src/share/vm/opto/type.cpp

Fri, 24 Jan 2014 09:31:53 +0100

author
roland
date
Fri, 24 Jan 2014 09:31:53 +0100
changeset 6313
de95063c0e34
parent 6214
5231c2210388
child 6375
085b304a1cc5
child 6507
752ba2e5f6d0
permissions
-rw-r--r--

8027422: assert(_gvn.type(obj)->higher_equal(tjp)) failed: cast_up is no longer needed
Summary: type methods shouldn't always operate on speculative part
Reviewed-by: kvn, twisti

duke@435 1 /*
hseigel@4465 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
coleenp@4037 26 #include "ci/ciMethodData.hpp"
stefank@2314 27 #include "ci/ciTypeFlow.hpp"
stefank@2314 28 #include "classfile/symbolTable.hpp"
stefank@2314 29 #include "classfile/systemDictionary.hpp"
stefank@2314 30 #include "compiler/compileLog.hpp"
stefank@2314 31 #include "libadt/dict.hpp"
stefank@2314 32 #include "memory/gcLocker.hpp"
stefank@2314 33 #include "memory/oopFactory.hpp"
stefank@2314 34 #include "memory/resourceArea.hpp"
stefank@2314 35 #include "oops/instanceKlass.hpp"
never@2658 36 #include "oops/instanceMirrorKlass.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "oops/typeArrayKlass.hpp"
stefank@2314 39 #include "opto/matcher.hpp"
stefank@2314 40 #include "opto/node.hpp"
stefank@2314 41 #include "opto/opcodes.hpp"
stefank@2314 42 #include "opto/type.hpp"
stefank@2314 43
duke@435 44 // Portions of code courtesy of Clifford Click
duke@435 45
duke@435 46 // Optimization - Graph Style
duke@435 47
duke@435 48 // Dictionary of types shared among compilations.
duke@435 49 Dict* Type::_shared_type_dict = NULL;
duke@435 50
duke@435 51 // Array which maps compiler types to Basic Types
coleenp@4037 52 Type::TypeInfo Type::_type_info[Type::lastype] = {
coleenp@4037 53 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
coleenp@4037 54 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
coleenp@4037 55 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
coleenp@4037 56 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
coleenp@4037 57 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
coleenp@4037 58 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
coleenp@4037 59 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
roland@4159 60 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass
coleenp@4037 61 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
coleenp@4037 62 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
coleenp@4037 63
dlong@4201 64 #ifndef SPARC
coleenp@4037 65 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS
coleenp@4037 66 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
coleenp@4037 67 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
coleenp@4037 68 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY
coleenp@4037 69 #else
coleenp@4037 70 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
coleenp@4037 71 { Bad, T_ILLEGAL, "vectord:", false, Op_RegD, relocInfo::none }, // VectorD
coleenp@4037 72 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
coleenp@4037 73 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
coleenp@4037 74 #endif // IA32 || AMD64
coleenp@4037 75 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr
coleenp@4037 76 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr
coleenp@4037 77 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr
coleenp@4037 78 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr
coleenp@4037 79 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr
coleenp@4037 80 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr
coleenp@4037 81 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr
coleenp@4037 82 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function
coleenp@4037 83 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio
coleenp@4037 84 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address
coleenp@4037 85 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory
coleenp@4037 86 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop
coleenp@4037 87 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon
coleenp@4037 88 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot
coleenp@4037 89 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop
coleenp@4037 90 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon
coleenp@4037 91 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot
coleenp@4037 92 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom
duke@435 93 };
duke@435 94
duke@435 95 // Map ideal registers (machine types) to ideal types
duke@435 96 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 97
duke@435 98 // Map basic types to canonical Type* pointers.
duke@435 99 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 100
duke@435 101 // Map basic types to constant-zero Types.
duke@435 102 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 103
duke@435 104 // Map basic types to array-body alias types.
duke@435 105 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 106
duke@435 107 //=============================================================================
duke@435 108 // Convenience common pre-built types.
duke@435 109 const Type *Type::ABIO; // State-of-machine only
duke@435 110 const Type *Type::BOTTOM; // All values
duke@435 111 const Type *Type::CONTROL; // Control only
duke@435 112 const Type *Type::DOUBLE; // All doubles
duke@435 113 const Type *Type::FLOAT; // All floats
duke@435 114 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 115 const Type *Type::MEMORY; // Abstract store only
duke@435 116 const Type *Type::RETURN_ADDRESS;
duke@435 117 const Type *Type::TOP; // No values in set
duke@435 118
duke@435 119 //------------------------------get_const_type---------------------------
duke@435 120 const Type* Type::get_const_type(ciType* type) {
duke@435 121 if (type == NULL) {
duke@435 122 return NULL;
duke@435 123 } else if (type->is_primitive_type()) {
duke@435 124 return get_const_basic_type(type->basic_type());
duke@435 125 } else {
duke@435 126 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 127 }
duke@435 128 }
duke@435 129
duke@435 130 //---------------------------array_element_basic_type---------------------------------
duke@435 131 // Mapping to the array element's basic type.
duke@435 132 BasicType Type::array_element_basic_type() const {
duke@435 133 BasicType bt = basic_type();
duke@435 134 if (bt == T_INT) {
duke@435 135 if (this == TypeInt::INT) return T_INT;
duke@435 136 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 137 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 138 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 139 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 140 return T_VOID;
duke@435 141 }
duke@435 142 return bt;
duke@435 143 }
duke@435 144
duke@435 145 //---------------------------get_typeflow_type---------------------------------
duke@435 146 // Import a type produced by ciTypeFlow.
duke@435 147 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 148 switch (type->basic_type()) {
duke@435 149
duke@435 150 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 151 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 152 return Type::BOTTOM;
duke@435 153
duke@435 154 case ciTypeFlow::StateVector::T_TOP:
duke@435 155 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 156 return Type::TOP;
duke@435 157
duke@435 158 case ciTypeFlow::StateVector::T_NULL:
duke@435 159 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 160 return TypePtr::NULL_PTR;
duke@435 161
duke@435 162 case ciTypeFlow::StateVector::T_LONG2:
duke@435 163 // The ciTypeFlow pass pushes a long, then the half.
duke@435 164 // We do the same.
duke@435 165 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 166 return TypeInt::TOP;
duke@435 167
duke@435 168 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 169 // The ciTypeFlow pass pushes double, then the half.
duke@435 170 // Our convention is the same.
duke@435 171 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 172 return Type::TOP;
duke@435 173
duke@435 174 case T_ADDRESS:
duke@435 175 assert(type->is_return_address(), "");
duke@435 176 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 177
duke@435 178 default:
duke@435 179 // make sure we did not mix up the cases:
duke@435 180 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 181 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 182 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 183 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 184 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 185 assert(!type->is_return_address(), "");
duke@435 186
duke@435 187 return Type::get_const_type(type);
duke@435 188 }
duke@435 189 }
duke@435 190
duke@435 191
vlivanov@5658 192 //-----------------------make_from_constant------------------------------------
vlivanov@5658 193 const Type* Type::make_from_constant(ciConstant constant,
vlivanov@5658 194 bool require_constant, bool is_autobox_cache) {
vlivanov@5658 195 switch (constant.basic_type()) {
vlivanov@5658 196 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
vlivanov@5658 197 case T_CHAR: return TypeInt::make(constant.as_char());
vlivanov@5658 198 case T_BYTE: return TypeInt::make(constant.as_byte());
vlivanov@5658 199 case T_SHORT: return TypeInt::make(constant.as_short());
vlivanov@5658 200 case T_INT: return TypeInt::make(constant.as_int());
vlivanov@5658 201 case T_LONG: return TypeLong::make(constant.as_long());
vlivanov@5658 202 case T_FLOAT: return TypeF::make(constant.as_float());
vlivanov@5658 203 case T_DOUBLE: return TypeD::make(constant.as_double());
vlivanov@5658 204 case T_ARRAY:
vlivanov@5658 205 case T_OBJECT:
vlivanov@5658 206 {
vlivanov@5658 207 // cases:
vlivanov@5658 208 // can_be_constant = (oop not scavengable || ScavengeRootsInCode != 0)
vlivanov@5658 209 // should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
vlivanov@5658 210 // An oop is not scavengable if it is in the perm gen.
vlivanov@5658 211 ciObject* oop_constant = constant.as_object();
vlivanov@5658 212 if (oop_constant->is_null_object()) {
vlivanov@5658 213 return Type::get_zero_type(T_OBJECT);
vlivanov@5658 214 } else if (require_constant || oop_constant->should_be_constant()) {
vlivanov@5658 215 return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
vlivanov@5658 216 }
vlivanov@5658 217 }
vlivanov@5658 218 }
vlivanov@5658 219 // Fall through to failure
vlivanov@5658 220 return NULL;
vlivanov@5658 221 }
vlivanov@5658 222
vlivanov@5658 223
duke@435 224 //------------------------------make-------------------------------------------
duke@435 225 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 226 // and look for an existing copy in the type dictionary.
duke@435 227 const Type *Type::make( enum TYPES t ) {
duke@435 228 return (new Type(t))->hashcons();
duke@435 229 }
kvn@658 230
duke@435 231 //------------------------------cmp--------------------------------------------
duke@435 232 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 233 if( t1->_base != t2->_base )
duke@435 234 return 1; // Missed badly
duke@435 235 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 236 return !t1->eq(t2); // Return ZERO if equal
duke@435 237 }
duke@435 238
roland@6313 239 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
roland@6313 240 if (!include_speculative) {
roland@6313 241 return remove_speculative();
roland@6313 242 }
roland@6313 243 return this;
roland@6313 244 }
roland@6313 245
duke@435 246 //------------------------------hash-------------------------------------------
duke@435 247 int Type::uhash( const Type *const t ) {
duke@435 248 return t->hash();
duke@435 249 }
duke@435 250
kvn@1975 251 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
kvn@1975 252
duke@435 253 //--------------------------Initialize_shared----------------------------------
duke@435 254 void Type::Initialize_shared(Compile* current) {
duke@435 255 // This method does not need to be locked because the first system
duke@435 256 // compilations (stub compilations) occur serially. If they are
duke@435 257 // changed to proceed in parallel, then this section will need
duke@435 258 // locking.
duke@435 259
duke@435 260 Arena* save = current->type_arena();
zgu@3900 261 Arena* shared_type_arena = new (mtCompiler)Arena();
duke@435 262
duke@435 263 current->set_type_arena(shared_type_arena);
duke@435 264 _shared_type_dict =
duke@435 265 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 266 shared_type_arena, 128 );
duke@435 267 current->set_type_dict(_shared_type_dict);
duke@435 268
duke@435 269 // Make shared pre-built types.
duke@435 270 CONTROL = make(Control); // Control only
duke@435 271 TOP = make(Top); // No values in set
duke@435 272 MEMORY = make(Memory); // Abstract store only
duke@435 273 ABIO = make(Abio); // State-of-machine only
duke@435 274 RETURN_ADDRESS=make(Return_Address);
duke@435 275 FLOAT = make(FloatBot); // All floats
duke@435 276 DOUBLE = make(DoubleBot); // All doubles
duke@435 277 BOTTOM = make(Bottom); // Everything
duke@435 278 HALF = make(Half); // Placeholder half of doublewide type
duke@435 279
duke@435 280 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 281 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 282
duke@435 283 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 284 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 285
duke@435 286 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 287 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 288 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 289 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 290 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 291 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 292 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 293 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 294 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 295 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 296 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
twisti@1059 297 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
duke@435 298 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 299 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 300 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 301 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 302 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 303 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
duke@435 304 // CmpL is overloaded both as the bytecode computation returning
duke@435 305 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 306 // compare returning optimizer ideal-type flags.
duke@435 307 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 308 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 309 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 310 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
kvn@1975 311 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 312
duke@435 313 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 314 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 315 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 316 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 317 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 318 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 319 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
duke@435 320
duke@435 321 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 322 fboth[0] = Type::CONTROL;
duke@435 323 fboth[1] = Type::CONTROL;
duke@435 324 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 325
duke@435 326 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 327 ffalse[0] = Type::CONTROL;
duke@435 328 ffalse[1] = Type::TOP;
duke@435 329 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 330
duke@435 331 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 332 fneither[0] = Type::TOP;
duke@435 333 fneither[1] = Type::TOP;
duke@435 334 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 335
duke@435 336 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 337 ftrue[0] = Type::TOP;
duke@435 338 ftrue[1] = Type::CONTROL;
duke@435 339 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 340
duke@435 341 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 342 floop[0] = Type::CONTROL;
duke@435 343 floop[1] = TypeInt::INT;
duke@435 344 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 345
duke@435 346 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 347 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 348 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 349
duke@435 350 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 351 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 352
duke@435 353 const Type **fmembar = TypeTuple::fields(0);
duke@435 354 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 355
duke@435 356 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 357 fsc[0] = TypeInt::CC;
duke@435 358 fsc[1] = Type::MEMORY;
duke@435 359 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 360
duke@435 361 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 362 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 363 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 364 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 365 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 366 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 367 false, 0, oopDesc::klass_offset_in_bytes());
roland@5991 368 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
duke@435 369
coleenp@4037 370 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
coleenp@4037 371
coleenp@548 372 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 373 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 374
roland@4159 375 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
roland@4159 376
coleenp@548 377 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 378 mreg2type[Op_Set ] = 0;
coleenp@548 379 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 380 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 381 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 382 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 383 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 384 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 385 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 386
kvn@2116 387 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
kvn@598 388
kvn@598 389 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 390
kvn@598 391 #ifdef _LP64
kvn@598 392 if (UseCompressedOops) {
coleenp@4037 393 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
kvn@598 394 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 395 } else
kvn@598 396 #endif
kvn@598 397 {
kvn@598 398 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 399 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 400 }
duke@435 401 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 402 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 403 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 404 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 405 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 406 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 407 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 408
kvn@598 409 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 410 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 411 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 412 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 413 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 414 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 415 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 416 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 417 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 418 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 419 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 420 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 421
duke@435 422 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 423 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 424
duke@435 425 const Type **fi2c = TypeTuple::fields(2);
coleenp@4037 426 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
duke@435 427 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 428 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 429
duke@435 430 const Type **intpair = TypeTuple::fields(2);
duke@435 431 intpair[0] = TypeInt::INT;
duke@435 432 intpair[1] = TypeInt::INT;
duke@435 433 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 434
duke@435 435 const Type **longpair = TypeTuple::fields(2);
duke@435 436 longpair[0] = TypeLong::LONG;
duke@435 437 longpair[1] = TypeLong::LONG;
duke@435 438 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 439
rbackman@5791 440 const Type **intccpair = TypeTuple::fields(2);
rbackman@5791 441 intccpair[0] = TypeInt::INT;
rbackman@5791 442 intccpair[1] = TypeInt::CC;
rbackman@5791 443 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
rbackman@5791 444
rbackman@5997 445 const Type **longccpair = TypeTuple::fields(2);
rbackman@5997 446 longccpair[0] = TypeLong::LONG;
rbackman@5997 447 longccpair[1] = TypeInt::CC;
rbackman@5997 448 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
rbackman@5997 449
roland@4159 450 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
roland@4159 451 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
roland@4159 452 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
roland@4159 453 _const_basic_type[T_CHAR] = TypeInt::CHAR;
roland@4159 454 _const_basic_type[T_BYTE] = TypeInt::BYTE;
roland@4159 455 _const_basic_type[T_SHORT] = TypeInt::SHORT;
roland@4159 456 _const_basic_type[T_INT] = TypeInt::INT;
roland@4159 457 _const_basic_type[T_LONG] = TypeLong::LONG;
roland@4159 458 _const_basic_type[T_FLOAT] = Type::FLOAT;
roland@4159 459 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
roland@4159 460 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
roland@4159 461 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
roland@4159 462 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
roland@4159 463 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
roland@4159 464 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not?
roland@4159 465
roland@4159 466 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
roland@4159 467 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
roland@4159 468 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
roland@4159 469 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
roland@4159 470 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
roland@4159 471 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
roland@4159 472 _zero_type[T_INT] = TypeInt::ZERO;
roland@4159 473 _zero_type[T_LONG] = TypeLong::ZERO;
roland@4159 474 _zero_type[T_FLOAT] = TypeF::ZERO;
roland@4159 475 _zero_type[T_DOUBLE] = TypeD::ZERO;
roland@4159 476 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
roland@4159 477 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
roland@4159 478 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
roland@4159 479 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 480
duke@435 481 // get_zero_type() should not happen for T_CONFLICT
duke@435 482 _zero_type[T_CONFLICT]= NULL;
duke@435 483
kvn@3882 484 // Vector predefined types, it needs initialized _const_basic_type[].
kvn@3882 485 if (Matcher::vector_size_supported(T_BYTE,4)) {
kvn@3882 486 TypeVect::VECTS = TypeVect::make(T_BYTE,4);
kvn@3882 487 }
kvn@3882 488 if (Matcher::vector_size_supported(T_FLOAT,2)) {
kvn@3882 489 TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
kvn@3882 490 }
kvn@3882 491 if (Matcher::vector_size_supported(T_FLOAT,4)) {
kvn@3882 492 TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
kvn@3882 493 }
kvn@3882 494 if (Matcher::vector_size_supported(T_FLOAT,8)) {
kvn@3882 495 TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
kvn@3882 496 }
kvn@3882 497 mreg2type[Op_VecS] = TypeVect::VECTS;
kvn@3882 498 mreg2type[Op_VecD] = TypeVect::VECTD;
kvn@3882 499 mreg2type[Op_VecX] = TypeVect::VECTX;
kvn@3882 500 mreg2type[Op_VecY] = TypeVect::VECTY;
kvn@3882 501
duke@435 502 // Restore working type arena.
duke@435 503 current->set_type_arena(save);
duke@435 504 current->set_type_dict(NULL);
duke@435 505 }
duke@435 506
duke@435 507 //------------------------------Initialize-------------------------------------
duke@435 508 void Type::Initialize(Compile* current) {
duke@435 509 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 510
duke@435 511 if (_shared_type_dict == NULL) {
duke@435 512 Initialize_shared(current);
duke@435 513 }
duke@435 514
duke@435 515 Arena* type_arena = current->type_arena();
duke@435 516
duke@435 517 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 518 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 519 current->set_type_dict(tdic);
duke@435 520
duke@435 521 // Transfer the shared types.
duke@435 522 DictI i(_shared_type_dict);
duke@435 523 for( ; i.test(); ++i ) {
duke@435 524 Type* t = (Type*)i._value;
duke@435 525 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 526 }
duke@435 527 }
duke@435 528
duke@435 529 //------------------------------hashcons---------------------------------------
duke@435 530 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 531 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 532 // current Type in the Type table.
duke@435 533 const Type *Type::hashcons(void) {
duke@435 534 debug_only(base()); // Check the assertion in Type::base().
duke@435 535 // Look up the Type in the Type dictionary
duke@435 536 Dict *tdic = type_dict();
duke@435 537 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 538 if( old ) { // Pre-existing Type?
duke@435 539 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 540 delete this; // Yes, Nuke this guy
duke@435 541 assert( old->_dual, "" );
duke@435 542 return old; // Return pre-existing
duke@435 543 }
duke@435 544
duke@435 545 // Every type has a dual (to make my lattice symmetric).
duke@435 546 // Since we just discovered a new Type, compute its dual right now.
duke@435 547 assert( !_dual, "" ); // No dual yet
duke@435 548 _dual = xdual(); // Compute the dual
duke@435 549 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 550 _dual = this;
duke@435 551 return this;
duke@435 552 }
duke@435 553 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 554 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 555 // New Type, insert into Type table
duke@435 556 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 557 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 558 #ifdef ASSERT
duke@435 559 Type *dual_dual = (Type*)_dual->xdual();
duke@435 560 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 561 delete dual_dual;
duke@435 562 #endif
duke@435 563 return this; // Return new Type
duke@435 564 }
duke@435 565
duke@435 566 //------------------------------eq---------------------------------------------
duke@435 567 // Structural equality check for Type representations
duke@435 568 bool Type::eq( const Type * ) const {
duke@435 569 return true; // Nothing else can go wrong
duke@435 570 }
duke@435 571
duke@435 572 //------------------------------hash-------------------------------------------
duke@435 573 // Type-specific hashing function.
duke@435 574 int Type::hash(void) const {
duke@435 575 return _base;
duke@435 576 }
duke@435 577
duke@435 578 //------------------------------is_finite--------------------------------------
duke@435 579 // Has a finite value
duke@435 580 bool Type::is_finite() const {
duke@435 581 return false;
duke@435 582 }
duke@435 583
duke@435 584 //------------------------------is_nan-----------------------------------------
duke@435 585 // Is not a number (NaN)
duke@435 586 bool Type::is_nan() const {
duke@435 587 return false;
duke@435 588 }
duke@435 589
kvn@1255 590 //----------------------interface_vs_oop---------------------------------------
kvn@1255 591 #ifdef ASSERT
roland@5991 592 bool Type::interface_vs_oop_helper(const Type *t) const {
kvn@1255 593 bool result = false;
kvn@1255 594
kvn@1427 595 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
kvn@1427 596 const TypePtr* t_ptr = t->make_ptr();
kvn@1427 597 if( this_ptr == NULL || t_ptr == NULL )
kvn@1427 598 return result;
kvn@1427 599
kvn@1427 600 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
kvn@1427 601 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
kvn@1255 602 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
kvn@1255 603 bool this_interface = this_inst->klass()->is_interface();
kvn@1255 604 bool t_interface = t_inst->klass()->is_interface();
kvn@1255 605 result = this_interface ^ t_interface;
kvn@1255 606 }
kvn@1255 607
kvn@1255 608 return result;
kvn@1255 609 }
roland@5991 610
roland@5991 611 bool Type::interface_vs_oop(const Type *t) const {
roland@5991 612 if (interface_vs_oop_helper(t)) {
roland@5991 613 return true;
roland@5991 614 }
roland@5991 615 // Now check the speculative parts as well
roland@5991 616 const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
roland@5991 617 const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
roland@5991 618 if (this_spec != NULL && t_spec != NULL) {
roland@5991 619 if (this_spec->interface_vs_oop_helper(t_spec)) {
roland@5991 620 return true;
roland@5991 621 }
roland@5991 622 return false;
roland@5991 623 }
roland@5991 624 if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
roland@5991 625 return true;
roland@5991 626 }
roland@5991 627 if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
roland@5991 628 return true;
roland@5991 629 }
roland@5991 630 return false;
roland@5991 631 }
roland@5991 632
kvn@1255 633 #endif
kvn@1255 634
duke@435 635 //------------------------------meet-------------------------------------------
duke@435 636 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 637 // commutative and the lattice is symmetric.
roland@6313 638 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
coleenp@548 639 if (isa_narrowoop() && t->isa_narrowoop()) {
roland@6313 640 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
kvn@656 641 return result->make_narrowoop();
coleenp@548 642 }
roland@4159 643 if (isa_narrowklass() && t->isa_narrowklass()) {
roland@6313 644 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
roland@4159 645 return result->make_narrowklass();
roland@4159 646 }
coleenp@548 647
roland@6313 648 const Type *this_t = maybe_remove_speculative(include_speculative);
roland@6313 649 t = t->maybe_remove_speculative(include_speculative);
roland@6313 650
roland@6313 651 const Type *mt = this_t->xmeet(t);
coleenp@548 652 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
roland@4159 653 if (isa_narrowklass() || t->isa_narrowklass()) return mt;
duke@435 654 #ifdef ASSERT
roland@6313 655 assert(mt == t->xmeet(this_t), "meet not commutative");
duke@435 656 const Type* dual_join = mt->_dual;
duke@435 657 const Type *t2t = dual_join->xmeet(t->_dual);
roland@6313 658 const Type *t2this = dual_join->xmeet(this_t->_dual);
duke@435 659
duke@435 660 // Interface meet Oop is Not Symmetric:
duke@435 661 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 662 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
kvn@1255 663
roland@6313 664 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
duke@435 665 tty->print_cr("=== Meet Not Symmetric ===");
roland@6313 666 tty->print("t = "); t->dump(); tty->cr();
roland@6313 667 tty->print("this= "); this_t->dump(); tty->cr();
roland@6313 668 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
roland@6313 669
roland@6313 670 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
roland@6313 671 tty->print("this_dual= "); this_t->_dual->dump(); tty->cr();
roland@6313 672 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
roland@6313 673
roland@6313 674 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
roland@6313 675 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 676
duke@435 677 fatal("meet not symmetric" );
duke@435 678 }
duke@435 679 #endif
duke@435 680 return mt;
duke@435 681 }
duke@435 682
duke@435 683 //------------------------------xmeet------------------------------------------
duke@435 684 // Compute the MEET of two types. It returns a new Type object.
duke@435 685 const Type *Type::xmeet( const Type *t ) const {
duke@435 686 // Perform a fast test for common case; meeting the same types together.
duke@435 687 if( this == t ) return this; // Meeting same type-rep?
duke@435 688
duke@435 689 // Meeting TOP with anything?
duke@435 690 if( _base == Top ) return t;
duke@435 691
duke@435 692 // Meeting BOTTOM with anything?
duke@435 693 if( _base == Bottom ) return BOTTOM;
duke@435 694
duke@435 695 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 696 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 697 switch (t->base()) { // Switch on original type
duke@435 698
duke@435 699 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 700 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 701 case FloatCon:
duke@435 702 case DoubleCon:
duke@435 703 case Int:
duke@435 704 case Long:
duke@435 705 return t->xmeet(this);
duke@435 706
duke@435 707 case OopPtr:
duke@435 708 return t->xmeet(this);
duke@435 709
duke@435 710 case InstPtr:
duke@435 711 return t->xmeet(this);
duke@435 712
coleenp@4037 713 case MetadataPtr:
duke@435 714 case KlassPtr:
duke@435 715 return t->xmeet(this);
duke@435 716
duke@435 717 case AryPtr:
duke@435 718 return t->xmeet(this);
duke@435 719
coleenp@548 720 case NarrowOop:
coleenp@548 721 return t->xmeet(this);
coleenp@548 722
roland@4159 723 case NarrowKlass:
roland@4159 724 return t->xmeet(this);
roland@4159 725
duke@435 726 case Bad: // Type check
duke@435 727 default: // Bogus type not in lattice
duke@435 728 typerr(t);
duke@435 729 return Type::BOTTOM;
duke@435 730
duke@435 731 case Bottom: // Ye Olde Default
duke@435 732 return t;
duke@435 733
duke@435 734 case FloatTop:
duke@435 735 if( _base == FloatTop ) return this;
duke@435 736 case FloatBot: // Float
duke@435 737 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 738 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 739 typerr(t);
duke@435 740 return Type::BOTTOM;
duke@435 741
duke@435 742 case DoubleTop:
duke@435 743 if( _base == DoubleTop ) return this;
duke@435 744 case DoubleBot: // Double
duke@435 745 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 746 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 747 typerr(t);
duke@435 748 return Type::BOTTOM;
duke@435 749
duke@435 750 // These next few cases must match exactly or it is a compile-time error.
duke@435 751 case Control: // Control of code
duke@435 752 case Abio: // State of world outside of program
duke@435 753 case Memory:
duke@435 754 if( _base == t->_base ) return this;
duke@435 755 typerr(t);
duke@435 756 return Type::BOTTOM;
duke@435 757
duke@435 758 case Top: // Top of the lattice
duke@435 759 return this;
duke@435 760 }
duke@435 761
duke@435 762 // The type is unchanged
duke@435 763 return this;
duke@435 764 }
duke@435 765
duke@435 766 //-----------------------------filter------------------------------------------
roland@6313 767 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 768 const Type* ft = join_helper(kills, include_speculative);
duke@435 769 if (ft->empty())
duke@435 770 return Type::TOP; // Canonical empty value
duke@435 771 return ft;
duke@435 772 }
duke@435 773
duke@435 774 //------------------------------xdual------------------------------------------
duke@435 775 // Compute dual right now.
duke@435 776 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 777 Bad, // Bad
duke@435 778 Control, // Control
duke@435 779 Bottom, // Top
duke@435 780 Bad, // Int - handled in v-call
duke@435 781 Bad, // Long - handled in v-call
duke@435 782 Half, // Half
coleenp@548 783 Bad, // NarrowOop - handled in v-call
roland@4159 784 Bad, // NarrowKlass - handled in v-call
duke@435 785
duke@435 786 Bad, // Tuple - handled in v-call
duke@435 787 Bad, // Array - handled in v-call
kvn@3882 788 Bad, // VectorS - handled in v-call
kvn@3882 789 Bad, // VectorD - handled in v-call
kvn@3882 790 Bad, // VectorX - handled in v-call
kvn@3882 791 Bad, // VectorY - handled in v-call
duke@435 792
duke@435 793 Bad, // AnyPtr - handled in v-call
duke@435 794 Bad, // RawPtr - handled in v-call
duke@435 795 Bad, // OopPtr - handled in v-call
duke@435 796 Bad, // InstPtr - handled in v-call
duke@435 797 Bad, // AryPtr - handled in v-call
coleenp@4037 798
coleenp@4037 799 Bad, // MetadataPtr - handled in v-call
duke@435 800 Bad, // KlassPtr - handled in v-call
duke@435 801
duke@435 802 Bad, // Function - handled in v-call
duke@435 803 Abio, // Abio
duke@435 804 Return_Address,// Return_Address
duke@435 805 Memory, // Memory
duke@435 806 FloatBot, // FloatTop
duke@435 807 FloatCon, // FloatCon
duke@435 808 FloatTop, // FloatBot
duke@435 809 DoubleBot, // DoubleTop
duke@435 810 DoubleCon, // DoubleCon
duke@435 811 DoubleTop, // DoubleBot
duke@435 812 Top // Bottom
duke@435 813 };
duke@435 814
duke@435 815 const Type *Type::xdual() const {
duke@435 816 // Note: the base() accessor asserts the sanity of _base.
coleenp@4037 817 assert(_type_info[base()].dual_type != Bad, "implement with v-call");
coleenp@4037 818 return new Type(_type_info[_base].dual_type);
duke@435 819 }
duke@435 820
duke@435 821 //------------------------------has_memory-------------------------------------
duke@435 822 bool Type::has_memory() const {
duke@435 823 Type::TYPES tx = base();
duke@435 824 if (tx == Memory) return true;
duke@435 825 if (tx == Tuple) {
duke@435 826 const TypeTuple *t = is_tuple();
duke@435 827 for (uint i=0; i < t->cnt(); i++) {
duke@435 828 tx = t->field_at(i)->base();
duke@435 829 if (tx == Memory) return true;
duke@435 830 }
duke@435 831 }
duke@435 832 return false;
duke@435 833 }
duke@435 834
duke@435 835 #ifndef PRODUCT
duke@435 836 //------------------------------dump2------------------------------------------
duke@435 837 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
coleenp@4037 838 st->print(_type_info[_base].msg);
duke@435 839 }
duke@435 840
duke@435 841 //------------------------------dump-------------------------------------------
duke@435 842 void Type::dump_on(outputStream *st) const {
duke@435 843 ResourceMark rm;
duke@435 844 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 845 dump2(d,1, st);
kvn@598 846 if (is_ptr_to_narrowoop()) {
coleenp@548 847 st->print(" [narrow]");
roland@4159 848 } else if (is_ptr_to_narrowklass()) {
roland@4159 849 st->print(" [narrowklass]");
coleenp@548 850 }
duke@435 851 }
duke@435 852 #endif
duke@435 853
duke@435 854 //------------------------------singleton--------------------------------------
duke@435 855 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 856 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 857 bool Type::singleton(void) const {
duke@435 858 return _base == Top || _base == Half;
duke@435 859 }
duke@435 860
duke@435 861 //------------------------------empty------------------------------------------
duke@435 862 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 863 bool Type::empty(void) const {
duke@435 864 switch (_base) {
duke@435 865 case DoubleTop:
duke@435 866 case FloatTop:
duke@435 867 case Top:
duke@435 868 return true;
duke@435 869
duke@435 870 case Half:
duke@435 871 case Abio:
duke@435 872 case Return_Address:
duke@435 873 case Memory:
duke@435 874 case Bottom:
duke@435 875 case FloatBot:
duke@435 876 case DoubleBot:
duke@435 877 return false; // never a singleton, therefore never empty
duke@435 878 }
duke@435 879
duke@435 880 ShouldNotReachHere();
duke@435 881 return false;
duke@435 882 }
duke@435 883
duke@435 884 //------------------------------dump_stats-------------------------------------
duke@435 885 // Dump collected statistics to stderr
duke@435 886 #ifndef PRODUCT
duke@435 887 void Type::dump_stats() {
duke@435 888 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 889 }
duke@435 890 #endif
duke@435 891
duke@435 892 //------------------------------typerr-----------------------------------------
duke@435 893 void Type::typerr( const Type *t ) const {
duke@435 894 #ifndef PRODUCT
duke@435 895 tty->print("\nError mixing types: ");
duke@435 896 dump();
duke@435 897 tty->print(" and ");
duke@435 898 t->dump();
duke@435 899 tty->print("\n");
duke@435 900 #endif
duke@435 901 ShouldNotReachHere();
duke@435 902 }
duke@435 903
duke@435 904
duke@435 905 //=============================================================================
duke@435 906 // Convenience common pre-built types.
duke@435 907 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 908 const TypeF *TypeF::ONE; // Floating point one
duke@435 909
duke@435 910 //------------------------------make-------------------------------------------
duke@435 911 // Create a float constant
duke@435 912 const TypeF *TypeF::make(float f) {
duke@435 913 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 914 }
duke@435 915
duke@435 916 //------------------------------meet-------------------------------------------
duke@435 917 // Compute the MEET of two types. It returns a new Type object.
duke@435 918 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 919 // Perform a fast test for common case; meeting the same types together.
duke@435 920 if( this == t ) return this; // Meeting same type-rep?
duke@435 921
duke@435 922 // Current "this->_base" is FloatCon
duke@435 923 switch (t->base()) { // Switch on original type
duke@435 924 case AnyPtr: // Mixing with oops happens when javac
duke@435 925 case RawPtr: // reuses local variables
duke@435 926 case OopPtr:
duke@435 927 case InstPtr:
coleenp@4037 928 case AryPtr:
coleenp@4037 929 case MetadataPtr:
duke@435 930 case KlassPtr:
kvn@728 931 case NarrowOop:
roland@4159 932 case NarrowKlass:
duke@435 933 case Int:
duke@435 934 case Long:
duke@435 935 case DoubleTop:
duke@435 936 case DoubleCon:
duke@435 937 case DoubleBot:
duke@435 938 case Bottom: // Ye Olde Default
duke@435 939 return Type::BOTTOM;
duke@435 940
duke@435 941 case FloatBot:
duke@435 942 return t;
duke@435 943
duke@435 944 default: // All else is a mistake
duke@435 945 typerr(t);
duke@435 946
duke@435 947 case FloatCon: // Float-constant vs Float-constant?
duke@435 948 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 949 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 950 // all the same representation in C++
duke@435 951 return FLOAT; // Return generic float
duke@435 952 // Equal constants
duke@435 953 case Top:
duke@435 954 case FloatTop:
duke@435 955 break; // Return the float constant
duke@435 956 }
duke@435 957 return this; // Return the float constant
duke@435 958 }
duke@435 959
duke@435 960 //------------------------------xdual------------------------------------------
duke@435 961 // Dual: symmetric
duke@435 962 const Type *TypeF::xdual() const {
duke@435 963 return this;
duke@435 964 }
duke@435 965
duke@435 966 //------------------------------eq---------------------------------------------
duke@435 967 // Structural equality check for Type representations
duke@435 968 bool TypeF::eq( const Type *t ) const {
duke@435 969 if( g_isnan(_f) ||
duke@435 970 g_isnan(t->getf()) ) {
duke@435 971 // One or both are NANs. If both are NANs return true, else false.
duke@435 972 return (g_isnan(_f) && g_isnan(t->getf()));
duke@435 973 }
duke@435 974 if (_f == t->getf()) {
duke@435 975 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 976 if (_f == 0.0) {
duke@435 977 // difference between positive and negative zero
duke@435 978 if (jint_cast(_f) != jint_cast(t->getf())) return false;
duke@435 979 }
duke@435 980 return true;
duke@435 981 }
duke@435 982 return false;
duke@435 983 }
duke@435 984
duke@435 985 //------------------------------hash-------------------------------------------
duke@435 986 // Type-specific hashing function.
duke@435 987 int TypeF::hash(void) const {
duke@435 988 return *(int*)(&_f);
duke@435 989 }
duke@435 990
duke@435 991 //------------------------------is_finite--------------------------------------
duke@435 992 // Has a finite value
duke@435 993 bool TypeF::is_finite() const {
duke@435 994 return g_isfinite(getf()) != 0;
duke@435 995 }
duke@435 996
duke@435 997 //------------------------------is_nan-----------------------------------------
duke@435 998 // Is not a number (NaN)
duke@435 999 bool TypeF::is_nan() const {
duke@435 1000 return g_isnan(getf()) != 0;
duke@435 1001 }
duke@435 1002
duke@435 1003 //------------------------------dump2------------------------------------------
duke@435 1004 // Dump float constant Type
duke@435 1005 #ifndef PRODUCT
duke@435 1006 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1007 Type::dump2(d,depth, st);
duke@435 1008 st->print("%f", _f);
duke@435 1009 }
duke@435 1010 #endif
duke@435 1011
duke@435 1012 //------------------------------singleton--------------------------------------
duke@435 1013 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1014 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1015 // or a single symbol.
duke@435 1016 bool TypeF::singleton(void) const {
duke@435 1017 return true; // Always a singleton
duke@435 1018 }
duke@435 1019
duke@435 1020 bool TypeF::empty(void) const {
duke@435 1021 return false; // always exactly a singleton
duke@435 1022 }
duke@435 1023
duke@435 1024 //=============================================================================
duke@435 1025 // Convenience common pre-built types.
duke@435 1026 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 1027 const TypeD *TypeD::ONE; // Floating point one
duke@435 1028
duke@435 1029 //------------------------------make-------------------------------------------
duke@435 1030 const TypeD *TypeD::make(double d) {
duke@435 1031 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 1032 }
duke@435 1033
duke@435 1034 //------------------------------meet-------------------------------------------
duke@435 1035 // Compute the MEET of two types. It returns a new Type object.
duke@435 1036 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 1037 // Perform a fast test for common case; meeting the same types together.
duke@435 1038 if( this == t ) return this; // Meeting same type-rep?
duke@435 1039
duke@435 1040 // Current "this->_base" is DoubleCon
duke@435 1041 switch (t->base()) { // Switch on original type
duke@435 1042 case AnyPtr: // Mixing with oops happens when javac
duke@435 1043 case RawPtr: // reuses local variables
duke@435 1044 case OopPtr:
duke@435 1045 case InstPtr:
coleenp@4037 1046 case AryPtr:
coleenp@4037 1047 case MetadataPtr:
duke@435 1048 case KlassPtr:
never@618 1049 case NarrowOop:
roland@4159 1050 case NarrowKlass:
duke@435 1051 case Int:
duke@435 1052 case Long:
duke@435 1053 case FloatTop:
duke@435 1054 case FloatCon:
duke@435 1055 case FloatBot:
duke@435 1056 case Bottom: // Ye Olde Default
duke@435 1057 return Type::BOTTOM;
duke@435 1058
duke@435 1059 case DoubleBot:
duke@435 1060 return t;
duke@435 1061
duke@435 1062 default: // All else is a mistake
duke@435 1063 typerr(t);
duke@435 1064
duke@435 1065 case DoubleCon: // Double-constant vs Double-constant?
duke@435 1066 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 1067 return DOUBLE; // Return generic double
duke@435 1068 case Top:
duke@435 1069 case DoubleTop:
duke@435 1070 break;
duke@435 1071 }
duke@435 1072 return this; // Return the double constant
duke@435 1073 }
duke@435 1074
duke@435 1075 //------------------------------xdual------------------------------------------
duke@435 1076 // Dual: symmetric
duke@435 1077 const Type *TypeD::xdual() const {
duke@435 1078 return this;
duke@435 1079 }
duke@435 1080
duke@435 1081 //------------------------------eq---------------------------------------------
duke@435 1082 // Structural equality check for Type representations
duke@435 1083 bool TypeD::eq( const Type *t ) const {
duke@435 1084 if( g_isnan(_d) ||
duke@435 1085 g_isnan(t->getd()) ) {
duke@435 1086 // One or both are NANs. If both are NANs return true, else false.
duke@435 1087 return (g_isnan(_d) && g_isnan(t->getd()));
duke@435 1088 }
duke@435 1089 if (_d == t->getd()) {
duke@435 1090 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 1091 if (_d == 0.0) {
duke@435 1092 // difference between positive and negative zero
duke@435 1093 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
duke@435 1094 }
duke@435 1095 return true;
duke@435 1096 }
duke@435 1097 return false;
duke@435 1098 }
duke@435 1099
duke@435 1100 //------------------------------hash-------------------------------------------
duke@435 1101 // Type-specific hashing function.
duke@435 1102 int TypeD::hash(void) const {
duke@435 1103 return *(int*)(&_d);
duke@435 1104 }
duke@435 1105
duke@435 1106 //------------------------------is_finite--------------------------------------
duke@435 1107 // Has a finite value
duke@435 1108 bool TypeD::is_finite() const {
duke@435 1109 return g_isfinite(getd()) != 0;
duke@435 1110 }
duke@435 1111
duke@435 1112 //------------------------------is_nan-----------------------------------------
duke@435 1113 // Is not a number (NaN)
duke@435 1114 bool TypeD::is_nan() const {
duke@435 1115 return g_isnan(getd()) != 0;
duke@435 1116 }
duke@435 1117
duke@435 1118 //------------------------------dump2------------------------------------------
duke@435 1119 // Dump double constant Type
duke@435 1120 #ifndef PRODUCT
duke@435 1121 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1122 Type::dump2(d,depth,st);
duke@435 1123 st->print("%f", _d);
duke@435 1124 }
duke@435 1125 #endif
duke@435 1126
duke@435 1127 //------------------------------singleton--------------------------------------
duke@435 1128 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1129 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1130 // or a single symbol.
duke@435 1131 bool TypeD::singleton(void) const {
duke@435 1132 return true; // Always a singleton
duke@435 1133 }
duke@435 1134
duke@435 1135 bool TypeD::empty(void) const {
duke@435 1136 return false; // always exactly a singleton
duke@435 1137 }
duke@435 1138
duke@435 1139 //=============================================================================
duke@435 1140 // Convience common pre-built types.
duke@435 1141 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1142 const TypeInt *TypeInt::ZERO; // 0
duke@435 1143 const TypeInt *TypeInt::ONE; // 1
duke@435 1144 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1145 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1146 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1147 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1148 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1149 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1150 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1151 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
twisti@1059 1152 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
duke@435 1153 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1154 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1155 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1156 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1157 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1158 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 1159
duke@435 1160 //------------------------------TypeInt----------------------------------------
duke@435 1161 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1162 }
duke@435 1163
duke@435 1164 //------------------------------make-------------------------------------------
duke@435 1165 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1166 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1167 }
duke@435 1168
kvn@1975 1169 static int normalize_int_widen( jint lo, jint hi, int w ) {
duke@435 1170 // Certain normalizations keep us sane when comparing types.
duke@435 1171 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1172 if (lo <= hi) {
kvn@1975 1173 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1174 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
kvn@1975 1175 } else {
kvn@1975 1176 if ((juint)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1177 if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
duke@435 1178 }
kvn@1975 1179 return w;
kvn@1975 1180 }
kvn@1975 1181
kvn@1975 1182 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
kvn@1975 1183 w = normalize_int_widen(lo, hi, w);
duke@435 1184 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1185 }
duke@435 1186
duke@435 1187 //------------------------------meet-------------------------------------------
duke@435 1188 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1189 // with reference count equal to the number of Types pointing at it.
duke@435 1190 // Caller should wrap a Types around it.
duke@435 1191 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1192 // Perform a fast test for common case; meeting the same types together.
duke@435 1193 if( this == t ) return this; // Meeting same type?
duke@435 1194
duke@435 1195 // Currently "this->_base" is a TypeInt
duke@435 1196 switch (t->base()) { // Switch on original type
duke@435 1197 case AnyPtr: // Mixing with oops happens when javac
duke@435 1198 case RawPtr: // reuses local variables
duke@435 1199 case OopPtr:
duke@435 1200 case InstPtr:
coleenp@4037 1201 case AryPtr:
coleenp@4037 1202 case MetadataPtr:
duke@435 1203 case KlassPtr:
never@618 1204 case NarrowOop:
roland@4159 1205 case NarrowKlass:
duke@435 1206 case Long:
duke@435 1207 case FloatTop:
duke@435 1208 case FloatCon:
duke@435 1209 case FloatBot:
duke@435 1210 case DoubleTop:
duke@435 1211 case DoubleCon:
duke@435 1212 case DoubleBot:
duke@435 1213 case Bottom: // Ye Olde Default
duke@435 1214 return Type::BOTTOM;
duke@435 1215 default: // All else is a mistake
duke@435 1216 typerr(t);
duke@435 1217 case Top: // No change
duke@435 1218 return this;
duke@435 1219 case Int: // Int vs Int?
duke@435 1220 break;
duke@435 1221 }
duke@435 1222
duke@435 1223 // Expand covered set
duke@435 1224 const TypeInt *r = t->is_int();
kvn@1975 1225 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1226 }
duke@435 1227
duke@435 1228 //------------------------------xdual------------------------------------------
duke@435 1229 // Dual: reverse hi & lo; flip widen
duke@435 1230 const Type *TypeInt::xdual() const {
kvn@1975 1231 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1232 return new TypeInt(_hi,_lo,w);
duke@435 1233 }
duke@435 1234
duke@435 1235 //------------------------------widen------------------------------------------
duke@435 1236 // Only happens for optimistic top-down optimizations.
never@1444 1237 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
duke@435 1238 // Coming from TOP or such; no widening
duke@435 1239 if( old->base() != Int ) return this;
duke@435 1240 const TypeInt *ot = old->is_int();
duke@435 1241
duke@435 1242 // If new guy is equal to old guy, no widening
duke@435 1243 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1244 return old;
duke@435 1245
duke@435 1246 // If new guy contains old, then we widened
duke@435 1247 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1248 // New contains old
duke@435 1249 // If new guy is already wider than old, no widening
duke@435 1250 if( _widen > ot->_widen ) return this;
duke@435 1251 // If old guy was a constant, do not bother
duke@435 1252 if (ot->_lo == ot->_hi) return this;
duke@435 1253 // Now widen new guy.
duke@435 1254 // Check for widening too far
duke@435 1255 if (_widen == WidenMax) {
never@1444 1256 int max = max_jint;
never@1444 1257 int min = min_jint;
never@1444 1258 if (limit->isa_int()) {
never@1444 1259 max = limit->is_int()->_hi;
never@1444 1260 min = limit->is_int()->_lo;
never@1444 1261 }
never@1444 1262 if (min < _lo && _hi < max) {
duke@435 1263 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1264 // which is closer to its respective limit.
duke@435 1265 if (_lo >= 0 || // easy common case
never@1444 1266 (juint)(_lo - min) >= (juint)(max - _hi)) {
duke@435 1267 // Try to widen to an unsigned range type of 31 bits:
never@1444 1268 return make(_lo, max, WidenMax);
duke@435 1269 } else {
never@1444 1270 return make(min, _hi, WidenMax);
duke@435 1271 }
duke@435 1272 }
duke@435 1273 return TypeInt::INT;
duke@435 1274 }
duke@435 1275 // Returned widened new guy
duke@435 1276 return make(_lo,_hi,_widen+1);
duke@435 1277 }
duke@435 1278
duke@435 1279 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1280 // bottom. Return the wider fellow.
duke@435 1281 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1282 return old;
duke@435 1283
duke@435 1284 //fatal("Integer value range is not subset");
duke@435 1285 //return this;
duke@435 1286 return TypeInt::INT;
duke@435 1287 }
duke@435 1288
duke@435 1289 //------------------------------narrow---------------------------------------
duke@435 1290 // Only happens for pessimistic optimizations.
duke@435 1291 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1292 if (_lo >= _hi) return this; // already narrow enough
duke@435 1293 if (old == NULL) return this;
duke@435 1294 const TypeInt* ot = old->isa_int();
duke@435 1295 if (ot == NULL) return this;
duke@435 1296 jint olo = ot->_lo;
duke@435 1297 jint ohi = ot->_hi;
duke@435 1298
duke@435 1299 // If new guy is equal to old guy, no narrowing
duke@435 1300 if (_lo == olo && _hi == ohi) return old;
duke@435 1301
duke@435 1302 // If old guy was maximum range, allow the narrowing
duke@435 1303 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1304
duke@435 1305 if (_lo < olo || _hi > ohi)
duke@435 1306 return this; // doesn't narrow; pretty wierd
duke@435 1307
duke@435 1308 // The new type narrows the old type, so look for a "death march".
duke@435 1309 // See comments on PhaseTransform::saturate.
duke@435 1310 juint nrange = _hi - _lo;
duke@435 1311 juint orange = ohi - olo;
duke@435 1312 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1313 // Use the new type only if the range shrinks a lot.
duke@435 1314 // We do not want the optimizer computing 2^31 point by point.
duke@435 1315 return old;
duke@435 1316 }
duke@435 1317
duke@435 1318 return this;
duke@435 1319 }
duke@435 1320
duke@435 1321 //-----------------------------filter------------------------------------------
roland@6313 1322 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 1323 const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
kvn@1975 1324 if (ft == NULL || ft->empty())
duke@435 1325 return Type::TOP; // Canonical empty value
duke@435 1326 if (ft->_widen < this->_widen) {
duke@435 1327 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1328 // The widen bits must be allowed to run freely through the graph.
duke@435 1329 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1330 }
duke@435 1331 return ft;
duke@435 1332 }
duke@435 1333
duke@435 1334 //------------------------------eq---------------------------------------------
duke@435 1335 // Structural equality check for Type representations
duke@435 1336 bool TypeInt::eq( const Type *t ) const {
duke@435 1337 const TypeInt *r = t->is_int(); // Handy access
duke@435 1338 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1339 }
duke@435 1340
duke@435 1341 //------------------------------hash-------------------------------------------
duke@435 1342 // Type-specific hashing function.
duke@435 1343 int TypeInt::hash(void) const {
duke@435 1344 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1345 }
duke@435 1346
duke@435 1347 //------------------------------is_finite--------------------------------------
duke@435 1348 // Has a finite value
duke@435 1349 bool TypeInt::is_finite() const {
duke@435 1350 return true;
duke@435 1351 }
duke@435 1352
duke@435 1353 //------------------------------dump2------------------------------------------
duke@435 1354 // Dump TypeInt
duke@435 1355 #ifndef PRODUCT
duke@435 1356 static const char* intname(char* buf, jint n) {
duke@435 1357 if (n == min_jint)
duke@435 1358 return "min";
duke@435 1359 else if (n < min_jint + 10000)
duke@435 1360 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1361 else if (n == max_jint)
duke@435 1362 return "max";
duke@435 1363 else if (n > max_jint - 10000)
duke@435 1364 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1365 else
duke@435 1366 sprintf(buf, INT32_FORMAT, n);
duke@435 1367 return buf;
duke@435 1368 }
duke@435 1369
duke@435 1370 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1371 char buf[40], buf2[40];
duke@435 1372 if (_lo == min_jint && _hi == max_jint)
duke@435 1373 st->print("int");
duke@435 1374 else if (is_con())
duke@435 1375 st->print("int:%s", intname(buf, get_con()));
duke@435 1376 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1377 st->print("bool");
duke@435 1378 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1379 st->print("byte");
duke@435 1380 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1381 st->print("char");
duke@435 1382 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1383 st->print("short");
duke@435 1384 else if (_hi == max_jint)
duke@435 1385 st->print("int:>=%s", intname(buf, _lo));
duke@435 1386 else if (_lo == min_jint)
duke@435 1387 st->print("int:<=%s", intname(buf, _hi));
duke@435 1388 else
duke@435 1389 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1390
duke@435 1391 if (_widen != 0 && this != TypeInt::INT)
duke@435 1392 st->print(":%.*s", _widen, "wwww");
duke@435 1393 }
duke@435 1394 #endif
duke@435 1395
duke@435 1396 //------------------------------singleton--------------------------------------
duke@435 1397 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1398 // constants.
duke@435 1399 bool TypeInt::singleton(void) const {
duke@435 1400 return _lo >= _hi;
duke@435 1401 }
duke@435 1402
duke@435 1403 bool TypeInt::empty(void) const {
duke@435 1404 return _lo > _hi;
duke@435 1405 }
duke@435 1406
duke@435 1407 //=============================================================================
duke@435 1408 // Convenience common pre-built types.
duke@435 1409 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1410 const TypeLong *TypeLong::ZERO; // 0
duke@435 1411 const TypeLong *TypeLong::ONE; // 1
duke@435 1412 const TypeLong *TypeLong::POS; // >=0
duke@435 1413 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1414 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1415 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
duke@435 1416
duke@435 1417 //------------------------------TypeLong---------------------------------------
duke@435 1418 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1419 }
duke@435 1420
duke@435 1421 //------------------------------make-------------------------------------------
duke@435 1422 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1423 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1424 }
duke@435 1425
kvn@1975 1426 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
kvn@1975 1427 // Certain normalizations keep us sane when comparing types.
kvn@1975 1428 // The 'SMALLINT' covers constants.
kvn@1975 1429 if (lo <= hi) {
kvn@1975 1430 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1431 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
kvn@1975 1432 } else {
kvn@1975 1433 if ((julong)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1434 if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
kvn@1975 1435 }
kvn@1975 1436 return w;
kvn@1975 1437 }
kvn@1975 1438
duke@435 1439 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
kvn@1975 1440 w = normalize_long_widen(lo, hi, w);
duke@435 1441 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1442 }
duke@435 1443
duke@435 1444
duke@435 1445 //------------------------------meet-------------------------------------------
duke@435 1446 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1447 // with reference count equal to the number of Types pointing at it.
duke@435 1448 // Caller should wrap a Types around it.
duke@435 1449 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1450 // Perform a fast test for common case; meeting the same types together.
duke@435 1451 if( this == t ) return this; // Meeting same type?
duke@435 1452
duke@435 1453 // Currently "this->_base" is a TypeLong
duke@435 1454 switch (t->base()) { // Switch on original type
duke@435 1455 case AnyPtr: // Mixing with oops happens when javac
duke@435 1456 case RawPtr: // reuses local variables
duke@435 1457 case OopPtr:
duke@435 1458 case InstPtr:
coleenp@4037 1459 case AryPtr:
coleenp@4037 1460 case MetadataPtr:
duke@435 1461 case KlassPtr:
never@618 1462 case NarrowOop:
roland@4159 1463 case NarrowKlass:
duke@435 1464 case Int:
duke@435 1465 case FloatTop:
duke@435 1466 case FloatCon:
duke@435 1467 case FloatBot:
duke@435 1468 case DoubleTop:
duke@435 1469 case DoubleCon:
duke@435 1470 case DoubleBot:
duke@435 1471 case Bottom: // Ye Olde Default
duke@435 1472 return Type::BOTTOM;
duke@435 1473 default: // All else is a mistake
duke@435 1474 typerr(t);
duke@435 1475 case Top: // No change
duke@435 1476 return this;
duke@435 1477 case Long: // Long vs Long?
duke@435 1478 break;
duke@435 1479 }
duke@435 1480
duke@435 1481 // Expand covered set
duke@435 1482 const TypeLong *r = t->is_long(); // Turn into a TypeLong
kvn@1975 1483 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1484 }
duke@435 1485
duke@435 1486 //------------------------------xdual------------------------------------------
duke@435 1487 // Dual: reverse hi & lo; flip widen
duke@435 1488 const Type *TypeLong::xdual() const {
kvn@1975 1489 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1490 return new TypeLong(_hi,_lo,w);
duke@435 1491 }
duke@435 1492
duke@435 1493 //------------------------------widen------------------------------------------
duke@435 1494 // Only happens for optimistic top-down optimizations.
never@1444 1495 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
duke@435 1496 // Coming from TOP or such; no widening
duke@435 1497 if( old->base() != Long ) return this;
duke@435 1498 const TypeLong *ot = old->is_long();
duke@435 1499
duke@435 1500 // If new guy is equal to old guy, no widening
duke@435 1501 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1502 return old;
duke@435 1503
duke@435 1504 // If new guy contains old, then we widened
duke@435 1505 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1506 // New contains old
duke@435 1507 // If new guy is already wider than old, no widening
duke@435 1508 if( _widen > ot->_widen ) return this;
duke@435 1509 // If old guy was a constant, do not bother
duke@435 1510 if (ot->_lo == ot->_hi) return this;
duke@435 1511 // Now widen new guy.
duke@435 1512 // Check for widening too far
duke@435 1513 if (_widen == WidenMax) {
never@1444 1514 jlong max = max_jlong;
never@1444 1515 jlong min = min_jlong;
never@1444 1516 if (limit->isa_long()) {
never@1444 1517 max = limit->is_long()->_hi;
never@1444 1518 min = limit->is_long()->_lo;
never@1444 1519 }
never@1444 1520 if (min < _lo && _hi < max) {
duke@435 1521 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1522 // which is closer to its respective limit.
duke@435 1523 if (_lo >= 0 || // easy common case
never@1444 1524 (julong)(_lo - min) >= (julong)(max - _hi)) {
duke@435 1525 // Try to widen to an unsigned range type of 32/63 bits:
never@1444 1526 if (max >= max_juint && _hi < max_juint)
duke@435 1527 return make(_lo, max_juint, WidenMax);
duke@435 1528 else
never@1444 1529 return make(_lo, max, WidenMax);
duke@435 1530 } else {
never@1444 1531 return make(min, _hi, WidenMax);
duke@435 1532 }
duke@435 1533 }
duke@435 1534 return TypeLong::LONG;
duke@435 1535 }
duke@435 1536 // Returned widened new guy
duke@435 1537 return make(_lo,_hi,_widen+1);
duke@435 1538 }
duke@435 1539
duke@435 1540 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1541 // bottom. Return the wider fellow.
duke@435 1542 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1543 return old;
duke@435 1544
duke@435 1545 // fatal("Long value range is not subset");
duke@435 1546 // return this;
duke@435 1547 return TypeLong::LONG;
duke@435 1548 }
duke@435 1549
duke@435 1550 //------------------------------narrow----------------------------------------
duke@435 1551 // Only happens for pessimistic optimizations.
duke@435 1552 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1553 if (_lo >= _hi) return this; // already narrow enough
duke@435 1554 if (old == NULL) return this;
duke@435 1555 const TypeLong* ot = old->isa_long();
duke@435 1556 if (ot == NULL) return this;
duke@435 1557 jlong olo = ot->_lo;
duke@435 1558 jlong ohi = ot->_hi;
duke@435 1559
duke@435 1560 // If new guy is equal to old guy, no narrowing
duke@435 1561 if (_lo == olo && _hi == ohi) return old;
duke@435 1562
duke@435 1563 // If old guy was maximum range, allow the narrowing
duke@435 1564 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1565
duke@435 1566 if (_lo < olo || _hi > ohi)
duke@435 1567 return this; // doesn't narrow; pretty wierd
duke@435 1568
duke@435 1569 // The new type narrows the old type, so look for a "death march".
duke@435 1570 // See comments on PhaseTransform::saturate.
duke@435 1571 julong nrange = _hi - _lo;
duke@435 1572 julong orange = ohi - olo;
duke@435 1573 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1574 // Use the new type only if the range shrinks a lot.
duke@435 1575 // We do not want the optimizer computing 2^31 point by point.
duke@435 1576 return old;
duke@435 1577 }
duke@435 1578
duke@435 1579 return this;
duke@435 1580 }
duke@435 1581
duke@435 1582 //-----------------------------filter------------------------------------------
roland@6313 1583 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 1584 const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
kvn@1975 1585 if (ft == NULL || ft->empty())
duke@435 1586 return Type::TOP; // Canonical empty value
duke@435 1587 if (ft->_widen < this->_widen) {
duke@435 1588 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1589 // The widen bits must be allowed to run freely through the graph.
duke@435 1590 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1591 }
duke@435 1592 return ft;
duke@435 1593 }
duke@435 1594
duke@435 1595 //------------------------------eq---------------------------------------------
duke@435 1596 // Structural equality check for Type representations
duke@435 1597 bool TypeLong::eq( const Type *t ) const {
duke@435 1598 const TypeLong *r = t->is_long(); // Handy access
duke@435 1599 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1600 }
duke@435 1601
duke@435 1602 //------------------------------hash-------------------------------------------
duke@435 1603 // Type-specific hashing function.
duke@435 1604 int TypeLong::hash(void) const {
duke@435 1605 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1606 }
duke@435 1607
duke@435 1608 //------------------------------is_finite--------------------------------------
duke@435 1609 // Has a finite value
duke@435 1610 bool TypeLong::is_finite() const {
duke@435 1611 return true;
duke@435 1612 }
duke@435 1613
duke@435 1614 //------------------------------dump2------------------------------------------
duke@435 1615 // Dump TypeLong
duke@435 1616 #ifndef PRODUCT
duke@435 1617 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1618 if (n > x) {
duke@435 1619 if (n >= x + 10000) return NULL;
hseigel@4465 1620 sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
duke@435 1621 } else if (n < x) {
duke@435 1622 if (n <= x - 10000) return NULL;
hseigel@4465 1623 sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
duke@435 1624 } else {
duke@435 1625 return xname;
duke@435 1626 }
duke@435 1627 return buf;
duke@435 1628 }
duke@435 1629
duke@435 1630 static const char* longname(char* buf, jlong n) {
duke@435 1631 const char* str;
duke@435 1632 if (n == min_jlong)
duke@435 1633 return "min";
duke@435 1634 else if (n < min_jlong + 10000)
hseigel@4465 1635 sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
duke@435 1636 else if (n == max_jlong)
duke@435 1637 return "max";
duke@435 1638 else if (n > max_jlong - 10000)
hseigel@4465 1639 sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
duke@435 1640 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1641 return str;
duke@435 1642 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1643 return str;
duke@435 1644 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1645 return str;
duke@435 1646 else
hseigel@4465 1647 sprintf(buf, JLONG_FORMAT, n);
duke@435 1648 return buf;
duke@435 1649 }
duke@435 1650
duke@435 1651 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1652 char buf[80], buf2[80];
duke@435 1653 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1654 st->print("long");
duke@435 1655 else if (is_con())
duke@435 1656 st->print("long:%s", longname(buf, get_con()));
duke@435 1657 else if (_hi == max_jlong)
duke@435 1658 st->print("long:>=%s", longname(buf, _lo));
duke@435 1659 else if (_lo == min_jlong)
duke@435 1660 st->print("long:<=%s", longname(buf, _hi));
duke@435 1661 else
duke@435 1662 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1663
duke@435 1664 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1665 st->print(":%.*s", _widen, "wwww");
duke@435 1666 }
duke@435 1667 #endif
duke@435 1668
duke@435 1669 //------------------------------singleton--------------------------------------
duke@435 1670 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1671 // constants
duke@435 1672 bool TypeLong::singleton(void) const {
duke@435 1673 return _lo >= _hi;
duke@435 1674 }
duke@435 1675
duke@435 1676 bool TypeLong::empty(void) const {
duke@435 1677 return _lo > _hi;
duke@435 1678 }
duke@435 1679
duke@435 1680 //=============================================================================
duke@435 1681 // Convenience common pre-built types.
duke@435 1682 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1683 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1684 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1685 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1686 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1687 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1688 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1689 const TypeTuple *TypeTuple::START_I2C;
duke@435 1690 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1691 const TypeTuple *TypeTuple::LONG_PAIR;
rbackman@5791 1692 const TypeTuple *TypeTuple::INT_CC_PAIR;
rbackman@5997 1693 const TypeTuple *TypeTuple::LONG_CC_PAIR;
duke@435 1694
duke@435 1695
duke@435 1696 //------------------------------make-------------------------------------------
duke@435 1697 // Make a TypeTuple from the range of a method signature
duke@435 1698 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1699 ciType* return_type = sig->return_type();
duke@435 1700 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1701 const Type **field_array = fields(total_fields);
duke@435 1702 switch (return_type->basic_type()) {
duke@435 1703 case T_LONG:
duke@435 1704 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1705 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1706 break;
duke@435 1707 case T_DOUBLE:
duke@435 1708 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1709 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1710 break;
duke@435 1711 case T_OBJECT:
duke@435 1712 case T_ARRAY:
duke@435 1713 case T_BOOLEAN:
duke@435 1714 case T_CHAR:
duke@435 1715 case T_FLOAT:
duke@435 1716 case T_BYTE:
duke@435 1717 case T_SHORT:
duke@435 1718 case T_INT:
duke@435 1719 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1720 break;
duke@435 1721 case T_VOID:
duke@435 1722 break;
duke@435 1723 default:
duke@435 1724 ShouldNotReachHere();
duke@435 1725 }
duke@435 1726 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1727 }
duke@435 1728
duke@435 1729 // Make a TypeTuple from the domain of a method signature
duke@435 1730 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1731 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1732
duke@435 1733 uint pos = TypeFunc::Parms;
duke@435 1734 const Type **field_array;
duke@435 1735 if (recv != NULL) {
duke@435 1736 total_fields++;
duke@435 1737 field_array = fields(total_fields);
duke@435 1738 // Use get_const_type here because it respects UseUniqueSubclasses:
roland@6313 1739 field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
duke@435 1740 } else {
duke@435 1741 field_array = fields(total_fields);
duke@435 1742 }
duke@435 1743
duke@435 1744 int i = 0;
duke@435 1745 while (pos < total_fields) {
duke@435 1746 ciType* type = sig->type_at(i);
duke@435 1747
duke@435 1748 switch (type->basic_type()) {
duke@435 1749 case T_LONG:
duke@435 1750 field_array[pos++] = TypeLong::LONG;
duke@435 1751 field_array[pos++] = Type::HALF;
duke@435 1752 break;
duke@435 1753 case T_DOUBLE:
duke@435 1754 field_array[pos++] = Type::DOUBLE;
duke@435 1755 field_array[pos++] = Type::HALF;
duke@435 1756 break;
duke@435 1757 case T_OBJECT:
duke@435 1758 case T_ARRAY:
duke@435 1759 case T_BOOLEAN:
duke@435 1760 case T_CHAR:
duke@435 1761 case T_FLOAT:
duke@435 1762 case T_BYTE:
duke@435 1763 case T_SHORT:
duke@435 1764 case T_INT:
duke@435 1765 field_array[pos++] = get_const_type(type);
duke@435 1766 break;
duke@435 1767 default:
duke@435 1768 ShouldNotReachHere();
duke@435 1769 }
duke@435 1770 i++;
duke@435 1771 }
duke@435 1772 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1773 }
duke@435 1774
duke@435 1775 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1776 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1777 }
duke@435 1778
duke@435 1779 //------------------------------fields-----------------------------------------
duke@435 1780 // Subroutine call type with space allocated for argument types
duke@435 1781 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1782 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1783 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1784 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1785 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1786 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1787 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1788
duke@435 1789 return flds;
duke@435 1790 }
duke@435 1791
duke@435 1792 //------------------------------meet-------------------------------------------
duke@435 1793 // Compute the MEET of two types. It returns a new Type object.
duke@435 1794 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1795 // Perform a fast test for common case; meeting the same types together.
duke@435 1796 if( this == t ) return this; // Meeting same type-rep?
duke@435 1797
duke@435 1798 // Current "this->_base" is Tuple
duke@435 1799 switch (t->base()) { // switch on original type
duke@435 1800
duke@435 1801 case Bottom: // Ye Olde Default
duke@435 1802 return t;
duke@435 1803
duke@435 1804 default: // All else is a mistake
duke@435 1805 typerr(t);
duke@435 1806
duke@435 1807 case Tuple: { // Meeting 2 signatures?
duke@435 1808 const TypeTuple *x = t->is_tuple();
duke@435 1809 assert( _cnt == x->_cnt, "" );
duke@435 1810 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1811 for( uint i=0; i<_cnt; i++ )
duke@435 1812 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1813 return TypeTuple::make(_cnt,fields);
duke@435 1814 }
duke@435 1815 case Top:
duke@435 1816 break;
duke@435 1817 }
duke@435 1818 return this; // Return the double constant
duke@435 1819 }
duke@435 1820
duke@435 1821 //------------------------------xdual------------------------------------------
duke@435 1822 // Dual: compute field-by-field dual
duke@435 1823 const Type *TypeTuple::xdual() const {
duke@435 1824 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1825 for( uint i=0; i<_cnt; i++ )
duke@435 1826 fields[i] = _fields[i]->dual();
duke@435 1827 return new TypeTuple(_cnt,fields);
duke@435 1828 }
duke@435 1829
duke@435 1830 //------------------------------eq---------------------------------------------
duke@435 1831 // Structural equality check for Type representations
duke@435 1832 bool TypeTuple::eq( const Type *t ) const {
duke@435 1833 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1834 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1835 for (uint i = 0; i < _cnt; i++)
duke@435 1836 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1837 return false; // Missed
duke@435 1838 return true;
duke@435 1839 }
duke@435 1840
duke@435 1841 //------------------------------hash-------------------------------------------
duke@435 1842 // Type-specific hashing function.
duke@435 1843 int TypeTuple::hash(void) const {
duke@435 1844 intptr_t sum = _cnt;
duke@435 1845 for( uint i=0; i<_cnt; i++ )
duke@435 1846 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1847 return sum;
duke@435 1848 }
duke@435 1849
duke@435 1850 //------------------------------dump2------------------------------------------
duke@435 1851 // Dump signature Type
duke@435 1852 #ifndef PRODUCT
duke@435 1853 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1854 st->print("{");
duke@435 1855 if( !depth || d[this] ) { // Check for recursive print
duke@435 1856 st->print("...}");
duke@435 1857 return;
duke@435 1858 }
duke@435 1859 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1860 if( _cnt ) {
duke@435 1861 uint i;
duke@435 1862 for( i=0; i<_cnt-1; i++ ) {
duke@435 1863 st->print("%d:", i);
duke@435 1864 _fields[i]->dump2(d, depth-1, st);
duke@435 1865 st->print(", ");
duke@435 1866 }
duke@435 1867 st->print("%d:", i);
duke@435 1868 _fields[i]->dump2(d, depth-1, st);
duke@435 1869 }
duke@435 1870 st->print("}");
duke@435 1871 }
duke@435 1872 #endif
duke@435 1873
duke@435 1874 //------------------------------singleton--------------------------------------
duke@435 1875 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1876 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1877 // or a single symbol.
duke@435 1878 bool TypeTuple::singleton(void) const {
duke@435 1879 return false; // Never a singleton
duke@435 1880 }
duke@435 1881
duke@435 1882 bool TypeTuple::empty(void) const {
duke@435 1883 for( uint i=0; i<_cnt; i++ ) {
duke@435 1884 if (_fields[i]->empty()) return true;
duke@435 1885 }
duke@435 1886 return false;
duke@435 1887 }
duke@435 1888
duke@435 1889 //=============================================================================
duke@435 1890 // Convenience common pre-built types.
duke@435 1891
duke@435 1892 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1893 // Certain normalizations keep us sane when comparing types.
duke@435 1894 // We do not want arrayOop variables to differ only by the wideness
duke@435 1895 // of their index types. Pick minimum wideness, since that is the
duke@435 1896 // forced wideness of small ranges anyway.
duke@435 1897 if (size->_widen != Type::WidenMin)
duke@435 1898 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1899 else
duke@435 1900 return size;
duke@435 1901 }
duke@435 1902
duke@435 1903 //------------------------------make-------------------------------------------
vlivanov@5658 1904 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
coleenp@548 1905 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1906 elem = elem->make_narrowoop();
coleenp@548 1907 }
duke@435 1908 size = normalize_array_size(size);
vlivanov@5658 1909 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
duke@435 1910 }
duke@435 1911
duke@435 1912 //------------------------------meet-------------------------------------------
duke@435 1913 // Compute the MEET of two types. It returns a new Type object.
duke@435 1914 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1915 // Perform a fast test for common case; meeting the same types together.
duke@435 1916 if( this == t ) return this; // Meeting same type-rep?
duke@435 1917
duke@435 1918 // Current "this->_base" is Ary
duke@435 1919 switch (t->base()) { // switch on original type
duke@435 1920
duke@435 1921 case Bottom: // Ye Olde Default
duke@435 1922 return t;
duke@435 1923
duke@435 1924 default: // All else is a mistake
duke@435 1925 typerr(t);
duke@435 1926
duke@435 1927 case Array: { // Meeting 2 arrays?
duke@435 1928 const TypeAry *a = t->is_ary();
roland@6313 1929 return TypeAry::make(_elem->meet_speculative(a->_elem),
vlivanov@5658 1930 _size->xmeet(a->_size)->is_int(),
vlivanov@5658 1931 _stable & a->_stable);
duke@435 1932 }
duke@435 1933 case Top:
duke@435 1934 break;
duke@435 1935 }
duke@435 1936 return this; // Return the double constant
duke@435 1937 }
duke@435 1938
duke@435 1939 //------------------------------xdual------------------------------------------
duke@435 1940 // Dual: compute field-by-field dual
duke@435 1941 const Type *TypeAry::xdual() const {
duke@435 1942 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1943 size_dual = normalize_array_size(size_dual);
vlivanov@5658 1944 return new TypeAry(_elem->dual(), size_dual, !_stable);
duke@435 1945 }
duke@435 1946
duke@435 1947 //------------------------------eq---------------------------------------------
duke@435 1948 // Structural equality check for Type representations
duke@435 1949 bool TypeAry::eq( const Type *t ) const {
duke@435 1950 const TypeAry *a = (const TypeAry*)t;
duke@435 1951 return _elem == a->_elem &&
vlivanov@5658 1952 _stable == a->_stable &&
duke@435 1953 _size == a->_size;
duke@435 1954 }
duke@435 1955
duke@435 1956 //------------------------------hash-------------------------------------------
duke@435 1957 // Type-specific hashing function.
duke@435 1958 int TypeAry::hash(void) const {
vlivanov@5658 1959 return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
duke@435 1960 }
duke@435 1961
roland@6313 1962 /**
roland@6313 1963 * Return same type without a speculative part in the element
roland@6313 1964 */
roland@6313 1965 const Type* TypeAry::remove_speculative() const {
roland@6313 1966 return make(_elem->remove_speculative(), _size, _stable);
roland@6313 1967 }
roland@6313 1968
kvn@1255 1969 //----------------------interface_vs_oop---------------------------------------
kvn@1255 1970 #ifdef ASSERT
kvn@1255 1971 bool TypeAry::interface_vs_oop(const Type *t) const {
kvn@1255 1972 const TypeAry* t_ary = t->is_ary();
kvn@1255 1973 if (t_ary) {
kvn@1255 1974 return _elem->interface_vs_oop(t_ary->_elem);
kvn@1255 1975 }
kvn@1255 1976 return false;
kvn@1255 1977 }
kvn@1255 1978 #endif
kvn@1255 1979
duke@435 1980 //------------------------------dump2------------------------------------------
duke@435 1981 #ifndef PRODUCT
duke@435 1982 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
vlivanov@5658 1983 if (_stable) st->print("stable:");
duke@435 1984 _elem->dump2(d, depth, st);
duke@435 1985 st->print("[");
duke@435 1986 _size->dump2(d, depth, st);
duke@435 1987 st->print("]");
duke@435 1988 }
duke@435 1989 #endif
duke@435 1990
duke@435 1991 //------------------------------singleton--------------------------------------
duke@435 1992 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1993 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1994 // or a single symbol.
duke@435 1995 bool TypeAry::singleton(void) const {
duke@435 1996 return false; // Never a singleton
duke@435 1997 }
duke@435 1998
duke@435 1999 bool TypeAry::empty(void) const {
duke@435 2000 return _elem->empty() || _size->empty();
duke@435 2001 }
duke@435 2002
duke@435 2003 //--------------------------ary_must_be_exact----------------------------------
duke@435 2004 bool TypeAry::ary_must_be_exact() const {
duke@435 2005 if (!UseExactTypes) return false;
duke@435 2006 // This logic looks at the element type of an array, and returns true
duke@435 2007 // if the element type is either a primitive or a final instance class.
duke@435 2008 // In such cases, an array built on this ary must have no subclasses.
duke@435 2009 if (_elem == BOTTOM) return false; // general array not exact
duke@435 2010 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 2011 const TypeOopPtr* toop = NULL;
kvn@656 2012 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 2013 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 2014 } else {
coleenp@548 2015 toop = _elem->isa_oopptr();
coleenp@548 2016 }
duke@435 2017 if (!toop) return true; // a primitive type, like int
duke@435 2018 ciKlass* tklass = toop->klass();
duke@435 2019 if (tklass == NULL) return false; // unloaded class
duke@435 2020 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 2021 const TypeInstPtr* tinst;
coleenp@548 2022 if (_elem->isa_narrowoop())
kvn@656 2023 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 2024 else
coleenp@548 2025 tinst = _elem->isa_instptr();
kvn@656 2026 if (tinst)
kvn@656 2027 return tklass->as_instance_klass()->is_final();
coleenp@548 2028 const TypeAryPtr* tap;
coleenp@548 2029 if (_elem->isa_narrowoop())
kvn@656 2030 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 2031 else
coleenp@548 2032 tap = _elem->isa_aryptr();
kvn@656 2033 if (tap)
kvn@656 2034 return tap->ary()->ary_must_be_exact();
duke@435 2035 return false;
duke@435 2036 }
duke@435 2037
kvn@3882 2038 //==============================TypeVect=======================================
kvn@3882 2039 // Convenience common pre-built types.
kvn@3882 2040 const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors
kvn@3882 2041 const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors
kvn@3882 2042 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
kvn@3882 2043 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
kvn@3882 2044
kvn@3882 2045 //------------------------------make-------------------------------------------
kvn@3882 2046 const TypeVect* TypeVect::make(const Type *elem, uint length) {
kvn@3882 2047 BasicType elem_bt = elem->array_element_basic_type();
kvn@3882 2048 assert(is_java_primitive(elem_bt), "only primitive types in vector");
kvn@3882 2049 assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
kvn@3882 2050 assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
kvn@3882 2051 int size = length * type2aelembytes(elem_bt);
kvn@3882 2052 switch (Matcher::vector_ideal_reg(size)) {
kvn@3882 2053 case Op_VecS:
kvn@3882 2054 return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
kvn@3882 2055 case Op_VecD:
kvn@3882 2056 case Op_RegD:
kvn@3882 2057 return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
kvn@3882 2058 case Op_VecX:
kvn@3882 2059 return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
kvn@3882 2060 case Op_VecY:
kvn@3882 2061 return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
kvn@3882 2062 }
kvn@3882 2063 ShouldNotReachHere();
kvn@3882 2064 return NULL;
kvn@3882 2065 }
kvn@3882 2066
kvn@3882 2067 //------------------------------meet-------------------------------------------
kvn@3882 2068 // Compute the MEET of two types. It returns a new Type object.
kvn@3882 2069 const Type *TypeVect::xmeet( const Type *t ) const {
kvn@3882 2070 // Perform a fast test for common case; meeting the same types together.
kvn@3882 2071 if( this == t ) return this; // Meeting same type-rep?
kvn@3882 2072
kvn@3882 2073 // Current "this->_base" is Vector
kvn@3882 2074 switch (t->base()) { // switch on original type
kvn@3882 2075
kvn@3882 2076 case Bottom: // Ye Olde Default
kvn@3882 2077 return t;
kvn@3882 2078
kvn@3882 2079 default: // All else is a mistake
kvn@3882 2080 typerr(t);
kvn@3882 2081
kvn@3882 2082 case VectorS:
kvn@3882 2083 case VectorD:
kvn@3882 2084 case VectorX:
kvn@3882 2085 case VectorY: { // Meeting 2 vectors?
kvn@3882 2086 const TypeVect* v = t->is_vect();
kvn@3882 2087 assert( base() == v->base(), "");
kvn@3882 2088 assert(length() == v->length(), "");
kvn@3882 2089 assert(element_basic_type() == v->element_basic_type(), "");
kvn@3882 2090 return TypeVect::make(_elem->xmeet(v->_elem), _length);
kvn@3882 2091 }
kvn@3882 2092 case Top:
kvn@3882 2093 break;
kvn@3882 2094 }
kvn@3882 2095 return this;
kvn@3882 2096 }
kvn@3882 2097
kvn@3882 2098 //------------------------------xdual------------------------------------------
kvn@3882 2099 // Dual: compute field-by-field dual
kvn@3882 2100 const Type *TypeVect::xdual() const {
kvn@3882 2101 return new TypeVect(base(), _elem->dual(), _length);
kvn@3882 2102 }
kvn@3882 2103
kvn@3882 2104 //------------------------------eq---------------------------------------------
kvn@3882 2105 // Structural equality check for Type representations
kvn@3882 2106 bool TypeVect::eq(const Type *t) const {
kvn@3882 2107 const TypeVect *v = t->is_vect();
kvn@3882 2108 return (_elem == v->_elem) && (_length == v->_length);
kvn@3882 2109 }
kvn@3882 2110
kvn@3882 2111 //------------------------------hash-------------------------------------------
kvn@3882 2112 // Type-specific hashing function.
kvn@3882 2113 int TypeVect::hash(void) const {
kvn@3882 2114 return (intptr_t)_elem + (intptr_t)_length;
kvn@3882 2115 }
kvn@3882 2116
kvn@3882 2117 //------------------------------singleton--------------------------------------
kvn@3882 2118 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
kvn@3882 2119 // constants (Ldi nodes). Vector is singleton if all elements are the same
kvn@3882 2120 // constant value (when vector is created with Replicate code).
kvn@3882 2121 bool TypeVect::singleton(void) const {
kvn@3882 2122 // There is no Con node for vectors yet.
kvn@3882 2123 // return _elem->singleton();
kvn@3882 2124 return false;
kvn@3882 2125 }
kvn@3882 2126
kvn@3882 2127 bool TypeVect::empty(void) const {
kvn@3882 2128 return _elem->empty();
kvn@3882 2129 }
kvn@3882 2130
kvn@3882 2131 //------------------------------dump2------------------------------------------
kvn@3882 2132 #ifndef PRODUCT
kvn@3882 2133 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
kvn@3882 2134 switch (base()) {
kvn@3882 2135 case VectorS:
kvn@3882 2136 st->print("vectors["); break;
kvn@3882 2137 case VectorD:
kvn@3882 2138 st->print("vectord["); break;
kvn@3882 2139 case VectorX:
kvn@3882 2140 st->print("vectorx["); break;
kvn@3882 2141 case VectorY:
kvn@3882 2142 st->print("vectory["); break;
kvn@3882 2143 default:
kvn@3882 2144 ShouldNotReachHere();
kvn@3882 2145 }
kvn@3882 2146 st->print("%d]:{", _length);
kvn@3882 2147 _elem->dump2(d, depth, st);
kvn@3882 2148 st->print("}");
kvn@3882 2149 }
kvn@3882 2150 #endif
kvn@3882 2151
kvn@3882 2152
duke@435 2153 //=============================================================================
duke@435 2154 // Convenience common pre-built types.
duke@435 2155 const TypePtr *TypePtr::NULL_PTR;
duke@435 2156 const TypePtr *TypePtr::NOTNULL;
duke@435 2157 const TypePtr *TypePtr::BOTTOM;
duke@435 2158
duke@435 2159 //------------------------------meet-------------------------------------------
duke@435 2160 // Meet over the PTR enum
duke@435 2161 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 2162 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 2163 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 2164 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2165 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2166 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 2167 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 2168 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 2169 };
duke@435 2170
duke@435 2171 //------------------------------make-------------------------------------------
duke@435 2172 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 2173 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 2174 }
duke@435 2175
duke@435 2176 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2177 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2178 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 2179 if( ptr == _ptr ) return this;
duke@435 2180 return make(_base, ptr, _offset);
duke@435 2181 }
duke@435 2182
duke@435 2183 //------------------------------get_con----------------------------------------
duke@435 2184 intptr_t TypePtr::get_con() const {
duke@435 2185 assert( _ptr == Null, "" );
duke@435 2186 return _offset;
duke@435 2187 }
duke@435 2188
duke@435 2189 //------------------------------meet-------------------------------------------
duke@435 2190 // Compute the MEET of two types. It returns a new Type object.
duke@435 2191 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 2192 // Perform a fast test for common case; meeting the same types together.
duke@435 2193 if( this == t ) return this; // Meeting same type-rep?
duke@435 2194
duke@435 2195 // Current "this->_base" is AnyPtr
duke@435 2196 switch (t->base()) { // switch on original type
duke@435 2197 case Int: // Mixing ints & oops happens when javac
duke@435 2198 case Long: // reuses local variables
duke@435 2199 case FloatTop:
duke@435 2200 case FloatCon:
duke@435 2201 case FloatBot:
duke@435 2202 case DoubleTop:
duke@435 2203 case DoubleCon:
duke@435 2204 case DoubleBot:
coleenp@548 2205 case NarrowOop:
roland@4159 2206 case NarrowKlass:
duke@435 2207 case Bottom: // Ye Olde Default
duke@435 2208 return Type::BOTTOM;
duke@435 2209 case Top:
duke@435 2210 return this;
duke@435 2211
duke@435 2212 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2213 const TypePtr *tp = t->is_ptr();
duke@435 2214 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 2215 }
duke@435 2216 case RawPtr: // For these, flip the call around to cut down
duke@435 2217 case OopPtr:
duke@435 2218 case InstPtr: // on the cases I have to handle.
coleenp@4037 2219 case AryPtr:
coleenp@4037 2220 case MetadataPtr:
duke@435 2221 case KlassPtr:
duke@435 2222 return t->xmeet(this); // Call in reverse direction
duke@435 2223 default: // All else is a mistake
duke@435 2224 typerr(t);
duke@435 2225
duke@435 2226 }
duke@435 2227 return this;
duke@435 2228 }
duke@435 2229
duke@435 2230 //------------------------------meet_offset------------------------------------
duke@435 2231 int TypePtr::meet_offset( int offset ) const {
duke@435 2232 // Either is 'TOP' offset? Return the other offset!
duke@435 2233 if( _offset == OffsetTop ) return offset;
duke@435 2234 if( offset == OffsetTop ) return _offset;
duke@435 2235 // If either is different, return 'BOTTOM' offset
duke@435 2236 if( _offset != offset ) return OffsetBot;
duke@435 2237 return _offset;
duke@435 2238 }
duke@435 2239
duke@435 2240 //------------------------------dual_offset------------------------------------
duke@435 2241 int TypePtr::dual_offset( ) const {
duke@435 2242 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 2243 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 2244 return _offset; // Map everything else into self
duke@435 2245 }
duke@435 2246
duke@435 2247 //------------------------------xdual------------------------------------------
duke@435 2248 // Dual: compute field-by-field dual
duke@435 2249 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 2250 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 2251 };
duke@435 2252 const Type *TypePtr::xdual() const {
duke@435 2253 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 2254 }
duke@435 2255
kvn@741 2256 //------------------------------xadd_offset------------------------------------
kvn@741 2257 int TypePtr::xadd_offset( intptr_t offset ) const {
kvn@741 2258 // Adding to 'TOP' offset? Return 'TOP'!
kvn@741 2259 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
kvn@741 2260 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
kvn@741 2261 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
kvn@741 2262 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
kvn@741 2263 offset += (intptr_t)_offset;
kvn@741 2264 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
kvn@741 2265
kvn@741 2266 // assert( _offset >= 0 && _offset+offset >= 0, "" );
kvn@741 2267 // It is possible to construct a negative offset during PhaseCCP
kvn@741 2268
kvn@741 2269 return (int)offset; // Sum valid offsets
kvn@741 2270 }
kvn@741 2271
duke@435 2272 //------------------------------add_offset-------------------------------------
kvn@741 2273 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
kvn@741 2274 return make( AnyPtr, _ptr, xadd_offset(offset) );
duke@435 2275 }
duke@435 2276
duke@435 2277 //------------------------------eq---------------------------------------------
duke@435 2278 // Structural equality check for Type representations
duke@435 2279 bool TypePtr::eq( const Type *t ) const {
duke@435 2280 const TypePtr *a = (const TypePtr*)t;
duke@435 2281 return _ptr == a->ptr() && _offset == a->offset();
duke@435 2282 }
duke@435 2283
duke@435 2284 //------------------------------hash-------------------------------------------
duke@435 2285 // Type-specific hashing function.
duke@435 2286 int TypePtr::hash(void) const {
duke@435 2287 return _ptr + _offset;
duke@435 2288 }
duke@435 2289
duke@435 2290 //------------------------------dump2------------------------------------------
duke@435 2291 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 2292 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 2293 };
duke@435 2294
duke@435 2295 #ifndef PRODUCT
duke@435 2296 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2297 if( _ptr == Null ) st->print("NULL");
duke@435 2298 else st->print("%s *", ptr_msg[_ptr]);
duke@435 2299 if( _offset == OffsetTop ) st->print("+top");
duke@435 2300 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 2301 else if( _offset ) st->print("+%d", _offset);
duke@435 2302 }
duke@435 2303 #endif
duke@435 2304
duke@435 2305 //------------------------------singleton--------------------------------------
duke@435 2306 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2307 // constants
duke@435 2308 bool TypePtr::singleton(void) const {
duke@435 2309 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2310 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2311 }
duke@435 2312
duke@435 2313 bool TypePtr::empty(void) const {
duke@435 2314 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2315 }
duke@435 2316
duke@435 2317 //=============================================================================
duke@435 2318 // Convenience common pre-built types.
duke@435 2319 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2320 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2321
duke@435 2322 //------------------------------make-------------------------------------------
duke@435 2323 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2324 assert( ptr != Constant, "what is the constant?" );
duke@435 2325 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2326 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2327 }
duke@435 2328
duke@435 2329 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2330 assert( bits, "Use TypePtr for NULL" );
duke@435 2331 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2332 }
duke@435 2333
duke@435 2334 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2335 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2336 assert( ptr != Constant, "what is the constant?" );
duke@435 2337 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2338 assert( _bits==0, "Why cast a constant address?");
duke@435 2339 if( ptr == _ptr ) return this;
duke@435 2340 return make(ptr);
duke@435 2341 }
duke@435 2342
duke@435 2343 //------------------------------get_con----------------------------------------
duke@435 2344 intptr_t TypeRawPtr::get_con() const {
duke@435 2345 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2346 return (intptr_t)_bits;
duke@435 2347 }
duke@435 2348
duke@435 2349 //------------------------------meet-------------------------------------------
duke@435 2350 // Compute the MEET of two types. It returns a new Type object.
duke@435 2351 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2352 // Perform a fast test for common case; meeting the same types together.
duke@435 2353 if( this == t ) return this; // Meeting same type-rep?
duke@435 2354
duke@435 2355 // Current "this->_base" is RawPtr
duke@435 2356 switch( t->base() ) { // switch on original type
duke@435 2357 case Bottom: // Ye Olde Default
duke@435 2358 return t;
duke@435 2359 case Top:
duke@435 2360 return this;
duke@435 2361 case AnyPtr: // Meeting to AnyPtrs
duke@435 2362 break;
duke@435 2363 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2364 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2365 enum PTR ptr = meet_ptr( tptr );
duke@435 2366 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2367 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2368 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2369 ptr = NotNull; // Fall down in lattice
duke@435 2370 }
duke@435 2371 return make( ptr );
duke@435 2372 }
duke@435 2373
duke@435 2374 case OopPtr:
duke@435 2375 case InstPtr:
coleenp@4037 2376 case AryPtr:
coleenp@4037 2377 case MetadataPtr:
duke@435 2378 case KlassPtr:
duke@435 2379 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2380 default: // All else is a mistake
duke@435 2381 typerr(t);
duke@435 2382 }
duke@435 2383
duke@435 2384 // Found an AnyPtr type vs self-RawPtr type
duke@435 2385 const TypePtr *tp = t->is_ptr();
duke@435 2386 switch (tp->ptr()) {
duke@435 2387 case TypePtr::TopPTR: return this;
duke@435 2388 case TypePtr::BotPTR: return t;
duke@435 2389 case TypePtr::Null:
duke@435 2390 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2391 return TypeRawPtr::BOTTOM;
duke@435 2392 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2393 case TypePtr::AnyNull:
duke@435 2394 if( _ptr == TypePtr::Constant) return this;
duke@435 2395 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2396 default: ShouldNotReachHere();
duke@435 2397 }
duke@435 2398 return this;
duke@435 2399 }
duke@435 2400
duke@435 2401 //------------------------------xdual------------------------------------------
duke@435 2402 // Dual: compute field-by-field dual
duke@435 2403 const Type *TypeRawPtr::xdual() const {
duke@435 2404 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2405 }
duke@435 2406
duke@435 2407 //------------------------------add_offset-------------------------------------
kvn@741 2408 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
duke@435 2409 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2410 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2411 if( offset == 0 ) return this; // No change
duke@435 2412 switch (_ptr) {
duke@435 2413 case TypePtr::TopPTR:
duke@435 2414 case TypePtr::BotPTR:
duke@435 2415 case TypePtr::NotNull:
duke@435 2416 return this;
duke@435 2417 case TypePtr::Null:
kvn@2435 2418 case TypePtr::Constant: {
kvn@2435 2419 address bits = _bits+offset;
kvn@2435 2420 if ( bits == 0 ) return TypePtr::NULL_PTR;
kvn@2435 2421 return make( bits );
kvn@2435 2422 }
duke@435 2423 default: ShouldNotReachHere();
duke@435 2424 }
duke@435 2425 return NULL; // Lint noise
duke@435 2426 }
duke@435 2427
duke@435 2428 //------------------------------eq---------------------------------------------
duke@435 2429 // Structural equality check for Type representations
duke@435 2430 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2431 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2432 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2433 }
duke@435 2434
duke@435 2435 //------------------------------hash-------------------------------------------
duke@435 2436 // Type-specific hashing function.
duke@435 2437 int TypeRawPtr::hash(void) const {
duke@435 2438 return (intptr_t)_bits + TypePtr::hash();
duke@435 2439 }
duke@435 2440
duke@435 2441 //------------------------------dump2------------------------------------------
duke@435 2442 #ifndef PRODUCT
duke@435 2443 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2444 if( _ptr == Constant )
duke@435 2445 st->print(INTPTR_FORMAT, _bits);
duke@435 2446 else
duke@435 2447 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2448 }
duke@435 2449 #endif
duke@435 2450
duke@435 2451 //=============================================================================
duke@435 2452 // Convenience common pre-built type.
duke@435 2453 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2454
kvn@598 2455 //------------------------------TypeOopPtr-------------------------------------
roland@5991 2456 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative)
kvn@598 2457 : TypePtr(t, ptr, offset),
kvn@598 2458 _const_oop(o), _klass(k),
kvn@598 2459 _klass_is_exact(xk),
kvn@598 2460 _is_ptr_to_narrowoop(false),
roland@4159 2461 _is_ptr_to_narrowklass(false),
kvn@5110 2462 _is_ptr_to_boxed_value(false),
roland@5991 2463 _instance_id(instance_id),
roland@5991 2464 _speculative(speculative) {
kvn@5110 2465 if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
kvn@5110 2466 (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
kvn@5110 2467 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
kvn@5110 2468 }
kvn@598 2469 #ifdef _LP64
roland@4159 2470 if (_offset != 0) {
coleenp@4037 2471 if (_offset == oopDesc::klass_offset_in_bytes()) {
ehelin@5694 2472 _is_ptr_to_narrowklass = UseCompressedClassPointers;
coleenp@4037 2473 } else if (klass() == NULL) {
coleenp@4037 2474 // Array with unknown body type
kvn@598 2475 assert(this->isa_aryptr(), "only arrays without klass");
roland@4159 2476 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2477 } else if (this->isa_aryptr()) {
roland@4159 2478 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
kvn@598 2479 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2480 } else if (klass()->is_instance_klass()) {
kvn@598 2481 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2482 ciField* field = NULL;
kvn@598 2483 if (this->isa_klassptr()) {
never@2658 2484 // Perm objects don't use compressed references
kvn@598 2485 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2486 // unsafe access
roland@4159 2487 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2488 } else { // exclude unsafe ops
kvn@598 2489 assert(this->isa_instptr(), "must be an instance ptr.");
never@2658 2490
never@2658 2491 if (klass() == ciEnv::current()->Class_klass() &&
never@2658 2492 (_offset == java_lang_Class::klass_offset_in_bytes() ||
never@2658 2493 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
never@2658 2494 // Special hidden fields from the Class.
never@2658 2495 assert(this->isa_instptr(), "must be an instance ptr.");
coleenp@4037 2496 _is_ptr_to_narrowoop = false;
never@2658 2497 } else if (klass() == ciEnv::current()->Class_klass() &&
coleenp@4047 2498 _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
never@2658 2499 // Static fields
never@2658 2500 assert(o != NULL, "must be constant");
never@2658 2501 ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 2502 ciField* field = k->get_field_by_offset(_offset, true);
never@2658 2503 assert(field != NULL, "missing field");
kvn@598 2504 BasicType basic_elem_type = field->layout_type();
roland@4159 2505 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2506 basic_elem_type == T_ARRAY);
kvn@598 2507 } else {
never@2658 2508 // Instance fields which contains a compressed oop references.
never@2658 2509 field = ik->get_field_by_offset(_offset, false);
never@2658 2510 if (field != NULL) {
never@2658 2511 BasicType basic_elem_type = field->layout_type();
roland@4159 2512 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2513 basic_elem_type == T_ARRAY);
never@2658 2514 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
never@2658 2515 // Compile::find_alias_type() cast exactness on all types to verify
never@2658 2516 // that it does not affect alias type.
roland@4159 2517 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2518 } else {
never@2658 2519 // Type for the copy start in LibraryCallKit::inline_native_clone().
roland@4159 2520 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2521 }
kvn@598 2522 }
kvn@598 2523 }
kvn@598 2524 }
kvn@598 2525 }
kvn@598 2526 #endif
kvn@598 2527 }
kvn@598 2528
duke@435 2529 //------------------------------make-------------------------------------------
duke@435 2530 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
roland@5991 2531 int offset, int instance_id, const TypeOopPtr* speculative) {
duke@435 2532 assert(ptr != Constant, "no constant generic pointers");
coleenp@4037 2533 ciKlass* k = Compile::current()->env()->Object_klass();
duke@435 2534 bool xk = false;
duke@435 2535 ciObject* o = NULL;
roland@5991 2536 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative))->hashcons();
duke@435 2537 }
duke@435 2538
duke@435 2539
duke@435 2540 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2541 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2542 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2543 if( ptr == _ptr ) return this;
roland@5991 2544 return make(ptr, _offset, _instance_id, _speculative);
duke@435 2545 }
duke@435 2546
kvn@682 2547 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2548 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2549 // There are no instances of a general oop.
duke@435 2550 // Return self unchanged.
duke@435 2551 return this;
duke@435 2552 }
duke@435 2553
duke@435 2554 //-----------------------------cast_to_exactness-------------------------------
duke@435 2555 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2556 // There is no such thing as an exact general oop.
duke@435 2557 // Return self unchanged.
duke@435 2558 return this;
duke@435 2559 }
duke@435 2560
duke@435 2561
duke@435 2562 //------------------------------as_klass_type----------------------------------
duke@435 2563 // Return the klass type corresponding to this instance or array type.
duke@435 2564 // It is the type that is loaded from an object of this type.
duke@435 2565 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2566 ciKlass* k = klass();
duke@435 2567 bool xk = klass_is_exact();
coleenp@4037 2568 if (k == NULL)
duke@435 2569 return TypeKlassPtr::OBJECT;
duke@435 2570 else
duke@435 2571 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2572 }
duke@435 2573
roland@5991 2574 const Type *TypeOopPtr::xmeet(const Type *t) const {
roland@5991 2575 const Type* res = xmeet_helper(t);
roland@5991 2576 if (res->isa_oopptr() == NULL) {
roland@5991 2577 return res;
roland@5991 2578 }
roland@5991 2579
roland@6313 2580 const TypeOopPtr* res_oopptr = res->is_oopptr();
roland@6313 2581 if (res_oopptr->speculative() != NULL) {
roland@5991 2582 // type->speculative() == NULL means that speculation is no better
roland@5991 2583 // than type, i.e. type->speculative() == type. So there are 2
roland@5991 2584 // ways to represent the fact that we have no useful speculative
roland@5991 2585 // data and we should use a single one to be able to test for
roland@5991 2586 // equality between types. Check whether type->speculative() ==
roland@5991 2587 // type and set speculative to NULL if it is the case.
roland@5991 2588 if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
roland@5991 2589 return res_oopptr->remove_speculative();
roland@5991 2590 }
roland@5991 2591 }
roland@5991 2592
roland@5991 2593 return res;
roland@5991 2594 }
duke@435 2595
duke@435 2596 //------------------------------meet-------------------------------------------
duke@435 2597 // Compute the MEET of two types. It returns a new Type object.
roland@5991 2598 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
duke@435 2599 // Perform a fast test for common case; meeting the same types together.
duke@435 2600 if( this == t ) return this; // Meeting same type-rep?
duke@435 2601
duke@435 2602 // Current "this->_base" is OopPtr
duke@435 2603 switch (t->base()) { // switch on original type
duke@435 2604
duke@435 2605 case Int: // Mixing ints & oops happens when javac
duke@435 2606 case Long: // reuses local variables
duke@435 2607 case FloatTop:
duke@435 2608 case FloatCon:
duke@435 2609 case FloatBot:
duke@435 2610 case DoubleTop:
duke@435 2611 case DoubleCon:
duke@435 2612 case DoubleBot:
kvn@728 2613 case NarrowOop:
roland@4159 2614 case NarrowKlass:
duke@435 2615 case Bottom: // Ye Olde Default
duke@435 2616 return Type::BOTTOM;
duke@435 2617 case Top:
duke@435 2618 return this;
duke@435 2619
duke@435 2620 default: // All else is a mistake
duke@435 2621 typerr(t);
duke@435 2622
duke@435 2623 case RawPtr:
coleenp@4037 2624 case MetadataPtr:
coleenp@4037 2625 case KlassPtr:
duke@435 2626 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2627
duke@435 2628 case AnyPtr: {
duke@435 2629 // Found an AnyPtr type vs self-OopPtr type
duke@435 2630 const TypePtr *tp = t->is_ptr();
duke@435 2631 int offset = meet_offset(tp->offset());
duke@435 2632 PTR ptr = meet_ptr(tp->ptr());
duke@435 2633 switch (tp->ptr()) {
duke@435 2634 case Null:
duke@435 2635 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2636 // else fall through:
duke@435 2637 case TopPTR:
kvn@1427 2638 case AnyNull: {
kvn@1427 2639 int instance_id = meet_instance_id(InstanceTop);
roland@5991 2640 const TypeOopPtr* speculative = _speculative;
roland@5991 2641 return make(ptr, offset, instance_id, speculative);
kvn@1427 2642 }
duke@435 2643 case BotPTR:
duke@435 2644 case NotNull:
duke@435 2645 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2646 default: typerr(t);
duke@435 2647 }
duke@435 2648 }
duke@435 2649
duke@435 2650 case OopPtr: { // Meeting to other OopPtrs
duke@435 2651 const TypeOopPtr *tp = t->is_oopptr();
kvn@1393 2652 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 2653 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@5991 2654 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative);
duke@435 2655 }
duke@435 2656
duke@435 2657 case InstPtr: // For these, flip the call around to cut down
duke@435 2658 case AryPtr:
duke@435 2659 return t->xmeet(this); // Call in reverse direction
duke@435 2660
duke@435 2661 } // End of switch
duke@435 2662 return this; // Return the double constant
duke@435 2663 }
duke@435 2664
duke@435 2665
duke@435 2666 //------------------------------xdual------------------------------------------
duke@435 2667 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2668 const Type *TypeOopPtr::xdual() const {
coleenp@4037 2669 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
duke@435 2670 assert(const_oop() == NULL, "no constants here");
roland@5991 2671 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative());
duke@435 2672 }
duke@435 2673
duke@435 2674 //--------------------------make_from_klass_common-----------------------------
duke@435 2675 // Computes the element-type given a klass.
duke@435 2676 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2677 if (klass->is_instance_klass()) {
duke@435 2678 Compile* C = Compile::current();
duke@435 2679 Dependencies* deps = C->dependencies();
duke@435 2680 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2681 // Element is an instance
duke@435 2682 bool klass_is_exact = false;
duke@435 2683 if (klass->is_loaded()) {
duke@435 2684 // Try to set klass_is_exact.
duke@435 2685 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2686 klass_is_exact = ik->is_final();
duke@435 2687 if (!klass_is_exact && klass_change
duke@435 2688 && deps != NULL && UseUniqueSubclasses) {
duke@435 2689 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2690 if (sub != NULL) {
duke@435 2691 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2692 klass = ik = sub;
duke@435 2693 klass_is_exact = sub->is_final();
duke@435 2694 }
duke@435 2695 }
duke@435 2696 if (!klass_is_exact && try_for_exact
duke@435 2697 && deps != NULL && UseExactTypes) {
duke@435 2698 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2699 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2700 deps->assert_leaf_type(ik);
duke@435 2701 klass_is_exact = true;
duke@435 2702 }
duke@435 2703 }
duke@435 2704 }
duke@435 2705 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2706 } else if (klass->is_obj_array_klass()) {
duke@435 2707 // Element is an object array. Recursively call ourself.
duke@435 2708 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2709 bool xk = etype->klass_is_exact();
duke@435 2710 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2711 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2712 // are all not-null. This is not true in generally, as code can
duke@435 2713 // slam NULLs down in the subarrays.
duke@435 2714 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2715 return arr;
duke@435 2716 } else if (klass->is_type_array_klass()) {
duke@435 2717 // Element is an typeArray
duke@435 2718 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2719 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2720 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2721 // is not-null. That was not true in general.
duke@435 2722 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2723 return arr;
duke@435 2724 } else {
duke@435 2725 ShouldNotReachHere();
duke@435 2726 return NULL;
duke@435 2727 }
duke@435 2728 }
duke@435 2729
duke@435 2730 //------------------------------make_from_constant-----------------------------
duke@435 2731 // Make a java pointer from an oop constant
kvn@5110 2732 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
kvn@5110 2733 bool require_constant,
kvn@5110 2734 bool is_autobox_cache) {
kvn@5110 2735 assert(!o->is_null_object(), "null object not yet handled here.");
kvn@5110 2736 ciKlass* klass = o->klass();
kvn@5110 2737 if (klass->is_instance_klass()) {
kvn@5110 2738 // Element is an instance
kvn@5110 2739 if (require_constant) {
kvn@5110 2740 if (!o->can_be_constant()) return NULL;
kvn@5110 2741 } else if (!o->should_be_constant()) {
kvn@5110 2742 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
kvn@5110 2743 }
kvn@5110 2744 return TypeInstPtr::make(o);
kvn@5110 2745 } else if (klass->is_obj_array_klass()) {
kvn@5110 2746 // Element is an object array. Recursively call ourself.
kvn@5110 2747 const TypeOopPtr *etype =
coleenp@4037 2748 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
kvn@5110 2749 if (is_autobox_cache) {
kvn@5110 2750 // The pointers in the autobox arrays are always non-null.
kvn@5110 2751 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
kvn@5110 2752 }
kvn@5110 2753 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
kvn@5110 2754 // We used to pass NotNull in here, asserting that the sub-arrays
kvn@5110 2755 // are all not-null. This is not true in generally, as code can
kvn@5110 2756 // slam NULLs down in the subarrays.
kvn@5110 2757 if (require_constant) {
kvn@5110 2758 if (!o->can_be_constant()) return NULL;
kvn@5110 2759 } else if (!o->should_be_constant()) {
kvn@5110 2760 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
kvn@5110 2761 }
roland@5991 2762 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, is_autobox_cache);
coleenp@4037 2763 return arr;
kvn@5110 2764 } else if (klass->is_type_array_klass()) {
kvn@5110 2765 // Element is an typeArray
coleenp@4037 2766 const Type* etype =
coleenp@4037 2767 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
kvn@5110 2768 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
kvn@5110 2769 // We used to pass NotNull in here, asserting that the array pointer
kvn@5110 2770 // is not-null. That was not true in general.
kvn@5110 2771 if (require_constant) {
kvn@5110 2772 if (!o->can_be_constant()) return NULL;
kvn@5110 2773 } else if (!o->should_be_constant()) {
kvn@5110 2774 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
kvn@5110 2775 }
coleenp@4037 2776 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
coleenp@4037 2777 return arr;
duke@435 2778 }
duke@435 2779
twisti@3885 2780 fatal("unhandled object type");
duke@435 2781 return NULL;
duke@435 2782 }
duke@435 2783
duke@435 2784 //------------------------------get_con----------------------------------------
duke@435 2785 intptr_t TypeOopPtr::get_con() const {
duke@435 2786 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2787 assert( _offset >= 0, "" );
duke@435 2788
duke@435 2789 if (_offset != 0) {
duke@435 2790 // After being ported to the compiler interface, the compiler no longer
duke@435 2791 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2792 // to a handle at compile time. This handle is embedded in the generated
duke@435 2793 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2794 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2795 // have access to the addresses!). This does not seem to currently happen,
twisti@1040 2796 // but this assertion here is to help prevent its occurence.
duke@435 2797 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2798 ShouldNotReachHere();
duke@435 2799 }
duke@435 2800
jrose@1424 2801 return (intptr_t)const_oop()->constant_encoding();
duke@435 2802 }
duke@435 2803
duke@435 2804
duke@435 2805 //-----------------------------filter------------------------------------------
duke@435 2806 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 2807 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 2808
roland@6313 2809 const Type* ft = join_helper(kills, include_speculative);
duke@435 2810 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2811 const TypeInstPtr* ktip = kills->isa_instptr();
duke@435 2812
duke@435 2813 if (ft->empty()) {
duke@435 2814 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2815 // interface. This can happen because the bytecodes do not contain
duke@435 2816 // enough type info to distinguish a Java-level interface variable
duke@435 2817 // from a Java-level object variable. If we meet 2 classes which
duke@435 2818 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2819 // doesn't implement I, we have no way to tell if the result should
duke@435 2820 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2821 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2822 // uplift the type.
duke@435 2823 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
duke@435 2824 return kills; // Uplift to interface
duke@435 2825
duke@435 2826 return Type::TOP; // Canonical empty value
duke@435 2827 }
duke@435 2828
duke@435 2829 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2830 // the join should report back the class. However, if we have a J/L/Object
duke@435 2831 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2832 // join report an interface back out. This isn't possible but happens
duke@435 2833 // because the type system doesn't interact well with interfaces.
duke@435 2834 if (ftip != NULL && ktip != NULL &&
duke@435 2835 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2836 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2837 // Happens in a CTW of rt.jar, 320-341, no extra flags
kvn@1770 2838 assert(!ftip->klass_is_exact(), "interface could not be exact");
duke@435 2839 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2840 }
duke@435 2841
duke@435 2842 return ft;
duke@435 2843 }
duke@435 2844
duke@435 2845 //------------------------------eq---------------------------------------------
duke@435 2846 // Structural equality check for Type representations
duke@435 2847 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2848 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2849 if (_klass_is_exact != a->_klass_is_exact ||
roland@5991 2850 _instance_id != a->_instance_id ||
roland@5991 2851 !eq_speculative(a)) return false;
duke@435 2852 ciObject* one = const_oop();
duke@435 2853 ciObject* two = a->const_oop();
duke@435 2854 if (one == NULL || two == NULL) {
duke@435 2855 return (one == two) && TypePtr::eq(t);
duke@435 2856 } else {
duke@435 2857 return one->equals(two) && TypePtr::eq(t);
duke@435 2858 }
duke@435 2859 }
duke@435 2860
duke@435 2861 //------------------------------hash-------------------------------------------
duke@435 2862 // Type-specific hashing function.
duke@435 2863 int TypeOopPtr::hash(void) const {
duke@435 2864 return
duke@435 2865 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2866 _klass_is_exact +
duke@435 2867 _instance_id +
roland@5991 2868 hash_speculative() +
duke@435 2869 TypePtr::hash();
duke@435 2870 }
duke@435 2871
duke@435 2872 //------------------------------dump2------------------------------------------
duke@435 2873 #ifndef PRODUCT
duke@435 2874 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2875 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2876 if( _klass_is_exact ) st->print(":exact");
duke@435 2877 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2878 switch( _offset ) {
duke@435 2879 case OffsetTop: st->print("+top"); break;
duke@435 2880 case OffsetBot: st->print("+any"); break;
duke@435 2881 case 0: break;
duke@435 2882 default: st->print("+%d",_offset); break;
duke@435 2883 }
kvn@658 2884 if (_instance_id == InstanceTop)
kvn@658 2885 st->print(",iid=top");
kvn@658 2886 else if (_instance_id != InstanceBot)
duke@435 2887 st->print(",iid=%d",_instance_id);
roland@5991 2888
roland@5991 2889 dump_speculative(st);
roland@5991 2890 }
roland@5991 2891
roland@5991 2892 /**
roland@5991 2893 *dump the speculative part of the type
roland@5991 2894 */
roland@5991 2895 void TypeOopPtr::dump_speculative(outputStream *st) const {
roland@5991 2896 if (_speculative != NULL) {
roland@5991 2897 st->print(" (speculative=");
roland@5991 2898 _speculative->dump_on(st);
roland@5991 2899 st->print(")");
roland@5991 2900 }
duke@435 2901 }
duke@435 2902 #endif
duke@435 2903
duke@435 2904 //------------------------------singleton--------------------------------------
duke@435 2905 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2906 // constants
duke@435 2907 bool TypeOopPtr::singleton(void) const {
duke@435 2908 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2909 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2910 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2911 }
duke@435 2912
duke@435 2913 //------------------------------add_offset-------------------------------------
roland@5991 2914 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
roland@5991 2915 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset));
roland@5991 2916 }
roland@5991 2917
roland@5991 2918 /**
roland@5991 2919 * Return same type without a speculative part
roland@5991 2920 */
roland@6313 2921 const Type* TypeOopPtr::remove_speculative() const {
roland@6313 2922 if (_speculative == NULL) {
roland@6313 2923 return this;
roland@6313 2924 }
roland@5991 2925 return make(_ptr, _offset, _instance_id, NULL);
duke@435 2926 }
duke@435 2927
kvn@658 2928 //------------------------------meet_instance_id--------------------------------
kvn@658 2929 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 2930 // Either is 'TOP' instance? Return the other instance!
kvn@658 2931 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 2932 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 2933 // If either is different, return 'BOTTOM' instance
kvn@658 2934 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 2935 return _instance_id;
duke@435 2936 }
duke@435 2937
kvn@658 2938 //------------------------------dual_instance_id--------------------------------
kvn@658 2939 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 2940 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 2941 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 2942 return _instance_id; // Map everything else into self
kvn@658 2943 }
kvn@658 2944
roland@5991 2945 /**
roland@5991 2946 * meet of the speculative parts of 2 types
roland@5991 2947 *
roland@5991 2948 * @param other type to meet with
roland@5991 2949 */
roland@6313 2950 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
roland@5991 2951 bool this_has_spec = (_speculative != NULL);
roland@5991 2952 bool other_has_spec = (other->speculative() != NULL);
roland@5991 2953
roland@5991 2954 if (!this_has_spec && !other_has_spec) {
roland@5991 2955 return NULL;
roland@5991 2956 }
roland@5991 2957
roland@5991 2958 // If we are at a point where control flow meets and one branch has
roland@5991 2959 // a speculative type and the other has not, we meet the speculative
roland@5991 2960 // type of one branch with the actual type of the other. If the
roland@5991 2961 // actual type is exact and the speculative is as well, then the
roland@5991 2962 // result is a speculative type which is exact and we can continue
roland@5991 2963 // speculation further.
roland@5991 2964 const TypeOopPtr* this_spec = _speculative;
roland@5991 2965 const TypeOopPtr* other_spec = other->speculative();
roland@5991 2966
roland@5991 2967 if (!this_has_spec) {
roland@5991 2968 this_spec = this;
roland@5991 2969 }
roland@5991 2970
roland@5991 2971 if (!other_has_spec) {
roland@5991 2972 other_spec = other;
roland@5991 2973 }
roland@5991 2974
roland@6313 2975 return this_spec->meet_speculative(other_spec)->is_oopptr();
roland@5991 2976 }
roland@5991 2977
roland@5991 2978 /**
roland@5991 2979 * dual of the speculative part of the type
roland@5991 2980 */
roland@5991 2981 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
roland@5991 2982 if (_speculative == NULL) {
roland@5991 2983 return NULL;
roland@5991 2984 }
roland@5991 2985 return _speculative->dual()->is_oopptr();
roland@5991 2986 }
roland@5991 2987
roland@5991 2988 /**
roland@5991 2989 * add offset to the speculative part of the type
roland@5991 2990 *
roland@5991 2991 * @param offset offset to add
roland@5991 2992 */
roland@5991 2993 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
roland@5991 2994 if (_speculative == NULL) {
roland@5991 2995 return NULL;
roland@5991 2996 }
roland@5991 2997 return _speculative->add_offset(offset)->is_oopptr();
roland@5991 2998 }
roland@5991 2999
roland@5991 3000 /**
roland@5991 3001 * Are the speculative parts of 2 types equal?
roland@5991 3002 *
roland@5991 3003 * @param other type to compare this one to
roland@5991 3004 */
roland@5991 3005 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
roland@5991 3006 if (_speculative == NULL || other->speculative() == NULL) {
roland@5991 3007 return _speculative == other->speculative();
roland@5991 3008 }
roland@5991 3009
roland@5991 3010 if (_speculative->base() != other->speculative()->base()) {
roland@5991 3011 return false;
roland@5991 3012 }
roland@5991 3013
roland@5991 3014 return _speculative->eq(other->speculative());
roland@5991 3015 }
roland@5991 3016
roland@5991 3017 /**
roland@5991 3018 * Hash of the speculative part of the type
roland@5991 3019 */
roland@5991 3020 int TypeOopPtr::hash_speculative() const {
roland@5991 3021 if (_speculative == NULL) {
roland@5991 3022 return 0;
roland@5991 3023 }
roland@5991 3024
roland@5991 3025 return _speculative->hash();
roland@5991 3026 }
roland@5991 3027
kvn@658 3028
duke@435 3029 //=============================================================================
duke@435 3030 // Convenience common pre-built types.
duke@435 3031 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 3032 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 3033 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 3034 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 3035 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 3036
duke@435 3037 //------------------------------TypeInstPtr-------------------------------------
roland@5991 3038 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative)
roland@5991 3039 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative), _name(k->name()) {
duke@435 3040 assert(k != NULL &&
duke@435 3041 (k->is_loaded() || o == NULL),
duke@435 3042 "cannot have constants with non-loaded klass");
duke@435 3043 };
duke@435 3044
duke@435 3045 //------------------------------make-------------------------------------------
duke@435 3046 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 3047 ciKlass* k,
duke@435 3048 bool xk,
duke@435 3049 ciObject* o,
duke@435 3050 int offset,
roland@5991 3051 int instance_id,
roland@5991 3052 const TypeOopPtr* speculative) {
coleenp@4037 3053 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
duke@435 3054 // Either const_oop() is NULL or else ptr is Constant
duke@435 3055 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 3056 "constant pointers must have a value supplied" );
duke@435 3057 // Ptr is never Null
duke@435 3058 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 3059
kvn@682 3060 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3061 if (!UseExactTypes) xk = false;
duke@435 3062 if (ptr == Constant) {
duke@435 3063 // Note: This case includes meta-object constants, such as methods.
duke@435 3064 xk = true;
duke@435 3065 } else if (k->is_loaded()) {
duke@435 3066 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 3067 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 3068 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 3069 }
duke@435 3070
duke@435 3071 // Now hash this baby
duke@435 3072 TypeInstPtr *result =
roland@5991 3073 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative))->hashcons();
duke@435 3074
duke@435 3075 return result;
duke@435 3076 }
duke@435 3077
kvn@5110 3078 /**
kvn@5110 3079 * Create constant type for a constant boxed value
kvn@5110 3080 */
kvn@5110 3081 const Type* TypeInstPtr::get_const_boxed_value() const {
kvn@5110 3082 assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
kvn@5110 3083 assert((const_oop() != NULL), "should be called only for constant object");
kvn@5110 3084 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
kvn@5110 3085 BasicType bt = constant.basic_type();
kvn@5110 3086 switch (bt) {
kvn@5110 3087 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
kvn@5110 3088 case T_INT: return TypeInt::make(constant.as_int());
kvn@5110 3089 case T_CHAR: return TypeInt::make(constant.as_char());
kvn@5110 3090 case T_BYTE: return TypeInt::make(constant.as_byte());
kvn@5110 3091 case T_SHORT: return TypeInt::make(constant.as_short());
kvn@5110 3092 case T_FLOAT: return TypeF::make(constant.as_float());
kvn@5110 3093 case T_DOUBLE: return TypeD::make(constant.as_double());
kvn@5110 3094 case T_LONG: return TypeLong::make(constant.as_long());
kvn@5110 3095 default: break;
kvn@5110 3096 }
kvn@5110 3097 fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
kvn@5110 3098 return NULL;
kvn@5110 3099 }
duke@435 3100
duke@435 3101 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3102 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3103 if( ptr == _ptr ) return this;
duke@435 3104 // Reconstruct _sig info here since not a problem with later lazy
duke@435 3105 // construction, _sig will show up on demand.
roland@5991 3106 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative);
duke@435 3107 }
duke@435 3108
duke@435 3109
duke@435 3110 //-----------------------------cast_to_exactness-------------------------------
duke@435 3111 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3112 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3113 if (!UseExactTypes) return this;
duke@435 3114 if (!_klass->is_loaded()) return this;
duke@435 3115 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 3116 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 3117 if( ik->is_interface() ) return this; // cannot set xk
roland@5991 3118 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative);
duke@435 3119 }
duke@435 3120
kvn@682 3121 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3122 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3123 if( instance_id == _instance_id ) return this;
roland@5991 3124 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative);
duke@435 3125 }
duke@435 3126
duke@435 3127 //------------------------------xmeet_unloaded---------------------------------
duke@435 3128 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 3129 // Assume classes are different since called after check for same name/class-loader
duke@435 3130 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 3131 int off = meet_offset(tinst->offset());
duke@435 3132 PTR ptr = meet_ptr(tinst->ptr());
kvn@1427 3133 int instance_id = meet_instance_id(tinst->instance_id());
roland@6313 3134 const TypeOopPtr* speculative = xmeet_speculative(tinst);
duke@435 3135
duke@435 3136 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 3137 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 3138 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3139 //
duke@435 3140 // Meet unloaded class with java/lang/Object
duke@435 3141 //
duke@435 3142 // Meet
duke@435 3143 // | Unloaded Class
duke@435 3144 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 3145 // ===================================================================
duke@435 3146 // TOP | ..........................Unloaded......................|
duke@435 3147 // AnyNull | U-AN |................Unloaded......................|
duke@435 3148 // Constant | ... O-NN .................................. | O-BOT |
duke@435 3149 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 3150 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 3151 //
duke@435 3152 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 3153 //
duke@435 3154 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
roland@5991 3155 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative); }
duke@435 3156 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 3157 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 3158 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 3159 else { return TypeInstPtr::NOTNULL; }
duke@435 3160 }
duke@435 3161 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 3162
duke@435 3163 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 3164 }
duke@435 3165
duke@435 3166 // Both are unloaded, not the same class, not Object
duke@435 3167 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 3168 if( ptr != TypePtr::BotPTR ) {
duke@435 3169 return TypeInstPtr::NOTNULL;
duke@435 3170 }
duke@435 3171 return TypeInstPtr::BOTTOM;
duke@435 3172 }
duke@435 3173
duke@435 3174
duke@435 3175 //------------------------------meet-------------------------------------------
duke@435 3176 // Compute the MEET of two types. It returns a new Type object.
roland@5991 3177 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
duke@435 3178 // Perform a fast test for common case; meeting the same types together.
duke@435 3179 if( this == t ) return this; // Meeting same type-rep?
duke@435 3180
duke@435 3181 // Current "this->_base" is Pointer
duke@435 3182 switch (t->base()) { // switch on original type
duke@435 3183
duke@435 3184 case Int: // Mixing ints & oops happens when javac
duke@435 3185 case Long: // reuses local variables
duke@435 3186 case FloatTop:
duke@435 3187 case FloatCon:
duke@435 3188 case FloatBot:
duke@435 3189 case DoubleTop:
duke@435 3190 case DoubleCon:
duke@435 3191 case DoubleBot:
coleenp@548 3192 case NarrowOop:
roland@4159 3193 case NarrowKlass:
duke@435 3194 case Bottom: // Ye Olde Default
duke@435 3195 return Type::BOTTOM;
duke@435 3196 case Top:
duke@435 3197 return this;
duke@435 3198
duke@435 3199 default: // All else is a mistake
duke@435 3200 typerr(t);
duke@435 3201
coleenp@4037 3202 case MetadataPtr:
coleenp@4037 3203 case KlassPtr:
duke@435 3204 case RawPtr: return TypePtr::BOTTOM;
duke@435 3205
duke@435 3206 case AryPtr: { // All arrays inherit from Object class
duke@435 3207 const TypeAryPtr *tp = t->is_aryptr();
duke@435 3208 int offset = meet_offset(tp->offset());
duke@435 3209 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3210 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3211 const TypeOopPtr* speculative = xmeet_speculative(tp);
duke@435 3212 switch (ptr) {
duke@435 3213 case TopPTR:
duke@435 3214 case AnyNull: // Fall 'down' to dual of object klass
roland@5991 3215 // For instances when a subclass meets a superclass we fall
roland@5991 3216 // below the centerline when the superclass is exact. We need to
roland@5991 3217 // do the same here.
roland@5991 3218 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
roland@5991 3219 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative);
duke@435 3220 } else {
duke@435 3221 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3222 ptr = NotNull;
kvn@658 3223 instance_id = InstanceBot;
roland@5991 3224 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative);
duke@435 3225 }
duke@435 3226 case Constant:
duke@435 3227 case NotNull:
duke@435 3228 case BotPTR: // Fall down to object klass
duke@435 3229 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3230 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 3231 // If 'this' (InstPtr) is above the centerline and it is Object class
twisti@1040 3232 // then we can subclass in the Java class hierarchy.
roland@5991 3233 // For instances when a subclass meets a superclass we fall
roland@5991 3234 // below the centerline when the superclass is exact. We need
roland@5991 3235 // to do the same here.
roland@5991 3236 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
duke@435 3237 // that is, tp's array type is a subtype of my klass
kvn@1714 3238 return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
roland@5991 3239 tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative);
duke@435 3240 }
duke@435 3241 }
duke@435 3242 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 3243 // The meet falls down to Object class below centerline.
duke@435 3244 if( ptr == Constant )
duke@435 3245 ptr = NotNull;
kvn@658 3246 instance_id = InstanceBot;
roland@5991 3247 return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative);
duke@435 3248 default: typerr(t);
duke@435 3249 }
duke@435 3250 }
duke@435 3251
duke@435 3252 case OopPtr: { // Meeting to OopPtrs
duke@435 3253 // Found a OopPtr type vs self-InstPtr type
kvn@1393 3254 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3255 int offset = meet_offset(tp->offset());
duke@435 3256 PTR ptr = meet_ptr(tp->ptr());
duke@435 3257 switch (tp->ptr()) {
duke@435 3258 case TopPTR:
kvn@658 3259 case AnyNull: {
kvn@658 3260 int instance_id = meet_instance_id(InstanceTop);
roland@6313 3261 const TypeOopPtr* speculative = xmeet_speculative(tp);
duke@435 3262 return make(ptr, klass(), klass_is_exact(),
roland@5991 3263 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative);
kvn@658 3264 }
duke@435 3265 case NotNull:
kvn@1393 3266 case BotPTR: {
kvn@1393 3267 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3268 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@5991 3269 return TypeOopPtr::make(ptr, offset, instance_id, speculative);
kvn@1393 3270 }
duke@435 3271 default: typerr(t);
duke@435 3272 }
duke@435 3273 }
duke@435 3274
duke@435 3275 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3276 // Found an AnyPtr type vs self-InstPtr type
duke@435 3277 const TypePtr *tp = t->is_ptr();
duke@435 3278 int offset = meet_offset(tp->offset());
duke@435 3279 PTR ptr = meet_ptr(tp->ptr());
duke@435 3280 switch (tp->ptr()) {
duke@435 3281 case Null:
roland@5991 3282 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3283 // else fall through to AnyNull
duke@435 3284 case TopPTR:
kvn@658 3285 case AnyNull: {
kvn@658 3286 int instance_id = meet_instance_id(InstanceTop);
roland@5991 3287 const TypeOopPtr* speculative = _speculative;
roland@5991 3288 return make(ptr, klass(), klass_is_exact(),
roland@5991 3289 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative);
kvn@658 3290 }
duke@435 3291 case NotNull:
duke@435 3292 case BotPTR:
roland@5991 3293 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3294 default: typerr(t);
duke@435 3295 }
duke@435 3296 }
duke@435 3297
duke@435 3298 /*
duke@435 3299 A-top }
duke@435 3300 / | \ } Tops
duke@435 3301 B-top A-any C-top }
duke@435 3302 | / | \ | } Any-nulls
duke@435 3303 B-any | C-any }
duke@435 3304 | | |
duke@435 3305 B-con A-con C-con } constants; not comparable across classes
duke@435 3306 | | |
duke@435 3307 B-not | C-not }
duke@435 3308 | \ | / | } not-nulls
duke@435 3309 B-bot A-not C-bot }
duke@435 3310 \ | / } Bottoms
duke@435 3311 A-bot }
duke@435 3312 */
duke@435 3313
duke@435 3314 case InstPtr: { // Meeting 2 Oops?
duke@435 3315 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 3316 const TypeInstPtr *tinst = t->is_instptr();
duke@435 3317 int off = meet_offset( tinst->offset() );
duke@435 3318 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 3319 int instance_id = meet_instance_id(tinst->instance_id());
roland@6313 3320 const TypeOopPtr* speculative = xmeet_speculative(tinst);
duke@435 3321
duke@435 3322 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3323 // If we have constants, then we created oops so classes are loaded
duke@435 3324 // and we can handle the constants further down. This case handles
duke@435 3325 // both-not-loaded or both-loaded classes
duke@435 3326 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
roland@5991 3327 return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative);
duke@435 3328 }
duke@435 3329
duke@435 3330 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3331 ciKlass* tinst_klass = tinst->klass();
duke@435 3332 ciKlass* this_klass = this->klass();
duke@435 3333 bool tinst_xk = tinst->klass_is_exact();
duke@435 3334 bool this_xk = this->klass_is_exact();
duke@435 3335 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 3336 // One of these classes has not been loaded
duke@435 3337 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 3338 #ifndef PRODUCT
duke@435 3339 if( PrintOpto && Verbose ) {
duke@435 3340 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 3341 tty->print(" this == "); this->dump(); tty->cr();
duke@435 3342 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 3343 }
duke@435 3344 #endif
duke@435 3345 return unloaded_meet;
duke@435 3346 }
duke@435 3347
duke@435 3348 // Handle mixing oops and interfaces first.
roland@5991 3349 if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
roland@5991 3350 tinst_klass == ciEnv::current()->Object_klass())) {
duke@435 3351 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 3352 tinst_klass = this_klass;
duke@435 3353 this_klass = tmp;
duke@435 3354 bool tmp2 = tinst_xk;
duke@435 3355 tinst_xk = this_xk;
duke@435 3356 this_xk = tmp2;
duke@435 3357 }
duke@435 3358 if (tinst_klass->is_interface() &&
duke@435 3359 !(this_klass->is_interface() ||
duke@435 3360 // Treat java/lang/Object as an honorary interface,
duke@435 3361 // because we need a bottom for the interface hierarchy.
duke@435 3362 this_klass == ciEnv::current()->Object_klass())) {
duke@435 3363 // Oop meets interface!
duke@435 3364
duke@435 3365 // See if the oop subtypes (implements) interface.
duke@435 3366 ciKlass *k;
duke@435 3367 bool xk;
duke@435 3368 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3369 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 3370 // on whether we are both above the centerline or either is
duke@435 3371 // below the centerline. If we are on the centerline
duke@435 3372 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 3373 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 3374 // If we are keeping this_klass, keep its exactness too.
duke@435 3375 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 3376 } else { // Does not implement, fall to Object
duke@435 3377 // Oop does not implement interface, so mixing falls to Object
duke@435 3378 // just like the verifier does (if both are above the
duke@435 3379 // centerline fall to interface)
duke@435 3380 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 3381 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 3382 // Watch out for Constant vs. AnyNull interface.
duke@435 3383 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 3384 instance_id = InstanceBot;
duke@435 3385 }
duke@435 3386 ciObject* o = NULL; // the Constant value, if any
duke@435 3387 if (ptr == Constant) {
duke@435 3388 // Find out which constant.
duke@435 3389 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 3390 }
roland@5991 3391 return make(ptr, k, xk, o, off, instance_id, speculative);
duke@435 3392 }
duke@435 3393
duke@435 3394 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 3395
duke@435 3396 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 3397 // If we split one up & one down AND they subtype, take the down man.
duke@435 3398 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3399 // If both are up and they subtype, take the subtype class.
duke@435 3400 // If both are up and they do NOT subtype, "fall hard".
duke@435 3401 // If both are down and they subtype, take the supertype class.
duke@435 3402 // If both are down and they do NOT subtype, "fall hard".
duke@435 3403 // Constants treated as down.
duke@435 3404
duke@435 3405 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 3406 // "fall hard"; "fall hard" becomes the default case:
duke@435 3407 // If we split one up & one down AND they subtype, take the down man.
duke@435 3408 // If both are up and they subtype, take the subtype class.
duke@435 3409
duke@435 3410 // If both are down and they subtype, "fall hard".
duke@435 3411 // If both are down and they do NOT subtype, "fall hard".
duke@435 3412 // If both are up and they do NOT subtype, "fall hard".
duke@435 3413 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3414
duke@435 3415 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 3416 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 3417 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 3418 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 3419
duke@435 3420 // Check for subtyping:
duke@435 3421 ciKlass *subtype = NULL;
duke@435 3422 bool subtype_exact = false;
duke@435 3423 if( tinst_klass->equals(this_klass) ) {
duke@435 3424 subtype = this_klass;
duke@435 3425 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 3426 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3427 subtype = this_klass; // Pick subtyping class
duke@435 3428 subtype_exact = this_xk;
duke@435 3429 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 3430 subtype = tinst_klass; // Pick subtyping class
duke@435 3431 subtype_exact = tinst_xk;
duke@435 3432 }
duke@435 3433
duke@435 3434 if( subtype ) {
duke@435 3435 if( above_centerline(ptr) ) { // both are up?
duke@435 3436 this_klass = tinst_klass = subtype;
duke@435 3437 this_xk = tinst_xk = subtype_exact;
duke@435 3438 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 3439 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 3440 this_xk = tinst_xk;
duke@435 3441 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 3442 tinst_klass = this_klass; // this is down; keep down man
duke@435 3443 tinst_xk = this_xk;
duke@435 3444 } else {
duke@435 3445 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 3446 }
duke@435 3447 }
duke@435 3448
duke@435 3449 // Check for classes now being equal
duke@435 3450 if (tinst_klass->equals(this_klass)) {
duke@435 3451 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3452 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3453 // handled elsewhere).
duke@435 3454 ciObject* o = NULL; // Assume not constant when done
duke@435 3455 ciObject* this_oop = const_oop();
duke@435 3456 ciObject* tinst_oop = tinst->const_oop();
duke@435 3457 if( ptr == Constant ) {
duke@435 3458 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 3459 this_oop->equals(tinst_oop) )
duke@435 3460 o = this_oop;
duke@435 3461 else if (above_centerline(this ->_ptr))
duke@435 3462 o = tinst_oop;
duke@435 3463 else if (above_centerline(tinst ->_ptr))
duke@435 3464 o = this_oop;
duke@435 3465 else
duke@435 3466 ptr = NotNull;
duke@435 3467 }
roland@5991 3468 return make(ptr, this_klass, this_xk, o, off, instance_id, speculative);
duke@435 3469 } // Else classes are not equal
duke@435 3470
duke@435 3471 // Since klasses are different, we require a LCA in the Java
duke@435 3472 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3473 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3474 ptr = NotNull;
kvn@682 3475 instance_id = InstanceBot;
duke@435 3476
duke@435 3477 // Now we find the LCA of Java classes
duke@435 3478 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
roland@5991 3479 return make(ptr, k, false, NULL, off, instance_id, speculative);
duke@435 3480 } // End of case InstPtr
duke@435 3481
duke@435 3482 } // End of switch
duke@435 3483 return this; // Return the double constant
duke@435 3484 }
duke@435 3485
duke@435 3486
duke@435 3487 //------------------------java_mirror_type--------------------------------------
duke@435 3488 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3489 // must be a singleton type
duke@435 3490 if( const_oop() == NULL ) return NULL;
duke@435 3491
duke@435 3492 // must be of type java.lang.Class
duke@435 3493 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3494
duke@435 3495 return const_oop()->as_instance()->java_mirror_type();
duke@435 3496 }
duke@435 3497
duke@435 3498
duke@435 3499 //------------------------------xdual------------------------------------------
duke@435 3500 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
twisti@1040 3501 // inheritance mechanism.
duke@435 3502 const Type *TypeInstPtr::xdual() const {
roland@5991 3503 return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative());
duke@435 3504 }
duke@435 3505
duke@435 3506 //------------------------------eq---------------------------------------------
duke@435 3507 // Structural equality check for Type representations
duke@435 3508 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3509 const TypeInstPtr *p = t->is_instptr();
duke@435 3510 return
duke@435 3511 klass()->equals(p->klass()) &&
duke@435 3512 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3513 }
duke@435 3514
duke@435 3515 //------------------------------hash-------------------------------------------
duke@435 3516 // Type-specific hashing function.
duke@435 3517 int TypeInstPtr::hash(void) const {
duke@435 3518 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 3519 return hash;
duke@435 3520 }
duke@435 3521
duke@435 3522 //------------------------------dump2------------------------------------------
duke@435 3523 // Dump oop Type
duke@435 3524 #ifndef PRODUCT
duke@435 3525 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3526 // Print the name of the klass.
duke@435 3527 klass()->print_name_on(st);
duke@435 3528
duke@435 3529 switch( _ptr ) {
duke@435 3530 case Constant:
duke@435 3531 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3532 if (WizardMode || Verbose) {
duke@435 3533 const_oop()->print_oop(st);
duke@435 3534 }
duke@435 3535 case BotPTR:
duke@435 3536 if (!WizardMode && !Verbose) {
duke@435 3537 if( _klass_is_exact ) st->print(":exact");
duke@435 3538 break;
duke@435 3539 }
duke@435 3540 case TopPTR:
duke@435 3541 case AnyNull:
duke@435 3542 case NotNull:
duke@435 3543 st->print(":%s", ptr_msg[_ptr]);
duke@435 3544 if( _klass_is_exact ) st->print(":exact");
duke@435 3545 break;
duke@435 3546 }
duke@435 3547
duke@435 3548 if( _offset ) { // Dump offset, if any
duke@435 3549 if( _offset == OffsetBot ) st->print("+any");
duke@435 3550 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3551 else st->print("+%d", _offset);
duke@435 3552 }
duke@435 3553
duke@435 3554 st->print(" *");
kvn@658 3555 if (_instance_id == InstanceTop)
kvn@658 3556 st->print(",iid=top");
kvn@658 3557 else if (_instance_id != InstanceBot)
duke@435 3558 st->print(",iid=%d",_instance_id);
roland@5991 3559
roland@5991 3560 dump_speculative(st);
duke@435 3561 }
duke@435 3562 #endif
duke@435 3563
duke@435 3564 //------------------------------add_offset-------------------------------------
roland@5991 3565 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
roland@5991 3566 return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
roland@5991 3567 }
roland@5991 3568
roland@6313 3569 const Type *TypeInstPtr::remove_speculative() const {
roland@6313 3570 if (_speculative == NULL) {
roland@6313 3571 return this;
roland@6313 3572 }
roland@5991 3573 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL);
duke@435 3574 }
duke@435 3575
duke@435 3576 //=============================================================================
duke@435 3577 // Convenience common pre-built types.
duke@435 3578 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3579 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3580 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3581 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3582 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3583 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3584 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3585 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3586 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3587 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3588
duke@435 3589 //------------------------------make-------------------------------------------
roland@5991 3590 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative) {
duke@435 3591 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3592 "integral arrays must be pre-equipped with a class");
duke@435 3593 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3594 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3595 if (!UseExactTypes) xk = (ptr == Constant);
roland@5991 3596 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative))->hashcons();
duke@435 3597 }
duke@435 3598
duke@435 3599 //------------------------------make-------------------------------------------
roland@5991 3600 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, bool is_autobox_cache) {
duke@435 3601 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3602 "integral arrays must be pre-equipped with a class");
duke@435 3603 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3604 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3605 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3606 if (!UseExactTypes) xk = (ptr == Constant);
roland@5991 3607 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative))->hashcons();
duke@435 3608 }
duke@435 3609
duke@435 3610 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3611 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3612 if( ptr == _ptr ) return this;
roland@5991 3613 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative);
duke@435 3614 }
duke@435 3615
duke@435 3616
duke@435 3617 //-----------------------------cast_to_exactness-------------------------------
duke@435 3618 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3619 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3620 if (!UseExactTypes) return this;
duke@435 3621 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
roland@5991 3622 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative);
duke@435 3623 }
duke@435 3624
kvn@682 3625 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3626 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3627 if( instance_id == _instance_id ) return this;
roland@5991 3628 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative);
duke@435 3629 }
duke@435 3630
duke@435 3631 //-----------------------------narrow_size_type-------------------------------
duke@435 3632 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3633 // which is kind of slow (and cached elsewhere by other users).
duke@435 3634 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3635 static jint max_array_length(BasicType etype) {
duke@435 3636 jint& cache = max_array_length_cache[etype];
duke@435 3637 jint res = cache;
duke@435 3638 if (res == 0) {
duke@435 3639 switch (etype) {
coleenp@548 3640 case T_NARROWOOP:
coleenp@548 3641 etype = T_OBJECT;
coleenp@548 3642 break;
roland@4159 3643 case T_NARROWKLASS:
duke@435 3644 case T_CONFLICT:
duke@435 3645 case T_ILLEGAL:
duke@435 3646 case T_VOID:
duke@435 3647 etype = T_BYTE; // will produce conservatively high value
duke@435 3648 }
duke@435 3649 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3650 }
duke@435 3651 return res;
duke@435 3652 }
duke@435 3653
duke@435 3654 // Narrow the given size type to the index range for the given array base type.
duke@435 3655 // Return NULL if the resulting int type becomes empty.
rasbold@801 3656 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
duke@435 3657 jint hi = size->_hi;
duke@435 3658 jint lo = size->_lo;
duke@435 3659 jint min_lo = 0;
rasbold@801 3660 jint max_hi = max_array_length(elem()->basic_type());
duke@435 3661 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3662 bool chg = false;
kvn@5110 3663 if (lo < min_lo) {
kvn@5110 3664 lo = min_lo;
kvn@5110 3665 if (size->is_con()) {
kvn@5110 3666 hi = lo;
kvn@5110 3667 }
kvn@5110 3668 chg = true;
kvn@5110 3669 }
kvn@5110 3670 if (hi > max_hi) {
kvn@5110 3671 hi = max_hi;
kvn@5110 3672 if (size->is_con()) {
kvn@5110 3673 lo = hi;
kvn@5110 3674 }
kvn@5110 3675 chg = true;
kvn@5110 3676 }
twisti@1040 3677 // Negative length arrays will produce weird intermediate dead fast-path code
duke@435 3678 if (lo > hi)
rasbold@801 3679 return TypeInt::ZERO;
duke@435 3680 if (!chg)
duke@435 3681 return size;
duke@435 3682 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3683 }
duke@435 3684
duke@435 3685 //-------------------------------cast_to_size----------------------------------
duke@435 3686 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3687 assert(new_size != NULL, "");
rasbold@801 3688 new_size = narrow_size_type(new_size);
duke@435 3689 if (new_size == size()) return this;
vlivanov@5658 3690 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
roland@5991 3691 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative);
duke@435 3692 }
duke@435 3693
duke@435 3694
vlivanov@5658 3695 //------------------------------cast_to_stable---------------------------------
vlivanov@5658 3696 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
vlivanov@5658 3697 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
vlivanov@5658 3698 return this;
vlivanov@5658 3699
vlivanov@5658 3700 const Type* elem = this->elem();
vlivanov@5658 3701 const TypePtr* elem_ptr = elem->make_ptr();
vlivanov@5658 3702
vlivanov@5658 3703 if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
vlivanov@5658 3704 // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
vlivanov@5658 3705 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
vlivanov@5658 3706 }
vlivanov@5658 3707
vlivanov@5658 3708 const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
vlivanov@5658 3709
vlivanov@5658 3710 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
vlivanov@5658 3711 }
vlivanov@5658 3712
vlivanov@5658 3713 //-----------------------------stable_dimension--------------------------------
vlivanov@5658 3714 int TypeAryPtr::stable_dimension() const {
vlivanov@5658 3715 if (!is_stable()) return 0;
vlivanov@5658 3716 int dim = 1;
vlivanov@5658 3717 const TypePtr* elem_ptr = elem()->make_ptr();
vlivanov@5658 3718 if (elem_ptr != NULL && elem_ptr->isa_aryptr())
vlivanov@5658 3719 dim += elem_ptr->is_aryptr()->stable_dimension();
vlivanov@5658 3720 return dim;
vlivanov@5658 3721 }
vlivanov@5658 3722
duke@435 3723 //------------------------------eq---------------------------------------------
duke@435 3724 // Structural equality check for Type representations
duke@435 3725 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3726 const TypeAryPtr *p = t->is_aryptr();
duke@435 3727 return
duke@435 3728 _ary == p->_ary && // Check array
duke@435 3729 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3730 }
duke@435 3731
duke@435 3732 //------------------------------hash-------------------------------------------
duke@435 3733 // Type-specific hashing function.
duke@435 3734 int TypeAryPtr::hash(void) const {
duke@435 3735 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3736 }
duke@435 3737
duke@435 3738 //------------------------------meet-------------------------------------------
duke@435 3739 // Compute the MEET of two types. It returns a new Type object.
roland@5991 3740 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
duke@435 3741 // Perform a fast test for common case; meeting the same types together.
duke@435 3742 if( this == t ) return this; // Meeting same type-rep?
duke@435 3743 // Current "this->_base" is Pointer
duke@435 3744 switch (t->base()) { // switch on original type
duke@435 3745
duke@435 3746 // Mixing ints & oops happens when javac reuses local variables
duke@435 3747 case Int:
duke@435 3748 case Long:
duke@435 3749 case FloatTop:
duke@435 3750 case FloatCon:
duke@435 3751 case FloatBot:
duke@435 3752 case DoubleTop:
duke@435 3753 case DoubleCon:
duke@435 3754 case DoubleBot:
coleenp@548 3755 case NarrowOop:
roland@4159 3756 case NarrowKlass:
duke@435 3757 case Bottom: // Ye Olde Default
duke@435 3758 return Type::BOTTOM;
duke@435 3759 case Top:
duke@435 3760 return this;
duke@435 3761
duke@435 3762 default: // All else is a mistake
duke@435 3763 typerr(t);
duke@435 3764
duke@435 3765 case OopPtr: { // Meeting to OopPtrs
duke@435 3766 // Found a OopPtr type vs self-AryPtr type
kvn@1393 3767 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3768 int offset = meet_offset(tp->offset());
duke@435 3769 PTR ptr = meet_ptr(tp->ptr());
duke@435 3770 switch (tp->ptr()) {
duke@435 3771 case TopPTR:
kvn@658 3772 case AnyNull: {
kvn@658 3773 int instance_id = meet_instance_id(InstanceTop);
roland@6313 3774 const TypeOopPtr* speculative = xmeet_speculative(tp);
kvn@658 3775 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@5991 3776 _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
kvn@658 3777 }
duke@435 3778 case BotPTR:
kvn@1393 3779 case NotNull: {
kvn@1393 3780 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3781 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@5991 3782 return TypeOopPtr::make(ptr, offset, instance_id, speculative);
kvn@1393 3783 }
duke@435 3784 default: ShouldNotReachHere();
duke@435 3785 }
duke@435 3786 }
duke@435 3787
duke@435 3788 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3789 // Found an AnyPtr type vs self-AryPtr type
duke@435 3790 const TypePtr *tp = t->is_ptr();
duke@435 3791 int offset = meet_offset(tp->offset());
duke@435 3792 PTR ptr = meet_ptr(tp->ptr());
duke@435 3793 switch (tp->ptr()) {
duke@435 3794 case TopPTR:
duke@435 3795 return this;
duke@435 3796 case BotPTR:
duke@435 3797 case NotNull:
duke@435 3798 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3799 case Null:
duke@435 3800 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3801 // else fall through to AnyNull
kvn@658 3802 case AnyNull: {
kvn@658 3803 int instance_id = meet_instance_id(InstanceTop);
roland@5991 3804 const TypeOopPtr* speculative = _speculative;
roland@5991 3805 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@5991 3806 _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
kvn@658 3807 }
duke@435 3808 default: ShouldNotReachHere();
duke@435 3809 }
duke@435 3810 }
duke@435 3811
coleenp@4037 3812 case MetadataPtr:
coleenp@4037 3813 case KlassPtr:
duke@435 3814 case RawPtr: return TypePtr::BOTTOM;
duke@435 3815
duke@435 3816 case AryPtr: { // Meeting 2 references?
duke@435 3817 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3818 int off = meet_offset(tap->offset());
roland@6313 3819 const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
duke@435 3820 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3821 int instance_id = meet_instance_id(tap->instance_id());
roland@6313 3822 const TypeOopPtr* speculative = xmeet_speculative(tap);
duke@435 3823 ciKlass* lazy_klass = NULL;
duke@435 3824 if (tary->_elem->isa_int()) {
duke@435 3825 // Integral array element types have irrelevant lattice relations.
duke@435 3826 // It is the klass that determines array layout, not the element type.
duke@435 3827 if (_klass == NULL)
duke@435 3828 lazy_klass = tap->_klass;
duke@435 3829 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3830 lazy_klass = _klass;
duke@435 3831 } else {
duke@435 3832 // Something like byte[int+] meets char[int+].
duke@435 3833 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3834 instance_id = InstanceBot;
vlivanov@5658 3835 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
duke@435 3836 }
kvn@2633 3837 } else // Non integral arrays.
roland@6214 3838 // Must fall to bottom if exact klasses in upper lattice
roland@6214 3839 // are not equal or super klass is exact.
roland@6214 3840 if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
roland@6214 3841 // meet with top[] and bottom[] are processed further down:
roland@6214 3842 tap->_klass != NULL && this->_klass != NULL &&
roland@6214 3843 // both are exact and not equal:
roland@6214 3844 ((tap->_klass_is_exact && this->_klass_is_exact) ||
roland@6214 3845 // 'tap' is exact and super or unrelated:
roland@6214 3846 (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
roland@6214 3847 // 'this' is exact and super or unrelated:
roland@6214 3848 (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
vlivanov@5658 3849 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
roland@5991 3850 return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
duke@435 3851 }
kvn@2633 3852
kvn@2120 3853 bool xk = false;
duke@435 3854 switch (tap->ptr()) {
duke@435 3855 case AnyNull:
duke@435 3856 case TopPTR:
duke@435 3857 // Compute new klass on demand, do not use tap->_klass
roland@5991 3858 if (below_centerline(this->_ptr)) {
roland@5991 3859 xk = this->_klass_is_exact;
roland@5991 3860 } else {
roland@5991 3861 xk = (tap->_klass_is_exact | this->_klass_is_exact);
roland@5991 3862 }
roland@5991 3863 return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative);
duke@435 3864 case Constant: {
duke@435 3865 ciObject* o = const_oop();
duke@435 3866 if( _ptr == Constant ) {
duke@435 3867 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
jrose@1424 3868 xk = (klass() == tap->klass());
duke@435 3869 ptr = NotNull;
duke@435 3870 o = NULL;
kvn@682 3871 instance_id = InstanceBot;
jrose@1424 3872 } else {
jrose@1424 3873 xk = true;
duke@435 3874 }
roland@5991 3875 } else if(above_centerline(_ptr)) {
duke@435 3876 o = tap->const_oop();
jrose@1424 3877 xk = true;
jrose@1424 3878 } else {
kvn@2120 3879 // Only precise for identical arrays
kvn@2120 3880 xk = this->_klass_is_exact && (klass() == tap->klass());
duke@435 3881 }
roland@5991 3882 return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative);
duke@435 3883 }
duke@435 3884 case NotNull:
duke@435 3885 case BotPTR:
duke@435 3886 // Compute new klass on demand, do not use tap->_klass
duke@435 3887 if (above_centerline(this->_ptr))
duke@435 3888 xk = tap->_klass_is_exact;
duke@435 3889 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 3890 (klass() == tap->klass()); // Only precise for identical arrays
roland@5991 3891 return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative);
duke@435 3892 default: ShouldNotReachHere();
duke@435 3893 }
duke@435 3894 }
duke@435 3895
duke@435 3896 // All arrays inherit from Object class
duke@435 3897 case InstPtr: {
duke@435 3898 const TypeInstPtr *tp = t->is_instptr();
duke@435 3899 int offset = meet_offset(tp->offset());
duke@435 3900 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3901 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3902 const TypeOopPtr* speculative = xmeet_speculative(tp);
duke@435 3903 switch (ptr) {
duke@435 3904 case TopPTR:
duke@435 3905 case AnyNull: // Fall 'down' to dual of object klass
roland@5991 3906 // For instances when a subclass meets a superclass we fall
roland@5991 3907 // below the centerline when the superclass is exact. We need to
roland@5991 3908 // do the same here.
roland@5991 3909 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
roland@5991 3910 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
duke@435 3911 } else {
duke@435 3912 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3913 ptr = NotNull;
kvn@658 3914 instance_id = InstanceBot;
roland@5991 3915 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative);
duke@435 3916 }
duke@435 3917 case Constant:
duke@435 3918 case NotNull:
duke@435 3919 case BotPTR: // Fall down to object klass
duke@435 3920 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3921 if (above_centerline(tp->ptr())) {
duke@435 3922 // If 'tp' is above the centerline and it is Object class
twisti@1040 3923 // then we can subclass in the Java class hierarchy.
roland@5991 3924 // For instances when a subclass meets a superclass we fall
roland@5991 3925 // below the centerline when the superclass is exact. We need
roland@5991 3926 // to do the same here.
roland@5991 3927 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
duke@435 3928 // that is, my array type is a subtype of 'tp' klass
roland@5991 3929 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@5991 3930 _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
duke@435 3931 }
duke@435 3932 }
duke@435 3933 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 3934 // The meet falls down to Object class below centerline.
duke@435 3935 if( ptr == Constant )
duke@435 3936 ptr = NotNull;
kvn@658 3937 instance_id = InstanceBot;
roland@5991 3938 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative);
duke@435 3939 default: typerr(t);
duke@435 3940 }
duke@435 3941 }
duke@435 3942 }
duke@435 3943 return this; // Lint noise
duke@435 3944 }
duke@435 3945
duke@435 3946 //------------------------------xdual------------------------------------------
duke@435 3947 // Dual: compute field-by-field dual
duke@435 3948 const Type *TypeAryPtr::xdual() const {
roland@5991 3949 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative());
duke@435 3950 }
duke@435 3951
kvn@1255 3952 //----------------------interface_vs_oop---------------------------------------
kvn@1255 3953 #ifdef ASSERT
kvn@1255 3954 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
kvn@1255 3955 const TypeAryPtr* t_aryptr = t->isa_aryptr();
kvn@1255 3956 if (t_aryptr) {
kvn@1255 3957 return _ary->interface_vs_oop(t_aryptr->_ary);
kvn@1255 3958 }
kvn@1255 3959 return false;
kvn@1255 3960 }
kvn@1255 3961 #endif
kvn@1255 3962
duke@435 3963 //------------------------------dump2------------------------------------------
duke@435 3964 #ifndef PRODUCT
duke@435 3965 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3966 _ary->dump2(d,depth,st);
duke@435 3967 switch( _ptr ) {
duke@435 3968 case Constant:
duke@435 3969 const_oop()->print(st);
duke@435 3970 break;
duke@435 3971 case BotPTR:
duke@435 3972 if (!WizardMode && !Verbose) {
duke@435 3973 if( _klass_is_exact ) st->print(":exact");
duke@435 3974 break;
duke@435 3975 }
duke@435 3976 case TopPTR:
duke@435 3977 case AnyNull:
duke@435 3978 case NotNull:
duke@435 3979 st->print(":%s", ptr_msg[_ptr]);
duke@435 3980 if( _klass_is_exact ) st->print(":exact");
duke@435 3981 break;
duke@435 3982 }
duke@435 3983
kvn@499 3984 if( _offset != 0 ) {
kvn@499 3985 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 3986 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 3987 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 3988 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 3989 else {
kvn@499 3990 BasicType basic_elem_type = elem()->basic_type();
kvn@499 3991 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 3992 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 3993 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 3994 }
kvn@499 3995 }
kvn@499 3996 st->print(" *");
kvn@658 3997 if (_instance_id == InstanceTop)
kvn@658 3998 st->print(",iid=top");
kvn@658 3999 else if (_instance_id != InstanceBot)
duke@435 4000 st->print(",iid=%d",_instance_id);
roland@5991 4001
roland@5991 4002 dump_speculative(st);
duke@435 4003 }
duke@435 4004 #endif
duke@435 4005
duke@435 4006 bool TypeAryPtr::empty(void) const {
duke@435 4007 if (_ary->empty()) return true;
duke@435 4008 return TypeOopPtr::empty();
duke@435 4009 }
duke@435 4010
duke@435 4011 //------------------------------add_offset-------------------------------------
roland@5991 4012 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
roland@5991 4013 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset));
roland@5991 4014 }
roland@5991 4015
roland@6313 4016 const Type *TypeAryPtr::remove_speculative() const {
roland@6313 4017 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL);
roland@5991 4018 }
duke@435 4019
duke@435 4020 //=============================================================================
coleenp@548 4021
coleenp@548 4022 //------------------------------hash-------------------------------------------
coleenp@548 4023 // Type-specific hashing function.
roland@4159 4024 int TypeNarrowPtr::hash(void) const {
never@1262 4025 return _ptrtype->hash() + 7;
coleenp@548 4026 }
coleenp@548 4027
roland@4159 4028 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton
roland@4159 4029 return _ptrtype->singleton();
roland@4159 4030 }
roland@4159 4031
roland@4159 4032 bool TypeNarrowPtr::empty(void) const {
roland@4159 4033 return _ptrtype->empty();
roland@4159 4034 }
roland@4159 4035
roland@4159 4036 intptr_t TypeNarrowPtr::get_con() const {
roland@4159 4037 return _ptrtype->get_con();
roland@4159 4038 }
roland@4159 4039
roland@4159 4040 bool TypeNarrowPtr::eq( const Type *t ) const {
roland@4159 4041 const TypeNarrowPtr* tc = isa_same_narrowptr(t);
coleenp@548 4042 if (tc != NULL) {
never@1262 4043 if (_ptrtype->base() != tc->_ptrtype->base()) {
coleenp@548 4044 return false;
coleenp@548 4045 }
never@1262 4046 return tc->_ptrtype->eq(_ptrtype);
coleenp@548 4047 }
coleenp@548 4048 return false;
coleenp@548 4049 }
coleenp@548 4050
roland@4159 4051 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now.
roland@4159 4052 const TypePtr* odual = _ptrtype->dual()->is_ptr();
roland@4159 4053 return make_same_narrowptr(odual);
roland@4159 4054 }
roland@4159 4055
roland@4159 4056
roland@6313 4057 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@4159 4058 if (isa_same_narrowptr(kills)) {
roland@6313 4059 const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
roland@4159 4060 if (ft->empty())
roland@4159 4061 return Type::TOP; // Canonical empty value
roland@4159 4062 if (ft->isa_ptr()) {
roland@4159 4063 return make_hash_same_narrowptr(ft->isa_ptr());
roland@4159 4064 }
roland@4159 4065 return ft;
roland@4159 4066 } else if (kills->isa_ptr()) {
roland@6313 4067 const Type* ft = _ptrtype->join_helper(kills, include_speculative);
roland@4159 4068 if (ft->empty())
roland@4159 4069 return Type::TOP; // Canonical empty value
roland@4159 4070 return ft;
roland@4159 4071 } else {
roland@4159 4072 return Type::TOP;
roland@4159 4073 }
coleenp@548 4074 }
coleenp@548 4075
kvn@728 4076 //------------------------------xmeet------------------------------------------
coleenp@548 4077 // Compute the MEET of two types. It returns a new Type object.
roland@4159 4078 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
coleenp@548 4079 // Perform a fast test for common case; meeting the same types together.
coleenp@548 4080 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 4081
roland@4159 4082 if (t->base() == base()) {
roland@4159 4083 const Type* result = _ptrtype->xmeet(t->make_ptr());
roland@4159 4084 if (result->isa_ptr()) {
roland@4159 4085 return make_hash_same_narrowptr(result->is_ptr());
roland@4159 4086 }
roland@4159 4087 return result;
roland@4159 4088 }
roland@4159 4089
roland@4159 4090 // Current "this->_base" is NarrowKlass or NarrowOop
coleenp@548 4091 switch (t->base()) { // switch on original type
coleenp@548 4092
coleenp@548 4093 case Int: // Mixing ints & oops happens when javac
coleenp@548 4094 case Long: // reuses local variables
coleenp@548 4095 case FloatTop:
coleenp@548 4096 case FloatCon:
coleenp@548 4097 case FloatBot:
coleenp@548 4098 case DoubleTop:
coleenp@548 4099 case DoubleCon:
coleenp@548 4100 case DoubleBot:
kvn@728 4101 case AnyPtr:
kvn@728 4102 case RawPtr:
kvn@728 4103 case OopPtr:
kvn@728 4104 case InstPtr:
coleenp@4037 4105 case AryPtr:
coleenp@4037 4106 case MetadataPtr:
kvn@728 4107 case KlassPtr:
roland@4159 4108 case NarrowOop:
roland@4159 4109 case NarrowKlass:
kvn@728 4110
coleenp@548 4111 case Bottom: // Ye Olde Default
coleenp@548 4112 return Type::BOTTOM;
coleenp@548 4113 case Top:
coleenp@548 4114 return this;
coleenp@548 4115
coleenp@548 4116 default: // All else is a mistake
coleenp@548 4117 typerr(t);
coleenp@548 4118
coleenp@548 4119 } // End of switch
kvn@728 4120
kvn@728 4121 return this;
coleenp@548 4122 }
coleenp@548 4123
roland@4159 4124 #ifndef PRODUCT
roland@4159 4125 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 4126 _ptrtype->dump2(d, depth, st);
roland@4159 4127 }
roland@4159 4128 #endif
roland@4159 4129
roland@4159 4130 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
roland@4159 4131 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
roland@4159 4132
roland@4159 4133
roland@4159 4134 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
roland@4159 4135 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
roland@4159 4136 }
roland@4159 4137
coleenp@548 4138
coleenp@548 4139 #ifndef PRODUCT
coleenp@548 4140 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
never@852 4141 st->print("narrowoop: ");
roland@4159 4142 TypeNarrowPtr::dump2(d, depth, st);
coleenp@548 4143 }
coleenp@548 4144 #endif
coleenp@548 4145
roland@4159 4146 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
roland@4159 4147
roland@4159 4148 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
roland@4159 4149 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
roland@4159 4150 }
roland@4159 4151
roland@4159 4152 #ifndef PRODUCT
roland@4159 4153 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 4154 st->print("narrowklass: ");
roland@4159 4155 TypeNarrowPtr::dump2(d, depth, st);
roland@4159 4156 }
roland@4159 4157 #endif
coleenp@548 4158
coleenp@4037 4159
coleenp@4037 4160 //------------------------------eq---------------------------------------------
coleenp@4037 4161 // Structural equality check for Type representations
coleenp@4037 4162 bool TypeMetadataPtr::eq( const Type *t ) const {
coleenp@4037 4163 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
coleenp@4037 4164 ciMetadata* one = metadata();
coleenp@4037 4165 ciMetadata* two = a->metadata();
coleenp@4037 4166 if (one == NULL || two == NULL) {
coleenp@4037 4167 return (one == two) && TypePtr::eq(t);
coleenp@4037 4168 } else {
coleenp@4037 4169 return one->equals(two) && TypePtr::eq(t);
coleenp@4037 4170 }
coleenp@4037 4171 }
coleenp@4037 4172
coleenp@4037 4173 //------------------------------hash-------------------------------------------
coleenp@4037 4174 // Type-specific hashing function.
coleenp@4037 4175 int TypeMetadataPtr::hash(void) const {
coleenp@4037 4176 return
coleenp@4037 4177 (metadata() ? metadata()->hash() : 0) +
coleenp@4037 4178 TypePtr::hash();
coleenp@4037 4179 }
coleenp@4037 4180
coleenp@4037 4181 //------------------------------singleton--------------------------------------
coleenp@4037 4182 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 4183 // constants
coleenp@4037 4184 bool TypeMetadataPtr::singleton(void) const {
coleenp@4037 4185 // detune optimizer to not generate constant metadta + constant offset as a constant!
coleenp@4037 4186 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 4187 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 4188 }
coleenp@4037 4189
coleenp@4037 4190 //------------------------------add_offset-------------------------------------
coleenp@4037 4191 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
coleenp@4037 4192 return make( _ptr, _metadata, xadd_offset(offset));
coleenp@4037 4193 }
coleenp@4037 4194
coleenp@4037 4195 //-----------------------------filter------------------------------------------
coleenp@4037 4196 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 4197 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 4198 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
coleenp@4037 4199 if (ft == NULL || ft->empty())
coleenp@4037 4200 return Type::TOP; // Canonical empty value
coleenp@4037 4201 return ft;
coleenp@4037 4202 }
coleenp@4037 4203
coleenp@4037 4204 //------------------------------get_con----------------------------------------
coleenp@4037 4205 intptr_t TypeMetadataPtr::get_con() const {
coleenp@4037 4206 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4207 assert( _offset >= 0, "" );
coleenp@4037 4208
coleenp@4037 4209 if (_offset != 0) {
coleenp@4037 4210 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4211 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4212 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4213 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4214 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4215 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4216 // but this assertion here is to help prevent its occurence.
coleenp@4037 4217 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4218 ShouldNotReachHere();
coleenp@4037 4219 }
coleenp@4037 4220
coleenp@4037 4221 return (intptr_t)metadata()->constant_encoding();
coleenp@4037 4222 }
coleenp@4037 4223
coleenp@4037 4224 //------------------------------cast_to_ptr_type-------------------------------
coleenp@4037 4225 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
coleenp@4037 4226 if( ptr == _ptr ) return this;
coleenp@4037 4227 return make(ptr, metadata(), _offset);
coleenp@4037 4228 }
coleenp@4037 4229
coleenp@4037 4230 //------------------------------meet-------------------------------------------
coleenp@4037 4231 // Compute the MEET of two types. It returns a new Type object.
coleenp@4037 4232 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
coleenp@4037 4233 // Perform a fast test for common case; meeting the same types together.
coleenp@4037 4234 if( this == t ) return this; // Meeting same type-rep?
coleenp@4037 4235
coleenp@4037 4236 // Current "this->_base" is OopPtr
coleenp@4037 4237 switch (t->base()) { // switch on original type
coleenp@4037 4238
coleenp@4037 4239 case Int: // Mixing ints & oops happens when javac
coleenp@4037 4240 case Long: // reuses local variables
coleenp@4037 4241 case FloatTop:
coleenp@4037 4242 case FloatCon:
coleenp@4037 4243 case FloatBot:
coleenp@4037 4244 case DoubleTop:
coleenp@4037 4245 case DoubleCon:
coleenp@4037 4246 case DoubleBot:
coleenp@4037 4247 case NarrowOop:
roland@4159 4248 case NarrowKlass:
coleenp@4037 4249 case Bottom: // Ye Olde Default
coleenp@4037 4250 return Type::BOTTOM;
coleenp@4037 4251 case Top:
coleenp@4037 4252 return this;
coleenp@4037 4253
coleenp@4037 4254 default: // All else is a mistake
coleenp@4037 4255 typerr(t);
coleenp@4037 4256
coleenp@4037 4257 case AnyPtr: {
coleenp@4037 4258 // Found an AnyPtr type vs self-OopPtr type
coleenp@4037 4259 const TypePtr *tp = t->is_ptr();
coleenp@4037 4260 int offset = meet_offset(tp->offset());
coleenp@4037 4261 PTR ptr = meet_ptr(tp->ptr());
coleenp@4037 4262 switch (tp->ptr()) {
coleenp@4037 4263 case Null:
coleenp@4037 4264 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 4265 // else fall through:
coleenp@4037 4266 case TopPTR:
coleenp@4037 4267 case AnyNull: {
coleenp@4037 4268 return make(ptr, NULL, offset);
coleenp@4037 4269 }
coleenp@4037 4270 case BotPTR:
coleenp@4037 4271 case NotNull:
coleenp@4037 4272 return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 4273 default: typerr(t);
coleenp@4037 4274 }
coleenp@4037 4275 }
coleenp@4037 4276
coleenp@4037 4277 case RawPtr:
coleenp@4037 4278 case KlassPtr:
coleenp@4037 4279 case OopPtr:
coleenp@4037 4280 case InstPtr:
coleenp@4037 4281 case AryPtr:
coleenp@4037 4282 return TypePtr::BOTTOM; // Oop meet raw is not well defined
coleenp@4037 4283
roland@4040 4284 case MetadataPtr: {
roland@4040 4285 const TypeMetadataPtr *tp = t->is_metadataptr();
roland@4040 4286 int offset = meet_offset(tp->offset());
roland@4040 4287 PTR tptr = tp->ptr();
roland@4040 4288 PTR ptr = meet_ptr(tptr);
roland@4040 4289 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
roland@4040 4290 if (tptr == TopPTR || _ptr == TopPTR ||
roland@4040 4291 metadata()->equals(tp->metadata())) {
roland@4040 4292 return make(ptr, md, offset);
roland@4040 4293 }
roland@4040 4294 // metadata is different
roland@4040 4295 if( ptr == Constant ) { // Cannot be equal constants, so...
roland@4040 4296 if( tptr == Constant && _ptr != Constant) return t;
roland@4040 4297 if( _ptr == Constant && tptr != Constant) return this;
roland@4040 4298 ptr = NotNull; // Fall down in lattice
roland@4040 4299 }
roland@4040 4300 return make(ptr, NULL, offset);
coleenp@4037 4301 break;
roland@4040 4302 }
coleenp@4037 4303 } // End of switch
coleenp@4037 4304 return this; // Return the double constant
coleenp@4037 4305 }
coleenp@4037 4306
coleenp@4037 4307
coleenp@4037 4308 //------------------------------xdual------------------------------------------
coleenp@4037 4309 // Dual of a pure metadata pointer.
coleenp@4037 4310 const Type *TypeMetadataPtr::xdual() const {
coleenp@4037 4311 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
coleenp@4037 4312 }
coleenp@4037 4313
coleenp@4037 4314 //------------------------------dump2------------------------------------------
coleenp@4037 4315 #ifndef PRODUCT
coleenp@4037 4316 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
coleenp@4037 4317 st->print("metadataptr:%s", ptr_msg[_ptr]);
coleenp@4037 4318 if( metadata() ) st->print(INTPTR_FORMAT, metadata());
coleenp@4037 4319 switch( _offset ) {
coleenp@4037 4320 case OffsetTop: st->print("+top"); break;
coleenp@4037 4321 case OffsetBot: st->print("+any"); break;
coleenp@4037 4322 case 0: break;
coleenp@4037 4323 default: st->print("+%d",_offset); break;
coleenp@4037 4324 }
coleenp@4037 4325 }
coleenp@4037 4326 #endif
coleenp@4037 4327
coleenp@4037 4328
coleenp@4037 4329 //=============================================================================
coleenp@4037 4330 // Convenience common pre-built type.
coleenp@4037 4331 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
coleenp@4037 4332
coleenp@4037 4333 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
coleenp@4037 4334 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
coleenp@4037 4335 }
coleenp@4037 4336
coleenp@4037 4337 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
coleenp@4037 4338 return make(Constant, m, 0);
coleenp@4037 4339 }
coleenp@4037 4340 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
coleenp@4037 4341 return make(Constant, m, 0);
coleenp@4037 4342 }
coleenp@4037 4343
coleenp@4037 4344 //------------------------------make-------------------------------------------
coleenp@4037 4345 // Create a meta data constant
coleenp@4037 4346 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
coleenp@4037 4347 assert(m == NULL || !m->is_klass(), "wrong type");
coleenp@4037 4348 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
coleenp@4037 4349 }
coleenp@4037 4350
coleenp@4037 4351
coleenp@548 4352 //=============================================================================
duke@435 4353 // Convenience common pre-built types.
duke@435 4354
duke@435 4355 // Not-null object klass or below
duke@435 4356 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 4357 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 4358
coleenp@4037 4359 //------------------------------TypeKlassPtr-----------------------------------
duke@435 4360 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
coleenp@4037 4361 : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
duke@435 4362 }
duke@435 4363
duke@435 4364 //------------------------------make-------------------------------------------
duke@435 4365 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 4366 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 4367 assert( k != NULL, "Expect a non-NULL klass");
coleenp@4037 4368 assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
duke@435 4369 TypeKlassPtr *r =
duke@435 4370 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 4371
duke@435 4372 return r;
duke@435 4373 }
duke@435 4374
duke@435 4375 //------------------------------eq---------------------------------------------
duke@435 4376 // Structural equality check for Type representations
duke@435 4377 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 4378 const TypeKlassPtr *p = t->is_klassptr();
duke@435 4379 return
duke@435 4380 klass()->equals(p->klass()) &&
coleenp@4037 4381 TypePtr::eq(p);
duke@435 4382 }
duke@435 4383
duke@435 4384 //------------------------------hash-------------------------------------------
duke@435 4385 // Type-specific hashing function.
duke@435 4386 int TypeKlassPtr::hash(void) const {
coleenp@4037 4387 return klass()->hash() + TypePtr::hash();
coleenp@4037 4388 }
coleenp@4037 4389
coleenp@4037 4390 //------------------------------singleton--------------------------------------
coleenp@4037 4391 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 4392 // constants
coleenp@4037 4393 bool TypeKlassPtr::singleton(void) const {
coleenp@4037 4394 // detune optimizer to not generate constant klass + constant offset as a constant!
coleenp@4037 4395 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 4396 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 4397 }
duke@435 4398
roland@6043 4399 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 4400 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@6043 4401 // logic here mirrors the one from TypeOopPtr::filter. See comments
roland@6043 4402 // there.
roland@6313 4403 const Type* ft = join_helper(kills, include_speculative);
roland@6043 4404 const TypeKlassPtr* ftkp = ft->isa_klassptr();
roland@6043 4405 const TypeKlassPtr* ktkp = kills->isa_klassptr();
roland@6043 4406
roland@6043 4407 if (ft->empty()) {
roland@6043 4408 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
roland@6043 4409 return kills; // Uplift to interface
roland@6043 4410
roland@6043 4411 return Type::TOP; // Canonical empty value
roland@6043 4412 }
roland@6043 4413
roland@6043 4414 // Interface klass type could be exact in opposite to interface type,
roland@6043 4415 // return it here instead of incorrect Constant ptr J/L/Object (6894807).
roland@6043 4416 if (ftkp != NULL && ktkp != NULL &&
roland@6043 4417 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
roland@6043 4418 !ftkp->klass_is_exact() && // Keep exact interface klass
roland@6043 4419 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
roland@6043 4420 return ktkp->cast_to_ptr_type(ftkp->ptr());
roland@6043 4421 }
roland@6043 4422
roland@6043 4423 return ft;
roland@6043 4424 }
roland@6043 4425
kvn@2116 4426 //----------------------compute_klass------------------------------------------
kvn@2116 4427 // Compute the defining klass for this class
kvn@2116 4428 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
kvn@2116 4429 // Compute _klass based on element type.
duke@435 4430 ciKlass* k_ary = NULL;
duke@435 4431 const TypeInstPtr *tinst;
duke@435 4432 const TypeAryPtr *tary;
coleenp@548 4433 const Type* el = elem();
coleenp@548 4434 if (el->isa_narrowoop()) {
kvn@656 4435 el = el->make_ptr();
coleenp@548 4436 }
coleenp@548 4437
duke@435 4438 // Get element klass
coleenp@548 4439 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 4440 // Compute array klass from element klass
duke@435 4441 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 4442 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 4443 // Compute array klass from element klass
duke@435 4444 ciKlass* k_elem = tary->klass();
duke@435 4445 // If element type is something like bottom[], k_elem will be null.
duke@435 4446 if (k_elem != NULL)
duke@435 4447 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 4448 } else if ((el->base() == Type::Top) ||
coleenp@548 4449 (el->base() == Type::Bottom)) {
duke@435 4450 // element type of Bottom occurs from meet of basic type
duke@435 4451 // and object; Top occurs when doing join on Bottom.
duke@435 4452 // Leave k_ary at NULL.
duke@435 4453 } else {
duke@435 4454 // Cannot compute array klass directly from basic type,
duke@435 4455 // since subtypes of TypeInt all have basic type T_INT.
kvn@2116 4456 #ifdef ASSERT
kvn@2116 4457 if (verify && el->isa_int()) {
kvn@2116 4458 // Check simple cases when verifying klass.
kvn@2116 4459 BasicType bt = T_ILLEGAL;
kvn@2116 4460 if (el == TypeInt::BYTE) {
kvn@2116 4461 bt = T_BYTE;
kvn@2116 4462 } else if (el == TypeInt::SHORT) {
kvn@2116 4463 bt = T_SHORT;
kvn@2116 4464 } else if (el == TypeInt::CHAR) {
kvn@2116 4465 bt = T_CHAR;
kvn@2116 4466 } else if (el == TypeInt::INT) {
kvn@2116 4467 bt = T_INT;
kvn@2116 4468 } else {
kvn@2116 4469 return _klass; // just return specified klass
kvn@2116 4470 }
kvn@2116 4471 return ciTypeArrayKlass::make(bt);
kvn@2116 4472 }
kvn@2116 4473 #endif
coleenp@548 4474 assert(!el->isa_int(),
duke@435 4475 "integral arrays must be pre-equipped with a class");
duke@435 4476 // Compute array klass directly from basic type
coleenp@548 4477 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 4478 }
kvn@2116 4479 return k_ary;
kvn@2116 4480 }
kvn@2116 4481
kvn@2116 4482 //------------------------------klass------------------------------------------
kvn@2116 4483 // Return the defining klass for this class
kvn@2116 4484 ciKlass* TypeAryPtr::klass() const {
kvn@2116 4485 if( _klass ) return _klass; // Return cached value, if possible
kvn@2116 4486
kvn@2116 4487 // Oops, need to compute _klass and cache it
kvn@2116 4488 ciKlass* k_ary = compute_klass();
duke@435 4489
kvn@2636 4490 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
duke@435 4491 // The _klass field acts as a cache of the underlying
duke@435 4492 // ciKlass for this array type. In order to set the field,
duke@435 4493 // we need to cast away const-ness.
duke@435 4494 //
duke@435 4495 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 4496 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 4497 // active compilations. However, the ciKlass which represents
duke@435 4498 // this Type is *not* shared between compilations, so caching
duke@435 4499 // this value would result in fetching a dangling pointer.
duke@435 4500 //
duke@435 4501 // Recomputing the underlying ciKlass for each request is
duke@435 4502 // a bit less efficient than caching, but calls to
duke@435 4503 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 4504 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 4505 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 4506 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 4507 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 4508 }
kvn@598 4509 }
duke@435 4510 return k_ary;
duke@435 4511 }
duke@435 4512
duke@435 4513
duke@435 4514 //------------------------------add_offset-------------------------------------
duke@435 4515 // Access internals of klass object
kvn@741 4516 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
duke@435 4517 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 4518 }
duke@435 4519
duke@435 4520 //------------------------------cast_to_ptr_type-------------------------------
duke@435 4521 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
kvn@992 4522 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
duke@435 4523 if( ptr == _ptr ) return this;
duke@435 4524 return make(ptr, _klass, _offset);
duke@435 4525 }
duke@435 4526
duke@435 4527
duke@435 4528 //-----------------------------cast_to_exactness-------------------------------
duke@435 4529 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 4530 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 4531 if (!UseExactTypes) return this;
duke@435 4532 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 4533 }
duke@435 4534
duke@435 4535
duke@435 4536 //-----------------------------as_instance_type--------------------------------
duke@435 4537 // Corresponding type for an instance of the given class.
duke@435 4538 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 4539 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 4540 ciKlass* k = klass();
duke@435 4541 bool xk = klass_is_exact();
duke@435 4542 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 4543 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
morris@4760 4544 guarantee(toop != NULL, "need type for given klass");
duke@435 4545 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 4546 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 4547 }
duke@435 4548
duke@435 4549
duke@435 4550 //------------------------------xmeet------------------------------------------
duke@435 4551 // Compute the MEET of two types, return a new Type object.
duke@435 4552 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 4553 // Perform a fast test for common case; meeting the same types together.
duke@435 4554 if( this == t ) return this; // Meeting same type-rep?
duke@435 4555
duke@435 4556 // Current "this->_base" is Pointer
duke@435 4557 switch (t->base()) { // switch on original type
duke@435 4558
duke@435 4559 case Int: // Mixing ints & oops happens when javac
duke@435 4560 case Long: // reuses local variables
duke@435 4561 case FloatTop:
duke@435 4562 case FloatCon:
duke@435 4563 case FloatBot:
duke@435 4564 case DoubleTop:
duke@435 4565 case DoubleCon:
duke@435 4566 case DoubleBot:
kvn@728 4567 case NarrowOop:
roland@4159 4568 case NarrowKlass:
duke@435 4569 case Bottom: // Ye Olde Default
duke@435 4570 return Type::BOTTOM;
duke@435 4571 case Top:
duke@435 4572 return this;
duke@435 4573
duke@435 4574 default: // All else is a mistake
duke@435 4575 typerr(t);
duke@435 4576
duke@435 4577 case AnyPtr: { // Meeting to AnyPtrs
duke@435 4578 // Found an AnyPtr type vs self-KlassPtr type
duke@435 4579 const TypePtr *tp = t->is_ptr();
duke@435 4580 int offset = meet_offset(tp->offset());
duke@435 4581 PTR ptr = meet_ptr(tp->ptr());
duke@435 4582 switch (tp->ptr()) {
duke@435 4583 case TopPTR:
duke@435 4584 return this;
duke@435 4585 case Null:
duke@435 4586 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 4587 case AnyNull:
duke@435 4588 return make( ptr, klass(), offset );
duke@435 4589 case BotPTR:
duke@435 4590 case NotNull:
duke@435 4591 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 4592 default: typerr(t);
duke@435 4593 }
duke@435 4594 }
duke@435 4595
coleenp@4037 4596 case RawPtr:
coleenp@4037 4597 case MetadataPtr:
coleenp@4037 4598 case OopPtr:
duke@435 4599 case AryPtr: // Meet with AryPtr
duke@435 4600 case InstPtr: // Meet with InstPtr
coleenp@4037 4601 return TypePtr::BOTTOM;
duke@435 4602
duke@435 4603 //
duke@435 4604 // A-top }
duke@435 4605 // / | \ } Tops
duke@435 4606 // B-top A-any C-top }
duke@435 4607 // | / | \ | } Any-nulls
duke@435 4608 // B-any | C-any }
duke@435 4609 // | | |
duke@435 4610 // B-con A-con C-con } constants; not comparable across classes
duke@435 4611 // | | |
duke@435 4612 // B-not | C-not }
duke@435 4613 // | \ | / | } not-nulls
duke@435 4614 // B-bot A-not C-bot }
duke@435 4615 // \ | / } Bottoms
duke@435 4616 // A-bot }
duke@435 4617 //
duke@435 4618
duke@435 4619 case KlassPtr: { // Meet two KlassPtr types
duke@435 4620 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 4621 int off = meet_offset(tkls->offset());
duke@435 4622 PTR ptr = meet_ptr(tkls->ptr());
duke@435 4623
duke@435 4624 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 4625 // If we have constants, then we created oops so classes are loaded
duke@435 4626 // and we can handle the constants further down. This case handles
duke@435 4627 // not-loaded classes
duke@435 4628 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 4629 return make( ptr, klass(), off );
duke@435 4630 }
duke@435 4631
duke@435 4632 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 4633 ciKlass* tkls_klass = tkls->klass();
duke@435 4634 ciKlass* this_klass = this->klass();
duke@435 4635 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 4636 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 4637
duke@435 4638 // If 'this' type is above the centerline and is a superclass of the
duke@435 4639 // other, we can treat 'this' as having the same type as the other.
duke@435 4640 if ((above_centerline(this->ptr())) &&
duke@435 4641 tkls_klass->is_subtype_of(this_klass)) {
duke@435 4642 this_klass = tkls_klass;
duke@435 4643 }
duke@435 4644 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 4645 // other, we can treat 'tinst' as having the same type as the other.
duke@435 4646 if ((above_centerline(tkls->ptr())) &&
duke@435 4647 this_klass->is_subtype_of(tkls_klass)) {
duke@435 4648 tkls_klass = this_klass;
duke@435 4649 }
duke@435 4650
duke@435 4651 // Check for classes now being equal
duke@435 4652 if (tkls_klass->equals(this_klass)) {
duke@435 4653 // If the klasses are equal, the constants may still differ. Fall to
duke@435 4654 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 4655 // handled elsewhere).
duke@435 4656 if( ptr == Constant ) {
coleenp@4037 4657 if (this->_ptr == Constant && tkls->_ptr == Constant &&
coleenp@4037 4658 this->klass()->equals(tkls->klass()));
coleenp@4037 4659 else if (above_centerline(this->ptr()));
coleenp@4037 4660 else if (above_centerline(tkls->ptr()));
duke@435 4661 else
duke@435 4662 ptr = NotNull;
duke@435 4663 }
duke@435 4664 return make( ptr, this_klass, off );
duke@435 4665 } // Else classes are not equal
duke@435 4666
duke@435 4667 // Since klasses are different, we require the LCA in the Java
duke@435 4668 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 4669 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 4670 ptr = NotNull;
duke@435 4671 // Now we find the LCA of Java classes
duke@435 4672 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 4673 return make( ptr, k, off );
duke@435 4674 } // End of case KlassPtr
duke@435 4675
duke@435 4676 } // End of switch
duke@435 4677 return this; // Return the double constant
duke@435 4678 }
duke@435 4679
duke@435 4680 //------------------------------xdual------------------------------------------
duke@435 4681 // Dual: compute field-by-field dual
duke@435 4682 const Type *TypeKlassPtr::xdual() const {
duke@435 4683 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 4684 }
duke@435 4685
coleenp@4037 4686 //------------------------------get_con----------------------------------------
coleenp@4037 4687 intptr_t TypeKlassPtr::get_con() const {
coleenp@4037 4688 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4689 assert( _offset >= 0, "" );
coleenp@4037 4690
coleenp@4037 4691 if (_offset != 0) {
coleenp@4037 4692 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4693 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4694 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4695 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4696 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4697 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4698 // but this assertion here is to help prevent its occurence.
coleenp@4037 4699 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4700 ShouldNotReachHere();
coleenp@4037 4701 }
coleenp@4037 4702
coleenp@4037 4703 return (intptr_t)klass()->constant_encoding();
coleenp@4037 4704 }
duke@435 4705 //------------------------------dump2------------------------------------------
duke@435 4706 // Dump Klass Type
duke@435 4707 #ifndef PRODUCT
duke@435 4708 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 4709 switch( _ptr ) {
duke@435 4710 case Constant:
duke@435 4711 st->print("precise ");
duke@435 4712 case NotNull:
duke@435 4713 {
duke@435 4714 const char *name = klass()->name()->as_utf8();
duke@435 4715 if( name ) {
duke@435 4716 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 4717 } else {
duke@435 4718 ShouldNotReachHere();
duke@435 4719 }
duke@435 4720 }
duke@435 4721 case BotPTR:
duke@435 4722 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 4723 case TopPTR:
duke@435 4724 case AnyNull:
duke@435 4725 st->print(":%s", ptr_msg[_ptr]);
duke@435 4726 if( _klass_is_exact ) st->print(":exact");
duke@435 4727 break;
duke@435 4728 }
duke@435 4729
duke@435 4730 if( _offset ) { // Dump offset, if any
duke@435 4731 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 4732 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 4733 else { st->print("+%d", _offset); }
duke@435 4734 }
duke@435 4735
duke@435 4736 st->print(" *");
duke@435 4737 }
duke@435 4738 #endif
duke@435 4739
duke@435 4740
duke@435 4741
duke@435 4742 //=============================================================================
duke@435 4743 // Convenience common pre-built types.
duke@435 4744
duke@435 4745 //------------------------------make-------------------------------------------
duke@435 4746 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 4747 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 4748 }
duke@435 4749
duke@435 4750 //------------------------------make-------------------------------------------
duke@435 4751 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 4752 Compile* C = Compile::current();
duke@435 4753 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 4754 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 4755 const TypeTuple *domain;
twisti@1572 4756 if (method->is_static()) {
duke@435 4757 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 4758 } else {
duke@435 4759 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 4760 }
duke@435 4761 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 4762 tf = TypeFunc::make(domain, range);
duke@435 4763 C->set_last_tf(method, tf); // fill cache
duke@435 4764 return tf;
duke@435 4765 }
duke@435 4766
duke@435 4767 //------------------------------meet-------------------------------------------
duke@435 4768 // Compute the MEET of two types. It returns a new Type object.
duke@435 4769 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 4770 // Perform a fast test for common case; meeting the same types together.
duke@435 4771 if( this == t ) return this; // Meeting same type-rep?
duke@435 4772
duke@435 4773 // Current "this->_base" is Func
duke@435 4774 switch (t->base()) { // switch on original type
duke@435 4775
duke@435 4776 case Bottom: // Ye Olde Default
duke@435 4777 return t;
duke@435 4778
duke@435 4779 default: // All else is a mistake
duke@435 4780 typerr(t);
duke@435 4781
duke@435 4782 case Top:
duke@435 4783 break;
duke@435 4784 }
duke@435 4785 return this; // Return the double constant
duke@435 4786 }
duke@435 4787
duke@435 4788 //------------------------------xdual------------------------------------------
duke@435 4789 // Dual: compute field-by-field dual
duke@435 4790 const Type *TypeFunc::xdual() const {
duke@435 4791 return this;
duke@435 4792 }
duke@435 4793
duke@435 4794 //------------------------------eq---------------------------------------------
duke@435 4795 // Structural equality check for Type representations
duke@435 4796 bool TypeFunc::eq( const Type *t ) const {
duke@435 4797 const TypeFunc *a = (const TypeFunc*)t;
duke@435 4798 return _domain == a->_domain &&
duke@435 4799 _range == a->_range;
duke@435 4800 }
duke@435 4801
duke@435 4802 //------------------------------hash-------------------------------------------
duke@435 4803 // Type-specific hashing function.
duke@435 4804 int TypeFunc::hash(void) const {
duke@435 4805 return (intptr_t)_domain + (intptr_t)_range;
duke@435 4806 }
duke@435 4807
duke@435 4808 //------------------------------dump2------------------------------------------
duke@435 4809 // Dump Function Type
duke@435 4810 #ifndef PRODUCT
duke@435 4811 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4812 if( _range->_cnt <= Parms )
duke@435 4813 st->print("void");
duke@435 4814 else {
duke@435 4815 uint i;
duke@435 4816 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 4817 _range->field_at(i)->dump2(d,depth,st);
duke@435 4818 st->print("/");
duke@435 4819 }
duke@435 4820 _range->field_at(i)->dump2(d,depth,st);
duke@435 4821 }
duke@435 4822 st->print(" ");
duke@435 4823 st->print("( ");
duke@435 4824 if( !depth || d[this] ) { // Check for recursive dump
duke@435 4825 st->print("...)");
duke@435 4826 return;
duke@435 4827 }
duke@435 4828 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 4829 if (Parms < _domain->_cnt)
duke@435 4830 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 4831 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 4832 st->print(", ");
duke@435 4833 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 4834 }
duke@435 4835 st->print(" )");
duke@435 4836 }
duke@435 4837 #endif
duke@435 4838
duke@435 4839 //------------------------------singleton--------------------------------------
duke@435 4840 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 4841 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 4842 // or a single symbol.
duke@435 4843 bool TypeFunc::singleton(void) const {
duke@435 4844 return false; // Never a singleton
duke@435 4845 }
duke@435 4846
duke@435 4847 bool TypeFunc::empty(void) const {
duke@435 4848 return false; // Never empty
duke@435 4849 }
duke@435 4850
duke@435 4851
duke@435 4852 BasicType TypeFunc::return_type() const{
duke@435 4853 if (range()->cnt() == TypeFunc::Parms) {
duke@435 4854 return T_VOID;
duke@435 4855 }
duke@435 4856 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 4857 }

mercurial