t);
duke@435 3999
duke@435 4000 case Top:
duke@435 4001 break;
duke@435 4002 }
duke@435 4003 return this; // Return the double constant
duke@435 4004 }
duke@435 4005
duke@435 4006 //------------------------------xdual------------------------------------------
duke@435 4007 // Dual: compute field-by-field dual
duke@435 4008 const Type *TypeFunc::xdual() const {
duke@435 4009 return this;
duke@435 4010 }
duke@435 4011
duke@435 4012 //------------------------------eq---------------------------------------------
duke@435 4013 // Structural equality check for Type representations
duke@435 4014 bool TypeFunc::eq( const Type *t ) const {
duke@435 4015 const TypeFunc *a = (const TypeFunc*)t;
duke@435 4016 return _domain == a->_domain &&
duke@435 4017 _range == a->_range;
duke@435 4018 }
duke@435 4019
duke@435 4020 //------------------------------hash-------------------------------------------
duke@435 4021 // Type-specific hashing function.
duke@435 4022 int TypeFunc::hash(void) const {
duke@435 4023 return (intptr_t)_domain + (intptr_t)_range;
duke@435 4024 }
duke@435 4025
duke@435 4026 //------------------------------dump2------------------------------------------
duke@435 4027 // Dump Function Type
duke@435 4028 #ifndef PRODUCT
duke@435 4029 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4030 if( _range->_cnt <= Parms )
duke@435 4031 st->print("void");
duke@435 4032 else {
duke@435 4033 uint i;
duke@435 4034 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 4035 _range->field_at(i)->dump2(d,depth,st);
duke@435 4036 st->print("/");
duke@435 4037 }
duke@435 4038 _range->field_at(i)->dump2(d,depth,st);
duke@435 4039 }
duke@435 4040 st->print(" ");
duke@435 4041 st->print("( ");
duke@435 4042 if( !depth || d[this] ) { // Check for recursive dump
duke@435 4043 st->print("...)");
duke@435 4044 return;
duke@435 4045 }
duke@435 4046 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 4047 if (Parms < _domain->_cnt)
duke@435 4048 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 4049 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 4050 st->print(", ");
duke@435 4051 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 4052 }
duke@435 4053 st->print(" )");
duke@435 4054 }
duke@435 4055
duke@435 4056 //------------------------------print_flattened--------------------------------
duke@435 4057 // Print a 'flattened' signature
duke@435 4058 static const char * const flat_type_msg[Type::lastype] = {
coleenp@548 4059 "bad","control","top","int","long","_", "narrowoop",
duke@435 4060 "tuple:", "array:",
duke@435 4061 "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
duke@435 4062 "func", "abIO", "return_address", "mem",
duke@435 4063 "float_top", "ftcon:", "flt",
duke@435 4064 "double_top", "dblcon:", "dbl",
duke@435 4065 "bottom"
duke@435 4066 };
duke@435 4067
duke@435 4068 void TypeFunc::print_flattened() const {
duke@435 4069 if( _range->_cnt <= Parms )
duke@435 4070 tty->print("void");
duke@435 4071 else {
duke@435 4072 uint i;
duke@435 4073 for (i = Parms; i < _range->_cnt-1; i++)
duke@435 4074 tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
duke@435 4075 tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
duke@435 4076 }
duke@435 4077 tty->print(" ( ");
duke@435 4078 if (Parms < _domain->_cnt)
duke@435 4079 tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
duke@435 4080 for (uint i = Parms+1; i < _domain->_cnt; i++)
duke@435 4081 tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
duke@435 4082 tty->print(" )");
duke@435 4083 }
duke@435 4084 #endif
duke@435 4085
duke@435 4086 //------------------------------singleton--------------------------------------
duke@435 4087 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 4088 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 4089 // or a single symbol.
duke@435 4090 bool TypeFunc::singleton(void) const {
duke@435 4091 return false; // Never a singleton
duke@435 4092 }
duke@435 4093
duke@435 4094 bool TypeFunc::empty(void) const {
duke@435 4095 return false; // Never empty
duke@435 4096 }
duke@435 4097
duke@435 4098
duke@435 4099 BasicType TypeFunc::return_type() const{
duke@435 4100 if (range()->cnt() == TypeFunc::Parms) {
duke@435 4101 return T_VOID;
duke@435 4102 }
duke@435 4103 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 4104 }

mercurial