src/share/vm/opto/type.cpp

Tue, 07 Jan 2014 16:02:10 +0100

author
roland
date
Tue, 07 Jan 2014 16:02:10 +0100
changeset 6214
5231c2210388
parent 6043
6c2f07d1495f
child 6313
de95063c0e34
child 6503
a9becfeecd1b
permissions
-rw-r--r--

8027571: fatal error: meet not symmetric
Summary: meet of one constant array and one exact array not symmetric.
Reviewed-by: kvn

duke@435 1 /*
hseigel@4465 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
coleenp@4037 26 #include "ci/ciMethodData.hpp"
stefank@2314 27 #include "ci/ciTypeFlow.hpp"
stefank@2314 28 #include "classfile/symbolTable.hpp"
stefank@2314 29 #include "classfile/systemDictionary.hpp"
stefank@2314 30 #include "compiler/compileLog.hpp"
stefank@2314 31 #include "libadt/dict.hpp"
stefank@2314 32 #include "memory/gcLocker.hpp"
stefank@2314 33 #include "memory/oopFactory.hpp"
stefank@2314 34 #include "memory/resourceArea.hpp"
stefank@2314 35 #include "oops/instanceKlass.hpp"
never@2658 36 #include "oops/instanceMirrorKlass.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "oops/typeArrayKlass.hpp"
stefank@2314 39 #include "opto/matcher.hpp"
stefank@2314 40 #include "opto/node.hpp"
stefank@2314 41 #include "opto/opcodes.hpp"
stefank@2314 42 #include "opto/type.hpp"
stefank@2314 43
duke@435 44 // Portions of code courtesy of Clifford Click
duke@435 45
duke@435 46 // Optimization - Graph Style
duke@435 47
duke@435 48 // Dictionary of types shared among compilations.
duke@435 49 Dict* Type::_shared_type_dict = NULL;
duke@435 50
duke@435 51 // Array which maps compiler types to Basic Types
coleenp@4037 52 Type::TypeInfo Type::_type_info[Type::lastype] = {
coleenp@4037 53 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
coleenp@4037 54 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
coleenp@4037 55 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
coleenp@4037 56 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
coleenp@4037 57 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
coleenp@4037 58 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
coleenp@4037 59 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
roland@4159 60 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass
coleenp@4037 61 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
coleenp@4037 62 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
coleenp@4037 63
dlong@4201 64 #ifndef SPARC
coleenp@4037 65 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS
coleenp@4037 66 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
coleenp@4037 67 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
coleenp@4037 68 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY
coleenp@4037 69 #else
coleenp@4037 70 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
coleenp@4037 71 { Bad, T_ILLEGAL, "vectord:", false, Op_RegD, relocInfo::none }, // VectorD
coleenp@4037 72 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
coleenp@4037 73 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
coleenp@4037 74 #endif // IA32 || AMD64
coleenp@4037 75 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr
coleenp@4037 76 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr
coleenp@4037 77 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr
coleenp@4037 78 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr
coleenp@4037 79 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr
coleenp@4037 80 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr
coleenp@4037 81 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr
coleenp@4037 82 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function
coleenp@4037 83 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio
coleenp@4037 84 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address
coleenp@4037 85 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory
coleenp@4037 86 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop
coleenp@4037 87 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon
coleenp@4037 88 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot
coleenp@4037 89 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop
coleenp@4037 90 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon
coleenp@4037 91 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot
coleenp@4037 92 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom
duke@435 93 };
duke@435 94
duke@435 95 // Map ideal registers (machine types) to ideal types
duke@435 96 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 97
duke@435 98 // Map basic types to canonical Type* pointers.
duke@435 99 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 100
duke@435 101 // Map basic types to constant-zero Types.
duke@435 102 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 103
duke@435 104 // Map basic types to array-body alias types.
duke@435 105 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 106
duke@435 107 //=============================================================================
duke@435 108 // Convenience common pre-built types.
duke@435 109 const Type *Type::ABIO; // State-of-machine only
duke@435 110 const Type *Type::BOTTOM; // All values
duke@435 111 const Type *Type::CONTROL; // Control only
duke@435 112 const Type *Type::DOUBLE; // All doubles
duke@435 113 const Type *Type::FLOAT; // All floats
duke@435 114 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 115 const Type *Type::MEMORY; // Abstract store only
duke@435 116 const Type *Type::RETURN_ADDRESS;
duke@435 117 const Type *Type::TOP; // No values in set
duke@435 118
duke@435 119 //------------------------------get_const_type---------------------------
duke@435 120 const Type* Type::get_const_type(ciType* type) {
duke@435 121 if (type == NULL) {
duke@435 122 return NULL;
duke@435 123 } else if (type->is_primitive_type()) {
duke@435 124 return get_const_basic_type(type->basic_type());
duke@435 125 } else {
duke@435 126 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 127 }
duke@435 128 }
duke@435 129
duke@435 130 //---------------------------array_element_basic_type---------------------------------
duke@435 131 // Mapping to the array element's basic type.
duke@435 132 BasicType Type::array_element_basic_type() const {
duke@435 133 BasicType bt = basic_type();
duke@435 134 if (bt == T_INT) {
duke@435 135 if (this == TypeInt::INT) return T_INT;
duke@435 136 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 137 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 138 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 139 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 140 return T_VOID;
duke@435 141 }
duke@435 142 return bt;
duke@435 143 }
duke@435 144
duke@435 145 //---------------------------get_typeflow_type---------------------------------
duke@435 146 // Import a type produced by ciTypeFlow.
duke@435 147 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 148 switch (type->basic_type()) {
duke@435 149
duke@435 150 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 151 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 152 return Type::BOTTOM;
duke@435 153
duke@435 154 case ciTypeFlow::StateVector::T_TOP:
duke@435 155 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 156 return Type::TOP;
duke@435 157
duke@435 158 case ciTypeFlow::StateVector::T_NULL:
duke@435 159 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 160 return TypePtr::NULL_PTR;
duke@435 161
duke@435 162 case ciTypeFlow::StateVector::T_LONG2:
duke@435 163 // The ciTypeFlow pass pushes a long, then the half.
duke@435 164 // We do the same.
duke@435 165 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 166 return TypeInt::TOP;
duke@435 167
duke@435 168 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 169 // The ciTypeFlow pass pushes double, then the half.
duke@435 170 // Our convention is the same.
duke@435 171 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 172 return Type::TOP;
duke@435 173
duke@435 174 case T_ADDRESS:
duke@435 175 assert(type->is_return_address(), "");
duke@435 176 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 177
duke@435 178 default:
duke@435 179 // make sure we did not mix up the cases:
duke@435 180 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 181 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 182 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 183 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 184 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 185 assert(!type->is_return_address(), "");
duke@435 186
duke@435 187 return Type::get_const_type(type);
duke@435 188 }
duke@435 189 }
duke@435 190
duke@435 191
vlivanov@5658 192 //-----------------------make_from_constant------------------------------------
vlivanov@5658 193 const Type* Type::make_from_constant(ciConstant constant,
vlivanov@5658 194 bool require_constant, bool is_autobox_cache) {
vlivanov@5658 195 switch (constant.basic_type()) {
vlivanov@5658 196 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
vlivanov@5658 197 case T_CHAR: return TypeInt::make(constant.as_char());
vlivanov@5658 198 case T_BYTE: return TypeInt::make(constant.as_byte());
vlivanov@5658 199 case T_SHORT: return TypeInt::make(constant.as_short());
vlivanov@5658 200 case T_INT: return TypeInt::make(constant.as_int());
vlivanov@5658 201 case T_LONG: return TypeLong::make(constant.as_long());
vlivanov@5658 202 case T_FLOAT: return TypeF::make(constant.as_float());
vlivanov@5658 203 case T_DOUBLE: return TypeD::make(constant.as_double());
vlivanov@5658 204 case T_ARRAY:
vlivanov@5658 205 case T_OBJECT:
vlivanov@5658 206 {
vlivanov@5658 207 // cases:
vlivanov@5658 208 // can_be_constant = (oop not scavengable || ScavengeRootsInCode != 0)
vlivanov@5658 209 // should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
vlivanov@5658 210 // An oop is not scavengable if it is in the perm gen.
vlivanov@5658 211 ciObject* oop_constant = constant.as_object();
vlivanov@5658 212 if (oop_constant->is_null_object()) {
vlivanov@5658 213 return Type::get_zero_type(T_OBJECT);
vlivanov@5658 214 } else if (require_constant || oop_constant->should_be_constant()) {
vlivanov@5658 215 return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
vlivanov@5658 216 }
vlivanov@5658 217 }
vlivanov@5658 218 }
vlivanov@5658 219 // Fall through to failure
vlivanov@5658 220 return NULL;
vlivanov@5658 221 }
vlivanov@5658 222
vlivanov@5658 223
duke@435 224 //------------------------------make-------------------------------------------
duke@435 225 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 226 // and look for an existing copy in the type dictionary.
duke@435 227 const Type *Type::make( enum TYPES t ) {
duke@435 228 return (new Type(t))->hashcons();
duke@435 229 }
kvn@658 230
duke@435 231 //------------------------------cmp--------------------------------------------
duke@435 232 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 233 if( t1->_base != t2->_base )
duke@435 234 return 1; // Missed badly
duke@435 235 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 236 return !t1->eq(t2); // Return ZERO if equal
duke@435 237 }
duke@435 238
duke@435 239 //------------------------------hash-------------------------------------------
duke@435 240 int Type::uhash( const Type *const t ) {
duke@435 241 return t->hash();
duke@435 242 }
duke@435 243
kvn@1975 244 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
kvn@1975 245
duke@435 246 //--------------------------Initialize_shared----------------------------------
duke@435 247 void Type::Initialize_shared(Compile* current) {
duke@435 248 // This method does not need to be locked because the first system
duke@435 249 // compilations (stub compilations) occur serially. If they are
duke@435 250 // changed to proceed in parallel, then this section will need
duke@435 251 // locking.
duke@435 252
duke@435 253 Arena* save = current->type_arena();
zgu@3900 254 Arena* shared_type_arena = new (mtCompiler)Arena();
duke@435 255
duke@435 256 current->set_type_arena(shared_type_arena);
duke@435 257 _shared_type_dict =
duke@435 258 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 259 shared_type_arena, 128 );
duke@435 260 current->set_type_dict(_shared_type_dict);
duke@435 261
duke@435 262 // Make shared pre-built types.
duke@435 263 CONTROL = make(Control); // Control only
duke@435 264 TOP = make(Top); // No values in set
duke@435 265 MEMORY = make(Memory); // Abstract store only
duke@435 266 ABIO = make(Abio); // State-of-machine only
duke@435 267 RETURN_ADDRESS=make(Return_Address);
duke@435 268 FLOAT = make(FloatBot); // All floats
duke@435 269 DOUBLE = make(DoubleBot); // All doubles
duke@435 270 BOTTOM = make(Bottom); // Everything
duke@435 271 HALF = make(Half); // Placeholder half of doublewide type
duke@435 272
duke@435 273 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 274 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 275
duke@435 276 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 277 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 278
duke@435 279 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 280 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 281 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 282 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 283 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 284 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 285 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 286 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 287 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 288 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 289 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
twisti@1059 290 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
duke@435 291 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 292 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 293 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 294 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 295 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 296 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
duke@435 297 // CmpL is overloaded both as the bytecode computation returning
duke@435 298 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 299 // compare returning optimizer ideal-type flags.
duke@435 300 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 301 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 302 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 303 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
kvn@1975 304 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 305
duke@435 306 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 307 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 308 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 309 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 310 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 311 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 312 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
duke@435 313
duke@435 314 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 315 fboth[0] = Type::CONTROL;
duke@435 316 fboth[1] = Type::CONTROL;
duke@435 317 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 318
duke@435 319 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 320 ffalse[0] = Type::CONTROL;
duke@435 321 ffalse[1] = Type::TOP;
duke@435 322 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 323
duke@435 324 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 325 fneither[0] = Type::TOP;
duke@435 326 fneither[1] = Type::TOP;
duke@435 327 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 328
duke@435 329 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 330 ftrue[0] = Type::TOP;
duke@435 331 ftrue[1] = Type::CONTROL;
duke@435 332 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 333
duke@435 334 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 335 floop[0] = Type::CONTROL;
duke@435 336 floop[1] = TypeInt::INT;
duke@435 337 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 338
duke@435 339 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 340 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 341 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 342
duke@435 343 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 344 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 345
duke@435 346 const Type **fmembar = TypeTuple::fields(0);
duke@435 347 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 348
duke@435 349 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 350 fsc[0] = TypeInt::CC;
duke@435 351 fsc[1] = Type::MEMORY;
duke@435 352 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 353
duke@435 354 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 355 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 356 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 357 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 358 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 359 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 360 false, 0, oopDesc::klass_offset_in_bytes());
roland@5991 361 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
duke@435 362
coleenp@4037 363 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
coleenp@4037 364
coleenp@548 365 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 366 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 367
roland@4159 368 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
roland@4159 369
coleenp@548 370 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 371 mreg2type[Op_Set ] = 0;
coleenp@548 372 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 373 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 374 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 375 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 376 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 377 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 378 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 379
kvn@2116 380 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
kvn@598 381
kvn@598 382 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 383
kvn@598 384 #ifdef _LP64
kvn@598 385 if (UseCompressedOops) {
coleenp@4037 386 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
kvn@598 387 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 388 } else
kvn@598 389 #endif
kvn@598 390 {
kvn@598 391 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 392 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 393 }
duke@435 394 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 395 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 396 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 397 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 398 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 399 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 400 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 401
kvn@598 402 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 403 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 404 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 405 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 406 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 407 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 408 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 409 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 410 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 411 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 412 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 413 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 414
duke@435 415 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 416 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 417
duke@435 418 const Type **fi2c = TypeTuple::fields(2);
coleenp@4037 419 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
duke@435 420 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 421 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 422
duke@435 423 const Type **intpair = TypeTuple::fields(2);
duke@435 424 intpair[0] = TypeInt::INT;
duke@435 425 intpair[1] = TypeInt::INT;
duke@435 426 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 427
duke@435 428 const Type **longpair = TypeTuple::fields(2);
duke@435 429 longpair[0] = TypeLong::LONG;
duke@435 430 longpair[1] = TypeLong::LONG;
duke@435 431 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 432
rbackman@5791 433 const Type **intccpair = TypeTuple::fields(2);
rbackman@5791 434 intccpair[0] = TypeInt::INT;
rbackman@5791 435 intccpair[1] = TypeInt::CC;
rbackman@5791 436 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
rbackman@5791 437
rbackman@5997 438 const Type **longccpair = TypeTuple::fields(2);
rbackman@5997 439 longccpair[0] = TypeLong::LONG;
rbackman@5997 440 longccpair[1] = TypeInt::CC;
rbackman@5997 441 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
rbackman@5997 442
roland@4159 443 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
roland@4159 444 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
roland@4159 445 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
roland@4159 446 _const_basic_type[T_CHAR] = TypeInt::CHAR;
roland@4159 447 _const_basic_type[T_BYTE] = TypeInt::BYTE;
roland@4159 448 _const_basic_type[T_SHORT] = TypeInt::SHORT;
roland@4159 449 _const_basic_type[T_INT] = TypeInt::INT;
roland@4159 450 _const_basic_type[T_LONG] = TypeLong::LONG;
roland@4159 451 _const_basic_type[T_FLOAT] = Type::FLOAT;
roland@4159 452 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
roland@4159 453 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
roland@4159 454 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
roland@4159 455 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
roland@4159 456 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
roland@4159 457 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not?
roland@4159 458
roland@4159 459 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
roland@4159 460 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
roland@4159 461 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
roland@4159 462 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
roland@4159 463 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
roland@4159 464 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
roland@4159 465 _zero_type[T_INT] = TypeInt::ZERO;
roland@4159 466 _zero_type[T_LONG] = TypeLong::ZERO;
roland@4159 467 _zero_type[T_FLOAT] = TypeF::ZERO;
roland@4159 468 _zero_type[T_DOUBLE] = TypeD::ZERO;
roland@4159 469 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
roland@4159 470 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
roland@4159 471 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
roland@4159 472 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 473
duke@435 474 // get_zero_type() should not happen for T_CONFLICT
duke@435 475 _zero_type[T_CONFLICT]= NULL;
duke@435 476
kvn@3882 477 // Vector predefined types, it needs initialized _const_basic_type[].
kvn@3882 478 if (Matcher::vector_size_supported(T_BYTE,4)) {
kvn@3882 479 TypeVect::VECTS = TypeVect::make(T_BYTE,4);
kvn@3882 480 }
kvn@3882 481 if (Matcher::vector_size_supported(T_FLOAT,2)) {
kvn@3882 482 TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
kvn@3882 483 }
kvn@3882 484 if (Matcher::vector_size_supported(T_FLOAT,4)) {
kvn@3882 485 TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
kvn@3882 486 }
kvn@3882 487 if (Matcher::vector_size_supported(T_FLOAT,8)) {
kvn@3882 488 TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
kvn@3882 489 }
kvn@3882 490 mreg2type[Op_VecS] = TypeVect::VECTS;
kvn@3882 491 mreg2type[Op_VecD] = TypeVect::VECTD;
kvn@3882 492 mreg2type[Op_VecX] = TypeVect::VECTX;
kvn@3882 493 mreg2type[Op_VecY] = TypeVect::VECTY;
kvn@3882 494
duke@435 495 // Restore working type arena.
duke@435 496 current->set_type_arena(save);
duke@435 497 current->set_type_dict(NULL);
duke@435 498 }
duke@435 499
duke@435 500 //------------------------------Initialize-------------------------------------
duke@435 501 void Type::Initialize(Compile* current) {
duke@435 502 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 503
duke@435 504 if (_shared_type_dict == NULL) {
duke@435 505 Initialize_shared(current);
duke@435 506 }
duke@435 507
duke@435 508 Arena* type_arena = current->type_arena();
duke@435 509
duke@435 510 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 511 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 512 current->set_type_dict(tdic);
duke@435 513
duke@435 514 // Transfer the shared types.
duke@435 515 DictI i(_shared_type_dict);
duke@435 516 for( ; i.test(); ++i ) {
duke@435 517 Type* t = (Type*)i._value;
duke@435 518 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 519 }
duke@435 520 }
duke@435 521
duke@435 522 //------------------------------hashcons---------------------------------------
duke@435 523 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 524 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 525 // current Type in the Type table.
duke@435 526 const Type *Type::hashcons(void) {
duke@435 527 debug_only(base()); // Check the assertion in Type::base().
duke@435 528 // Look up the Type in the Type dictionary
duke@435 529 Dict *tdic = type_dict();
duke@435 530 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 531 if( old ) { // Pre-existing Type?
duke@435 532 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 533 delete this; // Yes, Nuke this guy
duke@435 534 assert( old->_dual, "" );
duke@435 535 return old; // Return pre-existing
duke@435 536 }
duke@435 537
duke@435 538 // Every type has a dual (to make my lattice symmetric).
duke@435 539 // Since we just discovered a new Type, compute its dual right now.
duke@435 540 assert( !_dual, "" ); // No dual yet
duke@435 541 _dual = xdual(); // Compute the dual
duke@435 542 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 543 _dual = this;
duke@435 544 return this;
duke@435 545 }
duke@435 546 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 547 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 548 // New Type, insert into Type table
duke@435 549 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 550 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 551 #ifdef ASSERT
duke@435 552 Type *dual_dual = (Type*)_dual->xdual();
duke@435 553 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 554 delete dual_dual;
duke@435 555 #endif
duke@435 556 return this; // Return new Type
duke@435 557 }
duke@435 558
duke@435 559 //------------------------------eq---------------------------------------------
duke@435 560 // Structural equality check for Type representations
duke@435 561 bool Type::eq( const Type * ) const {
duke@435 562 return true; // Nothing else can go wrong
duke@435 563 }
duke@435 564
duke@435 565 //------------------------------hash-------------------------------------------
duke@435 566 // Type-specific hashing function.
duke@435 567 int Type::hash(void) const {
duke@435 568 return _base;
duke@435 569 }
duke@435 570
duke@435 571 //------------------------------is_finite--------------------------------------
duke@435 572 // Has a finite value
duke@435 573 bool Type::is_finite() const {
duke@435 574 return false;
duke@435 575 }
duke@435 576
duke@435 577 //------------------------------is_nan-----------------------------------------
duke@435 578 // Is not a number (NaN)
duke@435 579 bool Type::is_nan() const {
duke@435 580 return false;
duke@435 581 }
duke@435 582
kvn@1255 583 //----------------------interface_vs_oop---------------------------------------
kvn@1255 584 #ifdef ASSERT
roland@5991 585 bool Type::interface_vs_oop_helper(const Type *t) const {
kvn@1255 586 bool result = false;
kvn@1255 587
kvn@1427 588 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
kvn@1427 589 const TypePtr* t_ptr = t->make_ptr();
kvn@1427 590 if( this_ptr == NULL || t_ptr == NULL )
kvn@1427 591 return result;
kvn@1427 592
kvn@1427 593 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
kvn@1427 594 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
kvn@1255 595 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
kvn@1255 596 bool this_interface = this_inst->klass()->is_interface();
kvn@1255 597 bool t_interface = t_inst->klass()->is_interface();
kvn@1255 598 result = this_interface ^ t_interface;
kvn@1255 599 }
kvn@1255 600
kvn@1255 601 return result;
kvn@1255 602 }
roland@5991 603
roland@5991 604 bool Type::interface_vs_oop(const Type *t) const {
roland@5991 605 if (interface_vs_oop_helper(t)) {
roland@5991 606 return true;
roland@5991 607 }
roland@5991 608 // Now check the speculative parts as well
roland@5991 609 const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
roland@5991 610 const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
roland@5991 611 if (this_spec != NULL && t_spec != NULL) {
roland@5991 612 if (this_spec->interface_vs_oop_helper(t_spec)) {
roland@5991 613 return true;
roland@5991 614 }
roland@5991 615 return false;
roland@5991 616 }
roland@5991 617 if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
roland@5991 618 return true;
roland@5991 619 }
roland@5991 620 if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
roland@5991 621 return true;
roland@5991 622 }
roland@5991 623 return false;
roland@5991 624 }
roland@5991 625
kvn@1255 626 #endif
kvn@1255 627
duke@435 628 //------------------------------meet-------------------------------------------
duke@435 629 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 630 // commutative and the lattice is symmetric.
duke@435 631 const Type *Type::meet( const Type *t ) const {
coleenp@548 632 if (isa_narrowoop() && t->isa_narrowoop()) {
kvn@656 633 const Type* result = make_ptr()->meet(t->make_ptr());
kvn@656 634 return result->make_narrowoop();
coleenp@548 635 }
roland@4159 636 if (isa_narrowklass() && t->isa_narrowklass()) {
roland@4159 637 const Type* result = make_ptr()->meet(t->make_ptr());
roland@4159 638 return result->make_narrowklass();
roland@4159 639 }
coleenp@548 640
duke@435 641 const Type *mt = xmeet(t);
coleenp@548 642 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
roland@4159 643 if (isa_narrowklass() || t->isa_narrowklass()) return mt;
duke@435 644 #ifdef ASSERT
duke@435 645 assert( mt == t->xmeet(this), "meet not commutative" );
duke@435 646 const Type* dual_join = mt->_dual;
duke@435 647 const Type *t2t = dual_join->xmeet(t->_dual);
duke@435 648 const Type *t2this = dual_join->xmeet( _dual);
duke@435 649
duke@435 650 // Interface meet Oop is Not Symmetric:
duke@435 651 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 652 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
kvn@1255 653
kvn@1255 654 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
duke@435 655 tty->print_cr("=== Meet Not Symmetric ===");
duke@435 656 tty->print("t = "); t->dump(); tty->cr();
duke@435 657 tty->print("this= "); dump(); tty->cr();
duke@435 658 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
duke@435 659
duke@435 660 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
duke@435 661 tty->print("this_dual= "); _dual->dump(); tty->cr();
duke@435 662 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
duke@435 663
duke@435 664 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
duke@435 665 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 666
duke@435 667 fatal("meet not symmetric" );
duke@435 668 }
duke@435 669 #endif
duke@435 670 return mt;
duke@435 671 }
duke@435 672
duke@435 673 //------------------------------xmeet------------------------------------------
duke@435 674 // Compute the MEET of two types. It returns a new Type object.
duke@435 675 const Type *Type::xmeet( const Type *t ) const {
duke@435 676 // Perform a fast test for common case; meeting the same types together.
duke@435 677 if( this == t ) return this; // Meeting same type-rep?
duke@435 678
duke@435 679 // Meeting TOP with anything?
duke@435 680 if( _base == Top ) return t;
duke@435 681
duke@435 682 // Meeting BOTTOM with anything?
duke@435 683 if( _base == Bottom ) return BOTTOM;
duke@435 684
duke@435 685 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 686 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 687 switch (t->base()) { // Switch on original type
duke@435 688
duke@435 689 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 690 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 691 case FloatCon:
duke@435 692 case DoubleCon:
duke@435 693 case Int:
duke@435 694 case Long:
duke@435 695 return t->xmeet(this);
duke@435 696
duke@435 697 case OopPtr:
duke@435 698 return t->xmeet(this);
duke@435 699
duke@435 700 case InstPtr:
duke@435 701 return t->xmeet(this);
duke@435 702
coleenp@4037 703 case MetadataPtr:
duke@435 704 case KlassPtr:
duke@435 705 return t->xmeet(this);
duke@435 706
duke@435 707 case AryPtr:
duke@435 708 return t->xmeet(this);
duke@435 709
coleenp@548 710 case NarrowOop:
coleenp@548 711 return t->xmeet(this);
coleenp@548 712
roland@4159 713 case NarrowKlass:
roland@4159 714 return t->xmeet(this);
roland@4159 715
duke@435 716 case Bad: // Type check
duke@435 717 default: // Bogus type not in lattice
duke@435 718 typerr(t);
duke@435 719 return Type::BOTTOM;
duke@435 720
duke@435 721 case Bottom: // Ye Olde Default
duke@435 722 return t;
duke@435 723
duke@435 724 case FloatTop:
duke@435 725 if( _base == FloatTop ) return this;
duke@435 726 case FloatBot: // Float
duke@435 727 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 728 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 729 typerr(t);
duke@435 730 return Type::BOTTOM;
duke@435 731
duke@435 732 case DoubleTop:
duke@435 733 if( _base == DoubleTop ) return this;
duke@435 734 case DoubleBot: // Double
duke@435 735 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 736 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 737 typerr(t);
duke@435 738 return Type::BOTTOM;
duke@435 739
duke@435 740 // These next few cases must match exactly or it is a compile-time error.
duke@435 741 case Control: // Control of code
duke@435 742 case Abio: // State of world outside of program
duke@435 743 case Memory:
duke@435 744 if( _base == t->_base ) return this;
duke@435 745 typerr(t);
duke@435 746 return Type::BOTTOM;
duke@435 747
duke@435 748 case Top: // Top of the lattice
duke@435 749 return this;
duke@435 750 }
duke@435 751
duke@435 752 // The type is unchanged
duke@435 753 return this;
duke@435 754 }
duke@435 755
duke@435 756 //-----------------------------filter------------------------------------------
duke@435 757 const Type *Type::filter( const Type *kills ) const {
duke@435 758 const Type* ft = join(kills);
duke@435 759 if (ft->empty())
duke@435 760 return Type::TOP; // Canonical empty value
duke@435 761 return ft;
duke@435 762 }
duke@435 763
duke@435 764 //------------------------------xdual------------------------------------------
duke@435 765 // Compute dual right now.
duke@435 766 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 767 Bad, // Bad
duke@435 768 Control, // Control
duke@435 769 Bottom, // Top
duke@435 770 Bad, // Int - handled in v-call
duke@435 771 Bad, // Long - handled in v-call
duke@435 772 Half, // Half
coleenp@548 773 Bad, // NarrowOop - handled in v-call
roland@4159 774 Bad, // NarrowKlass - handled in v-call
duke@435 775
duke@435 776 Bad, // Tuple - handled in v-call
duke@435 777 Bad, // Array - handled in v-call
kvn@3882 778 Bad, // VectorS - handled in v-call
kvn@3882 779 Bad, // VectorD - handled in v-call
kvn@3882 780 Bad, // VectorX - handled in v-call
kvn@3882 781 Bad, // VectorY - handled in v-call
duke@435 782
duke@435 783 Bad, // AnyPtr - handled in v-call
duke@435 784 Bad, // RawPtr - handled in v-call
duke@435 785 Bad, // OopPtr - handled in v-call
duke@435 786 Bad, // InstPtr - handled in v-call
duke@435 787 Bad, // AryPtr - handled in v-call
coleenp@4037 788
coleenp@4037 789 Bad, // MetadataPtr - handled in v-call
duke@435 790 Bad, // KlassPtr - handled in v-call
duke@435 791
duke@435 792 Bad, // Function - handled in v-call
duke@435 793 Abio, // Abio
duke@435 794 Return_Address,// Return_Address
duke@435 795 Memory, // Memory
duke@435 796 FloatBot, // FloatTop
duke@435 797 FloatCon, // FloatCon
duke@435 798 FloatTop, // FloatBot
duke@435 799 DoubleBot, // DoubleTop
duke@435 800 DoubleCon, // DoubleCon
duke@435 801 DoubleTop, // DoubleBot
duke@435 802 Top // Bottom
duke@435 803 };
duke@435 804
duke@435 805 const Type *Type::xdual() const {
duke@435 806 // Note: the base() accessor asserts the sanity of _base.
coleenp@4037 807 assert(_type_info[base()].dual_type != Bad, "implement with v-call");
coleenp@4037 808 return new Type(_type_info[_base].dual_type);
duke@435 809 }
duke@435 810
duke@435 811 //------------------------------has_memory-------------------------------------
duke@435 812 bool Type::has_memory() const {
duke@435 813 Type::TYPES tx = base();
duke@435 814 if (tx == Memory) return true;
duke@435 815 if (tx == Tuple) {
duke@435 816 const TypeTuple *t = is_tuple();
duke@435 817 for (uint i=0; i < t->cnt(); i++) {
duke@435 818 tx = t->field_at(i)->base();
duke@435 819 if (tx == Memory) return true;
duke@435 820 }
duke@435 821 }
duke@435 822 return false;
duke@435 823 }
duke@435 824
duke@435 825 #ifndef PRODUCT
duke@435 826 //------------------------------dump2------------------------------------------
duke@435 827 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
coleenp@4037 828 st->print(_type_info[_base].msg);
duke@435 829 }
duke@435 830
duke@435 831 //------------------------------dump-------------------------------------------
duke@435 832 void Type::dump_on(outputStream *st) const {
duke@435 833 ResourceMark rm;
duke@435 834 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 835 dump2(d,1, st);
kvn@598 836 if (is_ptr_to_narrowoop()) {
coleenp@548 837 st->print(" [narrow]");
roland@4159 838 } else if (is_ptr_to_narrowklass()) {
roland@4159 839 st->print(" [narrowklass]");
coleenp@548 840 }
duke@435 841 }
duke@435 842 #endif
duke@435 843
duke@435 844 //------------------------------singleton--------------------------------------
duke@435 845 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 846 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 847 bool Type::singleton(void) const {
duke@435 848 return _base == Top || _base == Half;
duke@435 849 }
duke@435 850
duke@435 851 //------------------------------empty------------------------------------------
duke@435 852 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 853 bool Type::empty(void) const {
duke@435 854 switch (_base) {
duke@435 855 case DoubleTop:
duke@435 856 case FloatTop:
duke@435 857 case Top:
duke@435 858 return true;
duke@435 859
duke@435 860 case Half:
duke@435 861 case Abio:
duke@435 862 case Return_Address:
duke@435 863 case Memory:
duke@435 864 case Bottom:
duke@435 865 case FloatBot:
duke@435 866 case DoubleBot:
duke@435 867 return false; // never a singleton, therefore never empty
duke@435 868 }
duke@435 869
duke@435 870 ShouldNotReachHere();
duke@435 871 return false;
duke@435 872 }
duke@435 873
duke@435 874 //------------------------------dump_stats-------------------------------------
duke@435 875 // Dump collected statistics to stderr
duke@435 876 #ifndef PRODUCT
duke@435 877 void Type::dump_stats() {
duke@435 878 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 879 }
duke@435 880 #endif
duke@435 881
duke@435 882 //------------------------------typerr-----------------------------------------
duke@435 883 void Type::typerr( const Type *t ) const {
duke@435 884 #ifndef PRODUCT
duke@435 885 tty->print("\nError mixing types: ");
duke@435 886 dump();
duke@435 887 tty->print(" and ");
duke@435 888 t->dump();
duke@435 889 tty->print("\n");
duke@435 890 #endif
duke@435 891 ShouldNotReachHere();
duke@435 892 }
duke@435 893
duke@435 894
duke@435 895 //=============================================================================
duke@435 896 // Convenience common pre-built types.
duke@435 897 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 898 const TypeF *TypeF::ONE; // Floating point one
duke@435 899
duke@435 900 //------------------------------make-------------------------------------------
duke@435 901 // Create a float constant
duke@435 902 const TypeF *TypeF::make(float f) {
duke@435 903 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 904 }
duke@435 905
duke@435 906 //------------------------------meet-------------------------------------------
duke@435 907 // Compute the MEET of two types. It returns a new Type object.
duke@435 908 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 909 // Perform a fast test for common case; meeting the same types together.
duke@435 910 if( this == t ) return this; // Meeting same type-rep?
duke@435 911
duke@435 912 // Current "this->_base" is FloatCon
duke@435 913 switch (t->base()) { // Switch on original type
duke@435 914 case AnyPtr: // Mixing with oops happens when javac
duke@435 915 case RawPtr: // reuses local variables
duke@435 916 case OopPtr:
duke@435 917 case InstPtr:
coleenp@4037 918 case AryPtr:
coleenp@4037 919 case MetadataPtr:
duke@435 920 case KlassPtr:
kvn@728 921 case NarrowOop:
roland@4159 922 case NarrowKlass:
duke@435 923 case Int:
duke@435 924 case Long:
duke@435 925 case DoubleTop:
duke@435 926 case DoubleCon:
duke@435 927 case DoubleBot:
duke@435 928 case Bottom: // Ye Olde Default
duke@435 929 return Type::BOTTOM;
duke@435 930
duke@435 931 case FloatBot:
duke@435 932 return t;
duke@435 933
duke@435 934 default: // All else is a mistake
duke@435 935 typerr(t);
duke@435 936
duke@435 937 case FloatCon: // Float-constant vs Float-constant?
duke@435 938 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 939 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 940 // all the same representation in C++
duke@435 941 return FLOAT; // Return generic float
duke@435 942 // Equal constants
duke@435 943 case Top:
duke@435 944 case FloatTop:
duke@435 945 break; // Return the float constant
duke@435 946 }
duke@435 947 return this; // Return the float constant
duke@435 948 }
duke@435 949
duke@435 950 //------------------------------xdual------------------------------------------
duke@435 951 // Dual: symmetric
duke@435 952 const Type *TypeF::xdual() const {
duke@435 953 return this;
duke@435 954 }
duke@435 955
duke@435 956 //------------------------------eq---------------------------------------------
duke@435 957 // Structural equality check for Type representations
duke@435 958 bool TypeF::eq( const Type *t ) const {
duke@435 959 if( g_isnan(_f) ||
duke@435 960 g_isnan(t->getf()) ) {
duke@435 961 // One or both are NANs. If both are NANs return true, else false.
duke@435 962 return (g_isnan(_f) && g_isnan(t->getf()));
duke@435 963 }
duke@435 964 if (_f == t->getf()) {
duke@435 965 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 966 if (_f == 0.0) {
duke@435 967 // difference between positive and negative zero
duke@435 968 if (jint_cast(_f) != jint_cast(t->getf())) return false;
duke@435 969 }
duke@435 970 return true;
duke@435 971 }
duke@435 972 return false;
duke@435 973 }
duke@435 974
duke@435 975 //------------------------------hash-------------------------------------------
duke@435 976 // Type-specific hashing function.
duke@435 977 int TypeF::hash(void) const {
duke@435 978 return *(int*)(&_f);
duke@435 979 }
duke@435 980
duke@435 981 //------------------------------is_finite--------------------------------------
duke@435 982 // Has a finite value
duke@435 983 bool TypeF::is_finite() const {
duke@435 984 return g_isfinite(getf()) != 0;
duke@435 985 }
duke@435 986
duke@435 987 //------------------------------is_nan-----------------------------------------
duke@435 988 // Is not a number (NaN)
duke@435 989 bool TypeF::is_nan() const {
duke@435 990 return g_isnan(getf()) != 0;
duke@435 991 }
duke@435 992
duke@435 993 //------------------------------dump2------------------------------------------
duke@435 994 // Dump float constant Type
duke@435 995 #ifndef PRODUCT
duke@435 996 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 997 Type::dump2(d,depth, st);
duke@435 998 st->print("%f", _f);
duke@435 999 }
duke@435 1000 #endif
duke@435 1001
duke@435 1002 //------------------------------singleton--------------------------------------
duke@435 1003 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1004 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1005 // or a single symbol.
duke@435 1006 bool TypeF::singleton(void) const {
duke@435 1007 return true; // Always a singleton
duke@435 1008 }
duke@435 1009
duke@435 1010 bool TypeF::empty(void) const {
duke@435 1011 return false; // always exactly a singleton
duke@435 1012 }
duke@435 1013
duke@435 1014 //=============================================================================
duke@435 1015 // Convenience common pre-built types.
duke@435 1016 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 1017 const TypeD *TypeD::ONE; // Floating point one
duke@435 1018
duke@435 1019 //------------------------------make-------------------------------------------
duke@435 1020 const TypeD *TypeD::make(double d) {
duke@435 1021 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 1022 }
duke@435 1023
duke@435 1024 //------------------------------meet-------------------------------------------
duke@435 1025 // Compute the MEET of two types. It returns a new Type object.
duke@435 1026 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 1027 // Perform a fast test for common case; meeting the same types together.
duke@435 1028 if( this == t ) return this; // Meeting same type-rep?
duke@435 1029
duke@435 1030 // Current "this->_base" is DoubleCon
duke@435 1031 switch (t->base()) { // Switch on original type
duke@435 1032 case AnyPtr: // Mixing with oops happens when javac
duke@435 1033 case RawPtr: // reuses local variables
duke@435 1034 case OopPtr:
duke@435 1035 case InstPtr:
coleenp@4037 1036 case AryPtr:
coleenp@4037 1037 case MetadataPtr:
duke@435 1038 case KlassPtr:
never@618 1039 case NarrowOop:
roland@4159 1040 case NarrowKlass:
duke@435 1041 case Int:
duke@435 1042 case Long:
duke@435 1043 case FloatTop:
duke@435 1044 case FloatCon:
duke@435 1045 case FloatBot:
duke@435 1046 case Bottom: // Ye Olde Default
duke@435 1047 return Type::BOTTOM;
duke@435 1048
duke@435 1049 case DoubleBot:
duke@435 1050 return t;
duke@435 1051
duke@435 1052 default: // All else is a mistake
duke@435 1053 typerr(t);
duke@435 1054
duke@435 1055 case DoubleCon: // Double-constant vs Double-constant?
duke@435 1056 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 1057 return DOUBLE; // Return generic double
duke@435 1058 case Top:
duke@435 1059 case DoubleTop:
duke@435 1060 break;
duke@435 1061 }
duke@435 1062 return this; // Return the double constant
duke@435 1063 }
duke@435 1064
duke@435 1065 //------------------------------xdual------------------------------------------
duke@435 1066 // Dual: symmetric
duke@435 1067 const Type *TypeD::xdual() const {
duke@435 1068 return this;
duke@435 1069 }
duke@435 1070
duke@435 1071 //------------------------------eq---------------------------------------------
duke@435 1072 // Structural equality check for Type representations
duke@435 1073 bool TypeD::eq( const Type *t ) const {
duke@435 1074 if( g_isnan(_d) ||
duke@435 1075 g_isnan(t->getd()) ) {
duke@435 1076 // One or both are NANs. If both are NANs return true, else false.
duke@435 1077 return (g_isnan(_d) && g_isnan(t->getd()));
duke@435 1078 }
duke@435 1079 if (_d == t->getd()) {
duke@435 1080 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 1081 if (_d == 0.0) {
duke@435 1082 // difference between positive and negative zero
duke@435 1083 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
duke@435 1084 }
duke@435 1085 return true;
duke@435 1086 }
duke@435 1087 return false;
duke@435 1088 }
duke@435 1089
duke@435 1090 //------------------------------hash-------------------------------------------
duke@435 1091 // Type-specific hashing function.
duke@435 1092 int TypeD::hash(void) const {
duke@435 1093 return *(int*)(&_d);
duke@435 1094 }
duke@435 1095
duke@435 1096 //------------------------------is_finite--------------------------------------
duke@435 1097 // Has a finite value
duke@435 1098 bool TypeD::is_finite() const {
duke@435 1099 return g_isfinite(getd()) != 0;
duke@435 1100 }
duke@435 1101
duke@435 1102 //------------------------------is_nan-----------------------------------------
duke@435 1103 // Is not a number (NaN)
duke@435 1104 bool TypeD::is_nan() const {
duke@435 1105 return g_isnan(getd()) != 0;
duke@435 1106 }
duke@435 1107
duke@435 1108 //------------------------------dump2------------------------------------------
duke@435 1109 // Dump double constant Type
duke@435 1110 #ifndef PRODUCT
duke@435 1111 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1112 Type::dump2(d,depth,st);
duke@435 1113 st->print("%f", _d);
duke@435 1114 }
duke@435 1115 #endif
duke@435 1116
duke@435 1117 //------------------------------singleton--------------------------------------
duke@435 1118 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1119 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1120 // or a single symbol.
duke@435 1121 bool TypeD::singleton(void) const {
duke@435 1122 return true; // Always a singleton
duke@435 1123 }
duke@435 1124
duke@435 1125 bool TypeD::empty(void) const {
duke@435 1126 return false; // always exactly a singleton
duke@435 1127 }
duke@435 1128
duke@435 1129 //=============================================================================
duke@435 1130 // Convience common pre-built types.
duke@435 1131 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1132 const TypeInt *TypeInt::ZERO; // 0
duke@435 1133 const TypeInt *TypeInt::ONE; // 1
duke@435 1134 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1135 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1136 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1137 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1138 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1139 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1140 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1141 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
twisti@1059 1142 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
duke@435 1143 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1144 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1145 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1146 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1147 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1148 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 1149
duke@435 1150 //------------------------------TypeInt----------------------------------------
duke@435 1151 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1152 }
duke@435 1153
duke@435 1154 //------------------------------make-------------------------------------------
duke@435 1155 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1156 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1157 }
duke@435 1158
kvn@1975 1159 static int normalize_int_widen( jint lo, jint hi, int w ) {
duke@435 1160 // Certain normalizations keep us sane when comparing types.
duke@435 1161 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1162 if (lo <= hi) {
kvn@1975 1163 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1164 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
kvn@1975 1165 } else {
kvn@1975 1166 if ((juint)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1167 if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
duke@435 1168 }
kvn@1975 1169 return w;
kvn@1975 1170 }
kvn@1975 1171
kvn@1975 1172 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
kvn@1975 1173 w = normalize_int_widen(lo, hi, w);
duke@435 1174 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1175 }
duke@435 1176
duke@435 1177 //------------------------------meet-------------------------------------------
duke@435 1178 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1179 // with reference count equal to the number of Types pointing at it.
duke@435 1180 // Caller should wrap a Types around it.
duke@435 1181 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1182 // Perform a fast test for common case; meeting the same types together.
duke@435 1183 if( this == t ) return this; // Meeting same type?
duke@435 1184
duke@435 1185 // Currently "this->_base" is a TypeInt
duke@435 1186 switch (t->base()) { // Switch on original type
duke@435 1187 case AnyPtr: // Mixing with oops happens when javac
duke@435 1188 case RawPtr: // reuses local variables
duke@435 1189 case OopPtr:
duke@435 1190 case InstPtr:
coleenp@4037 1191 case AryPtr:
coleenp@4037 1192 case MetadataPtr:
duke@435 1193 case KlassPtr:
never@618 1194 case NarrowOop:
roland@4159 1195 case NarrowKlass:
duke@435 1196 case Long:
duke@435 1197 case FloatTop:
duke@435 1198 case FloatCon:
duke@435 1199 case FloatBot:
duke@435 1200 case DoubleTop:
duke@435 1201 case DoubleCon:
duke@435 1202 case DoubleBot:
duke@435 1203 case Bottom: // Ye Olde Default
duke@435 1204 return Type::BOTTOM;
duke@435 1205 default: // All else is a mistake
duke@435 1206 typerr(t);
duke@435 1207 case Top: // No change
duke@435 1208 return this;
duke@435 1209 case Int: // Int vs Int?
duke@435 1210 break;
duke@435 1211 }
duke@435 1212
duke@435 1213 // Expand covered set
duke@435 1214 const TypeInt *r = t->is_int();
kvn@1975 1215 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1216 }
duke@435 1217
duke@435 1218 //------------------------------xdual------------------------------------------
duke@435 1219 // Dual: reverse hi & lo; flip widen
duke@435 1220 const Type *TypeInt::xdual() const {
kvn@1975 1221 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1222 return new TypeInt(_hi,_lo,w);
duke@435 1223 }
duke@435 1224
duke@435 1225 //------------------------------widen------------------------------------------
duke@435 1226 // Only happens for optimistic top-down optimizations.
never@1444 1227 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
duke@435 1228 // Coming from TOP or such; no widening
duke@435 1229 if( old->base() != Int ) return this;
duke@435 1230 const TypeInt *ot = old->is_int();
duke@435 1231
duke@435 1232 // If new guy is equal to old guy, no widening
duke@435 1233 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1234 return old;
duke@435 1235
duke@435 1236 // If new guy contains old, then we widened
duke@435 1237 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1238 // New contains old
duke@435 1239 // If new guy is already wider than old, no widening
duke@435 1240 if( _widen > ot->_widen ) return this;
duke@435 1241 // If old guy was a constant, do not bother
duke@435 1242 if (ot->_lo == ot->_hi) return this;
duke@435 1243 // Now widen new guy.
duke@435 1244 // Check for widening too far
duke@435 1245 if (_widen == WidenMax) {
never@1444 1246 int max = max_jint;
never@1444 1247 int min = min_jint;
never@1444 1248 if (limit->isa_int()) {
never@1444 1249 max = limit->is_int()->_hi;
never@1444 1250 min = limit->is_int()->_lo;
never@1444 1251 }
never@1444 1252 if (min < _lo && _hi < max) {
duke@435 1253 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1254 // which is closer to its respective limit.
duke@435 1255 if (_lo >= 0 || // easy common case
never@1444 1256 (juint)(_lo - min) >= (juint)(max - _hi)) {
duke@435 1257 // Try to widen to an unsigned range type of 31 bits:
never@1444 1258 return make(_lo, max, WidenMax);
duke@435 1259 } else {
never@1444 1260 return make(min, _hi, WidenMax);
duke@435 1261 }
duke@435 1262 }
duke@435 1263 return TypeInt::INT;
duke@435 1264 }
duke@435 1265 // Returned widened new guy
duke@435 1266 return make(_lo,_hi,_widen+1);
duke@435 1267 }
duke@435 1268
duke@435 1269 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1270 // bottom. Return the wider fellow.
duke@435 1271 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1272 return old;
duke@435 1273
duke@435 1274 //fatal("Integer value range is not subset");
duke@435 1275 //return this;
duke@435 1276 return TypeInt::INT;
duke@435 1277 }
duke@435 1278
duke@435 1279 //------------------------------narrow---------------------------------------
duke@435 1280 // Only happens for pessimistic optimizations.
duke@435 1281 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1282 if (_lo >= _hi) return this; // already narrow enough
duke@435 1283 if (old == NULL) return this;
duke@435 1284 const TypeInt* ot = old->isa_int();
duke@435 1285 if (ot == NULL) return this;
duke@435 1286 jint olo = ot->_lo;
duke@435 1287 jint ohi = ot->_hi;
duke@435 1288
duke@435 1289 // If new guy is equal to old guy, no narrowing
duke@435 1290 if (_lo == olo && _hi == ohi) return old;
duke@435 1291
duke@435 1292 // If old guy was maximum range, allow the narrowing
duke@435 1293 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1294
duke@435 1295 if (_lo < olo || _hi > ohi)
duke@435 1296 return this; // doesn't narrow; pretty wierd
duke@435 1297
duke@435 1298 // The new type narrows the old type, so look for a "death march".
duke@435 1299 // See comments on PhaseTransform::saturate.
duke@435 1300 juint nrange = _hi - _lo;
duke@435 1301 juint orange = ohi - olo;
duke@435 1302 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1303 // Use the new type only if the range shrinks a lot.
duke@435 1304 // We do not want the optimizer computing 2^31 point by point.
duke@435 1305 return old;
duke@435 1306 }
duke@435 1307
duke@435 1308 return this;
duke@435 1309 }
duke@435 1310
duke@435 1311 //-----------------------------filter------------------------------------------
duke@435 1312 const Type *TypeInt::filter( const Type *kills ) const {
duke@435 1313 const TypeInt* ft = join(kills)->isa_int();
kvn@1975 1314 if (ft == NULL || ft->empty())
duke@435 1315 return Type::TOP; // Canonical empty value
duke@435 1316 if (ft->_widen < this->_widen) {
duke@435 1317 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1318 // The widen bits must be allowed to run freely through the graph.
duke@435 1319 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1320 }
duke@435 1321 return ft;
duke@435 1322 }
duke@435 1323
duke@435 1324 //------------------------------eq---------------------------------------------
duke@435 1325 // Structural equality check for Type representations
duke@435 1326 bool TypeInt::eq( const Type *t ) const {
duke@435 1327 const TypeInt *r = t->is_int(); // Handy access
duke@435 1328 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1329 }
duke@435 1330
duke@435 1331 //------------------------------hash-------------------------------------------
duke@435 1332 // Type-specific hashing function.
duke@435 1333 int TypeInt::hash(void) const {
duke@435 1334 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1335 }
duke@435 1336
duke@435 1337 //------------------------------is_finite--------------------------------------
duke@435 1338 // Has a finite value
duke@435 1339 bool TypeInt::is_finite() const {
duke@435 1340 return true;
duke@435 1341 }
duke@435 1342
duke@435 1343 //------------------------------dump2------------------------------------------
duke@435 1344 // Dump TypeInt
duke@435 1345 #ifndef PRODUCT
duke@435 1346 static const char* intname(char* buf, jint n) {
duke@435 1347 if (n == min_jint)
duke@435 1348 return "min";
duke@435 1349 else if (n < min_jint + 10000)
duke@435 1350 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1351 else if (n == max_jint)
duke@435 1352 return "max";
duke@435 1353 else if (n > max_jint - 10000)
duke@435 1354 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1355 else
duke@435 1356 sprintf(buf, INT32_FORMAT, n);
duke@435 1357 return buf;
duke@435 1358 }
duke@435 1359
duke@435 1360 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1361 char buf[40], buf2[40];
duke@435 1362 if (_lo == min_jint && _hi == max_jint)
duke@435 1363 st->print("int");
duke@435 1364 else if (is_con())
duke@435 1365 st->print("int:%s", intname(buf, get_con()));
duke@435 1366 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1367 st->print("bool");
duke@435 1368 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1369 st->print("byte");
duke@435 1370 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1371 st->print("char");
duke@435 1372 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1373 st->print("short");
duke@435 1374 else if (_hi == max_jint)
duke@435 1375 st->print("int:>=%s", intname(buf, _lo));
duke@435 1376 else if (_lo == min_jint)
duke@435 1377 st->print("int:<=%s", intname(buf, _hi));
duke@435 1378 else
duke@435 1379 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1380
duke@435 1381 if (_widen != 0 && this != TypeInt::INT)
duke@435 1382 st->print(":%.*s", _widen, "wwww");
duke@435 1383 }
duke@435 1384 #endif
duke@435 1385
duke@435 1386 //------------------------------singleton--------------------------------------
duke@435 1387 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1388 // constants.
duke@435 1389 bool TypeInt::singleton(void) const {
duke@435 1390 return _lo >= _hi;
duke@435 1391 }
duke@435 1392
duke@435 1393 bool TypeInt::empty(void) const {
duke@435 1394 return _lo > _hi;
duke@435 1395 }
duke@435 1396
duke@435 1397 //=============================================================================
duke@435 1398 // Convenience common pre-built types.
duke@435 1399 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1400 const TypeLong *TypeLong::ZERO; // 0
duke@435 1401 const TypeLong *TypeLong::ONE; // 1
duke@435 1402 const TypeLong *TypeLong::POS; // >=0
duke@435 1403 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1404 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1405 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
duke@435 1406
duke@435 1407 //------------------------------TypeLong---------------------------------------
duke@435 1408 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1409 }
duke@435 1410
duke@435 1411 //------------------------------make-------------------------------------------
duke@435 1412 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1413 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1414 }
duke@435 1415
kvn@1975 1416 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
kvn@1975 1417 // Certain normalizations keep us sane when comparing types.
kvn@1975 1418 // The 'SMALLINT' covers constants.
kvn@1975 1419 if (lo <= hi) {
kvn@1975 1420 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1421 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
kvn@1975 1422 } else {
kvn@1975 1423 if ((julong)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1424 if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
kvn@1975 1425 }
kvn@1975 1426 return w;
kvn@1975 1427 }
kvn@1975 1428
duke@435 1429 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
kvn@1975 1430 w = normalize_long_widen(lo, hi, w);
duke@435 1431 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1432 }
duke@435 1433
duke@435 1434
duke@435 1435 //------------------------------meet-------------------------------------------
duke@435 1436 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1437 // with reference count equal to the number of Types pointing at it.
duke@435 1438 // Caller should wrap a Types around it.
duke@435 1439 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1440 // Perform a fast test for common case; meeting the same types together.
duke@435 1441 if( this == t ) return this; // Meeting same type?
duke@435 1442
duke@435 1443 // Currently "this->_base" is a TypeLong
duke@435 1444 switch (t->base()) { // Switch on original type
duke@435 1445 case AnyPtr: // Mixing with oops happens when javac
duke@435 1446 case RawPtr: // reuses local variables
duke@435 1447 case OopPtr:
duke@435 1448 case InstPtr:
coleenp@4037 1449 case AryPtr:
coleenp@4037 1450 case MetadataPtr:
duke@435 1451 case KlassPtr:
never@618 1452 case NarrowOop:
roland@4159 1453 case NarrowKlass:
duke@435 1454 case Int:
duke@435 1455 case FloatTop:
duke@435 1456 case FloatCon:
duke@435 1457 case FloatBot:
duke@435 1458 case DoubleTop:
duke@435 1459 case DoubleCon:
duke@435 1460 case DoubleBot:
duke@435 1461 case Bottom: // Ye Olde Default
duke@435 1462 return Type::BOTTOM;
duke@435 1463 default: // All else is a mistake
duke@435 1464 typerr(t);
duke@435 1465 case Top: // No change
duke@435 1466 return this;
duke@435 1467 case Long: // Long vs Long?
duke@435 1468 break;
duke@435 1469 }
duke@435 1470
duke@435 1471 // Expand covered set
duke@435 1472 const TypeLong *r = t->is_long(); // Turn into a TypeLong
kvn@1975 1473 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1474 }
duke@435 1475
duke@435 1476 //------------------------------xdual------------------------------------------
duke@435 1477 // Dual: reverse hi & lo; flip widen
duke@435 1478 const Type *TypeLong::xdual() const {
kvn@1975 1479 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1480 return new TypeLong(_hi,_lo,w);
duke@435 1481 }
duke@435 1482
duke@435 1483 //------------------------------widen------------------------------------------
duke@435 1484 // Only happens for optimistic top-down optimizations.
never@1444 1485 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
duke@435 1486 // Coming from TOP or such; no widening
duke@435 1487 if( old->base() != Long ) return this;
duke@435 1488 const TypeLong *ot = old->is_long();
duke@435 1489
duke@435 1490 // If new guy is equal to old guy, no widening
duke@435 1491 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1492 return old;
duke@435 1493
duke@435 1494 // If new guy contains old, then we widened
duke@435 1495 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1496 // New contains old
duke@435 1497 // If new guy is already wider than old, no widening
duke@435 1498 if( _widen > ot->_widen ) return this;
duke@435 1499 // If old guy was a constant, do not bother
duke@435 1500 if (ot->_lo == ot->_hi) return this;
duke@435 1501 // Now widen new guy.
duke@435 1502 // Check for widening too far
duke@435 1503 if (_widen == WidenMax) {
never@1444 1504 jlong max = max_jlong;
never@1444 1505 jlong min = min_jlong;
never@1444 1506 if (limit->isa_long()) {
never@1444 1507 max = limit->is_long()->_hi;
never@1444 1508 min = limit->is_long()->_lo;
never@1444 1509 }
never@1444 1510 if (min < _lo && _hi < max) {
duke@435 1511 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1512 // which is closer to its respective limit.
duke@435 1513 if (_lo >= 0 || // easy common case
never@1444 1514 (julong)(_lo - min) >= (julong)(max - _hi)) {
duke@435 1515 // Try to widen to an unsigned range type of 32/63 bits:
never@1444 1516 if (max >= max_juint && _hi < max_juint)
duke@435 1517 return make(_lo, max_juint, WidenMax);
duke@435 1518 else
never@1444 1519 return make(_lo, max, WidenMax);
duke@435 1520 } else {
never@1444 1521 return make(min, _hi, WidenMax);
duke@435 1522 }
duke@435 1523 }
duke@435 1524 return TypeLong::LONG;
duke@435 1525 }
duke@435 1526 // Returned widened new guy
duke@435 1527 return make(_lo,_hi,_widen+1);
duke@435 1528 }
duke@435 1529
duke@435 1530 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1531 // bottom. Return the wider fellow.
duke@435 1532 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1533 return old;
duke@435 1534
duke@435 1535 // fatal("Long value range is not subset");
duke@435 1536 // return this;
duke@435 1537 return TypeLong::LONG;
duke@435 1538 }
duke@435 1539
duke@435 1540 //------------------------------narrow----------------------------------------
duke@435 1541 // Only happens for pessimistic optimizations.
duke@435 1542 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1543 if (_lo >= _hi) return this; // already narrow enough
duke@435 1544 if (old == NULL) return this;
duke@435 1545 const TypeLong* ot = old->isa_long();
duke@435 1546 if (ot == NULL) return this;
duke@435 1547 jlong olo = ot->_lo;
duke@435 1548 jlong ohi = ot->_hi;
duke@435 1549
duke@435 1550 // If new guy is equal to old guy, no narrowing
duke@435 1551 if (_lo == olo && _hi == ohi) return old;
duke@435 1552
duke@435 1553 // If old guy was maximum range, allow the narrowing
duke@435 1554 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1555
duke@435 1556 if (_lo < olo || _hi > ohi)
duke@435 1557 return this; // doesn't narrow; pretty wierd
duke@435 1558
duke@435 1559 // The new type narrows the old type, so look for a "death march".
duke@435 1560 // See comments on PhaseTransform::saturate.
duke@435 1561 julong nrange = _hi - _lo;
duke@435 1562 julong orange = ohi - olo;
duke@435 1563 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1564 // Use the new type only if the range shrinks a lot.
duke@435 1565 // We do not want the optimizer computing 2^31 point by point.
duke@435 1566 return old;
duke@435 1567 }
duke@435 1568
duke@435 1569 return this;
duke@435 1570 }
duke@435 1571
duke@435 1572 //-----------------------------filter------------------------------------------
duke@435 1573 const Type *TypeLong::filter( const Type *kills ) const {
duke@435 1574 const TypeLong* ft = join(kills)->isa_long();
kvn@1975 1575 if (ft == NULL || ft->empty())
duke@435 1576 return Type::TOP; // Canonical empty value
duke@435 1577 if (ft->_widen < this->_widen) {
duke@435 1578 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1579 // The widen bits must be allowed to run freely through the graph.
duke@435 1580 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1581 }
duke@435 1582 return ft;
duke@435 1583 }
duke@435 1584
duke@435 1585 //------------------------------eq---------------------------------------------
duke@435 1586 // Structural equality check for Type representations
duke@435 1587 bool TypeLong::eq( const Type *t ) const {
duke@435 1588 const TypeLong *r = t->is_long(); // Handy access
duke@435 1589 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1590 }
duke@435 1591
duke@435 1592 //------------------------------hash-------------------------------------------
duke@435 1593 // Type-specific hashing function.
duke@435 1594 int TypeLong::hash(void) const {
duke@435 1595 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1596 }
duke@435 1597
duke@435 1598 //------------------------------is_finite--------------------------------------
duke@435 1599 // Has a finite value
duke@435 1600 bool TypeLong::is_finite() const {
duke@435 1601 return true;
duke@435 1602 }
duke@435 1603
duke@435 1604 //------------------------------dump2------------------------------------------
duke@435 1605 // Dump TypeLong
duke@435 1606 #ifndef PRODUCT
duke@435 1607 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1608 if (n > x) {
duke@435 1609 if (n >= x + 10000) return NULL;
hseigel@4465 1610 sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
duke@435 1611 } else if (n < x) {
duke@435 1612 if (n <= x - 10000) return NULL;
hseigel@4465 1613 sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
duke@435 1614 } else {
duke@435 1615 return xname;
duke@435 1616 }
duke@435 1617 return buf;
duke@435 1618 }
duke@435 1619
duke@435 1620 static const char* longname(char* buf, jlong n) {
duke@435 1621 const char* str;
duke@435 1622 if (n == min_jlong)
duke@435 1623 return "min";
duke@435 1624 else if (n < min_jlong + 10000)
hseigel@4465 1625 sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
duke@435 1626 else if (n == max_jlong)
duke@435 1627 return "max";
duke@435 1628 else if (n > max_jlong - 10000)
hseigel@4465 1629 sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
duke@435 1630 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1631 return str;
duke@435 1632 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1633 return str;
duke@435 1634 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1635 return str;
duke@435 1636 else
hseigel@4465 1637 sprintf(buf, JLONG_FORMAT, n);
duke@435 1638 return buf;
duke@435 1639 }
duke@435 1640
duke@435 1641 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1642 char buf[80], buf2[80];
duke@435 1643 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1644 st->print("long");
duke@435 1645 else if (is_con())
duke@435 1646 st->print("long:%s", longname(buf, get_con()));
duke@435 1647 else if (_hi == max_jlong)
duke@435 1648 st->print("long:>=%s", longname(buf, _lo));
duke@435 1649 else if (_lo == min_jlong)
duke@435 1650 st->print("long:<=%s", longname(buf, _hi));
duke@435 1651 else
duke@435 1652 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1653
duke@435 1654 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1655 st->print(":%.*s", _widen, "wwww");
duke@435 1656 }
duke@435 1657 #endif
duke@435 1658
duke@435 1659 //------------------------------singleton--------------------------------------
duke@435 1660 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1661 // constants
duke@435 1662 bool TypeLong::singleton(void) const {
duke@435 1663 return _lo >= _hi;
duke@435 1664 }
duke@435 1665
duke@435 1666 bool TypeLong::empty(void) const {
duke@435 1667 return _lo > _hi;
duke@435 1668 }
duke@435 1669
duke@435 1670 //=============================================================================
duke@435 1671 // Convenience common pre-built types.
duke@435 1672 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1673 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1674 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1675 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1676 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1677 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1678 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1679 const TypeTuple *TypeTuple::START_I2C;
duke@435 1680 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1681 const TypeTuple *TypeTuple::LONG_PAIR;
rbackman@5791 1682 const TypeTuple *TypeTuple::INT_CC_PAIR;
rbackman@5997 1683 const TypeTuple *TypeTuple::LONG_CC_PAIR;
duke@435 1684
duke@435 1685
duke@435 1686 //------------------------------make-------------------------------------------
duke@435 1687 // Make a TypeTuple from the range of a method signature
duke@435 1688 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1689 ciType* return_type = sig->return_type();
duke@435 1690 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1691 const Type **field_array = fields(total_fields);
duke@435 1692 switch (return_type->basic_type()) {
duke@435 1693 case T_LONG:
duke@435 1694 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1695 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1696 break;
duke@435 1697 case T_DOUBLE:
duke@435 1698 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1699 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1700 break;
duke@435 1701 case T_OBJECT:
duke@435 1702 case T_ARRAY:
duke@435 1703 case T_BOOLEAN:
duke@435 1704 case T_CHAR:
duke@435 1705 case T_FLOAT:
duke@435 1706 case T_BYTE:
duke@435 1707 case T_SHORT:
duke@435 1708 case T_INT:
duke@435 1709 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1710 break;
duke@435 1711 case T_VOID:
duke@435 1712 break;
duke@435 1713 default:
duke@435 1714 ShouldNotReachHere();
duke@435 1715 }
duke@435 1716 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1717 }
duke@435 1718
duke@435 1719 // Make a TypeTuple from the domain of a method signature
duke@435 1720 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1721 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1722
duke@435 1723 uint pos = TypeFunc::Parms;
duke@435 1724 const Type **field_array;
duke@435 1725 if (recv != NULL) {
duke@435 1726 total_fields++;
duke@435 1727 field_array = fields(total_fields);
duke@435 1728 // Use get_const_type here because it respects UseUniqueSubclasses:
duke@435 1729 field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
duke@435 1730 } else {
duke@435 1731 field_array = fields(total_fields);
duke@435 1732 }
duke@435 1733
duke@435 1734 int i = 0;
duke@435 1735 while (pos < total_fields) {
duke@435 1736 ciType* type = sig->type_at(i);
duke@435 1737
duke@435 1738 switch (type->basic_type()) {
duke@435 1739 case T_LONG:
duke@435 1740 field_array[pos++] = TypeLong::LONG;
duke@435 1741 field_array[pos++] = Type::HALF;
duke@435 1742 break;
duke@435 1743 case T_DOUBLE:
duke@435 1744 field_array[pos++] = Type::DOUBLE;
duke@435 1745 field_array[pos++] = Type::HALF;
duke@435 1746 break;
duke@435 1747 case T_OBJECT:
duke@435 1748 case T_ARRAY:
duke@435 1749 case T_BOOLEAN:
duke@435 1750 case T_CHAR:
duke@435 1751 case T_FLOAT:
duke@435 1752 case T_BYTE:
duke@435 1753 case T_SHORT:
duke@435 1754 case T_INT:
duke@435 1755 field_array[pos++] = get_const_type(type);
duke@435 1756 break;
duke@435 1757 default:
duke@435 1758 ShouldNotReachHere();
duke@435 1759 }
duke@435 1760 i++;
duke@435 1761 }
duke@435 1762 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1763 }
duke@435 1764
duke@435 1765 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1766 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1767 }
duke@435 1768
duke@435 1769 //------------------------------fields-----------------------------------------
duke@435 1770 // Subroutine call type with space allocated for argument types
duke@435 1771 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1772 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1773 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1774 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1775 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1776 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1777 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1778
duke@435 1779 return flds;
duke@435 1780 }
duke@435 1781
duke@435 1782 //------------------------------meet-------------------------------------------
duke@435 1783 // Compute the MEET of two types. It returns a new Type object.
duke@435 1784 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1785 // Perform a fast test for common case; meeting the same types together.
duke@435 1786 if( this == t ) return this; // Meeting same type-rep?
duke@435 1787
duke@435 1788 // Current "this->_base" is Tuple
duke@435 1789 switch (t->base()) { // switch on original type
duke@435 1790
duke@435 1791 case Bottom: // Ye Olde Default
duke@435 1792 return t;
duke@435 1793
duke@435 1794 default: // All else is a mistake
duke@435 1795 typerr(t);
duke@435 1796
duke@435 1797 case Tuple: { // Meeting 2 signatures?
duke@435 1798 const TypeTuple *x = t->is_tuple();
duke@435 1799 assert( _cnt == x->_cnt, "" );
duke@435 1800 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1801 for( uint i=0; i<_cnt; i++ )
duke@435 1802 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1803 return TypeTuple::make(_cnt,fields);
duke@435 1804 }
duke@435 1805 case Top:
duke@435 1806 break;
duke@435 1807 }
duke@435 1808 return this; // Return the double constant
duke@435 1809 }
duke@435 1810
duke@435 1811 //------------------------------xdual------------------------------------------
duke@435 1812 // Dual: compute field-by-field dual
duke@435 1813 const Type *TypeTuple::xdual() const {
duke@435 1814 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1815 for( uint i=0; i<_cnt; i++ )
duke@435 1816 fields[i] = _fields[i]->dual();
duke@435 1817 return new TypeTuple(_cnt,fields);
duke@435 1818 }
duke@435 1819
duke@435 1820 //------------------------------eq---------------------------------------------
duke@435 1821 // Structural equality check for Type representations
duke@435 1822 bool TypeTuple::eq( const Type *t ) const {
duke@435 1823 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1824 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1825 for (uint i = 0; i < _cnt; i++)
duke@435 1826 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1827 return false; // Missed
duke@435 1828 return true;
duke@435 1829 }
duke@435 1830
duke@435 1831 //------------------------------hash-------------------------------------------
duke@435 1832 // Type-specific hashing function.
duke@435 1833 int TypeTuple::hash(void) const {
duke@435 1834 intptr_t sum = _cnt;
duke@435 1835 for( uint i=0; i<_cnt; i++ )
duke@435 1836 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1837 return sum;
duke@435 1838 }
duke@435 1839
duke@435 1840 //------------------------------dump2------------------------------------------
duke@435 1841 // Dump signature Type
duke@435 1842 #ifndef PRODUCT
duke@435 1843 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1844 st->print("{");
duke@435 1845 if( !depth || d[this] ) { // Check for recursive print
duke@435 1846 st->print("...}");
duke@435 1847 return;
duke@435 1848 }
duke@435 1849 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1850 if( _cnt ) {
duke@435 1851 uint i;
duke@435 1852 for( i=0; i<_cnt-1; i++ ) {
duke@435 1853 st->print("%d:", i);
duke@435 1854 _fields[i]->dump2(d, depth-1, st);
duke@435 1855 st->print(", ");
duke@435 1856 }
duke@435 1857 st->print("%d:", i);
duke@435 1858 _fields[i]->dump2(d, depth-1, st);
duke@435 1859 }
duke@435 1860 st->print("}");
duke@435 1861 }
duke@435 1862 #endif
duke@435 1863
duke@435 1864 //------------------------------singleton--------------------------------------
duke@435 1865 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1866 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1867 // or a single symbol.
duke@435 1868 bool TypeTuple::singleton(void) const {
duke@435 1869 return false; // Never a singleton
duke@435 1870 }
duke@435 1871
duke@435 1872 bool TypeTuple::empty(void) const {
duke@435 1873 for( uint i=0; i<_cnt; i++ ) {
duke@435 1874 if (_fields[i]->empty()) return true;
duke@435 1875 }
duke@435 1876 return false;
duke@435 1877 }
duke@435 1878
duke@435 1879 //=============================================================================
duke@435 1880 // Convenience common pre-built types.
duke@435 1881
duke@435 1882 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1883 // Certain normalizations keep us sane when comparing types.
duke@435 1884 // We do not want arrayOop variables to differ only by the wideness
duke@435 1885 // of their index types. Pick minimum wideness, since that is the
duke@435 1886 // forced wideness of small ranges anyway.
duke@435 1887 if (size->_widen != Type::WidenMin)
duke@435 1888 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1889 else
duke@435 1890 return size;
duke@435 1891 }
duke@435 1892
duke@435 1893 //------------------------------make-------------------------------------------
vlivanov@5658 1894 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
coleenp@548 1895 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1896 elem = elem->make_narrowoop();
coleenp@548 1897 }
duke@435 1898 size = normalize_array_size(size);
vlivanov@5658 1899 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
duke@435 1900 }
duke@435 1901
duke@435 1902 //------------------------------meet-------------------------------------------
duke@435 1903 // Compute the MEET of two types. It returns a new Type object.
duke@435 1904 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1905 // Perform a fast test for common case; meeting the same types together.
duke@435 1906 if( this == t ) return this; // Meeting same type-rep?
duke@435 1907
duke@435 1908 // Current "this->_base" is Ary
duke@435 1909 switch (t->base()) { // switch on original type
duke@435 1910
duke@435 1911 case Bottom: // Ye Olde Default
duke@435 1912 return t;
duke@435 1913
duke@435 1914 default: // All else is a mistake
duke@435 1915 typerr(t);
duke@435 1916
duke@435 1917 case Array: { // Meeting 2 arrays?
duke@435 1918 const TypeAry *a = t->is_ary();
duke@435 1919 return TypeAry::make(_elem->meet(a->_elem),
vlivanov@5658 1920 _size->xmeet(a->_size)->is_int(),
vlivanov@5658 1921 _stable & a->_stable);
duke@435 1922 }
duke@435 1923 case Top:
duke@435 1924 break;
duke@435 1925 }
duke@435 1926 return this; // Return the double constant
duke@435 1927 }
duke@435 1928
duke@435 1929 //------------------------------xdual------------------------------------------
duke@435 1930 // Dual: compute field-by-field dual
duke@435 1931 const Type *TypeAry::xdual() const {
duke@435 1932 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1933 size_dual = normalize_array_size(size_dual);
vlivanov@5658 1934 return new TypeAry(_elem->dual(), size_dual, !_stable);
duke@435 1935 }
duke@435 1936
duke@435 1937 //------------------------------eq---------------------------------------------
duke@435 1938 // Structural equality check for Type representations
duke@435 1939 bool TypeAry::eq( const Type *t ) const {
duke@435 1940 const TypeAry *a = (const TypeAry*)t;
duke@435 1941 return _elem == a->_elem &&
vlivanov@5658 1942 _stable == a->_stable &&
duke@435 1943 _size == a->_size;
duke@435 1944 }
duke@435 1945
duke@435 1946 //------------------------------hash-------------------------------------------
duke@435 1947 // Type-specific hashing function.
duke@435 1948 int TypeAry::hash(void) const {
vlivanov@5658 1949 return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
duke@435 1950 }
duke@435 1951
kvn@1255 1952 //----------------------interface_vs_oop---------------------------------------
kvn@1255 1953 #ifdef ASSERT
kvn@1255 1954 bool TypeAry::interface_vs_oop(const Type *t) const {
kvn@1255 1955 const TypeAry* t_ary = t->is_ary();
kvn@1255 1956 if (t_ary) {
kvn@1255 1957 return _elem->interface_vs_oop(t_ary->_elem);
kvn@1255 1958 }
kvn@1255 1959 return false;
kvn@1255 1960 }
kvn@1255 1961 #endif
kvn@1255 1962
duke@435 1963 //------------------------------dump2------------------------------------------
duke@435 1964 #ifndef PRODUCT
duke@435 1965 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
vlivanov@5658 1966 if (_stable) st->print("stable:");
duke@435 1967 _elem->dump2(d, depth, st);
duke@435 1968 st->print("[");
duke@435 1969 _size->dump2(d, depth, st);
duke@435 1970 st->print("]");
duke@435 1971 }
duke@435 1972 #endif
duke@435 1973
duke@435 1974 //------------------------------singleton--------------------------------------
duke@435 1975 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1976 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1977 // or a single symbol.
duke@435 1978 bool TypeAry::singleton(void) const {
duke@435 1979 return false; // Never a singleton
duke@435 1980 }
duke@435 1981
duke@435 1982 bool TypeAry::empty(void) const {
duke@435 1983 return _elem->empty() || _size->empty();
duke@435 1984 }
duke@435 1985
duke@435 1986 //--------------------------ary_must_be_exact----------------------------------
duke@435 1987 bool TypeAry::ary_must_be_exact() const {
duke@435 1988 if (!UseExactTypes) return false;
duke@435 1989 // This logic looks at the element type of an array, and returns true
duke@435 1990 // if the element type is either a primitive or a final instance class.
duke@435 1991 // In such cases, an array built on this ary must have no subclasses.
duke@435 1992 if (_elem == BOTTOM) return false; // general array not exact
duke@435 1993 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 1994 const TypeOopPtr* toop = NULL;
kvn@656 1995 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 1996 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 1997 } else {
coleenp@548 1998 toop = _elem->isa_oopptr();
coleenp@548 1999 }
duke@435 2000 if (!toop) return true; // a primitive type, like int
duke@435 2001 ciKlass* tklass = toop->klass();
duke@435 2002 if (tklass == NULL) return false; // unloaded class
duke@435 2003 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 2004 const TypeInstPtr* tinst;
coleenp@548 2005 if (_elem->isa_narrowoop())
kvn@656 2006 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 2007 else
coleenp@548 2008 tinst = _elem->isa_instptr();
kvn@656 2009 if (tinst)
kvn@656 2010 return tklass->as_instance_klass()->is_final();
coleenp@548 2011 const TypeAryPtr* tap;
coleenp@548 2012 if (_elem->isa_narrowoop())
kvn@656 2013 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 2014 else
coleenp@548 2015 tap = _elem->isa_aryptr();
kvn@656 2016 if (tap)
kvn@656 2017 return tap->ary()->ary_must_be_exact();
duke@435 2018 return false;
duke@435 2019 }
duke@435 2020
kvn@3882 2021 //==============================TypeVect=======================================
kvn@3882 2022 // Convenience common pre-built types.
kvn@3882 2023 const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors
kvn@3882 2024 const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors
kvn@3882 2025 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
kvn@3882 2026 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
kvn@3882 2027
kvn@3882 2028 //------------------------------make-------------------------------------------
kvn@3882 2029 const TypeVect* TypeVect::make(const Type *elem, uint length) {
kvn@3882 2030 BasicType elem_bt = elem->array_element_basic_type();
kvn@3882 2031 assert(is_java_primitive(elem_bt), "only primitive types in vector");
kvn@3882 2032 assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
kvn@3882 2033 assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
kvn@3882 2034 int size = length * type2aelembytes(elem_bt);
kvn@3882 2035 switch (Matcher::vector_ideal_reg(size)) {
kvn@3882 2036 case Op_VecS:
kvn@3882 2037 return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
kvn@3882 2038 case Op_VecD:
kvn@3882 2039 case Op_RegD:
kvn@3882 2040 return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
kvn@3882 2041 case Op_VecX:
kvn@3882 2042 return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
kvn@3882 2043 case Op_VecY:
kvn@3882 2044 return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
kvn@3882 2045 }
kvn@3882 2046 ShouldNotReachHere();
kvn@3882 2047 return NULL;
kvn@3882 2048 }
kvn@3882 2049
kvn@3882 2050 //------------------------------meet-------------------------------------------
kvn@3882 2051 // Compute the MEET of two types. It returns a new Type object.
kvn@3882 2052 const Type *TypeVect::xmeet( const Type *t ) const {
kvn@3882 2053 // Perform a fast test for common case; meeting the same types together.
kvn@3882 2054 if( this == t ) return this; // Meeting same type-rep?
kvn@3882 2055
kvn@3882 2056 // Current "this->_base" is Vector
kvn@3882 2057 switch (t->base()) { // switch on original type
kvn@3882 2058
kvn@3882 2059 case Bottom: // Ye Olde Default
kvn@3882 2060 return t;
kvn@3882 2061
kvn@3882 2062 default: // All else is a mistake
kvn@3882 2063 typerr(t);
kvn@3882 2064
kvn@3882 2065 case VectorS:
kvn@3882 2066 case VectorD:
kvn@3882 2067 case VectorX:
kvn@3882 2068 case VectorY: { // Meeting 2 vectors?
kvn@3882 2069 const TypeVect* v = t->is_vect();
kvn@3882 2070 assert( base() == v->base(), "");
kvn@3882 2071 assert(length() == v->length(), "");
kvn@3882 2072 assert(element_basic_type() == v->element_basic_type(), "");
kvn@3882 2073 return TypeVect::make(_elem->xmeet(v->_elem), _length);
kvn@3882 2074 }
kvn@3882 2075 case Top:
kvn@3882 2076 break;
kvn@3882 2077 }
kvn@3882 2078 return this;
kvn@3882 2079 }
kvn@3882 2080
kvn@3882 2081 //------------------------------xdual------------------------------------------
kvn@3882 2082 // Dual: compute field-by-field dual
kvn@3882 2083 const Type *TypeVect::xdual() const {
kvn@3882 2084 return new TypeVect(base(), _elem->dual(), _length);
kvn@3882 2085 }
kvn@3882 2086
kvn@3882 2087 //------------------------------eq---------------------------------------------
kvn@3882 2088 // Structural equality check for Type representations
kvn@3882 2089 bool TypeVect::eq(const Type *t) const {
kvn@3882 2090 const TypeVect *v = t->is_vect();
kvn@3882 2091 return (_elem == v->_elem) && (_length == v->_length);
kvn@3882 2092 }
kvn@3882 2093
kvn@3882 2094 //------------------------------hash-------------------------------------------
kvn@3882 2095 // Type-specific hashing function.
kvn@3882 2096 int TypeVect::hash(void) const {
kvn@3882 2097 return (intptr_t)_elem + (intptr_t)_length;
kvn@3882 2098 }
kvn@3882 2099
kvn@3882 2100 //------------------------------singleton--------------------------------------
kvn@3882 2101 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
kvn@3882 2102 // constants (Ldi nodes). Vector is singleton if all elements are the same
kvn@3882 2103 // constant value (when vector is created with Replicate code).
kvn@3882 2104 bool TypeVect::singleton(void) const {
kvn@3882 2105 // There is no Con node for vectors yet.
kvn@3882 2106 // return _elem->singleton();
kvn@3882 2107 return false;
kvn@3882 2108 }
kvn@3882 2109
kvn@3882 2110 bool TypeVect::empty(void) const {
kvn@3882 2111 return _elem->empty();
kvn@3882 2112 }
kvn@3882 2113
kvn@3882 2114 //------------------------------dump2------------------------------------------
kvn@3882 2115 #ifndef PRODUCT
kvn@3882 2116 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
kvn@3882 2117 switch (base()) {
kvn@3882 2118 case VectorS:
kvn@3882 2119 st->print("vectors["); break;
kvn@3882 2120 case VectorD:
kvn@3882 2121 st->print("vectord["); break;
kvn@3882 2122 case VectorX:
kvn@3882 2123 st->print("vectorx["); break;
kvn@3882 2124 case VectorY:
kvn@3882 2125 st->print("vectory["); break;
kvn@3882 2126 default:
kvn@3882 2127 ShouldNotReachHere();
kvn@3882 2128 }
kvn@3882 2129 st->print("%d]:{", _length);
kvn@3882 2130 _elem->dump2(d, depth, st);
kvn@3882 2131 st->print("}");
kvn@3882 2132 }
kvn@3882 2133 #endif
kvn@3882 2134
kvn@3882 2135
duke@435 2136 //=============================================================================
duke@435 2137 // Convenience common pre-built types.
duke@435 2138 const TypePtr *TypePtr::NULL_PTR;
duke@435 2139 const TypePtr *TypePtr::NOTNULL;
duke@435 2140 const TypePtr *TypePtr::BOTTOM;
duke@435 2141
duke@435 2142 //------------------------------meet-------------------------------------------
duke@435 2143 // Meet over the PTR enum
duke@435 2144 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 2145 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 2146 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 2147 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2148 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2149 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 2150 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 2151 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 2152 };
duke@435 2153
duke@435 2154 //------------------------------make-------------------------------------------
duke@435 2155 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 2156 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 2157 }
duke@435 2158
duke@435 2159 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2160 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2161 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 2162 if( ptr == _ptr ) return this;
duke@435 2163 return make(_base, ptr, _offset);
duke@435 2164 }
duke@435 2165
duke@435 2166 //------------------------------get_con----------------------------------------
duke@435 2167 intptr_t TypePtr::get_con() const {
duke@435 2168 assert( _ptr == Null, "" );
duke@435 2169 return _offset;
duke@435 2170 }
duke@435 2171
duke@435 2172 //------------------------------meet-------------------------------------------
duke@435 2173 // Compute the MEET of two types. It returns a new Type object.
duke@435 2174 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 2175 // Perform a fast test for common case; meeting the same types together.
duke@435 2176 if( this == t ) return this; // Meeting same type-rep?
duke@435 2177
duke@435 2178 // Current "this->_base" is AnyPtr
duke@435 2179 switch (t->base()) { // switch on original type
duke@435 2180 case Int: // Mixing ints & oops happens when javac
duke@435 2181 case Long: // reuses local variables
duke@435 2182 case FloatTop:
duke@435 2183 case FloatCon:
duke@435 2184 case FloatBot:
duke@435 2185 case DoubleTop:
duke@435 2186 case DoubleCon:
duke@435 2187 case DoubleBot:
coleenp@548 2188 case NarrowOop:
roland@4159 2189 case NarrowKlass:
duke@435 2190 case Bottom: // Ye Olde Default
duke@435 2191 return Type::BOTTOM;
duke@435 2192 case Top:
duke@435 2193 return this;
duke@435 2194
duke@435 2195 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2196 const TypePtr *tp = t->is_ptr();
duke@435 2197 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 2198 }
duke@435 2199 case RawPtr: // For these, flip the call around to cut down
duke@435 2200 case OopPtr:
duke@435 2201 case InstPtr: // on the cases I have to handle.
coleenp@4037 2202 case AryPtr:
coleenp@4037 2203 case MetadataPtr:
duke@435 2204 case KlassPtr:
duke@435 2205 return t->xmeet(this); // Call in reverse direction
duke@435 2206 default: // All else is a mistake
duke@435 2207 typerr(t);
duke@435 2208
duke@435 2209 }
duke@435 2210 return this;
duke@435 2211 }
duke@435 2212
duke@435 2213 //------------------------------meet_offset------------------------------------
duke@435 2214 int TypePtr::meet_offset( int offset ) const {
duke@435 2215 // Either is 'TOP' offset? Return the other offset!
duke@435 2216 if( _offset == OffsetTop ) return offset;
duke@435 2217 if( offset == OffsetTop ) return _offset;
duke@435 2218 // If either is different, return 'BOTTOM' offset
duke@435 2219 if( _offset != offset ) return OffsetBot;
duke@435 2220 return _offset;
duke@435 2221 }
duke@435 2222
duke@435 2223 //------------------------------dual_offset------------------------------------
duke@435 2224 int TypePtr::dual_offset( ) const {
duke@435 2225 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 2226 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 2227 return _offset; // Map everything else into self
duke@435 2228 }
duke@435 2229
duke@435 2230 //------------------------------xdual------------------------------------------
duke@435 2231 // Dual: compute field-by-field dual
duke@435 2232 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 2233 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 2234 };
duke@435 2235 const Type *TypePtr::xdual() const {
duke@435 2236 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 2237 }
duke@435 2238
kvn@741 2239 //------------------------------xadd_offset------------------------------------
kvn@741 2240 int TypePtr::xadd_offset( intptr_t offset ) const {
kvn@741 2241 // Adding to 'TOP' offset? Return 'TOP'!
kvn@741 2242 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
kvn@741 2243 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
kvn@741 2244 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
kvn@741 2245 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
kvn@741 2246 offset += (intptr_t)_offset;
kvn@741 2247 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
kvn@741 2248
kvn@741 2249 // assert( _offset >= 0 && _offset+offset >= 0, "" );
kvn@741 2250 // It is possible to construct a negative offset during PhaseCCP
kvn@741 2251
kvn@741 2252 return (int)offset; // Sum valid offsets
kvn@741 2253 }
kvn@741 2254
duke@435 2255 //------------------------------add_offset-------------------------------------
kvn@741 2256 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
kvn@741 2257 return make( AnyPtr, _ptr, xadd_offset(offset) );
duke@435 2258 }
duke@435 2259
duke@435 2260 //------------------------------eq---------------------------------------------
duke@435 2261 // Structural equality check for Type representations
duke@435 2262 bool TypePtr::eq( const Type *t ) const {
duke@435 2263 const TypePtr *a = (const TypePtr*)t;
duke@435 2264 return _ptr == a->ptr() && _offset == a->offset();
duke@435 2265 }
duke@435 2266
duke@435 2267 //------------------------------hash-------------------------------------------
duke@435 2268 // Type-specific hashing function.
duke@435 2269 int TypePtr::hash(void) const {
duke@435 2270 return _ptr + _offset;
duke@435 2271 }
duke@435 2272
duke@435 2273 //------------------------------dump2------------------------------------------
duke@435 2274 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 2275 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 2276 };
duke@435 2277
duke@435 2278 #ifndef PRODUCT
duke@435 2279 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2280 if( _ptr == Null ) st->print("NULL");
duke@435 2281 else st->print("%s *", ptr_msg[_ptr]);
duke@435 2282 if( _offset == OffsetTop ) st->print("+top");
duke@435 2283 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 2284 else if( _offset ) st->print("+%d", _offset);
duke@435 2285 }
duke@435 2286 #endif
duke@435 2287
duke@435 2288 //------------------------------singleton--------------------------------------
duke@435 2289 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2290 // constants
duke@435 2291 bool TypePtr::singleton(void) const {
duke@435 2292 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2293 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2294 }
duke@435 2295
duke@435 2296 bool TypePtr::empty(void) const {
duke@435 2297 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2298 }
duke@435 2299
duke@435 2300 //=============================================================================
duke@435 2301 // Convenience common pre-built types.
duke@435 2302 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2303 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2304
duke@435 2305 //------------------------------make-------------------------------------------
duke@435 2306 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2307 assert( ptr != Constant, "what is the constant?" );
duke@435 2308 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2309 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2310 }
duke@435 2311
duke@435 2312 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2313 assert( bits, "Use TypePtr for NULL" );
duke@435 2314 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2315 }
duke@435 2316
duke@435 2317 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2318 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2319 assert( ptr != Constant, "what is the constant?" );
duke@435 2320 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2321 assert( _bits==0, "Why cast a constant address?");
duke@435 2322 if( ptr == _ptr ) return this;
duke@435 2323 return make(ptr);
duke@435 2324 }
duke@435 2325
duke@435 2326 //------------------------------get_con----------------------------------------
duke@435 2327 intptr_t TypeRawPtr::get_con() const {
duke@435 2328 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2329 return (intptr_t)_bits;
duke@435 2330 }
duke@435 2331
duke@435 2332 //------------------------------meet-------------------------------------------
duke@435 2333 // Compute the MEET of two types. It returns a new Type object.
duke@435 2334 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2335 // Perform a fast test for common case; meeting the same types together.
duke@435 2336 if( this == t ) return this; // Meeting same type-rep?
duke@435 2337
duke@435 2338 // Current "this->_base" is RawPtr
duke@435 2339 switch( t->base() ) { // switch on original type
duke@435 2340 case Bottom: // Ye Olde Default
duke@435 2341 return t;
duke@435 2342 case Top:
duke@435 2343 return this;
duke@435 2344 case AnyPtr: // Meeting to AnyPtrs
duke@435 2345 break;
duke@435 2346 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2347 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2348 enum PTR ptr = meet_ptr( tptr );
duke@435 2349 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2350 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2351 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2352 ptr = NotNull; // Fall down in lattice
duke@435 2353 }
duke@435 2354 return make( ptr );
duke@435 2355 }
duke@435 2356
duke@435 2357 case OopPtr:
duke@435 2358 case InstPtr:
coleenp@4037 2359 case AryPtr:
coleenp@4037 2360 case MetadataPtr:
duke@435 2361 case KlassPtr:
duke@435 2362 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2363 default: // All else is a mistake
duke@435 2364 typerr(t);
duke@435 2365 }
duke@435 2366
duke@435 2367 // Found an AnyPtr type vs self-RawPtr type
duke@435 2368 const TypePtr *tp = t->is_ptr();
duke@435 2369 switch (tp->ptr()) {
duke@435 2370 case TypePtr::TopPTR: return this;
duke@435 2371 case TypePtr::BotPTR: return t;
duke@435 2372 case TypePtr::Null:
duke@435 2373 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2374 return TypeRawPtr::BOTTOM;
duke@435 2375 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2376 case TypePtr::AnyNull:
duke@435 2377 if( _ptr == TypePtr::Constant) return this;
duke@435 2378 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2379 default: ShouldNotReachHere();
duke@435 2380 }
duke@435 2381 return this;
duke@435 2382 }
duke@435 2383
duke@435 2384 //------------------------------xdual------------------------------------------
duke@435 2385 // Dual: compute field-by-field dual
duke@435 2386 const Type *TypeRawPtr::xdual() const {
duke@435 2387 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2388 }
duke@435 2389
duke@435 2390 //------------------------------add_offset-------------------------------------
kvn@741 2391 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
duke@435 2392 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2393 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2394 if( offset == 0 ) return this; // No change
duke@435 2395 switch (_ptr) {
duke@435 2396 case TypePtr::TopPTR:
duke@435 2397 case TypePtr::BotPTR:
duke@435 2398 case TypePtr::NotNull:
duke@435 2399 return this;
duke@435 2400 case TypePtr::Null:
kvn@2435 2401 case TypePtr::Constant: {
kvn@2435 2402 address bits = _bits+offset;
kvn@2435 2403 if ( bits == 0 ) return TypePtr::NULL_PTR;
kvn@2435 2404 return make( bits );
kvn@2435 2405 }
duke@435 2406 default: ShouldNotReachHere();
duke@435 2407 }
duke@435 2408 return NULL; // Lint noise
duke@435 2409 }
duke@435 2410
duke@435 2411 //------------------------------eq---------------------------------------------
duke@435 2412 // Structural equality check for Type representations
duke@435 2413 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2414 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2415 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2416 }
duke@435 2417
duke@435 2418 //------------------------------hash-------------------------------------------
duke@435 2419 // Type-specific hashing function.
duke@435 2420 int TypeRawPtr::hash(void) const {
duke@435 2421 return (intptr_t)_bits + TypePtr::hash();
duke@435 2422 }
duke@435 2423
duke@435 2424 //------------------------------dump2------------------------------------------
duke@435 2425 #ifndef PRODUCT
duke@435 2426 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2427 if( _ptr == Constant )
duke@435 2428 st->print(INTPTR_FORMAT, _bits);
duke@435 2429 else
duke@435 2430 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2431 }
duke@435 2432 #endif
duke@435 2433
duke@435 2434 //=============================================================================
duke@435 2435 // Convenience common pre-built type.
duke@435 2436 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2437
kvn@598 2438 //------------------------------TypeOopPtr-------------------------------------
roland@5991 2439 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative)
kvn@598 2440 : TypePtr(t, ptr, offset),
kvn@598 2441 _const_oop(o), _klass(k),
kvn@598 2442 _klass_is_exact(xk),
kvn@598 2443 _is_ptr_to_narrowoop(false),
roland@4159 2444 _is_ptr_to_narrowklass(false),
kvn@5110 2445 _is_ptr_to_boxed_value(false),
roland@5991 2446 _instance_id(instance_id),
roland@5991 2447 _speculative(speculative) {
kvn@5110 2448 if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
kvn@5110 2449 (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
kvn@5110 2450 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
kvn@5110 2451 }
kvn@598 2452 #ifdef _LP64
roland@4159 2453 if (_offset != 0) {
coleenp@4037 2454 if (_offset == oopDesc::klass_offset_in_bytes()) {
ehelin@5694 2455 _is_ptr_to_narrowklass = UseCompressedClassPointers;
coleenp@4037 2456 } else if (klass() == NULL) {
coleenp@4037 2457 // Array with unknown body type
kvn@598 2458 assert(this->isa_aryptr(), "only arrays without klass");
roland@4159 2459 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2460 } else if (this->isa_aryptr()) {
roland@4159 2461 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
kvn@598 2462 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2463 } else if (klass()->is_instance_klass()) {
kvn@598 2464 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2465 ciField* field = NULL;
kvn@598 2466 if (this->isa_klassptr()) {
never@2658 2467 // Perm objects don't use compressed references
kvn@598 2468 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2469 // unsafe access
roland@4159 2470 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2471 } else { // exclude unsafe ops
kvn@598 2472 assert(this->isa_instptr(), "must be an instance ptr.");
never@2658 2473
never@2658 2474 if (klass() == ciEnv::current()->Class_klass() &&
never@2658 2475 (_offset == java_lang_Class::klass_offset_in_bytes() ||
never@2658 2476 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
never@2658 2477 // Special hidden fields from the Class.
never@2658 2478 assert(this->isa_instptr(), "must be an instance ptr.");
coleenp@4037 2479 _is_ptr_to_narrowoop = false;
never@2658 2480 } else if (klass() == ciEnv::current()->Class_klass() &&
coleenp@4047 2481 _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
never@2658 2482 // Static fields
never@2658 2483 assert(o != NULL, "must be constant");
never@2658 2484 ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 2485 ciField* field = k->get_field_by_offset(_offset, true);
never@2658 2486 assert(field != NULL, "missing field");
kvn@598 2487 BasicType basic_elem_type = field->layout_type();
roland@4159 2488 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2489 basic_elem_type == T_ARRAY);
kvn@598 2490 } else {
never@2658 2491 // Instance fields which contains a compressed oop references.
never@2658 2492 field = ik->get_field_by_offset(_offset, false);
never@2658 2493 if (field != NULL) {
never@2658 2494 BasicType basic_elem_type = field->layout_type();
roland@4159 2495 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2496 basic_elem_type == T_ARRAY);
never@2658 2497 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
never@2658 2498 // Compile::find_alias_type() cast exactness on all types to verify
never@2658 2499 // that it does not affect alias type.
roland@4159 2500 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2501 } else {
never@2658 2502 // Type for the copy start in LibraryCallKit::inline_native_clone().
roland@4159 2503 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2504 }
kvn@598 2505 }
kvn@598 2506 }
kvn@598 2507 }
kvn@598 2508 }
kvn@598 2509 #endif
kvn@598 2510 }
kvn@598 2511
duke@435 2512 //------------------------------make-------------------------------------------
duke@435 2513 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
roland@5991 2514 int offset, int instance_id, const TypeOopPtr* speculative) {
duke@435 2515 assert(ptr != Constant, "no constant generic pointers");
coleenp@4037 2516 ciKlass* k = Compile::current()->env()->Object_klass();
duke@435 2517 bool xk = false;
duke@435 2518 ciObject* o = NULL;
roland@5991 2519 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative))->hashcons();
duke@435 2520 }
duke@435 2521
duke@435 2522
duke@435 2523 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2524 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2525 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2526 if( ptr == _ptr ) return this;
roland@5991 2527 return make(ptr, _offset, _instance_id, _speculative);
duke@435 2528 }
duke@435 2529
kvn@682 2530 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2531 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2532 // There are no instances of a general oop.
duke@435 2533 // Return self unchanged.
duke@435 2534 return this;
duke@435 2535 }
duke@435 2536
duke@435 2537 //-----------------------------cast_to_exactness-------------------------------
duke@435 2538 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2539 // There is no such thing as an exact general oop.
duke@435 2540 // Return self unchanged.
duke@435 2541 return this;
duke@435 2542 }
duke@435 2543
duke@435 2544
duke@435 2545 //------------------------------as_klass_type----------------------------------
duke@435 2546 // Return the klass type corresponding to this instance or array type.
duke@435 2547 // It is the type that is loaded from an object of this type.
duke@435 2548 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2549 ciKlass* k = klass();
duke@435 2550 bool xk = klass_is_exact();
coleenp@4037 2551 if (k == NULL)
duke@435 2552 return TypeKlassPtr::OBJECT;
duke@435 2553 else
duke@435 2554 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2555 }
duke@435 2556
roland@5991 2557 const Type *TypeOopPtr::xmeet(const Type *t) const {
roland@5991 2558 const Type* res = xmeet_helper(t);
roland@5991 2559 if (res->isa_oopptr() == NULL) {
roland@5991 2560 return res;
roland@5991 2561 }
roland@5991 2562
roland@5991 2563 if (res->isa_oopptr() != NULL) {
roland@5991 2564 // type->speculative() == NULL means that speculation is no better
roland@5991 2565 // than type, i.e. type->speculative() == type. So there are 2
roland@5991 2566 // ways to represent the fact that we have no useful speculative
roland@5991 2567 // data and we should use a single one to be able to test for
roland@5991 2568 // equality between types. Check whether type->speculative() ==
roland@5991 2569 // type and set speculative to NULL if it is the case.
roland@5991 2570 const TypeOopPtr* res_oopptr = res->is_oopptr();
roland@5991 2571 if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
roland@5991 2572 return res_oopptr->remove_speculative();
roland@5991 2573 }
roland@5991 2574 }
roland@5991 2575
roland@5991 2576 return res;
roland@5991 2577 }
duke@435 2578
duke@435 2579 //------------------------------meet-------------------------------------------
duke@435 2580 // Compute the MEET of two types. It returns a new Type object.
roland@5991 2581 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
duke@435 2582 // Perform a fast test for common case; meeting the same types together.
duke@435 2583 if( this == t ) return this; // Meeting same type-rep?
duke@435 2584
duke@435 2585 // Current "this->_base" is OopPtr
duke@435 2586 switch (t->base()) { // switch on original type
duke@435 2587
duke@435 2588 case Int: // Mixing ints & oops happens when javac
duke@435 2589 case Long: // reuses local variables
duke@435 2590 case FloatTop:
duke@435 2591 case FloatCon:
duke@435 2592 case FloatBot:
duke@435 2593 case DoubleTop:
duke@435 2594 case DoubleCon:
duke@435 2595 case DoubleBot:
kvn@728 2596 case NarrowOop:
roland@4159 2597 case NarrowKlass:
duke@435 2598 case Bottom: // Ye Olde Default
duke@435 2599 return Type::BOTTOM;
duke@435 2600 case Top:
duke@435 2601 return this;
duke@435 2602
duke@435 2603 default: // All else is a mistake
duke@435 2604 typerr(t);
duke@435 2605
duke@435 2606 case RawPtr:
coleenp@4037 2607 case MetadataPtr:
coleenp@4037 2608 case KlassPtr:
duke@435 2609 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2610
duke@435 2611 case AnyPtr: {
duke@435 2612 // Found an AnyPtr type vs self-OopPtr type
duke@435 2613 const TypePtr *tp = t->is_ptr();
duke@435 2614 int offset = meet_offset(tp->offset());
duke@435 2615 PTR ptr = meet_ptr(tp->ptr());
duke@435 2616 switch (tp->ptr()) {
duke@435 2617 case Null:
duke@435 2618 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2619 // else fall through:
duke@435 2620 case TopPTR:
kvn@1427 2621 case AnyNull: {
kvn@1427 2622 int instance_id = meet_instance_id(InstanceTop);
roland@5991 2623 const TypeOopPtr* speculative = _speculative;
roland@5991 2624 return make(ptr, offset, instance_id, speculative);
kvn@1427 2625 }
duke@435 2626 case BotPTR:
duke@435 2627 case NotNull:
duke@435 2628 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2629 default: typerr(t);
duke@435 2630 }
duke@435 2631 }
duke@435 2632
duke@435 2633 case OopPtr: { // Meeting to other OopPtrs
duke@435 2634 const TypeOopPtr *tp = t->is_oopptr();
kvn@1393 2635 int instance_id = meet_instance_id(tp->instance_id());
roland@5991 2636 const TypeOopPtr* speculative = meet_speculative(tp);
roland@5991 2637 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative);
duke@435 2638 }
duke@435 2639
duke@435 2640 case InstPtr: // For these, flip the call around to cut down
duke@435 2641 case AryPtr:
duke@435 2642 return t->xmeet(this); // Call in reverse direction
duke@435 2643
duke@435 2644 } // End of switch
duke@435 2645 return this; // Return the double constant
duke@435 2646 }
duke@435 2647
duke@435 2648
duke@435 2649 //------------------------------xdual------------------------------------------
duke@435 2650 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2651 const Type *TypeOopPtr::xdual() const {
coleenp@4037 2652 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
duke@435 2653 assert(const_oop() == NULL, "no constants here");
roland@5991 2654 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative());
duke@435 2655 }
duke@435 2656
duke@435 2657 //--------------------------make_from_klass_common-----------------------------
duke@435 2658 // Computes the element-type given a klass.
duke@435 2659 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2660 if (klass->is_instance_klass()) {
duke@435 2661 Compile* C = Compile::current();
duke@435 2662 Dependencies* deps = C->dependencies();
duke@435 2663 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2664 // Element is an instance
duke@435 2665 bool klass_is_exact = false;
duke@435 2666 if (klass->is_loaded()) {
duke@435 2667 // Try to set klass_is_exact.
duke@435 2668 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2669 klass_is_exact = ik->is_final();
duke@435 2670 if (!klass_is_exact && klass_change
duke@435 2671 && deps != NULL && UseUniqueSubclasses) {
duke@435 2672 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2673 if (sub != NULL) {
duke@435 2674 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2675 klass = ik = sub;
duke@435 2676 klass_is_exact = sub->is_final();
duke@435 2677 }
duke@435 2678 }
duke@435 2679 if (!klass_is_exact && try_for_exact
duke@435 2680 && deps != NULL && UseExactTypes) {
duke@435 2681 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2682 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2683 deps->assert_leaf_type(ik);
duke@435 2684 klass_is_exact = true;
duke@435 2685 }
duke@435 2686 }
duke@435 2687 }
duke@435 2688 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2689 } else if (klass->is_obj_array_klass()) {
duke@435 2690 // Element is an object array. Recursively call ourself.
duke@435 2691 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2692 bool xk = etype->klass_is_exact();
duke@435 2693 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2694 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2695 // are all not-null. This is not true in generally, as code can
duke@435 2696 // slam NULLs down in the subarrays.
duke@435 2697 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2698 return arr;
duke@435 2699 } else if (klass->is_type_array_klass()) {
duke@435 2700 // Element is an typeArray
duke@435 2701 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2702 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2703 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2704 // is not-null. That was not true in general.
duke@435 2705 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2706 return arr;
duke@435 2707 } else {
duke@435 2708 ShouldNotReachHere();
duke@435 2709 return NULL;
duke@435 2710 }
duke@435 2711 }
duke@435 2712
duke@435 2713 //------------------------------make_from_constant-----------------------------
duke@435 2714 // Make a java pointer from an oop constant
kvn@5110 2715 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
kvn@5110 2716 bool require_constant,
kvn@5110 2717 bool is_autobox_cache) {
kvn@5110 2718 assert(!o->is_null_object(), "null object not yet handled here.");
kvn@5110 2719 ciKlass* klass = o->klass();
kvn@5110 2720 if (klass->is_instance_klass()) {
kvn@5110 2721 // Element is an instance
kvn@5110 2722 if (require_constant) {
kvn@5110 2723 if (!o->can_be_constant()) return NULL;
kvn@5110 2724 } else if (!o->should_be_constant()) {
kvn@5110 2725 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
kvn@5110 2726 }
kvn@5110 2727 return TypeInstPtr::make(o);
kvn@5110 2728 } else if (klass->is_obj_array_klass()) {
kvn@5110 2729 // Element is an object array. Recursively call ourself.
kvn@5110 2730 const TypeOopPtr *etype =
coleenp@4037 2731 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
kvn@5110 2732 if (is_autobox_cache) {
kvn@5110 2733 // The pointers in the autobox arrays are always non-null.
kvn@5110 2734 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
kvn@5110 2735 }
kvn@5110 2736 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
kvn@5110 2737 // We used to pass NotNull in here, asserting that the sub-arrays
kvn@5110 2738 // are all not-null. This is not true in generally, as code can
kvn@5110 2739 // slam NULLs down in the subarrays.
kvn@5110 2740 if (require_constant) {
kvn@5110 2741 if (!o->can_be_constant()) return NULL;
kvn@5110 2742 } else if (!o->should_be_constant()) {
kvn@5110 2743 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
kvn@5110 2744 }
roland@5991 2745 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, is_autobox_cache);
coleenp@4037 2746 return arr;
kvn@5110 2747 } else if (klass->is_type_array_klass()) {
kvn@5110 2748 // Element is an typeArray
coleenp@4037 2749 const Type* etype =
coleenp@4037 2750 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
kvn@5110 2751 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
kvn@5110 2752 // We used to pass NotNull in here, asserting that the array pointer
kvn@5110 2753 // is not-null. That was not true in general.
kvn@5110 2754 if (require_constant) {
kvn@5110 2755 if (!o->can_be_constant()) return NULL;
kvn@5110 2756 } else if (!o->should_be_constant()) {
kvn@5110 2757 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
kvn@5110 2758 }
coleenp@4037 2759 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
coleenp@4037 2760 return arr;
duke@435 2761 }
duke@435 2762
twisti@3885 2763 fatal("unhandled object type");
duke@435 2764 return NULL;
duke@435 2765 }
duke@435 2766
duke@435 2767 //------------------------------get_con----------------------------------------
duke@435 2768 intptr_t TypeOopPtr::get_con() const {
duke@435 2769 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2770 assert( _offset >= 0, "" );
duke@435 2771
duke@435 2772 if (_offset != 0) {
duke@435 2773 // After being ported to the compiler interface, the compiler no longer
duke@435 2774 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2775 // to a handle at compile time. This handle is embedded in the generated
duke@435 2776 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2777 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2778 // have access to the addresses!). This does not seem to currently happen,
twisti@1040 2779 // but this assertion here is to help prevent its occurence.
duke@435 2780 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2781 ShouldNotReachHere();
duke@435 2782 }
duke@435 2783
jrose@1424 2784 return (intptr_t)const_oop()->constant_encoding();
duke@435 2785 }
duke@435 2786
duke@435 2787
duke@435 2788 //-----------------------------filter------------------------------------------
duke@435 2789 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6043 2790 const Type *TypeOopPtr::filter(const Type *kills) const {
duke@435 2791
duke@435 2792 const Type* ft = join(kills);
duke@435 2793 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2794 const TypeInstPtr* ktip = kills->isa_instptr();
duke@435 2795
duke@435 2796 if (ft->empty()) {
duke@435 2797 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2798 // interface. This can happen because the bytecodes do not contain
duke@435 2799 // enough type info to distinguish a Java-level interface variable
duke@435 2800 // from a Java-level object variable. If we meet 2 classes which
duke@435 2801 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2802 // doesn't implement I, we have no way to tell if the result should
duke@435 2803 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2804 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2805 // uplift the type.
duke@435 2806 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
duke@435 2807 return kills; // Uplift to interface
duke@435 2808
duke@435 2809 return Type::TOP; // Canonical empty value
duke@435 2810 }
duke@435 2811
duke@435 2812 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2813 // the join should report back the class. However, if we have a J/L/Object
duke@435 2814 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2815 // join report an interface back out. This isn't possible but happens
duke@435 2816 // because the type system doesn't interact well with interfaces.
duke@435 2817 if (ftip != NULL && ktip != NULL &&
duke@435 2818 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2819 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2820 // Happens in a CTW of rt.jar, 320-341, no extra flags
kvn@1770 2821 assert(!ftip->klass_is_exact(), "interface could not be exact");
duke@435 2822 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2823 }
duke@435 2824
duke@435 2825 return ft;
duke@435 2826 }
duke@435 2827
duke@435 2828 //------------------------------eq---------------------------------------------
duke@435 2829 // Structural equality check for Type representations
duke@435 2830 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2831 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2832 if (_klass_is_exact != a->_klass_is_exact ||
roland@5991 2833 _instance_id != a->_instance_id ||
roland@5991 2834 !eq_speculative(a)) return false;
duke@435 2835 ciObject* one = const_oop();
duke@435 2836 ciObject* two = a->const_oop();
duke@435 2837 if (one == NULL || two == NULL) {
duke@435 2838 return (one == two) && TypePtr::eq(t);
duke@435 2839 } else {
duke@435 2840 return one->equals(two) && TypePtr::eq(t);
duke@435 2841 }
duke@435 2842 }
duke@435 2843
duke@435 2844 //------------------------------hash-------------------------------------------
duke@435 2845 // Type-specific hashing function.
duke@435 2846 int TypeOopPtr::hash(void) const {
duke@435 2847 return
duke@435 2848 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2849 _klass_is_exact +
duke@435 2850 _instance_id +
roland@5991 2851 hash_speculative() +
duke@435 2852 TypePtr::hash();
duke@435 2853 }
duke@435 2854
duke@435 2855 //------------------------------dump2------------------------------------------
duke@435 2856 #ifndef PRODUCT
duke@435 2857 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2858 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2859 if( _klass_is_exact ) st->print(":exact");
duke@435 2860 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2861 switch( _offset ) {
duke@435 2862 case OffsetTop: st->print("+top"); break;
duke@435 2863 case OffsetBot: st->print("+any"); break;
duke@435 2864 case 0: break;
duke@435 2865 default: st->print("+%d",_offset); break;
duke@435 2866 }
kvn@658 2867 if (_instance_id == InstanceTop)
kvn@658 2868 st->print(",iid=top");
kvn@658 2869 else if (_instance_id != InstanceBot)
duke@435 2870 st->print(",iid=%d",_instance_id);
roland@5991 2871
roland@5991 2872 dump_speculative(st);
roland@5991 2873 }
roland@5991 2874
roland@5991 2875 /**
roland@5991 2876 *dump the speculative part of the type
roland@5991 2877 */
roland@5991 2878 void TypeOopPtr::dump_speculative(outputStream *st) const {
roland@5991 2879 if (_speculative != NULL) {
roland@5991 2880 st->print(" (speculative=");
roland@5991 2881 _speculative->dump_on(st);
roland@5991 2882 st->print(")");
roland@5991 2883 }
duke@435 2884 }
duke@435 2885 #endif
duke@435 2886
duke@435 2887 //------------------------------singleton--------------------------------------
duke@435 2888 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2889 // constants
duke@435 2890 bool TypeOopPtr::singleton(void) const {
duke@435 2891 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2892 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2893 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2894 }
duke@435 2895
duke@435 2896 //------------------------------add_offset-------------------------------------
roland@5991 2897 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
roland@5991 2898 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset));
roland@5991 2899 }
roland@5991 2900
roland@5991 2901 /**
roland@5991 2902 * Return same type without a speculative part
roland@5991 2903 */
roland@5991 2904 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
roland@5991 2905 return make(_ptr, _offset, _instance_id, NULL);
duke@435 2906 }
duke@435 2907
kvn@658 2908 //------------------------------meet_instance_id--------------------------------
kvn@658 2909 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 2910 // Either is 'TOP' instance? Return the other instance!
kvn@658 2911 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 2912 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 2913 // If either is different, return 'BOTTOM' instance
kvn@658 2914 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 2915 return _instance_id;
duke@435 2916 }
duke@435 2917
kvn@658 2918 //------------------------------dual_instance_id--------------------------------
kvn@658 2919 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 2920 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 2921 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 2922 return _instance_id; // Map everything else into self
kvn@658 2923 }
kvn@658 2924
roland@5991 2925 /**
roland@5991 2926 * meet of the speculative parts of 2 types
roland@5991 2927 *
roland@5991 2928 * @param other type to meet with
roland@5991 2929 */
roland@5991 2930 const TypeOopPtr* TypeOopPtr::meet_speculative(const TypeOopPtr* other) const {
roland@5991 2931 bool this_has_spec = (_speculative != NULL);
roland@5991 2932 bool other_has_spec = (other->speculative() != NULL);
roland@5991 2933
roland@5991 2934 if (!this_has_spec && !other_has_spec) {
roland@5991 2935 return NULL;
roland@5991 2936 }
roland@5991 2937
roland@5991 2938 // If we are at a point where control flow meets and one branch has
roland@5991 2939 // a speculative type and the other has not, we meet the speculative
roland@5991 2940 // type of one branch with the actual type of the other. If the
roland@5991 2941 // actual type is exact and the speculative is as well, then the
roland@5991 2942 // result is a speculative type which is exact and we can continue
roland@5991 2943 // speculation further.
roland@5991 2944 const TypeOopPtr* this_spec = _speculative;
roland@5991 2945 const TypeOopPtr* other_spec = other->speculative();
roland@5991 2946
roland@5991 2947 if (!this_has_spec) {
roland@5991 2948 this_spec = this;
roland@5991 2949 }
roland@5991 2950
roland@5991 2951 if (!other_has_spec) {
roland@5991 2952 other_spec = other;
roland@5991 2953 }
roland@5991 2954
roland@5991 2955 return this_spec->meet(other_spec)->is_oopptr();
roland@5991 2956 }
roland@5991 2957
roland@5991 2958 /**
roland@5991 2959 * dual of the speculative part of the type
roland@5991 2960 */
roland@5991 2961 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
roland@5991 2962 if (_speculative == NULL) {
roland@5991 2963 return NULL;
roland@5991 2964 }
roland@5991 2965 return _speculative->dual()->is_oopptr();
roland@5991 2966 }
roland@5991 2967
roland@5991 2968 /**
roland@5991 2969 * add offset to the speculative part of the type
roland@5991 2970 *
roland@5991 2971 * @param offset offset to add
roland@5991 2972 */
roland@5991 2973 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
roland@5991 2974 if (_speculative == NULL) {
roland@5991 2975 return NULL;
roland@5991 2976 }
roland@5991 2977 return _speculative->add_offset(offset)->is_oopptr();
roland@5991 2978 }
roland@5991 2979
roland@5991 2980 /**
roland@5991 2981 * Are the speculative parts of 2 types equal?
roland@5991 2982 *
roland@5991 2983 * @param other type to compare this one to
roland@5991 2984 */
roland@5991 2985 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
roland@5991 2986 if (_speculative == NULL || other->speculative() == NULL) {
roland@5991 2987 return _speculative == other->speculative();
roland@5991 2988 }
roland@5991 2989
roland@5991 2990 if (_speculative->base() != other->speculative()->base()) {
roland@5991 2991 return false;
roland@5991 2992 }
roland@5991 2993
roland@5991 2994 return _speculative->eq(other->speculative());
roland@5991 2995 }
roland@5991 2996
roland@5991 2997 /**
roland@5991 2998 * Hash of the speculative part of the type
roland@5991 2999 */
roland@5991 3000 int TypeOopPtr::hash_speculative() const {
roland@5991 3001 if (_speculative == NULL) {
roland@5991 3002 return 0;
roland@5991 3003 }
roland@5991 3004
roland@5991 3005 return _speculative->hash();
roland@5991 3006 }
roland@5991 3007
kvn@658 3008
duke@435 3009 //=============================================================================
duke@435 3010 // Convenience common pre-built types.
duke@435 3011 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 3012 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 3013 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 3014 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 3015 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 3016
duke@435 3017 //------------------------------TypeInstPtr-------------------------------------
roland@5991 3018 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative)
roland@5991 3019 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative), _name(k->name()) {
duke@435 3020 assert(k != NULL &&
duke@435 3021 (k->is_loaded() || o == NULL),
duke@435 3022 "cannot have constants with non-loaded klass");
duke@435 3023 };
duke@435 3024
duke@435 3025 //------------------------------make-------------------------------------------
duke@435 3026 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 3027 ciKlass* k,
duke@435 3028 bool xk,
duke@435 3029 ciObject* o,
duke@435 3030 int offset,
roland@5991 3031 int instance_id,
roland@5991 3032 const TypeOopPtr* speculative) {
coleenp@4037 3033 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
duke@435 3034 // Either const_oop() is NULL or else ptr is Constant
duke@435 3035 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 3036 "constant pointers must have a value supplied" );
duke@435 3037 // Ptr is never Null
duke@435 3038 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 3039
kvn@682 3040 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3041 if (!UseExactTypes) xk = false;
duke@435 3042 if (ptr == Constant) {
duke@435 3043 // Note: This case includes meta-object constants, such as methods.
duke@435 3044 xk = true;
duke@435 3045 } else if (k->is_loaded()) {
duke@435 3046 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 3047 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 3048 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 3049 }
duke@435 3050
duke@435 3051 // Now hash this baby
duke@435 3052 TypeInstPtr *result =
roland@5991 3053 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative))->hashcons();
duke@435 3054
duke@435 3055 return result;
duke@435 3056 }
duke@435 3057
kvn@5110 3058 /**
kvn@5110 3059 * Create constant type for a constant boxed value
kvn@5110 3060 */
kvn@5110 3061 const Type* TypeInstPtr::get_const_boxed_value() const {
kvn@5110 3062 assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
kvn@5110 3063 assert((const_oop() != NULL), "should be called only for constant object");
kvn@5110 3064 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
kvn@5110 3065 BasicType bt = constant.basic_type();
kvn@5110 3066 switch (bt) {
kvn@5110 3067 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
kvn@5110 3068 case T_INT: return TypeInt::make(constant.as_int());
kvn@5110 3069 case T_CHAR: return TypeInt::make(constant.as_char());
kvn@5110 3070 case T_BYTE: return TypeInt::make(constant.as_byte());
kvn@5110 3071 case T_SHORT: return TypeInt::make(constant.as_short());
kvn@5110 3072 case T_FLOAT: return TypeF::make(constant.as_float());
kvn@5110 3073 case T_DOUBLE: return TypeD::make(constant.as_double());
kvn@5110 3074 case T_LONG: return TypeLong::make(constant.as_long());
kvn@5110 3075 default: break;
kvn@5110 3076 }
kvn@5110 3077 fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
kvn@5110 3078 return NULL;
kvn@5110 3079 }
duke@435 3080
duke@435 3081 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3082 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3083 if( ptr == _ptr ) return this;
duke@435 3084 // Reconstruct _sig info here since not a problem with later lazy
duke@435 3085 // construction, _sig will show up on demand.
roland@5991 3086 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative);
duke@435 3087 }
duke@435 3088
duke@435 3089
duke@435 3090 //-----------------------------cast_to_exactness-------------------------------
duke@435 3091 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3092 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3093 if (!UseExactTypes) return this;
duke@435 3094 if (!_klass->is_loaded()) return this;
duke@435 3095 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 3096 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 3097 if( ik->is_interface() ) return this; // cannot set xk
roland@5991 3098 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative);
duke@435 3099 }
duke@435 3100
kvn@682 3101 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3102 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3103 if( instance_id == _instance_id ) return this;
roland@5991 3104 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative);
duke@435 3105 }
duke@435 3106
duke@435 3107 //------------------------------xmeet_unloaded---------------------------------
duke@435 3108 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 3109 // Assume classes are different since called after check for same name/class-loader
duke@435 3110 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 3111 int off = meet_offset(tinst->offset());
duke@435 3112 PTR ptr = meet_ptr(tinst->ptr());
kvn@1427 3113 int instance_id = meet_instance_id(tinst->instance_id());
roland@5991 3114 const TypeOopPtr* speculative = meet_speculative(tinst);
duke@435 3115
duke@435 3116 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 3117 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 3118 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3119 //
duke@435 3120 // Meet unloaded class with java/lang/Object
duke@435 3121 //
duke@435 3122 // Meet
duke@435 3123 // | Unloaded Class
duke@435 3124 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 3125 // ===================================================================
duke@435 3126 // TOP | ..........................Unloaded......................|
duke@435 3127 // AnyNull | U-AN |................Unloaded......................|
duke@435 3128 // Constant | ... O-NN .................................. | O-BOT |
duke@435 3129 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 3130 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 3131 //
duke@435 3132 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 3133 //
duke@435 3134 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
roland@5991 3135 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative); }
duke@435 3136 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 3137 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 3138 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 3139 else { return TypeInstPtr::NOTNULL; }
duke@435 3140 }
duke@435 3141 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 3142
duke@435 3143 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 3144 }
duke@435 3145
duke@435 3146 // Both are unloaded, not the same class, not Object
duke@435 3147 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 3148 if( ptr != TypePtr::BotPTR ) {
duke@435 3149 return TypeInstPtr::NOTNULL;
duke@435 3150 }
duke@435 3151 return TypeInstPtr::BOTTOM;
duke@435 3152 }
duke@435 3153
duke@435 3154
duke@435 3155 //------------------------------meet-------------------------------------------
duke@435 3156 // Compute the MEET of two types. It returns a new Type object.
roland@5991 3157 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
duke@435 3158 // Perform a fast test for common case; meeting the same types together.
duke@435 3159 if( this == t ) return this; // Meeting same type-rep?
duke@435 3160
duke@435 3161 // Current "this->_base" is Pointer
duke@435 3162 switch (t->base()) { // switch on original type
duke@435 3163
duke@435 3164 case Int: // Mixing ints & oops happens when javac
duke@435 3165 case Long: // reuses local variables
duke@435 3166 case FloatTop:
duke@435 3167 case FloatCon:
duke@435 3168 case FloatBot:
duke@435 3169 case DoubleTop:
duke@435 3170 case DoubleCon:
duke@435 3171 case DoubleBot:
coleenp@548 3172 case NarrowOop:
roland@4159 3173 case NarrowKlass:
duke@435 3174 case Bottom: // Ye Olde Default
duke@435 3175 return Type::BOTTOM;
duke@435 3176 case Top:
duke@435 3177 return this;
duke@435 3178
duke@435 3179 default: // All else is a mistake
duke@435 3180 typerr(t);
duke@435 3181
coleenp@4037 3182 case MetadataPtr:
coleenp@4037 3183 case KlassPtr:
duke@435 3184 case RawPtr: return TypePtr::BOTTOM;
duke@435 3185
duke@435 3186 case AryPtr: { // All arrays inherit from Object class
duke@435 3187 const TypeAryPtr *tp = t->is_aryptr();
duke@435 3188 int offset = meet_offset(tp->offset());
duke@435 3189 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3190 int instance_id = meet_instance_id(tp->instance_id());
roland@5991 3191 const TypeOopPtr* speculative = meet_speculative(tp);
duke@435 3192 switch (ptr) {
duke@435 3193 case TopPTR:
duke@435 3194 case AnyNull: // Fall 'down' to dual of object klass
roland@5991 3195 // For instances when a subclass meets a superclass we fall
roland@5991 3196 // below the centerline when the superclass is exact. We need to
roland@5991 3197 // do the same here.
roland@5991 3198 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
roland@5991 3199 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative);
duke@435 3200 } else {
duke@435 3201 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3202 ptr = NotNull;
kvn@658 3203 instance_id = InstanceBot;
roland@5991 3204 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative);
duke@435 3205 }
duke@435 3206 case Constant:
duke@435 3207 case NotNull:
duke@435 3208 case BotPTR: // Fall down to object klass
duke@435 3209 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3210 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 3211 // If 'this' (InstPtr) is above the centerline and it is Object class
twisti@1040 3212 // then we can subclass in the Java class hierarchy.
roland@5991 3213 // For instances when a subclass meets a superclass we fall
roland@5991 3214 // below the centerline when the superclass is exact. We need
roland@5991 3215 // to do the same here.
roland@5991 3216 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
duke@435 3217 // that is, tp's array type is a subtype of my klass
kvn@1714 3218 return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
roland@5991 3219 tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative);
duke@435 3220 }
duke@435 3221 }
duke@435 3222 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 3223 // The meet falls down to Object class below centerline.
duke@435 3224 if( ptr == Constant )
duke@435 3225 ptr = NotNull;
kvn@658 3226 instance_id = InstanceBot;
roland@5991 3227 return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative);
duke@435 3228 default: typerr(t);
duke@435 3229 }
duke@435 3230 }
duke@435 3231
duke@435 3232 case OopPtr: { // Meeting to OopPtrs
duke@435 3233 // Found a OopPtr type vs self-InstPtr type
kvn@1393 3234 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3235 int offset = meet_offset(tp->offset());
duke@435 3236 PTR ptr = meet_ptr(tp->ptr());
duke@435 3237 switch (tp->ptr()) {
duke@435 3238 case TopPTR:
kvn@658 3239 case AnyNull: {
kvn@658 3240 int instance_id = meet_instance_id(InstanceTop);
roland@5991 3241 const TypeOopPtr* speculative = meet_speculative(tp);
duke@435 3242 return make(ptr, klass(), klass_is_exact(),
roland@5991 3243 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative);
kvn@658 3244 }
duke@435 3245 case NotNull:
kvn@1393 3246 case BotPTR: {
kvn@1393 3247 int instance_id = meet_instance_id(tp->instance_id());
roland@5991 3248 const TypeOopPtr* speculative = meet_speculative(tp);
roland@5991 3249 return TypeOopPtr::make(ptr, offset, instance_id, speculative);
kvn@1393 3250 }
duke@435 3251 default: typerr(t);
duke@435 3252 }
duke@435 3253 }
duke@435 3254
duke@435 3255 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3256 // Found an AnyPtr type vs self-InstPtr type
duke@435 3257 const TypePtr *tp = t->is_ptr();
duke@435 3258 int offset = meet_offset(tp->offset());
duke@435 3259 PTR ptr = meet_ptr(tp->ptr());
duke@435 3260 switch (tp->ptr()) {
duke@435 3261 case Null:
roland@5991 3262 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3263 // else fall through to AnyNull
duke@435 3264 case TopPTR:
kvn@658 3265 case AnyNull: {
kvn@658 3266 int instance_id = meet_instance_id(InstanceTop);
roland@5991 3267 const TypeOopPtr* speculative = _speculative;
roland@5991 3268 return make(ptr, klass(), klass_is_exact(),
roland@5991 3269 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative);
kvn@658 3270 }
duke@435 3271 case NotNull:
duke@435 3272 case BotPTR:
roland@5991 3273 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3274 default: typerr(t);
duke@435 3275 }
duke@435 3276 }
duke@435 3277
duke@435 3278 /*
duke@435 3279 A-top }
duke@435 3280 / | \ } Tops
duke@435 3281 B-top A-any C-top }
duke@435 3282 | / | \ | } Any-nulls
duke@435 3283 B-any | C-any }
duke@435 3284 | | |
duke@435 3285 B-con A-con C-con } constants; not comparable across classes
duke@435 3286 | | |
duke@435 3287 B-not | C-not }
duke@435 3288 | \ | / | } not-nulls
duke@435 3289 B-bot A-not C-bot }
duke@435 3290 \ | / } Bottoms
duke@435 3291 A-bot }
duke@435 3292 */
duke@435 3293
duke@435 3294 case InstPtr: { // Meeting 2 Oops?
duke@435 3295 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 3296 const TypeInstPtr *tinst = t->is_instptr();
duke@435 3297 int off = meet_offset( tinst->offset() );
duke@435 3298 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 3299 int instance_id = meet_instance_id(tinst->instance_id());
roland@5991 3300 const TypeOopPtr* speculative = meet_speculative(tinst);
duke@435 3301
duke@435 3302 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3303 // If we have constants, then we created oops so classes are loaded
duke@435 3304 // and we can handle the constants further down. This case handles
duke@435 3305 // both-not-loaded or both-loaded classes
duke@435 3306 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
roland@5991 3307 return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative);
duke@435 3308 }
duke@435 3309
duke@435 3310 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3311 ciKlass* tinst_klass = tinst->klass();
duke@435 3312 ciKlass* this_klass = this->klass();
duke@435 3313 bool tinst_xk = tinst->klass_is_exact();
duke@435 3314 bool this_xk = this->klass_is_exact();
duke@435 3315 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 3316 // One of these classes has not been loaded
duke@435 3317 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 3318 #ifndef PRODUCT
duke@435 3319 if( PrintOpto && Verbose ) {
duke@435 3320 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 3321 tty->print(" this == "); this->dump(); tty->cr();
duke@435 3322 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 3323 }
duke@435 3324 #endif
duke@435 3325 return unloaded_meet;
duke@435 3326 }
duke@435 3327
duke@435 3328 // Handle mixing oops and interfaces first.
roland@5991 3329 if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
roland@5991 3330 tinst_klass == ciEnv::current()->Object_klass())) {
duke@435 3331 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 3332 tinst_klass = this_klass;
duke@435 3333 this_klass = tmp;
duke@435 3334 bool tmp2 = tinst_xk;
duke@435 3335 tinst_xk = this_xk;
duke@435 3336 this_xk = tmp2;
duke@435 3337 }
duke@435 3338 if (tinst_klass->is_interface() &&
duke@435 3339 !(this_klass->is_interface() ||
duke@435 3340 // Treat java/lang/Object as an honorary interface,
duke@435 3341 // because we need a bottom for the interface hierarchy.
duke@435 3342 this_klass == ciEnv::current()->Object_klass())) {
duke@435 3343 // Oop meets interface!
duke@435 3344
duke@435 3345 // See if the oop subtypes (implements) interface.
duke@435 3346 ciKlass *k;
duke@435 3347 bool xk;
duke@435 3348 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3349 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 3350 // on whether we are both above the centerline or either is
duke@435 3351 // below the centerline. If we are on the centerline
duke@435 3352 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 3353 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 3354 // If we are keeping this_klass, keep its exactness too.
duke@435 3355 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 3356 } else { // Does not implement, fall to Object
duke@435 3357 // Oop does not implement interface, so mixing falls to Object
duke@435 3358 // just like the verifier does (if both are above the
duke@435 3359 // centerline fall to interface)
duke@435 3360 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 3361 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 3362 // Watch out for Constant vs. AnyNull interface.
duke@435 3363 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 3364 instance_id = InstanceBot;
duke@435 3365 }
duke@435 3366 ciObject* o = NULL; // the Constant value, if any
duke@435 3367 if (ptr == Constant) {
duke@435 3368 // Find out which constant.
duke@435 3369 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 3370 }
roland@5991 3371 return make(ptr, k, xk, o, off, instance_id, speculative);
duke@435 3372 }
duke@435 3373
duke@435 3374 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 3375
duke@435 3376 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 3377 // If we split one up & one down AND they subtype, take the down man.
duke@435 3378 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3379 // If both are up and they subtype, take the subtype class.
duke@435 3380 // If both are up and they do NOT subtype, "fall hard".
duke@435 3381 // If both are down and they subtype, take the supertype class.
duke@435 3382 // If both are down and they do NOT subtype, "fall hard".
duke@435 3383 // Constants treated as down.
duke@435 3384
duke@435 3385 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 3386 // "fall hard"; "fall hard" becomes the default case:
duke@435 3387 // If we split one up & one down AND they subtype, take the down man.
duke@435 3388 // If both are up and they subtype, take the subtype class.
duke@435 3389
duke@435 3390 // If both are down and they subtype, "fall hard".
duke@435 3391 // If both are down and they do NOT subtype, "fall hard".
duke@435 3392 // If both are up and they do NOT subtype, "fall hard".
duke@435 3393 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3394
duke@435 3395 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 3396 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 3397 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 3398 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 3399
duke@435 3400 // Check for subtyping:
duke@435 3401 ciKlass *subtype = NULL;
duke@435 3402 bool subtype_exact = false;
duke@435 3403 if( tinst_klass->equals(this_klass) ) {
duke@435 3404 subtype = this_klass;
duke@435 3405 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 3406 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3407 subtype = this_klass; // Pick subtyping class
duke@435 3408 subtype_exact = this_xk;
duke@435 3409 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 3410 subtype = tinst_klass; // Pick subtyping class
duke@435 3411 subtype_exact = tinst_xk;
duke@435 3412 }
duke@435 3413
duke@435 3414 if( subtype ) {
duke@435 3415 if( above_centerline(ptr) ) { // both are up?
duke@435 3416 this_klass = tinst_klass = subtype;
duke@435 3417 this_xk = tinst_xk = subtype_exact;
duke@435 3418 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 3419 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 3420 this_xk = tinst_xk;
duke@435 3421 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 3422 tinst_klass = this_klass; // this is down; keep down man
duke@435 3423 tinst_xk = this_xk;
duke@435 3424 } else {
duke@435 3425 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 3426 }
duke@435 3427 }
duke@435 3428
duke@435 3429 // Check for classes now being equal
duke@435 3430 if (tinst_klass->equals(this_klass)) {
duke@435 3431 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3432 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3433 // handled elsewhere).
duke@435 3434 ciObject* o = NULL; // Assume not constant when done
duke@435 3435 ciObject* this_oop = const_oop();
duke@435 3436 ciObject* tinst_oop = tinst->const_oop();
duke@435 3437 if( ptr == Constant ) {
duke@435 3438 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 3439 this_oop->equals(tinst_oop) )
duke@435 3440 o = this_oop;
duke@435 3441 else if (above_centerline(this ->_ptr))
duke@435 3442 o = tinst_oop;
duke@435 3443 else if (above_centerline(tinst ->_ptr))
duke@435 3444 o = this_oop;
duke@435 3445 else
duke@435 3446 ptr = NotNull;
duke@435 3447 }
roland@5991 3448 return make(ptr, this_klass, this_xk, o, off, instance_id, speculative);
duke@435 3449 } // Else classes are not equal
duke@435 3450
duke@435 3451 // Since klasses are different, we require a LCA in the Java
duke@435 3452 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3453 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3454 ptr = NotNull;
kvn@682 3455 instance_id = InstanceBot;
duke@435 3456
duke@435 3457 // Now we find the LCA of Java classes
duke@435 3458 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
roland@5991 3459 return make(ptr, k, false, NULL, off, instance_id, speculative);
duke@435 3460 } // End of case InstPtr
duke@435 3461
duke@435 3462 } // End of switch
duke@435 3463 return this; // Return the double constant
duke@435 3464 }
duke@435 3465
duke@435 3466
duke@435 3467 //------------------------java_mirror_type--------------------------------------
duke@435 3468 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3469 // must be a singleton type
duke@435 3470 if( const_oop() == NULL ) return NULL;
duke@435 3471
duke@435 3472 // must be of type java.lang.Class
duke@435 3473 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3474
duke@435 3475 return const_oop()->as_instance()->java_mirror_type();
duke@435 3476 }
duke@435 3477
duke@435 3478
duke@435 3479 //------------------------------xdual------------------------------------------
duke@435 3480 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
twisti@1040 3481 // inheritance mechanism.
duke@435 3482 const Type *TypeInstPtr::xdual() const {
roland@5991 3483 return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative());
duke@435 3484 }
duke@435 3485
duke@435 3486 //------------------------------eq---------------------------------------------
duke@435 3487 // Structural equality check for Type representations
duke@435 3488 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3489 const TypeInstPtr *p = t->is_instptr();
duke@435 3490 return
duke@435 3491 klass()->equals(p->klass()) &&
duke@435 3492 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3493 }
duke@435 3494
duke@435 3495 //------------------------------hash-------------------------------------------
duke@435 3496 // Type-specific hashing function.
duke@435 3497 int TypeInstPtr::hash(void) const {
duke@435 3498 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 3499 return hash;
duke@435 3500 }
duke@435 3501
duke@435 3502 //------------------------------dump2------------------------------------------
duke@435 3503 // Dump oop Type
duke@435 3504 #ifndef PRODUCT
duke@435 3505 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3506 // Print the name of the klass.
duke@435 3507 klass()->print_name_on(st);
duke@435 3508
duke@435 3509 switch( _ptr ) {
duke@435 3510 case Constant:
duke@435 3511 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3512 if (WizardMode || Verbose) {
duke@435 3513 const_oop()->print_oop(st);
duke@435 3514 }
duke@435 3515 case BotPTR:
duke@435 3516 if (!WizardMode && !Verbose) {
duke@435 3517 if( _klass_is_exact ) st->print(":exact");
duke@435 3518 break;
duke@435 3519 }
duke@435 3520 case TopPTR:
duke@435 3521 case AnyNull:
duke@435 3522 case NotNull:
duke@435 3523 st->print(":%s", ptr_msg[_ptr]);
duke@435 3524 if( _klass_is_exact ) st->print(":exact");
duke@435 3525 break;
duke@435 3526 }
duke@435 3527
duke@435 3528 if( _offset ) { // Dump offset, if any
duke@435 3529 if( _offset == OffsetBot ) st->print("+any");
duke@435 3530 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3531 else st->print("+%d", _offset);
duke@435 3532 }
duke@435 3533
duke@435 3534 st->print(" *");
kvn@658 3535 if (_instance_id == InstanceTop)
kvn@658 3536 st->print(",iid=top");
kvn@658 3537 else if (_instance_id != InstanceBot)
duke@435 3538 st->print(",iid=%d",_instance_id);
roland@5991 3539
roland@5991 3540 dump_speculative(st);
duke@435 3541 }
duke@435 3542 #endif
duke@435 3543
duke@435 3544 //------------------------------add_offset-------------------------------------
roland@5991 3545 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
roland@5991 3546 return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
roland@5991 3547 }
roland@5991 3548
roland@5991 3549 const TypeOopPtr *TypeInstPtr::remove_speculative() const {
roland@5991 3550 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL);
duke@435 3551 }
duke@435 3552
duke@435 3553 //=============================================================================
duke@435 3554 // Convenience common pre-built types.
duke@435 3555 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3556 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3557 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3558 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3559 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3560 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3561 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3562 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3563 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3564 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3565
duke@435 3566 //------------------------------make-------------------------------------------
roland@5991 3567 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative) {
duke@435 3568 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3569 "integral arrays must be pre-equipped with a class");
duke@435 3570 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3571 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3572 if (!UseExactTypes) xk = (ptr == Constant);
roland@5991 3573 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative))->hashcons();
duke@435 3574 }
duke@435 3575
duke@435 3576 //------------------------------make-------------------------------------------
roland@5991 3577 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, bool is_autobox_cache) {
duke@435 3578 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3579 "integral arrays must be pre-equipped with a class");
duke@435 3580 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3581 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3582 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3583 if (!UseExactTypes) xk = (ptr == Constant);
roland@5991 3584 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative))->hashcons();
duke@435 3585 }
duke@435 3586
duke@435 3587 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3588 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3589 if( ptr == _ptr ) return this;
roland@5991 3590 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative);
duke@435 3591 }
duke@435 3592
duke@435 3593
duke@435 3594 //-----------------------------cast_to_exactness-------------------------------
duke@435 3595 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3596 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3597 if (!UseExactTypes) return this;
duke@435 3598 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
roland@5991 3599 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative);
duke@435 3600 }
duke@435 3601
kvn@682 3602 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3603 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3604 if( instance_id == _instance_id ) return this;
roland@5991 3605 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative);
duke@435 3606 }
duke@435 3607
duke@435 3608 //-----------------------------narrow_size_type-------------------------------
duke@435 3609 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3610 // which is kind of slow (and cached elsewhere by other users).
duke@435 3611 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3612 static jint max_array_length(BasicType etype) {
duke@435 3613 jint& cache = max_array_length_cache[etype];
duke@435 3614 jint res = cache;
duke@435 3615 if (res == 0) {
duke@435 3616 switch (etype) {
coleenp@548 3617 case T_NARROWOOP:
coleenp@548 3618 etype = T_OBJECT;
coleenp@548 3619 break;
roland@4159 3620 case T_NARROWKLASS:
duke@435 3621 case T_CONFLICT:
duke@435 3622 case T_ILLEGAL:
duke@435 3623 case T_VOID:
duke@435 3624 etype = T_BYTE; // will produce conservatively high value
duke@435 3625 }
duke@435 3626 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3627 }
duke@435 3628 return res;
duke@435 3629 }
duke@435 3630
duke@435 3631 // Narrow the given size type to the index range for the given array base type.
duke@435 3632 // Return NULL if the resulting int type becomes empty.
rasbold@801 3633 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
duke@435 3634 jint hi = size->_hi;
duke@435 3635 jint lo = size->_lo;
duke@435 3636 jint min_lo = 0;
rasbold@801 3637 jint max_hi = max_array_length(elem()->basic_type());
duke@435 3638 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3639 bool chg = false;
kvn@5110 3640 if (lo < min_lo) {
kvn@5110 3641 lo = min_lo;
kvn@5110 3642 if (size->is_con()) {
kvn@5110 3643 hi = lo;
kvn@5110 3644 }
kvn@5110 3645 chg = true;
kvn@5110 3646 }
kvn@5110 3647 if (hi > max_hi) {
kvn@5110 3648 hi = max_hi;
kvn@5110 3649 if (size->is_con()) {
kvn@5110 3650 lo = hi;
kvn@5110 3651 }
kvn@5110 3652 chg = true;
kvn@5110 3653 }
twisti@1040 3654 // Negative length arrays will produce weird intermediate dead fast-path code
duke@435 3655 if (lo > hi)
rasbold@801 3656 return TypeInt::ZERO;
duke@435 3657 if (!chg)
duke@435 3658 return size;
duke@435 3659 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3660 }
duke@435 3661
duke@435 3662 //-------------------------------cast_to_size----------------------------------
duke@435 3663 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3664 assert(new_size != NULL, "");
rasbold@801 3665 new_size = narrow_size_type(new_size);
duke@435 3666 if (new_size == size()) return this;
vlivanov@5658 3667 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
roland@5991 3668 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative);
duke@435 3669 }
duke@435 3670
duke@435 3671
vlivanov@5658 3672 //------------------------------cast_to_stable---------------------------------
vlivanov@5658 3673 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
vlivanov@5658 3674 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
vlivanov@5658 3675 return this;
vlivanov@5658 3676
vlivanov@5658 3677 const Type* elem = this->elem();
vlivanov@5658 3678 const TypePtr* elem_ptr = elem->make_ptr();
vlivanov@5658 3679
vlivanov@5658 3680 if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
vlivanov@5658 3681 // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
vlivanov@5658 3682 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
vlivanov@5658 3683 }
vlivanov@5658 3684
vlivanov@5658 3685 const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
vlivanov@5658 3686
vlivanov@5658 3687 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
vlivanov@5658 3688 }
vlivanov@5658 3689
vlivanov@5658 3690 //-----------------------------stable_dimension--------------------------------
vlivanov@5658 3691 int TypeAryPtr::stable_dimension() const {
vlivanov@5658 3692 if (!is_stable()) return 0;
vlivanov@5658 3693 int dim = 1;
vlivanov@5658 3694 const TypePtr* elem_ptr = elem()->make_ptr();
vlivanov@5658 3695 if (elem_ptr != NULL && elem_ptr->isa_aryptr())
vlivanov@5658 3696 dim += elem_ptr->is_aryptr()->stable_dimension();
vlivanov@5658 3697 return dim;
vlivanov@5658 3698 }
vlivanov@5658 3699
duke@435 3700 //------------------------------eq---------------------------------------------
duke@435 3701 // Structural equality check for Type representations
duke@435 3702 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3703 const TypeAryPtr *p = t->is_aryptr();
duke@435 3704 return
duke@435 3705 _ary == p->_ary && // Check array
duke@435 3706 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3707 }
duke@435 3708
duke@435 3709 //------------------------------hash-------------------------------------------
duke@435 3710 // Type-specific hashing function.
duke@435 3711 int TypeAryPtr::hash(void) const {
duke@435 3712 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3713 }
duke@435 3714
duke@435 3715 //------------------------------meet-------------------------------------------
duke@435 3716 // Compute the MEET of two types. It returns a new Type object.
roland@5991 3717 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
duke@435 3718 // Perform a fast test for common case; meeting the same types together.
duke@435 3719 if( this == t ) return this; // Meeting same type-rep?
duke@435 3720 // Current "this->_base" is Pointer
duke@435 3721 switch (t->base()) { // switch on original type
duke@435 3722
duke@435 3723 // Mixing ints & oops happens when javac reuses local variables
duke@435 3724 case Int:
duke@435 3725 case Long:
duke@435 3726 case FloatTop:
duke@435 3727 case FloatCon:
duke@435 3728 case FloatBot:
duke@435 3729 case DoubleTop:
duke@435 3730 case DoubleCon:
duke@435 3731 case DoubleBot:
coleenp@548 3732 case NarrowOop:
roland@4159 3733 case NarrowKlass:
duke@435 3734 case Bottom: // Ye Olde Default
duke@435 3735 return Type::BOTTOM;
duke@435 3736 case Top:
duke@435 3737 return this;
duke@435 3738
duke@435 3739 default: // All else is a mistake
duke@435 3740 typerr(t);
duke@435 3741
duke@435 3742 case OopPtr: { // Meeting to OopPtrs
duke@435 3743 // Found a OopPtr type vs self-AryPtr type
kvn@1393 3744 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3745 int offset = meet_offset(tp->offset());
duke@435 3746 PTR ptr = meet_ptr(tp->ptr());
duke@435 3747 switch (tp->ptr()) {
duke@435 3748 case TopPTR:
kvn@658 3749 case AnyNull: {
kvn@658 3750 int instance_id = meet_instance_id(InstanceTop);
roland@5991 3751 const TypeOopPtr* speculative = meet_speculative(tp);
kvn@658 3752 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@5991 3753 _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
kvn@658 3754 }
duke@435 3755 case BotPTR:
kvn@1393 3756 case NotNull: {
kvn@1393 3757 int instance_id = meet_instance_id(tp->instance_id());
roland@5991 3758 const TypeOopPtr* speculative = meet_speculative(tp);
roland@5991 3759 return TypeOopPtr::make(ptr, offset, instance_id, speculative);
kvn@1393 3760 }
duke@435 3761 default: ShouldNotReachHere();
duke@435 3762 }
duke@435 3763 }
duke@435 3764
duke@435 3765 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3766 // Found an AnyPtr type vs self-AryPtr type
duke@435 3767 const TypePtr *tp = t->is_ptr();
duke@435 3768 int offset = meet_offset(tp->offset());
duke@435 3769 PTR ptr = meet_ptr(tp->ptr());
duke@435 3770 switch (tp->ptr()) {
duke@435 3771 case TopPTR:
duke@435 3772 return this;
duke@435 3773 case BotPTR:
duke@435 3774 case NotNull:
duke@435 3775 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3776 case Null:
duke@435 3777 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3778 // else fall through to AnyNull
kvn@658 3779 case AnyNull: {
kvn@658 3780 int instance_id = meet_instance_id(InstanceTop);
roland@5991 3781 const TypeOopPtr* speculative = _speculative;
roland@5991 3782 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@5991 3783 _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
kvn@658 3784 }
duke@435 3785 default: ShouldNotReachHere();
duke@435 3786 }
duke@435 3787 }
duke@435 3788
coleenp@4037 3789 case MetadataPtr:
coleenp@4037 3790 case KlassPtr:
duke@435 3791 case RawPtr: return TypePtr::BOTTOM;
duke@435 3792
duke@435 3793 case AryPtr: { // Meeting 2 references?
duke@435 3794 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3795 int off = meet_offset(tap->offset());
duke@435 3796 const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
duke@435 3797 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3798 int instance_id = meet_instance_id(tap->instance_id());
roland@5991 3799 const TypeOopPtr* speculative = meet_speculative(tap);
duke@435 3800 ciKlass* lazy_klass = NULL;
duke@435 3801 if (tary->_elem->isa_int()) {
duke@435 3802 // Integral array element types have irrelevant lattice relations.
duke@435 3803 // It is the klass that determines array layout, not the element type.
duke@435 3804 if (_klass == NULL)
duke@435 3805 lazy_klass = tap->_klass;
duke@435 3806 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3807 lazy_klass = _klass;
duke@435 3808 } else {
duke@435 3809 // Something like byte[int+] meets char[int+].
duke@435 3810 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3811 instance_id = InstanceBot;
vlivanov@5658 3812 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
duke@435 3813 }
kvn@2633 3814 } else // Non integral arrays.
roland@6214 3815 // Must fall to bottom if exact klasses in upper lattice
roland@6214 3816 // are not equal or super klass is exact.
roland@6214 3817 if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
roland@6214 3818 // meet with top[] and bottom[] are processed further down:
roland@6214 3819 tap->_klass != NULL && this->_klass != NULL &&
roland@6214 3820 // both are exact and not equal:
roland@6214 3821 ((tap->_klass_is_exact && this->_klass_is_exact) ||
roland@6214 3822 // 'tap' is exact and super or unrelated:
roland@6214 3823 (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
roland@6214 3824 // 'this' is exact and super or unrelated:
roland@6214 3825 (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
vlivanov@5658 3826 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
roland@5991 3827 return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
duke@435 3828 }
kvn@2633 3829
kvn@2120 3830 bool xk = false;
duke@435 3831 switch (tap->ptr()) {
duke@435 3832 case AnyNull:
duke@435 3833 case TopPTR:
duke@435 3834 // Compute new klass on demand, do not use tap->_klass
roland@5991 3835 if (below_centerline(this->_ptr)) {
roland@5991 3836 xk = this->_klass_is_exact;
roland@5991 3837 } else {
roland@5991 3838 xk = (tap->_klass_is_exact | this->_klass_is_exact);
roland@5991 3839 }
roland@5991 3840 return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative);
duke@435 3841 case Constant: {
duke@435 3842 ciObject* o = const_oop();
duke@435 3843 if( _ptr == Constant ) {
duke@435 3844 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
jrose@1424 3845 xk = (klass() == tap->klass());
duke@435 3846 ptr = NotNull;
duke@435 3847 o = NULL;
kvn@682 3848 instance_id = InstanceBot;
jrose@1424 3849 } else {
jrose@1424 3850 xk = true;
duke@435 3851 }
roland@5991 3852 } else if(above_centerline(_ptr)) {
duke@435 3853 o = tap->const_oop();
jrose@1424 3854 xk = true;
jrose@1424 3855 } else {
kvn@2120 3856 // Only precise for identical arrays
kvn@2120 3857 xk = this->_klass_is_exact && (klass() == tap->klass());
duke@435 3858 }
roland@5991 3859 return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative);
duke@435 3860 }
duke@435 3861 case NotNull:
duke@435 3862 case BotPTR:
duke@435 3863 // Compute new klass on demand, do not use tap->_klass
duke@435 3864 if (above_centerline(this->_ptr))
duke@435 3865 xk = tap->_klass_is_exact;
duke@435 3866 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 3867 (klass() == tap->klass()); // Only precise for identical arrays
roland@5991 3868 return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative);
duke@435 3869 default: ShouldNotReachHere();
duke@435 3870 }
duke@435 3871 }
duke@435 3872
duke@435 3873 // All arrays inherit from Object class
duke@435 3874 case InstPtr: {
duke@435 3875 const TypeInstPtr *tp = t->is_instptr();
duke@435 3876 int offset = meet_offset(tp->offset());
duke@435 3877 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3878 int instance_id = meet_instance_id(tp->instance_id());
roland@5991 3879 const TypeOopPtr* speculative = meet_speculative(tp);
duke@435 3880 switch (ptr) {
duke@435 3881 case TopPTR:
duke@435 3882 case AnyNull: // Fall 'down' to dual of object klass
roland@5991 3883 // For instances when a subclass meets a superclass we fall
roland@5991 3884 // below the centerline when the superclass is exact. We need to
roland@5991 3885 // do the same here.
roland@5991 3886 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
roland@5991 3887 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
duke@435 3888 } else {
duke@435 3889 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3890 ptr = NotNull;
kvn@658 3891 instance_id = InstanceBot;
roland@5991 3892 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative);
duke@435 3893 }
duke@435 3894 case Constant:
duke@435 3895 case NotNull:
duke@435 3896 case BotPTR: // Fall down to object klass
duke@435 3897 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3898 if (above_centerline(tp->ptr())) {
duke@435 3899 // If 'tp' is above the centerline and it is Object class
twisti@1040 3900 // then we can subclass in the Java class hierarchy.
roland@5991 3901 // For instances when a subclass meets a superclass we fall
roland@5991 3902 // below the centerline when the superclass is exact. We need
roland@5991 3903 // to do the same here.
roland@5991 3904 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
duke@435 3905 // that is, my array type is a subtype of 'tp' klass
roland@5991 3906 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@5991 3907 _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
duke@435 3908 }
duke@435 3909 }
duke@435 3910 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 3911 // The meet falls down to Object class below centerline.
duke@435 3912 if( ptr == Constant )
duke@435 3913 ptr = NotNull;
kvn@658 3914 instance_id = InstanceBot;
roland@5991 3915 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative);
duke@435 3916 default: typerr(t);
duke@435 3917 }
duke@435 3918 }
duke@435 3919 }
duke@435 3920 return this; // Lint noise
duke@435 3921 }
duke@435 3922
duke@435 3923 //------------------------------xdual------------------------------------------
duke@435 3924 // Dual: compute field-by-field dual
duke@435 3925 const Type *TypeAryPtr::xdual() const {
roland@5991 3926 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative());
duke@435 3927 }
duke@435 3928
kvn@1255 3929 //----------------------interface_vs_oop---------------------------------------
kvn@1255 3930 #ifdef ASSERT
kvn@1255 3931 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
kvn@1255 3932 const TypeAryPtr* t_aryptr = t->isa_aryptr();
kvn@1255 3933 if (t_aryptr) {
kvn@1255 3934 return _ary->interface_vs_oop(t_aryptr->_ary);
kvn@1255 3935 }
kvn@1255 3936 return false;
kvn@1255 3937 }
kvn@1255 3938 #endif
kvn@1255 3939
duke@435 3940 //------------------------------dump2------------------------------------------
duke@435 3941 #ifndef PRODUCT
duke@435 3942 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3943 _ary->dump2(d,depth,st);
duke@435 3944 switch( _ptr ) {
duke@435 3945 case Constant:
duke@435 3946 const_oop()->print(st);
duke@435 3947 break;
duke@435 3948 case BotPTR:
duke@435 3949 if (!WizardMode && !Verbose) {
duke@435 3950 if( _klass_is_exact ) st->print(":exact");
duke@435 3951 break;
duke@435 3952 }
duke@435 3953 case TopPTR:
duke@435 3954 case AnyNull:
duke@435 3955 case NotNull:
duke@435 3956 st->print(":%s", ptr_msg[_ptr]);
duke@435 3957 if( _klass_is_exact ) st->print(":exact");
duke@435 3958 break;
duke@435 3959 }
duke@435 3960
kvn@499 3961 if( _offset != 0 ) {
kvn@499 3962 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 3963 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 3964 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 3965 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 3966 else {
kvn@499 3967 BasicType basic_elem_type = elem()->basic_type();
kvn@499 3968 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 3969 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 3970 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 3971 }
kvn@499 3972 }
kvn@499 3973 st->print(" *");
kvn@658 3974 if (_instance_id == InstanceTop)
kvn@658 3975 st->print(",iid=top");
kvn@658 3976 else if (_instance_id != InstanceBot)
duke@435 3977 st->print(",iid=%d",_instance_id);
roland@5991 3978
roland@5991 3979 dump_speculative(st);
duke@435 3980 }
duke@435 3981 #endif
duke@435 3982
duke@435 3983 bool TypeAryPtr::empty(void) const {
duke@435 3984 if (_ary->empty()) return true;
duke@435 3985 return TypeOopPtr::empty();
duke@435 3986 }
duke@435 3987
duke@435 3988 //------------------------------add_offset-------------------------------------
roland@5991 3989 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
roland@5991 3990 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset));
roland@5991 3991 }
roland@5991 3992
roland@5991 3993 const TypeOopPtr *TypeAryPtr::remove_speculative() const {
roland@5991 3994 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, _offset, _instance_id, NULL);
roland@5991 3995 }
duke@435 3996
duke@435 3997 //=============================================================================
coleenp@548 3998
coleenp@548 3999 //------------------------------hash-------------------------------------------
coleenp@548 4000 // Type-specific hashing function.
roland@4159 4001 int TypeNarrowPtr::hash(void) const {
never@1262 4002 return _ptrtype->hash() + 7;
coleenp@548 4003 }
coleenp@548 4004
roland@4159 4005 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton
roland@4159 4006 return _ptrtype->singleton();
roland@4159 4007 }
roland@4159 4008
roland@4159 4009 bool TypeNarrowPtr::empty(void) const {
roland@4159 4010 return _ptrtype->empty();
roland@4159 4011 }
roland@4159 4012
roland@4159 4013 intptr_t TypeNarrowPtr::get_con() const {
roland@4159 4014 return _ptrtype->get_con();
roland@4159 4015 }
roland@4159 4016
roland@4159 4017 bool TypeNarrowPtr::eq( const Type *t ) const {
roland@4159 4018 const TypeNarrowPtr* tc = isa_same_narrowptr(t);
coleenp@548 4019 if (tc != NULL) {
never@1262 4020 if (_ptrtype->base() != tc->_ptrtype->base()) {
coleenp@548 4021 return false;
coleenp@548 4022 }
never@1262 4023 return tc->_ptrtype->eq(_ptrtype);
coleenp@548 4024 }
coleenp@548 4025 return false;
coleenp@548 4026 }
coleenp@548 4027
roland@4159 4028 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now.
roland@4159 4029 const TypePtr* odual = _ptrtype->dual()->is_ptr();
roland@4159 4030 return make_same_narrowptr(odual);
roland@4159 4031 }
roland@4159 4032
roland@4159 4033
roland@4159 4034 const Type *TypeNarrowPtr::filter( const Type *kills ) const {
roland@4159 4035 if (isa_same_narrowptr(kills)) {
roland@4159 4036 const Type* ft =_ptrtype->filter(is_same_narrowptr(kills)->_ptrtype);
roland@4159 4037 if (ft->empty())
roland@4159 4038 return Type::TOP; // Canonical empty value
roland@4159 4039 if (ft->isa_ptr()) {
roland@4159 4040 return make_hash_same_narrowptr(ft->isa_ptr());
roland@4159 4041 }
roland@4159 4042 return ft;
roland@4159 4043 } else if (kills->isa_ptr()) {
roland@4159 4044 const Type* ft = _ptrtype->join(kills);
roland@4159 4045 if (ft->empty())
roland@4159 4046 return Type::TOP; // Canonical empty value
roland@4159 4047 return ft;
roland@4159 4048 } else {
roland@4159 4049 return Type::TOP;
roland@4159 4050 }
coleenp@548 4051 }
coleenp@548 4052
kvn@728 4053 //------------------------------xmeet------------------------------------------
coleenp@548 4054 // Compute the MEET of two types. It returns a new Type object.
roland@4159 4055 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
coleenp@548 4056 // Perform a fast test for common case; meeting the same types together.
coleenp@548 4057 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 4058
roland@4159 4059 if (t->base() == base()) {
roland@4159 4060 const Type* result = _ptrtype->xmeet(t->make_ptr());
roland@4159 4061 if (result->isa_ptr()) {
roland@4159 4062 return make_hash_same_narrowptr(result->is_ptr());
roland@4159 4063 }
roland@4159 4064 return result;
roland@4159 4065 }
roland@4159 4066
roland@4159 4067 // Current "this->_base" is NarrowKlass or NarrowOop
coleenp@548 4068 switch (t->base()) { // switch on original type
coleenp@548 4069
coleenp@548 4070 case Int: // Mixing ints & oops happens when javac
coleenp@548 4071 case Long: // reuses local variables
coleenp@548 4072 case FloatTop:
coleenp@548 4073 case FloatCon:
coleenp@548 4074 case FloatBot:
coleenp@548 4075 case DoubleTop:
coleenp@548 4076 case DoubleCon:
coleenp@548 4077 case DoubleBot:
kvn@728 4078 case AnyPtr:
kvn@728 4079 case RawPtr:
kvn@728 4080 case OopPtr:
kvn@728 4081 case InstPtr:
coleenp@4037 4082 case AryPtr:
coleenp@4037 4083 case MetadataPtr:
kvn@728 4084 case KlassPtr:
roland@4159 4085 case NarrowOop:
roland@4159 4086 case NarrowKlass:
kvn@728 4087
coleenp@548 4088 case Bottom: // Ye Olde Default
coleenp@548 4089 return Type::BOTTOM;
coleenp@548 4090 case Top:
coleenp@548 4091 return this;
coleenp@548 4092
coleenp@548 4093 default: // All else is a mistake
coleenp@548 4094 typerr(t);
coleenp@548 4095
coleenp@548 4096 } // End of switch
kvn@728 4097
kvn@728 4098 return this;
coleenp@548 4099 }
coleenp@548 4100
roland@4159 4101 #ifndef PRODUCT
roland@4159 4102 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 4103 _ptrtype->dump2(d, depth, st);
roland@4159 4104 }
roland@4159 4105 #endif
roland@4159 4106
roland@4159 4107 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
roland@4159 4108 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
roland@4159 4109
roland@4159 4110
roland@4159 4111 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
roland@4159 4112 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
roland@4159 4113 }
roland@4159 4114
coleenp@548 4115
coleenp@548 4116 #ifndef PRODUCT
coleenp@548 4117 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
never@852 4118 st->print("narrowoop: ");
roland@4159 4119 TypeNarrowPtr::dump2(d, depth, st);
coleenp@548 4120 }
coleenp@548 4121 #endif
coleenp@548 4122
roland@4159 4123 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
roland@4159 4124
roland@4159 4125 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
roland@4159 4126 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
roland@4159 4127 }
roland@4159 4128
roland@4159 4129 #ifndef PRODUCT
roland@4159 4130 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 4131 st->print("narrowklass: ");
roland@4159 4132 TypeNarrowPtr::dump2(d, depth, st);
roland@4159 4133 }
roland@4159 4134 #endif
coleenp@548 4135
coleenp@4037 4136
coleenp@4037 4137 //------------------------------eq---------------------------------------------
coleenp@4037 4138 // Structural equality check for Type representations
coleenp@4037 4139 bool TypeMetadataPtr::eq( const Type *t ) const {
coleenp@4037 4140 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
coleenp@4037 4141 ciMetadata* one = metadata();
coleenp@4037 4142 ciMetadata* two = a->metadata();
coleenp@4037 4143 if (one == NULL || two == NULL) {
coleenp@4037 4144 return (one == two) && TypePtr::eq(t);
coleenp@4037 4145 } else {
coleenp@4037 4146 return one->equals(two) && TypePtr::eq(t);
coleenp@4037 4147 }
coleenp@4037 4148 }
coleenp@4037 4149
coleenp@4037 4150 //------------------------------hash-------------------------------------------
coleenp@4037 4151 // Type-specific hashing function.
coleenp@4037 4152 int TypeMetadataPtr::hash(void) const {
coleenp@4037 4153 return
coleenp@4037 4154 (metadata() ? metadata()->hash() : 0) +
coleenp@4037 4155 TypePtr::hash();
coleenp@4037 4156 }
coleenp@4037 4157
coleenp@4037 4158 //------------------------------singleton--------------------------------------
coleenp@4037 4159 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 4160 // constants
coleenp@4037 4161 bool TypeMetadataPtr::singleton(void) const {
coleenp@4037 4162 // detune optimizer to not generate constant metadta + constant offset as a constant!
coleenp@4037 4163 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 4164 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 4165 }
coleenp@4037 4166
coleenp@4037 4167 //------------------------------add_offset-------------------------------------
coleenp@4037 4168 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
coleenp@4037 4169 return make( _ptr, _metadata, xadd_offset(offset));
coleenp@4037 4170 }
coleenp@4037 4171
coleenp@4037 4172 //-----------------------------filter------------------------------------------
coleenp@4037 4173 // Do not allow interface-vs.-noninterface joins to collapse to top.
coleenp@4037 4174 const Type *TypeMetadataPtr::filter( const Type *kills ) const {
coleenp@4037 4175 const TypeMetadataPtr* ft = join(kills)->isa_metadataptr();
coleenp@4037 4176 if (ft == NULL || ft->empty())
coleenp@4037 4177 return Type::TOP; // Canonical empty value
coleenp@4037 4178 return ft;
coleenp@4037 4179 }
coleenp@4037 4180
coleenp@4037 4181 //------------------------------get_con----------------------------------------
coleenp@4037 4182 intptr_t TypeMetadataPtr::get_con() const {
coleenp@4037 4183 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4184 assert( _offset >= 0, "" );
coleenp@4037 4185
coleenp@4037 4186 if (_offset != 0) {
coleenp@4037 4187 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4188 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4189 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4190 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4191 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4192 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4193 // but this assertion here is to help prevent its occurence.
coleenp@4037 4194 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4195 ShouldNotReachHere();
coleenp@4037 4196 }
coleenp@4037 4197
coleenp@4037 4198 return (intptr_t)metadata()->constant_encoding();
coleenp@4037 4199 }
coleenp@4037 4200
coleenp@4037 4201 //------------------------------cast_to_ptr_type-------------------------------
coleenp@4037 4202 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
coleenp@4037 4203 if( ptr == _ptr ) return this;
coleenp@4037 4204 return make(ptr, metadata(), _offset);
coleenp@4037 4205 }
coleenp@4037 4206
coleenp@4037 4207 //------------------------------meet-------------------------------------------
coleenp@4037 4208 // Compute the MEET of two types. It returns a new Type object.
coleenp@4037 4209 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
coleenp@4037 4210 // Perform a fast test for common case; meeting the same types together.
coleenp@4037 4211 if( this == t ) return this; // Meeting same type-rep?
coleenp@4037 4212
coleenp@4037 4213 // Current "this->_base" is OopPtr
coleenp@4037 4214 switch (t->base()) { // switch on original type
coleenp@4037 4215
coleenp@4037 4216 case Int: // Mixing ints & oops happens when javac
coleenp@4037 4217 case Long: // reuses local variables
coleenp@4037 4218 case FloatTop:
coleenp@4037 4219 case FloatCon:
coleenp@4037 4220 case FloatBot:
coleenp@4037 4221 case DoubleTop:
coleenp@4037 4222 case DoubleCon:
coleenp@4037 4223 case DoubleBot:
coleenp@4037 4224 case NarrowOop:
roland@4159 4225 case NarrowKlass:
coleenp@4037 4226 case Bottom: // Ye Olde Default
coleenp@4037 4227 return Type::BOTTOM;
coleenp@4037 4228 case Top:
coleenp@4037 4229 return this;
coleenp@4037 4230
coleenp@4037 4231 default: // All else is a mistake
coleenp@4037 4232 typerr(t);
coleenp@4037 4233
coleenp@4037 4234 case AnyPtr: {
coleenp@4037 4235 // Found an AnyPtr type vs self-OopPtr type
coleenp@4037 4236 const TypePtr *tp = t->is_ptr();
coleenp@4037 4237 int offset = meet_offset(tp->offset());
coleenp@4037 4238 PTR ptr = meet_ptr(tp->ptr());
coleenp@4037 4239 switch (tp->ptr()) {
coleenp@4037 4240 case Null:
coleenp@4037 4241 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 4242 // else fall through:
coleenp@4037 4243 case TopPTR:
coleenp@4037 4244 case AnyNull: {
coleenp@4037 4245 return make(ptr, NULL, offset);
coleenp@4037 4246 }
coleenp@4037 4247 case BotPTR:
coleenp@4037 4248 case NotNull:
coleenp@4037 4249 return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 4250 default: typerr(t);
coleenp@4037 4251 }
coleenp@4037 4252 }
coleenp@4037 4253
coleenp@4037 4254 case RawPtr:
coleenp@4037 4255 case KlassPtr:
coleenp@4037 4256 case OopPtr:
coleenp@4037 4257 case InstPtr:
coleenp@4037 4258 case AryPtr:
coleenp@4037 4259 return TypePtr::BOTTOM; // Oop meet raw is not well defined
coleenp@4037 4260
roland@4040 4261 case MetadataPtr: {
roland@4040 4262 const TypeMetadataPtr *tp = t->is_metadataptr();
roland@4040 4263 int offset = meet_offset(tp->offset());
roland@4040 4264 PTR tptr = tp->ptr();
roland@4040 4265 PTR ptr = meet_ptr(tptr);
roland@4040 4266 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
roland@4040 4267 if (tptr == TopPTR || _ptr == TopPTR ||
roland@4040 4268 metadata()->equals(tp->metadata())) {
roland@4040 4269 return make(ptr, md, offset);
roland@4040 4270 }
roland@4040 4271 // metadata is different
roland@4040 4272 if( ptr == Constant ) { // Cannot be equal constants, so...
roland@4040 4273 if( tptr == Constant && _ptr != Constant) return t;
roland@4040 4274 if( _ptr == Constant && tptr != Constant) return this;
roland@4040 4275 ptr = NotNull; // Fall down in lattice
roland@4040 4276 }
roland@4040 4277 return make(ptr, NULL, offset);
coleenp@4037 4278 break;
roland@4040 4279 }
coleenp@4037 4280 } // End of switch
coleenp@4037 4281 return this; // Return the double constant
coleenp@4037 4282 }
coleenp@4037 4283
coleenp@4037 4284
coleenp@4037 4285 //------------------------------xdual------------------------------------------
coleenp@4037 4286 // Dual of a pure metadata pointer.
coleenp@4037 4287 const Type *TypeMetadataPtr::xdual() const {
coleenp@4037 4288 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
coleenp@4037 4289 }
coleenp@4037 4290
coleenp@4037 4291 //------------------------------dump2------------------------------------------
coleenp@4037 4292 #ifndef PRODUCT
coleenp@4037 4293 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
coleenp@4037 4294 st->print("metadataptr:%s", ptr_msg[_ptr]);
coleenp@4037 4295 if( metadata() ) st->print(INTPTR_FORMAT, metadata());
coleenp@4037 4296 switch( _offset ) {
coleenp@4037 4297 case OffsetTop: st->print("+top"); break;
coleenp@4037 4298 case OffsetBot: st->print("+any"); break;
coleenp@4037 4299 case 0: break;
coleenp@4037 4300 default: st->print("+%d",_offset); break;
coleenp@4037 4301 }
coleenp@4037 4302 }
coleenp@4037 4303 #endif
coleenp@4037 4304
coleenp@4037 4305
coleenp@4037 4306 //=============================================================================
coleenp@4037 4307 // Convenience common pre-built type.
coleenp@4037 4308 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
coleenp@4037 4309
coleenp@4037 4310 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
coleenp@4037 4311 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
coleenp@4037 4312 }
coleenp@4037 4313
coleenp@4037 4314 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
coleenp@4037 4315 return make(Constant, m, 0);
coleenp@4037 4316 }
coleenp@4037 4317 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
coleenp@4037 4318 return make(Constant, m, 0);
coleenp@4037 4319 }
coleenp@4037 4320
coleenp@4037 4321 //------------------------------make-------------------------------------------
coleenp@4037 4322 // Create a meta data constant
coleenp@4037 4323 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
coleenp@4037 4324 assert(m == NULL || !m->is_klass(), "wrong type");
coleenp@4037 4325 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
coleenp@4037 4326 }
coleenp@4037 4327
coleenp@4037 4328
coleenp@548 4329 //=============================================================================
duke@435 4330 // Convenience common pre-built types.
duke@435 4331
duke@435 4332 // Not-null object klass or below
duke@435 4333 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 4334 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 4335
coleenp@4037 4336 //------------------------------TypeKlassPtr-----------------------------------
duke@435 4337 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
coleenp@4037 4338 : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
duke@435 4339 }
duke@435 4340
duke@435 4341 //------------------------------make-------------------------------------------
duke@435 4342 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 4343 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 4344 assert( k != NULL, "Expect a non-NULL klass");
coleenp@4037 4345 assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
duke@435 4346 TypeKlassPtr *r =
duke@435 4347 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 4348
duke@435 4349 return r;
duke@435 4350 }
duke@435 4351
duke@435 4352 //------------------------------eq---------------------------------------------
duke@435 4353 // Structural equality check for Type representations
duke@435 4354 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 4355 const TypeKlassPtr *p = t->is_klassptr();
duke@435 4356 return
duke@435 4357 klass()->equals(p->klass()) &&
coleenp@4037 4358 TypePtr::eq(p);
duke@435 4359 }
duke@435 4360
duke@435 4361 //------------------------------hash-------------------------------------------
duke@435 4362 // Type-specific hashing function.
duke@435 4363 int TypeKlassPtr::hash(void) const {
coleenp@4037 4364 return klass()->hash() + TypePtr::hash();
coleenp@4037 4365 }
coleenp@4037 4366
coleenp@4037 4367 //------------------------------singleton--------------------------------------
coleenp@4037 4368 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 4369 // constants
coleenp@4037 4370 bool TypeKlassPtr::singleton(void) const {
coleenp@4037 4371 // detune optimizer to not generate constant klass + constant offset as a constant!
coleenp@4037 4372 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 4373 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 4374 }
duke@435 4375
roland@6043 4376 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6043 4377 const Type *TypeKlassPtr::filter(const Type *kills) const {
roland@6043 4378 // logic here mirrors the one from TypeOopPtr::filter. See comments
roland@6043 4379 // there.
roland@6043 4380 const Type* ft = join(kills);
roland@6043 4381 const TypeKlassPtr* ftkp = ft->isa_klassptr();
roland@6043 4382 const TypeKlassPtr* ktkp = kills->isa_klassptr();
roland@6043 4383
roland@6043 4384 if (ft->empty()) {
roland@6043 4385 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
roland@6043 4386 return kills; // Uplift to interface
roland@6043 4387
roland@6043 4388 return Type::TOP; // Canonical empty value
roland@6043 4389 }
roland@6043 4390
roland@6043 4391 // Interface klass type could be exact in opposite to interface type,
roland@6043 4392 // return it here instead of incorrect Constant ptr J/L/Object (6894807).
roland@6043 4393 if (ftkp != NULL && ktkp != NULL &&
roland@6043 4394 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
roland@6043 4395 !ftkp->klass_is_exact() && // Keep exact interface klass
roland@6043 4396 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
roland@6043 4397 return ktkp->cast_to_ptr_type(ftkp->ptr());
roland@6043 4398 }
roland@6043 4399
roland@6043 4400 return ft;
roland@6043 4401 }
roland@6043 4402
kvn@2116 4403 //----------------------compute_klass------------------------------------------
kvn@2116 4404 // Compute the defining klass for this class
kvn@2116 4405 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
kvn@2116 4406 // Compute _klass based on element type.
duke@435 4407 ciKlass* k_ary = NULL;
duke@435 4408 const TypeInstPtr *tinst;
duke@435 4409 const TypeAryPtr *tary;
coleenp@548 4410 const Type* el = elem();
coleenp@548 4411 if (el->isa_narrowoop()) {
kvn@656 4412 el = el->make_ptr();
coleenp@548 4413 }
coleenp@548 4414
duke@435 4415 // Get element klass
coleenp@548 4416 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 4417 // Compute array klass from element klass
duke@435 4418 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 4419 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 4420 // Compute array klass from element klass
duke@435 4421 ciKlass* k_elem = tary->klass();
duke@435 4422 // If element type is something like bottom[], k_elem will be null.
duke@435 4423 if (k_elem != NULL)
duke@435 4424 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 4425 } else if ((el->base() == Type::Top) ||
coleenp@548 4426 (el->base() == Type::Bottom)) {
duke@435 4427 // element type of Bottom occurs from meet of basic type
duke@435 4428 // and object; Top occurs when doing join on Bottom.
duke@435 4429 // Leave k_ary at NULL.
duke@435 4430 } else {
duke@435 4431 // Cannot compute array klass directly from basic type,
duke@435 4432 // since subtypes of TypeInt all have basic type T_INT.
kvn@2116 4433 #ifdef ASSERT
kvn@2116 4434 if (verify && el->isa_int()) {
kvn@2116 4435 // Check simple cases when verifying klass.
kvn@2116 4436 BasicType bt = T_ILLEGAL;
kvn@2116 4437 if (el == TypeInt::BYTE) {
kvn@2116 4438 bt = T_BYTE;
kvn@2116 4439 } else if (el == TypeInt::SHORT) {
kvn@2116 4440 bt = T_SHORT;
kvn@2116 4441 } else if (el == TypeInt::CHAR) {
kvn@2116 4442 bt = T_CHAR;
kvn@2116 4443 } else if (el == TypeInt::INT) {
kvn@2116 4444 bt = T_INT;
kvn@2116 4445 } else {
kvn@2116 4446 return _klass; // just return specified klass
kvn@2116 4447 }
kvn@2116 4448 return ciTypeArrayKlass::make(bt);
kvn@2116 4449 }
kvn@2116 4450 #endif
coleenp@548 4451 assert(!el->isa_int(),
duke@435 4452 "integral arrays must be pre-equipped with a class");
duke@435 4453 // Compute array klass directly from basic type
coleenp@548 4454 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 4455 }
kvn@2116 4456 return k_ary;
kvn@2116 4457 }
kvn@2116 4458
kvn@2116 4459 //------------------------------klass------------------------------------------
kvn@2116 4460 // Return the defining klass for this class
kvn@2116 4461 ciKlass* TypeAryPtr::klass() const {
kvn@2116 4462 if( _klass ) return _klass; // Return cached value, if possible
kvn@2116 4463
kvn@2116 4464 // Oops, need to compute _klass and cache it
kvn@2116 4465 ciKlass* k_ary = compute_klass();
duke@435 4466
kvn@2636 4467 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
duke@435 4468 // The _klass field acts as a cache of the underlying
duke@435 4469 // ciKlass for this array type. In order to set the field,
duke@435 4470 // we need to cast away const-ness.
duke@435 4471 //
duke@435 4472 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 4473 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 4474 // active compilations. However, the ciKlass which represents
duke@435 4475 // this Type is *not* shared between compilations, so caching
duke@435 4476 // this value would result in fetching a dangling pointer.
duke@435 4477 //
duke@435 4478 // Recomputing the underlying ciKlass for each request is
duke@435 4479 // a bit less efficient than caching, but calls to
duke@435 4480 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 4481 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 4482 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 4483 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 4484 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 4485 }
kvn@598 4486 }
duke@435 4487 return k_ary;
duke@435 4488 }
duke@435 4489
duke@435 4490
duke@435 4491 //------------------------------add_offset-------------------------------------
duke@435 4492 // Access internals of klass object
kvn@741 4493 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
duke@435 4494 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 4495 }
duke@435 4496
duke@435 4497 //------------------------------cast_to_ptr_type-------------------------------
duke@435 4498 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
kvn@992 4499 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
duke@435 4500 if( ptr == _ptr ) return this;
duke@435 4501 return make(ptr, _klass, _offset);
duke@435 4502 }
duke@435 4503
duke@435 4504
duke@435 4505 //-----------------------------cast_to_exactness-------------------------------
duke@435 4506 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 4507 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 4508 if (!UseExactTypes) return this;
duke@435 4509 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 4510 }
duke@435 4511
duke@435 4512
duke@435 4513 //-----------------------------as_instance_type--------------------------------
duke@435 4514 // Corresponding type for an instance of the given class.
duke@435 4515 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 4516 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 4517 ciKlass* k = klass();
duke@435 4518 bool xk = klass_is_exact();
duke@435 4519 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 4520 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
morris@4760 4521 guarantee(toop != NULL, "need type for given klass");
duke@435 4522 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 4523 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 4524 }
duke@435 4525
duke@435 4526
duke@435 4527 //------------------------------xmeet------------------------------------------
duke@435 4528 // Compute the MEET of two types, return a new Type object.
duke@435 4529 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 4530 // Perform a fast test for common case; meeting the same types together.
duke@435 4531 if( this == t ) return this; // Meeting same type-rep?
duke@435 4532
duke@435 4533 // Current "this->_base" is Pointer
duke@435 4534 switch (t->base()) { // switch on original type
duke@435 4535
duke@435 4536 case Int: // Mixing ints & oops happens when javac
duke@435 4537 case Long: // reuses local variables
duke@435 4538 case FloatTop:
duke@435 4539 case FloatCon:
duke@435 4540 case FloatBot:
duke@435 4541 case DoubleTop:
duke@435 4542 case DoubleCon:
duke@435 4543 case DoubleBot:
kvn@728 4544 case NarrowOop:
roland@4159 4545 case NarrowKlass:
duke@435 4546 case Bottom: // Ye Olde Default
duke@435 4547 return Type::BOTTOM;
duke@435 4548 case Top:
duke@435 4549 return this;
duke@435 4550
duke@435 4551 default: // All else is a mistake
duke@435 4552 typerr(t);
duke@435 4553
duke@435 4554 case AnyPtr: { // Meeting to AnyPtrs
duke@435 4555 // Found an AnyPtr type vs self-KlassPtr type
duke@435 4556 const TypePtr *tp = t->is_ptr();
duke@435 4557 int offset = meet_offset(tp->offset());
duke@435 4558 PTR ptr = meet_ptr(tp->ptr());
duke@435 4559 switch (tp->ptr()) {
duke@435 4560 case TopPTR:
duke@435 4561 return this;
duke@435 4562 case Null:
duke@435 4563 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 4564 case AnyNull:
duke@435 4565 return make( ptr, klass(), offset );
duke@435 4566 case BotPTR:
duke@435 4567 case NotNull:
duke@435 4568 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 4569 default: typerr(t);
duke@435 4570 }
duke@435 4571 }
duke@435 4572
coleenp@4037 4573 case RawPtr:
coleenp@4037 4574 case MetadataPtr:
coleenp@4037 4575 case OopPtr:
duke@435 4576 case AryPtr: // Meet with AryPtr
duke@435 4577 case InstPtr: // Meet with InstPtr
coleenp@4037 4578 return TypePtr::BOTTOM;
duke@435 4579
duke@435 4580 //
duke@435 4581 // A-top }
duke@435 4582 // / | \ } Tops
duke@435 4583 // B-top A-any C-top }
duke@435 4584 // | / | \ | } Any-nulls
duke@435 4585 // B-any | C-any }
duke@435 4586 // | | |
duke@435 4587 // B-con A-con C-con } constants; not comparable across classes
duke@435 4588 // | | |
duke@435 4589 // B-not | C-not }
duke@435 4590 // | \ | / | } not-nulls
duke@435 4591 // B-bot A-not C-bot }
duke@435 4592 // \ | / } Bottoms
duke@435 4593 // A-bot }
duke@435 4594 //
duke@435 4595
duke@435 4596 case KlassPtr: { // Meet two KlassPtr types
duke@435 4597 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 4598 int off = meet_offset(tkls->offset());
duke@435 4599 PTR ptr = meet_ptr(tkls->ptr());
duke@435 4600
duke@435 4601 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 4602 // If we have constants, then we created oops so classes are loaded
duke@435 4603 // and we can handle the constants further down. This case handles
duke@435 4604 // not-loaded classes
duke@435 4605 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 4606 return make( ptr, klass(), off );
duke@435 4607 }
duke@435 4608
duke@435 4609 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 4610 ciKlass* tkls_klass = tkls->klass();
duke@435 4611 ciKlass* this_klass = this->klass();
duke@435 4612 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 4613 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 4614
duke@435 4615 // If 'this' type is above the centerline and is a superclass of the
duke@435 4616 // other, we can treat 'this' as having the same type as the other.
duke@435 4617 if ((above_centerline(this->ptr())) &&
duke@435 4618 tkls_klass->is_subtype_of(this_klass)) {
duke@435 4619 this_klass = tkls_klass;
duke@435 4620 }
duke@435 4621 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 4622 // other, we can treat 'tinst' as having the same type as the other.
duke@435 4623 if ((above_centerline(tkls->ptr())) &&
duke@435 4624 this_klass->is_subtype_of(tkls_klass)) {
duke@435 4625 tkls_klass = this_klass;
duke@435 4626 }
duke@435 4627
duke@435 4628 // Check for classes now being equal
duke@435 4629 if (tkls_klass->equals(this_klass)) {
duke@435 4630 // If the klasses are equal, the constants may still differ. Fall to
duke@435 4631 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 4632 // handled elsewhere).
duke@435 4633 if( ptr == Constant ) {
coleenp@4037 4634 if (this->_ptr == Constant && tkls->_ptr == Constant &&
coleenp@4037 4635 this->klass()->equals(tkls->klass()));
coleenp@4037 4636 else if (above_centerline(this->ptr()));
coleenp@4037 4637 else if (above_centerline(tkls->ptr()));
duke@435 4638 else
duke@435 4639 ptr = NotNull;
duke@435 4640 }
duke@435 4641 return make( ptr, this_klass, off );
duke@435 4642 } // Else classes are not equal
duke@435 4643
duke@435 4644 // Since klasses are different, we require the LCA in the Java
duke@435 4645 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 4646 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 4647 ptr = NotNull;
duke@435 4648 // Now we find the LCA of Java classes
duke@435 4649 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 4650 return make( ptr, k, off );
duke@435 4651 } // End of case KlassPtr
duke@435 4652
duke@435 4653 } // End of switch
duke@435 4654 return this; // Return the double constant
duke@435 4655 }
duke@435 4656
duke@435 4657 //------------------------------xdual------------------------------------------
duke@435 4658 // Dual: compute field-by-field dual
duke@435 4659 const Type *TypeKlassPtr::xdual() const {
duke@435 4660 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 4661 }
duke@435 4662
coleenp@4037 4663 //------------------------------get_con----------------------------------------
coleenp@4037 4664 intptr_t TypeKlassPtr::get_con() const {
coleenp@4037 4665 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4666 assert( _offset >= 0, "" );
coleenp@4037 4667
coleenp@4037 4668 if (_offset != 0) {
coleenp@4037 4669 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4670 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4671 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4672 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4673 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4674 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4675 // but this assertion here is to help prevent its occurence.
coleenp@4037 4676 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4677 ShouldNotReachHere();
coleenp@4037 4678 }
coleenp@4037 4679
coleenp@4037 4680 return (intptr_t)klass()->constant_encoding();
coleenp@4037 4681 }
duke@435 4682 //------------------------------dump2------------------------------------------
duke@435 4683 // Dump Klass Type
duke@435 4684 #ifndef PRODUCT
duke@435 4685 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 4686 switch( _ptr ) {
duke@435 4687 case Constant:
duke@435 4688 st->print("precise ");
duke@435 4689 case NotNull:
duke@435 4690 {
duke@435 4691 const char *name = klass()->name()->as_utf8();
duke@435 4692 if( name ) {
duke@435 4693 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 4694 } else {
duke@435 4695 ShouldNotReachHere();
duke@435 4696 }
duke@435 4697 }
duke@435 4698 case BotPTR:
duke@435 4699 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 4700 case TopPTR:
duke@435 4701 case AnyNull:
duke@435 4702 st->print(":%s", ptr_msg[_ptr]);
duke@435 4703 if( _klass_is_exact ) st->print(":exact");
duke@435 4704 break;
duke@435 4705 }
duke@435 4706
duke@435 4707 if( _offset ) { // Dump offset, if any
duke@435 4708 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 4709 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 4710 else { st->print("+%d", _offset); }
duke@435 4711 }
duke@435 4712
duke@435 4713 st->print(" *");
duke@435 4714 }
duke@435 4715 #endif
duke@435 4716
duke@435 4717
duke@435 4718
duke@435 4719 //=============================================================================
duke@435 4720 // Convenience common pre-built types.
duke@435 4721
duke@435 4722 //------------------------------make-------------------------------------------
duke@435 4723 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 4724 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 4725 }
duke@435 4726
duke@435 4727 //------------------------------make-------------------------------------------
duke@435 4728 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 4729 Compile* C = Compile::current();
duke@435 4730 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 4731 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 4732 const TypeTuple *domain;
twisti@1572 4733 if (method->is_static()) {
duke@435 4734 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 4735 } else {
duke@435 4736 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 4737 }
duke@435 4738 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 4739 tf = TypeFunc::make(domain, range);
duke@435 4740 C->set_last_tf(method, tf); // fill cache
duke@435 4741 return tf;
duke@435 4742 }
duke@435 4743
duke@435 4744 //------------------------------meet-------------------------------------------
duke@435 4745 // Compute the MEET of two types. It returns a new Type object.
duke@435 4746 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 4747 // Perform a fast test for common case; meeting the same types together.
duke@435 4748 if( this == t ) return this; // Meeting same type-rep?
duke@435 4749
duke@435 4750 // Current "this->_base" is Func
duke@435 4751 switch (t->base()) { // switch on original type
duke@435 4752
duke@435 4753 case Bottom: // Ye Olde Default
duke@435 4754 return t;
duke@435 4755
duke@435 4756 default: // All else is a mistake
duke@435 4757 typerr(t);
duke@435 4758
duke@435 4759 case Top:
duke@435 4760 break;
duke@435 4761 }
duke@435 4762 return this; // Return the double constant
duke@435 4763 }
duke@435 4764
duke@435 4765 //------------------------------xdual------------------------------------------
duke@435 4766 // Dual: compute field-by-field dual
duke@435 4767 const Type *TypeFunc::xdual() const {
duke@435 4768 return this;
duke@435 4769 }
duke@435 4770
duke@435 4771 //------------------------------eq---------------------------------------------
duke@435 4772 // Structural equality check for Type representations
duke@435 4773 bool TypeFunc::eq( const Type *t ) const {
duke@435 4774 const TypeFunc *a = (const TypeFunc*)t;
duke@435 4775 return _domain == a->_domain &&
duke@435 4776 _range == a->_range;
duke@435 4777 }
duke@435 4778
duke@435 4779 //------------------------------hash-------------------------------------------
duke@435 4780 // Type-specific hashing function.
duke@435 4781 int TypeFunc::hash(void) const {
duke@435 4782 return (intptr_t)_domain + (intptr_t)_range;
duke@435 4783 }
duke@435 4784
duke@435 4785 //------------------------------dump2------------------------------------------
duke@435 4786 // Dump Function Type
duke@435 4787 #ifndef PRODUCT
duke@435 4788 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4789 if( _range->_cnt <= Parms )
duke@435 4790 st->print("void");
duke@435 4791 else {
duke@435 4792 uint i;
duke@435 4793 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 4794 _range->field_at(i)->dump2(d,depth,st);
duke@435 4795 st->print("/");
duke@435 4796 }
duke@435 4797 _range->field_at(i)->dump2(d,depth,st);
duke@435 4798 }
duke@435 4799 st->print(" ");
duke@435 4800 st->print("( ");
duke@435 4801 if( !depth || d[this] ) { // Check for recursive dump
duke@435 4802 st->print("...)");
duke@435 4803 return;
duke@435 4804 }
duke@435 4805 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 4806 if (Parms < _domain->_cnt)
duke@435 4807 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 4808 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 4809 st->print(", ");
duke@435 4810 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 4811 }
duke@435 4812 st->print(" )");
duke@435 4813 }
duke@435 4814 #endif
duke@435 4815
duke@435 4816 //------------------------------singleton--------------------------------------
duke@435 4817 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 4818 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 4819 // or a single symbol.
duke@435 4820 bool TypeFunc::singleton(void) const {
duke@435 4821 return false; // Never a singleton
duke@435 4822 }
duke@435 4823
duke@435 4824 bool TypeFunc::empty(void) const {
duke@435 4825 return false; // Never empty
duke@435 4826 }
duke@435 4827
duke@435 4828
duke@435 4829 BasicType TypeFunc::return_type() const{
duke@435 4830 if (range()->cnt() == TypeFunc::Parms) {
duke@435 4831 return T_VOID;
duke@435 4832 }
duke@435 4833 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 4834 }

mercurial