src/share/vm/opto/type.cpp

Tue, 04 Sep 2012 23:27:55 +0200

author
roland
date
Tue, 04 Sep 2012 23:27:55 +0200
changeset 4040
ca11db66f9de
parent 4037
da91efe96a93
child 4047
aed758eda82a
permissions
-rw-r--r--

7184649: NPG: Implement another MetdataPtr case
Summary: xmeet when both inputs are MetadataPtr.
Reviewed-by: kvn

duke@435 1 /*
kvn@3882 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
coleenp@4037 26 #include "ci/ciMethodData.hpp"
stefank@2314 27 #include "ci/ciTypeFlow.hpp"
stefank@2314 28 #include "classfile/symbolTable.hpp"
stefank@2314 29 #include "classfile/systemDictionary.hpp"
stefank@2314 30 #include "compiler/compileLog.hpp"
stefank@2314 31 #include "libadt/dict.hpp"
stefank@2314 32 #include "memory/gcLocker.hpp"
stefank@2314 33 #include "memory/oopFactory.hpp"
stefank@2314 34 #include "memory/resourceArea.hpp"
stefank@2314 35 #include "oops/instanceKlass.hpp"
never@2658 36 #include "oops/instanceMirrorKlass.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "oops/typeArrayKlass.hpp"
stefank@2314 39 #include "opto/matcher.hpp"
stefank@2314 40 #include "opto/node.hpp"
stefank@2314 41 #include "opto/opcodes.hpp"
stefank@2314 42 #include "opto/type.hpp"
stefank@2314 43
duke@435 44 // Portions of code courtesy of Clifford Click
duke@435 45
duke@435 46 // Optimization - Graph Style
duke@435 47
duke@435 48 // Dictionary of types shared among compilations.
duke@435 49 Dict* Type::_shared_type_dict = NULL;
duke@435 50
duke@435 51 // Array which maps compiler types to Basic Types
coleenp@4037 52 Type::TypeInfo Type::_type_info[Type::lastype] = {
coleenp@4037 53 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
coleenp@4037 54 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
coleenp@4037 55 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
coleenp@4037 56 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
coleenp@4037 57 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
coleenp@4037 58 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
coleenp@4037 59 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
coleenp@4037 60 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
coleenp@4037 61 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
coleenp@4037 62
coleenp@4037 63 #if defined(IA32) || defined(AMD64)
coleenp@4037 64 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS
coleenp@4037 65 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
coleenp@4037 66 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
coleenp@4037 67 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY
coleenp@4037 68 #else
coleenp@4037 69 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
coleenp@4037 70 { Bad, T_ILLEGAL, "vectord:", false, Op_RegD, relocInfo::none }, // VectorD
coleenp@4037 71 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
coleenp@4037 72 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
coleenp@4037 73 #endif // IA32 || AMD64
coleenp@4037 74 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr
coleenp@4037 75 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr
coleenp@4037 76 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr
coleenp@4037 77 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr
coleenp@4037 78 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr
coleenp@4037 79 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr
coleenp@4037 80 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr
coleenp@4037 81 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function
coleenp@4037 82 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio
coleenp@4037 83 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address
coleenp@4037 84 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory
coleenp@4037 85 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop
coleenp@4037 86 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon
coleenp@4037 87 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot
coleenp@4037 88 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop
coleenp@4037 89 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon
coleenp@4037 90 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot
coleenp@4037 91 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom
duke@435 92 };
duke@435 93
duke@435 94 // Map ideal registers (machine types) to ideal types
duke@435 95 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 96
duke@435 97 // Map basic types to canonical Type* pointers.
duke@435 98 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 99
duke@435 100 // Map basic types to constant-zero Types.
duke@435 101 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 102
duke@435 103 // Map basic types to array-body alias types.
duke@435 104 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 105
duke@435 106 //=============================================================================
duke@435 107 // Convenience common pre-built types.
duke@435 108 const Type *Type::ABIO; // State-of-machine only
duke@435 109 const Type *Type::BOTTOM; // All values
duke@435 110 const Type *Type::CONTROL; // Control only
duke@435 111 const Type *Type::DOUBLE; // All doubles
duke@435 112 const Type *Type::FLOAT; // All floats
duke@435 113 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 114 const Type *Type::MEMORY; // Abstract store only
duke@435 115 const Type *Type::RETURN_ADDRESS;
duke@435 116 const Type *Type::TOP; // No values in set
duke@435 117
duke@435 118 //------------------------------get_const_type---------------------------
duke@435 119 const Type* Type::get_const_type(ciType* type) {
duke@435 120 if (type == NULL) {
duke@435 121 return NULL;
duke@435 122 } else if (type->is_primitive_type()) {
duke@435 123 return get_const_basic_type(type->basic_type());
duke@435 124 } else {
duke@435 125 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 126 }
duke@435 127 }
duke@435 128
duke@435 129 //---------------------------array_element_basic_type---------------------------------
duke@435 130 // Mapping to the array element's basic type.
duke@435 131 BasicType Type::array_element_basic_type() const {
duke@435 132 BasicType bt = basic_type();
duke@435 133 if (bt == T_INT) {
duke@435 134 if (this == TypeInt::INT) return T_INT;
duke@435 135 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 136 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 137 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 138 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 139 return T_VOID;
duke@435 140 }
duke@435 141 return bt;
duke@435 142 }
duke@435 143
duke@435 144 //---------------------------get_typeflow_type---------------------------------
duke@435 145 // Import a type produced by ciTypeFlow.
duke@435 146 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 147 switch (type->basic_type()) {
duke@435 148
duke@435 149 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 150 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 151 return Type::BOTTOM;
duke@435 152
duke@435 153 case ciTypeFlow::StateVector::T_TOP:
duke@435 154 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 155 return Type::TOP;
duke@435 156
duke@435 157 case ciTypeFlow::StateVector::T_NULL:
duke@435 158 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 159 return TypePtr::NULL_PTR;
duke@435 160
duke@435 161 case ciTypeFlow::StateVector::T_LONG2:
duke@435 162 // The ciTypeFlow pass pushes a long, then the half.
duke@435 163 // We do the same.
duke@435 164 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 165 return TypeInt::TOP;
duke@435 166
duke@435 167 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 168 // The ciTypeFlow pass pushes double, then the half.
duke@435 169 // Our convention is the same.
duke@435 170 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 171 return Type::TOP;
duke@435 172
duke@435 173 case T_ADDRESS:
duke@435 174 assert(type->is_return_address(), "");
duke@435 175 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 176
duke@435 177 default:
duke@435 178 // make sure we did not mix up the cases:
duke@435 179 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 180 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 181 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 182 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 183 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 184 assert(!type->is_return_address(), "");
duke@435 185
duke@435 186 return Type::get_const_type(type);
duke@435 187 }
duke@435 188 }
duke@435 189
duke@435 190
duke@435 191 //------------------------------make-------------------------------------------
duke@435 192 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 193 // and look for an existing copy in the type dictionary.
duke@435 194 const Type *Type::make( enum TYPES t ) {
duke@435 195 return (new Type(t))->hashcons();
duke@435 196 }
kvn@658 197
duke@435 198 //------------------------------cmp--------------------------------------------
duke@435 199 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 200 if( t1->_base != t2->_base )
duke@435 201 return 1; // Missed badly
duke@435 202 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 203 return !t1->eq(t2); // Return ZERO if equal
duke@435 204 }
duke@435 205
duke@435 206 //------------------------------hash-------------------------------------------
duke@435 207 int Type::uhash( const Type *const t ) {
duke@435 208 return t->hash();
duke@435 209 }
duke@435 210
kvn@1975 211 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
kvn@1975 212
duke@435 213 //--------------------------Initialize_shared----------------------------------
duke@435 214 void Type::Initialize_shared(Compile* current) {
duke@435 215 // This method does not need to be locked because the first system
duke@435 216 // compilations (stub compilations) occur serially. If they are
duke@435 217 // changed to proceed in parallel, then this section will need
duke@435 218 // locking.
duke@435 219
duke@435 220 Arena* save = current->type_arena();
zgu@3900 221 Arena* shared_type_arena = new (mtCompiler)Arena();
duke@435 222
duke@435 223 current->set_type_arena(shared_type_arena);
duke@435 224 _shared_type_dict =
duke@435 225 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 226 shared_type_arena, 128 );
duke@435 227 current->set_type_dict(_shared_type_dict);
duke@435 228
duke@435 229 // Make shared pre-built types.
duke@435 230 CONTROL = make(Control); // Control only
duke@435 231 TOP = make(Top); // No values in set
duke@435 232 MEMORY = make(Memory); // Abstract store only
duke@435 233 ABIO = make(Abio); // State-of-machine only
duke@435 234 RETURN_ADDRESS=make(Return_Address);
duke@435 235 FLOAT = make(FloatBot); // All floats
duke@435 236 DOUBLE = make(DoubleBot); // All doubles
duke@435 237 BOTTOM = make(Bottom); // Everything
duke@435 238 HALF = make(Half); // Placeholder half of doublewide type
duke@435 239
duke@435 240 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 241 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 242
duke@435 243 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 244 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 245
duke@435 246 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 247 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 248 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 249 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 250 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 251 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 252 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 253 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 254 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 255 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 256 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
twisti@1059 257 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
duke@435 258 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 259 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 260 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 261 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 262 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 263 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
duke@435 264 // CmpL is overloaded both as the bytecode computation returning
duke@435 265 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 266 // compare returning optimizer ideal-type flags.
duke@435 267 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 268 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 269 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 270 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
kvn@1975 271 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 272
duke@435 273 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 274 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 275 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 276 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 277 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 278 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 279 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
duke@435 280
duke@435 281 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 282 fboth[0] = Type::CONTROL;
duke@435 283 fboth[1] = Type::CONTROL;
duke@435 284 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 285
duke@435 286 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 287 ffalse[0] = Type::CONTROL;
duke@435 288 ffalse[1] = Type::TOP;
duke@435 289 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 290
duke@435 291 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 292 fneither[0] = Type::TOP;
duke@435 293 fneither[1] = Type::TOP;
duke@435 294 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 295
duke@435 296 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 297 ftrue[0] = Type::TOP;
duke@435 298 ftrue[1] = Type::CONTROL;
duke@435 299 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 300
duke@435 301 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 302 floop[0] = Type::CONTROL;
duke@435 303 floop[1] = TypeInt::INT;
duke@435 304 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 305
duke@435 306 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 307 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 308 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 309
duke@435 310 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 311 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 312
duke@435 313 const Type **fmembar = TypeTuple::fields(0);
duke@435 314 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 315
duke@435 316 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 317 fsc[0] = TypeInt::CC;
duke@435 318 fsc[1] = Type::MEMORY;
duke@435 319 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 320
duke@435 321 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 322 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 323 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 324 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 325 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 326 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 327 false, 0, oopDesc::klass_offset_in_bytes());
kvn@1427 328 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
duke@435 329
coleenp@4037 330 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
coleenp@4037 331
coleenp@548 332 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 333 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 334
coleenp@548 335 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 336 mreg2type[Op_Set ] = 0;
coleenp@548 337 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 338 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 339 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 340 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 341 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 342 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 343 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 344
kvn@2116 345 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
kvn@598 346
kvn@598 347 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 348
kvn@598 349 #ifdef _LP64
kvn@598 350 if (UseCompressedOops) {
coleenp@4037 351 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
kvn@598 352 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 353 } else
kvn@598 354 #endif
kvn@598 355 {
kvn@598 356 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 357 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 358 }
duke@435 359 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 360 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 361 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 362 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 363 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 364 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 365 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 366
kvn@598 367 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 368 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 369 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 370 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 371 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 372 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 373 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 374 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 375 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 376 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 377 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 378 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 379
duke@435 380 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 381 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 382
duke@435 383 const Type **fi2c = TypeTuple::fields(2);
coleenp@4037 384 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
duke@435 385 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 386 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 387
duke@435 388 const Type **intpair = TypeTuple::fields(2);
duke@435 389 intpair[0] = TypeInt::INT;
duke@435 390 intpair[1] = TypeInt::INT;
duke@435 391 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 392
duke@435 393 const Type **longpair = TypeTuple::fields(2);
duke@435 394 longpair[0] = TypeLong::LONG;
duke@435 395 longpair[1] = TypeLong::LONG;
duke@435 396 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 397
coleenp@548 398 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
duke@435 399 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
duke@435 400 _const_basic_type[T_CHAR] = TypeInt::CHAR;
duke@435 401 _const_basic_type[T_BYTE] = TypeInt::BYTE;
duke@435 402 _const_basic_type[T_SHORT] = TypeInt::SHORT;
duke@435 403 _const_basic_type[T_INT] = TypeInt::INT;
duke@435 404 _const_basic_type[T_LONG] = TypeLong::LONG;
duke@435 405 _const_basic_type[T_FLOAT] = Type::FLOAT;
duke@435 406 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
duke@435 407 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
duke@435 408 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
duke@435 409 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
duke@435 410 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
duke@435 411 _const_basic_type[T_CONFLICT]= Type::BOTTOM; // why not?
duke@435 412
coleenp@548 413 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
duke@435 414 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
duke@435 415 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
duke@435 416 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
duke@435 417 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
duke@435 418 _zero_type[T_INT] = TypeInt::ZERO;
duke@435 419 _zero_type[T_LONG] = TypeLong::ZERO;
duke@435 420 _zero_type[T_FLOAT] = TypeF::ZERO;
duke@435 421 _zero_type[T_DOUBLE] = TypeD::ZERO;
duke@435 422 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
duke@435 423 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
duke@435 424 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
duke@435 425 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 426
duke@435 427 // get_zero_type() should not happen for T_CONFLICT
duke@435 428 _zero_type[T_CONFLICT]= NULL;
duke@435 429
kvn@3882 430 // Vector predefined types, it needs initialized _const_basic_type[].
kvn@3882 431 if (Matcher::vector_size_supported(T_BYTE,4)) {
kvn@3882 432 TypeVect::VECTS = TypeVect::make(T_BYTE,4);
kvn@3882 433 }
kvn@3882 434 if (Matcher::vector_size_supported(T_FLOAT,2)) {
kvn@3882 435 TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
kvn@3882 436 }
kvn@3882 437 if (Matcher::vector_size_supported(T_FLOAT,4)) {
kvn@3882 438 TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
kvn@3882 439 }
kvn@3882 440 if (Matcher::vector_size_supported(T_FLOAT,8)) {
kvn@3882 441 TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
kvn@3882 442 }
kvn@3882 443 mreg2type[Op_VecS] = TypeVect::VECTS;
kvn@3882 444 mreg2type[Op_VecD] = TypeVect::VECTD;
kvn@3882 445 mreg2type[Op_VecX] = TypeVect::VECTX;
kvn@3882 446 mreg2type[Op_VecY] = TypeVect::VECTY;
kvn@3882 447
duke@435 448 // Restore working type arena.
duke@435 449 current->set_type_arena(save);
duke@435 450 current->set_type_dict(NULL);
duke@435 451 }
duke@435 452
duke@435 453 //------------------------------Initialize-------------------------------------
duke@435 454 void Type::Initialize(Compile* current) {
duke@435 455 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 456
duke@435 457 if (_shared_type_dict == NULL) {
duke@435 458 Initialize_shared(current);
duke@435 459 }
duke@435 460
duke@435 461 Arena* type_arena = current->type_arena();
duke@435 462
duke@435 463 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 464 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 465 current->set_type_dict(tdic);
duke@435 466
duke@435 467 // Transfer the shared types.
duke@435 468 DictI i(_shared_type_dict);
duke@435 469 for( ; i.test(); ++i ) {
duke@435 470 Type* t = (Type*)i._value;
duke@435 471 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 472 }
duke@435 473 }
duke@435 474
duke@435 475 //------------------------------hashcons---------------------------------------
duke@435 476 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 477 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 478 // current Type in the Type table.
duke@435 479 const Type *Type::hashcons(void) {
duke@435 480 debug_only(base()); // Check the assertion in Type::base().
duke@435 481 // Look up the Type in the Type dictionary
duke@435 482 Dict *tdic = type_dict();
duke@435 483 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 484 if( old ) { // Pre-existing Type?
duke@435 485 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 486 delete this; // Yes, Nuke this guy
duke@435 487 assert( old->_dual, "" );
duke@435 488 return old; // Return pre-existing
duke@435 489 }
duke@435 490
duke@435 491 // Every type has a dual (to make my lattice symmetric).
duke@435 492 // Since we just discovered a new Type, compute its dual right now.
duke@435 493 assert( !_dual, "" ); // No dual yet
duke@435 494 _dual = xdual(); // Compute the dual
duke@435 495 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 496 _dual = this;
duke@435 497 return this;
duke@435 498 }
duke@435 499 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 500 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 501 // New Type, insert into Type table
duke@435 502 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 503 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 504 #ifdef ASSERT
duke@435 505 Type *dual_dual = (Type*)_dual->xdual();
duke@435 506 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 507 delete dual_dual;
duke@435 508 #endif
duke@435 509 return this; // Return new Type
duke@435 510 }
duke@435 511
duke@435 512 //------------------------------eq---------------------------------------------
duke@435 513 // Structural equality check for Type representations
duke@435 514 bool Type::eq( const Type * ) const {
duke@435 515 return true; // Nothing else can go wrong
duke@435 516 }
duke@435 517
duke@435 518 //------------------------------hash-------------------------------------------
duke@435 519 // Type-specific hashing function.
duke@435 520 int Type::hash(void) const {
duke@435 521 return _base;
duke@435 522 }
duke@435 523
duke@435 524 //------------------------------is_finite--------------------------------------
duke@435 525 // Has a finite value
duke@435 526 bool Type::is_finite() const {
duke@435 527 return false;
duke@435 528 }
duke@435 529
duke@435 530 //------------------------------is_nan-----------------------------------------
duke@435 531 // Is not a number (NaN)
duke@435 532 bool Type::is_nan() const {
duke@435 533 return false;
duke@435 534 }
duke@435 535
kvn@1255 536 //----------------------interface_vs_oop---------------------------------------
kvn@1255 537 #ifdef ASSERT
kvn@1255 538 bool Type::interface_vs_oop(const Type *t) const {
kvn@1255 539 bool result = false;
kvn@1255 540
kvn@1427 541 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
kvn@1427 542 const TypePtr* t_ptr = t->make_ptr();
kvn@1427 543 if( this_ptr == NULL || t_ptr == NULL )
kvn@1427 544 return result;
kvn@1427 545
kvn@1427 546 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
kvn@1427 547 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
kvn@1255 548 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
kvn@1255 549 bool this_interface = this_inst->klass()->is_interface();
kvn@1255 550 bool t_interface = t_inst->klass()->is_interface();
kvn@1255 551 result = this_interface ^ t_interface;
kvn@1255 552 }
kvn@1255 553
kvn@1255 554 return result;
kvn@1255 555 }
kvn@1255 556 #endif
kvn@1255 557
duke@435 558 //------------------------------meet-------------------------------------------
duke@435 559 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 560 // commutative and the lattice is symmetric.
duke@435 561 const Type *Type::meet( const Type *t ) const {
coleenp@548 562 if (isa_narrowoop() && t->isa_narrowoop()) {
kvn@656 563 const Type* result = make_ptr()->meet(t->make_ptr());
kvn@656 564 return result->make_narrowoop();
coleenp@548 565 }
coleenp@548 566
duke@435 567 const Type *mt = xmeet(t);
coleenp@548 568 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
duke@435 569 #ifdef ASSERT
duke@435 570 assert( mt == t->xmeet(this), "meet not commutative" );
duke@435 571 const Type* dual_join = mt->_dual;
duke@435 572 const Type *t2t = dual_join->xmeet(t->_dual);
duke@435 573 const Type *t2this = dual_join->xmeet( _dual);
duke@435 574
duke@435 575 // Interface meet Oop is Not Symmetric:
duke@435 576 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 577 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
kvn@1255 578
kvn@1255 579 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
duke@435 580 tty->print_cr("=== Meet Not Symmetric ===");
duke@435 581 tty->print("t = "); t->dump(); tty->cr();
duke@435 582 tty->print("this= "); dump(); tty->cr();
duke@435 583 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
duke@435 584
duke@435 585 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
duke@435 586 tty->print("this_dual= "); _dual->dump(); tty->cr();
duke@435 587 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
duke@435 588
duke@435 589 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
duke@435 590 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 591
duke@435 592 fatal("meet not symmetric" );
duke@435 593 }
duke@435 594 #endif
duke@435 595 return mt;
duke@435 596 }
duke@435 597
duke@435 598 //------------------------------xmeet------------------------------------------
duke@435 599 // Compute the MEET of two types. It returns a new Type object.
duke@435 600 const Type *Type::xmeet( const Type *t ) const {
duke@435 601 // Perform a fast test for common case; meeting the same types together.
duke@435 602 if( this == t ) return this; // Meeting same type-rep?
duke@435 603
duke@435 604 // Meeting TOP with anything?
duke@435 605 if( _base == Top ) return t;
duke@435 606
duke@435 607 // Meeting BOTTOM with anything?
duke@435 608 if( _base == Bottom ) return BOTTOM;
duke@435 609
duke@435 610 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 611 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 612 switch (t->base()) { // Switch on original type
duke@435 613
duke@435 614 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 615 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 616 case FloatCon:
duke@435 617 case DoubleCon:
duke@435 618 case Int:
duke@435 619 case Long:
duke@435 620 return t->xmeet(this);
duke@435 621
duke@435 622 case OopPtr:
duke@435 623 return t->xmeet(this);
duke@435 624
duke@435 625 case InstPtr:
duke@435 626 return t->xmeet(this);
duke@435 627
coleenp@4037 628 case MetadataPtr:
duke@435 629 case KlassPtr:
duke@435 630 return t->xmeet(this);
duke@435 631
duke@435 632 case AryPtr:
duke@435 633 return t->xmeet(this);
duke@435 634
coleenp@548 635 case NarrowOop:
coleenp@548 636 return t->xmeet(this);
coleenp@548 637
duke@435 638 case Bad: // Type check
duke@435 639 default: // Bogus type not in lattice
duke@435 640 typerr(t);
duke@435 641 return Type::BOTTOM;
duke@435 642
duke@435 643 case Bottom: // Ye Olde Default
duke@435 644 return t;
duke@435 645
duke@435 646 case FloatTop:
duke@435 647 if( _base == FloatTop ) return this;
duke@435 648 case FloatBot: // Float
duke@435 649 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 650 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 651 typerr(t);
duke@435 652 return Type::BOTTOM;
duke@435 653
duke@435 654 case DoubleTop:
duke@435 655 if( _base == DoubleTop ) return this;
duke@435 656 case DoubleBot: // Double
duke@435 657 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 658 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 659 typerr(t);
duke@435 660 return Type::BOTTOM;
duke@435 661
duke@435 662 // These next few cases must match exactly or it is a compile-time error.
duke@435 663 case Control: // Control of code
duke@435 664 case Abio: // State of world outside of program
duke@435 665 case Memory:
duke@435 666 if( _base == t->_base ) return this;
duke@435 667 typerr(t);
duke@435 668 return Type::BOTTOM;
duke@435 669
duke@435 670 case Top: // Top of the lattice
duke@435 671 return this;
duke@435 672 }
duke@435 673
duke@435 674 // The type is unchanged
duke@435 675 return this;
duke@435 676 }
duke@435 677
duke@435 678 //-----------------------------filter------------------------------------------
duke@435 679 const Type *Type::filter( const Type *kills ) const {
duke@435 680 const Type* ft = join(kills);
duke@435 681 if (ft->empty())
duke@435 682 return Type::TOP; // Canonical empty value
duke@435 683 return ft;
duke@435 684 }
duke@435 685
duke@435 686 //------------------------------xdual------------------------------------------
duke@435 687 // Compute dual right now.
duke@435 688 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 689 Bad, // Bad
duke@435 690 Control, // Control
duke@435 691 Bottom, // Top
duke@435 692 Bad, // Int - handled in v-call
duke@435 693 Bad, // Long - handled in v-call
duke@435 694 Half, // Half
coleenp@548 695 Bad, // NarrowOop - handled in v-call
duke@435 696
duke@435 697 Bad, // Tuple - handled in v-call
duke@435 698 Bad, // Array - handled in v-call
kvn@3882 699 Bad, // VectorS - handled in v-call
kvn@3882 700 Bad, // VectorD - handled in v-call
kvn@3882 701 Bad, // VectorX - handled in v-call
kvn@3882 702 Bad, // VectorY - handled in v-call
duke@435 703
duke@435 704 Bad, // AnyPtr - handled in v-call
duke@435 705 Bad, // RawPtr - handled in v-call
duke@435 706 Bad, // OopPtr - handled in v-call
duke@435 707 Bad, // InstPtr - handled in v-call
duke@435 708 Bad, // AryPtr - handled in v-call
coleenp@4037 709
coleenp@4037 710 Bad, // MetadataPtr - handled in v-call
duke@435 711 Bad, // KlassPtr - handled in v-call
duke@435 712
duke@435 713 Bad, // Function - handled in v-call
duke@435 714 Abio, // Abio
duke@435 715 Return_Address,// Return_Address
duke@435 716 Memory, // Memory
duke@435 717 FloatBot, // FloatTop
duke@435 718 FloatCon, // FloatCon
duke@435 719 FloatTop, // FloatBot
duke@435 720 DoubleBot, // DoubleTop
duke@435 721 DoubleCon, // DoubleCon
duke@435 722 DoubleTop, // DoubleBot
duke@435 723 Top // Bottom
duke@435 724 };
duke@435 725
duke@435 726 const Type *Type::xdual() const {
duke@435 727 // Note: the base() accessor asserts the sanity of _base.
coleenp@4037 728 assert(_type_info[base()].dual_type != Bad, "implement with v-call");
coleenp@4037 729 return new Type(_type_info[_base].dual_type);
duke@435 730 }
duke@435 731
duke@435 732 //------------------------------has_memory-------------------------------------
duke@435 733 bool Type::has_memory() const {
duke@435 734 Type::TYPES tx = base();
duke@435 735 if (tx == Memory) return true;
duke@435 736 if (tx == Tuple) {
duke@435 737 const TypeTuple *t = is_tuple();
duke@435 738 for (uint i=0; i < t->cnt(); i++) {
duke@435 739 tx = t->field_at(i)->base();
duke@435 740 if (tx == Memory) return true;
duke@435 741 }
duke@435 742 }
duke@435 743 return false;
duke@435 744 }
duke@435 745
duke@435 746 #ifndef PRODUCT
duke@435 747 //------------------------------dump2------------------------------------------
duke@435 748 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
coleenp@4037 749 st->print(_type_info[_base].msg);
duke@435 750 }
duke@435 751
duke@435 752 //------------------------------dump-------------------------------------------
duke@435 753 void Type::dump_on(outputStream *st) const {
duke@435 754 ResourceMark rm;
duke@435 755 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 756 dump2(d,1, st);
kvn@598 757 if (is_ptr_to_narrowoop()) {
coleenp@548 758 st->print(" [narrow]");
coleenp@548 759 }
duke@435 760 }
duke@435 761 #endif
duke@435 762
duke@435 763 //------------------------------singleton--------------------------------------
duke@435 764 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 765 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 766 bool Type::singleton(void) const {
duke@435 767 return _base == Top || _base == Half;
duke@435 768 }
duke@435 769
duke@435 770 //------------------------------empty------------------------------------------
duke@435 771 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 772 bool Type::empty(void) const {
duke@435 773 switch (_base) {
duke@435 774 case DoubleTop:
duke@435 775 case FloatTop:
duke@435 776 case Top:
duke@435 777 return true;
duke@435 778
duke@435 779 case Half:
duke@435 780 case Abio:
duke@435 781 case Return_Address:
duke@435 782 case Memory:
duke@435 783 case Bottom:
duke@435 784 case FloatBot:
duke@435 785 case DoubleBot:
duke@435 786 return false; // never a singleton, therefore never empty
duke@435 787 }
duke@435 788
duke@435 789 ShouldNotReachHere();
duke@435 790 return false;
duke@435 791 }
duke@435 792
duke@435 793 //------------------------------dump_stats-------------------------------------
duke@435 794 // Dump collected statistics to stderr
duke@435 795 #ifndef PRODUCT
duke@435 796 void Type::dump_stats() {
duke@435 797 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 798 }
duke@435 799 #endif
duke@435 800
duke@435 801 //------------------------------typerr-----------------------------------------
duke@435 802 void Type::typerr( const Type *t ) const {
duke@435 803 #ifndef PRODUCT
duke@435 804 tty->print("\nError mixing types: ");
duke@435 805 dump();
duke@435 806 tty->print(" and ");
duke@435 807 t->dump();
duke@435 808 tty->print("\n");
duke@435 809 #endif
duke@435 810 ShouldNotReachHere();
duke@435 811 }
duke@435 812
duke@435 813
duke@435 814 //=============================================================================
duke@435 815 // Convenience common pre-built types.
duke@435 816 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 817 const TypeF *TypeF::ONE; // Floating point one
duke@435 818
duke@435 819 //------------------------------make-------------------------------------------
duke@435 820 // Create a float constant
duke@435 821 const TypeF *TypeF::make(float f) {
duke@435 822 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 823 }
duke@435 824
duke@435 825 //------------------------------meet-------------------------------------------
duke@435 826 // Compute the MEET of two types. It returns a new Type object.
duke@435 827 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 828 // Perform a fast test for common case; meeting the same types together.
duke@435 829 if( this == t ) return this; // Meeting same type-rep?
duke@435 830
duke@435 831 // Current "this->_base" is FloatCon
duke@435 832 switch (t->base()) { // Switch on original type
duke@435 833 case AnyPtr: // Mixing with oops happens when javac
duke@435 834 case RawPtr: // reuses local variables
duke@435 835 case OopPtr:
duke@435 836 case InstPtr:
coleenp@4037 837 case AryPtr:
coleenp@4037 838 case MetadataPtr:
duke@435 839 case KlassPtr:
kvn@728 840 case NarrowOop:
duke@435 841 case Int:
duke@435 842 case Long:
duke@435 843 case DoubleTop:
duke@435 844 case DoubleCon:
duke@435 845 case DoubleBot:
duke@435 846 case Bottom: // Ye Olde Default
duke@435 847 return Type::BOTTOM;
duke@435 848
duke@435 849 case FloatBot:
duke@435 850 return t;
duke@435 851
duke@435 852 default: // All else is a mistake
duke@435 853 typerr(t);
duke@435 854
duke@435 855 case FloatCon: // Float-constant vs Float-constant?
duke@435 856 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 857 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 858 // all the same representation in C++
duke@435 859 return FLOAT; // Return generic float
duke@435 860 // Equal constants
duke@435 861 case Top:
duke@435 862 case FloatTop:
duke@435 863 break; // Return the float constant
duke@435 864 }
duke@435 865 return this; // Return the float constant
duke@435 866 }
duke@435 867
duke@435 868 //------------------------------xdual------------------------------------------
duke@435 869 // Dual: symmetric
duke@435 870 const Type *TypeF::xdual() const {
duke@435 871 return this;
duke@435 872 }
duke@435 873
duke@435 874 //------------------------------eq---------------------------------------------
duke@435 875 // Structural equality check for Type representations
duke@435 876 bool TypeF::eq( const Type *t ) const {
duke@435 877 if( g_isnan(_f) ||
duke@435 878 g_isnan(t->getf()) ) {
duke@435 879 // One or both are NANs. If both are NANs return true, else false.
duke@435 880 return (g_isnan(_f) && g_isnan(t->getf()));
duke@435 881 }
duke@435 882 if (_f == t->getf()) {
duke@435 883 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 884 if (_f == 0.0) {
duke@435 885 // difference between positive and negative zero
duke@435 886 if (jint_cast(_f) != jint_cast(t->getf())) return false;
duke@435 887 }
duke@435 888 return true;
duke@435 889 }
duke@435 890 return false;
duke@435 891 }
duke@435 892
duke@435 893 //------------------------------hash-------------------------------------------
duke@435 894 // Type-specific hashing function.
duke@435 895 int TypeF::hash(void) const {
duke@435 896 return *(int*)(&_f);
duke@435 897 }
duke@435 898
duke@435 899 //------------------------------is_finite--------------------------------------
duke@435 900 // Has a finite value
duke@435 901 bool TypeF::is_finite() const {
duke@435 902 return g_isfinite(getf()) != 0;
duke@435 903 }
duke@435 904
duke@435 905 //------------------------------is_nan-----------------------------------------
duke@435 906 // Is not a number (NaN)
duke@435 907 bool TypeF::is_nan() const {
duke@435 908 return g_isnan(getf()) != 0;
duke@435 909 }
duke@435 910
duke@435 911 //------------------------------dump2------------------------------------------
duke@435 912 // Dump float constant Type
duke@435 913 #ifndef PRODUCT
duke@435 914 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 915 Type::dump2(d,depth, st);
duke@435 916 st->print("%f", _f);
duke@435 917 }
duke@435 918 #endif
duke@435 919
duke@435 920 //------------------------------singleton--------------------------------------
duke@435 921 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 922 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 923 // or a single symbol.
duke@435 924 bool TypeF::singleton(void) const {
duke@435 925 return true; // Always a singleton
duke@435 926 }
duke@435 927
duke@435 928 bool TypeF::empty(void) const {
duke@435 929 return false; // always exactly a singleton
duke@435 930 }
duke@435 931
duke@435 932 //=============================================================================
duke@435 933 // Convenience common pre-built types.
duke@435 934 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 935 const TypeD *TypeD::ONE; // Floating point one
duke@435 936
duke@435 937 //------------------------------make-------------------------------------------
duke@435 938 const TypeD *TypeD::make(double d) {
duke@435 939 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 940 }
duke@435 941
duke@435 942 //------------------------------meet-------------------------------------------
duke@435 943 // Compute the MEET of two types. It returns a new Type object.
duke@435 944 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 945 // Perform a fast test for common case; meeting the same types together.
duke@435 946 if( this == t ) return this; // Meeting same type-rep?
duke@435 947
duke@435 948 // Current "this->_base" is DoubleCon
duke@435 949 switch (t->base()) { // Switch on original type
duke@435 950 case AnyPtr: // Mixing with oops happens when javac
duke@435 951 case RawPtr: // reuses local variables
duke@435 952 case OopPtr:
duke@435 953 case InstPtr:
coleenp@4037 954 case AryPtr:
coleenp@4037 955 case MetadataPtr:
duke@435 956 case KlassPtr:
never@618 957 case NarrowOop:
duke@435 958 case Int:
duke@435 959 case Long:
duke@435 960 case FloatTop:
duke@435 961 case FloatCon:
duke@435 962 case FloatBot:
duke@435 963 case Bottom: // Ye Olde Default
duke@435 964 return Type::BOTTOM;
duke@435 965
duke@435 966 case DoubleBot:
duke@435 967 return t;
duke@435 968
duke@435 969 default: // All else is a mistake
duke@435 970 typerr(t);
duke@435 971
duke@435 972 case DoubleCon: // Double-constant vs Double-constant?
duke@435 973 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 974 return DOUBLE; // Return generic double
duke@435 975 case Top:
duke@435 976 case DoubleTop:
duke@435 977 break;
duke@435 978 }
duke@435 979 return this; // Return the double constant
duke@435 980 }
duke@435 981
duke@435 982 //------------------------------xdual------------------------------------------
duke@435 983 // Dual: symmetric
duke@435 984 const Type *TypeD::xdual() const {
duke@435 985 return this;
duke@435 986 }
duke@435 987
duke@435 988 //------------------------------eq---------------------------------------------
duke@435 989 // Structural equality check for Type representations
duke@435 990 bool TypeD::eq( const Type *t ) const {
duke@435 991 if( g_isnan(_d) ||
duke@435 992 g_isnan(t->getd()) ) {
duke@435 993 // One or both are NANs. If both are NANs return true, else false.
duke@435 994 return (g_isnan(_d) && g_isnan(t->getd()));
duke@435 995 }
duke@435 996 if (_d == t->getd()) {
duke@435 997 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 998 if (_d == 0.0) {
duke@435 999 // difference between positive and negative zero
duke@435 1000 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
duke@435 1001 }
duke@435 1002 return true;
duke@435 1003 }
duke@435 1004 return false;
duke@435 1005 }
duke@435 1006
duke@435 1007 //------------------------------hash-------------------------------------------
duke@435 1008 // Type-specific hashing function.
duke@435 1009 int TypeD::hash(void) const {
duke@435 1010 return *(int*)(&_d);
duke@435 1011 }
duke@435 1012
duke@435 1013 //------------------------------is_finite--------------------------------------
duke@435 1014 // Has a finite value
duke@435 1015 bool TypeD::is_finite() const {
duke@435 1016 return g_isfinite(getd()) != 0;
duke@435 1017 }
duke@435 1018
duke@435 1019 //------------------------------is_nan-----------------------------------------
duke@435 1020 // Is not a number (NaN)
duke@435 1021 bool TypeD::is_nan() const {
duke@435 1022 return g_isnan(getd()) != 0;
duke@435 1023 }
duke@435 1024
duke@435 1025 //------------------------------dump2------------------------------------------
duke@435 1026 // Dump double constant Type
duke@435 1027 #ifndef PRODUCT
duke@435 1028 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1029 Type::dump2(d,depth,st);
duke@435 1030 st->print("%f", _d);
duke@435 1031 }
duke@435 1032 #endif
duke@435 1033
duke@435 1034 //------------------------------singleton--------------------------------------
duke@435 1035 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1036 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1037 // or a single symbol.
duke@435 1038 bool TypeD::singleton(void) const {
duke@435 1039 return true; // Always a singleton
duke@435 1040 }
duke@435 1041
duke@435 1042 bool TypeD::empty(void) const {
duke@435 1043 return false; // always exactly a singleton
duke@435 1044 }
duke@435 1045
duke@435 1046 //=============================================================================
duke@435 1047 // Convience common pre-built types.
duke@435 1048 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1049 const TypeInt *TypeInt::ZERO; // 0
duke@435 1050 const TypeInt *TypeInt::ONE; // 1
duke@435 1051 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1052 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1053 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1054 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1055 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1056 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1057 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1058 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
twisti@1059 1059 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
duke@435 1060 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1061 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1062 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1063 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1064 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1065 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 1066
duke@435 1067 //------------------------------TypeInt----------------------------------------
duke@435 1068 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1069 }
duke@435 1070
duke@435 1071 //------------------------------make-------------------------------------------
duke@435 1072 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1073 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1074 }
duke@435 1075
kvn@1975 1076 static int normalize_int_widen( jint lo, jint hi, int w ) {
duke@435 1077 // Certain normalizations keep us sane when comparing types.
duke@435 1078 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1079 if (lo <= hi) {
kvn@1975 1080 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1081 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
kvn@1975 1082 } else {
kvn@1975 1083 if ((juint)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1084 if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
duke@435 1085 }
kvn@1975 1086 return w;
kvn@1975 1087 }
kvn@1975 1088
kvn@1975 1089 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
kvn@1975 1090 w = normalize_int_widen(lo, hi, w);
duke@435 1091 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1092 }
duke@435 1093
duke@435 1094 //------------------------------meet-------------------------------------------
duke@435 1095 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1096 // with reference count equal to the number of Types pointing at it.
duke@435 1097 // Caller should wrap a Types around it.
duke@435 1098 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1099 // Perform a fast test for common case; meeting the same types together.
duke@435 1100 if( this == t ) return this; // Meeting same type?
duke@435 1101
duke@435 1102 // Currently "this->_base" is a TypeInt
duke@435 1103 switch (t->base()) { // Switch on original type
duke@435 1104 case AnyPtr: // Mixing with oops happens when javac
duke@435 1105 case RawPtr: // reuses local variables
duke@435 1106 case OopPtr:
duke@435 1107 case InstPtr:
coleenp@4037 1108 case AryPtr:
coleenp@4037 1109 case MetadataPtr:
duke@435 1110 case KlassPtr:
never@618 1111 case NarrowOop:
duke@435 1112 case Long:
duke@435 1113 case FloatTop:
duke@435 1114 case FloatCon:
duke@435 1115 case FloatBot:
duke@435 1116 case DoubleTop:
duke@435 1117 case DoubleCon:
duke@435 1118 case DoubleBot:
duke@435 1119 case Bottom: // Ye Olde Default
duke@435 1120 return Type::BOTTOM;
duke@435 1121 default: // All else is a mistake
duke@435 1122 typerr(t);
duke@435 1123 case Top: // No change
duke@435 1124 return this;
duke@435 1125 case Int: // Int vs Int?
duke@435 1126 break;
duke@435 1127 }
duke@435 1128
duke@435 1129 // Expand covered set
duke@435 1130 const TypeInt *r = t->is_int();
kvn@1975 1131 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1132 }
duke@435 1133
duke@435 1134 //------------------------------xdual------------------------------------------
duke@435 1135 // Dual: reverse hi & lo; flip widen
duke@435 1136 const Type *TypeInt::xdual() const {
kvn@1975 1137 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1138 return new TypeInt(_hi,_lo,w);
duke@435 1139 }
duke@435 1140
duke@435 1141 //------------------------------widen------------------------------------------
duke@435 1142 // Only happens for optimistic top-down optimizations.
never@1444 1143 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
duke@435 1144 // Coming from TOP or such; no widening
duke@435 1145 if( old->base() != Int ) return this;
duke@435 1146 const TypeInt *ot = old->is_int();
duke@435 1147
duke@435 1148 // If new guy is equal to old guy, no widening
duke@435 1149 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1150 return old;
duke@435 1151
duke@435 1152 // If new guy contains old, then we widened
duke@435 1153 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1154 // New contains old
duke@435 1155 // If new guy is already wider than old, no widening
duke@435 1156 if( _widen > ot->_widen ) return this;
duke@435 1157 // If old guy was a constant, do not bother
duke@435 1158 if (ot->_lo == ot->_hi) return this;
duke@435 1159 // Now widen new guy.
duke@435 1160 // Check for widening too far
duke@435 1161 if (_widen == WidenMax) {
never@1444 1162 int max = max_jint;
never@1444 1163 int min = min_jint;
never@1444 1164 if (limit->isa_int()) {
never@1444 1165 max = limit->is_int()->_hi;
never@1444 1166 min = limit->is_int()->_lo;
never@1444 1167 }
never@1444 1168 if (min < _lo && _hi < max) {
duke@435 1169 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1170 // which is closer to its respective limit.
duke@435 1171 if (_lo >= 0 || // easy common case
never@1444 1172 (juint)(_lo - min) >= (juint)(max - _hi)) {
duke@435 1173 // Try to widen to an unsigned range type of 31 bits:
never@1444 1174 return make(_lo, max, WidenMax);
duke@435 1175 } else {
never@1444 1176 return make(min, _hi, WidenMax);
duke@435 1177 }
duke@435 1178 }
duke@435 1179 return TypeInt::INT;
duke@435 1180 }
duke@435 1181 // Returned widened new guy
duke@435 1182 return make(_lo,_hi,_widen+1);
duke@435 1183 }
duke@435 1184
duke@435 1185 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1186 // bottom. Return the wider fellow.
duke@435 1187 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1188 return old;
duke@435 1189
duke@435 1190 //fatal("Integer value range is not subset");
duke@435 1191 //return this;
duke@435 1192 return TypeInt::INT;
duke@435 1193 }
duke@435 1194
duke@435 1195 //------------------------------narrow---------------------------------------
duke@435 1196 // Only happens for pessimistic optimizations.
duke@435 1197 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1198 if (_lo >= _hi) return this; // already narrow enough
duke@435 1199 if (old == NULL) return this;
duke@435 1200 const TypeInt* ot = old->isa_int();
duke@435 1201 if (ot == NULL) return this;
duke@435 1202 jint olo = ot->_lo;
duke@435 1203 jint ohi = ot->_hi;
duke@435 1204
duke@435 1205 // If new guy is equal to old guy, no narrowing
duke@435 1206 if (_lo == olo && _hi == ohi) return old;
duke@435 1207
duke@435 1208 // If old guy was maximum range, allow the narrowing
duke@435 1209 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1210
duke@435 1211 if (_lo < olo || _hi > ohi)
duke@435 1212 return this; // doesn't narrow; pretty wierd
duke@435 1213
duke@435 1214 // The new type narrows the old type, so look for a "death march".
duke@435 1215 // See comments on PhaseTransform::saturate.
duke@435 1216 juint nrange = _hi - _lo;
duke@435 1217 juint orange = ohi - olo;
duke@435 1218 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1219 // Use the new type only if the range shrinks a lot.
duke@435 1220 // We do not want the optimizer computing 2^31 point by point.
duke@435 1221 return old;
duke@435 1222 }
duke@435 1223
duke@435 1224 return this;
duke@435 1225 }
duke@435 1226
duke@435 1227 //-----------------------------filter------------------------------------------
duke@435 1228 const Type *TypeInt::filter( const Type *kills ) const {
duke@435 1229 const TypeInt* ft = join(kills)->isa_int();
kvn@1975 1230 if (ft == NULL || ft->empty())
duke@435 1231 return Type::TOP; // Canonical empty value
duke@435 1232 if (ft->_widen < this->_widen) {
duke@435 1233 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1234 // The widen bits must be allowed to run freely through the graph.
duke@435 1235 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1236 }
duke@435 1237 return ft;
duke@435 1238 }
duke@435 1239
duke@435 1240 //------------------------------eq---------------------------------------------
duke@435 1241 // Structural equality check for Type representations
duke@435 1242 bool TypeInt::eq( const Type *t ) const {
duke@435 1243 const TypeInt *r = t->is_int(); // Handy access
duke@435 1244 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1245 }
duke@435 1246
duke@435 1247 //------------------------------hash-------------------------------------------
duke@435 1248 // Type-specific hashing function.
duke@435 1249 int TypeInt::hash(void) const {
duke@435 1250 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1251 }
duke@435 1252
duke@435 1253 //------------------------------is_finite--------------------------------------
duke@435 1254 // Has a finite value
duke@435 1255 bool TypeInt::is_finite() const {
duke@435 1256 return true;
duke@435 1257 }
duke@435 1258
duke@435 1259 //------------------------------dump2------------------------------------------
duke@435 1260 // Dump TypeInt
duke@435 1261 #ifndef PRODUCT
duke@435 1262 static const char* intname(char* buf, jint n) {
duke@435 1263 if (n == min_jint)
duke@435 1264 return "min";
duke@435 1265 else if (n < min_jint + 10000)
duke@435 1266 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1267 else if (n == max_jint)
duke@435 1268 return "max";
duke@435 1269 else if (n > max_jint - 10000)
duke@435 1270 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1271 else
duke@435 1272 sprintf(buf, INT32_FORMAT, n);
duke@435 1273 return buf;
duke@435 1274 }
duke@435 1275
duke@435 1276 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1277 char buf[40], buf2[40];
duke@435 1278 if (_lo == min_jint && _hi == max_jint)
duke@435 1279 st->print("int");
duke@435 1280 else if (is_con())
duke@435 1281 st->print("int:%s", intname(buf, get_con()));
duke@435 1282 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1283 st->print("bool");
duke@435 1284 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1285 st->print("byte");
duke@435 1286 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1287 st->print("char");
duke@435 1288 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1289 st->print("short");
duke@435 1290 else if (_hi == max_jint)
duke@435 1291 st->print("int:>=%s", intname(buf, _lo));
duke@435 1292 else if (_lo == min_jint)
duke@435 1293 st->print("int:<=%s", intname(buf, _hi));
duke@435 1294 else
duke@435 1295 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1296
duke@435 1297 if (_widen != 0 && this != TypeInt::INT)
duke@435 1298 st->print(":%.*s", _widen, "wwww");
duke@435 1299 }
duke@435 1300 #endif
duke@435 1301
duke@435 1302 //------------------------------singleton--------------------------------------
duke@435 1303 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1304 // constants.
duke@435 1305 bool TypeInt::singleton(void) const {
duke@435 1306 return _lo >= _hi;
duke@435 1307 }
duke@435 1308
duke@435 1309 bool TypeInt::empty(void) const {
duke@435 1310 return _lo > _hi;
duke@435 1311 }
duke@435 1312
duke@435 1313 //=============================================================================
duke@435 1314 // Convenience common pre-built types.
duke@435 1315 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1316 const TypeLong *TypeLong::ZERO; // 0
duke@435 1317 const TypeLong *TypeLong::ONE; // 1
duke@435 1318 const TypeLong *TypeLong::POS; // >=0
duke@435 1319 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1320 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1321 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
duke@435 1322
duke@435 1323 //------------------------------TypeLong---------------------------------------
duke@435 1324 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1325 }
duke@435 1326
duke@435 1327 //------------------------------make-------------------------------------------
duke@435 1328 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1329 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1330 }
duke@435 1331
kvn@1975 1332 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
kvn@1975 1333 // Certain normalizations keep us sane when comparing types.
kvn@1975 1334 // The 'SMALLINT' covers constants.
kvn@1975 1335 if (lo <= hi) {
kvn@1975 1336 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1337 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
kvn@1975 1338 } else {
kvn@1975 1339 if ((julong)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1340 if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
kvn@1975 1341 }
kvn@1975 1342 return w;
kvn@1975 1343 }
kvn@1975 1344
duke@435 1345 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
kvn@1975 1346 w = normalize_long_widen(lo, hi, w);
duke@435 1347 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1348 }
duke@435 1349
duke@435 1350
duke@435 1351 //------------------------------meet-------------------------------------------
duke@435 1352 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1353 // with reference count equal to the number of Types pointing at it.
duke@435 1354 // Caller should wrap a Types around it.
duke@435 1355 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1356 // Perform a fast test for common case; meeting the same types together.
duke@435 1357 if( this == t ) return this; // Meeting same type?
duke@435 1358
duke@435 1359 // Currently "this->_base" is a TypeLong
duke@435 1360 switch (t->base()) { // Switch on original type
duke@435 1361 case AnyPtr: // Mixing with oops happens when javac
duke@435 1362 case RawPtr: // reuses local variables
duke@435 1363 case OopPtr:
duke@435 1364 case InstPtr:
coleenp@4037 1365 case AryPtr:
coleenp@4037 1366 case MetadataPtr:
duke@435 1367 case KlassPtr:
never@618 1368 case NarrowOop:
duke@435 1369 case Int:
duke@435 1370 case FloatTop:
duke@435 1371 case FloatCon:
duke@435 1372 case FloatBot:
duke@435 1373 case DoubleTop:
duke@435 1374 case DoubleCon:
duke@435 1375 case DoubleBot:
duke@435 1376 case Bottom: // Ye Olde Default
duke@435 1377 return Type::BOTTOM;
duke@435 1378 default: // All else is a mistake
duke@435 1379 typerr(t);
duke@435 1380 case Top: // No change
duke@435 1381 return this;
duke@435 1382 case Long: // Long vs Long?
duke@435 1383 break;
duke@435 1384 }
duke@435 1385
duke@435 1386 // Expand covered set
duke@435 1387 const TypeLong *r = t->is_long(); // Turn into a TypeLong
kvn@1975 1388 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1389 }
duke@435 1390
duke@435 1391 //------------------------------xdual------------------------------------------
duke@435 1392 // Dual: reverse hi & lo; flip widen
duke@435 1393 const Type *TypeLong::xdual() const {
kvn@1975 1394 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1395 return new TypeLong(_hi,_lo,w);
duke@435 1396 }
duke@435 1397
duke@435 1398 //------------------------------widen------------------------------------------
duke@435 1399 // Only happens for optimistic top-down optimizations.
never@1444 1400 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
duke@435 1401 // Coming from TOP or such; no widening
duke@435 1402 if( old->base() != Long ) return this;
duke@435 1403 const TypeLong *ot = old->is_long();
duke@435 1404
duke@435 1405 // If new guy is equal to old guy, no widening
duke@435 1406 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1407 return old;
duke@435 1408
duke@435 1409 // If new guy contains old, then we widened
duke@435 1410 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1411 // New contains old
duke@435 1412 // If new guy is already wider than old, no widening
duke@435 1413 if( _widen > ot->_widen ) return this;
duke@435 1414 // If old guy was a constant, do not bother
duke@435 1415 if (ot->_lo == ot->_hi) return this;
duke@435 1416 // Now widen new guy.
duke@435 1417 // Check for widening too far
duke@435 1418 if (_widen == WidenMax) {
never@1444 1419 jlong max = max_jlong;
never@1444 1420 jlong min = min_jlong;
never@1444 1421 if (limit->isa_long()) {
never@1444 1422 max = limit->is_long()->_hi;
never@1444 1423 min = limit->is_long()->_lo;
never@1444 1424 }
never@1444 1425 if (min < _lo && _hi < max) {
duke@435 1426 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1427 // which is closer to its respective limit.
duke@435 1428 if (_lo >= 0 || // easy common case
never@1444 1429 (julong)(_lo - min) >= (julong)(max - _hi)) {
duke@435 1430 // Try to widen to an unsigned range type of 32/63 bits:
never@1444 1431 if (max >= max_juint && _hi < max_juint)
duke@435 1432 return make(_lo, max_juint, WidenMax);
duke@435 1433 else
never@1444 1434 return make(_lo, max, WidenMax);
duke@435 1435 } else {
never@1444 1436 return make(min, _hi, WidenMax);
duke@435 1437 }
duke@435 1438 }
duke@435 1439 return TypeLong::LONG;
duke@435 1440 }
duke@435 1441 // Returned widened new guy
duke@435 1442 return make(_lo,_hi,_widen+1);
duke@435 1443 }
duke@435 1444
duke@435 1445 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1446 // bottom. Return the wider fellow.
duke@435 1447 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1448 return old;
duke@435 1449
duke@435 1450 // fatal("Long value range is not subset");
duke@435 1451 // return this;
duke@435 1452 return TypeLong::LONG;
duke@435 1453 }
duke@435 1454
duke@435 1455 //------------------------------narrow----------------------------------------
duke@435 1456 // Only happens for pessimistic optimizations.
duke@435 1457 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1458 if (_lo >= _hi) return this; // already narrow enough
duke@435 1459 if (old == NULL) return this;
duke@435 1460 const TypeLong* ot = old->isa_long();
duke@435 1461 if (ot == NULL) return this;
duke@435 1462 jlong olo = ot->_lo;
duke@435 1463 jlong ohi = ot->_hi;
duke@435 1464
duke@435 1465 // If new guy is equal to old guy, no narrowing
duke@435 1466 if (_lo == olo && _hi == ohi) return old;
duke@435 1467
duke@435 1468 // If old guy was maximum range, allow the narrowing
duke@435 1469 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1470
duke@435 1471 if (_lo < olo || _hi > ohi)
duke@435 1472 return this; // doesn't narrow; pretty wierd
duke@435 1473
duke@435 1474 // The new type narrows the old type, so look for a "death march".
duke@435 1475 // See comments on PhaseTransform::saturate.
duke@435 1476 julong nrange = _hi - _lo;
duke@435 1477 julong orange = ohi - olo;
duke@435 1478 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1479 // Use the new type only if the range shrinks a lot.
duke@435 1480 // We do not want the optimizer computing 2^31 point by point.
duke@435 1481 return old;
duke@435 1482 }
duke@435 1483
duke@435 1484 return this;
duke@435 1485 }
duke@435 1486
duke@435 1487 //-----------------------------filter------------------------------------------
duke@435 1488 const Type *TypeLong::filter( const Type *kills ) const {
duke@435 1489 const TypeLong* ft = join(kills)->isa_long();
kvn@1975 1490 if (ft == NULL || ft->empty())
duke@435 1491 return Type::TOP; // Canonical empty value
duke@435 1492 if (ft->_widen < this->_widen) {
duke@435 1493 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1494 // The widen bits must be allowed to run freely through the graph.
duke@435 1495 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1496 }
duke@435 1497 return ft;
duke@435 1498 }
duke@435 1499
duke@435 1500 //------------------------------eq---------------------------------------------
duke@435 1501 // Structural equality check for Type representations
duke@435 1502 bool TypeLong::eq( const Type *t ) const {
duke@435 1503 const TypeLong *r = t->is_long(); // Handy access
duke@435 1504 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1505 }
duke@435 1506
duke@435 1507 //------------------------------hash-------------------------------------------
duke@435 1508 // Type-specific hashing function.
duke@435 1509 int TypeLong::hash(void) const {
duke@435 1510 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1511 }
duke@435 1512
duke@435 1513 //------------------------------is_finite--------------------------------------
duke@435 1514 // Has a finite value
duke@435 1515 bool TypeLong::is_finite() const {
duke@435 1516 return true;
duke@435 1517 }
duke@435 1518
duke@435 1519 //------------------------------dump2------------------------------------------
duke@435 1520 // Dump TypeLong
duke@435 1521 #ifndef PRODUCT
duke@435 1522 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1523 if (n > x) {
duke@435 1524 if (n >= x + 10000) return NULL;
duke@435 1525 sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
duke@435 1526 } else if (n < x) {
duke@435 1527 if (n <= x - 10000) return NULL;
duke@435 1528 sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
duke@435 1529 } else {
duke@435 1530 return xname;
duke@435 1531 }
duke@435 1532 return buf;
duke@435 1533 }
duke@435 1534
duke@435 1535 static const char* longname(char* buf, jlong n) {
duke@435 1536 const char* str;
duke@435 1537 if (n == min_jlong)
duke@435 1538 return "min";
duke@435 1539 else if (n < min_jlong + 10000)
duke@435 1540 sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
duke@435 1541 else if (n == max_jlong)
duke@435 1542 return "max";
duke@435 1543 else if (n > max_jlong - 10000)
duke@435 1544 sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
duke@435 1545 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1546 return str;
duke@435 1547 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1548 return str;
duke@435 1549 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1550 return str;
duke@435 1551 else
duke@435 1552 sprintf(buf, INT64_FORMAT, n);
duke@435 1553 return buf;
duke@435 1554 }
duke@435 1555
duke@435 1556 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1557 char buf[80], buf2[80];
duke@435 1558 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1559 st->print("long");
duke@435 1560 else if (is_con())
duke@435 1561 st->print("long:%s", longname(buf, get_con()));
duke@435 1562 else if (_hi == max_jlong)
duke@435 1563 st->print("long:>=%s", longname(buf, _lo));
duke@435 1564 else if (_lo == min_jlong)
duke@435 1565 st->print("long:<=%s", longname(buf, _hi));
duke@435 1566 else
duke@435 1567 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1568
duke@435 1569 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1570 st->print(":%.*s", _widen, "wwww");
duke@435 1571 }
duke@435 1572 #endif
duke@435 1573
duke@435 1574 //------------------------------singleton--------------------------------------
duke@435 1575 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1576 // constants
duke@435 1577 bool TypeLong::singleton(void) const {
duke@435 1578 return _lo >= _hi;
duke@435 1579 }
duke@435 1580
duke@435 1581 bool TypeLong::empty(void) const {
duke@435 1582 return _lo > _hi;
duke@435 1583 }
duke@435 1584
duke@435 1585 //=============================================================================
duke@435 1586 // Convenience common pre-built types.
duke@435 1587 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1588 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1589 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1590 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1591 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1592 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1593 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1594 const TypeTuple *TypeTuple::START_I2C;
duke@435 1595 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1596 const TypeTuple *TypeTuple::LONG_PAIR;
duke@435 1597
duke@435 1598
duke@435 1599 //------------------------------make-------------------------------------------
duke@435 1600 // Make a TypeTuple from the range of a method signature
duke@435 1601 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1602 ciType* return_type = sig->return_type();
duke@435 1603 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1604 const Type **field_array = fields(total_fields);
duke@435 1605 switch (return_type->basic_type()) {
duke@435 1606 case T_LONG:
duke@435 1607 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1608 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1609 break;
duke@435 1610 case T_DOUBLE:
duke@435 1611 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1612 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1613 break;
duke@435 1614 case T_OBJECT:
duke@435 1615 case T_ARRAY:
duke@435 1616 case T_BOOLEAN:
duke@435 1617 case T_CHAR:
duke@435 1618 case T_FLOAT:
duke@435 1619 case T_BYTE:
duke@435 1620 case T_SHORT:
duke@435 1621 case T_INT:
duke@435 1622 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1623 break;
duke@435 1624 case T_VOID:
duke@435 1625 break;
duke@435 1626 default:
duke@435 1627 ShouldNotReachHere();
duke@435 1628 }
duke@435 1629 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1630 }
duke@435 1631
duke@435 1632 // Make a TypeTuple from the domain of a method signature
duke@435 1633 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1634 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1635
duke@435 1636 uint pos = TypeFunc::Parms;
duke@435 1637 const Type **field_array;
duke@435 1638 if (recv != NULL) {
duke@435 1639 total_fields++;
duke@435 1640 field_array = fields(total_fields);
duke@435 1641 // Use get_const_type here because it respects UseUniqueSubclasses:
duke@435 1642 field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
duke@435 1643 } else {
duke@435 1644 field_array = fields(total_fields);
duke@435 1645 }
duke@435 1646
duke@435 1647 int i = 0;
duke@435 1648 while (pos < total_fields) {
duke@435 1649 ciType* type = sig->type_at(i);
duke@435 1650
duke@435 1651 switch (type->basic_type()) {
duke@435 1652 case T_LONG:
duke@435 1653 field_array[pos++] = TypeLong::LONG;
duke@435 1654 field_array[pos++] = Type::HALF;
duke@435 1655 break;
duke@435 1656 case T_DOUBLE:
duke@435 1657 field_array[pos++] = Type::DOUBLE;
duke@435 1658 field_array[pos++] = Type::HALF;
duke@435 1659 break;
duke@435 1660 case T_OBJECT:
duke@435 1661 case T_ARRAY:
duke@435 1662 case T_BOOLEAN:
duke@435 1663 case T_CHAR:
duke@435 1664 case T_FLOAT:
duke@435 1665 case T_BYTE:
duke@435 1666 case T_SHORT:
duke@435 1667 case T_INT:
duke@435 1668 field_array[pos++] = get_const_type(type);
duke@435 1669 break;
duke@435 1670 default:
duke@435 1671 ShouldNotReachHere();
duke@435 1672 }
duke@435 1673 i++;
duke@435 1674 }
duke@435 1675 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1676 }
duke@435 1677
duke@435 1678 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1679 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1680 }
duke@435 1681
duke@435 1682 //------------------------------fields-----------------------------------------
duke@435 1683 // Subroutine call type with space allocated for argument types
duke@435 1684 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1685 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1686 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1687 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1688 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1689 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1690 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1691
duke@435 1692 return flds;
duke@435 1693 }
duke@435 1694
duke@435 1695 //------------------------------meet-------------------------------------------
duke@435 1696 // Compute the MEET of two types. It returns a new Type object.
duke@435 1697 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1698 // Perform a fast test for common case; meeting the same types together.
duke@435 1699 if( this == t ) return this; // Meeting same type-rep?
duke@435 1700
duke@435 1701 // Current "this->_base" is Tuple
duke@435 1702 switch (t->base()) { // switch on original type
duke@435 1703
duke@435 1704 case Bottom: // Ye Olde Default
duke@435 1705 return t;
duke@435 1706
duke@435 1707 default: // All else is a mistake
duke@435 1708 typerr(t);
duke@435 1709
duke@435 1710 case Tuple: { // Meeting 2 signatures?
duke@435 1711 const TypeTuple *x = t->is_tuple();
duke@435 1712 assert( _cnt == x->_cnt, "" );
duke@435 1713 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1714 for( uint i=0; i<_cnt; i++ )
duke@435 1715 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1716 return TypeTuple::make(_cnt,fields);
duke@435 1717 }
duke@435 1718 case Top:
duke@435 1719 break;
duke@435 1720 }
duke@435 1721 return this; // Return the double constant
duke@435 1722 }
duke@435 1723
duke@435 1724 //------------------------------xdual------------------------------------------
duke@435 1725 // Dual: compute field-by-field dual
duke@435 1726 const Type *TypeTuple::xdual() const {
duke@435 1727 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1728 for( uint i=0; i<_cnt; i++ )
duke@435 1729 fields[i] = _fields[i]->dual();
duke@435 1730 return new TypeTuple(_cnt,fields);
duke@435 1731 }
duke@435 1732
duke@435 1733 //------------------------------eq---------------------------------------------
duke@435 1734 // Structural equality check for Type representations
duke@435 1735 bool TypeTuple::eq( const Type *t ) const {
duke@435 1736 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1737 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1738 for (uint i = 0; i < _cnt; i++)
duke@435 1739 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1740 return false; // Missed
duke@435 1741 return true;
duke@435 1742 }
duke@435 1743
duke@435 1744 //------------------------------hash-------------------------------------------
duke@435 1745 // Type-specific hashing function.
duke@435 1746 int TypeTuple::hash(void) const {
duke@435 1747 intptr_t sum = _cnt;
duke@435 1748 for( uint i=0; i<_cnt; i++ )
duke@435 1749 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1750 return sum;
duke@435 1751 }
duke@435 1752
duke@435 1753 //------------------------------dump2------------------------------------------
duke@435 1754 // Dump signature Type
duke@435 1755 #ifndef PRODUCT
duke@435 1756 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1757 st->print("{");
duke@435 1758 if( !depth || d[this] ) { // Check for recursive print
duke@435 1759 st->print("...}");
duke@435 1760 return;
duke@435 1761 }
duke@435 1762 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1763 if( _cnt ) {
duke@435 1764 uint i;
duke@435 1765 for( i=0; i<_cnt-1; i++ ) {
duke@435 1766 st->print("%d:", i);
duke@435 1767 _fields[i]->dump2(d, depth-1, st);
duke@435 1768 st->print(", ");
duke@435 1769 }
duke@435 1770 st->print("%d:", i);
duke@435 1771 _fields[i]->dump2(d, depth-1, st);
duke@435 1772 }
duke@435 1773 st->print("}");
duke@435 1774 }
duke@435 1775 #endif
duke@435 1776
duke@435 1777 //------------------------------singleton--------------------------------------
duke@435 1778 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1779 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1780 // or a single symbol.
duke@435 1781 bool TypeTuple::singleton(void) const {
duke@435 1782 return false; // Never a singleton
duke@435 1783 }
duke@435 1784
duke@435 1785 bool TypeTuple::empty(void) const {
duke@435 1786 for( uint i=0; i<_cnt; i++ ) {
duke@435 1787 if (_fields[i]->empty()) return true;
duke@435 1788 }
duke@435 1789 return false;
duke@435 1790 }
duke@435 1791
duke@435 1792 //=============================================================================
duke@435 1793 // Convenience common pre-built types.
duke@435 1794
duke@435 1795 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1796 // Certain normalizations keep us sane when comparing types.
duke@435 1797 // We do not want arrayOop variables to differ only by the wideness
duke@435 1798 // of their index types. Pick minimum wideness, since that is the
duke@435 1799 // forced wideness of small ranges anyway.
duke@435 1800 if (size->_widen != Type::WidenMin)
duke@435 1801 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1802 else
duke@435 1803 return size;
duke@435 1804 }
duke@435 1805
duke@435 1806 //------------------------------make-------------------------------------------
duke@435 1807 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
coleenp@548 1808 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1809 elem = elem->make_narrowoop();
coleenp@548 1810 }
duke@435 1811 size = normalize_array_size(size);
duke@435 1812 return (TypeAry*)(new TypeAry(elem,size))->hashcons();
duke@435 1813 }
duke@435 1814
duke@435 1815 //------------------------------meet-------------------------------------------
duke@435 1816 // Compute the MEET of two types. It returns a new Type object.
duke@435 1817 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1818 // Perform a fast test for common case; meeting the same types together.
duke@435 1819 if( this == t ) return this; // Meeting same type-rep?
duke@435 1820
duke@435 1821 // Current "this->_base" is Ary
duke@435 1822 switch (t->base()) { // switch on original type
duke@435 1823
duke@435 1824 case Bottom: // Ye Olde Default
duke@435 1825 return t;
duke@435 1826
duke@435 1827 default: // All else is a mistake
duke@435 1828 typerr(t);
duke@435 1829
duke@435 1830 case Array: { // Meeting 2 arrays?
duke@435 1831 const TypeAry *a = t->is_ary();
duke@435 1832 return TypeAry::make(_elem->meet(a->_elem),
duke@435 1833 _size->xmeet(a->_size)->is_int());
duke@435 1834 }
duke@435 1835 case Top:
duke@435 1836 break;
duke@435 1837 }
duke@435 1838 return this; // Return the double constant
duke@435 1839 }
duke@435 1840
duke@435 1841 //------------------------------xdual------------------------------------------
duke@435 1842 // Dual: compute field-by-field dual
duke@435 1843 const Type *TypeAry::xdual() const {
duke@435 1844 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1845 size_dual = normalize_array_size(size_dual);
duke@435 1846 return new TypeAry( _elem->dual(), size_dual);
duke@435 1847 }
duke@435 1848
duke@435 1849 //------------------------------eq---------------------------------------------
duke@435 1850 // Structural equality check for Type representations
duke@435 1851 bool TypeAry::eq( const Type *t ) const {
duke@435 1852 const TypeAry *a = (const TypeAry*)t;
duke@435 1853 return _elem == a->_elem &&
duke@435 1854 _size == a->_size;
duke@435 1855 }
duke@435 1856
duke@435 1857 //------------------------------hash-------------------------------------------
duke@435 1858 // Type-specific hashing function.
duke@435 1859 int TypeAry::hash(void) const {
duke@435 1860 return (intptr_t)_elem + (intptr_t)_size;
duke@435 1861 }
duke@435 1862
kvn@1255 1863 //----------------------interface_vs_oop---------------------------------------
kvn@1255 1864 #ifdef ASSERT
kvn@1255 1865 bool TypeAry::interface_vs_oop(const Type *t) const {
kvn@1255 1866 const TypeAry* t_ary = t->is_ary();
kvn@1255 1867 if (t_ary) {
kvn@1255 1868 return _elem->interface_vs_oop(t_ary->_elem);
kvn@1255 1869 }
kvn@1255 1870 return false;
kvn@1255 1871 }
kvn@1255 1872 #endif
kvn@1255 1873
duke@435 1874 //------------------------------dump2------------------------------------------
duke@435 1875 #ifndef PRODUCT
duke@435 1876 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1877 _elem->dump2(d, depth, st);
duke@435 1878 st->print("[");
duke@435 1879 _size->dump2(d, depth, st);
duke@435 1880 st->print("]");
duke@435 1881 }
duke@435 1882 #endif
duke@435 1883
duke@435 1884 //------------------------------singleton--------------------------------------
duke@435 1885 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1886 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1887 // or a single symbol.
duke@435 1888 bool TypeAry::singleton(void) const {
duke@435 1889 return false; // Never a singleton
duke@435 1890 }
duke@435 1891
duke@435 1892 bool TypeAry::empty(void) const {
duke@435 1893 return _elem->empty() || _size->empty();
duke@435 1894 }
duke@435 1895
duke@435 1896 //--------------------------ary_must_be_exact----------------------------------
duke@435 1897 bool TypeAry::ary_must_be_exact() const {
duke@435 1898 if (!UseExactTypes) return false;
duke@435 1899 // This logic looks at the element type of an array, and returns true
duke@435 1900 // if the element type is either a primitive or a final instance class.
duke@435 1901 // In such cases, an array built on this ary must have no subclasses.
duke@435 1902 if (_elem == BOTTOM) return false; // general array not exact
duke@435 1903 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 1904 const TypeOopPtr* toop = NULL;
kvn@656 1905 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 1906 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 1907 } else {
coleenp@548 1908 toop = _elem->isa_oopptr();
coleenp@548 1909 }
duke@435 1910 if (!toop) return true; // a primitive type, like int
duke@435 1911 ciKlass* tklass = toop->klass();
duke@435 1912 if (tklass == NULL) return false; // unloaded class
duke@435 1913 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 1914 const TypeInstPtr* tinst;
coleenp@548 1915 if (_elem->isa_narrowoop())
kvn@656 1916 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 1917 else
coleenp@548 1918 tinst = _elem->isa_instptr();
kvn@656 1919 if (tinst)
kvn@656 1920 return tklass->as_instance_klass()->is_final();
coleenp@548 1921 const TypeAryPtr* tap;
coleenp@548 1922 if (_elem->isa_narrowoop())
kvn@656 1923 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 1924 else
coleenp@548 1925 tap = _elem->isa_aryptr();
kvn@656 1926 if (tap)
kvn@656 1927 return tap->ary()->ary_must_be_exact();
duke@435 1928 return false;
duke@435 1929 }
duke@435 1930
kvn@3882 1931 //==============================TypeVect=======================================
kvn@3882 1932 // Convenience common pre-built types.
kvn@3882 1933 const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors
kvn@3882 1934 const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors
kvn@3882 1935 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
kvn@3882 1936 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
kvn@3882 1937
kvn@3882 1938 //------------------------------make-------------------------------------------
kvn@3882 1939 const TypeVect* TypeVect::make(const Type *elem, uint length) {
kvn@3882 1940 BasicType elem_bt = elem->array_element_basic_type();
kvn@3882 1941 assert(is_java_primitive(elem_bt), "only primitive types in vector");
kvn@3882 1942 assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
kvn@3882 1943 assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
kvn@3882 1944 int size = length * type2aelembytes(elem_bt);
kvn@3882 1945 switch (Matcher::vector_ideal_reg(size)) {
kvn@3882 1946 case Op_VecS:
kvn@3882 1947 return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
kvn@3882 1948 case Op_VecD:
kvn@3882 1949 case Op_RegD:
kvn@3882 1950 return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
kvn@3882 1951 case Op_VecX:
kvn@3882 1952 return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
kvn@3882 1953 case Op_VecY:
kvn@3882 1954 return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
kvn@3882 1955 }
kvn@3882 1956 ShouldNotReachHere();
kvn@3882 1957 return NULL;
kvn@3882 1958 }
kvn@3882 1959
kvn@3882 1960 //------------------------------meet-------------------------------------------
kvn@3882 1961 // Compute the MEET of two types. It returns a new Type object.
kvn@3882 1962 const Type *TypeVect::xmeet( const Type *t ) const {
kvn@3882 1963 // Perform a fast test for common case; meeting the same types together.
kvn@3882 1964 if( this == t ) return this; // Meeting same type-rep?
kvn@3882 1965
kvn@3882 1966 // Current "this->_base" is Vector
kvn@3882 1967 switch (t->base()) { // switch on original type
kvn@3882 1968
kvn@3882 1969 case Bottom: // Ye Olde Default
kvn@3882 1970 return t;
kvn@3882 1971
kvn@3882 1972 default: // All else is a mistake
kvn@3882 1973 typerr(t);
kvn@3882 1974
kvn@3882 1975 case VectorS:
kvn@3882 1976 case VectorD:
kvn@3882 1977 case VectorX:
kvn@3882 1978 case VectorY: { // Meeting 2 vectors?
kvn@3882 1979 const TypeVect* v = t->is_vect();
kvn@3882 1980 assert( base() == v->base(), "");
kvn@3882 1981 assert(length() == v->length(), "");
kvn@3882 1982 assert(element_basic_type() == v->element_basic_type(), "");
kvn@3882 1983 return TypeVect::make(_elem->xmeet(v->_elem), _length);
kvn@3882 1984 }
kvn@3882 1985 case Top:
kvn@3882 1986 break;
kvn@3882 1987 }
kvn@3882 1988 return this;
kvn@3882 1989 }
kvn@3882 1990
kvn@3882 1991 //------------------------------xdual------------------------------------------
kvn@3882 1992 // Dual: compute field-by-field dual
kvn@3882 1993 const Type *TypeVect::xdual() const {
kvn@3882 1994 return new TypeVect(base(), _elem->dual(), _length);
kvn@3882 1995 }
kvn@3882 1996
kvn@3882 1997 //------------------------------eq---------------------------------------------
kvn@3882 1998 // Structural equality check for Type representations
kvn@3882 1999 bool TypeVect::eq(const Type *t) const {
kvn@3882 2000 const TypeVect *v = t->is_vect();
kvn@3882 2001 return (_elem == v->_elem) && (_length == v->_length);
kvn@3882 2002 }
kvn@3882 2003
kvn@3882 2004 //------------------------------hash-------------------------------------------
kvn@3882 2005 // Type-specific hashing function.
kvn@3882 2006 int TypeVect::hash(void) const {
kvn@3882 2007 return (intptr_t)_elem + (intptr_t)_length;
kvn@3882 2008 }
kvn@3882 2009
kvn@3882 2010 //------------------------------singleton--------------------------------------
kvn@3882 2011 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
kvn@3882 2012 // constants (Ldi nodes). Vector is singleton if all elements are the same
kvn@3882 2013 // constant value (when vector is created with Replicate code).
kvn@3882 2014 bool TypeVect::singleton(void) const {
kvn@3882 2015 // There is no Con node for vectors yet.
kvn@3882 2016 // return _elem->singleton();
kvn@3882 2017 return false;
kvn@3882 2018 }
kvn@3882 2019
kvn@3882 2020 bool TypeVect::empty(void) const {
kvn@3882 2021 return _elem->empty();
kvn@3882 2022 }
kvn@3882 2023
kvn@3882 2024 //------------------------------dump2------------------------------------------
kvn@3882 2025 #ifndef PRODUCT
kvn@3882 2026 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
kvn@3882 2027 switch (base()) {
kvn@3882 2028 case VectorS:
kvn@3882 2029 st->print("vectors["); break;
kvn@3882 2030 case VectorD:
kvn@3882 2031 st->print("vectord["); break;
kvn@3882 2032 case VectorX:
kvn@3882 2033 st->print("vectorx["); break;
kvn@3882 2034 case VectorY:
kvn@3882 2035 st->print("vectory["); break;
kvn@3882 2036 default:
kvn@3882 2037 ShouldNotReachHere();
kvn@3882 2038 }
kvn@3882 2039 st->print("%d]:{", _length);
kvn@3882 2040 _elem->dump2(d, depth, st);
kvn@3882 2041 st->print("}");
kvn@3882 2042 }
kvn@3882 2043 #endif
kvn@3882 2044
kvn@3882 2045
duke@435 2046 //=============================================================================
duke@435 2047 // Convenience common pre-built types.
duke@435 2048 const TypePtr *TypePtr::NULL_PTR;
duke@435 2049 const TypePtr *TypePtr::NOTNULL;
duke@435 2050 const TypePtr *TypePtr::BOTTOM;
duke@435 2051
duke@435 2052 //------------------------------meet-------------------------------------------
duke@435 2053 // Meet over the PTR enum
duke@435 2054 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 2055 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 2056 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 2057 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2058 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2059 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 2060 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 2061 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 2062 };
duke@435 2063
duke@435 2064 //------------------------------make-------------------------------------------
duke@435 2065 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 2066 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 2067 }
duke@435 2068
duke@435 2069 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2070 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2071 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 2072 if( ptr == _ptr ) return this;
duke@435 2073 return make(_base, ptr, _offset);
duke@435 2074 }
duke@435 2075
duke@435 2076 //------------------------------get_con----------------------------------------
duke@435 2077 intptr_t TypePtr::get_con() const {
duke@435 2078 assert( _ptr == Null, "" );
duke@435 2079 return _offset;
duke@435 2080 }
duke@435 2081
duke@435 2082 //------------------------------meet-------------------------------------------
duke@435 2083 // Compute the MEET of two types. It returns a new Type object.
duke@435 2084 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 2085 // Perform a fast test for common case; meeting the same types together.
duke@435 2086 if( this == t ) return this; // Meeting same type-rep?
duke@435 2087
duke@435 2088 // Current "this->_base" is AnyPtr
duke@435 2089 switch (t->base()) { // switch on original type
duke@435 2090 case Int: // Mixing ints & oops happens when javac
duke@435 2091 case Long: // reuses local variables
duke@435 2092 case FloatTop:
duke@435 2093 case FloatCon:
duke@435 2094 case FloatBot:
duke@435 2095 case DoubleTop:
duke@435 2096 case DoubleCon:
duke@435 2097 case DoubleBot:
coleenp@548 2098 case NarrowOop:
duke@435 2099 case Bottom: // Ye Olde Default
duke@435 2100 return Type::BOTTOM;
duke@435 2101 case Top:
duke@435 2102 return this;
duke@435 2103
duke@435 2104 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2105 const TypePtr *tp = t->is_ptr();
duke@435 2106 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 2107 }
duke@435 2108 case RawPtr: // For these, flip the call around to cut down
duke@435 2109 case OopPtr:
duke@435 2110 case InstPtr: // on the cases I have to handle.
coleenp@4037 2111 case AryPtr:
coleenp@4037 2112 case MetadataPtr:
duke@435 2113 case KlassPtr:
duke@435 2114 return t->xmeet(this); // Call in reverse direction
duke@435 2115 default: // All else is a mistake
duke@435 2116 typerr(t);
duke@435 2117
duke@435 2118 }
duke@435 2119 return this;
duke@435 2120 }
duke@435 2121
duke@435 2122 //------------------------------meet_offset------------------------------------
duke@435 2123 int TypePtr::meet_offset( int offset ) const {
duke@435 2124 // Either is 'TOP' offset? Return the other offset!
duke@435 2125 if( _offset == OffsetTop ) return offset;
duke@435 2126 if( offset == OffsetTop ) return _offset;
duke@435 2127 // If either is different, return 'BOTTOM' offset
duke@435 2128 if( _offset != offset ) return OffsetBot;
duke@435 2129 return _offset;
duke@435 2130 }
duke@435 2131
duke@435 2132 //------------------------------dual_offset------------------------------------
duke@435 2133 int TypePtr::dual_offset( ) const {
duke@435 2134 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 2135 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 2136 return _offset; // Map everything else into self
duke@435 2137 }
duke@435 2138
duke@435 2139 //------------------------------xdual------------------------------------------
duke@435 2140 // Dual: compute field-by-field dual
duke@435 2141 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 2142 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 2143 };
duke@435 2144 const Type *TypePtr::xdual() const {
duke@435 2145 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 2146 }
duke@435 2147
kvn@741 2148 //------------------------------xadd_offset------------------------------------
kvn@741 2149 int TypePtr::xadd_offset( intptr_t offset ) const {
kvn@741 2150 // Adding to 'TOP' offset? Return 'TOP'!
kvn@741 2151 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
kvn@741 2152 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
kvn@741 2153 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
kvn@741 2154 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
kvn@741 2155 offset += (intptr_t)_offset;
kvn@741 2156 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
kvn@741 2157
kvn@741 2158 // assert( _offset >= 0 && _offset+offset >= 0, "" );
kvn@741 2159 // It is possible to construct a negative offset during PhaseCCP
kvn@741 2160
kvn@741 2161 return (int)offset; // Sum valid offsets
kvn@741 2162 }
kvn@741 2163
duke@435 2164 //------------------------------add_offset-------------------------------------
kvn@741 2165 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
kvn@741 2166 return make( AnyPtr, _ptr, xadd_offset(offset) );
duke@435 2167 }
duke@435 2168
duke@435 2169 //------------------------------eq---------------------------------------------
duke@435 2170 // Structural equality check for Type representations
duke@435 2171 bool TypePtr::eq( const Type *t ) const {
duke@435 2172 const TypePtr *a = (const TypePtr*)t;
duke@435 2173 return _ptr == a->ptr() && _offset == a->offset();
duke@435 2174 }
duke@435 2175
duke@435 2176 //------------------------------hash-------------------------------------------
duke@435 2177 // Type-specific hashing function.
duke@435 2178 int TypePtr::hash(void) const {
duke@435 2179 return _ptr + _offset;
duke@435 2180 }
duke@435 2181
duke@435 2182 //------------------------------dump2------------------------------------------
duke@435 2183 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 2184 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 2185 };
duke@435 2186
duke@435 2187 #ifndef PRODUCT
duke@435 2188 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2189 if( _ptr == Null ) st->print("NULL");
duke@435 2190 else st->print("%s *", ptr_msg[_ptr]);
duke@435 2191 if( _offset == OffsetTop ) st->print("+top");
duke@435 2192 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 2193 else if( _offset ) st->print("+%d", _offset);
duke@435 2194 }
duke@435 2195 #endif
duke@435 2196
duke@435 2197 //------------------------------singleton--------------------------------------
duke@435 2198 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2199 // constants
duke@435 2200 bool TypePtr::singleton(void) const {
duke@435 2201 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2202 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2203 }
duke@435 2204
duke@435 2205 bool TypePtr::empty(void) const {
duke@435 2206 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2207 }
duke@435 2208
duke@435 2209 //=============================================================================
duke@435 2210 // Convenience common pre-built types.
duke@435 2211 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2212 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2213
duke@435 2214 //------------------------------make-------------------------------------------
duke@435 2215 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2216 assert( ptr != Constant, "what is the constant?" );
duke@435 2217 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2218 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2219 }
duke@435 2220
duke@435 2221 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2222 assert( bits, "Use TypePtr for NULL" );
duke@435 2223 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2224 }
duke@435 2225
duke@435 2226 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2227 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2228 assert( ptr != Constant, "what is the constant?" );
duke@435 2229 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2230 assert( _bits==0, "Why cast a constant address?");
duke@435 2231 if( ptr == _ptr ) return this;
duke@435 2232 return make(ptr);
duke@435 2233 }
duke@435 2234
duke@435 2235 //------------------------------get_con----------------------------------------
duke@435 2236 intptr_t TypeRawPtr::get_con() const {
duke@435 2237 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2238 return (intptr_t)_bits;
duke@435 2239 }
duke@435 2240
duke@435 2241 //------------------------------meet-------------------------------------------
duke@435 2242 // Compute the MEET of two types. It returns a new Type object.
duke@435 2243 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2244 // Perform a fast test for common case; meeting the same types together.
duke@435 2245 if( this == t ) return this; // Meeting same type-rep?
duke@435 2246
duke@435 2247 // Current "this->_base" is RawPtr
duke@435 2248 switch( t->base() ) { // switch on original type
duke@435 2249 case Bottom: // Ye Olde Default
duke@435 2250 return t;
duke@435 2251 case Top:
duke@435 2252 return this;
duke@435 2253 case AnyPtr: // Meeting to AnyPtrs
duke@435 2254 break;
duke@435 2255 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2256 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2257 enum PTR ptr = meet_ptr( tptr );
duke@435 2258 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2259 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2260 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2261 ptr = NotNull; // Fall down in lattice
duke@435 2262 }
duke@435 2263 return make( ptr );
duke@435 2264 }
duke@435 2265
duke@435 2266 case OopPtr:
duke@435 2267 case InstPtr:
coleenp@4037 2268 case AryPtr:
coleenp@4037 2269 case MetadataPtr:
duke@435 2270 case KlassPtr:
duke@435 2271 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2272 default: // All else is a mistake
duke@435 2273 typerr(t);
duke@435 2274 }
duke@435 2275
duke@435 2276 // Found an AnyPtr type vs self-RawPtr type
duke@435 2277 const TypePtr *tp = t->is_ptr();
duke@435 2278 switch (tp->ptr()) {
duke@435 2279 case TypePtr::TopPTR: return this;
duke@435 2280 case TypePtr::BotPTR: return t;
duke@435 2281 case TypePtr::Null:
duke@435 2282 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2283 return TypeRawPtr::BOTTOM;
duke@435 2284 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2285 case TypePtr::AnyNull:
duke@435 2286 if( _ptr == TypePtr::Constant) return this;
duke@435 2287 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2288 default: ShouldNotReachHere();
duke@435 2289 }
duke@435 2290 return this;
duke@435 2291 }
duke@435 2292
duke@435 2293 //------------------------------xdual------------------------------------------
duke@435 2294 // Dual: compute field-by-field dual
duke@435 2295 const Type *TypeRawPtr::xdual() const {
duke@435 2296 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2297 }
duke@435 2298
duke@435 2299 //------------------------------add_offset-------------------------------------
kvn@741 2300 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
duke@435 2301 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2302 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2303 if( offset == 0 ) return this; // No change
duke@435 2304 switch (_ptr) {
duke@435 2305 case TypePtr::TopPTR:
duke@435 2306 case TypePtr::BotPTR:
duke@435 2307 case TypePtr::NotNull:
duke@435 2308 return this;
duke@435 2309 case TypePtr::Null:
kvn@2435 2310 case TypePtr::Constant: {
kvn@2435 2311 address bits = _bits+offset;
kvn@2435 2312 if ( bits == 0 ) return TypePtr::NULL_PTR;
kvn@2435 2313 return make( bits );
kvn@2435 2314 }
duke@435 2315 default: ShouldNotReachHere();
duke@435 2316 }
duke@435 2317 return NULL; // Lint noise
duke@435 2318 }
duke@435 2319
duke@435 2320 //------------------------------eq---------------------------------------------
duke@435 2321 // Structural equality check for Type representations
duke@435 2322 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2323 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2324 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2325 }
duke@435 2326
duke@435 2327 //------------------------------hash-------------------------------------------
duke@435 2328 // Type-specific hashing function.
duke@435 2329 int TypeRawPtr::hash(void) const {
duke@435 2330 return (intptr_t)_bits + TypePtr::hash();
duke@435 2331 }
duke@435 2332
duke@435 2333 //------------------------------dump2------------------------------------------
duke@435 2334 #ifndef PRODUCT
duke@435 2335 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2336 if( _ptr == Constant )
duke@435 2337 st->print(INTPTR_FORMAT, _bits);
duke@435 2338 else
duke@435 2339 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2340 }
duke@435 2341 #endif
duke@435 2342
duke@435 2343 //=============================================================================
duke@435 2344 // Convenience common pre-built type.
duke@435 2345 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2346
kvn@598 2347 //------------------------------TypeOopPtr-------------------------------------
kvn@598 2348 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
kvn@598 2349 : TypePtr(t, ptr, offset),
kvn@598 2350 _const_oop(o), _klass(k),
kvn@598 2351 _klass_is_exact(xk),
kvn@598 2352 _is_ptr_to_narrowoop(false),
kvn@598 2353 _instance_id(instance_id) {
kvn@598 2354 #ifdef _LP64
kvn@598 2355 if (UseCompressedOops && _offset != 0) {
coleenp@4037 2356 if (_offset == oopDesc::klass_offset_in_bytes()) {
coleenp@4037 2357 _is_ptr_to_narrowoop = UseCompressedKlassPointers;
coleenp@4037 2358 } else if (klass() == NULL) {
coleenp@4037 2359 // Array with unknown body type
kvn@598 2360 assert(this->isa_aryptr(), "only arrays without klass");
kvn@598 2361 _is_ptr_to_narrowoop = true;
kvn@598 2362 } else if (this->isa_aryptr()) {
kvn@598 2363 _is_ptr_to_narrowoop = (klass()->is_obj_array_klass() &&
kvn@598 2364 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2365 } else if (klass()->is_instance_klass()) {
kvn@598 2366 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2367 ciField* field = NULL;
kvn@598 2368 if (this->isa_klassptr()) {
never@2658 2369 // Perm objects don't use compressed references
kvn@598 2370 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2371 // unsafe access
kvn@598 2372 _is_ptr_to_narrowoop = true;
kvn@598 2373 } else { // exclude unsafe ops
kvn@598 2374 assert(this->isa_instptr(), "must be an instance ptr.");
never@2658 2375
never@2658 2376 if (klass() == ciEnv::current()->Class_klass() &&
never@2658 2377 (_offset == java_lang_Class::klass_offset_in_bytes() ||
never@2658 2378 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
never@2658 2379 // Special hidden fields from the Class.
never@2658 2380 assert(this->isa_instptr(), "must be an instance ptr.");
coleenp@4037 2381 _is_ptr_to_narrowoop = false;
never@2658 2382 } else if (klass() == ciEnv::current()->Class_klass() &&
never@2658 2383 _offset >= instanceMirrorKlass::offset_of_static_fields()) {
never@2658 2384 // Static fields
never@2658 2385 assert(o != NULL, "must be constant");
never@2658 2386 ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 2387 ciField* field = k->get_field_by_offset(_offset, true);
never@2658 2388 assert(field != NULL, "missing field");
kvn@598 2389 BasicType basic_elem_type = field->layout_type();
kvn@598 2390 _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
kvn@598 2391 basic_elem_type == T_ARRAY);
kvn@598 2392 } else {
never@2658 2393 // Instance fields which contains a compressed oop references.
never@2658 2394 field = ik->get_field_by_offset(_offset, false);
never@2658 2395 if (field != NULL) {
never@2658 2396 BasicType basic_elem_type = field->layout_type();
never@2658 2397 _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
never@2658 2398 basic_elem_type == T_ARRAY);
never@2658 2399 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
never@2658 2400 // Compile::find_alias_type() cast exactness on all types to verify
never@2658 2401 // that it does not affect alias type.
never@2658 2402 _is_ptr_to_narrowoop = true;
never@2658 2403 } else {
never@2658 2404 // Type for the copy start in LibraryCallKit::inline_native_clone().
never@2658 2405 _is_ptr_to_narrowoop = true;
never@2658 2406 }
kvn@598 2407 }
kvn@598 2408 }
kvn@598 2409 }
kvn@598 2410 }
kvn@598 2411 #endif
kvn@598 2412 }
kvn@598 2413
duke@435 2414 //------------------------------make-------------------------------------------
duke@435 2415 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
kvn@1393 2416 int offset, int instance_id) {
duke@435 2417 assert(ptr != Constant, "no constant generic pointers");
coleenp@4037 2418 ciKlass* k = Compile::current()->env()->Object_klass();
duke@435 2419 bool xk = false;
duke@435 2420 ciObject* o = NULL;
kvn@1393 2421 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
duke@435 2422 }
duke@435 2423
duke@435 2424
duke@435 2425 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2426 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2427 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2428 if( ptr == _ptr ) return this;
kvn@1427 2429 return make(ptr, _offset, _instance_id);
duke@435 2430 }
duke@435 2431
kvn@682 2432 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2433 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2434 // There are no instances of a general oop.
duke@435 2435 // Return self unchanged.
duke@435 2436 return this;
duke@435 2437 }
duke@435 2438
duke@435 2439 //-----------------------------cast_to_exactness-------------------------------
duke@435 2440 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2441 // There is no such thing as an exact general oop.
duke@435 2442 // Return self unchanged.
duke@435 2443 return this;
duke@435 2444 }
duke@435 2445
duke@435 2446
duke@435 2447 //------------------------------as_klass_type----------------------------------
duke@435 2448 // Return the klass type corresponding to this instance or array type.
duke@435 2449 // It is the type that is loaded from an object of this type.
duke@435 2450 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2451 ciKlass* k = klass();
duke@435 2452 bool xk = klass_is_exact();
coleenp@4037 2453 if (k == NULL)
duke@435 2454 return TypeKlassPtr::OBJECT;
duke@435 2455 else
duke@435 2456 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2457 }
duke@435 2458
duke@435 2459
duke@435 2460 //------------------------------meet-------------------------------------------
duke@435 2461 // Compute the MEET of two types. It returns a new Type object.
duke@435 2462 const Type *TypeOopPtr::xmeet( const Type *t ) const {
duke@435 2463 // Perform a fast test for common case; meeting the same types together.
duke@435 2464 if( this == t ) return this; // Meeting same type-rep?
duke@435 2465
duke@435 2466 // Current "this->_base" is OopPtr
duke@435 2467 switch (t->base()) { // switch on original type
duke@435 2468
duke@435 2469 case Int: // Mixing ints & oops happens when javac
duke@435 2470 case Long: // reuses local variables
duke@435 2471 case FloatTop:
duke@435 2472 case FloatCon:
duke@435 2473 case FloatBot:
duke@435 2474 case DoubleTop:
duke@435 2475 case DoubleCon:
duke@435 2476 case DoubleBot:
kvn@728 2477 case NarrowOop:
duke@435 2478 case Bottom: // Ye Olde Default
duke@435 2479 return Type::BOTTOM;
duke@435 2480 case Top:
duke@435 2481 return this;
duke@435 2482
duke@435 2483 default: // All else is a mistake
duke@435 2484 typerr(t);
duke@435 2485
duke@435 2486 case RawPtr:
coleenp@4037 2487 case MetadataPtr:
coleenp@4037 2488 case KlassPtr:
duke@435 2489 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2490
duke@435 2491 case AnyPtr: {
duke@435 2492 // Found an AnyPtr type vs self-OopPtr type
duke@435 2493 const TypePtr *tp = t->is_ptr();
duke@435 2494 int offset = meet_offset(tp->offset());
duke@435 2495 PTR ptr = meet_ptr(tp->ptr());
duke@435 2496 switch (tp->ptr()) {
duke@435 2497 case Null:
duke@435 2498 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2499 // else fall through:
duke@435 2500 case TopPTR:
kvn@1427 2501 case AnyNull: {
kvn@1427 2502 int instance_id = meet_instance_id(InstanceTop);
kvn@1427 2503 return make(ptr, offset, instance_id);
kvn@1427 2504 }
duke@435 2505 case BotPTR:
duke@435 2506 case NotNull:
duke@435 2507 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2508 default: typerr(t);
duke@435 2509 }
duke@435 2510 }
duke@435 2511
duke@435 2512 case OopPtr: { // Meeting to other OopPtrs
duke@435 2513 const TypeOopPtr *tp = t->is_oopptr();
kvn@1393 2514 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 2515 return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
duke@435 2516 }
duke@435 2517
duke@435 2518 case InstPtr: // For these, flip the call around to cut down
duke@435 2519 case AryPtr:
duke@435 2520 return t->xmeet(this); // Call in reverse direction
duke@435 2521
duke@435 2522 } // End of switch
duke@435 2523 return this; // Return the double constant
duke@435 2524 }
duke@435 2525
duke@435 2526
duke@435 2527 //------------------------------xdual------------------------------------------
duke@435 2528 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2529 const Type *TypeOopPtr::xdual() const {
coleenp@4037 2530 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
duke@435 2531 assert(const_oop() == NULL, "no constants here");
kvn@658 2532 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 2533 }
duke@435 2534
duke@435 2535 //--------------------------make_from_klass_common-----------------------------
duke@435 2536 // Computes the element-type given a klass.
duke@435 2537 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2538 if (klass->is_instance_klass()) {
duke@435 2539 Compile* C = Compile::current();
duke@435 2540 Dependencies* deps = C->dependencies();
duke@435 2541 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2542 // Element is an instance
duke@435 2543 bool klass_is_exact = false;
duke@435 2544 if (klass->is_loaded()) {
duke@435 2545 // Try to set klass_is_exact.
duke@435 2546 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2547 klass_is_exact = ik->is_final();
duke@435 2548 if (!klass_is_exact && klass_change
duke@435 2549 && deps != NULL && UseUniqueSubclasses) {
duke@435 2550 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2551 if (sub != NULL) {
duke@435 2552 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2553 klass = ik = sub;
duke@435 2554 klass_is_exact = sub->is_final();
duke@435 2555 }
duke@435 2556 }
duke@435 2557 if (!klass_is_exact && try_for_exact
duke@435 2558 && deps != NULL && UseExactTypes) {
duke@435 2559 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2560 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2561 deps->assert_leaf_type(ik);
duke@435 2562 klass_is_exact = true;
duke@435 2563 }
duke@435 2564 }
duke@435 2565 }
duke@435 2566 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2567 } else if (klass->is_obj_array_klass()) {
duke@435 2568 // Element is an object array. Recursively call ourself.
duke@435 2569 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2570 bool xk = etype->klass_is_exact();
duke@435 2571 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2572 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2573 // are all not-null. This is not true in generally, as code can
duke@435 2574 // slam NULLs down in the subarrays.
duke@435 2575 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2576 return arr;
duke@435 2577 } else if (klass->is_type_array_klass()) {
duke@435 2578 // Element is an typeArray
duke@435 2579 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2580 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2581 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2582 // is not-null. That was not true in general.
duke@435 2583 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2584 return arr;
duke@435 2585 } else {
duke@435 2586 ShouldNotReachHere();
duke@435 2587 return NULL;
duke@435 2588 }
duke@435 2589 }
duke@435 2590
duke@435 2591 //------------------------------make_from_constant-----------------------------
duke@435 2592 // Make a java pointer from an oop constant
jrose@1424 2593 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
duke@435 2594 assert(!o->is_null_object(), "null object not yet handled here.");
twisti@3885 2595 ciKlass* klass = o->klass();
duke@435 2596 if (klass->is_instance_klass()) {
duke@435 2597 // Element is an instance
jrose@1424 2598 if (require_constant) {
jrose@1424 2599 if (!o->can_be_constant()) return NULL;
jrose@1424 2600 } else if (!o->should_be_constant()) {
duke@435 2601 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
duke@435 2602 }
duke@435 2603 return TypeInstPtr::make(o);
duke@435 2604 } else if (klass->is_obj_array_klass()) {
duke@435 2605 // Element is an object array. Recursively call ourself.
coleenp@4037 2606 const Type *etype =
coleenp@4037 2607 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
duke@435 2608 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2609 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2610 // are all not-null. This is not true in generally, as code can
duke@435 2611 // slam NULLs down in the subarrays.
jrose@1424 2612 if (require_constant) {
jrose@1424 2613 if (!o->can_be_constant()) return NULL;
jrose@1424 2614 } else if (!o->should_be_constant()) {
duke@435 2615 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2616 }
coleenp@4037 2617 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
coleenp@4037 2618 return arr;
duke@435 2619 } else if (klass->is_type_array_klass()) {
duke@435 2620 // Element is an typeArray
coleenp@4037 2621 const Type* etype =
coleenp@4037 2622 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2623 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2624 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2625 // is not-null. That was not true in general.
jrose@1424 2626 if (require_constant) {
jrose@1424 2627 if (!o->can_be_constant()) return NULL;
jrose@1424 2628 } else if (!o->should_be_constant()) {
duke@435 2629 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2630 }
coleenp@4037 2631 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
coleenp@4037 2632 return arr;
duke@435 2633 }
duke@435 2634
twisti@3885 2635 fatal("unhandled object type");
duke@435 2636 return NULL;
duke@435 2637 }
duke@435 2638
duke@435 2639 //------------------------------get_con----------------------------------------
duke@435 2640 intptr_t TypeOopPtr::get_con() const {
duke@435 2641 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2642 assert( _offset >= 0, "" );
duke@435 2643
duke@435 2644 if (_offset != 0) {
duke@435 2645 // After being ported to the compiler interface, the compiler no longer
duke@435 2646 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2647 // to a handle at compile time. This handle is embedded in the generated
duke@435 2648 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2649 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2650 // have access to the addresses!). This does not seem to currently happen,
twisti@1040 2651 // but this assertion here is to help prevent its occurence.
duke@435 2652 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2653 ShouldNotReachHere();
duke@435 2654 }
duke@435 2655
jrose@1424 2656 return (intptr_t)const_oop()->constant_encoding();
duke@435 2657 }
duke@435 2658
duke@435 2659
duke@435 2660 //-----------------------------filter------------------------------------------
duke@435 2661 // Do not allow interface-vs.-noninterface joins to collapse to top.
duke@435 2662 const Type *TypeOopPtr::filter( const Type *kills ) const {
duke@435 2663
duke@435 2664 const Type* ft = join(kills);
duke@435 2665 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2666 const TypeInstPtr* ktip = kills->isa_instptr();
never@990 2667 const TypeKlassPtr* ftkp = ft->isa_klassptr();
never@990 2668 const TypeKlassPtr* ktkp = kills->isa_klassptr();
duke@435 2669
duke@435 2670 if (ft->empty()) {
duke@435 2671 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2672 // interface. This can happen because the bytecodes do not contain
duke@435 2673 // enough type info to distinguish a Java-level interface variable
duke@435 2674 // from a Java-level object variable. If we meet 2 classes which
duke@435 2675 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2676 // doesn't implement I, we have no way to tell if the result should
duke@435 2677 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2678 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2679 // uplift the type.
duke@435 2680 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
duke@435 2681 return kills; // Uplift to interface
never@990 2682 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
never@990 2683 return kills; // Uplift to interface
duke@435 2684
duke@435 2685 return Type::TOP; // Canonical empty value
duke@435 2686 }
duke@435 2687
duke@435 2688 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2689 // the join should report back the class. However, if we have a J/L/Object
duke@435 2690 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2691 // join report an interface back out. This isn't possible but happens
duke@435 2692 // because the type system doesn't interact well with interfaces.
duke@435 2693 if (ftip != NULL && ktip != NULL &&
duke@435 2694 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2695 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2696 // Happens in a CTW of rt.jar, 320-341, no extra flags
kvn@1770 2697 assert(!ftip->klass_is_exact(), "interface could not be exact");
duke@435 2698 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2699 }
kvn@1770 2700 // Interface klass type could be exact in opposite to interface type,
kvn@1770 2701 // return it here instead of incorrect Constant ptr J/L/Object (6894807).
never@990 2702 if (ftkp != NULL && ktkp != NULL &&
never@990 2703 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
kvn@1770 2704 !ftkp->klass_is_exact() && // Keep exact interface klass
never@990 2705 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
never@990 2706 return ktkp->cast_to_ptr_type(ftkp->ptr());
never@990 2707 }
duke@435 2708
duke@435 2709 return ft;
duke@435 2710 }
duke@435 2711
duke@435 2712 //------------------------------eq---------------------------------------------
duke@435 2713 // Structural equality check for Type representations
duke@435 2714 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2715 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2716 if (_klass_is_exact != a->_klass_is_exact ||
duke@435 2717 _instance_id != a->_instance_id) return false;
duke@435 2718 ciObject* one = const_oop();
duke@435 2719 ciObject* two = a->const_oop();
duke@435 2720 if (one == NULL || two == NULL) {
duke@435 2721 return (one == two) && TypePtr::eq(t);
duke@435 2722 } else {
duke@435 2723 return one->equals(two) && TypePtr::eq(t);
duke@435 2724 }
duke@435 2725 }
duke@435 2726
duke@435 2727 //------------------------------hash-------------------------------------------
duke@435 2728 // Type-specific hashing function.
duke@435 2729 int TypeOopPtr::hash(void) const {
duke@435 2730 return
duke@435 2731 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2732 _klass_is_exact +
duke@435 2733 _instance_id +
duke@435 2734 TypePtr::hash();
duke@435 2735 }
duke@435 2736
duke@435 2737 //------------------------------dump2------------------------------------------
duke@435 2738 #ifndef PRODUCT
duke@435 2739 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2740 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2741 if( _klass_is_exact ) st->print(":exact");
duke@435 2742 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2743 switch( _offset ) {
duke@435 2744 case OffsetTop: st->print("+top"); break;
duke@435 2745 case OffsetBot: st->print("+any"); break;
duke@435 2746 case 0: break;
duke@435 2747 default: st->print("+%d",_offset); break;
duke@435 2748 }
kvn@658 2749 if (_instance_id == InstanceTop)
kvn@658 2750 st->print(",iid=top");
kvn@658 2751 else if (_instance_id != InstanceBot)
duke@435 2752 st->print(",iid=%d",_instance_id);
duke@435 2753 }
duke@435 2754 #endif
duke@435 2755
duke@435 2756 //------------------------------singleton--------------------------------------
duke@435 2757 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2758 // constants
duke@435 2759 bool TypeOopPtr::singleton(void) const {
duke@435 2760 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2761 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2762 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2763 }
duke@435 2764
duke@435 2765 //------------------------------add_offset-------------------------------------
kvn@741 2766 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
kvn@1427 2767 return make( _ptr, xadd_offset(offset), _instance_id);
duke@435 2768 }
duke@435 2769
kvn@658 2770 //------------------------------meet_instance_id--------------------------------
kvn@658 2771 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 2772 // Either is 'TOP' instance? Return the other instance!
kvn@658 2773 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 2774 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 2775 // If either is different, return 'BOTTOM' instance
kvn@658 2776 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 2777 return _instance_id;
duke@435 2778 }
duke@435 2779
kvn@658 2780 //------------------------------dual_instance_id--------------------------------
kvn@658 2781 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 2782 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 2783 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 2784 return _instance_id; // Map everything else into self
kvn@658 2785 }
kvn@658 2786
kvn@658 2787
duke@435 2788 //=============================================================================
duke@435 2789 // Convenience common pre-built types.
duke@435 2790 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 2791 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 2792 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 2793 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 2794 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 2795
duke@435 2796 //------------------------------TypeInstPtr-------------------------------------
duke@435 2797 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
duke@435 2798 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
duke@435 2799 assert(k != NULL &&
duke@435 2800 (k->is_loaded() || o == NULL),
duke@435 2801 "cannot have constants with non-loaded klass");
duke@435 2802 };
duke@435 2803
duke@435 2804 //------------------------------make-------------------------------------------
duke@435 2805 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 2806 ciKlass* k,
duke@435 2807 bool xk,
duke@435 2808 ciObject* o,
duke@435 2809 int offset,
duke@435 2810 int instance_id) {
coleenp@4037 2811 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
duke@435 2812 // Either const_oop() is NULL or else ptr is Constant
duke@435 2813 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 2814 "constant pointers must have a value supplied" );
duke@435 2815 // Ptr is never Null
duke@435 2816 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 2817
kvn@682 2818 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 2819 if (!UseExactTypes) xk = false;
duke@435 2820 if (ptr == Constant) {
duke@435 2821 // Note: This case includes meta-object constants, such as methods.
duke@435 2822 xk = true;
duke@435 2823 } else if (k->is_loaded()) {
duke@435 2824 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 2825 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 2826 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 2827 }
duke@435 2828
duke@435 2829 // Now hash this baby
duke@435 2830 TypeInstPtr *result =
duke@435 2831 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
duke@435 2832
duke@435 2833 return result;
duke@435 2834 }
duke@435 2835
duke@435 2836
duke@435 2837 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2838 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2839 if( ptr == _ptr ) return this;
duke@435 2840 // Reconstruct _sig info here since not a problem with later lazy
duke@435 2841 // construction, _sig will show up on demand.
kvn@658 2842 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
duke@435 2843 }
duke@435 2844
duke@435 2845
duke@435 2846 //-----------------------------cast_to_exactness-------------------------------
duke@435 2847 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2848 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 2849 if (!UseExactTypes) return this;
duke@435 2850 if (!_klass->is_loaded()) return this;
duke@435 2851 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 2852 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 2853 if( ik->is_interface() ) return this; // cannot set xk
duke@435 2854 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
duke@435 2855 }
duke@435 2856
kvn@682 2857 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2858 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 2859 if( instance_id == _instance_id ) return this;
kvn@682 2860 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
duke@435 2861 }
duke@435 2862
duke@435 2863 //------------------------------xmeet_unloaded---------------------------------
duke@435 2864 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 2865 // Assume classes are different since called after check for same name/class-loader
duke@435 2866 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 2867 int off = meet_offset(tinst->offset());
duke@435 2868 PTR ptr = meet_ptr(tinst->ptr());
kvn@1427 2869 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 2870
duke@435 2871 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 2872 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 2873 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 2874 //
duke@435 2875 // Meet unloaded class with java/lang/Object
duke@435 2876 //
duke@435 2877 // Meet
duke@435 2878 // | Unloaded Class
duke@435 2879 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 2880 // ===================================================================
duke@435 2881 // TOP | ..........................Unloaded......................|
duke@435 2882 // AnyNull | U-AN |................Unloaded......................|
duke@435 2883 // Constant | ... O-NN .................................. | O-BOT |
duke@435 2884 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 2885 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 2886 //
duke@435 2887 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 2888 //
duke@435 2889 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
kvn@1427 2890 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
duke@435 2891 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2892 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 2893 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2894 else { return TypeInstPtr::NOTNULL; }
duke@435 2895 }
duke@435 2896 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 2897
duke@435 2898 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 2899 }
duke@435 2900
duke@435 2901 // Both are unloaded, not the same class, not Object
duke@435 2902 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 2903 if( ptr != TypePtr::BotPTR ) {
duke@435 2904 return TypeInstPtr::NOTNULL;
duke@435 2905 }
duke@435 2906 return TypeInstPtr::BOTTOM;
duke@435 2907 }
duke@435 2908
duke@435 2909
duke@435 2910 //------------------------------meet-------------------------------------------
duke@435 2911 // Compute the MEET of two types. It returns a new Type object.
duke@435 2912 const Type *TypeInstPtr::xmeet( const Type *t ) const {
duke@435 2913 // Perform a fast test for common case; meeting the same types together.
duke@435 2914 if( this == t ) return this; // Meeting same type-rep?
duke@435 2915
duke@435 2916 // Current "this->_base" is Pointer
duke@435 2917 switch (t->base()) { // switch on original type
duke@435 2918
duke@435 2919 case Int: // Mixing ints & oops happens when javac
duke@435 2920 case Long: // reuses local variables
duke@435 2921 case FloatTop:
duke@435 2922 case FloatCon:
duke@435 2923 case FloatBot:
duke@435 2924 case DoubleTop:
duke@435 2925 case DoubleCon:
duke@435 2926 case DoubleBot:
coleenp@548 2927 case NarrowOop:
duke@435 2928 case Bottom: // Ye Olde Default
duke@435 2929 return Type::BOTTOM;
duke@435 2930 case Top:
duke@435 2931 return this;
duke@435 2932
duke@435 2933 default: // All else is a mistake
duke@435 2934 typerr(t);
duke@435 2935
coleenp@4037 2936 case MetadataPtr:
coleenp@4037 2937 case KlassPtr:
duke@435 2938 case RawPtr: return TypePtr::BOTTOM;
duke@435 2939
duke@435 2940 case AryPtr: { // All arrays inherit from Object class
duke@435 2941 const TypeAryPtr *tp = t->is_aryptr();
duke@435 2942 int offset = meet_offset(tp->offset());
duke@435 2943 PTR ptr = meet_ptr(tp->ptr());
kvn@658 2944 int instance_id = meet_instance_id(tp->instance_id());
duke@435 2945 switch (ptr) {
duke@435 2946 case TopPTR:
duke@435 2947 case AnyNull: // Fall 'down' to dual of object klass
duke@435 2948 if (klass()->equals(ciEnv::current()->Object_klass())) {
kvn@658 2949 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2950 } else {
duke@435 2951 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 2952 ptr = NotNull;
kvn@658 2953 instance_id = InstanceBot;
kvn@658 2954 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
duke@435 2955 }
duke@435 2956 case Constant:
duke@435 2957 case NotNull:
duke@435 2958 case BotPTR: // Fall down to object klass
duke@435 2959 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 2960 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 2961 // If 'this' (InstPtr) is above the centerline and it is Object class
twisti@1040 2962 // then we can subclass in the Java class hierarchy.
duke@435 2963 if (klass()->equals(ciEnv::current()->Object_klass())) {
duke@435 2964 // that is, tp's array type is a subtype of my klass
kvn@1714 2965 return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
kvn@1714 2966 tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2967 }
duke@435 2968 }
duke@435 2969 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 2970 // The meet falls down to Object class below centerline.
duke@435 2971 if( ptr == Constant )
duke@435 2972 ptr = NotNull;
kvn@658 2973 instance_id = InstanceBot;
kvn@658 2974 return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
duke@435 2975 default: typerr(t);
duke@435 2976 }
duke@435 2977 }
duke@435 2978
duke@435 2979 case OopPtr: { // Meeting to OopPtrs
duke@435 2980 // Found a OopPtr type vs self-InstPtr type
kvn@1393 2981 const TypeOopPtr *tp = t->is_oopptr();
duke@435 2982 int offset = meet_offset(tp->offset());
duke@435 2983 PTR ptr = meet_ptr(tp->ptr());
duke@435 2984 switch (tp->ptr()) {
duke@435 2985 case TopPTR:
kvn@658 2986 case AnyNull: {
kvn@658 2987 int instance_id = meet_instance_id(InstanceTop);
duke@435 2988 return make(ptr, klass(), klass_is_exact(),
kvn@658 2989 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 2990 }
duke@435 2991 case NotNull:
kvn@1393 2992 case BotPTR: {
kvn@1393 2993 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 2994 return TypeOopPtr::make(ptr, offset, instance_id);
kvn@1393 2995 }
duke@435 2996 default: typerr(t);
duke@435 2997 }
duke@435 2998 }
duke@435 2999
duke@435 3000 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3001 // Found an AnyPtr type vs self-InstPtr type
duke@435 3002 const TypePtr *tp = t->is_ptr();
duke@435 3003 int offset = meet_offset(tp->offset());
duke@435 3004 PTR ptr = meet_ptr(tp->ptr());
duke@435 3005 switch (tp->ptr()) {
duke@435 3006 case Null:
duke@435 3007 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
kvn@658 3008 // else fall through to AnyNull
duke@435 3009 case TopPTR:
kvn@658 3010 case AnyNull: {
kvn@658 3011 int instance_id = meet_instance_id(InstanceTop);
duke@435 3012 return make( ptr, klass(), klass_is_exact(),
kvn@658 3013 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 3014 }
duke@435 3015 case NotNull:
duke@435 3016 case BotPTR:
duke@435 3017 return TypePtr::make( AnyPtr, ptr, offset );
duke@435 3018 default: typerr(t);
duke@435 3019 }
duke@435 3020 }
duke@435 3021
duke@435 3022 /*
duke@435 3023 A-top }
duke@435 3024 / | \ } Tops
duke@435 3025 B-top A-any C-top }
duke@435 3026 | / | \ | } Any-nulls
duke@435 3027 B-any | C-any }
duke@435 3028 | | |
duke@435 3029 B-con A-con C-con } constants; not comparable across classes
duke@435 3030 | | |
duke@435 3031 B-not | C-not }
duke@435 3032 | \ | / | } not-nulls
duke@435 3033 B-bot A-not C-bot }
duke@435 3034 \ | / } Bottoms
duke@435 3035 A-bot }
duke@435 3036 */
duke@435 3037
duke@435 3038 case InstPtr: { // Meeting 2 Oops?
duke@435 3039 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 3040 const TypeInstPtr *tinst = t->is_instptr();
duke@435 3041 int off = meet_offset( tinst->offset() );
duke@435 3042 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 3043 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 3044
duke@435 3045 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3046 // If we have constants, then we created oops so classes are loaded
duke@435 3047 // and we can handle the constants further down. This case handles
duke@435 3048 // both-not-loaded or both-loaded classes
duke@435 3049 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
duke@435 3050 return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
duke@435 3051 }
duke@435 3052
duke@435 3053 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3054 ciKlass* tinst_klass = tinst->klass();
duke@435 3055 ciKlass* this_klass = this->klass();
duke@435 3056 bool tinst_xk = tinst->klass_is_exact();
duke@435 3057 bool this_xk = this->klass_is_exact();
duke@435 3058 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 3059 // One of these classes has not been loaded
duke@435 3060 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 3061 #ifndef PRODUCT
duke@435 3062 if( PrintOpto && Verbose ) {
duke@435 3063 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 3064 tty->print(" this == "); this->dump(); tty->cr();
duke@435 3065 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 3066 }
duke@435 3067 #endif
duke@435 3068 return unloaded_meet;
duke@435 3069 }
duke@435 3070
duke@435 3071 // Handle mixing oops and interfaces first.
duke@435 3072 if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
duke@435 3073 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 3074 tinst_klass = this_klass;
duke@435 3075 this_klass = tmp;
duke@435 3076 bool tmp2 = tinst_xk;
duke@435 3077 tinst_xk = this_xk;
duke@435 3078 this_xk = tmp2;
duke@435 3079 }
duke@435 3080 if (tinst_klass->is_interface() &&
duke@435 3081 !(this_klass->is_interface() ||
duke@435 3082 // Treat java/lang/Object as an honorary interface,
duke@435 3083 // because we need a bottom for the interface hierarchy.
duke@435 3084 this_klass == ciEnv::current()->Object_klass())) {
duke@435 3085 // Oop meets interface!
duke@435 3086
duke@435 3087 // See if the oop subtypes (implements) interface.
duke@435 3088 ciKlass *k;
duke@435 3089 bool xk;
duke@435 3090 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3091 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 3092 // on whether we are both above the centerline or either is
duke@435 3093 // below the centerline. If we are on the centerline
duke@435 3094 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 3095 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 3096 // If we are keeping this_klass, keep its exactness too.
duke@435 3097 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 3098 } else { // Does not implement, fall to Object
duke@435 3099 // Oop does not implement interface, so mixing falls to Object
duke@435 3100 // just like the verifier does (if both are above the
duke@435 3101 // centerline fall to interface)
duke@435 3102 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 3103 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 3104 // Watch out for Constant vs. AnyNull interface.
duke@435 3105 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 3106 instance_id = InstanceBot;
duke@435 3107 }
duke@435 3108 ciObject* o = NULL; // the Constant value, if any
duke@435 3109 if (ptr == Constant) {
duke@435 3110 // Find out which constant.
duke@435 3111 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 3112 }
kvn@658 3113 return make( ptr, k, xk, o, off, instance_id );
duke@435 3114 }
duke@435 3115
duke@435 3116 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 3117
duke@435 3118 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 3119 // If we split one up & one down AND they subtype, take the down man.
duke@435 3120 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3121 // If both are up and they subtype, take the subtype class.
duke@435 3122 // If both are up and they do NOT subtype, "fall hard".
duke@435 3123 // If both are down and they subtype, take the supertype class.
duke@435 3124 // If both are down and they do NOT subtype, "fall hard".
duke@435 3125 // Constants treated as down.
duke@435 3126
duke@435 3127 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 3128 // "fall hard"; "fall hard" becomes the default case:
duke@435 3129 // If we split one up & one down AND they subtype, take the down man.
duke@435 3130 // If both are up and they subtype, take the subtype class.
duke@435 3131
duke@435 3132 // If both are down and they subtype, "fall hard".
duke@435 3133 // If both are down and they do NOT subtype, "fall hard".
duke@435 3134 // If both are up and they do NOT subtype, "fall hard".
duke@435 3135 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3136
duke@435 3137 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 3138 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 3139 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 3140 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 3141
duke@435 3142 // Check for subtyping:
duke@435 3143 ciKlass *subtype = NULL;
duke@435 3144 bool subtype_exact = false;
duke@435 3145 if( tinst_klass->equals(this_klass) ) {
duke@435 3146 subtype = this_klass;
duke@435 3147 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 3148 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3149 subtype = this_klass; // Pick subtyping class
duke@435 3150 subtype_exact = this_xk;
duke@435 3151 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 3152 subtype = tinst_klass; // Pick subtyping class
duke@435 3153 subtype_exact = tinst_xk;
duke@435 3154 }
duke@435 3155
duke@435 3156 if( subtype ) {
duke@435 3157 if( above_centerline(ptr) ) { // both are up?
duke@435 3158 this_klass = tinst_klass = subtype;
duke@435 3159 this_xk = tinst_xk = subtype_exact;
duke@435 3160 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 3161 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 3162 this_xk = tinst_xk;
duke@435 3163 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 3164 tinst_klass = this_klass; // this is down; keep down man
duke@435 3165 tinst_xk = this_xk;
duke@435 3166 } else {
duke@435 3167 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 3168 }
duke@435 3169 }
duke@435 3170
duke@435 3171 // Check for classes now being equal
duke@435 3172 if (tinst_klass->equals(this_klass)) {
duke@435 3173 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3174 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3175 // handled elsewhere).
duke@435 3176 ciObject* o = NULL; // Assume not constant when done
duke@435 3177 ciObject* this_oop = const_oop();
duke@435 3178 ciObject* tinst_oop = tinst->const_oop();
duke@435 3179 if( ptr == Constant ) {
duke@435 3180 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 3181 this_oop->equals(tinst_oop) )
duke@435 3182 o = this_oop;
duke@435 3183 else if (above_centerline(this ->_ptr))
duke@435 3184 o = tinst_oop;
duke@435 3185 else if (above_centerline(tinst ->_ptr))
duke@435 3186 o = this_oop;
duke@435 3187 else
duke@435 3188 ptr = NotNull;
duke@435 3189 }
duke@435 3190 return make( ptr, this_klass, this_xk, o, off, instance_id );
duke@435 3191 } // Else classes are not equal
duke@435 3192
duke@435 3193 // Since klasses are different, we require a LCA in the Java
duke@435 3194 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3195 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3196 ptr = NotNull;
kvn@682 3197 instance_id = InstanceBot;
duke@435 3198
duke@435 3199 // Now we find the LCA of Java classes
duke@435 3200 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
kvn@658 3201 return make( ptr, k, false, NULL, off, instance_id );
duke@435 3202 } // End of case InstPtr
duke@435 3203
duke@435 3204 } // End of switch
duke@435 3205 return this; // Return the double constant
duke@435 3206 }
duke@435 3207
duke@435 3208
duke@435 3209 //------------------------java_mirror_type--------------------------------------
duke@435 3210 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3211 // must be a singleton type
duke@435 3212 if( const_oop() == NULL ) return NULL;
duke@435 3213
duke@435 3214 // must be of type java.lang.Class
duke@435 3215 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3216
duke@435 3217 return const_oop()->as_instance()->java_mirror_type();
duke@435 3218 }
duke@435 3219
duke@435 3220
duke@435 3221 //------------------------------xdual------------------------------------------
duke@435 3222 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
twisti@1040 3223 // inheritance mechanism.
duke@435 3224 const Type *TypeInstPtr::xdual() const {
kvn@658 3225 return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 3226 }
duke@435 3227
duke@435 3228 //------------------------------eq---------------------------------------------
duke@435 3229 // Structural equality check for Type representations
duke@435 3230 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3231 const TypeInstPtr *p = t->is_instptr();
duke@435 3232 return
duke@435 3233 klass()->equals(p->klass()) &&
duke@435 3234 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3235 }
duke@435 3236
duke@435 3237 //------------------------------hash-------------------------------------------
duke@435 3238 // Type-specific hashing function.
duke@435 3239 int TypeInstPtr::hash(void) const {
duke@435 3240 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 3241 return hash;
duke@435 3242 }
duke@435 3243
duke@435 3244 //------------------------------dump2------------------------------------------
duke@435 3245 // Dump oop Type
duke@435 3246 #ifndef PRODUCT
duke@435 3247 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3248 // Print the name of the klass.
duke@435 3249 klass()->print_name_on(st);
duke@435 3250
duke@435 3251 switch( _ptr ) {
duke@435 3252 case Constant:
duke@435 3253 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3254 if (WizardMode || Verbose) {
duke@435 3255 const_oop()->print_oop(st);
duke@435 3256 }
duke@435 3257 case BotPTR:
duke@435 3258 if (!WizardMode && !Verbose) {
duke@435 3259 if( _klass_is_exact ) st->print(":exact");
duke@435 3260 break;
duke@435 3261 }
duke@435 3262 case TopPTR:
duke@435 3263 case AnyNull:
duke@435 3264 case NotNull:
duke@435 3265 st->print(":%s", ptr_msg[_ptr]);
duke@435 3266 if( _klass_is_exact ) st->print(":exact");
duke@435 3267 break;
duke@435 3268 }
duke@435 3269
duke@435 3270 if( _offset ) { // Dump offset, if any
duke@435 3271 if( _offset == OffsetBot ) st->print("+any");
duke@435 3272 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3273 else st->print("+%d", _offset);
duke@435 3274 }
duke@435 3275
duke@435 3276 st->print(" *");
kvn@658 3277 if (_instance_id == InstanceTop)
kvn@658 3278 st->print(",iid=top");
kvn@658 3279 else if (_instance_id != InstanceBot)
duke@435 3280 st->print(",iid=%d",_instance_id);
duke@435 3281 }
duke@435 3282 #endif
duke@435 3283
duke@435 3284 //------------------------------add_offset-------------------------------------
kvn@741 3285 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
duke@435 3286 return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
duke@435 3287 }
duke@435 3288
duke@435 3289 //=============================================================================
duke@435 3290 // Convenience common pre-built types.
duke@435 3291 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3292 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3293 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3294 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3295 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3296 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3297 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3298 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3299 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3300 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3301
duke@435 3302 //------------------------------make-------------------------------------------
duke@435 3303 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3304 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3305 "integral arrays must be pre-equipped with a class");
duke@435 3306 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3307 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3308 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3309 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3310 }
duke@435 3311
duke@435 3312 //------------------------------make-------------------------------------------
duke@435 3313 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3314 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3315 "integral arrays must be pre-equipped with a class");
duke@435 3316 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3317 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3318 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3319 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3320 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3321 }
duke@435 3322
duke@435 3323 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3324 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3325 if( ptr == _ptr ) return this;
kvn@658 3326 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3327 }
duke@435 3328
duke@435 3329
duke@435 3330 //-----------------------------cast_to_exactness-------------------------------
duke@435 3331 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3332 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3333 if (!UseExactTypes) return this;
duke@435 3334 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
duke@435 3335 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
duke@435 3336 }
duke@435 3337
kvn@682 3338 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3339 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3340 if( instance_id == _instance_id ) return this;
kvn@682 3341 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
duke@435 3342 }
duke@435 3343
duke@435 3344 //-----------------------------narrow_size_type-------------------------------
duke@435 3345 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3346 // which is kind of slow (and cached elsewhere by other users).
duke@435 3347 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3348 static jint max_array_length(BasicType etype) {
duke@435 3349 jint& cache = max_array_length_cache[etype];
duke@435 3350 jint res = cache;
duke@435 3351 if (res == 0) {
duke@435 3352 switch (etype) {
coleenp@548 3353 case T_NARROWOOP:
coleenp@548 3354 etype = T_OBJECT;
coleenp@548 3355 break;
duke@435 3356 case T_CONFLICT:
duke@435 3357 case T_ILLEGAL:
duke@435 3358 case T_VOID:
duke@435 3359 etype = T_BYTE; // will produce conservatively high value
duke@435 3360 }
duke@435 3361 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3362 }
duke@435 3363 return res;
duke@435 3364 }
duke@435 3365
duke@435 3366 // Narrow the given size type to the index range for the given array base type.
duke@435 3367 // Return NULL if the resulting int type becomes empty.
rasbold@801 3368 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
duke@435 3369 jint hi = size->_hi;
duke@435 3370 jint lo = size->_lo;
duke@435 3371 jint min_lo = 0;
rasbold@801 3372 jint max_hi = max_array_length(elem()->basic_type());
duke@435 3373 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3374 bool chg = false;
duke@435 3375 if (lo < min_lo) { lo = min_lo; chg = true; }
duke@435 3376 if (hi > max_hi) { hi = max_hi; chg = true; }
twisti@1040 3377 // Negative length arrays will produce weird intermediate dead fast-path code
duke@435 3378 if (lo > hi)
rasbold@801 3379 return TypeInt::ZERO;
duke@435 3380 if (!chg)
duke@435 3381 return size;
duke@435 3382 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3383 }
duke@435 3384
duke@435 3385 //-------------------------------cast_to_size----------------------------------
duke@435 3386 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3387 assert(new_size != NULL, "");
rasbold@801 3388 new_size = narrow_size_type(new_size);
duke@435 3389 if (new_size == size()) return this;
duke@435 3390 const TypeAry* new_ary = TypeAry::make(elem(), new_size);
kvn@658 3391 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3392 }
duke@435 3393
duke@435 3394
duke@435 3395 //------------------------------eq---------------------------------------------
duke@435 3396 // Structural equality check for Type representations
duke@435 3397 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3398 const TypeAryPtr *p = t->is_aryptr();
duke@435 3399 return
duke@435 3400 _ary == p->_ary && // Check array
duke@435 3401 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3402 }
duke@435 3403
duke@435 3404 //------------------------------hash-------------------------------------------
duke@435 3405 // Type-specific hashing function.
duke@435 3406 int TypeAryPtr::hash(void) const {
duke@435 3407 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3408 }
duke@435 3409
duke@435 3410 //------------------------------meet-------------------------------------------
duke@435 3411 // Compute the MEET of two types. It returns a new Type object.
duke@435 3412 const Type *TypeAryPtr::xmeet( const Type *t ) const {
duke@435 3413 // Perform a fast test for common case; meeting the same types together.
duke@435 3414 if( this == t ) return this; // Meeting same type-rep?
duke@435 3415 // Current "this->_base" is Pointer
duke@435 3416 switch (t->base()) { // switch on original type
duke@435 3417
duke@435 3418 // Mixing ints & oops happens when javac reuses local variables
duke@435 3419 case Int:
duke@435 3420 case Long:
duke@435 3421 case FloatTop:
duke@435 3422 case FloatCon:
duke@435 3423 case FloatBot:
duke@435 3424 case DoubleTop:
duke@435 3425 case DoubleCon:
duke@435 3426 case DoubleBot:
coleenp@548 3427 case NarrowOop:
duke@435 3428 case Bottom: // Ye Olde Default
duke@435 3429 return Type::BOTTOM;
duke@435 3430 case Top:
duke@435 3431 return this;
duke@435 3432
duke@435 3433 default: // All else is a mistake
duke@435 3434 typerr(t);
duke@435 3435
duke@435 3436 case OopPtr: { // Meeting to OopPtrs
duke@435 3437 // Found a OopPtr type vs self-AryPtr type
kvn@1393 3438 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3439 int offset = meet_offset(tp->offset());
duke@435 3440 PTR ptr = meet_ptr(tp->ptr());
duke@435 3441 switch (tp->ptr()) {
duke@435 3442 case TopPTR:
kvn@658 3443 case AnyNull: {
kvn@658 3444 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3445 return make(ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3446 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3447 }
duke@435 3448 case BotPTR:
kvn@1393 3449 case NotNull: {
kvn@1393 3450 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 3451 return TypeOopPtr::make(ptr, offset, instance_id);
kvn@1393 3452 }
duke@435 3453 default: ShouldNotReachHere();
duke@435 3454 }
duke@435 3455 }
duke@435 3456
duke@435 3457 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3458 // Found an AnyPtr type vs self-AryPtr type
duke@435 3459 const TypePtr *tp = t->is_ptr();
duke@435 3460 int offset = meet_offset(tp->offset());
duke@435 3461 PTR ptr = meet_ptr(tp->ptr());
duke@435 3462 switch (tp->ptr()) {
duke@435 3463 case TopPTR:
duke@435 3464 return this;
duke@435 3465 case BotPTR:
duke@435 3466 case NotNull:
duke@435 3467 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3468 case Null:
duke@435 3469 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3470 // else fall through to AnyNull
kvn@658 3471 case AnyNull: {
kvn@658 3472 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3473 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3474 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3475 }
duke@435 3476 default: ShouldNotReachHere();
duke@435 3477 }
duke@435 3478 }
duke@435 3479
coleenp@4037 3480 case MetadataPtr:
coleenp@4037 3481 case KlassPtr:
duke@435 3482 case RawPtr: return TypePtr::BOTTOM;
duke@435 3483
duke@435 3484 case AryPtr: { // Meeting 2 references?
duke@435 3485 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3486 int off = meet_offset(tap->offset());
duke@435 3487 const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
duke@435 3488 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3489 int instance_id = meet_instance_id(tap->instance_id());
duke@435 3490 ciKlass* lazy_klass = NULL;
duke@435 3491 if (tary->_elem->isa_int()) {
duke@435 3492 // Integral array element types have irrelevant lattice relations.
duke@435 3493 // It is the klass that determines array layout, not the element type.
duke@435 3494 if (_klass == NULL)
duke@435 3495 lazy_klass = tap->_klass;
duke@435 3496 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3497 lazy_klass = _klass;
duke@435 3498 } else {
duke@435 3499 // Something like byte[int+] meets char[int+].
duke@435 3500 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3501 instance_id = InstanceBot;
duke@435 3502 tary = TypeAry::make(Type::BOTTOM, tary->_size);
duke@435 3503 }
kvn@2633 3504 } else // Non integral arrays.
kvn@2633 3505 // Must fall to bottom if exact klasses in upper lattice
kvn@2633 3506 // are not equal or super klass is exact.
kvn@2633 3507 if ( above_centerline(ptr) && klass() != tap->klass() &&
kvn@2633 3508 // meet with top[] and bottom[] are processed further down:
kvn@2633 3509 tap ->_klass != NULL && this->_klass != NULL &&
kvn@2633 3510 // both are exact and not equal:
kvn@2633 3511 ((tap ->_klass_is_exact && this->_klass_is_exact) ||
kvn@2633 3512 // 'tap' is exact and super or unrelated:
kvn@2633 3513 (tap ->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
kvn@2633 3514 // 'this' is exact and super or unrelated:
kvn@2633 3515 (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
kvn@2633 3516 tary = TypeAry::make(Type::BOTTOM, tary->_size);
kvn@2633 3517 return make( NotNull, NULL, tary, lazy_klass, false, off, InstanceBot );
duke@435 3518 }
kvn@2633 3519
kvn@2120 3520 bool xk = false;
duke@435 3521 switch (tap->ptr()) {
duke@435 3522 case AnyNull:
duke@435 3523 case TopPTR:
duke@435 3524 // Compute new klass on demand, do not use tap->_klass
duke@435 3525 xk = (tap->_klass_is_exact | this->_klass_is_exact);
kvn@658 3526 return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
duke@435 3527 case Constant: {
duke@435 3528 ciObject* o = const_oop();
duke@435 3529 if( _ptr == Constant ) {
duke@435 3530 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
jrose@1424 3531 xk = (klass() == tap->klass());
duke@435 3532 ptr = NotNull;
duke@435 3533 o = NULL;
kvn@682 3534 instance_id = InstanceBot;
jrose@1424 3535 } else {
jrose@1424 3536 xk = true;
duke@435 3537 }
duke@435 3538 } else if( above_centerline(_ptr) ) {
duke@435 3539 o = tap->const_oop();
jrose@1424 3540 xk = true;
jrose@1424 3541 } else {
kvn@2120 3542 // Only precise for identical arrays
kvn@2120 3543 xk = this->_klass_is_exact && (klass() == tap->klass());
duke@435 3544 }
kvn@2120 3545 return TypeAryPtr::make( ptr, o, tary, lazy_klass, xk, off, instance_id );
duke@435 3546 }
duke@435 3547 case NotNull:
duke@435 3548 case BotPTR:
duke@435 3549 // Compute new klass on demand, do not use tap->_klass
duke@435 3550 if (above_centerline(this->_ptr))
duke@435 3551 xk = tap->_klass_is_exact;
duke@435 3552 else if (above_centerline(tap->_ptr))
duke@435 3553 xk = this->_klass_is_exact;
duke@435 3554 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 3555 (klass() == tap->klass()); // Only precise for identical arrays
kvn@658 3556 return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
duke@435 3557 default: ShouldNotReachHere();
duke@435 3558 }
duke@435 3559 }
duke@435 3560
duke@435 3561 // All arrays inherit from Object class
duke@435 3562 case InstPtr: {
duke@435 3563 const TypeInstPtr *tp = t->is_instptr();
duke@435 3564 int offset = meet_offset(tp->offset());
duke@435 3565 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3566 int instance_id = meet_instance_id(tp->instance_id());
duke@435 3567 switch (ptr) {
duke@435 3568 case TopPTR:
duke@435 3569 case AnyNull: // Fall 'down' to dual of object klass
duke@435 3570 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
kvn@658 3571 return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3572 } else {
duke@435 3573 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3574 ptr = NotNull;
kvn@658 3575 instance_id = InstanceBot;
kvn@658 3576 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3577 }
duke@435 3578 case Constant:
duke@435 3579 case NotNull:
duke@435 3580 case BotPTR: // Fall down to object klass
duke@435 3581 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3582 if (above_centerline(tp->ptr())) {
duke@435 3583 // If 'tp' is above the centerline and it is Object class
twisti@1040 3584 // then we can subclass in the Java class hierarchy.
duke@435 3585 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3586 // that is, my array type is a subtype of 'tp' klass
kvn@1714 3587 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@1714 3588 _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3589 }
duke@435 3590 }
duke@435 3591 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 3592 // The meet falls down to Object class below centerline.
duke@435 3593 if( ptr == Constant )
duke@435 3594 ptr = NotNull;
kvn@658 3595 instance_id = InstanceBot;
kvn@658 3596 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3597 default: typerr(t);
duke@435 3598 }
duke@435 3599 }
duke@435 3600 }
duke@435 3601 return this; // Lint noise
duke@435 3602 }
duke@435 3603
duke@435 3604 //------------------------------xdual------------------------------------------
duke@435 3605 // Dual: compute field-by-field dual
duke@435 3606 const Type *TypeAryPtr::xdual() const {
kvn@658 3607 return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
duke@435 3608 }
duke@435 3609
kvn@1255 3610 //----------------------interface_vs_oop---------------------------------------
kvn@1255 3611 #ifdef ASSERT
kvn@1255 3612 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
kvn@1255 3613 const TypeAryPtr* t_aryptr = t->isa_aryptr();
kvn@1255 3614 if (t_aryptr) {
kvn@1255 3615 return _ary->interface_vs_oop(t_aryptr->_ary);
kvn@1255 3616 }
kvn@1255 3617 return false;
kvn@1255 3618 }
kvn@1255 3619 #endif
kvn@1255 3620
duke@435 3621 //------------------------------dump2------------------------------------------
duke@435 3622 #ifndef PRODUCT
duke@435 3623 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3624 _ary->dump2(d,depth,st);
duke@435 3625 switch( _ptr ) {
duke@435 3626 case Constant:
duke@435 3627 const_oop()->print(st);
duke@435 3628 break;
duke@435 3629 case BotPTR:
duke@435 3630 if (!WizardMode && !Verbose) {
duke@435 3631 if( _klass_is_exact ) st->print(":exact");
duke@435 3632 break;
duke@435 3633 }
duke@435 3634 case TopPTR:
duke@435 3635 case AnyNull:
duke@435 3636 case NotNull:
duke@435 3637 st->print(":%s", ptr_msg[_ptr]);
duke@435 3638 if( _klass_is_exact ) st->print(":exact");
duke@435 3639 break;
duke@435 3640 }
duke@435 3641
kvn@499 3642 if( _offset != 0 ) {
kvn@499 3643 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 3644 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 3645 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 3646 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 3647 else {
kvn@499 3648 BasicType basic_elem_type = elem()->basic_type();
kvn@499 3649 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 3650 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 3651 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 3652 }
kvn@499 3653 }
kvn@499 3654 st->print(" *");
kvn@658 3655 if (_instance_id == InstanceTop)
kvn@658 3656 st->print(",iid=top");
kvn@658 3657 else if (_instance_id != InstanceBot)
duke@435 3658 st->print(",iid=%d",_instance_id);
duke@435 3659 }
duke@435 3660 #endif
duke@435 3661
duke@435 3662 bool TypeAryPtr::empty(void) const {
duke@435 3663 if (_ary->empty()) return true;
duke@435 3664 return TypeOopPtr::empty();
duke@435 3665 }
duke@435 3666
duke@435 3667 //------------------------------add_offset-------------------------------------
kvn@741 3668 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
duke@435 3669 return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
duke@435 3670 }
duke@435 3671
duke@435 3672
duke@435 3673 //=============================================================================
coleenp@548 3674 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
coleenp@548 3675 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
coleenp@548 3676
coleenp@548 3677
coleenp@548 3678 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
coleenp@548 3679 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
coleenp@548 3680 }
coleenp@548 3681
coleenp@548 3682 //------------------------------hash-------------------------------------------
coleenp@548 3683 // Type-specific hashing function.
coleenp@548 3684 int TypeNarrowOop::hash(void) const {
never@1262 3685 return _ptrtype->hash() + 7;
coleenp@548 3686 }
coleenp@548 3687
coleenp@548 3688
coleenp@548 3689 bool TypeNarrowOop::eq( const Type *t ) const {
coleenp@548 3690 const TypeNarrowOop* tc = t->isa_narrowoop();
coleenp@548 3691 if (tc != NULL) {
never@1262 3692 if (_ptrtype->base() != tc->_ptrtype->base()) {
coleenp@548 3693 return false;
coleenp@548 3694 }
never@1262 3695 return tc->_ptrtype->eq(_ptrtype);
coleenp@548 3696 }
coleenp@548 3697 return false;
coleenp@548 3698 }
coleenp@548 3699
coleenp@548 3700 bool TypeNarrowOop::singleton(void) const { // TRUE if type is a singleton
never@1262 3701 return _ptrtype->singleton();
coleenp@548 3702 }
coleenp@548 3703
coleenp@548 3704 bool TypeNarrowOop::empty(void) const {
never@1262 3705 return _ptrtype->empty();
coleenp@548 3706 }
coleenp@548 3707
kvn@728 3708 //------------------------------xmeet------------------------------------------
coleenp@548 3709 // Compute the MEET of two types. It returns a new Type object.
coleenp@548 3710 const Type *TypeNarrowOop::xmeet( const Type *t ) const {
coleenp@548 3711 // Perform a fast test for common case; meeting the same types together.
coleenp@548 3712 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 3713
coleenp@548 3714
coleenp@548 3715 // Current "this->_base" is OopPtr
coleenp@548 3716 switch (t->base()) { // switch on original type
coleenp@548 3717
coleenp@548 3718 case Int: // Mixing ints & oops happens when javac
coleenp@548 3719 case Long: // reuses local variables
coleenp@548 3720 case FloatTop:
coleenp@548 3721 case FloatCon:
coleenp@548 3722 case FloatBot:
coleenp@548 3723 case DoubleTop:
coleenp@548 3724 case DoubleCon:
coleenp@548 3725 case DoubleBot:
kvn@728 3726 case AnyPtr:
kvn@728 3727 case RawPtr:
kvn@728 3728 case OopPtr:
kvn@728 3729 case InstPtr:
coleenp@4037 3730 case AryPtr:
coleenp@4037 3731 case MetadataPtr:
kvn@728 3732 case KlassPtr:
kvn@728 3733
coleenp@548 3734 case Bottom: // Ye Olde Default
coleenp@548 3735 return Type::BOTTOM;
coleenp@548 3736 case Top:
coleenp@548 3737 return this;
coleenp@548 3738
coleenp@548 3739 case NarrowOop: {
never@1262 3740 const Type* result = _ptrtype->xmeet(t->make_ptr());
coleenp@548 3741 if (result->isa_ptr()) {
coleenp@548 3742 return TypeNarrowOop::make(result->is_ptr());
coleenp@548 3743 }
coleenp@548 3744 return result;
coleenp@548 3745 }
coleenp@548 3746
coleenp@548 3747 default: // All else is a mistake
coleenp@548 3748 typerr(t);
coleenp@548 3749
coleenp@548 3750 } // End of switch
kvn@728 3751
kvn@728 3752 return this;
coleenp@548 3753 }
coleenp@548 3754
coleenp@548 3755 const Type *TypeNarrowOop::xdual() const { // Compute dual right now.
never@1262 3756 const TypePtr* odual = _ptrtype->dual()->is_ptr();
coleenp@548 3757 return new TypeNarrowOop(odual);
coleenp@548 3758 }
coleenp@548 3759
coleenp@548 3760 const Type *TypeNarrowOop::filter( const Type *kills ) const {
coleenp@548 3761 if (kills->isa_narrowoop()) {
never@1262 3762 const Type* ft =_ptrtype->filter(kills->is_narrowoop()->_ptrtype);
coleenp@548 3763 if (ft->empty())
coleenp@548 3764 return Type::TOP; // Canonical empty value
coleenp@548 3765 if (ft->isa_ptr()) {
coleenp@548 3766 return make(ft->isa_ptr());
coleenp@548 3767 }
coleenp@548 3768 return ft;
coleenp@548 3769 } else if (kills->isa_ptr()) {
never@1262 3770 const Type* ft = _ptrtype->join(kills);
coleenp@548 3771 if (ft->empty())
coleenp@548 3772 return Type::TOP; // Canonical empty value
coleenp@548 3773 return ft;
coleenp@548 3774 } else {
coleenp@548 3775 return Type::TOP;
coleenp@548 3776 }
coleenp@548 3777 }
coleenp@548 3778
coleenp@548 3779
coleenp@548 3780 intptr_t TypeNarrowOop::get_con() const {
never@1262 3781 return _ptrtype->get_con();
coleenp@548 3782 }
coleenp@548 3783
coleenp@548 3784 #ifndef PRODUCT
coleenp@548 3785 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
never@852 3786 st->print("narrowoop: ");
never@1262 3787 _ptrtype->dump2(d, depth, st);
coleenp@548 3788 }
coleenp@548 3789 #endif
coleenp@548 3790
coleenp@548 3791
coleenp@4037 3792
coleenp@4037 3793 //------------------------------eq---------------------------------------------
coleenp@4037 3794 // Structural equality check for Type representations
coleenp@4037 3795 bool TypeMetadataPtr::eq( const Type *t ) const {
coleenp@4037 3796 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
coleenp@4037 3797 ciMetadata* one = metadata();
coleenp@4037 3798 ciMetadata* two = a->metadata();
coleenp@4037 3799 if (one == NULL || two == NULL) {
coleenp@4037 3800 return (one == two) && TypePtr::eq(t);
coleenp@4037 3801 } else {
coleenp@4037 3802 return one->equals(two) && TypePtr::eq(t);
coleenp@4037 3803 }
coleenp@4037 3804 }
coleenp@4037 3805
coleenp@4037 3806 //------------------------------hash-------------------------------------------
coleenp@4037 3807 // Type-specific hashing function.
coleenp@4037 3808 int TypeMetadataPtr::hash(void) const {
coleenp@4037 3809 return
coleenp@4037 3810 (metadata() ? metadata()->hash() : 0) +
coleenp@4037 3811 TypePtr::hash();
coleenp@4037 3812 }
coleenp@4037 3813
coleenp@4037 3814 //------------------------------singleton--------------------------------------
coleenp@4037 3815 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 3816 // constants
coleenp@4037 3817 bool TypeMetadataPtr::singleton(void) const {
coleenp@4037 3818 // detune optimizer to not generate constant metadta + constant offset as a constant!
coleenp@4037 3819 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 3820 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 3821 }
coleenp@4037 3822
coleenp@4037 3823 //------------------------------add_offset-------------------------------------
coleenp@4037 3824 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
coleenp@4037 3825 return make( _ptr, _metadata, xadd_offset(offset));
coleenp@4037 3826 }
coleenp@4037 3827
coleenp@4037 3828 //-----------------------------filter------------------------------------------
coleenp@4037 3829 // Do not allow interface-vs.-noninterface joins to collapse to top.
coleenp@4037 3830 const Type *TypeMetadataPtr::filter( const Type *kills ) const {
coleenp@4037 3831 const TypeMetadataPtr* ft = join(kills)->isa_metadataptr();
coleenp@4037 3832 if (ft == NULL || ft->empty())
coleenp@4037 3833 return Type::TOP; // Canonical empty value
coleenp@4037 3834 return ft;
coleenp@4037 3835 }
coleenp@4037 3836
coleenp@4037 3837 //------------------------------get_con----------------------------------------
coleenp@4037 3838 intptr_t TypeMetadataPtr::get_con() const {
coleenp@4037 3839 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 3840 assert( _offset >= 0, "" );
coleenp@4037 3841
coleenp@4037 3842 if (_offset != 0) {
coleenp@4037 3843 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 3844 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 3845 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 3846 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 3847 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 3848 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 3849 // but this assertion here is to help prevent its occurence.
coleenp@4037 3850 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 3851 ShouldNotReachHere();
coleenp@4037 3852 }
coleenp@4037 3853
coleenp@4037 3854 return (intptr_t)metadata()->constant_encoding();
coleenp@4037 3855 }
coleenp@4037 3856
coleenp@4037 3857 //------------------------------cast_to_ptr_type-------------------------------
coleenp@4037 3858 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
coleenp@4037 3859 if( ptr == _ptr ) return this;
coleenp@4037 3860 return make(ptr, metadata(), _offset);
coleenp@4037 3861 }
coleenp@4037 3862
coleenp@4037 3863 //------------------------------meet-------------------------------------------
coleenp@4037 3864 // Compute the MEET of two types. It returns a new Type object.
coleenp@4037 3865 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
coleenp@4037 3866 // Perform a fast test for common case; meeting the same types together.
coleenp@4037 3867 if( this == t ) return this; // Meeting same type-rep?
coleenp@4037 3868
coleenp@4037 3869 // Current "this->_base" is OopPtr
coleenp@4037 3870 switch (t->base()) { // switch on original type
coleenp@4037 3871
coleenp@4037 3872 case Int: // Mixing ints & oops happens when javac
coleenp@4037 3873 case Long: // reuses local variables
coleenp@4037 3874 case FloatTop:
coleenp@4037 3875 case FloatCon:
coleenp@4037 3876 case FloatBot:
coleenp@4037 3877 case DoubleTop:
coleenp@4037 3878 case DoubleCon:
coleenp@4037 3879 case DoubleBot:
coleenp@4037 3880 case NarrowOop:
coleenp@4037 3881 case Bottom: // Ye Olde Default
coleenp@4037 3882 return Type::BOTTOM;
coleenp@4037 3883 case Top:
coleenp@4037 3884 return this;
coleenp@4037 3885
coleenp@4037 3886 default: // All else is a mistake
coleenp@4037 3887 typerr(t);
coleenp@4037 3888
coleenp@4037 3889 case AnyPtr: {
coleenp@4037 3890 // Found an AnyPtr type vs self-OopPtr type
coleenp@4037 3891 const TypePtr *tp = t->is_ptr();
coleenp@4037 3892 int offset = meet_offset(tp->offset());
coleenp@4037 3893 PTR ptr = meet_ptr(tp->ptr());
coleenp@4037 3894 switch (tp->ptr()) {
coleenp@4037 3895 case Null:
coleenp@4037 3896 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 3897 // else fall through:
coleenp@4037 3898 case TopPTR:
coleenp@4037 3899 case AnyNull: {
coleenp@4037 3900 return make(ptr, NULL, offset);
coleenp@4037 3901 }
coleenp@4037 3902 case BotPTR:
coleenp@4037 3903 case NotNull:
coleenp@4037 3904 return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 3905 default: typerr(t);
coleenp@4037 3906 }
coleenp@4037 3907 }
coleenp@4037 3908
coleenp@4037 3909 case RawPtr:
coleenp@4037 3910 case KlassPtr:
coleenp@4037 3911 case OopPtr:
coleenp@4037 3912 case InstPtr:
coleenp@4037 3913 case AryPtr:
coleenp@4037 3914 return TypePtr::BOTTOM; // Oop meet raw is not well defined
coleenp@4037 3915
roland@4040 3916 case MetadataPtr: {
roland@4040 3917 const TypeMetadataPtr *tp = t->is_metadataptr();
roland@4040 3918 int offset = meet_offset(tp->offset());
roland@4040 3919 PTR tptr = tp->ptr();
roland@4040 3920 PTR ptr = meet_ptr(tptr);
roland@4040 3921 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
roland@4040 3922 if (tptr == TopPTR || _ptr == TopPTR ||
roland@4040 3923 metadata()->equals(tp->metadata())) {
roland@4040 3924 return make(ptr, md, offset);
roland@4040 3925 }
roland@4040 3926 // metadata is different
roland@4040 3927 if( ptr == Constant ) { // Cannot be equal constants, so...
roland@4040 3928 if( tptr == Constant && _ptr != Constant) return t;
roland@4040 3929 if( _ptr == Constant && tptr != Constant) return this;
roland@4040 3930 ptr = NotNull; // Fall down in lattice
roland@4040 3931 }
roland@4040 3932 return make(ptr, NULL, offset);
coleenp@4037 3933 break;
roland@4040 3934 }
coleenp@4037 3935 } // End of switch
coleenp@4037 3936 return this; // Return the double constant
coleenp@4037 3937 }
coleenp@4037 3938
coleenp@4037 3939
coleenp@4037 3940 //------------------------------xdual------------------------------------------
coleenp@4037 3941 // Dual of a pure metadata pointer.
coleenp@4037 3942 const Type *TypeMetadataPtr::xdual() const {
coleenp@4037 3943 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
coleenp@4037 3944 }
coleenp@4037 3945
coleenp@4037 3946 //------------------------------dump2------------------------------------------
coleenp@4037 3947 #ifndef PRODUCT
coleenp@4037 3948 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
coleenp@4037 3949 st->print("metadataptr:%s", ptr_msg[_ptr]);
coleenp@4037 3950 if( metadata() ) st->print(INTPTR_FORMAT, metadata());
coleenp@4037 3951 switch( _offset ) {
coleenp@4037 3952 case OffsetTop: st->print("+top"); break;
coleenp@4037 3953 case OffsetBot: st->print("+any"); break;
coleenp@4037 3954 case 0: break;
coleenp@4037 3955 default: st->print("+%d",_offset); break;
coleenp@4037 3956 }
coleenp@4037 3957 }
coleenp@4037 3958 #endif
coleenp@4037 3959
coleenp@4037 3960
coleenp@4037 3961 //=============================================================================
coleenp@4037 3962 // Convenience common pre-built type.
coleenp@4037 3963 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
coleenp@4037 3964
coleenp@4037 3965 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
coleenp@4037 3966 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
coleenp@4037 3967 }
coleenp@4037 3968
coleenp@4037 3969 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
coleenp@4037 3970 return make(Constant, m, 0);
coleenp@4037 3971 }
coleenp@4037 3972 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
coleenp@4037 3973 return make(Constant, m, 0);
coleenp@4037 3974 }
coleenp@4037 3975
coleenp@4037 3976 //------------------------------make-------------------------------------------
coleenp@4037 3977 // Create a meta data constant
coleenp@4037 3978 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
coleenp@4037 3979 assert(m == NULL || !m->is_klass(), "wrong type");
coleenp@4037 3980 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
coleenp@4037 3981 }
coleenp@4037 3982
coleenp@4037 3983
coleenp@548 3984 //=============================================================================
duke@435 3985 // Convenience common pre-built types.
duke@435 3986
duke@435 3987 // Not-null object klass or below
duke@435 3988 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 3989 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 3990
coleenp@4037 3991 //------------------------------TypeKlassPtr-----------------------------------
duke@435 3992 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
coleenp@4037 3993 : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
duke@435 3994 }
duke@435 3995
duke@435 3996 //------------------------------make-------------------------------------------
duke@435 3997 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 3998 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 3999 assert( k != NULL, "Expect a non-NULL klass");
coleenp@4037 4000 assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
duke@435 4001 TypeKlassPtr *r =
duke@435 4002 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 4003
duke@435 4004 return r;
duke@435 4005 }
duke@435 4006
duke@435 4007 //------------------------------eq---------------------------------------------
duke@435 4008 // Structural equality check for Type representations
duke@435 4009 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 4010 const TypeKlassPtr *p = t->is_klassptr();
duke@435 4011 return
duke@435 4012 klass()->equals(p->klass()) &&
coleenp@4037 4013 TypePtr::eq(p);
duke@435 4014 }
duke@435 4015
duke@435 4016 //------------------------------hash-------------------------------------------
duke@435 4017 // Type-specific hashing function.
duke@435 4018 int TypeKlassPtr::hash(void) const {
coleenp@4037 4019 return klass()->hash() + TypePtr::hash();
coleenp@4037 4020 }
coleenp@4037 4021
coleenp@4037 4022 //------------------------------singleton--------------------------------------
coleenp@4037 4023 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 4024 // constants
coleenp@4037 4025 bool TypeKlassPtr::singleton(void) const {
coleenp@4037 4026 // detune optimizer to not generate constant klass + constant offset as a constant!
coleenp@4037 4027 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 4028 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 4029 }
duke@435 4030
kvn@2116 4031 //----------------------compute_klass------------------------------------------
kvn@2116 4032 // Compute the defining klass for this class
kvn@2116 4033 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
kvn@2116 4034 // Compute _klass based on element type.
duke@435 4035 ciKlass* k_ary = NULL;
duke@435 4036 const TypeInstPtr *tinst;
duke@435 4037 const TypeAryPtr *tary;
coleenp@548 4038 const Type* el = elem();
coleenp@548 4039 if (el->isa_narrowoop()) {
kvn@656 4040 el = el->make_ptr();
coleenp@548 4041 }
coleenp@548 4042
duke@435 4043 // Get element klass
coleenp@548 4044 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 4045 // Compute array klass from element klass
duke@435 4046 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 4047 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 4048 // Compute array klass from element klass
duke@435 4049 ciKlass* k_elem = tary->klass();
duke@435 4050 // If element type is something like bottom[], k_elem will be null.
duke@435 4051 if (k_elem != NULL)
duke@435 4052 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 4053 } else if ((el->base() == Type::Top) ||
coleenp@548 4054 (el->base() == Type::Bottom)) {
duke@435 4055 // element type of Bottom occurs from meet of basic type
duke@435 4056 // and object; Top occurs when doing join on Bottom.
duke@435 4057 // Leave k_ary at NULL.
duke@435 4058 } else {
duke@435 4059 // Cannot compute array klass directly from basic type,
duke@435 4060 // since subtypes of TypeInt all have basic type T_INT.
kvn@2116 4061 #ifdef ASSERT
kvn@2116 4062 if (verify && el->isa_int()) {
kvn@2116 4063 // Check simple cases when verifying klass.
kvn@2116 4064 BasicType bt = T_ILLEGAL;
kvn@2116 4065 if (el == TypeInt::BYTE) {
kvn@2116 4066 bt = T_BYTE;
kvn@2116 4067 } else if (el == TypeInt::SHORT) {
kvn@2116 4068 bt = T_SHORT;
kvn@2116 4069 } else if (el == TypeInt::CHAR) {
kvn@2116 4070 bt = T_CHAR;
kvn@2116 4071 } else if (el == TypeInt::INT) {
kvn@2116 4072 bt = T_INT;
kvn@2116 4073 } else {
kvn@2116 4074 return _klass; // just return specified klass
kvn@2116 4075 }
kvn@2116 4076 return ciTypeArrayKlass::make(bt);
kvn@2116 4077 }
kvn@2116 4078 #endif
coleenp@548 4079 assert(!el->isa_int(),
duke@435 4080 "integral arrays must be pre-equipped with a class");
duke@435 4081 // Compute array klass directly from basic type
coleenp@548 4082 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 4083 }
kvn@2116 4084 return k_ary;
kvn@2116 4085 }
kvn@2116 4086
kvn@2116 4087 //------------------------------klass------------------------------------------
kvn@2116 4088 // Return the defining klass for this class
kvn@2116 4089 ciKlass* TypeAryPtr::klass() const {
kvn@2116 4090 if( _klass ) return _klass; // Return cached value, if possible
kvn@2116 4091
kvn@2116 4092 // Oops, need to compute _klass and cache it
kvn@2116 4093 ciKlass* k_ary = compute_klass();
duke@435 4094
kvn@2636 4095 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
duke@435 4096 // The _klass field acts as a cache of the underlying
duke@435 4097 // ciKlass for this array type. In order to set the field,
duke@435 4098 // we need to cast away const-ness.
duke@435 4099 //
duke@435 4100 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 4101 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 4102 // active compilations. However, the ciKlass which represents
duke@435 4103 // this Type is *not* shared between compilations, so caching
duke@435 4104 // this value would result in fetching a dangling pointer.
duke@435 4105 //
duke@435 4106 // Recomputing the underlying ciKlass for each request is
duke@435 4107 // a bit less efficient than caching, but calls to
duke@435 4108 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 4109 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 4110 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 4111 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 4112 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 4113 }
kvn@598 4114 }
duke@435 4115 return k_ary;
duke@435 4116 }
duke@435 4117
duke@435 4118
duke@435 4119 //------------------------------add_offset-------------------------------------
duke@435 4120 // Access internals of klass object
kvn@741 4121 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
duke@435 4122 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 4123 }
duke@435 4124
duke@435 4125 //------------------------------cast_to_ptr_type-------------------------------
duke@435 4126 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
kvn@992 4127 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
duke@435 4128 if( ptr == _ptr ) return this;
duke@435 4129 return make(ptr, _klass, _offset);
duke@435 4130 }
duke@435 4131
duke@435 4132
duke@435 4133 //-----------------------------cast_to_exactness-------------------------------
duke@435 4134 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 4135 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 4136 if (!UseExactTypes) return this;
duke@435 4137 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 4138 }
duke@435 4139
duke@435 4140
duke@435 4141 //-----------------------------as_instance_type--------------------------------
duke@435 4142 // Corresponding type for an instance of the given class.
duke@435 4143 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 4144 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 4145 ciKlass* k = klass();
duke@435 4146 bool xk = klass_is_exact();
duke@435 4147 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 4148 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
duke@435 4149 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 4150 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 4151 }
duke@435 4152
duke@435 4153
duke@435 4154 //------------------------------xmeet------------------------------------------
duke@435 4155 // Compute the MEET of two types, return a new Type object.
duke@435 4156 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 4157 // Perform a fast test for common case; meeting the same types together.
duke@435 4158 if( this == t ) return this; // Meeting same type-rep?
duke@435 4159
duke@435 4160 // Current "this->_base" is Pointer
duke@435 4161 switch (t->base()) { // switch on original type
duke@435 4162
duke@435 4163 case Int: // Mixing ints & oops happens when javac
duke@435 4164 case Long: // reuses local variables
duke@435 4165 case FloatTop:
duke@435 4166 case FloatCon:
duke@435 4167 case FloatBot:
duke@435 4168 case DoubleTop:
duke@435 4169 case DoubleCon:
duke@435 4170 case DoubleBot:
kvn@728 4171 case NarrowOop:
duke@435 4172 case Bottom: // Ye Olde Default
duke@435 4173 return Type::BOTTOM;
duke@435 4174 case Top:
duke@435 4175 return this;
duke@435 4176
duke@435 4177 default: // All else is a mistake
duke@435 4178 typerr(t);
duke@435 4179
duke@435 4180 case AnyPtr: { // Meeting to AnyPtrs
duke@435 4181 // Found an AnyPtr type vs self-KlassPtr type
duke@435 4182 const TypePtr *tp = t->is_ptr();
duke@435 4183 int offset = meet_offset(tp->offset());
duke@435 4184 PTR ptr = meet_ptr(tp->ptr());
duke@435 4185 switch (tp->ptr()) {
duke@435 4186 case TopPTR:
duke@435 4187 return this;
duke@435 4188 case Null:
duke@435 4189 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 4190 case AnyNull:
duke@435 4191 return make( ptr, klass(), offset );
duke@435 4192 case BotPTR:
duke@435 4193 case NotNull:
duke@435 4194 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 4195 default: typerr(t);
duke@435 4196 }
duke@435 4197 }
duke@435 4198
coleenp@4037 4199 case RawPtr:
coleenp@4037 4200 case MetadataPtr:
coleenp@4037 4201 case OopPtr:
duke@435 4202 case AryPtr: // Meet with AryPtr
duke@435 4203 case InstPtr: // Meet with InstPtr
coleenp@4037 4204 return TypePtr::BOTTOM;
duke@435 4205
duke@435 4206 //
duke@435 4207 // A-top }
duke@435 4208 // / | \ } Tops
duke@435 4209 // B-top A-any C-top }
duke@435 4210 // | / | \ | } Any-nulls
duke@435 4211 // B-any | C-any }
duke@435 4212 // | | |
duke@435 4213 // B-con A-con C-con } constants; not comparable across classes
duke@435 4214 // | | |
duke@435 4215 // B-not | C-not }
duke@435 4216 // | \ | / | } not-nulls
duke@435 4217 // B-bot A-not C-bot }
duke@435 4218 // \ | / } Bottoms
duke@435 4219 // A-bot }
duke@435 4220 //
duke@435 4221
duke@435 4222 case KlassPtr: { // Meet two KlassPtr types
duke@435 4223 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 4224 int off = meet_offset(tkls->offset());
duke@435 4225 PTR ptr = meet_ptr(tkls->ptr());
duke@435 4226
duke@435 4227 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 4228 // If we have constants, then we created oops so classes are loaded
duke@435 4229 // and we can handle the constants further down. This case handles
duke@435 4230 // not-loaded classes
duke@435 4231 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 4232 return make( ptr, klass(), off );
duke@435 4233 }
duke@435 4234
duke@435 4235 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 4236 ciKlass* tkls_klass = tkls->klass();
duke@435 4237 ciKlass* this_klass = this->klass();
duke@435 4238 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 4239 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 4240
duke@435 4241 // If 'this' type is above the centerline and is a superclass of the
duke@435 4242 // other, we can treat 'this' as having the same type as the other.
duke@435 4243 if ((above_centerline(this->ptr())) &&
duke@435 4244 tkls_klass->is_subtype_of(this_klass)) {
duke@435 4245 this_klass = tkls_klass;
duke@435 4246 }
duke@435 4247 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 4248 // other, we can treat 'tinst' as having the same type as the other.
duke@435 4249 if ((above_centerline(tkls->ptr())) &&
duke@435 4250 this_klass->is_subtype_of(tkls_klass)) {
duke@435 4251 tkls_klass = this_klass;
duke@435 4252 }
duke@435 4253
duke@435 4254 // Check for classes now being equal
duke@435 4255 if (tkls_klass->equals(this_klass)) {
duke@435 4256 // If the klasses are equal, the constants may still differ. Fall to
duke@435 4257 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 4258 // handled elsewhere).
duke@435 4259 if( ptr == Constant ) {
coleenp@4037 4260 if (this->_ptr == Constant && tkls->_ptr == Constant &&
coleenp@4037 4261 this->klass()->equals(tkls->klass()));
coleenp@4037 4262 else if (above_centerline(this->ptr()));
coleenp@4037 4263 else if (above_centerline(tkls->ptr()));
duke@435 4264 else
duke@435 4265 ptr = NotNull;
duke@435 4266 }
duke@435 4267 return make( ptr, this_klass, off );
duke@435 4268 } // Else classes are not equal
duke@435 4269
duke@435 4270 // Since klasses are different, we require the LCA in the Java
duke@435 4271 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 4272 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 4273 ptr = NotNull;
duke@435 4274 // Now we find the LCA of Java classes
duke@435 4275 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 4276 return make( ptr, k, off );
duke@435 4277 } // End of case KlassPtr
duke@435 4278
duke@435 4279 } // End of switch
duke@435 4280 return this; // Return the double constant
duke@435 4281 }
duke@435 4282
duke@435 4283 //------------------------------xdual------------------------------------------
duke@435 4284 // Dual: compute field-by-field dual
duke@435 4285 const Type *TypeKlassPtr::xdual() const {
duke@435 4286 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 4287 }
duke@435 4288
coleenp@4037 4289 //------------------------------get_con----------------------------------------
coleenp@4037 4290 intptr_t TypeKlassPtr::get_con() const {
coleenp@4037 4291 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4292 assert( _offset >= 0, "" );
coleenp@4037 4293
coleenp@4037 4294 if (_offset != 0) {
coleenp@4037 4295 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4296 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4297 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4298 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4299 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4300 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4301 // but this assertion here is to help prevent its occurence.
coleenp@4037 4302 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4303 ShouldNotReachHere();
coleenp@4037 4304 }
coleenp@4037 4305
coleenp@4037 4306 return (intptr_t)klass()->constant_encoding();
coleenp@4037 4307 }
duke@435 4308 //------------------------------dump2------------------------------------------
duke@435 4309 // Dump Klass Type
duke@435 4310 #ifndef PRODUCT
duke@435 4311 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 4312 switch( _ptr ) {
duke@435 4313 case Constant:
duke@435 4314 st->print("precise ");
duke@435 4315 case NotNull:
duke@435 4316 {
duke@435 4317 const char *name = klass()->name()->as_utf8();
duke@435 4318 if( name ) {
duke@435 4319 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 4320 } else {
duke@435 4321 ShouldNotReachHere();
duke@435 4322 }
duke@435 4323 }
duke@435 4324 case BotPTR:
duke@435 4325 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 4326 case TopPTR:
duke@435 4327 case AnyNull:
duke@435 4328 st->print(":%s", ptr_msg[_ptr]);
duke@435 4329 if( _klass_is_exact ) st->print(":exact");
duke@435 4330 break;
duke@435 4331 }
duke@435 4332
duke@435 4333 if( _offset ) { // Dump offset, if any
duke@435 4334 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 4335 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 4336 else { st->print("+%d", _offset); }
duke@435 4337 }
duke@435 4338
duke@435 4339 st->print(" *");
duke@435 4340 }
duke@435 4341 #endif
duke@435 4342
duke@435 4343
duke@435 4344
duke@435 4345 //=============================================================================
duke@435 4346 // Convenience common pre-built types.
duke@435 4347
duke@435 4348 //------------------------------make-------------------------------------------
duke@435 4349 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 4350 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 4351 }
duke@435 4352
duke@435 4353 //------------------------------make-------------------------------------------
duke@435 4354 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 4355 Compile* C = Compile::current();
duke@435 4356 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 4357 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 4358 const TypeTuple *domain;
twisti@1572 4359 if (method->is_static()) {
duke@435 4360 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 4361 } else {
duke@435 4362 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 4363 }
duke@435 4364 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 4365 tf = TypeFunc::make(domain, range);
duke@435 4366 C->set_last_tf(method, tf); // fill cache
duke@435 4367 return tf;
duke@435 4368 }
duke@435 4369
duke@435 4370 //------------------------------meet-------------------------------------------
duke@435 4371 // Compute the MEET of two types. It returns a new Type object.
duke@435 4372 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 4373 // Perform a fast test for common case; meeting the same types together.
duke@435 4374 if( this == t ) return this; // Meeting same type-rep?
duke@435 4375
duke@435 4376 // Current "this->_base" is Func
duke@435 4377 switch (t->base()) { // switch on original type
duke@435 4378
duke@435 4379 case Bottom: // Ye Olde Default
duke@435 4380 return t;
duke@435 4381
duke@435 4382 default: // All else is a mistake
duke@435 4383 typerr(t);
duke@435 4384
duke@435 4385 case Top:
duke@435 4386 break;
duke@435 4387 }
duke@435 4388 return this; // Return the double constant
duke@435 4389 }
duke@435 4390
duke@435 4391 //------------------------------xdual------------------------------------------
duke@435 4392 // Dual: compute field-by-field dual
duke@435 4393 const Type *TypeFunc::xdual() const {
duke@435 4394 return this;
duke@435 4395 }
duke@435 4396
duke@435 4397 //------------------------------eq---------------------------------------------
duke@435 4398 // Structural equality check for Type representations
duke@435 4399 bool TypeFunc::eq( const Type *t ) const {
duke@435 4400 const TypeFunc *a = (const TypeFunc*)t;
duke@435 4401 return _domain == a->_domain &&
duke@435 4402 _range == a->_range;
duke@435 4403 }
duke@435 4404
duke@435 4405 //------------------------------hash-------------------------------------------
duke@435 4406 // Type-specific hashing function.
duke@435 4407 int TypeFunc::hash(void) const {
duke@435 4408 return (intptr_t)_domain + (intptr_t)_range;
duke@435 4409 }
duke@435 4410
duke@435 4411 //------------------------------dump2------------------------------------------
duke@435 4412 // Dump Function Type
duke@435 4413 #ifndef PRODUCT
duke@435 4414 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4415 if( _range->_cnt <= Parms )
duke@435 4416 st->print("void");
duke@435 4417 else {
duke@435 4418 uint i;
duke@435 4419 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 4420 _range->field_at(i)->dump2(d,depth,st);
duke@435 4421 st->print("/");
duke@435 4422 }
duke@435 4423 _range->field_at(i)->dump2(d,depth,st);
duke@435 4424 }
duke@435 4425 st->print(" ");
duke@435 4426 st->print("( ");
duke@435 4427 if( !depth || d[this] ) { // Check for recursive dump
duke@435 4428 st->print("...)");
duke@435 4429 return;
duke@435 4430 }
duke@435 4431 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 4432 if (Parms < _domain->_cnt)
duke@435 4433 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 4434 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 4435 st->print(", ");
duke@435 4436 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 4437 }
duke@435 4438 st->print(" )");
duke@435 4439 }
duke@435 4440 #endif
duke@435 4441
duke@435 4442 //------------------------------singleton--------------------------------------
duke@435 4443 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 4444 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 4445 // or a single symbol.
duke@435 4446 bool TypeFunc::singleton(void) const {
duke@435 4447 return false; // Never a singleton
duke@435 4448 }
duke@435 4449
duke@435 4450 bool TypeFunc::empty(void) const {
duke@435 4451 return false; // Never empty
duke@435 4452 }
duke@435 4453
duke@435 4454
duke@435 4455 BasicType TypeFunc::return_type() const{
duke@435 4456 if (range()->cnt() == TypeFunc::Parms) {
duke@435 4457 return T_VOID;
duke@435 4458 }
duke@435 4459 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 4460 }

mercurial