src/share/vm/opto/type.cpp

Mon, 28 Jun 2010 10:52:50 -0700

author
kvn
date
Mon, 28 Jun 2010 10:52:50 -0700
changeset 1975
d678e3277048
parent 1907
c18cbe5936b8
child 2116
14b92b91f460
permissions
-rw-r--r--

6964479: widen normalization of small int and long values should be symmetric
Summary: normalize widen value in xmeet() and xdual() methods for types Int and Long so the type meet will be symmetric.
Reviewed-by: jrose

duke@435 1 /*
trims@1907 2 * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 // Optimization - Graph Style
duke@435 28
duke@435 29 #include "incls/_precompiled.incl"
duke@435 30 #include "incls/_type.cpp.incl"
duke@435 31
duke@435 32 // Dictionary of types shared among compilations.
duke@435 33 Dict* Type::_shared_type_dict = NULL;
duke@435 34
duke@435 35 // Array which maps compiler types to Basic Types
duke@435 36 const BasicType Type::_basic_type[Type::lastype] = {
duke@435 37 T_ILLEGAL, // Bad
duke@435 38 T_ILLEGAL, // Control
duke@435 39 T_VOID, // Top
duke@435 40 T_INT, // Int
duke@435 41 T_LONG, // Long
duke@435 42 T_VOID, // Half
coleenp@548 43 T_NARROWOOP, // NarrowOop
duke@435 44
duke@435 45 T_ILLEGAL, // Tuple
duke@435 46 T_ARRAY, // Array
duke@435 47
duke@435 48 T_ADDRESS, // AnyPtr // shows up in factory methods for NULL_PTR
duke@435 49 T_ADDRESS, // RawPtr
duke@435 50 T_OBJECT, // OopPtr
duke@435 51 T_OBJECT, // InstPtr
duke@435 52 T_OBJECT, // AryPtr
duke@435 53 T_OBJECT, // KlassPtr
duke@435 54
duke@435 55 T_OBJECT, // Function
duke@435 56 T_ILLEGAL, // Abio
duke@435 57 T_ADDRESS, // Return_Address
duke@435 58 T_ILLEGAL, // Memory
duke@435 59 T_FLOAT, // FloatTop
duke@435 60 T_FLOAT, // FloatCon
duke@435 61 T_FLOAT, // FloatBot
duke@435 62 T_DOUBLE, // DoubleTop
duke@435 63 T_DOUBLE, // DoubleCon
duke@435 64 T_DOUBLE, // DoubleBot
duke@435 65 T_ILLEGAL, // Bottom
duke@435 66 };
duke@435 67
duke@435 68 // Map ideal registers (machine types) to ideal types
duke@435 69 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 70
duke@435 71 // Map basic types to canonical Type* pointers.
duke@435 72 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 73
duke@435 74 // Map basic types to constant-zero Types.
duke@435 75 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 76
duke@435 77 // Map basic types to array-body alias types.
duke@435 78 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 79
duke@435 80 //=============================================================================
duke@435 81 // Convenience common pre-built types.
duke@435 82 const Type *Type::ABIO; // State-of-machine only
duke@435 83 const Type *Type::BOTTOM; // All values
duke@435 84 const Type *Type::CONTROL; // Control only
duke@435 85 const Type *Type::DOUBLE; // All doubles
duke@435 86 const Type *Type::FLOAT; // All floats
duke@435 87 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 88 const Type *Type::MEMORY; // Abstract store only
duke@435 89 const Type *Type::RETURN_ADDRESS;
duke@435 90 const Type *Type::TOP; // No values in set
duke@435 91
duke@435 92 //------------------------------get_const_type---------------------------
duke@435 93 const Type* Type::get_const_type(ciType* type) {
duke@435 94 if (type == NULL) {
duke@435 95 return NULL;
duke@435 96 } else if (type->is_primitive_type()) {
duke@435 97 return get_const_basic_type(type->basic_type());
duke@435 98 } else {
duke@435 99 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 100 }
duke@435 101 }
duke@435 102
duke@435 103 //---------------------------array_element_basic_type---------------------------------
duke@435 104 // Mapping to the array element's basic type.
duke@435 105 BasicType Type::array_element_basic_type() const {
duke@435 106 BasicType bt = basic_type();
duke@435 107 if (bt == T_INT) {
duke@435 108 if (this == TypeInt::INT) return T_INT;
duke@435 109 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 110 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 111 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 112 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 113 return T_VOID;
duke@435 114 }
duke@435 115 return bt;
duke@435 116 }
duke@435 117
duke@435 118 //---------------------------get_typeflow_type---------------------------------
duke@435 119 // Import a type produced by ciTypeFlow.
duke@435 120 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 121 switch (type->basic_type()) {
duke@435 122
duke@435 123 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 124 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 125 return Type::BOTTOM;
duke@435 126
duke@435 127 case ciTypeFlow::StateVector::T_TOP:
duke@435 128 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 129 return Type::TOP;
duke@435 130
duke@435 131 case ciTypeFlow::StateVector::T_NULL:
duke@435 132 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 133 return TypePtr::NULL_PTR;
duke@435 134
duke@435 135 case ciTypeFlow::StateVector::T_LONG2:
duke@435 136 // The ciTypeFlow pass pushes a long, then the half.
duke@435 137 // We do the same.
duke@435 138 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 139 return TypeInt::TOP;
duke@435 140
duke@435 141 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 142 // The ciTypeFlow pass pushes double, then the half.
duke@435 143 // Our convention is the same.
duke@435 144 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 145 return Type::TOP;
duke@435 146
duke@435 147 case T_ADDRESS:
duke@435 148 assert(type->is_return_address(), "");
duke@435 149 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 150
duke@435 151 default:
duke@435 152 // make sure we did not mix up the cases:
duke@435 153 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 154 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 155 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 156 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 157 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 158 assert(!type->is_return_address(), "");
duke@435 159
duke@435 160 return Type::get_const_type(type);
duke@435 161 }
duke@435 162 }
duke@435 163
duke@435 164
duke@435 165 //------------------------------make-------------------------------------------
duke@435 166 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 167 // and look for an existing copy in the type dictionary.
duke@435 168 const Type *Type::make( enum TYPES t ) {
duke@435 169 return (new Type(t))->hashcons();
duke@435 170 }
kvn@658 171
duke@435 172 //------------------------------cmp--------------------------------------------
duke@435 173 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 174 if( t1->_base != t2->_base )
duke@435 175 return 1; // Missed badly
duke@435 176 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 177 return !t1->eq(t2); // Return ZERO if equal
duke@435 178 }
duke@435 179
duke@435 180 //------------------------------hash-------------------------------------------
duke@435 181 int Type::uhash( const Type *const t ) {
duke@435 182 return t->hash();
duke@435 183 }
duke@435 184
kvn@1975 185 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
kvn@1975 186
duke@435 187 //--------------------------Initialize_shared----------------------------------
duke@435 188 void Type::Initialize_shared(Compile* current) {
duke@435 189 // This method does not need to be locked because the first system
duke@435 190 // compilations (stub compilations) occur serially. If they are
duke@435 191 // changed to proceed in parallel, then this section will need
duke@435 192 // locking.
duke@435 193
duke@435 194 Arena* save = current->type_arena();
duke@435 195 Arena* shared_type_arena = new Arena();
duke@435 196
duke@435 197 current->set_type_arena(shared_type_arena);
duke@435 198 _shared_type_dict =
duke@435 199 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 200 shared_type_arena, 128 );
duke@435 201 current->set_type_dict(_shared_type_dict);
duke@435 202
duke@435 203 // Make shared pre-built types.
duke@435 204 CONTROL = make(Control); // Control only
duke@435 205 TOP = make(Top); // No values in set
duke@435 206 MEMORY = make(Memory); // Abstract store only
duke@435 207 ABIO = make(Abio); // State-of-machine only
duke@435 208 RETURN_ADDRESS=make(Return_Address);
duke@435 209 FLOAT = make(FloatBot); // All floats
duke@435 210 DOUBLE = make(DoubleBot); // All doubles
duke@435 211 BOTTOM = make(Bottom); // Everything
duke@435 212 HALF = make(Half); // Placeholder half of doublewide type
duke@435 213
duke@435 214 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 215 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 216
duke@435 217 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 218 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 219
duke@435 220 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 221 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 222 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 223 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 224 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 225 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 226 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 227 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 228 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 229 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 230 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
twisti@1059 231 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
duke@435 232 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 233 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 234 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 235 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 236 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 237 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
duke@435 238 // CmpL is overloaded both as the bytecode computation returning
duke@435 239 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 240 // compare returning optimizer ideal-type flags.
duke@435 241 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 242 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 243 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 244 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
kvn@1975 245 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 246
duke@435 247 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 248 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 249 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 250 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 251 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 252 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 253 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
duke@435 254
duke@435 255 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 256 fboth[0] = Type::CONTROL;
duke@435 257 fboth[1] = Type::CONTROL;
duke@435 258 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 259
duke@435 260 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 261 ffalse[0] = Type::CONTROL;
duke@435 262 ffalse[1] = Type::TOP;
duke@435 263 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 264
duke@435 265 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 266 fneither[0] = Type::TOP;
duke@435 267 fneither[1] = Type::TOP;
duke@435 268 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 269
duke@435 270 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 271 ftrue[0] = Type::TOP;
duke@435 272 ftrue[1] = Type::CONTROL;
duke@435 273 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 274
duke@435 275 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 276 floop[0] = Type::CONTROL;
duke@435 277 floop[1] = TypeInt::INT;
duke@435 278 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 279
duke@435 280 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 281 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 282 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 283
duke@435 284 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 285 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 286
duke@435 287 const Type **fmembar = TypeTuple::fields(0);
duke@435 288 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 289
duke@435 290 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 291 fsc[0] = TypeInt::CC;
duke@435 292 fsc[1] = Type::MEMORY;
duke@435 293 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 294
duke@435 295 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 296 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 297 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 298 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 299 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 300 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 301 false, 0, oopDesc::klass_offset_in_bytes());
kvn@1427 302 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
duke@435 303
coleenp@548 304 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 305 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 306
coleenp@548 307 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 308 mreg2type[Op_Set ] = 0;
coleenp@548 309 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 310 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 311 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 312 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 313 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 314 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 315 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 316
duke@435 317 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), current->env()->Object_klass(), false, arrayOopDesc::length_offset_in_bytes());
kvn@598 318
kvn@598 319 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 320
kvn@598 321 #ifdef _LP64
kvn@598 322 if (UseCompressedOops) {
kvn@598 323 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 324 } else
kvn@598 325 #endif
kvn@598 326 {
kvn@598 327 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 328 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 329 }
duke@435 330 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 331 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 332 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 333 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 334 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 335 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 336 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 337
kvn@598 338 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 339 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 340 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 341 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 342 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 343 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 344 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 345 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 346 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 347 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 348 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 349 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 350
duke@435 351 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 352 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 353
duke@435 354 const Type **fi2c = TypeTuple::fields(2);
duke@435 355 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
duke@435 356 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 357 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 358
duke@435 359 const Type **intpair = TypeTuple::fields(2);
duke@435 360 intpair[0] = TypeInt::INT;
duke@435 361 intpair[1] = TypeInt::INT;
duke@435 362 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 363
duke@435 364 const Type **longpair = TypeTuple::fields(2);
duke@435 365 longpair[0] = TypeLong::LONG;
duke@435 366 longpair[1] = TypeLong::LONG;
duke@435 367 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 368
coleenp@548 369 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
duke@435 370 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
duke@435 371 _const_basic_type[T_CHAR] = TypeInt::CHAR;
duke@435 372 _const_basic_type[T_BYTE] = TypeInt::BYTE;
duke@435 373 _const_basic_type[T_SHORT] = TypeInt::SHORT;
duke@435 374 _const_basic_type[T_INT] = TypeInt::INT;
duke@435 375 _const_basic_type[T_LONG] = TypeLong::LONG;
duke@435 376 _const_basic_type[T_FLOAT] = Type::FLOAT;
duke@435 377 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
duke@435 378 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
duke@435 379 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
duke@435 380 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
duke@435 381 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
duke@435 382 _const_basic_type[T_CONFLICT]= Type::BOTTOM; // why not?
duke@435 383
coleenp@548 384 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
duke@435 385 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
duke@435 386 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
duke@435 387 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
duke@435 388 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
duke@435 389 _zero_type[T_INT] = TypeInt::ZERO;
duke@435 390 _zero_type[T_LONG] = TypeLong::ZERO;
duke@435 391 _zero_type[T_FLOAT] = TypeF::ZERO;
duke@435 392 _zero_type[T_DOUBLE] = TypeD::ZERO;
duke@435 393 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
duke@435 394 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
duke@435 395 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
duke@435 396 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 397
duke@435 398 // get_zero_type() should not happen for T_CONFLICT
duke@435 399 _zero_type[T_CONFLICT]= NULL;
duke@435 400
duke@435 401 // Restore working type arena.
duke@435 402 current->set_type_arena(save);
duke@435 403 current->set_type_dict(NULL);
duke@435 404 }
duke@435 405
duke@435 406 //------------------------------Initialize-------------------------------------
duke@435 407 void Type::Initialize(Compile* current) {
duke@435 408 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 409
duke@435 410 if (_shared_type_dict == NULL) {
duke@435 411 Initialize_shared(current);
duke@435 412 }
duke@435 413
duke@435 414 Arena* type_arena = current->type_arena();
duke@435 415
duke@435 416 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 417 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 418 current->set_type_dict(tdic);
duke@435 419
duke@435 420 // Transfer the shared types.
duke@435 421 DictI i(_shared_type_dict);
duke@435 422 for( ; i.test(); ++i ) {
duke@435 423 Type* t = (Type*)i._value;
duke@435 424 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 425 }
coleenp@548 426
coleenp@548 427 #ifdef ASSERT
coleenp@548 428 verify_lastype();
coleenp@548 429 #endif
duke@435 430 }
duke@435 431
duke@435 432 //------------------------------hashcons---------------------------------------
duke@435 433 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 434 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 435 // current Type in the Type table.
duke@435 436 const Type *Type::hashcons(void) {
duke@435 437 debug_only(base()); // Check the assertion in Type::base().
duke@435 438 // Look up the Type in the Type dictionary
duke@435 439 Dict *tdic = type_dict();
duke@435 440 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 441 if( old ) { // Pre-existing Type?
duke@435 442 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 443 delete this; // Yes, Nuke this guy
duke@435 444 assert( old->_dual, "" );
duke@435 445 return old; // Return pre-existing
duke@435 446 }
duke@435 447
duke@435 448 // Every type has a dual (to make my lattice symmetric).
duke@435 449 // Since we just discovered a new Type, compute its dual right now.
duke@435 450 assert( !_dual, "" ); // No dual yet
duke@435 451 _dual = xdual(); // Compute the dual
duke@435 452 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 453 _dual = this;
duke@435 454 return this;
duke@435 455 }
duke@435 456 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 457 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 458 // New Type, insert into Type table
duke@435 459 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 460 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 461 #ifdef ASSERT
duke@435 462 Type *dual_dual = (Type*)_dual->xdual();
duke@435 463 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 464 delete dual_dual;
duke@435 465 #endif
duke@435 466 return this; // Return new Type
duke@435 467 }
duke@435 468
duke@435 469 //------------------------------eq---------------------------------------------
duke@435 470 // Structural equality check for Type representations
duke@435 471 bool Type::eq( const Type * ) const {
duke@435 472 return true; // Nothing else can go wrong
duke@435 473 }
duke@435 474
duke@435 475 //------------------------------hash-------------------------------------------
duke@435 476 // Type-specific hashing function.
duke@435 477 int Type::hash(void) const {
duke@435 478 return _base;
duke@435 479 }
duke@435 480
duke@435 481 //------------------------------is_finite--------------------------------------
duke@435 482 // Has a finite value
duke@435 483 bool Type::is_finite() const {
duke@435 484 return false;
duke@435 485 }
duke@435 486
duke@435 487 //------------------------------is_nan-----------------------------------------
duke@435 488 // Is not a number (NaN)
duke@435 489 bool Type::is_nan() const {
duke@435 490 return false;
duke@435 491 }
duke@435 492
kvn@1255 493 //----------------------interface_vs_oop---------------------------------------
kvn@1255 494 #ifdef ASSERT
kvn@1255 495 bool Type::interface_vs_oop(const Type *t) const {
kvn@1255 496 bool result = false;
kvn@1255 497
kvn@1427 498 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
kvn@1427 499 const TypePtr* t_ptr = t->make_ptr();
kvn@1427 500 if( this_ptr == NULL || t_ptr == NULL )
kvn@1427 501 return result;
kvn@1427 502
kvn@1427 503 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
kvn@1427 504 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
kvn@1255 505 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
kvn@1255 506 bool this_interface = this_inst->klass()->is_interface();
kvn@1255 507 bool t_interface = t_inst->klass()->is_interface();
kvn@1255 508 result = this_interface ^ t_interface;
kvn@1255 509 }
kvn@1255 510
kvn@1255 511 return result;
kvn@1255 512 }
kvn@1255 513 #endif
kvn@1255 514
duke@435 515 //------------------------------meet-------------------------------------------
duke@435 516 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 517 // commutative and the lattice is symmetric.
duke@435 518 const Type *Type::meet( const Type *t ) const {
coleenp@548 519 if (isa_narrowoop() && t->isa_narrowoop()) {
kvn@656 520 const Type* result = make_ptr()->meet(t->make_ptr());
kvn@656 521 return result->make_narrowoop();
coleenp@548 522 }
coleenp@548 523
duke@435 524 const Type *mt = xmeet(t);
coleenp@548 525 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
duke@435 526 #ifdef ASSERT
duke@435 527 assert( mt == t->xmeet(this), "meet not commutative" );
duke@435 528 const Type* dual_join = mt->_dual;
duke@435 529 const Type *t2t = dual_join->xmeet(t->_dual);
duke@435 530 const Type *t2this = dual_join->xmeet( _dual);
duke@435 531
duke@435 532 // Interface meet Oop is Not Symmetric:
duke@435 533 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 534 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
kvn@1255 535
kvn@1255 536 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
duke@435 537 tty->print_cr("=== Meet Not Symmetric ===");
duke@435 538 tty->print("t = "); t->dump(); tty->cr();
duke@435 539 tty->print("this= "); dump(); tty->cr();
duke@435 540 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
duke@435 541
duke@435 542 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
duke@435 543 tty->print("this_dual= "); _dual->dump(); tty->cr();
duke@435 544 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
duke@435 545
duke@435 546 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
duke@435 547 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 548
duke@435 549 fatal("meet not symmetric" );
duke@435 550 }
duke@435 551 #endif
duke@435 552 return mt;
duke@435 553 }
duke@435 554
duke@435 555 //------------------------------xmeet------------------------------------------
duke@435 556 // Compute the MEET of two types. It returns a new Type object.
duke@435 557 const Type *Type::xmeet( const Type *t ) const {
duke@435 558 // Perform a fast test for common case; meeting the same types together.
duke@435 559 if( this == t ) return this; // Meeting same type-rep?
duke@435 560
duke@435 561 // Meeting TOP with anything?
duke@435 562 if( _base == Top ) return t;
duke@435 563
duke@435 564 // Meeting BOTTOM with anything?
duke@435 565 if( _base == Bottom ) return BOTTOM;
duke@435 566
duke@435 567 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 568 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 569 switch (t->base()) { // Switch on original type
duke@435 570
duke@435 571 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 572 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 573 case FloatCon:
duke@435 574 case DoubleCon:
duke@435 575 case Int:
duke@435 576 case Long:
duke@435 577 return t->xmeet(this);
duke@435 578
duke@435 579 case OopPtr:
duke@435 580 return t->xmeet(this);
duke@435 581
duke@435 582 case InstPtr:
duke@435 583 return t->xmeet(this);
duke@435 584
duke@435 585 case KlassPtr:
duke@435 586 return t->xmeet(this);
duke@435 587
duke@435 588 case AryPtr:
duke@435 589 return t->xmeet(this);
duke@435 590
coleenp@548 591 case NarrowOop:
coleenp@548 592 return t->xmeet(this);
coleenp@548 593
duke@435 594 case Bad: // Type check
duke@435 595 default: // Bogus type not in lattice
duke@435 596 typerr(t);
duke@435 597 return Type::BOTTOM;
duke@435 598
duke@435 599 case Bottom: // Ye Olde Default
duke@435 600 return t;
duke@435 601
duke@435 602 case FloatTop:
duke@435 603 if( _base == FloatTop ) return this;
duke@435 604 case FloatBot: // Float
duke@435 605 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 606 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 607 typerr(t);
duke@435 608 return Type::BOTTOM;
duke@435 609
duke@435 610 case DoubleTop:
duke@435 611 if( _base == DoubleTop ) return this;
duke@435 612 case DoubleBot: // Double
duke@435 613 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 614 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 615 typerr(t);
duke@435 616 return Type::BOTTOM;
duke@435 617
duke@435 618 // These next few cases must match exactly or it is a compile-time error.
duke@435 619 case Control: // Control of code
duke@435 620 case Abio: // State of world outside of program
duke@435 621 case Memory:
duke@435 622 if( _base == t->_base ) return this;
duke@435 623 typerr(t);
duke@435 624 return Type::BOTTOM;
duke@435 625
duke@435 626 case Top: // Top of the lattice
duke@435 627 return this;
duke@435 628 }
duke@435 629
duke@435 630 // The type is unchanged
duke@435 631 return this;
duke@435 632 }
duke@435 633
duke@435 634 //-----------------------------filter------------------------------------------
duke@435 635 const Type *Type::filter( const Type *kills ) const {
duke@435 636 const Type* ft = join(kills);
duke@435 637 if (ft->empty())
duke@435 638 return Type::TOP; // Canonical empty value
duke@435 639 return ft;
duke@435 640 }
duke@435 641
duke@435 642 //------------------------------xdual------------------------------------------
duke@435 643 // Compute dual right now.
duke@435 644 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 645 Bad, // Bad
duke@435 646 Control, // Control
duke@435 647 Bottom, // Top
duke@435 648 Bad, // Int - handled in v-call
duke@435 649 Bad, // Long - handled in v-call
duke@435 650 Half, // Half
coleenp@548 651 Bad, // NarrowOop - handled in v-call
duke@435 652
duke@435 653 Bad, // Tuple - handled in v-call
duke@435 654 Bad, // Array - handled in v-call
duke@435 655
duke@435 656 Bad, // AnyPtr - handled in v-call
duke@435 657 Bad, // RawPtr - handled in v-call
duke@435 658 Bad, // OopPtr - handled in v-call
duke@435 659 Bad, // InstPtr - handled in v-call
duke@435 660 Bad, // AryPtr - handled in v-call
duke@435 661 Bad, // KlassPtr - handled in v-call
duke@435 662
duke@435 663 Bad, // Function - handled in v-call
duke@435 664 Abio, // Abio
duke@435 665 Return_Address,// Return_Address
duke@435 666 Memory, // Memory
duke@435 667 FloatBot, // FloatTop
duke@435 668 FloatCon, // FloatCon
duke@435 669 FloatTop, // FloatBot
duke@435 670 DoubleBot, // DoubleTop
duke@435 671 DoubleCon, // DoubleCon
duke@435 672 DoubleTop, // DoubleBot
duke@435 673 Top // Bottom
duke@435 674 };
duke@435 675
duke@435 676 const Type *Type::xdual() const {
duke@435 677 // Note: the base() accessor asserts the sanity of _base.
duke@435 678 assert(dual_type[base()] != Bad, "implement with v-call");
duke@435 679 return new Type(dual_type[_base]);
duke@435 680 }
duke@435 681
duke@435 682 //------------------------------has_memory-------------------------------------
duke@435 683 bool Type::has_memory() const {
duke@435 684 Type::TYPES tx = base();
duke@435 685 if (tx == Memory) return true;
duke@435 686 if (tx == Tuple) {
duke@435 687 const TypeTuple *t = is_tuple();
duke@435 688 for (uint i=0; i < t->cnt(); i++) {
duke@435 689 tx = t->field_at(i)->base();
duke@435 690 if (tx == Memory) return true;
duke@435 691 }
duke@435 692 }
duke@435 693 return false;
duke@435 694 }
duke@435 695
duke@435 696 #ifndef PRODUCT
duke@435 697 //------------------------------dump2------------------------------------------
duke@435 698 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 699 st->print(msg[_base]);
duke@435 700 }
duke@435 701
duke@435 702 //------------------------------dump-------------------------------------------
duke@435 703 void Type::dump_on(outputStream *st) const {
duke@435 704 ResourceMark rm;
duke@435 705 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 706 dump2(d,1, st);
kvn@598 707 if (is_ptr_to_narrowoop()) {
coleenp@548 708 st->print(" [narrow]");
coleenp@548 709 }
duke@435 710 }
duke@435 711
duke@435 712 //------------------------------data-------------------------------------------
duke@435 713 const char * const Type::msg[Type::lastype] = {
coleenp@548 714 "bad","control","top","int:","long:","half", "narrowoop:",
duke@435 715 "tuple:", "aryptr",
duke@435 716 "anyptr:", "rawptr:", "java:", "inst:", "ary:", "klass:",
duke@435 717 "func", "abIO", "return_address", "memory",
duke@435 718 "float_top", "ftcon:", "float",
duke@435 719 "double_top", "dblcon:", "double",
duke@435 720 "bottom"
duke@435 721 };
duke@435 722 #endif
duke@435 723
duke@435 724 //------------------------------singleton--------------------------------------
duke@435 725 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 726 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 727 bool Type::singleton(void) const {
duke@435 728 return _base == Top || _base == Half;
duke@435 729 }
duke@435 730
duke@435 731 //------------------------------empty------------------------------------------
duke@435 732 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 733 bool Type::empty(void) const {
duke@435 734 switch (_base) {
duke@435 735 case DoubleTop:
duke@435 736 case FloatTop:
duke@435 737 case Top:
duke@435 738 return true;
duke@435 739
duke@435 740 case Half:
duke@435 741 case Abio:
duke@435 742 case Return_Address:
duke@435 743 case Memory:
duke@435 744 case Bottom:
duke@435 745 case FloatBot:
duke@435 746 case DoubleBot:
duke@435 747 return false; // never a singleton, therefore never empty
duke@435 748 }
duke@435 749
duke@435 750 ShouldNotReachHere();
duke@435 751 return false;
duke@435 752 }
duke@435 753
duke@435 754 //------------------------------dump_stats-------------------------------------
duke@435 755 // Dump collected statistics to stderr
duke@435 756 #ifndef PRODUCT
duke@435 757 void Type::dump_stats() {
duke@435 758 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 759 }
duke@435 760 #endif
duke@435 761
duke@435 762 //------------------------------typerr-----------------------------------------
duke@435 763 void Type::typerr( const Type *t ) const {
duke@435 764 #ifndef PRODUCT
duke@435 765 tty->print("\nError mixing types: ");
duke@435 766 dump();
duke@435 767 tty->print(" and ");
duke@435 768 t->dump();
duke@435 769 tty->print("\n");
duke@435 770 #endif
duke@435 771 ShouldNotReachHere();
duke@435 772 }
duke@435 773
duke@435 774 //------------------------------isa_oop_ptr------------------------------------
duke@435 775 // Return true if type is an oop pointer type. False for raw pointers.
duke@435 776 static char isa_oop_ptr_tbl[Type::lastype] = {
coleenp@548 777 0,0,0,0,0,0,0/*narrowoop*/,0/*tuple*/, 0/*ary*/,
duke@435 778 0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
duke@435 779 0/*func*/,0,0/*return_address*/,0,
duke@435 780 /*floats*/0,0,0, /*doubles*/0,0,0,
duke@435 781 0
duke@435 782 };
duke@435 783 bool Type::isa_oop_ptr() const {
duke@435 784 return isa_oop_ptr_tbl[_base] != 0;
duke@435 785 }
duke@435 786
duke@435 787 //------------------------------dump_stats-------------------------------------
duke@435 788 // // Check that arrays match type enum
duke@435 789 #ifndef PRODUCT
duke@435 790 void Type::verify_lastype() {
duke@435 791 // Check that arrays match enumeration
duke@435 792 assert( Type::dual_type [Type::lastype - 1] == Type::Top, "did not update array");
duke@435 793 assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
duke@435 794 // assert( PhiNode::tbl [Type::lastype - 1] == NULL, "did not update array");
duke@435 795 assert( Matcher::base2reg[Type::lastype - 1] == 0, "did not update array");
duke@435 796 assert( isa_oop_ptr_tbl [Type::lastype - 1] == (char)0, "did not update array");
duke@435 797 }
duke@435 798 #endif
duke@435 799
duke@435 800 //=============================================================================
duke@435 801 // Convenience common pre-built types.
duke@435 802 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 803 const TypeF *TypeF::ONE; // Floating point one
duke@435 804
duke@435 805 //------------------------------make-------------------------------------------
duke@435 806 // Create a float constant
duke@435 807 const TypeF *TypeF::make(float f) {
duke@435 808 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 809 }
duke@435 810
duke@435 811 //------------------------------meet-------------------------------------------
duke@435 812 // Compute the MEET of two types. It returns a new Type object.
duke@435 813 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 814 // Perform a fast test for common case; meeting the same types together.
duke@435 815 if( this == t ) return this; // Meeting same type-rep?
duke@435 816
duke@435 817 // Current "this->_base" is FloatCon
duke@435 818 switch (t->base()) { // Switch on original type
duke@435 819 case AnyPtr: // Mixing with oops happens when javac
duke@435 820 case RawPtr: // reuses local variables
duke@435 821 case OopPtr:
duke@435 822 case InstPtr:
duke@435 823 case KlassPtr:
duke@435 824 case AryPtr:
kvn@728 825 case NarrowOop:
duke@435 826 case Int:
duke@435 827 case Long:
duke@435 828 case DoubleTop:
duke@435 829 case DoubleCon:
duke@435 830 case DoubleBot:
duke@435 831 case Bottom: // Ye Olde Default
duke@435 832 return Type::BOTTOM;
duke@435 833
duke@435 834 case FloatBot:
duke@435 835 return t;
duke@435 836
duke@435 837 default: // All else is a mistake
duke@435 838 typerr(t);
duke@435 839
duke@435 840 case FloatCon: // Float-constant vs Float-constant?
duke@435 841 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 842 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 843 // all the same representation in C++
duke@435 844 return FLOAT; // Return generic float
duke@435 845 // Equal constants
duke@435 846 case Top:
duke@435 847 case FloatTop:
duke@435 848 break; // Return the float constant
duke@435 849 }
duke@435 850 return this; // Return the float constant
duke@435 851 }
duke@435 852
duke@435 853 //------------------------------xdual------------------------------------------
duke@435 854 // Dual: symmetric
duke@435 855 const Type *TypeF::xdual() const {
duke@435 856 return this;
duke@435 857 }
duke@435 858
duke@435 859 //------------------------------eq---------------------------------------------
duke@435 860 // Structural equality check for Type representations
duke@435 861 bool TypeF::eq( const Type *t ) const {
duke@435 862 if( g_isnan(_f) ||
duke@435 863 g_isnan(t->getf()) ) {
duke@435 864 // One or both are NANs. If both are NANs return true, else false.
duke@435 865 return (g_isnan(_f) && g_isnan(t->getf()));
duke@435 866 }
duke@435 867 if (_f == t->getf()) {
duke@435 868 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 869 if (_f == 0.0) {
duke@435 870 // difference between positive and negative zero
duke@435 871 if (jint_cast(_f) != jint_cast(t->getf())) return false;
duke@435 872 }
duke@435 873 return true;
duke@435 874 }
duke@435 875 return false;
duke@435 876 }
duke@435 877
duke@435 878 //------------------------------hash-------------------------------------------
duke@435 879 // Type-specific hashing function.
duke@435 880 int TypeF::hash(void) const {
duke@435 881 return *(int*)(&_f);
duke@435 882 }
duke@435 883
duke@435 884 //------------------------------is_finite--------------------------------------
duke@435 885 // Has a finite value
duke@435 886 bool TypeF::is_finite() const {
duke@435 887 return g_isfinite(getf()) != 0;
duke@435 888 }
duke@435 889
duke@435 890 //------------------------------is_nan-----------------------------------------
duke@435 891 // Is not a number (NaN)
duke@435 892 bool TypeF::is_nan() const {
duke@435 893 return g_isnan(getf()) != 0;
duke@435 894 }
duke@435 895
duke@435 896 //------------------------------dump2------------------------------------------
duke@435 897 // Dump float constant Type
duke@435 898 #ifndef PRODUCT
duke@435 899 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 900 Type::dump2(d,depth, st);
duke@435 901 st->print("%f", _f);
duke@435 902 }
duke@435 903 #endif
duke@435 904
duke@435 905 //------------------------------singleton--------------------------------------
duke@435 906 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 907 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 908 // or a single symbol.
duke@435 909 bool TypeF::singleton(void) const {
duke@435 910 return true; // Always a singleton
duke@435 911 }
duke@435 912
duke@435 913 bool TypeF::empty(void) const {
duke@435 914 return false; // always exactly a singleton
duke@435 915 }
duke@435 916
duke@435 917 //=============================================================================
duke@435 918 // Convenience common pre-built types.
duke@435 919 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 920 const TypeD *TypeD::ONE; // Floating point one
duke@435 921
duke@435 922 //------------------------------make-------------------------------------------
duke@435 923 const TypeD *TypeD::make(double d) {
duke@435 924 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 925 }
duke@435 926
duke@435 927 //------------------------------meet-------------------------------------------
duke@435 928 // Compute the MEET of two types. It returns a new Type object.
duke@435 929 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 930 // Perform a fast test for common case; meeting the same types together.
duke@435 931 if( this == t ) return this; // Meeting same type-rep?
duke@435 932
duke@435 933 // Current "this->_base" is DoubleCon
duke@435 934 switch (t->base()) { // Switch on original type
duke@435 935 case AnyPtr: // Mixing with oops happens when javac
duke@435 936 case RawPtr: // reuses local variables
duke@435 937 case OopPtr:
duke@435 938 case InstPtr:
duke@435 939 case KlassPtr:
duke@435 940 case AryPtr:
never@618 941 case NarrowOop:
duke@435 942 case Int:
duke@435 943 case Long:
duke@435 944 case FloatTop:
duke@435 945 case FloatCon:
duke@435 946 case FloatBot:
duke@435 947 case Bottom: // Ye Olde Default
duke@435 948 return Type::BOTTOM;
duke@435 949
duke@435 950 case DoubleBot:
duke@435 951 return t;
duke@435 952
duke@435 953 default: // All else is a mistake
duke@435 954 typerr(t);
duke@435 955
duke@435 956 case DoubleCon: // Double-constant vs Double-constant?
duke@435 957 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 958 return DOUBLE; // Return generic double
duke@435 959 case Top:
duke@435 960 case DoubleTop:
duke@435 961 break;
duke@435 962 }
duke@435 963 return this; // Return the double constant
duke@435 964 }
duke@435 965
duke@435 966 //------------------------------xdual------------------------------------------
duke@435 967 // Dual: symmetric
duke@435 968 const Type *TypeD::xdual() const {
duke@435 969 return this;
duke@435 970 }
duke@435 971
duke@435 972 //------------------------------eq---------------------------------------------
duke@435 973 // Structural equality check for Type representations
duke@435 974 bool TypeD::eq( const Type *t ) const {
duke@435 975 if( g_isnan(_d) ||
duke@435 976 g_isnan(t->getd()) ) {
duke@435 977 // One or both are NANs. If both are NANs return true, else false.
duke@435 978 return (g_isnan(_d) && g_isnan(t->getd()));
duke@435 979 }
duke@435 980 if (_d == t->getd()) {
duke@435 981 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 982 if (_d == 0.0) {
duke@435 983 // difference between positive and negative zero
duke@435 984 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
duke@435 985 }
duke@435 986 return true;
duke@435 987 }
duke@435 988 return false;
duke@435 989 }
duke@435 990
duke@435 991 //------------------------------hash-------------------------------------------
duke@435 992 // Type-specific hashing function.
duke@435 993 int TypeD::hash(void) const {
duke@435 994 return *(int*)(&_d);
duke@435 995 }
duke@435 996
duke@435 997 //------------------------------is_finite--------------------------------------
duke@435 998 // Has a finite value
duke@435 999 bool TypeD::is_finite() const {
duke@435 1000 return g_isfinite(getd()) != 0;
duke@435 1001 }
duke@435 1002
duke@435 1003 //------------------------------is_nan-----------------------------------------
duke@435 1004 // Is not a number (NaN)
duke@435 1005 bool TypeD::is_nan() const {
duke@435 1006 return g_isnan(getd()) != 0;
duke@435 1007 }
duke@435 1008
duke@435 1009 //------------------------------dump2------------------------------------------
duke@435 1010 // Dump double constant Type
duke@435 1011 #ifndef PRODUCT
duke@435 1012 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1013 Type::dump2(d,depth,st);
duke@435 1014 st->print("%f", _d);
duke@435 1015 }
duke@435 1016 #endif
duke@435 1017
duke@435 1018 //------------------------------singleton--------------------------------------
duke@435 1019 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1020 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1021 // or a single symbol.
duke@435 1022 bool TypeD::singleton(void) const {
duke@435 1023 return true; // Always a singleton
duke@435 1024 }
duke@435 1025
duke@435 1026 bool TypeD::empty(void) const {
duke@435 1027 return false; // always exactly a singleton
duke@435 1028 }
duke@435 1029
duke@435 1030 //=============================================================================
duke@435 1031 // Convience common pre-built types.
duke@435 1032 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1033 const TypeInt *TypeInt::ZERO; // 0
duke@435 1034 const TypeInt *TypeInt::ONE; // 1
duke@435 1035 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1036 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1037 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1038 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1039 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1040 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1041 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1042 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
twisti@1059 1043 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
duke@435 1044 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1045 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1046 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1047 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1048 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1049 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 1050
duke@435 1051 //------------------------------TypeInt----------------------------------------
duke@435 1052 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1053 }
duke@435 1054
duke@435 1055 //------------------------------make-------------------------------------------
duke@435 1056 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1057 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1058 }
duke@435 1059
kvn@1975 1060 static int normalize_int_widen( jint lo, jint hi, int w ) {
duke@435 1061 // Certain normalizations keep us sane when comparing types.
duke@435 1062 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1063 if (lo <= hi) {
kvn@1975 1064 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1065 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
kvn@1975 1066 } else {
kvn@1975 1067 if ((juint)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1068 if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
duke@435 1069 }
kvn@1975 1070 return w;
kvn@1975 1071 }
kvn@1975 1072
kvn@1975 1073 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
kvn@1975 1074 w = normalize_int_widen(lo, hi, w);
duke@435 1075 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1076 }
duke@435 1077
duke@435 1078 //------------------------------meet-------------------------------------------
duke@435 1079 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1080 // with reference count equal to the number of Types pointing at it.
duke@435 1081 // Caller should wrap a Types around it.
duke@435 1082 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1083 // Perform a fast test for common case; meeting the same types together.
duke@435 1084 if( this == t ) return this; // Meeting same type?
duke@435 1085
duke@435 1086 // Currently "this->_base" is a TypeInt
duke@435 1087 switch (t->base()) { // Switch on original type
duke@435 1088 case AnyPtr: // Mixing with oops happens when javac
duke@435 1089 case RawPtr: // reuses local variables
duke@435 1090 case OopPtr:
duke@435 1091 case InstPtr:
duke@435 1092 case KlassPtr:
duke@435 1093 case AryPtr:
never@618 1094 case NarrowOop:
duke@435 1095 case Long:
duke@435 1096 case FloatTop:
duke@435 1097 case FloatCon:
duke@435 1098 case FloatBot:
duke@435 1099 case DoubleTop:
duke@435 1100 case DoubleCon:
duke@435 1101 case DoubleBot:
duke@435 1102 case Bottom: // Ye Olde Default
duke@435 1103 return Type::BOTTOM;
duke@435 1104 default: // All else is a mistake
duke@435 1105 typerr(t);
duke@435 1106 case Top: // No change
duke@435 1107 return this;
duke@435 1108 case Int: // Int vs Int?
duke@435 1109 break;
duke@435 1110 }
duke@435 1111
duke@435 1112 // Expand covered set
duke@435 1113 const TypeInt *r = t->is_int();
kvn@1975 1114 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1115 }
duke@435 1116
duke@435 1117 //------------------------------xdual------------------------------------------
duke@435 1118 // Dual: reverse hi & lo; flip widen
duke@435 1119 const Type *TypeInt::xdual() const {
kvn@1975 1120 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1121 return new TypeInt(_hi,_lo,w);
duke@435 1122 }
duke@435 1123
duke@435 1124 //------------------------------widen------------------------------------------
duke@435 1125 // Only happens for optimistic top-down optimizations.
never@1444 1126 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
duke@435 1127 // Coming from TOP or such; no widening
duke@435 1128 if( old->base() != Int ) return this;
duke@435 1129 const TypeInt *ot = old->is_int();
duke@435 1130
duke@435 1131 // If new guy is equal to old guy, no widening
duke@435 1132 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1133 return old;
duke@435 1134
duke@435 1135 // If new guy contains old, then we widened
duke@435 1136 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1137 // New contains old
duke@435 1138 // If new guy is already wider than old, no widening
duke@435 1139 if( _widen > ot->_widen ) return this;
duke@435 1140 // If old guy was a constant, do not bother
duke@435 1141 if (ot->_lo == ot->_hi) return this;
duke@435 1142 // Now widen new guy.
duke@435 1143 // Check for widening too far
duke@435 1144 if (_widen == WidenMax) {
never@1444 1145 int max = max_jint;
never@1444 1146 int min = min_jint;
never@1444 1147 if (limit->isa_int()) {
never@1444 1148 max = limit->is_int()->_hi;
never@1444 1149 min = limit->is_int()->_lo;
never@1444 1150 }
never@1444 1151 if (min < _lo && _hi < max) {
duke@435 1152 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1153 // which is closer to its respective limit.
duke@435 1154 if (_lo >= 0 || // easy common case
never@1444 1155 (juint)(_lo - min) >= (juint)(max - _hi)) {
duke@435 1156 // Try to widen to an unsigned range type of 31 bits:
never@1444 1157 return make(_lo, max, WidenMax);
duke@435 1158 } else {
never@1444 1159 return make(min, _hi, WidenMax);
duke@435 1160 }
duke@435 1161 }
duke@435 1162 return TypeInt::INT;
duke@435 1163 }
duke@435 1164 // Returned widened new guy
duke@435 1165 return make(_lo,_hi,_widen+1);
duke@435 1166 }
duke@435 1167
duke@435 1168 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1169 // bottom. Return the wider fellow.
duke@435 1170 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1171 return old;
duke@435 1172
duke@435 1173 //fatal("Integer value range is not subset");
duke@435 1174 //return this;
duke@435 1175 return TypeInt::INT;
duke@435 1176 }
duke@435 1177
duke@435 1178 //------------------------------narrow---------------------------------------
duke@435 1179 // Only happens for pessimistic optimizations.
duke@435 1180 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1181 if (_lo >= _hi) return this; // already narrow enough
duke@435 1182 if (old == NULL) return this;
duke@435 1183 const TypeInt* ot = old->isa_int();
duke@435 1184 if (ot == NULL) return this;
duke@435 1185 jint olo = ot->_lo;
duke@435 1186 jint ohi = ot->_hi;
duke@435 1187
duke@435 1188 // If new guy is equal to old guy, no narrowing
duke@435 1189 if (_lo == olo && _hi == ohi) return old;
duke@435 1190
duke@435 1191 // If old guy was maximum range, allow the narrowing
duke@435 1192 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1193
duke@435 1194 if (_lo < olo || _hi > ohi)
duke@435 1195 return this; // doesn't narrow; pretty wierd
duke@435 1196
duke@435 1197 // The new type narrows the old type, so look for a "death march".
duke@435 1198 // See comments on PhaseTransform::saturate.
duke@435 1199 juint nrange = _hi - _lo;
duke@435 1200 juint orange = ohi - olo;
duke@435 1201 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1202 // Use the new type only if the range shrinks a lot.
duke@435 1203 // We do not want the optimizer computing 2^31 point by point.
duke@435 1204 return old;
duke@435 1205 }
duke@435 1206
duke@435 1207 return this;
duke@435 1208 }
duke@435 1209
duke@435 1210 //-----------------------------filter------------------------------------------
duke@435 1211 const Type *TypeInt::filter( const Type *kills ) const {
duke@435 1212 const TypeInt* ft = join(kills)->isa_int();
kvn@1975 1213 if (ft == NULL || ft->empty())
duke@435 1214 return Type::TOP; // Canonical empty value
duke@435 1215 if (ft->_widen < this->_widen) {
duke@435 1216 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1217 // The widen bits must be allowed to run freely through the graph.
duke@435 1218 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1219 }
duke@435 1220 return ft;
duke@435 1221 }
duke@435 1222
duke@435 1223 //------------------------------eq---------------------------------------------
duke@435 1224 // Structural equality check for Type representations
duke@435 1225 bool TypeInt::eq( const Type *t ) const {
duke@435 1226 const TypeInt *r = t->is_int(); // Handy access
duke@435 1227 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1228 }
duke@435 1229
duke@435 1230 //------------------------------hash-------------------------------------------
duke@435 1231 // Type-specific hashing function.
duke@435 1232 int TypeInt::hash(void) const {
duke@435 1233 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1234 }
duke@435 1235
duke@435 1236 //------------------------------is_finite--------------------------------------
duke@435 1237 // Has a finite value
duke@435 1238 bool TypeInt::is_finite() const {
duke@435 1239 return true;
duke@435 1240 }
duke@435 1241
duke@435 1242 //------------------------------dump2------------------------------------------
duke@435 1243 // Dump TypeInt
duke@435 1244 #ifndef PRODUCT
duke@435 1245 static const char* intname(char* buf, jint n) {
duke@435 1246 if (n == min_jint)
duke@435 1247 return "min";
duke@435 1248 else if (n < min_jint + 10000)
duke@435 1249 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1250 else if (n == max_jint)
duke@435 1251 return "max";
duke@435 1252 else if (n > max_jint - 10000)
duke@435 1253 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1254 else
duke@435 1255 sprintf(buf, INT32_FORMAT, n);
duke@435 1256 return buf;
duke@435 1257 }
duke@435 1258
duke@435 1259 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1260 char buf[40], buf2[40];
duke@435 1261 if (_lo == min_jint && _hi == max_jint)
duke@435 1262 st->print("int");
duke@435 1263 else if (is_con())
duke@435 1264 st->print("int:%s", intname(buf, get_con()));
duke@435 1265 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1266 st->print("bool");
duke@435 1267 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1268 st->print("byte");
duke@435 1269 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1270 st->print("char");
duke@435 1271 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1272 st->print("short");
duke@435 1273 else if (_hi == max_jint)
duke@435 1274 st->print("int:>=%s", intname(buf, _lo));
duke@435 1275 else if (_lo == min_jint)
duke@435 1276 st->print("int:<=%s", intname(buf, _hi));
duke@435 1277 else
duke@435 1278 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1279
duke@435 1280 if (_widen != 0 && this != TypeInt::INT)
duke@435 1281 st->print(":%.*s", _widen, "wwww");
duke@435 1282 }
duke@435 1283 #endif
duke@435 1284
duke@435 1285 //------------------------------singleton--------------------------------------
duke@435 1286 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1287 // constants.
duke@435 1288 bool TypeInt::singleton(void) const {
duke@435 1289 return _lo >= _hi;
duke@435 1290 }
duke@435 1291
duke@435 1292 bool TypeInt::empty(void) const {
duke@435 1293 return _lo > _hi;
duke@435 1294 }
duke@435 1295
duke@435 1296 //=============================================================================
duke@435 1297 // Convenience common pre-built types.
duke@435 1298 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1299 const TypeLong *TypeLong::ZERO; // 0
duke@435 1300 const TypeLong *TypeLong::ONE; // 1
duke@435 1301 const TypeLong *TypeLong::POS; // >=0
duke@435 1302 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1303 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1304 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
duke@435 1305
duke@435 1306 //------------------------------TypeLong---------------------------------------
duke@435 1307 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1308 }
duke@435 1309
duke@435 1310 //------------------------------make-------------------------------------------
duke@435 1311 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1312 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1313 }
duke@435 1314
kvn@1975 1315 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
kvn@1975 1316 // Certain normalizations keep us sane when comparing types.
kvn@1975 1317 // The 'SMALLINT' covers constants.
kvn@1975 1318 if (lo <= hi) {
kvn@1975 1319 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1320 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
kvn@1975 1321 } else {
kvn@1975 1322 if ((julong)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1323 if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
kvn@1975 1324 }
kvn@1975 1325 return w;
kvn@1975 1326 }
kvn@1975 1327
duke@435 1328 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
kvn@1975 1329 w = normalize_long_widen(lo, hi, w);
duke@435 1330 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1331 }
duke@435 1332
duke@435 1333
duke@435 1334 //------------------------------meet-------------------------------------------
duke@435 1335 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1336 // with reference count equal to the number of Types pointing at it.
duke@435 1337 // Caller should wrap a Types around it.
duke@435 1338 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1339 // Perform a fast test for common case; meeting the same types together.
duke@435 1340 if( this == t ) return this; // Meeting same type?
duke@435 1341
duke@435 1342 // Currently "this->_base" is a TypeLong
duke@435 1343 switch (t->base()) { // Switch on original type
duke@435 1344 case AnyPtr: // Mixing with oops happens when javac
duke@435 1345 case RawPtr: // reuses local variables
duke@435 1346 case OopPtr:
duke@435 1347 case InstPtr:
duke@435 1348 case KlassPtr:
duke@435 1349 case AryPtr:
never@618 1350 case NarrowOop:
duke@435 1351 case Int:
duke@435 1352 case FloatTop:
duke@435 1353 case FloatCon:
duke@435 1354 case FloatBot:
duke@435 1355 case DoubleTop:
duke@435 1356 case DoubleCon:
duke@435 1357 case DoubleBot:
duke@435 1358 case Bottom: // Ye Olde Default
duke@435 1359 return Type::BOTTOM;
duke@435 1360 default: // All else is a mistake
duke@435 1361 typerr(t);
duke@435 1362 case Top: // No change
duke@435 1363 return this;
duke@435 1364 case Long: // Long vs Long?
duke@435 1365 break;
duke@435 1366 }
duke@435 1367
duke@435 1368 // Expand covered set
duke@435 1369 const TypeLong *r = t->is_long(); // Turn into a TypeLong
kvn@1975 1370 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1371 }
duke@435 1372
duke@435 1373 //------------------------------xdual------------------------------------------
duke@435 1374 // Dual: reverse hi & lo; flip widen
duke@435 1375 const Type *TypeLong::xdual() const {
kvn@1975 1376 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1377 return new TypeLong(_hi,_lo,w);
duke@435 1378 }
duke@435 1379
duke@435 1380 //------------------------------widen------------------------------------------
duke@435 1381 // Only happens for optimistic top-down optimizations.
never@1444 1382 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
duke@435 1383 // Coming from TOP or such; no widening
duke@435 1384 if( old->base() != Long ) return this;
duke@435 1385 const TypeLong *ot = old->is_long();
duke@435 1386
duke@435 1387 // If new guy is equal to old guy, no widening
duke@435 1388 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1389 return old;
duke@435 1390
duke@435 1391 // If new guy contains old, then we widened
duke@435 1392 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1393 // New contains old
duke@435 1394 // If new guy is already wider than old, no widening
duke@435 1395 if( _widen > ot->_widen ) return this;
duke@435 1396 // If old guy was a constant, do not bother
duke@435 1397 if (ot->_lo == ot->_hi) return this;
duke@435 1398 // Now widen new guy.
duke@435 1399 // Check for widening too far
duke@435 1400 if (_widen == WidenMax) {
never@1444 1401 jlong max = max_jlong;
never@1444 1402 jlong min = min_jlong;
never@1444 1403 if (limit->isa_long()) {
never@1444 1404 max = limit->is_long()->_hi;
never@1444 1405 min = limit->is_long()->_lo;
never@1444 1406 }
never@1444 1407 if (min < _lo && _hi < max) {
duke@435 1408 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1409 // which is closer to its respective limit.
duke@435 1410 if (_lo >= 0 || // easy common case
never@1444 1411 (julong)(_lo - min) >= (julong)(max - _hi)) {
duke@435 1412 // Try to widen to an unsigned range type of 32/63 bits:
never@1444 1413 if (max >= max_juint && _hi < max_juint)
duke@435 1414 return make(_lo, max_juint, WidenMax);
duke@435 1415 else
never@1444 1416 return make(_lo, max, WidenMax);
duke@435 1417 } else {
never@1444 1418 return make(min, _hi, WidenMax);
duke@435 1419 }
duke@435 1420 }
duke@435 1421 return TypeLong::LONG;
duke@435 1422 }
duke@435 1423 // Returned widened new guy
duke@435 1424 return make(_lo,_hi,_widen+1);
duke@435 1425 }
duke@435 1426
duke@435 1427 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1428 // bottom. Return the wider fellow.
duke@435 1429 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1430 return old;
duke@435 1431
duke@435 1432 // fatal("Long value range is not subset");
duke@435 1433 // return this;
duke@435 1434 return TypeLong::LONG;
duke@435 1435 }
duke@435 1436
duke@435 1437 //------------------------------narrow----------------------------------------
duke@435 1438 // Only happens for pessimistic optimizations.
duke@435 1439 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1440 if (_lo >= _hi) return this; // already narrow enough
duke@435 1441 if (old == NULL) return this;
duke@435 1442 const TypeLong* ot = old->isa_long();
duke@435 1443 if (ot == NULL) return this;
duke@435 1444 jlong olo = ot->_lo;
duke@435 1445 jlong ohi = ot->_hi;
duke@435 1446
duke@435 1447 // If new guy is equal to old guy, no narrowing
duke@435 1448 if (_lo == olo && _hi == ohi) return old;
duke@435 1449
duke@435 1450 // If old guy was maximum range, allow the narrowing
duke@435 1451 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1452
duke@435 1453 if (_lo < olo || _hi > ohi)
duke@435 1454 return this; // doesn't narrow; pretty wierd
duke@435 1455
duke@435 1456 // The new type narrows the old type, so look for a "death march".
duke@435 1457 // See comments on PhaseTransform::saturate.
duke@435 1458 julong nrange = _hi - _lo;
duke@435 1459 julong orange = ohi - olo;
duke@435 1460 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1461 // Use the new type only if the range shrinks a lot.
duke@435 1462 // We do not want the optimizer computing 2^31 point by point.
duke@435 1463 return old;
duke@435 1464 }
duke@435 1465
duke@435 1466 return this;
duke@435 1467 }
duke@435 1468
duke@435 1469 //-----------------------------filter------------------------------------------
duke@435 1470 const Type *TypeLong::filter( const Type *kills ) const {
duke@435 1471 const TypeLong* ft = join(kills)->isa_long();
kvn@1975 1472 if (ft == NULL || ft->empty())
duke@435 1473 return Type::TOP; // Canonical empty value
duke@435 1474 if (ft->_widen < this->_widen) {
duke@435 1475 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1476 // The widen bits must be allowed to run freely through the graph.
duke@435 1477 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1478 }
duke@435 1479 return ft;
duke@435 1480 }
duke@435 1481
duke@435 1482 //------------------------------eq---------------------------------------------
duke@435 1483 // Structural equality check for Type representations
duke@435 1484 bool TypeLong::eq( const Type *t ) const {
duke@435 1485 const TypeLong *r = t->is_long(); // Handy access
duke@435 1486 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1487 }
duke@435 1488
duke@435 1489 //------------------------------hash-------------------------------------------
duke@435 1490 // Type-specific hashing function.
duke@435 1491 int TypeLong::hash(void) const {
duke@435 1492 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1493 }
duke@435 1494
duke@435 1495 //------------------------------is_finite--------------------------------------
duke@435 1496 // Has a finite value
duke@435 1497 bool TypeLong::is_finite() const {
duke@435 1498 return true;
duke@435 1499 }
duke@435 1500
duke@435 1501 //------------------------------dump2------------------------------------------
duke@435 1502 // Dump TypeLong
duke@435 1503 #ifndef PRODUCT
duke@435 1504 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1505 if (n > x) {
duke@435 1506 if (n >= x + 10000) return NULL;
duke@435 1507 sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
duke@435 1508 } else if (n < x) {
duke@435 1509 if (n <= x - 10000) return NULL;
duke@435 1510 sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
duke@435 1511 } else {
duke@435 1512 return xname;
duke@435 1513 }
duke@435 1514 return buf;
duke@435 1515 }
duke@435 1516
duke@435 1517 static const char* longname(char* buf, jlong n) {
duke@435 1518 const char* str;
duke@435 1519 if (n == min_jlong)
duke@435 1520 return "min";
duke@435 1521 else if (n < min_jlong + 10000)
duke@435 1522 sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
duke@435 1523 else if (n == max_jlong)
duke@435 1524 return "max";
duke@435 1525 else if (n > max_jlong - 10000)
duke@435 1526 sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
duke@435 1527 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1528 return str;
duke@435 1529 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1530 return str;
duke@435 1531 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1532 return str;
duke@435 1533 else
duke@435 1534 sprintf(buf, INT64_FORMAT, n);
duke@435 1535 return buf;
duke@435 1536 }
duke@435 1537
duke@435 1538 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1539 char buf[80], buf2[80];
duke@435 1540 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1541 st->print("long");
duke@435 1542 else if (is_con())
duke@435 1543 st->print("long:%s", longname(buf, get_con()));
duke@435 1544 else if (_hi == max_jlong)
duke@435 1545 st->print("long:>=%s", longname(buf, _lo));
duke@435 1546 else if (_lo == min_jlong)
duke@435 1547 st->print("long:<=%s", longname(buf, _hi));
duke@435 1548 else
duke@435 1549 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1550
duke@435 1551 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1552 st->print(":%.*s", _widen, "wwww");
duke@435 1553 }
duke@435 1554 #endif
duke@435 1555
duke@435 1556 //------------------------------singleton--------------------------------------
duke@435 1557 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1558 // constants
duke@435 1559 bool TypeLong::singleton(void) const {
duke@435 1560 return _lo >= _hi;
duke@435 1561 }
duke@435 1562
duke@435 1563 bool TypeLong::empty(void) const {
duke@435 1564 return _lo > _hi;
duke@435 1565 }
duke@435 1566
duke@435 1567 //=============================================================================
duke@435 1568 // Convenience common pre-built types.
duke@435 1569 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1570 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1571 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1572 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1573 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1574 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1575 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1576 const TypeTuple *TypeTuple::START_I2C;
duke@435 1577 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1578 const TypeTuple *TypeTuple::LONG_PAIR;
duke@435 1579
duke@435 1580
duke@435 1581 //------------------------------make-------------------------------------------
duke@435 1582 // Make a TypeTuple from the range of a method signature
duke@435 1583 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1584 ciType* return_type = sig->return_type();
duke@435 1585 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1586 const Type **field_array = fields(total_fields);
duke@435 1587 switch (return_type->basic_type()) {
duke@435 1588 case T_LONG:
duke@435 1589 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1590 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1591 break;
duke@435 1592 case T_DOUBLE:
duke@435 1593 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1594 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1595 break;
duke@435 1596 case T_OBJECT:
duke@435 1597 case T_ARRAY:
duke@435 1598 case T_BOOLEAN:
duke@435 1599 case T_CHAR:
duke@435 1600 case T_FLOAT:
duke@435 1601 case T_BYTE:
duke@435 1602 case T_SHORT:
duke@435 1603 case T_INT:
duke@435 1604 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1605 break;
duke@435 1606 case T_VOID:
duke@435 1607 break;
duke@435 1608 default:
duke@435 1609 ShouldNotReachHere();
duke@435 1610 }
duke@435 1611 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1612 }
duke@435 1613
duke@435 1614 // Make a TypeTuple from the domain of a method signature
duke@435 1615 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1616 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1617
duke@435 1618 uint pos = TypeFunc::Parms;
duke@435 1619 const Type **field_array;
duke@435 1620 if (recv != NULL) {
duke@435 1621 total_fields++;
duke@435 1622 field_array = fields(total_fields);
duke@435 1623 // Use get_const_type here because it respects UseUniqueSubclasses:
duke@435 1624 field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
duke@435 1625 } else {
duke@435 1626 field_array = fields(total_fields);
duke@435 1627 }
duke@435 1628
duke@435 1629 int i = 0;
duke@435 1630 while (pos < total_fields) {
duke@435 1631 ciType* type = sig->type_at(i);
duke@435 1632
duke@435 1633 switch (type->basic_type()) {
duke@435 1634 case T_LONG:
duke@435 1635 field_array[pos++] = TypeLong::LONG;
duke@435 1636 field_array[pos++] = Type::HALF;
duke@435 1637 break;
duke@435 1638 case T_DOUBLE:
duke@435 1639 field_array[pos++] = Type::DOUBLE;
duke@435 1640 field_array[pos++] = Type::HALF;
duke@435 1641 break;
duke@435 1642 case T_OBJECT:
duke@435 1643 case T_ARRAY:
duke@435 1644 case T_BOOLEAN:
duke@435 1645 case T_CHAR:
duke@435 1646 case T_FLOAT:
duke@435 1647 case T_BYTE:
duke@435 1648 case T_SHORT:
duke@435 1649 case T_INT:
duke@435 1650 field_array[pos++] = get_const_type(type);
duke@435 1651 break;
duke@435 1652 default:
duke@435 1653 ShouldNotReachHere();
duke@435 1654 }
duke@435 1655 i++;
duke@435 1656 }
duke@435 1657 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1658 }
duke@435 1659
duke@435 1660 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1661 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1662 }
duke@435 1663
duke@435 1664 //------------------------------fields-----------------------------------------
duke@435 1665 // Subroutine call type with space allocated for argument types
duke@435 1666 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1667 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1668 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1669 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1670 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1671 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1672 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1673
duke@435 1674 return flds;
duke@435 1675 }
duke@435 1676
duke@435 1677 //------------------------------meet-------------------------------------------
duke@435 1678 // Compute the MEET of two types. It returns a new Type object.
duke@435 1679 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1680 // Perform a fast test for common case; meeting the same types together.
duke@435 1681 if( this == t ) return this; // Meeting same type-rep?
duke@435 1682
duke@435 1683 // Current "this->_base" is Tuple
duke@435 1684 switch (t->base()) { // switch on original type
duke@435 1685
duke@435 1686 case Bottom: // Ye Olde Default
duke@435 1687 return t;
duke@435 1688
duke@435 1689 default: // All else is a mistake
duke@435 1690 typerr(t);
duke@435 1691
duke@435 1692 case Tuple: { // Meeting 2 signatures?
duke@435 1693 const TypeTuple *x = t->is_tuple();
duke@435 1694 assert( _cnt == x->_cnt, "" );
duke@435 1695 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1696 for( uint i=0; i<_cnt; i++ )
duke@435 1697 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1698 return TypeTuple::make(_cnt,fields);
duke@435 1699 }
duke@435 1700 case Top:
duke@435 1701 break;
duke@435 1702 }
duke@435 1703 return this; // Return the double constant
duke@435 1704 }
duke@435 1705
duke@435 1706 //------------------------------xdual------------------------------------------
duke@435 1707 // Dual: compute field-by-field dual
duke@435 1708 const Type *TypeTuple::xdual() const {
duke@435 1709 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1710 for( uint i=0; i<_cnt; i++ )
duke@435 1711 fields[i] = _fields[i]->dual();
duke@435 1712 return new TypeTuple(_cnt,fields);
duke@435 1713 }
duke@435 1714
duke@435 1715 //------------------------------eq---------------------------------------------
duke@435 1716 // Structural equality check for Type representations
duke@435 1717 bool TypeTuple::eq( const Type *t ) const {
duke@435 1718 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1719 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1720 for (uint i = 0; i < _cnt; i++)
duke@435 1721 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1722 return false; // Missed
duke@435 1723 return true;
duke@435 1724 }
duke@435 1725
duke@435 1726 //------------------------------hash-------------------------------------------
duke@435 1727 // Type-specific hashing function.
duke@435 1728 int TypeTuple::hash(void) const {
duke@435 1729 intptr_t sum = _cnt;
duke@435 1730 for( uint i=0; i<_cnt; i++ )
duke@435 1731 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1732 return sum;
duke@435 1733 }
duke@435 1734
duke@435 1735 //------------------------------dump2------------------------------------------
duke@435 1736 // Dump signature Type
duke@435 1737 #ifndef PRODUCT
duke@435 1738 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1739 st->print("{");
duke@435 1740 if( !depth || d[this] ) { // Check for recursive print
duke@435 1741 st->print("...}");
duke@435 1742 return;
duke@435 1743 }
duke@435 1744 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1745 if( _cnt ) {
duke@435 1746 uint i;
duke@435 1747 for( i=0; i<_cnt-1; i++ ) {
duke@435 1748 st->print("%d:", i);
duke@435 1749 _fields[i]->dump2(d, depth-1, st);
duke@435 1750 st->print(", ");
duke@435 1751 }
duke@435 1752 st->print("%d:", i);
duke@435 1753 _fields[i]->dump2(d, depth-1, st);
duke@435 1754 }
duke@435 1755 st->print("}");
duke@435 1756 }
duke@435 1757 #endif
duke@435 1758
duke@435 1759 //------------------------------singleton--------------------------------------
duke@435 1760 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1761 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1762 // or a single symbol.
duke@435 1763 bool TypeTuple::singleton(void) const {
duke@435 1764 return false; // Never a singleton
duke@435 1765 }
duke@435 1766
duke@435 1767 bool TypeTuple::empty(void) const {
duke@435 1768 for( uint i=0; i<_cnt; i++ ) {
duke@435 1769 if (_fields[i]->empty()) return true;
duke@435 1770 }
duke@435 1771 return false;
duke@435 1772 }
duke@435 1773
duke@435 1774 //=============================================================================
duke@435 1775 // Convenience common pre-built types.
duke@435 1776
duke@435 1777 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1778 // Certain normalizations keep us sane when comparing types.
duke@435 1779 // We do not want arrayOop variables to differ only by the wideness
duke@435 1780 // of their index types. Pick minimum wideness, since that is the
duke@435 1781 // forced wideness of small ranges anyway.
duke@435 1782 if (size->_widen != Type::WidenMin)
duke@435 1783 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1784 else
duke@435 1785 return size;
duke@435 1786 }
duke@435 1787
duke@435 1788 //------------------------------make-------------------------------------------
duke@435 1789 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
coleenp@548 1790 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1791 elem = elem->make_narrowoop();
coleenp@548 1792 }
duke@435 1793 size = normalize_array_size(size);
duke@435 1794 return (TypeAry*)(new TypeAry(elem,size))->hashcons();
duke@435 1795 }
duke@435 1796
duke@435 1797 //------------------------------meet-------------------------------------------
duke@435 1798 // Compute the MEET of two types. It returns a new Type object.
duke@435 1799 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1800 // Perform a fast test for common case; meeting the same types together.
duke@435 1801 if( this == t ) return this; // Meeting same type-rep?
duke@435 1802
duke@435 1803 // Current "this->_base" is Ary
duke@435 1804 switch (t->base()) { // switch on original type
duke@435 1805
duke@435 1806 case Bottom: // Ye Olde Default
duke@435 1807 return t;
duke@435 1808
duke@435 1809 default: // All else is a mistake
duke@435 1810 typerr(t);
duke@435 1811
duke@435 1812 case Array: { // Meeting 2 arrays?
duke@435 1813 const TypeAry *a = t->is_ary();
duke@435 1814 return TypeAry::make(_elem->meet(a->_elem),
duke@435 1815 _size->xmeet(a->_size)->is_int());
duke@435 1816 }
duke@435 1817 case Top:
duke@435 1818 break;
duke@435 1819 }
duke@435 1820 return this; // Return the double constant
duke@435 1821 }
duke@435 1822
duke@435 1823 //------------------------------xdual------------------------------------------
duke@435 1824 // Dual: compute field-by-field dual
duke@435 1825 const Type *TypeAry::xdual() const {
duke@435 1826 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1827 size_dual = normalize_array_size(size_dual);
duke@435 1828 return new TypeAry( _elem->dual(), size_dual);
duke@435 1829 }
duke@435 1830
duke@435 1831 //------------------------------eq---------------------------------------------
duke@435 1832 // Structural equality check for Type representations
duke@435 1833 bool TypeAry::eq( const Type *t ) const {
duke@435 1834 const TypeAry *a = (const TypeAry*)t;
duke@435 1835 return _elem == a->_elem &&
duke@435 1836 _size == a->_size;
duke@435 1837 }
duke@435 1838
duke@435 1839 //------------------------------hash-------------------------------------------
duke@435 1840 // Type-specific hashing function.
duke@435 1841 int TypeAry::hash(void) const {
duke@435 1842 return (intptr_t)_elem + (intptr_t)_size;
duke@435 1843 }
duke@435 1844
kvn@1255 1845 //----------------------interface_vs_oop---------------------------------------
kvn@1255 1846 #ifdef ASSERT
kvn@1255 1847 bool TypeAry::interface_vs_oop(const Type *t) const {
kvn@1255 1848 const TypeAry* t_ary = t->is_ary();
kvn@1255 1849 if (t_ary) {
kvn@1255 1850 return _elem->interface_vs_oop(t_ary->_elem);
kvn@1255 1851 }
kvn@1255 1852 return false;
kvn@1255 1853 }
kvn@1255 1854 #endif
kvn@1255 1855
duke@435 1856 //------------------------------dump2------------------------------------------
duke@435 1857 #ifndef PRODUCT
duke@435 1858 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1859 _elem->dump2(d, depth, st);
duke@435 1860 st->print("[");
duke@435 1861 _size->dump2(d, depth, st);
duke@435 1862 st->print("]");
duke@435 1863 }
duke@435 1864 #endif
duke@435 1865
duke@435 1866 //------------------------------singleton--------------------------------------
duke@435 1867 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1868 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1869 // or a single symbol.
duke@435 1870 bool TypeAry::singleton(void) const {
duke@435 1871 return false; // Never a singleton
duke@435 1872 }
duke@435 1873
duke@435 1874 bool TypeAry::empty(void) const {
duke@435 1875 return _elem->empty() || _size->empty();
duke@435 1876 }
duke@435 1877
duke@435 1878 //--------------------------ary_must_be_exact----------------------------------
duke@435 1879 bool TypeAry::ary_must_be_exact() const {
duke@435 1880 if (!UseExactTypes) return false;
duke@435 1881 // This logic looks at the element type of an array, and returns true
duke@435 1882 // if the element type is either a primitive or a final instance class.
duke@435 1883 // In such cases, an array built on this ary must have no subclasses.
duke@435 1884 if (_elem == BOTTOM) return false; // general array not exact
duke@435 1885 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 1886 const TypeOopPtr* toop = NULL;
kvn@656 1887 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 1888 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 1889 } else {
coleenp@548 1890 toop = _elem->isa_oopptr();
coleenp@548 1891 }
duke@435 1892 if (!toop) return true; // a primitive type, like int
duke@435 1893 ciKlass* tklass = toop->klass();
duke@435 1894 if (tklass == NULL) return false; // unloaded class
duke@435 1895 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 1896 const TypeInstPtr* tinst;
coleenp@548 1897 if (_elem->isa_narrowoop())
kvn@656 1898 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 1899 else
coleenp@548 1900 tinst = _elem->isa_instptr();
kvn@656 1901 if (tinst)
kvn@656 1902 return tklass->as_instance_klass()->is_final();
coleenp@548 1903 const TypeAryPtr* tap;
coleenp@548 1904 if (_elem->isa_narrowoop())
kvn@656 1905 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 1906 else
coleenp@548 1907 tap = _elem->isa_aryptr();
kvn@656 1908 if (tap)
kvn@656 1909 return tap->ary()->ary_must_be_exact();
duke@435 1910 return false;
duke@435 1911 }
duke@435 1912
duke@435 1913 //=============================================================================
duke@435 1914 // Convenience common pre-built types.
duke@435 1915 const TypePtr *TypePtr::NULL_PTR;
duke@435 1916 const TypePtr *TypePtr::NOTNULL;
duke@435 1917 const TypePtr *TypePtr::BOTTOM;
duke@435 1918
duke@435 1919 //------------------------------meet-------------------------------------------
duke@435 1920 // Meet over the PTR enum
duke@435 1921 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 1922 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 1923 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 1924 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 1925 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 1926 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 1927 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 1928 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 1929 };
duke@435 1930
duke@435 1931 //------------------------------make-------------------------------------------
duke@435 1932 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 1933 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 1934 }
duke@435 1935
duke@435 1936 //------------------------------cast_to_ptr_type-------------------------------
duke@435 1937 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 1938 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 1939 if( ptr == _ptr ) return this;
duke@435 1940 return make(_base, ptr, _offset);
duke@435 1941 }
duke@435 1942
duke@435 1943 //------------------------------get_con----------------------------------------
duke@435 1944 intptr_t TypePtr::get_con() const {
duke@435 1945 assert( _ptr == Null, "" );
duke@435 1946 return _offset;
duke@435 1947 }
duke@435 1948
duke@435 1949 //------------------------------meet-------------------------------------------
duke@435 1950 // Compute the MEET of two types. It returns a new Type object.
duke@435 1951 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 1952 // Perform a fast test for common case; meeting the same types together.
duke@435 1953 if( this == t ) return this; // Meeting same type-rep?
duke@435 1954
duke@435 1955 // Current "this->_base" is AnyPtr
duke@435 1956 switch (t->base()) { // switch on original type
duke@435 1957 case Int: // Mixing ints & oops happens when javac
duke@435 1958 case Long: // reuses local variables
duke@435 1959 case FloatTop:
duke@435 1960 case FloatCon:
duke@435 1961 case FloatBot:
duke@435 1962 case DoubleTop:
duke@435 1963 case DoubleCon:
duke@435 1964 case DoubleBot:
coleenp@548 1965 case NarrowOop:
duke@435 1966 case Bottom: // Ye Olde Default
duke@435 1967 return Type::BOTTOM;
duke@435 1968 case Top:
duke@435 1969 return this;
duke@435 1970
duke@435 1971 case AnyPtr: { // Meeting to AnyPtrs
duke@435 1972 const TypePtr *tp = t->is_ptr();
duke@435 1973 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 1974 }
duke@435 1975 case RawPtr: // For these, flip the call around to cut down
duke@435 1976 case OopPtr:
duke@435 1977 case InstPtr: // on the cases I have to handle.
duke@435 1978 case KlassPtr:
duke@435 1979 case AryPtr:
duke@435 1980 return t->xmeet(this); // Call in reverse direction
duke@435 1981 default: // All else is a mistake
duke@435 1982 typerr(t);
duke@435 1983
duke@435 1984 }
duke@435 1985 return this;
duke@435 1986 }
duke@435 1987
duke@435 1988 //------------------------------meet_offset------------------------------------
duke@435 1989 int TypePtr::meet_offset( int offset ) const {
duke@435 1990 // Either is 'TOP' offset? Return the other offset!
duke@435 1991 if( _offset == OffsetTop ) return offset;
duke@435 1992 if( offset == OffsetTop ) return _offset;
duke@435 1993 // If either is different, return 'BOTTOM' offset
duke@435 1994 if( _offset != offset ) return OffsetBot;
duke@435 1995 return _offset;
duke@435 1996 }
duke@435 1997
duke@435 1998 //------------------------------dual_offset------------------------------------
duke@435 1999 int TypePtr::dual_offset( ) const {
duke@435 2000 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 2001 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 2002 return _offset; // Map everything else into self
duke@435 2003 }
duke@435 2004
duke@435 2005 //------------------------------xdual------------------------------------------
duke@435 2006 // Dual: compute field-by-field dual
duke@435 2007 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 2008 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 2009 };
duke@435 2010 const Type *TypePtr::xdual() const {
duke@435 2011 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 2012 }
duke@435 2013
kvn@741 2014 //------------------------------xadd_offset------------------------------------
kvn@741 2015 int TypePtr::xadd_offset( intptr_t offset ) const {
kvn@741 2016 // Adding to 'TOP' offset? Return 'TOP'!
kvn@741 2017 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
kvn@741 2018 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
kvn@741 2019 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
kvn@741 2020 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
kvn@741 2021 offset += (intptr_t)_offset;
kvn@741 2022 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
kvn@741 2023
kvn@741 2024 // assert( _offset >= 0 && _offset+offset >= 0, "" );
kvn@741 2025 // It is possible to construct a negative offset during PhaseCCP
kvn@741 2026
kvn@741 2027 return (int)offset; // Sum valid offsets
kvn@741 2028 }
kvn@741 2029
duke@435 2030 //------------------------------add_offset-------------------------------------
kvn@741 2031 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
kvn@741 2032 return make( AnyPtr, _ptr, xadd_offset(offset) );
duke@435 2033 }
duke@435 2034
duke@435 2035 //------------------------------eq---------------------------------------------
duke@435 2036 // Structural equality check for Type representations
duke@435 2037 bool TypePtr::eq( const Type *t ) const {
duke@435 2038 const TypePtr *a = (const TypePtr*)t;
duke@435 2039 return _ptr == a->ptr() && _offset == a->offset();
duke@435 2040 }
duke@435 2041
duke@435 2042 //------------------------------hash-------------------------------------------
duke@435 2043 // Type-specific hashing function.
duke@435 2044 int TypePtr::hash(void) const {
duke@435 2045 return _ptr + _offset;
duke@435 2046 }
duke@435 2047
duke@435 2048 //------------------------------dump2------------------------------------------
duke@435 2049 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 2050 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 2051 };
duke@435 2052
duke@435 2053 #ifndef PRODUCT
duke@435 2054 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2055 if( _ptr == Null ) st->print("NULL");
duke@435 2056 else st->print("%s *", ptr_msg[_ptr]);
duke@435 2057 if( _offset == OffsetTop ) st->print("+top");
duke@435 2058 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 2059 else if( _offset ) st->print("+%d", _offset);
duke@435 2060 }
duke@435 2061 #endif
duke@435 2062
duke@435 2063 //------------------------------singleton--------------------------------------
duke@435 2064 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2065 // constants
duke@435 2066 bool TypePtr::singleton(void) const {
duke@435 2067 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2068 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2069 }
duke@435 2070
duke@435 2071 bool TypePtr::empty(void) const {
duke@435 2072 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2073 }
duke@435 2074
duke@435 2075 //=============================================================================
duke@435 2076 // Convenience common pre-built types.
duke@435 2077 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2078 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2079
duke@435 2080 //------------------------------make-------------------------------------------
duke@435 2081 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2082 assert( ptr != Constant, "what is the constant?" );
duke@435 2083 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2084 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2085 }
duke@435 2086
duke@435 2087 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2088 assert( bits, "Use TypePtr for NULL" );
duke@435 2089 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2090 }
duke@435 2091
duke@435 2092 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2093 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2094 assert( ptr != Constant, "what is the constant?" );
duke@435 2095 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2096 assert( _bits==0, "Why cast a constant address?");
duke@435 2097 if( ptr == _ptr ) return this;
duke@435 2098 return make(ptr);
duke@435 2099 }
duke@435 2100
duke@435 2101 //------------------------------get_con----------------------------------------
duke@435 2102 intptr_t TypeRawPtr::get_con() const {
duke@435 2103 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2104 return (intptr_t)_bits;
duke@435 2105 }
duke@435 2106
duke@435 2107 //------------------------------meet-------------------------------------------
duke@435 2108 // Compute the MEET of two types. It returns a new Type object.
duke@435 2109 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2110 // Perform a fast test for common case; meeting the same types together.
duke@435 2111 if( this == t ) return this; // Meeting same type-rep?
duke@435 2112
duke@435 2113 // Current "this->_base" is RawPtr
duke@435 2114 switch( t->base() ) { // switch on original type
duke@435 2115 case Bottom: // Ye Olde Default
duke@435 2116 return t;
duke@435 2117 case Top:
duke@435 2118 return this;
duke@435 2119 case AnyPtr: // Meeting to AnyPtrs
duke@435 2120 break;
duke@435 2121 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2122 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2123 enum PTR ptr = meet_ptr( tptr );
duke@435 2124 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2125 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2126 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2127 ptr = NotNull; // Fall down in lattice
duke@435 2128 }
duke@435 2129 return make( ptr );
duke@435 2130 }
duke@435 2131
duke@435 2132 case OopPtr:
duke@435 2133 case InstPtr:
duke@435 2134 case KlassPtr:
duke@435 2135 case AryPtr:
duke@435 2136 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2137 default: // All else is a mistake
duke@435 2138 typerr(t);
duke@435 2139 }
duke@435 2140
duke@435 2141 // Found an AnyPtr type vs self-RawPtr type
duke@435 2142 const TypePtr *tp = t->is_ptr();
duke@435 2143 switch (tp->ptr()) {
duke@435 2144 case TypePtr::TopPTR: return this;
duke@435 2145 case TypePtr::BotPTR: return t;
duke@435 2146 case TypePtr::Null:
duke@435 2147 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2148 return TypeRawPtr::BOTTOM;
duke@435 2149 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2150 case TypePtr::AnyNull:
duke@435 2151 if( _ptr == TypePtr::Constant) return this;
duke@435 2152 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2153 default: ShouldNotReachHere();
duke@435 2154 }
duke@435 2155 return this;
duke@435 2156 }
duke@435 2157
duke@435 2158 //------------------------------xdual------------------------------------------
duke@435 2159 // Dual: compute field-by-field dual
duke@435 2160 const Type *TypeRawPtr::xdual() const {
duke@435 2161 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2162 }
duke@435 2163
duke@435 2164 //------------------------------add_offset-------------------------------------
kvn@741 2165 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
duke@435 2166 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2167 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2168 if( offset == 0 ) return this; // No change
duke@435 2169 switch (_ptr) {
duke@435 2170 case TypePtr::TopPTR:
duke@435 2171 case TypePtr::BotPTR:
duke@435 2172 case TypePtr::NotNull:
duke@435 2173 return this;
duke@435 2174 case TypePtr::Null:
duke@435 2175 case TypePtr::Constant:
duke@435 2176 return make( _bits+offset );
duke@435 2177 default: ShouldNotReachHere();
duke@435 2178 }
duke@435 2179 return NULL; // Lint noise
duke@435 2180 }
duke@435 2181
duke@435 2182 //------------------------------eq---------------------------------------------
duke@435 2183 // Structural equality check for Type representations
duke@435 2184 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2185 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2186 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2187 }
duke@435 2188
duke@435 2189 //------------------------------hash-------------------------------------------
duke@435 2190 // Type-specific hashing function.
duke@435 2191 int TypeRawPtr::hash(void) const {
duke@435 2192 return (intptr_t)_bits + TypePtr::hash();
duke@435 2193 }
duke@435 2194
duke@435 2195 //------------------------------dump2------------------------------------------
duke@435 2196 #ifndef PRODUCT
duke@435 2197 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2198 if( _ptr == Constant )
duke@435 2199 st->print(INTPTR_FORMAT, _bits);
duke@435 2200 else
duke@435 2201 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2202 }
duke@435 2203 #endif
duke@435 2204
duke@435 2205 //=============================================================================
duke@435 2206 // Convenience common pre-built type.
duke@435 2207 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2208
kvn@598 2209 //------------------------------TypeOopPtr-------------------------------------
kvn@598 2210 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
kvn@598 2211 : TypePtr(t, ptr, offset),
kvn@598 2212 _const_oop(o), _klass(k),
kvn@598 2213 _klass_is_exact(xk),
kvn@598 2214 _is_ptr_to_narrowoop(false),
kvn@598 2215 _instance_id(instance_id) {
kvn@598 2216 #ifdef _LP64
kvn@598 2217 if (UseCompressedOops && _offset != 0) {
kvn@598 2218 if (klass() == NULL) {
kvn@598 2219 assert(this->isa_aryptr(), "only arrays without klass");
kvn@598 2220 _is_ptr_to_narrowoop = true;
kvn@598 2221 } else if (_offset == oopDesc::klass_offset_in_bytes()) {
kvn@598 2222 _is_ptr_to_narrowoop = true;
kvn@598 2223 } else if (this->isa_aryptr()) {
kvn@598 2224 _is_ptr_to_narrowoop = (klass()->is_obj_array_klass() &&
kvn@598 2225 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2226 } else if (klass() == ciEnv::current()->Class_klass() &&
kvn@598 2227 (_offset == java_lang_Class::klass_offset_in_bytes() ||
kvn@598 2228 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
kvn@598 2229 // Special hidden fields from the Class.
kvn@598 2230 assert(this->isa_instptr(), "must be an instance ptr.");
kvn@598 2231 _is_ptr_to_narrowoop = true;
kvn@598 2232 } else if (klass()->is_instance_klass()) {
kvn@598 2233 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2234 ciField* field = NULL;
kvn@598 2235 if (this->isa_klassptr()) {
kvn@598 2236 // Perm objects don't use compressed references, except for
kvn@598 2237 // static fields which are currently compressed.
kvn@598 2238 field = ik->get_field_by_offset(_offset, true);
kvn@598 2239 if (field != NULL) {
kvn@598 2240 BasicType basic_elem_type = field->layout_type();
kvn@598 2241 _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
kvn@598 2242 basic_elem_type == T_ARRAY);
kvn@598 2243 }
kvn@598 2244 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2245 // unsafe access
kvn@598 2246 _is_ptr_to_narrowoop = true;
kvn@598 2247 } else { // exclude unsafe ops
kvn@598 2248 assert(this->isa_instptr(), "must be an instance ptr.");
kvn@598 2249 // Field which contains a compressed oop references.
kvn@598 2250 field = ik->get_field_by_offset(_offset, false);
kvn@598 2251 if (field != NULL) {
kvn@598 2252 BasicType basic_elem_type = field->layout_type();
kvn@598 2253 _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
kvn@598 2254 basic_elem_type == T_ARRAY);
kvn@598 2255 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
kvn@598 2256 // Compile::find_alias_type() cast exactness on all types to verify
kvn@598 2257 // that it does not affect alias type.
kvn@598 2258 _is_ptr_to_narrowoop = true;
kvn@598 2259 } else {
kvn@598 2260 // Type for the copy start in LibraryCallKit::inline_native_clone().
kvn@598 2261 assert(!klass_is_exact(), "only non-exact klass");
kvn@598 2262 _is_ptr_to_narrowoop = true;
kvn@598 2263 }
kvn@598 2264 }
kvn@598 2265 }
kvn@598 2266 }
kvn@598 2267 #endif
kvn@598 2268 }
kvn@598 2269
duke@435 2270 //------------------------------make-------------------------------------------
duke@435 2271 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
kvn@1393 2272 int offset, int instance_id) {
duke@435 2273 assert(ptr != Constant, "no constant generic pointers");
duke@435 2274 ciKlass* k = ciKlassKlass::make();
duke@435 2275 bool xk = false;
duke@435 2276 ciObject* o = NULL;
kvn@1393 2277 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
duke@435 2278 }
duke@435 2279
duke@435 2280
duke@435 2281 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2282 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2283 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2284 if( ptr == _ptr ) return this;
kvn@1427 2285 return make(ptr, _offset, _instance_id);
duke@435 2286 }
duke@435 2287
kvn@682 2288 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2289 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2290 // There are no instances of a general oop.
duke@435 2291 // Return self unchanged.
duke@435 2292 return this;
duke@435 2293 }
duke@435 2294
duke@435 2295 //-----------------------------cast_to_exactness-------------------------------
duke@435 2296 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2297 // There is no such thing as an exact general oop.
duke@435 2298 // Return self unchanged.
duke@435 2299 return this;
duke@435 2300 }
duke@435 2301
duke@435 2302
duke@435 2303 //------------------------------as_klass_type----------------------------------
duke@435 2304 // Return the klass type corresponding to this instance or array type.
duke@435 2305 // It is the type that is loaded from an object of this type.
duke@435 2306 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2307 ciKlass* k = klass();
duke@435 2308 bool xk = klass_is_exact();
duke@435 2309 if (k == NULL || !k->is_java_klass())
duke@435 2310 return TypeKlassPtr::OBJECT;
duke@435 2311 else
duke@435 2312 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2313 }
duke@435 2314
duke@435 2315
duke@435 2316 //------------------------------meet-------------------------------------------
duke@435 2317 // Compute the MEET of two types. It returns a new Type object.
duke@435 2318 const Type *TypeOopPtr::xmeet( const Type *t ) const {
duke@435 2319 // Perform a fast test for common case; meeting the same types together.
duke@435 2320 if( this == t ) return this; // Meeting same type-rep?
duke@435 2321
duke@435 2322 // Current "this->_base" is OopPtr
duke@435 2323 switch (t->base()) { // switch on original type
duke@435 2324
duke@435 2325 case Int: // Mixing ints & oops happens when javac
duke@435 2326 case Long: // reuses local variables
duke@435 2327 case FloatTop:
duke@435 2328 case FloatCon:
duke@435 2329 case FloatBot:
duke@435 2330 case DoubleTop:
duke@435 2331 case DoubleCon:
duke@435 2332 case DoubleBot:
kvn@728 2333 case NarrowOop:
duke@435 2334 case Bottom: // Ye Olde Default
duke@435 2335 return Type::BOTTOM;
duke@435 2336 case Top:
duke@435 2337 return this;
duke@435 2338
duke@435 2339 default: // All else is a mistake
duke@435 2340 typerr(t);
duke@435 2341
duke@435 2342 case RawPtr:
duke@435 2343 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2344
duke@435 2345 case AnyPtr: {
duke@435 2346 // Found an AnyPtr type vs self-OopPtr type
duke@435 2347 const TypePtr *tp = t->is_ptr();
duke@435 2348 int offset = meet_offset(tp->offset());
duke@435 2349 PTR ptr = meet_ptr(tp->ptr());
duke@435 2350 switch (tp->ptr()) {
duke@435 2351 case Null:
duke@435 2352 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2353 // else fall through:
duke@435 2354 case TopPTR:
kvn@1427 2355 case AnyNull: {
kvn@1427 2356 int instance_id = meet_instance_id(InstanceTop);
kvn@1427 2357 return make(ptr, offset, instance_id);
kvn@1427 2358 }
duke@435 2359 case BotPTR:
duke@435 2360 case NotNull:
duke@435 2361 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2362 default: typerr(t);
duke@435 2363 }
duke@435 2364 }
duke@435 2365
duke@435 2366 case OopPtr: { // Meeting to other OopPtrs
duke@435 2367 const TypeOopPtr *tp = t->is_oopptr();
kvn@1393 2368 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 2369 return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
duke@435 2370 }
duke@435 2371
duke@435 2372 case InstPtr: // For these, flip the call around to cut down
duke@435 2373 case KlassPtr: // on the cases I have to handle.
duke@435 2374 case AryPtr:
duke@435 2375 return t->xmeet(this); // Call in reverse direction
duke@435 2376
duke@435 2377 } // End of switch
duke@435 2378 return this; // Return the double constant
duke@435 2379 }
duke@435 2380
duke@435 2381
duke@435 2382 //------------------------------xdual------------------------------------------
duke@435 2383 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2384 const Type *TypeOopPtr::xdual() const {
duke@435 2385 assert(klass() == ciKlassKlass::make(), "no klasses here");
duke@435 2386 assert(const_oop() == NULL, "no constants here");
kvn@658 2387 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 2388 }
duke@435 2389
duke@435 2390 //--------------------------make_from_klass_common-----------------------------
duke@435 2391 // Computes the element-type given a klass.
duke@435 2392 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2393 assert(klass->is_java_klass(), "must be java language klass");
duke@435 2394 if (klass->is_instance_klass()) {
duke@435 2395 Compile* C = Compile::current();
duke@435 2396 Dependencies* deps = C->dependencies();
duke@435 2397 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2398 // Element is an instance
duke@435 2399 bool klass_is_exact = false;
duke@435 2400 if (klass->is_loaded()) {
duke@435 2401 // Try to set klass_is_exact.
duke@435 2402 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2403 klass_is_exact = ik->is_final();
duke@435 2404 if (!klass_is_exact && klass_change
duke@435 2405 && deps != NULL && UseUniqueSubclasses) {
duke@435 2406 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2407 if (sub != NULL) {
duke@435 2408 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2409 klass = ik = sub;
duke@435 2410 klass_is_exact = sub->is_final();
duke@435 2411 }
duke@435 2412 }
duke@435 2413 if (!klass_is_exact && try_for_exact
duke@435 2414 && deps != NULL && UseExactTypes) {
duke@435 2415 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2416 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2417 deps->assert_leaf_type(ik);
duke@435 2418 klass_is_exact = true;
duke@435 2419 }
duke@435 2420 }
duke@435 2421 }
duke@435 2422 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2423 } else if (klass->is_obj_array_klass()) {
duke@435 2424 // Element is an object array. Recursively call ourself.
duke@435 2425 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2426 bool xk = etype->klass_is_exact();
duke@435 2427 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2428 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2429 // are all not-null. This is not true in generally, as code can
duke@435 2430 // slam NULLs down in the subarrays.
duke@435 2431 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2432 return arr;
duke@435 2433 } else if (klass->is_type_array_klass()) {
duke@435 2434 // Element is an typeArray
duke@435 2435 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2436 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2437 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2438 // is not-null. That was not true in general.
duke@435 2439 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2440 return arr;
duke@435 2441 } else {
duke@435 2442 ShouldNotReachHere();
duke@435 2443 return NULL;
duke@435 2444 }
duke@435 2445 }
duke@435 2446
duke@435 2447 //------------------------------make_from_constant-----------------------------
duke@435 2448 // Make a java pointer from an oop constant
jrose@1424 2449 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
twisti@1572 2450 if (o->is_method_data() || o->is_method() || o->is_cpcache()) {
duke@435 2451 // Treat much like a typeArray of bytes, like below, but fake the type...
duke@435 2452 const Type* etype = (Type*)get_const_basic_type(T_BYTE);
duke@435 2453 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2454 ciKlass *klass = ciTypeArrayKlass::make((BasicType) T_BYTE);
jrose@1424 2455 assert(o->can_be_constant(), "method data oops should be tenured");
duke@435 2456 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2457 return arr;
duke@435 2458 } else {
duke@435 2459 assert(o->is_java_object(), "must be java language object");
duke@435 2460 assert(!o->is_null_object(), "null object not yet handled here.");
duke@435 2461 ciKlass *klass = o->klass();
duke@435 2462 if (klass->is_instance_klass()) {
duke@435 2463 // Element is an instance
jrose@1424 2464 if (require_constant) {
jrose@1424 2465 if (!o->can_be_constant()) return NULL;
jrose@1424 2466 } else if (!o->should_be_constant()) {
duke@435 2467 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
duke@435 2468 }
duke@435 2469 return TypeInstPtr::make(o);
duke@435 2470 } else if (klass->is_obj_array_klass()) {
duke@435 2471 // Element is an object array. Recursively call ourself.
duke@435 2472 const Type *etype =
duke@435 2473 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
duke@435 2474 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2475 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2476 // are all not-null. This is not true in generally, as code can
duke@435 2477 // slam NULLs down in the subarrays.
jrose@1424 2478 if (require_constant) {
jrose@1424 2479 if (!o->can_be_constant()) return NULL;
jrose@1424 2480 } else if (!o->should_be_constant()) {
duke@435 2481 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2482 }
duke@435 2483 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2484 return arr;
duke@435 2485 } else if (klass->is_type_array_klass()) {
duke@435 2486 // Element is an typeArray
duke@435 2487 const Type* etype =
duke@435 2488 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2489 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2490 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2491 // is not-null. That was not true in general.
jrose@1424 2492 if (require_constant) {
jrose@1424 2493 if (!o->can_be_constant()) return NULL;
jrose@1424 2494 } else if (!o->should_be_constant()) {
duke@435 2495 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2496 }
duke@435 2497 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2498 return arr;
duke@435 2499 }
duke@435 2500 }
duke@435 2501
duke@435 2502 ShouldNotReachHere();
duke@435 2503 return NULL;
duke@435 2504 }
duke@435 2505
duke@435 2506 //------------------------------get_con----------------------------------------
duke@435 2507 intptr_t TypeOopPtr::get_con() const {
duke@435 2508 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2509 assert( _offset >= 0, "" );
duke@435 2510
duke@435 2511 if (_offset != 0) {
duke@435 2512 // After being ported to the compiler interface, the compiler no longer
duke@435 2513 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2514 // to a handle at compile time. This handle is embedded in the generated
duke@435 2515 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2516 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2517 // have access to the addresses!). This does not seem to currently happen,
twisti@1040 2518 // but this assertion here is to help prevent its occurence.
duke@435 2519 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2520 ShouldNotReachHere();
duke@435 2521 }
duke@435 2522
jrose@1424 2523 return (intptr_t)const_oop()->constant_encoding();
duke@435 2524 }
duke@435 2525
duke@435 2526
duke@435 2527 //-----------------------------filter------------------------------------------
duke@435 2528 // Do not allow interface-vs.-noninterface joins to collapse to top.
duke@435 2529 const Type *TypeOopPtr::filter( const Type *kills ) const {
duke@435 2530
duke@435 2531 const Type* ft = join(kills);
duke@435 2532 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2533 const TypeInstPtr* ktip = kills->isa_instptr();
never@990 2534 const TypeKlassPtr* ftkp = ft->isa_klassptr();
never@990 2535 const TypeKlassPtr* ktkp = kills->isa_klassptr();
duke@435 2536
duke@435 2537 if (ft->empty()) {
duke@435 2538 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2539 // interface. This can happen because the bytecodes do not contain
duke@435 2540 // enough type info to distinguish a Java-level interface variable
duke@435 2541 // from a Java-level object variable. If we meet 2 classes which
duke@435 2542 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2543 // doesn't implement I, we have no way to tell if the result should
duke@435 2544 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2545 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2546 // uplift the type.
duke@435 2547 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
duke@435 2548 return kills; // Uplift to interface
never@990 2549 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
never@990 2550 return kills; // Uplift to interface
duke@435 2551
duke@435 2552 return Type::TOP; // Canonical empty value
duke@435 2553 }
duke@435 2554
duke@435 2555 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2556 // the join should report back the class. However, if we have a J/L/Object
duke@435 2557 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2558 // join report an interface back out. This isn't possible but happens
duke@435 2559 // because the type system doesn't interact well with interfaces.
duke@435 2560 if (ftip != NULL && ktip != NULL &&
duke@435 2561 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2562 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2563 // Happens in a CTW of rt.jar, 320-341, no extra flags
kvn@1770 2564 assert(!ftip->klass_is_exact(), "interface could not be exact");
duke@435 2565 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2566 }
kvn@1770 2567 // Interface klass type could be exact in opposite to interface type,
kvn@1770 2568 // return it here instead of incorrect Constant ptr J/L/Object (6894807).
never@990 2569 if (ftkp != NULL && ktkp != NULL &&
never@990 2570 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
kvn@1770 2571 !ftkp->klass_is_exact() && // Keep exact interface klass
never@990 2572 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
never@990 2573 return ktkp->cast_to_ptr_type(ftkp->ptr());
never@990 2574 }
duke@435 2575
duke@435 2576 return ft;
duke@435 2577 }
duke@435 2578
duke@435 2579 //------------------------------eq---------------------------------------------
duke@435 2580 // Structural equality check for Type representations
duke@435 2581 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2582 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2583 if (_klass_is_exact != a->_klass_is_exact ||
duke@435 2584 _instance_id != a->_instance_id) return false;
duke@435 2585 ciObject* one = const_oop();
duke@435 2586 ciObject* two = a->const_oop();
duke@435 2587 if (one == NULL || two == NULL) {
duke@435 2588 return (one == two) && TypePtr::eq(t);
duke@435 2589 } else {
duke@435 2590 return one->equals(two) && TypePtr::eq(t);
duke@435 2591 }
duke@435 2592 }
duke@435 2593
duke@435 2594 //------------------------------hash-------------------------------------------
duke@435 2595 // Type-specific hashing function.
duke@435 2596 int TypeOopPtr::hash(void) const {
duke@435 2597 return
duke@435 2598 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2599 _klass_is_exact +
duke@435 2600 _instance_id +
duke@435 2601 TypePtr::hash();
duke@435 2602 }
duke@435 2603
duke@435 2604 //------------------------------dump2------------------------------------------
duke@435 2605 #ifndef PRODUCT
duke@435 2606 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2607 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2608 if( _klass_is_exact ) st->print(":exact");
duke@435 2609 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2610 switch( _offset ) {
duke@435 2611 case OffsetTop: st->print("+top"); break;
duke@435 2612 case OffsetBot: st->print("+any"); break;
duke@435 2613 case 0: break;
duke@435 2614 default: st->print("+%d",_offset); break;
duke@435 2615 }
kvn@658 2616 if (_instance_id == InstanceTop)
kvn@658 2617 st->print(",iid=top");
kvn@658 2618 else if (_instance_id != InstanceBot)
duke@435 2619 st->print(",iid=%d",_instance_id);
duke@435 2620 }
duke@435 2621 #endif
duke@435 2622
duke@435 2623 //------------------------------singleton--------------------------------------
duke@435 2624 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2625 // constants
duke@435 2626 bool TypeOopPtr::singleton(void) const {
duke@435 2627 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2628 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2629 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2630 }
duke@435 2631
duke@435 2632 //------------------------------add_offset-------------------------------------
kvn@741 2633 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
kvn@1427 2634 return make( _ptr, xadd_offset(offset), _instance_id);
duke@435 2635 }
duke@435 2636
kvn@658 2637 //------------------------------meet_instance_id--------------------------------
kvn@658 2638 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 2639 // Either is 'TOP' instance? Return the other instance!
kvn@658 2640 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 2641 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 2642 // If either is different, return 'BOTTOM' instance
kvn@658 2643 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 2644 return _instance_id;
duke@435 2645 }
duke@435 2646
kvn@658 2647 //------------------------------dual_instance_id--------------------------------
kvn@658 2648 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 2649 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 2650 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 2651 return _instance_id; // Map everything else into self
kvn@658 2652 }
kvn@658 2653
kvn@658 2654
duke@435 2655 //=============================================================================
duke@435 2656 // Convenience common pre-built types.
duke@435 2657 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 2658 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 2659 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 2660 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 2661 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 2662
duke@435 2663 //------------------------------TypeInstPtr-------------------------------------
duke@435 2664 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
duke@435 2665 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
duke@435 2666 assert(k != NULL &&
duke@435 2667 (k->is_loaded() || o == NULL),
duke@435 2668 "cannot have constants with non-loaded klass");
duke@435 2669 };
duke@435 2670
duke@435 2671 //------------------------------make-------------------------------------------
duke@435 2672 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 2673 ciKlass* k,
duke@435 2674 bool xk,
duke@435 2675 ciObject* o,
duke@435 2676 int offset,
duke@435 2677 int instance_id) {
duke@435 2678 assert( !k->is_loaded() || k->is_instance_klass() ||
duke@435 2679 k->is_method_klass(), "Must be for instance or method");
duke@435 2680 // Either const_oop() is NULL or else ptr is Constant
duke@435 2681 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 2682 "constant pointers must have a value supplied" );
duke@435 2683 // Ptr is never Null
duke@435 2684 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 2685
kvn@682 2686 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 2687 if (!UseExactTypes) xk = false;
duke@435 2688 if (ptr == Constant) {
duke@435 2689 // Note: This case includes meta-object constants, such as methods.
duke@435 2690 xk = true;
duke@435 2691 } else if (k->is_loaded()) {
duke@435 2692 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 2693 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 2694 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 2695 }
duke@435 2696
duke@435 2697 // Now hash this baby
duke@435 2698 TypeInstPtr *result =
duke@435 2699 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
duke@435 2700
duke@435 2701 return result;
duke@435 2702 }
duke@435 2703
duke@435 2704
duke@435 2705 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2706 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2707 if( ptr == _ptr ) return this;
duke@435 2708 // Reconstruct _sig info here since not a problem with later lazy
duke@435 2709 // construction, _sig will show up on demand.
kvn@658 2710 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
duke@435 2711 }
duke@435 2712
duke@435 2713
duke@435 2714 //-----------------------------cast_to_exactness-------------------------------
duke@435 2715 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2716 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 2717 if (!UseExactTypes) return this;
duke@435 2718 if (!_klass->is_loaded()) return this;
duke@435 2719 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 2720 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 2721 if( ik->is_interface() ) return this; // cannot set xk
duke@435 2722 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
duke@435 2723 }
duke@435 2724
kvn@682 2725 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2726 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 2727 if( instance_id == _instance_id ) return this;
kvn@682 2728 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
duke@435 2729 }
duke@435 2730
duke@435 2731 //------------------------------xmeet_unloaded---------------------------------
duke@435 2732 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 2733 // Assume classes are different since called after check for same name/class-loader
duke@435 2734 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 2735 int off = meet_offset(tinst->offset());
duke@435 2736 PTR ptr = meet_ptr(tinst->ptr());
kvn@1427 2737 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 2738
duke@435 2739 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 2740 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 2741 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 2742 //
duke@435 2743 // Meet unloaded class with java/lang/Object
duke@435 2744 //
duke@435 2745 // Meet
duke@435 2746 // | Unloaded Class
duke@435 2747 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 2748 // ===================================================================
duke@435 2749 // TOP | ..........................Unloaded......................|
duke@435 2750 // AnyNull | U-AN |................Unloaded......................|
duke@435 2751 // Constant | ... O-NN .................................. | O-BOT |
duke@435 2752 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 2753 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 2754 //
duke@435 2755 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 2756 //
duke@435 2757 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
kvn@1427 2758 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
duke@435 2759 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2760 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 2761 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2762 else { return TypeInstPtr::NOTNULL; }
duke@435 2763 }
duke@435 2764 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 2765
duke@435 2766 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 2767 }
duke@435 2768
duke@435 2769 // Both are unloaded, not the same class, not Object
duke@435 2770 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 2771 if( ptr != TypePtr::BotPTR ) {
duke@435 2772 return TypeInstPtr::NOTNULL;
duke@435 2773 }
duke@435 2774 return TypeInstPtr::BOTTOM;
duke@435 2775 }
duke@435 2776
duke@435 2777
duke@435 2778 //------------------------------meet-------------------------------------------
duke@435 2779 // Compute the MEET of two types. It returns a new Type object.
duke@435 2780 const Type *TypeInstPtr::xmeet( const Type *t ) const {
duke@435 2781 // Perform a fast test for common case; meeting the same types together.
duke@435 2782 if( this == t ) return this; // Meeting same type-rep?
duke@435 2783
duke@435 2784 // Current "this->_base" is Pointer
duke@435 2785 switch (t->base()) { // switch on original type
duke@435 2786
duke@435 2787 case Int: // Mixing ints & oops happens when javac
duke@435 2788 case Long: // reuses local variables
duke@435 2789 case FloatTop:
duke@435 2790 case FloatCon:
duke@435 2791 case FloatBot:
duke@435 2792 case DoubleTop:
duke@435 2793 case DoubleCon:
duke@435 2794 case DoubleBot:
coleenp@548 2795 case NarrowOop:
duke@435 2796 case Bottom: // Ye Olde Default
duke@435 2797 return Type::BOTTOM;
duke@435 2798 case Top:
duke@435 2799 return this;
duke@435 2800
duke@435 2801 default: // All else is a mistake
duke@435 2802 typerr(t);
duke@435 2803
duke@435 2804 case RawPtr: return TypePtr::BOTTOM;
duke@435 2805
duke@435 2806 case AryPtr: { // All arrays inherit from Object class
duke@435 2807 const TypeAryPtr *tp = t->is_aryptr();
duke@435 2808 int offset = meet_offset(tp->offset());
duke@435 2809 PTR ptr = meet_ptr(tp->ptr());
kvn@658 2810 int instance_id = meet_instance_id(tp->instance_id());
duke@435 2811 switch (ptr) {
duke@435 2812 case TopPTR:
duke@435 2813 case AnyNull: // Fall 'down' to dual of object klass
duke@435 2814 if (klass()->equals(ciEnv::current()->Object_klass())) {
kvn@658 2815 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2816 } else {
duke@435 2817 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 2818 ptr = NotNull;
kvn@658 2819 instance_id = InstanceBot;
kvn@658 2820 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
duke@435 2821 }
duke@435 2822 case Constant:
duke@435 2823 case NotNull:
duke@435 2824 case BotPTR: // Fall down to object klass
duke@435 2825 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 2826 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 2827 // If 'this' (InstPtr) is above the centerline and it is Object class
twisti@1040 2828 // then we can subclass in the Java class hierarchy.
duke@435 2829 if (klass()->equals(ciEnv::current()->Object_klass())) {
duke@435 2830 // that is, tp's array type is a subtype of my klass
kvn@1714 2831 return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
kvn@1714 2832 tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2833 }
duke@435 2834 }
duke@435 2835 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 2836 // The meet falls down to Object class below centerline.
duke@435 2837 if( ptr == Constant )
duke@435 2838 ptr = NotNull;
kvn@658 2839 instance_id = InstanceBot;
kvn@658 2840 return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
duke@435 2841 default: typerr(t);
duke@435 2842 }
duke@435 2843 }
duke@435 2844
duke@435 2845 case OopPtr: { // Meeting to OopPtrs
duke@435 2846 // Found a OopPtr type vs self-InstPtr type
kvn@1393 2847 const TypeOopPtr *tp = t->is_oopptr();
duke@435 2848 int offset = meet_offset(tp->offset());
duke@435 2849 PTR ptr = meet_ptr(tp->ptr());
duke@435 2850 switch (tp->ptr()) {
duke@435 2851 case TopPTR:
kvn@658 2852 case AnyNull: {
kvn@658 2853 int instance_id = meet_instance_id(InstanceTop);
duke@435 2854 return make(ptr, klass(), klass_is_exact(),
kvn@658 2855 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 2856 }
duke@435 2857 case NotNull:
kvn@1393 2858 case BotPTR: {
kvn@1393 2859 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 2860 return TypeOopPtr::make(ptr, offset, instance_id);
kvn@1393 2861 }
duke@435 2862 default: typerr(t);
duke@435 2863 }
duke@435 2864 }
duke@435 2865
duke@435 2866 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2867 // Found an AnyPtr type vs self-InstPtr type
duke@435 2868 const TypePtr *tp = t->is_ptr();
duke@435 2869 int offset = meet_offset(tp->offset());
duke@435 2870 PTR ptr = meet_ptr(tp->ptr());
duke@435 2871 switch (tp->ptr()) {
duke@435 2872 case Null:
duke@435 2873 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
kvn@658 2874 // else fall through to AnyNull
duke@435 2875 case TopPTR:
kvn@658 2876 case AnyNull: {
kvn@658 2877 int instance_id = meet_instance_id(InstanceTop);
duke@435 2878 return make( ptr, klass(), klass_is_exact(),
kvn@658 2879 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 2880 }
duke@435 2881 case NotNull:
duke@435 2882 case BotPTR:
duke@435 2883 return TypePtr::make( AnyPtr, ptr, offset );
duke@435 2884 default: typerr(t);
duke@435 2885 }
duke@435 2886 }
duke@435 2887
duke@435 2888 /*
duke@435 2889 A-top }
duke@435 2890 / | \ } Tops
duke@435 2891 B-top A-any C-top }
duke@435 2892 | / | \ | } Any-nulls
duke@435 2893 B-any | C-any }
duke@435 2894 | | |
duke@435 2895 B-con A-con C-con } constants; not comparable across classes
duke@435 2896 | | |
duke@435 2897 B-not | C-not }
duke@435 2898 | \ | / | } not-nulls
duke@435 2899 B-bot A-not C-bot }
duke@435 2900 \ | / } Bottoms
duke@435 2901 A-bot }
duke@435 2902 */
duke@435 2903
duke@435 2904 case InstPtr: { // Meeting 2 Oops?
duke@435 2905 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 2906 const TypeInstPtr *tinst = t->is_instptr();
duke@435 2907 int off = meet_offset( tinst->offset() );
duke@435 2908 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 2909 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 2910
duke@435 2911 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 2912 // If we have constants, then we created oops so classes are loaded
duke@435 2913 // and we can handle the constants further down. This case handles
duke@435 2914 // both-not-loaded or both-loaded classes
duke@435 2915 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
duke@435 2916 return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
duke@435 2917 }
duke@435 2918
duke@435 2919 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 2920 ciKlass* tinst_klass = tinst->klass();
duke@435 2921 ciKlass* this_klass = this->klass();
duke@435 2922 bool tinst_xk = tinst->klass_is_exact();
duke@435 2923 bool this_xk = this->klass_is_exact();
duke@435 2924 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 2925 // One of these classes has not been loaded
duke@435 2926 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 2927 #ifndef PRODUCT
duke@435 2928 if( PrintOpto && Verbose ) {
duke@435 2929 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 2930 tty->print(" this == "); this->dump(); tty->cr();
duke@435 2931 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 2932 }
duke@435 2933 #endif
duke@435 2934 return unloaded_meet;
duke@435 2935 }
duke@435 2936
duke@435 2937 // Handle mixing oops and interfaces first.
duke@435 2938 if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
duke@435 2939 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 2940 tinst_klass = this_klass;
duke@435 2941 this_klass = tmp;
duke@435 2942 bool tmp2 = tinst_xk;
duke@435 2943 tinst_xk = this_xk;
duke@435 2944 this_xk = tmp2;
duke@435 2945 }
duke@435 2946 if (tinst_klass->is_interface() &&
duke@435 2947 !(this_klass->is_interface() ||
duke@435 2948 // Treat java/lang/Object as an honorary interface,
duke@435 2949 // because we need a bottom for the interface hierarchy.
duke@435 2950 this_klass == ciEnv::current()->Object_klass())) {
duke@435 2951 // Oop meets interface!
duke@435 2952
duke@435 2953 // See if the oop subtypes (implements) interface.
duke@435 2954 ciKlass *k;
duke@435 2955 bool xk;
duke@435 2956 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 2957 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 2958 // on whether we are both above the centerline or either is
duke@435 2959 // below the centerline. If we are on the centerline
duke@435 2960 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 2961 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 2962 // If we are keeping this_klass, keep its exactness too.
duke@435 2963 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 2964 } else { // Does not implement, fall to Object
duke@435 2965 // Oop does not implement interface, so mixing falls to Object
duke@435 2966 // just like the verifier does (if both are above the
duke@435 2967 // centerline fall to interface)
duke@435 2968 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 2969 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 2970 // Watch out for Constant vs. AnyNull interface.
duke@435 2971 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 2972 instance_id = InstanceBot;
duke@435 2973 }
duke@435 2974 ciObject* o = NULL; // the Constant value, if any
duke@435 2975 if (ptr == Constant) {
duke@435 2976 // Find out which constant.
duke@435 2977 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 2978 }
kvn@658 2979 return make( ptr, k, xk, o, off, instance_id );
duke@435 2980 }
duke@435 2981
duke@435 2982 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 2983
duke@435 2984 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 2985 // If we split one up & one down AND they subtype, take the down man.
duke@435 2986 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 2987 // If both are up and they subtype, take the subtype class.
duke@435 2988 // If both are up and they do NOT subtype, "fall hard".
duke@435 2989 // If both are down and they subtype, take the supertype class.
duke@435 2990 // If both are down and they do NOT subtype, "fall hard".
duke@435 2991 // Constants treated as down.
duke@435 2992
duke@435 2993 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 2994 // "fall hard"; "fall hard" becomes the default case:
duke@435 2995 // If we split one up & one down AND they subtype, take the down man.
duke@435 2996 // If both are up and they subtype, take the subtype class.
duke@435 2997
duke@435 2998 // If both are down and they subtype, "fall hard".
duke@435 2999 // If both are down and they do NOT subtype, "fall hard".
duke@435 3000 // If both are up and they do NOT subtype, "fall hard".
duke@435 3001 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3002
duke@435 3003 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 3004 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 3005 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 3006 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 3007
duke@435 3008 // Check for subtyping:
duke@435 3009 ciKlass *subtype = NULL;
duke@435 3010 bool subtype_exact = false;
duke@435 3011 if( tinst_klass->equals(this_klass) ) {
duke@435 3012 subtype = this_klass;
duke@435 3013 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 3014 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3015 subtype = this_klass; // Pick subtyping class
duke@435 3016 subtype_exact = this_xk;
duke@435 3017 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 3018 subtype = tinst_klass; // Pick subtyping class
duke@435 3019 subtype_exact = tinst_xk;
duke@435 3020 }
duke@435 3021
duke@435 3022 if( subtype ) {
duke@435 3023 if( above_centerline(ptr) ) { // both are up?
duke@435 3024 this_klass = tinst_klass = subtype;
duke@435 3025 this_xk = tinst_xk = subtype_exact;
duke@435 3026 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 3027 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 3028 this_xk = tinst_xk;
duke@435 3029 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 3030 tinst_klass = this_klass; // this is down; keep down man
duke@435 3031 tinst_xk = this_xk;
duke@435 3032 } else {
duke@435 3033 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 3034 }
duke@435 3035 }
duke@435 3036
duke@435 3037 // Check for classes now being equal
duke@435 3038 if (tinst_klass->equals(this_klass)) {
duke@435 3039 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3040 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3041 // handled elsewhere).
duke@435 3042 ciObject* o = NULL; // Assume not constant when done
duke@435 3043 ciObject* this_oop = const_oop();
duke@435 3044 ciObject* tinst_oop = tinst->const_oop();
duke@435 3045 if( ptr == Constant ) {
duke@435 3046 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 3047 this_oop->equals(tinst_oop) )
duke@435 3048 o = this_oop;
duke@435 3049 else if (above_centerline(this ->_ptr))
duke@435 3050 o = tinst_oop;
duke@435 3051 else if (above_centerline(tinst ->_ptr))
duke@435 3052 o = this_oop;
duke@435 3053 else
duke@435 3054 ptr = NotNull;
duke@435 3055 }
duke@435 3056 return make( ptr, this_klass, this_xk, o, off, instance_id );
duke@435 3057 } // Else classes are not equal
duke@435 3058
duke@435 3059 // Since klasses are different, we require a LCA in the Java
duke@435 3060 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3061 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3062 ptr = NotNull;
kvn@682 3063 instance_id = InstanceBot;
duke@435 3064
duke@435 3065 // Now we find the LCA of Java classes
duke@435 3066 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
kvn@658 3067 return make( ptr, k, false, NULL, off, instance_id );
duke@435 3068 } // End of case InstPtr
duke@435 3069
duke@435 3070 case KlassPtr:
duke@435 3071 return TypeInstPtr::BOTTOM;
duke@435 3072
duke@435 3073 } // End of switch
duke@435 3074 return this; // Return the double constant
duke@435 3075 }
duke@435 3076
duke@435 3077
duke@435 3078 //------------------------java_mirror_type--------------------------------------
duke@435 3079 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3080 // must be a singleton type
duke@435 3081 if( const_oop() == NULL ) return NULL;
duke@435 3082
duke@435 3083 // must be of type java.lang.Class
duke@435 3084 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3085
duke@435 3086 return const_oop()->as_instance()->java_mirror_type();
duke@435 3087 }
duke@435 3088
duke@435 3089
duke@435 3090 //------------------------------xdual------------------------------------------
duke@435 3091 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
twisti@1040 3092 // inheritance mechanism.
duke@435 3093 const Type *TypeInstPtr::xdual() const {
kvn@658 3094 return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 3095 }
duke@435 3096
duke@435 3097 //------------------------------eq---------------------------------------------
duke@435 3098 // Structural equality check for Type representations
duke@435 3099 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3100 const TypeInstPtr *p = t->is_instptr();
duke@435 3101 return
duke@435 3102 klass()->equals(p->klass()) &&
duke@435 3103 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3104 }
duke@435 3105
duke@435 3106 //------------------------------hash-------------------------------------------
duke@435 3107 // Type-specific hashing function.
duke@435 3108 int TypeInstPtr::hash(void) const {
duke@435 3109 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 3110 return hash;
duke@435 3111 }
duke@435 3112
duke@435 3113 //------------------------------dump2------------------------------------------
duke@435 3114 // Dump oop Type
duke@435 3115 #ifndef PRODUCT
duke@435 3116 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3117 // Print the name of the klass.
duke@435 3118 klass()->print_name_on(st);
duke@435 3119
duke@435 3120 switch( _ptr ) {
duke@435 3121 case Constant:
duke@435 3122 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3123 if (WizardMode || Verbose) {
duke@435 3124 const_oop()->print_oop(st);
duke@435 3125 }
duke@435 3126 case BotPTR:
duke@435 3127 if (!WizardMode && !Verbose) {
duke@435 3128 if( _klass_is_exact ) st->print(":exact");
duke@435 3129 break;
duke@435 3130 }
duke@435 3131 case TopPTR:
duke@435 3132 case AnyNull:
duke@435 3133 case NotNull:
duke@435 3134 st->print(":%s", ptr_msg[_ptr]);
duke@435 3135 if( _klass_is_exact ) st->print(":exact");
duke@435 3136 break;
duke@435 3137 }
duke@435 3138
duke@435 3139 if( _offset ) { // Dump offset, if any
duke@435 3140 if( _offset == OffsetBot ) st->print("+any");
duke@435 3141 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3142 else st->print("+%d", _offset);
duke@435 3143 }
duke@435 3144
duke@435 3145 st->print(" *");
kvn@658 3146 if (_instance_id == InstanceTop)
kvn@658 3147 st->print(",iid=top");
kvn@658 3148 else if (_instance_id != InstanceBot)
duke@435 3149 st->print(",iid=%d",_instance_id);
duke@435 3150 }
duke@435 3151 #endif
duke@435 3152
duke@435 3153 //------------------------------add_offset-------------------------------------
kvn@741 3154 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
duke@435 3155 return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
duke@435 3156 }
duke@435 3157
duke@435 3158 //=============================================================================
duke@435 3159 // Convenience common pre-built types.
duke@435 3160 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3161 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3162 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3163 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3164 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3165 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3166 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3167 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3168 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3169 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3170
duke@435 3171 //------------------------------make-------------------------------------------
duke@435 3172 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3173 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3174 "integral arrays must be pre-equipped with a class");
duke@435 3175 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3176 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3177 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3178 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3179 }
duke@435 3180
duke@435 3181 //------------------------------make-------------------------------------------
duke@435 3182 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3183 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3184 "integral arrays must be pre-equipped with a class");
duke@435 3185 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3186 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3187 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3188 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3189 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3190 }
duke@435 3191
duke@435 3192 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3193 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3194 if( ptr == _ptr ) return this;
kvn@658 3195 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3196 }
duke@435 3197
duke@435 3198
duke@435 3199 //-----------------------------cast_to_exactness-------------------------------
duke@435 3200 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3201 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3202 if (!UseExactTypes) return this;
duke@435 3203 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
duke@435 3204 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
duke@435 3205 }
duke@435 3206
kvn@682 3207 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3208 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3209 if( instance_id == _instance_id ) return this;
kvn@682 3210 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
duke@435 3211 }
duke@435 3212
duke@435 3213 //-----------------------------narrow_size_type-------------------------------
duke@435 3214 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3215 // which is kind of slow (and cached elsewhere by other users).
duke@435 3216 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3217 static jint max_array_length(BasicType etype) {
duke@435 3218 jint& cache = max_array_length_cache[etype];
duke@435 3219 jint res = cache;
duke@435 3220 if (res == 0) {
duke@435 3221 switch (etype) {
coleenp@548 3222 case T_NARROWOOP:
coleenp@548 3223 etype = T_OBJECT;
coleenp@548 3224 break;
duke@435 3225 case T_CONFLICT:
duke@435 3226 case T_ILLEGAL:
duke@435 3227 case T_VOID:
duke@435 3228 etype = T_BYTE; // will produce conservatively high value
duke@435 3229 }
duke@435 3230 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3231 }
duke@435 3232 return res;
duke@435 3233 }
duke@435 3234
duke@435 3235 // Narrow the given size type to the index range for the given array base type.
duke@435 3236 // Return NULL if the resulting int type becomes empty.
rasbold@801 3237 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
duke@435 3238 jint hi = size->_hi;
duke@435 3239 jint lo = size->_lo;
duke@435 3240 jint min_lo = 0;
rasbold@801 3241 jint max_hi = max_array_length(elem()->basic_type());
duke@435 3242 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3243 bool chg = false;
duke@435 3244 if (lo < min_lo) { lo = min_lo; chg = true; }
duke@435 3245 if (hi > max_hi) { hi = max_hi; chg = true; }
twisti@1040 3246 // Negative length arrays will produce weird intermediate dead fast-path code
duke@435 3247 if (lo > hi)
rasbold@801 3248 return TypeInt::ZERO;
duke@435 3249 if (!chg)
duke@435 3250 return size;
duke@435 3251 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3252 }
duke@435 3253
duke@435 3254 //-------------------------------cast_to_size----------------------------------
duke@435 3255 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3256 assert(new_size != NULL, "");
rasbold@801 3257 new_size = narrow_size_type(new_size);
duke@435 3258 if (new_size == size()) return this;
duke@435 3259 const TypeAry* new_ary = TypeAry::make(elem(), new_size);
kvn@658 3260 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3261 }
duke@435 3262
duke@435 3263
duke@435 3264 //------------------------------eq---------------------------------------------
duke@435 3265 // Structural equality check for Type representations
duke@435 3266 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3267 const TypeAryPtr *p = t->is_aryptr();
duke@435 3268 return
duke@435 3269 _ary == p->_ary && // Check array
duke@435 3270 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3271 }
duke@435 3272
duke@435 3273 //------------------------------hash-------------------------------------------
duke@435 3274 // Type-specific hashing function.
duke@435 3275 int TypeAryPtr::hash(void) const {
duke@435 3276 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3277 }
duke@435 3278
duke@435 3279 //------------------------------meet-------------------------------------------
duke@435 3280 // Compute the MEET of two types. It returns a new Type object.
duke@435 3281 const Type *TypeAryPtr::xmeet( const Type *t ) const {
duke@435 3282 // Perform a fast test for common case; meeting the same types together.
duke@435 3283 if( this == t ) return this; // Meeting same type-rep?
duke@435 3284 // Current "this->_base" is Pointer
duke@435 3285 switch (t->base()) { // switch on original type
duke@435 3286
duke@435 3287 // Mixing ints & oops happens when javac reuses local variables
duke@435 3288 case Int:
duke@435 3289 case Long:
duke@435 3290 case FloatTop:
duke@435 3291 case FloatCon:
duke@435 3292 case FloatBot:
duke@435 3293 case DoubleTop:
duke@435 3294 case DoubleCon:
duke@435 3295 case DoubleBot:
coleenp@548 3296 case NarrowOop:
duke@435 3297 case Bottom: // Ye Olde Default
duke@435 3298 return Type::BOTTOM;
duke@435 3299 case Top:
duke@435 3300 return this;
duke@435 3301
duke@435 3302 default: // All else is a mistake
duke@435 3303 typerr(t);
duke@435 3304
duke@435 3305 case OopPtr: { // Meeting to OopPtrs
duke@435 3306 // Found a OopPtr type vs self-AryPtr type
kvn@1393 3307 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3308 int offset = meet_offset(tp->offset());
duke@435 3309 PTR ptr = meet_ptr(tp->ptr());
duke@435 3310 switch (tp->ptr()) {
duke@435 3311 case TopPTR:
kvn@658 3312 case AnyNull: {
kvn@658 3313 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3314 return make(ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3315 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3316 }
duke@435 3317 case BotPTR:
kvn@1393 3318 case NotNull: {
kvn@1393 3319 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 3320 return TypeOopPtr::make(ptr, offset, instance_id);
kvn@1393 3321 }
duke@435 3322 default: ShouldNotReachHere();
duke@435 3323 }
duke@435 3324 }
duke@435 3325
duke@435 3326 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3327 // Found an AnyPtr type vs self-AryPtr type
duke@435 3328 const TypePtr *tp = t->is_ptr();
duke@435 3329 int offset = meet_offset(tp->offset());
duke@435 3330 PTR ptr = meet_ptr(tp->ptr());
duke@435 3331 switch (tp->ptr()) {
duke@435 3332 case TopPTR:
duke@435 3333 return this;
duke@435 3334 case BotPTR:
duke@435 3335 case NotNull:
duke@435 3336 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3337 case Null:
duke@435 3338 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3339 // else fall through to AnyNull
kvn@658 3340 case AnyNull: {
kvn@658 3341 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3342 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3343 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3344 }
duke@435 3345 default: ShouldNotReachHere();
duke@435 3346 }
duke@435 3347 }
duke@435 3348
duke@435 3349 case RawPtr: return TypePtr::BOTTOM;
duke@435 3350
duke@435 3351 case AryPtr: { // Meeting 2 references?
duke@435 3352 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3353 int off = meet_offset(tap->offset());
duke@435 3354 const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
duke@435 3355 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3356 int instance_id = meet_instance_id(tap->instance_id());
duke@435 3357 ciKlass* lazy_klass = NULL;
duke@435 3358 if (tary->_elem->isa_int()) {
duke@435 3359 // Integral array element types have irrelevant lattice relations.
duke@435 3360 // It is the klass that determines array layout, not the element type.
duke@435 3361 if (_klass == NULL)
duke@435 3362 lazy_klass = tap->_klass;
duke@435 3363 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3364 lazy_klass = _klass;
duke@435 3365 } else {
duke@435 3366 // Something like byte[int+] meets char[int+].
duke@435 3367 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3368 instance_id = InstanceBot;
duke@435 3369 tary = TypeAry::make(Type::BOTTOM, tary->_size);
duke@435 3370 }
duke@435 3371 }
duke@435 3372 bool xk;
duke@435 3373 switch (tap->ptr()) {
duke@435 3374 case AnyNull:
duke@435 3375 case TopPTR:
duke@435 3376 // Compute new klass on demand, do not use tap->_klass
duke@435 3377 xk = (tap->_klass_is_exact | this->_klass_is_exact);
kvn@658 3378 return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
duke@435 3379 case Constant: {
duke@435 3380 ciObject* o = const_oop();
duke@435 3381 if( _ptr == Constant ) {
duke@435 3382 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
jrose@1424 3383 xk = (klass() == tap->klass());
duke@435 3384 ptr = NotNull;
duke@435 3385 o = NULL;
kvn@682 3386 instance_id = InstanceBot;
jrose@1424 3387 } else {
jrose@1424 3388 xk = true;
duke@435 3389 }
duke@435 3390 } else if( above_centerline(_ptr) ) {
duke@435 3391 o = tap->const_oop();
jrose@1424 3392 xk = true;
jrose@1424 3393 } else {
jrose@1424 3394 xk = this->_klass_is_exact;
duke@435 3395 }
kvn@658 3396 return TypeAryPtr::make( ptr, o, tary, tap->_klass, xk, off, instance_id );
duke@435 3397 }
duke@435 3398 case NotNull:
duke@435 3399 case BotPTR:
duke@435 3400 // Compute new klass on demand, do not use tap->_klass
duke@435 3401 if (above_centerline(this->_ptr))
duke@435 3402 xk = tap->_klass_is_exact;
duke@435 3403 else if (above_centerline(tap->_ptr))
duke@435 3404 xk = this->_klass_is_exact;
duke@435 3405 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 3406 (klass() == tap->klass()); // Only precise for identical arrays
kvn@658 3407 return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
duke@435 3408 default: ShouldNotReachHere();
duke@435 3409 }
duke@435 3410 }
duke@435 3411
duke@435 3412 // All arrays inherit from Object class
duke@435 3413 case InstPtr: {
duke@435 3414 const TypeInstPtr *tp = t->is_instptr();
duke@435 3415 int offset = meet_offset(tp->offset());
duke@435 3416 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3417 int instance_id = meet_instance_id(tp->instance_id());
duke@435 3418 switch (ptr) {
duke@435 3419 case TopPTR:
duke@435 3420 case AnyNull: // Fall 'down' to dual of object klass
duke@435 3421 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
kvn@658 3422 return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3423 } else {
duke@435 3424 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3425 ptr = NotNull;
kvn@658 3426 instance_id = InstanceBot;
kvn@658 3427 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3428 }
duke@435 3429 case Constant:
duke@435 3430 case NotNull:
duke@435 3431 case BotPTR: // Fall down to object klass
duke@435 3432 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3433 if (above_centerline(tp->ptr())) {
duke@435 3434 // If 'tp' is above the centerline and it is Object class
twisti@1040 3435 // then we can subclass in the Java class hierarchy.
duke@435 3436 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3437 // that is, my array type is a subtype of 'tp' klass
kvn@1714 3438 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@1714 3439 _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3440 }
duke@435 3441 }
duke@435 3442 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 3443 // The meet falls down to Object class below centerline.
duke@435 3444 if( ptr == Constant )
duke@435 3445 ptr = NotNull;
kvn@658 3446 instance_id = InstanceBot;
kvn@658 3447 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3448 default: typerr(t);
duke@435 3449 }
duke@435 3450 }
duke@435 3451
duke@435 3452 case KlassPtr:
duke@435 3453 return TypeInstPtr::BOTTOM;
duke@435 3454
duke@435 3455 }
duke@435 3456 return this; // Lint noise
duke@435 3457 }
duke@435 3458
duke@435 3459 //------------------------------xdual------------------------------------------
duke@435 3460 // Dual: compute field-by-field dual
duke@435 3461 const Type *TypeAryPtr::xdual() const {
kvn@658 3462 return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
duke@435 3463 }
duke@435 3464
kvn@1255 3465 //----------------------interface_vs_oop---------------------------------------
kvn@1255 3466 #ifdef ASSERT
kvn@1255 3467 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
kvn@1255 3468 const TypeAryPtr* t_aryptr = t->isa_aryptr();
kvn@1255 3469 if (t_aryptr) {
kvn@1255 3470 return _ary->interface_vs_oop(t_aryptr->_ary);
kvn@1255 3471 }
kvn@1255 3472 return false;
kvn@1255 3473 }
kvn@1255 3474 #endif
kvn@1255 3475
duke@435 3476 //------------------------------dump2------------------------------------------
duke@435 3477 #ifndef PRODUCT
duke@435 3478 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3479 _ary->dump2(d,depth,st);
duke@435 3480 switch( _ptr ) {
duke@435 3481 case Constant:
duke@435 3482 const_oop()->print(st);
duke@435 3483 break;
duke@435 3484 case BotPTR:
duke@435 3485 if (!WizardMode && !Verbose) {
duke@435 3486 if( _klass_is_exact ) st->print(":exact");
duke@435 3487 break;
duke@435 3488 }
duke@435 3489 case TopPTR:
duke@435 3490 case AnyNull:
duke@435 3491 case NotNull:
duke@435 3492 st->print(":%s", ptr_msg[_ptr]);
duke@435 3493 if( _klass_is_exact ) st->print(":exact");
duke@435 3494 break;
duke@435 3495 }
duke@435 3496
kvn@499 3497 if( _offset != 0 ) {
kvn@499 3498 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 3499 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 3500 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 3501 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 3502 else {
kvn@499 3503 BasicType basic_elem_type = elem()->basic_type();
kvn@499 3504 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 3505 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 3506 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 3507 }
kvn@499 3508 }
kvn@499 3509 st->print(" *");
kvn@658 3510 if (_instance_id == InstanceTop)
kvn@658 3511 st->print(",iid=top");
kvn@658 3512 else if (_instance_id != InstanceBot)
duke@435 3513 st->print(",iid=%d",_instance_id);
duke@435 3514 }
duke@435 3515 #endif
duke@435 3516
duke@435 3517 bool TypeAryPtr::empty(void) const {
duke@435 3518 if (_ary->empty()) return true;
duke@435 3519 return TypeOopPtr::empty();
duke@435 3520 }
duke@435 3521
duke@435 3522 //------------------------------add_offset-------------------------------------
kvn@741 3523 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
duke@435 3524 return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
duke@435 3525 }
duke@435 3526
duke@435 3527
duke@435 3528 //=============================================================================
coleenp@548 3529 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
coleenp@548 3530 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
coleenp@548 3531
coleenp@548 3532
coleenp@548 3533 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
coleenp@548 3534 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
coleenp@548 3535 }
coleenp@548 3536
coleenp@548 3537 //------------------------------hash-------------------------------------------
coleenp@548 3538 // Type-specific hashing function.
coleenp@548 3539 int TypeNarrowOop::hash(void) const {
never@1262 3540 return _ptrtype->hash() + 7;
coleenp@548 3541 }
coleenp@548 3542
coleenp@548 3543
coleenp@548 3544 bool TypeNarrowOop::eq( const Type *t ) const {
coleenp@548 3545 const TypeNarrowOop* tc = t->isa_narrowoop();
coleenp@548 3546 if (tc != NULL) {
never@1262 3547 if (_ptrtype->base() != tc->_ptrtype->base()) {
coleenp@548 3548 return false;
coleenp@548 3549 }
never@1262 3550 return tc->_ptrtype->eq(_ptrtype);
coleenp@548 3551 }
coleenp@548 3552 return false;
coleenp@548 3553 }
coleenp@548 3554
coleenp@548 3555 bool TypeNarrowOop::singleton(void) const { // TRUE if type is a singleton
never@1262 3556 return _ptrtype->singleton();
coleenp@548 3557 }
coleenp@548 3558
coleenp@548 3559 bool TypeNarrowOop::empty(void) const {
never@1262 3560 return _ptrtype->empty();
coleenp@548 3561 }
coleenp@548 3562
kvn@728 3563 //------------------------------xmeet------------------------------------------
coleenp@548 3564 // Compute the MEET of two types. It returns a new Type object.
coleenp@548 3565 const Type *TypeNarrowOop::xmeet( const Type *t ) const {
coleenp@548 3566 // Perform a fast test for common case; meeting the same types together.
coleenp@548 3567 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 3568
coleenp@548 3569
coleenp@548 3570 // Current "this->_base" is OopPtr
coleenp@548 3571 switch (t->base()) { // switch on original type
coleenp@548 3572
coleenp@548 3573 case Int: // Mixing ints & oops happens when javac
coleenp@548 3574 case Long: // reuses local variables
coleenp@548 3575 case FloatTop:
coleenp@548 3576 case FloatCon:
coleenp@548 3577 case FloatBot:
coleenp@548 3578 case DoubleTop:
coleenp@548 3579 case DoubleCon:
coleenp@548 3580 case DoubleBot:
kvn@728 3581 case AnyPtr:
kvn@728 3582 case RawPtr:
kvn@728 3583 case OopPtr:
kvn@728 3584 case InstPtr:
kvn@728 3585 case KlassPtr:
kvn@728 3586 case AryPtr:
kvn@728 3587
coleenp@548 3588 case Bottom: // Ye Olde Default
coleenp@548 3589 return Type::BOTTOM;
coleenp@548 3590 case Top:
coleenp@548 3591 return this;
coleenp@548 3592
coleenp@548 3593 case NarrowOop: {
never@1262 3594 const Type* result = _ptrtype->xmeet(t->make_ptr());
coleenp@548 3595 if (result->isa_ptr()) {
coleenp@548 3596 return TypeNarrowOop::make(result->is_ptr());
coleenp@548 3597 }
coleenp@548 3598 return result;
coleenp@548 3599 }
coleenp@548 3600
coleenp@548 3601 default: // All else is a mistake
coleenp@548 3602 typerr(t);
coleenp@548 3603
coleenp@548 3604 } // End of switch
kvn@728 3605
kvn@728 3606 return this;
coleenp@548 3607 }
coleenp@548 3608
coleenp@548 3609 const Type *TypeNarrowOop::xdual() const { // Compute dual right now.
never@1262 3610 const TypePtr* odual = _ptrtype->dual()->is_ptr();
coleenp@548 3611 return new TypeNarrowOop(odual);
coleenp@548 3612 }
coleenp@548 3613
coleenp@548 3614 const Type *TypeNarrowOop::filter( const Type *kills ) const {
coleenp@548 3615 if (kills->isa_narrowoop()) {
never@1262 3616 const Type* ft =_ptrtype->filter(kills->is_narrowoop()->_ptrtype);
coleenp@548 3617 if (ft->empty())
coleenp@548 3618 return Type::TOP; // Canonical empty value
coleenp@548 3619 if (ft->isa_ptr()) {
coleenp@548 3620 return make(ft->isa_ptr());
coleenp@548 3621 }
coleenp@548 3622 return ft;
coleenp@548 3623 } else if (kills->isa_ptr()) {
never@1262 3624 const Type* ft = _ptrtype->join(kills);
coleenp@548 3625 if (ft->empty())
coleenp@548 3626 return Type::TOP; // Canonical empty value
coleenp@548 3627 return ft;
coleenp@548 3628 } else {
coleenp@548 3629 return Type::TOP;
coleenp@548 3630 }
coleenp@548 3631 }
coleenp@548 3632
coleenp@548 3633
coleenp@548 3634 intptr_t TypeNarrowOop::get_con() const {
never@1262 3635 return _ptrtype->get_con();
coleenp@548 3636 }
coleenp@548 3637
coleenp@548 3638 #ifndef PRODUCT
coleenp@548 3639 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
never@852 3640 st->print("narrowoop: ");
never@1262 3641 _ptrtype->dump2(d, depth, st);
coleenp@548 3642 }
coleenp@548 3643 #endif
coleenp@548 3644
coleenp@548 3645
coleenp@548 3646 //=============================================================================
duke@435 3647 // Convenience common pre-built types.
duke@435 3648
duke@435 3649 // Not-null object klass or below
duke@435 3650 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 3651 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 3652
duke@435 3653 //------------------------------TypeKlasPtr------------------------------------
duke@435 3654 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
duke@435 3655 : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
duke@435 3656 }
duke@435 3657
duke@435 3658 //------------------------------make-------------------------------------------
duke@435 3659 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 3660 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 3661 assert( k != NULL, "Expect a non-NULL klass");
duke@435 3662 assert(k->is_instance_klass() || k->is_array_klass() ||
duke@435 3663 k->is_method_klass(), "Incorrect type of klass oop");
duke@435 3664 TypeKlassPtr *r =
duke@435 3665 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 3666
duke@435 3667 return r;
duke@435 3668 }
duke@435 3669
duke@435 3670 //------------------------------eq---------------------------------------------
duke@435 3671 // Structural equality check for Type representations
duke@435 3672 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 3673 const TypeKlassPtr *p = t->is_klassptr();
duke@435 3674 return
duke@435 3675 klass()->equals(p->klass()) &&
duke@435 3676 TypeOopPtr::eq(p);
duke@435 3677 }
duke@435 3678
duke@435 3679 //------------------------------hash-------------------------------------------
duke@435 3680 // Type-specific hashing function.
duke@435 3681 int TypeKlassPtr::hash(void) const {
duke@435 3682 return klass()->hash() + TypeOopPtr::hash();
duke@435 3683 }
duke@435 3684
duke@435 3685
duke@435 3686 //------------------------------klass------------------------------------------
duke@435 3687 // Return the defining klass for this class
duke@435 3688 ciKlass* TypeAryPtr::klass() const {
duke@435 3689 if( _klass ) return _klass; // Return cached value, if possible
duke@435 3690
duke@435 3691 // Oops, need to compute _klass and cache it
duke@435 3692 ciKlass* k_ary = NULL;
duke@435 3693 const TypeInstPtr *tinst;
duke@435 3694 const TypeAryPtr *tary;
coleenp@548 3695 const Type* el = elem();
coleenp@548 3696 if (el->isa_narrowoop()) {
kvn@656 3697 el = el->make_ptr();
coleenp@548 3698 }
coleenp@548 3699
duke@435 3700 // Get element klass
coleenp@548 3701 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 3702 // Compute array klass from element klass
duke@435 3703 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 3704 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 3705 // Compute array klass from element klass
duke@435 3706 ciKlass* k_elem = tary->klass();
duke@435 3707 // If element type is something like bottom[], k_elem will be null.
duke@435 3708 if (k_elem != NULL)
duke@435 3709 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 3710 } else if ((el->base() == Type::Top) ||
coleenp@548 3711 (el->base() == Type::Bottom)) {
duke@435 3712 // element type of Bottom occurs from meet of basic type
duke@435 3713 // and object; Top occurs when doing join on Bottom.
duke@435 3714 // Leave k_ary at NULL.
duke@435 3715 } else {
duke@435 3716 // Cannot compute array klass directly from basic type,
duke@435 3717 // since subtypes of TypeInt all have basic type T_INT.
coleenp@548 3718 assert(!el->isa_int(),
duke@435 3719 "integral arrays must be pre-equipped with a class");
duke@435 3720 // Compute array klass directly from basic type
coleenp@548 3721 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 3722 }
duke@435 3723
kvn@598 3724 if( this != TypeAryPtr::OOPS ) {
duke@435 3725 // The _klass field acts as a cache of the underlying
duke@435 3726 // ciKlass for this array type. In order to set the field,
duke@435 3727 // we need to cast away const-ness.
duke@435 3728 //
duke@435 3729 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 3730 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 3731 // active compilations. However, the ciKlass which represents
duke@435 3732 // this Type is *not* shared between compilations, so caching
duke@435 3733 // this value would result in fetching a dangling pointer.
duke@435 3734 //
duke@435 3735 // Recomputing the underlying ciKlass for each request is
duke@435 3736 // a bit less efficient than caching, but calls to
duke@435 3737 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 3738 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 3739 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 3740 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 3741 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 3742 }
kvn@598 3743 }
duke@435 3744 return k_ary;
duke@435 3745 }
duke@435 3746
duke@435 3747
duke@435 3748 //------------------------------add_offset-------------------------------------
duke@435 3749 // Access internals of klass object
kvn@741 3750 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
duke@435 3751 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 3752 }
duke@435 3753
duke@435 3754 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3755 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
kvn@992 3756 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
duke@435 3757 if( ptr == _ptr ) return this;
duke@435 3758 return make(ptr, _klass, _offset);
duke@435 3759 }
duke@435 3760
duke@435 3761
duke@435 3762 //-----------------------------cast_to_exactness-------------------------------
duke@435 3763 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3764 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3765 if (!UseExactTypes) return this;
duke@435 3766 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 3767 }
duke@435 3768
duke@435 3769
duke@435 3770 //-----------------------------as_instance_type--------------------------------
duke@435 3771 // Corresponding type for an instance of the given class.
duke@435 3772 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 3773 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 3774 ciKlass* k = klass();
duke@435 3775 bool xk = klass_is_exact();
duke@435 3776 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 3777 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
duke@435 3778 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 3779 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 3780 }
duke@435 3781
duke@435 3782
duke@435 3783 //------------------------------xmeet------------------------------------------
duke@435 3784 // Compute the MEET of two types, return a new Type object.
duke@435 3785 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 3786 // Perform a fast test for common case; meeting the same types together.
duke@435 3787 if( this == t ) return this; // Meeting same type-rep?
duke@435 3788
duke@435 3789 // Current "this->_base" is Pointer
duke@435 3790 switch (t->base()) { // switch on original type
duke@435 3791
duke@435 3792 case Int: // Mixing ints & oops happens when javac
duke@435 3793 case Long: // reuses local variables
duke@435 3794 case FloatTop:
duke@435 3795 case FloatCon:
duke@435 3796 case FloatBot:
duke@435 3797 case DoubleTop:
duke@435 3798 case DoubleCon:
duke@435 3799 case DoubleBot:
kvn@728 3800 case NarrowOop:
duke@435 3801 case Bottom: // Ye Olde Default
duke@435 3802 return Type::BOTTOM;
duke@435 3803 case Top:
duke@435 3804 return this;
duke@435 3805
duke@435 3806 default: // All else is a mistake
duke@435 3807 typerr(t);
duke@435 3808
duke@435 3809 case RawPtr: return TypePtr::BOTTOM;
duke@435 3810
duke@435 3811 case OopPtr: { // Meeting to OopPtrs
duke@435 3812 // Found a OopPtr type vs self-KlassPtr type
duke@435 3813 const TypePtr *tp = t->is_oopptr();
duke@435 3814 int offset = meet_offset(tp->offset());
duke@435 3815 PTR ptr = meet_ptr(tp->ptr());
duke@435 3816 switch (tp->ptr()) {
duke@435 3817 case TopPTR:
duke@435 3818 case AnyNull:
duke@435 3819 return make(ptr, klass(), offset);
duke@435 3820 case BotPTR:
duke@435 3821 case NotNull:
duke@435 3822 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3823 default: typerr(t);
duke@435 3824 }
duke@435 3825 }
duke@435 3826
duke@435 3827 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3828 // Found an AnyPtr type vs self-KlassPtr type
duke@435 3829 const TypePtr *tp = t->is_ptr();
duke@435 3830 int offset = meet_offset(tp->offset());
duke@435 3831 PTR ptr = meet_ptr(tp->ptr());
duke@435 3832 switch (tp->ptr()) {
duke@435 3833 case TopPTR:
duke@435 3834 return this;
duke@435 3835 case Null:
duke@435 3836 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 3837 case AnyNull:
duke@435 3838 return make( ptr, klass(), offset );
duke@435 3839 case BotPTR:
duke@435 3840 case NotNull:
duke@435 3841 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3842 default: typerr(t);
duke@435 3843 }
duke@435 3844 }
duke@435 3845
duke@435 3846 case AryPtr: // Meet with AryPtr
duke@435 3847 case InstPtr: // Meet with InstPtr
duke@435 3848 return TypeInstPtr::BOTTOM;
duke@435 3849
duke@435 3850 //
duke@435 3851 // A-top }
duke@435 3852 // / | \ } Tops
duke@435 3853 // B-top A-any C-top }
duke@435 3854 // | / | \ | } Any-nulls
duke@435 3855 // B-any | C-any }
duke@435 3856 // | | |
duke@435 3857 // B-con A-con C-con } constants; not comparable across classes
duke@435 3858 // | | |
duke@435 3859 // B-not | C-not }
duke@435 3860 // | \ | / | } not-nulls
duke@435 3861 // B-bot A-not C-bot }
duke@435 3862 // \ | / } Bottoms
duke@435 3863 // A-bot }
duke@435 3864 //
duke@435 3865
duke@435 3866 case KlassPtr: { // Meet two KlassPtr types
duke@435 3867 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 3868 int off = meet_offset(tkls->offset());
duke@435 3869 PTR ptr = meet_ptr(tkls->ptr());
duke@435 3870
duke@435 3871 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3872 // If we have constants, then we created oops so classes are loaded
duke@435 3873 // and we can handle the constants further down. This case handles
duke@435 3874 // not-loaded classes
duke@435 3875 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 3876 return make( ptr, klass(), off );
duke@435 3877 }
duke@435 3878
duke@435 3879 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3880 ciKlass* tkls_klass = tkls->klass();
duke@435 3881 ciKlass* this_klass = this->klass();
duke@435 3882 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 3883 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 3884
duke@435 3885 // If 'this' type is above the centerline and is a superclass of the
duke@435 3886 // other, we can treat 'this' as having the same type as the other.
duke@435 3887 if ((above_centerline(this->ptr())) &&
duke@435 3888 tkls_klass->is_subtype_of(this_klass)) {
duke@435 3889 this_klass = tkls_klass;
duke@435 3890 }
duke@435 3891 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 3892 // other, we can treat 'tinst' as having the same type as the other.
duke@435 3893 if ((above_centerline(tkls->ptr())) &&
duke@435 3894 this_klass->is_subtype_of(tkls_klass)) {
duke@435 3895 tkls_klass = this_klass;
duke@435 3896 }
duke@435 3897
duke@435 3898 // Check for classes now being equal
duke@435 3899 if (tkls_klass->equals(this_klass)) {
duke@435 3900 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3901 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3902 // handled elsewhere).
duke@435 3903 ciObject* o = NULL; // Assume not constant when done
duke@435 3904 ciObject* this_oop = const_oop();
duke@435 3905 ciObject* tkls_oop = tkls->const_oop();
duke@435 3906 if( ptr == Constant ) {
duke@435 3907 if (this_oop != NULL && tkls_oop != NULL &&
duke@435 3908 this_oop->equals(tkls_oop) )
duke@435 3909 o = this_oop;
duke@435 3910 else if (above_centerline(this->ptr()))
duke@435 3911 o = tkls_oop;
duke@435 3912 else if (above_centerline(tkls->ptr()))
duke@435 3913 o = this_oop;
duke@435 3914 else
duke@435 3915 ptr = NotNull;
duke@435 3916 }
duke@435 3917 return make( ptr, this_klass, off );
duke@435 3918 } // Else classes are not equal
duke@435 3919
duke@435 3920 // Since klasses are different, we require the LCA in the Java
duke@435 3921 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3922 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3923 ptr = NotNull;
duke@435 3924 // Now we find the LCA of Java classes
duke@435 3925 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 3926 return make( ptr, k, off );
duke@435 3927 } // End of case KlassPtr
duke@435 3928
duke@435 3929 } // End of switch
duke@435 3930 return this; // Return the double constant
duke@435 3931 }
duke@435 3932
duke@435 3933 //------------------------------xdual------------------------------------------
duke@435 3934 // Dual: compute field-by-field dual
duke@435 3935 const Type *TypeKlassPtr::xdual() const {
duke@435 3936 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 3937 }
duke@435 3938
duke@435 3939 //------------------------------dump2------------------------------------------
duke@435 3940 // Dump Klass Type
duke@435 3941 #ifndef PRODUCT
duke@435 3942 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 3943 switch( _ptr ) {
duke@435 3944 case Constant:
duke@435 3945 st->print("precise ");
duke@435 3946 case NotNull:
duke@435 3947 {
duke@435 3948 const char *name = klass()->name()->as_utf8();
duke@435 3949 if( name ) {
duke@435 3950 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 3951 } else {
duke@435 3952 ShouldNotReachHere();
duke@435 3953 }
duke@435 3954 }
duke@435 3955 case BotPTR:
duke@435 3956 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 3957 case TopPTR:
duke@435 3958 case AnyNull:
duke@435 3959 st->print(":%s", ptr_msg[_ptr]);
duke@435 3960 if( _klass_is_exact ) st->print(":exact");
duke@435 3961 break;
duke@435 3962 }
duke@435 3963
duke@435 3964 if( _offset ) { // Dump offset, if any
duke@435 3965 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 3966 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 3967 else { st->print("+%d", _offset); }
duke@435 3968 }
duke@435 3969
duke@435 3970 st->print(" *");
duke@435 3971 }
duke@435 3972 #endif
duke@435 3973
duke@435 3974
duke@435 3975
duke@435 3976 //=============================================================================
duke@435 3977 // Convenience common pre-built types.
duke@435 3978
duke@435 3979 //------------------------------make-------------------------------------------
duke@435 3980 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 3981 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 3982 }
duke@435 3983
duke@435 3984 //------------------------------make-------------------------------------------
duke@435 3985 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 3986 Compile* C = Compile::current();
duke@435 3987 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 3988 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 3989 const TypeTuple *domain;
twisti@1572 3990 if (method->is_static()) {
duke@435 3991 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 3992 } else {
duke@435 3993 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 3994 }
duke@435 3995 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 3996 tf = TypeFunc::make(domain, range);
duke@435 3997 C->set_last_tf(method, tf); // fill cache
duke@435 3998 return tf;
duke@435 3999 }
duke@435 4000
duke@435 4001 //------------------------------meet-------------------------------------------
duke@435 4002 // Compute the MEET of two types. It returns a new Type object.
duke@435 4003 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 4004 // Perform a fast test for common case; meeting the same types together.
duke@435 4005 if( this == t ) return this; // Meeting same type-rep?
duke@435 4006
duke@435 4007 // Current "this->_base" is Func
duke@435 4008 switch (t->base()) { // switch on original type
duke@435 4009
duke@435 4010 case Bottom: // Ye Olde Default
duke@435 4011 return t;
duke@435 4012
duke@435 4013 default: // All else is a mistake
duke@435 4014 typerr(t);
duke@435 4015
duke@435 4016 case Top:
duke@435 4017 break;
duke@435 4018 }
duke@435 4019 return this; // Return the double constant
duke@435 4020 }
duke@435 4021
duke@435 4022 //------------------------------xdual------------------------------------------
duke@435 4023 // Dual: compute field-by-field dual
duke@435 4024 const Type *TypeFunc::xdual() const {
duke@435 4025 return this;
duke@435 4026 }
duke@435 4027
duke@435 4028 //------------------------------eq---------------------------------------------
duke@435 4029 // Structural equality check for Type representations
duke@435 4030 bool TypeFunc::eq( const Type *t ) const {
duke@435 4031 const TypeFunc *a = (const TypeFunc*)t;
duke@435 4032 return _domain == a->_domain &&
duke@435 4033 _range == a->_range;
duke@435 4034 }
duke@435 4035
duke@435 4036 //------------------------------hash-------------------------------------------
duke@435 4037 // Type-specific hashing function.
duke@435 4038 int TypeFunc::hash(void) const {
duke@435 4039 return (intptr_t)_domain + (intptr_t)_range;
duke@435 4040 }
duke@435 4041
duke@435 4042 //------------------------------dump2------------------------------------------
duke@435 4043 // Dump Function Type
duke@435 4044 #ifndef PRODUCT
duke@435 4045 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4046 if( _range->_cnt <= Parms )
duke@435 4047 st->print("void");
duke@435 4048 else {
duke@435 4049 uint i;
duke@435 4050 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 4051 _range->field_at(i)->dump2(d,depth,st);
duke@435 4052 st->print("/");
duke@435 4053 }
duke@435 4054 _range->field_at(i)->dump2(d,depth,st);
duke@435 4055 }
duke@435 4056 st->print(" ");
duke@435 4057 st->print("( ");
duke@435 4058 if( !depth || d[this] ) { // Check for recursive dump
duke@435 4059 st->print("...)");
duke@435 4060 return;
duke@435 4061 }
duke@435 4062 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 4063 if (Parms < _domain->_cnt)
duke@435 4064 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 4065 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 4066 st->print(", ");
duke@435 4067 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 4068 }
duke@435 4069 st->print(" )");
duke@435 4070 }
duke@435 4071
duke@435 4072 //------------------------------print_flattened--------------------------------
duke@435 4073 // Print a 'flattened' signature
duke@435 4074 static const char * const flat_type_msg[Type::lastype] = {
coleenp@548 4075 "bad","control","top","int","long","_", "narrowoop",
duke@435 4076 "tuple:", "array:",
duke@435 4077 "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
duke@435 4078 "func", "abIO", "return_address", "mem",
duke@435 4079 "float_top", "ftcon:", "flt",
duke@435 4080 "double_top", "dblcon:", "dbl",
duke@435 4081 "bottom"
duke@435 4082 };
duke@435 4083
duke@435 4084 void TypeFunc::print_flattened() const {
duke@435 4085 if( _range->_cnt <= Parms )
duke@435 4086 tty->print("void");
duke@435 4087 else {
duke@435 4088 uint i;
duke@435 4089 for (i = Parms; i < _range->_cnt-1; i++)
duke@435 4090 tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
duke@435 4091 tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
duke@435 4092 }
duke@435 4093 tty->print(" ( ");
duke@435 4094 if (Parms < _domain->_cnt)
duke@435 4095 tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
duke@435 4096 for (uint i = Parms+1; i < _domain->_cnt; i++)
duke@435 4097 tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
duke@435 4098 tty->print(" )");
duke@435 4099 }
duke@435 4100 #endif
duke@435 4101
duke@435 4102 //------------------------------singleton--------------------------------------
duke@435 4103 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 4104 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 4105 // or a single symbol.
duke@435 4106 bool TypeFunc::singleton(void) const {
duke@435 4107 return false; // Never a singleton
duke@435 4108 }
duke@435 4109
duke@435 4110 bool TypeFunc::empty(void) const {
duke@435 4111 return false; // Never empty
duke@435 4112 }
duke@435 4113
duke@435 4114
duke@435 4115 BasicType TypeFunc::return_type() const{
duke@435 4116 if (range()->cnt() == TypeFunc::Parms) {
duke@435 4117 return T_VOID;
duke@435 4118 }
duke@435 4119 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 4120 }

mercurial