src/share/vm/opto/type.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 992
465813e0303a
child 1059
337400e7a5dd
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

duke@435 1 /*
xdono@631 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 // Optimization - Graph Style
duke@435 28
duke@435 29 #include "incls/_precompiled.incl"
duke@435 30 #include "incls/_type.cpp.incl"
duke@435 31
duke@435 32 // Dictionary of types shared among compilations.
duke@435 33 Dict* Type::_shared_type_dict = NULL;
duke@435 34
duke@435 35 // Array which maps compiler types to Basic Types
duke@435 36 const BasicType Type::_basic_type[Type::lastype] = {
duke@435 37 T_ILLEGAL, // Bad
duke@435 38 T_ILLEGAL, // Control
duke@435 39 T_VOID, // Top
duke@435 40 T_INT, // Int
duke@435 41 T_LONG, // Long
duke@435 42 T_VOID, // Half
coleenp@548 43 T_NARROWOOP, // NarrowOop
duke@435 44
duke@435 45 T_ILLEGAL, // Tuple
duke@435 46 T_ARRAY, // Array
duke@435 47
duke@435 48 T_ADDRESS, // AnyPtr // shows up in factory methods for NULL_PTR
duke@435 49 T_ADDRESS, // RawPtr
duke@435 50 T_OBJECT, // OopPtr
duke@435 51 T_OBJECT, // InstPtr
duke@435 52 T_OBJECT, // AryPtr
duke@435 53 T_OBJECT, // KlassPtr
duke@435 54
duke@435 55 T_OBJECT, // Function
duke@435 56 T_ILLEGAL, // Abio
duke@435 57 T_ADDRESS, // Return_Address
duke@435 58 T_ILLEGAL, // Memory
duke@435 59 T_FLOAT, // FloatTop
duke@435 60 T_FLOAT, // FloatCon
duke@435 61 T_FLOAT, // FloatBot
duke@435 62 T_DOUBLE, // DoubleTop
duke@435 63 T_DOUBLE, // DoubleCon
duke@435 64 T_DOUBLE, // DoubleBot
duke@435 65 T_ILLEGAL, // Bottom
duke@435 66 };
duke@435 67
duke@435 68 // Map ideal registers (machine types) to ideal types
duke@435 69 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 70
duke@435 71 // Map basic types to canonical Type* pointers.
duke@435 72 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 73
duke@435 74 // Map basic types to constant-zero Types.
duke@435 75 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 76
duke@435 77 // Map basic types to array-body alias types.
duke@435 78 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 79
duke@435 80 //=============================================================================
duke@435 81 // Convenience common pre-built types.
duke@435 82 const Type *Type::ABIO; // State-of-machine only
duke@435 83 const Type *Type::BOTTOM; // All values
duke@435 84 const Type *Type::CONTROL; // Control only
duke@435 85 const Type *Type::DOUBLE; // All doubles
duke@435 86 const Type *Type::FLOAT; // All floats
duke@435 87 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 88 const Type *Type::MEMORY; // Abstract store only
duke@435 89 const Type *Type::RETURN_ADDRESS;
duke@435 90 const Type *Type::TOP; // No values in set
duke@435 91
duke@435 92 //------------------------------get_const_type---------------------------
duke@435 93 const Type* Type::get_const_type(ciType* type) {
duke@435 94 if (type == NULL) {
duke@435 95 return NULL;
duke@435 96 } else if (type->is_primitive_type()) {
duke@435 97 return get_const_basic_type(type->basic_type());
duke@435 98 } else {
duke@435 99 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 100 }
duke@435 101 }
duke@435 102
duke@435 103 //---------------------------array_element_basic_type---------------------------------
duke@435 104 // Mapping to the array element's basic type.
duke@435 105 BasicType Type::array_element_basic_type() const {
duke@435 106 BasicType bt = basic_type();
duke@435 107 if (bt == T_INT) {
duke@435 108 if (this == TypeInt::INT) return T_INT;
duke@435 109 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 110 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 111 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 112 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 113 return T_VOID;
duke@435 114 }
duke@435 115 return bt;
duke@435 116 }
duke@435 117
duke@435 118 //---------------------------get_typeflow_type---------------------------------
duke@435 119 // Import a type produced by ciTypeFlow.
duke@435 120 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 121 switch (type->basic_type()) {
duke@435 122
duke@435 123 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 124 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 125 return Type::BOTTOM;
duke@435 126
duke@435 127 case ciTypeFlow::StateVector::T_TOP:
duke@435 128 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 129 return Type::TOP;
duke@435 130
duke@435 131 case ciTypeFlow::StateVector::T_NULL:
duke@435 132 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 133 return TypePtr::NULL_PTR;
duke@435 134
duke@435 135 case ciTypeFlow::StateVector::T_LONG2:
duke@435 136 // The ciTypeFlow pass pushes a long, then the half.
duke@435 137 // We do the same.
duke@435 138 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 139 return TypeInt::TOP;
duke@435 140
duke@435 141 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 142 // The ciTypeFlow pass pushes double, then the half.
duke@435 143 // Our convention is the same.
duke@435 144 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 145 return Type::TOP;
duke@435 146
duke@435 147 case T_ADDRESS:
duke@435 148 assert(type->is_return_address(), "");
duke@435 149 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 150
duke@435 151 default:
duke@435 152 // make sure we did not mix up the cases:
duke@435 153 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 154 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 155 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 156 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 157 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 158 assert(!type->is_return_address(), "");
duke@435 159
duke@435 160 return Type::get_const_type(type);
duke@435 161 }
duke@435 162 }
duke@435 163
duke@435 164
duke@435 165 //------------------------------make-------------------------------------------
duke@435 166 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 167 // and look for an existing copy in the type dictionary.
duke@435 168 const Type *Type::make( enum TYPES t ) {
duke@435 169 return (new Type(t))->hashcons();
duke@435 170 }
kvn@658 171
duke@435 172 //------------------------------cmp--------------------------------------------
duke@435 173 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 174 if( t1->_base != t2->_base )
duke@435 175 return 1; // Missed badly
duke@435 176 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 177 return !t1->eq(t2); // Return ZERO if equal
duke@435 178 }
duke@435 179
duke@435 180 //------------------------------hash-------------------------------------------
duke@435 181 int Type::uhash( const Type *const t ) {
duke@435 182 return t->hash();
duke@435 183 }
duke@435 184
duke@435 185 //--------------------------Initialize_shared----------------------------------
duke@435 186 void Type::Initialize_shared(Compile* current) {
duke@435 187 // This method does not need to be locked because the first system
duke@435 188 // compilations (stub compilations) occur serially. If they are
duke@435 189 // changed to proceed in parallel, then this section will need
duke@435 190 // locking.
duke@435 191
duke@435 192 Arena* save = current->type_arena();
duke@435 193 Arena* shared_type_arena = new Arena();
duke@435 194
duke@435 195 current->set_type_arena(shared_type_arena);
duke@435 196 _shared_type_dict =
duke@435 197 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 198 shared_type_arena, 128 );
duke@435 199 current->set_type_dict(_shared_type_dict);
duke@435 200
duke@435 201 // Make shared pre-built types.
duke@435 202 CONTROL = make(Control); // Control only
duke@435 203 TOP = make(Top); // No values in set
duke@435 204 MEMORY = make(Memory); // Abstract store only
duke@435 205 ABIO = make(Abio); // State-of-machine only
duke@435 206 RETURN_ADDRESS=make(Return_Address);
duke@435 207 FLOAT = make(FloatBot); // All floats
duke@435 208 DOUBLE = make(DoubleBot); // All doubles
duke@435 209 BOTTOM = make(Bottom); // Everything
duke@435 210 HALF = make(Half); // Placeholder half of doublewide type
duke@435 211
duke@435 212 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 213 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 214
duke@435 215 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 216 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 217
duke@435 218 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 219 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 220 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 221 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 222 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 223 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 224 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 225 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 226 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 227 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 228 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
duke@435 229 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 230 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 231 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 232 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 233 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 234 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
duke@435 235 // CmpL is overloaded both as the bytecode computation returning
duke@435 236 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 237 // compare returning optimizer ideal-type flags.
duke@435 238 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 239 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 240 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 241 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
duke@435 242
duke@435 243 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 244 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 245 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 246 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 247 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 248 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 249 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
duke@435 250
duke@435 251 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 252 fboth[0] = Type::CONTROL;
duke@435 253 fboth[1] = Type::CONTROL;
duke@435 254 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 255
duke@435 256 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 257 ffalse[0] = Type::CONTROL;
duke@435 258 ffalse[1] = Type::TOP;
duke@435 259 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 260
duke@435 261 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 262 fneither[0] = Type::TOP;
duke@435 263 fneither[1] = Type::TOP;
duke@435 264 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 265
duke@435 266 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 267 ftrue[0] = Type::TOP;
duke@435 268 ftrue[1] = Type::CONTROL;
duke@435 269 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 270
duke@435 271 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 272 floop[0] = Type::CONTROL;
duke@435 273 floop[1] = TypeInt::INT;
duke@435 274 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 275
duke@435 276 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 277 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 278 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 279
duke@435 280 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 281 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 282
duke@435 283 const Type **fmembar = TypeTuple::fields(0);
duke@435 284 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 285
duke@435 286 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 287 fsc[0] = TypeInt::CC;
duke@435 288 fsc[1] = Type::MEMORY;
duke@435 289 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 290
duke@435 291 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 292 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 293 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 294 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 295 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 296 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 297 false, 0, oopDesc::klass_offset_in_bytes());
duke@435 298 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot);
duke@435 299
coleenp@548 300 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 301 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 302
coleenp@548 303 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 304 mreg2type[Op_Set ] = 0;
coleenp@548 305 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 306 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 307 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 308 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 309 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 310 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 311 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 312
duke@435 313 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), current->env()->Object_klass(), false, arrayOopDesc::length_offset_in_bytes());
kvn@598 314
kvn@598 315 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 316
kvn@598 317 #ifdef _LP64
kvn@598 318 if (UseCompressedOops) {
kvn@598 319 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 320 } else
kvn@598 321 #endif
kvn@598 322 {
kvn@598 323 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 324 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 325 }
duke@435 326 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 327 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 328 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 329 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 330 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 331 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 332 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 333
kvn@598 334 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 335 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 336 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 337 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 338 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 339 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 340 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 341 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 342 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 343 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 344 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 345 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 346
duke@435 347 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 348 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 349
duke@435 350 const Type **fi2c = TypeTuple::fields(2);
duke@435 351 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
duke@435 352 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 353 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 354
duke@435 355 const Type **intpair = TypeTuple::fields(2);
duke@435 356 intpair[0] = TypeInt::INT;
duke@435 357 intpair[1] = TypeInt::INT;
duke@435 358 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 359
duke@435 360 const Type **longpair = TypeTuple::fields(2);
duke@435 361 longpair[0] = TypeLong::LONG;
duke@435 362 longpair[1] = TypeLong::LONG;
duke@435 363 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 364
coleenp@548 365 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
duke@435 366 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
duke@435 367 _const_basic_type[T_CHAR] = TypeInt::CHAR;
duke@435 368 _const_basic_type[T_BYTE] = TypeInt::BYTE;
duke@435 369 _const_basic_type[T_SHORT] = TypeInt::SHORT;
duke@435 370 _const_basic_type[T_INT] = TypeInt::INT;
duke@435 371 _const_basic_type[T_LONG] = TypeLong::LONG;
duke@435 372 _const_basic_type[T_FLOAT] = Type::FLOAT;
duke@435 373 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
duke@435 374 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
duke@435 375 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
duke@435 376 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
duke@435 377 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
duke@435 378 _const_basic_type[T_CONFLICT]= Type::BOTTOM; // why not?
duke@435 379
coleenp@548 380 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
duke@435 381 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
duke@435 382 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
duke@435 383 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
duke@435 384 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
duke@435 385 _zero_type[T_INT] = TypeInt::ZERO;
duke@435 386 _zero_type[T_LONG] = TypeLong::ZERO;
duke@435 387 _zero_type[T_FLOAT] = TypeF::ZERO;
duke@435 388 _zero_type[T_DOUBLE] = TypeD::ZERO;
duke@435 389 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
duke@435 390 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
duke@435 391 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
duke@435 392 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 393
duke@435 394 // get_zero_type() should not happen for T_CONFLICT
duke@435 395 _zero_type[T_CONFLICT]= NULL;
duke@435 396
duke@435 397 // Restore working type arena.
duke@435 398 current->set_type_arena(save);
duke@435 399 current->set_type_dict(NULL);
duke@435 400 }
duke@435 401
duke@435 402 //------------------------------Initialize-------------------------------------
duke@435 403 void Type::Initialize(Compile* current) {
duke@435 404 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 405
duke@435 406 if (_shared_type_dict == NULL) {
duke@435 407 Initialize_shared(current);
duke@435 408 }
duke@435 409
duke@435 410 Arena* type_arena = current->type_arena();
duke@435 411
duke@435 412 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 413 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 414 current->set_type_dict(tdic);
duke@435 415
duke@435 416 // Transfer the shared types.
duke@435 417 DictI i(_shared_type_dict);
duke@435 418 for( ; i.test(); ++i ) {
duke@435 419 Type* t = (Type*)i._value;
duke@435 420 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 421 }
coleenp@548 422
coleenp@548 423 #ifdef ASSERT
coleenp@548 424 verify_lastype();
coleenp@548 425 #endif
duke@435 426 }
duke@435 427
duke@435 428 //------------------------------hashcons---------------------------------------
duke@435 429 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 430 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 431 // current Type in the Type table.
duke@435 432 const Type *Type::hashcons(void) {
duke@435 433 debug_only(base()); // Check the assertion in Type::base().
duke@435 434 // Look up the Type in the Type dictionary
duke@435 435 Dict *tdic = type_dict();
duke@435 436 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 437 if( old ) { // Pre-existing Type?
duke@435 438 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 439 delete this; // Yes, Nuke this guy
duke@435 440 assert( old->_dual, "" );
duke@435 441 return old; // Return pre-existing
duke@435 442 }
duke@435 443
duke@435 444 // Every type has a dual (to make my lattice symmetric).
duke@435 445 // Since we just discovered a new Type, compute its dual right now.
duke@435 446 assert( !_dual, "" ); // No dual yet
duke@435 447 _dual = xdual(); // Compute the dual
duke@435 448 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 449 _dual = this;
duke@435 450 return this;
duke@435 451 }
duke@435 452 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 453 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 454 // New Type, insert into Type table
duke@435 455 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 456 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 457 #ifdef ASSERT
duke@435 458 Type *dual_dual = (Type*)_dual->xdual();
duke@435 459 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 460 delete dual_dual;
duke@435 461 #endif
duke@435 462 return this; // Return new Type
duke@435 463 }
duke@435 464
duke@435 465 //------------------------------eq---------------------------------------------
duke@435 466 // Structural equality check for Type representations
duke@435 467 bool Type::eq( const Type * ) const {
duke@435 468 return true; // Nothing else can go wrong
duke@435 469 }
duke@435 470
duke@435 471 //------------------------------hash-------------------------------------------
duke@435 472 // Type-specific hashing function.
duke@435 473 int Type::hash(void) const {
duke@435 474 return _base;
duke@435 475 }
duke@435 476
duke@435 477 //------------------------------is_finite--------------------------------------
duke@435 478 // Has a finite value
duke@435 479 bool Type::is_finite() const {
duke@435 480 return false;
duke@435 481 }
duke@435 482
duke@435 483 //------------------------------is_nan-----------------------------------------
duke@435 484 // Is not a number (NaN)
duke@435 485 bool Type::is_nan() const {
duke@435 486 return false;
duke@435 487 }
duke@435 488
duke@435 489 //------------------------------meet-------------------------------------------
duke@435 490 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 491 // commutative and the lattice is symmetric.
duke@435 492 const Type *Type::meet( const Type *t ) const {
coleenp@548 493 if (isa_narrowoop() && t->isa_narrowoop()) {
kvn@656 494 const Type* result = make_ptr()->meet(t->make_ptr());
kvn@656 495 return result->make_narrowoop();
coleenp@548 496 }
coleenp@548 497
duke@435 498 const Type *mt = xmeet(t);
coleenp@548 499 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
duke@435 500 #ifdef ASSERT
duke@435 501 assert( mt == t->xmeet(this), "meet not commutative" );
duke@435 502 const Type* dual_join = mt->_dual;
duke@435 503 const Type *t2t = dual_join->xmeet(t->_dual);
duke@435 504 const Type *t2this = dual_join->xmeet( _dual);
duke@435 505
duke@435 506 // Interface meet Oop is Not Symmetric:
duke@435 507 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 508 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
duke@435 509 const TypeInstPtr* this_inst = this->isa_instptr();
duke@435 510 const TypeInstPtr* t_inst = t->isa_instptr();
duke@435 511 bool interface_vs_oop = false;
duke@435 512 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
duke@435 513 bool this_interface = this_inst->klass()->is_interface();
duke@435 514 bool t_interface = t_inst->klass()->is_interface();
duke@435 515 interface_vs_oop = this_interface ^ t_interface;
duke@435 516 }
kvn@658 517
kvn@658 518 if( !interface_vs_oop && (t2t != t->_dual || t2this != _dual) ) {
duke@435 519 tty->print_cr("=== Meet Not Symmetric ===");
duke@435 520 tty->print("t = "); t->dump(); tty->cr();
duke@435 521 tty->print("this= "); dump(); tty->cr();
duke@435 522 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
duke@435 523
duke@435 524 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
duke@435 525 tty->print("this_dual= "); _dual->dump(); tty->cr();
duke@435 526 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
duke@435 527
duke@435 528 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
duke@435 529 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 530
duke@435 531 fatal("meet not symmetric" );
duke@435 532 }
duke@435 533 #endif
duke@435 534 return mt;
duke@435 535 }
duke@435 536
duke@435 537 //------------------------------xmeet------------------------------------------
duke@435 538 // Compute the MEET of two types. It returns a new Type object.
duke@435 539 const Type *Type::xmeet( const Type *t ) const {
duke@435 540 // Perform a fast test for common case; meeting the same types together.
duke@435 541 if( this == t ) return this; // Meeting same type-rep?
duke@435 542
duke@435 543 // Meeting TOP with anything?
duke@435 544 if( _base == Top ) return t;
duke@435 545
duke@435 546 // Meeting BOTTOM with anything?
duke@435 547 if( _base == Bottom ) return BOTTOM;
duke@435 548
duke@435 549 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 550 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 551 switch (t->base()) { // Switch on original type
duke@435 552
duke@435 553 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 554 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 555 case FloatCon:
duke@435 556 case DoubleCon:
duke@435 557 case Int:
duke@435 558 case Long:
duke@435 559 return t->xmeet(this);
duke@435 560
duke@435 561 case OopPtr:
duke@435 562 return t->xmeet(this);
duke@435 563
duke@435 564 case InstPtr:
duke@435 565 return t->xmeet(this);
duke@435 566
duke@435 567 case KlassPtr:
duke@435 568 return t->xmeet(this);
duke@435 569
duke@435 570 case AryPtr:
duke@435 571 return t->xmeet(this);
duke@435 572
coleenp@548 573 case NarrowOop:
coleenp@548 574 return t->xmeet(this);
coleenp@548 575
duke@435 576 case Bad: // Type check
duke@435 577 default: // Bogus type not in lattice
duke@435 578 typerr(t);
duke@435 579 return Type::BOTTOM;
duke@435 580
duke@435 581 case Bottom: // Ye Olde Default
duke@435 582 return t;
duke@435 583
duke@435 584 case FloatTop:
duke@435 585 if( _base == FloatTop ) return this;
duke@435 586 case FloatBot: // Float
duke@435 587 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 588 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 589 typerr(t);
duke@435 590 return Type::BOTTOM;
duke@435 591
duke@435 592 case DoubleTop:
duke@435 593 if( _base == DoubleTop ) return this;
duke@435 594 case DoubleBot: // Double
duke@435 595 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 596 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 597 typerr(t);
duke@435 598 return Type::BOTTOM;
duke@435 599
duke@435 600 // These next few cases must match exactly or it is a compile-time error.
duke@435 601 case Control: // Control of code
duke@435 602 case Abio: // State of world outside of program
duke@435 603 case Memory:
duke@435 604 if( _base == t->_base ) return this;
duke@435 605 typerr(t);
duke@435 606 return Type::BOTTOM;
duke@435 607
duke@435 608 case Top: // Top of the lattice
duke@435 609 return this;
duke@435 610 }
duke@435 611
duke@435 612 // The type is unchanged
duke@435 613 return this;
duke@435 614 }
duke@435 615
duke@435 616 //-----------------------------filter------------------------------------------
duke@435 617 const Type *Type::filter( const Type *kills ) const {
duke@435 618 const Type* ft = join(kills);
duke@435 619 if (ft->empty())
duke@435 620 return Type::TOP; // Canonical empty value
duke@435 621 return ft;
duke@435 622 }
duke@435 623
duke@435 624 //------------------------------xdual------------------------------------------
duke@435 625 // Compute dual right now.
duke@435 626 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 627 Bad, // Bad
duke@435 628 Control, // Control
duke@435 629 Bottom, // Top
duke@435 630 Bad, // Int - handled in v-call
duke@435 631 Bad, // Long - handled in v-call
duke@435 632 Half, // Half
coleenp@548 633 Bad, // NarrowOop - handled in v-call
duke@435 634
duke@435 635 Bad, // Tuple - handled in v-call
duke@435 636 Bad, // Array - handled in v-call
duke@435 637
duke@435 638 Bad, // AnyPtr - handled in v-call
duke@435 639 Bad, // RawPtr - handled in v-call
duke@435 640 Bad, // OopPtr - handled in v-call
duke@435 641 Bad, // InstPtr - handled in v-call
duke@435 642 Bad, // AryPtr - handled in v-call
duke@435 643 Bad, // KlassPtr - handled in v-call
duke@435 644
duke@435 645 Bad, // Function - handled in v-call
duke@435 646 Abio, // Abio
duke@435 647 Return_Address,// Return_Address
duke@435 648 Memory, // Memory
duke@435 649 FloatBot, // FloatTop
duke@435 650 FloatCon, // FloatCon
duke@435 651 FloatTop, // FloatBot
duke@435 652 DoubleBot, // DoubleTop
duke@435 653 DoubleCon, // DoubleCon
duke@435 654 DoubleTop, // DoubleBot
duke@435 655 Top // Bottom
duke@435 656 };
duke@435 657
duke@435 658 const Type *Type::xdual() const {
duke@435 659 // Note: the base() accessor asserts the sanity of _base.
duke@435 660 assert(dual_type[base()] != Bad, "implement with v-call");
duke@435 661 return new Type(dual_type[_base]);
duke@435 662 }
duke@435 663
duke@435 664 //------------------------------has_memory-------------------------------------
duke@435 665 bool Type::has_memory() const {
duke@435 666 Type::TYPES tx = base();
duke@435 667 if (tx == Memory) return true;
duke@435 668 if (tx == Tuple) {
duke@435 669 const TypeTuple *t = is_tuple();
duke@435 670 for (uint i=0; i < t->cnt(); i++) {
duke@435 671 tx = t->field_at(i)->base();
duke@435 672 if (tx == Memory) return true;
duke@435 673 }
duke@435 674 }
duke@435 675 return false;
duke@435 676 }
duke@435 677
duke@435 678 #ifndef PRODUCT
duke@435 679 //------------------------------dump2------------------------------------------
duke@435 680 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 681 st->print(msg[_base]);
duke@435 682 }
duke@435 683
duke@435 684 //------------------------------dump-------------------------------------------
duke@435 685 void Type::dump_on(outputStream *st) const {
duke@435 686 ResourceMark rm;
duke@435 687 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 688 dump2(d,1, st);
kvn@598 689 if (is_ptr_to_narrowoop()) {
coleenp@548 690 st->print(" [narrow]");
coleenp@548 691 }
duke@435 692 }
duke@435 693
duke@435 694 //------------------------------data-------------------------------------------
duke@435 695 const char * const Type::msg[Type::lastype] = {
coleenp@548 696 "bad","control","top","int:","long:","half", "narrowoop:",
duke@435 697 "tuple:", "aryptr",
duke@435 698 "anyptr:", "rawptr:", "java:", "inst:", "ary:", "klass:",
duke@435 699 "func", "abIO", "return_address", "memory",
duke@435 700 "float_top", "ftcon:", "float",
duke@435 701 "double_top", "dblcon:", "double",
duke@435 702 "bottom"
duke@435 703 };
duke@435 704 #endif
duke@435 705
duke@435 706 //------------------------------singleton--------------------------------------
duke@435 707 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 708 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 709 bool Type::singleton(void) const {
duke@435 710 return _base == Top || _base == Half;
duke@435 711 }
duke@435 712
duke@435 713 //------------------------------empty------------------------------------------
duke@435 714 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 715 bool Type::empty(void) const {
duke@435 716 switch (_base) {
duke@435 717 case DoubleTop:
duke@435 718 case FloatTop:
duke@435 719 case Top:
duke@435 720 return true;
duke@435 721
duke@435 722 case Half:
duke@435 723 case Abio:
duke@435 724 case Return_Address:
duke@435 725 case Memory:
duke@435 726 case Bottom:
duke@435 727 case FloatBot:
duke@435 728 case DoubleBot:
duke@435 729 return false; // never a singleton, therefore never empty
duke@435 730 }
duke@435 731
duke@435 732 ShouldNotReachHere();
duke@435 733 return false;
duke@435 734 }
duke@435 735
duke@435 736 //------------------------------dump_stats-------------------------------------
duke@435 737 // Dump collected statistics to stderr
duke@435 738 #ifndef PRODUCT
duke@435 739 void Type::dump_stats() {
duke@435 740 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 741 }
duke@435 742 #endif
duke@435 743
duke@435 744 //------------------------------typerr-----------------------------------------
duke@435 745 void Type::typerr( const Type *t ) const {
duke@435 746 #ifndef PRODUCT
duke@435 747 tty->print("\nError mixing types: ");
duke@435 748 dump();
duke@435 749 tty->print(" and ");
duke@435 750 t->dump();
duke@435 751 tty->print("\n");
duke@435 752 #endif
duke@435 753 ShouldNotReachHere();
duke@435 754 }
duke@435 755
duke@435 756 //------------------------------isa_oop_ptr------------------------------------
duke@435 757 // Return true if type is an oop pointer type. False for raw pointers.
duke@435 758 static char isa_oop_ptr_tbl[Type::lastype] = {
coleenp@548 759 0,0,0,0,0,0,0/*narrowoop*/,0/*tuple*/, 0/*ary*/,
duke@435 760 0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
duke@435 761 0/*func*/,0,0/*return_address*/,0,
duke@435 762 /*floats*/0,0,0, /*doubles*/0,0,0,
duke@435 763 0
duke@435 764 };
duke@435 765 bool Type::isa_oop_ptr() const {
duke@435 766 return isa_oop_ptr_tbl[_base] != 0;
duke@435 767 }
duke@435 768
duke@435 769 //------------------------------dump_stats-------------------------------------
duke@435 770 // // Check that arrays match type enum
duke@435 771 #ifndef PRODUCT
duke@435 772 void Type::verify_lastype() {
duke@435 773 // Check that arrays match enumeration
duke@435 774 assert( Type::dual_type [Type::lastype - 1] == Type::Top, "did not update array");
duke@435 775 assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
duke@435 776 // assert( PhiNode::tbl [Type::lastype - 1] == NULL, "did not update array");
duke@435 777 assert( Matcher::base2reg[Type::lastype - 1] == 0, "did not update array");
duke@435 778 assert( isa_oop_ptr_tbl [Type::lastype - 1] == (char)0, "did not update array");
duke@435 779 }
duke@435 780 #endif
duke@435 781
duke@435 782 //=============================================================================
duke@435 783 // Convenience common pre-built types.
duke@435 784 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 785 const TypeF *TypeF::ONE; // Floating point one
duke@435 786
duke@435 787 //------------------------------make-------------------------------------------
duke@435 788 // Create a float constant
duke@435 789 const TypeF *TypeF::make(float f) {
duke@435 790 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 791 }
duke@435 792
duke@435 793 //------------------------------meet-------------------------------------------
duke@435 794 // Compute the MEET of two types. It returns a new Type object.
duke@435 795 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 796 // Perform a fast test for common case; meeting the same types together.
duke@435 797 if( this == t ) return this; // Meeting same type-rep?
duke@435 798
duke@435 799 // Current "this->_base" is FloatCon
duke@435 800 switch (t->base()) { // Switch on original type
duke@435 801 case AnyPtr: // Mixing with oops happens when javac
duke@435 802 case RawPtr: // reuses local variables
duke@435 803 case OopPtr:
duke@435 804 case InstPtr:
duke@435 805 case KlassPtr:
duke@435 806 case AryPtr:
kvn@728 807 case NarrowOop:
duke@435 808 case Int:
duke@435 809 case Long:
duke@435 810 case DoubleTop:
duke@435 811 case DoubleCon:
duke@435 812 case DoubleBot:
duke@435 813 case Bottom: // Ye Olde Default
duke@435 814 return Type::BOTTOM;
duke@435 815
duke@435 816 case FloatBot:
duke@435 817 return t;
duke@435 818
duke@435 819 default: // All else is a mistake
duke@435 820 typerr(t);
duke@435 821
duke@435 822 case FloatCon: // Float-constant vs Float-constant?
duke@435 823 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 824 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 825 // all the same representation in C++
duke@435 826 return FLOAT; // Return generic float
duke@435 827 // Equal constants
duke@435 828 case Top:
duke@435 829 case FloatTop:
duke@435 830 break; // Return the float constant
duke@435 831 }
duke@435 832 return this; // Return the float constant
duke@435 833 }
duke@435 834
duke@435 835 //------------------------------xdual------------------------------------------
duke@435 836 // Dual: symmetric
duke@435 837 const Type *TypeF::xdual() const {
duke@435 838 return this;
duke@435 839 }
duke@435 840
duke@435 841 //------------------------------eq---------------------------------------------
duke@435 842 // Structural equality check for Type representations
duke@435 843 bool TypeF::eq( const Type *t ) const {
duke@435 844 if( g_isnan(_f) ||
duke@435 845 g_isnan(t->getf()) ) {
duke@435 846 // One or both are NANs. If both are NANs return true, else false.
duke@435 847 return (g_isnan(_f) && g_isnan(t->getf()));
duke@435 848 }
duke@435 849 if (_f == t->getf()) {
duke@435 850 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 851 if (_f == 0.0) {
duke@435 852 // difference between positive and negative zero
duke@435 853 if (jint_cast(_f) != jint_cast(t->getf())) return false;
duke@435 854 }
duke@435 855 return true;
duke@435 856 }
duke@435 857 return false;
duke@435 858 }
duke@435 859
duke@435 860 //------------------------------hash-------------------------------------------
duke@435 861 // Type-specific hashing function.
duke@435 862 int TypeF::hash(void) const {
duke@435 863 return *(int*)(&_f);
duke@435 864 }
duke@435 865
duke@435 866 //------------------------------is_finite--------------------------------------
duke@435 867 // Has a finite value
duke@435 868 bool TypeF::is_finite() const {
duke@435 869 return g_isfinite(getf()) != 0;
duke@435 870 }
duke@435 871
duke@435 872 //------------------------------is_nan-----------------------------------------
duke@435 873 // Is not a number (NaN)
duke@435 874 bool TypeF::is_nan() const {
duke@435 875 return g_isnan(getf()) != 0;
duke@435 876 }
duke@435 877
duke@435 878 //------------------------------dump2------------------------------------------
duke@435 879 // Dump float constant Type
duke@435 880 #ifndef PRODUCT
duke@435 881 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 882 Type::dump2(d,depth, st);
duke@435 883 st->print("%f", _f);
duke@435 884 }
duke@435 885 #endif
duke@435 886
duke@435 887 //------------------------------singleton--------------------------------------
duke@435 888 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 889 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 890 // or a single symbol.
duke@435 891 bool TypeF::singleton(void) const {
duke@435 892 return true; // Always a singleton
duke@435 893 }
duke@435 894
duke@435 895 bool TypeF::empty(void) const {
duke@435 896 return false; // always exactly a singleton
duke@435 897 }
duke@435 898
duke@435 899 //=============================================================================
duke@435 900 // Convenience common pre-built types.
duke@435 901 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 902 const TypeD *TypeD::ONE; // Floating point one
duke@435 903
duke@435 904 //------------------------------make-------------------------------------------
duke@435 905 const TypeD *TypeD::make(double d) {
duke@435 906 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 907 }
duke@435 908
duke@435 909 //------------------------------meet-------------------------------------------
duke@435 910 // Compute the MEET of two types. It returns a new Type object.
duke@435 911 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 912 // Perform a fast test for common case; meeting the same types together.
duke@435 913 if( this == t ) return this; // Meeting same type-rep?
duke@435 914
duke@435 915 // Current "this->_base" is DoubleCon
duke@435 916 switch (t->base()) { // Switch on original type
duke@435 917 case AnyPtr: // Mixing with oops happens when javac
duke@435 918 case RawPtr: // reuses local variables
duke@435 919 case OopPtr:
duke@435 920 case InstPtr:
duke@435 921 case KlassPtr:
duke@435 922 case AryPtr:
never@618 923 case NarrowOop:
duke@435 924 case Int:
duke@435 925 case Long:
duke@435 926 case FloatTop:
duke@435 927 case FloatCon:
duke@435 928 case FloatBot:
duke@435 929 case Bottom: // Ye Olde Default
duke@435 930 return Type::BOTTOM;
duke@435 931
duke@435 932 case DoubleBot:
duke@435 933 return t;
duke@435 934
duke@435 935 default: // All else is a mistake
duke@435 936 typerr(t);
duke@435 937
duke@435 938 case DoubleCon: // Double-constant vs Double-constant?
duke@435 939 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 940 return DOUBLE; // Return generic double
duke@435 941 case Top:
duke@435 942 case DoubleTop:
duke@435 943 break;
duke@435 944 }
duke@435 945 return this; // Return the double constant
duke@435 946 }
duke@435 947
duke@435 948 //------------------------------xdual------------------------------------------
duke@435 949 // Dual: symmetric
duke@435 950 const Type *TypeD::xdual() const {
duke@435 951 return this;
duke@435 952 }
duke@435 953
duke@435 954 //------------------------------eq---------------------------------------------
duke@435 955 // Structural equality check for Type representations
duke@435 956 bool TypeD::eq( const Type *t ) const {
duke@435 957 if( g_isnan(_d) ||
duke@435 958 g_isnan(t->getd()) ) {
duke@435 959 // One or both are NANs. If both are NANs return true, else false.
duke@435 960 return (g_isnan(_d) && g_isnan(t->getd()));
duke@435 961 }
duke@435 962 if (_d == t->getd()) {
duke@435 963 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 964 if (_d == 0.0) {
duke@435 965 // difference between positive and negative zero
duke@435 966 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
duke@435 967 }
duke@435 968 return true;
duke@435 969 }
duke@435 970 return false;
duke@435 971 }
duke@435 972
duke@435 973 //------------------------------hash-------------------------------------------
duke@435 974 // Type-specific hashing function.
duke@435 975 int TypeD::hash(void) const {
duke@435 976 return *(int*)(&_d);
duke@435 977 }
duke@435 978
duke@435 979 //------------------------------is_finite--------------------------------------
duke@435 980 // Has a finite value
duke@435 981 bool TypeD::is_finite() const {
duke@435 982 return g_isfinite(getd()) != 0;
duke@435 983 }
duke@435 984
duke@435 985 //------------------------------is_nan-----------------------------------------
duke@435 986 // Is not a number (NaN)
duke@435 987 bool TypeD::is_nan() const {
duke@435 988 return g_isnan(getd()) != 0;
duke@435 989 }
duke@435 990
duke@435 991 //------------------------------dump2------------------------------------------
duke@435 992 // Dump double constant Type
duke@435 993 #ifndef PRODUCT
duke@435 994 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 995 Type::dump2(d,depth,st);
duke@435 996 st->print("%f", _d);
duke@435 997 }
duke@435 998 #endif
duke@435 999
duke@435 1000 //------------------------------singleton--------------------------------------
duke@435 1001 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1002 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1003 // or a single symbol.
duke@435 1004 bool TypeD::singleton(void) const {
duke@435 1005 return true; // Always a singleton
duke@435 1006 }
duke@435 1007
duke@435 1008 bool TypeD::empty(void) const {
duke@435 1009 return false; // always exactly a singleton
duke@435 1010 }
duke@435 1011
duke@435 1012 //=============================================================================
duke@435 1013 // Convience common pre-built types.
duke@435 1014 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1015 const TypeInt *TypeInt::ZERO; // 0
duke@435 1016 const TypeInt *TypeInt::ONE; // 1
duke@435 1017 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1018 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1019 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1020 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1021 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1022 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1023 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1024 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
duke@435 1025 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1026 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1027 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1028 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1029 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1030 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 1031
duke@435 1032 //------------------------------TypeInt----------------------------------------
duke@435 1033 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1034 }
duke@435 1035
duke@435 1036 //------------------------------make-------------------------------------------
duke@435 1037 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1038 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1039 }
duke@435 1040
duke@435 1041 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
duke@435 1042
duke@435 1043 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
duke@435 1044 // Certain normalizations keep us sane when comparing types.
duke@435 1045 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1046 assert(CC == NULL || (juint)(CC->_hi - CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 1047 if (lo <= hi) {
duke@435 1048 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
duke@435 1049 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // plain int
duke@435 1050 }
duke@435 1051 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1052 }
duke@435 1053
duke@435 1054 //------------------------------meet-------------------------------------------
duke@435 1055 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1056 // with reference count equal to the number of Types pointing at it.
duke@435 1057 // Caller should wrap a Types around it.
duke@435 1058 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1059 // Perform a fast test for common case; meeting the same types together.
duke@435 1060 if( this == t ) return this; // Meeting same type?
duke@435 1061
duke@435 1062 // Currently "this->_base" is a TypeInt
duke@435 1063 switch (t->base()) { // Switch on original type
duke@435 1064 case AnyPtr: // Mixing with oops happens when javac
duke@435 1065 case RawPtr: // reuses local variables
duke@435 1066 case OopPtr:
duke@435 1067 case InstPtr:
duke@435 1068 case KlassPtr:
duke@435 1069 case AryPtr:
never@618 1070 case NarrowOop:
duke@435 1071 case Long:
duke@435 1072 case FloatTop:
duke@435 1073 case FloatCon:
duke@435 1074 case FloatBot:
duke@435 1075 case DoubleTop:
duke@435 1076 case DoubleCon:
duke@435 1077 case DoubleBot:
duke@435 1078 case Bottom: // Ye Olde Default
duke@435 1079 return Type::BOTTOM;
duke@435 1080 default: // All else is a mistake
duke@435 1081 typerr(t);
duke@435 1082 case Top: // No change
duke@435 1083 return this;
duke@435 1084 case Int: // Int vs Int?
duke@435 1085 break;
duke@435 1086 }
duke@435 1087
duke@435 1088 // Expand covered set
duke@435 1089 const TypeInt *r = t->is_int();
duke@435 1090 // (Avoid TypeInt::make, to avoid the argument normalizations it enforces.)
duke@435 1091 return (new TypeInt( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
duke@435 1092 }
duke@435 1093
duke@435 1094 //------------------------------xdual------------------------------------------
duke@435 1095 // Dual: reverse hi & lo; flip widen
duke@435 1096 const Type *TypeInt::xdual() const {
duke@435 1097 return new TypeInt(_hi,_lo,WidenMax-_widen);
duke@435 1098 }
duke@435 1099
duke@435 1100 //------------------------------widen------------------------------------------
duke@435 1101 // Only happens for optimistic top-down optimizations.
duke@435 1102 const Type *TypeInt::widen( const Type *old ) const {
duke@435 1103 // Coming from TOP or such; no widening
duke@435 1104 if( old->base() != Int ) return this;
duke@435 1105 const TypeInt *ot = old->is_int();
duke@435 1106
duke@435 1107 // If new guy is equal to old guy, no widening
duke@435 1108 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1109 return old;
duke@435 1110
duke@435 1111 // If new guy contains old, then we widened
duke@435 1112 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1113 // New contains old
duke@435 1114 // If new guy is already wider than old, no widening
duke@435 1115 if( _widen > ot->_widen ) return this;
duke@435 1116 // If old guy was a constant, do not bother
duke@435 1117 if (ot->_lo == ot->_hi) return this;
duke@435 1118 // Now widen new guy.
duke@435 1119 // Check for widening too far
duke@435 1120 if (_widen == WidenMax) {
duke@435 1121 if (min_jint < _lo && _hi < max_jint) {
duke@435 1122 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1123 // which is closer to its respective limit.
duke@435 1124 if (_lo >= 0 || // easy common case
duke@435 1125 (juint)(_lo - min_jint) >= (juint)(max_jint - _hi)) {
duke@435 1126 // Try to widen to an unsigned range type of 31 bits:
duke@435 1127 return make(_lo, max_jint, WidenMax);
duke@435 1128 } else {
duke@435 1129 return make(min_jint, _hi, WidenMax);
duke@435 1130 }
duke@435 1131 }
duke@435 1132 return TypeInt::INT;
duke@435 1133 }
duke@435 1134 // Returned widened new guy
duke@435 1135 return make(_lo,_hi,_widen+1);
duke@435 1136 }
duke@435 1137
duke@435 1138 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1139 // bottom. Return the wider fellow.
duke@435 1140 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1141 return old;
duke@435 1142
duke@435 1143 //fatal("Integer value range is not subset");
duke@435 1144 //return this;
duke@435 1145 return TypeInt::INT;
duke@435 1146 }
duke@435 1147
duke@435 1148 //------------------------------narrow---------------------------------------
duke@435 1149 // Only happens for pessimistic optimizations.
duke@435 1150 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1151 if (_lo >= _hi) return this; // already narrow enough
duke@435 1152 if (old == NULL) return this;
duke@435 1153 const TypeInt* ot = old->isa_int();
duke@435 1154 if (ot == NULL) return this;
duke@435 1155 jint olo = ot->_lo;
duke@435 1156 jint ohi = ot->_hi;
duke@435 1157
duke@435 1158 // If new guy is equal to old guy, no narrowing
duke@435 1159 if (_lo == olo && _hi == ohi) return old;
duke@435 1160
duke@435 1161 // If old guy was maximum range, allow the narrowing
duke@435 1162 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1163
duke@435 1164 if (_lo < olo || _hi > ohi)
duke@435 1165 return this; // doesn't narrow; pretty wierd
duke@435 1166
duke@435 1167 // The new type narrows the old type, so look for a "death march".
duke@435 1168 // See comments on PhaseTransform::saturate.
duke@435 1169 juint nrange = _hi - _lo;
duke@435 1170 juint orange = ohi - olo;
duke@435 1171 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1172 // Use the new type only if the range shrinks a lot.
duke@435 1173 // We do not want the optimizer computing 2^31 point by point.
duke@435 1174 return old;
duke@435 1175 }
duke@435 1176
duke@435 1177 return this;
duke@435 1178 }
duke@435 1179
duke@435 1180 //-----------------------------filter------------------------------------------
duke@435 1181 const Type *TypeInt::filter( const Type *kills ) const {
duke@435 1182 const TypeInt* ft = join(kills)->isa_int();
duke@435 1183 if (ft == NULL || ft->_lo > ft->_hi)
duke@435 1184 return Type::TOP; // Canonical empty value
duke@435 1185 if (ft->_widen < this->_widen) {
duke@435 1186 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1187 // The widen bits must be allowed to run freely through the graph.
duke@435 1188 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1189 }
duke@435 1190 return ft;
duke@435 1191 }
duke@435 1192
duke@435 1193 //------------------------------eq---------------------------------------------
duke@435 1194 // Structural equality check for Type representations
duke@435 1195 bool TypeInt::eq( const Type *t ) const {
duke@435 1196 const TypeInt *r = t->is_int(); // Handy access
duke@435 1197 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1198 }
duke@435 1199
duke@435 1200 //------------------------------hash-------------------------------------------
duke@435 1201 // Type-specific hashing function.
duke@435 1202 int TypeInt::hash(void) const {
duke@435 1203 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1204 }
duke@435 1205
duke@435 1206 //------------------------------is_finite--------------------------------------
duke@435 1207 // Has a finite value
duke@435 1208 bool TypeInt::is_finite() const {
duke@435 1209 return true;
duke@435 1210 }
duke@435 1211
duke@435 1212 //------------------------------dump2------------------------------------------
duke@435 1213 // Dump TypeInt
duke@435 1214 #ifndef PRODUCT
duke@435 1215 static const char* intname(char* buf, jint n) {
duke@435 1216 if (n == min_jint)
duke@435 1217 return "min";
duke@435 1218 else if (n < min_jint + 10000)
duke@435 1219 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1220 else if (n == max_jint)
duke@435 1221 return "max";
duke@435 1222 else if (n > max_jint - 10000)
duke@435 1223 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1224 else
duke@435 1225 sprintf(buf, INT32_FORMAT, n);
duke@435 1226 return buf;
duke@435 1227 }
duke@435 1228
duke@435 1229 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1230 char buf[40], buf2[40];
duke@435 1231 if (_lo == min_jint && _hi == max_jint)
duke@435 1232 st->print("int");
duke@435 1233 else if (is_con())
duke@435 1234 st->print("int:%s", intname(buf, get_con()));
duke@435 1235 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1236 st->print("bool");
duke@435 1237 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1238 st->print("byte");
duke@435 1239 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1240 st->print("char");
duke@435 1241 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1242 st->print("short");
duke@435 1243 else if (_hi == max_jint)
duke@435 1244 st->print("int:>=%s", intname(buf, _lo));
duke@435 1245 else if (_lo == min_jint)
duke@435 1246 st->print("int:<=%s", intname(buf, _hi));
duke@435 1247 else
duke@435 1248 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1249
duke@435 1250 if (_widen != 0 && this != TypeInt::INT)
duke@435 1251 st->print(":%.*s", _widen, "wwww");
duke@435 1252 }
duke@435 1253 #endif
duke@435 1254
duke@435 1255 //------------------------------singleton--------------------------------------
duke@435 1256 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1257 // constants.
duke@435 1258 bool TypeInt::singleton(void) const {
duke@435 1259 return _lo >= _hi;
duke@435 1260 }
duke@435 1261
duke@435 1262 bool TypeInt::empty(void) const {
duke@435 1263 return _lo > _hi;
duke@435 1264 }
duke@435 1265
duke@435 1266 //=============================================================================
duke@435 1267 // Convenience common pre-built types.
duke@435 1268 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1269 const TypeLong *TypeLong::ZERO; // 0
duke@435 1270 const TypeLong *TypeLong::ONE; // 1
duke@435 1271 const TypeLong *TypeLong::POS; // >=0
duke@435 1272 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1273 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1274 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
duke@435 1275
duke@435 1276 //------------------------------TypeLong---------------------------------------
duke@435 1277 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1278 }
duke@435 1279
duke@435 1280 //------------------------------make-------------------------------------------
duke@435 1281 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1282 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1283 }
duke@435 1284
duke@435 1285 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
duke@435 1286 // Certain normalizations keep us sane when comparing types.
duke@435 1287 // The '1' covers constants.
duke@435 1288 if (lo <= hi) {
duke@435 1289 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
duke@435 1290 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // plain long
duke@435 1291 }
duke@435 1292 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1293 }
duke@435 1294
duke@435 1295
duke@435 1296 //------------------------------meet-------------------------------------------
duke@435 1297 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1298 // with reference count equal to the number of Types pointing at it.
duke@435 1299 // Caller should wrap a Types around it.
duke@435 1300 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1301 // Perform a fast test for common case; meeting the same types together.
duke@435 1302 if( this == t ) return this; // Meeting same type?
duke@435 1303
duke@435 1304 // Currently "this->_base" is a TypeLong
duke@435 1305 switch (t->base()) { // Switch on original type
duke@435 1306 case AnyPtr: // Mixing with oops happens when javac
duke@435 1307 case RawPtr: // reuses local variables
duke@435 1308 case OopPtr:
duke@435 1309 case InstPtr:
duke@435 1310 case KlassPtr:
duke@435 1311 case AryPtr:
never@618 1312 case NarrowOop:
duke@435 1313 case Int:
duke@435 1314 case FloatTop:
duke@435 1315 case FloatCon:
duke@435 1316 case FloatBot:
duke@435 1317 case DoubleTop:
duke@435 1318 case DoubleCon:
duke@435 1319 case DoubleBot:
duke@435 1320 case Bottom: // Ye Olde Default
duke@435 1321 return Type::BOTTOM;
duke@435 1322 default: // All else is a mistake
duke@435 1323 typerr(t);
duke@435 1324 case Top: // No change
duke@435 1325 return this;
duke@435 1326 case Long: // Long vs Long?
duke@435 1327 break;
duke@435 1328 }
duke@435 1329
duke@435 1330 // Expand covered set
duke@435 1331 const TypeLong *r = t->is_long(); // Turn into a TypeLong
duke@435 1332 // (Avoid TypeLong::make, to avoid the argument normalizations it enforces.)
duke@435 1333 return (new TypeLong( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
duke@435 1334 }
duke@435 1335
duke@435 1336 //------------------------------xdual------------------------------------------
duke@435 1337 // Dual: reverse hi & lo; flip widen
duke@435 1338 const Type *TypeLong::xdual() const {
duke@435 1339 return new TypeLong(_hi,_lo,WidenMax-_widen);
duke@435 1340 }
duke@435 1341
duke@435 1342 //------------------------------widen------------------------------------------
duke@435 1343 // Only happens for optimistic top-down optimizations.
duke@435 1344 const Type *TypeLong::widen( const Type *old ) const {
duke@435 1345 // Coming from TOP or such; no widening
duke@435 1346 if( old->base() != Long ) return this;
duke@435 1347 const TypeLong *ot = old->is_long();
duke@435 1348
duke@435 1349 // If new guy is equal to old guy, no widening
duke@435 1350 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1351 return old;
duke@435 1352
duke@435 1353 // If new guy contains old, then we widened
duke@435 1354 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1355 // New contains old
duke@435 1356 // If new guy is already wider than old, no widening
duke@435 1357 if( _widen > ot->_widen ) return this;
duke@435 1358 // If old guy was a constant, do not bother
duke@435 1359 if (ot->_lo == ot->_hi) return this;
duke@435 1360 // Now widen new guy.
duke@435 1361 // Check for widening too far
duke@435 1362 if (_widen == WidenMax) {
duke@435 1363 if (min_jlong < _lo && _hi < max_jlong) {
duke@435 1364 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1365 // which is closer to its respective limit.
duke@435 1366 if (_lo >= 0 || // easy common case
duke@435 1367 (julong)(_lo - min_jlong) >= (julong)(max_jlong - _hi)) {
duke@435 1368 // Try to widen to an unsigned range type of 32/63 bits:
duke@435 1369 if (_hi < max_juint)
duke@435 1370 return make(_lo, max_juint, WidenMax);
duke@435 1371 else
duke@435 1372 return make(_lo, max_jlong, WidenMax);
duke@435 1373 } else {
duke@435 1374 return make(min_jlong, _hi, WidenMax);
duke@435 1375 }
duke@435 1376 }
duke@435 1377 return TypeLong::LONG;
duke@435 1378 }
duke@435 1379 // Returned widened new guy
duke@435 1380 return make(_lo,_hi,_widen+1);
duke@435 1381 }
duke@435 1382
duke@435 1383 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1384 // bottom. Return the wider fellow.
duke@435 1385 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1386 return old;
duke@435 1387
duke@435 1388 // fatal("Long value range is not subset");
duke@435 1389 // return this;
duke@435 1390 return TypeLong::LONG;
duke@435 1391 }
duke@435 1392
duke@435 1393 //------------------------------narrow----------------------------------------
duke@435 1394 // Only happens for pessimistic optimizations.
duke@435 1395 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1396 if (_lo >= _hi) return this; // already narrow enough
duke@435 1397 if (old == NULL) return this;
duke@435 1398 const TypeLong* ot = old->isa_long();
duke@435 1399 if (ot == NULL) return this;
duke@435 1400 jlong olo = ot->_lo;
duke@435 1401 jlong ohi = ot->_hi;
duke@435 1402
duke@435 1403 // If new guy is equal to old guy, no narrowing
duke@435 1404 if (_lo == olo && _hi == ohi) return old;
duke@435 1405
duke@435 1406 // If old guy was maximum range, allow the narrowing
duke@435 1407 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1408
duke@435 1409 if (_lo < olo || _hi > ohi)
duke@435 1410 return this; // doesn't narrow; pretty wierd
duke@435 1411
duke@435 1412 // The new type narrows the old type, so look for a "death march".
duke@435 1413 // See comments on PhaseTransform::saturate.
duke@435 1414 julong nrange = _hi - _lo;
duke@435 1415 julong orange = ohi - olo;
duke@435 1416 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1417 // Use the new type only if the range shrinks a lot.
duke@435 1418 // We do not want the optimizer computing 2^31 point by point.
duke@435 1419 return old;
duke@435 1420 }
duke@435 1421
duke@435 1422 return this;
duke@435 1423 }
duke@435 1424
duke@435 1425 //-----------------------------filter------------------------------------------
duke@435 1426 const Type *TypeLong::filter( const Type *kills ) const {
duke@435 1427 const TypeLong* ft = join(kills)->isa_long();
duke@435 1428 if (ft == NULL || ft->_lo > ft->_hi)
duke@435 1429 return Type::TOP; // Canonical empty value
duke@435 1430 if (ft->_widen < this->_widen) {
duke@435 1431 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1432 // The widen bits must be allowed to run freely through the graph.
duke@435 1433 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1434 }
duke@435 1435 return ft;
duke@435 1436 }
duke@435 1437
duke@435 1438 //------------------------------eq---------------------------------------------
duke@435 1439 // Structural equality check for Type representations
duke@435 1440 bool TypeLong::eq( const Type *t ) const {
duke@435 1441 const TypeLong *r = t->is_long(); // Handy access
duke@435 1442 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1443 }
duke@435 1444
duke@435 1445 //------------------------------hash-------------------------------------------
duke@435 1446 // Type-specific hashing function.
duke@435 1447 int TypeLong::hash(void) const {
duke@435 1448 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1449 }
duke@435 1450
duke@435 1451 //------------------------------is_finite--------------------------------------
duke@435 1452 // Has a finite value
duke@435 1453 bool TypeLong::is_finite() const {
duke@435 1454 return true;
duke@435 1455 }
duke@435 1456
duke@435 1457 //------------------------------dump2------------------------------------------
duke@435 1458 // Dump TypeLong
duke@435 1459 #ifndef PRODUCT
duke@435 1460 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1461 if (n > x) {
duke@435 1462 if (n >= x + 10000) return NULL;
duke@435 1463 sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
duke@435 1464 } else if (n < x) {
duke@435 1465 if (n <= x - 10000) return NULL;
duke@435 1466 sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
duke@435 1467 } else {
duke@435 1468 return xname;
duke@435 1469 }
duke@435 1470 return buf;
duke@435 1471 }
duke@435 1472
duke@435 1473 static const char* longname(char* buf, jlong n) {
duke@435 1474 const char* str;
duke@435 1475 if (n == min_jlong)
duke@435 1476 return "min";
duke@435 1477 else if (n < min_jlong + 10000)
duke@435 1478 sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
duke@435 1479 else if (n == max_jlong)
duke@435 1480 return "max";
duke@435 1481 else if (n > max_jlong - 10000)
duke@435 1482 sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
duke@435 1483 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1484 return str;
duke@435 1485 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1486 return str;
duke@435 1487 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1488 return str;
duke@435 1489 else
duke@435 1490 sprintf(buf, INT64_FORMAT, n);
duke@435 1491 return buf;
duke@435 1492 }
duke@435 1493
duke@435 1494 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1495 char buf[80], buf2[80];
duke@435 1496 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1497 st->print("long");
duke@435 1498 else if (is_con())
duke@435 1499 st->print("long:%s", longname(buf, get_con()));
duke@435 1500 else if (_hi == max_jlong)
duke@435 1501 st->print("long:>=%s", longname(buf, _lo));
duke@435 1502 else if (_lo == min_jlong)
duke@435 1503 st->print("long:<=%s", longname(buf, _hi));
duke@435 1504 else
duke@435 1505 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1506
duke@435 1507 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1508 st->print(":%.*s", _widen, "wwww");
duke@435 1509 }
duke@435 1510 #endif
duke@435 1511
duke@435 1512 //------------------------------singleton--------------------------------------
duke@435 1513 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1514 // constants
duke@435 1515 bool TypeLong::singleton(void) const {
duke@435 1516 return _lo >= _hi;
duke@435 1517 }
duke@435 1518
duke@435 1519 bool TypeLong::empty(void) const {
duke@435 1520 return _lo > _hi;
duke@435 1521 }
duke@435 1522
duke@435 1523 //=============================================================================
duke@435 1524 // Convenience common pre-built types.
duke@435 1525 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1526 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1527 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1528 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1529 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1530 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1531 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1532 const TypeTuple *TypeTuple::START_I2C;
duke@435 1533 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1534 const TypeTuple *TypeTuple::LONG_PAIR;
duke@435 1535
duke@435 1536
duke@435 1537 //------------------------------make-------------------------------------------
duke@435 1538 // Make a TypeTuple from the range of a method signature
duke@435 1539 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1540 ciType* return_type = sig->return_type();
duke@435 1541 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1542 const Type **field_array = fields(total_fields);
duke@435 1543 switch (return_type->basic_type()) {
duke@435 1544 case T_LONG:
duke@435 1545 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1546 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1547 break;
duke@435 1548 case T_DOUBLE:
duke@435 1549 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1550 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1551 break;
duke@435 1552 case T_OBJECT:
duke@435 1553 case T_ARRAY:
duke@435 1554 case T_BOOLEAN:
duke@435 1555 case T_CHAR:
duke@435 1556 case T_FLOAT:
duke@435 1557 case T_BYTE:
duke@435 1558 case T_SHORT:
duke@435 1559 case T_INT:
duke@435 1560 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1561 break;
duke@435 1562 case T_VOID:
duke@435 1563 break;
duke@435 1564 default:
duke@435 1565 ShouldNotReachHere();
duke@435 1566 }
duke@435 1567 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1568 }
duke@435 1569
duke@435 1570 // Make a TypeTuple from the domain of a method signature
duke@435 1571 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1572 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1573
duke@435 1574 uint pos = TypeFunc::Parms;
duke@435 1575 const Type **field_array;
duke@435 1576 if (recv != NULL) {
duke@435 1577 total_fields++;
duke@435 1578 field_array = fields(total_fields);
duke@435 1579 // Use get_const_type here because it respects UseUniqueSubclasses:
duke@435 1580 field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
duke@435 1581 } else {
duke@435 1582 field_array = fields(total_fields);
duke@435 1583 }
duke@435 1584
duke@435 1585 int i = 0;
duke@435 1586 while (pos < total_fields) {
duke@435 1587 ciType* type = sig->type_at(i);
duke@435 1588
duke@435 1589 switch (type->basic_type()) {
duke@435 1590 case T_LONG:
duke@435 1591 field_array[pos++] = TypeLong::LONG;
duke@435 1592 field_array[pos++] = Type::HALF;
duke@435 1593 break;
duke@435 1594 case T_DOUBLE:
duke@435 1595 field_array[pos++] = Type::DOUBLE;
duke@435 1596 field_array[pos++] = Type::HALF;
duke@435 1597 break;
duke@435 1598 case T_OBJECT:
duke@435 1599 case T_ARRAY:
duke@435 1600 case T_BOOLEAN:
duke@435 1601 case T_CHAR:
duke@435 1602 case T_FLOAT:
duke@435 1603 case T_BYTE:
duke@435 1604 case T_SHORT:
duke@435 1605 case T_INT:
duke@435 1606 field_array[pos++] = get_const_type(type);
duke@435 1607 break;
duke@435 1608 default:
duke@435 1609 ShouldNotReachHere();
duke@435 1610 }
duke@435 1611 i++;
duke@435 1612 }
duke@435 1613 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1614 }
duke@435 1615
duke@435 1616 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1617 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1618 }
duke@435 1619
duke@435 1620 //------------------------------fields-----------------------------------------
duke@435 1621 // Subroutine call type with space allocated for argument types
duke@435 1622 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1623 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1624 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1625 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1626 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1627 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1628 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1629
duke@435 1630 return flds;
duke@435 1631 }
duke@435 1632
duke@435 1633 //------------------------------meet-------------------------------------------
duke@435 1634 // Compute the MEET of two types. It returns a new Type object.
duke@435 1635 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1636 // Perform a fast test for common case; meeting the same types together.
duke@435 1637 if( this == t ) return this; // Meeting same type-rep?
duke@435 1638
duke@435 1639 // Current "this->_base" is Tuple
duke@435 1640 switch (t->base()) { // switch on original type
duke@435 1641
duke@435 1642 case Bottom: // Ye Olde Default
duke@435 1643 return t;
duke@435 1644
duke@435 1645 default: // All else is a mistake
duke@435 1646 typerr(t);
duke@435 1647
duke@435 1648 case Tuple: { // Meeting 2 signatures?
duke@435 1649 const TypeTuple *x = t->is_tuple();
duke@435 1650 assert( _cnt == x->_cnt, "" );
duke@435 1651 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1652 for( uint i=0; i<_cnt; i++ )
duke@435 1653 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1654 return TypeTuple::make(_cnt,fields);
duke@435 1655 }
duke@435 1656 case Top:
duke@435 1657 break;
duke@435 1658 }
duke@435 1659 return this; // Return the double constant
duke@435 1660 }
duke@435 1661
duke@435 1662 //------------------------------xdual------------------------------------------
duke@435 1663 // Dual: compute field-by-field dual
duke@435 1664 const Type *TypeTuple::xdual() const {
duke@435 1665 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1666 for( uint i=0; i<_cnt; i++ )
duke@435 1667 fields[i] = _fields[i]->dual();
duke@435 1668 return new TypeTuple(_cnt,fields);
duke@435 1669 }
duke@435 1670
duke@435 1671 //------------------------------eq---------------------------------------------
duke@435 1672 // Structural equality check for Type representations
duke@435 1673 bool TypeTuple::eq( const Type *t ) const {
duke@435 1674 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1675 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1676 for (uint i = 0; i < _cnt; i++)
duke@435 1677 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1678 return false; // Missed
duke@435 1679 return true;
duke@435 1680 }
duke@435 1681
duke@435 1682 //------------------------------hash-------------------------------------------
duke@435 1683 // Type-specific hashing function.
duke@435 1684 int TypeTuple::hash(void) const {
duke@435 1685 intptr_t sum = _cnt;
duke@435 1686 for( uint i=0; i<_cnt; i++ )
duke@435 1687 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1688 return sum;
duke@435 1689 }
duke@435 1690
duke@435 1691 //------------------------------dump2------------------------------------------
duke@435 1692 // Dump signature Type
duke@435 1693 #ifndef PRODUCT
duke@435 1694 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1695 st->print("{");
duke@435 1696 if( !depth || d[this] ) { // Check for recursive print
duke@435 1697 st->print("...}");
duke@435 1698 return;
duke@435 1699 }
duke@435 1700 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1701 if( _cnt ) {
duke@435 1702 uint i;
duke@435 1703 for( i=0; i<_cnt-1; i++ ) {
duke@435 1704 st->print("%d:", i);
duke@435 1705 _fields[i]->dump2(d, depth-1, st);
duke@435 1706 st->print(", ");
duke@435 1707 }
duke@435 1708 st->print("%d:", i);
duke@435 1709 _fields[i]->dump2(d, depth-1, st);
duke@435 1710 }
duke@435 1711 st->print("}");
duke@435 1712 }
duke@435 1713 #endif
duke@435 1714
duke@435 1715 //------------------------------singleton--------------------------------------
duke@435 1716 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1717 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1718 // or a single symbol.
duke@435 1719 bool TypeTuple::singleton(void) const {
duke@435 1720 return false; // Never a singleton
duke@435 1721 }
duke@435 1722
duke@435 1723 bool TypeTuple::empty(void) const {
duke@435 1724 for( uint i=0; i<_cnt; i++ ) {
duke@435 1725 if (_fields[i]->empty()) return true;
duke@435 1726 }
duke@435 1727 return false;
duke@435 1728 }
duke@435 1729
duke@435 1730 //=============================================================================
duke@435 1731 // Convenience common pre-built types.
duke@435 1732
duke@435 1733 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1734 // Certain normalizations keep us sane when comparing types.
duke@435 1735 // We do not want arrayOop variables to differ only by the wideness
duke@435 1736 // of their index types. Pick minimum wideness, since that is the
duke@435 1737 // forced wideness of small ranges anyway.
duke@435 1738 if (size->_widen != Type::WidenMin)
duke@435 1739 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1740 else
duke@435 1741 return size;
duke@435 1742 }
duke@435 1743
duke@435 1744 //------------------------------make-------------------------------------------
duke@435 1745 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
coleenp@548 1746 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1747 elem = elem->make_narrowoop();
coleenp@548 1748 }
duke@435 1749 size = normalize_array_size(size);
duke@435 1750 return (TypeAry*)(new TypeAry(elem,size))->hashcons();
duke@435 1751 }
duke@435 1752
duke@435 1753 //------------------------------meet-------------------------------------------
duke@435 1754 // Compute the MEET of two types. It returns a new Type object.
duke@435 1755 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1756 // Perform a fast test for common case; meeting the same types together.
duke@435 1757 if( this == t ) return this; // Meeting same type-rep?
duke@435 1758
duke@435 1759 // Current "this->_base" is Ary
duke@435 1760 switch (t->base()) { // switch on original type
duke@435 1761
duke@435 1762 case Bottom: // Ye Olde Default
duke@435 1763 return t;
duke@435 1764
duke@435 1765 default: // All else is a mistake
duke@435 1766 typerr(t);
duke@435 1767
duke@435 1768 case Array: { // Meeting 2 arrays?
duke@435 1769 const TypeAry *a = t->is_ary();
duke@435 1770 return TypeAry::make(_elem->meet(a->_elem),
duke@435 1771 _size->xmeet(a->_size)->is_int());
duke@435 1772 }
duke@435 1773 case Top:
duke@435 1774 break;
duke@435 1775 }
duke@435 1776 return this; // Return the double constant
duke@435 1777 }
duke@435 1778
duke@435 1779 //------------------------------xdual------------------------------------------
duke@435 1780 // Dual: compute field-by-field dual
duke@435 1781 const Type *TypeAry::xdual() const {
duke@435 1782 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1783 size_dual = normalize_array_size(size_dual);
duke@435 1784 return new TypeAry( _elem->dual(), size_dual);
duke@435 1785 }
duke@435 1786
duke@435 1787 //------------------------------eq---------------------------------------------
duke@435 1788 // Structural equality check for Type representations
duke@435 1789 bool TypeAry::eq( const Type *t ) const {
duke@435 1790 const TypeAry *a = (const TypeAry*)t;
duke@435 1791 return _elem == a->_elem &&
duke@435 1792 _size == a->_size;
duke@435 1793 }
duke@435 1794
duke@435 1795 //------------------------------hash-------------------------------------------
duke@435 1796 // Type-specific hashing function.
duke@435 1797 int TypeAry::hash(void) const {
duke@435 1798 return (intptr_t)_elem + (intptr_t)_size;
duke@435 1799 }
duke@435 1800
duke@435 1801 //------------------------------dump2------------------------------------------
duke@435 1802 #ifndef PRODUCT
duke@435 1803 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1804 _elem->dump2(d, depth, st);
duke@435 1805 st->print("[");
duke@435 1806 _size->dump2(d, depth, st);
duke@435 1807 st->print("]");
duke@435 1808 }
duke@435 1809 #endif
duke@435 1810
duke@435 1811 //------------------------------singleton--------------------------------------
duke@435 1812 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1813 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1814 // or a single symbol.
duke@435 1815 bool TypeAry::singleton(void) const {
duke@435 1816 return false; // Never a singleton
duke@435 1817 }
duke@435 1818
duke@435 1819 bool TypeAry::empty(void) const {
duke@435 1820 return _elem->empty() || _size->empty();
duke@435 1821 }
duke@435 1822
duke@435 1823 //--------------------------ary_must_be_exact----------------------------------
duke@435 1824 bool TypeAry::ary_must_be_exact() const {
duke@435 1825 if (!UseExactTypes) return false;
duke@435 1826 // This logic looks at the element type of an array, and returns true
duke@435 1827 // if the element type is either a primitive or a final instance class.
duke@435 1828 // In such cases, an array built on this ary must have no subclasses.
duke@435 1829 if (_elem == BOTTOM) return false; // general array not exact
duke@435 1830 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 1831 const TypeOopPtr* toop = NULL;
kvn@656 1832 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 1833 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 1834 } else {
coleenp@548 1835 toop = _elem->isa_oopptr();
coleenp@548 1836 }
duke@435 1837 if (!toop) return true; // a primitive type, like int
duke@435 1838 ciKlass* tklass = toop->klass();
duke@435 1839 if (tklass == NULL) return false; // unloaded class
duke@435 1840 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 1841 const TypeInstPtr* tinst;
coleenp@548 1842 if (_elem->isa_narrowoop())
kvn@656 1843 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 1844 else
coleenp@548 1845 tinst = _elem->isa_instptr();
kvn@656 1846 if (tinst)
kvn@656 1847 return tklass->as_instance_klass()->is_final();
coleenp@548 1848 const TypeAryPtr* tap;
coleenp@548 1849 if (_elem->isa_narrowoop())
kvn@656 1850 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 1851 else
coleenp@548 1852 tap = _elem->isa_aryptr();
kvn@656 1853 if (tap)
kvn@656 1854 return tap->ary()->ary_must_be_exact();
duke@435 1855 return false;
duke@435 1856 }
duke@435 1857
duke@435 1858 //=============================================================================
duke@435 1859 // Convenience common pre-built types.
duke@435 1860 const TypePtr *TypePtr::NULL_PTR;
duke@435 1861 const TypePtr *TypePtr::NOTNULL;
duke@435 1862 const TypePtr *TypePtr::BOTTOM;
duke@435 1863
duke@435 1864 //------------------------------meet-------------------------------------------
duke@435 1865 // Meet over the PTR enum
duke@435 1866 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 1867 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 1868 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 1869 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 1870 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 1871 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 1872 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 1873 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 1874 };
duke@435 1875
duke@435 1876 //------------------------------make-------------------------------------------
duke@435 1877 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 1878 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 1879 }
duke@435 1880
duke@435 1881 //------------------------------cast_to_ptr_type-------------------------------
duke@435 1882 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 1883 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 1884 if( ptr == _ptr ) return this;
duke@435 1885 return make(_base, ptr, _offset);
duke@435 1886 }
duke@435 1887
duke@435 1888 //------------------------------get_con----------------------------------------
duke@435 1889 intptr_t TypePtr::get_con() const {
duke@435 1890 assert( _ptr == Null, "" );
duke@435 1891 return _offset;
duke@435 1892 }
duke@435 1893
duke@435 1894 //------------------------------meet-------------------------------------------
duke@435 1895 // Compute the MEET of two types. It returns a new Type object.
duke@435 1896 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 1897 // Perform a fast test for common case; meeting the same types together.
duke@435 1898 if( this == t ) return this; // Meeting same type-rep?
duke@435 1899
duke@435 1900 // Current "this->_base" is AnyPtr
duke@435 1901 switch (t->base()) { // switch on original type
duke@435 1902 case Int: // Mixing ints & oops happens when javac
duke@435 1903 case Long: // reuses local variables
duke@435 1904 case FloatTop:
duke@435 1905 case FloatCon:
duke@435 1906 case FloatBot:
duke@435 1907 case DoubleTop:
duke@435 1908 case DoubleCon:
duke@435 1909 case DoubleBot:
coleenp@548 1910 case NarrowOop:
duke@435 1911 case Bottom: // Ye Olde Default
duke@435 1912 return Type::BOTTOM;
duke@435 1913 case Top:
duke@435 1914 return this;
duke@435 1915
duke@435 1916 case AnyPtr: { // Meeting to AnyPtrs
duke@435 1917 const TypePtr *tp = t->is_ptr();
duke@435 1918 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 1919 }
duke@435 1920 case RawPtr: // For these, flip the call around to cut down
duke@435 1921 case OopPtr:
duke@435 1922 case InstPtr: // on the cases I have to handle.
duke@435 1923 case KlassPtr:
duke@435 1924 case AryPtr:
duke@435 1925 return t->xmeet(this); // Call in reverse direction
duke@435 1926 default: // All else is a mistake
duke@435 1927 typerr(t);
duke@435 1928
duke@435 1929 }
duke@435 1930 return this;
duke@435 1931 }
duke@435 1932
duke@435 1933 //------------------------------meet_offset------------------------------------
duke@435 1934 int TypePtr::meet_offset( int offset ) const {
duke@435 1935 // Either is 'TOP' offset? Return the other offset!
duke@435 1936 if( _offset == OffsetTop ) return offset;
duke@435 1937 if( offset == OffsetTop ) return _offset;
duke@435 1938 // If either is different, return 'BOTTOM' offset
duke@435 1939 if( _offset != offset ) return OffsetBot;
duke@435 1940 return _offset;
duke@435 1941 }
duke@435 1942
duke@435 1943 //------------------------------dual_offset------------------------------------
duke@435 1944 int TypePtr::dual_offset( ) const {
duke@435 1945 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 1946 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 1947 return _offset; // Map everything else into self
duke@435 1948 }
duke@435 1949
duke@435 1950 //------------------------------xdual------------------------------------------
duke@435 1951 // Dual: compute field-by-field dual
duke@435 1952 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 1953 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 1954 };
duke@435 1955 const Type *TypePtr::xdual() const {
duke@435 1956 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 1957 }
duke@435 1958
kvn@741 1959 //------------------------------xadd_offset------------------------------------
kvn@741 1960 int TypePtr::xadd_offset( intptr_t offset ) const {
kvn@741 1961 // Adding to 'TOP' offset? Return 'TOP'!
kvn@741 1962 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
kvn@741 1963 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
kvn@741 1964 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
kvn@741 1965 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
kvn@741 1966 offset += (intptr_t)_offset;
kvn@741 1967 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
kvn@741 1968
kvn@741 1969 // assert( _offset >= 0 && _offset+offset >= 0, "" );
kvn@741 1970 // It is possible to construct a negative offset during PhaseCCP
kvn@741 1971
kvn@741 1972 return (int)offset; // Sum valid offsets
kvn@741 1973 }
kvn@741 1974
duke@435 1975 //------------------------------add_offset-------------------------------------
kvn@741 1976 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
kvn@741 1977 return make( AnyPtr, _ptr, xadd_offset(offset) );
duke@435 1978 }
duke@435 1979
duke@435 1980 //------------------------------eq---------------------------------------------
duke@435 1981 // Structural equality check for Type representations
duke@435 1982 bool TypePtr::eq( const Type *t ) const {
duke@435 1983 const TypePtr *a = (const TypePtr*)t;
duke@435 1984 return _ptr == a->ptr() && _offset == a->offset();
duke@435 1985 }
duke@435 1986
duke@435 1987 //------------------------------hash-------------------------------------------
duke@435 1988 // Type-specific hashing function.
duke@435 1989 int TypePtr::hash(void) const {
duke@435 1990 return _ptr + _offset;
duke@435 1991 }
duke@435 1992
duke@435 1993 //------------------------------dump2------------------------------------------
duke@435 1994 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 1995 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 1996 };
duke@435 1997
duke@435 1998 #ifndef PRODUCT
duke@435 1999 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2000 if( _ptr == Null ) st->print("NULL");
duke@435 2001 else st->print("%s *", ptr_msg[_ptr]);
duke@435 2002 if( _offset == OffsetTop ) st->print("+top");
duke@435 2003 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 2004 else if( _offset ) st->print("+%d", _offset);
duke@435 2005 }
duke@435 2006 #endif
duke@435 2007
duke@435 2008 //------------------------------singleton--------------------------------------
duke@435 2009 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2010 // constants
duke@435 2011 bool TypePtr::singleton(void) const {
duke@435 2012 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2013 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2014 }
duke@435 2015
duke@435 2016 bool TypePtr::empty(void) const {
duke@435 2017 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2018 }
duke@435 2019
duke@435 2020 //=============================================================================
duke@435 2021 // Convenience common pre-built types.
duke@435 2022 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2023 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2024
duke@435 2025 //------------------------------make-------------------------------------------
duke@435 2026 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2027 assert( ptr != Constant, "what is the constant?" );
duke@435 2028 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2029 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2030 }
duke@435 2031
duke@435 2032 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2033 assert( bits, "Use TypePtr for NULL" );
duke@435 2034 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2035 }
duke@435 2036
duke@435 2037 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2038 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2039 assert( ptr != Constant, "what is the constant?" );
duke@435 2040 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2041 assert( _bits==0, "Why cast a constant address?");
duke@435 2042 if( ptr == _ptr ) return this;
duke@435 2043 return make(ptr);
duke@435 2044 }
duke@435 2045
duke@435 2046 //------------------------------get_con----------------------------------------
duke@435 2047 intptr_t TypeRawPtr::get_con() const {
duke@435 2048 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2049 return (intptr_t)_bits;
duke@435 2050 }
duke@435 2051
duke@435 2052 //------------------------------meet-------------------------------------------
duke@435 2053 // Compute the MEET of two types. It returns a new Type object.
duke@435 2054 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2055 // Perform a fast test for common case; meeting the same types together.
duke@435 2056 if( this == t ) return this; // Meeting same type-rep?
duke@435 2057
duke@435 2058 // Current "this->_base" is RawPtr
duke@435 2059 switch( t->base() ) { // switch on original type
duke@435 2060 case Bottom: // Ye Olde Default
duke@435 2061 return t;
duke@435 2062 case Top:
duke@435 2063 return this;
duke@435 2064 case AnyPtr: // Meeting to AnyPtrs
duke@435 2065 break;
duke@435 2066 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2067 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2068 enum PTR ptr = meet_ptr( tptr );
duke@435 2069 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2070 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2071 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2072 ptr = NotNull; // Fall down in lattice
duke@435 2073 }
duke@435 2074 return make( ptr );
duke@435 2075 }
duke@435 2076
duke@435 2077 case OopPtr:
duke@435 2078 case InstPtr:
duke@435 2079 case KlassPtr:
duke@435 2080 case AryPtr:
duke@435 2081 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2082 default: // All else is a mistake
duke@435 2083 typerr(t);
duke@435 2084 }
duke@435 2085
duke@435 2086 // Found an AnyPtr type vs self-RawPtr type
duke@435 2087 const TypePtr *tp = t->is_ptr();
duke@435 2088 switch (tp->ptr()) {
duke@435 2089 case TypePtr::TopPTR: return this;
duke@435 2090 case TypePtr::BotPTR: return t;
duke@435 2091 case TypePtr::Null:
duke@435 2092 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2093 return TypeRawPtr::BOTTOM;
duke@435 2094 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2095 case TypePtr::AnyNull:
duke@435 2096 if( _ptr == TypePtr::Constant) return this;
duke@435 2097 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2098 default: ShouldNotReachHere();
duke@435 2099 }
duke@435 2100 return this;
duke@435 2101 }
duke@435 2102
duke@435 2103 //------------------------------xdual------------------------------------------
duke@435 2104 // Dual: compute field-by-field dual
duke@435 2105 const Type *TypeRawPtr::xdual() const {
duke@435 2106 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2107 }
duke@435 2108
duke@435 2109 //------------------------------add_offset-------------------------------------
kvn@741 2110 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
duke@435 2111 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2112 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2113 if( offset == 0 ) return this; // No change
duke@435 2114 switch (_ptr) {
duke@435 2115 case TypePtr::TopPTR:
duke@435 2116 case TypePtr::BotPTR:
duke@435 2117 case TypePtr::NotNull:
duke@435 2118 return this;
duke@435 2119 case TypePtr::Null:
duke@435 2120 case TypePtr::Constant:
duke@435 2121 return make( _bits+offset );
duke@435 2122 default: ShouldNotReachHere();
duke@435 2123 }
duke@435 2124 return NULL; // Lint noise
duke@435 2125 }
duke@435 2126
duke@435 2127 //------------------------------eq---------------------------------------------
duke@435 2128 // Structural equality check for Type representations
duke@435 2129 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2130 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2131 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2132 }
duke@435 2133
duke@435 2134 //------------------------------hash-------------------------------------------
duke@435 2135 // Type-specific hashing function.
duke@435 2136 int TypeRawPtr::hash(void) const {
duke@435 2137 return (intptr_t)_bits + TypePtr::hash();
duke@435 2138 }
duke@435 2139
duke@435 2140 //------------------------------dump2------------------------------------------
duke@435 2141 #ifndef PRODUCT
duke@435 2142 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2143 if( _ptr == Constant )
duke@435 2144 st->print(INTPTR_FORMAT, _bits);
duke@435 2145 else
duke@435 2146 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2147 }
duke@435 2148 #endif
duke@435 2149
duke@435 2150 //=============================================================================
duke@435 2151 // Convenience common pre-built type.
duke@435 2152 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2153
kvn@598 2154 //------------------------------TypeOopPtr-------------------------------------
kvn@598 2155 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
kvn@598 2156 : TypePtr(t, ptr, offset),
kvn@598 2157 _const_oop(o), _klass(k),
kvn@598 2158 _klass_is_exact(xk),
kvn@598 2159 _is_ptr_to_narrowoop(false),
kvn@598 2160 _instance_id(instance_id) {
kvn@598 2161 #ifdef _LP64
kvn@598 2162 if (UseCompressedOops && _offset != 0) {
kvn@598 2163 if (klass() == NULL) {
kvn@598 2164 assert(this->isa_aryptr(), "only arrays without klass");
kvn@598 2165 _is_ptr_to_narrowoop = true;
kvn@598 2166 } else if (_offset == oopDesc::klass_offset_in_bytes()) {
kvn@598 2167 _is_ptr_to_narrowoop = true;
kvn@598 2168 } else if (this->isa_aryptr()) {
kvn@598 2169 _is_ptr_to_narrowoop = (klass()->is_obj_array_klass() &&
kvn@598 2170 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2171 } else if (klass() == ciEnv::current()->Class_klass() &&
kvn@598 2172 (_offset == java_lang_Class::klass_offset_in_bytes() ||
kvn@598 2173 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
kvn@598 2174 // Special hidden fields from the Class.
kvn@598 2175 assert(this->isa_instptr(), "must be an instance ptr.");
kvn@598 2176 _is_ptr_to_narrowoop = true;
kvn@598 2177 } else if (klass()->is_instance_klass()) {
kvn@598 2178 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2179 ciField* field = NULL;
kvn@598 2180 if (this->isa_klassptr()) {
kvn@598 2181 // Perm objects don't use compressed references, except for
kvn@598 2182 // static fields which are currently compressed.
kvn@598 2183 field = ik->get_field_by_offset(_offset, true);
kvn@598 2184 if (field != NULL) {
kvn@598 2185 BasicType basic_elem_type = field->layout_type();
kvn@598 2186 _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
kvn@598 2187 basic_elem_type == T_ARRAY);
kvn@598 2188 }
kvn@598 2189 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2190 // unsafe access
kvn@598 2191 _is_ptr_to_narrowoop = true;
kvn@598 2192 } else { // exclude unsafe ops
kvn@598 2193 assert(this->isa_instptr(), "must be an instance ptr.");
kvn@598 2194 // Field which contains a compressed oop references.
kvn@598 2195 field = ik->get_field_by_offset(_offset, false);
kvn@598 2196 if (field != NULL) {
kvn@598 2197 BasicType basic_elem_type = field->layout_type();
kvn@598 2198 _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
kvn@598 2199 basic_elem_type == T_ARRAY);
kvn@598 2200 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
kvn@598 2201 // Compile::find_alias_type() cast exactness on all types to verify
kvn@598 2202 // that it does not affect alias type.
kvn@598 2203 _is_ptr_to_narrowoop = true;
kvn@598 2204 } else {
kvn@598 2205 // Type for the copy start in LibraryCallKit::inline_native_clone().
kvn@598 2206 assert(!klass_is_exact(), "only non-exact klass");
kvn@598 2207 _is_ptr_to_narrowoop = true;
kvn@598 2208 }
kvn@598 2209 }
kvn@598 2210 }
kvn@598 2211 }
kvn@598 2212 #endif
kvn@598 2213 }
kvn@598 2214
duke@435 2215 //------------------------------make-------------------------------------------
duke@435 2216 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
duke@435 2217 int offset) {
duke@435 2218 assert(ptr != Constant, "no constant generic pointers");
duke@435 2219 ciKlass* k = ciKlassKlass::make();
duke@435 2220 bool xk = false;
duke@435 2221 ciObject* o = NULL;
kvn@658 2222 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, InstanceBot))->hashcons();
duke@435 2223 }
duke@435 2224
duke@435 2225
duke@435 2226 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2227 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2228 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2229 if( ptr == _ptr ) return this;
duke@435 2230 return make(ptr, _offset);
duke@435 2231 }
duke@435 2232
kvn@682 2233 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2234 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2235 // There are no instances of a general oop.
duke@435 2236 // Return self unchanged.
duke@435 2237 return this;
duke@435 2238 }
duke@435 2239
duke@435 2240 //-----------------------------cast_to_exactness-------------------------------
duke@435 2241 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2242 // There is no such thing as an exact general oop.
duke@435 2243 // Return self unchanged.
duke@435 2244 return this;
duke@435 2245 }
duke@435 2246
duke@435 2247
duke@435 2248 //------------------------------as_klass_type----------------------------------
duke@435 2249 // Return the klass type corresponding to this instance or array type.
duke@435 2250 // It is the type that is loaded from an object of this type.
duke@435 2251 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2252 ciKlass* k = klass();
duke@435 2253 bool xk = klass_is_exact();
duke@435 2254 if (k == NULL || !k->is_java_klass())
duke@435 2255 return TypeKlassPtr::OBJECT;
duke@435 2256 else
duke@435 2257 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2258 }
duke@435 2259
duke@435 2260
duke@435 2261 //------------------------------meet-------------------------------------------
duke@435 2262 // Compute the MEET of two types. It returns a new Type object.
duke@435 2263 const Type *TypeOopPtr::xmeet( const Type *t ) const {
duke@435 2264 // Perform a fast test for common case; meeting the same types together.
duke@435 2265 if( this == t ) return this; // Meeting same type-rep?
duke@435 2266
duke@435 2267 // Current "this->_base" is OopPtr
duke@435 2268 switch (t->base()) { // switch on original type
duke@435 2269
duke@435 2270 case Int: // Mixing ints & oops happens when javac
duke@435 2271 case Long: // reuses local variables
duke@435 2272 case FloatTop:
duke@435 2273 case FloatCon:
duke@435 2274 case FloatBot:
duke@435 2275 case DoubleTop:
duke@435 2276 case DoubleCon:
duke@435 2277 case DoubleBot:
kvn@728 2278 case NarrowOop:
duke@435 2279 case Bottom: // Ye Olde Default
duke@435 2280 return Type::BOTTOM;
duke@435 2281 case Top:
duke@435 2282 return this;
duke@435 2283
duke@435 2284 default: // All else is a mistake
duke@435 2285 typerr(t);
duke@435 2286
duke@435 2287 case RawPtr:
duke@435 2288 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2289
duke@435 2290 case AnyPtr: {
duke@435 2291 // Found an AnyPtr type vs self-OopPtr type
duke@435 2292 const TypePtr *tp = t->is_ptr();
duke@435 2293 int offset = meet_offset(tp->offset());
duke@435 2294 PTR ptr = meet_ptr(tp->ptr());
duke@435 2295 switch (tp->ptr()) {
duke@435 2296 case Null:
duke@435 2297 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2298 // else fall through:
duke@435 2299 case TopPTR:
duke@435 2300 case AnyNull:
duke@435 2301 return make(ptr, offset);
duke@435 2302 case BotPTR:
duke@435 2303 case NotNull:
duke@435 2304 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2305 default: typerr(t);
duke@435 2306 }
duke@435 2307 }
duke@435 2308
duke@435 2309 case OopPtr: { // Meeting to other OopPtrs
duke@435 2310 const TypeOopPtr *tp = t->is_oopptr();
duke@435 2311 return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 2312 }
duke@435 2313
duke@435 2314 case InstPtr: // For these, flip the call around to cut down
duke@435 2315 case KlassPtr: // on the cases I have to handle.
duke@435 2316 case AryPtr:
duke@435 2317 return t->xmeet(this); // Call in reverse direction
duke@435 2318
duke@435 2319 } // End of switch
duke@435 2320 return this; // Return the double constant
duke@435 2321 }
duke@435 2322
duke@435 2323
duke@435 2324 //------------------------------xdual------------------------------------------
duke@435 2325 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2326 const Type *TypeOopPtr::xdual() const {
duke@435 2327 assert(klass() == ciKlassKlass::make(), "no klasses here");
duke@435 2328 assert(const_oop() == NULL, "no constants here");
kvn@658 2329 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 2330 }
duke@435 2331
duke@435 2332 //--------------------------make_from_klass_common-----------------------------
duke@435 2333 // Computes the element-type given a klass.
duke@435 2334 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2335 assert(klass->is_java_klass(), "must be java language klass");
duke@435 2336 if (klass->is_instance_klass()) {
duke@435 2337 Compile* C = Compile::current();
duke@435 2338 Dependencies* deps = C->dependencies();
duke@435 2339 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2340 // Element is an instance
duke@435 2341 bool klass_is_exact = false;
duke@435 2342 if (klass->is_loaded()) {
duke@435 2343 // Try to set klass_is_exact.
duke@435 2344 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2345 klass_is_exact = ik->is_final();
duke@435 2346 if (!klass_is_exact && klass_change
duke@435 2347 && deps != NULL && UseUniqueSubclasses) {
duke@435 2348 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2349 if (sub != NULL) {
duke@435 2350 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2351 klass = ik = sub;
duke@435 2352 klass_is_exact = sub->is_final();
duke@435 2353 }
duke@435 2354 }
duke@435 2355 if (!klass_is_exact && try_for_exact
duke@435 2356 && deps != NULL && UseExactTypes) {
duke@435 2357 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2358 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2359 deps->assert_leaf_type(ik);
duke@435 2360 klass_is_exact = true;
duke@435 2361 }
duke@435 2362 }
duke@435 2363 }
duke@435 2364 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2365 } else if (klass->is_obj_array_klass()) {
duke@435 2366 // Element is an object array. Recursively call ourself.
duke@435 2367 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2368 bool xk = etype->klass_is_exact();
duke@435 2369 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2370 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2371 // are all not-null. This is not true in generally, as code can
duke@435 2372 // slam NULLs down in the subarrays.
duke@435 2373 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2374 return arr;
duke@435 2375 } else if (klass->is_type_array_klass()) {
duke@435 2376 // Element is an typeArray
duke@435 2377 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2378 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2379 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2380 // is not-null. That was not true in general.
duke@435 2381 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2382 return arr;
duke@435 2383 } else {
duke@435 2384 ShouldNotReachHere();
duke@435 2385 return NULL;
duke@435 2386 }
duke@435 2387 }
duke@435 2388
duke@435 2389 //------------------------------make_from_constant-----------------------------
duke@435 2390 // Make a java pointer from an oop constant
duke@435 2391 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o) {
duke@435 2392 if (o->is_method_data() || o->is_method()) {
duke@435 2393 // Treat much like a typeArray of bytes, like below, but fake the type...
duke@435 2394 assert(o->has_encoding(), "must be a perm space object");
duke@435 2395 const Type* etype = (Type*)get_const_basic_type(T_BYTE);
duke@435 2396 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2397 ciKlass *klass = ciTypeArrayKlass::make((BasicType) T_BYTE);
duke@435 2398 assert(o->has_encoding(), "method data oops should be tenured");
duke@435 2399 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2400 return arr;
duke@435 2401 } else {
duke@435 2402 assert(o->is_java_object(), "must be java language object");
duke@435 2403 assert(!o->is_null_object(), "null object not yet handled here.");
duke@435 2404 ciKlass *klass = o->klass();
duke@435 2405 if (klass->is_instance_klass()) {
duke@435 2406 // Element is an instance
duke@435 2407 if (!o->has_encoding()) { // not a perm-space constant
duke@435 2408 // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
duke@435 2409 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
duke@435 2410 }
duke@435 2411 return TypeInstPtr::make(o);
duke@435 2412 } else if (klass->is_obj_array_klass()) {
duke@435 2413 // Element is an object array. Recursively call ourself.
duke@435 2414 const Type *etype =
duke@435 2415 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
duke@435 2416 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2417 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2418 // are all not-null. This is not true in generally, as code can
duke@435 2419 // slam NULLs down in the subarrays.
duke@435 2420 if (!o->has_encoding()) { // not a perm-space constant
duke@435 2421 // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
duke@435 2422 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2423 }
duke@435 2424 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2425 return arr;
duke@435 2426 } else if (klass->is_type_array_klass()) {
duke@435 2427 // Element is an typeArray
duke@435 2428 const Type* etype =
duke@435 2429 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2430 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2431 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2432 // is not-null. That was not true in general.
duke@435 2433 if (!o->has_encoding()) { // not a perm-space constant
duke@435 2434 // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
duke@435 2435 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2436 }
duke@435 2437 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2438 return arr;
duke@435 2439 }
duke@435 2440 }
duke@435 2441
duke@435 2442 ShouldNotReachHere();
duke@435 2443 return NULL;
duke@435 2444 }
duke@435 2445
duke@435 2446 //------------------------------get_con----------------------------------------
duke@435 2447 intptr_t TypeOopPtr::get_con() const {
duke@435 2448 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2449 assert( _offset >= 0, "" );
duke@435 2450
duke@435 2451 if (_offset != 0) {
duke@435 2452 // After being ported to the compiler interface, the compiler no longer
duke@435 2453 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2454 // to a handle at compile time. This handle is embedded in the generated
duke@435 2455 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2456 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2457 // have access to the addresses!). This does not seem to currently happen,
twisti@1040 2458 // but this assertion here is to help prevent its occurence.
duke@435 2459 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2460 ShouldNotReachHere();
duke@435 2461 }
duke@435 2462
duke@435 2463 return (intptr_t)const_oop()->encoding();
duke@435 2464 }
duke@435 2465
duke@435 2466
duke@435 2467 //-----------------------------filter------------------------------------------
duke@435 2468 // Do not allow interface-vs.-noninterface joins to collapse to top.
duke@435 2469 const Type *TypeOopPtr::filter( const Type *kills ) const {
duke@435 2470
duke@435 2471 const Type* ft = join(kills);
duke@435 2472 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2473 const TypeInstPtr* ktip = kills->isa_instptr();
never@990 2474 const TypeKlassPtr* ftkp = ft->isa_klassptr();
never@990 2475 const TypeKlassPtr* ktkp = kills->isa_klassptr();
duke@435 2476
duke@435 2477 if (ft->empty()) {
duke@435 2478 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2479 // interface. This can happen because the bytecodes do not contain
duke@435 2480 // enough type info to distinguish a Java-level interface variable
duke@435 2481 // from a Java-level object variable. If we meet 2 classes which
duke@435 2482 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2483 // doesn't implement I, we have no way to tell if the result should
duke@435 2484 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2485 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2486 // uplift the type.
duke@435 2487 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
duke@435 2488 return kills; // Uplift to interface
never@990 2489 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
never@990 2490 return kills; // Uplift to interface
duke@435 2491
duke@435 2492 return Type::TOP; // Canonical empty value
duke@435 2493 }
duke@435 2494
duke@435 2495 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2496 // the join should report back the class. However, if we have a J/L/Object
duke@435 2497 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2498 // join report an interface back out. This isn't possible but happens
duke@435 2499 // because the type system doesn't interact well with interfaces.
duke@435 2500 if (ftip != NULL && ktip != NULL &&
duke@435 2501 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2502 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2503 // Happens in a CTW of rt.jar, 320-341, no extra flags
duke@435 2504 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2505 }
never@990 2506 if (ftkp != NULL && ktkp != NULL &&
never@990 2507 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
never@990 2508 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
never@990 2509 // Happens in a CTW of rt.jar, 320-341, no extra flags
never@990 2510 return ktkp->cast_to_ptr_type(ftkp->ptr());
never@990 2511 }
duke@435 2512
duke@435 2513 return ft;
duke@435 2514 }
duke@435 2515
duke@435 2516 //------------------------------eq---------------------------------------------
duke@435 2517 // Structural equality check for Type representations
duke@435 2518 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2519 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2520 if (_klass_is_exact != a->_klass_is_exact ||
duke@435 2521 _instance_id != a->_instance_id) return false;
duke@435 2522 ciObject* one = const_oop();
duke@435 2523 ciObject* two = a->const_oop();
duke@435 2524 if (one == NULL || two == NULL) {
duke@435 2525 return (one == two) && TypePtr::eq(t);
duke@435 2526 } else {
duke@435 2527 return one->equals(two) && TypePtr::eq(t);
duke@435 2528 }
duke@435 2529 }
duke@435 2530
duke@435 2531 //------------------------------hash-------------------------------------------
duke@435 2532 // Type-specific hashing function.
duke@435 2533 int TypeOopPtr::hash(void) const {
duke@435 2534 return
duke@435 2535 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2536 _klass_is_exact +
duke@435 2537 _instance_id +
duke@435 2538 TypePtr::hash();
duke@435 2539 }
duke@435 2540
duke@435 2541 //------------------------------dump2------------------------------------------
duke@435 2542 #ifndef PRODUCT
duke@435 2543 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2544 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2545 if( _klass_is_exact ) st->print(":exact");
duke@435 2546 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2547 switch( _offset ) {
duke@435 2548 case OffsetTop: st->print("+top"); break;
duke@435 2549 case OffsetBot: st->print("+any"); break;
duke@435 2550 case 0: break;
duke@435 2551 default: st->print("+%d",_offset); break;
duke@435 2552 }
kvn@658 2553 if (_instance_id == InstanceTop)
kvn@658 2554 st->print(",iid=top");
kvn@658 2555 else if (_instance_id != InstanceBot)
duke@435 2556 st->print(",iid=%d",_instance_id);
duke@435 2557 }
duke@435 2558 #endif
duke@435 2559
duke@435 2560 //------------------------------singleton--------------------------------------
duke@435 2561 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2562 // constants
duke@435 2563 bool TypeOopPtr::singleton(void) const {
duke@435 2564 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2565 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2566 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2567 }
duke@435 2568
duke@435 2569 //------------------------------add_offset-------------------------------------
kvn@741 2570 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
duke@435 2571 return make( _ptr, xadd_offset(offset) );
duke@435 2572 }
duke@435 2573
kvn@658 2574 //------------------------------meet_instance_id--------------------------------
kvn@658 2575 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 2576 // Either is 'TOP' instance? Return the other instance!
kvn@658 2577 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 2578 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 2579 // If either is different, return 'BOTTOM' instance
kvn@658 2580 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 2581 return _instance_id;
duke@435 2582 }
duke@435 2583
kvn@658 2584 //------------------------------dual_instance_id--------------------------------
kvn@658 2585 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 2586 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 2587 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 2588 return _instance_id; // Map everything else into self
kvn@658 2589 }
kvn@658 2590
kvn@658 2591
duke@435 2592 //=============================================================================
duke@435 2593 // Convenience common pre-built types.
duke@435 2594 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 2595 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 2596 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 2597 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 2598 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 2599
duke@435 2600 //------------------------------TypeInstPtr-------------------------------------
duke@435 2601 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
duke@435 2602 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
duke@435 2603 assert(k != NULL &&
duke@435 2604 (k->is_loaded() || o == NULL),
duke@435 2605 "cannot have constants with non-loaded klass");
duke@435 2606 };
duke@435 2607
duke@435 2608 //------------------------------make-------------------------------------------
duke@435 2609 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 2610 ciKlass* k,
duke@435 2611 bool xk,
duke@435 2612 ciObject* o,
duke@435 2613 int offset,
duke@435 2614 int instance_id) {
duke@435 2615 assert( !k->is_loaded() || k->is_instance_klass() ||
duke@435 2616 k->is_method_klass(), "Must be for instance or method");
duke@435 2617 // Either const_oop() is NULL or else ptr is Constant
duke@435 2618 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 2619 "constant pointers must have a value supplied" );
duke@435 2620 // Ptr is never Null
duke@435 2621 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 2622
kvn@682 2623 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 2624 if (!UseExactTypes) xk = false;
duke@435 2625 if (ptr == Constant) {
duke@435 2626 // Note: This case includes meta-object constants, such as methods.
duke@435 2627 xk = true;
duke@435 2628 } else if (k->is_loaded()) {
duke@435 2629 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 2630 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 2631 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 2632 }
duke@435 2633
duke@435 2634 // Now hash this baby
duke@435 2635 TypeInstPtr *result =
duke@435 2636 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
duke@435 2637
duke@435 2638 return result;
duke@435 2639 }
duke@435 2640
duke@435 2641
duke@435 2642 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2643 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2644 if( ptr == _ptr ) return this;
duke@435 2645 // Reconstruct _sig info here since not a problem with later lazy
duke@435 2646 // construction, _sig will show up on demand.
kvn@658 2647 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
duke@435 2648 }
duke@435 2649
duke@435 2650
duke@435 2651 //-----------------------------cast_to_exactness-------------------------------
duke@435 2652 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2653 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 2654 if (!UseExactTypes) return this;
duke@435 2655 if (!_klass->is_loaded()) return this;
duke@435 2656 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 2657 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 2658 if( ik->is_interface() ) return this; // cannot set xk
duke@435 2659 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
duke@435 2660 }
duke@435 2661
kvn@682 2662 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2663 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 2664 if( instance_id == _instance_id ) return this;
kvn@682 2665 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
duke@435 2666 }
duke@435 2667
duke@435 2668 //------------------------------xmeet_unloaded---------------------------------
duke@435 2669 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 2670 // Assume classes are different since called after check for same name/class-loader
duke@435 2671 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 2672 int off = meet_offset(tinst->offset());
duke@435 2673 PTR ptr = meet_ptr(tinst->ptr());
duke@435 2674
duke@435 2675 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 2676 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 2677 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 2678 //
duke@435 2679 // Meet unloaded class with java/lang/Object
duke@435 2680 //
duke@435 2681 // Meet
duke@435 2682 // | Unloaded Class
duke@435 2683 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 2684 // ===================================================================
duke@435 2685 // TOP | ..........................Unloaded......................|
duke@435 2686 // AnyNull | U-AN |................Unloaded......................|
duke@435 2687 // Constant | ... O-NN .................................. | O-BOT |
duke@435 2688 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 2689 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 2690 //
duke@435 2691 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 2692 //
duke@435 2693 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 2694 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass() ); }
duke@435 2695 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2696 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 2697 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2698 else { return TypeInstPtr::NOTNULL; }
duke@435 2699 }
duke@435 2700 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 2701
duke@435 2702 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 2703 }
duke@435 2704
duke@435 2705 // Both are unloaded, not the same class, not Object
duke@435 2706 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 2707 if( ptr != TypePtr::BotPTR ) {
duke@435 2708 return TypeInstPtr::NOTNULL;
duke@435 2709 }
duke@435 2710 return TypeInstPtr::BOTTOM;
duke@435 2711 }
duke@435 2712
duke@435 2713
duke@435 2714 //------------------------------meet-------------------------------------------
duke@435 2715 // Compute the MEET of two types. It returns a new Type object.
duke@435 2716 const Type *TypeInstPtr::xmeet( const Type *t ) const {
duke@435 2717 // Perform a fast test for common case; meeting the same types together.
duke@435 2718 if( this == t ) return this; // Meeting same type-rep?
duke@435 2719
duke@435 2720 // Current "this->_base" is Pointer
duke@435 2721 switch (t->base()) { // switch on original type
duke@435 2722
duke@435 2723 case Int: // Mixing ints & oops happens when javac
duke@435 2724 case Long: // reuses local variables
duke@435 2725 case FloatTop:
duke@435 2726 case FloatCon:
duke@435 2727 case FloatBot:
duke@435 2728 case DoubleTop:
duke@435 2729 case DoubleCon:
duke@435 2730 case DoubleBot:
coleenp@548 2731 case NarrowOop:
duke@435 2732 case Bottom: // Ye Olde Default
duke@435 2733 return Type::BOTTOM;
duke@435 2734 case Top:
duke@435 2735 return this;
duke@435 2736
duke@435 2737 default: // All else is a mistake
duke@435 2738 typerr(t);
duke@435 2739
duke@435 2740 case RawPtr: return TypePtr::BOTTOM;
duke@435 2741
duke@435 2742 case AryPtr: { // All arrays inherit from Object class
duke@435 2743 const TypeAryPtr *tp = t->is_aryptr();
duke@435 2744 int offset = meet_offset(tp->offset());
duke@435 2745 PTR ptr = meet_ptr(tp->ptr());
kvn@658 2746 int instance_id = meet_instance_id(tp->instance_id());
duke@435 2747 switch (ptr) {
duke@435 2748 case TopPTR:
duke@435 2749 case AnyNull: // Fall 'down' to dual of object klass
duke@435 2750 if (klass()->equals(ciEnv::current()->Object_klass())) {
kvn@658 2751 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2752 } else {
duke@435 2753 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 2754 ptr = NotNull;
kvn@658 2755 instance_id = InstanceBot;
kvn@658 2756 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
duke@435 2757 }
duke@435 2758 case Constant:
duke@435 2759 case NotNull:
duke@435 2760 case BotPTR: // Fall down to object klass
duke@435 2761 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 2762 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 2763 // If 'this' (InstPtr) is above the centerline and it is Object class
twisti@1040 2764 // then we can subclass in the Java class hierarchy.
duke@435 2765 if (klass()->equals(ciEnv::current()->Object_klass())) {
duke@435 2766 // that is, tp's array type is a subtype of my klass
kvn@658 2767 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2768 }
duke@435 2769 }
duke@435 2770 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 2771 // The meet falls down to Object class below centerline.
duke@435 2772 if( ptr == Constant )
duke@435 2773 ptr = NotNull;
kvn@658 2774 instance_id = InstanceBot;
kvn@658 2775 return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
duke@435 2776 default: typerr(t);
duke@435 2777 }
duke@435 2778 }
duke@435 2779
duke@435 2780 case OopPtr: { // Meeting to OopPtrs
duke@435 2781 // Found a OopPtr type vs self-InstPtr type
duke@435 2782 const TypePtr *tp = t->is_oopptr();
duke@435 2783 int offset = meet_offset(tp->offset());
duke@435 2784 PTR ptr = meet_ptr(tp->ptr());
duke@435 2785 switch (tp->ptr()) {
duke@435 2786 case TopPTR:
kvn@658 2787 case AnyNull: {
kvn@658 2788 int instance_id = meet_instance_id(InstanceTop);
duke@435 2789 return make(ptr, klass(), klass_is_exact(),
kvn@658 2790 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 2791 }
duke@435 2792 case NotNull:
duke@435 2793 case BotPTR:
duke@435 2794 return TypeOopPtr::make(ptr, offset);
duke@435 2795 default: typerr(t);
duke@435 2796 }
duke@435 2797 }
duke@435 2798
duke@435 2799 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2800 // Found an AnyPtr type vs self-InstPtr type
duke@435 2801 const TypePtr *tp = t->is_ptr();
duke@435 2802 int offset = meet_offset(tp->offset());
duke@435 2803 PTR ptr = meet_ptr(tp->ptr());
duke@435 2804 switch (tp->ptr()) {
duke@435 2805 case Null:
duke@435 2806 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
kvn@658 2807 // else fall through to AnyNull
duke@435 2808 case TopPTR:
kvn@658 2809 case AnyNull: {
kvn@658 2810 int instance_id = meet_instance_id(InstanceTop);
duke@435 2811 return make( ptr, klass(), klass_is_exact(),
kvn@658 2812 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 2813 }
duke@435 2814 case NotNull:
duke@435 2815 case BotPTR:
duke@435 2816 return TypePtr::make( AnyPtr, ptr, offset );
duke@435 2817 default: typerr(t);
duke@435 2818 }
duke@435 2819 }
duke@435 2820
duke@435 2821 /*
duke@435 2822 A-top }
duke@435 2823 / | \ } Tops
duke@435 2824 B-top A-any C-top }
duke@435 2825 | / | \ | } Any-nulls
duke@435 2826 B-any | C-any }
duke@435 2827 | | |
duke@435 2828 B-con A-con C-con } constants; not comparable across classes
duke@435 2829 | | |
duke@435 2830 B-not | C-not }
duke@435 2831 | \ | / | } not-nulls
duke@435 2832 B-bot A-not C-bot }
duke@435 2833 \ | / } Bottoms
duke@435 2834 A-bot }
duke@435 2835 */
duke@435 2836
duke@435 2837 case InstPtr: { // Meeting 2 Oops?
duke@435 2838 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 2839 const TypeInstPtr *tinst = t->is_instptr();
duke@435 2840 int off = meet_offset( tinst->offset() );
duke@435 2841 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 2842 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 2843
duke@435 2844 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 2845 // If we have constants, then we created oops so classes are loaded
duke@435 2846 // and we can handle the constants further down. This case handles
duke@435 2847 // both-not-loaded or both-loaded classes
duke@435 2848 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
duke@435 2849 return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
duke@435 2850 }
duke@435 2851
duke@435 2852 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 2853 ciKlass* tinst_klass = tinst->klass();
duke@435 2854 ciKlass* this_klass = this->klass();
duke@435 2855 bool tinst_xk = tinst->klass_is_exact();
duke@435 2856 bool this_xk = this->klass_is_exact();
duke@435 2857 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 2858 // One of these classes has not been loaded
duke@435 2859 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 2860 #ifndef PRODUCT
duke@435 2861 if( PrintOpto && Verbose ) {
duke@435 2862 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 2863 tty->print(" this == "); this->dump(); tty->cr();
duke@435 2864 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 2865 }
duke@435 2866 #endif
duke@435 2867 return unloaded_meet;
duke@435 2868 }
duke@435 2869
duke@435 2870 // Handle mixing oops and interfaces first.
duke@435 2871 if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
duke@435 2872 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 2873 tinst_klass = this_klass;
duke@435 2874 this_klass = tmp;
duke@435 2875 bool tmp2 = tinst_xk;
duke@435 2876 tinst_xk = this_xk;
duke@435 2877 this_xk = tmp2;
duke@435 2878 }
duke@435 2879 if (tinst_klass->is_interface() &&
duke@435 2880 !(this_klass->is_interface() ||
duke@435 2881 // Treat java/lang/Object as an honorary interface,
duke@435 2882 // because we need a bottom for the interface hierarchy.
duke@435 2883 this_klass == ciEnv::current()->Object_klass())) {
duke@435 2884 // Oop meets interface!
duke@435 2885
duke@435 2886 // See if the oop subtypes (implements) interface.
duke@435 2887 ciKlass *k;
duke@435 2888 bool xk;
duke@435 2889 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 2890 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 2891 // on whether we are both above the centerline or either is
duke@435 2892 // below the centerline. If we are on the centerline
duke@435 2893 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 2894 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 2895 // If we are keeping this_klass, keep its exactness too.
duke@435 2896 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 2897 } else { // Does not implement, fall to Object
duke@435 2898 // Oop does not implement interface, so mixing falls to Object
duke@435 2899 // just like the verifier does (if both are above the
duke@435 2900 // centerline fall to interface)
duke@435 2901 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 2902 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 2903 // Watch out for Constant vs. AnyNull interface.
duke@435 2904 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 2905 instance_id = InstanceBot;
duke@435 2906 }
duke@435 2907 ciObject* o = NULL; // the Constant value, if any
duke@435 2908 if (ptr == Constant) {
duke@435 2909 // Find out which constant.
duke@435 2910 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 2911 }
kvn@658 2912 return make( ptr, k, xk, o, off, instance_id );
duke@435 2913 }
duke@435 2914
duke@435 2915 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 2916
duke@435 2917 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 2918 // If we split one up & one down AND they subtype, take the down man.
duke@435 2919 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 2920 // If both are up and they subtype, take the subtype class.
duke@435 2921 // If both are up and they do NOT subtype, "fall hard".
duke@435 2922 // If both are down and they subtype, take the supertype class.
duke@435 2923 // If both are down and they do NOT subtype, "fall hard".
duke@435 2924 // Constants treated as down.
duke@435 2925
duke@435 2926 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 2927 // "fall hard"; "fall hard" becomes the default case:
duke@435 2928 // If we split one up & one down AND they subtype, take the down man.
duke@435 2929 // If both are up and they subtype, take the subtype class.
duke@435 2930
duke@435 2931 // If both are down and they subtype, "fall hard".
duke@435 2932 // If both are down and they do NOT subtype, "fall hard".
duke@435 2933 // If both are up and they do NOT subtype, "fall hard".
duke@435 2934 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 2935
duke@435 2936 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 2937 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 2938 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 2939 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 2940
duke@435 2941 // Check for subtyping:
duke@435 2942 ciKlass *subtype = NULL;
duke@435 2943 bool subtype_exact = false;
duke@435 2944 if( tinst_klass->equals(this_klass) ) {
duke@435 2945 subtype = this_klass;
duke@435 2946 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 2947 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 2948 subtype = this_klass; // Pick subtyping class
duke@435 2949 subtype_exact = this_xk;
duke@435 2950 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 2951 subtype = tinst_klass; // Pick subtyping class
duke@435 2952 subtype_exact = tinst_xk;
duke@435 2953 }
duke@435 2954
duke@435 2955 if( subtype ) {
duke@435 2956 if( above_centerline(ptr) ) { // both are up?
duke@435 2957 this_klass = tinst_klass = subtype;
duke@435 2958 this_xk = tinst_xk = subtype_exact;
duke@435 2959 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 2960 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 2961 this_xk = tinst_xk;
duke@435 2962 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 2963 tinst_klass = this_klass; // this is down; keep down man
duke@435 2964 tinst_xk = this_xk;
duke@435 2965 } else {
duke@435 2966 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 2967 }
duke@435 2968 }
duke@435 2969
duke@435 2970 // Check for classes now being equal
duke@435 2971 if (tinst_klass->equals(this_klass)) {
duke@435 2972 // If the klasses are equal, the constants may still differ. Fall to
duke@435 2973 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 2974 // handled elsewhere).
duke@435 2975 ciObject* o = NULL; // Assume not constant when done
duke@435 2976 ciObject* this_oop = const_oop();
duke@435 2977 ciObject* tinst_oop = tinst->const_oop();
duke@435 2978 if( ptr == Constant ) {
duke@435 2979 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 2980 this_oop->equals(tinst_oop) )
duke@435 2981 o = this_oop;
duke@435 2982 else if (above_centerline(this ->_ptr))
duke@435 2983 o = tinst_oop;
duke@435 2984 else if (above_centerline(tinst ->_ptr))
duke@435 2985 o = this_oop;
duke@435 2986 else
duke@435 2987 ptr = NotNull;
duke@435 2988 }
duke@435 2989 return make( ptr, this_klass, this_xk, o, off, instance_id );
duke@435 2990 } // Else classes are not equal
duke@435 2991
duke@435 2992 // Since klasses are different, we require a LCA in the Java
duke@435 2993 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 2994 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 2995 ptr = NotNull;
kvn@682 2996 instance_id = InstanceBot;
duke@435 2997
duke@435 2998 // Now we find the LCA of Java classes
duke@435 2999 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
kvn@658 3000 return make( ptr, k, false, NULL, off, instance_id );
duke@435 3001 } // End of case InstPtr
duke@435 3002
duke@435 3003 case KlassPtr:
duke@435 3004 return TypeInstPtr::BOTTOM;
duke@435 3005
duke@435 3006 } // End of switch
duke@435 3007 return this; // Return the double constant
duke@435 3008 }
duke@435 3009
duke@435 3010
duke@435 3011 //------------------------java_mirror_type--------------------------------------
duke@435 3012 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3013 // must be a singleton type
duke@435 3014 if( const_oop() == NULL ) return NULL;
duke@435 3015
duke@435 3016 // must be of type java.lang.Class
duke@435 3017 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3018
duke@435 3019 return const_oop()->as_instance()->java_mirror_type();
duke@435 3020 }
duke@435 3021
duke@435 3022
duke@435 3023 //------------------------------xdual------------------------------------------
duke@435 3024 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
twisti@1040 3025 // inheritance mechanism.
duke@435 3026 const Type *TypeInstPtr::xdual() const {
kvn@658 3027 return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 3028 }
duke@435 3029
duke@435 3030 //------------------------------eq---------------------------------------------
duke@435 3031 // Structural equality check for Type representations
duke@435 3032 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3033 const TypeInstPtr *p = t->is_instptr();
duke@435 3034 return
duke@435 3035 klass()->equals(p->klass()) &&
duke@435 3036 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3037 }
duke@435 3038
duke@435 3039 //------------------------------hash-------------------------------------------
duke@435 3040 // Type-specific hashing function.
duke@435 3041 int TypeInstPtr::hash(void) const {
duke@435 3042 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 3043 return hash;
duke@435 3044 }
duke@435 3045
duke@435 3046 //------------------------------dump2------------------------------------------
duke@435 3047 // Dump oop Type
duke@435 3048 #ifndef PRODUCT
duke@435 3049 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3050 // Print the name of the klass.
duke@435 3051 klass()->print_name_on(st);
duke@435 3052
duke@435 3053 switch( _ptr ) {
duke@435 3054 case Constant:
duke@435 3055 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3056 if (WizardMode || Verbose) {
duke@435 3057 const_oop()->print_oop(st);
duke@435 3058 }
duke@435 3059 case BotPTR:
duke@435 3060 if (!WizardMode && !Verbose) {
duke@435 3061 if( _klass_is_exact ) st->print(":exact");
duke@435 3062 break;
duke@435 3063 }
duke@435 3064 case TopPTR:
duke@435 3065 case AnyNull:
duke@435 3066 case NotNull:
duke@435 3067 st->print(":%s", ptr_msg[_ptr]);
duke@435 3068 if( _klass_is_exact ) st->print(":exact");
duke@435 3069 break;
duke@435 3070 }
duke@435 3071
duke@435 3072 if( _offset ) { // Dump offset, if any
duke@435 3073 if( _offset == OffsetBot ) st->print("+any");
duke@435 3074 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3075 else st->print("+%d", _offset);
duke@435 3076 }
duke@435 3077
duke@435 3078 st->print(" *");
kvn@658 3079 if (_instance_id == InstanceTop)
kvn@658 3080 st->print(",iid=top");
kvn@658 3081 else if (_instance_id != InstanceBot)
duke@435 3082 st->print(",iid=%d",_instance_id);
duke@435 3083 }
duke@435 3084 #endif
duke@435 3085
duke@435 3086 //------------------------------add_offset-------------------------------------
kvn@741 3087 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
duke@435 3088 return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
duke@435 3089 }
duke@435 3090
duke@435 3091 //=============================================================================
duke@435 3092 // Convenience common pre-built types.
duke@435 3093 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3094 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3095 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3096 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3097 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3098 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3099 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3100 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3101 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3102 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3103
duke@435 3104 //------------------------------make-------------------------------------------
duke@435 3105 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3106 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3107 "integral arrays must be pre-equipped with a class");
duke@435 3108 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3109 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3110 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3111 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3112 }
duke@435 3113
duke@435 3114 //------------------------------make-------------------------------------------
duke@435 3115 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3116 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3117 "integral arrays must be pre-equipped with a class");
duke@435 3118 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3119 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3120 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3121 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3122 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3123 }
duke@435 3124
duke@435 3125 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3126 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3127 if( ptr == _ptr ) return this;
kvn@658 3128 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3129 }
duke@435 3130
duke@435 3131
duke@435 3132 //-----------------------------cast_to_exactness-------------------------------
duke@435 3133 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3134 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3135 if (!UseExactTypes) return this;
duke@435 3136 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
duke@435 3137 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
duke@435 3138 }
duke@435 3139
kvn@682 3140 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3141 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3142 if( instance_id == _instance_id ) return this;
kvn@682 3143 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
duke@435 3144 }
duke@435 3145
duke@435 3146 //-----------------------------narrow_size_type-------------------------------
duke@435 3147 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3148 // which is kind of slow (and cached elsewhere by other users).
duke@435 3149 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3150 static jint max_array_length(BasicType etype) {
duke@435 3151 jint& cache = max_array_length_cache[etype];
duke@435 3152 jint res = cache;
duke@435 3153 if (res == 0) {
duke@435 3154 switch (etype) {
coleenp@548 3155 case T_NARROWOOP:
coleenp@548 3156 etype = T_OBJECT;
coleenp@548 3157 break;
duke@435 3158 case T_CONFLICT:
duke@435 3159 case T_ILLEGAL:
duke@435 3160 case T_VOID:
duke@435 3161 etype = T_BYTE; // will produce conservatively high value
duke@435 3162 }
duke@435 3163 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3164 }
duke@435 3165 return res;
duke@435 3166 }
duke@435 3167
duke@435 3168 // Narrow the given size type to the index range for the given array base type.
duke@435 3169 // Return NULL if the resulting int type becomes empty.
rasbold@801 3170 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
duke@435 3171 jint hi = size->_hi;
duke@435 3172 jint lo = size->_lo;
duke@435 3173 jint min_lo = 0;
rasbold@801 3174 jint max_hi = max_array_length(elem()->basic_type());
duke@435 3175 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3176 bool chg = false;
duke@435 3177 if (lo < min_lo) { lo = min_lo; chg = true; }
duke@435 3178 if (hi > max_hi) { hi = max_hi; chg = true; }
twisti@1040 3179 // Negative length arrays will produce weird intermediate dead fast-path code
duke@435 3180 if (lo > hi)
rasbold@801 3181 return TypeInt::ZERO;
duke@435 3182 if (!chg)
duke@435 3183 return size;
duke@435 3184 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3185 }
duke@435 3186
duke@435 3187 //-------------------------------cast_to_size----------------------------------
duke@435 3188 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3189 assert(new_size != NULL, "");
rasbold@801 3190 new_size = narrow_size_type(new_size);
duke@435 3191 if (new_size == size()) return this;
duke@435 3192 const TypeAry* new_ary = TypeAry::make(elem(), new_size);
kvn@658 3193 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3194 }
duke@435 3195
duke@435 3196
duke@435 3197 //------------------------------eq---------------------------------------------
duke@435 3198 // Structural equality check for Type representations
duke@435 3199 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3200 const TypeAryPtr *p = t->is_aryptr();
duke@435 3201 return
duke@435 3202 _ary == p->_ary && // Check array
duke@435 3203 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3204 }
duke@435 3205
duke@435 3206 //------------------------------hash-------------------------------------------
duke@435 3207 // Type-specific hashing function.
duke@435 3208 int TypeAryPtr::hash(void) const {
duke@435 3209 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3210 }
duke@435 3211
duke@435 3212 //------------------------------meet-------------------------------------------
duke@435 3213 // Compute the MEET of two types. It returns a new Type object.
duke@435 3214 const Type *TypeAryPtr::xmeet( const Type *t ) const {
duke@435 3215 // Perform a fast test for common case; meeting the same types together.
duke@435 3216 if( this == t ) return this; // Meeting same type-rep?
duke@435 3217 // Current "this->_base" is Pointer
duke@435 3218 switch (t->base()) { // switch on original type
duke@435 3219
duke@435 3220 // Mixing ints & oops happens when javac reuses local variables
duke@435 3221 case Int:
duke@435 3222 case Long:
duke@435 3223 case FloatTop:
duke@435 3224 case FloatCon:
duke@435 3225 case FloatBot:
duke@435 3226 case DoubleTop:
duke@435 3227 case DoubleCon:
duke@435 3228 case DoubleBot:
coleenp@548 3229 case NarrowOop:
duke@435 3230 case Bottom: // Ye Olde Default
duke@435 3231 return Type::BOTTOM;
duke@435 3232 case Top:
duke@435 3233 return this;
duke@435 3234
duke@435 3235 default: // All else is a mistake
duke@435 3236 typerr(t);
duke@435 3237
duke@435 3238 case OopPtr: { // Meeting to OopPtrs
duke@435 3239 // Found a OopPtr type vs self-AryPtr type
duke@435 3240 const TypePtr *tp = t->is_oopptr();
duke@435 3241 int offset = meet_offset(tp->offset());
duke@435 3242 PTR ptr = meet_ptr(tp->ptr());
duke@435 3243 switch (tp->ptr()) {
duke@435 3244 case TopPTR:
kvn@658 3245 case AnyNull: {
kvn@658 3246 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3247 return make(ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3248 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3249 }
duke@435 3250 case BotPTR:
duke@435 3251 case NotNull:
duke@435 3252 return TypeOopPtr::make(ptr, offset);
duke@435 3253 default: ShouldNotReachHere();
duke@435 3254 }
duke@435 3255 }
duke@435 3256
duke@435 3257 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3258 // Found an AnyPtr type vs self-AryPtr type
duke@435 3259 const TypePtr *tp = t->is_ptr();
duke@435 3260 int offset = meet_offset(tp->offset());
duke@435 3261 PTR ptr = meet_ptr(tp->ptr());
duke@435 3262 switch (tp->ptr()) {
duke@435 3263 case TopPTR:
duke@435 3264 return this;
duke@435 3265 case BotPTR:
duke@435 3266 case NotNull:
duke@435 3267 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3268 case Null:
duke@435 3269 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3270 // else fall through to AnyNull
kvn@658 3271 case AnyNull: {
kvn@658 3272 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3273 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3274 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3275 }
duke@435 3276 default: ShouldNotReachHere();
duke@435 3277 }
duke@435 3278 }
duke@435 3279
duke@435 3280 case RawPtr: return TypePtr::BOTTOM;
duke@435 3281
duke@435 3282 case AryPtr: { // Meeting 2 references?
duke@435 3283 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3284 int off = meet_offset(tap->offset());
duke@435 3285 const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
duke@435 3286 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3287 int instance_id = meet_instance_id(tap->instance_id());
duke@435 3288 ciKlass* lazy_klass = NULL;
duke@435 3289 if (tary->_elem->isa_int()) {
duke@435 3290 // Integral array element types have irrelevant lattice relations.
duke@435 3291 // It is the klass that determines array layout, not the element type.
duke@435 3292 if (_klass == NULL)
duke@435 3293 lazy_klass = tap->_klass;
duke@435 3294 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3295 lazy_klass = _klass;
duke@435 3296 } else {
duke@435 3297 // Something like byte[int+] meets char[int+].
duke@435 3298 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3299 instance_id = InstanceBot;
duke@435 3300 tary = TypeAry::make(Type::BOTTOM, tary->_size);
duke@435 3301 }
duke@435 3302 }
duke@435 3303 bool xk;
duke@435 3304 switch (tap->ptr()) {
duke@435 3305 case AnyNull:
duke@435 3306 case TopPTR:
duke@435 3307 // Compute new klass on demand, do not use tap->_klass
duke@435 3308 xk = (tap->_klass_is_exact | this->_klass_is_exact);
kvn@658 3309 return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
duke@435 3310 case Constant: {
duke@435 3311 ciObject* o = const_oop();
duke@435 3312 if( _ptr == Constant ) {
duke@435 3313 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
duke@435 3314 ptr = NotNull;
duke@435 3315 o = NULL;
kvn@682 3316 instance_id = InstanceBot;
duke@435 3317 }
duke@435 3318 } else if( above_centerline(_ptr) ) {
duke@435 3319 o = tap->const_oop();
duke@435 3320 }
duke@435 3321 xk = true;
kvn@658 3322 return TypeAryPtr::make( ptr, o, tary, tap->_klass, xk, off, instance_id );
duke@435 3323 }
duke@435 3324 case NotNull:
duke@435 3325 case BotPTR:
duke@435 3326 // Compute new klass on demand, do not use tap->_klass
duke@435 3327 if (above_centerline(this->_ptr))
duke@435 3328 xk = tap->_klass_is_exact;
duke@435 3329 else if (above_centerline(tap->_ptr))
duke@435 3330 xk = this->_klass_is_exact;
duke@435 3331 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 3332 (klass() == tap->klass()); // Only precise for identical arrays
kvn@658 3333 return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
duke@435 3334 default: ShouldNotReachHere();
duke@435 3335 }
duke@435 3336 }
duke@435 3337
duke@435 3338 // All arrays inherit from Object class
duke@435 3339 case InstPtr: {
duke@435 3340 const TypeInstPtr *tp = t->is_instptr();
duke@435 3341 int offset = meet_offset(tp->offset());
duke@435 3342 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3343 int instance_id = meet_instance_id(tp->instance_id());
duke@435 3344 switch (ptr) {
duke@435 3345 case TopPTR:
duke@435 3346 case AnyNull: // Fall 'down' to dual of object klass
duke@435 3347 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
kvn@658 3348 return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3349 } else {
duke@435 3350 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3351 ptr = NotNull;
kvn@658 3352 instance_id = InstanceBot;
kvn@658 3353 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3354 }
duke@435 3355 case Constant:
duke@435 3356 case NotNull:
duke@435 3357 case BotPTR: // Fall down to object klass
duke@435 3358 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3359 if (above_centerline(tp->ptr())) {
duke@435 3360 // If 'tp' is above the centerline and it is Object class
twisti@1040 3361 // then we can subclass in the Java class hierarchy.
duke@435 3362 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3363 // that is, my array type is a subtype of 'tp' klass
kvn@658 3364 return make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3365 }
duke@435 3366 }
duke@435 3367 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 3368 // The meet falls down to Object class below centerline.
duke@435 3369 if( ptr == Constant )
duke@435 3370 ptr = NotNull;
kvn@658 3371 instance_id = InstanceBot;
kvn@658 3372 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3373 default: typerr(t);
duke@435 3374 }
duke@435 3375 }
duke@435 3376
duke@435 3377 case KlassPtr:
duke@435 3378 return TypeInstPtr::BOTTOM;
duke@435 3379
duke@435 3380 }
duke@435 3381 return this; // Lint noise
duke@435 3382 }
duke@435 3383
duke@435 3384 //------------------------------xdual------------------------------------------
duke@435 3385 // Dual: compute field-by-field dual
duke@435 3386 const Type *TypeAryPtr::xdual() const {
kvn@658 3387 return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
duke@435 3388 }
duke@435 3389
duke@435 3390 //------------------------------dump2------------------------------------------
duke@435 3391 #ifndef PRODUCT
duke@435 3392 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3393 _ary->dump2(d,depth,st);
duke@435 3394 switch( _ptr ) {
duke@435 3395 case Constant:
duke@435 3396 const_oop()->print(st);
duke@435 3397 break;
duke@435 3398 case BotPTR:
duke@435 3399 if (!WizardMode && !Verbose) {
duke@435 3400 if( _klass_is_exact ) st->print(":exact");
duke@435 3401 break;
duke@435 3402 }
duke@435 3403 case TopPTR:
duke@435 3404 case AnyNull:
duke@435 3405 case NotNull:
duke@435 3406 st->print(":%s", ptr_msg[_ptr]);
duke@435 3407 if( _klass_is_exact ) st->print(":exact");
duke@435 3408 break;
duke@435 3409 }
duke@435 3410
kvn@499 3411 if( _offset != 0 ) {
kvn@499 3412 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 3413 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 3414 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 3415 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 3416 else {
kvn@499 3417 BasicType basic_elem_type = elem()->basic_type();
kvn@499 3418 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 3419 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 3420 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 3421 }
kvn@499 3422 }
kvn@499 3423 st->print(" *");
kvn@658 3424 if (_instance_id == InstanceTop)
kvn@658 3425 st->print(",iid=top");
kvn@658 3426 else if (_instance_id != InstanceBot)
duke@435 3427 st->print(",iid=%d",_instance_id);
duke@435 3428 }
duke@435 3429 #endif
duke@435 3430
duke@435 3431 bool TypeAryPtr::empty(void) const {
duke@435 3432 if (_ary->empty()) return true;
duke@435 3433 return TypeOopPtr::empty();
duke@435 3434 }
duke@435 3435
duke@435 3436 //------------------------------add_offset-------------------------------------
kvn@741 3437 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
duke@435 3438 return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
duke@435 3439 }
duke@435 3440
duke@435 3441
duke@435 3442 //=============================================================================
coleenp@548 3443 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
coleenp@548 3444 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
coleenp@548 3445
coleenp@548 3446
coleenp@548 3447 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
coleenp@548 3448 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
coleenp@548 3449 }
coleenp@548 3450
coleenp@548 3451 //------------------------------hash-------------------------------------------
coleenp@548 3452 // Type-specific hashing function.
coleenp@548 3453 int TypeNarrowOop::hash(void) const {
coleenp@548 3454 return _ooptype->hash() + 7;
coleenp@548 3455 }
coleenp@548 3456
coleenp@548 3457
coleenp@548 3458 bool TypeNarrowOop::eq( const Type *t ) const {
coleenp@548 3459 const TypeNarrowOop* tc = t->isa_narrowoop();
coleenp@548 3460 if (tc != NULL) {
coleenp@548 3461 if (_ooptype->base() != tc->_ooptype->base()) {
coleenp@548 3462 return false;
coleenp@548 3463 }
coleenp@548 3464 return tc->_ooptype->eq(_ooptype);
coleenp@548 3465 }
coleenp@548 3466 return false;
coleenp@548 3467 }
coleenp@548 3468
coleenp@548 3469 bool TypeNarrowOop::singleton(void) const { // TRUE if type is a singleton
coleenp@548 3470 return _ooptype->singleton();
coleenp@548 3471 }
coleenp@548 3472
coleenp@548 3473 bool TypeNarrowOop::empty(void) const {
coleenp@548 3474 return _ooptype->empty();
coleenp@548 3475 }
coleenp@548 3476
kvn@728 3477 //------------------------------xmeet------------------------------------------
coleenp@548 3478 // Compute the MEET of two types. It returns a new Type object.
coleenp@548 3479 const Type *TypeNarrowOop::xmeet( const Type *t ) const {
coleenp@548 3480 // Perform a fast test for common case; meeting the same types together.
coleenp@548 3481 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 3482
coleenp@548 3483
coleenp@548 3484 // Current "this->_base" is OopPtr
coleenp@548 3485 switch (t->base()) { // switch on original type
coleenp@548 3486
coleenp@548 3487 case Int: // Mixing ints & oops happens when javac
coleenp@548 3488 case Long: // reuses local variables
coleenp@548 3489 case FloatTop:
coleenp@548 3490 case FloatCon:
coleenp@548 3491 case FloatBot:
coleenp@548 3492 case DoubleTop:
coleenp@548 3493 case DoubleCon:
coleenp@548 3494 case DoubleBot:
kvn@728 3495 case AnyPtr:
kvn@728 3496 case RawPtr:
kvn@728 3497 case OopPtr:
kvn@728 3498 case InstPtr:
kvn@728 3499 case KlassPtr:
kvn@728 3500 case AryPtr:
kvn@728 3501
coleenp@548 3502 case Bottom: // Ye Olde Default
coleenp@548 3503 return Type::BOTTOM;
coleenp@548 3504 case Top:
coleenp@548 3505 return this;
coleenp@548 3506
coleenp@548 3507 case NarrowOop: {
kvn@656 3508 const Type* result = _ooptype->xmeet(t->make_ptr());
coleenp@548 3509 if (result->isa_ptr()) {
coleenp@548 3510 return TypeNarrowOop::make(result->is_ptr());
coleenp@548 3511 }
coleenp@548 3512 return result;
coleenp@548 3513 }
coleenp@548 3514
coleenp@548 3515 default: // All else is a mistake
coleenp@548 3516 typerr(t);
coleenp@548 3517
coleenp@548 3518 } // End of switch
kvn@728 3519
kvn@728 3520 return this;
coleenp@548 3521 }
coleenp@548 3522
coleenp@548 3523 const Type *TypeNarrowOop::xdual() const { // Compute dual right now.
coleenp@548 3524 const TypePtr* odual = _ooptype->dual()->is_ptr();
coleenp@548 3525 return new TypeNarrowOop(odual);
coleenp@548 3526 }
coleenp@548 3527
coleenp@548 3528 const Type *TypeNarrowOop::filter( const Type *kills ) const {
coleenp@548 3529 if (kills->isa_narrowoop()) {
coleenp@548 3530 const Type* ft =_ooptype->filter(kills->is_narrowoop()->_ooptype);
coleenp@548 3531 if (ft->empty())
coleenp@548 3532 return Type::TOP; // Canonical empty value
coleenp@548 3533 if (ft->isa_ptr()) {
coleenp@548 3534 return make(ft->isa_ptr());
coleenp@548 3535 }
coleenp@548 3536 return ft;
coleenp@548 3537 } else if (kills->isa_ptr()) {
coleenp@548 3538 const Type* ft = _ooptype->join(kills);
coleenp@548 3539 if (ft->empty())
coleenp@548 3540 return Type::TOP; // Canonical empty value
coleenp@548 3541 return ft;
coleenp@548 3542 } else {
coleenp@548 3543 return Type::TOP;
coleenp@548 3544 }
coleenp@548 3545 }
coleenp@548 3546
coleenp@548 3547
coleenp@548 3548 intptr_t TypeNarrowOop::get_con() const {
coleenp@548 3549 return _ooptype->get_con();
coleenp@548 3550 }
coleenp@548 3551
coleenp@548 3552 #ifndef PRODUCT
coleenp@548 3553 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
never@852 3554 st->print("narrowoop: ");
coleenp@548 3555 _ooptype->dump2(d, depth, st);
coleenp@548 3556 }
coleenp@548 3557 #endif
coleenp@548 3558
coleenp@548 3559
coleenp@548 3560 //=============================================================================
duke@435 3561 // Convenience common pre-built types.
duke@435 3562
duke@435 3563 // Not-null object klass or below
duke@435 3564 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 3565 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 3566
duke@435 3567 //------------------------------TypeKlasPtr------------------------------------
duke@435 3568 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
duke@435 3569 : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
duke@435 3570 }
duke@435 3571
duke@435 3572 //------------------------------make-------------------------------------------
duke@435 3573 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 3574 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 3575 assert( k != NULL, "Expect a non-NULL klass");
duke@435 3576 assert(k->is_instance_klass() || k->is_array_klass() ||
duke@435 3577 k->is_method_klass(), "Incorrect type of klass oop");
duke@435 3578 TypeKlassPtr *r =
duke@435 3579 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 3580
duke@435 3581 return r;
duke@435 3582 }
duke@435 3583
duke@435 3584 //------------------------------eq---------------------------------------------
duke@435 3585 // Structural equality check for Type representations
duke@435 3586 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 3587 const TypeKlassPtr *p = t->is_klassptr();
duke@435 3588 return
duke@435 3589 klass()->equals(p->klass()) &&
duke@435 3590 TypeOopPtr::eq(p);
duke@435 3591 }
duke@435 3592
duke@435 3593 //------------------------------hash-------------------------------------------
duke@435 3594 // Type-specific hashing function.
duke@435 3595 int TypeKlassPtr::hash(void) const {
duke@435 3596 return klass()->hash() + TypeOopPtr::hash();
duke@435 3597 }
duke@435 3598
duke@435 3599
duke@435 3600 //------------------------------klass------------------------------------------
duke@435 3601 // Return the defining klass for this class
duke@435 3602 ciKlass* TypeAryPtr::klass() const {
duke@435 3603 if( _klass ) return _klass; // Return cached value, if possible
duke@435 3604
duke@435 3605 // Oops, need to compute _klass and cache it
duke@435 3606 ciKlass* k_ary = NULL;
duke@435 3607 const TypeInstPtr *tinst;
duke@435 3608 const TypeAryPtr *tary;
coleenp@548 3609 const Type* el = elem();
coleenp@548 3610 if (el->isa_narrowoop()) {
kvn@656 3611 el = el->make_ptr();
coleenp@548 3612 }
coleenp@548 3613
duke@435 3614 // Get element klass
coleenp@548 3615 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 3616 // Compute array klass from element klass
duke@435 3617 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 3618 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 3619 // Compute array klass from element klass
duke@435 3620 ciKlass* k_elem = tary->klass();
duke@435 3621 // If element type is something like bottom[], k_elem will be null.
duke@435 3622 if (k_elem != NULL)
duke@435 3623 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 3624 } else if ((el->base() == Type::Top) ||
coleenp@548 3625 (el->base() == Type::Bottom)) {
duke@435 3626 // element type of Bottom occurs from meet of basic type
duke@435 3627 // and object; Top occurs when doing join on Bottom.
duke@435 3628 // Leave k_ary at NULL.
duke@435 3629 } else {
duke@435 3630 // Cannot compute array klass directly from basic type,
duke@435 3631 // since subtypes of TypeInt all have basic type T_INT.
coleenp@548 3632 assert(!el->isa_int(),
duke@435 3633 "integral arrays must be pre-equipped with a class");
duke@435 3634 // Compute array klass directly from basic type
coleenp@548 3635 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 3636 }
duke@435 3637
kvn@598 3638 if( this != TypeAryPtr::OOPS ) {
duke@435 3639 // The _klass field acts as a cache of the underlying
duke@435 3640 // ciKlass for this array type. In order to set the field,
duke@435 3641 // we need to cast away const-ness.
duke@435 3642 //
duke@435 3643 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 3644 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 3645 // active compilations. However, the ciKlass which represents
duke@435 3646 // this Type is *not* shared between compilations, so caching
duke@435 3647 // this value would result in fetching a dangling pointer.
duke@435 3648 //
duke@435 3649 // Recomputing the underlying ciKlass for each request is
duke@435 3650 // a bit less efficient than caching, but calls to
duke@435 3651 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 3652 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 3653 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 3654 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 3655 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 3656 }
kvn@598 3657 }
duke@435 3658 return k_ary;
duke@435 3659 }
duke@435 3660
duke@435 3661
duke@435 3662 //------------------------------add_offset-------------------------------------
duke@435 3663 // Access internals of klass object
kvn@741 3664 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
duke@435 3665 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 3666 }
duke@435 3667
duke@435 3668 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3669 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
kvn@992 3670 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
duke@435 3671 if( ptr == _ptr ) return this;
duke@435 3672 return make(ptr, _klass, _offset);
duke@435 3673 }
duke@435 3674
duke@435 3675
duke@435 3676 //-----------------------------cast_to_exactness-------------------------------
duke@435 3677 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3678 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3679 if (!UseExactTypes) return this;
duke@435 3680 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 3681 }
duke@435 3682
duke@435 3683
duke@435 3684 //-----------------------------as_instance_type--------------------------------
duke@435 3685 // Corresponding type for an instance of the given class.
duke@435 3686 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 3687 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 3688 ciKlass* k = klass();
duke@435 3689 bool xk = klass_is_exact();
duke@435 3690 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 3691 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
duke@435 3692 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 3693 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 3694 }
duke@435 3695
duke@435 3696
duke@435 3697 //------------------------------xmeet------------------------------------------
duke@435 3698 // Compute the MEET of two types, return a new Type object.
duke@435 3699 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 3700 // Perform a fast test for common case; meeting the same types together.
duke@435 3701 if( this == t ) return this; // Meeting same type-rep?
duke@435 3702
duke@435 3703 // Current "this->_base" is Pointer
duke@435 3704 switch (t->base()) { // switch on original type
duke@435 3705
duke@435 3706 case Int: // Mixing ints & oops happens when javac
duke@435 3707 case Long: // reuses local variables
duke@435 3708 case FloatTop:
duke@435 3709 case FloatCon:
duke@435 3710 case FloatBot:
duke@435 3711 case DoubleTop:
duke@435 3712 case DoubleCon:
duke@435 3713 case DoubleBot:
kvn@728 3714 case NarrowOop:
duke@435 3715 case Bottom: // Ye Olde Default
duke@435 3716 return Type::BOTTOM;
duke@435 3717 case Top:
duke@435 3718 return this;
duke@435 3719
duke@435 3720 default: // All else is a mistake
duke@435 3721 typerr(t);
duke@435 3722
duke@435 3723 case RawPtr: return TypePtr::BOTTOM;
duke@435 3724
duke@435 3725 case OopPtr: { // Meeting to OopPtrs
duke@435 3726 // Found a OopPtr type vs self-KlassPtr type
duke@435 3727 const TypePtr *tp = t->is_oopptr();
duke@435 3728 int offset = meet_offset(tp->offset());
duke@435 3729 PTR ptr = meet_ptr(tp->ptr());
duke@435 3730 switch (tp->ptr()) {
duke@435 3731 case TopPTR:
duke@435 3732 case AnyNull:
duke@435 3733 return make(ptr, klass(), offset);
duke@435 3734 case BotPTR:
duke@435 3735 case NotNull:
duke@435 3736 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3737 default: typerr(t);
duke@435 3738 }
duke@435 3739 }
duke@435 3740
duke@435 3741 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3742 // Found an AnyPtr type vs self-KlassPtr type
duke@435 3743 const TypePtr *tp = t->is_ptr();
duke@435 3744 int offset = meet_offset(tp->offset());
duke@435 3745 PTR ptr = meet_ptr(tp->ptr());
duke@435 3746 switch (tp->ptr()) {
duke@435 3747 case TopPTR:
duke@435 3748 return this;
duke@435 3749 case Null:
duke@435 3750 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 3751 case AnyNull:
duke@435 3752 return make( ptr, klass(), offset );
duke@435 3753 case BotPTR:
duke@435 3754 case NotNull:
duke@435 3755 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3756 default: typerr(t);
duke@435 3757 }
duke@435 3758 }
duke@435 3759
duke@435 3760 case AryPtr: // Meet with AryPtr
duke@435 3761 case InstPtr: // Meet with InstPtr
duke@435 3762 return TypeInstPtr::BOTTOM;
duke@435 3763
duke@435 3764 //
duke@435 3765 // A-top }
duke@435 3766 // / | \ } Tops
duke@435 3767 // B-top A-any C-top }
duke@435 3768 // | / | \ | } Any-nulls
duke@435 3769 // B-any | C-any }
duke@435 3770 // | | |
duke@435 3771 // B-con A-con C-con } constants; not comparable across classes
duke@435 3772 // | | |
duke@435 3773 // B-not | C-not }
duke@435 3774 // | \ | / | } not-nulls
duke@435 3775 // B-bot A-not C-bot }
duke@435 3776 // \ | / } Bottoms
duke@435 3777 // A-bot }
duke@435 3778 //
duke@435 3779
duke@435 3780 case KlassPtr: { // Meet two KlassPtr types
duke@435 3781 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 3782 int off = meet_offset(tkls->offset());
duke@435 3783 PTR ptr = meet_ptr(tkls->ptr());
duke@435 3784
duke@435 3785 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3786 // If we have constants, then we created oops so classes are loaded
duke@435 3787 // and we can handle the constants further down. This case handles
duke@435 3788 // not-loaded classes
duke@435 3789 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 3790 return make( ptr, klass(), off );
duke@435 3791 }
duke@435 3792
duke@435 3793 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3794 ciKlass* tkls_klass = tkls->klass();
duke@435 3795 ciKlass* this_klass = this->klass();
duke@435 3796 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 3797 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 3798
duke@435 3799 // If 'this' type is above the centerline and is a superclass of the
duke@435 3800 // other, we can treat 'this' as having the same type as the other.
duke@435 3801 if ((above_centerline(this->ptr())) &&
duke@435 3802 tkls_klass->is_subtype_of(this_klass)) {
duke@435 3803 this_klass = tkls_klass;
duke@435 3804 }
duke@435 3805 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 3806 // other, we can treat 'tinst' as having the same type as the other.
duke@435 3807 if ((above_centerline(tkls->ptr())) &&
duke@435 3808 this_klass->is_subtype_of(tkls_klass)) {
duke@435 3809 tkls_klass = this_klass;
duke@435 3810 }
duke@435 3811
duke@435 3812 // Check for classes now being equal
duke@435 3813 if (tkls_klass->equals(this_klass)) {
duke@435 3814 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3815 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3816 // handled elsewhere).
duke@435 3817 ciObject* o = NULL; // Assume not constant when done
duke@435 3818 ciObject* this_oop = const_oop();
duke@435 3819 ciObject* tkls_oop = tkls->const_oop();
duke@435 3820 if( ptr == Constant ) {
duke@435 3821 if (this_oop != NULL && tkls_oop != NULL &&
duke@435 3822 this_oop->equals(tkls_oop) )
duke@435 3823 o = this_oop;
duke@435 3824 else if (above_centerline(this->ptr()))
duke@435 3825 o = tkls_oop;
duke@435 3826 else if (above_centerline(tkls->ptr()))
duke@435 3827 o = this_oop;
duke@435 3828 else
duke@435 3829 ptr = NotNull;
duke@435 3830 }
duke@435 3831 return make( ptr, this_klass, off );
duke@435 3832 } // Else classes are not equal
duke@435 3833
duke@435 3834 // Since klasses are different, we require the LCA in the Java
duke@435 3835 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3836 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3837 ptr = NotNull;
duke@435 3838 // Now we find the LCA of Java classes
duke@435 3839 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 3840 return make( ptr, k, off );
duke@435 3841 } // End of case KlassPtr
duke@435 3842
duke@435 3843 } // End of switch
duke@435 3844 return this; // Return the double constant
duke@435 3845 }
duke@435 3846
duke@435 3847 //------------------------------xdual------------------------------------------
duke@435 3848 // Dual: compute field-by-field dual
duke@435 3849 const Type *TypeKlassPtr::xdual() const {
duke@435 3850 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 3851 }
duke@435 3852
duke@435 3853 //------------------------------dump2------------------------------------------
duke@435 3854 // Dump Klass Type
duke@435 3855 #ifndef PRODUCT
duke@435 3856 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 3857 switch( _ptr ) {
duke@435 3858 case Constant:
duke@435 3859 st->print("precise ");
duke@435 3860 case NotNull:
duke@435 3861 {
duke@435 3862 const char *name = klass()->name()->as_utf8();
duke@435 3863 if( name ) {
duke@435 3864 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 3865 } else {
duke@435 3866 ShouldNotReachHere();
duke@435 3867 }
duke@435 3868 }
duke@435 3869 case BotPTR:
duke@435 3870 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 3871 case TopPTR:
duke@435 3872 case AnyNull:
duke@435 3873 st->print(":%s", ptr_msg[_ptr]);
duke@435 3874 if( _klass_is_exact ) st->print(":exact");
duke@435 3875 break;
duke@435 3876 }
duke@435 3877
duke@435 3878 if( _offset ) { // Dump offset, if any
duke@435 3879 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 3880 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 3881 else { st->print("+%d", _offset); }
duke@435 3882 }
duke@435 3883
duke@435 3884 st->print(" *");
duke@435 3885 }
duke@435 3886 #endif
duke@435 3887
duke@435 3888
duke@435 3889
duke@435 3890 //=============================================================================
duke@435 3891 // Convenience common pre-built types.
duke@435 3892
duke@435 3893 //------------------------------make-------------------------------------------
duke@435 3894 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 3895 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 3896 }
duke@435 3897
duke@435 3898 //------------------------------make-------------------------------------------
duke@435 3899 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 3900 Compile* C = Compile::current();
duke@435 3901 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 3902 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 3903 const TypeTuple *domain;
duke@435 3904 if (method->flags().is_static()) {
duke@435 3905 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 3906 } else {
duke@435 3907 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 3908 }
duke@435 3909 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 3910 tf = TypeFunc::make(domain, range);
duke@435 3911 C->set_last_tf(method, tf); // fill cache
duke@435 3912 return tf;
duke@435 3913 }
duke@435 3914
duke@435 3915 //------------------------------meet-------------------------------------------
duke@435 3916 // Compute the MEET of two types. It returns a new Type object.
duke@435 3917 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 3918 // Perform a fast test for common case; meeting the same types together.
duke@435 3919 if( this == t ) return this; // Meeting same type-rep?
duke@435 3920
duke@435 3921 // Current "this->_base" is Func
duke@435 3922 switch (t->base()) { // switch on original type
duke@435 3923
duke@435 3924 case Bottom: // Ye Olde Default
duke@435 3925 return t;
duke@435 3926
duke@435 3927 default: // All else is a mistake
duke@435 3928 typerr(t);
duke@435 3929
duke@435 3930 case Top:
duke@435 3931 break;
duke@435 3932 }
duke@435 3933 return this; // Return the double constant
duke@435 3934 }
duke@435 3935
duke@435 3936 //------------------------------xdual------------------------------------------
duke@435 3937 // Dual: compute field-by-field dual
duke@435 3938 const Type *TypeFunc::xdual() const {
duke@435 3939 return this;
duke@435 3940 }
duke@435 3941
duke@435 3942 //------------------------------eq---------------------------------------------
duke@435 3943 // Structural equality check for Type representations
duke@435 3944 bool TypeFunc::eq( const Type *t ) const {
duke@435 3945 const TypeFunc *a = (const TypeFunc*)t;
duke@435 3946 return _domain == a->_domain &&
duke@435 3947 _range == a->_range;
duke@435 3948 }
duke@435 3949
duke@435 3950 //------------------------------hash-------------------------------------------
duke@435 3951 // Type-specific hashing function.
duke@435 3952 int TypeFunc::hash(void) const {
duke@435 3953 return (intptr_t)_domain + (intptr_t)_range;
duke@435 3954 }
duke@435 3955
duke@435 3956 //------------------------------dump2------------------------------------------
duke@435 3957 // Dump Function Type
duke@435 3958 #ifndef PRODUCT
duke@435 3959 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3960 if( _range->_cnt <= Parms )
duke@435 3961 st->print("void");
duke@435 3962 else {
duke@435 3963 uint i;
duke@435 3964 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 3965 _range->field_at(i)->dump2(d,depth,st);
duke@435 3966 st->print("/");
duke@435 3967 }
duke@435 3968 _range->field_at(i)->dump2(d,depth,st);
duke@435 3969 }
duke@435 3970 st->print(" ");
duke@435 3971 st->print("( ");
duke@435 3972 if( !depth || d[this] ) { // Check for recursive dump
duke@435 3973 st->print("...)");
duke@435 3974 return;
duke@435 3975 }
duke@435 3976 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 3977 if (Parms < _domain->_cnt)
duke@435 3978 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 3979 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 3980 st->print(", ");
duke@435 3981 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 3982 }
duke@435 3983 st->print(" )");
duke@435 3984 }
duke@435 3985
duke@435 3986 //------------------------------print_flattened--------------------------------
duke@435 3987 // Print a 'flattened' signature
duke@435 3988 static const char * const flat_type_msg[Type::lastype] = {
coleenp@548 3989 "bad","control","top","int","long","_", "narrowoop",
duke@435 3990 "tuple:", "array:",
duke@435 3991 "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
duke@435 3992 "func", "abIO", "return_address", "mem",
duke@435 3993 "float_top", "ftcon:", "flt",
duke@435 3994 "double_top", "dblcon:", "dbl",
duke@435 3995 "bottom"
duke@435 3996 };
duke@435 3997
duke@435 3998 void TypeFunc::print_flattened() const {
duke@435 3999 if( _range->_cnt <= Parms )
duke@435 4000 tty->print("void");
duke@435 4001 else {
duke@435 4002 uint i;
duke@435 4003 for (i = Parms; i < _range->_cnt-1; i++)
duke@435 4004 tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
duke@435 4005 tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
duke@435 4006 }
duke@435 4007 tty->print(" ( ");
duke@435 4008 if (Parms < _domain->_cnt)
duke@435 4009 tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
duke@435 4010 for (uint i = Parms+1; i < _domain->_cnt; i++)
duke@435 4011 tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
duke@435 4012 tty->print(" )");
duke@435 4013 }
duke@435 4014 #endif
duke@435 4015
duke@435 4016 //------------------------------singleton--------------------------------------
duke@435 4017 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 4018 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 4019 // or a single symbol.
duke@435 4020 bool TypeFunc::singleton(void) const {
duke@435 4021 return false; // Never a singleton
duke@435 4022 }
duke@435 4023
duke@435 4024 bool TypeFunc::empty(void) const {
duke@435 4025 return false; // Never empty
duke@435 4026 }
duke@435 4027
duke@435 4028
duke@435 4029 BasicType TypeFunc::return_type() const{
duke@435 4030 if (range()->cnt() == TypeFunc::Parms) {
duke@435 4031 return T_VOID;
duke@435 4032 }
duke@435 4033 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 4034 }

mercurial