src/share/vm/opto/type.cpp

Mon, 28 May 2018 10:33:52 +0800

author
aoqi
date
Mon, 28 May 2018 10:33:52 +0800
changeset 9041
95a08233f46c
parent 8886
fbb8f75498f4
parent 8604
04d83ba48607
child 9448
73d689add964
permissions
-rw-r--r--

Merge

aoqi@0 1 /*
kevinw@8368 2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@0 25 #include "precompiled.hpp"
aoqi@0 26 #include "ci/ciMethodData.hpp"
aoqi@0 27 #include "ci/ciTypeFlow.hpp"
aoqi@0 28 #include "classfile/symbolTable.hpp"
aoqi@0 29 #include "classfile/systemDictionary.hpp"
aoqi@0 30 #include "compiler/compileLog.hpp"
aoqi@0 31 #include "libadt/dict.hpp"
aoqi@0 32 #include "memory/gcLocker.hpp"
aoqi@0 33 #include "memory/oopFactory.hpp"
aoqi@0 34 #include "memory/resourceArea.hpp"
aoqi@0 35 #include "oops/instanceKlass.hpp"
aoqi@0 36 #include "oops/instanceMirrorKlass.hpp"
aoqi@0 37 #include "oops/objArrayKlass.hpp"
aoqi@0 38 #include "oops/typeArrayKlass.hpp"
aoqi@0 39 #include "opto/matcher.hpp"
aoqi@0 40 #include "opto/node.hpp"
aoqi@0 41 #include "opto/opcodes.hpp"
aoqi@0 42 #include "opto/type.hpp"
aoqi@0 43
aoqi@0 44 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
aoqi@0 45
aoqi@0 46 // Portions of code courtesy of Clifford Click
aoqi@0 47
aoqi@0 48 // Optimization - Graph Style
aoqi@0 49
aoqi@0 50 // Dictionary of types shared among compilations.
aoqi@0 51 Dict* Type::_shared_type_dict = NULL;
aoqi@0 52
aoqi@0 53 // Array which maps compiler types to Basic Types
aoqi@0 54 Type::TypeInfo Type::_type_info[Type::lastype] = {
aoqi@0 55 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
aoqi@0 56 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
aoqi@0 57 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
aoqi@0 58 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
aoqi@0 59 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
aoqi@0 60 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
aoqi@0 61 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
aoqi@0 62 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass
aoqi@0 63 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
aoqi@0 64 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
aoqi@0 65
aoqi@0 66 #ifdef SPARC
aoqi@0 67 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
aoqi@0 68 { Bad, T_ILLEGAL, "vectord:", false, Op_RegD, relocInfo::none }, // VectorD
aoqi@0 69 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
aoqi@0 70 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
aoqi@209 71 #elif defined(MIPS64)
aoqi@209 72 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
aoqi@209 73 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
aoqi@209 74 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
aoqi@209 75 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
aoqi@0 76 #elif defined(PPC64)
aoqi@0 77 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
aoqi@0 78 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD
aoqi@0 79 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
aoqi@0 80 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
aoqi@0 81 #else // all other
aoqi@0 82 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS
aoqi@0 83 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
aoqi@0 84 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
aoqi@0 85 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY
aoqi@0 86 #endif
aoqi@0 87 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr
aoqi@0 88 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr
aoqi@0 89 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr
aoqi@0 90 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr
aoqi@0 91 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr
aoqi@0 92 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr
aoqi@0 93 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr
aoqi@0 94 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function
aoqi@0 95 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio
aoqi@0 96 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address
aoqi@0 97 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory
aoqi@0 98 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop
aoqi@0 99 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon
aoqi@0 100 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot
aoqi@0 101 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop
aoqi@0 102 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon
aoqi@0 103 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot
aoqi@0 104 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom
aoqi@0 105 };
aoqi@0 106
aoqi@0 107 // Map ideal registers (machine types) to ideal types
aoqi@0 108 const Type *Type::mreg2type[_last_machine_leaf];
aoqi@0 109
aoqi@0 110 // Map basic types to canonical Type* pointers.
aoqi@0 111 const Type* Type:: _const_basic_type[T_CONFLICT+1];
aoqi@0 112
aoqi@0 113 // Map basic types to constant-zero Types.
aoqi@0 114 const Type* Type:: _zero_type[T_CONFLICT+1];
aoqi@0 115
aoqi@0 116 // Map basic types to array-body alias types.
aoqi@0 117 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
aoqi@0 118
aoqi@0 119 //=============================================================================
aoqi@0 120 // Convenience common pre-built types.
aoqi@0 121 const Type *Type::ABIO; // State-of-machine only
aoqi@0 122 const Type *Type::BOTTOM; // All values
aoqi@0 123 const Type *Type::CONTROL; // Control only
aoqi@0 124 const Type *Type::DOUBLE; // All doubles
aoqi@0 125 const Type *Type::FLOAT; // All floats
aoqi@0 126 const Type *Type::HALF; // Placeholder half of doublewide type
aoqi@0 127 const Type *Type::MEMORY; // Abstract store only
aoqi@0 128 const Type *Type::RETURN_ADDRESS;
aoqi@0 129 const Type *Type::TOP; // No values in set
aoqi@0 130
aoqi@0 131 //------------------------------get_const_type---------------------------
aoqi@0 132 const Type* Type::get_const_type(ciType* type) {
aoqi@0 133 if (type == NULL) {
aoqi@0 134 return NULL;
aoqi@0 135 } else if (type->is_primitive_type()) {
aoqi@0 136 return get_const_basic_type(type->basic_type());
aoqi@0 137 } else {
aoqi@0 138 return TypeOopPtr::make_from_klass(type->as_klass());
aoqi@0 139 }
aoqi@0 140 }
aoqi@0 141
aoqi@0 142 //---------------------------array_element_basic_type---------------------------------
aoqi@0 143 // Mapping to the array element's basic type.
aoqi@0 144 BasicType Type::array_element_basic_type() const {
aoqi@0 145 BasicType bt = basic_type();
aoqi@0 146 if (bt == T_INT) {
aoqi@0 147 if (this == TypeInt::INT) return T_INT;
aoqi@0 148 if (this == TypeInt::CHAR) return T_CHAR;
aoqi@0 149 if (this == TypeInt::BYTE) return T_BYTE;
aoqi@0 150 if (this == TypeInt::BOOL) return T_BOOLEAN;
aoqi@0 151 if (this == TypeInt::SHORT) return T_SHORT;
aoqi@0 152 return T_VOID;
aoqi@0 153 }
aoqi@0 154 return bt;
aoqi@0 155 }
aoqi@0 156
shshahma@8422 157 // For two instance arrays of same dimension, return the base element types.
shshahma@8422 158 // Otherwise or if the arrays have different dimensions, return NULL.
shshahma@8422 159 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
shshahma@8422 160 const TypeInstPtr **e1, const TypeInstPtr **e2) {
shshahma@8422 161
shshahma@8422 162 if (e1) *e1 = NULL;
shshahma@8422 163 if (e2) *e2 = NULL;
shshahma@8422 164 const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
shshahma@8422 165 const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
shshahma@8422 166
shshahma@8422 167 if (a1tap != NULL && a2tap != NULL) {
shshahma@8422 168 // Handle multidimensional arrays
shshahma@8422 169 const TypePtr* a1tp = a1tap->elem()->make_ptr();
shshahma@8422 170 const TypePtr* a2tp = a2tap->elem()->make_ptr();
shshahma@8422 171 while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
shshahma@8422 172 a1tap = a1tp->is_aryptr();
shshahma@8422 173 a2tap = a2tp->is_aryptr();
shshahma@8422 174 a1tp = a1tap->elem()->make_ptr();
shshahma@8422 175 a2tp = a2tap->elem()->make_ptr();
shshahma@8422 176 }
shshahma@8422 177 if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
shshahma@8422 178 if (e1) *e1 = a1tp->is_instptr();
shshahma@8422 179 if (e2) *e2 = a2tp->is_instptr();
shshahma@8422 180 }
shshahma@8422 181 }
shshahma@8422 182 }
shshahma@8422 183
aoqi@0 184 //---------------------------get_typeflow_type---------------------------------
aoqi@0 185 // Import a type produced by ciTypeFlow.
aoqi@0 186 const Type* Type::get_typeflow_type(ciType* type) {
aoqi@0 187 switch (type->basic_type()) {
aoqi@0 188
aoqi@0 189 case ciTypeFlow::StateVector::T_BOTTOM:
aoqi@0 190 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
aoqi@0 191 return Type::BOTTOM;
aoqi@0 192
aoqi@0 193 case ciTypeFlow::StateVector::T_TOP:
aoqi@0 194 assert(type == ciTypeFlow::StateVector::top_type(), "");
aoqi@0 195 return Type::TOP;
aoqi@0 196
aoqi@0 197 case ciTypeFlow::StateVector::T_NULL:
aoqi@0 198 assert(type == ciTypeFlow::StateVector::null_type(), "");
aoqi@0 199 return TypePtr::NULL_PTR;
aoqi@0 200
aoqi@0 201 case ciTypeFlow::StateVector::T_LONG2:
aoqi@0 202 // The ciTypeFlow pass pushes a long, then the half.
aoqi@0 203 // We do the same.
aoqi@0 204 assert(type == ciTypeFlow::StateVector::long2_type(), "");
aoqi@0 205 return TypeInt::TOP;
aoqi@0 206
aoqi@0 207 case ciTypeFlow::StateVector::T_DOUBLE2:
aoqi@0 208 // The ciTypeFlow pass pushes double, then the half.
aoqi@0 209 // Our convention is the same.
aoqi@0 210 assert(type == ciTypeFlow::StateVector::double2_type(), "");
aoqi@0 211 return Type::TOP;
aoqi@0 212
aoqi@0 213 case T_ADDRESS:
aoqi@0 214 assert(type->is_return_address(), "");
aoqi@0 215 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
aoqi@0 216
aoqi@0 217 default:
aoqi@0 218 // make sure we did not mix up the cases:
aoqi@0 219 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
aoqi@0 220 assert(type != ciTypeFlow::StateVector::top_type(), "");
aoqi@0 221 assert(type != ciTypeFlow::StateVector::null_type(), "");
aoqi@0 222 assert(type != ciTypeFlow::StateVector::long2_type(), "");
aoqi@0 223 assert(type != ciTypeFlow::StateVector::double2_type(), "");
aoqi@0 224 assert(!type->is_return_address(), "");
aoqi@0 225
aoqi@0 226 return Type::get_const_type(type);
aoqi@0 227 }
aoqi@0 228 }
aoqi@0 229
aoqi@0 230
aoqi@0 231 //-----------------------make_from_constant------------------------------------
aoqi@0 232 const Type* Type::make_from_constant(ciConstant constant,
aoqi@0 233 bool require_constant, bool is_autobox_cache) {
aoqi@0 234 switch (constant.basic_type()) {
aoqi@0 235 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
aoqi@0 236 case T_CHAR: return TypeInt::make(constant.as_char());
aoqi@0 237 case T_BYTE: return TypeInt::make(constant.as_byte());
aoqi@0 238 case T_SHORT: return TypeInt::make(constant.as_short());
aoqi@0 239 case T_INT: return TypeInt::make(constant.as_int());
aoqi@0 240 case T_LONG: return TypeLong::make(constant.as_long());
aoqi@0 241 case T_FLOAT: return TypeF::make(constant.as_float());
aoqi@0 242 case T_DOUBLE: return TypeD::make(constant.as_double());
aoqi@0 243 case T_ARRAY:
aoqi@0 244 case T_OBJECT:
aoqi@0 245 {
aoqi@0 246 // cases:
aoqi@0 247 // can_be_constant = (oop not scavengable || ScavengeRootsInCode != 0)
aoqi@0 248 // should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
aoqi@0 249 // An oop is not scavengable if it is in the perm gen.
aoqi@0 250 ciObject* oop_constant = constant.as_object();
aoqi@0 251 if (oop_constant->is_null_object()) {
aoqi@0 252 return Type::get_zero_type(T_OBJECT);
aoqi@0 253 } else if (require_constant || oop_constant->should_be_constant()) {
aoqi@0 254 return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
aoqi@0 255 }
aoqi@0 256 }
aoqi@0 257 }
aoqi@0 258 // Fall through to failure
aoqi@0 259 return NULL;
aoqi@0 260 }
aoqi@0 261
aoqi@0 262
aoqi@0 263 //------------------------------make-------------------------------------------
aoqi@0 264 // Create a simple Type, with default empty symbol sets. Then hashcons it
aoqi@0 265 // and look for an existing copy in the type dictionary.
aoqi@0 266 const Type *Type::make( enum TYPES t ) {
aoqi@0 267 return (new Type(t))->hashcons();
aoqi@0 268 }
aoqi@0 269
aoqi@0 270 //------------------------------cmp--------------------------------------------
aoqi@0 271 int Type::cmp( const Type *const t1, const Type *const t2 ) {
aoqi@0 272 if( t1->_base != t2->_base )
aoqi@0 273 return 1; // Missed badly
aoqi@0 274 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
aoqi@0 275 return !t1->eq(t2); // Return ZERO if equal
aoqi@0 276 }
aoqi@0 277
aoqi@0 278 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
aoqi@0 279 if (!include_speculative) {
aoqi@0 280 return remove_speculative();
aoqi@0 281 }
aoqi@0 282 return this;
aoqi@0 283 }
aoqi@0 284
aoqi@0 285 //------------------------------hash-------------------------------------------
aoqi@0 286 int Type::uhash( const Type *const t ) {
aoqi@0 287 return t->hash();
aoqi@0 288 }
aoqi@0 289
aoqi@0 290 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
aoqi@0 291
aoqi@0 292 //--------------------------Initialize_shared----------------------------------
aoqi@0 293 void Type::Initialize_shared(Compile* current) {
aoqi@0 294 // This method does not need to be locked because the first system
aoqi@0 295 // compilations (stub compilations) occur serially. If they are
aoqi@0 296 // changed to proceed in parallel, then this section will need
aoqi@0 297 // locking.
aoqi@0 298
aoqi@0 299 Arena* save = current->type_arena();
zgu@7074 300 Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
aoqi@0 301
aoqi@0 302 current->set_type_arena(shared_type_arena);
aoqi@0 303 _shared_type_dict =
aoqi@0 304 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
aoqi@0 305 shared_type_arena, 128 );
aoqi@0 306 current->set_type_dict(_shared_type_dict);
aoqi@0 307
aoqi@0 308 // Make shared pre-built types.
aoqi@0 309 CONTROL = make(Control); // Control only
aoqi@0 310 TOP = make(Top); // No values in set
aoqi@0 311 MEMORY = make(Memory); // Abstract store only
aoqi@0 312 ABIO = make(Abio); // State-of-machine only
aoqi@0 313 RETURN_ADDRESS=make(Return_Address);
aoqi@0 314 FLOAT = make(FloatBot); // All floats
aoqi@0 315 DOUBLE = make(DoubleBot); // All doubles
aoqi@0 316 BOTTOM = make(Bottom); // Everything
aoqi@0 317 HALF = make(Half); // Placeholder half of doublewide type
aoqi@0 318
aoqi@0 319 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
aoqi@0 320 TypeF::ONE = TypeF::make(1.0); // Float 1
aoqi@0 321
aoqi@0 322 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
aoqi@0 323 TypeD::ONE = TypeD::make(1.0); // Double 1
aoqi@0 324
aoqi@0 325 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
aoqi@0 326 TypeInt::ZERO = TypeInt::make( 0); // 0
aoqi@0 327 TypeInt::ONE = TypeInt::make( 1); // 1
aoqi@0 328 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
aoqi@0 329 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
aoqi@0 330 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
aoqi@0 331 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
aoqi@0 332 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
aoqi@0 333 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
aoqi@0 334 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
aoqi@0 335 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
aoqi@0 336 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
aoqi@0 337 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
aoqi@0 338 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
aoqi@0 339 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
aoqi@0 340 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
aoqi@0 341 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
aoqi@0 342 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
aoqi@0 343 TypeInt::TYPE_DOMAIN = TypeInt::INT;
aoqi@0 344 // CmpL is overloaded both as the bytecode computation returning
aoqi@0 345 // a trinary (-1,0,+1) integer result AND as an efficient long
aoqi@0 346 // compare returning optimizer ideal-type flags.
aoqi@0 347 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
aoqi@0 348 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
aoqi@0 349 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
aoqi@0 350 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
aoqi@0 351 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
aoqi@0 352
aoqi@0 353 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
aoqi@0 354 TypeLong::ZERO = TypeLong::make( 0); // 0
aoqi@0 355 TypeLong::ONE = TypeLong::make( 1); // 1
aoqi@0 356 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
aoqi@0 357 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
aoqi@0 358 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
aoqi@0 359 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
aoqi@0 360 TypeLong::TYPE_DOMAIN = TypeLong::LONG;
aoqi@0 361
aoqi@0 362 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
aoqi@0 363 fboth[0] = Type::CONTROL;
aoqi@0 364 fboth[1] = Type::CONTROL;
aoqi@0 365 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
aoqi@0 366
aoqi@0 367 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
aoqi@0 368 ffalse[0] = Type::CONTROL;
aoqi@0 369 ffalse[1] = Type::TOP;
aoqi@0 370 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
aoqi@0 371
aoqi@0 372 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
aoqi@0 373 fneither[0] = Type::TOP;
aoqi@0 374 fneither[1] = Type::TOP;
aoqi@0 375 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
aoqi@0 376
aoqi@0 377 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
aoqi@0 378 ftrue[0] = Type::TOP;
aoqi@0 379 ftrue[1] = Type::CONTROL;
aoqi@0 380 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
aoqi@0 381
aoqi@0 382 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
aoqi@0 383 floop[0] = Type::CONTROL;
aoqi@0 384 floop[1] = TypeInt::INT;
aoqi@0 385 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
aoqi@0 386
aoqi@0 387 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
aoqi@0 388 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
aoqi@0 389 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
aoqi@0 390
aoqi@0 391 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
aoqi@0 392 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
aoqi@0 393
aoqi@0 394 const Type **fmembar = TypeTuple::fields(0);
aoqi@0 395 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
aoqi@0 396
aoqi@0 397 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
aoqi@0 398 fsc[0] = TypeInt::CC;
aoqi@0 399 fsc[1] = Type::MEMORY;
aoqi@0 400 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
aoqi@0 401
aoqi@0 402 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
aoqi@0 403 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
aoqi@0 404 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
aoqi@0 405 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
aoqi@0 406 false, 0, oopDesc::mark_offset_in_bytes());
aoqi@0 407 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
aoqi@0 408 false, 0, oopDesc::klass_offset_in_bytes());
aoqi@0 409 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
aoqi@0 410
aoqi@0 411 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
aoqi@0 412
aoqi@0 413 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
aoqi@0 414 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
aoqi@0 415
aoqi@0 416 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
aoqi@0 417
aoqi@0 418 mreg2type[Op_Node] = Type::BOTTOM;
aoqi@0 419 mreg2type[Op_Set ] = 0;
aoqi@0 420 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
aoqi@0 421 mreg2type[Op_RegI] = TypeInt::INT;
aoqi@0 422 mreg2type[Op_RegP] = TypePtr::BOTTOM;
aoqi@0 423 mreg2type[Op_RegF] = Type::FLOAT;
aoqi@0 424 mreg2type[Op_RegD] = Type::DOUBLE;
aoqi@0 425 mreg2type[Op_RegL] = TypeLong::LONG;
aoqi@0 426 mreg2type[Op_RegFlags] = TypeInt::CC;
aoqi@0 427
aoqi@0 428 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
aoqi@0 429
aoqi@0 430 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
aoqi@0 431
aoqi@0 432 #ifdef _LP64
aoqi@0 433 if (UseCompressedOops) {
aoqi@0 434 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
aoqi@0 435 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
aoqi@0 436 } else
aoqi@0 437 #endif
aoqi@0 438 {
aoqi@0 439 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
aoqi@0 440 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
aoqi@0 441 }
aoqi@0 442 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
aoqi@0 443 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
aoqi@0 444 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
aoqi@0 445 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
aoqi@0 446 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
aoqi@0 447 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
aoqi@0 448 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
aoqi@0 449
aoqi@0 450 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
aoqi@0 451 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
aoqi@0 452 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
aoqi@0 453 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
aoqi@0 454 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
aoqi@0 455 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
aoqi@0 456 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
aoqi@0 457 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
aoqi@0 458 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
aoqi@0 459 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
aoqi@0 460 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
aoqi@0 461 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
aoqi@0 462
aoqi@0 463 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
aoqi@0 464 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
aoqi@0 465
aoqi@0 466 const Type **fi2c = TypeTuple::fields(2);
aoqi@0 467 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
aoqi@0 468 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
aoqi@0 469 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
aoqi@0 470
aoqi@0 471 const Type **intpair = TypeTuple::fields(2);
aoqi@0 472 intpair[0] = TypeInt::INT;
aoqi@0 473 intpair[1] = TypeInt::INT;
aoqi@0 474 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
aoqi@0 475
aoqi@0 476 const Type **longpair = TypeTuple::fields(2);
aoqi@0 477 longpair[0] = TypeLong::LONG;
aoqi@0 478 longpair[1] = TypeLong::LONG;
aoqi@0 479 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
aoqi@0 480
aoqi@0 481 const Type **intccpair = TypeTuple::fields(2);
aoqi@0 482 intccpair[0] = TypeInt::INT;
aoqi@0 483 intccpair[1] = TypeInt::CC;
aoqi@0 484 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
aoqi@0 485
aoqi@0 486 const Type **longccpair = TypeTuple::fields(2);
aoqi@0 487 longccpair[0] = TypeLong::LONG;
aoqi@0 488 longccpair[1] = TypeInt::CC;
aoqi@0 489 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
aoqi@0 490
aoqi@0 491 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
aoqi@0 492 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
aoqi@0 493 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
aoqi@0 494 _const_basic_type[T_CHAR] = TypeInt::CHAR;
aoqi@0 495 _const_basic_type[T_BYTE] = TypeInt::BYTE;
aoqi@0 496 _const_basic_type[T_SHORT] = TypeInt::SHORT;
aoqi@0 497 _const_basic_type[T_INT] = TypeInt::INT;
aoqi@0 498 _const_basic_type[T_LONG] = TypeLong::LONG;
aoqi@0 499 _const_basic_type[T_FLOAT] = Type::FLOAT;
aoqi@0 500 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
aoqi@0 501 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
aoqi@0 502 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
aoqi@0 503 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
aoqi@0 504 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
aoqi@0 505 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not?
aoqi@0 506
aoqi@0 507 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
aoqi@0 508 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
aoqi@0 509 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
aoqi@0 510 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
aoqi@0 511 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
aoqi@0 512 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
aoqi@0 513 _zero_type[T_INT] = TypeInt::ZERO;
aoqi@0 514 _zero_type[T_LONG] = TypeLong::ZERO;
aoqi@0 515 _zero_type[T_FLOAT] = TypeF::ZERO;
aoqi@0 516 _zero_type[T_DOUBLE] = TypeD::ZERO;
aoqi@0 517 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
aoqi@0 518 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
aoqi@0 519 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
aoqi@0 520 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
aoqi@0 521
aoqi@0 522 // get_zero_type() should not happen for T_CONFLICT
aoqi@0 523 _zero_type[T_CONFLICT]= NULL;
aoqi@0 524
aoqi@0 525 // Vector predefined types, it needs initialized _const_basic_type[].
aoqi@0 526 if (Matcher::vector_size_supported(T_BYTE,4)) {
aoqi@0 527 TypeVect::VECTS = TypeVect::make(T_BYTE,4);
aoqi@0 528 }
aoqi@0 529 if (Matcher::vector_size_supported(T_FLOAT,2)) {
aoqi@0 530 TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
aoqi@0 531 }
aoqi@0 532 if (Matcher::vector_size_supported(T_FLOAT,4)) {
aoqi@0 533 TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
aoqi@0 534 }
aoqi@0 535 if (Matcher::vector_size_supported(T_FLOAT,8)) {
aoqi@0 536 TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
aoqi@0 537 }
aoqi@0 538 mreg2type[Op_VecS] = TypeVect::VECTS;
aoqi@0 539 mreg2type[Op_VecD] = TypeVect::VECTD;
aoqi@0 540 mreg2type[Op_VecX] = TypeVect::VECTX;
aoqi@0 541 mreg2type[Op_VecY] = TypeVect::VECTY;
aoqi@0 542
aoqi@0 543 // Restore working type arena.
aoqi@0 544 current->set_type_arena(save);
aoqi@0 545 current->set_type_dict(NULL);
aoqi@0 546 }
aoqi@0 547
aoqi@0 548 //------------------------------Initialize-------------------------------------
aoqi@0 549 void Type::Initialize(Compile* current) {
aoqi@0 550 assert(current->type_arena() != NULL, "must have created type arena");
aoqi@0 551
aoqi@0 552 if (_shared_type_dict == NULL) {
aoqi@0 553 Initialize_shared(current);
aoqi@0 554 }
aoqi@0 555
aoqi@0 556 Arena* type_arena = current->type_arena();
aoqi@0 557
aoqi@0 558 // Create the hash-cons'ing dictionary with top-level storage allocation
aoqi@0 559 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
aoqi@0 560 current->set_type_dict(tdic);
aoqi@0 561
aoqi@0 562 // Transfer the shared types.
aoqi@0 563 DictI i(_shared_type_dict);
aoqi@0 564 for( ; i.test(); ++i ) {
aoqi@0 565 Type* t = (Type*)i._value;
aoqi@0 566 tdic->Insert(t,t); // New Type, insert into Type table
aoqi@0 567 }
aoqi@0 568 }
aoqi@0 569
aoqi@0 570 //------------------------------hashcons---------------------------------------
aoqi@0 571 // Do the hash-cons trick. If the Type already exists in the type table,
aoqi@0 572 // delete the current Type and return the existing Type. Otherwise stick the
aoqi@0 573 // current Type in the Type table.
aoqi@0 574 const Type *Type::hashcons(void) {
aoqi@0 575 debug_only(base()); // Check the assertion in Type::base().
aoqi@0 576 // Look up the Type in the Type dictionary
aoqi@0 577 Dict *tdic = type_dict();
aoqi@0 578 Type* old = (Type*)(tdic->Insert(this, this, false));
aoqi@0 579 if( old ) { // Pre-existing Type?
aoqi@0 580 if( old != this ) // Yes, this guy is not the pre-existing?
aoqi@0 581 delete this; // Yes, Nuke this guy
aoqi@0 582 assert( old->_dual, "" );
aoqi@0 583 return old; // Return pre-existing
aoqi@0 584 }
aoqi@0 585
aoqi@0 586 // Every type has a dual (to make my lattice symmetric).
aoqi@0 587 // Since we just discovered a new Type, compute its dual right now.
aoqi@0 588 assert( !_dual, "" ); // No dual yet
aoqi@0 589 _dual = xdual(); // Compute the dual
aoqi@0 590 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
aoqi@0 591 _dual = this;
aoqi@0 592 return this;
aoqi@0 593 }
aoqi@0 594 assert( !_dual->_dual, "" ); // No reverse dual yet
aoqi@0 595 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
aoqi@0 596 // New Type, insert into Type table
aoqi@0 597 tdic->Insert((void*)_dual,(void*)_dual);
aoqi@0 598 ((Type*)_dual)->_dual = this; // Finish up being symmetric
aoqi@0 599 #ifdef ASSERT
aoqi@0 600 Type *dual_dual = (Type*)_dual->xdual();
aoqi@0 601 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
aoqi@0 602 delete dual_dual;
aoqi@0 603 #endif
aoqi@0 604 return this; // Return new Type
aoqi@0 605 }
aoqi@0 606
aoqi@0 607 //------------------------------eq---------------------------------------------
aoqi@0 608 // Structural equality check for Type representations
aoqi@0 609 bool Type::eq( const Type * ) const {
aoqi@0 610 return true; // Nothing else can go wrong
aoqi@0 611 }
aoqi@0 612
aoqi@0 613 //------------------------------hash-------------------------------------------
aoqi@0 614 // Type-specific hashing function.
aoqi@0 615 int Type::hash(void) const {
aoqi@0 616 return _base;
aoqi@0 617 }
aoqi@0 618
aoqi@0 619 //------------------------------is_finite--------------------------------------
aoqi@0 620 // Has a finite value
aoqi@0 621 bool Type::is_finite() const {
aoqi@0 622 return false;
aoqi@0 623 }
aoqi@0 624
aoqi@0 625 //------------------------------is_nan-----------------------------------------
aoqi@0 626 // Is not a number (NaN)
aoqi@0 627 bool Type::is_nan() const {
aoqi@0 628 return false;
aoqi@0 629 }
aoqi@0 630
aoqi@0 631 //----------------------interface_vs_oop---------------------------------------
aoqi@0 632 #ifdef ASSERT
aoqi@0 633 bool Type::interface_vs_oop_helper(const Type *t) const {
aoqi@0 634 bool result = false;
aoqi@0 635
aoqi@0 636 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
aoqi@0 637 const TypePtr* t_ptr = t->make_ptr();
aoqi@0 638 if( this_ptr == NULL || t_ptr == NULL )
aoqi@0 639 return result;
aoqi@0 640
aoqi@0 641 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
aoqi@0 642 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
aoqi@0 643 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
aoqi@0 644 bool this_interface = this_inst->klass()->is_interface();
aoqi@0 645 bool t_interface = t_inst->klass()->is_interface();
aoqi@0 646 result = this_interface ^ t_interface;
aoqi@0 647 }
aoqi@0 648
aoqi@0 649 return result;
aoqi@0 650 }
aoqi@0 651
aoqi@0 652 bool Type::interface_vs_oop(const Type *t) const {
aoqi@0 653 if (interface_vs_oop_helper(t)) {
aoqi@0 654 return true;
aoqi@0 655 }
aoqi@0 656 // Now check the speculative parts as well
aoqi@0 657 const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
aoqi@0 658 const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
aoqi@0 659 if (this_spec != NULL && t_spec != NULL) {
aoqi@0 660 if (this_spec->interface_vs_oop_helper(t_spec)) {
aoqi@0 661 return true;
aoqi@0 662 }
aoqi@0 663 return false;
aoqi@0 664 }
aoqi@0 665 if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
aoqi@0 666 return true;
aoqi@0 667 }
aoqi@0 668 if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
aoqi@0 669 return true;
aoqi@0 670 }
aoqi@0 671 return false;
aoqi@0 672 }
aoqi@0 673
aoqi@0 674 #endif
aoqi@0 675
aoqi@0 676 //------------------------------meet-------------------------------------------
aoqi@0 677 // Compute the MEET of two types. NOT virtual. It enforces that meet is
aoqi@0 678 // commutative and the lattice is symmetric.
aoqi@0 679 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
aoqi@0 680 if (isa_narrowoop() && t->isa_narrowoop()) {
aoqi@0 681 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
aoqi@0 682 return result->make_narrowoop();
aoqi@0 683 }
aoqi@0 684 if (isa_narrowklass() && t->isa_narrowklass()) {
aoqi@0 685 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
aoqi@0 686 return result->make_narrowklass();
aoqi@0 687 }
aoqi@0 688
aoqi@0 689 const Type *this_t = maybe_remove_speculative(include_speculative);
aoqi@0 690 t = t->maybe_remove_speculative(include_speculative);
aoqi@0 691
aoqi@0 692 const Type *mt = this_t->xmeet(t);
aoqi@0 693 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
aoqi@0 694 if (isa_narrowklass() || t->isa_narrowklass()) return mt;
aoqi@0 695 #ifdef ASSERT
aoqi@0 696 assert(mt == t->xmeet(this_t), "meet not commutative");
aoqi@0 697 const Type* dual_join = mt->_dual;
aoqi@0 698 const Type *t2t = dual_join->xmeet(t->_dual);
aoqi@0 699 const Type *t2this = dual_join->xmeet(this_t->_dual);
aoqi@0 700
aoqi@0 701 // Interface meet Oop is Not Symmetric:
aoqi@0 702 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
aoqi@0 703 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
aoqi@0 704
aoqi@0 705 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
aoqi@0 706 tty->print_cr("=== Meet Not Symmetric ===");
aoqi@0 707 tty->print("t = "); t->dump(); tty->cr();
aoqi@0 708 tty->print("this= "); this_t->dump(); tty->cr();
aoqi@0 709 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
aoqi@0 710
aoqi@0 711 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
aoqi@0 712 tty->print("this_dual= "); this_t->_dual->dump(); tty->cr();
aoqi@0 713 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
aoqi@0 714
aoqi@0 715 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
aoqi@0 716 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
aoqi@0 717
aoqi@0 718 fatal("meet not symmetric" );
aoqi@0 719 }
aoqi@0 720 #endif
aoqi@0 721 return mt;
aoqi@0 722 }
aoqi@0 723
aoqi@0 724 //------------------------------xmeet------------------------------------------
aoqi@0 725 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 726 const Type *Type::xmeet( const Type *t ) const {
aoqi@0 727 // Perform a fast test for common case; meeting the same types together.
aoqi@0 728 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 729
aoqi@0 730 // Meeting TOP with anything?
aoqi@0 731 if( _base == Top ) return t;
aoqi@0 732
aoqi@0 733 // Meeting BOTTOM with anything?
aoqi@0 734 if( _base == Bottom ) return BOTTOM;
aoqi@0 735
aoqi@0 736 // Current "this->_base" is one of: Bad, Multi, Control, Top,
aoqi@0 737 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
aoqi@0 738 switch (t->base()) { // Switch on original type
aoqi@0 739
aoqi@0 740 // Cut in half the number of cases I must handle. Only need cases for when
aoqi@0 741 // the given enum "t->type" is less than or equal to the local enum "type".
aoqi@0 742 case FloatCon:
aoqi@0 743 case DoubleCon:
aoqi@0 744 case Int:
aoqi@0 745 case Long:
aoqi@0 746 return t->xmeet(this);
aoqi@0 747
aoqi@0 748 case OopPtr:
aoqi@0 749 return t->xmeet(this);
aoqi@0 750
aoqi@0 751 case InstPtr:
aoqi@0 752 return t->xmeet(this);
aoqi@0 753
aoqi@0 754 case MetadataPtr:
aoqi@0 755 case KlassPtr:
aoqi@0 756 return t->xmeet(this);
aoqi@0 757
aoqi@0 758 case AryPtr:
aoqi@0 759 return t->xmeet(this);
aoqi@0 760
aoqi@0 761 case NarrowOop:
aoqi@0 762 return t->xmeet(this);
aoqi@0 763
aoqi@0 764 case NarrowKlass:
aoqi@0 765 return t->xmeet(this);
aoqi@0 766
aoqi@0 767 case Bad: // Type check
aoqi@0 768 default: // Bogus type not in lattice
aoqi@0 769 typerr(t);
aoqi@0 770 return Type::BOTTOM;
aoqi@0 771
aoqi@0 772 case Bottom: // Ye Olde Default
aoqi@0 773 return t;
aoqi@0 774
aoqi@0 775 case FloatTop:
aoqi@0 776 if( _base == FloatTop ) return this;
aoqi@0 777 case FloatBot: // Float
aoqi@0 778 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
aoqi@0 779 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
aoqi@0 780 typerr(t);
aoqi@0 781 return Type::BOTTOM;
aoqi@0 782
aoqi@0 783 case DoubleTop:
aoqi@0 784 if( _base == DoubleTop ) return this;
aoqi@0 785 case DoubleBot: // Double
aoqi@0 786 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
aoqi@0 787 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
aoqi@0 788 typerr(t);
aoqi@0 789 return Type::BOTTOM;
aoqi@0 790
aoqi@0 791 // These next few cases must match exactly or it is a compile-time error.
aoqi@0 792 case Control: // Control of code
aoqi@0 793 case Abio: // State of world outside of program
aoqi@0 794 case Memory:
aoqi@0 795 if( _base == t->_base ) return this;
aoqi@0 796 typerr(t);
aoqi@0 797 return Type::BOTTOM;
aoqi@0 798
aoqi@0 799 case Top: // Top of the lattice
aoqi@0 800 return this;
aoqi@0 801 }
aoqi@0 802
aoqi@0 803 // The type is unchanged
aoqi@0 804 return this;
aoqi@0 805 }
aoqi@0 806
aoqi@0 807 //-----------------------------filter------------------------------------------
aoqi@0 808 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
aoqi@0 809 const Type* ft = join_helper(kills, include_speculative);
aoqi@0 810 if (ft->empty())
aoqi@0 811 return Type::TOP; // Canonical empty value
aoqi@0 812 return ft;
aoqi@0 813 }
aoqi@0 814
aoqi@0 815 //------------------------------xdual------------------------------------------
aoqi@0 816 // Compute dual right now.
aoqi@0 817 const Type::TYPES Type::dual_type[Type::lastype] = {
aoqi@0 818 Bad, // Bad
aoqi@0 819 Control, // Control
aoqi@0 820 Bottom, // Top
aoqi@0 821 Bad, // Int - handled in v-call
aoqi@0 822 Bad, // Long - handled in v-call
aoqi@0 823 Half, // Half
aoqi@0 824 Bad, // NarrowOop - handled in v-call
aoqi@0 825 Bad, // NarrowKlass - handled in v-call
aoqi@0 826
aoqi@0 827 Bad, // Tuple - handled in v-call
aoqi@0 828 Bad, // Array - handled in v-call
aoqi@0 829 Bad, // VectorS - handled in v-call
aoqi@0 830 Bad, // VectorD - handled in v-call
aoqi@0 831 Bad, // VectorX - handled in v-call
aoqi@0 832 Bad, // VectorY - handled in v-call
aoqi@0 833
aoqi@0 834 Bad, // AnyPtr - handled in v-call
aoqi@0 835 Bad, // RawPtr - handled in v-call
aoqi@0 836 Bad, // OopPtr - handled in v-call
aoqi@0 837 Bad, // InstPtr - handled in v-call
aoqi@0 838 Bad, // AryPtr - handled in v-call
aoqi@0 839
aoqi@0 840 Bad, // MetadataPtr - handled in v-call
aoqi@0 841 Bad, // KlassPtr - handled in v-call
aoqi@0 842
aoqi@0 843 Bad, // Function - handled in v-call
aoqi@0 844 Abio, // Abio
aoqi@0 845 Return_Address,// Return_Address
aoqi@0 846 Memory, // Memory
aoqi@0 847 FloatBot, // FloatTop
aoqi@0 848 FloatCon, // FloatCon
aoqi@0 849 FloatTop, // FloatBot
aoqi@0 850 DoubleBot, // DoubleTop
aoqi@0 851 DoubleCon, // DoubleCon
aoqi@0 852 DoubleTop, // DoubleBot
aoqi@0 853 Top // Bottom
aoqi@0 854 };
aoqi@0 855
aoqi@0 856 const Type *Type::xdual() const {
aoqi@0 857 // Note: the base() accessor asserts the sanity of _base.
aoqi@0 858 assert(_type_info[base()].dual_type != Bad, "implement with v-call");
aoqi@0 859 return new Type(_type_info[_base].dual_type);
aoqi@0 860 }
aoqi@0 861
aoqi@0 862 //------------------------------has_memory-------------------------------------
aoqi@0 863 bool Type::has_memory() const {
aoqi@0 864 Type::TYPES tx = base();
aoqi@0 865 if (tx == Memory) return true;
aoqi@0 866 if (tx == Tuple) {
aoqi@0 867 const TypeTuple *t = is_tuple();
aoqi@0 868 for (uint i=0; i < t->cnt(); i++) {
aoqi@0 869 tx = t->field_at(i)->base();
aoqi@0 870 if (tx == Memory) return true;
aoqi@0 871 }
aoqi@0 872 }
aoqi@0 873 return false;
aoqi@0 874 }
aoqi@0 875
aoqi@0 876 #ifndef PRODUCT
aoqi@0 877 //------------------------------dump2------------------------------------------
aoqi@0 878 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 879 st->print("%s", _type_info[_base].msg);
aoqi@0 880 }
aoqi@0 881
aoqi@0 882 //------------------------------dump-------------------------------------------
aoqi@0 883 void Type::dump_on(outputStream *st) const {
aoqi@0 884 ResourceMark rm;
aoqi@0 885 Dict d(cmpkey,hashkey); // Stop recursive type dumping
aoqi@0 886 dump2(d,1, st);
aoqi@0 887 if (is_ptr_to_narrowoop()) {
aoqi@0 888 st->print(" [narrow]");
aoqi@0 889 } else if (is_ptr_to_narrowklass()) {
aoqi@0 890 st->print(" [narrowklass]");
aoqi@0 891 }
aoqi@0 892 }
aoqi@0 893 #endif
aoqi@0 894
aoqi@0 895 //------------------------------singleton--------------------------------------
aoqi@0 896 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 897 // constants (Ldi nodes). Singletons are integer, float or double constants.
aoqi@0 898 bool Type::singleton(void) const {
aoqi@0 899 return _base == Top || _base == Half;
aoqi@0 900 }
aoqi@0 901
aoqi@0 902 //------------------------------empty------------------------------------------
aoqi@0 903 // TRUE if Type is a type with no values, FALSE otherwise.
aoqi@0 904 bool Type::empty(void) const {
aoqi@0 905 switch (_base) {
aoqi@0 906 case DoubleTop:
aoqi@0 907 case FloatTop:
aoqi@0 908 case Top:
aoqi@0 909 return true;
aoqi@0 910
aoqi@0 911 case Half:
aoqi@0 912 case Abio:
aoqi@0 913 case Return_Address:
aoqi@0 914 case Memory:
aoqi@0 915 case Bottom:
aoqi@0 916 case FloatBot:
aoqi@0 917 case DoubleBot:
aoqi@0 918 return false; // never a singleton, therefore never empty
aoqi@0 919 }
aoqi@0 920
aoqi@0 921 ShouldNotReachHere();
aoqi@0 922 return false;
aoqi@0 923 }
aoqi@0 924
aoqi@0 925 //------------------------------dump_stats-------------------------------------
aoqi@0 926 // Dump collected statistics to stderr
aoqi@0 927 #ifndef PRODUCT
aoqi@0 928 void Type::dump_stats() {
aoqi@0 929 tty->print("Types made: %d\n", type_dict()->Size());
aoqi@0 930 }
aoqi@0 931 #endif
aoqi@0 932
aoqi@0 933 //------------------------------typerr-----------------------------------------
aoqi@0 934 void Type::typerr( const Type *t ) const {
aoqi@0 935 #ifndef PRODUCT
aoqi@0 936 tty->print("\nError mixing types: ");
aoqi@0 937 dump();
aoqi@0 938 tty->print(" and ");
aoqi@0 939 t->dump();
aoqi@0 940 tty->print("\n");
aoqi@0 941 #endif
aoqi@0 942 ShouldNotReachHere();
aoqi@0 943 }
aoqi@0 944
aoqi@0 945
aoqi@0 946 //=============================================================================
aoqi@0 947 // Convenience common pre-built types.
aoqi@0 948 const TypeF *TypeF::ZERO; // Floating point zero
aoqi@0 949 const TypeF *TypeF::ONE; // Floating point one
aoqi@0 950
aoqi@0 951 //------------------------------make-------------------------------------------
aoqi@0 952 // Create a float constant
aoqi@0 953 const TypeF *TypeF::make(float f) {
aoqi@0 954 return (TypeF*)(new TypeF(f))->hashcons();
aoqi@0 955 }
aoqi@0 956
aoqi@0 957 //------------------------------meet-------------------------------------------
aoqi@0 958 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 959 const Type *TypeF::xmeet( const Type *t ) const {
aoqi@0 960 // Perform a fast test for common case; meeting the same types together.
aoqi@0 961 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 962
aoqi@0 963 // Current "this->_base" is FloatCon
aoqi@0 964 switch (t->base()) { // Switch on original type
aoqi@0 965 case AnyPtr: // Mixing with oops happens when javac
aoqi@0 966 case RawPtr: // reuses local variables
aoqi@0 967 case OopPtr:
aoqi@0 968 case InstPtr:
aoqi@0 969 case AryPtr:
aoqi@0 970 case MetadataPtr:
aoqi@0 971 case KlassPtr:
aoqi@0 972 case NarrowOop:
aoqi@0 973 case NarrowKlass:
aoqi@0 974 case Int:
aoqi@0 975 case Long:
aoqi@0 976 case DoubleTop:
aoqi@0 977 case DoubleCon:
aoqi@0 978 case DoubleBot:
aoqi@0 979 case Bottom: // Ye Olde Default
aoqi@0 980 return Type::BOTTOM;
aoqi@0 981
aoqi@0 982 case FloatBot:
aoqi@0 983 return t;
aoqi@0 984
aoqi@0 985 default: // All else is a mistake
aoqi@0 986 typerr(t);
aoqi@0 987
aoqi@0 988 case FloatCon: // Float-constant vs Float-constant?
aoqi@0 989 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
aoqi@0 990 // must compare bitwise as positive zero, negative zero and NaN have
aoqi@0 991 // all the same representation in C++
aoqi@0 992 return FLOAT; // Return generic float
aoqi@0 993 // Equal constants
aoqi@0 994 case Top:
aoqi@0 995 case FloatTop:
aoqi@0 996 break; // Return the float constant
aoqi@0 997 }
aoqi@0 998 return this; // Return the float constant
aoqi@0 999 }
aoqi@0 1000
aoqi@0 1001 //------------------------------xdual------------------------------------------
aoqi@0 1002 // Dual: symmetric
aoqi@0 1003 const Type *TypeF::xdual() const {
aoqi@0 1004 return this;
aoqi@0 1005 }
aoqi@0 1006
aoqi@0 1007 //------------------------------eq---------------------------------------------
aoqi@0 1008 // Structural equality check for Type representations
dbuck@8886 1009 bool TypeF::eq(const Type *t) const {
dbuck@8886 1010 // Bitwise comparison to distinguish between +/-0. These values must be treated
dbuck@8886 1011 // as different to be consistent with C1 and the interpreter.
dbuck@8886 1012 return (jint_cast(_f) == jint_cast(t->getf()));
aoqi@0 1013 }
aoqi@0 1014
aoqi@0 1015 //------------------------------hash-------------------------------------------
aoqi@0 1016 // Type-specific hashing function.
aoqi@0 1017 int TypeF::hash(void) const {
aoqi@0 1018 return *(int*)(&_f);
aoqi@0 1019 }
aoqi@0 1020
aoqi@0 1021 //------------------------------is_finite--------------------------------------
aoqi@0 1022 // Has a finite value
aoqi@0 1023 bool TypeF::is_finite() const {
aoqi@0 1024 return g_isfinite(getf()) != 0;
aoqi@0 1025 }
aoqi@0 1026
aoqi@0 1027 //------------------------------is_nan-----------------------------------------
aoqi@0 1028 // Is not a number (NaN)
aoqi@0 1029 bool TypeF::is_nan() const {
aoqi@0 1030 return g_isnan(getf()) != 0;
aoqi@0 1031 }
aoqi@0 1032
aoqi@0 1033 //------------------------------dump2------------------------------------------
aoqi@0 1034 // Dump float constant Type
aoqi@0 1035 #ifndef PRODUCT
aoqi@0 1036 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 1037 Type::dump2(d,depth, st);
aoqi@0 1038 st->print("%f", _f);
aoqi@0 1039 }
aoqi@0 1040 #endif
aoqi@0 1041
aoqi@0 1042 //------------------------------singleton--------------------------------------
aoqi@0 1043 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 1044 // constants (Ldi nodes). Singletons are integer, float or double constants
aoqi@0 1045 // or a single symbol.
aoqi@0 1046 bool TypeF::singleton(void) const {
aoqi@0 1047 return true; // Always a singleton
aoqi@0 1048 }
aoqi@0 1049
aoqi@0 1050 bool TypeF::empty(void) const {
aoqi@0 1051 return false; // always exactly a singleton
aoqi@0 1052 }
aoqi@0 1053
aoqi@0 1054 //=============================================================================
aoqi@0 1055 // Convenience common pre-built types.
aoqi@0 1056 const TypeD *TypeD::ZERO; // Floating point zero
aoqi@0 1057 const TypeD *TypeD::ONE; // Floating point one
aoqi@0 1058
aoqi@0 1059 //------------------------------make-------------------------------------------
aoqi@0 1060 const TypeD *TypeD::make(double d) {
aoqi@0 1061 return (TypeD*)(new TypeD(d))->hashcons();
aoqi@0 1062 }
aoqi@0 1063
aoqi@0 1064 //------------------------------meet-------------------------------------------
aoqi@0 1065 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 1066 const Type *TypeD::xmeet( const Type *t ) const {
aoqi@0 1067 // Perform a fast test for common case; meeting the same types together.
aoqi@0 1068 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 1069
aoqi@0 1070 // Current "this->_base" is DoubleCon
aoqi@0 1071 switch (t->base()) { // Switch on original type
aoqi@0 1072 case AnyPtr: // Mixing with oops happens when javac
aoqi@0 1073 case RawPtr: // reuses local variables
aoqi@0 1074 case OopPtr:
aoqi@0 1075 case InstPtr:
aoqi@0 1076 case AryPtr:
aoqi@0 1077 case MetadataPtr:
aoqi@0 1078 case KlassPtr:
aoqi@0 1079 case NarrowOop:
aoqi@0 1080 case NarrowKlass:
aoqi@0 1081 case Int:
aoqi@0 1082 case Long:
aoqi@0 1083 case FloatTop:
aoqi@0 1084 case FloatCon:
aoqi@0 1085 case FloatBot:
aoqi@0 1086 case Bottom: // Ye Olde Default
aoqi@0 1087 return Type::BOTTOM;
aoqi@0 1088
aoqi@0 1089 case DoubleBot:
aoqi@0 1090 return t;
aoqi@0 1091
aoqi@0 1092 default: // All else is a mistake
aoqi@0 1093 typerr(t);
aoqi@0 1094
aoqi@0 1095 case DoubleCon: // Double-constant vs Double-constant?
aoqi@0 1096 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
aoqi@0 1097 return DOUBLE; // Return generic double
aoqi@0 1098 case Top:
aoqi@0 1099 case DoubleTop:
aoqi@0 1100 break;
aoqi@0 1101 }
aoqi@0 1102 return this; // Return the double constant
aoqi@0 1103 }
aoqi@0 1104
aoqi@0 1105 //------------------------------xdual------------------------------------------
aoqi@0 1106 // Dual: symmetric
aoqi@0 1107 const Type *TypeD::xdual() const {
aoqi@0 1108 return this;
aoqi@0 1109 }
aoqi@0 1110
aoqi@0 1111 //------------------------------eq---------------------------------------------
aoqi@0 1112 // Structural equality check for Type representations
dbuck@8886 1113 bool TypeD::eq(const Type *t) const {
dbuck@8886 1114 // Bitwise comparison to distinguish between +/-0. These values must be treated
dbuck@8886 1115 // as different to be consistent with C1 and the interpreter.
dbuck@8886 1116 return (jlong_cast(_d) == jlong_cast(t->getd()));
aoqi@0 1117 }
aoqi@0 1118
aoqi@0 1119 //------------------------------hash-------------------------------------------
aoqi@0 1120 // Type-specific hashing function.
aoqi@0 1121 int TypeD::hash(void) const {
aoqi@0 1122 return *(int*)(&_d);
aoqi@0 1123 }
aoqi@0 1124
aoqi@0 1125 //------------------------------is_finite--------------------------------------
aoqi@0 1126 // Has a finite value
aoqi@0 1127 bool TypeD::is_finite() const {
aoqi@0 1128 return g_isfinite(getd()) != 0;
aoqi@0 1129 }
aoqi@0 1130
aoqi@0 1131 //------------------------------is_nan-----------------------------------------
aoqi@0 1132 // Is not a number (NaN)
aoqi@0 1133 bool TypeD::is_nan() const {
aoqi@0 1134 return g_isnan(getd()) != 0;
aoqi@0 1135 }
aoqi@0 1136
aoqi@0 1137 //------------------------------dump2------------------------------------------
aoqi@0 1138 // Dump double constant Type
aoqi@0 1139 #ifndef PRODUCT
aoqi@0 1140 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 1141 Type::dump2(d,depth,st);
aoqi@0 1142 st->print("%f", _d);
aoqi@0 1143 }
aoqi@0 1144 #endif
aoqi@0 1145
aoqi@0 1146 //------------------------------singleton--------------------------------------
aoqi@0 1147 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 1148 // constants (Ldi nodes). Singletons are integer, float or double constants
aoqi@0 1149 // or a single symbol.
aoqi@0 1150 bool TypeD::singleton(void) const {
aoqi@0 1151 return true; // Always a singleton
aoqi@0 1152 }
aoqi@0 1153
aoqi@0 1154 bool TypeD::empty(void) const {
aoqi@0 1155 return false; // always exactly a singleton
aoqi@0 1156 }
aoqi@0 1157
aoqi@0 1158 //=============================================================================
aoqi@0 1159 // Convience common pre-built types.
aoqi@0 1160 const TypeInt *TypeInt::MINUS_1;// -1
aoqi@0 1161 const TypeInt *TypeInt::ZERO; // 0
aoqi@0 1162 const TypeInt *TypeInt::ONE; // 1
aoqi@0 1163 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
aoqi@0 1164 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
aoqi@0 1165 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
aoqi@0 1166 const TypeInt *TypeInt::CC_GT; // [1] == ONE
aoqi@0 1167 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
aoqi@0 1168 const TypeInt *TypeInt::CC_LE; // [-1,0]
aoqi@0 1169 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
aoqi@0 1170 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
aoqi@0 1171 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
aoqi@0 1172 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
aoqi@0 1173 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
aoqi@0 1174 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
aoqi@0 1175 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
aoqi@0 1176 const TypeInt *TypeInt::INT; // 32-bit integers
aoqi@0 1177 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
aoqi@0 1178 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
aoqi@0 1179
aoqi@0 1180 //------------------------------TypeInt----------------------------------------
aoqi@0 1181 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
aoqi@0 1182 }
aoqi@0 1183
aoqi@0 1184 //------------------------------make-------------------------------------------
aoqi@0 1185 const TypeInt *TypeInt::make( jint lo ) {
aoqi@0 1186 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
aoqi@0 1187 }
aoqi@0 1188
aoqi@0 1189 static int normalize_int_widen( jint lo, jint hi, int w ) {
aoqi@0 1190 // Certain normalizations keep us sane when comparing types.
aoqi@0 1191 // The 'SMALLINT' covers constants and also CC and its relatives.
aoqi@0 1192 if (lo <= hi) {
sgehwolf@7873 1193 if (((juint)hi - lo) <= SMALLINT) w = Type::WidenMin;
sgehwolf@7873 1194 if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
aoqi@0 1195 } else {
sgehwolf@7873 1196 if (((juint)lo - hi) <= SMALLINT) w = Type::WidenMin;
sgehwolf@7873 1197 if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
aoqi@0 1198 }
aoqi@0 1199 return w;
aoqi@0 1200 }
aoqi@0 1201
aoqi@0 1202 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
aoqi@0 1203 w = normalize_int_widen(lo, hi, w);
aoqi@0 1204 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
aoqi@0 1205 }
aoqi@0 1206
aoqi@0 1207 //------------------------------meet-------------------------------------------
aoqi@0 1208 // Compute the MEET of two types. It returns a new Type representation object
aoqi@0 1209 // with reference count equal to the number of Types pointing at it.
aoqi@0 1210 // Caller should wrap a Types around it.
aoqi@0 1211 const Type *TypeInt::xmeet( const Type *t ) const {
aoqi@0 1212 // Perform a fast test for common case; meeting the same types together.
aoqi@0 1213 if( this == t ) return this; // Meeting same type?
aoqi@0 1214
aoqi@0 1215 // Currently "this->_base" is a TypeInt
aoqi@0 1216 switch (t->base()) { // Switch on original type
aoqi@0 1217 case AnyPtr: // Mixing with oops happens when javac
aoqi@0 1218 case RawPtr: // reuses local variables
aoqi@0 1219 case OopPtr:
aoqi@0 1220 case InstPtr:
aoqi@0 1221 case AryPtr:
aoqi@0 1222 case MetadataPtr:
aoqi@0 1223 case KlassPtr:
aoqi@0 1224 case NarrowOop:
aoqi@0 1225 case NarrowKlass:
aoqi@0 1226 case Long:
aoqi@0 1227 case FloatTop:
aoqi@0 1228 case FloatCon:
aoqi@0 1229 case FloatBot:
aoqi@0 1230 case DoubleTop:
aoqi@0 1231 case DoubleCon:
aoqi@0 1232 case DoubleBot:
aoqi@0 1233 case Bottom: // Ye Olde Default
aoqi@0 1234 return Type::BOTTOM;
aoqi@0 1235 default: // All else is a mistake
aoqi@0 1236 typerr(t);
aoqi@0 1237 case Top: // No change
aoqi@0 1238 return this;
aoqi@0 1239 case Int: // Int vs Int?
aoqi@0 1240 break;
aoqi@0 1241 }
aoqi@0 1242
aoqi@0 1243 // Expand covered set
aoqi@0 1244 const TypeInt *r = t->is_int();
aoqi@0 1245 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
aoqi@0 1246 }
aoqi@0 1247
aoqi@0 1248 //------------------------------xdual------------------------------------------
aoqi@0 1249 // Dual: reverse hi & lo; flip widen
aoqi@0 1250 const Type *TypeInt::xdual() const {
aoqi@0 1251 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
aoqi@0 1252 return new TypeInt(_hi,_lo,w);
aoqi@0 1253 }
aoqi@0 1254
aoqi@0 1255 //------------------------------widen------------------------------------------
aoqi@0 1256 // Only happens for optimistic top-down optimizations.
aoqi@0 1257 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
aoqi@0 1258 // Coming from TOP or such; no widening
aoqi@0 1259 if( old->base() != Int ) return this;
aoqi@0 1260 const TypeInt *ot = old->is_int();
aoqi@0 1261
aoqi@0 1262 // If new guy is equal to old guy, no widening
aoqi@0 1263 if( _lo == ot->_lo && _hi == ot->_hi )
aoqi@0 1264 return old;
aoqi@0 1265
aoqi@0 1266 // If new guy contains old, then we widened
aoqi@0 1267 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
aoqi@0 1268 // New contains old
aoqi@0 1269 // If new guy is already wider than old, no widening
aoqi@0 1270 if( _widen > ot->_widen ) return this;
aoqi@0 1271 // If old guy was a constant, do not bother
aoqi@0 1272 if (ot->_lo == ot->_hi) return this;
aoqi@0 1273 // Now widen new guy.
aoqi@0 1274 // Check for widening too far
aoqi@0 1275 if (_widen == WidenMax) {
aoqi@0 1276 int max = max_jint;
aoqi@0 1277 int min = min_jint;
aoqi@0 1278 if (limit->isa_int()) {
aoqi@0 1279 max = limit->is_int()->_hi;
aoqi@0 1280 min = limit->is_int()->_lo;
aoqi@0 1281 }
aoqi@0 1282 if (min < _lo && _hi < max) {
aoqi@0 1283 // If neither endpoint is extremal yet, push out the endpoint
aoqi@0 1284 // which is closer to its respective limit.
aoqi@0 1285 if (_lo >= 0 || // easy common case
aoqi@0 1286 (juint)(_lo - min) >= (juint)(max - _hi)) {
aoqi@0 1287 // Try to widen to an unsigned range type of 31 bits:
aoqi@0 1288 return make(_lo, max, WidenMax);
aoqi@0 1289 } else {
aoqi@0 1290 return make(min, _hi, WidenMax);
aoqi@0 1291 }
aoqi@0 1292 }
aoqi@0 1293 return TypeInt::INT;
aoqi@0 1294 }
aoqi@0 1295 // Returned widened new guy
aoqi@0 1296 return make(_lo,_hi,_widen+1);
aoqi@0 1297 }
aoqi@0 1298
aoqi@0 1299 // If old guy contains new, then we probably widened too far & dropped to
aoqi@0 1300 // bottom. Return the wider fellow.
aoqi@0 1301 if ( ot->_lo <= _lo && ot->_hi >= _hi )
aoqi@0 1302 return old;
aoqi@0 1303
aoqi@0 1304 //fatal("Integer value range is not subset");
aoqi@0 1305 //return this;
aoqi@0 1306 return TypeInt::INT;
aoqi@0 1307 }
aoqi@0 1308
aoqi@0 1309 //------------------------------narrow---------------------------------------
aoqi@0 1310 // Only happens for pessimistic optimizations.
aoqi@0 1311 const Type *TypeInt::narrow( const Type *old ) const {
aoqi@0 1312 if (_lo >= _hi) return this; // already narrow enough
aoqi@0 1313 if (old == NULL) return this;
aoqi@0 1314 const TypeInt* ot = old->isa_int();
aoqi@0 1315 if (ot == NULL) return this;
aoqi@0 1316 jint olo = ot->_lo;
aoqi@0 1317 jint ohi = ot->_hi;
aoqi@0 1318
aoqi@0 1319 // If new guy is equal to old guy, no narrowing
aoqi@0 1320 if (_lo == olo && _hi == ohi) return old;
aoqi@0 1321
aoqi@0 1322 // If old guy was maximum range, allow the narrowing
aoqi@0 1323 if (olo == min_jint && ohi == max_jint) return this;
aoqi@0 1324
aoqi@0 1325 if (_lo < olo || _hi > ohi)
aoqi@0 1326 return this; // doesn't narrow; pretty wierd
aoqi@0 1327
aoqi@0 1328 // The new type narrows the old type, so look for a "death march".
aoqi@0 1329 // See comments on PhaseTransform::saturate.
aoqi@0 1330 juint nrange = _hi - _lo;
aoqi@0 1331 juint orange = ohi - olo;
aoqi@0 1332 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
aoqi@0 1333 // Use the new type only if the range shrinks a lot.
aoqi@0 1334 // We do not want the optimizer computing 2^31 point by point.
aoqi@0 1335 return old;
aoqi@0 1336 }
aoqi@0 1337
aoqi@0 1338 return this;
aoqi@0 1339 }
aoqi@0 1340
aoqi@0 1341 //-----------------------------filter------------------------------------------
aoqi@0 1342 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
aoqi@0 1343 const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
aoqi@0 1344 if (ft == NULL || ft->empty())
aoqi@0 1345 return Type::TOP; // Canonical empty value
aoqi@0 1346 if (ft->_widen < this->_widen) {
aoqi@0 1347 // Do not allow the value of kill->_widen to affect the outcome.
aoqi@0 1348 // The widen bits must be allowed to run freely through the graph.
aoqi@0 1349 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
aoqi@0 1350 }
aoqi@0 1351 return ft;
aoqi@0 1352 }
aoqi@0 1353
aoqi@0 1354 //------------------------------eq---------------------------------------------
aoqi@0 1355 // Structural equality check for Type representations
aoqi@0 1356 bool TypeInt::eq( const Type *t ) const {
aoqi@0 1357 const TypeInt *r = t->is_int(); // Handy access
aoqi@0 1358 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
aoqi@0 1359 }
aoqi@0 1360
aoqi@0 1361 //------------------------------hash-------------------------------------------
aoqi@0 1362 // Type-specific hashing function.
aoqi@0 1363 int TypeInt::hash(void) const {
aoqi@0 1364 return _lo+_hi+_widen+(int)Type::Int;
aoqi@0 1365 }
aoqi@0 1366
aoqi@0 1367 //------------------------------is_finite--------------------------------------
aoqi@0 1368 // Has a finite value
aoqi@0 1369 bool TypeInt::is_finite() const {
aoqi@0 1370 return true;
aoqi@0 1371 }
aoqi@0 1372
aoqi@0 1373 //------------------------------dump2------------------------------------------
aoqi@0 1374 // Dump TypeInt
aoqi@0 1375 #ifndef PRODUCT
aoqi@0 1376 static const char* intname(char* buf, jint n) {
aoqi@0 1377 if (n == min_jint)
aoqi@0 1378 return "min";
aoqi@0 1379 else if (n < min_jint + 10000)
aoqi@0 1380 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
aoqi@0 1381 else if (n == max_jint)
aoqi@0 1382 return "max";
aoqi@0 1383 else if (n > max_jint - 10000)
aoqi@0 1384 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
aoqi@0 1385 else
aoqi@0 1386 sprintf(buf, INT32_FORMAT, n);
aoqi@0 1387 return buf;
aoqi@0 1388 }
aoqi@0 1389
aoqi@0 1390 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 1391 char buf[40], buf2[40];
aoqi@0 1392 if (_lo == min_jint && _hi == max_jint)
aoqi@0 1393 st->print("int");
aoqi@0 1394 else if (is_con())
aoqi@0 1395 st->print("int:%s", intname(buf, get_con()));
aoqi@0 1396 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
aoqi@0 1397 st->print("bool");
aoqi@0 1398 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
aoqi@0 1399 st->print("byte");
aoqi@0 1400 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
aoqi@0 1401 st->print("char");
aoqi@0 1402 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
aoqi@0 1403 st->print("short");
aoqi@0 1404 else if (_hi == max_jint)
aoqi@0 1405 st->print("int:>=%s", intname(buf, _lo));
aoqi@0 1406 else if (_lo == min_jint)
aoqi@0 1407 st->print("int:<=%s", intname(buf, _hi));
aoqi@0 1408 else
aoqi@0 1409 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
aoqi@0 1410
aoqi@0 1411 if (_widen != 0 && this != TypeInt::INT)
aoqi@0 1412 st->print(":%.*s", _widen, "wwww");
aoqi@0 1413 }
aoqi@0 1414 #endif
aoqi@0 1415
aoqi@0 1416 //------------------------------singleton--------------------------------------
aoqi@0 1417 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 1418 // constants.
aoqi@0 1419 bool TypeInt::singleton(void) const {
aoqi@0 1420 return _lo >= _hi;
aoqi@0 1421 }
aoqi@0 1422
aoqi@0 1423 bool TypeInt::empty(void) const {
aoqi@0 1424 return _lo > _hi;
aoqi@0 1425 }
aoqi@0 1426
aoqi@0 1427 //=============================================================================
aoqi@0 1428 // Convenience common pre-built types.
aoqi@0 1429 const TypeLong *TypeLong::MINUS_1;// -1
aoqi@0 1430 const TypeLong *TypeLong::ZERO; // 0
aoqi@0 1431 const TypeLong *TypeLong::ONE; // 1
aoqi@0 1432 const TypeLong *TypeLong::POS; // >=0
aoqi@0 1433 const TypeLong *TypeLong::LONG; // 64-bit integers
aoqi@0 1434 const TypeLong *TypeLong::INT; // 32-bit subrange
aoqi@0 1435 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
aoqi@0 1436 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
aoqi@0 1437
aoqi@0 1438 //------------------------------TypeLong---------------------------------------
aoqi@0 1439 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
aoqi@0 1440 }
aoqi@0 1441
aoqi@0 1442 //------------------------------make-------------------------------------------
aoqi@0 1443 const TypeLong *TypeLong::make( jlong lo ) {
aoqi@0 1444 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
aoqi@0 1445 }
aoqi@0 1446
aoqi@0 1447 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
aoqi@0 1448 // Certain normalizations keep us sane when comparing types.
aoqi@0 1449 // The 'SMALLINT' covers constants.
aoqi@0 1450 if (lo <= hi) {
sgehwolf@7873 1451 if (((julong)hi - lo) <= SMALLINT) w = Type::WidenMin;
sgehwolf@7873 1452 if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
aoqi@0 1453 } else {
sgehwolf@7873 1454 if (((julong)lo - hi) <= SMALLINT) w = Type::WidenMin;
sgehwolf@7873 1455 if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
aoqi@0 1456 }
aoqi@0 1457 return w;
aoqi@0 1458 }
aoqi@0 1459
aoqi@0 1460 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
aoqi@0 1461 w = normalize_long_widen(lo, hi, w);
aoqi@0 1462 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
aoqi@0 1463 }
aoqi@0 1464
aoqi@0 1465
aoqi@0 1466 //------------------------------meet-------------------------------------------
aoqi@0 1467 // Compute the MEET of two types. It returns a new Type representation object
aoqi@0 1468 // with reference count equal to the number of Types pointing at it.
aoqi@0 1469 // Caller should wrap a Types around it.
aoqi@0 1470 const Type *TypeLong::xmeet( const Type *t ) const {
aoqi@0 1471 // Perform a fast test for common case; meeting the same types together.
aoqi@0 1472 if( this == t ) return this; // Meeting same type?
aoqi@0 1473
aoqi@0 1474 // Currently "this->_base" is a TypeLong
aoqi@0 1475 switch (t->base()) { // Switch on original type
aoqi@0 1476 case AnyPtr: // Mixing with oops happens when javac
aoqi@0 1477 case RawPtr: // reuses local variables
aoqi@0 1478 case OopPtr:
aoqi@0 1479 case InstPtr:
aoqi@0 1480 case AryPtr:
aoqi@0 1481 case MetadataPtr:
aoqi@0 1482 case KlassPtr:
aoqi@0 1483 case NarrowOop:
aoqi@0 1484 case NarrowKlass:
aoqi@0 1485 case Int:
aoqi@0 1486 case FloatTop:
aoqi@0 1487 case FloatCon:
aoqi@0 1488 case FloatBot:
aoqi@0 1489 case DoubleTop:
aoqi@0 1490 case DoubleCon:
aoqi@0 1491 case DoubleBot:
aoqi@0 1492 case Bottom: // Ye Olde Default
aoqi@0 1493 return Type::BOTTOM;
aoqi@0 1494 default: // All else is a mistake
aoqi@0 1495 typerr(t);
aoqi@0 1496 case Top: // No change
aoqi@0 1497 return this;
aoqi@0 1498 case Long: // Long vs Long?
aoqi@0 1499 break;
aoqi@0 1500 }
aoqi@0 1501
aoqi@0 1502 // Expand covered set
aoqi@0 1503 const TypeLong *r = t->is_long(); // Turn into a TypeLong
aoqi@0 1504 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
aoqi@0 1505 }
aoqi@0 1506
aoqi@0 1507 //------------------------------xdual------------------------------------------
aoqi@0 1508 // Dual: reverse hi & lo; flip widen
aoqi@0 1509 const Type *TypeLong::xdual() const {
aoqi@0 1510 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
aoqi@0 1511 return new TypeLong(_hi,_lo,w);
aoqi@0 1512 }
aoqi@0 1513
aoqi@0 1514 //------------------------------widen------------------------------------------
aoqi@0 1515 // Only happens for optimistic top-down optimizations.
aoqi@0 1516 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
aoqi@0 1517 // Coming from TOP or such; no widening
aoqi@0 1518 if( old->base() != Long ) return this;
aoqi@0 1519 const TypeLong *ot = old->is_long();
aoqi@0 1520
aoqi@0 1521 // If new guy is equal to old guy, no widening
aoqi@0 1522 if( _lo == ot->_lo && _hi == ot->_hi )
aoqi@0 1523 return old;
aoqi@0 1524
aoqi@0 1525 // If new guy contains old, then we widened
aoqi@0 1526 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
aoqi@0 1527 // New contains old
aoqi@0 1528 // If new guy is already wider than old, no widening
aoqi@0 1529 if( _widen > ot->_widen ) return this;
aoqi@0 1530 // If old guy was a constant, do not bother
aoqi@0 1531 if (ot->_lo == ot->_hi) return this;
aoqi@0 1532 // Now widen new guy.
aoqi@0 1533 // Check for widening too far
aoqi@0 1534 if (_widen == WidenMax) {
aoqi@0 1535 jlong max = max_jlong;
aoqi@0 1536 jlong min = min_jlong;
aoqi@0 1537 if (limit->isa_long()) {
aoqi@0 1538 max = limit->is_long()->_hi;
aoqi@0 1539 min = limit->is_long()->_lo;
aoqi@0 1540 }
aoqi@0 1541 if (min < _lo && _hi < max) {
aoqi@0 1542 // If neither endpoint is extremal yet, push out the endpoint
aoqi@0 1543 // which is closer to its respective limit.
aoqi@0 1544 if (_lo >= 0 || // easy common case
aoqi@0 1545 (julong)(_lo - min) >= (julong)(max - _hi)) {
aoqi@0 1546 // Try to widen to an unsigned range type of 32/63 bits:
aoqi@0 1547 if (max >= max_juint && _hi < max_juint)
aoqi@0 1548 return make(_lo, max_juint, WidenMax);
aoqi@0 1549 else
aoqi@0 1550 return make(_lo, max, WidenMax);
aoqi@0 1551 } else {
aoqi@0 1552 return make(min, _hi, WidenMax);
aoqi@0 1553 }
aoqi@0 1554 }
aoqi@0 1555 return TypeLong::LONG;
aoqi@0 1556 }
aoqi@0 1557 // Returned widened new guy
aoqi@0 1558 return make(_lo,_hi,_widen+1);
aoqi@0 1559 }
aoqi@0 1560
aoqi@0 1561 // If old guy contains new, then we probably widened too far & dropped to
aoqi@0 1562 // bottom. Return the wider fellow.
aoqi@0 1563 if ( ot->_lo <= _lo && ot->_hi >= _hi )
aoqi@0 1564 return old;
aoqi@0 1565
aoqi@0 1566 // fatal("Long value range is not subset");
aoqi@0 1567 // return this;
aoqi@0 1568 return TypeLong::LONG;
aoqi@0 1569 }
aoqi@0 1570
aoqi@0 1571 //------------------------------narrow----------------------------------------
aoqi@0 1572 // Only happens for pessimistic optimizations.
aoqi@0 1573 const Type *TypeLong::narrow( const Type *old ) const {
aoqi@0 1574 if (_lo >= _hi) return this; // already narrow enough
aoqi@0 1575 if (old == NULL) return this;
aoqi@0 1576 const TypeLong* ot = old->isa_long();
aoqi@0 1577 if (ot == NULL) return this;
aoqi@0 1578 jlong olo = ot->_lo;
aoqi@0 1579 jlong ohi = ot->_hi;
aoqi@0 1580
aoqi@0 1581 // If new guy is equal to old guy, no narrowing
aoqi@0 1582 if (_lo == olo && _hi == ohi) return old;
aoqi@0 1583
aoqi@0 1584 // If old guy was maximum range, allow the narrowing
aoqi@0 1585 if (olo == min_jlong && ohi == max_jlong) return this;
aoqi@0 1586
aoqi@0 1587 if (_lo < olo || _hi > ohi)
aoqi@0 1588 return this; // doesn't narrow; pretty wierd
aoqi@0 1589
aoqi@0 1590 // The new type narrows the old type, so look for a "death march".
aoqi@0 1591 // See comments on PhaseTransform::saturate.
aoqi@0 1592 julong nrange = _hi - _lo;
aoqi@0 1593 julong orange = ohi - olo;
aoqi@0 1594 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
aoqi@0 1595 // Use the new type only if the range shrinks a lot.
aoqi@0 1596 // We do not want the optimizer computing 2^31 point by point.
aoqi@0 1597 return old;
aoqi@0 1598 }
aoqi@0 1599
aoqi@0 1600 return this;
aoqi@0 1601 }
aoqi@0 1602
aoqi@0 1603 //-----------------------------filter------------------------------------------
aoqi@0 1604 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
aoqi@0 1605 const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
aoqi@0 1606 if (ft == NULL || ft->empty())
aoqi@0 1607 return Type::TOP; // Canonical empty value
aoqi@0 1608 if (ft->_widen < this->_widen) {
aoqi@0 1609 // Do not allow the value of kill->_widen to affect the outcome.
aoqi@0 1610 // The widen bits must be allowed to run freely through the graph.
aoqi@0 1611 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
aoqi@0 1612 }
aoqi@0 1613 return ft;
aoqi@0 1614 }
aoqi@0 1615
aoqi@0 1616 //------------------------------eq---------------------------------------------
aoqi@0 1617 // Structural equality check for Type representations
aoqi@0 1618 bool TypeLong::eq( const Type *t ) const {
aoqi@0 1619 const TypeLong *r = t->is_long(); // Handy access
aoqi@0 1620 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
aoqi@0 1621 }
aoqi@0 1622
aoqi@0 1623 //------------------------------hash-------------------------------------------
aoqi@0 1624 // Type-specific hashing function.
aoqi@0 1625 int TypeLong::hash(void) const {
aoqi@0 1626 return (int)(_lo+_hi+_widen+(int)Type::Long);
aoqi@0 1627 }
aoqi@0 1628
aoqi@0 1629 //------------------------------is_finite--------------------------------------
aoqi@0 1630 // Has a finite value
aoqi@0 1631 bool TypeLong::is_finite() const {
aoqi@0 1632 return true;
aoqi@0 1633 }
aoqi@0 1634
aoqi@0 1635 //------------------------------dump2------------------------------------------
aoqi@0 1636 // Dump TypeLong
aoqi@0 1637 #ifndef PRODUCT
aoqi@0 1638 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
aoqi@0 1639 if (n > x) {
aoqi@0 1640 if (n >= x + 10000) return NULL;
aoqi@0 1641 sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
aoqi@0 1642 } else if (n < x) {
aoqi@0 1643 if (n <= x - 10000) return NULL;
aoqi@0 1644 sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
aoqi@0 1645 } else {
aoqi@0 1646 return xname;
aoqi@0 1647 }
aoqi@0 1648 return buf;
aoqi@0 1649 }
aoqi@0 1650
aoqi@0 1651 static const char* longname(char* buf, jlong n) {
aoqi@0 1652 const char* str;
aoqi@0 1653 if (n == min_jlong)
aoqi@0 1654 return "min";
aoqi@0 1655 else if (n < min_jlong + 10000)
aoqi@0 1656 sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
aoqi@0 1657 else if (n == max_jlong)
aoqi@0 1658 return "max";
aoqi@0 1659 else if (n > max_jlong - 10000)
aoqi@0 1660 sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
aoqi@0 1661 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
aoqi@0 1662 return str;
aoqi@0 1663 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
aoqi@0 1664 return str;
aoqi@0 1665 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
aoqi@0 1666 return str;
aoqi@0 1667 else
aoqi@0 1668 sprintf(buf, JLONG_FORMAT, n);
aoqi@0 1669 return buf;
aoqi@0 1670 }
aoqi@0 1671
aoqi@0 1672 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 1673 char buf[80], buf2[80];
aoqi@0 1674 if (_lo == min_jlong && _hi == max_jlong)
aoqi@0 1675 st->print("long");
aoqi@0 1676 else if (is_con())
aoqi@0 1677 st->print("long:%s", longname(buf, get_con()));
aoqi@0 1678 else if (_hi == max_jlong)
aoqi@0 1679 st->print("long:>=%s", longname(buf, _lo));
aoqi@0 1680 else if (_lo == min_jlong)
aoqi@0 1681 st->print("long:<=%s", longname(buf, _hi));
aoqi@0 1682 else
aoqi@0 1683 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
aoqi@0 1684
aoqi@0 1685 if (_widen != 0 && this != TypeLong::LONG)
aoqi@0 1686 st->print(":%.*s", _widen, "wwww");
aoqi@0 1687 }
aoqi@0 1688 #endif
aoqi@0 1689
aoqi@0 1690 //------------------------------singleton--------------------------------------
aoqi@0 1691 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 1692 // constants
aoqi@0 1693 bool TypeLong::singleton(void) const {
aoqi@0 1694 return _lo >= _hi;
aoqi@0 1695 }
aoqi@0 1696
aoqi@0 1697 bool TypeLong::empty(void) const {
aoqi@0 1698 return _lo > _hi;
aoqi@0 1699 }
aoqi@0 1700
aoqi@0 1701 //=============================================================================
aoqi@0 1702 // Convenience common pre-built types.
aoqi@0 1703 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
aoqi@0 1704 const TypeTuple *TypeTuple::IFFALSE;
aoqi@0 1705 const TypeTuple *TypeTuple::IFTRUE;
aoqi@0 1706 const TypeTuple *TypeTuple::IFNEITHER;
aoqi@0 1707 const TypeTuple *TypeTuple::LOOPBODY;
aoqi@0 1708 const TypeTuple *TypeTuple::MEMBAR;
aoqi@0 1709 const TypeTuple *TypeTuple::STORECONDITIONAL;
aoqi@0 1710 const TypeTuple *TypeTuple::START_I2C;
aoqi@0 1711 const TypeTuple *TypeTuple::INT_PAIR;
aoqi@0 1712 const TypeTuple *TypeTuple::LONG_PAIR;
aoqi@0 1713 const TypeTuple *TypeTuple::INT_CC_PAIR;
aoqi@0 1714 const TypeTuple *TypeTuple::LONG_CC_PAIR;
aoqi@0 1715
aoqi@0 1716
aoqi@0 1717 //------------------------------make-------------------------------------------
aoqi@0 1718 // Make a TypeTuple from the range of a method signature
aoqi@0 1719 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
aoqi@0 1720 ciType* return_type = sig->return_type();
aoqi@0 1721 uint total_fields = TypeFunc::Parms + return_type->size();
aoqi@0 1722 const Type **field_array = fields(total_fields);
aoqi@0 1723 switch (return_type->basic_type()) {
aoqi@0 1724 case T_LONG:
aoqi@0 1725 field_array[TypeFunc::Parms] = TypeLong::LONG;
aoqi@0 1726 field_array[TypeFunc::Parms+1] = Type::HALF;
aoqi@0 1727 break;
aoqi@0 1728 case T_DOUBLE:
aoqi@0 1729 field_array[TypeFunc::Parms] = Type::DOUBLE;
aoqi@0 1730 field_array[TypeFunc::Parms+1] = Type::HALF;
aoqi@0 1731 break;
aoqi@0 1732 case T_OBJECT:
aoqi@0 1733 case T_ARRAY:
aoqi@0 1734 case T_BOOLEAN:
aoqi@0 1735 case T_CHAR:
aoqi@0 1736 case T_FLOAT:
aoqi@0 1737 case T_BYTE:
aoqi@0 1738 case T_SHORT:
aoqi@0 1739 case T_INT:
aoqi@0 1740 field_array[TypeFunc::Parms] = get_const_type(return_type);
aoqi@0 1741 break;
aoqi@0 1742 case T_VOID:
aoqi@0 1743 break;
aoqi@0 1744 default:
aoqi@0 1745 ShouldNotReachHere();
aoqi@0 1746 }
aoqi@0 1747 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
aoqi@0 1748 }
aoqi@0 1749
aoqi@0 1750 // Make a TypeTuple from the domain of a method signature
aoqi@0 1751 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
aoqi@0 1752 uint total_fields = TypeFunc::Parms + sig->size();
aoqi@0 1753
aoqi@0 1754 uint pos = TypeFunc::Parms;
aoqi@0 1755 const Type **field_array;
aoqi@0 1756 if (recv != NULL) {
aoqi@0 1757 total_fields++;
aoqi@0 1758 field_array = fields(total_fields);
aoqi@0 1759 // Use get_const_type here because it respects UseUniqueSubclasses:
aoqi@0 1760 field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
aoqi@0 1761 } else {
aoqi@0 1762 field_array = fields(total_fields);
aoqi@0 1763 }
aoqi@0 1764
aoqi@0 1765 int i = 0;
aoqi@0 1766 while (pos < total_fields) {
aoqi@0 1767 ciType* type = sig->type_at(i);
aoqi@0 1768
aoqi@0 1769 switch (type->basic_type()) {
aoqi@0 1770 case T_LONG:
aoqi@0 1771 field_array[pos++] = TypeLong::LONG;
aoqi@0 1772 field_array[pos++] = Type::HALF;
aoqi@0 1773 break;
aoqi@0 1774 case T_DOUBLE:
aoqi@0 1775 field_array[pos++] = Type::DOUBLE;
aoqi@0 1776 field_array[pos++] = Type::HALF;
aoqi@0 1777 break;
aoqi@0 1778 case T_OBJECT:
aoqi@0 1779 case T_ARRAY:
kevinw@8368 1780 case T_FLOAT:
kevinw@8368 1781 case T_INT:
kevinw@8368 1782 field_array[pos++] = get_const_type(type);
kevinw@8368 1783 break;
aoqi@0 1784 case T_BOOLEAN:
aoqi@0 1785 case T_CHAR:
aoqi@0 1786 case T_BYTE:
aoqi@0 1787 case T_SHORT:
kevinw@8368 1788 field_array[pos++] = TypeInt::INT;
aoqi@0 1789 break;
aoqi@0 1790 default:
aoqi@0 1791 ShouldNotReachHere();
aoqi@0 1792 }
aoqi@0 1793 i++;
aoqi@0 1794 }
aoqi@0 1795 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
aoqi@0 1796 }
aoqi@0 1797
aoqi@0 1798 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
aoqi@0 1799 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
aoqi@0 1800 }
aoqi@0 1801
aoqi@0 1802 //------------------------------fields-----------------------------------------
aoqi@0 1803 // Subroutine call type with space allocated for argument types
aoqi@0 1804 const Type **TypeTuple::fields( uint arg_cnt ) {
aoqi@0 1805 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
aoqi@0 1806 flds[TypeFunc::Control ] = Type::CONTROL;
aoqi@0 1807 flds[TypeFunc::I_O ] = Type::ABIO;
aoqi@0 1808 flds[TypeFunc::Memory ] = Type::MEMORY;
aoqi@0 1809 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
aoqi@0 1810 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
aoqi@0 1811
aoqi@0 1812 return flds;
aoqi@0 1813 }
aoqi@0 1814
aoqi@0 1815 //------------------------------meet-------------------------------------------
aoqi@0 1816 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 1817 const Type *TypeTuple::xmeet( const Type *t ) const {
aoqi@0 1818 // Perform a fast test for common case; meeting the same types together.
aoqi@0 1819 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 1820
aoqi@0 1821 // Current "this->_base" is Tuple
aoqi@0 1822 switch (t->base()) { // switch on original type
aoqi@0 1823
aoqi@0 1824 case Bottom: // Ye Olde Default
aoqi@0 1825 return t;
aoqi@0 1826
aoqi@0 1827 default: // All else is a mistake
aoqi@0 1828 typerr(t);
aoqi@0 1829
aoqi@0 1830 case Tuple: { // Meeting 2 signatures?
aoqi@0 1831 const TypeTuple *x = t->is_tuple();
aoqi@0 1832 assert( _cnt == x->_cnt, "" );
aoqi@0 1833 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
aoqi@0 1834 for( uint i=0; i<_cnt; i++ )
aoqi@0 1835 fields[i] = field_at(i)->xmeet( x->field_at(i) );
aoqi@0 1836 return TypeTuple::make(_cnt,fields);
aoqi@0 1837 }
aoqi@0 1838 case Top:
aoqi@0 1839 break;
aoqi@0 1840 }
aoqi@0 1841 return this; // Return the double constant
aoqi@0 1842 }
aoqi@0 1843
aoqi@0 1844 //------------------------------xdual------------------------------------------
aoqi@0 1845 // Dual: compute field-by-field dual
aoqi@0 1846 const Type *TypeTuple::xdual() const {
aoqi@0 1847 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
aoqi@0 1848 for( uint i=0; i<_cnt; i++ )
aoqi@0 1849 fields[i] = _fields[i]->dual();
aoqi@0 1850 return new TypeTuple(_cnt,fields);
aoqi@0 1851 }
aoqi@0 1852
aoqi@0 1853 //------------------------------eq---------------------------------------------
aoqi@0 1854 // Structural equality check for Type representations
aoqi@0 1855 bool TypeTuple::eq( const Type *t ) const {
aoqi@0 1856 const TypeTuple *s = (const TypeTuple *)t;
aoqi@0 1857 if (_cnt != s->_cnt) return false; // Unequal field counts
aoqi@0 1858 for (uint i = 0; i < _cnt; i++)
aoqi@0 1859 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
aoqi@0 1860 return false; // Missed
aoqi@0 1861 return true;
aoqi@0 1862 }
aoqi@0 1863
aoqi@0 1864 //------------------------------hash-------------------------------------------
aoqi@0 1865 // Type-specific hashing function.
aoqi@0 1866 int TypeTuple::hash(void) const {
aoqi@0 1867 intptr_t sum = _cnt;
aoqi@0 1868 for( uint i=0; i<_cnt; i++ )
aoqi@0 1869 sum += (intptr_t)_fields[i]; // Hash on pointers directly
aoqi@0 1870 return sum;
aoqi@0 1871 }
aoqi@0 1872
aoqi@0 1873 //------------------------------dump2------------------------------------------
aoqi@0 1874 // Dump signature Type
aoqi@0 1875 #ifndef PRODUCT
aoqi@0 1876 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 1877 st->print("{");
aoqi@0 1878 if( !depth || d[this] ) { // Check for recursive print
aoqi@0 1879 st->print("...}");
aoqi@0 1880 return;
aoqi@0 1881 }
aoqi@0 1882 d.Insert((void*)this, (void*)this); // Stop recursion
aoqi@0 1883 if( _cnt ) {
aoqi@0 1884 uint i;
aoqi@0 1885 for( i=0; i<_cnt-1; i++ ) {
aoqi@0 1886 st->print("%d:", i);
aoqi@0 1887 _fields[i]->dump2(d, depth-1, st);
aoqi@0 1888 st->print(", ");
aoqi@0 1889 }
aoqi@0 1890 st->print("%d:", i);
aoqi@0 1891 _fields[i]->dump2(d, depth-1, st);
aoqi@0 1892 }
aoqi@0 1893 st->print("}");
aoqi@0 1894 }
aoqi@0 1895 #endif
aoqi@0 1896
aoqi@0 1897 //------------------------------singleton--------------------------------------
aoqi@0 1898 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 1899 // constants (Ldi nodes). Singletons are integer, float or double constants
aoqi@0 1900 // or a single symbol.
aoqi@0 1901 bool TypeTuple::singleton(void) const {
aoqi@0 1902 return false; // Never a singleton
aoqi@0 1903 }
aoqi@0 1904
aoqi@0 1905 bool TypeTuple::empty(void) const {
aoqi@0 1906 for( uint i=0; i<_cnt; i++ ) {
aoqi@0 1907 if (_fields[i]->empty()) return true;
aoqi@0 1908 }
aoqi@0 1909 return false;
aoqi@0 1910 }
aoqi@0 1911
aoqi@0 1912 //=============================================================================
aoqi@0 1913 // Convenience common pre-built types.
aoqi@0 1914
aoqi@0 1915 inline const TypeInt* normalize_array_size(const TypeInt* size) {
aoqi@0 1916 // Certain normalizations keep us sane when comparing types.
aoqi@0 1917 // We do not want arrayOop variables to differ only by the wideness
aoqi@0 1918 // of their index types. Pick minimum wideness, since that is the
aoqi@0 1919 // forced wideness of small ranges anyway.
aoqi@0 1920 if (size->_widen != Type::WidenMin)
aoqi@0 1921 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
aoqi@0 1922 else
aoqi@0 1923 return size;
aoqi@0 1924 }
aoqi@0 1925
aoqi@0 1926 //------------------------------make-------------------------------------------
aoqi@0 1927 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
aoqi@0 1928 if (UseCompressedOops && elem->isa_oopptr()) {
aoqi@0 1929 elem = elem->make_narrowoop();
aoqi@0 1930 }
aoqi@0 1931 size = normalize_array_size(size);
aoqi@0 1932 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
aoqi@0 1933 }
aoqi@0 1934
aoqi@0 1935 //------------------------------meet-------------------------------------------
aoqi@0 1936 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 1937 const Type *TypeAry::xmeet( const Type *t ) const {
aoqi@0 1938 // Perform a fast test for common case; meeting the same types together.
aoqi@0 1939 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 1940
aoqi@0 1941 // Current "this->_base" is Ary
aoqi@0 1942 switch (t->base()) { // switch on original type
aoqi@0 1943
aoqi@0 1944 case Bottom: // Ye Olde Default
aoqi@0 1945 return t;
aoqi@0 1946
aoqi@0 1947 default: // All else is a mistake
aoqi@0 1948 typerr(t);
aoqi@0 1949
aoqi@0 1950 case Array: { // Meeting 2 arrays?
aoqi@0 1951 const TypeAry *a = t->is_ary();
aoqi@0 1952 return TypeAry::make(_elem->meet_speculative(a->_elem),
aoqi@0 1953 _size->xmeet(a->_size)->is_int(),
aoqi@0 1954 _stable & a->_stable);
aoqi@0 1955 }
aoqi@0 1956 case Top:
aoqi@0 1957 break;
aoqi@0 1958 }
aoqi@0 1959 return this; // Return the double constant
aoqi@0 1960 }
aoqi@0 1961
aoqi@0 1962 //------------------------------xdual------------------------------------------
aoqi@0 1963 // Dual: compute field-by-field dual
aoqi@0 1964 const Type *TypeAry::xdual() const {
aoqi@0 1965 const TypeInt* size_dual = _size->dual()->is_int();
aoqi@0 1966 size_dual = normalize_array_size(size_dual);
aoqi@0 1967 return new TypeAry(_elem->dual(), size_dual, !_stable);
aoqi@0 1968 }
aoqi@0 1969
aoqi@0 1970 //------------------------------eq---------------------------------------------
aoqi@0 1971 // Structural equality check for Type representations
aoqi@0 1972 bool TypeAry::eq( const Type *t ) const {
aoqi@0 1973 const TypeAry *a = (const TypeAry*)t;
aoqi@0 1974 return _elem == a->_elem &&
aoqi@0 1975 _stable == a->_stable &&
aoqi@0 1976 _size == a->_size;
aoqi@0 1977 }
aoqi@0 1978
aoqi@0 1979 //------------------------------hash-------------------------------------------
aoqi@0 1980 // Type-specific hashing function.
aoqi@0 1981 int TypeAry::hash(void) const {
aoqi@0 1982 return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
aoqi@0 1983 }
aoqi@0 1984
aoqi@0 1985 /**
aoqi@0 1986 * Return same type without a speculative part in the element
aoqi@0 1987 */
aoqi@0 1988 const Type* TypeAry::remove_speculative() const {
aoqi@0 1989 return make(_elem->remove_speculative(), _size, _stable);
aoqi@0 1990 }
aoqi@0 1991
aoqi@0 1992 //----------------------interface_vs_oop---------------------------------------
aoqi@0 1993 #ifdef ASSERT
aoqi@0 1994 bool TypeAry::interface_vs_oop(const Type *t) const {
aoqi@0 1995 const TypeAry* t_ary = t->is_ary();
aoqi@0 1996 if (t_ary) {
shshahma@8422 1997 const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
shshahma@8422 1998 const TypePtr* t_ptr = t_ary->_elem->make_ptr();
shshahma@8422 1999 if(this_ptr != NULL && t_ptr != NULL) {
shshahma@8422 2000 return this_ptr->interface_vs_oop(t_ptr);
shshahma@8422 2001 }
aoqi@0 2002 }
aoqi@0 2003 return false;
aoqi@0 2004 }
aoqi@0 2005 #endif
aoqi@0 2006
aoqi@0 2007 //------------------------------dump2------------------------------------------
aoqi@0 2008 #ifndef PRODUCT
aoqi@0 2009 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 2010 if (_stable) st->print("stable:");
aoqi@0 2011 _elem->dump2(d, depth, st);
aoqi@0 2012 st->print("[");
aoqi@0 2013 _size->dump2(d, depth, st);
aoqi@0 2014 st->print("]");
aoqi@0 2015 }
aoqi@0 2016 #endif
aoqi@0 2017
aoqi@0 2018 //------------------------------singleton--------------------------------------
aoqi@0 2019 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 2020 // constants (Ldi nodes). Singletons are integer, float or double constants
aoqi@0 2021 // or a single symbol.
aoqi@0 2022 bool TypeAry::singleton(void) const {
aoqi@0 2023 return false; // Never a singleton
aoqi@0 2024 }
aoqi@0 2025
aoqi@0 2026 bool TypeAry::empty(void) const {
aoqi@0 2027 return _elem->empty() || _size->empty();
aoqi@0 2028 }
aoqi@0 2029
aoqi@0 2030 //--------------------------ary_must_be_exact----------------------------------
aoqi@0 2031 bool TypeAry::ary_must_be_exact() const {
aoqi@0 2032 if (!UseExactTypes) return false;
aoqi@0 2033 // This logic looks at the element type of an array, and returns true
aoqi@0 2034 // if the element type is either a primitive or a final instance class.
aoqi@0 2035 // In such cases, an array built on this ary must have no subclasses.
aoqi@0 2036 if (_elem == BOTTOM) return false; // general array not exact
aoqi@0 2037 if (_elem == TOP ) return false; // inverted general array not exact
aoqi@0 2038 const TypeOopPtr* toop = NULL;
aoqi@0 2039 if (UseCompressedOops && _elem->isa_narrowoop()) {
aoqi@0 2040 toop = _elem->make_ptr()->isa_oopptr();
aoqi@0 2041 } else {
aoqi@0 2042 toop = _elem->isa_oopptr();
aoqi@0 2043 }
aoqi@0 2044 if (!toop) return true; // a primitive type, like int
aoqi@0 2045 ciKlass* tklass = toop->klass();
aoqi@0 2046 if (tklass == NULL) return false; // unloaded class
aoqi@0 2047 if (!tklass->is_loaded()) return false; // unloaded class
aoqi@0 2048 const TypeInstPtr* tinst;
aoqi@0 2049 if (_elem->isa_narrowoop())
aoqi@0 2050 tinst = _elem->make_ptr()->isa_instptr();
aoqi@0 2051 else
aoqi@0 2052 tinst = _elem->isa_instptr();
aoqi@0 2053 if (tinst)
aoqi@0 2054 return tklass->as_instance_klass()->is_final();
aoqi@0 2055 const TypeAryPtr* tap;
aoqi@0 2056 if (_elem->isa_narrowoop())
aoqi@0 2057 tap = _elem->make_ptr()->isa_aryptr();
aoqi@0 2058 else
aoqi@0 2059 tap = _elem->isa_aryptr();
aoqi@0 2060 if (tap)
aoqi@0 2061 return tap->ary()->ary_must_be_exact();
aoqi@0 2062 return false;
aoqi@0 2063 }
aoqi@0 2064
aoqi@0 2065 //==============================TypeVect=======================================
aoqi@0 2066 // Convenience common pre-built types.
aoqi@0 2067 const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors
aoqi@0 2068 const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors
aoqi@0 2069 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
aoqi@0 2070 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
aoqi@0 2071
aoqi@0 2072 //------------------------------make-------------------------------------------
aoqi@0 2073 const TypeVect* TypeVect::make(const Type *elem, uint length) {
aoqi@0 2074 BasicType elem_bt = elem->array_element_basic_type();
aoqi@0 2075 assert(is_java_primitive(elem_bt), "only primitive types in vector");
aoqi@0 2076 assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
aoqi@0 2077 assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
aoqi@0 2078 int size = length * type2aelembytes(elem_bt);
aoqi@0 2079 switch (Matcher::vector_ideal_reg(size)) {
aoqi@0 2080 case Op_VecS:
aoqi@0 2081 return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
aoqi@0 2082 case Op_RegL:
aoqi@0 2083 case Op_VecD:
aoqi@0 2084 case Op_RegD:
aoqi@0 2085 return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
aoqi@0 2086 case Op_VecX:
aoqi@0 2087 return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
aoqi@0 2088 case Op_VecY:
aoqi@0 2089 return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
aoqi@0 2090 }
aoqi@0 2091 ShouldNotReachHere();
aoqi@0 2092 return NULL;
aoqi@0 2093 }
aoqi@0 2094
aoqi@0 2095 //------------------------------meet-------------------------------------------
aoqi@0 2096 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 2097 const Type *TypeVect::xmeet( const Type *t ) const {
aoqi@0 2098 // Perform a fast test for common case; meeting the same types together.
aoqi@0 2099 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 2100
aoqi@0 2101 // Current "this->_base" is Vector
aoqi@0 2102 switch (t->base()) { // switch on original type
aoqi@0 2103
aoqi@0 2104 case Bottom: // Ye Olde Default
aoqi@0 2105 return t;
aoqi@0 2106
aoqi@0 2107 default: // All else is a mistake
aoqi@0 2108 typerr(t);
aoqi@0 2109
aoqi@0 2110 case VectorS:
aoqi@0 2111 case VectorD:
aoqi@0 2112 case VectorX:
aoqi@0 2113 case VectorY: { // Meeting 2 vectors?
aoqi@0 2114 const TypeVect* v = t->is_vect();
aoqi@0 2115 assert( base() == v->base(), "");
aoqi@0 2116 assert(length() == v->length(), "");
aoqi@0 2117 assert(element_basic_type() == v->element_basic_type(), "");
aoqi@0 2118 return TypeVect::make(_elem->xmeet(v->_elem), _length);
aoqi@0 2119 }
aoqi@0 2120 case Top:
aoqi@0 2121 break;
aoqi@0 2122 }
aoqi@0 2123 return this;
aoqi@0 2124 }
aoqi@0 2125
aoqi@0 2126 //------------------------------xdual------------------------------------------
aoqi@0 2127 // Dual: compute field-by-field dual
aoqi@0 2128 const Type *TypeVect::xdual() const {
aoqi@0 2129 return new TypeVect(base(), _elem->dual(), _length);
aoqi@0 2130 }
aoqi@0 2131
aoqi@0 2132 //------------------------------eq---------------------------------------------
aoqi@0 2133 // Structural equality check for Type representations
aoqi@0 2134 bool TypeVect::eq(const Type *t) const {
aoqi@0 2135 const TypeVect *v = t->is_vect();
aoqi@0 2136 return (_elem == v->_elem) && (_length == v->_length);
aoqi@0 2137 }
aoqi@0 2138
aoqi@0 2139 //------------------------------hash-------------------------------------------
aoqi@0 2140 // Type-specific hashing function.
aoqi@0 2141 int TypeVect::hash(void) const {
aoqi@0 2142 return (intptr_t)_elem + (intptr_t)_length;
aoqi@0 2143 }
aoqi@0 2144
aoqi@0 2145 //------------------------------singleton--------------------------------------
aoqi@0 2146 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 2147 // constants (Ldi nodes). Vector is singleton if all elements are the same
aoqi@0 2148 // constant value (when vector is created with Replicate code).
aoqi@0 2149 bool TypeVect::singleton(void) const {
aoqi@0 2150 // There is no Con node for vectors yet.
aoqi@0 2151 // return _elem->singleton();
aoqi@0 2152 return false;
aoqi@0 2153 }
aoqi@0 2154
aoqi@0 2155 bool TypeVect::empty(void) const {
aoqi@0 2156 return _elem->empty();
aoqi@0 2157 }
aoqi@0 2158
aoqi@0 2159 //------------------------------dump2------------------------------------------
aoqi@0 2160 #ifndef PRODUCT
aoqi@0 2161 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
aoqi@0 2162 switch (base()) {
aoqi@0 2163 case VectorS:
aoqi@0 2164 st->print("vectors["); break;
aoqi@0 2165 case VectorD:
aoqi@0 2166 st->print("vectord["); break;
aoqi@0 2167 case VectorX:
aoqi@0 2168 st->print("vectorx["); break;
aoqi@0 2169 case VectorY:
aoqi@0 2170 st->print("vectory["); break;
aoqi@0 2171 default:
aoqi@0 2172 ShouldNotReachHere();
aoqi@0 2173 }
aoqi@0 2174 st->print("%d]:{", _length);
aoqi@0 2175 _elem->dump2(d, depth, st);
aoqi@0 2176 st->print("}");
aoqi@0 2177 }
aoqi@0 2178 #endif
aoqi@0 2179
aoqi@0 2180
aoqi@0 2181 //=============================================================================
aoqi@0 2182 // Convenience common pre-built types.
aoqi@0 2183 const TypePtr *TypePtr::NULL_PTR;
aoqi@0 2184 const TypePtr *TypePtr::NOTNULL;
aoqi@0 2185 const TypePtr *TypePtr::BOTTOM;
aoqi@0 2186
aoqi@0 2187 //------------------------------meet-------------------------------------------
aoqi@0 2188 // Meet over the PTR enum
aoqi@0 2189 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
aoqi@0 2190 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
aoqi@0 2191 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
aoqi@0 2192 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
aoqi@0 2193 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
aoqi@0 2194 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
aoqi@0 2195 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
aoqi@0 2196 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
aoqi@0 2197 };
aoqi@0 2198
aoqi@0 2199 //------------------------------make-------------------------------------------
aoqi@0 2200 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
aoqi@0 2201 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
aoqi@0 2202 }
aoqi@0 2203
aoqi@0 2204 //------------------------------cast_to_ptr_type-------------------------------
aoqi@0 2205 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
aoqi@0 2206 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
aoqi@0 2207 if( ptr == _ptr ) return this;
aoqi@0 2208 return make(_base, ptr, _offset);
aoqi@0 2209 }
aoqi@0 2210
aoqi@0 2211 //------------------------------get_con----------------------------------------
aoqi@0 2212 intptr_t TypePtr::get_con() const {
aoqi@0 2213 assert( _ptr == Null, "" );
aoqi@0 2214 return _offset;
aoqi@0 2215 }
aoqi@0 2216
aoqi@0 2217 //------------------------------meet-------------------------------------------
aoqi@0 2218 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 2219 const Type *TypePtr::xmeet( const Type *t ) const {
aoqi@0 2220 // Perform a fast test for common case; meeting the same types together.
aoqi@0 2221 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 2222
aoqi@0 2223 // Current "this->_base" is AnyPtr
aoqi@0 2224 switch (t->base()) { // switch on original type
aoqi@0 2225 case Int: // Mixing ints & oops happens when javac
aoqi@0 2226 case Long: // reuses local variables
aoqi@0 2227 case FloatTop:
aoqi@0 2228 case FloatCon:
aoqi@0 2229 case FloatBot:
aoqi@0 2230 case DoubleTop:
aoqi@0 2231 case DoubleCon:
aoqi@0 2232 case DoubleBot:
aoqi@0 2233 case NarrowOop:
aoqi@0 2234 case NarrowKlass:
aoqi@0 2235 case Bottom: // Ye Olde Default
aoqi@0 2236 return Type::BOTTOM;
aoqi@0 2237 case Top:
aoqi@0 2238 return this;
aoqi@0 2239
aoqi@0 2240 case AnyPtr: { // Meeting to AnyPtrs
aoqi@0 2241 const TypePtr *tp = t->is_ptr();
aoqi@0 2242 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
aoqi@0 2243 }
aoqi@0 2244 case RawPtr: // For these, flip the call around to cut down
aoqi@0 2245 case OopPtr:
aoqi@0 2246 case InstPtr: // on the cases I have to handle.
aoqi@0 2247 case AryPtr:
aoqi@0 2248 case MetadataPtr:
aoqi@0 2249 case KlassPtr:
aoqi@0 2250 return t->xmeet(this); // Call in reverse direction
aoqi@0 2251 default: // All else is a mistake
aoqi@0 2252 typerr(t);
aoqi@0 2253
aoqi@0 2254 }
aoqi@0 2255 return this;
aoqi@0 2256 }
aoqi@0 2257
aoqi@0 2258 //------------------------------meet_offset------------------------------------
aoqi@0 2259 int TypePtr::meet_offset( int offset ) const {
aoqi@0 2260 // Either is 'TOP' offset? Return the other offset!
aoqi@0 2261 if( _offset == OffsetTop ) return offset;
aoqi@0 2262 if( offset == OffsetTop ) return _offset;
aoqi@0 2263 // If either is different, return 'BOTTOM' offset
aoqi@0 2264 if( _offset != offset ) return OffsetBot;
aoqi@0 2265 return _offset;
aoqi@0 2266 }
aoqi@0 2267
aoqi@0 2268 //------------------------------dual_offset------------------------------------
aoqi@0 2269 int TypePtr::dual_offset( ) const {
aoqi@0 2270 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
aoqi@0 2271 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
aoqi@0 2272 return _offset; // Map everything else into self
aoqi@0 2273 }
aoqi@0 2274
aoqi@0 2275 //------------------------------xdual------------------------------------------
aoqi@0 2276 // Dual: compute field-by-field dual
aoqi@0 2277 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
aoqi@0 2278 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
aoqi@0 2279 };
aoqi@0 2280 const Type *TypePtr::xdual() const {
aoqi@0 2281 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
aoqi@0 2282 }
aoqi@0 2283
aoqi@0 2284 //------------------------------xadd_offset------------------------------------
aoqi@0 2285 int TypePtr::xadd_offset( intptr_t offset ) const {
aoqi@0 2286 // Adding to 'TOP' offset? Return 'TOP'!
aoqi@0 2287 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
aoqi@0 2288 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
aoqi@0 2289 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
aoqi@0 2290 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
aoqi@0 2291 offset += (intptr_t)_offset;
aoqi@0 2292 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
aoqi@0 2293
aoqi@0 2294 // assert( _offset >= 0 && _offset+offset >= 0, "" );
aoqi@0 2295 // It is possible to construct a negative offset during PhaseCCP
aoqi@0 2296
aoqi@0 2297 return (int)offset; // Sum valid offsets
aoqi@0 2298 }
aoqi@0 2299
aoqi@0 2300 //------------------------------add_offset-------------------------------------
aoqi@0 2301 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
aoqi@0 2302 return make( AnyPtr, _ptr, xadd_offset(offset) );
aoqi@0 2303 }
aoqi@0 2304
aoqi@0 2305 //------------------------------eq---------------------------------------------
aoqi@0 2306 // Structural equality check for Type representations
aoqi@0 2307 bool TypePtr::eq( const Type *t ) const {
aoqi@0 2308 const TypePtr *a = (const TypePtr*)t;
aoqi@0 2309 return _ptr == a->ptr() && _offset == a->offset();
aoqi@0 2310 }
aoqi@0 2311
aoqi@0 2312 //------------------------------hash-------------------------------------------
aoqi@0 2313 // Type-specific hashing function.
aoqi@0 2314 int TypePtr::hash(void) const {
aoqi@0 2315 return _ptr + _offset;
aoqi@0 2316 }
aoqi@0 2317
aoqi@0 2318 //------------------------------dump2------------------------------------------
aoqi@0 2319 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
aoqi@0 2320 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
aoqi@0 2321 };
aoqi@0 2322
aoqi@0 2323 #ifndef PRODUCT
aoqi@0 2324 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 2325 if( _ptr == Null ) st->print("NULL");
aoqi@0 2326 else st->print("%s *", ptr_msg[_ptr]);
aoqi@0 2327 if( _offset == OffsetTop ) st->print("+top");
aoqi@0 2328 else if( _offset == OffsetBot ) st->print("+bot");
aoqi@0 2329 else if( _offset ) st->print("+%d", _offset);
aoqi@0 2330 }
aoqi@0 2331 #endif
aoqi@0 2332
aoqi@0 2333 //------------------------------singleton--------------------------------------
aoqi@0 2334 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 2335 // constants
aoqi@0 2336 bool TypePtr::singleton(void) const {
aoqi@0 2337 // TopPTR, Null, AnyNull, Constant are all singletons
aoqi@0 2338 return (_offset != OffsetBot) && !below_centerline(_ptr);
aoqi@0 2339 }
aoqi@0 2340
aoqi@0 2341 bool TypePtr::empty(void) const {
aoqi@0 2342 return (_offset == OffsetTop) || above_centerline(_ptr);
aoqi@0 2343 }
aoqi@0 2344
aoqi@0 2345 //=============================================================================
aoqi@0 2346 // Convenience common pre-built types.
aoqi@0 2347 const TypeRawPtr *TypeRawPtr::BOTTOM;
aoqi@0 2348 const TypeRawPtr *TypeRawPtr::NOTNULL;
aoqi@0 2349
aoqi@0 2350 //------------------------------make-------------------------------------------
aoqi@0 2351 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
aoqi@0 2352 assert( ptr != Constant, "what is the constant?" );
aoqi@0 2353 assert( ptr != Null, "Use TypePtr for NULL" );
aoqi@0 2354 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
aoqi@0 2355 }
aoqi@0 2356
aoqi@0 2357 const TypeRawPtr *TypeRawPtr::make( address bits ) {
aoqi@0 2358 assert( bits, "Use TypePtr for NULL" );
aoqi@0 2359 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
aoqi@0 2360 }
aoqi@0 2361
aoqi@0 2362 //------------------------------cast_to_ptr_type-------------------------------
aoqi@0 2363 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
aoqi@0 2364 assert( ptr != Constant, "what is the constant?" );
aoqi@0 2365 assert( ptr != Null, "Use TypePtr for NULL" );
aoqi@0 2366 assert( _bits==0, "Why cast a constant address?");
aoqi@0 2367 if( ptr == _ptr ) return this;
aoqi@0 2368 return make(ptr);
aoqi@0 2369 }
aoqi@0 2370
aoqi@0 2371 //------------------------------get_con----------------------------------------
aoqi@0 2372 intptr_t TypeRawPtr::get_con() const {
aoqi@0 2373 assert( _ptr == Null || _ptr == Constant, "" );
aoqi@0 2374 return (intptr_t)_bits;
aoqi@0 2375 }
aoqi@0 2376
aoqi@0 2377 //------------------------------meet-------------------------------------------
aoqi@0 2378 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 2379 const Type *TypeRawPtr::xmeet( const Type *t ) const {
aoqi@0 2380 // Perform a fast test for common case; meeting the same types together.
aoqi@0 2381 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 2382
aoqi@0 2383 // Current "this->_base" is RawPtr
aoqi@0 2384 switch( t->base() ) { // switch on original type
aoqi@0 2385 case Bottom: // Ye Olde Default
aoqi@0 2386 return t;
aoqi@0 2387 case Top:
aoqi@0 2388 return this;
aoqi@0 2389 case AnyPtr: // Meeting to AnyPtrs
aoqi@0 2390 break;
aoqi@0 2391 case RawPtr: { // might be top, bot, any/not or constant
aoqi@0 2392 enum PTR tptr = t->is_ptr()->ptr();
aoqi@0 2393 enum PTR ptr = meet_ptr( tptr );
aoqi@0 2394 if( ptr == Constant ) { // Cannot be equal constants, so...
aoqi@0 2395 if( tptr == Constant && _ptr != Constant) return t;
aoqi@0 2396 if( _ptr == Constant && tptr != Constant) return this;
aoqi@0 2397 ptr = NotNull; // Fall down in lattice
aoqi@0 2398 }
aoqi@0 2399 return make( ptr );
aoqi@0 2400 }
aoqi@0 2401
aoqi@0 2402 case OopPtr:
aoqi@0 2403 case InstPtr:
aoqi@0 2404 case AryPtr:
aoqi@0 2405 case MetadataPtr:
aoqi@0 2406 case KlassPtr:
aoqi@0 2407 return TypePtr::BOTTOM; // Oop meet raw is not well defined
aoqi@0 2408 default: // All else is a mistake
aoqi@0 2409 typerr(t);
aoqi@0 2410 }
aoqi@0 2411
aoqi@0 2412 // Found an AnyPtr type vs self-RawPtr type
aoqi@0 2413 const TypePtr *tp = t->is_ptr();
aoqi@0 2414 switch (tp->ptr()) {
aoqi@0 2415 case TypePtr::TopPTR: return this;
aoqi@0 2416 case TypePtr::BotPTR: return t;
aoqi@0 2417 case TypePtr::Null:
aoqi@0 2418 if( _ptr == TypePtr::TopPTR ) return t;
aoqi@0 2419 return TypeRawPtr::BOTTOM;
aoqi@0 2420 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
aoqi@0 2421 case TypePtr::AnyNull:
aoqi@0 2422 if( _ptr == TypePtr::Constant) return this;
aoqi@0 2423 return make( meet_ptr(TypePtr::AnyNull) );
aoqi@0 2424 default: ShouldNotReachHere();
aoqi@0 2425 }
aoqi@0 2426 return this;
aoqi@0 2427 }
aoqi@0 2428
aoqi@0 2429 //------------------------------xdual------------------------------------------
aoqi@0 2430 // Dual: compute field-by-field dual
aoqi@0 2431 const Type *TypeRawPtr::xdual() const {
aoqi@0 2432 return new TypeRawPtr( dual_ptr(), _bits );
aoqi@0 2433 }
aoqi@0 2434
aoqi@0 2435 //------------------------------add_offset-------------------------------------
aoqi@0 2436 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
aoqi@0 2437 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
aoqi@0 2438 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
aoqi@0 2439 if( offset == 0 ) return this; // No change
aoqi@0 2440 switch (_ptr) {
aoqi@0 2441 case TypePtr::TopPTR:
aoqi@0 2442 case TypePtr::BotPTR:
aoqi@0 2443 case TypePtr::NotNull:
aoqi@0 2444 return this;
aoqi@0 2445 case TypePtr::Null:
aoqi@0 2446 case TypePtr::Constant: {
aoqi@0 2447 address bits = _bits+offset;
aoqi@0 2448 if ( bits == 0 ) return TypePtr::NULL_PTR;
aoqi@0 2449 return make( bits );
aoqi@0 2450 }
aoqi@0 2451 default: ShouldNotReachHere();
aoqi@0 2452 }
aoqi@0 2453 return NULL; // Lint noise
aoqi@0 2454 }
aoqi@0 2455
aoqi@0 2456 //------------------------------eq---------------------------------------------
aoqi@0 2457 // Structural equality check for Type representations
aoqi@0 2458 bool TypeRawPtr::eq( const Type *t ) const {
aoqi@0 2459 const TypeRawPtr *a = (const TypeRawPtr*)t;
aoqi@0 2460 return _bits == a->_bits && TypePtr::eq(t);
aoqi@0 2461 }
aoqi@0 2462
aoqi@0 2463 //------------------------------hash-------------------------------------------
aoqi@0 2464 // Type-specific hashing function.
aoqi@0 2465 int TypeRawPtr::hash(void) const {
aoqi@0 2466 return (intptr_t)_bits + TypePtr::hash();
aoqi@0 2467 }
aoqi@0 2468
aoqi@0 2469 //------------------------------dump2------------------------------------------
aoqi@0 2470 #ifndef PRODUCT
aoqi@0 2471 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 2472 if( _ptr == Constant )
aoqi@0 2473 st->print(INTPTR_FORMAT, _bits);
aoqi@0 2474 else
aoqi@0 2475 st->print("rawptr:%s", ptr_msg[_ptr]);
aoqi@0 2476 }
aoqi@0 2477 #endif
aoqi@0 2478
aoqi@0 2479 //=============================================================================
aoqi@0 2480 // Convenience common pre-built type.
aoqi@0 2481 const TypeOopPtr *TypeOopPtr::BOTTOM;
aoqi@0 2482
aoqi@0 2483 //------------------------------TypeOopPtr-------------------------------------
aoqi@0 2484 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth)
aoqi@0 2485 : TypePtr(t, ptr, offset),
aoqi@0 2486 _const_oop(o), _klass(k),
aoqi@0 2487 _klass_is_exact(xk),
aoqi@0 2488 _is_ptr_to_narrowoop(false),
aoqi@0 2489 _is_ptr_to_narrowklass(false),
aoqi@0 2490 _is_ptr_to_boxed_value(false),
aoqi@0 2491 _instance_id(instance_id),
aoqi@0 2492 _speculative(speculative),
aoqi@0 2493 _inline_depth(inline_depth){
aoqi@0 2494 if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
aoqi@0 2495 (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
aoqi@0 2496 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
aoqi@0 2497 }
aoqi@0 2498 #ifdef _LP64
aoqi@0 2499 if (_offset != 0) {
aoqi@0 2500 if (_offset == oopDesc::klass_offset_in_bytes()) {
aoqi@0 2501 _is_ptr_to_narrowklass = UseCompressedClassPointers;
aoqi@0 2502 } else if (klass() == NULL) {
aoqi@0 2503 // Array with unknown body type
aoqi@0 2504 assert(this->isa_aryptr(), "only arrays without klass");
aoqi@0 2505 _is_ptr_to_narrowoop = UseCompressedOops;
aoqi@0 2506 } else if (this->isa_aryptr()) {
aoqi@0 2507 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
aoqi@0 2508 _offset != arrayOopDesc::length_offset_in_bytes());
aoqi@0 2509 } else if (klass()->is_instance_klass()) {
aoqi@0 2510 ciInstanceKlass* ik = klass()->as_instance_klass();
aoqi@0 2511 ciField* field = NULL;
aoqi@0 2512 if (this->isa_klassptr()) {
aoqi@0 2513 // Perm objects don't use compressed references
aoqi@0 2514 } else if (_offset == OffsetBot || _offset == OffsetTop) {
aoqi@0 2515 // unsafe access
aoqi@0 2516 _is_ptr_to_narrowoop = UseCompressedOops;
aoqi@0 2517 } else { // exclude unsafe ops
aoqi@0 2518 assert(this->isa_instptr(), "must be an instance ptr.");
aoqi@0 2519
aoqi@0 2520 if (klass() == ciEnv::current()->Class_klass() &&
aoqi@0 2521 (_offset == java_lang_Class::klass_offset_in_bytes() ||
aoqi@0 2522 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
aoqi@0 2523 // Special hidden fields from the Class.
aoqi@0 2524 assert(this->isa_instptr(), "must be an instance ptr.");
aoqi@0 2525 _is_ptr_to_narrowoop = false;
aoqi@0 2526 } else if (klass() == ciEnv::current()->Class_klass() &&
aoqi@0 2527 _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
aoqi@0 2528 // Static fields
aoqi@0 2529 assert(o != NULL, "must be constant");
aoqi@0 2530 ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
aoqi@0 2531 ciField* field = k->get_field_by_offset(_offset, true);
aoqi@0 2532 assert(field != NULL, "missing field");
aoqi@0 2533 BasicType basic_elem_type = field->layout_type();
aoqi@0 2534 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
aoqi@0 2535 basic_elem_type == T_ARRAY);
aoqi@0 2536 } else {
aoqi@0 2537 // Instance fields which contains a compressed oop references.
aoqi@0 2538 field = ik->get_field_by_offset(_offset, false);
aoqi@0 2539 if (field != NULL) {
aoqi@0 2540 BasicType basic_elem_type = field->layout_type();
aoqi@0 2541 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
aoqi@0 2542 basic_elem_type == T_ARRAY);
aoqi@0 2543 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
aoqi@0 2544 // Compile::find_alias_type() cast exactness on all types to verify
aoqi@0 2545 // that it does not affect alias type.
aoqi@0 2546 _is_ptr_to_narrowoop = UseCompressedOops;
aoqi@0 2547 } else {
aoqi@0 2548 // Type for the copy start in LibraryCallKit::inline_native_clone().
aoqi@0 2549 _is_ptr_to_narrowoop = UseCompressedOops;
aoqi@0 2550 }
aoqi@0 2551 }
aoqi@0 2552 }
aoqi@0 2553 }
aoqi@0 2554 }
aoqi@0 2555 #endif
aoqi@0 2556 }
aoqi@0 2557
aoqi@0 2558 //------------------------------make-------------------------------------------
aoqi@0 2559 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
aoqi@0 2560 int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
aoqi@0 2561 assert(ptr != Constant, "no constant generic pointers");
aoqi@0 2562 ciKlass* k = Compile::current()->env()->Object_klass();
aoqi@0 2563 bool xk = false;
aoqi@0 2564 ciObject* o = NULL;
aoqi@0 2565 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
aoqi@0 2566 }
aoqi@0 2567
aoqi@0 2568
aoqi@0 2569 //------------------------------cast_to_ptr_type-------------------------------
aoqi@0 2570 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
aoqi@0 2571 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
aoqi@0 2572 if( ptr == _ptr ) return this;
aoqi@0 2573 return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
aoqi@0 2574 }
aoqi@0 2575
aoqi@0 2576 //-----------------------------cast_to_instance_id----------------------------
aoqi@0 2577 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
aoqi@0 2578 // There are no instances of a general oop.
aoqi@0 2579 // Return self unchanged.
aoqi@0 2580 return this;
aoqi@0 2581 }
aoqi@0 2582
aoqi@0 2583 //-----------------------------cast_to_exactness-------------------------------
aoqi@0 2584 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
aoqi@0 2585 // There is no such thing as an exact general oop.
aoqi@0 2586 // Return self unchanged.
aoqi@0 2587 return this;
aoqi@0 2588 }
aoqi@0 2589
aoqi@0 2590
aoqi@0 2591 //------------------------------as_klass_type----------------------------------
aoqi@0 2592 // Return the klass type corresponding to this instance or array type.
aoqi@0 2593 // It is the type that is loaded from an object of this type.
aoqi@0 2594 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
aoqi@0 2595 ciKlass* k = klass();
aoqi@0 2596 bool xk = klass_is_exact();
aoqi@0 2597 if (k == NULL)
aoqi@0 2598 return TypeKlassPtr::OBJECT;
aoqi@0 2599 else
aoqi@0 2600 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
aoqi@0 2601 }
aoqi@0 2602
aoqi@0 2603 const Type *TypeOopPtr::xmeet(const Type *t) const {
aoqi@0 2604 const Type* res = xmeet_helper(t);
aoqi@0 2605 if (res->isa_oopptr() == NULL) {
aoqi@0 2606 return res;
aoqi@0 2607 }
aoqi@0 2608
aoqi@0 2609 const TypeOopPtr* res_oopptr = res->is_oopptr();
aoqi@0 2610 if (res_oopptr->speculative() != NULL) {
aoqi@0 2611 // type->speculative() == NULL means that speculation is no better
aoqi@0 2612 // than type, i.e. type->speculative() == type. So there are 2
aoqi@0 2613 // ways to represent the fact that we have no useful speculative
aoqi@0 2614 // data and we should use a single one to be able to test for
aoqi@0 2615 // equality between types. Check whether type->speculative() ==
aoqi@0 2616 // type and set speculative to NULL if it is the case.
aoqi@0 2617 if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
aoqi@0 2618 return res_oopptr->remove_speculative();
aoqi@0 2619 }
aoqi@0 2620 }
aoqi@0 2621
aoqi@0 2622 return res;
aoqi@0 2623 }
aoqi@0 2624
aoqi@0 2625 //------------------------------meet-------------------------------------------
aoqi@0 2626 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 2627 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
aoqi@0 2628 // Perform a fast test for common case; meeting the same types together.
aoqi@0 2629 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 2630
aoqi@0 2631 // Current "this->_base" is OopPtr
aoqi@0 2632 switch (t->base()) { // switch on original type
aoqi@0 2633
aoqi@0 2634 case Int: // Mixing ints & oops happens when javac
aoqi@0 2635 case Long: // reuses local variables
aoqi@0 2636 case FloatTop:
aoqi@0 2637 case FloatCon:
aoqi@0 2638 case FloatBot:
aoqi@0 2639 case DoubleTop:
aoqi@0 2640 case DoubleCon:
aoqi@0 2641 case DoubleBot:
aoqi@0 2642 case NarrowOop:
aoqi@0 2643 case NarrowKlass:
aoqi@0 2644 case Bottom: // Ye Olde Default
aoqi@0 2645 return Type::BOTTOM;
aoqi@0 2646 case Top:
aoqi@0 2647 return this;
aoqi@0 2648
aoqi@0 2649 default: // All else is a mistake
aoqi@0 2650 typerr(t);
aoqi@0 2651
aoqi@0 2652 case RawPtr:
aoqi@0 2653 case MetadataPtr:
aoqi@0 2654 case KlassPtr:
aoqi@0 2655 return TypePtr::BOTTOM; // Oop meet raw is not well defined
aoqi@0 2656
aoqi@0 2657 case AnyPtr: {
aoqi@0 2658 // Found an AnyPtr type vs self-OopPtr type
aoqi@0 2659 const TypePtr *tp = t->is_ptr();
aoqi@0 2660 int offset = meet_offset(tp->offset());
aoqi@0 2661 PTR ptr = meet_ptr(tp->ptr());
aoqi@0 2662 switch (tp->ptr()) {
aoqi@0 2663 case Null:
aoqi@0 2664 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
aoqi@0 2665 // else fall through:
aoqi@0 2666 case TopPTR:
aoqi@0 2667 case AnyNull: {
aoqi@0 2668 int instance_id = meet_instance_id(InstanceTop);
aoqi@0 2669 const TypeOopPtr* speculative = _speculative;
aoqi@0 2670 return make(ptr, offset, instance_id, speculative, _inline_depth);
aoqi@0 2671 }
aoqi@0 2672 case BotPTR:
aoqi@0 2673 case NotNull:
aoqi@0 2674 return TypePtr::make(AnyPtr, ptr, offset);
aoqi@0 2675 default: typerr(t);
aoqi@0 2676 }
aoqi@0 2677 }
aoqi@0 2678
aoqi@0 2679 case OopPtr: { // Meeting to other OopPtrs
aoqi@0 2680 const TypeOopPtr *tp = t->is_oopptr();
aoqi@0 2681 int instance_id = meet_instance_id(tp->instance_id());
aoqi@0 2682 const TypeOopPtr* speculative = xmeet_speculative(tp);
aoqi@0 2683 int depth = meet_inline_depth(tp->inline_depth());
aoqi@0 2684 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
aoqi@0 2685 }
aoqi@0 2686
aoqi@0 2687 case InstPtr: // For these, flip the call around to cut down
aoqi@0 2688 case AryPtr:
aoqi@0 2689 return t->xmeet(this); // Call in reverse direction
aoqi@0 2690
aoqi@0 2691 } // End of switch
aoqi@0 2692 return this; // Return the double constant
aoqi@0 2693 }
aoqi@0 2694
aoqi@0 2695
aoqi@0 2696 //------------------------------xdual------------------------------------------
aoqi@0 2697 // Dual of a pure heap pointer. No relevant klass or oop information.
aoqi@0 2698 const Type *TypeOopPtr::xdual() const {
aoqi@0 2699 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
aoqi@0 2700 assert(const_oop() == NULL, "no constants here");
aoqi@0 2701 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
aoqi@0 2702 }
aoqi@0 2703
aoqi@0 2704 //--------------------------make_from_klass_common-----------------------------
aoqi@0 2705 // Computes the element-type given a klass.
aoqi@0 2706 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
aoqi@0 2707 if (klass->is_instance_klass()) {
aoqi@0 2708 Compile* C = Compile::current();
aoqi@0 2709 Dependencies* deps = C->dependencies();
aoqi@0 2710 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
aoqi@0 2711 // Element is an instance
aoqi@0 2712 bool klass_is_exact = false;
aoqi@0 2713 if (klass->is_loaded()) {
aoqi@0 2714 // Try to set klass_is_exact.
aoqi@0 2715 ciInstanceKlass* ik = klass->as_instance_klass();
aoqi@0 2716 klass_is_exact = ik->is_final();
aoqi@0 2717 if (!klass_is_exact && klass_change
aoqi@0 2718 && deps != NULL && UseUniqueSubclasses) {
aoqi@0 2719 ciInstanceKlass* sub = ik->unique_concrete_subklass();
aoqi@0 2720 if (sub != NULL) {
aoqi@0 2721 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
aoqi@0 2722 klass = ik = sub;
aoqi@0 2723 klass_is_exact = sub->is_final();
aoqi@0 2724 }
aoqi@0 2725 }
aoqi@0 2726 if (!klass_is_exact && try_for_exact
aoqi@0 2727 && deps != NULL && UseExactTypes) {
aoqi@0 2728 if (!ik->is_interface() && !ik->has_subklass()) {
aoqi@0 2729 // Add a dependence; if concrete subclass added we need to recompile
aoqi@0 2730 deps->assert_leaf_type(ik);
aoqi@0 2731 klass_is_exact = true;
aoqi@0 2732 }
aoqi@0 2733 }
aoqi@0 2734 }
aoqi@0 2735 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
aoqi@0 2736 } else if (klass->is_obj_array_klass()) {
aoqi@0 2737 // Element is an object array. Recursively call ourself.
aoqi@0 2738 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
aoqi@0 2739 bool xk = etype->klass_is_exact();
aoqi@0 2740 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
aoqi@0 2741 // We used to pass NotNull in here, asserting that the sub-arrays
aoqi@0 2742 // are all not-null. This is not true in generally, as code can
aoqi@0 2743 // slam NULLs down in the subarrays.
aoqi@0 2744 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
aoqi@0 2745 return arr;
aoqi@0 2746 } else if (klass->is_type_array_klass()) {
aoqi@0 2747 // Element is an typeArray
aoqi@0 2748 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
aoqi@0 2749 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
aoqi@0 2750 // We used to pass NotNull in here, asserting that the array pointer
aoqi@0 2751 // is not-null. That was not true in general.
aoqi@0 2752 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
aoqi@0 2753 return arr;
aoqi@0 2754 } else {
aoqi@0 2755 ShouldNotReachHere();
aoqi@0 2756 return NULL;
aoqi@0 2757 }
aoqi@0 2758 }
aoqi@0 2759
aoqi@0 2760 //------------------------------make_from_constant-----------------------------
aoqi@0 2761 // Make a java pointer from an oop constant
aoqi@0 2762 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
aoqi@0 2763 bool require_constant,
aoqi@0 2764 bool is_autobox_cache) {
aoqi@0 2765 assert(!o->is_null_object(), "null object not yet handled here.");
aoqi@0 2766 ciKlass* klass = o->klass();
aoqi@0 2767 if (klass->is_instance_klass()) {
aoqi@0 2768 // Element is an instance
aoqi@0 2769 if (require_constant) {
aoqi@0 2770 if (!o->can_be_constant()) return NULL;
aoqi@0 2771 } else if (!o->should_be_constant()) {
aoqi@0 2772 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
aoqi@0 2773 }
aoqi@0 2774 return TypeInstPtr::make(o);
aoqi@0 2775 } else if (klass->is_obj_array_klass()) {
aoqi@0 2776 // Element is an object array. Recursively call ourself.
aoqi@0 2777 const TypeOopPtr *etype =
aoqi@0 2778 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
aoqi@0 2779 if (is_autobox_cache) {
aoqi@0 2780 // The pointers in the autobox arrays are always non-null.
aoqi@0 2781 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
aoqi@0 2782 }
aoqi@0 2783 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
aoqi@0 2784 // We used to pass NotNull in here, asserting that the sub-arrays
aoqi@0 2785 // are all not-null. This is not true in generally, as code can
aoqi@0 2786 // slam NULLs down in the subarrays.
aoqi@0 2787 if (require_constant) {
aoqi@0 2788 if (!o->can_be_constant()) return NULL;
aoqi@0 2789 } else if (!o->should_be_constant()) {
aoqi@0 2790 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
aoqi@0 2791 }
aoqi@0 2792 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, InlineDepthBottom, is_autobox_cache);
aoqi@0 2793 return arr;
aoqi@0 2794 } else if (klass->is_type_array_klass()) {
aoqi@0 2795 // Element is an typeArray
aoqi@0 2796 const Type* etype =
aoqi@0 2797 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
aoqi@0 2798 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
aoqi@0 2799 // We used to pass NotNull in here, asserting that the array pointer
aoqi@0 2800 // is not-null. That was not true in general.
aoqi@0 2801 if (require_constant) {
aoqi@0 2802 if (!o->can_be_constant()) return NULL;
aoqi@0 2803 } else if (!o->should_be_constant()) {
aoqi@0 2804 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
aoqi@0 2805 }
aoqi@0 2806 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
aoqi@0 2807 return arr;
aoqi@0 2808 }
aoqi@0 2809
aoqi@0 2810 fatal("unhandled object type");
aoqi@0 2811 return NULL;
aoqi@0 2812 }
aoqi@0 2813
aoqi@0 2814 //------------------------------get_con----------------------------------------
aoqi@0 2815 intptr_t TypeOopPtr::get_con() const {
aoqi@0 2816 assert( _ptr == Null || _ptr == Constant, "" );
aoqi@0 2817 assert( _offset >= 0, "" );
aoqi@0 2818
aoqi@0 2819 if (_offset != 0) {
aoqi@0 2820 // After being ported to the compiler interface, the compiler no longer
aoqi@0 2821 // directly manipulates the addresses of oops. Rather, it only has a pointer
aoqi@0 2822 // to a handle at compile time. This handle is embedded in the generated
aoqi@0 2823 // code and dereferenced at the time the nmethod is made. Until that time,
aoqi@0 2824 // it is not reasonable to do arithmetic with the addresses of oops (we don't
aoqi@0 2825 // have access to the addresses!). This does not seem to currently happen,
aoqi@0 2826 // but this assertion here is to help prevent its occurence.
aoqi@0 2827 tty->print_cr("Found oop constant with non-zero offset");
aoqi@0 2828 ShouldNotReachHere();
aoqi@0 2829 }
aoqi@0 2830
aoqi@0 2831 return (intptr_t)const_oop()->constant_encoding();
aoqi@0 2832 }
aoqi@0 2833
aoqi@0 2834
aoqi@0 2835 //-----------------------------filter------------------------------------------
aoqi@0 2836 // Do not allow interface-vs.-noninterface joins to collapse to top.
aoqi@0 2837 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
aoqi@0 2838
aoqi@0 2839 const Type* ft = join_helper(kills, include_speculative);
aoqi@0 2840 const TypeInstPtr* ftip = ft->isa_instptr();
aoqi@0 2841 const TypeInstPtr* ktip = kills->isa_instptr();
aoqi@0 2842
aoqi@0 2843 if (ft->empty()) {
aoqi@0 2844 // Check for evil case of 'this' being a class and 'kills' expecting an
aoqi@0 2845 // interface. This can happen because the bytecodes do not contain
aoqi@0 2846 // enough type info to distinguish a Java-level interface variable
aoqi@0 2847 // from a Java-level object variable. If we meet 2 classes which
aoqi@0 2848 // both implement interface I, but their meet is at 'j/l/O' which
aoqi@0 2849 // doesn't implement I, we have no way to tell if the result should
aoqi@0 2850 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
aoqi@0 2851 // into a Phi which "knows" it's an Interface type we'll have to
aoqi@0 2852 // uplift the type.
shshahma@8422 2853 if (!empty()) {
shshahma@8422 2854 if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
shshahma@8422 2855 return kills; // Uplift to interface
shshahma@8422 2856 }
shshahma@8422 2857 // Also check for evil cases of 'this' being a class array
shshahma@8422 2858 // and 'kills' expecting an array of interfaces.
shshahma@8422 2859 Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
shshahma@8422 2860 if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
shshahma@8422 2861 return kills; // Uplift to array of interface
shshahma@8422 2862 }
shshahma@8422 2863 }
aoqi@0 2864
aoqi@0 2865 return Type::TOP; // Canonical empty value
aoqi@0 2866 }
aoqi@0 2867
aoqi@0 2868 // If we have an interface-typed Phi or cast and we narrow to a class type,
aoqi@0 2869 // the join should report back the class. However, if we have a J/L/Object
aoqi@0 2870 // class-typed Phi and an interface flows in, it's possible that the meet &
aoqi@0 2871 // join report an interface back out. This isn't possible but happens
aoqi@0 2872 // because the type system doesn't interact well with interfaces.
aoqi@0 2873 if (ftip != NULL && ktip != NULL &&
aoqi@0 2874 ftip->is_loaded() && ftip->klass()->is_interface() &&
aoqi@0 2875 ktip->is_loaded() && !ktip->klass()->is_interface()) {
aoqi@0 2876 // Happens in a CTW of rt.jar, 320-341, no extra flags
aoqi@0 2877 assert(!ftip->klass_is_exact(), "interface could not be exact");
aoqi@0 2878 return ktip->cast_to_ptr_type(ftip->ptr());
aoqi@0 2879 }
aoqi@0 2880
aoqi@0 2881 return ft;
aoqi@0 2882 }
aoqi@0 2883
aoqi@0 2884 //------------------------------eq---------------------------------------------
aoqi@0 2885 // Structural equality check for Type representations
aoqi@0 2886 bool TypeOopPtr::eq( const Type *t ) const {
aoqi@0 2887 const TypeOopPtr *a = (const TypeOopPtr*)t;
aoqi@0 2888 if (_klass_is_exact != a->_klass_is_exact ||
aoqi@0 2889 _instance_id != a->_instance_id ||
aoqi@0 2890 !eq_speculative(a) ||
aoqi@0 2891 _inline_depth != a->_inline_depth) return false;
aoqi@0 2892 ciObject* one = const_oop();
aoqi@0 2893 ciObject* two = a->const_oop();
aoqi@0 2894 if (one == NULL || two == NULL) {
aoqi@0 2895 return (one == two) && TypePtr::eq(t);
aoqi@0 2896 } else {
aoqi@0 2897 return one->equals(two) && TypePtr::eq(t);
aoqi@0 2898 }
aoqi@0 2899 }
aoqi@0 2900
aoqi@0 2901 //------------------------------hash-------------------------------------------
aoqi@0 2902 // Type-specific hashing function.
aoqi@0 2903 int TypeOopPtr::hash(void) const {
aoqi@0 2904 return
aoqi@0 2905 (const_oop() ? const_oop()->hash() : 0) +
aoqi@0 2906 _klass_is_exact +
aoqi@0 2907 _instance_id +
aoqi@0 2908 hash_speculative() +
aoqi@0 2909 _inline_depth +
aoqi@0 2910 TypePtr::hash();
aoqi@0 2911 }
aoqi@0 2912
aoqi@0 2913 //------------------------------dump2------------------------------------------
aoqi@0 2914 #ifndef PRODUCT
aoqi@0 2915 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 2916 st->print("oopptr:%s", ptr_msg[_ptr]);
aoqi@0 2917 if( _klass_is_exact ) st->print(":exact");
aoqi@0 2918 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
aoqi@0 2919 switch( _offset ) {
aoqi@0 2920 case OffsetTop: st->print("+top"); break;
aoqi@0 2921 case OffsetBot: st->print("+any"); break;
aoqi@0 2922 case 0: break;
aoqi@0 2923 default: st->print("+%d",_offset); break;
aoqi@0 2924 }
aoqi@0 2925 if (_instance_id == InstanceTop)
aoqi@0 2926 st->print(",iid=top");
aoqi@0 2927 else if (_instance_id != InstanceBot)
aoqi@0 2928 st->print(",iid=%d",_instance_id);
aoqi@0 2929
aoqi@0 2930 dump_inline_depth(st);
aoqi@0 2931 dump_speculative(st);
aoqi@0 2932 }
aoqi@0 2933
aoqi@0 2934 /**
aoqi@0 2935 *dump the speculative part of the type
aoqi@0 2936 */
aoqi@0 2937 void TypeOopPtr::dump_speculative(outputStream *st) const {
aoqi@0 2938 if (_speculative != NULL) {
aoqi@0 2939 st->print(" (speculative=");
aoqi@0 2940 _speculative->dump_on(st);
aoqi@0 2941 st->print(")");
aoqi@0 2942 }
aoqi@0 2943 }
aoqi@0 2944
aoqi@0 2945 void TypeOopPtr::dump_inline_depth(outputStream *st) const {
aoqi@0 2946 if (_inline_depth != InlineDepthBottom) {
aoqi@0 2947 if (_inline_depth == InlineDepthTop) {
aoqi@0 2948 st->print(" (inline_depth=InlineDepthTop)");
aoqi@0 2949 } else {
aoqi@0 2950 st->print(" (inline_depth=%d)", _inline_depth);
aoqi@0 2951 }
aoqi@0 2952 }
aoqi@0 2953 }
aoqi@0 2954 #endif
aoqi@0 2955
aoqi@0 2956 //------------------------------singleton--------------------------------------
aoqi@0 2957 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 2958 // constants
aoqi@0 2959 bool TypeOopPtr::singleton(void) const {
aoqi@0 2960 // detune optimizer to not generate constant oop + constant offset as a constant!
aoqi@0 2961 // TopPTR, Null, AnyNull, Constant are all singletons
aoqi@0 2962 return (_offset == 0) && !below_centerline(_ptr);
aoqi@0 2963 }
aoqi@0 2964
aoqi@0 2965 //------------------------------add_offset-------------------------------------
aoqi@0 2966 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
aoqi@0 2967 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
aoqi@0 2968 }
aoqi@0 2969
aoqi@0 2970 /**
aoqi@0 2971 * Return same type without a speculative part
aoqi@0 2972 */
aoqi@0 2973 const Type* TypeOopPtr::remove_speculative() const {
aoqi@0 2974 if (_speculative == NULL) {
aoqi@0 2975 return this;
aoqi@0 2976 }
aoqi@0 2977 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
aoqi@0 2978 return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
aoqi@0 2979 }
aoqi@0 2980
aoqi@0 2981 /**
aoqi@0 2982 * Return same type but with a different inline depth (used for speculation)
aoqi@0 2983 *
aoqi@0 2984 * @param depth depth to meet with
aoqi@0 2985 */
aoqi@0 2986 const TypeOopPtr* TypeOopPtr::with_inline_depth(int depth) const {
aoqi@0 2987 if (!UseInlineDepthForSpeculativeTypes) {
aoqi@0 2988 return this;
aoqi@0 2989 }
aoqi@0 2990 return make(_ptr, _offset, _instance_id, _speculative, depth);
aoqi@0 2991 }
aoqi@0 2992
aoqi@0 2993 /**
aoqi@0 2994 * Check whether new profiling would improve speculative type
aoqi@0 2995 *
aoqi@0 2996 * @param exact_kls class from profiling
aoqi@0 2997 * @param inline_depth inlining depth of profile point
aoqi@0 2998 *
aoqi@0 2999 * @return true if type profile is valuable
aoqi@0 3000 */
aoqi@0 3001 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
aoqi@0 3002 // no way to improve an already exact type
aoqi@0 3003 if (klass_is_exact()) {
aoqi@0 3004 return false;
aoqi@0 3005 }
aoqi@0 3006 // no profiling?
aoqi@0 3007 if (exact_kls == NULL) {
aoqi@0 3008 return false;
aoqi@0 3009 }
aoqi@0 3010 // no speculative type or non exact speculative type?
aoqi@0 3011 if (speculative_type() == NULL) {
aoqi@0 3012 return true;
aoqi@0 3013 }
aoqi@0 3014 // If the node already has an exact speculative type keep it,
aoqi@0 3015 // unless it was provided by profiling that is at a deeper
aoqi@0 3016 // inlining level. Profiling at a higher inlining depth is
aoqi@0 3017 // expected to be less accurate.
aoqi@0 3018 if (_speculative->inline_depth() == InlineDepthBottom) {
aoqi@0 3019 return false;
aoqi@0 3020 }
aoqi@0 3021 assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
aoqi@0 3022 return inline_depth < _speculative->inline_depth();
aoqi@0 3023 }
aoqi@0 3024
aoqi@0 3025 //------------------------------meet_instance_id--------------------------------
aoqi@0 3026 int TypeOopPtr::meet_instance_id( int instance_id ) const {
aoqi@0 3027 // Either is 'TOP' instance? Return the other instance!
aoqi@0 3028 if( _instance_id == InstanceTop ) return instance_id;
aoqi@0 3029 if( instance_id == InstanceTop ) return _instance_id;
aoqi@0 3030 // If either is different, return 'BOTTOM' instance
aoqi@0 3031 if( _instance_id != instance_id ) return InstanceBot;
aoqi@0 3032 return _instance_id;
aoqi@0 3033 }
aoqi@0 3034
aoqi@0 3035 //------------------------------dual_instance_id--------------------------------
aoqi@0 3036 int TypeOopPtr::dual_instance_id( ) const {
aoqi@0 3037 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
aoqi@0 3038 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
aoqi@0 3039 return _instance_id; // Map everything else into self
aoqi@0 3040 }
aoqi@0 3041
aoqi@0 3042 /**
aoqi@0 3043 * meet of the speculative parts of 2 types
aoqi@0 3044 *
aoqi@0 3045 * @param other type to meet with
aoqi@0 3046 */
aoqi@0 3047 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
aoqi@0 3048 bool this_has_spec = (_speculative != NULL);
aoqi@0 3049 bool other_has_spec = (other->speculative() != NULL);
aoqi@0 3050
aoqi@0 3051 if (!this_has_spec && !other_has_spec) {
aoqi@0 3052 return NULL;
aoqi@0 3053 }
aoqi@0 3054
aoqi@0 3055 // If we are at a point where control flow meets and one branch has
aoqi@0 3056 // a speculative type and the other has not, we meet the speculative
aoqi@0 3057 // type of one branch with the actual type of the other. If the
aoqi@0 3058 // actual type is exact and the speculative is as well, then the
aoqi@0 3059 // result is a speculative type which is exact and we can continue
aoqi@0 3060 // speculation further.
aoqi@0 3061 const TypeOopPtr* this_spec = _speculative;
aoqi@0 3062 const TypeOopPtr* other_spec = other->speculative();
aoqi@0 3063
aoqi@0 3064 if (!this_has_spec) {
aoqi@0 3065 this_spec = this;
aoqi@0 3066 }
aoqi@0 3067
aoqi@0 3068 if (!other_has_spec) {
aoqi@0 3069 other_spec = other;
aoqi@0 3070 }
aoqi@0 3071
aoqi@0 3072 return this_spec->meet_speculative(other_spec)->is_oopptr();
aoqi@0 3073 }
aoqi@0 3074
aoqi@0 3075 /**
aoqi@0 3076 * dual of the speculative part of the type
aoqi@0 3077 */
aoqi@0 3078 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
aoqi@0 3079 if (_speculative == NULL) {
aoqi@0 3080 return NULL;
aoqi@0 3081 }
aoqi@0 3082 return _speculative->dual()->is_oopptr();
aoqi@0 3083 }
aoqi@0 3084
aoqi@0 3085 /**
aoqi@0 3086 * add offset to the speculative part of the type
aoqi@0 3087 *
aoqi@0 3088 * @param offset offset to add
aoqi@0 3089 */
aoqi@0 3090 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
aoqi@0 3091 if (_speculative == NULL) {
aoqi@0 3092 return NULL;
aoqi@0 3093 }
aoqi@0 3094 return _speculative->add_offset(offset)->is_oopptr();
aoqi@0 3095 }
aoqi@0 3096
aoqi@0 3097 /**
aoqi@0 3098 * Are the speculative parts of 2 types equal?
aoqi@0 3099 *
aoqi@0 3100 * @param other type to compare this one to
aoqi@0 3101 */
aoqi@0 3102 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
aoqi@0 3103 if (_speculative == NULL || other->speculative() == NULL) {
aoqi@0 3104 return _speculative == other->speculative();
aoqi@0 3105 }
aoqi@0 3106
aoqi@0 3107 if (_speculative->base() != other->speculative()->base()) {
aoqi@0 3108 return false;
aoqi@0 3109 }
aoqi@0 3110
aoqi@0 3111 return _speculative->eq(other->speculative());
aoqi@0 3112 }
aoqi@0 3113
aoqi@0 3114 /**
aoqi@0 3115 * Hash of the speculative part of the type
aoqi@0 3116 */
aoqi@0 3117 int TypeOopPtr::hash_speculative() const {
aoqi@0 3118 if (_speculative == NULL) {
aoqi@0 3119 return 0;
aoqi@0 3120 }
aoqi@0 3121
aoqi@0 3122 return _speculative->hash();
aoqi@0 3123 }
aoqi@0 3124
aoqi@0 3125 /**
aoqi@0 3126 * dual of the inline depth for this type (used for speculation)
aoqi@0 3127 */
aoqi@0 3128 int TypeOopPtr::dual_inline_depth() const {
aoqi@0 3129 return -inline_depth();
aoqi@0 3130 }
aoqi@0 3131
aoqi@0 3132 /**
aoqi@0 3133 * meet of 2 inline depth (used for speculation)
aoqi@0 3134 *
aoqi@0 3135 * @param depth depth to meet with
aoqi@0 3136 */
aoqi@0 3137 int TypeOopPtr::meet_inline_depth(int depth) const {
aoqi@0 3138 return MAX2(inline_depth(), depth);
aoqi@0 3139 }
aoqi@0 3140
aoqi@0 3141 //=============================================================================
aoqi@0 3142 // Convenience common pre-built types.
aoqi@0 3143 const TypeInstPtr *TypeInstPtr::NOTNULL;
aoqi@0 3144 const TypeInstPtr *TypeInstPtr::BOTTOM;
aoqi@0 3145 const TypeInstPtr *TypeInstPtr::MIRROR;
aoqi@0 3146 const TypeInstPtr *TypeInstPtr::MARK;
aoqi@0 3147 const TypeInstPtr *TypeInstPtr::KLASS;
aoqi@0 3148
aoqi@0 3149 //------------------------------TypeInstPtr-------------------------------------
aoqi@0 3150 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative, int inline_depth)
aoqi@0 3151 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth), _name(k->name()) {
aoqi@0 3152 assert(k != NULL &&
aoqi@0 3153 (k->is_loaded() || o == NULL),
aoqi@0 3154 "cannot have constants with non-loaded klass");
aoqi@0 3155 };
aoqi@0 3156
aoqi@0 3157 //------------------------------make-------------------------------------------
aoqi@0 3158 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
aoqi@0 3159 ciKlass* k,
aoqi@0 3160 bool xk,
aoqi@0 3161 ciObject* o,
aoqi@0 3162 int offset,
aoqi@0 3163 int instance_id,
aoqi@0 3164 const TypeOopPtr* speculative,
aoqi@0 3165 int inline_depth) {
aoqi@0 3166 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
aoqi@0 3167 // Either const_oop() is NULL or else ptr is Constant
aoqi@0 3168 assert( (!o && ptr != Constant) || (o && ptr == Constant),
aoqi@0 3169 "constant pointers must have a value supplied" );
aoqi@0 3170 // Ptr is never Null
aoqi@0 3171 assert( ptr != Null, "NULL pointers are not typed" );
aoqi@0 3172
aoqi@0 3173 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
aoqi@0 3174 if (!UseExactTypes) xk = false;
aoqi@0 3175 if (ptr == Constant) {
aoqi@0 3176 // Note: This case includes meta-object constants, such as methods.
aoqi@0 3177 xk = true;
aoqi@0 3178 } else if (k->is_loaded()) {
aoqi@0 3179 ciInstanceKlass* ik = k->as_instance_klass();
aoqi@0 3180 if (!xk && ik->is_final()) xk = true; // no inexact final klass
aoqi@0 3181 if (xk && ik->is_interface()) xk = false; // no exact interface
aoqi@0 3182 }
aoqi@0 3183
aoqi@0 3184 // Now hash this baby
aoqi@0 3185 TypeInstPtr *result =
aoqi@0 3186 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
aoqi@0 3187
aoqi@0 3188 return result;
aoqi@0 3189 }
aoqi@0 3190
aoqi@0 3191 /**
aoqi@0 3192 * Create constant type for a constant boxed value
aoqi@0 3193 */
aoqi@0 3194 const Type* TypeInstPtr::get_const_boxed_value() const {
aoqi@0 3195 assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
aoqi@0 3196 assert((const_oop() != NULL), "should be called only for constant object");
aoqi@0 3197 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
aoqi@0 3198 BasicType bt = constant.basic_type();
aoqi@0 3199 switch (bt) {
aoqi@0 3200 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
aoqi@0 3201 case T_INT: return TypeInt::make(constant.as_int());
aoqi@0 3202 case T_CHAR: return TypeInt::make(constant.as_char());
aoqi@0 3203 case T_BYTE: return TypeInt::make(constant.as_byte());
aoqi@0 3204 case T_SHORT: return TypeInt::make(constant.as_short());
aoqi@0 3205 case T_FLOAT: return TypeF::make(constant.as_float());
aoqi@0 3206 case T_DOUBLE: return TypeD::make(constant.as_double());
aoqi@0 3207 case T_LONG: return TypeLong::make(constant.as_long());
aoqi@0 3208 default: break;
aoqi@0 3209 }
aoqi@0 3210 fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
aoqi@0 3211 return NULL;
aoqi@0 3212 }
aoqi@0 3213
aoqi@0 3214 //------------------------------cast_to_ptr_type-------------------------------
aoqi@0 3215 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
aoqi@0 3216 if( ptr == _ptr ) return this;
aoqi@0 3217 // Reconstruct _sig info here since not a problem with later lazy
aoqi@0 3218 // construction, _sig will show up on demand.
aoqi@0 3219 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
aoqi@0 3220 }
aoqi@0 3221
aoqi@0 3222
aoqi@0 3223 //-----------------------------cast_to_exactness-------------------------------
aoqi@0 3224 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
aoqi@0 3225 if( klass_is_exact == _klass_is_exact ) return this;
aoqi@0 3226 if (!UseExactTypes) return this;
aoqi@0 3227 if (!_klass->is_loaded()) return this;
aoqi@0 3228 ciInstanceKlass* ik = _klass->as_instance_klass();
aoqi@0 3229 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
aoqi@0 3230 if( ik->is_interface() ) return this; // cannot set xk
aoqi@0 3231 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
aoqi@0 3232 }
aoqi@0 3233
aoqi@0 3234 //-----------------------------cast_to_instance_id----------------------------
aoqi@0 3235 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
aoqi@0 3236 if( instance_id == _instance_id ) return this;
aoqi@0 3237 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
aoqi@0 3238 }
aoqi@0 3239
aoqi@0 3240 //------------------------------xmeet_unloaded---------------------------------
aoqi@0 3241 // Compute the MEET of two InstPtrs when at least one is unloaded.
aoqi@0 3242 // Assume classes are different since called after check for same name/class-loader
aoqi@0 3243 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
aoqi@0 3244 int off = meet_offset(tinst->offset());
aoqi@0 3245 PTR ptr = meet_ptr(tinst->ptr());
aoqi@0 3246 int instance_id = meet_instance_id(tinst->instance_id());
aoqi@0 3247 const TypeOopPtr* speculative = xmeet_speculative(tinst);
aoqi@0 3248 int depth = meet_inline_depth(tinst->inline_depth());
aoqi@0 3249
aoqi@0 3250 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
aoqi@0 3251 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
aoqi@0 3252 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
aoqi@0 3253 //
aoqi@0 3254 // Meet unloaded class with java/lang/Object
aoqi@0 3255 //
aoqi@0 3256 // Meet
aoqi@0 3257 // | Unloaded Class
aoqi@0 3258 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
aoqi@0 3259 // ===================================================================
aoqi@0 3260 // TOP | ..........................Unloaded......................|
aoqi@0 3261 // AnyNull | U-AN |................Unloaded......................|
aoqi@0 3262 // Constant | ... O-NN .................................. | O-BOT |
aoqi@0 3263 // NotNull | ... O-NN .................................. | O-BOT |
aoqi@0 3264 // BOTTOM | ........................Object-BOTTOM ..................|
aoqi@0 3265 //
aoqi@0 3266 assert(loaded->ptr() != TypePtr::Null, "insanity check");
aoqi@0 3267 //
aoqi@0 3268 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
aoqi@0 3269 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
aoqi@0 3270 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
aoqi@0 3271 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
aoqi@0 3272 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
aoqi@0 3273 else { return TypeInstPtr::NOTNULL; }
aoqi@0 3274 }
aoqi@0 3275 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
aoqi@0 3276
aoqi@0 3277 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
aoqi@0 3278 }
aoqi@0 3279
aoqi@0 3280 // Both are unloaded, not the same class, not Object
aoqi@0 3281 // Or meet unloaded with a different loaded class, not java/lang/Object
aoqi@0 3282 if( ptr != TypePtr::BotPTR ) {
aoqi@0 3283 return TypeInstPtr::NOTNULL;
aoqi@0 3284 }
aoqi@0 3285 return TypeInstPtr::BOTTOM;
aoqi@0 3286 }
aoqi@0 3287
aoqi@0 3288
aoqi@0 3289 //------------------------------meet-------------------------------------------
aoqi@0 3290 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 3291 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
aoqi@0 3292 // Perform a fast test for common case; meeting the same types together.
aoqi@0 3293 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 3294
aoqi@0 3295 // Current "this->_base" is Pointer
aoqi@0 3296 switch (t->base()) { // switch on original type
aoqi@0 3297
aoqi@0 3298 case Int: // Mixing ints & oops happens when javac
aoqi@0 3299 case Long: // reuses local variables
aoqi@0 3300 case FloatTop:
aoqi@0 3301 case FloatCon:
aoqi@0 3302 case FloatBot:
aoqi@0 3303 case DoubleTop:
aoqi@0 3304 case DoubleCon:
aoqi@0 3305 case DoubleBot:
aoqi@0 3306 case NarrowOop:
aoqi@0 3307 case NarrowKlass:
aoqi@0 3308 case Bottom: // Ye Olde Default
aoqi@0 3309 return Type::BOTTOM;
aoqi@0 3310 case Top:
aoqi@0 3311 return this;
aoqi@0 3312
aoqi@0 3313 default: // All else is a mistake
aoqi@0 3314 typerr(t);
aoqi@0 3315
aoqi@0 3316 case MetadataPtr:
aoqi@0 3317 case KlassPtr:
aoqi@0 3318 case RawPtr: return TypePtr::BOTTOM;
aoqi@0 3319
aoqi@0 3320 case AryPtr: { // All arrays inherit from Object class
aoqi@0 3321 const TypeAryPtr *tp = t->is_aryptr();
aoqi@0 3322 int offset = meet_offset(tp->offset());
aoqi@0 3323 PTR ptr = meet_ptr(tp->ptr());
aoqi@0 3324 int instance_id = meet_instance_id(tp->instance_id());
aoqi@0 3325 const TypeOopPtr* speculative = xmeet_speculative(tp);
aoqi@0 3326 int depth = meet_inline_depth(tp->inline_depth());
aoqi@0 3327 switch (ptr) {
aoqi@0 3328 case TopPTR:
aoqi@0 3329 case AnyNull: // Fall 'down' to dual of object klass
aoqi@0 3330 // For instances when a subclass meets a superclass we fall
aoqi@0 3331 // below the centerline when the superclass is exact. We need to
aoqi@0 3332 // do the same here.
aoqi@0 3333 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
aoqi@0 3334 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
aoqi@0 3335 } else {
aoqi@0 3336 // cannot subclass, so the meet has to fall badly below the centerline
aoqi@0 3337 ptr = NotNull;
aoqi@0 3338 instance_id = InstanceBot;
aoqi@0 3339 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
aoqi@0 3340 }
aoqi@0 3341 case Constant:
aoqi@0 3342 case NotNull:
aoqi@0 3343 case BotPTR: // Fall down to object klass
aoqi@0 3344 // LCA is object_klass, but if we subclass from the top we can do better
aoqi@0 3345 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
aoqi@0 3346 // If 'this' (InstPtr) is above the centerline and it is Object class
aoqi@0 3347 // then we can subclass in the Java class hierarchy.
aoqi@0 3348 // For instances when a subclass meets a superclass we fall
aoqi@0 3349 // below the centerline when the superclass is exact. We need
aoqi@0 3350 // to do the same here.
aoqi@0 3351 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
aoqi@0 3352 // that is, tp's array type is a subtype of my klass
aoqi@0 3353 return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
aoqi@0 3354 tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
aoqi@0 3355 }
aoqi@0 3356 }
aoqi@0 3357 // The other case cannot happen, since I cannot be a subtype of an array.
aoqi@0 3358 // The meet falls down to Object class below centerline.
aoqi@0 3359 if( ptr == Constant )
aoqi@0 3360 ptr = NotNull;
aoqi@0 3361 instance_id = InstanceBot;
aoqi@0 3362 return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
aoqi@0 3363 default: typerr(t);
aoqi@0 3364 }
aoqi@0 3365 }
aoqi@0 3366
aoqi@0 3367 case OopPtr: { // Meeting to OopPtrs
aoqi@0 3368 // Found a OopPtr type vs self-InstPtr type
aoqi@0 3369 const TypeOopPtr *tp = t->is_oopptr();
aoqi@0 3370 int offset = meet_offset(tp->offset());
aoqi@0 3371 PTR ptr = meet_ptr(tp->ptr());
aoqi@0 3372 switch (tp->ptr()) {
aoqi@0 3373 case TopPTR:
aoqi@0 3374 case AnyNull: {
aoqi@0 3375 int instance_id = meet_instance_id(InstanceTop);
aoqi@0 3376 const TypeOopPtr* speculative = xmeet_speculative(tp);
aoqi@0 3377 int depth = meet_inline_depth(tp->inline_depth());
aoqi@0 3378 return make(ptr, klass(), klass_is_exact(),
aoqi@0 3379 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
aoqi@0 3380 }
aoqi@0 3381 case NotNull:
aoqi@0 3382 case BotPTR: {
aoqi@0 3383 int instance_id = meet_instance_id(tp->instance_id());
aoqi@0 3384 const TypeOopPtr* speculative = xmeet_speculative(tp);
aoqi@0 3385 int depth = meet_inline_depth(tp->inline_depth());
aoqi@0 3386 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
aoqi@0 3387 }
aoqi@0 3388 default: typerr(t);
aoqi@0 3389 }
aoqi@0 3390 }
aoqi@0 3391
aoqi@0 3392 case AnyPtr: { // Meeting to AnyPtrs
aoqi@0 3393 // Found an AnyPtr type vs self-InstPtr type
aoqi@0 3394 const TypePtr *tp = t->is_ptr();
aoqi@0 3395 int offset = meet_offset(tp->offset());
aoqi@0 3396 PTR ptr = meet_ptr(tp->ptr());
aoqi@0 3397 switch (tp->ptr()) {
aoqi@0 3398 case Null:
aoqi@0 3399 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
aoqi@0 3400 // else fall through to AnyNull
aoqi@0 3401 case TopPTR:
aoqi@0 3402 case AnyNull: {
aoqi@0 3403 int instance_id = meet_instance_id(InstanceTop);
aoqi@0 3404 const TypeOopPtr* speculative = _speculative;
aoqi@0 3405 return make(ptr, klass(), klass_is_exact(),
aoqi@0 3406 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, _inline_depth);
aoqi@0 3407 }
aoqi@0 3408 case NotNull:
aoqi@0 3409 case BotPTR:
aoqi@0 3410 return TypePtr::make(AnyPtr, ptr, offset);
aoqi@0 3411 default: typerr(t);
aoqi@0 3412 }
aoqi@0 3413 }
aoqi@0 3414
aoqi@0 3415 /*
aoqi@0 3416 A-top }
aoqi@0 3417 / | \ } Tops
aoqi@0 3418 B-top A-any C-top }
aoqi@0 3419 | / | \ | } Any-nulls
aoqi@0 3420 B-any | C-any }
aoqi@0 3421 | | |
aoqi@0 3422 B-con A-con C-con } constants; not comparable across classes
aoqi@0 3423 | | |
aoqi@0 3424 B-not | C-not }
aoqi@0 3425 | \ | / | } not-nulls
aoqi@0 3426 B-bot A-not C-bot }
aoqi@0 3427 \ | / } Bottoms
aoqi@0 3428 A-bot }
aoqi@0 3429 */
aoqi@0 3430
aoqi@0 3431 case InstPtr: { // Meeting 2 Oops?
aoqi@0 3432 // Found an InstPtr sub-type vs self-InstPtr type
aoqi@0 3433 const TypeInstPtr *tinst = t->is_instptr();
aoqi@0 3434 int off = meet_offset( tinst->offset() );
aoqi@0 3435 PTR ptr = meet_ptr( tinst->ptr() );
aoqi@0 3436 int instance_id = meet_instance_id(tinst->instance_id());
aoqi@0 3437 const TypeOopPtr* speculative = xmeet_speculative(tinst);
aoqi@0 3438 int depth = meet_inline_depth(tinst->inline_depth());
aoqi@0 3439
aoqi@0 3440 // Check for easy case; klasses are equal (and perhaps not loaded!)
aoqi@0 3441 // If we have constants, then we created oops so classes are loaded
aoqi@0 3442 // and we can handle the constants further down. This case handles
aoqi@0 3443 // both-not-loaded or both-loaded classes
aoqi@0 3444 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
aoqi@0 3445 return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
aoqi@0 3446 }
aoqi@0 3447
aoqi@0 3448 // Classes require inspection in the Java klass hierarchy. Must be loaded.
aoqi@0 3449 ciKlass* tinst_klass = tinst->klass();
aoqi@0 3450 ciKlass* this_klass = this->klass();
aoqi@0 3451 bool tinst_xk = tinst->klass_is_exact();
aoqi@0 3452 bool this_xk = this->klass_is_exact();
aoqi@0 3453 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
aoqi@0 3454 // One of these classes has not been loaded
aoqi@0 3455 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
aoqi@0 3456 #ifndef PRODUCT
aoqi@0 3457 if( PrintOpto && Verbose ) {
aoqi@0 3458 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
aoqi@0 3459 tty->print(" this == "); this->dump(); tty->cr();
aoqi@0 3460 tty->print(" tinst == "); tinst->dump(); tty->cr();
aoqi@0 3461 }
aoqi@0 3462 #endif
aoqi@0 3463 return unloaded_meet;
aoqi@0 3464 }
aoqi@0 3465
aoqi@0 3466 // Handle mixing oops and interfaces first.
aoqi@0 3467 if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
aoqi@0 3468 tinst_klass == ciEnv::current()->Object_klass())) {
aoqi@0 3469 ciKlass *tmp = tinst_klass; // Swap interface around
aoqi@0 3470 tinst_klass = this_klass;
aoqi@0 3471 this_klass = tmp;
aoqi@0 3472 bool tmp2 = tinst_xk;
aoqi@0 3473 tinst_xk = this_xk;
aoqi@0 3474 this_xk = tmp2;
aoqi@0 3475 }
aoqi@0 3476 if (tinst_klass->is_interface() &&
aoqi@0 3477 !(this_klass->is_interface() ||
aoqi@0 3478 // Treat java/lang/Object as an honorary interface,
aoqi@0 3479 // because we need a bottom for the interface hierarchy.
aoqi@0 3480 this_klass == ciEnv::current()->Object_klass())) {
aoqi@0 3481 // Oop meets interface!
aoqi@0 3482
aoqi@0 3483 // See if the oop subtypes (implements) interface.
aoqi@0 3484 ciKlass *k;
aoqi@0 3485 bool xk;
aoqi@0 3486 if( this_klass->is_subtype_of( tinst_klass ) ) {
aoqi@0 3487 // Oop indeed subtypes. Now keep oop or interface depending
aoqi@0 3488 // on whether we are both above the centerline or either is
aoqi@0 3489 // below the centerline. If we are on the centerline
aoqi@0 3490 // (e.g., Constant vs. AnyNull interface), use the constant.
aoqi@0 3491 k = below_centerline(ptr) ? tinst_klass : this_klass;
aoqi@0 3492 // If we are keeping this_klass, keep its exactness too.
aoqi@0 3493 xk = below_centerline(ptr) ? tinst_xk : this_xk;
aoqi@0 3494 } else { // Does not implement, fall to Object
aoqi@0 3495 // Oop does not implement interface, so mixing falls to Object
aoqi@0 3496 // just like the verifier does (if both are above the
aoqi@0 3497 // centerline fall to interface)
aoqi@0 3498 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
aoqi@0 3499 xk = above_centerline(ptr) ? tinst_xk : false;
aoqi@0 3500 // Watch out for Constant vs. AnyNull interface.
aoqi@0 3501 if (ptr == Constant) ptr = NotNull; // forget it was a constant
aoqi@0 3502 instance_id = InstanceBot;
aoqi@0 3503 }
aoqi@0 3504 ciObject* o = NULL; // the Constant value, if any
aoqi@0 3505 if (ptr == Constant) {
aoqi@0 3506 // Find out which constant.
aoqi@0 3507 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
aoqi@0 3508 }
aoqi@0 3509 return make(ptr, k, xk, o, off, instance_id, speculative, depth);
aoqi@0 3510 }
aoqi@0 3511
aoqi@0 3512 // Either oop vs oop or interface vs interface or interface vs Object
aoqi@0 3513
aoqi@0 3514 // !!! Here's how the symmetry requirement breaks down into invariants:
aoqi@0 3515 // If we split one up & one down AND they subtype, take the down man.
aoqi@0 3516 // If we split one up & one down AND they do NOT subtype, "fall hard".
aoqi@0 3517 // If both are up and they subtype, take the subtype class.
aoqi@0 3518 // If both are up and they do NOT subtype, "fall hard".
aoqi@0 3519 // If both are down and they subtype, take the supertype class.
aoqi@0 3520 // If both are down and they do NOT subtype, "fall hard".
aoqi@0 3521 // Constants treated as down.
aoqi@0 3522
aoqi@0 3523 // Now, reorder the above list; observe that both-down+subtype is also
aoqi@0 3524 // "fall hard"; "fall hard" becomes the default case:
aoqi@0 3525 // If we split one up & one down AND they subtype, take the down man.
aoqi@0 3526 // If both are up and they subtype, take the subtype class.
aoqi@0 3527
aoqi@0 3528 // If both are down and they subtype, "fall hard".
aoqi@0 3529 // If both are down and they do NOT subtype, "fall hard".
aoqi@0 3530 // If both are up and they do NOT subtype, "fall hard".
aoqi@0 3531 // If we split one up & one down AND they do NOT subtype, "fall hard".
aoqi@0 3532
aoqi@0 3533 // If a proper subtype is exact, and we return it, we return it exactly.
aoqi@0 3534 // If a proper supertype is exact, there can be no subtyping relationship!
aoqi@0 3535 // If both types are equal to the subtype, exactness is and-ed below the
aoqi@0 3536 // centerline and or-ed above it. (N.B. Constants are always exact.)
aoqi@0 3537
aoqi@0 3538 // Check for subtyping:
aoqi@0 3539 ciKlass *subtype = NULL;
aoqi@0 3540 bool subtype_exact = false;
aoqi@0 3541 if( tinst_klass->equals(this_klass) ) {
aoqi@0 3542 subtype = this_klass;
aoqi@0 3543 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
aoqi@0 3544 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
aoqi@0 3545 subtype = this_klass; // Pick subtyping class
aoqi@0 3546 subtype_exact = this_xk;
aoqi@0 3547 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
aoqi@0 3548 subtype = tinst_klass; // Pick subtyping class
aoqi@0 3549 subtype_exact = tinst_xk;
aoqi@0 3550 }
aoqi@0 3551
aoqi@0 3552 if( subtype ) {
aoqi@0 3553 if( above_centerline(ptr) ) { // both are up?
aoqi@0 3554 this_klass = tinst_klass = subtype;
aoqi@0 3555 this_xk = tinst_xk = subtype_exact;
aoqi@0 3556 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
aoqi@0 3557 this_klass = tinst_klass; // tinst is down; keep down man
aoqi@0 3558 this_xk = tinst_xk;
aoqi@0 3559 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
aoqi@0 3560 tinst_klass = this_klass; // this is down; keep down man
aoqi@0 3561 tinst_xk = this_xk;
aoqi@0 3562 } else {
aoqi@0 3563 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
aoqi@0 3564 }
aoqi@0 3565 }
aoqi@0 3566
aoqi@0 3567 // Check for classes now being equal
aoqi@0 3568 if (tinst_klass->equals(this_klass)) {
aoqi@0 3569 // If the klasses are equal, the constants may still differ. Fall to
aoqi@0 3570 // NotNull if they do (neither constant is NULL; that is a special case
aoqi@0 3571 // handled elsewhere).
aoqi@0 3572 ciObject* o = NULL; // Assume not constant when done
aoqi@0 3573 ciObject* this_oop = const_oop();
aoqi@0 3574 ciObject* tinst_oop = tinst->const_oop();
aoqi@0 3575 if( ptr == Constant ) {
aoqi@0 3576 if (this_oop != NULL && tinst_oop != NULL &&
aoqi@0 3577 this_oop->equals(tinst_oop) )
aoqi@0 3578 o = this_oop;
aoqi@0 3579 else if (above_centerline(this ->_ptr))
aoqi@0 3580 o = tinst_oop;
aoqi@0 3581 else if (above_centerline(tinst ->_ptr))
aoqi@0 3582 o = this_oop;
aoqi@0 3583 else
aoqi@0 3584 ptr = NotNull;
aoqi@0 3585 }
aoqi@0 3586 return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
aoqi@0 3587 } // Else classes are not equal
aoqi@0 3588
aoqi@0 3589 // Since klasses are different, we require a LCA in the Java
aoqi@0 3590 // class hierarchy - which means we have to fall to at least NotNull.
aoqi@0 3591 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
aoqi@0 3592 ptr = NotNull;
aoqi@0 3593 instance_id = InstanceBot;
aoqi@0 3594
aoqi@0 3595 // Now we find the LCA of Java classes
aoqi@0 3596 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
aoqi@0 3597 return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
aoqi@0 3598 } // End of case InstPtr
aoqi@0 3599
aoqi@0 3600 } // End of switch
aoqi@0 3601 return this; // Return the double constant
aoqi@0 3602 }
aoqi@0 3603
aoqi@0 3604
aoqi@0 3605 //------------------------java_mirror_type--------------------------------------
aoqi@0 3606 ciType* TypeInstPtr::java_mirror_type() const {
aoqi@0 3607 // must be a singleton type
aoqi@0 3608 if( const_oop() == NULL ) return NULL;
aoqi@0 3609
aoqi@0 3610 // must be of type java.lang.Class
aoqi@0 3611 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
aoqi@0 3612
aoqi@0 3613 return const_oop()->as_instance()->java_mirror_type();
aoqi@0 3614 }
aoqi@0 3615
aoqi@0 3616
aoqi@0 3617 //------------------------------xdual------------------------------------------
aoqi@0 3618 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
aoqi@0 3619 // inheritance mechanism.
aoqi@0 3620 const Type *TypeInstPtr::xdual() const {
aoqi@0 3621 return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
aoqi@0 3622 }
aoqi@0 3623
aoqi@0 3624 //------------------------------eq---------------------------------------------
aoqi@0 3625 // Structural equality check for Type representations
aoqi@0 3626 bool TypeInstPtr::eq( const Type *t ) const {
aoqi@0 3627 const TypeInstPtr *p = t->is_instptr();
aoqi@0 3628 return
aoqi@0 3629 klass()->equals(p->klass()) &&
aoqi@0 3630 TypeOopPtr::eq(p); // Check sub-type stuff
aoqi@0 3631 }
aoqi@0 3632
aoqi@0 3633 //------------------------------hash-------------------------------------------
aoqi@0 3634 // Type-specific hashing function.
aoqi@0 3635 int TypeInstPtr::hash(void) const {
aoqi@0 3636 int hash = klass()->hash() + TypeOopPtr::hash();
aoqi@0 3637 return hash;
aoqi@0 3638 }
aoqi@0 3639
aoqi@0 3640 //------------------------------dump2------------------------------------------
aoqi@0 3641 // Dump oop Type
aoqi@0 3642 #ifndef PRODUCT
aoqi@0 3643 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 3644 // Print the name of the klass.
aoqi@0 3645 klass()->print_name_on(st);
aoqi@0 3646
aoqi@0 3647 switch( _ptr ) {
aoqi@0 3648 case Constant:
aoqi@0 3649 // TO DO: Make CI print the hex address of the underlying oop.
aoqi@0 3650 if (WizardMode || Verbose) {
aoqi@0 3651 const_oop()->print_oop(st);
aoqi@0 3652 }
aoqi@0 3653 case BotPTR:
aoqi@0 3654 if (!WizardMode && !Verbose) {
aoqi@0 3655 if( _klass_is_exact ) st->print(":exact");
aoqi@0 3656 break;
aoqi@0 3657 }
aoqi@0 3658 case TopPTR:
aoqi@0 3659 case AnyNull:
aoqi@0 3660 case NotNull:
aoqi@0 3661 st->print(":%s", ptr_msg[_ptr]);
aoqi@0 3662 if( _klass_is_exact ) st->print(":exact");
aoqi@0 3663 break;
aoqi@0 3664 }
aoqi@0 3665
aoqi@0 3666 if( _offset ) { // Dump offset, if any
aoqi@0 3667 if( _offset == OffsetBot ) st->print("+any");
aoqi@0 3668 else if( _offset == OffsetTop ) st->print("+unknown");
aoqi@0 3669 else st->print("+%d", _offset);
aoqi@0 3670 }
aoqi@0 3671
aoqi@0 3672 st->print(" *");
aoqi@0 3673 if (_instance_id == InstanceTop)
aoqi@0 3674 st->print(",iid=top");
aoqi@0 3675 else if (_instance_id != InstanceBot)
aoqi@0 3676 st->print(",iid=%d",_instance_id);
aoqi@0 3677
aoqi@0 3678 dump_inline_depth(st);
aoqi@0 3679 dump_speculative(st);
aoqi@0 3680 }
aoqi@0 3681 #endif
aoqi@0 3682
aoqi@0 3683 //------------------------------add_offset-------------------------------------
aoqi@0 3684 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
aoqi@0 3685 return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
aoqi@0 3686 }
aoqi@0 3687
aoqi@0 3688 const Type *TypeInstPtr::remove_speculative() const {
aoqi@0 3689 if (_speculative == NULL) {
aoqi@0 3690 return this;
aoqi@0 3691 }
aoqi@0 3692 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
aoqi@0 3693 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL, _inline_depth);
aoqi@0 3694 }
aoqi@0 3695
aoqi@0 3696 const TypeOopPtr *TypeInstPtr::with_inline_depth(int depth) const {
aoqi@0 3697 if (!UseInlineDepthForSpeculativeTypes) {
aoqi@0 3698 return this;
aoqi@0 3699 }
aoqi@0 3700 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
aoqi@0 3701 }
aoqi@0 3702
aoqi@0 3703 //=============================================================================
aoqi@0 3704 // Convenience common pre-built types.
aoqi@0 3705 const TypeAryPtr *TypeAryPtr::RANGE;
aoqi@0 3706 const TypeAryPtr *TypeAryPtr::OOPS;
aoqi@0 3707 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
aoqi@0 3708 const TypeAryPtr *TypeAryPtr::BYTES;
aoqi@0 3709 const TypeAryPtr *TypeAryPtr::SHORTS;
aoqi@0 3710 const TypeAryPtr *TypeAryPtr::CHARS;
aoqi@0 3711 const TypeAryPtr *TypeAryPtr::INTS;
aoqi@0 3712 const TypeAryPtr *TypeAryPtr::LONGS;
aoqi@0 3713 const TypeAryPtr *TypeAryPtr::FLOATS;
aoqi@0 3714 const TypeAryPtr *TypeAryPtr::DOUBLES;
aoqi@0 3715
aoqi@0 3716 //------------------------------make-------------------------------------------
aoqi@0 3717 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
aoqi@0 3718 assert(!(k == NULL && ary->_elem->isa_int()),
aoqi@0 3719 "integral arrays must be pre-equipped with a class");
aoqi@0 3720 if (!xk) xk = ary->ary_must_be_exact();
aoqi@0 3721 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
aoqi@0 3722 if (!UseExactTypes) xk = (ptr == Constant);
aoqi@0 3723 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
aoqi@0 3724 }
aoqi@0 3725
aoqi@0 3726 //------------------------------make-------------------------------------------
aoqi@0 3727 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth, bool is_autobox_cache) {
aoqi@0 3728 assert(!(k == NULL && ary->_elem->isa_int()),
aoqi@0 3729 "integral arrays must be pre-equipped with a class");
aoqi@0 3730 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
aoqi@0 3731 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
aoqi@0 3732 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
aoqi@0 3733 if (!UseExactTypes) xk = (ptr == Constant);
aoqi@0 3734 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
aoqi@0 3735 }
aoqi@0 3736
aoqi@0 3737 //------------------------------cast_to_ptr_type-------------------------------
aoqi@0 3738 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
aoqi@0 3739 if( ptr == _ptr ) return this;
aoqi@0 3740 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
aoqi@0 3741 }
aoqi@0 3742
aoqi@0 3743
aoqi@0 3744 //-----------------------------cast_to_exactness-------------------------------
aoqi@0 3745 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
aoqi@0 3746 if( klass_is_exact == _klass_is_exact ) return this;
aoqi@0 3747 if (!UseExactTypes) return this;
aoqi@0 3748 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
aoqi@0 3749 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
aoqi@0 3750 }
aoqi@0 3751
aoqi@0 3752 //-----------------------------cast_to_instance_id----------------------------
aoqi@0 3753 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
aoqi@0 3754 if( instance_id == _instance_id ) return this;
aoqi@0 3755 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
aoqi@0 3756 }
aoqi@0 3757
aoqi@0 3758 //-----------------------------narrow_size_type-------------------------------
aoqi@0 3759 // Local cache for arrayOopDesc::max_array_length(etype),
aoqi@0 3760 // which is kind of slow (and cached elsewhere by other users).
aoqi@0 3761 static jint max_array_length_cache[T_CONFLICT+1];
aoqi@0 3762 static jint max_array_length(BasicType etype) {
aoqi@0 3763 jint& cache = max_array_length_cache[etype];
aoqi@0 3764 jint res = cache;
aoqi@0 3765 if (res == 0) {
aoqi@0 3766 switch (etype) {
aoqi@0 3767 case T_NARROWOOP:
aoqi@0 3768 etype = T_OBJECT;
aoqi@0 3769 break;
aoqi@0 3770 case T_NARROWKLASS:
aoqi@0 3771 case T_CONFLICT:
aoqi@0 3772 case T_ILLEGAL:
aoqi@0 3773 case T_VOID:
aoqi@0 3774 etype = T_BYTE; // will produce conservatively high value
aoqi@0 3775 }
aoqi@0 3776 cache = res = arrayOopDesc::max_array_length(etype);
aoqi@0 3777 }
aoqi@0 3778 return res;
aoqi@0 3779 }
aoqi@0 3780
aoqi@0 3781 // Narrow the given size type to the index range for the given array base type.
aoqi@0 3782 // Return NULL if the resulting int type becomes empty.
aoqi@0 3783 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
aoqi@0 3784 jint hi = size->_hi;
aoqi@0 3785 jint lo = size->_lo;
aoqi@0 3786 jint min_lo = 0;
aoqi@0 3787 jint max_hi = max_array_length(elem()->basic_type());
aoqi@0 3788 //if (index_not_size) --max_hi; // type of a valid array index, FTR
aoqi@0 3789 bool chg = false;
aoqi@0 3790 if (lo < min_lo) {
aoqi@0 3791 lo = min_lo;
aoqi@0 3792 if (size->is_con()) {
aoqi@0 3793 hi = lo;
aoqi@0 3794 }
aoqi@0 3795 chg = true;
aoqi@0 3796 }
aoqi@0 3797 if (hi > max_hi) {
aoqi@0 3798 hi = max_hi;
aoqi@0 3799 if (size->is_con()) {
aoqi@0 3800 lo = hi;
aoqi@0 3801 }
aoqi@0 3802 chg = true;
aoqi@0 3803 }
aoqi@0 3804 // Negative length arrays will produce weird intermediate dead fast-path code
aoqi@0 3805 if (lo > hi)
aoqi@0 3806 return TypeInt::ZERO;
aoqi@0 3807 if (!chg)
aoqi@0 3808 return size;
aoqi@0 3809 return TypeInt::make(lo, hi, Type::WidenMin);
aoqi@0 3810 }
aoqi@0 3811
aoqi@0 3812 //-------------------------------cast_to_size----------------------------------
aoqi@0 3813 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
aoqi@0 3814 assert(new_size != NULL, "");
aoqi@0 3815 new_size = narrow_size_type(new_size);
aoqi@0 3816 if (new_size == size()) return this;
aoqi@0 3817 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
aoqi@0 3818 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
aoqi@0 3819 }
aoqi@0 3820
aoqi@0 3821
aoqi@0 3822 //------------------------------cast_to_stable---------------------------------
aoqi@0 3823 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
aoqi@0 3824 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
aoqi@0 3825 return this;
aoqi@0 3826
aoqi@0 3827 const Type* elem = this->elem();
aoqi@0 3828 const TypePtr* elem_ptr = elem->make_ptr();
aoqi@0 3829
aoqi@0 3830 if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
aoqi@0 3831 // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
aoqi@0 3832 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
aoqi@0 3833 }
aoqi@0 3834
aoqi@0 3835 const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
aoqi@0 3836
aoqi@0 3837 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
aoqi@0 3838 }
aoqi@0 3839
aoqi@0 3840 //-----------------------------stable_dimension--------------------------------
aoqi@0 3841 int TypeAryPtr::stable_dimension() const {
aoqi@0 3842 if (!is_stable()) return 0;
aoqi@0 3843 int dim = 1;
aoqi@0 3844 const TypePtr* elem_ptr = elem()->make_ptr();
aoqi@0 3845 if (elem_ptr != NULL && elem_ptr->isa_aryptr())
aoqi@0 3846 dim += elem_ptr->is_aryptr()->stable_dimension();
aoqi@0 3847 return dim;
aoqi@0 3848 }
aoqi@0 3849
aoqi@0 3850 //------------------------------eq---------------------------------------------
aoqi@0 3851 // Structural equality check for Type representations
aoqi@0 3852 bool TypeAryPtr::eq( const Type *t ) const {
aoqi@0 3853 const TypeAryPtr *p = t->is_aryptr();
aoqi@0 3854 return
aoqi@0 3855 _ary == p->_ary && // Check array
aoqi@0 3856 TypeOopPtr::eq(p); // Check sub-parts
aoqi@0 3857 }
aoqi@0 3858
aoqi@0 3859 //------------------------------hash-------------------------------------------
aoqi@0 3860 // Type-specific hashing function.
aoqi@0 3861 int TypeAryPtr::hash(void) const {
aoqi@0 3862 return (intptr_t)_ary + TypeOopPtr::hash();
aoqi@0 3863 }
aoqi@0 3864
aoqi@0 3865 //------------------------------meet-------------------------------------------
aoqi@0 3866 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 3867 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
aoqi@0 3868 // Perform a fast test for common case; meeting the same types together.
aoqi@0 3869 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 3870 // Current "this->_base" is Pointer
aoqi@0 3871 switch (t->base()) { // switch on original type
aoqi@0 3872
aoqi@0 3873 // Mixing ints & oops happens when javac reuses local variables
aoqi@0 3874 case Int:
aoqi@0 3875 case Long:
aoqi@0 3876 case FloatTop:
aoqi@0 3877 case FloatCon:
aoqi@0 3878 case FloatBot:
aoqi@0 3879 case DoubleTop:
aoqi@0 3880 case DoubleCon:
aoqi@0 3881 case DoubleBot:
aoqi@0 3882 case NarrowOop:
aoqi@0 3883 case NarrowKlass:
aoqi@0 3884 case Bottom: // Ye Olde Default
aoqi@0 3885 return Type::BOTTOM;
aoqi@0 3886 case Top:
aoqi@0 3887 return this;
aoqi@0 3888
aoqi@0 3889 default: // All else is a mistake
aoqi@0 3890 typerr(t);
aoqi@0 3891
aoqi@0 3892 case OopPtr: { // Meeting to OopPtrs
aoqi@0 3893 // Found a OopPtr type vs self-AryPtr type
aoqi@0 3894 const TypeOopPtr *tp = t->is_oopptr();
aoqi@0 3895 int offset = meet_offset(tp->offset());
aoqi@0 3896 PTR ptr = meet_ptr(tp->ptr());
aoqi@0 3897 int depth = meet_inline_depth(tp->inline_depth());
aoqi@0 3898 switch (tp->ptr()) {
aoqi@0 3899 case TopPTR:
aoqi@0 3900 case AnyNull: {
aoqi@0 3901 int instance_id = meet_instance_id(InstanceTop);
aoqi@0 3902 const TypeOopPtr* speculative = xmeet_speculative(tp);
aoqi@0 3903 return make(ptr, (ptr == Constant ? const_oop() : NULL),
aoqi@0 3904 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
aoqi@0 3905 }
aoqi@0 3906 case BotPTR:
aoqi@0 3907 case NotNull: {
aoqi@0 3908 int instance_id = meet_instance_id(tp->instance_id());
aoqi@0 3909 const TypeOopPtr* speculative = xmeet_speculative(tp);
aoqi@0 3910 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
aoqi@0 3911 }
aoqi@0 3912 default: ShouldNotReachHere();
aoqi@0 3913 }
aoqi@0 3914 }
aoqi@0 3915
aoqi@0 3916 case AnyPtr: { // Meeting two AnyPtrs
aoqi@0 3917 // Found an AnyPtr type vs self-AryPtr type
aoqi@0 3918 const TypePtr *tp = t->is_ptr();
aoqi@0 3919 int offset = meet_offset(tp->offset());
aoqi@0 3920 PTR ptr = meet_ptr(tp->ptr());
aoqi@0 3921 switch (tp->ptr()) {
aoqi@0 3922 case TopPTR:
aoqi@0 3923 return this;
aoqi@0 3924 case BotPTR:
aoqi@0 3925 case NotNull:
aoqi@0 3926 return TypePtr::make(AnyPtr, ptr, offset);
aoqi@0 3927 case Null:
aoqi@0 3928 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
aoqi@0 3929 // else fall through to AnyNull
aoqi@0 3930 case AnyNull: {
aoqi@0 3931 int instance_id = meet_instance_id(InstanceTop);
aoqi@0 3932 const TypeOopPtr* speculative = _speculative;
aoqi@0 3933 return make(ptr, (ptr == Constant ? const_oop() : NULL),
aoqi@0 3934 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, _inline_depth);
aoqi@0 3935 }
aoqi@0 3936 default: ShouldNotReachHere();
aoqi@0 3937 }
aoqi@0 3938 }
aoqi@0 3939
aoqi@0 3940 case MetadataPtr:
aoqi@0 3941 case KlassPtr:
aoqi@0 3942 case RawPtr: return TypePtr::BOTTOM;
aoqi@0 3943
aoqi@0 3944 case AryPtr: { // Meeting 2 references?
aoqi@0 3945 const TypeAryPtr *tap = t->is_aryptr();
aoqi@0 3946 int off = meet_offset(tap->offset());
aoqi@0 3947 const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
aoqi@0 3948 PTR ptr = meet_ptr(tap->ptr());
aoqi@0 3949 int instance_id = meet_instance_id(tap->instance_id());
aoqi@0 3950 const TypeOopPtr* speculative = xmeet_speculative(tap);
aoqi@0 3951 int depth = meet_inline_depth(tap->inline_depth());
aoqi@0 3952 ciKlass* lazy_klass = NULL;
aoqi@0 3953 if (tary->_elem->isa_int()) {
aoqi@0 3954 // Integral array element types have irrelevant lattice relations.
aoqi@0 3955 // It is the klass that determines array layout, not the element type.
aoqi@0 3956 if (_klass == NULL)
aoqi@0 3957 lazy_klass = tap->_klass;
aoqi@0 3958 else if (tap->_klass == NULL || tap->_klass == _klass) {
aoqi@0 3959 lazy_klass = _klass;
aoqi@0 3960 } else {
aoqi@0 3961 // Something like byte[int+] meets char[int+].
aoqi@0 3962 // This must fall to bottom, not (int[-128..65535])[int+].
aoqi@0 3963 instance_id = InstanceBot;
aoqi@0 3964 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
aoqi@0 3965 }
aoqi@0 3966 } else // Non integral arrays.
aoqi@0 3967 // Must fall to bottom if exact klasses in upper lattice
aoqi@0 3968 // are not equal or super klass is exact.
aoqi@0 3969 if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
aoqi@0 3970 // meet with top[] and bottom[] are processed further down:
aoqi@0 3971 tap->_klass != NULL && this->_klass != NULL &&
aoqi@0 3972 // both are exact and not equal:
aoqi@0 3973 ((tap->_klass_is_exact && this->_klass_is_exact) ||
aoqi@0 3974 // 'tap' is exact and super or unrelated:
aoqi@0 3975 (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
aoqi@0 3976 // 'this' is exact and super or unrelated:
aoqi@0 3977 (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
roland@7693 3978 if (above_centerline(ptr)) {
roland@7693 3979 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
roland@7693 3980 }
aoqi@0 3981 return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
aoqi@0 3982 }
aoqi@0 3983
aoqi@0 3984 bool xk = false;
aoqi@0 3985 switch (tap->ptr()) {
aoqi@0 3986 case AnyNull:
aoqi@0 3987 case TopPTR:
aoqi@0 3988 // Compute new klass on demand, do not use tap->_klass
aoqi@0 3989 if (below_centerline(this->_ptr)) {
aoqi@0 3990 xk = this->_klass_is_exact;
aoqi@0 3991 } else {
aoqi@0 3992 xk = (tap->_klass_is_exact | this->_klass_is_exact);
aoqi@0 3993 }
aoqi@0 3994 return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
aoqi@0 3995 case Constant: {
aoqi@0 3996 ciObject* o = const_oop();
aoqi@0 3997 if( _ptr == Constant ) {
aoqi@0 3998 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
aoqi@0 3999 xk = (klass() == tap->klass());
aoqi@0 4000 ptr = NotNull;
aoqi@0 4001 o = NULL;
aoqi@0 4002 instance_id = InstanceBot;
aoqi@0 4003 } else {
aoqi@0 4004 xk = true;
aoqi@0 4005 }
aoqi@0 4006 } else if(above_centerline(_ptr)) {
aoqi@0 4007 o = tap->const_oop();
aoqi@0 4008 xk = true;
aoqi@0 4009 } else {
aoqi@0 4010 // Only precise for identical arrays
aoqi@0 4011 xk = this->_klass_is_exact && (klass() == tap->klass());
aoqi@0 4012 }
aoqi@0 4013 return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
aoqi@0 4014 }
aoqi@0 4015 case NotNull:
aoqi@0 4016 case BotPTR:
aoqi@0 4017 // Compute new klass on demand, do not use tap->_klass
aoqi@0 4018 if (above_centerline(this->_ptr))
aoqi@0 4019 xk = tap->_klass_is_exact;
aoqi@0 4020 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
aoqi@0 4021 (klass() == tap->klass()); // Only precise for identical arrays
aoqi@0 4022 return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
aoqi@0 4023 default: ShouldNotReachHere();
aoqi@0 4024 }
aoqi@0 4025 }
aoqi@0 4026
aoqi@0 4027 // All arrays inherit from Object class
aoqi@0 4028 case InstPtr: {
aoqi@0 4029 const TypeInstPtr *tp = t->is_instptr();
aoqi@0 4030 int offset = meet_offset(tp->offset());
aoqi@0 4031 PTR ptr = meet_ptr(tp->ptr());
aoqi@0 4032 int instance_id = meet_instance_id(tp->instance_id());
aoqi@0 4033 const TypeOopPtr* speculative = xmeet_speculative(tp);
aoqi@0 4034 int depth = meet_inline_depth(tp->inline_depth());
aoqi@0 4035 switch (ptr) {
aoqi@0 4036 case TopPTR:
aoqi@0 4037 case AnyNull: // Fall 'down' to dual of object klass
aoqi@0 4038 // For instances when a subclass meets a superclass we fall
aoqi@0 4039 // below the centerline when the superclass is exact. We need to
aoqi@0 4040 // do the same here.
aoqi@0 4041 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
aoqi@0 4042 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
aoqi@0 4043 } else {
aoqi@0 4044 // cannot subclass, so the meet has to fall badly below the centerline
aoqi@0 4045 ptr = NotNull;
aoqi@0 4046 instance_id = InstanceBot;
aoqi@0 4047 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
aoqi@0 4048 }
aoqi@0 4049 case Constant:
aoqi@0 4050 case NotNull:
aoqi@0 4051 case BotPTR: // Fall down to object klass
aoqi@0 4052 // LCA is object_klass, but if we subclass from the top we can do better
aoqi@0 4053 if (above_centerline(tp->ptr())) {
aoqi@0 4054 // If 'tp' is above the centerline and it is Object class
aoqi@0 4055 // then we can subclass in the Java class hierarchy.
aoqi@0 4056 // For instances when a subclass meets a superclass we fall
aoqi@0 4057 // below the centerline when the superclass is exact. We need
aoqi@0 4058 // to do the same here.
aoqi@0 4059 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
aoqi@0 4060 // that is, my array type is a subtype of 'tp' klass
aoqi@0 4061 return make(ptr, (ptr == Constant ? const_oop() : NULL),
aoqi@0 4062 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
aoqi@0 4063 }
aoqi@0 4064 }
aoqi@0 4065 // The other case cannot happen, since t cannot be a subtype of an array.
aoqi@0 4066 // The meet falls down to Object class below centerline.
aoqi@0 4067 if( ptr == Constant )
aoqi@0 4068 ptr = NotNull;
aoqi@0 4069 instance_id = InstanceBot;
aoqi@0 4070 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
aoqi@0 4071 default: typerr(t);
aoqi@0 4072 }
aoqi@0 4073 }
aoqi@0 4074 }
aoqi@0 4075 return this; // Lint noise
aoqi@0 4076 }
aoqi@0 4077
aoqi@0 4078 //------------------------------xdual------------------------------------------
aoqi@0 4079 // Dual: compute field-by-field dual
aoqi@0 4080 const Type *TypeAryPtr::xdual() const {
aoqi@0 4081 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
aoqi@0 4082 }
aoqi@0 4083
aoqi@0 4084 //----------------------interface_vs_oop---------------------------------------
aoqi@0 4085 #ifdef ASSERT
aoqi@0 4086 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
aoqi@0 4087 const TypeAryPtr* t_aryptr = t->isa_aryptr();
aoqi@0 4088 if (t_aryptr) {
aoqi@0 4089 return _ary->interface_vs_oop(t_aryptr->_ary);
aoqi@0 4090 }
aoqi@0 4091 return false;
aoqi@0 4092 }
aoqi@0 4093 #endif
aoqi@0 4094
aoqi@0 4095 //------------------------------dump2------------------------------------------
aoqi@0 4096 #ifndef PRODUCT
aoqi@0 4097 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 4098 _ary->dump2(d,depth,st);
aoqi@0 4099 switch( _ptr ) {
aoqi@0 4100 case Constant:
aoqi@0 4101 const_oop()->print(st);
aoqi@0 4102 break;
aoqi@0 4103 case BotPTR:
aoqi@0 4104 if (!WizardMode && !Verbose) {
aoqi@0 4105 if( _klass_is_exact ) st->print(":exact");
aoqi@0 4106 break;
aoqi@0 4107 }
aoqi@0 4108 case TopPTR:
aoqi@0 4109 case AnyNull:
aoqi@0 4110 case NotNull:
aoqi@0 4111 st->print(":%s", ptr_msg[_ptr]);
aoqi@0 4112 if( _klass_is_exact ) st->print(":exact");
aoqi@0 4113 break;
aoqi@0 4114 }
aoqi@0 4115
aoqi@0 4116 if( _offset != 0 ) {
aoqi@0 4117 int header_size = objArrayOopDesc::header_size() * wordSize;
aoqi@0 4118 if( _offset == OffsetTop ) st->print("+undefined");
aoqi@0 4119 else if( _offset == OffsetBot ) st->print("+any");
aoqi@0 4120 else if( _offset < header_size ) st->print("+%d", _offset);
aoqi@0 4121 else {
aoqi@0 4122 BasicType basic_elem_type = elem()->basic_type();
aoqi@0 4123 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
aoqi@0 4124 int elem_size = type2aelembytes(basic_elem_type);
aoqi@0 4125 st->print("[%d]", (_offset - array_base)/elem_size);
aoqi@0 4126 }
aoqi@0 4127 }
aoqi@0 4128 st->print(" *");
aoqi@0 4129 if (_instance_id == InstanceTop)
aoqi@0 4130 st->print(",iid=top");
aoqi@0 4131 else if (_instance_id != InstanceBot)
aoqi@0 4132 st->print(",iid=%d",_instance_id);
aoqi@0 4133
aoqi@0 4134 dump_inline_depth(st);
aoqi@0 4135 dump_speculative(st);
aoqi@0 4136 }
aoqi@0 4137 #endif
aoqi@0 4138
aoqi@0 4139 bool TypeAryPtr::empty(void) const {
aoqi@0 4140 if (_ary->empty()) return true;
aoqi@0 4141 return TypeOopPtr::empty();
aoqi@0 4142 }
aoqi@0 4143
aoqi@0 4144 //------------------------------add_offset-------------------------------------
aoqi@0 4145 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
aoqi@0 4146 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
aoqi@0 4147 }
aoqi@0 4148
aoqi@0 4149 const Type *TypeAryPtr::remove_speculative() const {
aoqi@0 4150 if (_speculative == NULL) {
aoqi@0 4151 return this;
aoqi@0 4152 }
aoqi@0 4153 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
aoqi@0 4154 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
aoqi@0 4155 }
aoqi@0 4156
aoqi@0 4157 const TypeOopPtr *TypeAryPtr::with_inline_depth(int depth) const {
aoqi@0 4158 if (!UseInlineDepthForSpeculativeTypes) {
aoqi@0 4159 return this;
aoqi@0 4160 }
aoqi@0 4161 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
aoqi@0 4162 }
aoqi@0 4163
aoqi@0 4164 //=============================================================================
aoqi@0 4165
aoqi@0 4166 //------------------------------hash-------------------------------------------
aoqi@0 4167 // Type-specific hashing function.
aoqi@0 4168 int TypeNarrowPtr::hash(void) const {
aoqi@0 4169 return _ptrtype->hash() + 7;
aoqi@0 4170 }
aoqi@0 4171
aoqi@0 4172 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton
aoqi@0 4173 return _ptrtype->singleton();
aoqi@0 4174 }
aoqi@0 4175
aoqi@0 4176 bool TypeNarrowPtr::empty(void) const {
aoqi@0 4177 return _ptrtype->empty();
aoqi@0 4178 }
aoqi@0 4179
aoqi@0 4180 intptr_t TypeNarrowPtr::get_con() const {
aoqi@0 4181 return _ptrtype->get_con();
aoqi@0 4182 }
aoqi@0 4183
aoqi@0 4184 bool TypeNarrowPtr::eq( const Type *t ) const {
aoqi@0 4185 const TypeNarrowPtr* tc = isa_same_narrowptr(t);
aoqi@0 4186 if (tc != NULL) {
aoqi@0 4187 if (_ptrtype->base() != tc->_ptrtype->base()) {
aoqi@0 4188 return false;
aoqi@0 4189 }
aoqi@0 4190 return tc->_ptrtype->eq(_ptrtype);
aoqi@0 4191 }
aoqi@0 4192 return false;
aoqi@0 4193 }
aoqi@0 4194
aoqi@0 4195 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now.
aoqi@0 4196 const TypePtr* odual = _ptrtype->dual()->is_ptr();
aoqi@0 4197 return make_same_narrowptr(odual);
aoqi@0 4198 }
aoqi@0 4199
aoqi@0 4200
aoqi@0 4201 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
aoqi@0 4202 if (isa_same_narrowptr(kills)) {
aoqi@0 4203 const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
aoqi@0 4204 if (ft->empty())
aoqi@0 4205 return Type::TOP; // Canonical empty value
aoqi@0 4206 if (ft->isa_ptr()) {
aoqi@0 4207 return make_hash_same_narrowptr(ft->isa_ptr());
aoqi@0 4208 }
aoqi@0 4209 return ft;
aoqi@0 4210 } else if (kills->isa_ptr()) {
aoqi@0 4211 const Type* ft = _ptrtype->join_helper(kills, include_speculative);
aoqi@0 4212 if (ft->empty())
aoqi@0 4213 return Type::TOP; // Canonical empty value
aoqi@0 4214 return ft;
aoqi@0 4215 } else {
aoqi@0 4216 return Type::TOP;
aoqi@0 4217 }
aoqi@0 4218 }
aoqi@0 4219
aoqi@0 4220 //------------------------------xmeet------------------------------------------
aoqi@0 4221 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 4222 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
aoqi@0 4223 // Perform a fast test for common case; meeting the same types together.
aoqi@0 4224 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 4225
aoqi@0 4226 if (t->base() == base()) {
aoqi@0 4227 const Type* result = _ptrtype->xmeet(t->make_ptr());
aoqi@0 4228 if (result->isa_ptr()) {
aoqi@0 4229 return make_hash_same_narrowptr(result->is_ptr());
aoqi@0 4230 }
aoqi@0 4231 return result;
aoqi@0 4232 }
aoqi@0 4233
aoqi@0 4234 // Current "this->_base" is NarrowKlass or NarrowOop
aoqi@0 4235 switch (t->base()) { // switch on original type
aoqi@0 4236
aoqi@0 4237 case Int: // Mixing ints & oops happens when javac
aoqi@0 4238 case Long: // reuses local variables
aoqi@0 4239 case FloatTop:
aoqi@0 4240 case FloatCon:
aoqi@0 4241 case FloatBot:
aoqi@0 4242 case DoubleTop:
aoqi@0 4243 case DoubleCon:
aoqi@0 4244 case DoubleBot:
aoqi@0 4245 case AnyPtr:
aoqi@0 4246 case RawPtr:
aoqi@0 4247 case OopPtr:
aoqi@0 4248 case InstPtr:
aoqi@0 4249 case AryPtr:
aoqi@0 4250 case MetadataPtr:
aoqi@0 4251 case KlassPtr:
aoqi@0 4252 case NarrowOop:
aoqi@0 4253 case NarrowKlass:
aoqi@0 4254
aoqi@0 4255 case Bottom: // Ye Olde Default
aoqi@0 4256 return Type::BOTTOM;
aoqi@0 4257 case Top:
aoqi@0 4258 return this;
aoqi@0 4259
aoqi@0 4260 default: // All else is a mistake
aoqi@0 4261 typerr(t);
aoqi@0 4262
aoqi@0 4263 } // End of switch
aoqi@0 4264
aoqi@0 4265 return this;
aoqi@0 4266 }
aoqi@0 4267
aoqi@0 4268 #ifndef PRODUCT
aoqi@0 4269 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
aoqi@0 4270 _ptrtype->dump2(d, depth, st);
aoqi@0 4271 }
aoqi@0 4272 #endif
aoqi@0 4273
aoqi@0 4274 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
aoqi@0 4275 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
aoqi@0 4276
aoqi@0 4277
aoqi@0 4278 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
aoqi@0 4279 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
aoqi@0 4280 }
aoqi@0 4281
aoqi@0 4282
aoqi@0 4283 #ifndef PRODUCT
aoqi@0 4284 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
aoqi@0 4285 st->print("narrowoop: ");
aoqi@0 4286 TypeNarrowPtr::dump2(d, depth, st);
aoqi@0 4287 }
aoqi@0 4288 #endif
aoqi@0 4289
aoqi@0 4290 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
aoqi@0 4291
aoqi@0 4292 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
aoqi@0 4293 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
aoqi@0 4294 }
aoqi@0 4295
aoqi@0 4296 #ifndef PRODUCT
aoqi@0 4297 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
aoqi@0 4298 st->print("narrowklass: ");
aoqi@0 4299 TypeNarrowPtr::dump2(d, depth, st);
aoqi@0 4300 }
aoqi@0 4301 #endif
aoqi@0 4302
aoqi@0 4303
aoqi@0 4304 //------------------------------eq---------------------------------------------
aoqi@0 4305 // Structural equality check for Type representations
aoqi@0 4306 bool TypeMetadataPtr::eq( const Type *t ) const {
aoqi@0 4307 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
aoqi@0 4308 ciMetadata* one = metadata();
aoqi@0 4309 ciMetadata* two = a->metadata();
aoqi@0 4310 if (one == NULL || two == NULL) {
aoqi@0 4311 return (one == two) && TypePtr::eq(t);
aoqi@0 4312 } else {
aoqi@0 4313 return one->equals(two) && TypePtr::eq(t);
aoqi@0 4314 }
aoqi@0 4315 }
aoqi@0 4316
aoqi@0 4317 //------------------------------hash-------------------------------------------
aoqi@0 4318 // Type-specific hashing function.
aoqi@0 4319 int TypeMetadataPtr::hash(void) const {
aoqi@0 4320 return
aoqi@0 4321 (metadata() ? metadata()->hash() : 0) +
aoqi@0 4322 TypePtr::hash();
aoqi@0 4323 }
aoqi@0 4324
aoqi@0 4325 //------------------------------singleton--------------------------------------
aoqi@0 4326 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 4327 // constants
aoqi@0 4328 bool TypeMetadataPtr::singleton(void) const {
aoqi@0 4329 // detune optimizer to not generate constant metadta + constant offset as a constant!
aoqi@0 4330 // TopPTR, Null, AnyNull, Constant are all singletons
aoqi@0 4331 return (_offset == 0) && !below_centerline(_ptr);
aoqi@0 4332 }
aoqi@0 4333
aoqi@0 4334 //------------------------------add_offset-------------------------------------
aoqi@0 4335 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
aoqi@0 4336 return make( _ptr, _metadata, xadd_offset(offset));
aoqi@0 4337 }
aoqi@0 4338
aoqi@0 4339 //-----------------------------filter------------------------------------------
aoqi@0 4340 // Do not allow interface-vs.-noninterface joins to collapse to top.
aoqi@0 4341 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
aoqi@0 4342 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
aoqi@0 4343 if (ft == NULL || ft->empty())
aoqi@0 4344 return Type::TOP; // Canonical empty value
aoqi@0 4345 return ft;
aoqi@0 4346 }
aoqi@0 4347
aoqi@0 4348 //------------------------------get_con----------------------------------------
aoqi@0 4349 intptr_t TypeMetadataPtr::get_con() const {
aoqi@0 4350 assert( _ptr == Null || _ptr == Constant, "" );
aoqi@0 4351 assert( _offset >= 0, "" );
aoqi@0 4352
aoqi@0 4353 if (_offset != 0) {
aoqi@0 4354 // After being ported to the compiler interface, the compiler no longer
aoqi@0 4355 // directly manipulates the addresses of oops. Rather, it only has a pointer
aoqi@0 4356 // to a handle at compile time. This handle is embedded in the generated
aoqi@0 4357 // code and dereferenced at the time the nmethod is made. Until that time,
aoqi@0 4358 // it is not reasonable to do arithmetic with the addresses of oops (we don't
aoqi@0 4359 // have access to the addresses!). This does not seem to currently happen,
aoqi@0 4360 // but this assertion here is to help prevent its occurence.
aoqi@0 4361 tty->print_cr("Found oop constant with non-zero offset");
aoqi@0 4362 ShouldNotReachHere();
aoqi@0 4363 }
aoqi@0 4364
aoqi@0 4365 return (intptr_t)metadata()->constant_encoding();
aoqi@0 4366 }
aoqi@0 4367
aoqi@0 4368 //------------------------------cast_to_ptr_type-------------------------------
aoqi@0 4369 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
aoqi@0 4370 if( ptr == _ptr ) return this;
aoqi@0 4371 return make(ptr, metadata(), _offset);
aoqi@0 4372 }
aoqi@0 4373
aoqi@0 4374 //------------------------------meet-------------------------------------------
aoqi@0 4375 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 4376 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
aoqi@0 4377 // Perform a fast test for common case; meeting the same types together.
aoqi@0 4378 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 4379
aoqi@0 4380 // Current "this->_base" is OopPtr
aoqi@0 4381 switch (t->base()) { // switch on original type
aoqi@0 4382
aoqi@0 4383 case Int: // Mixing ints & oops happens when javac
aoqi@0 4384 case Long: // reuses local variables
aoqi@0 4385 case FloatTop:
aoqi@0 4386 case FloatCon:
aoqi@0 4387 case FloatBot:
aoqi@0 4388 case DoubleTop:
aoqi@0 4389 case DoubleCon:
aoqi@0 4390 case DoubleBot:
aoqi@0 4391 case NarrowOop:
aoqi@0 4392 case NarrowKlass:
aoqi@0 4393 case Bottom: // Ye Olde Default
aoqi@0 4394 return Type::BOTTOM;
aoqi@0 4395 case Top:
aoqi@0 4396 return this;
aoqi@0 4397
aoqi@0 4398 default: // All else is a mistake
aoqi@0 4399 typerr(t);
aoqi@0 4400
aoqi@0 4401 case AnyPtr: {
aoqi@0 4402 // Found an AnyPtr type vs self-OopPtr type
aoqi@0 4403 const TypePtr *tp = t->is_ptr();
aoqi@0 4404 int offset = meet_offset(tp->offset());
aoqi@0 4405 PTR ptr = meet_ptr(tp->ptr());
aoqi@0 4406 switch (tp->ptr()) {
aoqi@0 4407 case Null:
aoqi@0 4408 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
aoqi@0 4409 // else fall through:
aoqi@0 4410 case TopPTR:
aoqi@0 4411 case AnyNull: {
aoqi@0 4412 return make(ptr, _metadata, offset);
aoqi@0 4413 }
aoqi@0 4414 case BotPTR:
aoqi@0 4415 case NotNull:
aoqi@0 4416 return TypePtr::make(AnyPtr, ptr, offset);
aoqi@0 4417 default: typerr(t);
aoqi@0 4418 }
aoqi@0 4419 }
aoqi@0 4420
aoqi@0 4421 case RawPtr:
aoqi@0 4422 case KlassPtr:
aoqi@0 4423 case OopPtr:
aoqi@0 4424 case InstPtr:
aoqi@0 4425 case AryPtr:
aoqi@0 4426 return TypePtr::BOTTOM; // Oop meet raw is not well defined
aoqi@0 4427
aoqi@0 4428 case MetadataPtr: {
aoqi@0 4429 const TypeMetadataPtr *tp = t->is_metadataptr();
aoqi@0 4430 int offset = meet_offset(tp->offset());
aoqi@0 4431 PTR tptr = tp->ptr();
aoqi@0 4432 PTR ptr = meet_ptr(tptr);
aoqi@0 4433 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
aoqi@0 4434 if (tptr == TopPTR || _ptr == TopPTR ||
aoqi@0 4435 metadata()->equals(tp->metadata())) {
aoqi@0 4436 return make(ptr, md, offset);
aoqi@0 4437 }
aoqi@0 4438 // metadata is different
aoqi@0 4439 if( ptr == Constant ) { // Cannot be equal constants, so...
aoqi@0 4440 if( tptr == Constant && _ptr != Constant) return t;
aoqi@0 4441 if( _ptr == Constant && tptr != Constant) return this;
aoqi@0 4442 ptr = NotNull; // Fall down in lattice
aoqi@0 4443 }
aoqi@0 4444 return make(ptr, NULL, offset);
aoqi@0 4445 break;
aoqi@0 4446 }
aoqi@0 4447 } // End of switch
aoqi@0 4448 return this; // Return the double constant
aoqi@0 4449 }
aoqi@0 4450
aoqi@0 4451
aoqi@0 4452 //------------------------------xdual------------------------------------------
aoqi@0 4453 // Dual of a pure metadata pointer.
aoqi@0 4454 const Type *TypeMetadataPtr::xdual() const {
aoqi@0 4455 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
aoqi@0 4456 }
aoqi@0 4457
aoqi@0 4458 //------------------------------dump2------------------------------------------
aoqi@0 4459 #ifndef PRODUCT
aoqi@0 4460 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 4461 st->print("metadataptr:%s", ptr_msg[_ptr]);
aoqi@0 4462 if( metadata() ) st->print(INTPTR_FORMAT, metadata());
aoqi@0 4463 switch( _offset ) {
aoqi@0 4464 case OffsetTop: st->print("+top"); break;
aoqi@0 4465 case OffsetBot: st->print("+any"); break;
aoqi@0 4466 case 0: break;
aoqi@0 4467 default: st->print("+%d",_offset); break;
aoqi@0 4468 }
aoqi@0 4469 }
aoqi@0 4470 #endif
aoqi@0 4471
aoqi@0 4472
aoqi@0 4473 //=============================================================================
aoqi@0 4474 // Convenience common pre-built type.
aoqi@0 4475 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
aoqi@0 4476
aoqi@0 4477 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
aoqi@0 4478 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
aoqi@0 4479 }
aoqi@0 4480
aoqi@0 4481 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
aoqi@0 4482 return make(Constant, m, 0);
aoqi@0 4483 }
aoqi@0 4484 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
aoqi@0 4485 return make(Constant, m, 0);
aoqi@0 4486 }
aoqi@0 4487
aoqi@0 4488 //------------------------------make-------------------------------------------
aoqi@0 4489 // Create a meta data constant
aoqi@0 4490 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
aoqi@0 4491 assert(m == NULL || !m->is_klass(), "wrong type");
aoqi@0 4492 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
aoqi@0 4493 }
aoqi@0 4494
aoqi@0 4495
aoqi@0 4496 //=============================================================================
aoqi@0 4497 // Convenience common pre-built types.
aoqi@0 4498
aoqi@0 4499 // Not-null object klass or below
aoqi@0 4500 const TypeKlassPtr *TypeKlassPtr::OBJECT;
aoqi@0 4501 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
aoqi@0 4502
aoqi@0 4503 //------------------------------TypeKlassPtr-----------------------------------
aoqi@0 4504 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
aoqi@0 4505 : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
aoqi@0 4506 }
aoqi@0 4507
aoqi@0 4508 //------------------------------make-------------------------------------------
aoqi@0 4509 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
aoqi@0 4510 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
aoqi@0 4511 assert( k != NULL, "Expect a non-NULL klass");
aoqi@0 4512 assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
aoqi@0 4513 TypeKlassPtr *r =
aoqi@0 4514 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
aoqi@0 4515
aoqi@0 4516 return r;
aoqi@0 4517 }
aoqi@0 4518
aoqi@0 4519 //------------------------------eq---------------------------------------------
aoqi@0 4520 // Structural equality check for Type representations
aoqi@0 4521 bool TypeKlassPtr::eq( const Type *t ) const {
aoqi@0 4522 const TypeKlassPtr *p = t->is_klassptr();
aoqi@0 4523 return
aoqi@0 4524 klass()->equals(p->klass()) &&
aoqi@0 4525 TypePtr::eq(p);
aoqi@0 4526 }
aoqi@0 4527
aoqi@0 4528 //------------------------------hash-------------------------------------------
aoqi@0 4529 // Type-specific hashing function.
aoqi@0 4530 int TypeKlassPtr::hash(void) const {
aoqi@0 4531 return klass()->hash() + TypePtr::hash();
aoqi@0 4532 }
aoqi@0 4533
aoqi@0 4534 //------------------------------singleton--------------------------------------
aoqi@0 4535 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 4536 // constants
aoqi@0 4537 bool TypeKlassPtr::singleton(void) const {
aoqi@0 4538 // detune optimizer to not generate constant klass + constant offset as a constant!
aoqi@0 4539 // TopPTR, Null, AnyNull, Constant are all singletons
aoqi@0 4540 return (_offset == 0) && !below_centerline(_ptr);
aoqi@0 4541 }
aoqi@0 4542
aoqi@0 4543 // Do not allow interface-vs.-noninterface joins to collapse to top.
aoqi@0 4544 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
aoqi@0 4545 // logic here mirrors the one from TypeOopPtr::filter. See comments
aoqi@0 4546 // there.
aoqi@0 4547 const Type* ft = join_helper(kills, include_speculative);
aoqi@0 4548 const TypeKlassPtr* ftkp = ft->isa_klassptr();
aoqi@0 4549 const TypeKlassPtr* ktkp = kills->isa_klassptr();
aoqi@0 4550
aoqi@0 4551 if (ft->empty()) {
aoqi@0 4552 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
aoqi@0 4553 return kills; // Uplift to interface
aoqi@0 4554
aoqi@0 4555 return Type::TOP; // Canonical empty value
aoqi@0 4556 }
aoqi@0 4557
aoqi@0 4558 // Interface klass type could be exact in opposite to interface type,
aoqi@0 4559 // return it here instead of incorrect Constant ptr J/L/Object (6894807).
aoqi@0 4560 if (ftkp != NULL && ktkp != NULL &&
aoqi@0 4561 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
aoqi@0 4562 !ftkp->klass_is_exact() && // Keep exact interface klass
aoqi@0 4563 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
aoqi@0 4564 return ktkp->cast_to_ptr_type(ftkp->ptr());
aoqi@0 4565 }
aoqi@0 4566
aoqi@0 4567 return ft;
aoqi@0 4568 }
aoqi@0 4569
aoqi@0 4570 //----------------------compute_klass------------------------------------------
aoqi@0 4571 // Compute the defining klass for this class
aoqi@0 4572 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
aoqi@0 4573 // Compute _klass based on element type.
aoqi@0 4574 ciKlass* k_ary = NULL;
aoqi@0 4575 const TypeInstPtr *tinst;
aoqi@0 4576 const TypeAryPtr *tary;
aoqi@0 4577 const Type* el = elem();
aoqi@0 4578 if (el->isa_narrowoop()) {
aoqi@0 4579 el = el->make_ptr();
aoqi@0 4580 }
aoqi@0 4581
aoqi@0 4582 // Get element klass
aoqi@0 4583 if ((tinst = el->isa_instptr()) != NULL) {
aoqi@0 4584 // Compute array klass from element klass
aoqi@0 4585 k_ary = ciObjArrayKlass::make(tinst->klass());
aoqi@0 4586 } else if ((tary = el->isa_aryptr()) != NULL) {
aoqi@0 4587 // Compute array klass from element klass
aoqi@0 4588 ciKlass* k_elem = tary->klass();
aoqi@0 4589 // If element type is something like bottom[], k_elem will be null.
aoqi@0 4590 if (k_elem != NULL)
aoqi@0 4591 k_ary = ciObjArrayKlass::make(k_elem);
aoqi@0 4592 } else if ((el->base() == Type::Top) ||
aoqi@0 4593 (el->base() == Type::Bottom)) {
aoqi@0 4594 // element type of Bottom occurs from meet of basic type
aoqi@0 4595 // and object; Top occurs when doing join on Bottom.
aoqi@0 4596 // Leave k_ary at NULL.
aoqi@0 4597 } else {
aoqi@0 4598 // Cannot compute array klass directly from basic type,
aoqi@0 4599 // since subtypes of TypeInt all have basic type T_INT.
aoqi@0 4600 #ifdef ASSERT
aoqi@0 4601 if (verify && el->isa_int()) {
aoqi@0 4602 // Check simple cases when verifying klass.
aoqi@0 4603 BasicType bt = T_ILLEGAL;
aoqi@0 4604 if (el == TypeInt::BYTE) {
aoqi@0 4605 bt = T_BYTE;
aoqi@0 4606 } else if (el == TypeInt::SHORT) {
aoqi@0 4607 bt = T_SHORT;
aoqi@0 4608 } else if (el == TypeInt::CHAR) {
aoqi@0 4609 bt = T_CHAR;
aoqi@0 4610 } else if (el == TypeInt::INT) {
aoqi@0 4611 bt = T_INT;
aoqi@0 4612 } else {
aoqi@0 4613 return _klass; // just return specified klass
aoqi@0 4614 }
aoqi@0 4615 return ciTypeArrayKlass::make(bt);
aoqi@0 4616 }
aoqi@0 4617 #endif
aoqi@0 4618 assert(!el->isa_int(),
aoqi@0 4619 "integral arrays must be pre-equipped with a class");
aoqi@0 4620 // Compute array klass directly from basic type
aoqi@0 4621 k_ary = ciTypeArrayKlass::make(el->basic_type());
aoqi@0 4622 }
aoqi@0 4623 return k_ary;
aoqi@0 4624 }
aoqi@0 4625
aoqi@0 4626 //------------------------------klass------------------------------------------
aoqi@0 4627 // Return the defining klass for this class
aoqi@0 4628 ciKlass* TypeAryPtr::klass() const {
aoqi@0 4629 if( _klass ) return _klass; // Return cached value, if possible
aoqi@0 4630
aoqi@0 4631 // Oops, need to compute _klass and cache it
aoqi@0 4632 ciKlass* k_ary = compute_klass();
aoqi@0 4633
aoqi@0 4634 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
aoqi@0 4635 // The _klass field acts as a cache of the underlying
aoqi@0 4636 // ciKlass for this array type. In order to set the field,
aoqi@0 4637 // we need to cast away const-ness.
aoqi@0 4638 //
aoqi@0 4639 // IMPORTANT NOTE: we *never* set the _klass field for the
aoqi@0 4640 // type TypeAryPtr::OOPS. This Type is shared between all
aoqi@0 4641 // active compilations. However, the ciKlass which represents
aoqi@0 4642 // this Type is *not* shared between compilations, so caching
aoqi@0 4643 // this value would result in fetching a dangling pointer.
aoqi@0 4644 //
aoqi@0 4645 // Recomputing the underlying ciKlass for each request is
aoqi@0 4646 // a bit less efficient than caching, but calls to
aoqi@0 4647 // TypeAryPtr::OOPS->klass() are not common enough to matter.
aoqi@0 4648 ((TypeAryPtr*)this)->_klass = k_ary;
aoqi@0 4649 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
aoqi@0 4650 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
aoqi@0 4651 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
aoqi@0 4652 }
aoqi@0 4653 }
aoqi@0 4654 return k_ary;
aoqi@0 4655 }
aoqi@0 4656
aoqi@0 4657
aoqi@0 4658 //------------------------------add_offset-------------------------------------
aoqi@0 4659 // Access internals of klass object
aoqi@0 4660 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
aoqi@0 4661 return make( _ptr, klass(), xadd_offset(offset) );
aoqi@0 4662 }
aoqi@0 4663
aoqi@0 4664 //------------------------------cast_to_ptr_type-------------------------------
aoqi@0 4665 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
aoqi@0 4666 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
aoqi@0 4667 if( ptr == _ptr ) return this;
aoqi@0 4668 return make(ptr, _klass, _offset);
aoqi@0 4669 }
aoqi@0 4670
aoqi@0 4671
aoqi@0 4672 //-----------------------------cast_to_exactness-------------------------------
aoqi@0 4673 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
aoqi@0 4674 if( klass_is_exact == _klass_is_exact ) return this;
aoqi@0 4675 if (!UseExactTypes) return this;
aoqi@0 4676 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
aoqi@0 4677 }
aoqi@0 4678
aoqi@0 4679
aoqi@0 4680 //-----------------------------as_instance_type--------------------------------
aoqi@0 4681 // Corresponding type for an instance of the given class.
aoqi@0 4682 // It will be NotNull, and exact if and only if the klass type is exact.
aoqi@0 4683 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
aoqi@0 4684 ciKlass* k = klass();
aoqi@0 4685 bool xk = klass_is_exact();
aoqi@0 4686 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
aoqi@0 4687 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
aoqi@0 4688 guarantee(toop != NULL, "need type for given klass");
aoqi@0 4689 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
aoqi@0 4690 return toop->cast_to_exactness(xk)->is_oopptr();
aoqi@0 4691 }
aoqi@0 4692
aoqi@0 4693
aoqi@0 4694 //------------------------------xmeet------------------------------------------
aoqi@0 4695 // Compute the MEET of two types, return a new Type object.
aoqi@0 4696 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
aoqi@0 4697 // Perform a fast test for common case; meeting the same types together.
aoqi@0 4698 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 4699
aoqi@0 4700 // Current "this->_base" is Pointer
aoqi@0 4701 switch (t->base()) { // switch on original type
aoqi@0 4702
aoqi@0 4703 case Int: // Mixing ints & oops happens when javac
aoqi@0 4704 case Long: // reuses local variables
aoqi@0 4705 case FloatTop:
aoqi@0 4706 case FloatCon:
aoqi@0 4707 case FloatBot:
aoqi@0 4708 case DoubleTop:
aoqi@0 4709 case DoubleCon:
aoqi@0 4710 case DoubleBot:
aoqi@0 4711 case NarrowOop:
aoqi@0 4712 case NarrowKlass:
aoqi@0 4713 case Bottom: // Ye Olde Default
aoqi@0 4714 return Type::BOTTOM;
aoqi@0 4715 case Top:
aoqi@0 4716 return this;
aoqi@0 4717
aoqi@0 4718 default: // All else is a mistake
aoqi@0 4719 typerr(t);
aoqi@0 4720
aoqi@0 4721 case AnyPtr: { // Meeting to AnyPtrs
aoqi@0 4722 // Found an AnyPtr type vs self-KlassPtr type
aoqi@0 4723 const TypePtr *tp = t->is_ptr();
aoqi@0 4724 int offset = meet_offset(tp->offset());
aoqi@0 4725 PTR ptr = meet_ptr(tp->ptr());
aoqi@0 4726 switch (tp->ptr()) {
aoqi@0 4727 case TopPTR:
aoqi@0 4728 return this;
aoqi@0 4729 case Null:
aoqi@0 4730 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
aoqi@0 4731 case AnyNull:
aoqi@0 4732 return make( ptr, klass(), offset );
aoqi@0 4733 case BotPTR:
aoqi@0 4734 case NotNull:
aoqi@0 4735 return TypePtr::make(AnyPtr, ptr, offset);
aoqi@0 4736 default: typerr(t);
aoqi@0 4737 }
aoqi@0 4738 }
aoqi@0 4739
aoqi@0 4740 case RawPtr:
aoqi@0 4741 case MetadataPtr:
aoqi@0 4742 case OopPtr:
aoqi@0 4743 case AryPtr: // Meet with AryPtr
aoqi@0 4744 case InstPtr: // Meet with InstPtr
aoqi@0 4745 return TypePtr::BOTTOM;
aoqi@0 4746
aoqi@0 4747 //
aoqi@0 4748 // A-top }
aoqi@0 4749 // / | \ } Tops
aoqi@0 4750 // B-top A-any C-top }
aoqi@0 4751 // | / | \ | } Any-nulls
aoqi@0 4752 // B-any | C-any }
aoqi@0 4753 // | | |
aoqi@0 4754 // B-con A-con C-con } constants; not comparable across classes
aoqi@0 4755 // | | |
aoqi@0 4756 // B-not | C-not }
aoqi@0 4757 // | \ | / | } not-nulls
aoqi@0 4758 // B-bot A-not C-bot }
aoqi@0 4759 // \ | / } Bottoms
aoqi@0 4760 // A-bot }
aoqi@0 4761 //
aoqi@0 4762
aoqi@0 4763 case KlassPtr: { // Meet two KlassPtr types
aoqi@0 4764 const TypeKlassPtr *tkls = t->is_klassptr();
aoqi@0 4765 int off = meet_offset(tkls->offset());
aoqi@0 4766 PTR ptr = meet_ptr(tkls->ptr());
aoqi@0 4767
aoqi@0 4768 // Check for easy case; klasses are equal (and perhaps not loaded!)
aoqi@0 4769 // If we have constants, then we created oops so classes are loaded
aoqi@0 4770 // and we can handle the constants further down. This case handles
aoqi@0 4771 // not-loaded classes
aoqi@0 4772 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
aoqi@0 4773 return make( ptr, klass(), off );
aoqi@0 4774 }
aoqi@0 4775
aoqi@0 4776 // Classes require inspection in the Java klass hierarchy. Must be loaded.
aoqi@0 4777 ciKlass* tkls_klass = tkls->klass();
aoqi@0 4778 ciKlass* this_klass = this->klass();
aoqi@0 4779 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
aoqi@0 4780 assert( this_klass->is_loaded(), "This class should have been loaded.");
aoqi@0 4781
aoqi@0 4782 // If 'this' type is above the centerline and is a superclass of the
aoqi@0 4783 // other, we can treat 'this' as having the same type as the other.
aoqi@0 4784 if ((above_centerline(this->ptr())) &&
aoqi@0 4785 tkls_klass->is_subtype_of(this_klass)) {
aoqi@0 4786 this_klass = tkls_klass;
aoqi@0 4787 }
aoqi@0 4788 // If 'tinst' type is above the centerline and is a superclass of the
aoqi@0 4789 // other, we can treat 'tinst' as having the same type as the other.
aoqi@0 4790 if ((above_centerline(tkls->ptr())) &&
aoqi@0 4791 this_klass->is_subtype_of(tkls_klass)) {
aoqi@0 4792 tkls_klass = this_klass;
aoqi@0 4793 }
aoqi@0 4794
aoqi@0 4795 // Check for classes now being equal
aoqi@0 4796 if (tkls_klass->equals(this_klass)) {
aoqi@0 4797 // If the klasses are equal, the constants may still differ. Fall to
aoqi@0 4798 // NotNull if they do (neither constant is NULL; that is a special case
aoqi@0 4799 // handled elsewhere).
aoqi@0 4800 if( ptr == Constant ) {
aoqi@0 4801 if (this->_ptr == Constant && tkls->_ptr == Constant &&
aoqi@0 4802 this->klass()->equals(tkls->klass()));
aoqi@0 4803 else if (above_centerline(this->ptr()));
aoqi@0 4804 else if (above_centerline(tkls->ptr()));
aoqi@0 4805 else
aoqi@0 4806 ptr = NotNull;
aoqi@0 4807 }
aoqi@0 4808 return make( ptr, this_klass, off );
aoqi@0 4809 } // Else classes are not equal
aoqi@0 4810
aoqi@0 4811 // Since klasses are different, we require the LCA in the Java
aoqi@0 4812 // class hierarchy - which means we have to fall to at least NotNull.
aoqi@0 4813 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
aoqi@0 4814 ptr = NotNull;
aoqi@0 4815 // Now we find the LCA of Java classes
aoqi@0 4816 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
aoqi@0 4817 return make( ptr, k, off );
aoqi@0 4818 } // End of case KlassPtr
aoqi@0 4819
aoqi@0 4820 } // End of switch
aoqi@0 4821 return this; // Return the double constant
aoqi@0 4822 }
aoqi@0 4823
aoqi@0 4824 //------------------------------xdual------------------------------------------
aoqi@0 4825 // Dual: compute field-by-field dual
aoqi@0 4826 const Type *TypeKlassPtr::xdual() const {
aoqi@0 4827 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
aoqi@0 4828 }
aoqi@0 4829
aoqi@0 4830 //------------------------------get_con----------------------------------------
aoqi@0 4831 intptr_t TypeKlassPtr::get_con() const {
aoqi@0 4832 assert( _ptr == Null || _ptr == Constant, "" );
aoqi@0 4833 assert( _offset >= 0, "" );
aoqi@0 4834
aoqi@0 4835 if (_offset != 0) {
aoqi@0 4836 // After being ported to the compiler interface, the compiler no longer
aoqi@0 4837 // directly manipulates the addresses of oops. Rather, it only has a pointer
aoqi@0 4838 // to a handle at compile time. This handle is embedded in the generated
aoqi@0 4839 // code and dereferenced at the time the nmethod is made. Until that time,
aoqi@0 4840 // it is not reasonable to do arithmetic with the addresses of oops (we don't
aoqi@0 4841 // have access to the addresses!). This does not seem to currently happen,
aoqi@0 4842 // but this assertion here is to help prevent its occurence.
aoqi@0 4843 tty->print_cr("Found oop constant with non-zero offset");
aoqi@0 4844 ShouldNotReachHere();
aoqi@0 4845 }
aoqi@0 4846
aoqi@0 4847 return (intptr_t)klass()->constant_encoding();
aoqi@0 4848 }
aoqi@0 4849 //------------------------------dump2------------------------------------------
aoqi@0 4850 // Dump Klass Type
aoqi@0 4851 #ifndef PRODUCT
aoqi@0 4852 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
aoqi@0 4853 switch( _ptr ) {
aoqi@0 4854 case Constant:
aoqi@0 4855 st->print("precise ");
aoqi@0 4856 case NotNull:
aoqi@0 4857 {
aoqi@0 4858 const char *name = klass()->name()->as_utf8();
aoqi@0 4859 if( name ) {
aoqi@0 4860 st->print("klass %s: " INTPTR_FORMAT, name, klass());
aoqi@0 4861 } else {
aoqi@0 4862 ShouldNotReachHere();
aoqi@0 4863 }
aoqi@0 4864 }
aoqi@0 4865 case BotPTR:
aoqi@0 4866 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
aoqi@0 4867 case TopPTR:
aoqi@0 4868 case AnyNull:
aoqi@0 4869 st->print(":%s", ptr_msg[_ptr]);
aoqi@0 4870 if( _klass_is_exact ) st->print(":exact");
aoqi@0 4871 break;
aoqi@0 4872 }
aoqi@0 4873
aoqi@0 4874 if( _offset ) { // Dump offset, if any
aoqi@0 4875 if( _offset == OffsetBot ) { st->print("+any"); }
aoqi@0 4876 else if( _offset == OffsetTop ) { st->print("+unknown"); }
aoqi@0 4877 else { st->print("+%d", _offset); }
aoqi@0 4878 }
aoqi@0 4879
aoqi@0 4880 st->print(" *");
aoqi@0 4881 }
aoqi@0 4882 #endif
aoqi@0 4883
aoqi@0 4884
aoqi@0 4885
aoqi@0 4886 //=============================================================================
aoqi@0 4887 // Convenience common pre-built types.
aoqi@0 4888
aoqi@0 4889 //------------------------------make-------------------------------------------
aoqi@0 4890 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
aoqi@0 4891 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
aoqi@0 4892 }
aoqi@0 4893
aoqi@0 4894 //------------------------------make-------------------------------------------
aoqi@0 4895 const TypeFunc *TypeFunc::make(ciMethod* method) {
aoqi@0 4896 Compile* C = Compile::current();
aoqi@0 4897 const TypeFunc* tf = C->last_tf(method); // check cache
aoqi@0 4898 if (tf != NULL) return tf; // The hit rate here is almost 50%.
aoqi@0 4899 const TypeTuple *domain;
aoqi@0 4900 if (method->is_static()) {
aoqi@0 4901 domain = TypeTuple::make_domain(NULL, method->signature());
aoqi@0 4902 } else {
aoqi@0 4903 domain = TypeTuple::make_domain(method->holder(), method->signature());
aoqi@0 4904 }
aoqi@0 4905 const TypeTuple *range = TypeTuple::make_range(method->signature());
aoqi@0 4906 tf = TypeFunc::make(domain, range);
aoqi@0 4907 C->set_last_tf(method, tf); // fill cache
aoqi@0 4908 return tf;
aoqi@0 4909 }
aoqi@0 4910
aoqi@0 4911 //------------------------------meet-------------------------------------------
aoqi@0 4912 // Compute the MEET of two types. It returns a new Type object.
aoqi@0 4913 const Type *TypeFunc::xmeet( const Type *t ) const {
aoqi@0 4914 // Perform a fast test for common case; meeting the same types together.
aoqi@0 4915 if( this == t ) return this; // Meeting same type-rep?
aoqi@0 4916
aoqi@0 4917 // Current "this->_base" is Func
aoqi@0 4918 switch (t->base()) { // switch on original type
aoqi@0 4919
aoqi@0 4920 case Bottom: // Ye Olde Default
aoqi@0 4921 return t;
aoqi@0 4922
aoqi@0 4923 default: // All else is a mistake
aoqi@0 4924 typerr(t);
aoqi@0 4925
aoqi@0 4926 case Top:
aoqi@0 4927 break;
aoqi@0 4928 }
aoqi@0 4929 return this; // Return the double constant
aoqi@0 4930 }
aoqi@0 4931
aoqi@0 4932 //------------------------------xdual------------------------------------------
aoqi@0 4933 // Dual: compute field-by-field dual
aoqi@0 4934 const Type *TypeFunc::xdual() const {
aoqi@0 4935 return this;
aoqi@0 4936 }
aoqi@0 4937
aoqi@0 4938 //------------------------------eq---------------------------------------------
aoqi@0 4939 // Structural equality check for Type representations
aoqi@0 4940 bool TypeFunc::eq( const Type *t ) const {
aoqi@0 4941 const TypeFunc *a = (const TypeFunc*)t;
aoqi@0 4942 return _domain == a->_domain &&
aoqi@0 4943 _range == a->_range;
aoqi@0 4944 }
aoqi@0 4945
aoqi@0 4946 //------------------------------hash-------------------------------------------
aoqi@0 4947 // Type-specific hashing function.
aoqi@0 4948 int TypeFunc::hash(void) const {
aoqi@0 4949 return (intptr_t)_domain + (intptr_t)_range;
aoqi@0 4950 }
aoqi@0 4951
aoqi@0 4952 //------------------------------dump2------------------------------------------
aoqi@0 4953 // Dump Function Type
aoqi@0 4954 #ifndef PRODUCT
aoqi@0 4955 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
aoqi@0 4956 if( _range->_cnt <= Parms )
aoqi@0 4957 st->print("void");
aoqi@0 4958 else {
aoqi@0 4959 uint i;
aoqi@0 4960 for (i = Parms; i < _range->_cnt-1; i++) {
aoqi@0 4961 _range->field_at(i)->dump2(d,depth,st);
aoqi@0 4962 st->print("/");
aoqi@0 4963 }
aoqi@0 4964 _range->field_at(i)->dump2(d,depth,st);
aoqi@0 4965 }
aoqi@0 4966 st->print(" ");
aoqi@0 4967 st->print("( ");
aoqi@0 4968 if( !depth || d[this] ) { // Check for recursive dump
aoqi@0 4969 st->print("...)");
aoqi@0 4970 return;
aoqi@0 4971 }
aoqi@0 4972 d.Insert((void*)this,(void*)this); // Stop recursion
aoqi@0 4973 if (Parms < _domain->_cnt)
aoqi@0 4974 _domain->field_at(Parms)->dump2(d,depth-1,st);
aoqi@0 4975 for (uint i = Parms+1; i < _domain->_cnt; i++) {
aoqi@0 4976 st->print(", ");
aoqi@0 4977 _domain->field_at(i)->dump2(d,depth-1,st);
aoqi@0 4978 }
aoqi@0 4979 st->print(" )");
aoqi@0 4980 }
aoqi@0 4981 #endif
aoqi@0 4982
aoqi@0 4983 //------------------------------singleton--------------------------------------
aoqi@0 4984 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
aoqi@0 4985 // constants (Ldi nodes). Singletons are integer, float or double constants
aoqi@0 4986 // or a single symbol.
aoqi@0 4987 bool TypeFunc::singleton(void) const {
aoqi@0 4988 return false; // Never a singleton
aoqi@0 4989 }
aoqi@0 4990
aoqi@0 4991 bool TypeFunc::empty(void) const {
aoqi@0 4992 return false; // Never empty
aoqi@0 4993 }
aoqi@0 4994
aoqi@0 4995
aoqi@0 4996 BasicType TypeFunc::return_type() const{
aoqi@0 4997 if (range()->cnt() == TypeFunc::Parms) {
aoqi@0 4998 return T_VOID;
aoqi@0 4999 }
aoqi@0 5000 return range()->field_at(TypeFunc::Parms)->basic_type();
aoqi@0 5001 }

mercurial