src/share/vm/opto/type.cpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 499
b8f5ba577b02
permissions
-rw-r--r--

Initial load

duke@435 1 /*
duke@435 2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 // Optimization - Graph Style
duke@435 28
duke@435 29 #include "incls/_precompiled.incl"
duke@435 30 #include "incls/_type.cpp.incl"
duke@435 31
duke@435 32 // Dictionary of types shared among compilations.
duke@435 33 Dict* Type::_shared_type_dict = NULL;
duke@435 34
duke@435 35 // Array which maps compiler types to Basic Types
duke@435 36 const BasicType Type::_basic_type[Type::lastype] = {
duke@435 37 T_ILLEGAL, // Bad
duke@435 38 T_ILLEGAL, // Control
duke@435 39 T_VOID, // Top
duke@435 40 T_INT, // Int
duke@435 41 T_LONG, // Long
duke@435 42 T_VOID, // Half
duke@435 43
duke@435 44 T_ILLEGAL, // Tuple
duke@435 45 T_ARRAY, // Array
duke@435 46
duke@435 47 T_ADDRESS, // AnyPtr // shows up in factory methods for NULL_PTR
duke@435 48 T_ADDRESS, // RawPtr
duke@435 49 T_OBJECT, // OopPtr
duke@435 50 T_OBJECT, // InstPtr
duke@435 51 T_OBJECT, // AryPtr
duke@435 52 T_OBJECT, // KlassPtr
duke@435 53
duke@435 54 T_OBJECT, // Function
duke@435 55 T_ILLEGAL, // Abio
duke@435 56 T_ADDRESS, // Return_Address
duke@435 57 T_ILLEGAL, // Memory
duke@435 58 T_FLOAT, // FloatTop
duke@435 59 T_FLOAT, // FloatCon
duke@435 60 T_FLOAT, // FloatBot
duke@435 61 T_DOUBLE, // DoubleTop
duke@435 62 T_DOUBLE, // DoubleCon
duke@435 63 T_DOUBLE, // DoubleBot
duke@435 64 T_ILLEGAL, // Bottom
duke@435 65 };
duke@435 66
duke@435 67 // Map ideal registers (machine types) to ideal types
duke@435 68 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 69
duke@435 70 // Map basic types to canonical Type* pointers.
duke@435 71 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 72
duke@435 73 // Map basic types to constant-zero Types.
duke@435 74 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 75
duke@435 76 // Map basic types to array-body alias types.
duke@435 77 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 78
duke@435 79 //=============================================================================
duke@435 80 // Convenience common pre-built types.
duke@435 81 const Type *Type::ABIO; // State-of-machine only
duke@435 82 const Type *Type::BOTTOM; // All values
duke@435 83 const Type *Type::CONTROL; // Control only
duke@435 84 const Type *Type::DOUBLE; // All doubles
duke@435 85 const Type *Type::FLOAT; // All floats
duke@435 86 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 87 const Type *Type::MEMORY; // Abstract store only
duke@435 88 const Type *Type::RETURN_ADDRESS;
duke@435 89 const Type *Type::TOP; // No values in set
duke@435 90
duke@435 91 //------------------------------get_const_type---------------------------
duke@435 92 const Type* Type::get_const_type(ciType* type) {
duke@435 93 if (type == NULL) {
duke@435 94 return NULL;
duke@435 95 } else if (type->is_primitive_type()) {
duke@435 96 return get_const_basic_type(type->basic_type());
duke@435 97 } else {
duke@435 98 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 99 }
duke@435 100 }
duke@435 101
duke@435 102 //---------------------------array_element_basic_type---------------------------------
duke@435 103 // Mapping to the array element's basic type.
duke@435 104 BasicType Type::array_element_basic_type() const {
duke@435 105 BasicType bt = basic_type();
duke@435 106 if (bt == T_INT) {
duke@435 107 if (this == TypeInt::INT) return T_INT;
duke@435 108 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 109 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 110 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 111 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 112 return T_VOID;
duke@435 113 }
duke@435 114 return bt;
duke@435 115 }
duke@435 116
duke@435 117 //---------------------------get_typeflow_type---------------------------------
duke@435 118 // Import a type produced by ciTypeFlow.
duke@435 119 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 120 switch (type->basic_type()) {
duke@435 121
duke@435 122 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 123 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 124 return Type::BOTTOM;
duke@435 125
duke@435 126 case ciTypeFlow::StateVector::T_TOP:
duke@435 127 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 128 return Type::TOP;
duke@435 129
duke@435 130 case ciTypeFlow::StateVector::T_NULL:
duke@435 131 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 132 return TypePtr::NULL_PTR;
duke@435 133
duke@435 134 case ciTypeFlow::StateVector::T_LONG2:
duke@435 135 // The ciTypeFlow pass pushes a long, then the half.
duke@435 136 // We do the same.
duke@435 137 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 138 return TypeInt::TOP;
duke@435 139
duke@435 140 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 141 // The ciTypeFlow pass pushes double, then the half.
duke@435 142 // Our convention is the same.
duke@435 143 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 144 return Type::TOP;
duke@435 145
duke@435 146 case T_ADDRESS:
duke@435 147 assert(type->is_return_address(), "");
duke@435 148 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 149
duke@435 150 default:
duke@435 151 // make sure we did not mix up the cases:
duke@435 152 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 153 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 154 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 155 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 156 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 157 assert(!type->is_return_address(), "");
duke@435 158
duke@435 159 return Type::get_const_type(type);
duke@435 160 }
duke@435 161 }
duke@435 162
duke@435 163
duke@435 164 //------------------------------make-------------------------------------------
duke@435 165 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 166 // and look for an existing copy in the type dictionary.
duke@435 167 const Type *Type::make( enum TYPES t ) {
duke@435 168 return (new Type(t))->hashcons();
duke@435 169 }
duke@435 170
duke@435 171 //------------------------------cmp--------------------------------------------
duke@435 172 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 173 if( t1->_base != t2->_base )
duke@435 174 return 1; // Missed badly
duke@435 175 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 176 return !t1->eq(t2); // Return ZERO if equal
duke@435 177 }
duke@435 178
duke@435 179 //------------------------------hash-------------------------------------------
duke@435 180 int Type::uhash( const Type *const t ) {
duke@435 181 return t->hash();
duke@435 182 }
duke@435 183
duke@435 184 //--------------------------Initialize_shared----------------------------------
duke@435 185 void Type::Initialize_shared(Compile* current) {
duke@435 186 // This method does not need to be locked because the first system
duke@435 187 // compilations (stub compilations) occur serially. If they are
duke@435 188 // changed to proceed in parallel, then this section will need
duke@435 189 // locking.
duke@435 190
duke@435 191 Arena* save = current->type_arena();
duke@435 192 Arena* shared_type_arena = new Arena();
duke@435 193
duke@435 194 current->set_type_arena(shared_type_arena);
duke@435 195 _shared_type_dict =
duke@435 196 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 197 shared_type_arena, 128 );
duke@435 198 current->set_type_dict(_shared_type_dict);
duke@435 199
duke@435 200 // Make shared pre-built types.
duke@435 201 CONTROL = make(Control); // Control only
duke@435 202 TOP = make(Top); // No values in set
duke@435 203 MEMORY = make(Memory); // Abstract store only
duke@435 204 ABIO = make(Abio); // State-of-machine only
duke@435 205 RETURN_ADDRESS=make(Return_Address);
duke@435 206 FLOAT = make(FloatBot); // All floats
duke@435 207 DOUBLE = make(DoubleBot); // All doubles
duke@435 208 BOTTOM = make(Bottom); // Everything
duke@435 209 HALF = make(Half); // Placeholder half of doublewide type
duke@435 210
duke@435 211 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 212 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 213
duke@435 214 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 215 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 216
duke@435 217 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 218 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 219 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 220 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 221 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 222 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 223 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 224 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 225 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 226 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 227 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
duke@435 228 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 229 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 230 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 231 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 232 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 233 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
duke@435 234 // CmpL is overloaded both as the bytecode computation returning
duke@435 235 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 236 // compare returning optimizer ideal-type flags.
duke@435 237 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 238 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 239 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 240 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
duke@435 241
duke@435 242 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 243 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 244 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 245 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 246 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 247 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 248 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
duke@435 249
duke@435 250 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 251 fboth[0] = Type::CONTROL;
duke@435 252 fboth[1] = Type::CONTROL;
duke@435 253 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 254
duke@435 255 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 256 ffalse[0] = Type::CONTROL;
duke@435 257 ffalse[1] = Type::TOP;
duke@435 258 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 259
duke@435 260 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 261 fneither[0] = Type::TOP;
duke@435 262 fneither[1] = Type::TOP;
duke@435 263 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 264
duke@435 265 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 266 ftrue[0] = Type::TOP;
duke@435 267 ftrue[1] = Type::CONTROL;
duke@435 268 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 269
duke@435 270 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 271 floop[0] = Type::CONTROL;
duke@435 272 floop[1] = TypeInt::INT;
duke@435 273 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 274
duke@435 275 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 276 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 277 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 278
duke@435 279 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 280 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 281
duke@435 282 mreg2type[Op_Node] = Type::BOTTOM;
duke@435 283 mreg2type[Op_Set ] = 0;
duke@435 284 mreg2type[Op_RegI] = TypeInt::INT;
duke@435 285 mreg2type[Op_RegP] = TypePtr::BOTTOM;
duke@435 286 mreg2type[Op_RegF] = Type::FLOAT;
duke@435 287 mreg2type[Op_RegD] = Type::DOUBLE;
duke@435 288 mreg2type[Op_RegL] = TypeLong::LONG;
duke@435 289 mreg2type[Op_RegFlags] = TypeInt::CC;
duke@435 290
duke@435 291 const Type **fmembar = TypeTuple::fields(0);
duke@435 292 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 293
duke@435 294 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 295 fsc[0] = TypeInt::CC;
duke@435 296 fsc[1] = Type::MEMORY;
duke@435 297 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 298
duke@435 299 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 300 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 301 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 302 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 303 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 304 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 305 false, 0, oopDesc::klass_offset_in_bytes());
duke@435 306 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot);
duke@435 307
duke@435 308 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), current->env()->Object_klass(), false, arrayOopDesc::length_offset_in_bytes());
duke@435 309 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
duke@435 310 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
duke@435 311 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 312 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 313 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 314 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 315 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 316 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 317 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 318
duke@435 319 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
duke@435 320 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 321 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 322 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 323 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 324 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 325 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 326 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 327 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 328 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 329
duke@435 330 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 331 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 332
duke@435 333 const Type **fi2c = TypeTuple::fields(2);
duke@435 334 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
duke@435 335 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 336 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 337
duke@435 338 const Type **intpair = TypeTuple::fields(2);
duke@435 339 intpair[0] = TypeInt::INT;
duke@435 340 intpair[1] = TypeInt::INT;
duke@435 341 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 342
duke@435 343 const Type **longpair = TypeTuple::fields(2);
duke@435 344 longpair[0] = TypeLong::LONG;
duke@435 345 longpair[1] = TypeLong::LONG;
duke@435 346 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 347
duke@435 348 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
duke@435 349 _const_basic_type[T_CHAR] = TypeInt::CHAR;
duke@435 350 _const_basic_type[T_BYTE] = TypeInt::BYTE;
duke@435 351 _const_basic_type[T_SHORT] = TypeInt::SHORT;
duke@435 352 _const_basic_type[T_INT] = TypeInt::INT;
duke@435 353 _const_basic_type[T_LONG] = TypeLong::LONG;
duke@435 354 _const_basic_type[T_FLOAT] = Type::FLOAT;
duke@435 355 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
duke@435 356 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
duke@435 357 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
duke@435 358 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
duke@435 359 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
duke@435 360 _const_basic_type[T_CONFLICT]= Type::BOTTOM; // why not?
duke@435 361
duke@435 362 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
duke@435 363 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
duke@435 364 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
duke@435 365 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
duke@435 366 _zero_type[T_INT] = TypeInt::ZERO;
duke@435 367 _zero_type[T_LONG] = TypeLong::ZERO;
duke@435 368 _zero_type[T_FLOAT] = TypeF::ZERO;
duke@435 369 _zero_type[T_DOUBLE] = TypeD::ZERO;
duke@435 370 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
duke@435 371 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
duke@435 372 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
duke@435 373 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 374
duke@435 375 // get_zero_type() should not happen for T_CONFLICT
duke@435 376 _zero_type[T_CONFLICT]= NULL;
duke@435 377
duke@435 378 // Restore working type arena.
duke@435 379 current->set_type_arena(save);
duke@435 380 current->set_type_dict(NULL);
duke@435 381 }
duke@435 382
duke@435 383 //------------------------------Initialize-------------------------------------
duke@435 384 void Type::Initialize(Compile* current) {
duke@435 385 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 386
duke@435 387 if (_shared_type_dict == NULL) {
duke@435 388 Initialize_shared(current);
duke@435 389 }
duke@435 390
duke@435 391 Arena* type_arena = current->type_arena();
duke@435 392
duke@435 393 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 394 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 395 current->set_type_dict(tdic);
duke@435 396
duke@435 397 // Transfer the shared types.
duke@435 398 DictI i(_shared_type_dict);
duke@435 399 for( ; i.test(); ++i ) {
duke@435 400 Type* t = (Type*)i._value;
duke@435 401 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 402 }
duke@435 403 }
duke@435 404
duke@435 405 //------------------------------hashcons---------------------------------------
duke@435 406 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 407 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 408 // current Type in the Type table.
duke@435 409 const Type *Type::hashcons(void) {
duke@435 410 debug_only(base()); // Check the assertion in Type::base().
duke@435 411 // Look up the Type in the Type dictionary
duke@435 412 Dict *tdic = type_dict();
duke@435 413 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 414 if( old ) { // Pre-existing Type?
duke@435 415 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 416 delete this; // Yes, Nuke this guy
duke@435 417 assert( old->_dual, "" );
duke@435 418 return old; // Return pre-existing
duke@435 419 }
duke@435 420
duke@435 421 // Every type has a dual (to make my lattice symmetric).
duke@435 422 // Since we just discovered a new Type, compute its dual right now.
duke@435 423 assert( !_dual, "" ); // No dual yet
duke@435 424 _dual = xdual(); // Compute the dual
duke@435 425 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 426 _dual = this;
duke@435 427 return this;
duke@435 428 }
duke@435 429 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 430 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 431 // New Type, insert into Type table
duke@435 432 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 433 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 434 #ifdef ASSERT
duke@435 435 Type *dual_dual = (Type*)_dual->xdual();
duke@435 436 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 437 delete dual_dual;
duke@435 438 #endif
duke@435 439 return this; // Return new Type
duke@435 440 }
duke@435 441
duke@435 442 //------------------------------eq---------------------------------------------
duke@435 443 // Structural equality check for Type representations
duke@435 444 bool Type::eq( const Type * ) const {
duke@435 445 return true; // Nothing else can go wrong
duke@435 446 }
duke@435 447
duke@435 448 //------------------------------hash-------------------------------------------
duke@435 449 // Type-specific hashing function.
duke@435 450 int Type::hash(void) const {
duke@435 451 return _base;
duke@435 452 }
duke@435 453
duke@435 454 //------------------------------is_finite--------------------------------------
duke@435 455 // Has a finite value
duke@435 456 bool Type::is_finite() const {
duke@435 457 return false;
duke@435 458 }
duke@435 459
duke@435 460 //------------------------------is_nan-----------------------------------------
duke@435 461 // Is not a number (NaN)
duke@435 462 bool Type::is_nan() const {
duke@435 463 return false;
duke@435 464 }
duke@435 465
duke@435 466 //------------------------------meet-------------------------------------------
duke@435 467 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 468 // commutative and the lattice is symmetric.
duke@435 469 const Type *Type::meet( const Type *t ) const {
duke@435 470 const Type *mt = xmeet(t);
duke@435 471 #ifdef ASSERT
duke@435 472 assert( mt == t->xmeet(this), "meet not commutative" );
duke@435 473 const Type* dual_join = mt->_dual;
duke@435 474 const Type *t2t = dual_join->xmeet(t->_dual);
duke@435 475 const Type *t2this = dual_join->xmeet( _dual);
duke@435 476
duke@435 477 // Interface meet Oop is Not Symmetric:
duke@435 478 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 479 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
duke@435 480 const TypeInstPtr* this_inst = this->isa_instptr();
duke@435 481 const TypeInstPtr* t_inst = t->isa_instptr();
duke@435 482 bool interface_vs_oop = false;
duke@435 483 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
duke@435 484 bool this_interface = this_inst->klass()->is_interface();
duke@435 485 bool t_interface = t_inst->klass()->is_interface();
duke@435 486 interface_vs_oop = this_interface ^ t_interface;
duke@435 487 }
duke@435 488 const Type *tdual = t->_dual;
duke@435 489 const Type *thisdual = _dual;
duke@435 490 // strip out instances
duke@435 491 if (t2t->isa_oopptr() != NULL) {
duke@435 492 t2t = t2t->isa_oopptr()->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE);
duke@435 493 }
duke@435 494 if (t2this->isa_oopptr() != NULL) {
duke@435 495 t2this = t2this->isa_oopptr()->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE);
duke@435 496 }
duke@435 497 if (tdual->isa_oopptr() != NULL) {
duke@435 498 tdual = tdual->isa_oopptr()->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE);
duke@435 499 }
duke@435 500 if (thisdual->isa_oopptr() != NULL) {
duke@435 501 thisdual = thisdual->isa_oopptr()->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE);
duke@435 502 }
duke@435 503
duke@435 504 if( !interface_vs_oop && (t2t != tdual || t2this != thisdual) ) {
duke@435 505 tty->print_cr("=== Meet Not Symmetric ===");
duke@435 506 tty->print("t = "); t->dump(); tty->cr();
duke@435 507 tty->print("this= "); dump(); tty->cr();
duke@435 508 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
duke@435 509
duke@435 510 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
duke@435 511 tty->print("this_dual= "); _dual->dump(); tty->cr();
duke@435 512 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
duke@435 513
duke@435 514 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
duke@435 515 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 516
duke@435 517 fatal("meet not symmetric" );
duke@435 518 }
duke@435 519 #endif
duke@435 520 return mt;
duke@435 521 }
duke@435 522
duke@435 523 //------------------------------xmeet------------------------------------------
duke@435 524 // Compute the MEET of two types. It returns a new Type object.
duke@435 525 const Type *Type::xmeet( const Type *t ) const {
duke@435 526 // Perform a fast test for common case; meeting the same types together.
duke@435 527 if( this == t ) return this; // Meeting same type-rep?
duke@435 528
duke@435 529 // Meeting TOP with anything?
duke@435 530 if( _base == Top ) return t;
duke@435 531
duke@435 532 // Meeting BOTTOM with anything?
duke@435 533 if( _base == Bottom ) return BOTTOM;
duke@435 534
duke@435 535 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 536 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 537 switch (t->base()) { // Switch on original type
duke@435 538
duke@435 539 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 540 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 541 case FloatCon:
duke@435 542 case DoubleCon:
duke@435 543 case Int:
duke@435 544 case Long:
duke@435 545 return t->xmeet(this);
duke@435 546
duke@435 547 case OopPtr:
duke@435 548 return t->xmeet(this);
duke@435 549
duke@435 550 case InstPtr:
duke@435 551 return t->xmeet(this);
duke@435 552
duke@435 553 case KlassPtr:
duke@435 554 return t->xmeet(this);
duke@435 555
duke@435 556 case AryPtr:
duke@435 557 return t->xmeet(this);
duke@435 558
duke@435 559 case Bad: // Type check
duke@435 560 default: // Bogus type not in lattice
duke@435 561 typerr(t);
duke@435 562 return Type::BOTTOM;
duke@435 563
duke@435 564 case Bottom: // Ye Olde Default
duke@435 565 return t;
duke@435 566
duke@435 567 case FloatTop:
duke@435 568 if( _base == FloatTop ) return this;
duke@435 569 case FloatBot: // Float
duke@435 570 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 571 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 572 typerr(t);
duke@435 573 return Type::BOTTOM;
duke@435 574
duke@435 575 case DoubleTop:
duke@435 576 if( _base == DoubleTop ) return this;
duke@435 577 case DoubleBot: // Double
duke@435 578 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 579 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 580 typerr(t);
duke@435 581 return Type::BOTTOM;
duke@435 582
duke@435 583 // These next few cases must match exactly or it is a compile-time error.
duke@435 584 case Control: // Control of code
duke@435 585 case Abio: // State of world outside of program
duke@435 586 case Memory:
duke@435 587 if( _base == t->_base ) return this;
duke@435 588 typerr(t);
duke@435 589 return Type::BOTTOM;
duke@435 590
duke@435 591 case Top: // Top of the lattice
duke@435 592 return this;
duke@435 593 }
duke@435 594
duke@435 595 // The type is unchanged
duke@435 596 return this;
duke@435 597 }
duke@435 598
duke@435 599 //-----------------------------filter------------------------------------------
duke@435 600 const Type *Type::filter( const Type *kills ) const {
duke@435 601 const Type* ft = join(kills);
duke@435 602 if (ft->empty())
duke@435 603 return Type::TOP; // Canonical empty value
duke@435 604 return ft;
duke@435 605 }
duke@435 606
duke@435 607 //------------------------------xdual------------------------------------------
duke@435 608 // Compute dual right now.
duke@435 609 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 610 Bad, // Bad
duke@435 611 Control, // Control
duke@435 612 Bottom, // Top
duke@435 613 Bad, // Int - handled in v-call
duke@435 614 Bad, // Long - handled in v-call
duke@435 615 Half, // Half
duke@435 616
duke@435 617 Bad, // Tuple - handled in v-call
duke@435 618 Bad, // Array - handled in v-call
duke@435 619
duke@435 620 Bad, // AnyPtr - handled in v-call
duke@435 621 Bad, // RawPtr - handled in v-call
duke@435 622 Bad, // OopPtr - handled in v-call
duke@435 623 Bad, // InstPtr - handled in v-call
duke@435 624 Bad, // AryPtr - handled in v-call
duke@435 625 Bad, // KlassPtr - handled in v-call
duke@435 626
duke@435 627 Bad, // Function - handled in v-call
duke@435 628 Abio, // Abio
duke@435 629 Return_Address,// Return_Address
duke@435 630 Memory, // Memory
duke@435 631 FloatBot, // FloatTop
duke@435 632 FloatCon, // FloatCon
duke@435 633 FloatTop, // FloatBot
duke@435 634 DoubleBot, // DoubleTop
duke@435 635 DoubleCon, // DoubleCon
duke@435 636 DoubleTop, // DoubleBot
duke@435 637 Top // Bottom
duke@435 638 };
duke@435 639
duke@435 640 const Type *Type::xdual() const {
duke@435 641 // Note: the base() accessor asserts the sanity of _base.
duke@435 642 assert(dual_type[base()] != Bad, "implement with v-call");
duke@435 643 return new Type(dual_type[_base]);
duke@435 644 }
duke@435 645
duke@435 646 //------------------------------has_memory-------------------------------------
duke@435 647 bool Type::has_memory() const {
duke@435 648 Type::TYPES tx = base();
duke@435 649 if (tx == Memory) return true;
duke@435 650 if (tx == Tuple) {
duke@435 651 const TypeTuple *t = is_tuple();
duke@435 652 for (uint i=0; i < t->cnt(); i++) {
duke@435 653 tx = t->field_at(i)->base();
duke@435 654 if (tx == Memory) return true;
duke@435 655 }
duke@435 656 }
duke@435 657 return false;
duke@435 658 }
duke@435 659
duke@435 660 #ifndef PRODUCT
duke@435 661 //------------------------------dump2------------------------------------------
duke@435 662 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 663 st->print(msg[_base]);
duke@435 664 }
duke@435 665
duke@435 666 //------------------------------dump-------------------------------------------
duke@435 667 void Type::dump_on(outputStream *st) const {
duke@435 668 ResourceMark rm;
duke@435 669 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 670 dump2(d,1, st);
duke@435 671 }
duke@435 672
duke@435 673 //------------------------------data-------------------------------------------
duke@435 674 const char * const Type::msg[Type::lastype] = {
duke@435 675 "bad","control","top","int:","long:","half",
duke@435 676 "tuple:", "aryptr",
duke@435 677 "anyptr:", "rawptr:", "java:", "inst:", "ary:", "klass:",
duke@435 678 "func", "abIO", "return_address", "memory",
duke@435 679 "float_top", "ftcon:", "float",
duke@435 680 "double_top", "dblcon:", "double",
duke@435 681 "bottom"
duke@435 682 };
duke@435 683 #endif
duke@435 684
duke@435 685 //------------------------------singleton--------------------------------------
duke@435 686 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 687 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 688 bool Type::singleton(void) const {
duke@435 689 return _base == Top || _base == Half;
duke@435 690 }
duke@435 691
duke@435 692 //------------------------------empty------------------------------------------
duke@435 693 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 694 bool Type::empty(void) const {
duke@435 695 switch (_base) {
duke@435 696 case DoubleTop:
duke@435 697 case FloatTop:
duke@435 698 case Top:
duke@435 699 return true;
duke@435 700
duke@435 701 case Half:
duke@435 702 case Abio:
duke@435 703 case Return_Address:
duke@435 704 case Memory:
duke@435 705 case Bottom:
duke@435 706 case FloatBot:
duke@435 707 case DoubleBot:
duke@435 708 return false; // never a singleton, therefore never empty
duke@435 709 }
duke@435 710
duke@435 711 ShouldNotReachHere();
duke@435 712 return false;
duke@435 713 }
duke@435 714
duke@435 715 //------------------------------dump_stats-------------------------------------
duke@435 716 // Dump collected statistics to stderr
duke@435 717 #ifndef PRODUCT
duke@435 718 void Type::dump_stats() {
duke@435 719 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 720 }
duke@435 721 #endif
duke@435 722
duke@435 723 //------------------------------typerr-----------------------------------------
duke@435 724 void Type::typerr( const Type *t ) const {
duke@435 725 #ifndef PRODUCT
duke@435 726 tty->print("\nError mixing types: ");
duke@435 727 dump();
duke@435 728 tty->print(" and ");
duke@435 729 t->dump();
duke@435 730 tty->print("\n");
duke@435 731 #endif
duke@435 732 ShouldNotReachHere();
duke@435 733 }
duke@435 734
duke@435 735 //------------------------------isa_oop_ptr------------------------------------
duke@435 736 // Return true if type is an oop pointer type. False for raw pointers.
duke@435 737 static char isa_oop_ptr_tbl[Type::lastype] = {
duke@435 738 0,0,0,0,0,0,0/*tuple*/, 0/*ary*/,
duke@435 739 0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
duke@435 740 0/*func*/,0,0/*return_address*/,0,
duke@435 741 /*floats*/0,0,0, /*doubles*/0,0,0,
duke@435 742 0
duke@435 743 };
duke@435 744 bool Type::isa_oop_ptr() const {
duke@435 745 return isa_oop_ptr_tbl[_base] != 0;
duke@435 746 }
duke@435 747
duke@435 748 //------------------------------dump_stats-------------------------------------
duke@435 749 // // Check that arrays match type enum
duke@435 750 #ifndef PRODUCT
duke@435 751 void Type::verify_lastype() {
duke@435 752 // Check that arrays match enumeration
duke@435 753 assert( Type::dual_type [Type::lastype - 1] == Type::Top, "did not update array");
duke@435 754 assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
duke@435 755 // assert( PhiNode::tbl [Type::lastype - 1] == NULL, "did not update array");
duke@435 756 assert( Matcher::base2reg[Type::lastype - 1] == 0, "did not update array");
duke@435 757 assert( isa_oop_ptr_tbl [Type::lastype - 1] == (char)0, "did not update array");
duke@435 758 }
duke@435 759 #endif
duke@435 760
duke@435 761 //=============================================================================
duke@435 762 // Convenience common pre-built types.
duke@435 763 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 764 const TypeF *TypeF::ONE; // Floating point one
duke@435 765
duke@435 766 //------------------------------make-------------------------------------------
duke@435 767 // Create a float constant
duke@435 768 const TypeF *TypeF::make(float f) {
duke@435 769 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 770 }
duke@435 771
duke@435 772 //------------------------------meet-------------------------------------------
duke@435 773 // Compute the MEET of two types. It returns a new Type object.
duke@435 774 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 775 // Perform a fast test for common case; meeting the same types together.
duke@435 776 if( this == t ) return this; // Meeting same type-rep?
duke@435 777
duke@435 778 // Current "this->_base" is FloatCon
duke@435 779 switch (t->base()) { // Switch on original type
duke@435 780 case AnyPtr: // Mixing with oops happens when javac
duke@435 781 case RawPtr: // reuses local variables
duke@435 782 case OopPtr:
duke@435 783 case InstPtr:
duke@435 784 case KlassPtr:
duke@435 785 case AryPtr:
duke@435 786 case Int:
duke@435 787 case Long:
duke@435 788 case DoubleTop:
duke@435 789 case DoubleCon:
duke@435 790 case DoubleBot:
duke@435 791 case Bottom: // Ye Olde Default
duke@435 792 return Type::BOTTOM;
duke@435 793
duke@435 794 case FloatBot:
duke@435 795 return t;
duke@435 796
duke@435 797 default: // All else is a mistake
duke@435 798 typerr(t);
duke@435 799
duke@435 800 case FloatCon: // Float-constant vs Float-constant?
duke@435 801 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 802 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 803 // all the same representation in C++
duke@435 804 return FLOAT; // Return generic float
duke@435 805 // Equal constants
duke@435 806 case Top:
duke@435 807 case FloatTop:
duke@435 808 break; // Return the float constant
duke@435 809 }
duke@435 810 return this; // Return the float constant
duke@435 811 }
duke@435 812
duke@435 813 //------------------------------xdual------------------------------------------
duke@435 814 // Dual: symmetric
duke@435 815 const Type *TypeF::xdual() const {
duke@435 816 return this;
duke@435 817 }
duke@435 818
duke@435 819 //------------------------------eq---------------------------------------------
duke@435 820 // Structural equality check for Type representations
duke@435 821 bool TypeF::eq( const Type *t ) const {
duke@435 822 if( g_isnan(_f) ||
duke@435 823 g_isnan(t->getf()) ) {
duke@435 824 // One or both are NANs. If both are NANs return true, else false.
duke@435 825 return (g_isnan(_f) && g_isnan(t->getf()));
duke@435 826 }
duke@435 827 if (_f == t->getf()) {
duke@435 828 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 829 if (_f == 0.0) {
duke@435 830 // difference between positive and negative zero
duke@435 831 if (jint_cast(_f) != jint_cast(t->getf())) return false;
duke@435 832 }
duke@435 833 return true;
duke@435 834 }
duke@435 835 return false;
duke@435 836 }
duke@435 837
duke@435 838 //------------------------------hash-------------------------------------------
duke@435 839 // Type-specific hashing function.
duke@435 840 int TypeF::hash(void) const {
duke@435 841 return *(int*)(&_f);
duke@435 842 }
duke@435 843
duke@435 844 //------------------------------is_finite--------------------------------------
duke@435 845 // Has a finite value
duke@435 846 bool TypeF::is_finite() const {
duke@435 847 return g_isfinite(getf()) != 0;
duke@435 848 }
duke@435 849
duke@435 850 //------------------------------is_nan-----------------------------------------
duke@435 851 // Is not a number (NaN)
duke@435 852 bool TypeF::is_nan() const {
duke@435 853 return g_isnan(getf()) != 0;
duke@435 854 }
duke@435 855
duke@435 856 //------------------------------dump2------------------------------------------
duke@435 857 // Dump float constant Type
duke@435 858 #ifndef PRODUCT
duke@435 859 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 860 Type::dump2(d,depth, st);
duke@435 861 st->print("%f", _f);
duke@435 862 }
duke@435 863 #endif
duke@435 864
duke@435 865 //------------------------------singleton--------------------------------------
duke@435 866 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 867 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 868 // or a single symbol.
duke@435 869 bool TypeF::singleton(void) const {
duke@435 870 return true; // Always a singleton
duke@435 871 }
duke@435 872
duke@435 873 bool TypeF::empty(void) const {
duke@435 874 return false; // always exactly a singleton
duke@435 875 }
duke@435 876
duke@435 877 //=============================================================================
duke@435 878 // Convenience common pre-built types.
duke@435 879 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 880 const TypeD *TypeD::ONE; // Floating point one
duke@435 881
duke@435 882 //------------------------------make-------------------------------------------
duke@435 883 const TypeD *TypeD::make(double d) {
duke@435 884 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 885 }
duke@435 886
duke@435 887 //------------------------------meet-------------------------------------------
duke@435 888 // Compute the MEET of two types. It returns a new Type object.
duke@435 889 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 890 // Perform a fast test for common case; meeting the same types together.
duke@435 891 if( this == t ) return this; // Meeting same type-rep?
duke@435 892
duke@435 893 // Current "this->_base" is DoubleCon
duke@435 894 switch (t->base()) { // Switch on original type
duke@435 895 case AnyPtr: // Mixing with oops happens when javac
duke@435 896 case RawPtr: // reuses local variables
duke@435 897 case OopPtr:
duke@435 898 case InstPtr:
duke@435 899 case KlassPtr:
duke@435 900 case AryPtr:
duke@435 901 case Int:
duke@435 902 case Long:
duke@435 903 case FloatTop:
duke@435 904 case FloatCon:
duke@435 905 case FloatBot:
duke@435 906 case Bottom: // Ye Olde Default
duke@435 907 return Type::BOTTOM;
duke@435 908
duke@435 909 case DoubleBot:
duke@435 910 return t;
duke@435 911
duke@435 912 default: // All else is a mistake
duke@435 913 typerr(t);
duke@435 914
duke@435 915 case DoubleCon: // Double-constant vs Double-constant?
duke@435 916 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 917 return DOUBLE; // Return generic double
duke@435 918 case Top:
duke@435 919 case DoubleTop:
duke@435 920 break;
duke@435 921 }
duke@435 922 return this; // Return the double constant
duke@435 923 }
duke@435 924
duke@435 925 //------------------------------xdual------------------------------------------
duke@435 926 // Dual: symmetric
duke@435 927 const Type *TypeD::xdual() const {
duke@435 928 return this;
duke@435 929 }
duke@435 930
duke@435 931 //------------------------------eq---------------------------------------------
duke@435 932 // Structural equality check for Type representations
duke@435 933 bool TypeD::eq( const Type *t ) const {
duke@435 934 if( g_isnan(_d) ||
duke@435 935 g_isnan(t->getd()) ) {
duke@435 936 // One or both are NANs. If both are NANs return true, else false.
duke@435 937 return (g_isnan(_d) && g_isnan(t->getd()));
duke@435 938 }
duke@435 939 if (_d == t->getd()) {
duke@435 940 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 941 if (_d == 0.0) {
duke@435 942 // difference between positive and negative zero
duke@435 943 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
duke@435 944 }
duke@435 945 return true;
duke@435 946 }
duke@435 947 return false;
duke@435 948 }
duke@435 949
duke@435 950 //------------------------------hash-------------------------------------------
duke@435 951 // Type-specific hashing function.
duke@435 952 int TypeD::hash(void) const {
duke@435 953 return *(int*)(&_d);
duke@435 954 }
duke@435 955
duke@435 956 //------------------------------is_finite--------------------------------------
duke@435 957 // Has a finite value
duke@435 958 bool TypeD::is_finite() const {
duke@435 959 return g_isfinite(getd()) != 0;
duke@435 960 }
duke@435 961
duke@435 962 //------------------------------is_nan-----------------------------------------
duke@435 963 // Is not a number (NaN)
duke@435 964 bool TypeD::is_nan() const {
duke@435 965 return g_isnan(getd()) != 0;
duke@435 966 }
duke@435 967
duke@435 968 //------------------------------dump2------------------------------------------
duke@435 969 // Dump double constant Type
duke@435 970 #ifndef PRODUCT
duke@435 971 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 972 Type::dump2(d,depth,st);
duke@435 973 st->print("%f", _d);
duke@435 974 }
duke@435 975 #endif
duke@435 976
duke@435 977 //------------------------------singleton--------------------------------------
duke@435 978 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 979 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 980 // or a single symbol.
duke@435 981 bool TypeD::singleton(void) const {
duke@435 982 return true; // Always a singleton
duke@435 983 }
duke@435 984
duke@435 985 bool TypeD::empty(void) const {
duke@435 986 return false; // always exactly a singleton
duke@435 987 }
duke@435 988
duke@435 989 //=============================================================================
duke@435 990 // Convience common pre-built types.
duke@435 991 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 992 const TypeInt *TypeInt::ZERO; // 0
duke@435 993 const TypeInt *TypeInt::ONE; // 1
duke@435 994 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 995 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 996 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 997 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 998 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 999 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1000 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1001 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
duke@435 1002 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1003 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1004 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1005 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1006 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1007 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 1008
duke@435 1009 //------------------------------TypeInt----------------------------------------
duke@435 1010 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1011 }
duke@435 1012
duke@435 1013 //------------------------------make-------------------------------------------
duke@435 1014 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1015 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1016 }
duke@435 1017
duke@435 1018 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
duke@435 1019
duke@435 1020 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
duke@435 1021 // Certain normalizations keep us sane when comparing types.
duke@435 1022 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1023 assert(CC == NULL || (juint)(CC->_hi - CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 1024 if (lo <= hi) {
duke@435 1025 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
duke@435 1026 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // plain int
duke@435 1027 }
duke@435 1028 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1029 }
duke@435 1030
duke@435 1031 //------------------------------meet-------------------------------------------
duke@435 1032 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1033 // with reference count equal to the number of Types pointing at it.
duke@435 1034 // Caller should wrap a Types around it.
duke@435 1035 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1036 // Perform a fast test for common case; meeting the same types together.
duke@435 1037 if( this == t ) return this; // Meeting same type?
duke@435 1038
duke@435 1039 // Currently "this->_base" is a TypeInt
duke@435 1040 switch (t->base()) { // Switch on original type
duke@435 1041 case AnyPtr: // Mixing with oops happens when javac
duke@435 1042 case RawPtr: // reuses local variables
duke@435 1043 case OopPtr:
duke@435 1044 case InstPtr:
duke@435 1045 case KlassPtr:
duke@435 1046 case AryPtr:
duke@435 1047 case Long:
duke@435 1048 case FloatTop:
duke@435 1049 case FloatCon:
duke@435 1050 case FloatBot:
duke@435 1051 case DoubleTop:
duke@435 1052 case DoubleCon:
duke@435 1053 case DoubleBot:
duke@435 1054 case Bottom: // Ye Olde Default
duke@435 1055 return Type::BOTTOM;
duke@435 1056 default: // All else is a mistake
duke@435 1057 typerr(t);
duke@435 1058 case Top: // No change
duke@435 1059 return this;
duke@435 1060 case Int: // Int vs Int?
duke@435 1061 break;
duke@435 1062 }
duke@435 1063
duke@435 1064 // Expand covered set
duke@435 1065 const TypeInt *r = t->is_int();
duke@435 1066 // (Avoid TypeInt::make, to avoid the argument normalizations it enforces.)
duke@435 1067 return (new TypeInt( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
duke@435 1068 }
duke@435 1069
duke@435 1070 //------------------------------xdual------------------------------------------
duke@435 1071 // Dual: reverse hi & lo; flip widen
duke@435 1072 const Type *TypeInt::xdual() const {
duke@435 1073 return new TypeInt(_hi,_lo,WidenMax-_widen);
duke@435 1074 }
duke@435 1075
duke@435 1076 //------------------------------widen------------------------------------------
duke@435 1077 // Only happens for optimistic top-down optimizations.
duke@435 1078 const Type *TypeInt::widen( const Type *old ) const {
duke@435 1079 // Coming from TOP or such; no widening
duke@435 1080 if( old->base() != Int ) return this;
duke@435 1081 const TypeInt *ot = old->is_int();
duke@435 1082
duke@435 1083 // If new guy is equal to old guy, no widening
duke@435 1084 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1085 return old;
duke@435 1086
duke@435 1087 // If new guy contains old, then we widened
duke@435 1088 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1089 // New contains old
duke@435 1090 // If new guy is already wider than old, no widening
duke@435 1091 if( _widen > ot->_widen ) return this;
duke@435 1092 // If old guy was a constant, do not bother
duke@435 1093 if (ot->_lo == ot->_hi) return this;
duke@435 1094 // Now widen new guy.
duke@435 1095 // Check for widening too far
duke@435 1096 if (_widen == WidenMax) {
duke@435 1097 if (min_jint < _lo && _hi < max_jint) {
duke@435 1098 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1099 // which is closer to its respective limit.
duke@435 1100 if (_lo >= 0 || // easy common case
duke@435 1101 (juint)(_lo - min_jint) >= (juint)(max_jint - _hi)) {
duke@435 1102 // Try to widen to an unsigned range type of 31 bits:
duke@435 1103 return make(_lo, max_jint, WidenMax);
duke@435 1104 } else {
duke@435 1105 return make(min_jint, _hi, WidenMax);
duke@435 1106 }
duke@435 1107 }
duke@435 1108 return TypeInt::INT;
duke@435 1109 }
duke@435 1110 // Returned widened new guy
duke@435 1111 return make(_lo,_hi,_widen+1);
duke@435 1112 }
duke@435 1113
duke@435 1114 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1115 // bottom. Return the wider fellow.
duke@435 1116 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1117 return old;
duke@435 1118
duke@435 1119 //fatal("Integer value range is not subset");
duke@435 1120 //return this;
duke@435 1121 return TypeInt::INT;
duke@435 1122 }
duke@435 1123
duke@435 1124 //------------------------------narrow---------------------------------------
duke@435 1125 // Only happens for pessimistic optimizations.
duke@435 1126 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1127 if (_lo >= _hi) return this; // already narrow enough
duke@435 1128 if (old == NULL) return this;
duke@435 1129 const TypeInt* ot = old->isa_int();
duke@435 1130 if (ot == NULL) return this;
duke@435 1131 jint olo = ot->_lo;
duke@435 1132 jint ohi = ot->_hi;
duke@435 1133
duke@435 1134 // If new guy is equal to old guy, no narrowing
duke@435 1135 if (_lo == olo && _hi == ohi) return old;
duke@435 1136
duke@435 1137 // If old guy was maximum range, allow the narrowing
duke@435 1138 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1139
duke@435 1140 if (_lo < olo || _hi > ohi)
duke@435 1141 return this; // doesn't narrow; pretty wierd
duke@435 1142
duke@435 1143 // The new type narrows the old type, so look for a "death march".
duke@435 1144 // See comments on PhaseTransform::saturate.
duke@435 1145 juint nrange = _hi - _lo;
duke@435 1146 juint orange = ohi - olo;
duke@435 1147 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1148 // Use the new type only if the range shrinks a lot.
duke@435 1149 // We do not want the optimizer computing 2^31 point by point.
duke@435 1150 return old;
duke@435 1151 }
duke@435 1152
duke@435 1153 return this;
duke@435 1154 }
duke@435 1155
duke@435 1156 //-----------------------------filter------------------------------------------
duke@435 1157 const Type *TypeInt::filter( const Type *kills ) const {
duke@435 1158 const TypeInt* ft = join(kills)->isa_int();
duke@435 1159 if (ft == NULL || ft->_lo > ft->_hi)
duke@435 1160 return Type::TOP; // Canonical empty value
duke@435 1161 if (ft->_widen < this->_widen) {
duke@435 1162 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1163 // The widen bits must be allowed to run freely through the graph.
duke@435 1164 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1165 }
duke@435 1166 return ft;
duke@435 1167 }
duke@435 1168
duke@435 1169 //------------------------------eq---------------------------------------------
duke@435 1170 // Structural equality check for Type representations
duke@435 1171 bool TypeInt::eq( const Type *t ) const {
duke@435 1172 const TypeInt *r = t->is_int(); // Handy access
duke@435 1173 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1174 }
duke@435 1175
duke@435 1176 //------------------------------hash-------------------------------------------
duke@435 1177 // Type-specific hashing function.
duke@435 1178 int TypeInt::hash(void) const {
duke@435 1179 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1180 }
duke@435 1181
duke@435 1182 //------------------------------is_finite--------------------------------------
duke@435 1183 // Has a finite value
duke@435 1184 bool TypeInt::is_finite() const {
duke@435 1185 return true;
duke@435 1186 }
duke@435 1187
duke@435 1188 //------------------------------dump2------------------------------------------
duke@435 1189 // Dump TypeInt
duke@435 1190 #ifndef PRODUCT
duke@435 1191 static const char* intname(char* buf, jint n) {
duke@435 1192 if (n == min_jint)
duke@435 1193 return "min";
duke@435 1194 else if (n < min_jint + 10000)
duke@435 1195 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1196 else if (n == max_jint)
duke@435 1197 return "max";
duke@435 1198 else if (n > max_jint - 10000)
duke@435 1199 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1200 else
duke@435 1201 sprintf(buf, INT32_FORMAT, n);
duke@435 1202 return buf;
duke@435 1203 }
duke@435 1204
duke@435 1205 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1206 char buf[40], buf2[40];
duke@435 1207 if (_lo == min_jint && _hi == max_jint)
duke@435 1208 st->print("int");
duke@435 1209 else if (is_con())
duke@435 1210 st->print("int:%s", intname(buf, get_con()));
duke@435 1211 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1212 st->print("bool");
duke@435 1213 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1214 st->print("byte");
duke@435 1215 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1216 st->print("char");
duke@435 1217 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1218 st->print("short");
duke@435 1219 else if (_hi == max_jint)
duke@435 1220 st->print("int:>=%s", intname(buf, _lo));
duke@435 1221 else if (_lo == min_jint)
duke@435 1222 st->print("int:<=%s", intname(buf, _hi));
duke@435 1223 else
duke@435 1224 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1225
duke@435 1226 if (_widen != 0 && this != TypeInt::INT)
duke@435 1227 st->print(":%.*s", _widen, "wwww");
duke@435 1228 }
duke@435 1229 #endif
duke@435 1230
duke@435 1231 //------------------------------singleton--------------------------------------
duke@435 1232 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1233 // constants.
duke@435 1234 bool TypeInt::singleton(void) const {
duke@435 1235 return _lo >= _hi;
duke@435 1236 }
duke@435 1237
duke@435 1238 bool TypeInt::empty(void) const {
duke@435 1239 return _lo > _hi;
duke@435 1240 }
duke@435 1241
duke@435 1242 //=============================================================================
duke@435 1243 // Convenience common pre-built types.
duke@435 1244 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1245 const TypeLong *TypeLong::ZERO; // 0
duke@435 1246 const TypeLong *TypeLong::ONE; // 1
duke@435 1247 const TypeLong *TypeLong::POS; // >=0
duke@435 1248 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1249 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1250 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
duke@435 1251
duke@435 1252 //------------------------------TypeLong---------------------------------------
duke@435 1253 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1254 }
duke@435 1255
duke@435 1256 //------------------------------make-------------------------------------------
duke@435 1257 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1258 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1259 }
duke@435 1260
duke@435 1261 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
duke@435 1262 // Certain normalizations keep us sane when comparing types.
duke@435 1263 // The '1' covers constants.
duke@435 1264 if (lo <= hi) {
duke@435 1265 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
duke@435 1266 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // plain long
duke@435 1267 }
duke@435 1268 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1269 }
duke@435 1270
duke@435 1271
duke@435 1272 //------------------------------meet-------------------------------------------
duke@435 1273 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1274 // with reference count equal to the number of Types pointing at it.
duke@435 1275 // Caller should wrap a Types around it.
duke@435 1276 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1277 // Perform a fast test for common case; meeting the same types together.
duke@435 1278 if( this == t ) return this; // Meeting same type?
duke@435 1279
duke@435 1280 // Currently "this->_base" is a TypeLong
duke@435 1281 switch (t->base()) { // Switch on original type
duke@435 1282 case AnyPtr: // Mixing with oops happens when javac
duke@435 1283 case RawPtr: // reuses local variables
duke@435 1284 case OopPtr:
duke@435 1285 case InstPtr:
duke@435 1286 case KlassPtr:
duke@435 1287 case AryPtr:
duke@435 1288 case Int:
duke@435 1289 case FloatTop:
duke@435 1290 case FloatCon:
duke@435 1291 case FloatBot:
duke@435 1292 case DoubleTop:
duke@435 1293 case DoubleCon:
duke@435 1294 case DoubleBot:
duke@435 1295 case Bottom: // Ye Olde Default
duke@435 1296 return Type::BOTTOM;
duke@435 1297 default: // All else is a mistake
duke@435 1298 typerr(t);
duke@435 1299 case Top: // No change
duke@435 1300 return this;
duke@435 1301 case Long: // Long vs Long?
duke@435 1302 break;
duke@435 1303 }
duke@435 1304
duke@435 1305 // Expand covered set
duke@435 1306 const TypeLong *r = t->is_long(); // Turn into a TypeLong
duke@435 1307 // (Avoid TypeLong::make, to avoid the argument normalizations it enforces.)
duke@435 1308 return (new TypeLong( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
duke@435 1309 }
duke@435 1310
duke@435 1311 //------------------------------xdual------------------------------------------
duke@435 1312 // Dual: reverse hi & lo; flip widen
duke@435 1313 const Type *TypeLong::xdual() const {
duke@435 1314 return new TypeLong(_hi,_lo,WidenMax-_widen);
duke@435 1315 }
duke@435 1316
duke@435 1317 //------------------------------widen------------------------------------------
duke@435 1318 // Only happens for optimistic top-down optimizations.
duke@435 1319 const Type *TypeLong::widen( const Type *old ) const {
duke@435 1320 // Coming from TOP or such; no widening
duke@435 1321 if( old->base() != Long ) return this;
duke@435 1322 const TypeLong *ot = old->is_long();
duke@435 1323
duke@435 1324 // If new guy is equal to old guy, no widening
duke@435 1325 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1326 return old;
duke@435 1327
duke@435 1328 // If new guy contains old, then we widened
duke@435 1329 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1330 // New contains old
duke@435 1331 // If new guy is already wider than old, no widening
duke@435 1332 if( _widen > ot->_widen ) return this;
duke@435 1333 // If old guy was a constant, do not bother
duke@435 1334 if (ot->_lo == ot->_hi) return this;
duke@435 1335 // Now widen new guy.
duke@435 1336 // Check for widening too far
duke@435 1337 if (_widen == WidenMax) {
duke@435 1338 if (min_jlong < _lo && _hi < max_jlong) {
duke@435 1339 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1340 // which is closer to its respective limit.
duke@435 1341 if (_lo >= 0 || // easy common case
duke@435 1342 (julong)(_lo - min_jlong) >= (julong)(max_jlong - _hi)) {
duke@435 1343 // Try to widen to an unsigned range type of 32/63 bits:
duke@435 1344 if (_hi < max_juint)
duke@435 1345 return make(_lo, max_juint, WidenMax);
duke@435 1346 else
duke@435 1347 return make(_lo, max_jlong, WidenMax);
duke@435 1348 } else {
duke@435 1349 return make(min_jlong, _hi, WidenMax);
duke@435 1350 }
duke@435 1351 }
duke@435 1352 return TypeLong::LONG;
duke@435 1353 }
duke@435 1354 // Returned widened new guy
duke@435 1355 return make(_lo,_hi,_widen+1);
duke@435 1356 }
duke@435 1357
duke@435 1358 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1359 // bottom. Return the wider fellow.
duke@435 1360 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1361 return old;
duke@435 1362
duke@435 1363 // fatal("Long value range is not subset");
duke@435 1364 // return this;
duke@435 1365 return TypeLong::LONG;
duke@435 1366 }
duke@435 1367
duke@435 1368 //------------------------------narrow----------------------------------------
duke@435 1369 // Only happens for pessimistic optimizations.
duke@435 1370 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1371 if (_lo >= _hi) return this; // already narrow enough
duke@435 1372 if (old == NULL) return this;
duke@435 1373 const TypeLong* ot = old->isa_long();
duke@435 1374 if (ot == NULL) return this;
duke@435 1375 jlong olo = ot->_lo;
duke@435 1376 jlong ohi = ot->_hi;
duke@435 1377
duke@435 1378 // If new guy is equal to old guy, no narrowing
duke@435 1379 if (_lo == olo && _hi == ohi) return old;
duke@435 1380
duke@435 1381 // If old guy was maximum range, allow the narrowing
duke@435 1382 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1383
duke@435 1384 if (_lo < olo || _hi > ohi)
duke@435 1385 return this; // doesn't narrow; pretty wierd
duke@435 1386
duke@435 1387 // The new type narrows the old type, so look for a "death march".
duke@435 1388 // See comments on PhaseTransform::saturate.
duke@435 1389 julong nrange = _hi - _lo;
duke@435 1390 julong orange = ohi - olo;
duke@435 1391 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1392 // Use the new type only if the range shrinks a lot.
duke@435 1393 // We do not want the optimizer computing 2^31 point by point.
duke@435 1394 return old;
duke@435 1395 }
duke@435 1396
duke@435 1397 return this;
duke@435 1398 }
duke@435 1399
duke@435 1400 //-----------------------------filter------------------------------------------
duke@435 1401 const Type *TypeLong::filter( const Type *kills ) const {
duke@435 1402 const TypeLong* ft = join(kills)->isa_long();
duke@435 1403 if (ft == NULL || ft->_lo > ft->_hi)
duke@435 1404 return Type::TOP; // Canonical empty value
duke@435 1405 if (ft->_widen < this->_widen) {
duke@435 1406 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1407 // The widen bits must be allowed to run freely through the graph.
duke@435 1408 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1409 }
duke@435 1410 return ft;
duke@435 1411 }
duke@435 1412
duke@435 1413 //------------------------------eq---------------------------------------------
duke@435 1414 // Structural equality check for Type representations
duke@435 1415 bool TypeLong::eq( const Type *t ) const {
duke@435 1416 const TypeLong *r = t->is_long(); // Handy access
duke@435 1417 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1418 }
duke@435 1419
duke@435 1420 //------------------------------hash-------------------------------------------
duke@435 1421 // Type-specific hashing function.
duke@435 1422 int TypeLong::hash(void) const {
duke@435 1423 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1424 }
duke@435 1425
duke@435 1426 //------------------------------is_finite--------------------------------------
duke@435 1427 // Has a finite value
duke@435 1428 bool TypeLong::is_finite() const {
duke@435 1429 return true;
duke@435 1430 }
duke@435 1431
duke@435 1432 //------------------------------dump2------------------------------------------
duke@435 1433 // Dump TypeLong
duke@435 1434 #ifndef PRODUCT
duke@435 1435 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1436 if (n > x) {
duke@435 1437 if (n >= x + 10000) return NULL;
duke@435 1438 sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
duke@435 1439 } else if (n < x) {
duke@435 1440 if (n <= x - 10000) return NULL;
duke@435 1441 sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
duke@435 1442 } else {
duke@435 1443 return xname;
duke@435 1444 }
duke@435 1445 return buf;
duke@435 1446 }
duke@435 1447
duke@435 1448 static const char* longname(char* buf, jlong n) {
duke@435 1449 const char* str;
duke@435 1450 if (n == min_jlong)
duke@435 1451 return "min";
duke@435 1452 else if (n < min_jlong + 10000)
duke@435 1453 sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
duke@435 1454 else if (n == max_jlong)
duke@435 1455 return "max";
duke@435 1456 else if (n > max_jlong - 10000)
duke@435 1457 sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
duke@435 1458 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1459 return str;
duke@435 1460 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1461 return str;
duke@435 1462 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1463 return str;
duke@435 1464 else
duke@435 1465 sprintf(buf, INT64_FORMAT, n);
duke@435 1466 return buf;
duke@435 1467 }
duke@435 1468
duke@435 1469 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1470 char buf[80], buf2[80];
duke@435 1471 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1472 st->print("long");
duke@435 1473 else if (is_con())
duke@435 1474 st->print("long:%s", longname(buf, get_con()));
duke@435 1475 else if (_hi == max_jlong)
duke@435 1476 st->print("long:>=%s", longname(buf, _lo));
duke@435 1477 else if (_lo == min_jlong)
duke@435 1478 st->print("long:<=%s", longname(buf, _hi));
duke@435 1479 else
duke@435 1480 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1481
duke@435 1482 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1483 st->print(":%.*s", _widen, "wwww");
duke@435 1484 }
duke@435 1485 #endif
duke@435 1486
duke@435 1487 //------------------------------singleton--------------------------------------
duke@435 1488 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1489 // constants
duke@435 1490 bool TypeLong::singleton(void) const {
duke@435 1491 return _lo >= _hi;
duke@435 1492 }
duke@435 1493
duke@435 1494 bool TypeLong::empty(void) const {
duke@435 1495 return _lo > _hi;
duke@435 1496 }
duke@435 1497
duke@435 1498 //=============================================================================
duke@435 1499 // Convenience common pre-built types.
duke@435 1500 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1501 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1502 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1503 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1504 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1505 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1506 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1507 const TypeTuple *TypeTuple::START_I2C;
duke@435 1508 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1509 const TypeTuple *TypeTuple::LONG_PAIR;
duke@435 1510
duke@435 1511
duke@435 1512 //------------------------------make-------------------------------------------
duke@435 1513 // Make a TypeTuple from the range of a method signature
duke@435 1514 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1515 ciType* return_type = sig->return_type();
duke@435 1516 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1517 const Type **field_array = fields(total_fields);
duke@435 1518 switch (return_type->basic_type()) {
duke@435 1519 case T_LONG:
duke@435 1520 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1521 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1522 break;
duke@435 1523 case T_DOUBLE:
duke@435 1524 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1525 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1526 break;
duke@435 1527 case T_OBJECT:
duke@435 1528 case T_ARRAY:
duke@435 1529 case T_BOOLEAN:
duke@435 1530 case T_CHAR:
duke@435 1531 case T_FLOAT:
duke@435 1532 case T_BYTE:
duke@435 1533 case T_SHORT:
duke@435 1534 case T_INT:
duke@435 1535 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1536 break;
duke@435 1537 case T_VOID:
duke@435 1538 break;
duke@435 1539 default:
duke@435 1540 ShouldNotReachHere();
duke@435 1541 }
duke@435 1542 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1543 }
duke@435 1544
duke@435 1545 // Make a TypeTuple from the domain of a method signature
duke@435 1546 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1547 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1548
duke@435 1549 uint pos = TypeFunc::Parms;
duke@435 1550 const Type **field_array;
duke@435 1551 if (recv != NULL) {
duke@435 1552 total_fields++;
duke@435 1553 field_array = fields(total_fields);
duke@435 1554 // Use get_const_type here because it respects UseUniqueSubclasses:
duke@435 1555 field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
duke@435 1556 } else {
duke@435 1557 field_array = fields(total_fields);
duke@435 1558 }
duke@435 1559
duke@435 1560 int i = 0;
duke@435 1561 while (pos < total_fields) {
duke@435 1562 ciType* type = sig->type_at(i);
duke@435 1563
duke@435 1564 switch (type->basic_type()) {
duke@435 1565 case T_LONG:
duke@435 1566 field_array[pos++] = TypeLong::LONG;
duke@435 1567 field_array[pos++] = Type::HALF;
duke@435 1568 break;
duke@435 1569 case T_DOUBLE:
duke@435 1570 field_array[pos++] = Type::DOUBLE;
duke@435 1571 field_array[pos++] = Type::HALF;
duke@435 1572 break;
duke@435 1573 case T_OBJECT:
duke@435 1574 case T_ARRAY:
duke@435 1575 case T_BOOLEAN:
duke@435 1576 case T_CHAR:
duke@435 1577 case T_FLOAT:
duke@435 1578 case T_BYTE:
duke@435 1579 case T_SHORT:
duke@435 1580 case T_INT:
duke@435 1581 field_array[pos++] = get_const_type(type);
duke@435 1582 break;
duke@435 1583 default:
duke@435 1584 ShouldNotReachHere();
duke@435 1585 }
duke@435 1586 i++;
duke@435 1587 }
duke@435 1588 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1589 }
duke@435 1590
duke@435 1591 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1592 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1593 }
duke@435 1594
duke@435 1595 //------------------------------fields-----------------------------------------
duke@435 1596 // Subroutine call type with space allocated for argument types
duke@435 1597 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1598 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1599 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1600 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1601 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1602 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1603 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1604
duke@435 1605 return flds;
duke@435 1606 }
duke@435 1607
duke@435 1608 //------------------------------meet-------------------------------------------
duke@435 1609 // Compute the MEET of two types. It returns a new Type object.
duke@435 1610 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1611 // Perform a fast test for common case; meeting the same types together.
duke@435 1612 if( this == t ) return this; // Meeting same type-rep?
duke@435 1613
duke@435 1614 // Current "this->_base" is Tuple
duke@435 1615 switch (t->base()) { // switch on original type
duke@435 1616
duke@435 1617 case Bottom: // Ye Olde Default
duke@435 1618 return t;
duke@435 1619
duke@435 1620 default: // All else is a mistake
duke@435 1621 typerr(t);
duke@435 1622
duke@435 1623 case Tuple: { // Meeting 2 signatures?
duke@435 1624 const TypeTuple *x = t->is_tuple();
duke@435 1625 assert( _cnt == x->_cnt, "" );
duke@435 1626 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1627 for( uint i=0; i<_cnt; i++ )
duke@435 1628 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1629 return TypeTuple::make(_cnt,fields);
duke@435 1630 }
duke@435 1631 case Top:
duke@435 1632 break;
duke@435 1633 }
duke@435 1634 return this; // Return the double constant
duke@435 1635 }
duke@435 1636
duke@435 1637 //------------------------------xdual------------------------------------------
duke@435 1638 // Dual: compute field-by-field dual
duke@435 1639 const Type *TypeTuple::xdual() const {
duke@435 1640 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1641 for( uint i=0; i<_cnt; i++ )
duke@435 1642 fields[i] = _fields[i]->dual();
duke@435 1643 return new TypeTuple(_cnt,fields);
duke@435 1644 }
duke@435 1645
duke@435 1646 //------------------------------eq---------------------------------------------
duke@435 1647 // Structural equality check for Type representations
duke@435 1648 bool TypeTuple::eq( const Type *t ) const {
duke@435 1649 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1650 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1651 for (uint i = 0; i < _cnt; i++)
duke@435 1652 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1653 return false; // Missed
duke@435 1654 return true;
duke@435 1655 }
duke@435 1656
duke@435 1657 //------------------------------hash-------------------------------------------
duke@435 1658 // Type-specific hashing function.
duke@435 1659 int TypeTuple::hash(void) const {
duke@435 1660 intptr_t sum = _cnt;
duke@435 1661 for( uint i=0; i<_cnt; i++ )
duke@435 1662 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1663 return sum;
duke@435 1664 }
duke@435 1665
duke@435 1666 //------------------------------dump2------------------------------------------
duke@435 1667 // Dump signature Type
duke@435 1668 #ifndef PRODUCT
duke@435 1669 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1670 st->print("{");
duke@435 1671 if( !depth || d[this] ) { // Check for recursive print
duke@435 1672 st->print("...}");
duke@435 1673 return;
duke@435 1674 }
duke@435 1675 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1676 if( _cnt ) {
duke@435 1677 uint i;
duke@435 1678 for( i=0; i<_cnt-1; i++ ) {
duke@435 1679 st->print("%d:", i);
duke@435 1680 _fields[i]->dump2(d, depth-1, st);
duke@435 1681 st->print(", ");
duke@435 1682 }
duke@435 1683 st->print("%d:", i);
duke@435 1684 _fields[i]->dump2(d, depth-1, st);
duke@435 1685 }
duke@435 1686 st->print("}");
duke@435 1687 }
duke@435 1688 #endif
duke@435 1689
duke@435 1690 //------------------------------singleton--------------------------------------
duke@435 1691 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1692 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1693 // or a single symbol.
duke@435 1694 bool TypeTuple::singleton(void) const {
duke@435 1695 return false; // Never a singleton
duke@435 1696 }
duke@435 1697
duke@435 1698 bool TypeTuple::empty(void) const {
duke@435 1699 for( uint i=0; i<_cnt; i++ ) {
duke@435 1700 if (_fields[i]->empty()) return true;
duke@435 1701 }
duke@435 1702 return false;
duke@435 1703 }
duke@435 1704
duke@435 1705 //=============================================================================
duke@435 1706 // Convenience common pre-built types.
duke@435 1707
duke@435 1708 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1709 // Certain normalizations keep us sane when comparing types.
duke@435 1710 // We do not want arrayOop variables to differ only by the wideness
duke@435 1711 // of their index types. Pick minimum wideness, since that is the
duke@435 1712 // forced wideness of small ranges anyway.
duke@435 1713 if (size->_widen != Type::WidenMin)
duke@435 1714 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1715 else
duke@435 1716 return size;
duke@435 1717 }
duke@435 1718
duke@435 1719 //------------------------------make-------------------------------------------
duke@435 1720 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
duke@435 1721 size = normalize_array_size(size);
duke@435 1722 return (TypeAry*)(new TypeAry(elem,size))->hashcons();
duke@435 1723 }
duke@435 1724
duke@435 1725 //------------------------------meet-------------------------------------------
duke@435 1726 // Compute the MEET of two types. It returns a new Type object.
duke@435 1727 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1728 // Perform a fast test for common case; meeting the same types together.
duke@435 1729 if( this == t ) return this; // Meeting same type-rep?
duke@435 1730
duke@435 1731 // Current "this->_base" is Ary
duke@435 1732 switch (t->base()) { // switch on original type
duke@435 1733
duke@435 1734 case Bottom: // Ye Olde Default
duke@435 1735 return t;
duke@435 1736
duke@435 1737 default: // All else is a mistake
duke@435 1738 typerr(t);
duke@435 1739
duke@435 1740 case Array: { // Meeting 2 arrays?
duke@435 1741 const TypeAry *a = t->is_ary();
duke@435 1742 return TypeAry::make(_elem->meet(a->_elem),
duke@435 1743 _size->xmeet(a->_size)->is_int());
duke@435 1744 }
duke@435 1745 case Top:
duke@435 1746 break;
duke@435 1747 }
duke@435 1748 return this; // Return the double constant
duke@435 1749 }
duke@435 1750
duke@435 1751 //------------------------------xdual------------------------------------------
duke@435 1752 // Dual: compute field-by-field dual
duke@435 1753 const Type *TypeAry::xdual() const {
duke@435 1754 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1755 size_dual = normalize_array_size(size_dual);
duke@435 1756 return new TypeAry( _elem->dual(), size_dual);
duke@435 1757 }
duke@435 1758
duke@435 1759 //------------------------------eq---------------------------------------------
duke@435 1760 // Structural equality check for Type representations
duke@435 1761 bool TypeAry::eq( const Type *t ) const {
duke@435 1762 const TypeAry *a = (const TypeAry*)t;
duke@435 1763 return _elem == a->_elem &&
duke@435 1764 _size == a->_size;
duke@435 1765 }
duke@435 1766
duke@435 1767 //------------------------------hash-------------------------------------------
duke@435 1768 // Type-specific hashing function.
duke@435 1769 int TypeAry::hash(void) const {
duke@435 1770 return (intptr_t)_elem + (intptr_t)_size;
duke@435 1771 }
duke@435 1772
duke@435 1773 //------------------------------dump2------------------------------------------
duke@435 1774 #ifndef PRODUCT
duke@435 1775 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1776 _elem->dump2(d, depth, st);
duke@435 1777 st->print("[");
duke@435 1778 _size->dump2(d, depth, st);
duke@435 1779 st->print("]");
duke@435 1780 }
duke@435 1781 #endif
duke@435 1782
duke@435 1783 //------------------------------singleton--------------------------------------
duke@435 1784 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1785 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1786 // or a single symbol.
duke@435 1787 bool TypeAry::singleton(void) const {
duke@435 1788 return false; // Never a singleton
duke@435 1789 }
duke@435 1790
duke@435 1791 bool TypeAry::empty(void) const {
duke@435 1792 return _elem->empty() || _size->empty();
duke@435 1793 }
duke@435 1794
duke@435 1795 //--------------------------ary_must_be_exact----------------------------------
duke@435 1796 bool TypeAry::ary_must_be_exact() const {
duke@435 1797 if (!UseExactTypes) return false;
duke@435 1798 // This logic looks at the element type of an array, and returns true
duke@435 1799 // if the element type is either a primitive or a final instance class.
duke@435 1800 // In such cases, an array built on this ary must have no subclasses.
duke@435 1801 if (_elem == BOTTOM) return false; // general array not exact
duke@435 1802 if (_elem == TOP ) return false; // inverted general array not exact
duke@435 1803 const TypeOopPtr* toop = _elem->isa_oopptr();
duke@435 1804 if (!toop) return true; // a primitive type, like int
duke@435 1805 ciKlass* tklass = toop->klass();
duke@435 1806 if (tklass == NULL) return false; // unloaded class
duke@435 1807 if (!tklass->is_loaded()) return false; // unloaded class
duke@435 1808 const TypeInstPtr* tinst = _elem->isa_instptr();
duke@435 1809 if (tinst) return tklass->as_instance_klass()->is_final();
duke@435 1810 const TypeAryPtr* tap = _elem->isa_aryptr();
duke@435 1811 if (tap) return tap->ary()->ary_must_be_exact();
duke@435 1812 return false;
duke@435 1813 }
duke@435 1814
duke@435 1815 //=============================================================================
duke@435 1816 // Convenience common pre-built types.
duke@435 1817 const TypePtr *TypePtr::NULL_PTR;
duke@435 1818 const TypePtr *TypePtr::NOTNULL;
duke@435 1819 const TypePtr *TypePtr::BOTTOM;
duke@435 1820
duke@435 1821 //------------------------------meet-------------------------------------------
duke@435 1822 // Meet over the PTR enum
duke@435 1823 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 1824 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 1825 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 1826 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 1827 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 1828 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 1829 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 1830 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 1831 };
duke@435 1832
duke@435 1833 //------------------------------make-------------------------------------------
duke@435 1834 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 1835 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 1836 }
duke@435 1837
duke@435 1838 //------------------------------cast_to_ptr_type-------------------------------
duke@435 1839 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 1840 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 1841 if( ptr == _ptr ) return this;
duke@435 1842 return make(_base, ptr, _offset);
duke@435 1843 }
duke@435 1844
duke@435 1845 //------------------------------get_con----------------------------------------
duke@435 1846 intptr_t TypePtr::get_con() const {
duke@435 1847 assert( _ptr == Null, "" );
duke@435 1848 return _offset;
duke@435 1849 }
duke@435 1850
duke@435 1851 //------------------------------meet-------------------------------------------
duke@435 1852 // Compute the MEET of two types. It returns a new Type object.
duke@435 1853 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 1854 // Perform a fast test for common case; meeting the same types together.
duke@435 1855 if( this == t ) return this; // Meeting same type-rep?
duke@435 1856
duke@435 1857 // Current "this->_base" is AnyPtr
duke@435 1858 switch (t->base()) { // switch on original type
duke@435 1859 case Int: // Mixing ints & oops happens when javac
duke@435 1860 case Long: // reuses local variables
duke@435 1861 case FloatTop:
duke@435 1862 case FloatCon:
duke@435 1863 case FloatBot:
duke@435 1864 case DoubleTop:
duke@435 1865 case DoubleCon:
duke@435 1866 case DoubleBot:
duke@435 1867 case Bottom: // Ye Olde Default
duke@435 1868 return Type::BOTTOM;
duke@435 1869 case Top:
duke@435 1870 return this;
duke@435 1871
duke@435 1872 case AnyPtr: { // Meeting to AnyPtrs
duke@435 1873 const TypePtr *tp = t->is_ptr();
duke@435 1874 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 1875 }
duke@435 1876 case RawPtr: // For these, flip the call around to cut down
duke@435 1877 case OopPtr:
duke@435 1878 case InstPtr: // on the cases I have to handle.
duke@435 1879 case KlassPtr:
duke@435 1880 case AryPtr:
duke@435 1881 return t->xmeet(this); // Call in reverse direction
duke@435 1882 default: // All else is a mistake
duke@435 1883 typerr(t);
duke@435 1884
duke@435 1885 }
duke@435 1886 return this;
duke@435 1887 }
duke@435 1888
duke@435 1889 //------------------------------meet_offset------------------------------------
duke@435 1890 int TypePtr::meet_offset( int offset ) const {
duke@435 1891 // Either is 'TOP' offset? Return the other offset!
duke@435 1892 if( _offset == OffsetTop ) return offset;
duke@435 1893 if( offset == OffsetTop ) return _offset;
duke@435 1894 // If either is different, return 'BOTTOM' offset
duke@435 1895 if( _offset != offset ) return OffsetBot;
duke@435 1896 return _offset;
duke@435 1897 }
duke@435 1898
duke@435 1899 //------------------------------dual_offset------------------------------------
duke@435 1900 int TypePtr::dual_offset( ) const {
duke@435 1901 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 1902 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 1903 return _offset; // Map everything else into self
duke@435 1904 }
duke@435 1905
duke@435 1906 //------------------------------xdual------------------------------------------
duke@435 1907 // Dual: compute field-by-field dual
duke@435 1908 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 1909 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 1910 };
duke@435 1911 const Type *TypePtr::xdual() const {
duke@435 1912 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 1913 }
duke@435 1914
duke@435 1915 //------------------------------add_offset-------------------------------------
duke@435 1916 const TypePtr *TypePtr::add_offset( int offset ) const {
duke@435 1917 if( offset == 0 ) return this; // No change
duke@435 1918 if( _offset == OffsetBot ) return this;
duke@435 1919 if( offset == OffsetBot ) offset = OffsetBot;
duke@435 1920 else if( _offset == OffsetTop || offset == OffsetTop ) offset = OffsetTop;
duke@435 1921 else offset += _offset;
duke@435 1922 return make( AnyPtr, _ptr, offset );
duke@435 1923 }
duke@435 1924
duke@435 1925 //------------------------------eq---------------------------------------------
duke@435 1926 // Structural equality check for Type representations
duke@435 1927 bool TypePtr::eq( const Type *t ) const {
duke@435 1928 const TypePtr *a = (const TypePtr*)t;
duke@435 1929 return _ptr == a->ptr() && _offset == a->offset();
duke@435 1930 }
duke@435 1931
duke@435 1932 //------------------------------hash-------------------------------------------
duke@435 1933 // Type-specific hashing function.
duke@435 1934 int TypePtr::hash(void) const {
duke@435 1935 return _ptr + _offset;
duke@435 1936 }
duke@435 1937
duke@435 1938 //------------------------------dump2------------------------------------------
duke@435 1939 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 1940 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 1941 };
duke@435 1942
duke@435 1943 #ifndef PRODUCT
duke@435 1944 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1945 if( _ptr == Null ) st->print("NULL");
duke@435 1946 else st->print("%s *", ptr_msg[_ptr]);
duke@435 1947 if( _offset == OffsetTop ) st->print("+top");
duke@435 1948 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 1949 else if( _offset ) st->print("+%d", _offset);
duke@435 1950 }
duke@435 1951 #endif
duke@435 1952
duke@435 1953 //------------------------------singleton--------------------------------------
duke@435 1954 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1955 // constants
duke@435 1956 bool TypePtr::singleton(void) const {
duke@435 1957 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 1958 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 1959 }
duke@435 1960
duke@435 1961 bool TypePtr::empty(void) const {
duke@435 1962 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 1963 }
duke@435 1964
duke@435 1965 //=============================================================================
duke@435 1966 // Convenience common pre-built types.
duke@435 1967 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 1968 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 1969
duke@435 1970 //------------------------------make-------------------------------------------
duke@435 1971 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 1972 assert( ptr != Constant, "what is the constant?" );
duke@435 1973 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 1974 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 1975 }
duke@435 1976
duke@435 1977 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 1978 assert( bits, "Use TypePtr for NULL" );
duke@435 1979 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 1980 }
duke@435 1981
duke@435 1982 //------------------------------cast_to_ptr_type-------------------------------
duke@435 1983 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 1984 assert( ptr != Constant, "what is the constant?" );
duke@435 1985 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 1986 assert( _bits==0, "Why cast a constant address?");
duke@435 1987 if( ptr == _ptr ) return this;
duke@435 1988 return make(ptr);
duke@435 1989 }
duke@435 1990
duke@435 1991 //------------------------------get_con----------------------------------------
duke@435 1992 intptr_t TypeRawPtr::get_con() const {
duke@435 1993 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 1994 return (intptr_t)_bits;
duke@435 1995 }
duke@435 1996
duke@435 1997 //------------------------------meet-------------------------------------------
duke@435 1998 // Compute the MEET of two types. It returns a new Type object.
duke@435 1999 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2000 // Perform a fast test for common case; meeting the same types together.
duke@435 2001 if( this == t ) return this; // Meeting same type-rep?
duke@435 2002
duke@435 2003 // Current "this->_base" is RawPtr
duke@435 2004 switch( t->base() ) { // switch on original type
duke@435 2005 case Bottom: // Ye Olde Default
duke@435 2006 return t;
duke@435 2007 case Top:
duke@435 2008 return this;
duke@435 2009 case AnyPtr: // Meeting to AnyPtrs
duke@435 2010 break;
duke@435 2011 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2012 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2013 enum PTR ptr = meet_ptr( tptr );
duke@435 2014 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2015 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2016 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2017 ptr = NotNull; // Fall down in lattice
duke@435 2018 }
duke@435 2019 return make( ptr );
duke@435 2020 }
duke@435 2021
duke@435 2022 case OopPtr:
duke@435 2023 case InstPtr:
duke@435 2024 case KlassPtr:
duke@435 2025 case AryPtr:
duke@435 2026 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2027 default: // All else is a mistake
duke@435 2028 typerr(t);
duke@435 2029 }
duke@435 2030
duke@435 2031 // Found an AnyPtr type vs self-RawPtr type
duke@435 2032 const TypePtr *tp = t->is_ptr();
duke@435 2033 switch (tp->ptr()) {
duke@435 2034 case TypePtr::TopPTR: return this;
duke@435 2035 case TypePtr::BotPTR: return t;
duke@435 2036 case TypePtr::Null:
duke@435 2037 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2038 return TypeRawPtr::BOTTOM;
duke@435 2039 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2040 case TypePtr::AnyNull:
duke@435 2041 if( _ptr == TypePtr::Constant) return this;
duke@435 2042 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2043 default: ShouldNotReachHere();
duke@435 2044 }
duke@435 2045 return this;
duke@435 2046 }
duke@435 2047
duke@435 2048 //------------------------------xdual------------------------------------------
duke@435 2049 // Dual: compute field-by-field dual
duke@435 2050 const Type *TypeRawPtr::xdual() const {
duke@435 2051 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2052 }
duke@435 2053
duke@435 2054 //------------------------------add_offset-------------------------------------
duke@435 2055 const TypePtr *TypeRawPtr::add_offset( int offset ) const {
duke@435 2056 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2057 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2058 if( offset == 0 ) return this; // No change
duke@435 2059 switch (_ptr) {
duke@435 2060 case TypePtr::TopPTR:
duke@435 2061 case TypePtr::BotPTR:
duke@435 2062 case TypePtr::NotNull:
duke@435 2063 return this;
duke@435 2064 case TypePtr::Null:
duke@435 2065 case TypePtr::Constant:
duke@435 2066 return make( _bits+offset );
duke@435 2067 default: ShouldNotReachHere();
duke@435 2068 }
duke@435 2069 return NULL; // Lint noise
duke@435 2070 }
duke@435 2071
duke@435 2072 //------------------------------eq---------------------------------------------
duke@435 2073 // Structural equality check for Type representations
duke@435 2074 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2075 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2076 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2077 }
duke@435 2078
duke@435 2079 //------------------------------hash-------------------------------------------
duke@435 2080 // Type-specific hashing function.
duke@435 2081 int TypeRawPtr::hash(void) const {
duke@435 2082 return (intptr_t)_bits + TypePtr::hash();
duke@435 2083 }
duke@435 2084
duke@435 2085 //------------------------------dump2------------------------------------------
duke@435 2086 #ifndef PRODUCT
duke@435 2087 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2088 if( _ptr == Constant )
duke@435 2089 st->print(INTPTR_FORMAT, _bits);
duke@435 2090 else
duke@435 2091 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2092 }
duke@435 2093 #endif
duke@435 2094
duke@435 2095 //=============================================================================
duke@435 2096 // Convenience common pre-built type.
duke@435 2097 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2098
duke@435 2099 //------------------------------make-------------------------------------------
duke@435 2100 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
duke@435 2101 int offset) {
duke@435 2102 assert(ptr != Constant, "no constant generic pointers");
duke@435 2103 ciKlass* k = ciKlassKlass::make();
duke@435 2104 bool xk = false;
duke@435 2105 ciObject* o = NULL;
duke@435 2106 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, UNKNOWN_INSTANCE))->hashcons();
duke@435 2107 }
duke@435 2108
duke@435 2109
duke@435 2110 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2111 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2112 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2113 if( ptr == _ptr ) return this;
duke@435 2114 return make(ptr, _offset);
duke@435 2115 }
duke@435 2116
duke@435 2117 //-----------------------------cast_to_instance-------------------------------
duke@435 2118 const TypeOopPtr *TypeOopPtr::cast_to_instance(int instance_id) const {
duke@435 2119 // There are no instances of a general oop.
duke@435 2120 // Return self unchanged.
duke@435 2121 return this;
duke@435 2122 }
duke@435 2123
duke@435 2124 //-----------------------------cast_to_exactness-------------------------------
duke@435 2125 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2126 // There is no such thing as an exact general oop.
duke@435 2127 // Return self unchanged.
duke@435 2128 return this;
duke@435 2129 }
duke@435 2130
duke@435 2131
duke@435 2132 //------------------------------as_klass_type----------------------------------
duke@435 2133 // Return the klass type corresponding to this instance or array type.
duke@435 2134 // It is the type that is loaded from an object of this type.
duke@435 2135 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2136 ciKlass* k = klass();
duke@435 2137 bool xk = klass_is_exact();
duke@435 2138 if (k == NULL || !k->is_java_klass())
duke@435 2139 return TypeKlassPtr::OBJECT;
duke@435 2140 else
duke@435 2141 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2142 }
duke@435 2143
duke@435 2144
duke@435 2145 //------------------------------meet-------------------------------------------
duke@435 2146 // Compute the MEET of two types. It returns a new Type object.
duke@435 2147 const Type *TypeOopPtr::xmeet( const Type *t ) const {
duke@435 2148 // Perform a fast test for common case; meeting the same types together.
duke@435 2149 if( this == t ) return this; // Meeting same type-rep?
duke@435 2150
duke@435 2151 // Current "this->_base" is OopPtr
duke@435 2152 switch (t->base()) { // switch on original type
duke@435 2153
duke@435 2154 case Int: // Mixing ints & oops happens when javac
duke@435 2155 case Long: // reuses local variables
duke@435 2156 case FloatTop:
duke@435 2157 case FloatCon:
duke@435 2158 case FloatBot:
duke@435 2159 case DoubleTop:
duke@435 2160 case DoubleCon:
duke@435 2161 case DoubleBot:
duke@435 2162 case Bottom: // Ye Olde Default
duke@435 2163 return Type::BOTTOM;
duke@435 2164 case Top:
duke@435 2165 return this;
duke@435 2166
duke@435 2167 default: // All else is a mistake
duke@435 2168 typerr(t);
duke@435 2169
duke@435 2170 case RawPtr:
duke@435 2171 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2172
duke@435 2173 case AnyPtr: {
duke@435 2174 // Found an AnyPtr type vs self-OopPtr type
duke@435 2175 const TypePtr *tp = t->is_ptr();
duke@435 2176 int offset = meet_offset(tp->offset());
duke@435 2177 PTR ptr = meet_ptr(tp->ptr());
duke@435 2178 switch (tp->ptr()) {
duke@435 2179 case Null:
duke@435 2180 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2181 // else fall through:
duke@435 2182 case TopPTR:
duke@435 2183 case AnyNull:
duke@435 2184 return make(ptr, offset);
duke@435 2185 case BotPTR:
duke@435 2186 case NotNull:
duke@435 2187 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2188 default: typerr(t);
duke@435 2189 }
duke@435 2190 }
duke@435 2191
duke@435 2192 case OopPtr: { // Meeting to other OopPtrs
duke@435 2193 const TypeOopPtr *tp = t->is_oopptr();
duke@435 2194 return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 2195 }
duke@435 2196
duke@435 2197 case InstPtr: // For these, flip the call around to cut down
duke@435 2198 case KlassPtr: // on the cases I have to handle.
duke@435 2199 case AryPtr:
duke@435 2200 return t->xmeet(this); // Call in reverse direction
duke@435 2201
duke@435 2202 } // End of switch
duke@435 2203 return this; // Return the double constant
duke@435 2204 }
duke@435 2205
duke@435 2206
duke@435 2207 //------------------------------xdual------------------------------------------
duke@435 2208 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2209 const Type *TypeOopPtr::xdual() const {
duke@435 2210 assert(klass() == ciKlassKlass::make(), "no klasses here");
duke@435 2211 assert(const_oop() == NULL, "no constants here");
duke@435 2212 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance() );
duke@435 2213 }
duke@435 2214
duke@435 2215 //--------------------------make_from_klass_common-----------------------------
duke@435 2216 // Computes the element-type given a klass.
duke@435 2217 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2218 assert(klass->is_java_klass(), "must be java language klass");
duke@435 2219 if (klass->is_instance_klass()) {
duke@435 2220 Compile* C = Compile::current();
duke@435 2221 Dependencies* deps = C->dependencies();
duke@435 2222 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2223 // Element is an instance
duke@435 2224 bool klass_is_exact = false;
duke@435 2225 if (klass->is_loaded()) {
duke@435 2226 // Try to set klass_is_exact.
duke@435 2227 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2228 klass_is_exact = ik->is_final();
duke@435 2229 if (!klass_is_exact && klass_change
duke@435 2230 && deps != NULL && UseUniqueSubclasses) {
duke@435 2231 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2232 if (sub != NULL) {
duke@435 2233 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2234 klass = ik = sub;
duke@435 2235 klass_is_exact = sub->is_final();
duke@435 2236 }
duke@435 2237 }
duke@435 2238 if (!klass_is_exact && try_for_exact
duke@435 2239 && deps != NULL && UseExactTypes) {
duke@435 2240 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2241 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2242 deps->assert_leaf_type(ik);
duke@435 2243 klass_is_exact = true;
duke@435 2244 }
duke@435 2245 }
duke@435 2246 }
duke@435 2247 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2248 } else if (klass->is_obj_array_klass()) {
duke@435 2249 // Element is an object array. Recursively call ourself.
duke@435 2250 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2251 bool xk = etype->klass_is_exact();
duke@435 2252 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2253 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2254 // are all not-null. This is not true in generally, as code can
duke@435 2255 // slam NULLs down in the subarrays.
duke@435 2256 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2257 return arr;
duke@435 2258 } else if (klass->is_type_array_klass()) {
duke@435 2259 // Element is an typeArray
duke@435 2260 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2261 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2262 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2263 // is not-null. That was not true in general.
duke@435 2264 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2265 return arr;
duke@435 2266 } else {
duke@435 2267 ShouldNotReachHere();
duke@435 2268 return NULL;
duke@435 2269 }
duke@435 2270 }
duke@435 2271
duke@435 2272 //------------------------------make_from_constant-----------------------------
duke@435 2273 // Make a java pointer from an oop constant
duke@435 2274 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o) {
duke@435 2275 if (o->is_method_data() || o->is_method()) {
duke@435 2276 // Treat much like a typeArray of bytes, like below, but fake the type...
duke@435 2277 assert(o->has_encoding(), "must be a perm space object");
duke@435 2278 const Type* etype = (Type*)get_const_basic_type(T_BYTE);
duke@435 2279 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2280 ciKlass *klass = ciTypeArrayKlass::make((BasicType) T_BYTE);
duke@435 2281 assert(o->has_encoding(), "method data oops should be tenured");
duke@435 2282 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2283 return arr;
duke@435 2284 } else {
duke@435 2285 assert(o->is_java_object(), "must be java language object");
duke@435 2286 assert(!o->is_null_object(), "null object not yet handled here.");
duke@435 2287 ciKlass *klass = o->klass();
duke@435 2288 if (klass->is_instance_klass()) {
duke@435 2289 // Element is an instance
duke@435 2290 if (!o->has_encoding()) { // not a perm-space constant
duke@435 2291 // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
duke@435 2292 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
duke@435 2293 }
duke@435 2294 return TypeInstPtr::make(o);
duke@435 2295 } else if (klass->is_obj_array_klass()) {
duke@435 2296 // Element is an object array. Recursively call ourself.
duke@435 2297 const Type *etype =
duke@435 2298 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
duke@435 2299 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2300 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2301 // are all not-null. This is not true in generally, as code can
duke@435 2302 // slam NULLs down in the subarrays.
duke@435 2303 if (!o->has_encoding()) { // not a perm-space constant
duke@435 2304 // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
duke@435 2305 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2306 }
duke@435 2307 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2308 return arr;
duke@435 2309 } else if (klass->is_type_array_klass()) {
duke@435 2310 // Element is an typeArray
duke@435 2311 const Type* etype =
duke@435 2312 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2313 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2314 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2315 // is not-null. That was not true in general.
duke@435 2316 if (!o->has_encoding()) { // not a perm-space constant
duke@435 2317 // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
duke@435 2318 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2319 }
duke@435 2320 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2321 return arr;
duke@435 2322 }
duke@435 2323 }
duke@435 2324
duke@435 2325 ShouldNotReachHere();
duke@435 2326 return NULL;
duke@435 2327 }
duke@435 2328
duke@435 2329 //------------------------------get_con----------------------------------------
duke@435 2330 intptr_t TypeOopPtr::get_con() const {
duke@435 2331 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2332 assert( _offset >= 0, "" );
duke@435 2333
duke@435 2334 if (_offset != 0) {
duke@435 2335 // After being ported to the compiler interface, the compiler no longer
duke@435 2336 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2337 // to a handle at compile time. This handle is embedded in the generated
duke@435 2338 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2339 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2340 // have access to the addresses!). This does not seem to currently happen,
duke@435 2341 // but this assertion here is to help prevent its occurrance.
duke@435 2342 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2343 ShouldNotReachHere();
duke@435 2344 }
duke@435 2345
duke@435 2346 return (intptr_t)const_oop()->encoding();
duke@435 2347 }
duke@435 2348
duke@435 2349
duke@435 2350 //-----------------------------filter------------------------------------------
duke@435 2351 // Do not allow interface-vs.-noninterface joins to collapse to top.
duke@435 2352 const Type *TypeOopPtr::filter( const Type *kills ) const {
duke@435 2353
duke@435 2354 const Type* ft = join(kills);
duke@435 2355 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2356 const TypeInstPtr* ktip = kills->isa_instptr();
duke@435 2357
duke@435 2358 if (ft->empty()) {
duke@435 2359 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2360 // interface. This can happen because the bytecodes do not contain
duke@435 2361 // enough type info to distinguish a Java-level interface variable
duke@435 2362 // from a Java-level object variable. If we meet 2 classes which
duke@435 2363 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2364 // doesn't implement I, we have no way to tell if the result should
duke@435 2365 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2366 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2367 // uplift the type.
duke@435 2368 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
duke@435 2369 return kills; // Uplift to interface
duke@435 2370
duke@435 2371 return Type::TOP; // Canonical empty value
duke@435 2372 }
duke@435 2373
duke@435 2374 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2375 // the join should report back the class. However, if we have a J/L/Object
duke@435 2376 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2377 // join report an interface back out. This isn't possible but happens
duke@435 2378 // because the type system doesn't interact well with interfaces.
duke@435 2379 if (ftip != NULL && ktip != NULL &&
duke@435 2380 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2381 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2382 // Happens in a CTW of rt.jar, 320-341, no extra flags
duke@435 2383 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2384 }
duke@435 2385
duke@435 2386 return ft;
duke@435 2387 }
duke@435 2388
duke@435 2389 //------------------------------eq---------------------------------------------
duke@435 2390 // Structural equality check for Type representations
duke@435 2391 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2392 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2393 if (_klass_is_exact != a->_klass_is_exact ||
duke@435 2394 _instance_id != a->_instance_id) return false;
duke@435 2395 ciObject* one = const_oop();
duke@435 2396 ciObject* two = a->const_oop();
duke@435 2397 if (one == NULL || two == NULL) {
duke@435 2398 return (one == two) && TypePtr::eq(t);
duke@435 2399 } else {
duke@435 2400 return one->equals(two) && TypePtr::eq(t);
duke@435 2401 }
duke@435 2402 }
duke@435 2403
duke@435 2404 //------------------------------hash-------------------------------------------
duke@435 2405 // Type-specific hashing function.
duke@435 2406 int TypeOopPtr::hash(void) const {
duke@435 2407 return
duke@435 2408 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2409 _klass_is_exact +
duke@435 2410 _instance_id +
duke@435 2411 TypePtr::hash();
duke@435 2412 }
duke@435 2413
duke@435 2414 //------------------------------dump2------------------------------------------
duke@435 2415 #ifndef PRODUCT
duke@435 2416 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2417 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2418 if( _klass_is_exact ) st->print(":exact");
duke@435 2419 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2420 switch( _offset ) {
duke@435 2421 case OffsetTop: st->print("+top"); break;
duke@435 2422 case OffsetBot: st->print("+any"); break;
duke@435 2423 case 0: break;
duke@435 2424 default: st->print("+%d",_offset); break;
duke@435 2425 }
duke@435 2426 if (_instance_id != UNKNOWN_INSTANCE)
duke@435 2427 st->print(",iid=%d",_instance_id);
duke@435 2428 }
duke@435 2429 #endif
duke@435 2430
duke@435 2431 //------------------------------singleton--------------------------------------
duke@435 2432 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2433 // constants
duke@435 2434 bool TypeOopPtr::singleton(void) const {
duke@435 2435 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2436 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2437 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2438 }
duke@435 2439
duke@435 2440 //------------------------------xadd_offset------------------------------------
duke@435 2441 int TypeOopPtr::xadd_offset( int offset ) const {
duke@435 2442 // Adding to 'TOP' offset? Return 'TOP'!
duke@435 2443 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
duke@435 2444 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
duke@435 2445 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
duke@435 2446
duke@435 2447 // assert( _offset >= 0 && _offset+offset >= 0, "" );
duke@435 2448 // It is possible to construct a negative offset during PhaseCCP
duke@435 2449
duke@435 2450 return _offset+offset; // Sum valid offsets
duke@435 2451 }
duke@435 2452
duke@435 2453 //------------------------------add_offset-------------------------------------
duke@435 2454 const TypePtr *TypeOopPtr::add_offset( int offset ) const {
duke@435 2455 return make( _ptr, xadd_offset(offset) );
duke@435 2456 }
duke@435 2457
duke@435 2458 int TypeOopPtr::meet_instance(int iid) const {
duke@435 2459 if (iid == 0) {
duke@435 2460 return (_instance_id < 0) ? _instance_id : UNKNOWN_INSTANCE;
duke@435 2461 } else if (_instance_id == UNKNOWN_INSTANCE) {
duke@435 2462 return (iid < 0) ? iid : UNKNOWN_INSTANCE;
duke@435 2463 } else {
duke@435 2464 return (_instance_id == iid) ? iid : UNKNOWN_INSTANCE;
duke@435 2465 }
duke@435 2466 }
duke@435 2467
duke@435 2468 //=============================================================================
duke@435 2469 // Convenience common pre-built types.
duke@435 2470 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 2471 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 2472 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 2473 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 2474 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 2475
duke@435 2476 //------------------------------TypeInstPtr-------------------------------------
duke@435 2477 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
duke@435 2478 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
duke@435 2479 assert(k != NULL &&
duke@435 2480 (k->is_loaded() || o == NULL),
duke@435 2481 "cannot have constants with non-loaded klass");
duke@435 2482 };
duke@435 2483
duke@435 2484 //------------------------------make-------------------------------------------
duke@435 2485 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 2486 ciKlass* k,
duke@435 2487 bool xk,
duke@435 2488 ciObject* o,
duke@435 2489 int offset,
duke@435 2490 int instance_id) {
duke@435 2491 assert( !k->is_loaded() || k->is_instance_klass() ||
duke@435 2492 k->is_method_klass(), "Must be for instance or method");
duke@435 2493 // Either const_oop() is NULL or else ptr is Constant
duke@435 2494 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 2495 "constant pointers must have a value supplied" );
duke@435 2496 // Ptr is never Null
duke@435 2497 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 2498
duke@435 2499 if (instance_id != UNKNOWN_INSTANCE)
duke@435 2500 xk = true; // instances are always exactly typed
duke@435 2501 if (!UseExactTypes) xk = false;
duke@435 2502 if (ptr == Constant) {
duke@435 2503 // Note: This case includes meta-object constants, such as methods.
duke@435 2504 xk = true;
duke@435 2505 } else if (k->is_loaded()) {
duke@435 2506 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 2507 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 2508 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 2509 }
duke@435 2510
duke@435 2511 // Now hash this baby
duke@435 2512 TypeInstPtr *result =
duke@435 2513 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
duke@435 2514
duke@435 2515 return result;
duke@435 2516 }
duke@435 2517
duke@435 2518
duke@435 2519 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2520 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2521 if( ptr == _ptr ) return this;
duke@435 2522 // Reconstruct _sig info here since not a problem with later lazy
duke@435 2523 // construction, _sig will show up on demand.
duke@435 2524 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset);
duke@435 2525 }
duke@435 2526
duke@435 2527
duke@435 2528 //-----------------------------cast_to_exactness-------------------------------
duke@435 2529 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2530 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 2531 if (!UseExactTypes) return this;
duke@435 2532 if (!_klass->is_loaded()) return this;
duke@435 2533 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 2534 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 2535 if( ik->is_interface() ) return this; // cannot set xk
duke@435 2536 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
duke@435 2537 }
duke@435 2538
duke@435 2539 //-----------------------------cast_to_instance-------------------------------
duke@435 2540 const TypeOopPtr *TypeInstPtr::cast_to_instance(int instance_id) const {
duke@435 2541 if( instance_id == _instance_id) return this;
duke@435 2542 bool exact = (instance_id == UNKNOWN_INSTANCE) ? _klass_is_exact : true;
duke@435 2543
duke@435 2544 return make(ptr(), klass(), exact, const_oop(), _offset, instance_id);
duke@435 2545 }
duke@435 2546
duke@435 2547 //------------------------------xmeet_unloaded---------------------------------
duke@435 2548 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 2549 // Assume classes are different since called after check for same name/class-loader
duke@435 2550 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 2551 int off = meet_offset(tinst->offset());
duke@435 2552 PTR ptr = meet_ptr(tinst->ptr());
duke@435 2553
duke@435 2554 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 2555 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 2556 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 2557 //
duke@435 2558 // Meet unloaded class with java/lang/Object
duke@435 2559 //
duke@435 2560 // Meet
duke@435 2561 // | Unloaded Class
duke@435 2562 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 2563 // ===================================================================
duke@435 2564 // TOP | ..........................Unloaded......................|
duke@435 2565 // AnyNull | U-AN |................Unloaded......................|
duke@435 2566 // Constant | ... O-NN .................................. | O-BOT |
duke@435 2567 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 2568 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 2569 //
duke@435 2570 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 2571 //
duke@435 2572 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 2573 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass() ); }
duke@435 2574 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2575 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 2576 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2577 else { return TypeInstPtr::NOTNULL; }
duke@435 2578 }
duke@435 2579 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 2580
duke@435 2581 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 2582 }
duke@435 2583
duke@435 2584 // Both are unloaded, not the same class, not Object
duke@435 2585 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 2586 if( ptr != TypePtr::BotPTR ) {
duke@435 2587 return TypeInstPtr::NOTNULL;
duke@435 2588 }
duke@435 2589 return TypeInstPtr::BOTTOM;
duke@435 2590 }
duke@435 2591
duke@435 2592
duke@435 2593 //------------------------------meet-------------------------------------------
duke@435 2594 // Compute the MEET of two types. It returns a new Type object.
duke@435 2595 const Type *TypeInstPtr::xmeet( const Type *t ) const {
duke@435 2596 // Perform a fast test for common case; meeting the same types together.
duke@435 2597 if( this == t ) return this; // Meeting same type-rep?
duke@435 2598
duke@435 2599 // Current "this->_base" is Pointer
duke@435 2600 switch (t->base()) { // switch on original type
duke@435 2601
duke@435 2602 case Int: // Mixing ints & oops happens when javac
duke@435 2603 case Long: // reuses local variables
duke@435 2604 case FloatTop:
duke@435 2605 case FloatCon:
duke@435 2606 case FloatBot:
duke@435 2607 case DoubleTop:
duke@435 2608 case DoubleCon:
duke@435 2609 case DoubleBot:
duke@435 2610 case Bottom: // Ye Olde Default
duke@435 2611 return Type::BOTTOM;
duke@435 2612 case Top:
duke@435 2613 return this;
duke@435 2614
duke@435 2615 default: // All else is a mistake
duke@435 2616 typerr(t);
duke@435 2617
duke@435 2618 case RawPtr: return TypePtr::BOTTOM;
duke@435 2619
duke@435 2620 case AryPtr: { // All arrays inherit from Object class
duke@435 2621 const TypeAryPtr *tp = t->is_aryptr();
duke@435 2622 int offset = meet_offset(tp->offset());
duke@435 2623 PTR ptr = meet_ptr(tp->ptr());
duke@435 2624 int iid = meet_instance(tp->instance_id());
duke@435 2625 switch (ptr) {
duke@435 2626 case TopPTR:
duke@435 2627 case AnyNull: // Fall 'down' to dual of object klass
duke@435 2628 if (klass()->equals(ciEnv::current()->Object_klass())) {
duke@435 2629 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, iid);
duke@435 2630 } else {
duke@435 2631 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 2632 ptr = NotNull;
duke@435 2633 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, iid);
duke@435 2634 }
duke@435 2635 case Constant:
duke@435 2636 case NotNull:
duke@435 2637 case BotPTR: // Fall down to object klass
duke@435 2638 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 2639 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 2640 // If 'this' (InstPtr) is above the centerline and it is Object class
duke@435 2641 // then we can subclass in the Java class heirarchy.
duke@435 2642 if (klass()->equals(ciEnv::current()->Object_klass())) {
duke@435 2643 // that is, tp's array type is a subtype of my klass
duke@435 2644 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, iid);
duke@435 2645 }
duke@435 2646 }
duke@435 2647 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 2648 // The meet falls down to Object class below centerline.
duke@435 2649 if( ptr == Constant )
duke@435 2650 ptr = NotNull;
duke@435 2651 return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, iid );
duke@435 2652 default: typerr(t);
duke@435 2653 }
duke@435 2654 }
duke@435 2655
duke@435 2656 case OopPtr: { // Meeting to OopPtrs
duke@435 2657 // Found a OopPtr type vs self-InstPtr type
duke@435 2658 const TypePtr *tp = t->is_oopptr();
duke@435 2659 int offset = meet_offset(tp->offset());
duke@435 2660 PTR ptr = meet_ptr(tp->ptr());
duke@435 2661 switch (tp->ptr()) {
duke@435 2662 case TopPTR:
duke@435 2663 case AnyNull:
duke@435 2664 return make(ptr, klass(), klass_is_exact(),
duke@435 2665 (ptr == Constant ? const_oop() : NULL), offset);
duke@435 2666 case NotNull:
duke@435 2667 case BotPTR:
duke@435 2668 return TypeOopPtr::make(ptr, offset);
duke@435 2669 default: typerr(t);
duke@435 2670 }
duke@435 2671 }
duke@435 2672
duke@435 2673 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2674 // Found an AnyPtr type vs self-InstPtr type
duke@435 2675 const TypePtr *tp = t->is_ptr();
duke@435 2676 int offset = meet_offset(tp->offset());
duke@435 2677 PTR ptr = meet_ptr(tp->ptr());
duke@435 2678 switch (tp->ptr()) {
duke@435 2679 case Null:
duke@435 2680 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 2681 case TopPTR:
duke@435 2682 case AnyNull:
duke@435 2683 return make( ptr, klass(), klass_is_exact(),
duke@435 2684 (ptr == Constant ? const_oop() : NULL), offset );
duke@435 2685 case NotNull:
duke@435 2686 case BotPTR:
duke@435 2687 return TypePtr::make( AnyPtr, ptr, offset );
duke@435 2688 default: typerr(t);
duke@435 2689 }
duke@435 2690 }
duke@435 2691
duke@435 2692 /*
duke@435 2693 A-top }
duke@435 2694 / | \ } Tops
duke@435 2695 B-top A-any C-top }
duke@435 2696 | / | \ | } Any-nulls
duke@435 2697 B-any | C-any }
duke@435 2698 | | |
duke@435 2699 B-con A-con C-con } constants; not comparable across classes
duke@435 2700 | | |
duke@435 2701 B-not | C-not }
duke@435 2702 | \ | / | } not-nulls
duke@435 2703 B-bot A-not C-bot }
duke@435 2704 \ | / } Bottoms
duke@435 2705 A-bot }
duke@435 2706 */
duke@435 2707
duke@435 2708 case InstPtr: { // Meeting 2 Oops?
duke@435 2709 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 2710 const TypeInstPtr *tinst = t->is_instptr();
duke@435 2711 int off = meet_offset( tinst->offset() );
duke@435 2712 PTR ptr = meet_ptr( tinst->ptr() );
duke@435 2713 int instance_id = meet_instance(tinst->instance_id());
duke@435 2714
duke@435 2715 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 2716 // If we have constants, then we created oops so classes are loaded
duke@435 2717 // and we can handle the constants further down. This case handles
duke@435 2718 // both-not-loaded or both-loaded classes
duke@435 2719 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
duke@435 2720 return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
duke@435 2721 }
duke@435 2722
duke@435 2723 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 2724 ciKlass* tinst_klass = tinst->klass();
duke@435 2725 ciKlass* this_klass = this->klass();
duke@435 2726 bool tinst_xk = tinst->klass_is_exact();
duke@435 2727 bool this_xk = this->klass_is_exact();
duke@435 2728 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 2729 // One of these classes has not been loaded
duke@435 2730 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 2731 #ifndef PRODUCT
duke@435 2732 if( PrintOpto && Verbose ) {
duke@435 2733 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 2734 tty->print(" this == "); this->dump(); tty->cr();
duke@435 2735 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 2736 }
duke@435 2737 #endif
duke@435 2738 return unloaded_meet;
duke@435 2739 }
duke@435 2740
duke@435 2741 // Handle mixing oops and interfaces first.
duke@435 2742 if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
duke@435 2743 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 2744 tinst_klass = this_klass;
duke@435 2745 this_klass = tmp;
duke@435 2746 bool tmp2 = tinst_xk;
duke@435 2747 tinst_xk = this_xk;
duke@435 2748 this_xk = tmp2;
duke@435 2749 }
duke@435 2750 if (tinst_klass->is_interface() &&
duke@435 2751 !(this_klass->is_interface() ||
duke@435 2752 // Treat java/lang/Object as an honorary interface,
duke@435 2753 // because we need a bottom for the interface hierarchy.
duke@435 2754 this_klass == ciEnv::current()->Object_klass())) {
duke@435 2755 // Oop meets interface!
duke@435 2756
duke@435 2757 // See if the oop subtypes (implements) interface.
duke@435 2758 ciKlass *k;
duke@435 2759 bool xk;
duke@435 2760 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 2761 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 2762 // on whether we are both above the centerline or either is
duke@435 2763 // below the centerline. If we are on the centerline
duke@435 2764 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 2765 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 2766 // If we are keeping this_klass, keep its exactness too.
duke@435 2767 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 2768 } else { // Does not implement, fall to Object
duke@435 2769 // Oop does not implement interface, so mixing falls to Object
duke@435 2770 // just like the verifier does (if both are above the
duke@435 2771 // centerline fall to interface)
duke@435 2772 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 2773 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 2774 // Watch out for Constant vs. AnyNull interface.
duke@435 2775 if (ptr == Constant) ptr = NotNull; // forget it was a constant
duke@435 2776 }
duke@435 2777 ciObject* o = NULL; // the Constant value, if any
duke@435 2778 if (ptr == Constant) {
duke@435 2779 // Find out which constant.
duke@435 2780 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 2781 }
duke@435 2782 return make( ptr, k, xk, o, off );
duke@435 2783 }
duke@435 2784
duke@435 2785 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 2786
duke@435 2787 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 2788 // If we split one up & one down AND they subtype, take the down man.
duke@435 2789 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 2790 // If both are up and they subtype, take the subtype class.
duke@435 2791 // If both are up and they do NOT subtype, "fall hard".
duke@435 2792 // If both are down and they subtype, take the supertype class.
duke@435 2793 // If both are down and they do NOT subtype, "fall hard".
duke@435 2794 // Constants treated as down.
duke@435 2795
duke@435 2796 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 2797 // "fall hard"; "fall hard" becomes the default case:
duke@435 2798 // If we split one up & one down AND they subtype, take the down man.
duke@435 2799 // If both are up and they subtype, take the subtype class.
duke@435 2800
duke@435 2801 // If both are down and they subtype, "fall hard".
duke@435 2802 // If both are down and they do NOT subtype, "fall hard".
duke@435 2803 // If both are up and they do NOT subtype, "fall hard".
duke@435 2804 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 2805
duke@435 2806 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 2807 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 2808 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 2809 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 2810
duke@435 2811 // Check for subtyping:
duke@435 2812 ciKlass *subtype = NULL;
duke@435 2813 bool subtype_exact = false;
duke@435 2814 if( tinst_klass->equals(this_klass) ) {
duke@435 2815 subtype = this_klass;
duke@435 2816 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 2817 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 2818 subtype = this_klass; // Pick subtyping class
duke@435 2819 subtype_exact = this_xk;
duke@435 2820 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 2821 subtype = tinst_klass; // Pick subtyping class
duke@435 2822 subtype_exact = tinst_xk;
duke@435 2823 }
duke@435 2824
duke@435 2825 if( subtype ) {
duke@435 2826 if( above_centerline(ptr) ) { // both are up?
duke@435 2827 this_klass = tinst_klass = subtype;
duke@435 2828 this_xk = tinst_xk = subtype_exact;
duke@435 2829 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 2830 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 2831 this_xk = tinst_xk;
duke@435 2832 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 2833 tinst_klass = this_klass; // this is down; keep down man
duke@435 2834 tinst_xk = this_xk;
duke@435 2835 } else {
duke@435 2836 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 2837 }
duke@435 2838 }
duke@435 2839
duke@435 2840 // Check for classes now being equal
duke@435 2841 if (tinst_klass->equals(this_klass)) {
duke@435 2842 // If the klasses are equal, the constants may still differ. Fall to
duke@435 2843 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 2844 // handled elsewhere).
duke@435 2845 ciObject* o = NULL; // Assume not constant when done
duke@435 2846 ciObject* this_oop = const_oop();
duke@435 2847 ciObject* tinst_oop = tinst->const_oop();
duke@435 2848 if( ptr == Constant ) {
duke@435 2849 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 2850 this_oop->equals(tinst_oop) )
duke@435 2851 o = this_oop;
duke@435 2852 else if (above_centerline(this ->_ptr))
duke@435 2853 o = tinst_oop;
duke@435 2854 else if (above_centerline(tinst ->_ptr))
duke@435 2855 o = this_oop;
duke@435 2856 else
duke@435 2857 ptr = NotNull;
duke@435 2858 }
duke@435 2859 return make( ptr, this_klass, this_xk, o, off, instance_id );
duke@435 2860 } // Else classes are not equal
duke@435 2861
duke@435 2862 // Since klasses are different, we require a LCA in the Java
duke@435 2863 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 2864 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 2865 ptr = NotNull;
duke@435 2866
duke@435 2867 // Now we find the LCA of Java classes
duke@435 2868 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
duke@435 2869 return make( ptr, k, false, NULL, off );
duke@435 2870 } // End of case InstPtr
duke@435 2871
duke@435 2872 case KlassPtr:
duke@435 2873 return TypeInstPtr::BOTTOM;
duke@435 2874
duke@435 2875 } // End of switch
duke@435 2876 return this; // Return the double constant
duke@435 2877 }
duke@435 2878
duke@435 2879
duke@435 2880 //------------------------java_mirror_type--------------------------------------
duke@435 2881 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 2882 // must be a singleton type
duke@435 2883 if( const_oop() == NULL ) return NULL;
duke@435 2884
duke@435 2885 // must be of type java.lang.Class
duke@435 2886 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 2887
duke@435 2888 return const_oop()->as_instance()->java_mirror_type();
duke@435 2889 }
duke@435 2890
duke@435 2891
duke@435 2892 //------------------------------xdual------------------------------------------
duke@435 2893 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
duke@435 2894 // inheritence mechanism.
duke@435 2895 const Type *TypeInstPtr::xdual() const {
duke@435 2896 return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance() );
duke@435 2897 }
duke@435 2898
duke@435 2899 //------------------------------eq---------------------------------------------
duke@435 2900 // Structural equality check for Type representations
duke@435 2901 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 2902 const TypeInstPtr *p = t->is_instptr();
duke@435 2903 return
duke@435 2904 klass()->equals(p->klass()) &&
duke@435 2905 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 2906 }
duke@435 2907
duke@435 2908 //------------------------------hash-------------------------------------------
duke@435 2909 // Type-specific hashing function.
duke@435 2910 int TypeInstPtr::hash(void) const {
duke@435 2911 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 2912 return hash;
duke@435 2913 }
duke@435 2914
duke@435 2915 //------------------------------dump2------------------------------------------
duke@435 2916 // Dump oop Type
duke@435 2917 #ifndef PRODUCT
duke@435 2918 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2919 // Print the name of the klass.
duke@435 2920 klass()->print_name_on(st);
duke@435 2921
duke@435 2922 switch( _ptr ) {
duke@435 2923 case Constant:
duke@435 2924 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 2925 if (WizardMode || Verbose) {
duke@435 2926 const_oop()->print_oop(st);
duke@435 2927 }
duke@435 2928 case BotPTR:
duke@435 2929 if (!WizardMode && !Verbose) {
duke@435 2930 if( _klass_is_exact ) st->print(":exact");
duke@435 2931 break;
duke@435 2932 }
duke@435 2933 case TopPTR:
duke@435 2934 case AnyNull:
duke@435 2935 case NotNull:
duke@435 2936 st->print(":%s", ptr_msg[_ptr]);
duke@435 2937 if( _klass_is_exact ) st->print(":exact");
duke@435 2938 break;
duke@435 2939 }
duke@435 2940
duke@435 2941 if( _offset ) { // Dump offset, if any
duke@435 2942 if( _offset == OffsetBot ) st->print("+any");
duke@435 2943 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 2944 else st->print("+%d", _offset);
duke@435 2945 }
duke@435 2946
duke@435 2947 st->print(" *");
duke@435 2948 if (_instance_id != UNKNOWN_INSTANCE)
duke@435 2949 st->print(",iid=%d",_instance_id);
duke@435 2950 }
duke@435 2951 #endif
duke@435 2952
duke@435 2953 //------------------------------add_offset-------------------------------------
duke@435 2954 const TypePtr *TypeInstPtr::add_offset( int offset ) const {
duke@435 2955 return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
duke@435 2956 }
duke@435 2957
duke@435 2958 //=============================================================================
duke@435 2959 // Convenience common pre-built types.
duke@435 2960 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 2961 const TypeAryPtr *TypeAryPtr::OOPS;
duke@435 2962 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 2963 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 2964 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 2965 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 2966 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 2967 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 2968 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 2969
duke@435 2970 //------------------------------make-------------------------------------------
duke@435 2971 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 2972 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 2973 "integral arrays must be pre-equipped with a class");
duke@435 2974 if (!xk) xk = ary->ary_must_be_exact();
duke@435 2975 if (instance_id != UNKNOWN_INSTANCE)
duke@435 2976 xk = true; // instances are always exactly typed
duke@435 2977 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 2978 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
duke@435 2979 }
duke@435 2980
duke@435 2981 //------------------------------make-------------------------------------------
duke@435 2982 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 2983 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 2984 "integral arrays must be pre-equipped with a class");
duke@435 2985 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 2986 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
duke@435 2987 if (instance_id != UNKNOWN_INSTANCE)
duke@435 2988 xk = true; // instances are always exactly typed
duke@435 2989 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 2990 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
duke@435 2991 }
duke@435 2992
duke@435 2993 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2994 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2995 if( ptr == _ptr ) return this;
duke@435 2996 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset);
duke@435 2997 }
duke@435 2998
duke@435 2999
duke@435 3000 //-----------------------------cast_to_exactness-------------------------------
duke@435 3001 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3002 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3003 if (!UseExactTypes) return this;
duke@435 3004 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
duke@435 3005 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
duke@435 3006 }
duke@435 3007
duke@435 3008 //-----------------------------cast_to_instance-------------------------------
duke@435 3009 const TypeOopPtr *TypeAryPtr::cast_to_instance(int instance_id) const {
duke@435 3010 if( instance_id == _instance_id) return this;
duke@435 3011 bool exact = (instance_id == UNKNOWN_INSTANCE) ? _klass_is_exact : true;
duke@435 3012 return make(ptr(), const_oop(), _ary, klass(), exact, _offset, instance_id);
duke@435 3013 }
duke@435 3014
duke@435 3015 //-----------------------------narrow_size_type-------------------------------
duke@435 3016 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3017 // which is kind of slow (and cached elsewhere by other users).
duke@435 3018 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3019 static jint max_array_length(BasicType etype) {
duke@435 3020 jint& cache = max_array_length_cache[etype];
duke@435 3021 jint res = cache;
duke@435 3022 if (res == 0) {
duke@435 3023 switch (etype) {
duke@435 3024 case T_CONFLICT:
duke@435 3025 case T_ILLEGAL:
duke@435 3026 case T_VOID:
duke@435 3027 etype = T_BYTE; // will produce conservatively high value
duke@435 3028 }
duke@435 3029 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3030 }
duke@435 3031 return res;
duke@435 3032 }
duke@435 3033
duke@435 3034 // Narrow the given size type to the index range for the given array base type.
duke@435 3035 // Return NULL if the resulting int type becomes empty.
duke@435 3036 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size, BasicType elem) {
duke@435 3037 jint hi = size->_hi;
duke@435 3038 jint lo = size->_lo;
duke@435 3039 jint min_lo = 0;
duke@435 3040 jint max_hi = max_array_length(elem);
duke@435 3041 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3042 bool chg = false;
duke@435 3043 if (lo < min_lo) { lo = min_lo; chg = true; }
duke@435 3044 if (hi > max_hi) { hi = max_hi; chg = true; }
duke@435 3045 if (lo > hi)
duke@435 3046 return NULL;
duke@435 3047 if (!chg)
duke@435 3048 return size;
duke@435 3049 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3050 }
duke@435 3051
duke@435 3052 //-------------------------------cast_to_size----------------------------------
duke@435 3053 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3054 assert(new_size != NULL, "");
duke@435 3055 new_size = narrow_size_type(new_size, elem()->basic_type());
duke@435 3056 if (new_size == NULL) // Negative length arrays will produce weird
duke@435 3057 new_size = TypeInt::ZERO; // intermediate dead fast-path goo
duke@435 3058 if (new_size == size()) return this;
duke@435 3059 const TypeAry* new_ary = TypeAry::make(elem(), new_size);
duke@435 3060 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset);
duke@435 3061 }
duke@435 3062
duke@435 3063
duke@435 3064 //------------------------------eq---------------------------------------------
duke@435 3065 // Structural equality check for Type representations
duke@435 3066 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3067 const TypeAryPtr *p = t->is_aryptr();
duke@435 3068 return
duke@435 3069 _ary == p->_ary && // Check array
duke@435 3070 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3071 }
duke@435 3072
duke@435 3073 //------------------------------hash-------------------------------------------
duke@435 3074 // Type-specific hashing function.
duke@435 3075 int TypeAryPtr::hash(void) const {
duke@435 3076 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3077 }
duke@435 3078
duke@435 3079 //------------------------------meet-------------------------------------------
duke@435 3080 // Compute the MEET of two types. It returns a new Type object.
duke@435 3081 const Type *TypeAryPtr::xmeet( const Type *t ) const {
duke@435 3082 // Perform a fast test for common case; meeting the same types together.
duke@435 3083 if( this == t ) return this; // Meeting same type-rep?
duke@435 3084 // Current "this->_base" is Pointer
duke@435 3085 switch (t->base()) { // switch on original type
duke@435 3086
duke@435 3087 // Mixing ints & oops happens when javac reuses local variables
duke@435 3088 case Int:
duke@435 3089 case Long:
duke@435 3090 case FloatTop:
duke@435 3091 case FloatCon:
duke@435 3092 case FloatBot:
duke@435 3093 case DoubleTop:
duke@435 3094 case DoubleCon:
duke@435 3095 case DoubleBot:
duke@435 3096 case Bottom: // Ye Olde Default
duke@435 3097 return Type::BOTTOM;
duke@435 3098 case Top:
duke@435 3099 return this;
duke@435 3100
duke@435 3101 default: // All else is a mistake
duke@435 3102 typerr(t);
duke@435 3103
duke@435 3104 case OopPtr: { // Meeting to OopPtrs
duke@435 3105 // Found a OopPtr type vs self-AryPtr type
duke@435 3106 const TypePtr *tp = t->is_oopptr();
duke@435 3107 int offset = meet_offset(tp->offset());
duke@435 3108 PTR ptr = meet_ptr(tp->ptr());
duke@435 3109 switch (tp->ptr()) {
duke@435 3110 case TopPTR:
duke@435 3111 case AnyNull:
duke@435 3112 return make(ptr, (ptr == Constant ? const_oop() : NULL), _ary, _klass, _klass_is_exact, offset);
duke@435 3113 case BotPTR:
duke@435 3114 case NotNull:
duke@435 3115 return TypeOopPtr::make(ptr, offset);
duke@435 3116 default: ShouldNotReachHere();
duke@435 3117 }
duke@435 3118 }
duke@435 3119
duke@435 3120 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3121 // Found an AnyPtr type vs self-AryPtr type
duke@435 3122 const TypePtr *tp = t->is_ptr();
duke@435 3123 int offset = meet_offset(tp->offset());
duke@435 3124 PTR ptr = meet_ptr(tp->ptr());
duke@435 3125 switch (tp->ptr()) {
duke@435 3126 case TopPTR:
duke@435 3127 return this;
duke@435 3128 case BotPTR:
duke@435 3129 case NotNull:
duke@435 3130 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3131 case Null:
duke@435 3132 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3133 case AnyNull:
duke@435 3134 return make( ptr, (ptr == Constant ? const_oop() : NULL), _ary, _klass, _klass_is_exact, offset );
duke@435 3135 default: ShouldNotReachHere();
duke@435 3136 }
duke@435 3137 }
duke@435 3138
duke@435 3139 case RawPtr: return TypePtr::BOTTOM;
duke@435 3140
duke@435 3141 case AryPtr: { // Meeting 2 references?
duke@435 3142 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3143 int off = meet_offset(tap->offset());
duke@435 3144 const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
duke@435 3145 PTR ptr = meet_ptr(tap->ptr());
duke@435 3146 int iid = meet_instance(tap->instance_id());
duke@435 3147 ciKlass* lazy_klass = NULL;
duke@435 3148 if (tary->_elem->isa_int()) {
duke@435 3149 // Integral array element types have irrelevant lattice relations.
duke@435 3150 // It is the klass that determines array layout, not the element type.
duke@435 3151 if (_klass == NULL)
duke@435 3152 lazy_klass = tap->_klass;
duke@435 3153 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3154 lazy_klass = _klass;
duke@435 3155 } else {
duke@435 3156 // Something like byte[int+] meets char[int+].
duke@435 3157 // This must fall to bottom, not (int[-128..65535])[int+].
duke@435 3158 tary = TypeAry::make(Type::BOTTOM, tary->_size);
duke@435 3159 }
duke@435 3160 }
duke@435 3161 bool xk;
duke@435 3162 switch (tap->ptr()) {
duke@435 3163 case AnyNull:
duke@435 3164 case TopPTR:
duke@435 3165 // Compute new klass on demand, do not use tap->_klass
duke@435 3166 xk = (tap->_klass_is_exact | this->_klass_is_exact);
duke@435 3167 return make( ptr, const_oop(), tary, lazy_klass, xk, off );
duke@435 3168 case Constant: {
duke@435 3169 ciObject* o = const_oop();
duke@435 3170 if( _ptr == Constant ) {
duke@435 3171 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
duke@435 3172 ptr = NotNull;
duke@435 3173 o = NULL;
duke@435 3174 }
duke@435 3175 } else if( above_centerline(_ptr) ) {
duke@435 3176 o = tap->const_oop();
duke@435 3177 }
duke@435 3178 xk = true;
duke@435 3179 return TypeAryPtr::make( ptr, o, tary, tap->_klass, xk, off );
duke@435 3180 }
duke@435 3181 case NotNull:
duke@435 3182 case BotPTR:
duke@435 3183 // Compute new klass on demand, do not use tap->_klass
duke@435 3184 if (above_centerline(this->_ptr))
duke@435 3185 xk = tap->_klass_is_exact;
duke@435 3186 else if (above_centerline(tap->_ptr))
duke@435 3187 xk = this->_klass_is_exact;
duke@435 3188 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 3189 (klass() == tap->klass()); // Only precise for identical arrays
duke@435 3190 return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, iid );
duke@435 3191 default: ShouldNotReachHere();
duke@435 3192 }
duke@435 3193 }
duke@435 3194
duke@435 3195 // All arrays inherit from Object class
duke@435 3196 case InstPtr: {
duke@435 3197 const TypeInstPtr *tp = t->is_instptr();
duke@435 3198 int offset = meet_offset(tp->offset());
duke@435 3199 PTR ptr = meet_ptr(tp->ptr());
duke@435 3200 int iid = meet_instance(tp->instance_id());
duke@435 3201 switch (ptr) {
duke@435 3202 case TopPTR:
duke@435 3203 case AnyNull: // Fall 'down' to dual of object klass
duke@435 3204 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3205 return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, iid );
duke@435 3206 } else {
duke@435 3207 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3208 ptr = NotNull;
duke@435 3209 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, iid);
duke@435 3210 }
duke@435 3211 case Constant:
duke@435 3212 case NotNull:
duke@435 3213 case BotPTR: // Fall down to object klass
duke@435 3214 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3215 if (above_centerline(tp->ptr())) {
duke@435 3216 // If 'tp' is above the centerline and it is Object class
duke@435 3217 // then we can subclass in the Java class heirarchy.
duke@435 3218 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3219 // that is, my array type is a subtype of 'tp' klass
duke@435 3220 return make( ptr, _ary, _klass, _klass_is_exact, offset, iid );
duke@435 3221 }
duke@435 3222 }
duke@435 3223 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 3224 // The meet falls down to Object class below centerline.
duke@435 3225 if( ptr == Constant )
duke@435 3226 ptr = NotNull;
duke@435 3227 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, iid);
duke@435 3228 default: typerr(t);
duke@435 3229 }
duke@435 3230 }
duke@435 3231
duke@435 3232 case KlassPtr:
duke@435 3233 return TypeInstPtr::BOTTOM;
duke@435 3234
duke@435 3235 }
duke@435 3236 return this; // Lint noise
duke@435 3237 }
duke@435 3238
duke@435 3239 //------------------------------xdual------------------------------------------
duke@435 3240 // Dual: compute field-by-field dual
duke@435 3241 const Type *TypeAryPtr::xdual() const {
duke@435 3242 return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance() );
duke@435 3243 }
duke@435 3244
duke@435 3245 //------------------------------dump2------------------------------------------
duke@435 3246 #ifndef PRODUCT
duke@435 3247 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3248 _ary->dump2(d,depth,st);
duke@435 3249 switch( _ptr ) {
duke@435 3250 case Constant:
duke@435 3251 const_oop()->print(st);
duke@435 3252 break;
duke@435 3253 case BotPTR:
duke@435 3254 if (!WizardMode && !Verbose) {
duke@435 3255 if( _klass_is_exact ) st->print(":exact");
duke@435 3256 break;
duke@435 3257 }
duke@435 3258 case TopPTR:
duke@435 3259 case AnyNull:
duke@435 3260 case NotNull:
duke@435 3261 st->print(":%s", ptr_msg[_ptr]);
duke@435 3262 if( _klass_is_exact ) st->print(":exact");
duke@435 3263 break;
duke@435 3264 }
duke@435 3265
duke@435 3266 st->print("*");
duke@435 3267 if (_instance_id != UNKNOWN_INSTANCE)
duke@435 3268 st->print(",iid=%d",_instance_id);
duke@435 3269 if( !_offset ) return;
duke@435 3270 if( _offset == OffsetTop ) st->print("+undefined");
duke@435 3271 else if( _offset == OffsetBot ) st->print("+any");
duke@435 3272 else if( _offset < 12 ) st->print("+%d",_offset);
duke@435 3273 else st->print("[%d]", (_offset-12)/4 );
duke@435 3274 }
duke@435 3275 #endif
duke@435 3276
duke@435 3277 bool TypeAryPtr::empty(void) const {
duke@435 3278 if (_ary->empty()) return true;
duke@435 3279 return TypeOopPtr::empty();
duke@435 3280 }
duke@435 3281
duke@435 3282 //------------------------------add_offset-------------------------------------
duke@435 3283 const TypePtr *TypeAryPtr::add_offset( int offset ) const {
duke@435 3284 return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
duke@435 3285 }
duke@435 3286
duke@435 3287
duke@435 3288 //=============================================================================
duke@435 3289 // Convenience common pre-built types.
duke@435 3290
duke@435 3291 // Not-null object klass or below
duke@435 3292 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 3293 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 3294
duke@435 3295 //------------------------------TypeKlasPtr------------------------------------
duke@435 3296 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
duke@435 3297 : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
duke@435 3298 }
duke@435 3299
duke@435 3300 //------------------------------make-------------------------------------------
duke@435 3301 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 3302 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 3303 assert( k != NULL, "Expect a non-NULL klass");
duke@435 3304 assert(k->is_instance_klass() || k->is_array_klass() ||
duke@435 3305 k->is_method_klass(), "Incorrect type of klass oop");
duke@435 3306 TypeKlassPtr *r =
duke@435 3307 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 3308
duke@435 3309 return r;
duke@435 3310 }
duke@435 3311
duke@435 3312 //------------------------------eq---------------------------------------------
duke@435 3313 // Structural equality check for Type representations
duke@435 3314 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 3315 const TypeKlassPtr *p = t->is_klassptr();
duke@435 3316 return
duke@435 3317 klass()->equals(p->klass()) &&
duke@435 3318 TypeOopPtr::eq(p);
duke@435 3319 }
duke@435 3320
duke@435 3321 //------------------------------hash-------------------------------------------
duke@435 3322 // Type-specific hashing function.
duke@435 3323 int TypeKlassPtr::hash(void) const {
duke@435 3324 return klass()->hash() + TypeOopPtr::hash();
duke@435 3325 }
duke@435 3326
duke@435 3327
duke@435 3328 //------------------------------klass------------------------------------------
duke@435 3329 // Return the defining klass for this class
duke@435 3330 ciKlass* TypeAryPtr::klass() const {
duke@435 3331 if( _klass ) return _klass; // Return cached value, if possible
duke@435 3332
duke@435 3333 // Oops, need to compute _klass and cache it
duke@435 3334 ciKlass* k_ary = NULL;
duke@435 3335 const TypeInstPtr *tinst;
duke@435 3336 const TypeAryPtr *tary;
duke@435 3337 // Get element klass
duke@435 3338 if ((tinst = elem()->isa_instptr()) != NULL) {
duke@435 3339 // Compute array klass from element klass
duke@435 3340 k_ary = ciObjArrayKlass::make(tinst->klass());
duke@435 3341 } else if ((tary = elem()->isa_aryptr()) != NULL) {
duke@435 3342 // Compute array klass from element klass
duke@435 3343 ciKlass* k_elem = tary->klass();
duke@435 3344 // If element type is something like bottom[], k_elem will be null.
duke@435 3345 if (k_elem != NULL)
duke@435 3346 k_ary = ciObjArrayKlass::make(k_elem);
duke@435 3347 } else if ((elem()->base() == Type::Top) ||
duke@435 3348 (elem()->base() == Type::Bottom)) {
duke@435 3349 // element type of Bottom occurs from meet of basic type
duke@435 3350 // and object; Top occurs when doing join on Bottom.
duke@435 3351 // Leave k_ary at NULL.
duke@435 3352 } else {
duke@435 3353 // Cannot compute array klass directly from basic type,
duke@435 3354 // since subtypes of TypeInt all have basic type T_INT.
duke@435 3355 assert(!elem()->isa_int(),
duke@435 3356 "integral arrays must be pre-equipped with a class");
duke@435 3357 // Compute array klass directly from basic type
duke@435 3358 k_ary = ciTypeArrayKlass::make(elem()->basic_type());
duke@435 3359 }
duke@435 3360
duke@435 3361 if( this != TypeAryPtr::OOPS )
duke@435 3362 // The _klass field acts as a cache of the underlying
duke@435 3363 // ciKlass for this array type. In order to set the field,
duke@435 3364 // we need to cast away const-ness.
duke@435 3365 //
duke@435 3366 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 3367 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 3368 // active compilations. However, the ciKlass which represents
duke@435 3369 // this Type is *not* shared between compilations, so caching
duke@435 3370 // this value would result in fetching a dangling pointer.
duke@435 3371 //
duke@435 3372 // Recomputing the underlying ciKlass for each request is
duke@435 3373 // a bit less efficient than caching, but calls to
duke@435 3374 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 3375 ((TypeAryPtr*)this)->_klass = k_ary;
duke@435 3376 return k_ary;
duke@435 3377 }
duke@435 3378
duke@435 3379
duke@435 3380 //------------------------------add_offset-------------------------------------
duke@435 3381 // Access internals of klass object
duke@435 3382 const TypePtr *TypeKlassPtr::add_offset( int offset ) const {
duke@435 3383 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 3384 }
duke@435 3385
duke@435 3386 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3387 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3388 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 3389 if( ptr == _ptr ) return this;
duke@435 3390 return make(ptr, _klass, _offset);
duke@435 3391 }
duke@435 3392
duke@435 3393
duke@435 3394 //-----------------------------cast_to_exactness-------------------------------
duke@435 3395 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3396 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3397 if (!UseExactTypes) return this;
duke@435 3398 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 3399 }
duke@435 3400
duke@435 3401
duke@435 3402 //-----------------------------as_instance_type--------------------------------
duke@435 3403 // Corresponding type for an instance of the given class.
duke@435 3404 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 3405 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 3406 ciKlass* k = klass();
duke@435 3407 bool xk = klass_is_exact();
duke@435 3408 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 3409 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
duke@435 3410 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 3411 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 3412 }
duke@435 3413
duke@435 3414
duke@435 3415 //------------------------------xmeet------------------------------------------
duke@435 3416 // Compute the MEET of two types, return a new Type object.
duke@435 3417 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 3418 // Perform a fast test for common case; meeting the same types together.
duke@435 3419 if( this == t ) return this; // Meeting same type-rep?
duke@435 3420
duke@435 3421 // Current "this->_base" is Pointer
duke@435 3422 switch (t->base()) { // switch on original type
duke@435 3423
duke@435 3424 case Int: // Mixing ints & oops happens when javac
duke@435 3425 case Long: // reuses local variables
duke@435 3426 case FloatTop:
duke@435 3427 case FloatCon:
duke@435 3428 case FloatBot:
duke@435 3429 case DoubleTop:
duke@435 3430 case DoubleCon:
duke@435 3431 case DoubleBot:
duke@435 3432 case Bottom: // Ye Olde Default
duke@435 3433 return Type::BOTTOM;
duke@435 3434 case Top:
duke@435 3435 return this;
duke@435 3436
duke@435 3437 default: // All else is a mistake
duke@435 3438 typerr(t);
duke@435 3439
duke@435 3440 case RawPtr: return TypePtr::BOTTOM;
duke@435 3441
duke@435 3442 case OopPtr: { // Meeting to OopPtrs
duke@435 3443 // Found a OopPtr type vs self-KlassPtr type
duke@435 3444 const TypePtr *tp = t->is_oopptr();
duke@435 3445 int offset = meet_offset(tp->offset());
duke@435 3446 PTR ptr = meet_ptr(tp->ptr());
duke@435 3447 switch (tp->ptr()) {
duke@435 3448 case TopPTR:
duke@435 3449 case AnyNull:
duke@435 3450 return make(ptr, klass(), offset);
duke@435 3451 case BotPTR:
duke@435 3452 case NotNull:
duke@435 3453 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3454 default: typerr(t);
duke@435 3455 }
duke@435 3456 }
duke@435 3457
duke@435 3458 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3459 // Found an AnyPtr type vs self-KlassPtr type
duke@435 3460 const TypePtr *tp = t->is_ptr();
duke@435 3461 int offset = meet_offset(tp->offset());
duke@435 3462 PTR ptr = meet_ptr(tp->ptr());
duke@435 3463 switch (tp->ptr()) {
duke@435 3464 case TopPTR:
duke@435 3465 return this;
duke@435 3466 case Null:
duke@435 3467 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 3468 case AnyNull:
duke@435 3469 return make( ptr, klass(), offset );
duke@435 3470 case BotPTR:
duke@435 3471 case NotNull:
duke@435 3472 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3473 default: typerr(t);
duke@435 3474 }
duke@435 3475 }
duke@435 3476
duke@435 3477 case AryPtr: // Meet with AryPtr
duke@435 3478 case InstPtr: // Meet with InstPtr
duke@435 3479 return TypeInstPtr::BOTTOM;
duke@435 3480
duke@435 3481 //
duke@435 3482 // A-top }
duke@435 3483 // / | \ } Tops
duke@435 3484 // B-top A-any C-top }
duke@435 3485 // | / | \ | } Any-nulls
duke@435 3486 // B-any | C-any }
duke@435 3487 // | | |
duke@435 3488 // B-con A-con C-con } constants; not comparable across classes
duke@435 3489 // | | |
duke@435 3490 // B-not | C-not }
duke@435 3491 // | \ | / | } not-nulls
duke@435 3492 // B-bot A-not C-bot }
duke@435 3493 // \ | / } Bottoms
duke@435 3494 // A-bot }
duke@435 3495 //
duke@435 3496
duke@435 3497 case KlassPtr: { // Meet two KlassPtr types
duke@435 3498 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 3499 int off = meet_offset(tkls->offset());
duke@435 3500 PTR ptr = meet_ptr(tkls->ptr());
duke@435 3501
duke@435 3502 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3503 // If we have constants, then we created oops so classes are loaded
duke@435 3504 // and we can handle the constants further down. This case handles
duke@435 3505 // not-loaded classes
duke@435 3506 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 3507 return make( ptr, klass(), off );
duke@435 3508 }
duke@435 3509
duke@435 3510 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3511 ciKlass* tkls_klass = tkls->klass();
duke@435 3512 ciKlass* this_klass = this->klass();
duke@435 3513 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 3514 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 3515
duke@435 3516 // If 'this' type is above the centerline and is a superclass of the
duke@435 3517 // other, we can treat 'this' as having the same type as the other.
duke@435 3518 if ((above_centerline(this->ptr())) &&
duke@435 3519 tkls_klass->is_subtype_of(this_klass)) {
duke@435 3520 this_klass = tkls_klass;
duke@435 3521 }
duke@435 3522 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 3523 // other, we can treat 'tinst' as having the same type as the other.
duke@435 3524 if ((above_centerline(tkls->ptr())) &&
duke@435 3525 this_klass->is_subtype_of(tkls_klass)) {
duke@435 3526 tkls_klass = this_klass;
duke@435 3527 }
duke@435 3528
duke@435 3529 // Check for classes now being equal
duke@435 3530 if (tkls_klass->equals(this_klass)) {
duke@435 3531 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3532 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3533 // handled elsewhere).
duke@435 3534 ciObject* o = NULL; // Assume not constant when done
duke@435 3535 ciObject* this_oop = const_oop();
duke@435 3536 ciObject* tkls_oop = tkls->const_oop();
duke@435 3537 if( ptr == Constant ) {
duke@435 3538 if (this_oop != NULL && tkls_oop != NULL &&
duke@435 3539 this_oop->equals(tkls_oop) )
duke@435 3540 o = this_oop;
duke@435 3541 else if (above_centerline(this->ptr()))
duke@435 3542 o = tkls_oop;
duke@435 3543 else if (above_centerline(tkls->ptr()))
duke@435 3544 o = this_oop;
duke@435 3545 else
duke@435 3546 ptr = NotNull;
duke@435 3547 }
duke@435 3548 return make( ptr, this_klass, off );
duke@435 3549 } // Else classes are not equal
duke@435 3550
duke@435 3551 // Since klasses are different, we require the LCA in the Java
duke@435 3552 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3553 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3554 ptr = NotNull;
duke@435 3555 // Now we find the LCA of Java classes
duke@435 3556 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 3557 return make( ptr, k, off );
duke@435 3558 } // End of case KlassPtr
duke@435 3559
duke@435 3560 } // End of switch
duke@435 3561 return this; // Return the double constant
duke@435 3562 }
duke@435 3563
duke@435 3564 //------------------------------xdual------------------------------------------
duke@435 3565 // Dual: compute field-by-field dual
duke@435 3566 const Type *TypeKlassPtr::xdual() const {
duke@435 3567 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 3568 }
duke@435 3569
duke@435 3570 //------------------------------dump2------------------------------------------
duke@435 3571 // Dump Klass Type
duke@435 3572 #ifndef PRODUCT
duke@435 3573 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 3574 switch( _ptr ) {
duke@435 3575 case Constant:
duke@435 3576 st->print("precise ");
duke@435 3577 case NotNull:
duke@435 3578 {
duke@435 3579 const char *name = klass()->name()->as_utf8();
duke@435 3580 if( name ) {
duke@435 3581 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 3582 } else {
duke@435 3583 ShouldNotReachHere();
duke@435 3584 }
duke@435 3585 }
duke@435 3586 case BotPTR:
duke@435 3587 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 3588 case TopPTR:
duke@435 3589 case AnyNull:
duke@435 3590 st->print(":%s", ptr_msg[_ptr]);
duke@435 3591 if( _klass_is_exact ) st->print(":exact");
duke@435 3592 break;
duke@435 3593 }
duke@435 3594
duke@435 3595 if( _offset ) { // Dump offset, if any
duke@435 3596 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 3597 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 3598 else { st->print("+%d", _offset); }
duke@435 3599 }
duke@435 3600
duke@435 3601 st->print(" *");
duke@435 3602 }
duke@435 3603 #endif
duke@435 3604
duke@435 3605
duke@435 3606
duke@435 3607 //=============================================================================
duke@435 3608 // Convenience common pre-built types.
duke@435 3609
duke@435 3610 //------------------------------make-------------------------------------------
duke@435 3611 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 3612 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 3613 }
duke@435 3614
duke@435 3615 //------------------------------make-------------------------------------------
duke@435 3616 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 3617 Compile* C = Compile::current();
duke@435 3618 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 3619 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 3620 const TypeTuple *domain;
duke@435 3621 if (method->flags().is_static()) {
duke@435 3622 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 3623 } else {
duke@435 3624 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 3625 }
duke@435 3626 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 3627 tf = TypeFunc::make(domain, range);
duke@435 3628 C->set_last_tf(method, tf); // fill cache
duke@435 3629 return tf;
duke@435 3630 }
duke@435 3631
duke@435 3632 //------------------------------meet-------------------------------------------
duke@435 3633 // Compute the MEET of two types. It returns a new Type object.
duke@435 3634 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 3635 // Perform a fast test for common case; meeting the same types together.
duke@435 3636 if( this == t ) return this; // Meeting same type-rep?
duke@435 3637
duke@435 3638 // Current "this->_base" is Func
duke@435 3639 switch (t->base()) { // switch on original type
duke@435 3640
duke@435 3641 case Bottom: // Ye Olde Default
duke@435 3642 return t;
duke@435 3643
duke@435 3644 default: // All else is a mistake
duke@435 3645 typerr(t);
duke@435 3646
duke@435 3647 case Top:
duke@435 3648 break;
duke@435 3649 }
duke@435 3650 return this; // Return the double constant
duke@435 3651 }
duke@435 3652
duke@435 3653 //------------------------------xdual------------------------------------------
duke@435 3654 // Dual: compute field-by-field dual
duke@435 3655 const Type *TypeFunc::xdual() const {
duke@435 3656 return this;
duke@435 3657 }
duke@435 3658
duke@435 3659 //------------------------------eq---------------------------------------------
duke@435 3660 // Structural equality check for Type representations
duke@435 3661 bool TypeFunc::eq( const Type *t ) const {
duke@435 3662 const TypeFunc *a = (const TypeFunc*)t;
duke@435 3663 return _domain == a->_domain &&
duke@435 3664 _range == a->_range;
duke@435 3665 }
duke@435 3666
duke@435 3667 //------------------------------hash-------------------------------------------
duke@435 3668 // Type-specific hashing function.
duke@435 3669 int TypeFunc::hash(void) const {
duke@435 3670 return (intptr_t)_domain + (intptr_t)_range;
duke@435 3671 }
duke@435 3672
duke@435 3673 //------------------------------dump2------------------------------------------
duke@435 3674 // Dump Function Type
duke@435 3675 #ifndef PRODUCT
duke@435 3676 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3677 if( _range->_cnt <= Parms )
duke@435 3678 st->print("void");
duke@435 3679 else {
duke@435 3680 uint i;
duke@435 3681 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 3682 _range->field_at(i)->dump2(d,depth,st);
duke@435 3683 st->print("/");
duke@435 3684 }
duke@435 3685 _range->field_at(i)->dump2(d,depth,st);
duke@435 3686 }
duke@435 3687 st->print(" ");
duke@435 3688 st->print("( ");
duke@435 3689 if( !depth || d[this] ) { // Check for recursive dump
duke@435 3690 st->print("...)");
duke@435 3691 return;
duke@435 3692 }
duke@435 3693 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 3694 if (Parms < _domain->_cnt)
duke@435 3695 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 3696 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 3697 st->print(", ");
duke@435 3698 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 3699 }
duke@435 3700 st->print(" )");
duke@435 3701 }
duke@435 3702
duke@435 3703 //------------------------------print_flattened--------------------------------
duke@435 3704 // Print a 'flattened' signature
duke@435 3705 static const char * const flat_type_msg[Type::lastype] = {
duke@435 3706 "bad","control","top","int","long","_",
duke@435 3707 "tuple:", "array:",
duke@435 3708 "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
duke@435 3709 "func", "abIO", "return_address", "mem",
duke@435 3710 "float_top", "ftcon:", "flt",
duke@435 3711 "double_top", "dblcon:", "dbl",
duke@435 3712 "bottom"
duke@435 3713 };
duke@435 3714
duke@435 3715 void TypeFunc::print_flattened() const {
duke@435 3716 if( _range->_cnt <= Parms )
duke@435 3717 tty->print("void");
duke@435 3718 else {
duke@435 3719 uint i;
duke@435 3720 for (i = Parms; i < _range->_cnt-1; i++)
duke@435 3721 tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
duke@435 3722 tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
duke@435 3723 }
duke@435 3724 tty->print(" ( ");
duke@435 3725 if (Parms < _domain->_cnt)
duke@435 3726 tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
duke@435 3727 for (uint i = Parms+1; i < _domain->_cnt; i++)
duke@435 3728 tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
duke@435 3729 tty->print(" )");
duke@435 3730 }
duke@435 3731 #endif
duke@435 3732
duke@435 3733 //------------------------------singleton--------------------------------------
duke@435 3734 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 3735 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 3736 // or a single symbol.
duke@435 3737 bool TypeFunc::singleton(void) const {
duke@435 3738 return false; // Never a singleton
duke@435 3739 }
duke@435 3740
duke@435 3741 bool TypeFunc::empty(void) const {
duke@435 3742 return false; // Never empty
duke@435 3743 }
duke@435 3744
duke@435 3745
duke@435 3746 BasicType TypeFunc::return_type() const{
duke@435 3747 if (range()->cnt() == TypeFunc::Parms) {
duke@435 3748 return T_VOID;
duke@435 3749 }
duke@435 3750 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 3751 }

mercurial