src/share/vm/opto/type.cpp

Mon, 18 Jun 2012 15:17:30 -0700

author
twisti
date
Mon, 18 Jun 2012 15:17:30 -0700
changeset 3885
765ee2d1674b
parent 3882
8c92982cbbc4
child 3901
24b9c7f4cae6
permissions
-rw-r--r--

7157365: jruby/bench.bench_timeout crashes with JVM internal error
Reviewed-by: jrose, kvn

duke@435 1 /*
kvn@3882 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "ci/ciTypeFlow.hpp"
stefank@2314 27 #include "classfile/symbolTable.hpp"
stefank@2314 28 #include "classfile/systemDictionary.hpp"
stefank@2314 29 #include "compiler/compileLog.hpp"
stefank@2314 30 #include "libadt/dict.hpp"
stefank@2314 31 #include "memory/gcLocker.hpp"
stefank@2314 32 #include "memory/oopFactory.hpp"
stefank@2314 33 #include "memory/resourceArea.hpp"
stefank@2314 34 #include "oops/instanceKlass.hpp"
never@2658 35 #include "oops/instanceMirrorKlass.hpp"
stefank@2314 36 #include "oops/klassKlass.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "oops/typeArrayKlass.hpp"
stefank@2314 39 #include "opto/matcher.hpp"
stefank@2314 40 #include "opto/node.hpp"
stefank@2314 41 #include "opto/opcodes.hpp"
stefank@2314 42 #include "opto/type.hpp"
stefank@2314 43
duke@435 44 // Portions of code courtesy of Clifford Click
duke@435 45
duke@435 46 // Optimization - Graph Style
duke@435 47
duke@435 48 // Dictionary of types shared among compilations.
duke@435 49 Dict* Type::_shared_type_dict = NULL;
duke@435 50
duke@435 51 // Array which maps compiler types to Basic Types
duke@435 52 const BasicType Type::_basic_type[Type::lastype] = {
duke@435 53 T_ILLEGAL, // Bad
duke@435 54 T_ILLEGAL, // Control
duke@435 55 T_VOID, // Top
duke@435 56 T_INT, // Int
duke@435 57 T_LONG, // Long
duke@435 58 T_VOID, // Half
coleenp@548 59 T_NARROWOOP, // NarrowOop
duke@435 60
duke@435 61 T_ILLEGAL, // Tuple
duke@435 62 T_ARRAY, // Array
kvn@3882 63 T_ILLEGAL, // VectorS
kvn@3882 64 T_ILLEGAL, // VectorD
kvn@3882 65 T_ILLEGAL, // VectorX
kvn@3882 66 T_ILLEGAL, // VectorY
duke@435 67
duke@435 68 T_ADDRESS, // AnyPtr // shows up in factory methods for NULL_PTR
duke@435 69 T_ADDRESS, // RawPtr
duke@435 70 T_OBJECT, // OopPtr
duke@435 71 T_OBJECT, // InstPtr
duke@435 72 T_OBJECT, // AryPtr
duke@435 73 T_OBJECT, // KlassPtr
duke@435 74
duke@435 75 T_OBJECT, // Function
duke@435 76 T_ILLEGAL, // Abio
duke@435 77 T_ADDRESS, // Return_Address
duke@435 78 T_ILLEGAL, // Memory
duke@435 79 T_FLOAT, // FloatTop
duke@435 80 T_FLOAT, // FloatCon
duke@435 81 T_FLOAT, // FloatBot
duke@435 82 T_DOUBLE, // DoubleTop
duke@435 83 T_DOUBLE, // DoubleCon
duke@435 84 T_DOUBLE, // DoubleBot
duke@435 85 T_ILLEGAL, // Bottom
duke@435 86 };
duke@435 87
duke@435 88 // Map ideal registers (machine types) to ideal types
duke@435 89 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 90
duke@435 91 // Map basic types to canonical Type* pointers.
duke@435 92 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 93
duke@435 94 // Map basic types to constant-zero Types.
duke@435 95 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 96
duke@435 97 // Map basic types to array-body alias types.
duke@435 98 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 99
duke@435 100 //=============================================================================
duke@435 101 // Convenience common pre-built types.
duke@435 102 const Type *Type::ABIO; // State-of-machine only
duke@435 103 const Type *Type::BOTTOM; // All values
duke@435 104 const Type *Type::CONTROL; // Control only
duke@435 105 const Type *Type::DOUBLE; // All doubles
duke@435 106 const Type *Type::FLOAT; // All floats
duke@435 107 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 108 const Type *Type::MEMORY; // Abstract store only
duke@435 109 const Type *Type::RETURN_ADDRESS;
duke@435 110 const Type *Type::TOP; // No values in set
duke@435 111
duke@435 112 //------------------------------get_const_type---------------------------
duke@435 113 const Type* Type::get_const_type(ciType* type) {
duke@435 114 if (type == NULL) {
duke@435 115 return NULL;
duke@435 116 } else if (type->is_primitive_type()) {
duke@435 117 return get_const_basic_type(type->basic_type());
duke@435 118 } else {
duke@435 119 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 120 }
duke@435 121 }
duke@435 122
duke@435 123 //---------------------------array_element_basic_type---------------------------------
duke@435 124 // Mapping to the array element's basic type.
duke@435 125 BasicType Type::array_element_basic_type() const {
duke@435 126 BasicType bt = basic_type();
duke@435 127 if (bt == T_INT) {
duke@435 128 if (this == TypeInt::INT) return T_INT;
duke@435 129 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 130 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 131 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 132 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 133 return T_VOID;
duke@435 134 }
duke@435 135 return bt;
duke@435 136 }
duke@435 137
duke@435 138 //---------------------------get_typeflow_type---------------------------------
duke@435 139 // Import a type produced by ciTypeFlow.
duke@435 140 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 141 switch (type->basic_type()) {
duke@435 142
duke@435 143 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 144 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 145 return Type::BOTTOM;
duke@435 146
duke@435 147 case ciTypeFlow::StateVector::T_TOP:
duke@435 148 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 149 return Type::TOP;
duke@435 150
duke@435 151 case ciTypeFlow::StateVector::T_NULL:
duke@435 152 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 153 return TypePtr::NULL_PTR;
duke@435 154
duke@435 155 case ciTypeFlow::StateVector::T_LONG2:
duke@435 156 // The ciTypeFlow pass pushes a long, then the half.
duke@435 157 // We do the same.
duke@435 158 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 159 return TypeInt::TOP;
duke@435 160
duke@435 161 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 162 // The ciTypeFlow pass pushes double, then the half.
duke@435 163 // Our convention is the same.
duke@435 164 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 165 return Type::TOP;
duke@435 166
duke@435 167 case T_ADDRESS:
duke@435 168 assert(type->is_return_address(), "");
duke@435 169 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 170
duke@435 171 default:
duke@435 172 // make sure we did not mix up the cases:
duke@435 173 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 174 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 175 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 176 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 177 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 178 assert(!type->is_return_address(), "");
duke@435 179
duke@435 180 return Type::get_const_type(type);
duke@435 181 }
duke@435 182 }
duke@435 183
duke@435 184
duke@435 185 //------------------------------make-------------------------------------------
duke@435 186 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 187 // and look for an existing copy in the type dictionary.
duke@435 188 const Type *Type::make( enum TYPES t ) {
duke@435 189 return (new Type(t))->hashcons();
duke@435 190 }
kvn@658 191
duke@435 192 //------------------------------cmp--------------------------------------------
duke@435 193 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 194 if( t1->_base != t2->_base )
duke@435 195 return 1; // Missed badly
duke@435 196 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 197 return !t1->eq(t2); // Return ZERO if equal
duke@435 198 }
duke@435 199
duke@435 200 //------------------------------hash-------------------------------------------
duke@435 201 int Type::uhash( const Type *const t ) {
duke@435 202 return t->hash();
duke@435 203 }
duke@435 204
kvn@1975 205 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
kvn@1975 206
duke@435 207 //--------------------------Initialize_shared----------------------------------
duke@435 208 void Type::Initialize_shared(Compile* current) {
duke@435 209 // This method does not need to be locked because the first system
duke@435 210 // compilations (stub compilations) occur serially. If they are
duke@435 211 // changed to proceed in parallel, then this section will need
duke@435 212 // locking.
duke@435 213
duke@435 214 Arena* save = current->type_arena();
duke@435 215 Arena* shared_type_arena = new Arena();
duke@435 216
duke@435 217 current->set_type_arena(shared_type_arena);
duke@435 218 _shared_type_dict =
duke@435 219 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 220 shared_type_arena, 128 );
duke@435 221 current->set_type_dict(_shared_type_dict);
duke@435 222
duke@435 223 // Make shared pre-built types.
duke@435 224 CONTROL = make(Control); // Control only
duke@435 225 TOP = make(Top); // No values in set
duke@435 226 MEMORY = make(Memory); // Abstract store only
duke@435 227 ABIO = make(Abio); // State-of-machine only
duke@435 228 RETURN_ADDRESS=make(Return_Address);
duke@435 229 FLOAT = make(FloatBot); // All floats
duke@435 230 DOUBLE = make(DoubleBot); // All doubles
duke@435 231 BOTTOM = make(Bottom); // Everything
duke@435 232 HALF = make(Half); // Placeholder half of doublewide type
duke@435 233
duke@435 234 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 235 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 236
duke@435 237 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 238 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 239
duke@435 240 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 241 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 242 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 243 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 244 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 245 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 246 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 247 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 248 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 249 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 250 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
twisti@1059 251 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
duke@435 252 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 253 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 254 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 255 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 256 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 257 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
duke@435 258 // CmpL is overloaded both as the bytecode computation returning
duke@435 259 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 260 // compare returning optimizer ideal-type flags.
duke@435 261 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 262 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 263 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 264 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
kvn@1975 265 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 266
duke@435 267 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 268 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 269 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 270 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 271 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 272 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 273 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
duke@435 274
duke@435 275 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 276 fboth[0] = Type::CONTROL;
duke@435 277 fboth[1] = Type::CONTROL;
duke@435 278 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 279
duke@435 280 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 281 ffalse[0] = Type::CONTROL;
duke@435 282 ffalse[1] = Type::TOP;
duke@435 283 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 284
duke@435 285 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 286 fneither[0] = Type::TOP;
duke@435 287 fneither[1] = Type::TOP;
duke@435 288 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 289
duke@435 290 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 291 ftrue[0] = Type::TOP;
duke@435 292 ftrue[1] = Type::CONTROL;
duke@435 293 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 294
duke@435 295 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 296 floop[0] = Type::CONTROL;
duke@435 297 floop[1] = TypeInt::INT;
duke@435 298 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 299
duke@435 300 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 301 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 302 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 303
duke@435 304 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 305 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 306
duke@435 307 const Type **fmembar = TypeTuple::fields(0);
duke@435 308 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 309
duke@435 310 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 311 fsc[0] = TypeInt::CC;
duke@435 312 fsc[1] = Type::MEMORY;
duke@435 313 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 314
duke@435 315 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 316 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 317 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 318 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 319 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 320 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 321 false, 0, oopDesc::klass_offset_in_bytes());
kvn@1427 322 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
duke@435 323
coleenp@548 324 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 325 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 326
coleenp@548 327 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 328 mreg2type[Op_Set ] = 0;
coleenp@548 329 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 330 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 331 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 332 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 333 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 334 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 335 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 336
kvn@2116 337 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
kvn@598 338
kvn@598 339 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 340
kvn@598 341 #ifdef _LP64
kvn@598 342 if (UseCompressedOops) {
kvn@598 343 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 344 } else
kvn@598 345 #endif
kvn@598 346 {
kvn@598 347 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 348 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 349 }
duke@435 350 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 351 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 352 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 353 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 354 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 355 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 356 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 357
kvn@598 358 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 359 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 360 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 361 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 362 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 363 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 364 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 365 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 366 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 367 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 368 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 369 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 370
duke@435 371 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 372 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 373
duke@435 374 const Type **fi2c = TypeTuple::fields(2);
duke@435 375 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
duke@435 376 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 377 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 378
duke@435 379 const Type **intpair = TypeTuple::fields(2);
duke@435 380 intpair[0] = TypeInt::INT;
duke@435 381 intpair[1] = TypeInt::INT;
duke@435 382 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 383
duke@435 384 const Type **longpair = TypeTuple::fields(2);
duke@435 385 longpair[0] = TypeLong::LONG;
duke@435 386 longpair[1] = TypeLong::LONG;
duke@435 387 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 388
coleenp@548 389 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
duke@435 390 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
duke@435 391 _const_basic_type[T_CHAR] = TypeInt::CHAR;
duke@435 392 _const_basic_type[T_BYTE] = TypeInt::BYTE;
duke@435 393 _const_basic_type[T_SHORT] = TypeInt::SHORT;
duke@435 394 _const_basic_type[T_INT] = TypeInt::INT;
duke@435 395 _const_basic_type[T_LONG] = TypeLong::LONG;
duke@435 396 _const_basic_type[T_FLOAT] = Type::FLOAT;
duke@435 397 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
duke@435 398 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
duke@435 399 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
duke@435 400 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
duke@435 401 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
duke@435 402 _const_basic_type[T_CONFLICT]= Type::BOTTOM; // why not?
duke@435 403
coleenp@548 404 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
duke@435 405 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
duke@435 406 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
duke@435 407 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
duke@435 408 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
duke@435 409 _zero_type[T_INT] = TypeInt::ZERO;
duke@435 410 _zero_type[T_LONG] = TypeLong::ZERO;
duke@435 411 _zero_type[T_FLOAT] = TypeF::ZERO;
duke@435 412 _zero_type[T_DOUBLE] = TypeD::ZERO;
duke@435 413 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
duke@435 414 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
duke@435 415 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
duke@435 416 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 417
duke@435 418 // get_zero_type() should not happen for T_CONFLICT
duke@435 419 _zero_type[T_CONFLICT]= NULL;
duke@435 420
kvn@3882 421 // Vector predefined types, it needs initialized _const_basic_type[].
kvn@3882 422 if (Matcher::vector_size_supported(T_BYTE,4)) {
kvn@3882 423 TypeVect::VECTS = TypeVect::make(T_BYTE,4);
kvn@3882 424 }
kvn@3882 425 if (Matcher::vector_size_supported(T_FLOAT,2)) {
kvn@3882 426 TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
kvn@3882 427 }
kvn@3882 428 if (Matcher::vector_size_supported(T_FLOAT,4)) {
kvn@3882 429 TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
kvn@3882 430 }
kvn@3882 431 if (Matcher::vector_size_supported(T_FLOAT,8)) {
kvn@3882 432 TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
kvn@3882 433 }
kvn@3882 434 mreg2type[Op_VecS] = TypeVect::VECTS;
kvn@3882 435 mreg2type[Op_VecD] = TypeVect::VECTD;
kvn@3882 436 mreg2type[Op_VecX] = TypeVect::VECTX;
kvn@3882 437 mreg2type[Op_VecY] = TypeVect::VECTY;
kvn@3882 438
duke@435 439 // Restore working type arena.
duke@435 440 current->set_type_arena(save);
duke@435 441 current->set_type_dict(NULL);
duke@435 442 }
duke@435 443
duke@435 444 //------------------------------Initialize-------------------------------------
duke@435 445 void Type::Initialize(Compile* current) {
duke@435 446 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 447
duke@435 448 if (_shared_type_dict == NULL) {
duke@435 449 Initialize_shared(current);
duke@435 450 }
duke@435 451
duke@435 452 Arena* type_arena = current->type_arena();
duke@435 453
duke@435 454 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 455 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 456 current->set_type_dict(tdic);
duke@435 457
duke@435 458 // Transfer the shared types.
duke@435 459 DictI i(_shared_type_dict);
duke@435 460 for( ; i.test(); ++i ) {
duke@435 461 Type* t = (Type*)i._value;
duke@435 462 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 463 }
coleenp@548 464
coleenp@548 465 #ifdef ASSERT
coleenp@548 466 verify_lastype();
coleenp@548 467 #endif
duke@435 468 }
duke@435 469
duke@435 470 //------------------------------hashcons---------------------------------------
duke@435 471 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 472 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 473 // current Type in the Type table.
duke@435 474 const Type *Type::hashcons(void) {
duke@435 475 debug_only(base()); // Check the assertion in Type::base().
duke@435 476 // Look up the Type in the Type dictionary
duke@435 477 Dict *tdic = type_dict();
duke@435 478 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 479 if( old ) { // Pre-existing Type?
duke@435 480 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 481 delete this; // Yes, Nuke this guy
duke@435 482 assert( old->_dual, "" );
duke@435 483 return old; // Return pre-existing
duke@435 484 }
duke@435 485
duke@435 486 // Every type has a dual (to make my lattice symmetric).
duke@435 487 // Since we just discovered a new Type, compute its dual right now.
duke@435 488 assert( !_dual, "" ); // No dual yet
duke@435 489 _dual = xdual(); // Compute the dual
duke@435 490 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 491 _dual = this;
duke@435 492 return this;
duke@435 493 }
duke@435 494 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 495 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 496 // New Type, insert into Type table
duke@435 497 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 498 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 499 #ifdef ASSERT
duke@435 500 Type *dual_dual = (Type*)_dual->xdual();
duke@435 501 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 502 delete dual_dual;
duke@435 503 #endif
duke@435 504 return this; // Return new Type
duke@435 505 }
duke@435 506
duke@435 507 //------------------------------eq---------------------------------------------
duke@435 508 // Structural equality check for Type representations
duke@435 509 bool Type::eq( const Type * ) const {
duke@435 510 return true; // Nothing else can go wrong
duke@435 511 }
duke@435 512
duke@435 513 //------------------------------hash-------------------------------------------
duke@435 514 // Type-specific hashing function.
duke@435 515 int Type::hash(void) const {
duke@435 516 return _base;
duke@435 517 }
duke@435 518
duke@435 519 //------------------------------is_finite--------------------------------------
duke@435 520 // Has a finite value
duke@435 521 bool Type::is_finite() const {
duke@435 522 return false;
duke@435 523 }
duke@435 524
duke@435 525 //------------------------------is_nan-----------------------------------------
duke@435 526 // Is not a number (NaN)
duke@435 527 bool Type::is_nan() const {
duke@435 528 return false;
duke@435 529 }
duke@435 530
kvn@1255 531 //----------------------interface_vs_oop---------------------------------------
kvn@1255 532 #ifdef ASSERT
kvn@1255 533 bool Type::interface_vs_oop(const Type *t) const {
kvn@1255 534 bool result = false;
kvn@1255 535
kvn@1427 536 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
kvn@1427 537 const TypePtr* t_ptr = t->make_ptr();
kvn@1427 538 if( this_ptr == NULL || t_ptr == NULL )
kvn@1427 539 return result;
kvn@1427 540
kvn@1427 541 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
kvn@1427 542 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
kvn@1255 543 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
kvn@1255 544 bool this_interface = this_inst->klass()->is_interface();
kvn@1255 545 bool t_interface = t_inst->klass()->is_interface();
kvn@1255 546 result = this_interface ^ t_interface;
kvn@1255 547 }
kvn@1255 548
kvn@1255 549 return result;
kvn@1255 550 }
kvn@1255 551 #endif
kvn@1255 552
duke@435 553 //------------------------------meet-------------------------------------------
duke@435 554 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 555 // commutative and the lattice is symmetric.
duke@435 556 const Type *Type::meet( const Type *t ) const {
coleenp@548 557 if (isa_narrowoop() && t->isa_narrowoop()) {
kvn@656 558 const Type* result = make_ptr()->meet(t->make_ptr());
kvn@656 559 return result->make_narrowoop();
coleenp@548 560 }
coleenp@548 561
duke@435 562 const Type *mt = xmeet(t);
coleenp@548 563 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
duke@435 564 #ifdef ASSERT
duke@435 565 assert( mt == t->xmeet(this), "meet not commutative" );
duke@435 566 const Type* dual_join = mt->_dual;
duke@435 567 const Type *t2t = dual_join->xmeet(t->_dual);
duke@435 568 const Type *t2this = dual_join->xmeet( _dual);
duke@435 569
duke@435 570 // Interface meet Oop is Not Symmetric:
duke@435 571 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 572 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
kvn@1255 573
kvn@1255 574 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
duke@435 575 tty->print_cr("=== Meet Not Symmetric ===");
duke@435 576 tty->print("t = "); t->dump(); tty->cr();
duke@435 577 tty->print("this= "); dump(); tty->cr();
duke@435 578 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
duke@435 579
duke@435 580 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
duke@435 581 tty->print("this_dual= "); _dual->dump(); tty->cr();
duke@435 582 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
duke@435 583
duke@435 584 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
duke@435 585 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 586
duke@435 587 fatal("meet not symmetric" );
duke@435 588 }
duke@435 589 #endif
duke@435 590 return mt;
duke@435 591 }
duke@435 592
duke@435 593 //------------------------------xmeet------------------------------------------
duke@435 594 // Compute the MEET of two types. It returns a new Type object.
duke@435 595 const Type *Type::xmeet( const Type *t ) const {
duke@435 596 // Perform a fast test for common case; meeting the same types together.
duke@435 597 if( this == t ) return this; // Meeting same type-rep?
duke@435 598
duke@435 599 // Meeting TOP with anything?
duke@435 600 if( _base == Top ) return t;
duke@435 601
duke@435 602 // Meeting BOTTOM with anything?
duke@435 603 if( _base == Bottom ) return BOTTOM;
duke@435 604
duke@435 605 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 606 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 607 switch (t->base()) { // Switch on original type
duke@435 608
duke@435 609 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 610 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 611 case FloatCon:
duke@435 612 case DoubleCon:
duke@435 613 case Int:
duke@435 614 case Long:
duke@435 615 return t->xmeet(this);
duke@435 616
duke@435 617 case OopPtr:
duke@435 618 return t->xmeet(this);
duke@435 619
duke@435 620 case InstPtr:
duke@435 621 return t->xmeet(this);
duke@435 622
duke@435 623 case KlassPtr:
duke@435 624 return t->xmeet(this);
duke@435 625
duke@435 626 case AryPtr:
duke@435 627 return t->xmeet(this);
duke@435 628
coleenp@548 629 case NarrowOop:
coleenp@548 630 return t->xmeet(this);
coleenp@548 631
duke@435 632 case Bad: // Type check
duke@435 633 default: // Bogus type not in lattice
duke@435 634 typerr(t);
duke@435 635 return Type::BOTTOM;
duke@435 636
duke@435 637 case Bottom: // Ye Olde Default
duke@435 638 return t;
duke@435 639
duke@435 640 case FloatTop:
duke@435 641 if( _base == FloatTop ) return this;
duke@435 642 case FloatBot: // Float
duke@435 643 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 644 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 645 typerr(t);
duke@435 646 return Type::BOTTOM;
duke@435 647
duke@435 648 case DoubleTop:
duke@435 649 if( _base == DoubleTop ) return this;
duke@435 650 case DoubleBot: // Double
duke@435 651 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 652 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 653 typerr(t);
duke@435 654 return Type::BOTTOM;
duke@435 655
duke@435 656 // These next few cases must match exactly or it is a compile-time error.
duke@435 657 case Control: // Control of code
duke@435 658 case Abio: // State of world outside of program
duke@435 659 case Memory:
duke@435 660 if( _base == t->_base ) return this;
duke@435 661 typerr(t);
duke@435 662 return Type::BOTTOM;
duke@435 663
duke@435 664 case Top: // Top of the lattice
duke@435 665 return this;
duke@435 666 }
duke@435 667
duke@435 668 // The type is unchanged
duke@435 669 return this;
duke@435 670 }
duke@435 671
duke@435 672 //-----------------------------filter------------------------------------------
duke@435 673 const Type *Type::filter( const Type *kills ) const {
duke@435 674 const Type* ft = join(kills);
duke@435 675 if (ft->empty())
duke@435 676 return Type::TOP; // Canonical empty value
duke@435 677 return ft;
duke@435 678 }
duke@435 679
duke@435 680 //------------------------------xdual------------------------------------------
duke@435 681 // Compute dual right now.
duke@435 682 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 683 Bad, // Bad
duke@435 684 Control, // Control
duke@435 685 Bottom, // Top
duke@435 686 Bad, // Int - handled in v-call
duke@435 687 Bad, // Long - handled in v-call
duke@435 688 Half, // Half
coleenp@548 689 Bad, // NarrowOop - handled in v-call
duke@435 690
duke@435 691 Bad, // Tuple - handled in v-call
duke@435 692 Bad, // Array - handled in v-call
kvn@3882 693 Bad, // VectorS - handled in v-call
kvn@3882 694 Bad, // VectorD - handled in v-call
kvn@3882 695 Bad, // VectorX - handled in v-call
kvn@3882 696 Bad, // VectorY - handled in v-call
duke@435 697
duke@435 698 Bad, // AnyPtr - handled in v-call
duke@435 699 Bad, // RawPtr - handled in v-call
duke@435 700 Bad, // OopPtr - handled in v-call
duke@435 701 Bad, // InstPtr - handled in v-call
duke@435 702 Bad, // AryPtr - handled in v-call
duke@435 703 Bad, // KlassPtr - handled in v-call
duke@435 704
duke@435 705 Bad, // Function - handled in v-call
duke@435 706 Abio, // Abio
duke@435 707 Return_Address,// Return_Address
duke@435 708 Memory, // Memory
duke@435 709 FloatBot, // FloatTop
duke@435 710 FloatCon, // FloatCon
duke@435 711 FloatTop, // FloatBot
duke@435 712 DoubleBot, // DoubleTop
duke@435 713 DoubleCon, // DoubleCon
duke@435 714 DoubleTop, // DoubleBot
duke@435 715 Top // Bottom
duke@435 716 };
duke@435 717
duke@435 718 const Type *Type::xdual() const {
duke@435 719 // Note: the base() accessor asserts the sanity of _base.
duke@435 720 assert(dual_type[base()] != Bad, "implement with v-call");
duke@435 721 return new Type(dual_type[_base]);
duke@435 722 }
duke@435 723
duke@435 724 //------------------------------has_memory-------------------------------------
duke@435 725 bool Type::has_memory() const {
duke@435 726 Type::TYPES tx = base();
duke@435 727 if (tx == Memory) return true;
duke@435 728 if (tx == Tuple) {
duke@435 729 const TypeTuple *t = is_tuple();
duke@435 730 for (uint i=0; i < t->cnt(); i++) {
duke@435 731 tx = t->field_at(i)->base();
duke@435 732 if (tx == Memory) return true;
duke@435 733 }
duke@435 734 }
duke@435 735 return false;
duke@435 736 }
duke@435 737
duke@435 738 #ifndef PRODUCT
duke@435 739 //------------------------------dump2------------------------------------------
duke@435 740 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 741 st->print(msg[_base]);
duke@435 742 }
duke@435 743
duke@435 744 //------------------------------dump-------------------------------------------
duke@435 745 void Type::dump_on(outputStream *st) const {
duke@435 746 ResourceMark rm;
duke@435 747 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 748 dump2(d,1, st);
kvn@598 749 if (is_ptr_to_narrowoop()) {
coleenp@548 750 st->print(" [narrow]");
coleenp@548 751 }
duke@435 752 }
duke@435 753
duke@435 754 //------------------------------data-------------------------------------------
duke@435 755 const char * const Type::msg[Type::lastype] = {
coleenp@548 756 "bad","control","top","int:","long:","half", "narrowoop:",
kvn@3882 757 "tuple:", "array:", "vectors:", "vectord:", "vectorx:", "vectory:",
kvn@3882 758 "anyptr:", "rawptr:", "java:", "inst:", "aryptr:", "klass:",
duke@435 759 "func", "abIO", "return_address", "memory",
duke@435 760 "float_top", "ftcon:", "float",
duke@435 761 "double_top", "dblcon:", "double",
duke@435 762 "bottom"
duke@435 763 };
duke@435 764 #endif
duke@435 765
duke@435 766 //------------------------------singleton--------------------------------------
duke@435 767 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 768 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 769 bool Type::singleton(void) const {
duke@435 770 return _base == Top || _base == Half;
duke@435 771 }
duke@435 772
duke@435 773 //------------------------------empty------------------------------------------
duke@435 774 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 775 bool Type::empty(void) const {
duke@435 776 switch (_base) {
duke@435 777 case DoubleTop:
duke@435 778 case FloatTop:
duke@435 779 case Top:
duke@435 780 return true;
duke@435 781
duke@435 782 case Half:
duke@435 783 case Abio:
duke@435 784 case Return_Address:
duke@435 785 case Memory:
duke@435 786 case Bottom:
duke@435 787 case FloatBot:
duke@435 788 case DoubleBot:
duke@435 789 return false; // never a singleton, therefore never empty
duke@435 790 }
duke@435 791
duke@435 792 ShouldNotReachHere();
duke@435 793 return false;
duke@435 794 }
duke@435 795
duke@435 796 //------------------------------dump_stats-------------------------------------
duke@435 797 // Dump collected statistics to stderr
duke@435 798 #ifndef PRODUCT
duke@435 799 void Type::dump_stats() {
duke@435 800 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 801 }
duke@435 802 #endif
duke@435 803
duke@435 804 //------------------------------typerr-----------------------------------------
duke@435 805 void Type::typerr( const Type *t ) const {
duke@435 806 #ifndef PRODUCT
duke@435 807 tty->print("\nError mixing types: ");
duke@435 808 dump();
duke@435 809 tty->print(" and ");
duke@435 810 t->dump();
duke@435 811 tty->print("\n");
duke@435 812 #endif
duke@435 813 ShouldNotReachHere();
duke@435 814 }
duke@435 815
duke@435 816 //------------------------------isa_oop_ptr------------------------------------
duke@435 817 // Return true if type is an oop pointer type. False for raw pointers.
duke@435 818 static char isa_oop_ptr_tbl[Type::lastype] = {
kvn@3882 819 0,0,0,0,0,0,0/*narrowoop*/,0/*tuple*/, 0/*array*/, 0, 0, 0, 0/*vector*/,
duke@435 820 0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
duke@435 821 0/*func*/,0,0/*return_address*/,0,
duke@435 822 /*floats*/0,0,0, /*doubles*/0,0,0,
duke@435 823 0
duke@435 824 };
duke@435 825 bool Type::isa_oop_ptr() const {
duke@435 826 return isa_oop_ptr_tbl[_base] != 0;
duke@435 827 }
duke@435 828
duke@435 829 //------------------------------dump_stats-------------------------------------
duke@435 830 // // Check that arrays match type enum
duke@435 831 #ifndef PRODUCT
duke@435 832 void Type::verify_lastype() {
duke@435 833 // Check that arrays match enumeration
duke@435 834 assert( Type::dual_type [Type::lastype - 1] == Type::Top, "did not update array");
duke@435 835 assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
duke@435 836 // assert( PhiNode::tbl [Type::lastype - 1] == NULL, "did not update array");
duke@435 837 assert( Matcher::base2reg[Type::lastype - 1] == 0, "did not update array");
duke@435 838 assert( isa_oop_ptr_tbl [Type::lastype - 1] == (char)0, "did not update array");
duke@435 839 }
duke@435 840 #endif
duke@435 841
duke@435 842 //=============================================================================
duke@435 843 // Convenience common pre-built types.
duke@435 844 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 845 const TypeF *TypeF::ONE; // Floating point one
duke@435 846
duke@435 847 //------------------------------make-------------------------------------------
duke@435 848 // Create a float constant
duke@435 849 const TypeF *TypeF::make(float f) {
duke@435 850 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 851 }
duke@435 852
duke@435 853 //------------------------------meet-------------------------------------------
duke@435 854 // Compute the MEET of two types. It returns a new Type object.
duke@435 855 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 856 // Perform a fast test for common case; meeting the same types together.
duke@435 857 if( this == t ) return this; // Meeting same type-rep?
duke@435 858
duke@435 859 // Current "this->_base" is FloatCon
duke@435 860 switch (t->base()) { // Switch on original type
duke@435 861 case AnyPtr: // Mixing with oops happens when javac
duke@435 862 case RawPtr: // reuses local variables
duke@435 863 case OopPtr:
duke@435 864 case InstPtr:
duke@435 865 case KlassPtr:
duke@435 866 case AryPtr:
kvn@728 867 case NarrowOop:
duke@435 868 case Int:
duke@435 869 case Long:
duke@435 870 case DoubleTop:
duke@435 871 case DoubleCon:
duke@435 872 case DoubleBot:
duke@435 873 case Bottom: // Ye Olde Default
duke@435 874 return Type::BOTTOM;
duke@435 875
duke@435 876 case FloatBot:
duke@435 877 return t;
duke@435 878
duke@435 879 default: // All else is a mistake
duke@435 880 typerr(t);
duke@435 881
duke@435 882 case FloatCon: // Float-constant vs Float-constant?
duke@435 883 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 884 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 885 // all the same representation in C++
duke@435 886 return FLOAT; // Return generic float
duke@435 887 // Equal constants
duke@435 888 case Top:
duke@435 889 case FloatTop:
duke@435 890 break; // Return the float constant
duke@435 891 }
duke@435 892 return this; // Return the float constant
duke@435 893 }
duke@435 894
duke@435 895 //------------------------------xdual------------------------------------------
duke@435 896 // Dual: symmetric
duke@435 897 const Type *TypeF::xdual() const {
duke@435 898 return this;
duke@435 899 }
duke@435 900
duke@435 901 //------------------------------eq---------------------------------------------
duke@435 902 // Structural equality check for Type representations
duke@435 903 bool TypeF::eq( const Type *t ) const {
duke@435 904 if( g_isnan(_f) ||
duke@435 905 g_isnan(t->getf()) ) {
duke@435 906 // One or both are NANs. If both are NANs return true, else false.
duke@435 907 return (g_isnan(_f) && g_isnan(t->getf()));
duke@435 908 }
duke@435 909 if (_f == t->getf()) {
duke@435 910 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 911 if (_f == 0.0) {
duke@435 912 // difference between positive and negative zero
duke@435 913 if (jint_cast(_f) != jint_cast(t->getf())) return false;
duke@435 914 }
duke@435 915 return true;
duke@435 916 }
duke@435 917 return false;
duke@435 918 }
duke@435 919
duke@435 920 //------------------------------hash-------------------------------------------
duke@435 921 // Type-specific hashing function.
duke@435 922 int TypeF::hash(void) const {
duke@435 923 return *(int*)(&_f);
duke@435 924 }
duke@435 925
duke@435 926 //------------------------------is_finite--------------------------------------
duke@435 927 // Has a finite value
duke@435 928 bool TypeF::is_finite() const {
duke@435 929 return g_isfinite(getf()) != 0;
duke@435 930 }
duke@435 931
duke@435 932 //------------------------------is_nan-----------------------------------------
duke@435 933 // Is not a number (NaN)
duke@435 934 bool TypeF::is_nan() const {
duke@435 935 return g_isnan(getf()) != 0;
duke@435 936 }
duke@435 937
duke@435 938 //------------------------------dump2------------------------------------------
duke@435 939 // Dump float constant Type
duke@435 940 #ifndef PRODUCT
duke@435 941 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 942 Type::dump2(d,depth, st);
duke@435 943 st->print("%f", _f);
duke@435 944 }
duke@435 945 #endif
duke@435 946
duke@435 947 //------------------------------singleton--------------------------------------
duke@435 948 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 949 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 950 // or a single symbol.
duke@435 951 bool TypeF::singleton(void) const {
duke@435 952 return true; // Always a singleton
duke@435 953 }
duke@435 954
duke@435 955 bool TypeF::empty(void) const {
duke@435 956 return false; // always exactly a singleton
duke@435 957 }
duke@435 958
duke@435 959 //=============================================================================
duke@435 960 // Convenience common pre-built types.
duke@435 961 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 962 const TypeD *TypeD::ONE; // Floating point one
duke@435 963
duke@435 964 //------------------------------make-------------------------------------------
duke@435 965 const TypeD *TypeD::make(double d) {
duke@435 966 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 967 }
duke@435 968
duke@435 969 //------------------------------meet-------------------------------------------
duke@435 970 // Compute the MEET of two types. It returns a new Type object.
duke@435 971 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 972 // Perform a fast test for common case; meeting the same types together.
duke@435 973 if( this == t ) return this; // Meeting same type-rep?
duke@435 974
duke@435 975 // Current "this->_base" is DoubleCon
duke@435 976 switch (t->base()) { // Switch on original type
duke@435 977 case AnyPtr: // Mixing with oops happens when javac
duke@435 978 case RawPtr: // reuses local variables
duke@435 979 case OopPtr:
duke@435 980 case InstPtr:
duke@435 981 case KlassPtr:
duke@435 982 case AryPtr:
never@618 983 case NarrowOop:
duke@435 984 case Int:
duke@435 985 case Long:
duke@435 986 case FloatTop:
duke@435 987 case FloatCon:
duke@435 988 case FloatBot:
duke@435 989 case Bottom: // Ye Olde Default
duke@435 990 return Type::BOTTOM;
duke@435 991
duke@435 992 case DoubleBot:
duke@435 993 return t;
duke@435 994
duke@435 995 default: // All else is a mistake
duke@435 996 typerr(t);
duke@435 997
duke@435 998 case DoubleCon: // Double-constant vs Double-constant?
duke@435 999 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 1000 return DOUBLE; // Return generic double
duke@435 1001 case Top:
duke@435 1002 case DoubleTop:
duke@435 1003 break;
duke@435 1004 }
duke@435 1005 return this; // Return the double constant
duke@435 1006 }
duke@435 1007
duke@435 1008 //------------------------------xdual------------------------------------------
duke@435 1009 // Dual: symmetric
duke@435 1010 const Type *TypeD::xdual() const {
duke@435 1011 return this;
duke@435 1012 }
duke@435 1013
duke@435 1014 //------------------------------eq---------------------------------------------
duke@435 1015 // Structural equality check for Type representations
duke@435 1016 bool TypeD::eq( const Type *t ) const {
duke@435 1017 if( g_isnan(_d) ||
duke@435 1018 g_isnan(t->getd()) ) {
duke@435 1019 // One or both are NANs. If both are NANs return true, else false.
duke@435 1020 return (g_isnan(_d) && g_isnan(t->getd()));
duke@435 1021 }
duke@435 1022 if (_d == t->getd()) {
duke@435 1023 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 1024 if (_d == 0.0) {
duke@435 1025 // difference between positive and negative zero
duke@435 1026 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
duke@435 1027 }
duke@435 1028 return true;
duke@435 1029 }
duke@435 1030 return false;
duke@435 1031 }
duke@435 1032
duke@435 1033 //------------------------------hash-------------------------------------------
duke@435 1034 // Type-specific hashing function.
duke@435 1035 int TypeD::hash(void) const {
duke@435 1036 return *(int*)(&_d);
duke@435 1037 }
duke@435 1038
duke@435 1039 //------------------------------is_finite--------------------------------------
duke@435 1040 // Has a finite value
duke@435 1041 bool TypeD::is_finite() const {
duke@435 1042 return g_isfinite(getd()) != 0;
duke@435 1043 }
duke@435 1044
duke@435 1045 //------------------------------is_nan-----------------------------------------
duke@435 1046 // Is not a number (NaN)
duke@435 1047 bool TypeD::is_nan() const {
duke@435 1048 return g_isnan(getd()) != 0;
duke@435 1049 }
duke@435 1050
duke@435 1051 //------------------------------dump2------------------------------------------
duke@435 1052 // Dump double constant Type
duke@435 1053 #ifndef PRODUCT
duke@435 1054 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1055 Type::dump2(d,depth,st);
duke@435 1056 st->print("%f", _d);
duke@435 1057 }
duke@435 1058 #endif
duke@435 1059
duke@435 1060 //------------------------------singleton--------------------------------------
duke@435 1061 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1062 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1063 // or a single symbol.
duke@435 1064 bool TypeD::singleton(void) const {
duke@435 1065 return true; // Always a singleton
duke@435 1066 }
duke@435 1067
duke@435 1068 bool TypeD::empty(void) const {
duke@435 1069 return false; // always exactly a singleton
duke@435 1070 }
duke@435 1071
duke@435 1072 //=============================================================================
duke@435 1073 // Convience common pre-built types.
duke@435 1074 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1075 const TypeInt *TypeInt::ZERO; // 0
duke@435 1076 const TypeInt *TypeInt::ONE; // 1
duke@435 1077 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1078 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1079 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1080 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1081 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1082 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1083 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1084 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
twisti@1059 1085 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
duke@435 1086 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1087 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1088 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1089 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1090 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1091 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 1092
duke@435 1093 //------------------------------TypeInt----------------------------------------
duke@435 1094 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1095 }
duke@435 1096
duke@435 1097 //------------------------------make-------------------------------------------
duke@435 1098 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1099 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1100 }
duke@435 1101
kvn@1975 1102 static int normalize_int_widen( jint lo, jint hi, int w ) {
duke@435 1103 // Certain normalizations keep us sane when comparing types.
duke@435 1104 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1105 if (lo <= hi) {
kvn@1975 1106 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1107 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
kvn@1975 1108 } else {
kvn@1975 1109 if ((juint)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1110 if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
duke@435 1111 }
kvn@1975 1112 return w;
kvn@1975 1113 }
kvn@1975 1114
kvn@1975 1115 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
kvn@1975 1116 w = normalize_int_widen(lo, hi, w);
duke@435 1117 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1118 }
duke@435 1119
duke@435 1120 //------------------------------meet-------------------------------------------
duke@435 1121 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1122 // with reference count equal to the number of Types pointing at it.
duke@435 1123 // Caller should wrap a Types around it.
duke@435 1124 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1125 // Perform a fast test for common case; meeting the same types together.
duke@435 1126 if( this == t ) return this; // Meeting same type?
duke@435 1127
duke@435 1128 // Currently "this->_base" is a TypeInt
duke@435 1129 switch (t->base()) { // Switch on original type
duke@435 1130 case AnyPtr: // Mixing with oops happens when javac
duke@435 1131 case RawPtr: // reuses local variables
duke@435 1132 case OopPtr:
duke@435 1133 case InstPtr:
duke@435 1134 case KlassPtr:
duke@435 1135 case AryPtr:
never@618 1136 case NarrowOop:
duke@435 1137 case Long:
duke@435 1138 case FloatTop:
duke@435 1139 case FloatCon:
duke@435 1140 case FloatBot:
duke@435 1141 case DoubleTop:
duke@435 1142 case DoubleCon:
duke@435 1143 case DoubleBot:
duke@435 1144 case Bottom: // Ye Olde Default
duke@435 1145 return Type::BOTTOM;
duke@435 1146 default: // All else is a mistake
duke@435 1147 typerr(t);
duke@435 1148 case Top: // No change
duke@435 1149 return this;
duke@435 1150 case Int: // Int vs Int?
duke@435 1151 break;
duke@435 1152 }
duke@435 1153
duke@435 1154 // Expand covered set
duke@435 1155 const TypeInt *r = t->is_int();
kvn@1975 1156 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1157 }
duke@435 1158
duke@435 1159 //------------------------------xdual------------------------------------------
duke@435 1160 // Dual: reverse hi & lo; flip widen
duke@435 1161 const Type *TypeInt::xdual() const {
kvn@1975 1162 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1163 return new TypeInt(_hi,_lo,w);
duke@435 1164 }
duke@435 1165
duke@435 1166 //------------------------------widen------------------------------------------
duke@435 1167 // Only happens for optimistic top-down optimizations.
never@1444 1168 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
duke@435 1169 // Coming from TOP or such; no widening
duke@435 1170 if( old->base() != Int ) return this;
duke@435 1171 const TypeInt *ot = old->is_int();
duke@435 1172
duke@435 1173 // If new guy is equal to old guy, no widening
duke@435 1174 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1175 return old;
duke@435 1176
duke@435 1177 // If new guy contains old, then we widened
duke@435 1178 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1179 // New contains old
duke@435 1180 // If new guy is already wider than old, no widening
duke@435 1181 if( _widen > ot->_widen ) return this;
duke@435 1182 // If old guy was a constant, do not bother
duke@435 1183 if (ot->_lo == ot->_hi) return this;
duke@435 1184 // Now widen new guy.
duke@435 1185 // Check for widening too far
duke@435 1186 if (_widen == WidenMax) {
never@1444 1187 int max = max_jint;
never@1444 1188 int min = min_jint;
never@1444 1189 if (limit->isa_int()) {
never@1444 1190 max = limit->is_int()->_hi;
never@1444 1191 min = limit->is_int()->_lo;
never@1444 1192 }
never@1444 1193 if (min < _lo && _hi < max) {
duke@435 1194 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1195 // which is closer to its respective limit.
duke@435 1196 if (_lo >= 0 || // easy common case
never@1444 1197 (juint)(_lo - min) >= (juint)(max - _hi)) {
duke@435 1198 // Try to widen to an unsigned range type of 31 bits:
never@1444 1199 return make(_lo, max, WidenMax);
duke@435 1200 } else {
never@1444 1201 return make(min, _hi, WidenMax);
duke@435 1202 }
duke@435 1203 }
duke@435 1204 return TypeInt::INT;
duke@435 1205 }
duke@435 1206 // Returned widened new guy
duke@435 1207 return make(_lo,_hi,_widen+1);
duke@435 1208 }
duke@435 1209
duke@435 1210 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1211 // bottom. Return the wider fellow.
duke@435 1212 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1213 return old;
duke@435 1214
duke@435 1215 //fatal("Integer value range is not subset");
duke@435 1216 //return this;
duke@435 1217 return TypeInt::INT;
duke@435 1218 }
duke@435 1219
duke@435 1220 //------------------------------narrow---------------------------------------
duke@435 1221 // Only happens for pessimistic optimizations.
duke@435 1222 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1223 if (_lo >= _hi) return this; // already narrow enough
duke@435 1224 if (old == NULL) return this;
duke@435 1225 const TypeInt* ot = old->isa_int();
duke@435 1226 if (ot == NULL) return this;
duke@435 1227 jint olo = ot->_lo;
duke@435 1228 jint ohi = ot->_hi;
duke@435 1229
duke@435 1230 // If new guy is equal to old guy, no narrowing
duke@435 1231 if (_lo == olo && _hi == ohi) return old;
duke@435 1232
duke@435 1233 // If old guy was maximum range, allow the narrowing
duke@435 1234 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1235
duke@435 1236 if (_lo < olo || _hi > ohi)
duke@435 1237 return this; // doesn't narrow; pretty wierd
duke@435 1238
duke@435 1239 // The new type narrows the old type, so look for a "death march".
duke@435 1240 // See comments on PhaseTransform::saturate.
duke@435 1241 juint nrange = _hi - _lo;
duke@435 1242 juint orange = ohi - olo;
duke@435 1243 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1244 // Use the new type only if the range shrinks a lot.
duke@435 1245 // We do not want the optimizer computing 2^31 point by point.
duke@435 1246 return old;
duke@435 1247 }
duke@435 1248
duke@435 1249 return this;
duke@435 1250 }
duke@435 1251
duke@435 1252 //-----------------------------filter------------------------------------------
duke@435 1253 const Type *TypeInt::filter( const Type *kills ) const {
duke@435 1254 const TypeInt* ft = join(kills)->isa_int();
kvn@1975 1255 if (ft == NULL || ft->empty())
duke@435 1256 return Type::TOP; // Canonical empty value
duke@435 1257 if (ft->_widen < this->_widen) {
duke@435 1258 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1259 // The widen bits must be allowed to run freely through the graph.
duke@435 1260 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1261 }
duke@435 1262 return ft;
duke@435 1263 }
duke@435 1264
duke@435 1265 //------------------------------eq---------------------------------------------
duke@435 1266 // Structural equality check for Type representations
duke@435 1267 bool TypeInt::eq( const Type *t ) const {
duke@435 1268 const TypeInt *r = t->is_int(); // Handy access
duke@435 1269 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1270 }
duke@435 1271
duke@435 1272 //------------------------------hash-------------------------------------------
duke@435 1273 // Type-specific hashing function.
duke@435 1274 int TypeInt::hash(void) const {
duke@435 1275 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1276 }
duke@435 1277
duke@435 1278 //------------------------------is_finite--------------------------------------
duke@435 1279 // Has a finite value
duke@435 1280 bool TypeInt::is_finite() const {
duke@435 1281 return true;
duke@435 1282 }
duke@435 1283
duke@435 1284 //------------------------------dump2------------------------------------------
duke@435 1285 // Dump TypeInt
duke@435 1286 #ifndef PRODUCT
duke@435 1287 static const char* intname(char* buf, jint n) {
duke@435 1288 if (n == min_jint)
duke@435 1289 return "min";
duke@435 1290 else if (n < min_jint + 10000)
duke@435 1291 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1292 else if (n == max_jint)
duke@435 1293 return "max";
duke@435 1294 else if (n > max_jint - 10000)
duke@435 1295 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1296 else
duke@435 1297 sprintf(buf, INT32_FORMAT, n);
duke@435 1298 return buf;
duke@435 1299 }
duke@435 1300
duke@435 1301 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1302 char buf[40], buf2[40];
duke@435 1303 if (_lo == min_jint && _hi == max_jint)
duke@435 1304 st->print("int");
duke@435 1305 else if (is_con())
duke@435 1306 st->print("int:%s", intname(buf, get_con()));
duke@435 1307 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1308 st->print("bool");
duke@435 1309 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1310 st->print("byte");
duke@435 1311 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1312 st->print("char");
duke@435 1313 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1314 st->print("short");
duke@435 1315 else if (_hi == max_jint)
duke@435 1316 st->print("int:>=%s", intname(buf, _lo));
duke@435 1317 else if (_lo == min_jint)
duke@435 1318 st->print("int:<=%s", intname(buf, _hi));
duke@435 1319 else
duke@435 1320 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1321
duke@435 1322 if (_widen != 0 && this != TypeInt::INT)
duke@435 1323 st->print(":%.*s", _widen, "wwww");
duke@435 1324 }
duke@435 1325 #endif
duke@435 1326
duke@435 1327 //------------------------------singleton--------------------------------------
duke@435 1328 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1329 // constants.
duke@435 1330 bool TypeInt::singleton(void) const {
duke@435 1331 return _lo >= _hi;
duke@435 1332 }
duke@435 1333
duke@435 1334 bool TypeInt::empty(void) const {
duke@435 1335 return _lo > _hi;
duke@435 1336 }
duke@435 1337
duke@435 1338 //=============================================================================
duke@435 1339 // Convenience common pre-built types.
duke@435 1340 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1341 const TypeLong *TypeLong::ZERO; // 0
duke@435 1342 const TypeLong *TypeLong::ONE; // 1
duke@435 1343 const TypeLong *TypeLong::POS; // >=0
duke@435 1344 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1345 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1346 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
duke@435 1347
duke@435 1348 //------------------------------TypeLong---------------------------------------
duke@435 1349 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1350 }
duke@435 1351
duke@435 1352 //------------------------------make-------------------------------------------
duke@435 1353 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1354 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1355 }
duke@435 1356
kvn@1975 1357 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
kvn@1975 1358 // Certain normalizations keep us sane when comparing types.
kvn@1975 1359 // The 'SMALLINT' covers constants.
kvn@1975 1360 if (lo <= hi) {
kvn@1975 1361 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1362 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
kvn@1975 1363 } else {
kvn@1975 1364 if ((julong)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1365 if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
kvn@1975 1366 }
kvn@1975 1367 return w;
kvn@1975 1368 }
kvn@1975 1369
duke@435 1370 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
kvn@1975 1371 w = normalize_long_widen(lo, hi, w);
duke@435 1372 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1373 }
duke@435 1374
duke@435 1375
duke@435 1376 //------------------------------meet-------------------------------------------
duke@435 1377 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1378 // with reference count equal to the number of Types pointing at it.
duke@435 1379 // Caller should wrap a Types around it.
duke@435 1380 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1381 // Perform a fast test for common case; meeting the same types together.
duke@435 1382 if( this == t ) return this; // Meeting same type?
duke@435 1383
duke@435 1384 // Currently "this->_base" is a TypeLong
duke@435 1385 switch (t->base()) { // Switch on original type
duke@435 1386 case AnyPtr: // Mixing with oops happens when javac
duke@435 1387 case RawPtr: // reuses local variables
duke@435 1388 case OopPtr:
duke@435 1389 case InstPtr:
duke@435 1390 case KlassPtr:
duke@435 1391 case AryPtr:
never@618 1392 case NarrowOop:
duke@435 1393 case Int:
duke@435 1394 case FloatTop:
duke@435 1395 case FloatCon:
duke@435 1396 case FloatBot:
duke@435 1397 case DoubleTop:
duke@435 1398 case DoubleCon:
duke@435 1399 case DoubleBot:
duke@435 1400 case Bottom: // Ye Olde Default
duke@435 1401 return Type::BOTTOM;
duke@435 1402 default: // All else is a mistake
duke@435 1403 typerr(t);
duke@435 1404 case Top: // No change
duke@435 1405 return this;
duke@435 1406 case Long: // Long vs Long?
duke@435 1407 break;
duke@435 1408 }
duke@435 1409
duke@435 1410 // Expand covered set
duke@435 1411 const TypeLong *r = t->is_long(); // Turn into a TypeLong
kvn@1975 1412 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1413 }
duke@435 1414
duke@435 1415 //------------------------------xdual------------------------------------------
duke@435 1416 // Dual: reverse hi & lo; flip widen
duke@435 1417 const Type *TypeLong::xdual() const {
kvn@1975 1418 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1419 return new TypeLong(_hi,_lo,w);
duke@435 1420 }
duke@435 1421
duke@435 1422 //------------------------------widen------------------------------------------
duke@435 1423 // Only happens for optimistic top-down optimizations.
never@1444 1424 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
duke@435 1425 // Coming from TOP or such; no widening
duke@435 1426 if( old->base() != Long ) return this;
duke@435 1427 const TypeLong *ot = old->is_long();
duke@435 1428
duke@435 1429 // If new guy is equal to old guy, no widening
duke@435 1430 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1431 return old;
duke@435 1432
duke@435 1433 // If new guy contains old, then we widened
duke@435 1434 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1435 // New contains old
duke@435 1436 // If new guy is already wider than old, no widening
duke@435 1437 if( _widen > ot->_widen ) return this;
duke@435 1438 // If old guy was a constant, do not bother
duke@435 1439 if (ot->_lo == ot->_hi) return this;
duke@435 1440 // Now widen new guy.
duke@435 1441 // Check for widening too far
duke@435 1442 if (_widen == WidenMax) {
never@1444 1443 jlong max = max_jlong;
never@1444 1444 jlong min = min_jlong;
never@1444 1445 if (limit->isa_long()) {
never@1444 1446 max = limit->is_long()->_hi;
never@1444 1447 min = limit->is_long()->_lo;
never@1444 1448 }
never@1444 1449 if (min < _lo && _hi < max) {
duke@435 1450 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1451 // which is closer to its respective limit.
duke@435 1452 if (_lo >= 0 || // easy common case
never@1444 1453 (julong)(_lo - min) >= (julong)(max - _hi)) {
duke@435 1454 // Try to widen to an unsigned range type of 32/63 bits:
never@1444 1455 if (max >= max_juint && _hi < max_juint)
duke@435 1456 return make(_lo, max_juint, WidenMax);
duke@435 1457 else
never@1444 1458 return make(_lo, max, WidenMax);
duke@435 1459 } else {
never@1444 1460 return make(min, _hi, WidenMax);
duke@435 1461 }
duke@435 1462 }
duke@435 1463 return TypeLong::LONG;
duke@435 1464 }
duke@435 1465 // Returned widened new guy
duke@435 1466 return make(_lo,_hi,_widen+1);
duke@435 1467 }
duke@435 1468
duke@435 1469 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1470 // bottom. Return the wider fellow.
duke@435 1471 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1472 return old;
duke@435 1473
duke@435 1474 // fatal("Long value range is not subset");
duke@435 1475 // return this;
duke@435 1476 return TypeLong::LONG;
duke@435 1477 }
duke@435 1478
duke@435 1479 //------------------------------narrow----------------------------------------
duke@435 1480 // Only happens for pessimistic optimizations.
duke@435 1481 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1482 if (_lo >= _hi) return this; // already narrow enough
duke@435 1483 if (old == NULL) return this;
duke@435 1484 const TypeLong* ot = old->isa_long();
duke@435 1485 if (ot == NULL) return this;
duke@435 1486 jlong olo = ot->_lo;
duke@435 1487 jlong ohi = ot->_hi;
duke@435 1488
duke@435 1489 // If new guy is equal to old guy, no narrowing
duke@435 1490 if (_lo == olo && _hi == ohi) return old;
duke@435 1491
duke@435 1492 // If old guy was maximum range, allow the narrowing
duke@435 1493 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1494
duke@435 1495 if (_lo < olo || _hi > ohi)
duke@435 1496 return this; // doesn't narrow; pretty wierd
duke@435 1497
duke@435 1498 // The new type narrows the old type, so look for a "death march".
duke@435 1499 // See comments on PhaseTransform::saturate.
duke@435 1500 julong nrange = _hi - _lo;
duke@435 1501 julong orange = ohi - olo;
duke@435 1502 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1503 // Use the new type only if the range shrinks a lot.
duke@435 1504 // We do not want the optimizer computing 2^31 point by point.
duke@435 1505 return old;
duke@435 1506 }
duke@435 1507
duke@435 1508 return this;
duke@435 1509 }
duke@435 1510
duke@435 1511 //-----------------------------filter------------------------------------------
duke@435 1512 const Type *TypeLong::filter( const Type *kills ) const {
duke@435 1513 const TypeLong* ft = join(kills)->isa_long();
kvn@1975 1514 if (ft == NULL || ft->empty())
duke@435 1515 return Type::TOP; // Canonical empty value
duke@435 1516 if (ft->_widen < this->_widen) {
duke@435 1517 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1518 // The widen bits must be allowed to run freely through the graph.
duke@435 1519 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1520 }
duke@435 1521 return ft;
duke@435 1522 }
duke@435 1523
duke@435 1524 //------------------------------eq---------------------------------------------
duke@435 1525 // Structural equality check for Type representations
duke@435 1526 bool TypeLong::eq( const Type *t ) const {
duke@435 1527 const TypeLong *r = t->is_long(); // Handy access
duke@435 1528 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1529 }
duke@435 1530
duke@435 1531 //------------------------------hash-------------------------------------------
duke@435 1532 // Type-specific hashing function.
duke@435 1533 int TypeLong::hash(void) const {
duke@435 1534 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1535 }
duke@435 1536
duke@435 1537 //------------------------------is_finite--------------------------------------
duke@435 1538 // Has a finite value
duke@435 1539 bool TypeLong::is_finite() const {
duke@435 1540 return true;
duke@435 1541 }
duke@435 1542
duke@435 1543 //------------------------------dump2------------------------------------------
duke@435 1544 // Dump TypeLong
duke@435 1545 #ifndef PRODUCT
duke@435 1546 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1547 if (n > x) {
duke@435 1548 if (n >= x + 10000) return NULL;
duke@435 1549 sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
duke@435 1550 } else if (n < x) {
duke@435 1551 if (n <= x - 10000) return NULL;
duke@435 1552 sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
duke@435 1553 } else {
duke@435 1554 return xname;
duke@435 1555 }
duke@435 1556 return buf;
duke@435 1557 }
duke@435 1558
duke@435 1559 static const char* longname(char* buf, jlong n) {
duke@435 1560 const char* str;
duke@435 1561 if (n == min_jlong)
duke@435 1562 return "min";
duke@435 1563 else if (n < min_jlong + 10000)
duke@435 1564 sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
duke@435 1565 else if (n == max_jlong)
duke@435 1566 return "max";
duke@435 1567 else if (n > max_jlong - 10000)
duke@435 1568 sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
duke@435 1569 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1570 return str;
duke@435 1571 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1572 return str;
duke@435 1573 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1574 return str;
duke@435 1575 else
duke@435 1576 sprintf(buf, INT64_FORMAT, n);
duke@435 1577 return buf;
duke@435 1578 }
duke@435 1579
duke@435 1580 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1581 char buf[80], buf2[80];
duke@435 1582 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1583 st->print("long");
duke@435 1584 else if (is_con())
duke@435 1585 st->print("long:%s", longname(buf, get_con()));
duke@435 1586 else if (_hi == max_jlong)
duke@435 1587 st->print("long:>=%s", longname(buf, _lo));
duke@435 1588 else if (_lo == min_jlong)
duke@435 1589 st->print("long:<=%s", longname(buf, _hi));
duke@435 1590 else
duke@435 1591 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1592
duke@435 1593 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1594 st->print(":%.*s", _widen, "wwww");
duke@435 1595 }
duke@435 1596 #endif
duke@435 1597
duke@435 1598 //------------------------------singleton--------------------------------------
duke@435 1599 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1600 // constants
duke@435 1601 bool TypeLong::singleton(void) const {
duke@435 1602 return _lo >= _hi;
duke@435 1603 }
duke@435 1604
duke@435 1605 bool TypeLong::empty(void) const {
duke@435 1606 return _lo > _hi;
duke@435 1607 }
duke@435 1608
duke@435 1609 //=============================================================================
duke@435 1610 // Convenience common pre-built types.
duke@435 1611 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1612 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1613 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1614 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1615 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1616 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1617 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1618 const TypeTuple *TypeTuple::START_I2C;
duke@435 1619 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1620 const TypeTuple *TypeTuple::LONG_PAIR;
duke@435 1621
duke@435 1622
duke@435 1623 //------------------------------make-------------------------------------------
duke@435 1624 // Make a TypeTuple from the range of a method signature
duke@435 1625 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1626 ciType* return_type = sig->return_type();
duke@435 1627 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1628 const Type **field_array = fields(total_fields);
duke@435 1629 switch (return_type->basic_type()) {
duke@435 1630 case T_LONG:
duke@435 1631 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1632 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1633 break;
duke@435 1634 case T_DOUBLE:
duke@435 1635 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1636 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1637 break;
duke@435 1638 case T_OBJECT:
duke@435 1639 case T_ARRAY:
duke@435 1640 case T_BOOLEAN:
duke@435 1641 case T_CHAR:
duke@435 1642 case T_FLOAT:
duke@435 1643 case T_BYTE:
duke@435 1644 case T_SHORT:
duke@435 1645 case T_INT:
duke@435 1646 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1647 break;
duke@435 1648 case T_VOID:
duke@435 1649 break;
duke@435 1650 default:
duke@435 1651 ShouldNotReachHere();
duke@435 1652 }
duke@435 1653 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1654 }
duke@435 1655
duke@435 1656 // Make a TypeTuple from the domain of a method signature
duke@435 1657 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1658 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1659
duke@435 1660 uint pos = TypeFunc::Parms;
duke@435 1661 const Type **field_array;
duke@435 1662 if (recv != NULL) {
duke@435 1663 total_fields++;
duke@435 1664 field_array = fields(total_fields);
duke@435 1665 // Use get_const_type here because it respects UseUniqueSubclasses:
duke@435 1666 field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
duke@435 1667 } else {
duke@435 1668 field_array = fields(total_fields);
duke@435 1669 }
duke@435 1670
duke@435 1671 int i = 0;
duke@435 1672 while (pos < total_fields) {
duke@435 1673 ciType* type = sig->type_at(i);
duke@435 1674
duke@435 1675 switch (type->basic_type()) {
duke@435 1676 case T_LONG:
duke@435 1677 field_array[pos++] = TypeLong::LONG;
duke@435 1678 field_array[pos++] = Type::HALF;
duke@435 1679 break;
duke@435 1680 case T_DOUBLE:
duke@435 1681 field_array[pos++] = Type::DOUBLE;
duke@435 1682 field_array[pos++] = Type::HALF;
duke@435 1683 break;
duke@435 1684 case T_OBJECT:
duke@435 1685 case T_ARRAY:
duke@435 1686 case T_BOOLEAN:
duke@435 1687 case T_CHAR:
duke@435 1688 case T_FLOAT:
duke@435 1689 case T_BYTE:
duke@435 1690 case T_SHORT:
duke@435 1691 case T_INT:
duke@435 1692 field_array[pos++] = get_const_type(type);
duke@435 1693 break;
duke@435 1694 default:
duke@435 1695 ShouldNotReachHere();
duke@435 1696 }
duke@435 1697 i++;
duke@435 1698 }
duke@435 1699 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1700 }
duke@435 1701
duke@435 1702 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1703 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1704 }
duke@435 1705
duke@435 1706 //------------------------------fields-----------------------------------------
duke@435 1707 // Subroutine call type with space allocated for argument types
duke@435 1708 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1709 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1710 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1711 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1712 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1713 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1714 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1715
duke@435 1716 return flds;
duke@435 1717 }
duke@435 1718
duke@435 1719 //------------------------------meet-------------------------------------------
duke@435 1720 // Compute the MEET of two types. It returns a new Type object.
duke@435 1721 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1722 // Perform a fast test for common case; meeting the same types together.
duke@435 1723 if( this == t ) return this; // Meeting same type-rep?
duke@435 1724
duke@435 1725 // Current "this->_base" is Tuple
duke@435 1726 switch (t->base()) { // switch on original type
duke@435 1727
duke@435 1728 case Bottom: // Ye Olde Default
duke@435 1729 return t;
duke@435 1730
duke@435 1731 default: // All else is a mistake
duke@435 1732 typerr(t);
duke@435 1733
duke@435 1734 case Tuple: { // Meeting 2 signatures?
duke@435 1735 const TypeTuple *x = t->is_tuple();
duke@435 1736 assert( _cnt == x->_cnt, "" );
duke@435 1737 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1738 for( uint i=0; i<_cnt; i++ )
duke@435 1739 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1740 return TypeTuple::make(_cnt,fields);
duke@435 1741 }
duke@435 1742 case Top:
duke@435 1743 break;
duke@435 1744 }
duke@435 1745 return this; // Return the double constant
duke@435 1746 }
duke@435 1747
duke@435 1748 //------------------------------xdual------------------------------------------
duke@435 1749 // Dual: compute field-by-field dual
duke@435 1750 const Type *TypeTuple::xdual() const {
duke@435 1751 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1752 for( uint i=0; i<_cnt; i++ )
duke@435 1753 fields[i] = _fields[i]->dual();
duke@435 1754 return new TypeTuple(_cnt,fields);
duke@435 1755 }
duke@435 1756
duke@435 1757 //------------------------------eq---------------------------------------------
duke@435 1758 // Structural equality check for Type representations
duke@435 1759 bool TypeTuple::eq( const Type *t ) const {
duke@435 1760 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1761 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1762 for (uint i = 0; i < _cnt; i++)
duke@435 1763 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1764 return false; // Missed
duke@435 1765 return true;
duke@435 1766 }
duke@435 1767
duke@435 1768 //------------------------------hash-------------------------------------------
duke@435 1769 // Type-specific hashing function.
duke@435 1770 int TypeTuple::hash(void) const {
duke@435 1771 intptr_t sum = _cnt;
duke@435 1772 for( uint i=0; i<_cnt; i++ )
duke@435 1773 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1774 return sum;
duke@435 1775 }
duke@435 1776
duke@435 1777 //------------------------------dump2------------------------------------------
duke@435 1778 // Dump signature Type
duke@435 1779 #ifndef PRODUCT
duke@435 1780 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1781 st->print("{");
duke@435 1782 if( !depth || d[this] ) { // Check for recursive print
duke@435 1783 st->print("...}");
duke@435 1784 return;
duke@435 1785 }
duke@435 1786 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1787 if( _cnt ) {
duke@435 1788 uint i;
duke@435 1789 for( i=0; i<_cnt-1; i++ ) {
duke@435 1790 st->print("%d:", i);
duke@435 1791 _fields[i]->dump2(d, depth-1, st);
duke@435 1792 st->print(", ");
duke@435 1793 }
duke@435 1794 st->print("%d:", i);
duke@435 1795 _fields[i]->dump2(d, depth-1, st);
duke@435 1796 }
duke@435 1797 st->print("}");
duke@435 1798 }
duke@435 1799 #endif
duke@435 1800
duke@435 1801 //------------------------------singleton--------------------------------------
duke@435 1802 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1803 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1804 // or a single symbol.
duke@435 1805 bool TypeTuple::singleton(void) const {
duke@435 1806 return false; // Never a singleton
duke@435 1807 }
duke@435 1808
duke@435 1809 bool TypeTuple::empty(void) const {
duke@435 1810 for( uint i=0; i<_cnt; i++ ) {
duke@435 1811 if (_fields[i]->empty()) return true;
duke@435 1812 }
duke@435 1813 return false;
duke@435 1814 }
duke@435 1815
duke@435 1816 //=============================================================================
duke@435 1817 // Convenience common pre-built types.
duke@435 1818
duke@435 1819 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1820 // Certain normalizations keep us sane when comparing types.
duke@435 1821 // We do not want arrayOop variables to differ only by the wideness
duke@435 1822 // of their index types. Pick minimum wideness, since that is the
duke@435 1823 // forced wideness of small ranges anyway.
duke@435 1824 if (size->_widen != Type::WidenMin)
duke@435 1825 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1826 else
duke@435 1827 return size;
duke@435 1828 }
duke@435 1829
duke@435 1830 //------------------------------make-------------------------------------------
duke@435 1831 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
coleenp@548 1832 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1833 elem = elem->make_narrowoop();
coleenp@548 1834 }
duke@435 1835 size = normalize_array_size(size);
duke@435 1836 return (TypeAry*)(new TypeAry(elem,size))->hashcons();
duke@435 1837 }
duke@435 1838
duke@435 1839 //------------------------------meet-------------------------------------------
duke@435 1840 // Compute the MEET of two types. It returns a new Type object.
duke@435 1841 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1842 // Perform a fast test for common case; meeting the same types together.
duke@435 1843 if( this == t ) return this; // Meeting same type-rep?
duke@435 1844
duke@435 1845 // Current "this->_base" is Ary
duke@435 1846 switch (t->base()) { // switch on original type
duke@435 1847
duke@435 1848 case Bottom: // Ye Olde Default
duke@435 1849 return t;
duke@435 1850
duke@435 1851 default: // All else is a mistake
duke@435 1852 typerr(t);
duke@435 1853
duke@435 1854 case Array: { // Meeting 2 arrays?
duke@435 1855 const TypeAry *a = t->is_ary();
duke@435 1856 return TypeAry::make(_elem->meet(a->_elem),
duke@435 1857 _size->xmeet(a->_size)->is_int());
duke@435 1858 }
duke@435 1859 case Top:
duke@435 1860 break;
duke@435 1861 }
duke@435 1862 return this; // Return the double constant
duke@435 1863 }
duke@435 1864
duke@435 1865 //------------------------------xdual------------------------------------------
duke@435 1866 // Dual: compute field-by-field dual
duke@435 1867 const Type *TypeAry::xdual() const {
duke@435 1868 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1869 size_dual = normalize_array_size(size_dual);
duke@435 1870 return new TypeAry( _elem->dual(), size_dual);
duke@435 1871 }
duke@435 1872
duke@435 1873 //------------------------------eq---------------------------------------------
duke@435 1874 // Structural equality check for Type representations
duke@435 1875 bool TypeAry::eq( const Type *t ) const {
duke@435 1876 const TypeAry *a = (const TypeAry*)t;
duke@435 1877 return _elem == a->_elem &&
duke@435 1878 _size == a->_size;
duke@435 1879 }
duke@435 1880
duke@435 1881 //------------------------------hash-------------------------------------------
duke@435 1882 // Type-specific hashing function.
duke@435 1883 int TypeAry::hash(void) const {
duke@435 1884 return (intptr_t)_elem + (intptr_t)_size;
duke@435 1885 }
duke@435 1886
kvn@1255 1887 //----------------------interface_vs_oop---------------------------------------
kvn@1255 1888 #ifdef ASSERT
kvn@1255 1889 bool TypeAry::interface_vs_oop(const Type *t) const {
kvn@1255 1890 const TypeAry* t_ary = t->is_ary();
kvn@1255 1891 if (t_ary) {
kvn@1255 1892 return _elem->interface_vs_oop(t_ary->_elem);
kvn@1255 1893 }
kvn@1255 1894 return false;
kvn@1255 1895 }
kvn@1255 1896 #endif
kvn@1255 1897
duke@435 1898 //------------------------------dump2------------------------------------------
duke@435 1899 #ifndef PRODUCT
duke@435 1900 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1901 _elem->dump2(d, depth, st);
duke@435 1902 st->print("[");
duke@435 1903 _size->dump2(d, depth, st);
duke@435 1904 st->print("]");
duke@435 1905 }
duke@435 1906 #endif
duke@435 1907
duke@435 1908 //------------------------------singleton--------------------------------------
duke@435 1909 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1910 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1911 // or a single symbol.
duke@435 1912 bool TypeAry::singleton(void) const {
duke@435 1913 return false; // Never a singleton
duke@435 1914 }
duke@435 1915
duke@435 1916 bool TypeAry::empty(void) const {
duke@435 1917 return _elem->empty() || _size->empty();
duke@435 1918 }
duke@435 1919
duke@435 1920 //--------------------------ary_must_be_exact----------------------------------
duke@435 1921 bool TypeAry::ary_must_be_exact() const {
duke@435 1922 if (!UseExactTypes) return false;
duke@435 1923 // This logic looks at the element type of an array, and returns true
duke@435 1924 // if the element type is either a primitive or a final instance class.
duke@435 1925 // In such cases, an array built on this ary must have no subclasses.
duke@435 1926 if (_elem == BOTTOM) return false; // general array not exact
duke@435 1927 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 1928 const TypeOopPtr* toop = NULL;
kvn@656 1929 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 1930 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 1931 } else {
coleenp@548 1932 toop = _elem->isa_oopptr();
coleenp@548 1933 }
duke@435 1934 if (!toop) return true; // a primitive type, like int
duke@435 1935 ciKlass* tklass = toop->klass();
duke@435 1936 if (tklass == NULL) return false; // unloaded class
duke@435 1937 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 1938 const TypeInstPtr* tinst;
coleenp@548 1939 if (_elem->isa_narrowoop())
kvn@656 1940 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 1941 else
coleenp@548 1942 tinst = _elem->isa_instptr();
kvn@656 1943 if (tinst)
kvn@656 1944 return tklass->as_instance_klass()->is_final();
coleenp@548 1945 const TypeAryPtr* tap;
coleenp@548 1946 if (_elem->isa_narrowoop())
kvn@656 1947 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 1948 else
coleenp@548 1949 tap = _elem->isa_aryptr();
kvn@656 1950 if (tap)
kvn@656 1951 return tap->ary()->ary_must_be_exact();
duke@435 1952 return false;
duke@435 1953 }
duke@435 1954
kvn@3882 1955 //==============================TypeVect=======================================
kvn@3882 1956 // Convenience common pre-built types.
kvn@3882 1957 const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors
kvn@3882 1958 const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors
kvn@3882 1959 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
kvn@3882 1960 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
kvn@3882 1961
kvn@3882 1962 //------------------------------make-------------------------------------------
kvn@3882 1963 const TypeVect* TypeVect::make(const Type *elem, uint length) {
kvn@3882 1964 BasicType elem_bt = elem->array_element_basic_type();
kvn@3882 1965 assert(is_java_primitive(elem_bt), "only primitive types in vector");
kvn@3882 1966 assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
kvn@3882 1967 assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
kvn@3882 1968 int size = length * type2aelembytes(elem_bt);
kvn@3882 1969 switch (Matcher::vector_ideal_reg(size)) {
kvn@3882 1970 case Op_VecS:
kvn@3882 1971 return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
kvn@3882 1972 case Op_VecD:
kvn@3882 1973 case Op_RegD:
kvn@3882 1974 return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
kvn@3882 1975 case Op_VecX:
kvn@3882 1976 return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
kvn@3882 1977 case Op_VecY:
kvn@3882 1978 return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
kvn@3882 1979 }
kvn@3882 1980 ShouldNotReachHere();
kvn@3882 1981 return NULL;
kvn@3882 1982 }
kvn@3882 1983
kvn@3882 1984 //------------------------------meet-------------------------------------------
kvn@3882 1985 // Compute the MEET of two types. It returns a new Type object.
kvn@3882 1986 const Type *TypeVect::xmeet( const Type *t ) const {
kvn@3882 1987 // Perform a fast test for common case; meeting the same types together.
kvn@3882 1988 if( this == t ) return this; // Meeting same type-rep?
kvn@3882 1989
kvn@3882 1990 // Current "this->_base" is Vector
kvn@3882 1991 switch (t->base()) { // switch on original type
kvn@3882 1992
kvn@3882 1993 case Bottom: // Ye Olde Default
kvn@3882 1994 return t;
kvn@3882 1995
kvn@3882 1996 default: // All else is a mistake
kvn@3882 1997 typerr(t);
kvn@3882 1998
kvn@3882 1999 case VectorS:
kvn@3882 2000 case VectorD:
kvn@3882 2001 case VectorX:
kvn@3882 2002 case VectorY: { // Meeting 2 vectors?
kvn@3882 2003 const TypeVect* v = t->is_vect();
kvn@3882 2004 assert( base() == v->base(), "");
kvn@3882 2005 assert(length() == v->length(), "");
kvn@3882 2006 assert(element_basic_type() == v->element_basic_type(), "");
kvn@3882 2007 return TypeVect::make(_elem->xmeet(v->_elem), _length);
kvn@3882 2008 }
kvn@3882 2009 case Top:
kvn@3882 2010 break;
kvn@3882 2011 }
kvn@3882 2012 return this;
kvn@3882 2013 }
kvn@3882 2014
kvn@3882 2015 //------------------------------xdual------------------------------------------
kvn@3882 2016 // Dual: compute field-by-field dual
kvn@3882 2017 const Type *TypeVect::xdual() const {
kvn@3882 2018 return new TypeVect(base(), _elem->dual(), _length);
kvn@3882 2019 }
kvn@3882 2020
kvn@3882 2021 //------------------------------eq---------------------------------------------
kvn@3882 2022 // Structural equality check for Type representations
kvn@3882 2023 bool TypeVect::eq(const Type *t) const {
kvn@3882 2024 const TypeVect *v = t->is_vect();
kvn@3882 2025 return (_elem == v->_elem) && (_length == v->_length);
kvn@3882 2026 }
kvn@3882 2027
kvn@3882 2028 //------------------------------hash-------------------------------------------
kvn@3882 2029 // Type-specific hashing function.
kvn@3882 2030 int TypeVect::hash(void) const {
kvn@3882 2031 return (intptr_t)_elem + (intptr_t)_length;
kvn@3882 2032 }
kvn@3882 2033
kvn@3882 2034 //------------------------------singleton--------------------------------------
kvn@3882 2035 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
kvn@3882 2036 // constants (Ldi nodes). Vector is singleton if all elements are the same
kvn@3882 2037 // constant value (when vector is created with Replicate code).
kvn@3882 2038 bool TypeVect::singleton(void) const {
kvn@3882 2039 // There is no Con node for vectors yet.
kvn@3882 2040 // return _elem->singleton();
kvn@3882 2041 return false;
kvn@3882 2042 }
kvn@3882 2043
kvn@3882 2044 bool TypeVect::empty(void) const {
kvn@3882 2045 return _elem->empty();
kvn@3882 2046 }
kvn@3882 2047
kvn@3882 2048 //------------------------------dump2------------------------------------------
kvn@3882 2049 #ifndef PRODUCT
kvn@3882 2050 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
kvn@3882 2051 switch (base()) {
kvn@3882 2052 case VectorS:
kvn@3882 2053 st->print("vectors["); break;
kvn@3882 2054 case VectorD:
kvn@3882 2055 st->print("vectord["); break;
kvn@3882 2056 case VectorX:
kvn@3882 2057 st->print("vectorx["); break;
kvn@3882 2058 case VectorY:
kvn@3882 2059 st->print("vectory["); break;
kvn@3882 2060 default:
kvn@3882 2061 ShouldNotReachHere();
kvn@3882 2062 }
kvn@3882 2063 st->print("%d]:{", _length);
kvn@3882 2064 _elem->dump2(d, depth, st);
kvn@3882 2065 st->print("}");
kvn@3882 2066 }
kvn@3882 2067 #endif
kvn@3882 2068
kvn@3882 2069
duke@435 2070 //=============================================================================
duke@435 2071 // Convenience common pre-built types.
duke@435 2072 const TypePtr *TypePtr::NULL_PTR;
duke@435 2073 const TypePtr *TypePtr::NOTNULL;
duke@435 2074 const TypePtr *TypePtr::BOTTOM;
duke@435 2075
duke@435 2076 //------------------------------meet-------------------------------------------
duke@435 2077 // Meet over the PTR enum
duke@435 2078 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 2079 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 2080 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 2081 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2082 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2083 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 2084 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 2085 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 2086 };
duke@435 2087
duke@435 2088 //------------------------------make-------------------------------------------
duke@435 2089 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 2090 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 2091 }
duke@435 2092
duke@435 2093 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2094 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2095 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 2096 if( ptr == _ptr ) return this;
duke@435 2097 return make(_base, ptr, _offset);
duke@435 2098 }
duke@435 2099
duke@435 2100 //------------------------------get_con----------------------------------------
duke@435 2101 intptr_t TypePtr::get_con() const {
duke@435 2102 assert( _ptr == Null, "" );
duke@435 2103 return _offset;
duke@435 2104 }
duke@435 2105
duke@435 2106 //------------------------------meet-------------------------------------------
duke@435 2107 // Compute the MEET of two types. It returns a new Type object.
duke@435 2108 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 2109 // Perform a fast test for common case; meeting the same types together.
duke@435 2110 if( this == t ) return this; // Meeting same type-rep?
duke@435 2111
duke@435 2112 // Current "this->_base" is AnyPtr
duke@435 2113 switch (t->base()) { // switch on original type
duke@435 2114 case Int: // Mixing ints & oops happens when javac
duke@435 2115 case Long: // reuses local variables
duke@435 2116 case FloatTop:
duke@435 2117 case FloatCon:
duke@435 2118 case FloatBot:
duke@435 2119 case DoubleTop:
duke@435 2120 case DoubleCon:
duke@435 2121 case DoubleBot:
coleenp@548 2122 case NarrowOop:
duke@435 2123 case Bottom: // Ye Olde Default
duke@435 2124 return Type::BOTTOM;
duke@435 2125 case Top:
duke@435 2126 return this;
duke@435 2127
duke@435 2128 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2129 const TypePtr *tp = t->is_ptr();
duke@435 2130 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 2131 }
duke@435 2132 case RawPtr: // For these, flip the call around to cut down
duke@435 2133 case OopPtr:
duke@435 2134 case InstPtr: // on the cases I have to handle.
duke@435 2135 case KlassPtr:
duke@435 2136 case AryPtr:
duke@435 2137 return t->xmeet(this); // Call in reverse direction
duke@435 2138 default: // All else is a mistake
duke@435 2139 typerr(t);
duke@435 2140
duke@435 2141 }
duke@435 2142 return this;
duke@435 2143 }
duke@435 2144
duke@435 2145 //------------------------------meet_offset------------------------------------
duke@435 2146 int TypePtr::meet_offset( int offset ) const {
duke@435 2147 // Either is 'TOP' offset? Return the other offset!
duke@435 2148 if( _offset == OffsetTop ) return offset;
duke@435 2149 if( offset == OffsetTop ) return _offset;
duke@435 2150 // If either is different, return 'BOTTOM' offset
duke@435 2151 if( _offset != offset ) return OffsetBot;
duke@435 2152 return _offset;
duke@435 2153 }
duke@435 2154
duke@435 2155 //------------------------------dual_offset------------------------------------
duke@435 2156 int TypePtr::dual_offset( ) const {
duke@435 2157 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 2158 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 2159 return _offset; // Map everything else into self
duke@435 2160 }
duke@435 2161
duke@435 2162 //------------------------------xdual------------------------------------------
duke@435 2163 // Dual: compute field-by-field dual
duke@435 2164 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 2165 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 2166 };
duke@435 2167 const Type *TypePtr::xdual() const {
duke@435 2168 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 2169 }
duke@435 2170
kvn@741 2171 //------------------------------xadd_offset------------------------------------
kvn@741 2172 int TypePtr::xadd_offset( intptr_t offset ) const {
kvn@741 2173 // Adding to 'TOP' offset? Return 'TOP'!
kvn@741 2174 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
kvn@741 2175 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
kvn@741 2176 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
kvn@741 2177 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
kvn@741 2178 offset += (intptr_t)_offset;
kvn@741 2179 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
kvn@741 2180
kvn@741 2181 // assert( _offset >= 0 && _offset+offset >= 0, "" );
kvn@741 2182 // It is possible to construct a negative offset during PhaseCCP
kvn@741 2183
kvn@741 2184 return (int)offset; // Sum valid offsets
kvn@741 2185 }
kvn@741 2186
duke@435 2187 //------------------------------add_offset-------------------------------------
kvn@741 2188 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
kvn@741 2189 return make( AnyPtr, _ptr, xadd_offset(offset) );
duke@435 2190 }
duke@435 2191
duke@435 2192 //------------------------------eq---------------------------------------------
duke@435 2193 // Structural equality check for Type representations
duke@435 2194 bool TypePtr::eq( const Type *t ) const {
duke@435 2195 const TypePtr *a = (const TypePtr*)t;
duke@435 2196 return _ptr == a->ptr() && _offset == a->offset();
duke@435 2197 }
duke@435 2198
duke@435 2199 //------------------------------hash-------------------------------------------
duke@435 2200 // Type-specific hashing function.
duke@435 2201 int TypePtr::hash(void) const {
duke@435 2202 return _ptr + _offset;
duke@435 2203 }
duke@435 2204
duke@435 2205 //------------------------------dump2------------------------------------------
duke@435 2206 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 2207 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 2208 };
duke@435 2209
duke@435 2210 #ifndef PRODUCT
duke@435 2211 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2212 if( _ptr == Null ) st->print("NULL");
duke@435 2213 else st->print("%s *", ptr_msg[_ptr]);
duke@435 2214 if( _offset == OffsetTop ) st->print("+top");
duke@435 2215 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 2216 else if( _offset ) st->print("+%d", _offset);
duke@435 2217 }
duke@435 2218 #endif
duke@435 2219
duke@435 2220 //------------------------------singleton--------------------------------------
duke@435 2221 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2222 // constants
duke@435 2223 bool TypePtr::singleton(void) const {
duke@435 2224 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2225 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2226 }
duke@435 2227
duke@435 2228 bool TypePtr::empty(void) const {
duke@435 2229 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2230 }
duke@435 2231
duke@435 2232 //=============================================================================
duke@435 2233 // Convenience common pre-built types.
duke@435 2234 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2235 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2236
duke@435 2237 //------------------------------make-------------------------------------------
duke@435 2238 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2239 assert( ptr != Constant, "what is the constant?" );
duke@435 2240 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2241 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2242 }
duke@435 2243
duke@435 2244 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2245 assert( bits, "Use TypePtr for NULL" );
duke@435 2246 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2247 }
duke@435 2248
duke@435 2249 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2250 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2251 assert( ptr != Constant, "what is the constant?" );
duke@435 2252 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2253 assert( _bits==0, "Why cast a constant address?");
duke@435 2254 if( ptr == _ptr ) return this;
duke@435 2255 return make(ptr);
duke@435 2256 }
duke@435 2257
duke@435 2258 //------------------------------get_con----------------------------------------
duke@435 2259 intptr_t TypeRawPtr::get_con() const {
duke@435 2260 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2261 return (intptr_t)_bits;
duke@435 2262 }
duke@435 2263
duke@435 2264 //------------------------------meet-------------------------------------------
duke@435 2265 // Compute the MEET of two types. It returns a new Type object.
duke@435 2266 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2267 // Perform a fast test for common case; meeting the same types together.
duke@435 2268 if( this == t ) return this; // Meeting same type-rep?
duke@435 2269
duke@435 2270 // Current "this->_base" is RawPtr
duke@435 2271 switch( t->base() ) { // switch on original type
duke@435 2272 case Bottom: // Ye Olde Default
duke@435 2273 return t;
duke@435 2274 case Top:
duke@435 2275 return this;
duke@435 2276 case AnyPtr: // Meeting to AnyPtrs
duke@435 2277 break;
duke@435 2278 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2279 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2280 enum PTR ptr = meet_ptr( tptr );
duke@435 2281 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2282 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2283 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2284 ptr = NotNull; // Fall down in lattice
duke@435 2285 }
duke@435 2286 return make( ptr );
duke@435 2287 }
duke@435 2288
duke@435 2289 case OopPtr:
duke@435 2290 case InstPtr:
duke@435 2291 case KlassPtr:
duke@435 2292 case AryPtr:
duke@435 2293 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2294 default: // All else is a mistake
duke@435 2295 typerr(t);
duke@435 2296 }
duke@435 2297
duke@435 2298 // Found an AnyPtr type vs self-RawPtr type
duke@435 2299 const TypePtr *tp = t->is_ptr();
duke@435 2300 switch (tp->ptr()) {
duke@435 2301 case TypePtr::TopPTR: return this;
duke@435 2302 case TypePtr::BotPTR: return t;
duke@435 2303 case TypePtr::Null:
duke@435 2304 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2305 return TypeRawPtr::BOTTOM;
duke@435 2306 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2307 case TypePtr::AnyNull:
duke@435 2308 if( _ptr == TypePtr::Constant) return this;
duke@435 2309 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2310 default: ShouldNotReachHere();
duke@435 2311 }
duke@435 2312 return this;
duke@435 2313 }
duke@435 2314
duke@435 2315 //------------------------------xdual------------------------------------------
duke@435 2316 // Dual: compute field-by-field dual
duke@435 2317 const Type *TypeRawPtr::xdual() const {
duke@435 2318 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2319 }
duke@435 2320
duke@435 2321 //------------------------------add_offset-------------------------------------
kvn@741 2322 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
duke@435 2323 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2324 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2325 if( offset == 0 ) return this; // No change
duke@435 2326 switch (_ptr) {
duke@435 2327 case TypePtr::TopPTR:
duke@435 2328 case TypePtr::BotPTR:
duke@435 2329 case TypePtr::NotNull:
duke@435 2330 return this;
duke@435 2331 case TypePtr::Null:
kvn@2435 2332 case TypePtr::Constant: {
kvn@2435 2333 address bits = _bits+offset;
kvn@2435 2334 if ( bits == 0 ) return TypePtr::NULL_PTR;
kvn@2435 2335 return make( bits );
kvn@2435 2336 }
duke@435 2337 default: ShouldNotReachHere();
duke@435 2338 }
duke@435 2339 return NULL; // Lint noise
duke@435 2340 }
duke@435 2341
duke@435 2342 //------------------------------eq---------------------------------------------
duke@435 2343 // Structural equality check for Type representations
duke@435 2344 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2345 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2346 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2347 }
duke@435 2348
duke@435 2349 //------------------------------hash-------------------------------------------
duke@435 2350 // Type-specific hashing function.
duke@435 2351 int TypeRawPtr::hash(void) const {
duke@435 2352 return (intptr_t)_bits + TypePtr::hash();
duke@435 2353 }
duke@435 2354
duke@435 2355 //------------------------------dump2------------------------------------------
duke@435 2356 #ifndef PRODUCT
duke@435 2357 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2358 if( _ptr == Constant )
duke@435 2359 st->print(INTPTR_FORMAT, _bits);
duke@435 2360 else
duke@435 2361 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2362 }
duke@435 2363 #endif
duke@435 2364
duke@435 2365 //=============================================================================
duke@435 2366 // Convenience common pre-built type.
duke@435 2367 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2368
kvn@598 2369 //------------------------------TypeOopPtr-------------------------------------
kvn@598 2370 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
kvn@598 2371 : TypePtr(t, ptr, offset),
kvn@598 2372 _const_oop(o), _klass(k),
kvn@598 2373 _klass_is_exact(xk),
kvn@598 2374 _is_ptr_to_narrowoop(false),
kvn@598 2375 _instance_id(instance_id) {
kvn@598 2376 #ifdef _LP64
kvn@598 2377 if (UseCompressedOops && _offset != 0) {
kvn@598 2378 if (klass() == NULL) {
kvn@598 2379 assert(this->isa_aryptr(), "only arrays without klass");
kvn@598 2380 _is_ptr_to_narrowoop = true;
kvn@598 2381 } else if (_offset == oopDesc::klass_offset_in_bytes()) {
kvn@598 2382 _is_ptr_to_narrowoop = true;
kvn@598 2383 } else if (this->isa_aryptr()) {
kvn@598 2384 _is_ptr_to_narrowoop = (klass()->is_obj_array_klass() &&
kvn@598 2385 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2386 } else if (klass()->is_instance_klass()) {
kvn@598 2387 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2388 ciField* field = NULL;
kvn@598 2389 if (this->isa_klassptr()) {
never@2658 2390 // Perm objects don't use compressed references
kvn@598 2391 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2392 // unsafe access
kvn@598 2393 _is_ptr_to_narrowoop = true;
kvn@598 2394 } else { // exclude unsafe ops
kvn@598 2395 assert(this->isa_instptr(), "must be an instance ptr.");
never@2658 2396
never@2658 2397 if (klass() == ciEnv::current()->Class_klass() &&
never@2658 2398 (_offset == java_lang_Class::klass_offset_in_bytes() ||
never@2658 2399 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
never@2658 2400 // Special hidden fields from the Class.
never@2658 2401 assert(this->isa_instptr(), "must be an instance ptr.");
never@2658 2402 _is_ptr_to_narrowoop = true;
never@2658 2403 } else if (klass() == ciEnv::current()->Class_klass() &&
never@2658 2404 _offset >= instanceMirrorKlass::offset_of_static_fields()) {
never@2658 2405 // Static fields
never@2658 2406 assert(o != NULL, "must be constant");
never@2658 2407 ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 2408 ciField* field = k->get_field_by_offset(_offset, true);
never@2658 2409 assert(field != NULL, "missing field");
kvn@598 2410 BasicType basic_elem_type = field->layout_type();
kvn@598 2411 _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
kvn@598 2412 basic_elem_type == T_ARRAY);
kvn@598 2413 } else {
never@2658 2414 // Instance fields which contains a compressed oop references.
never@2658 2415 field = ik->get_field_by_offset(_offset, false);
never@2658 2416 if (field != NULL) {
never@2658 2417 BasicType basic_elem_type = field->layout_type();
never@2658 2418 _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
never@2658 2419 basic_elem_type == T_ARRAY);
never@2658 2420 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
never@2658 2421 // Compile::find_alias_type() cast exactness on all types to verify
never@2658 2422 // that it does not affect alias type.
never@2658 2423 _is_ptr_to_narrowoop = true;
never@2658 2424 } else {
never@2658 2425 // Type for the copy start in LibraryCallKit::inline_native_clone().
never@2658 2426 assert(!klass_is_exact(), "only non-exact klass");
never@2658 2427 _is_ptr_to_narrowoop = true;
never@2658 2428 }
kvn@598 2429 }
kvn@598 2430 }
kvn@598 2431 }
kvn@598 2432 }
kvn@598 2433 #endif
kvn@598 2434 }
kvn@598 2435
duke@435 2436 //------------------------------make-------------------------------------------
duke@435 2437 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
kvn@1393 2438 int offset, int instance_id) {
duke@435 2439 assert(ptr != Constant, "no constant generic pointers");
duke@435 2440 ciKlass* k = ciKlassKlass::make();
duke@435 2441 bool xk = false;
duke@435 2442 ciObject* o = NULL;
kvn@1393 2443 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
duke@435 2444 }
duke@435 2445
duke@435 2446
duke@435 2447 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2448 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2449 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2450 if( ptr == _ptr ) return this;
kvn@1427 2451 return make(ptr, _offset, _instance_id);
duke@435 2452 }
duke@435 2453
kvn@682 2454 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2455 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2456 // There are no instances of a general oop.
duke@435 2457 // Return self unchanged.
duke@435 2458 return this;
duke@435 2459 }
duke@435 2460
duke@435 2461 //-----------------------------cast_to_exactness-------------------------------
duke@435 2462 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2463 // There is no such thing as an exact general oop.
duke@435 2464 // Return self unchanged.
duke@435 2465 return this;
duke@435 2466 }
duke@435 2467
duke@435 2468
duke@435 2469 //------------------------------as_klass_type----------------------------------
duke@435 2470 // Return the klass type corresponding to this instance or array type.
duke@435 2471 // It is the type that is loaded from an object of this type.
duke@435 2472 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2473 ciKlass* k = klass();
duke@435 2474 bool xk = klass_is_exact();
duke@435 2475 if (k == NULL || !k->is_java_klass())
duke@435 2476 return TypeKlassPtr::OBJECT;
duke@435 2477 else
duke@435 2478 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2479 }
duke@435 2480
duke@435 2481
duke@435 2482 //------------------------------meet-------------------------------------------
duke@435 2483 // Compute the MEET of two types. It returns a new Type object.
duke@435 2484 const Type *TypeOopPtr::xmeet( const Type *t ) const {
duke@435 2485 // Perform a fast test for common case; meeting the same types together.
duke@435 2486 if( this == t ) return this; // Meeting same type-rep?
duke@435 2487
duke@435 2488 // Current "this->_base" is OopPtr
duke@435 2489 switch (t->base()) { // switch on original type
duke@435 2490
duke@435 2491 case Int: // Mixing ints & oops happens when javac
duke@435 2492 case Long: // reuses local variables
duke@435 2493 case FloatTop:
duke@435 2494 case FloatCon:
duke@435 2495 case FloatBot:
duke@435 2496 case DoubleTop:
duke@435 2497 case DoubleCon:
duke@435 2498 case DoubleBot:
kvn@728 2499 case NarrowOop:
duke@435 2500 case Bottom: // Ye Olde Default
duke@435 2501 return Type::BOTTOM;
duke@435 2502 case Top:
duke@435 2503 return this;
duke@435 2504
duke@435 2505 default: // All else is a mistake
duke@435 2506 typerr(t);
duke@435 2507
duke@435 2508 case RawPtr:
duke@435 2509 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2510
duke@435 2511 case AnyPtr: {
duke@435 2512 // Found an AnyPtr type vs self-OopPtr type
duke@435 2513 const TypePtr *tp = t->is_ptr();
duke@435 2514 int offset = meet_offset(tp->offset());
duke@435 2515 PTR ptr = meet_ptr(tp->ptr());
duke@435 2516 switch (tp->ptr()) {
duke@435 2517 case Null:
duke@435 2518 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2519 // else fall through:
duke@435 2520 case TopPTR:
kvn@1427 2521 case AnyNull: {
kvn@1427 2522 int instance_id = meet_instance_id(InstanceTop);
kvn@1427 2523 return make(ptr, offset, instance_id);
kvn@1427 2524 }
duke@435 2525 case BotPTR:
duke@435 2526 case NotNull:
duke@435 2527 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2528 default: typerr(t);
duke@435 2529 }
duke@435 2530 }
duke@435 2531
duke@435 2532 case OopPtr: { // Meeting to other OopPtrs
duke@435 2533 const TypeOopPtr *tp = t->is_oopptr();
kvn@1393 2534 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 2535 return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
duke@435 2536 }
duke@435 2537
duke@435 2538 case InstPtr: // For these, flip the call around to cut down
duke@435 2539 case KlassPtr: // on the cases I have to handle.
duke@435 2540 case AryPtr:
duke@435 2541 return t->xmeet(this); // Call in reverse direction
duke@435 2542
duke@435 2543 } // End of switch
duke@435 2544 return this; // Return the double constant
duke@435 2545 }
duke@435 2546
duke@435 2547
duke@435 2548 //------------------------------xdual------------------------------------------
duke@435 2549 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2550 const Type *TypeOopPtr::xdual() const {
duke@435 2551 assert(klass() == ciKlassKlass::make(), "no klasses here");
duke@435 2552 assert(const_oop() == NULL, "no constants here");
kvn@658 2553 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 2554 }
duke@435 2555
duke@435 2556 //--------------------------make_from_klass_common-----------------------------
duke@435 2557 // Computes the element-type given a klass.
duke@435 2558 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2559 assert(klass->is_java_klass(), "must be java language klass");
duke@435 2560 if (klass->is_instance_klass()) {
duke@435 2561 Compile* C = Compile::current();
duke@435 2562 Dependencies* deps = C->dependencies();
duke@435 2563 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2564 // Element is an instance
duke@435 2565 bool klass_is_exact = false;
duke@435 2566 if (klass->is_loaded()) {
duke@435 2567 // Try to set klass_is_exact.
duke@435 2568 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2569 klass_is_exact = ik->is_final();
duke@435 2570 if (!klass_is_exact && klass_change
duke@435 2571 && deps != NULL && UseUniqueSubclasses) {
duke@435 2572 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2573 if (sub != NULL) {
duke@435 2574 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2575 klass = ik = sub;
duke@435 2576 klass_is_exact = sub->is_final();
duke@435 2577 }
duke@435 2578 }
duke@435 2579 if (!klass_is_exact && try_for_exact
duke@435 2580 && deps != NULL && UseExactTypes) {
duke@435 2581 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2582 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2583 deps->assert_leaf_type(ik);
duke@435 2584 klass_is_exact = true;
duke@435 2585 }
duke@435 2586 }
duke@435 2587 }
duke@435 2588 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2589 } else if (klass->is_obj_array_klass()) {
duke@435 2590 // Element is an object array. Recursively call ourself.
duke@435 2591 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2592 bool xk = etype->klass_is_exact();
duke@435 2593 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2594 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2595 // are all not-null. This is not true in generally, as code can
duke@435 2596 // slam NULLs down in the subarrays.
duke@435 2597 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2598 return arr;
duke@435 2599 } else if (klass->is_type_array_klass()) {
duke@435 2600 // Element is an typeArray
duke@435 2601 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2602 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2603 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2604 // is not-null. That was not true in general.
duke@435 2605 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2606 return arr;
duke@435 2607 } else {
duke@435 2608 ShouldNotReachHere();
duke@435 2609 return NULL;
duke@435 2610 }
duke@435 2611 }
duke@435 2612
duke@435 2613 //------------------------------make_from_constant-----------------------------
duke@435 2614 // Make a java pointer from an oop constant
jrose@1424 2615 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
twisti@3885 2616 if (o->is_method_data() || o->is_method()) {
duke@435 2617 // Treat much like a typeArray of bytes, like below, but fake the type...
twisti@3885 2618 const BasicType bt = T_BYTE;
twisti@3885 2619 const Type* etype = get_const_basic_type(bt);
duke@435 2620 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
twisti@3885 2621 ciKlass* klass = ciArrayKlass::make(ciType::make(bt));
twisti@3885 2622 assert(o->can_be_constant(), "should be tenured");
twisti@3885 2623 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
twisti@3885 2624 } else if (o->is_cpcache()) {
twisti@3885 2625 // Treat much like a objArray, like below, but fake the type...
twisti@3885 2626 const BasicType bt = T_OBJECT;
twisti@3885 2627 const Type* etype = get_const_basic_type(bt);
twisti@3885 2628 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
twisti@3885 2629 ciKlass* klass = ciArrayKlass::make(ciType::make(bt));
twisti@3885 2630 assert(o->can_be_constant(), "should be tenured");
twisti@3885 2631 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2632 } else {
duke@435 2633 assert(o->is_java_object(), "must be java language object");
duke@435 2634 assert(!o->is_null_object(), "null object not yet handled here.");
twisti@3885 2635 ciKlass* klass = o->klass();
duke@435 2636 if (klass->is_instance_klass()) {
duke@435 2637 // Element is an instance
jrose@1424 2638 if (require_constant) {
jrose@1424 2639 if (!o->can_be_constant()) return NULL;
jrose@1424 2640 } else if (!o->should_be_constant()) {
duke@435 2641 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
duke@435 2642 }
duke@435 2643 return TypeInstPtr::make(o);
duke@435 2644 } else if (klass->is_obj_array_klass()) {
duke@435 2645 // Element is an object array. Recursively call ourself.
twisti@3885 2646 const Type *etype = make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
duke@435 2647 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2648 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2649 // are all not-null. This is not true in generally, as code can
duke@435 2650 // slam NULLs down in the subarrays.
jrose@1424 2651 if (require_constant) {
jrose@1424 2652 if (!o->can_be_constant()) return NULL;
jrose@1424 2653 } else if (!o->should_be_constant()) {
duke@435 2654 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2655 }
twisti@3885 2656 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2657 } else if (klass->is_type_array_klass()) {
duke@435 2658 // Element is an typeArray
twisti@3885 2659 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2660 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2661 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2662 // is not-null. That was not true in general.
jrose@1424 2663 if (require_constant) {
jrose@1424 2664 if (!o->can_be_constant()) return NULL;
jrose@1424 2665 } else if (!o->should_be_constant()) {
duke@435 2666 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2667 }
twisti@3885 2668 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2669 }
duke@435 2670 }
duke@435 2671
twisti@3885 2672 fatal("unhandled object type");
duke@435 2673 return NULL;
duke@435 2674 }
duke@435 2675
duke@435 2676 //------------------------------get_con----------------------------------------
duke@435 2677 intptr_t TypeOopPtr::get_con() const {
duke@435 2678 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2679 assert( _offset >= 0, "" );
duke@435 2680
duke@435 2681 if (_offset != 0) {
duke@435 2682 // After being ported to the compiler interface, the compiler no longer
duke@435 2683 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2684 // to a handle at compile time. This handle is embedded in the generated
duke@435 2685 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2686 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2687 // have access to the addresses!). This does not seem to currently happen,
twisti@1040 2688 // but this assertion here is to help prevent its occurence.
duke@435 2689 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2690 ShouldNotReachHere();
duke@435 2691 }
duke@435 2692
jrose@1424 2693 return (intptr_t)const_oop()->constant_encoding();
duke@435 2694 }
duke@435 2695
duke@435 2696
duke@435 2697 //-----------------------------filter------------------------------------------
duke@435 2698 // Do not allow interface-vs.-noninterface joins to collapse to top.
duke@435 2699 const Type *TypeOopPtr::filter( const Type *kills ) const {
duke@435 2700
duke@435 2701 const Type* ft = join(kills);
duke@435 2702 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2703 const TypeInstPtr* ktip = kills->isa_instptr();
never@990 2704 const TypeKlassPtr* ftkp = ft->isa_klassptr();
never@990 2705 const TypeKlassPtr* ktkp = kills->isa_klassptr();
duke@435 2706
duke@435 2707 if (ft->empty()) {
duke@435 2708 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2709 // interface. This can happen because the bytecodes do not contain
duke@435 2710 // enough type info to distinguish a Java-level interface variable
duke@435 2711 // from a Java-level object variable. If we meet 2 classes which
duke@435 2712 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2713 // doesn't implement I, we have no way to tell if the result should
duke@435 2714 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2715 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2716 // uplift the type.
duke@435 2717 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
duke@435 2718 return kills; // Uplift to interface
never@990 2719 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
never@990 2720 return kills; // Uplift to interface
duke@435 2721
duke@435 2722 return Type::TOP; // Canonical empty value
duke@435 2723 }
duke@435 2724
duke@435 2725 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2726 // the join should report back the class. However, if we have a J/L/Object
duke@435 2727 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2728 // join report an interface back out. This isn't possible but happens
duke@435 2729 // because the type system doesn't interact well with interfaces.
duke@435 2730 if (ftip != NULL && ktip != NULL &&
duke@435 2731 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2732 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2733 // Happens in a CTW of rt.jar, 320-341, no extra flags
kvn@1770 2734 assert(!ftip->klass_is_exact(), "interface could not be exact");
duke@435 2735 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2736 }
kvn@1770 2737 // Interface klass type could be exact in opposite to interface type,
kvn@1770 2738 // return it here instead of incorrect Constant ptr J/L/Object (6894807).
never@990 2739 if (ftkp != NULL && ktkp != NULL &&
never@990 2740 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
kvn@1770 2741 !ftkp->klass_is_exact() && // Keep exact interface klass
never@990 2742 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
never@990 2743 return ktkp->cast_to_ptr_type(ftkp->ptr());
never@990 2744 }
duke@435 2745
duke@435 2746 return ft;
duke@435 2747 }
duke@435 2748
duke@435 2749 //------------------------------eq---------------------------------------------
duke@435 2750 // Structural equality check for Type representations
duke@435 2751 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2752 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2753 if (_klass_is_exact != a->_klass_is_exact ||
duke@435 2754 _instance_id != a->_instance_id) return false;
duke@435 2755 ciObject* one = const_oop();
duke@435 2756 ciObject* two = a->const_oop();
duke@435 2757 if (one == NULL || two == NULL) {
duke@435 2758 return (one == two) && TypePtr::eq(t);
duke@435 2759 } else {
duke@435 2760 return one->equals(two) && TypePtr::eq(t);
duke@435 2761 }
duke@435 2762 }
duke@435 2763
duke@435 2764 //------------------------------hash-------------------------------------------
duke@435 2765 // Type-specific hashing function.
duke@435 2766 int TypeOopPtr::hash(void) const {
duke@435 2767 return
duke@435 2768 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2769 _klass_is_exact +
duke@435 2770 _instance_id +
duke@435 2771 TypePtr::hash();
duke@435 2772 }
duke@435 2773
duke@435 2774 //------------------------------dump2------------------------------------------
duke@435 2775 #ifndef PRODUCT
duke@435 2776 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2777 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2778 if( _klass_is_exact ) st->print(":exact");
duke@435 2779 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2780 switch( _offset ) {
duke@435 2781 case OffsetTop: st->print("+top"); break;
duke@435 2782 case OffsetBot: st->print("+any"); break;
duke@435 2783 case 0: break;
duke@435 2784 default: st->print("+%d",_offset); break;
duke@435 2785 }
kvn@658 2786 if (_instance_id == InstanceTop)
kvn@658 2787 st->print(",iid=top");
kvn@658 2788 else if (_instance_id != InstanceBot)
duke@435 2789 st->print(",iid=%d",_instance_id);
duke@435 2790 }
duke@435 2791 #endif
duke@435 2792
duke@435 2793 //------------------------------singleton--------------------------------------
duke@435 2794 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2795 // constants
duke@435 2796 bool TypeOopPtr::singleton(void) const {
duke@435 2797 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2798 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2799 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2800 }
duke@435 2801
duke@435 2802 //------------------------------add_offset-------------------------------------
kvn@741 2803 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
kvn@1427 2804 return make( _ptr, xadd_offset(offset), _instance_id);
duke@435 2805 }
duke@435 2806
kvn@658 2807 //------------------------------meet_instance_id--------------------------------
kvn@658 2808 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 2809 // Either is 'TOP' instance? Return the other instance!
kvn@658 2810 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 2811 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 2812 // If either is different, return 'BOTTOM' instance
kvn@658 2813 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 2814 return _instance_id;
duke@435 2815 }
duke@435 2816
kvn@658 2817 //------------------------------dual_instance_id--------------------------------
kvn@658 2818 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 2819 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 2820 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 2821 return _instance_id; // Map everything else into self
kvn@658 2822 }
kvn@658 2823
kvn@658 2824
duke@435 2825 //=============================================================================
duke@435 2826 // Convenience common pre-built types.
duke@435 2827 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 2828 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 2829 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 2830 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 2831 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 2832
duke@435 2833 //------------------------------TypeInstPtr-------------------------------------
duke@435 2834 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
duke@435 2835 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
duke@435 2836 assert(k != NULL &&
duke@435 2837 (k->is_loaded() || o == NULL),
duke@435 2838 "cannot have constants with non-loaded klass");
duke@435 2839 };
duke@435 2840
duke@435 2841 //------------------------------make-------------------------------------------
duke@435 2842 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 2843 ciKlass* k,
duke@435 2844 bool xk,
duke@435 2845 ciObject* o,
duke@435 2846 int offset,
duke@435 2847 int instance_id) {
duke@435 2848 assert( !k->is_loaded() || k->is_instance_klass() ||
duke@435 2849 k->is_method_klass(), "Must be for instance or method");
duke@435 2850 // Either const_oop() is NULL or else ptr is Constant
duke@435 2851 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 2852 "constant pointers must have a value supplied" );
duke@435 2853 // Ptr is never Null
duke@435 2854 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 2855
kvn@682 2856 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 2857 if (!UseExactTypes) xk = false;
duke@435 2858 if (ptr == Constant) {
duke@435 2859 // Note: This case includes meta-object constants, such as methods.
duke@435 2860 xk = true;
duke@435 2861 } else if (k->is_loaded()) {
duke@435 2862 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 2863 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 2864 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 2865 }
duke@435 2866
duke@435 2867 // Now hash this baby
duke@435 2868 TypeInstPtr *result =
duke@435 2869 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
duke@435 2870
duke@435 2871 return result;
duke@435 2872 }
duke@435 2873
duke@435 2874
duke@435 2875 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2876 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2877 if( ptr == _ptr ) return this;
duke@435 2878 // Reconstruct _sig info here since not a problem with later lazy
duke@435 2879 // construction, _sig will show up on demand.
kvn@658 2880 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
duke@435 2881 }
duke@435 2882
duke@435 2883
duke@435 2884 //-----------------------------cast_to_exactness-------------------------------
duke@435 2885 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2886 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 2887 if (!UseExactTypes) return this;
duke@435 2888 if (!_klass->is_loaded()) return this;
duke@435 2889 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 2890 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 2891 if( ik->is_interface() ) return this; // cannot set xk
duke@435 2892 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
duke@435 2893 }
duke@435 2894
kvn@682 2895 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2896 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 2897 if( instance_id == _instance_id ) return this;
kvn@682 2898 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
duke@435 2899 }
duke@435 2900
duke@435 2901 //------------------------------xmeet_unloaded---------------------------------
duke@435 2902 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 2903 // Assume classes are different since called after check for same name/class-loader
duke@435 2904 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 2905 int off = meet_offset(tinst->offset());
duke@435 2906 PTR ptr = meet_ptr(tinst->ptr());
kvn@1427 2907 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 2908
duke@435 2909 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 2910 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 2911 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 2912 //
duke@435 2913 // Meet unloaded class with java/lang/Object
duke@435 2914 //
duke@435 2915 // Meet
duke@435 2916 // | Unloaded Class
duke@435 2917 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 2918 // ===================================================================
duke@435 2919 // TOP | ..........................Unloaded......................|
duke@435 2920 // AnyNull | U-AN |................Unloaded......................|
duke@435 2921 // Constant | ... O-NN .................................. | O-BOT |
duke@435 2922 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 2923 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 2924 //
duke@435 2925 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 2926 //
duke@435 2927 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
kvn@1427 2928 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
duke@435 2929 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2930 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 2931 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2932 else { return TypeInstPtr::NOTNULL; }
duke@435 2933 }
duke@435 2934 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 2935
duke@435 2936 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 2937 }
duke@435 2938
duke@435 2939 // Both are unloaded, not the same class, not Object
duke@435 2940 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 2941 if( ptr != TypePtr::BotPTR ) {
duke@435 2942 return TypeInstPtr::NOTNULL;
duke@435 2943 }
duke@435 2944 return TypeInstPtr::BOTTOM;
duke@435 2945 }
duke@435 2946
duke@435 2947
duke@435 2948 //------------------------------meet-------------------------------------------
duke@435 2949 // Compute the MEET of two types. It returns a new Type object.
duke@435 2950 const Type *TypeInstPtr::xmeet( const Type *t ) const {
duke@435 2951 // Perform a fast test for common case; meeting the same types together.
duke@435 2952 if( this == t ) return this; // Meeting same type-rep?
duke@435 2953
duke@435 2954 // Current "this->_base" is Pointer
duke@435 2955 switch (t->base()) { // switch on original type
duke@435 2956
duke@435 2957 case Int: // Mixing ints & oops happens when javac
duke@435 2958 case Long: // reuses local variables
duke@435 2959 case FloatTop:
duke@435 2960 case FloatCon:
duke@435 2961 case FloatBot:
duke@435 2962 case DoubleTop:
duke@435 2963 case DoubleCon:
duke@435 2964 case DoubleBot:
coleenp@548 2965 case NarrowOop:
duke@435 2966 case Bottom: // Ye Olde Default
duke@435 2967 return Type::BOTTOM;
duke@435 2968 case Top:
duke@435 2969 return this;
duke@435 2970
duke@435 2971 default: // All else is a mistake
duke@435 2972 typerr(t);
duke@435 2973
duke@435 2974 case RawPtr: return TypePtr::BOTTOM;
duke@435 2975
duke@435 2976 case AryPtr: { // All arrays inherit from Object class
duke@435 2977 const TypeAryPtr *tp = t->is_aryptr();
duke@435 2978 int offset = meet_offset(tp->offset());
duke@435 2979 PTR ptr = meet_ptr(tp->ptr());
kvn@658 2980 int instance_id = meet_instance_id(tp->instance_id());
duke@435 2981 switch (ptr) {
duke@435 2982 case TopPTR:
duke@435 2983 case AnyNull: // Fall 'down' to dual of object klass
duke@435 2984 if (klass()->equals(ciEnv::current()->Object_klass())) {
kvn@658 2985 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2986 } else {
duke@435 2987 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 2988 ptr = NotNull;
kvn@658 2989 instance_id = InstanceBot;
kvn@658 2990 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
duke@435 2991 }
duke@435 2992 case Constant:
duke@435 2993 case NotNull:
duke@435 2994 case BotPTR: // Fall down to object klass
duke@435 2995 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 2996 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 2997 // If 'this' (InstPtr) is above the centerline and it is Object class
twisti@1040 2998 // then we can subclass in the Java class hierarchy.
duke@435 2999 if (klass()->equals(ciEnv::current()->Object_klass())) {
duke@435 3000 // that is, tp's array type is a subtype of my klass
kvn@1714 3001 return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
kvn@1714 3002 tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 3003 }
duke@435 3004 }
duke@435 3005 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 3006 // The meet falls down to Object class below centerline.
duke@435 3007 if( ptr == Constant )
duke@435 3008 ptr = NotNull;
kvn@658 3009 instance_id = InstanceBot;
kvn@658 3010 return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
duke@435 3011 default: typerr(t);
duke@435 3012 }
duke@435 3013 }
duke@435 3014
duke@435 3015 case OopPtr: { // Meeting to OopPtrs
duke@435 3016 // Found a OopPtr type vs self-InstPtr type
kvn@1393 3017 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3018 int offset = meet_offset(tp->offset());
duke@435 3019 PTR ptr = meet_ptr(tp->ptr());
duke@435 3020 switch (tp->ptr()) {
duke@435 3021 case TopPTR:
kvn@658 3022 case AnyNull: {
kvn@658 3023 int instance_id = meet_instance_id(InstanceTop);
duke@435 3024 return make(ptr, klass(), klass_is_exact(),
kvn@658 3025 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 3026 }
duke@435 3027 case NotNull:
kvn@1393 3028 case BotPTR: {
kvn@1393 3029 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 3030 return TypeOopPtr::make(ptr, offset, instance_id);
kvn@1393 3031 }
duke@435 3032 default: typerr(t);
duke@435 3033 }
duke@435 3034 }
duke@435 3035
duke@435 3036 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3037 // Found an AnyPtr type vs self-InstPtr type
duke@435 3038 const TypePtr *tp = t->is_ptr();
duke@435 3039 int offset = meet_offset(tp->offset());
duke@435 3040 PTR ptr = meet_ptr(tp->ptr());
duke@435 3041 switch (tp->ptr()) {
duke@435 3042 case Null:
duke@435 3043 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
kvn@658 3044 // else fall through to AnyNull
duke@435 3045 case TopPTR:
kvn@658 3046 case AnyNull: {
kvn@658 3047 int instance_id = meet_instance_id(InstanceTop);
duke@435 3048 return make( ptr, klass(), klass_is_exact(),
kvn@658 3049 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 3050 }
duke@435 3051 case NotNull:
duke@435 3052 case BotPTR:
duke@435 3053 return TypePtr::make( AnyPtr, ptr, offset );
duke@435 3054 default: typerr(t);
duke@435 3055 }
duke@435 3056 }
duke@435 3057
duke@435 3058 /*
duke@435 3059 A-top }
duke@435 3060 / | \ } Tops
duke@435 3061 B-top A-any C-top }
duke@435 3062 | / | \ | } Any-nulls
duke@435 3063 B-any | C-any }
duke@435 3064 | | |
duke@435 3065 B-con A-con C-con } constants; not comparable across classes
duke@435 3066 | | |
duke@435 3067 B-not | C-not }
duke@435 3068 | \ | / | } not-nulls
duke@435 3069 B-bot A-not C-bot }
duke@435 3070 \ | / } Bottoms
duke@435 3071 A-bot }
duke@435 3072 */
duke@435 3073
duke@435 3074 case InstPtr: { // Meeting 2 Oops?
duke@435 3075 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 3076 const TypeInstPtr *tinst = t->is_instptr();
duke@435 3077 int off = meet_offset( tinst->offset() );
duke@435 3078 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 3079 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 3080
duke@435 3081 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3082 // If we have constants, then we created oops so classes are loaded
duke@435 3083 // and we can handle the constants further down. This case handles
duke@435 3084 // both-not-loaded or both-loaded classes
duke@435 3085 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
duke@435 3086 return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
duke@435 3087 }
duke@435 3088
duke@435 3089 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3090 ciKlass* tinst_klass = tinst->klass();
duke@435 3091 ciKlass* this_klass = this->klass();
duke@435 3092 bool tinst_xk = tinst->klass_is_exact();
duke@435 3093 bool this_xk = this->klass_is_exact();
duke@435 3094 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 3095 // One of these classes has not been loaded
duke@435 3096 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 3097 #ifndef PRODUCT
duke@435 3098 if( PrintOpto && Verbose ) {
duke@435 3099 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 3100 tty->print(" this == "); this->dump(); tty->cr();
duke@435 3101 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 3102 }
duke@435 3103 #endif
duke@435 3104 return unloaded_meet;
duke@435 3105 }
duke@435 3106
duke@435 3107 // Handle mixing oops and interfaces first.
duke@435 3108 if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
duke@435 3109 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 3110 tinst_klass = this_klass;
duke@435 3111 this_klass = tmp;
duke@435 3112 bool tmp2 = tinst_xk;
duke@435 3113 tinst_xk = this_xk;
duke@435 3114 this_xk = tmp2;
duke@435 3115 }
duke@435 3116 if (tinst_klass->is_interface() &&
duke@435 3117 !(this_klass->is_interface() ||
duke@435 3118 // Treat java/lang/Object as an honorary interface,
duke@435 3119 // because we need a bottom for the interface hierarchy.
duke@435 3120 this_klass == ciEnv::current()->Object_klass())) {
duke@435 3121 // Oop meets interface!
duke@435 3122
duke@435 3123 // See if the oop subtypes (implements) interface.
duke@435 3124 ciKlass *k;
duke@435 3125 bool xk;
duke@435 3126 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3127 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 3128 // on whether we are both above the centerline or either is
duke@435 3129 // below the centerline. If we are on the centerline
duke@435 3130 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 3131 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 3132 // If we are keeping this_klass, keep its exactness too.
duke@435 3133 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 3134 } else { // Does not implement, fall to Object
duke@435 3135 // Oop does not implement interface, so mixing falls to Object
duke@435 3136 // just like the verifier does (if both are above the
duke@435 3137 // centerline fall to interface)
duke@435 3138 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 3139 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 3140 // Watch out for Constant vs. AnyNull interface.
duke@435 3141 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 3142 instance_id = InstanceBot;
duke@435 3143 }
duke@435 3144 ciObject* o = NULL; // the Constant value, if any
duke@435 3145 if (ptr == Constant) {
duke@435 3146 // Find out which constant.
duke@435 3147 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 3148 }
kvn@658 3149 return make( ptr, k, xk, o, off, instance_id );
duke@435 3150 }
duke@435 3151
duke@435 3152 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 3153
duke@435 3154 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 3155 // If we split one up & one down AND they subtype, take the down man.
duke@435 3156 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3157 // If both are up and they subtype, take the subtype class.
duke@435 3158 // If both are up and they do NOT subtype, "fall hard".
duke@435 3159 // If both are down and they subtype, take the supertype class.
duke@435 3160 // If both are down and they do NOT subtype, "fall hard".
duke@435 3161 // Constants treated as down.
duke@435 3162
duke@435 3163 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 3164 // "fall hard"; "fall hard" becomes the default case:
duke@435 3165 // If we split one up & one down AND they subtype, take the down man.
duke@435 3166 // If both are up and they subtype, take the subtype class.
duke@435 3167
duke@435 3168 // If both are down and they subtype, "fall hard".
duke@435 3169 // If both are down and they do NOT subtype, "fall hard".
duke@435 3170 // If both are up and they do NOT subtype, "fall hard".
duke@435 3171 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3172
duke@435 3173 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 3174 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 3175 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 3176 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 3177
duke@435 3178 // Check for subtyping:
duke@435 3179 ciKlass *subtype = NULL;
duke@435 3180 bool subtype_exact = false;
duke@435 3181 if( tinst_klass->equals(this_klass) ) {
duke@435 3182 subtype = this_klass;
duke@435 3183 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 3184 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3185 subtype = this_klass; // Pick subtyping class
duke@435 3186 subtype_exact = this_xk;
duke@435 3187 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 3188 subtype = tinst_klass; // Pick subtyping class
duke@435 3189 subtype_exact = tinst_xk;
duke@435 3190 }
duke@435 3191
duke@435 3192 if( subtype ) {
duke@435 3193 if( above_centerline(ptr) ) { // both are up?
duke@435 3194 this_klass = tinst_klass = subtype;
duke@435 3195 this_xk = tinst_xk = subtype_exact;
duke@435 3196 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 3197 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 3198 this_xk = tinst_xk;
duke@435 3199 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 3200 tinst_klass = this_klass; // this is down; keep down man
duke@435 3201 tinst_xk = this_xk;
duke@435 3202 } else {
duke@435 3203 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 3204 }
duke@435 3205 }
duke@435 3206
duke@435 3207 // Check for classes now being equal
duke@435 3208 if (tinst_klass->equals(this_klass)) {
duke@435 3209 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3210 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3211 // handled elsewhere).
duke@435 3212 ciObject* o = NULL; // Assume not constant when done
duke@435 3213 ciObject* this_oop = const_oop();
duke@435 3214 ciObject* tinst_oop = tinst->const_oop();
duke@435 3215 if( ptr == Constant ) {
duke@435 3216 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 3217 this_oop->equals(tinst_oop) )
duke@435 3218 o = this_oop;
duke@435 3219 else if (above_centerline(this ->_ptr))
duke@435 3220 o = tinst_oop;
duke@435 3221 else if (above_centerline(tinst ->_ptr))
duke@435 3222 o = this_oop;
duke@435 3223 else
duke@435 3224 ptr = NotNull;
duke@435 3225 }
duke@435 3226 return make( ptr, this_klass, this_xk, o, off, instance_id );
duke@435 3227 } // Else classes are not equal
duke@435 3228
duke@435 3229 // Since klasses are different, we require a LCA in the Java
duke@435 3230 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3231 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3232 ptr = NotNull;
kvn@682 3233 instance_id = InstanceBot;
duke@435 3234
duke@435 3235 // Now we find the LCA of Java classes
duke@435 3236 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
kvn@658 3237 return make( ptr, k, false, NULL, off, instance_id );
duke@435 3238 } // End of case InstPtr
duke@435 3239
duke@435 3240 case KlassPtr:
duke@435 3241 return TypeInstPtr::BOTTOM;
duke@435 3242
duke@435 3243 } // End of switch
duke@435 3244 return this; // Return the double constant
duke@435 3245 }
duke@435 3246
duke@435 3247
duke@435 3248 //------------------------java_mirror_type--------------------------------------
duke@435 3249 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3250 // must be a singleton type
duke@435 3251 if( const_oop() == NULL ) return NULL;
duke@435 3252
duke@435 3253 // must be of type java.lang.Class
duke@435 3254 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3255
duke@435 3256 return const_oop()->as_instance()->java_mirror_type();
duke@435 3257 }
duke@435 3258
duke@435 3259
duke@435 3260 //------------------------------xdual------------------------------------------
duke@435 3261 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
twisti@1040 3262 // inheritance mechanism.
duke@435 3263 const Type *TypeInstPtr::xdual() const {
kvn@658 3264 return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 3265 }
duke@435 3266
duke@435 3267 //------------------------------eq---------------------------------------------
duke@435 3268 // Structural equality check for Type representations
duke@435 3269 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3270 const TypeInstPtr *p = t->is_instptr();
duke@435 3271 return
duke@435 3272 klass()->equals(p->klass()) &&
duke@435 3273 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3274 }
duke@435 3275
duke@435 3276 //------------------------------hash-------------------------------------------
duke@435 3277 // Type-specific hashing function.
duke@435 3278 int TypeInstPtr::hash(void) const {
duke@435 3279 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 3280 return hash;
duke@435 3281 }
duke@435 3282
duke@435 3283 //------------------------------dump2------------------------------------------
duke@435 3284 // Dump oop Type
duke@435 3285 #ifndef PRODUCT
duke@435 3286 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3287 // Print the name of the klass.
duke@435 3288 klass()->print_name_on(st);
duke@435 3289
duke@435 3290 switch( _ptr ) {
duke@435 3291 case Constant:
duke@435 3292 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3293 if (WizardMode || Verbose) {
duke@435 3294 const_oop()->print_oop(st);
duke@435 3295 }
duke@435 3296 case BotPTR:
duke@435 3297 if (!WizardMode && !Verbose) {
duke@435 3298 if( _klass_is_exact ) st->print(":exact");
duke@435 3299 break;
duke@435 3300 }
duke@435 3301 case TopPTR:
duke@435 3302 case AnyNull:
duke@435 3303 case NotNull:
duke@435 3304 st->print(":%s", ptr_msg[_ptr]);
duke@435 3305 if( _klass_is_exact ) st->print(":exact");
duke@435 3306 break;
duke@435 3307 }
duke@435 3308
duke@435 3309 if( _offset ) { // Dump offset, if any
duke@435 3310 if( _offset == OffsetBot ) st->print("+any");
duke@435 3311 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3312 else st->print("+%d", _offset);
duke@435 3313 }
duke@435 3314
duke@435 3315 st->print(" *");
kvn@658 3316 if (_instance_id == InstanceTop)
kvn@658 3317 st->print(",iid=top");
kvn@658 3318 else if (_instance_id != InstanceBot)
duke@435 3319 st->print(",iid=%d",_instance_id);
duke@435 3320 }
duke@435 3321 #endif
duke@435 3322
duke@435 3323 //------------------------------add_offset-------------------------------------
kvn@741 3324 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
duke@435 3325 return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
duke@435 3326 }
duke@435 3327
duke@435 3328 //=============================================================================
duke@435 3329 // Convenience common pre-built types.
duke@435 3330 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3331 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3332 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3333 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3334 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3335 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3336 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3337 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3338 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3339 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3340
duke@435 3341 //------------------------------make-------------------------------------------
duke@435 3342 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3343 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3344 "integral arrays must be pre-equipped with a class");
duke@435 3345 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3346 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3347 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3348 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3349 }
duke@435 3350
duke@435 3351 //------------------------------make-------------------------------------------
duke@435 3352 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3353 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3354 "integral arrays must be pre-equipped with a class");
duke@435 3355 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3356 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3357 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3358 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3359 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3360 }
duke@435 3361
duke@435 3362 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3363 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3364 if( ptr == _ptr ) return this;
kvn@658 3365 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3366 }
duke@435 3367
duke@435 3368
duke@435 3369 //-----------------------------cast_to_exactness-------------------------------
duke@435 3370 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3371 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3372 if (!UseExactTypes) return this;
duke@435 3373 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
duke@435 3374 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
duke@435 3375 }
duke@435 3376
kvn@682 3377 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3378 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3379 if( instance_id == _instance_id ) return this;
kvn@682 3380 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
duke@435 3381 }
duke@435 3382
duke@435 3383 //-----------------------------narrow_size_type-------------------------------
duke@435 3384 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3385 // which is kind of slow (and cached elsewhere by other users).
duke@435 3386 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3387 static jint max_array_length(BasicType etype) {
duke@435 3388 jint& cache = max_array_length_cache[etype];
duke@435 3389 jint res = cache;
duke@435 3390 if (res == 0) {
duke@435 3391 switch (etype) {
coleenp@548 3392 case T_NARROWOOP:
coleenp@548 3393 etype = T_OBJECT;
coleenp@548 3394 break;
duke@435 3395 case T_CONFLICT:
duke@435 3396 case T_ILLEGAL:
duke@435 3397 case T_VOID:
duke@435 3398 etype = T_BYTE; // will produce conservatively high value
duke@435 3399 }
duke@435 3400 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3401 }
duke@435 3402 return res;
duke@435 3403 }
duke@435 3404
duke@435 3405 // Narrow the given size type to the index range for the given array base type.
duke@435 3406 // Return NULL if the resulting int type becomes empty.
rasbold@801 3407 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
duke@435 3408 jint hi = size->_hi;
duke@435 3409 jint lo = size->_lo;
duke@435 3410 jint min_lo = 0;
rasbold@801 3411 jint max_hi = max_array_length(elem()->basic_type());
duke@435 3412 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3413 bool chg = false;
duke@435 3414 if (lo < min_lo) { lo = min_lo; chg = true; }
duke@435 3415 if (hi > max_hi) { hi = max_hi; chg = true; }
twisti@1040 3416 // Negative length arrays will produce weird intermediate dead fast-path code
duke@435 3417 if (lo > hi)
rasbold@801 3418 return TypeInt::ZERO;
duke@435 3419 if (!chg)
duke@435 3420 return size;
duke@435 3421 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3422 }
duke@435 3423
duke@435 3424 //-------------------------------cast_to_size----------------------------------
duke@435 3425 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3426 assert(new_size != NULL, "");
rasbold@801 3427 new_size = narrow_size_type(new_size);
duke@435 3428 if (new_size == size()) return this;
duke@435 3429 const TypeAry* new_ary = TypeAry::make(elem(), new_size);
kvn@658 3430 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3431 }
duke@435 3432
duke@435 3433
duke@435 3434 //------------------------------eq---------------------------------------------
duke@435 3435 // Structural equality check for Type representations
duke@435 3436 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3437 const TypeAryPtr *p = t->is_aryptr();
duke@435 3438 return
duke@435 3439 _ary == p->_ary && // Check array
duke@435 3440 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3441 }
duke@435 3442
duke@435 3443 //------------------------------hash-------------------------------------------
duke@435 3444 // Type-specific hashing function.
duke@435 3445 int TypeAryPtr::hash(void) const {
duke@435 3446 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3447 }
duke@435 3448
duke@435 3449 //------------------------------meet-------------------------------------------
duke@435 3450 // Compute the MEET of two types. It returns a new Type object.
duke@435 3451 const Type *TypeAryPtr::xmeet( const Type *t ) const {
duke@435 3452 // Perform a fast test for common case; meeting the same types together.
duke@435 3453 if( this == t ) return this; // Meeting same type-rep?
duke@435 3454 // Current "this->_base" is Pointer
duke@435 3455 switch (t->base()) { // switch on original type
duke@435 3456
duke@435 3457 // Mixing ints & oops happens when javac reuses local variables
duke@435 3458 case Int:
duke@435 3459 case Long:
duke@435 3460 case FloatTop:
duke@435 3461 case FloatCon:
duke@435 3462 case FloatBot:
duke@435 3463 case DoubleTop:
duke@435 3464 case DoubleCon:
duke@435 3465 case DoubleBot:
coleenp@548 3466 case NarrowOop:
duke@435 3467 case Bottom: // Ye Olde Default
duke@435 3468 return Type::BOTTOM;
duke@435 3469 case Top:
duke@435 3470 return this;
duke@435 3471
duke@435 3472 default: // All else is a mistake
duke@435 3473 typerr(t);
duke@435 3474
duke@435 3475 case OopPtr: { // Meeting to OopPtrs
duke@435 3476 // Found a OopPtr type vs self-AryPtr type
kvn@1393 3477 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3478 int offset = meet_offset(tp->offset());
duke@435 3479 PTR ptr = meet_ptr(tp->ptr());
duke@435 3480 switch (tp->ptr()) {
duke@435 3481 case TopPTR:
kvn@658 3482 case AnyNull: {
kvn@658 3483 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3484 return make(ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3485 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3486 }
duke@435 3487 case BotPTR:
kvn@1393 3488 case NotNull: {
kvn@1393 3489 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 3490 return TypeOopPtr::make(ptr, offset, instance_id);
kvn@1393 3491 }
duke@435 3492 default: ShouldNotReachHere();
duke@435 3493 }
duke@435 3494 }
duke@435 3495
duke@435 3496 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3497 // Found an AnyPtr type vs self-AryPtr type
duke@435 3498 const TypePtr *tp = t->is_ptr();
duke@435 3499 int offset = meet_offset(tp->offset());
duke@435 3500 PTR ptr = meet_ptr(tp->ptr());
duke@435 3501 switch (tp->ptr()) {
duke@435 3502 case TopPTR:
duke@435 3503 return this;
duke@435 3504 case BotPTR:
duke@435 3505 case NotNull:
duke@435 3506 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3507 case Null:
duke@435 3508 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3509 // else fall through to AnyNull
kvn@658 3510 case AnyNull: {
kvn@658 3511 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3512 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3513 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3514 }
duke@435 3515 default: ShouldNotReachHere();
duke@435 3516 }
duke@435 3517 }
duke@435 3518
duke@435 3519 case RawPtr: return TypePtr::BOTTOM;
duke@435 3520
duke@435 3521 case AryPtr: { // Meeting 2 references?
duke@435 3522 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3523 int off = meet_offset(tap->offset());
duke@435 3524 const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
duke@435 3525 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3526 int instance_id = meet_instance_id(tap->instance_id());
duke@435 3527 ciKlass* lazy_klass = NULL;
duke@435 3528 if (tary->_elem->isa_int()) {
duke@435 3529 // Integral array element types have irrelevant lattice relations.
duke@435 3530 // It is the klass that determines array layout, not the element type.
duke@435 3531 if (_klass == NULL)
duke@435 3532 lazy_klass = tap->_klass;
duke@435 3533 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3534 lazy_klass = _klass;
duke@435 3535 } else {
duke@435 3536 // Something like byte[int+] meets char[int+].
duke@435 3537 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3538 instance_id = InstanceBot;
duke@435 3539 tary = TypeAry::make(Type::BOTTOM, tary->_size);
duke@435 3540 }
kvn@2633 3541 } else // Non integral arrays.
kvn@2633 3542 // Must fall to bottom if exact klasses in upper lattice
kvn@2633 3543 // are not equal or super klass is exact.
kvn@2633 3544 if ( above_centerline(ptr) && klass() != tap->klass() &&
kvn@2633 3545 // meet with top[] and bottom[] are processed further down:
kvn@2633 3546 tap ->_klass != NULL && this->_klass != NULL &&
kvn@2633 3547 // both are exact and not equal:
kvn@2633 3548 ((tap ->_klass_is_exact && this->_klass_is_exact) ||
kvn@2633 3549 // 'tap' is exact and super or unrelated:
kvn@2633 3550 (tap ->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
kvn@2633 3551 // 'this' is exact and super or unrelated:
kvn@2633 3552 (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
kvn@2633 3553 tary = TypeAry::make(Type::BOTTOM, tary->_size);
kvn@2633 3554 return make( NotNull, NULL, tary, lazy_klass, false, off, InstanceBot );
duke@435 3555 }
kvn@2633 3556
kvn@2120 3557 bool xk = false;
duke@435 3558 switch (tap->ptr()) {
duke@435 3559 case AnyNull:
duke@435 3560 case TopPTR:
duke@435 3561 // Compute new klass on demand, do not use tap->_klass
duke@435 3562 xk = (tap->_klass_is_exact | this->_klass_is_exact);
kvn@658 3563 return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
duke@435 3564 case Constant: {
duke@435 3565 ciObject* o = const_oop();
duke@435 3566 if( _ptr == Constant ) {
duke@435 3567 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
jrose@1424 3568 xk = (klass() == tap->klass());
duke@435 3569 ptr = NotNull;
duke@435 3570 o = NULL;
kvn@682 3571 instance_id = InstanceBot;
jrose@1424 3572 } else {
jrose@1424 3573 xk = true;
duke@435 3574 }
duke@435 3575 } else if( above_centerline(_ptr) ) {
duke@435 3576 o = tap->const_oop();
jrose@1424 3577 xk = true;
jrose@1424 3578 } else {
kvn@2120 3579 // Only precise for identical arrays
kvn@2120 3580 xk = this->_klass_is_exact && (klass() == tap->klass());
duke@435 3581 }
kvn@2120 3582 return TypeAryPtr::make( ptr, o, tary, lazy_klass, xk, off, instance_id );
duke@435 3583 }
duke@435 3584 case NotNull:
duke@435 3585 case BotPTR:
duke@435 3586 // Compute new klass on demand, do not use tap->_klass
duke@435 3587 if (above_centerline(this->_ptr))
duke@435 3588 xk = tap->_klass_is_exact;
duke@435 3589 else if (above_centerline(tap->_ptr))
duke@435 3590 xk = this->_klass_is_exact;
duke@435 3591 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 3592 (klass() == tap->klass()); // Only precise for identical arrays
kvn@658 3593 return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
duke@435 3594 default: ShouldNotReachHere();
duke@435 3595 }
duke@435 3596 }
duke@435 3597
duke@435 3598 // All arrays inherit from Object class
duke@435 3599 case InstPtr: {
duke@435 3600 const TypeInstPtr *tp = t->is_instptr();
duke@435 3601 int offset = meet_offset(tp->offset());
duke@435 3602 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3603 int instance_id = meet_instance_id(tp->instance_id());
duke@435 3604 switch (ptr) {
duke@435 3605 case TopPTR:
duke@435 3606 case AnyNull: // Fall 'down' to dual of object klass
duke@435 3607 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
kvn@658 3608 return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3609 } else {
duke@435 3610 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3611 ptr = NotNull;
kvn@658 3612 instance_id = InstanceBot;
kvn@658 3613 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3614 }
duke@435 3615 case Constant:
duke@435 3616 case NotNull:
duke@435 3617 case BotPTR: // Fall down to object klass
duke@435 3618 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3619 if (above_centerline(tp->ptr())) {
duke@435 3620 // If 'tp' is above the centerline and it is Object class
twisti@1040 3621 // then we can subclass in the Java class hierarchy.
duke@435 3622 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3623 // that is, my array type is a subtype of 'tp' klass
kvn@1714 3624 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@1714 3625 _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3626 }
duke@435 3627 }
duke@435 3628 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 3629 // The meet falls down to Object class below centerline.
duke@435 3630 if( ptr == Constant )
duke@435 3631 ptr = NotNull;
kvn@658 3632 instance_id = InstanceBot;
kvn@658 3633 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3634 default: typerr(t);
duke@435 3635 }
duke@435 3636 }
duke@435 3637
duke@435 3638 case KlassPtr:
duke@435 3639 return TypeInstPtr::BOTTOM;
duke@435 3640
duke@435 3641 }
duke@435 3642 return this; // Lint noise
duke@435 3643 }
duke@435 3644
duke@435 3645 //------------------------------xdual------------------------------------------
duke@435 3646 // Dual: compute field-by-field dual
duke@435 3647 const Type *TypeAryPtr::xdual() const {
kvn@658 3648 return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
duke@435 3649 }
duke@435 3650
kvn@1255 3651 //----------------------interface_vs_oop---------------------------------------
kvn@1255 3652 #ifdef ASSERT
kvn@1255 3653 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
kvn@1255 3654 const TypeAryPtr* t_aryptr = t->isa_aryptr();
kvn@1255 3655 if (t_aryptr) {
kvn@1255 3656 return _ary->interface_vs_oop(t_aryptr->_ary);
kvn@1255 3657 }
kvn@1255 3658 return false;
kvn@1255 3659 }
kvn@1255 3660 #endif
kvn@1255 3661
duke@435 3662 //------------------------------dump2------------------------------------------
duke@435 3663 #ifndef PRODUCT
duke@435 3664 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3665 _ary->dump2(d,depth,st);
duke@435 3666 switch( _ptr ) {
duke@435 3667 case Constant:
duke@435 3668 const_oop()->print(st);
duke@435 3669 break;
duke@435 3670 case BotPTR:
duke@435 3671 if (!WizardMode && !Verbose) {
duke@435 3672 if( _klass_is_exact ) st->print(":exact");
duke@435 3673 break;
duke@435 3674 }
duke@435 3675 case TopPTR:
duke@435 3676 case AnyNull:
duke@435 3677 case NotNull:
duke@435 3678 st->print(":%s", ptr_msg[_ptr]);
duke@435 3679 if( _klass_is_exact ) st->print(":exact");
duke@435 3680 break;
duke@435 3681 }
duke@435 3682
kvn@499 3683 if( _offset != 0 ) {
kvn@499 3684 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 3685 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 3686 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 3687 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 3688 else {
kvn@499 3689 BasicType basic_elem_type = elem()->basic_type();
kvn@499 3690 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 3691 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 3692 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 3693 }
kvn@499 3694 }
kvn@499 3695 st->print(" *");
kvn@658 3696 if (_instance_id == InstanceTop)
kvn@658 3697 st->print(",iid=top");
kvn@658 3698 else if (_instance_id != InstanceBot)
duke@435 3699 st->print(",iid=%d",_instance_id);
duke@435 3700 }
duke@435 3701 #endif
duke@435 3702
duke@435 3703 bool TypeAryPtr::empty(void) const {
duke@435 3704 if (_ary->empty()) return true;
duke@435 3705 return TypeOopPtr::empty();
duke@435 3706 }
duke@435 3707
duke@435 3708 //------------------------------add_offset-------------------------------------
kvn@741 3709 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
duke@435 3710 return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
duke@435 3711 }
duke@435 3712
duke@435 3713
duke@435 3714 //=============================================================================
coleenp@548 3715 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
coleenp@548 3716 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
coleenp@548 3717
coleenp@548 3718
coleenp@548 3719 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
coleenp@548 3720 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
coleenp@548 3721 }
coleenp@548 3722
coleenp@548 3723 //------------------------------hash-------------------------------------------
coleenp@548 3724 // Type-specific hashing function.
coleenp@548 3725 int TypeNarrowOop::hash(void) const {
never@1262 3726 return _ptrtype->hash() + 7;
coleenp@548 3727 }
coleenp@548 3728
coleenp@548 3729
coleenp@548 3730 bool TypeNarrowOop::eq( const Type *t ) const {
coleenp@548 3731 const TypeNarrowOop* tc = t->isa_narrowoop();
coleenp@548 3732 if (tc != NULL) {
never@1262 3733 if (_ptrtype->base() != tc->_ptrtype->base()) {
coleenp@548 3734 return false;
coleenp@548 3735 }
never@1262 3736 return tc->_ptrtype->eq(_ptrtype);
coleenp@548 3737 }
coleenp@548 3738 return false;
coleenp@548 3739 }
coleenp@548 3740
coleenp@548 3741 bool TypeNarrowOop::singleton(void) const { // TRUE if type is a singleton
never@1262 3742 return _ptrtype->singleton();
coleenp@548 3743 }
coleenp@548 3744
coleenp@548 3745 bool TypeNarrowOop::empty(void) const {
never@1262 3746 return _ptrtype->empty();
coleenp@548 3747 }
coleenp@548 3748
kvn@728 3749 //------------------------------xmeet------------------------------------------
coleenp@548 3750 // Compute the MEET of two types. It returns a new Type object.
coleenp@548 3751 const Type *TypeNarrowOop::xmeet( const Type *t ) const {
coleenp@548 3752 // Perform a fast test for common case; meeting the same types together.
coleenp@548 3753 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 3754
coleenp@548 3755
coleenp@548 3756 // Current "this->_base" is OopPtr
coleenp@548 3757 switch (t->base()) { // switch on original type
coleenp@548 3758
coleenp@548 3759 case Int: // Mixing ints & oops happens when javac
coleenp@548 3760 case Long: // reuses local variables
coleenp@548 3761 case FloatTop:
coleenp@548 3762 case FloatCon:
coleenp@548 3763 case FloatBot:
coleenp@548 3764 case DoubleTop:
coleenp@548 3765 case DoubleCon:
coleenp@548 3766 case DoubleBot:
kvn@728 3767 case AnyPtr:
kvn@728 3768 case RawPtr:
kvn@728 3769 case OopPtr:
kvn@728 3770 case InstPtr:
kvn@728 3771 case KlassPtr:
kvn@728 3772 case AryPtr:
kvn@728 3773
coleenp@548 3774 case Bottom: // Ye Olde Default
coleenp@548 3775 return Type::BOTTOM;
coleenp@548 3776 case Top:
coleenp@548 3777 return this;
coleenp@548 3778
coleenp@548 3779 case NarrowOop: {
never@1262 3780 const Type* result = _ptrtype->xmeet(t->make_ptr());
coleenp@548 3781 if (result->isa_ptr()) {
coleenp@548 3782 return TypeNarrowOop::make(result->is_ptr());
coleenp@548 3783 }
coleenp@548 3784 return result;
coleenp@548 3785 }
coleenp@548 3786
coleenp@548 3787 default: // All else is a mistake
coleenp@548 3788 typerr(t);
coleenp@548 3789
coleenp@548 3790 } // End of switch
kvn@728 3791
kvn@728 3792 return this;
coleenp@548 3793 }
coleenp@548 3794
coleenp@548 3795 const Type *TypeNarrowOop::xdual() const { // Compute dual right now.
never@1262 3796 const TypePtr* odual = _ptrtype->dual()->is_ptr();
coleenp@548 3797 return new TypeNarrowOop(odual);
coleenp@548 3798 }
coleenp@548 3799
coleenp@548 3800 const Type *TypeNarrowOop::filter( const Type *kills ) const {
coleenp@548 3801 if (kills->isa_narrowoop()) {
never@1262 3802 const Type* ft =_ptrtype->filter(kills->is_narrowoop()->_ptrtype);
coleenp@548 3803 if (ft->empty())
coleenp@548 3804 return Type::TOP; // Canonical empty value
coleenp@548 3805 if (ft->isa_ptr()) {
coleenp@548 3806 return make(ft->isa_ptr());
coleenp@548 3807 }
coleenp@548 3808 return ft;
coleenp@548 3809 } else if (kills->isa_ptr()) {
never@1262 3810 const Type* ft = _ptrtype->join(kills);
coleenp@548 3811 if (ft->empty())
coleenp@548 3812 return Type::TOP; // Canonical empty value
coleenp@548 3813 return ft;
coleenp@548 3814 } else {
coleenp@548 3815 return Type::TOP;
coleenp@548 3816 }
coleenp@548 3817 }
coleenp@548 3818
coleenp@548 3819
coleenp@548 3820 intptr_t TypeNarrowOop::get_con() const {
never@1262 3821 return _ptrtype->get_con();
coleenp@548 3822 }
coleenp@548 3823
coleenp@548 3824 #ifndef PRODUCT
coleenp@548 3825 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
never@852 3826 st->print("narrowoop: ");
never@1262 3827 _ptrtype->dump2(d, depth, st);
coleenp@548 3828 }
coleenp@548 3829 #endif
coleenp@548 3830
coleenp@548 3831
coleenp@548 3832 //=============================================================================
duke@435 3833 // Convenience common pre-built types.
duke@435 3834
duke@435 3835 // Not-null object klass or below
duke@435 3836 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 3837 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 3838
duke@435 3839 //------------------------------TypeKlasPtr------------------------------------
duke@435 3840 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
duke@435 3841 : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
duke@435 3842 }
duke@435 3843
duke@435 3844 //------------------------------make-------------------------------------------
duke@435 3845 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 3846 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 3847 assert( k != NULL, "Expect a non-NULL klass");
duke@435 3848 assert(k->is_instance_klass() || k->is_array_klass() ||
duke@435 3849 k->is_method_klass(), "Incorrect type of klass oop");
duke@435 3850 TypeKlassPtr *r =
duke@435 3851 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 3852
duke@435 3853 return r;
duke@435 3854 }
duke@435 3855
duke@435 3856 //------------------------------eq---------------------------------------------
duke@435 3857 // Structural equality check for Type representations
duke@435 3858 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 3859 const TypeKlassPtr *p = t->is_klassptr();
duke@435 3860 return
duke@435 3861 klass()->equals(p->klass()) &&
duke@435 3862 TypeOopPtr::eq(p);
duke@435 3863 }
duke@435 3864
duke@435 3865 //------------------------------hash-------------------------------------------
duke@435 3866 // Type-specific hashing function.
duke@435 3867 int TypeKlassPtr::hash(void) const {
duke@435 3868 return klass()->hash() + TypeOopPtr::hash();
duke@435 3869 }
duke@435 3870
duke@435 3871
kvn@2116 3872 //----------------------compute_klass------------------------------------------
kvn@2116 3873 // Compute the defining klass for this class
kvn@2116 3874 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
kvn@2116 3875 // Compute _klass based on element type.
duke@435 3876 ciKlass* k_ary = NULL;
duke@435 3877 const TypeInstPtr *tinst;
duke@435 3878 const TypeAryPtr *tary;
coleenp@548 3879 const Type* el = elem();
coleenp@548 3880 if (el->isa_narrowoop()) {
kvn@656 3881 el = el->make_ptr();
coleenp@548 3882 }
coleenp@548 3883
duke@435 3884 // Get element klass
coleenp@548 3885 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 3886 // Compute array klass from element klass
duke@435 3887 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 3888 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 3889 // Compute array klass from element klass
duke@435 3890 ciKlass* k_elem = tary->klass();
duke@435 3891 // If element type is something like bottom[], k_elem will be null.
duke@435 3892 if (k_elem != NULL)
duke@435 3893 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 3894 } else if ((el->base() == Type::Top) ||
coleenp@548 3895 (el->base() == Type::Bottom)) {
duke@435 3896 // element type of Bottom occurs from meet of basic type
duke@435 3897 // and object; Top occurs when doing join on Bottom.
duke@435 3898 // Leave k_ary at NULL.
duke@435 3899 } else {
duke@435 3900 // Cannot compute array klass directly from basic type,
duke@435 3901 // since subtypes of TypeInt all have basic type T_INT.
kvn@2116 3902 #ifdef ASSERT
kvn@2116 3903 if (verify && el->isa_int()) {
kvn@2116 3904 // Check simple cases when verifying klass.
kvn@2116 3905 BasicType bt = T_ILLEGAL;
kvn@2116 3906 if (el == TypeInt::BYTE) {
kvn@2116 3907 bt = T_BYTE;
kvn@2116 3908 } else if (el == TypeInt::SHORT) {
kvn@2116 3909 bt = T_SHORT;
kvn@2116 3910 } else if (el == TypeInt::CHAR) {
kvn@2116 3911 bt = T_CHAR;
kvn@2116 3912 } else if (el == TypeInt::INT) {
kvn@2116 3913 bt = T_INT;
kvn@2116 3914 } else {
kvn@2116 3915 return _klass; // just return specified klass
kvn@2116 3916 }
kvn@2116 3917 return ciTypeArrayKlass::make(bt);
kvn@2116 3918 }
kvn@2116 3919 #endif
coleenp@548 3920 assert(!el->isa_int(),
duke@435 3921 "integral arrays must be pre-equipped with a class");
duke@435 3922 // Compute array klass directly from basic type
coleenp@548 3923 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 3924 }
kvn@2116 3925 return k_ary;
kvn@2116 3926 }
kvn@2116 3927
kvn@2116 3928 //------------------------------klass------------------------------------------
kvn@2116 3929 // Return the defining klass for this class
kvn@2116 3930 ciKlass* TypeAryPtr::klass() const {
kvn@2116 3931 if( _klass ) return _klass; // Return cached value, if possible
kvn@2116 3932
kvn@2116 3933 // Oops, need to compute _klass and cache it
kvn@2116 3934 ciKlass* k_ary = compute_klass();
duke@435 3935
kvn@2636 3936 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
duke@435 3937 // The _klass field acts as a cache of the underlying
duke@435 3938 // ciKlass for this array type. In order to set the field,
duke@435 3939 // we need to cast away const-ness.
duke@435 3940 //
duke@435 3941 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 3942 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 3943 // active compilations. However, the ciKlass which represents
duke@435 3944 // this Type is *not* shared between compilations, so caching
duke@435 3945 // this value would result in fetching a dangling pointer.
duke@435 3946 //
duke@435 3947 // Recomputing the underlying ciKlass for each request is
duke@435 3948 // a bit less efficient than caching, but calls to
duke@435 3949 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 3950 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 3951 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 3952 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 3953 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 3954 }
kvn@598 3955 }
duke@435 3956 return k_ary;
duke@435 3957 }
duke@435 3958
duke@435 3959
duke@435 3960 //------------------------------add_offset-------------------------------------
duke@435 3961 // Access internals of klass object
kvn@741 3962 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
duke@435 3963 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 3964 }
duke@435 3965
duke@435 3966 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3967 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
kvn@992 3968 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
duke@435 3969 if( ptr == _ptr ) return this;
duke@435 3970 return make(ptr, _klass, _offset);
duke@435 3971 }
duke@435 3972
duke@435 3973
duke@435 3974 //-----------------------------cast_to_exactness-------------------------------
duke@435 3975 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3976 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3977 if (!UseExactTypes) return this;
duke@435 3978 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 3979 }
duke@435 3980
duke@435 3981
duke@435 3982 //-----------------------------as_instance_type--------------------------------
duke@435 3983 // Corresponding type for an instance of the given class.
duke@435 3984 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 3985 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 3986 ciKlass* k = klass();
duke@435 3987 bool xk = klass_is_exact();
duke@435 3988 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 3989 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
duke@435 3990 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 3991 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 3992 }
duke@435 3993
duke@435 3994
duke@435 3995 //------------------------------xmeet------------------------------------------
duke@435 3996 // Compute the MEET of two types, return a new Type object.
duke@435 3997 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 3998 // Perform a fast test for common case; meeting the same types together.
duke@435 3999 if( this == t ) return this; // Meeting same type-rep?
duke@435 4000
duke@435 4001 // Current "this->_base" is Pointer
duke@435 4002 switch (t->base()) { // switch on original type
duke@435 4003
duke@435 4004 case Int: // Mixing ints & oops happens when javac
duke@435 4005 case Long: // reuses local variables
duke@435 4006 case FloatTop:
duke@435 4007 case FloatCon:
duke@435 4008 case FloatBot:
duke@435 4009 case DoubleTop:
duke@435 4010 case DoubleCon:
duke@435 4011 case DoubleBot:
kvn@728 4012 case NarrowOop:
duke@435 4013 case Bottom: // Ye Olde Default
duke@435 4014 return Type::BOTTOM;
duke@435 4015 case Top:
duke@435 4016 return this;
duke@435 4017
duke@435 4018 default: // All else is a mistake
duke@435 4019 typerr(t);
duke@435 4020
duke@435 4021 case RawPtr: return TypePtr::BOTTOM;
duke@435 4022
duke@435 4023 case OopPtr: { // Meeting to OopPtrs
duke@435 4024 // Found a OopPtr type vs self-KlassPtr type
duke@435 4025 const TypePtr *tp = t->is_oopptr();
duke@435 4026 int offset = meet_offset(tp->offset());
duke@435 4027 PTR ptr = meet_ptr(tp->ptr());
duke@435 4028 switch (tp->ptr()) {
duke@435 4029 case TopPTR:
duke@435 4030 case AnyNull:
duke@435 4031 return make(ptr, klass(), offset);
duke@435 4032 case BotPTR:
duke@435 4033 case NotNull:
duke@435 4034 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 4035 default: typerr(t);
duke@435 4036 }
duke@435 4037 }
duke@435 4038
duke@435 4039 case AnyPtr: { // Meeting to AnyPtrs
duke@435 4040 // Found an AnyPtr type vs self-KlassPtr type
duke@435 4041 const TypePtr *tp = t->is_ptr();
duke@435 4042 int offset = meet_offset(tp->offset());
duke@435 4043 PTR ptr = meet_ptr(tp->ptr());
duke@435 4044 switch (tp->ptr()) {
duke@435 4045 case TopPTR:
duke@435 4046 return this;
duke@435 4047 case Null:
duke@435 4048 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 4049 case AnyNull:
duke@435 4050 return make( ptr, klass(), offset );
duke@435 4051 case BotPTR:
duke@435 4052 case NotNull:
duke@435 4053 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 4054 default: typerr(t);
duke@435 4055 }
duke@435 4056 }
duke@435 4057
duke@435 4058 case AryPtr: // Meet with AryPtr
duke@435 4059 case InstPtr: // Meet with InstPtr
duke@435 4060 return TypeInstPtr::BOTTOM;
duke@435 4061
duke@435 4062 //
duke@435 4063 // A-top }
duke@435 4064 // / | \ } Tops
duke@435 4065 // B-top A-any C-top }
duke@435 4066 // | / | \ | } Any-nulls
duke@435 4067 // B-any | C-any }
duke@435 4068 // | | |
duke@435 4069 // B-con A-con C-con } constants; not comparable across classes
duke@435 4070 // | | |
duke@435 4071 // B-not | C-not }
duke@435 4072 // | \ | / | } not-nulls
duke@435 4073 // B-bot A-not C-bot }
duke@435 4074 // \ | / } Bottoms
duke@435 4075 // A-bot }
duke@435 4076 //
duke@435 4077
duke@435 4078 case KlassPtr: { // Meet two KlassPtr types
duke@435 4079 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 4080 int off = meet_offset(tkls->offset());
duke@435 4081 PTR ptr = meet_ptr(tkls->ptr());
duke@435 4082
duke@435 4083 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 4084 // If we have constants, then we created oops so classes are loaded
duke@435 4085 // and we can handle the constants further down. This case handles
duke@435 4086 // not-loaded classes
duke@435 4087 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 4088 return make( ptr, klass(), off );
duke@435 4089 }
duke@435 4090
duke@435 4091 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 4092 ciKlass* tkls_klass = tkls->klass();
duke@435 4093 ciKlass* this_klass = this->klass();
duke@435 4094 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 4095 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 4096
duke@435 4097 // If 'this' type is above the centerline and is a superclass of the
duke@435 4098 // other, we can treat 'this' as having the same type as the other.
duke@435 4099 if ((above_centerline(this->ptr())) &&
duke@435 4100 tkls_klass->is_subtype_of(this_klass)) {
duke@435 4101 this_klass = tkls_klass;
duke@435 4102 }
duke@435 4103 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 4104 // other, we can treat 'tinst' as having the same type as the other.
duke@435 4105 if ((above_centerline(tkls->ptr())) &&
duke@435 4106 this_klass->is_subtype_of(tkls_klass)) {
duke@435 4107 tkls_klass = this_klass;
duke@435 4108 }
duke@435 4109
duke@435 4110 // Check for classes now being equal
duke@435 4111 if (tkls_klass->equals(this_klass)) {
duke@435 4112 // If the klasses are equal, the constants may still differ. Fall to
duke@435 4113 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 4114 // handled elsewhere).
duke@435 4115 ciObject* o = NULL; // Assume not constant when done
duke@435 4116 ciObject* this_oop = const_oop();
duke@435 4117 ciObject* tkls_oop = tkls->const_oop();
duke@435 4118 if( ptr == Constant ) {
duke@435 4119 if (this_oop != NULL && tkls_oop != NULL &&
duke@435 4120 this_oop->equals(tkls_oop) )
duke@435 4121 o = this_oop;
duke@435 4122 else if (above_centerline(this->ptr()))
duke@435 4123 o = tkls_oop;
duke@435 4124 else if (above_centerline(tkls->ptr()))
duke@435 4125 o = this_oop;
duke@435 4126 else
duke@435 4127 ptr = NotNull;
duke@435 4128 }
duke@435 4129 return make( ptr, this_klass, off );
duke@435 4130 } // Else classes are not equal
duke@435 4131
duke@435 4132 // Since klasses are different, we require the LCA in the Java
duke@435 4133 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 4134 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 4135 ptr = NotNull;
duke@435 4136 // Now we find the LCA of Java classes
duke@435 4137 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 4138 return make( ptr, k, off );
duke@435 4139 } // End of case KlassPtr
duke@435 4140
duke@435 4141 } // End of switch
duke@435 4142 return this; // Return the double constant
duke@435 4143 }
duke@435 4144
duke@435 4145 //------------------------------xdual------------------------------------------
duke@435 4146 // Dual: compute field-by-field dual
duke@435 4147 const Type *TypeKlassPtr::xdual() const {
duke@435 4148 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 4149 }
duke@435 4150
duke@435 4151 //------------------------------dump2------------------------------------------
duke@435 4152 // Dump Klass Type
duke@435 4153 #ifndef PRODUCT
duke@435 4154 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 4155 switch( _ptr ) {
duke@435 4156 case Constant:
duke@435 4157 st->print("precise ");
duke@435 4158 case NotNull:
duke@435 4159 {
duke@435 4160 const char *name = klass()->name()->as_utf8();
duke@435 4161 if( name ) {
duke@435 4162 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 4163 } else {
duke@435 4164 ShouldNotReachHere();
duke@435 4165 }
duke@435 4166 }
duke@435 4167 case BotPTR:
duke@435 4168 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 4169 case TopPTR:
duke@435 4170 case AnyNull:
duke@435 4171 st->print(":%s", ptr_msg[_ptr]);
duke@435 4172 if( _klass_is_exact ) st->print(":exact");
duke@435 4173 break;
duke@435 4174 }
duke@435 4175
duke@435 4176 if( _offset ) { // Dump offset, if any
duke@435 4177 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 4178 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 4179 else { st->print("+%d", _offset); }
duke@435 4180 }
duke@435 4181
duke@435 4182 st->print(" *");
duke@435 4183 }
duke@435 4184 #endif
duke@435 4185
duke@435 4186
duke@435 4187
duke@435 4188 //=============================================================================
duke@435 4189 // Convenience common pre-built types.
duke@435 4190
duke@435 4191 //------------------------------make-------------------------------------------
duke@435 4192 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 4193 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 4194 }
duke@435 4195
duke@435 4196 //------------------------------make-------------------------------------------
duke@435 4197 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 4198 Compile* C = Compile::current();
duke@435 4199 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 4200 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 4201 const TypeTuple *domain;
twisti@1572 4202 if (method->is_static()) {
duke@435 4203 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 4204 } else {
duke@435 4205 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 4206 }
duke@435 4207 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 4208 tf = TypeFunc::make(domain, range);
duke@435 4209 C->set_last_tf(method, tf); // fill cache
duke@435 4210 return tf;
duke@435 4211 }
duke@435 4212
duke@435 4213 //------------------------------meet-------------------------------------------
duke@435 4214 // Compute the MEET of two types. It returns a new Type object.
duke@435 4215 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 4216 // Perform a fast test for common case; meeting the same types together.
duke@435 4217 if( this == t ) return this; // Meeting same type-rep?
duke@435 4218
duke@435 4219 // Current "this->_base" is Func
duke@435 4220 switch (t->base()) { // switch on original type
duke@435 4221
duke@435 4222 case Bottom: // Ye Olde Default
duke@435 4223 return t;
duke@435 4224
duke@435 4225 default: // All else is a mistake
duke@435 4226 typerr(t);
duke@435 4227
duke@435 4228 case Top:
duke@435 4229 break;
duke@435 4230 }
duke@435 4231 return this; // Return the double constant
duke@435 4232 }
duke@435 4233
duke@435 4234 //------------------------------xdual------------------------------------------
duke@435 4235 // Dual: compute field-by-field dual
duke@435 4236 const Type *TypeFunc::xdual() const {
duke@435 4237 return this;
duke@435 4238 }
duke@435 4239
duke@435 4240 //------------------------------eq---------------------------------------------
duke@435 4241 // Structural equality check for Type representations
duke@435 4242 bool TypeFunc::eq( const Type *t ) const {
duke@435 4243 const TypeFunc *a = (const TypeFunc*)t;
duke@435 4244 return _domain == a->_domain &&
duke@435 4245 _range == a->_range;
duke@435 4246 }
duke@435 4247
duke@435 4248 //------------------------------hash-------------------------------------------
duke@435 4249 // Type-specific hashing function.
duke@435 4250 int TypeFunc::hash(void) const {
duke@435 4251 return (intptr_t)_domain + (intptr_t)_range;
duke@435 4252 }
duke@435 4253
duke@435 4254 //------------------------------dump2------------------------------------------
duke@435 4255 // Dump Function Type
duke@435 4256 #ifndef PRODUCT
duke@435 4257 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4258 if( _range->_cnt <= Parms )
duke@435 4259 st->print("void");
duke@435 4260 else {
duke@435 4261 uint i;
duke@435 4262 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 4263 _range->field_at(i)->dump2(d,depth,st);
duke@435 4264 st->print("/");
duke@435 4265 }
duke@435 4266 _range->field_at(i)->dump2(d,depth,st);
duke@435 4267 }
duke@435 4268 st->print(" ");
duke@435 4269 st->print("( ");
duke@435 4270 if( !depth || d[this] ) { // Check for recursive dump
duke@435 4271 st->print("...)");
duke@435 4272 return;
duke@435 4273 }
duke@435 4274 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 4275 if (Parms < _domain->_cnt)
duke@435 4276 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 4277 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 4278 st->print(", ");
duke@435 4279 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 4280 }
duke@435 4281 st->print(" )");
duke@435 4282 }
duke@435 4283
duke@435 4284 //------------------------------print_flattened--------------------------------
duke@435 4285 // Print a 'flattened' signature
duke@435 4286 static const char * const flat_type_msg[Type::lastype] = {
coleenp@548 4287 "bad","control","top","int","long","_", "narrowoop",
kvn@3882 4288 "tuple:", "array:", "vectors:", "vectord:", "vectorx:", "vectory:",
duke@435 4289 "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
duke@435 4290 "func", "abIO", "return_address", "mem",
duke@435 4291 "float_top", "ftcon:", "flt",
duke@435 4292 "double_top", "dblcon:", "dbl",
duke@435 4293 "bottom"
duke@435 4294 };
duke@435 4295
duke@435 4296 void TypeFunc::print_flattened() const {
duke@435 4297 if( _range->_cnt <= Parms )
duke@435 4298 tty->print("void");
duke@435 4299 else {
duke@435 4300 uint i;
duke@435 4301 for (i = Parms; i < _range->_cnt-1; i++)
duke@435 4302 tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
duke@435 4303 tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
duke@435 4304 }
duke@435 4305 tty->print(" ( ");
duke@435 4306 if (Parms < _domain->_cnt)
duke@435 4307 tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
duke@435 4308 for (uint i = Parms+1; i < _domain->_cnt; i++)
duke@435 4309 tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
duke@435 4310 tty->print(" )");
duke@435 4311 }
duke@435 4312 #endif
duke@435 4313
duke@435 4314 //------------------------------singleton--------------------------------------
duke@435 4315 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 4316 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 4317 // or a single symbol.
duke@435 4318 bool TypeFunc::singleton(void) const {
duke@435 4319 return false; // Never a singleton
duke@435 4320 }
duke@435 4321
duke@435 4322 bool TypeFunc::empty(void) const {
duke@435 4323 return false; // Never empty
duke@435 4324 }
duke@435 4325
duke@435 4326
duke@435 4327 BasicType TypeFunc::return_type() const{
duke@435 4328 if (range()->cnt() == TypeFunc::Parms) {
duke@435 4329 return T_VOID;
duke@435 4330 }
duke@435 4331 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 4332 }

mercurial