src/share/vm/opto/type.cpp

Tue, 15 Sep 2009 21:53:47 -0700

author
jrose
date
Tue, 15 Sep 2009 21:53:47 -0700
changeset 1424
148e5441d916
parent 1393
c7e94e8fff43
child 1427
6a8ccac44f41
permissions
-rw-r--r--

6863023: need non-perm oops in code cache for JSR 292
Summary: Make a special root-list for those few nmethods which might contain non-perm oops.
Reviewed-by: twisti, kvn, never, jmasa, ysr

duke@435 1 /*
twisti@1059 2 * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 // Optimization - Graph Style
duke@435 28
duke@435 29 #include "incls/_precompiled.incl"
duke@435 30 #include "incls/_type.cpp.incl"
duke@435 31
duke@435 32 // Dictionary of types shared among compilations.
duke@435 33 Dict* Type::_shared_type_dict = NULL;
duke@435 34
duke@435 35 // Array which maps compiler types to Basic Types
duke@435 36 const BasicType Type::_basic_type[Type::lastype] = {
duke@435 37 T_ILLEGAL, // Bad
duke@435 38 T_ILLEGAL, // Control
duke@435 39 T_VOID, // Top
duke@435 40 T_INT, // Int
duke@435 41 T_LONG, // Long
duke@435 42 T_VOID, // Half
coleenp@548 43 T_NARROWOOP, // NarrowOop
duke@435 44
duke@435 45 T_ILLEGAL, // Tuple
duke@435 46 T_ARRAY, // Array
duke@435 47
duke@435 48 T_ADDRESS, // AnyPtr // shows up in factory methods for NULL_PTR
duke@435 49 T_ADDRESS, // RawPtr
duke@435 50 T_OBJECT, // OopPtr
duke@435 51 T_OBJECT, // InstPtr
duke@435 52 T_OBJECT, // AryPtr
duke@435 53 T_OBJECT, // KlassPtr
duke@435 54
duke@435 55 T_OBJECT, // Function
duke@435 56 T_ILLEGAL, // Abio
duke@435 57 T_ADDRESS, // Return_Address
duke@435 58 T_ILLEGAL, // Memory
duke@435 59 T_FLOAT, // FloatTop
duke@435 60 T_FLOAT, // FloatCon
duke@435 61 T_FLOAT, // FloatBot
duke@435 62 T_DOUBLE, // DoubleTop
duke@435 63 T_DOUBLE, // DoubleCon
duke@435 64 T_DOUBLE, // DoubleBot
duke@435 65 T_ILLEGAL, // Bottom
duke@435 66 };
duke@435 67
duke@435 68 // Map ideal registers (machine types) to ideal types
duke@435 69 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 70
duke@435 71 // Map basic types to canonical Type* pointers.
duke@435 72 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 73
duke@435 74 // Map basic types to constant-zero Types.
duke@435 75 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 76
duke@435 77 // Map basic types to array-body alias types.
duke@435 78 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 79
duke@435 80 //=============================================================================
duke@435 81 // Convenience common pre-built types.
duke@435 82 const Type *Type::ABIO; // State-of-machine only
duke@435 83 const Type *Type::BOTTOM; // All values
duke@435 84 const Type *Type::CONTROL; // Control only
duke@435 85 const Type *Type::DOUBLE; // All doubles
duke@435 86 const Type *Type::FLOAT; // All floats
duke@435 87 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 88 const Type *Type::MEMORY; // Abstract store only
duke@435 89 const Type *Type::RETURN_ADDRESS;
duke@435 90 const Type *Type::TOP; // No values in set
duke@435 91
duke@435 92 //------------------------------get_const_type---------------------------
duke@435 93 const Type* Type::get_const_type(ciType* type) {
duke@435 94 if (type == NULL) {
duke@435 95 return NULL;
duke@435 96 } else if (type->is_primitive_type()) {
duke@435 97 return get_const_basic_type(type->basic_type());
duke@435 98 } else {
duke@435 99 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 100 }
duke@435 101 }
duke@435 102
duke@435 103 //---------------------------array_element_basic_type---------------------------------
duke@435 104 // Mapping to the array element's basic type.
duke@435 105 BasicType Type::array_element_basic_type() const {
duke@435 106 BasicType bt = basic_type();
duke@435 107 if (bt == T_INT) {
duke@435 108 if (this == TypeInt::INT) return T_INT;
duke@435 109 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 110 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 111 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 112 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 113 return T_VOID;
duke@435 114 }
duke@435 115 return bt;
duke@435 116 }
duke@435 117
duke@435 118 //---------------------------get_typeflow_type---------------------------------
duke@435 119 // Import a type produced by ciTypeFlow.
duke@435 120 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 121 switch (type->basic_type()) {
duke@435 122
duke@435 123 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 124 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 125 return Type::BOTTOM;
duke@435 126
duke@435 127 case ciTypeFlow::StateVector::T_TOP:
duke@435 128 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 129 return Type::TOP;
duke@435 130
duke@435 131 case ciTypeFlow::StateVector::T_NULL:
duke@435 132 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 133 return TypePtr::NULL_PTR;
duke@435 134
duke@435 135 case ciTypeFlow::StateVector::T_LONG2:
duke@435 136 // The ciTypeFlow pass pushes a long, then the half.
duke@435 137 // We do the same.
duke@435 138 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 139 return TypeInt::TOP;
duke@435 140
duke@435 141 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 142 // The ciTypeFlow pass pushes double, then the half.
duke@435 143 // Our convention is the same.
duke@435 144 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 145 return Type::TOP;
duke@435 146
duke@435 147 case T_ADDRESS:
duke@435 148 assert(type->is_return_address(), "");
duke@435 149 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 150
duke@435 151 default:
duke@435 152 // make sure we did not mix up the cases:
duke@435 153 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 154 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 155 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 156 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 157 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 158 assert(!type->is_return_address(), "");
duke@435 159
duke@435 160 return Type::get_const_type(type);
duke@435 161 }
duke@435 162 }
duke@435 163
duke@435 164
duke@435 165 //------------------------------make-------------------------------------------
duke@435 166 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 167 // and look for an existing copy in the type dictionary.
duke@435 168 const Type *Type::make( enum TYPES t ) {
duke@435 169 return (new Type(t))->hashcons();
duke@435 170 }
kvn@658 171
duke@435 172 //------------------------------cmp--------------------------------------------
duke@435 173 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 174 if( t1->_base != t2->_base )
duke@435 175 return 1; // Missed badly
duke@435 176 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 177 return !t1->eq(t2); // Return ZERO if equal
duke@435 178 }
duke@435 179
duke@435 180 //------------------------------hash-------------------------------------------
duke@435 181 int Type::uhash( const Type *const t ) {
duke@435 182 return t->hash();
duke@435 183 }
duke@435 184
duke@435 185 //--------------------------Initialize_shared----------------------------------
duke@435 186 void Type::Initialize_shared(Compile* current) {
duke@435 187 // This method does not need to be locked because the first system
duke@435 188 // compilations (stub compilations) occur serially. If they are
duke@435 189 // changed to proceed in parallel, then this section will need
duke@435 190 // locking.
duke@435 191
duke@435 192 Arena* save = current->type_arena();
duke@435 193 Arena* shared_type_arena = new Arena();
duke@435 194
duke@435 195 current->set_type_arena(shared_type_arena);
duke@435 196 _shared_type_dict =
duke@435 197 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 198 shared_type_arena, 128 );
duke@435 199 current->set_type_dict(_shared_type_dict);
duke@435 200
duke@435 201 // Make shared pre-built types.
duke@435 202 CONTROL = make(Control); // Control only
duke@435 203 TOP = make(Top); // No values in set
duke@435 204 MEMORY = make(Memory); // Abstract store only
duke@435 205 ABIO = make(Abio); // State-of-machine only
duke@435 206 RETURN_ADDRESS=make(Return_Address);
duke@435 207 FLOAT = make(FloatBot); // All floats
duke@435 208 DOUBLE = make(DoubleBot); // All doubles
duke@435 209 BOTTOM = make(Bottom); // Everything
duke@435 210 HALF = make(Half); // Placeholder half of doublewide type
duke@435 211
duke@435 212 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 213 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 214
duke@435 215 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 216 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 217
duke@435 218 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 219 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 220 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 221 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 222 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 223 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 224 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 225 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 226 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 227 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 228 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
twisti@1059 229 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
duke@435 230 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 231 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 232 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 233 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 234 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 235 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
duke@435 236 // CmpL is overloaded both as the bytecode computation returning
duke@435 237 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 238 // compare returning optimizer ideal-type flags.
duke@435 239 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 240 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 241 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 242 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
duke@435 243
duke@435 244 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 245 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 246 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 247 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 248 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 249 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 250 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
duke@435 251
duke@435 252 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 253 fboth[0] = Type::CONTROL;
duke@435 254 fboth[1] = Type::CONTROL;
duke@435 255 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 256
duke@435 257 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 258 ffalse[0] = Type::CONTROL;
duke@435 259 ffalse[1] = Type::TOP;
duke@435 260 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 261
duke@435 262 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 263 fneither[0] = Type::TOP;
duke@435 264 fneither[1] = Type::TOP;
duke@435 265 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 266
duke@435 267 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 268 ftrue[0] = Type::TOP;
duke@435 269 ftrue[1] = Type::CONTROL;
duke@435 270 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 271
duke@435 272 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 273 floop[0] = Type::CONTROL;
duke@435 274 floop[1] = TypeInt::INT;
duke@435 275 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 276
duke@435 277 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 278 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 279 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 280
duke@435 281 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 282 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 283
duke@435 284 const Type **fmembar = TypeTuple::fields(0);
duke@435 285 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 286
duke@435 287 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 288 fsc[0] = TypeInt::CC;
duke@435 289 fsc[1] = Type::MEMORY;
duke@435 290 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 291
duke@435 292 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 293 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 294 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 295 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 296 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 297 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 298 false, 0, oopDesc::klass_offset_in_bytes());
duke@435 299 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot);
duke@435 300
coleenp@548 301 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 302 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 303
coleenp@548 304 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 305 mreg2type[Op_Set ] = 0;
coleenp@548 306 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 307 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 308 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 309 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 310 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 311 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 312 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 313
duke@435 314 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), current->env()->Object_klass(), false, arrayOopDesc::length_offset_in_bytes());
kvn@598 315
kvn@598 316 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 317
kvn@598 318 #ifdef _LP64
kvn@598 319 if (UseCompressedOops) {
kvn@598 320 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 321 } else
kvn@598 322 #endif
kvn@598 323 {
kvn@598 324 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 325 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 326 }
duke@435 327 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 328 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 329 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 330 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 331 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 332 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 333 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 334
kvn@598 335 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 336 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 337 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 338 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 339 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 340 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 341 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 342 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 343 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 344 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 345 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 346 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 347
duke@435 348 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 349 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 350
duke@435 351 const Type **fi2c = TypeTuple::fields(2);
duke@435 352 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
duke@435 353 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 354 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 355
duke@435 356 const Type **intpair = TypeTuple::fields(2);
duke@435 357 intpair[0] = TypeInt::INT;
duke@435 358 intpair[1] = TypeInt::INT;
duke@435 359 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 360
duke@435 361 const Type **longpair = TypeTuple::fields(2);
duke@435 362 longpair[0] = TypeLong::LONG;
duke@435 363 longpair[1] = TypeLong::LONG;
duke@435 364 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 365
coleenp@548 366 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
duke@435 367 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
duke@435 368 _const_basic_type[T_CHAR] = TypeInt::CHAR;
duke@435 369 _const_basic_type[T_BYTE] = TypeInt::BYTE;
duke@435 370 _const_basic_type[T_SHORT] = TypeInt::SHORT;
duke@435 371 _const_basic_type[T_INT] = TypeInt::INT;
duke@435 372 _const_basic_type[T_LONG] = TypeLong::LONG;
duke@435 373 _const_basic_type[T_FLOAT] = Type::FLOAT;
duke@435 374 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
duke@435 375 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
duke@435 376 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
duke@435 377 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
duke@435 378 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
duke@435 379 _const_basic_type[T_CONFLICT]= Type::BOTTOM; // why not?
duke@435 380
coleenp@548 381 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
duke@435 382 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
duke@435 383 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
duke@435 384 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
duke@435 385 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
duke@435 386 _zero_type[T_INT] = TypeInt::ZERO;
duke@435 387 _zero_type[T_LONG] = TypeLong::ZERO;
duke@435 388 _zero_type[T_FLOAT] = TypeF::ZERO;
duke@435 389 _zero_type[T_DOUBLE] = TypeD::ZERO;
duke@435 390 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
duke@435 391 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
duke@435 392 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
duke@435 393 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 394
duke@435 395 // get_zero_type() should not happen for T_CONFLICT
duke@435 396 _zero_type[T_CONFLICT]= NULL;
duke@435 397
duke@435 398 // Restore working type arena.
duke@435 399 current->set_type_arena(save);
duke@435 400 current->set_type_dict(NULL);
duke@435 401 }
duke@435 402
duke@435 403 //------------------------------Initialize-------------------------------------
duke@435 404 void Type::Initialize(Compile* current) {
duke@435 405 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 406
duke@435 407 if (_shared_type_dict == NULL) {
duke@435 408 Initialize_shared(current);
duke@435 409 }
duke@435 410
duke@435 411 Arena* type_arena = current->type_arena();
duke@435 412
duke@435 413 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 414 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 415 current->set_type_dict(tdic);
duke@435 416
duke@435 417 // Transfer the shared types.
duke@435 418 DictI i(_shared_type_dict);
duke@435 419 for( ; i.test(); ++i ) {
duke@435 420 Type* t = (Type*)i._value;
duke@435 421 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 422 }
coleenp@548 423
coleenp@548 424 #ifdef ASSERT
coleenp@548 425 verify_lastype();
coleenp@548 426 #endif
duke@435 427 }
duke@435 428
duke@435 429 //------------------------------hashcons---------------------------------------
duke@435 430 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 431 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 432 // current Type in the Type table.
duke@435 433 const Type *Type::hashcons(void) {
duke@435 434 debug_only(base()); // Check the assertion in Type::base().
duke@435 435 // Look up the Type in the Type dictionary
duke@435 436 Dict *tdic = type_dict();
duke@435 437 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 438 if( old ) { // Pre-existing Type?
duke@435 439 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 440 delete this; // Yes, Nuke this guy
duke@435 441 assert( old->_dual, "" );
duke@435 442 return old; // Return pre-existing
duke@435 443 }
duke@435 444
duke@435 445 // Every type has a dual (to make my lattice symmetric).
duke@435 446 // Since we just discovered a new Type, compute its dual right now.
duke@435 447 assert( !_dual, "" ); // No dual yet
duke@435 448 _dual = xdual(); // Compute the dual
duke@435 449 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 450 _dual = this;
duke@435 451 return this;
duke@435 452 }
duke@435 453 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 454 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 455 // New Type, insert into Type table
duke@435 456 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 457 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 458 #ifdef ASSERT
duke@435 459 Type *dual_dual = (Type*)_dual->xdual();
duke@435 460 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 461 delete dual_dual;
duke@435 462 #endif
duke@435 463 return this; // Return new Type
duke@435 464 }
duke@435 465
duke@435 466 //------------------------------eq---------------------------------------------
duke@435 467 // Structural equality check for Type representations
duke@435 468 bool Type::eq( const Type * ) const {
duke@435 469 return true; // Nothing else can go wrong
duke@435 470 }
duke@435 471
duke@435 472 //------------------------------hash-------------------------------------------
duke@435 473 // Type-specific hashing function.
duke@435 474 int Type::hash(void) const {
duke@435 475 return _base;
duke@435 476 }
duke@435 477
duke@435 478 //------------------------------is_finite--------------------------------------
duke@435 479 // Has a finite value
duke@435 480 bool Type::is_finite() const {
duke@435 481 return false;
duke@435 482 }
duke@435 483
duke@435 484 //------------------------------is_nan-----------------------------------------
duke@435 485 // Is not a number (NaN)
duke@435 486 bool Type::is_nan() const {
duke@435 487 return false;
duke@435 488 }
duke@435 489
kvn@1255 490 //----------------------interface_vs_oop---------------------------------------
kvn@1255 491 #ifdef ASSERT
kvn@1255 492 bool Type::interface_vs_oop(const Type *t) const {
kvn@1255 493 bool result = false;
kvn@1255 494
kvn@1255 495 const TypeInstPtr* this_inst = this->isa_instptr();
kvn@1255 496 const TypeInstPtr* t_inst = t->isa_instptr();
kvn@1255 497 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
kvn@1255 498 bool this_interface = this_inst->klass()->is_interface();
kvn@1255 499 bool t_interface = t_inst->klass()->is_interface();
kvn@1255 500 result = this_interface ^ t_interface;
kvn@1255 501 }
kvn@1255 502
kvn@1255 503 return result;
kvn@1255 504 }
kvn@1255 505 #endif
kvn@1255 506
duke@435 507 //------------------------------meet-------------------------------------------
duke@435 508 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 509 // commutative and the lattice is symmetric.
duke@435 510 const Type *Type::meet( const Type *t ) const {
coleenp@548 511 if (isa_narrowoop() && t->isa_narrowoop()) {
kvn@656 512 const Type* result = make_ptr()->meet(t->make_ptr());
kvn@656 513 return result->make_narrowoop();
coleenp@548 514 }
coleenp@548 515
duke@435 516 const Type *mt = xmeet(t);
coleenp@548 517 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
duke@435 518 #ifdef ASSERT
duke@435 519 assert( mt == t->xmeet(this), "meet not commutative" );
duke@435 520 const Type* dual_join = mt->_dual;
duke@435 521 const Type *t2t = dual_join->xmeet(t->_dual);
duke@435 522 const Type *t2this = dual_join->xmeet( _dual);
duke@435 523
duke@435 524 // Interface meet Oop is Not Symmetric:
duke@435 525 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 526 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
kvn@1255 527
kvn@1255 528 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
duke@435 529 tty->print_cr("=== Meet Not Symmetric ===");
duke@435 530 tty->print("t = "); t->dump(); tty->cr();
duke@435 531 tty->print("this= "); dump(); tty->cr();
duke@435 532 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
duke@435 533
duke@435 534 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
duke@435 535 tty->print("this_dual= "); _dual->dump(); tty->cr();
duke@435 536 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
duke@435 537
duke@435 538 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
duke@435 539 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 540
duke@435 541 fatal("meet not symmetric" );
duke@435 542 }
duke@435 543 #endif
duke@435 544 return mt;
duke@435 545 }
duke@435 546
duke@435 547 //------------------------------xmeet------------------------------------------
duke@435 548 // Compute the MEET of two types. It returns a new Type object.
duke@435 549 const Type *Type::xmeet( const Type *t ) const {
duke@435 550 // Perform a fast test for common case; meeting the same types together.
duke@435 551 if( this == t ) return this; // Meeting same type-rep?
duke@435 552
duke@435 553 // Meeting TOP with anything?
duke@435 554 if( _base == Top ) return t;
duke@435 555
duke@435 556 // Meeting BOTTOM with anything?
duke@435 557 if( _base == Bottom ) return BOTTOM;
duke@435 558
duke@435 559 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 560 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 561 switch (t->base()) { // Switch on original type
duke@435 562
duke@435 563 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 564 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 565 case FloatCon:
duke@435 566 case DoubleCon:
duke@435 567 case Int:
duke@435 568 case Long:
duke@435 569 return t->xmeet(this);
duke@435 570
duke@435 571 case OopPtr:
duke@435 572 return t->xmeet(this);
duke@435 573
duke@435 574 case InstPtr:
duke@435 575 return t->xmeet(this);
duke@435 576
duke@435 577 case KlassPtr:
duke@435 578 return t->xmeet(this);
duke@435 579
duke@435 580 case AryPtr:
duke@435 581 return t->xmeet(this);
duke@435 582
coleenp@548 583 case NarrowOop:
coleenp@548 584 return t->xmeet(this);
coleenp@548 585
duke@435 586 case Bad: // Type check
duke@435 587 default: // Bogus type not in lattice
duke@435 588 typerr(t);
duke@435 589 return Type::BOTTOM;
duke@435 590
duke@435 591 case Bottom: // Ye Olde Default
duke@435 592 return t;
duke@435 593
duke@435 594 case FloatTop:
duke@435 595 if( _base == FloatTop ) return this;
duke@435 596 case FloatBot: // Float
duke@435 597 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 598 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 599 typerr(t);
duke@435 600 return Type::BOTTOM;
duke@435 601
duke@435 602 case DoubleTop:
duke@435 603 if( _base == DoubleTop ) return this;
duke@435 604 case DoubleBot: // Double
duke@435 605 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 606 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 607 typerr(t);
duke@435 608 return Type::BOTTOM;
duke@435 609
duke@435 610 // These next few cases must match exactly or it is a compile-time error.
duke@435 611 case Control: // Control of code
duke@435 612 case Abio: // State of world outside of program
duke@435 613 case Memory:
duke@435 614 if( _base == t->_base ) return this;
duke@435 615 typerr(t);
duke@435 616 return Type::BOTTOM;
duke@435 617
duke@435 618 case Top: // Top of the lattice
duke@435 619 return this;
duke@435 620 }
duke@435 621
duke@435 622 // The type is unchanged
duke@435 623 return this;
duke@435 624 }
duke@435 625
duke@435 626 //-----------------------------filter------------------------------------------
duke@435 627 const Type *Type::filter( const Type *kills ) const {
duke@435 628 const Type* ft = join(kills);
duke@435 629 if (ft->empty())
duke@435 630 return Type::TOP; // Canonical empty value
duke@435 631 return ft;
duke@435 632 }
duke@435 633
duke@435 634 //------------------------------xdual------------------------------------------
duke@435 635 // Compute dual right now.
duke@435 636 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 637 Bad, // Bad
duke@435 638 Control, // Control
duke@435 639 Bottom, // Top
duke@435 640 Bad, // Int - handled in v-call
duke@435 641 Bad, // Long - handled in v-call
duke@435 642 Half, // Half
coleenp@548 643 Bad, // NarrowOop - handled in v-call
duke@435 644
duke@435 645 Bad, // Tuple - handled in v-call
duke@435 646 Bad, // Array - handled in v-call
duke@435 647
duke@435 648 Bad, // AnyPtr - handled in v-call
duke@435 649 Bad, // RawPtr - handled in v-call
duke@435 650 Bad, // OopPtr - handled in v-call
duke@435 651 Bad, // InstPtr - handled in v-call
duke@435 652 Bad, // AryPtr - handled in v-call
duke@435 653 Bad, // KlassPtr - handled in v-call
duke@435 654
duke@435 655 Bad, // Function - handled in v-call
duke@435 656 Abio, // Abio
duke@435 657 Return_Address,// Return_Address
duke@435 658 Memory, // Memory
duke@435 659 FloatBot, // FloatTop
duke@435 660 FloatCon, // FloatCon
duke@435 661 FloatTop, // FloatBot
duke@435 662 DoubleBot, // DoubleTop
duke@435 663 DoubleCon, // DoubleCon
duke@435 664 DoubleTop, // DoubleBot
duke@435 665 Top // Bottom
duke@435 666 };
duke@435 667
duke@435 668 const Type *Type::xdual() const {
duke@435 669 // Note: the base() accessor asserts the sanity of _base.
duke@435 670 assert(dual_type[base()] != Bad, "implement with v-call");
duke@435 671 return new Type(dual_type[_base]);
duke@435 672 }
duke@435 673
duke@435 674 //------------------------------has_memory-------------------------------------
duke@435 675 bool Type::has_memory() const {
duke@435 676 Type::TYPES tx = base();
duke@435 677 if (tx == Memory) return true;
duke@435 678 if (tx == Tuple) {
duke@435 679 const TypeTuple *t = is_tuple();
duke@435 680 for (uint i=0; i < t->cnt(); i++) {
duke@435 681 tx = t->field_at(i)->base();
duke@435 682 if (tx == Memory) return true;
duke@435 683 }
duke@435 684 }
duke@435 685 return false;
duke@435 686 }
duke@435 687
duke@435 688 #ifndef PRODUCT
duke@435 689 //------------------------------dump2------------------------------------------
duke@435 690 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 691 st->print(msg[_base]);
duke@435 692 }
duke@435 693
duke@435 694 //------------------------------dump-------------------------------------------
duke@435 695 void Type::dump_on(outputStream *st) const {
duke@435 696 ResourceMark rm;
duke@435 697 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 698 dump2(d,1, st);
kvn@598 699 if (is_ptr_to_narrowoop()) {
coleenp@548 700 st->print(" [narrow]");
coleenp@548 701 }
duke@435 702 }
duke@435 703
duke@435 704 //------------------------------data-------------------------------------------
duke@435 705 const char * const Type::msg[Type::lastype] = {
coleenp@548 706 "bad","control","top","int:","long:","half", "narrowoop:",
duke@435 707 "tuple:", "aryptr",
duke@435 708 "anyptr:", "rawptr:", "java:", "inst:", "ary:", "klass:",
duke@435 709 "func", "abIO", "return_address", "memory",
duke@435 710 "float_top", "ftcon:", "float",
duke@435 711 "double_top", "dblcon:", "double",
duke@435 712 "bottom"
duke@435 713 };
duke@435 714 #endif
duke@435 715
duke@435 716 //------------------------------singleton--------------------------------------
duke@435 717 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 718 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 719 bool Type::singleton(void) const {
duke@435 720 return _base == Top || _base == Half;
duke@435 721 }
duke@435 722
duke@435 723 //------------------------------empty------------------------------------------
duke@435 724 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 725 bool Type::empty(void) const {
duke@435 726 switch (_base) {
duke@435 727 case DoubleTop:
duke@435 728 case FloatTop:
duke@435 729 case Top:
duke@435 730 return true;
duke@435 731
duke@435 732 case Half:
duke@435 733 case Abio:
duke@435 734 case Return_Address:
duke@435 735 case Memory:
duke@435 736 case Bottom:
duke@435 737 case FloatBot:
duke@435 738 case DoubleBot:
duke@435 739 return false; // never a singleton, therefore never empty
duke@435 740 }
duke@435 741
duke@435 742 ShouldNotReachHere();
duke@435 743 return false;
duke@435 744 }
duke@435 745
duke@435 746 //------------------------------dump_stats-------------------------------------
duke@435 747 // Dump collected statistics to stderr
duke@435 748 #ifndef PRODUCT
duke@435 749 void Type::dump_stats() {
duke@435 750 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 751 }
duke@435 752 #endif
duke@435 753
duke@435 754 //------------------------------typerr-----------------------------------------
duke@435 755 void Type::typerr( const Type *t ) const {
duke@435 756 #ifndef PRODUCT
duke@435 757 tty->print("\nError mixing types: ");
duke@435 758 dump();
duke@435 759 tty->print(" and ");
duke@435 760 t->dump();
duke@435 761 tty->print("\n");
duke@435 762 #endif
duke@435 763 ShouldNotReachHere();
duke@435 764 }
duke@435 765
duke@435 766 //------------------------------isa_oop_ptr------------------------------------
duke@435 767 // Return true if type is an oop pointer type. False for raw pointers.
duke@435 768 static char isa_oop_ptr_tbl[Type::lastype] = {
coleenp@548 769 0,0,0,0,0,0,0/*narrowoop*/,0/*tuple*/, 0/*ary*/,
duke@435 770 0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
duke@435 771 0/*func*/,0,0/*return_address*/,0,
duke@435 772 /*floats*/0,0,0, /*doubles*/0,0,0,
duke@435 773 0
duke@435 774 };
duke@435 775 bool Type::isa_oop_ptr() const {
duke@435 776 return isa_oop_ptr_tbl[_base] != 0;
duke@435 777 }
duke@435 778
duke@435 779 //------------------------------dump_stats-------------------------------------
duke@435 780 // // Check that arrays match type enum
duke@435 781 #ifndef PRODUCT
duke@435 782 void Type::verify_lastype() {
duke@435 783 // Check that arrays match enumeration
duke@435 784 assert( Type::dual_type [Type::lastype - 1] == Type::Top, "did not update array");
duke@435 785 assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
duke@435 786 // assert( PhiNode::tbl [Type::lastype - 1] == NULL, "did not update array");
duke@435 787 assert( Matcher::base2reg[Type::lastype - 1] == 0, "did not update array");
duke@435 788 assert( isa_oop_ptr_tbl [Type::lastype - 1] == (char)0, "did not update array");
duke@435 789 }
duke@435 790 #endif
duke@435 791
duke@435 792 //=============================================================================
duke@435 793 // Convenience common pre-built types.
duke@435 794 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 795 const TypeF *TypeF::ONE; // Floating point one
duke@435 796
duke@435 797 //------------------------------make-------------------------------------------
duke@435 798 // Create a float constant
duke@435 799 const TypeF *TypeF::make(float f) {
duke@435 800 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 801 }
duke@435 802
duke@435 803 //------------------------------meet-------------------------------------------
duke@435 804 // Compute the MEET of two types. It returns a new Type object.
duke@435 805 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 806 // Perform a fast test for common case; meeting the same types together.
duke@435 807 if( this == t ) return this; // Meeting same type-rep?
duke@435 808
duke@435 809 // Current "this->_base" is FloatCon
duke@435 810 switch (t->base()) { // Switch on original type
duke@435 811 case AnyPtr: // Mixing with oops happens when javac
duke@435 812 case RawPtr: // reuses local variables
duke@435 813 case OopPtr:
duke@435 814 case InstPtr:
duke@435 815 case KlassPtr:
duke@435 816 case AryPtr:
kvn@728 817 case NarrowOop:
duke@435 818 case Int:
duke@435 819 case Long:
duke@435 820 case DoubleTop:
duke@435 821 case DoubleCon:
duke@435 822 case DoubleBot:
duke@435 823 case Bottom: // Ye Olde Default
duke@435 824 return Type::BOTTOM;
duke@435 825
duke@435 826 case FloatBot:
duke@435 827 return t;
duke@435 828
duke@435 829 default: // All else is a mistake
duke@435 830 typerr(t);
duke@435 831
duke@435 832 case FloatCon: // Float-constant vs Float-constant?
duke@435 833 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 834 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 835 // all the same representation in C++
duke@435 836 return FLOAT; // Return generic float
duke@435 837 // Equal constants
duke@435 838 case Top:
duke@435 839 case FloatTop:
duke@435 840 break; // Return the float constant
duke@435 841 }
duke@435 842 return this; // Return the float constant
duke@435 843 }
duke@435 844
duke@435 845 //------------------------------xdual------------------------------------------
duke@435 846 // Dual: symmetric
duke@435 847 const Type *TypeF::xdual() const {
duke@435 848 return this;
duke@435 849 }
duke@435 850
duke@435 851 //------------------------------eq---------------------------------------------
duke@435 852 // Structural equality check for Type representations
duke@435 853 bool TypeF::eq( const Type *t ) const {
duke@435 854 if( g_isnan(_f) ||
duke@435 855 g_isnan(t->getf()) ) {
duke@435 856 // One or both are NANs. If both are NANs return true, else false.
duke@435 857 return (g_isnan(_f) && g_isnan(t->getf()));
duke@435 858 }
duke@435 859 if (_f == t->getf()) {
duke@435 860 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 861 if (_f == 0.0) {
duke@435 862 // difference between positive and negative zero
duke@435 863 if (jint_cast(_f) != jint_cast(t->getf())) return false;
duke@435 864 }
duke@435 865 return true;
duke@435 866 }
duke@435 867 return false;
duke@435 868 }
duke@435 869
duke@435 870 //------------------------------hash-------------------------------------------
duke@435 871 // Type-specific hashing function.
duke@435 872 int TypeF::hash(void) const {
duke@435 873 return *(int*)(&_f);
duke@435 874 }
duke@435 875
duke@435 876 //------------------------------is_finite--------------------------------------
duke@435 877 // Has a finite value
duke@435 878 bool TypeF::is_finite() const {
duke@435 879 return g_isfinite(getf()) != 0;
duke@435 880 }
duke@435 881
duke@435 882 //------------------------------is_nan-----------------------------------------
duke@435 883 // Is not a number (NaN)
duke@435 884 bool TypeF::is_nan() const {
duke@435 885 return g_isnan(getf()) != 0;
duke@435 886 }
duke@435 887
duke@435 888 //------------------------------dump2------------------------------------------
duke@435 889 // Dump float constant Type
duke@435 890 #ifndef PRODUCT
duke@435 891 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 892 Type::dump2(d,depth, st);
duke@435 893 st->print("%f", _f);
duke@435 894 }
duke@435 895 #endif
duke@435 896
duke@435 897 //------------------------------singleton--------------------------------------
duke@435 898 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 899 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 900 // or a single symbol.
duke@435 901 bool TypeF::singleton(void) const {
duke@435 902 return true; // Always a singleton
duke@435 903 }
duke@435 904
duke@435 905 bool TypeF::empty(void) const {
duke@435 906 return false; // always exactly a singleton
duke@435 907 }
duke@435 908
duke@435 909 //=============================================================================
duke@435 910 // Convenience common pre-built types.
duke@435 911 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 912 const TypeD *TypeD::ONE; // Floating point one
duke@435 913
duke@435 914 //------------------------------make-------------------------------------------
duke@435 915 const TypeD *TypeD::make(double d) {
duke@435 916 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 917 }
duke@435 918
duke@435 919 //------------------------------meet-------------------------------------------
duke@435 920 // Compute the MEET of two types. It returns a new Type object.
duke@435 921 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 922 // Perform a fast test for common case; meeting the same types together.
duke@435 923 if( this == t ) return this; // Meeting same type-rep?
duke@435 924
duke@435 925 // Current "this->_base" is DoubleCon
duke@435 926 switch (t->base()) { // Switch on original type
duke@435 927 case AnyPtr: // Mixing with oops happens when javac
duke@435 928 case RawPtr: // reuses local variables
duke@435 929 case OopPtr:
duke@435 930 case InstPtr:
duke@435 931 case KlassPtr:
duke@435 932 case AryPtr:
never@618 933 case NarrowOop:
duke@435 934 case Int:
duke@435 935 case Long:
duke@435 936 case FloatTop:
duke@435 937 case FloatCon:
duke@435 938 case FloatBot:
duke@435 939 case Bottom: // Ye Olde Default
duke@435 940 return Type::BOTTOM;
duke@435 941
duke@435 942 case DoubleBot:
duke@435 943 return t;
duke@435 944
duke@435 945 default: // All else is a mistake
duke@435 946 typerr(t);
duke@435 947
duke@435 948 case DoubleCon: // Double-constant vs Double-constant?
duke@435 949 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 950 return DOUBLE; // Return generic double
duke@435 951 case Top:
duke@435 952 case DoubleTop:
duke@435 953 break;
duke@435 954 }
duke@435 955 return this; // Return the double constant
duke@435 956 }
duke@435 957
duke@435 958 //------------------------------xdual------------------------------------------
duke@435 959 // Dual: symmetric
duke@435 960 const Type *TypeD::xdual() const {
duke@435 961 return this;
duke@435 962 }
duke@435 963
duke@435 964 //------------------------------eq---------------------------------------------
duke@435 965 // Structural equality check for Type representations
duke@435 966 bool TypeD::eq( const Type *t ) const {
duke@435 967 if( g_isnan(_d) ||
duke@435 968 g_isnan(t->getd()) ) {
duke@435 969 // One or both are NANs. If both are NANs return true, else false.
duke@435 970 return (g_isnan(_d) && g_isnan(t->getd()));
duke@435 971 }
duke@435 972 if (_d == t->getd()) {
duke@435 973 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 974 if (_d == 0.0) {
duke@435 975 // difference between positive and negative zero
duke@435 976 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
duke@435 977 }
duke@435 978 return true;
duke@435 979 }
duke@435 980 return false;
duke@435 981 }
duke@435 982
duke@435 983 //------------------------------hash-------------------------------------------
duke@435 984 // Type-specific hashing function.
duke@435 985 int TypeD::hash(void) const {
duke@435 986 return *(int*)(&_d);
duke@435 987 }
duke@435 988
duke@435 989 //------------------------------is_finite--------------------------------------
duke@435 990 // Has a finite value
duke@435 991 bool TypeD::is_finite() const {
duke@435 992 return g_isfinite(getd()) != 0;
duke@435 993 }
duke@435 994
duke@435 995 //------------------------------is_nan-----------------------------------------
duke@435 996 // Is not a number (NaN)
duke@435 997 bool TypeD::is_nan() const {
duke@435 998 return g_isnan(getd()) != 0;
duke@435 999 }
duke@435 1000
duke@435 1001 //------------------------------dump2------------------------------------------
duke@435 1002 // Dump double constant Type
duke@435 1003 #ifndef PRODUCT
duke@435 1004 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1005 Type::dump2(d,depth,st);
duke@435 1006 st->print("%f", _d);
duke@435 1007 }
duke@435 1008 #endif
duke@435 1009
duke@435 1010 //------------------------------singleton--------------------------------------
duke@435 1011 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1012 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1013 // or a single symbol.
duke@435 1014 bool TypeD::singleton(void) const {
duke@435 1015 return true; // Always a singleton
duke@435 1016 }
duke@435 1017
duke@435 1018 bool TypeD::empty(void) const {
duke@435 1019 return false; // always exactly a singleton
duke@435 1020 }
duke@435 1021
duke@435 1022 //=============================================================================
duke@435 1023 // Convience common pre-built types.
duke@435 1024 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1025 const TypeInt *TypeInt::ZERO; // 0
duke@435 1026 const TypeInt *TypeInt::ONE; // 1
duke@435 1027 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1028 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1029 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1030 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1031 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1032 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1033 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1034 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
twisti@1059 1035 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
duke@435 1036 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1037 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1038 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1039 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1040 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1041 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 1042
duke@435 1043 //------------------------------TypeInt----------------------------------------
duke@435 1044 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1045 }
duke@435 1046
duke@435 1047 //------------------------------make-------------------------------------------
duke@435 1048 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1049 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1050 }
duke@435 1051
duke@435 1052 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
duke@435 1053
duke@435 1054 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
duke@435 1055 // Certain normalizations keep us sane when comparing types.
duke@435 1056 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1057 assert(CC == NULL || (juint)(CC->_hi - CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 1058 if (lo <= hi) {
duke@435 1059 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
duke@435 1060 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // plain int
duke@435 1061 }
duke@435 1062 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1063 }
duke@435 1064
duke@435 1065 //------------------------------meet-------------------------------------------
duke@435 1066 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1067 // with reference count equal to the number of Types pointing at it.
duke@435 1068 // Caller should wrap a Types around it.
duke@435 1069 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1070 // Perform a fast test for common case; meeting the same types together.
duke@435 1071 if( this == t ) return this; // Meeting same type?
duke@435 1072
duke@435 1073 // Currently "this->_base" is a TypeInt
duke@435 1074 switch (t->base()) { // Switch on original type
duke@435 1075 case AnyPtr: // Mixing with oops happens when javac
duke@435 1076 case RawPtr: // reuses local variables
duke@435 1077 case OopPtr:
duke@435 1078 case InstPtr:
duke@435 1079 case KlassPtr:
duke@435 1080 case AryPtr:
never@618 1081 case NarrowOop:
duke@435 1082 case Long:
duke@435 1083 case FloatTop:
duke@435 1084 case FloatCon:
duke@435 1085 case FloatBot:
duke@435 1086 case DoubleTop:
duke@435 1087 case DoubleCon:
duke@435 1088 case DoubleBot:
duke@435 1089 case Bottom: // Ye Olde Default
duke@435 1090 return Type::BOTTOM;
duke@435 1091 default: // All else is a mistake
duke@435 1092 typerr(t);
duke@435 1093 case Top: // No change
duke@435 1094 return this;
duke@435 1095 case Int: // Int vs Int?
duke@435 1096 break;
duke@435 1097 }
duke@435 1098
duke@435 1099 // Expand covered set
duke@435 1100 const TypeInt *r = t->is_int();
duke@435 1101 // (Avoid TypeInt::make, to avoid the argument normalizations it enforces.)
duke@435 1102 return (new TypeInt( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
duke@435 1103 }
duke@435 1104
duke@435 1105 //------------------------------xdual------------------------------------------
duke@435 1106 // Dual: reverse hi & lo; flip widen
duke@435 1107 const Type *TypeInt::xdual() const {
duke@435 1108 return new TypeInt(_hi,_lo,WidenMax-_widen);
duke@435 1109 }
duke@435 1110
duke@435 1111 //------------------------------widen------------------------------------------
duke@435 1112 // Only happens for optimistic top-down optimizations.
duke@435 1113 const Type *TypeInt::widen( const Type *old ) const {
duke@435 1114 // Coming from TOP or such; no widening
duke@435 1115 if( old->base() != Int ) return this;
duke@435 1116 const TypeInt *ot = old->is_int();
duke@435 1117
duke@435 1118 // If new guy is equal to old guy, no widening
duke@435 1119 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1120 return old;
duke@435 1121
duke@435 1122 // If new guy contains old, then we widened
duke@435 1123 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1124 // New contains old
duke@435 1125 // If new guy is already wider than old, no widening
duke@435 1126 if( _widen > ot->_widen ) return this;
duke@435 1127 // If old guy was a constant, do not bother
duke@435 1128 if (ot->_lo == ot->_hi) return this;
duke@435 1129 // Now widen new guy.
duke@435 1130 // Check for widening too far
duke@435 1131 if (_widen == WidenMax) {
duke@435 1132 if (min_jint < _lo && _hi < max_jint) {
duke@435 1133 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1134 // which is closer to its respective limit.
duke@435 1135 if (_lo >= 0 || // easy common case
duke@435 1136 (juint)(_lo - min_jint) >= (juint)(max_jint - _hi)) {
duke@435 1137 // Try to widen to an unsigned range type of 31 bits:
duke@435 1138 return make(_lo, max_jint, WidenMax);
duke@435 1139 } else {
duke@435 1140 return make(min_jint, _hi, WidenMax);
duke@435 1141 }
duke@435 1142 }
duke@435 1143 return TypeInt::INT;
duke@435 1144 }
duke@435 1145 // Returned widened new guy
duke@435 1146 return make(_lo,_hi,_widen+1);
duke@435 1147 }
duke@435 1148
duke@435 1149 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1150 // bottom. Return the wider fellow.
duke@435 1151 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1152 return old;
duke@435 1153
duke@435 1154 //fatal("Integer value range is not subset");
duke@435 1155 //return this;
duke@435 1156 return TypeInt::INT;
duke@435 1157 }
duke@435 1158
duke@435 1159 //------------------------------narrow---------------------------------------
duke@435 1160 // Only happens for pessimistic optimizations.
duke@435 1161 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1162 if (_lo >= _hi) return this; // already narrow enough
duke@435 1163 if (old == NULL) return this;
duke@435 1164 const TypeInt* ot = old->isa_int();
duke@435 1165 if (ot == NULL) return this;
duke@435 1166 jint olo = ot->_lo;
duke@435 1167 jint ohi = ot->_hi;
duke@435 1168
duke@435 1169 // If new guy is equal to old guy, no narrowing
duke@435 1170 if (_lo == olo && _hi == ohi) return old;
duke@435 1171
duke@435 1172 // If old guy was maximum range, allow the narrowing
duke@435 1173 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1174
duke@435 1175 if (_lo < olo || _hi > ohi)
duke@435 1176 return this; // doesn't narrow; pretty wierd
duke@435 1177
duke@435 1178 // The new type narrows the old type, so look for a "death march".
duke@435 1179 // See comments on PhaseTransform::saturate.
duke@435 1180 juint nrange = _hi - _lo;
duke@435 1181 juint orange = ohi - olo;
duke@435 1182 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1183 // Use the new type only if the range shrinks a lot.
duke@435 1184 // We do not want the optimizer computing 2^31 point by point.
duke@435 1185 return old;
duke@435 1186 }
duke@435 1187
duke@435 1188 return this;
duke@435 1189 }
duke@435 1190
duke@435 1191 //-----------------------------filter------------------------------------------
duke@435 1192 const Type *TypeInt::filter( const Type *kills ) const {
duke@435 1193 const TypeInt* ft = join(kills)->isa_int();
duke@435 1194 if (ft == NULL || ft->_lo > ft->_hi)
duke@435 1195 return Type::TOP; // Canonical empty value
duke@435 1196 if (ft->_widen < this->_widen) {
duke@435 1197 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1198 // The widen bits must be allowed to run freely through the graph.
duke@435 1199 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1200 }
duke@435 1201 return ft;
duke@435 1202 }
duke@435 1203
duke@435 1204 //------------------------------eq---------------------------------------------
duke@435 1205 // Structural equality check for Type representations
duke@435 1206 bool TypeInt::eq( const Type *t ) const {
duke@435 1207 const TypeInt *r = t->is_int(); // Handy access
duke@435 1208 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1209 }
duke@435 1210
duke@435 1211 //------------------------------hash-------------------------------------------
duke@435 1212 // Type-specific hashing function.
duke@435 1213 int TypeInt::hash(void) const {
duke@435 1214 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1215 }
duke@435 1216
duke@435 1217 //------------------------------is_finite--------------------------------------
duke@435 1218 // Has a finite value
duke@435 1219 bool TypeInt::is_finite() const {
duke@435 1220 return true;
duke@435 1221 }
duke@435 1222
duke@435 1223 //------------------------------dump2------------------------------------------
duke@435 1224 // Dump TypeInt
duke@435 1225 #ifndef PRODUCT
duke@435 1226 static const char* intname(char* buf, jint n) {
duke@435 1227 if (n == min_jint)
duke@435 1228 return "min";
duke@435 1229 else if (n < min_jint + 10000)
duke@435 1230 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1231 else if (n == max_jint)
duke@435 1232 return "max";
duke@435 1233 else if (n > max_jint - 10000)
duke@435 1234 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1235 else
duke@435 1236 sprintf(buf, INT32_FORMAT, n);
duke@435 1237 return buf;
duke@435 1238 }
duke@435 1239
duke@435 1240 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1241 char buf[40], buf2[40];
duke@435 1242 if (_lo == min_jint && _hi == max_jint)
duke@435 1243 st->print("int");
duke@435 1244 else if (is_con())
duke@435 1245 st->print("int:%s", intname(buf, get_con()));
duke@435 1246 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1247 st->print("bool");
duke@435 1248 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1249 st->print("byte");
duke@435 1250 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1251 st->print("char");
duke@435 1252 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1253 st->print("short");
duke@435 1254 else if (_hi == max_jint)
duke@435 1255 st->print("int:>=%s", intname(buf, _lo));
duke@435 1256 else if (_lo == min_jint)
duke@435 1257 st->print("int:<=%s", intname(buf, _hi));
duke@435 1258 else
duke@435 1259 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1260
duke@435 1261 if (_widen != 0 && this != TypeInt::INT)
duke@435 1262 st->print(":%.*s", _widen, "wwww");
duke@435 1263 }
duke@435 1264 #endif
duke@435 1265
duke@435 1266 //------------------------------singleton--------------------------------------
duke@435 1267 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1268 // constants.
duke@435 1269 bool TypeInt::singleton(void) const {
duke@435 1270 return _lo >= _hi;
duke@435 1271 }
duke@435 1272
duke@435 1273 bool TypeInt::empty(void) const {
duke@435 1274 return _lo > _hi;
duke@435 1275 }
duke@435 1276
duke@435 1277 //=============================================================================
duke@435 1278 // Convenience common pre-built types.
duke@435 1279 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1280 const TypeLong *TypeLong::ZERO; // 0
duke@435 1281 const TypeLong *TypeLong::ONE; // 1
duke@435 1282 const TypeLong *TypeLong::POS; // >=0
duke@435 1283 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1284 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1285 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
duke@435 1286
duke@435 1287 //------------------------------TypeLong---------------------------------------
duke@435 1288 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1289 }
duke@435 1290
duke@435 1291 //------------------------------make-------------------------------------------
duke@435 1292 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1293 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1294 }
duke@435 1295
duke@435 1296 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
duke@435 1297 // Certain normalizations keep us sane when comparing types.
duke@435 1298 // The '1' covers constants.
duke@435 1299 if (lo <= hi) {
duke@435 1300 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
duke@435 1301 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // plain long
duke@435 1302 }
duke@435 1303 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1304 }
duke@435 1305
duke@435 1306
duke@435 1307 //------------------------------meet-------------------------------------------
duke@435 1308 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1309 // with reference count equal to the number of Types pointing at it.
duke@435 1310 // Caller should wrap a Types around it.
duke@435 1311 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1312 // Perform a fast test for common case; meeting the same types together.
duke@435 1313 if( this == t ) return this; // Meeting same type?
duke@435 1314
duke@435 1315 // Currently "this->_base" is a TypeLong
duke@435 1316 switch (t->base()) { // Switch on original type
duke@435 1317 case AnyPtr: // Mixing with oops happens when javac
duke@435 1318 case RawPtr: // reuses local variables
duke@435 1319 case OopPtr:
duke@435 1320 case InstPtr:
duke@435 1321 case KlassPtr:
duke@435 1322 case AryPtr:
never@618 1323 case NarrowOop:
duke@435 1324 case Int:
duke@435 1325 case FloatTop:
duke@435 1326 case FloatCon:
duke@435 1327 case FloatBot:
duke@435 1328 case DoubleTop:
duke@435 1329 case DoubleCon:
duke@435 1330 case DoubleBot:
duke@435 1331 case Bottom: // Ye Olde Default
duke@435 1332 return Type::BOTTOM;
duke@435 1333 default: // All else is a mistake
duke@435 1334 typerr(t);
duke@435 1335 case Top: // No change
duke@435 1336 return this;
duke@435 1337 case Long: // Long vs Long?
duke@435 1338 break;
duke@435 1339 }
duke@435 1340
duke@435 1341 // Expand covered set
duke@435 1342 const TypeLong *r = t->is_long(); // Turn into a TypeLong
duke@435 1343 // (Avoid TypeLong::make, to avoid the argument normalizations it enforces.)
duke@435 1344 return (new TypeLong( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
duke@435 1345 }
duke@435 1346
duke@435 1347 //------------------------------xdual------------------------------------------
duke@435 1348 // Dual: reverse hi & lo; flip widen
duke@435 1349 const Type *TypeLong::xdual() const {
duke@435 1350 return new TypeLong(_hi,_lo,WidenMax-_widen);
duke@435 1351 }
duke@435 1352
duke@435 1353 //------------------------------widen------------------------------------------
duke@435 1354 // Only happens for optimistic top-down optimizations.
duke@435 1355 const Type *TypeLong::widen( const Type *old ) const {
duke@435 1356 // Coming from TOP or such; no widening
duke@435 1357 if( old->base() != Long ) return this;
duke@435 1358 const TypeLong *ot = old->is_long();
duke@435 1359
duke@435 1360 // If new guy is equal to old guy, no widening
duke@435 1361 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1362 return old;
duke@435 1363
duke@435 1364 // If new guy contains old, then we widened
duke@435 1365 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1366 // New contains old
duke@435 1367 // If new guy is already wider than old, no widening
duke@435 1368 if( _widen > ot->_widen ) return this;
duke@435 1369 // If old guy was a constant, do not bother
duke@435 1370 if (ot->_lo == ot->_hi) return this;
duke@435 1371 // Now widen new guy.
duke@435 1372 // Check for widening too far
duke@435 1373 if (_widen == WidenMax) {
duke@435 1374 if (min_jlong < _lo && _hi < max_jlong) {
duke@435 1375 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1376 // which is closer to its respective limit.
duke@435 1377 if (_lo >= 0 || // easy common case
duke@435 1378 (julong)(_lo - min_jlong) >= (julong)(max_jlong - _hi)) {
duke@435 1379 // Try to widen to an unsigned range type of 32/63 bits:
duke@435 1380 if (_hi < max_juint)
duke@435 1381 return make(_lo, max_juint, WidenMax);
duke@435 1382 else
duke@435 1383 return make(_lo, max_jlong, WidenMax);
duke@435 1384 } else {
duke@435 1385 return make(min_jlong, _hi, WidenMax);
duke@435 1386 }
duke@435 1387 }
duke@435 1388 return TypeLong::LONG;
duke@435 1389 }
duke@435 1390 // Returned widened new guy
duke@435 1391 return make(_lo,_hi,_widen+1);
duke@435 1392 }
duke@435 1393
duke@435 1394 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1395 // bottom. Return the wider fellow.
duke@435 1396 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1397 return old;
duke@435 1398
duke@435 1399 // fatal("Long value range is not subset");
duke@435 1400 // return this;
duke@435 1401 return TypeLong::LONG;
duke@435 1402 }
duke@435 1403
duke@435 1404 //------------------------------narrow----------------------------------------
duke@435 1405 // Only happens for pessimistic optimizations.
duke@435 1406 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1407 if (_lo >= _hi) return this; // already narrow enough
duke@435 1408 if (old == NULL) return this;
duke@435 1409 const TypeLong* ot = old->isa_long();
duke@435 1410 if (ot == NULL) return this;
duke@435 1411 jlong olo = ot->_lo;
duke@435 1412 jlong ohi = ot->_hi;
duke@435 1413
duke@435 1414 // If new guy is equal to old guy, no narrowing
duke@435 1415 if (_lo == olo && _hi == ohi) return old;
duke@435 1416
duke@435 1417 // If old guy was maximum range, allow the narrowing
duke@435 1418 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1419
duke@435 1420 if (_lo < olo || _hi > ohi)
duke@435 1421 return this; // doesn't narrow; pretty wierd
duke@435 1422
duke@435 1423 // The new type narrows the old type, so look for a "death march".
duke@435 1424 // See comments on PhaseTransform::saturate.
duke@435 1425 julong nrange = _hi - _lo;
duke@435 1426 julong orange = ohi - olo;
duke@435 1427 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1428 // Use the new type only if the range shrinks a lot.
duke@435 1429 // We do not want the optimizer computing 2^31 point by point.
duke@435 1430 return old;
duke@435 1431 }
duke@435 1432
duke@435 1433 return this;
duke@435 1434 }
duke@435 1435
duke@435 1436 //-----------------------------filter------------------------------------------
duke@435 1437 const Type *TypeLong::filter( const Type *kills ) const {
duke@435 1438 const TypeLong* ft = join(kills)->isa_long();
duke@435 1439 if (ft == NULL || ft->_lo > ft->_hi)
duke@435 1440 return Type::TOP; // Canonical empty value
duke@435 1441 if (ft->_widen < this->_widen) {
duke@435 1442 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1443 // The widen bits must be allowed to run freely through the graph.
duke@435 1444 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1445 }
duke@435 1446 return ft;
duke@435 1447 }
duke@435 1448
duke@435 1449 //------------------------------eq---------------------------------------------
duke@435 1450 // Structural equality check for Type representations
duke@435 1451 bool TypeLong::eq( const Type *t ) const {
duke@435 1452 const TypeLong *r = t->is_long(); // Handy access
duke@435 1453 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1454 }
duke@435 1455
duke@435 1456 //------------------------------hash-------------------------------------------
duke@435 1457 // Type-specific hashing function.
duke@435 1458 int TypeLong::hash(void) const {
duke@435 1459 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1460 }
duke@435 1461
duke@435 1462 //------------------------------is_finite--------------------------------------
duke@435 1463 // Has a finite value
duke@435 1464 bool TypeLong::is_finite() const {
duke@435 1465 return true;
duke@435 1466 }
duke@435 1467
duke@435 1468 //------------------------------dump2------------------------------------------
duke@435 1469 // Dump TypeLong
duke@435 1470 #ifndef PRODUCT
duke@435 1471 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1472 if (n > x) {
duke@435 1473 if (n >= x + 10000) return NULL;
duke@435 1474 sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
duke@435 1475 } else if (n < x) {
duke@435 1476 if (n <= x - 10000) return NULL;
duke@435 1477 sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
duke@435 1478 } else {
duke@435 1479 return xname;
duke@435 1480 }
duke@435 1481 return buf;
duke@435 1482 }
duke@435 1483
duke@435 1484 static const char* longname(char* buf, jlong n) {
duke@435 1485 const char* str;
duke@435 1486 if (n == min_jlong)
duke@435 1487 return "min";
duke@435 1488 else if (n < min_jlong + 10000)
duke@435 1489 sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
duke@435 1490 else if (n == max_jlong)
duke@435 1491 return "max";
duke@435 1492 else if (n > max_jlong - 10000)
duke@435 1493 sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
duke@435 1494 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1495 return str;
duke@435 1496 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1497 return str;
duke@435 1498 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1499 return str;
duke@435 1500 else
duke@435 1501 sprintf(buf, INT64_FORMAT, n);
duke@435 1502 return buf;
duke@435 1503 }
duke@435 1504
duke@435 1505 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1506 char buf[80], buf2[80];
duke@435 1507 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1508 st->print("long");
duke@435 1509 else if (is_con())
duke@435 1510 st->print("long:%s", longname(buf, get_con()));
duke@435 1511 else if (_hi == max_jlong)
duke@435 1512 st->print("long:>=%s", longname(buf, _lo));
duke@435 1513 else if (_lo == min_jlong)
duke@435 1514 st->print("long:<=%s", longname(buf, _hi));
duke@435 1515 else
duke@435 1516 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1517
duke@435 1518 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1519 st->print(":%.*s", _widen, "wwww");
duke@435 1520 }
duke@435 1521 #endif
duke@435 1522
duke@435 1523 //------------------------------singleton--------------------------------------
duke@435 1524 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1525 // constants
duke@435 1526 bool TypeLong::singleton(void) const {
duke@435 1527 return _lo >= _hi;
duke@435 1528 }
duke@435 1529
duke@435 1530 bool TypeLong::empty(void) const {
duke@435 1531 return _lo > _hi;
duke@435 1532 }
duke@435 1533
duke@435 1534 //=============================================================================
duke@435 1535 // Convenience common pre-built types.
duke@435 1536 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1537 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1538 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1539 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1540 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1541 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1542 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1543 const TypeTuple *TypeTuple::START_I2C;
duke@435 1544 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1545 const TypeTuple *TypeTuple::LONG_PAIR;
duke@435 1546
duke@435 1547
duke@435 1548 //------------------------------make-------------------------------------------
duke@435 1549 // Make a TypeTuple from the range of a method signature
duke@435 1550 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1551 ciType* return_type = sig->return_type();
duke@435 1552 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1553 const Type **field_array = fields(total_fields);
duke@435 1554 switch (return_type->basic_type()) {
duke@435 1555 case T_LONG:
duke@435 1556 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1557 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1558 break;
duke@435 1559 case T_DOUBLE:
duke@435 1560 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1561 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1562 break;
duke@435 1563 case T_OBJECT:
duke@435 1564 case T_ARRAY:
duke@435 1565 case T_BOOLEAN:
duke@435 1566 case T_CHAR:
duke@435 1567 case T_FLOAT:
duke@435 1568 case T_BYTE:
duke@435 1569 case T_SHORT:
duke@435 1570 case T_INT:
duke@435 1571 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1572 break;
duke@435 1573 case T_VOID:
duke@435 1574 break;
duke@435 1575 default:
duke@435 1576 ShouldNotReachHere();
duke@435 1577 }
duke@435 1578 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1579 }
duke@435 1580
duke@435 1581 // Make a TypeTuple from the domain of a method signature
duke@435 1582 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1583 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1584
duke@435 1585 uint pos = TypeFunc::Parms;
duke@435 1586 const Type **field_array;
duke@435 1587 if (recv != NULL) {
duke@435 1588 total_fields++;
duke@435 1589 field_array = fields(total_fields);
duke@435 1590 // Use get_const_type here because it respects UseUniqueSubclasses:
duke@435 1591 field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
duke@435 1592 } else {
duke@435 1593 field_array = fields(total_fields);
duke@435 1594 }
duke@435 1595
duke@435 1596 int i = 0;
duke@435 1597 while (pos < total_fields) {
duke@435 1598 ciType* type = sig->type_at(i);
duke@435 1599
duke@435 1600 switch (type->basic_type()) {
duke@435 1601 case T_LONG:
duke@435 1602 field_array[pos++] = TypeLong::LONG;
duke@435 1603 field_array[pos++] = Type::HALF;
duke@435 1604 break;
duke@435 1605 case T_DOUBLE:
duke@435 1606 field_array[pos++] = Type::DOUBLE;
duke@435 1607 field_array[pos++] = Type::HALF;
duke@435 1608 break;
duke@435 1609 case T_OBJECT:
duke@435 1610 case T_ARRAY:
duke@435 1611 case T_BOOLEAN:
duke@435 1612 case T_CHAR:
duke@435 1613 case T_FLOAT:
duke@435 1614 case T_BYTE:
duke@435 1615 case T_SHORT:
duke@435 1616 case T_INT:
duke@435 1617 field_array[pos++] = get_const_type(type);
duke@435 1618 break;
duke@435 1619 default:
duke@435 1620 ShouldNotReachHere();
duke@435 1621 }
duke@435 1622 i++;
duke@435 1623 }
duke@435 1624 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1625 }
duke@435 1626
duke@435 1627 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1628 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1629 }
duke@435 1630
duke@435 1631 //------------------------------fields-----------------------------------------
duke@435 1632 // Subroutine call type with space allocated for argument types
duke@435 1633 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1634 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1635 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1636 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1637 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1638 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1639 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1640
duke@435 1641 return flds;
duke@435 1642 }
duke@435 1643
duke@435 1644 //------------------------------meet-------------------------------------------
duke@435 1645 // Compute the MEET of two types. It returns a new Type object.
duke@435 1646 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1647 // Perform a fast test for common case; meeting the same types together.
duke@435 1648 if( this == t ) return this; // Meeting same type-rep?
duke@435 1649
duke@435 1650 // Current "this->_base" is Tuple
duke@435 1651 switch (t->base()) { // switch on original type
duke@435 1652
duke@435 1653 case Bottom: // Ye Olde Default
duke@435 1654 return t;
duke@435 1655
duke@435 1656 default: // All else is a mistake
duke@435 1657 typerr(t);
duke@435 1658
duke@435 1659 case Tuple: { // Meeting 2 signatures?
duke@435 1660 const TypeTuple *x = t->is_tuple();
duke@435 1661 assert( _cnt == x->_cnt, "" );
duke@435 1662 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1663 for( uint i=0; i<_cnt; i++ )
duke@435 1664 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1665 return TypeTuple::make(_cnt,fields);
duke@435 1666 }
duke@435 1667 case Top:
duke@435 1668 break;
duke@435 1669 }
duke@435 1670 return this; // Return the double constant
duke@435 1671 }
duke@435 1672
duke@435 1673 //------------------------------xdual------------------------------------------
duke@435 1674 // Dual: compute field-by-field dual
duke@435 1675 const Type *TypeTuple::xdual() const {
duke@435 1676 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1677 for( uint i=0; i<_cnt; i++ )
duke@435 1678 fields[i] = _fields[i]->dual();
duke@435 1679 return new TypeTuple(_cnt,fields);
duke@435 1680 }
duke@435 1681
duke@435 1682 //------------------------------eq---------------------------------------------
duke@435 1683 // Structural equality check for Type representations
duke@435 1684 bool TypeTuple::eq( const Type *t ) const {
duke@435 1685 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1686 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1687 for (uint i = 0; i < _cnt; i++)
duke@435 1688 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1689 return false; // Missed
duke@435 1690 return true;
duke@435 1691 }
duke@435 1692
duke@435 1693 //------------------------------hash-------------------------------------------
duke@435 1694 // Type-specific hashing function.
duke@435 1695 int TypeTuple::hash(void) const {
duke@435 1696 intptr_t sum = _cnt;
duke@435 1697 for( uint i=0; i<_cnt; i++ )
duke@435 1698 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1699 return sum;
duke@435 1700 }
duke@435 1701
duke@435 1702 //------------------------------dump2------------------------------------------
duke@435 1703 // Dump signature Type
duke@435 1704 #ifndef PRODUCT
duke@435 1705 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1706 st->print("{");
duke@435 1707 if( !depth || d[this] ) { // Check for recursive print
duke@435 1708 st->print("...}");
duke@435 1709 return;
duke@435 1710 }
duke@435 1711 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1712 if( _cnt ) {
duke@435 1713 uint i;
duke@435 1714 for( i=0; i<_cnt-1; i++ ) {
duke@435 1715 st->print("%d:", i);
duke@435 1716 _fields[i]->dump2(d, depth-1, st);
duke@435 1717 st->print(", ");
duke@435 1718 }
duke@435 1719 st->print("%d:", i);
duke@435 1720 _fields[i]->dump2(d, depth-1, st);
duke@435 1721 }
duke@435 1722 st->print("}");
duke@435 1723 }
duke@435 1724 #endif
duke@435 1725
duke@435 1726 //------------------------------singleton--------------------------------------
duke@435 1727 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1728 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1729 // or a single symbol.
duke@435 1730 bool TypeTuple::singleton(void) const {
duke@435 1731 return false; // Never a singleton
duke@435 1732 }
duke@435 1733
duke@435 1734 bool TypeTuple::empty(void) const {
duke@435 1735 for( uint i=0; i<_cnt; i++ ) {
duke@435 1736 if (_fields[i]->empty()) return true;
duke@435 1737 }
duke@435 1738 return false;
duke@435 1739 }
duke@435 1740
duke@435 1741 //=============================================================================
duke@435 1742 // Convenience common pre-built types.
duke@435 1743
duke@435 1744 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1745 // Certain normalizations keep us sane when comparing types.
duke@435 1746 // We do not want arrayOop variables to differ only by the wideness
duke@435 1747 // of their index types. Pick minimum wideness, since that is the
duke@435 1748 // forced wideness of small ranges anyway.
duke@435 1749 if (size->_widen != Type::WidenMin)
duke@435 1750 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1751 else
duke@435 1752 return size;
duke@435 1753 }
duke@435 1754
duke@435 1755 //------------------------------make-------------------------------------------
duke@435 1756 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
coleenp@548 1757 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1758 elem = elem->make_narrowoop();
coleenp@548 1759 }
duke@435 1760 size = normalize_array_size(size);
duke@435 1761 return (TypeAry*)(new TypeAry(elem,size))->hashcons();
duke@435 1762 }
duke@435 1763
duke@435 1764 //------------------------------meet-------------------------------------------
duke@435 1765 // Compute the MEET of two types. It returns a new Type object.
duke@435 1766 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1767 // Perform a fast test for common case; meeting the same types together.
duke@435 1768 if( this == t ) return this; // Meeting same type-rep?
duke@435 1769
duke@435 1770 // Current "this->_base" is Ary
duke@435 1771 switch (t->base()) { // switch on original type
duke@435 1772
duke@435 1773 case Bottom: // Ye Olde Default
duke@435 1774 return t;
duke@435 1775
duke@435 1776 default: // All else is a mistake
duke@435 1777 typerr(t);
duke@435 1778
duke@435 1779 case Array: { // Meeting 2 arrays?
duke@435 1780 const TypeAry *a = t->is_ary();
duke@435 1781 return TypeAry::make(_elem->meet(a->_elem),
duke@435 1782 _size->xmeet(a->_size)->is_int());
duke@435 1783 }
duke@435 1784 case Top:
duke@435 1785 break;
duke@435 1786 }
duke@435 1787 return this; // Return the double constant
duke@435 1788 }
duke@435 1789
duke@435 1790 //------------------------------xdual------------------------------------------
duke@435 1791 // Dual: compute field-by-field dual
duke@435 1792 const Type *TypeAry::xdual() const {
duke@435 1793 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1794 size_dual = normalize_array_size(size_dual);
duke@435 1795 return new TypeAry( _elem->dual(), size_dual);
duke@435 1796 }
duke@435 1797
duke@435 1798 //------------------------------eq---------------------------------------------
duke@435 1799 // Structural equality check for Type representations
duke@435 1800 bool TypeAry::eq( const Type *t ) const {
duke@435 1801 const TypeAry *a = (const TypeAry*)t;
duke@435 1802 return _elem == a->_elem &&
duke@435 1803 _size == a->_size;
duke@435 1804 }
duke@435 1805
duke@435 1806 //------------------------------hash-------------------------------------------
duke@435 1807 // Type-specific hashing function.
duke@435 1808 int TypeAry::hash(void) const {
duke@435 1809 return (intptr_t)_elem + (intptr_t)_size;
duke@435 1810 }
duke@435 1811
kvn@1255 1812 //----------------------interface_vs_oop---------------------------------------
kvn@1255 1813 #ifdef ASSERT
kvn@1255 1814 bool TypeAry::interface_vs_oop(const Type *t) const {
kvn@1255 1815 const TypeAry* t_ary = t->is_ary();
kvn@1255 1816 if (t_ary) {
kvn@1255 1817 return _elem->interface_vs_oop(t_ary->_elem);
kvn@1255 1818 }
kvn@1255 1819 return false;
kvn@1255 1820 }
kvn@1255 1821 #endif
kvn@1255 1822
duke@435 1823 //------------------------------dump2------------------------------------------
duke@435 1824 #ifndef PRODUCT
duke@435 1825 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1826 _elem->dump2(d, depth, st);
duke@435 1827 st->print("[");
duke@435 1828 _size->dump2(d, depth, st);
duke@435 1829 st->print("]");
duke@435 1830 }
duke@435 1831 #endif
duke@435 1832
duke@435 1833 //------------------------------singleton--------------------------------------
duke@435 1834 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1835 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1836 // or a single symbol.
duke@435 1837 bool TypeAry::singleton(void) const {
duke@435 1838 return false; // Never a singleton
duke@435 1839 }
duke@435 1840
duke@435 1841 bool TypeAry::empty(void) const {
duke@435 1842 return _elem->empty() || _size->empty();
duke@435 1843 }
duke@435 1844
duke@435 1845 //--------------------------ary_must_be_exact----------------------------------
duke@435 1846 bool TypeAry::ary_must_be_exact() const {
duke@435 1847 if (!UseExactTypes) return false;
duke@435 1848 // This logic looks at the element type of an array, and returns true
duke@435 1849 // if the element type is either a primitive or a final instance class.
duke@435 1850 // In such cases, an array built on this ary must have no subclasses.
duke@435 1851 if (_elem == BOTTOM) return false; // general array not exact
duke@435 1852 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 1853 const TypeOopPtr* toop = NULL;
kvn@656 1854 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 1855 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 1856 } else {
coleenp@548 1857 toop = _elem->isa_oopptr();
coleenp@548 1858 }
duke@435 1859 if (!toop) return true; // a primitive type, like int
duke@435 1860 ciKlass* tklass = toop->klass();
duke@435 1861 if (tklass == NULL) return false; // unloaded class
duke@435 1862 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 1863 const TypeInstPtr* tinst;
coleenp@548 1864 if (_elem->isa_narrowoop())
kvn@656 1865 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 1866 else
coleenp@548 1867 tinst = _elem->isa_instptr();
kvn@656 1868 if (tinst)
kvn@656 1869 return tklass->as_instance_klass()->is_final();
coleenp@548 1870 const TypeAryPtr* tap;
coleenp@548 1871 if (_elem->isa_narrowoop())
kvn@656 1872 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 1873 else
coleenp@548 1874 tap = _elem->isa_aryptr();
kvn@656 1875 if (tap)
kvn@656 1876 return tap->ary()->ary_must_be_exact();
duke@435 1877 return false;
duke@435 1878 }
duke@435 1879
duke@435 1880 //=============================================================================
duke@435 1881 // Convenience common pre-built types.
duke@435 1882 const TypePtr *TypePtr::NULL_PTR;
duke@435 1883 const TypePtr *TypePtr::NOTNULL;
duke@435 1884 const TypePtr *TypePtr::BOTTOM;
duke@435 1885
duke@435 1886 //------------------------------meet-------------------------------------------
duke@435 1887 // Meet over the PTR enum
duke@435 1888 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 1889 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 1890 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 1891 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 1892 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 1893 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 1894 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 1895 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 1896 };
duke@435 1897
duke@435 1898 //------------------------------make-------------------------------------------
duke@435 1899 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 1900 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 1901 }
duke@435 1902
duke@435 1903 //------------------------------cast_to_ptr_type-------------------------------
duke@435 1904 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 1905 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 1906 if( ptr == _ptr ) return this;
duke@435 1907 return make(_base, ptr, _offset);
duke@435 1908 }
duke@435 1909
duke@435 1910 //------------------------------get_con----------------------------------------
duke@435 1911 intptr_t TypePtr::get_con() const {
duke@435 1912 assert( _ptr == Null, "" );
duke@435 1913 return _offset;
duke@435 1914 }
duke@435 1915
duke@435 1916 //------------------------------meet-------------------------------------------
duke@435 1917 // Compute the MEET of two types. It returns a new Type object.
duke@435 1918 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 1919 // Perform a fast test for common case; meeting the same types together.
duke@435 1920 if( this == t ) return this; // Meeting same type-rep?
duke@435 1921
duke@435 1922 // Current "this->_base" is AnyPtr
duke@435 1923 switch (t->base()) { // switch on original type
duke@435 1924 case Int: // Mixing ints & oops happens when javac
duke@435 1925 case Long: // reuses local variables
duke@435 1926 case FloatTop:
duke@435 1927 case FloatCon:
duke@435 1928 case FloatBot:
duke@435 1929 case DoubleTop:
duke@435 1930 case DoubleCon:
duke@435 1931 case DoubleBot:
coleenp@548 1932 case NarrowOop:
duke@435 1933 case Bottom: // Ye Olde Default
duke@435 1934 return Type::BOTTOM;
duke@435 1935 case Top:
duke@435 1936 return this;
duke@435 1937
duke@435 1938 case AnyPtr: { // Meeting to AnyPtrs
duke@435 1939 const TypePtr *tp = t->is_ptr();
duke@435 1940 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 1941 }
duke@435 1942 case RawPtr: // For these, flip the call around to cut down
duke@435 1943 case OopPtr:
duke@435 1944 case InstPtr: // on the cases I have to handle.
duke@435 1945 case KlassPtr:
duke@435 1946 case AryPtr:
duke@435 1947 return t->xmeet(this); // Call in reverse direction
duke@435 1948 default: // All else is a mistake
duke@435 1949 typerr(t);
duke@435 1950
duke@435 1951 }
duke@435 1952 return this;
duke@435 1953 }
duke@435 1954
duke@435 1955 //------------------------------meet_offset------------------------------------
duke@435 1956 int TypePtr::meet_offset( int offset ) const {
duke@435 1957 // Either is 'TOP' offset? Return the other offset!
duke@435 1958 if( _offset == OffsetTop ) return offset;
duke@435 1959 if( offset == OffsetTop ) return _offset;
duke@435 1960 // If either is different, return 'BOTTOM' offset
duke@435 1961 if( _offset != offset ) return OffsetBot;
duke@435 1962 return _offset;
duke@435 1963 }
duke@435 1964
duke@435 1965 //------------------------------dual_offset------------------------------------
duke@435 1966 int TypePtr::dual_offset( ) const {
duke@435 1967 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 1968 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 1969 return _offset; // Map everything else into self
duke@435 1970 }
duke@435 1971
duke@435 1972 //------------------------------xdual------------------------------------------
duke@435 1973 // Dual: compute field-by-field dual
duke@435 1974 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 1975 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 1976 };
duke@435 1977 const Type *TypePtr::xdual() const {
duke@435 1978 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 1979 }
duke@435 1980
kvn@741 1981 //------------------------------xadd_offset------------------------------------
kvn@741 1982 int TypePtr::xadd_offset( intptr_t offset ) const {
kvn@741 1983 // Adding to 'TOP' offset? Return 'TOP'!
kvn@741 1984 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
kvn@741 1985 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
kvn@741 1986 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
kvn@741 1987 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
kvn@741 1988 offset += (intptr_t)_offset;
kvn@741 1989 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
kvn@741 1990
kvn@741 1991 // assert( _offset >= 0 && _offset+offset >= 0, "" );
kvn@741 1992 // It is possible to construct a negative offset during PhaseCCP
kvn@741 1993
kvn@741 1994 return (int)offset; // Sum valid offsets
kvn@741 1995 }
kvn@741 1996
duke@435 1997 //------------------------------add_offset-------------------------------------
kvn@741 1998 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
kvn@741 1999 return make( AnyPtr, _ptr, xadd_offset(offset) );
duke@435 2000 }
duke@435 2001
duke@435 2002 //------------------------------eq---------------------------------------------
duke@435 2003 // Structural equality check for Type representations
duke@435 2004 bool TypePtr::eq( const Type *t ) const {
duke@435 2005 const TypePtr *a = (const TypePtr*)t;
duke@435 2006 return _ptr == a->ptr() && _offset == a->offset();
duke@435 2007 }
duke@435 2008
duke@435 2009 //------------------------------hash-------------------------------------------
duke@435 2010 // Type-specific hashing function.
duke@435 2011 int TypePtr::hash(void) const {
duke@435 2012 return _ptr + _offset;
duke@435 2013 }
duke@435 2014
duke@435 2015 //------------------------------dump2------------------------------------------
duke@435 2016 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 2017 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 2018 };
duke@435 2019
duke@435 2020 #ifndef PRODUCT
duke@435 2021 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2022 if( _ptr == Null ) st->print("NULL");
duke@435 2023 else st->print("%s *", ptr_msg[_ptr]);
duke@435 2024 if( _offset == OffsetTop ) st->print("+top");
duke@435 2025 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 2026 else if( _offset ) st->print("+%d", _offset);
duke@435 2027 }
duke@435 2028 #endif
duke@435 2029
duke@435 2030 //------------------------------singleton--------------------------------------
duke@435 2031 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2032 // constants
duke@435 2033 bool TypePtr::singleton(void) const {
duke@435 2034 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2035 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2036 }
duke@435 2037
duke@435 2038 bool TypePtr::empty(void) const {
duke@435 2039 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2040 }
duke@435 2041
duke@435 2042 //=============================================================================
duke@435 2043 // Convenience common pre-built types.
duke@435 2044 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2045 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2046
duke@435 2047 //------------------------------make-------------------------------------------
duke@435 2048 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2049 assert( ptr != Constant, "what is the constant?" );
duke@435 2050 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2051 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2052 }
duke@435 2053
duke@435 2054 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2055 assert( bits, "Use TypePtr for NULL" );
duke@435 2056 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2057 }
duke@435 2058
duke@435 2059 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2060 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2061 assert( ptr != Constant, "what is the constant?" );
duke@435 2062 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2063 assert( _bits==0, "Why cast a constant address?");
duke@435 2064 if( ptr == _ptr ) return this;
duke@435 2065 return make(ptr);
duke@435 2066 }
duke@435 2067
duke@435 2068 //------------------------------get_con----------------------------------------
duke@435 2069 intptr_t TypeRawPtr::get_con() const {
duke@435 2070 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2071 return (intptr_t)_bits;
duke@435 2072 }
duke@435 2073
duke@435 2074 //------------------------------meet-------------------------------------------
duke@435 2075 // Compute the MEET of two types. It returns a new Type object.
duke@435 2076 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2077 // Perform a fast test for common case; meeting the same types together.
duke@435 2078 if( this == t ) return this; // Meeting same type-rep?
duke@435 2079
duke@435 2080 // Current "this->_base" is RawPtr
duke@435 2081 switch( t->base() ) { // switch on original type
duke@435 2082 case Bottom: // Ye Olde Default
duke@435 2083 return t;
duke@435 2084 case Top:
duke@435 2085 return this;
duke@435 2086 case AnyPtr: // Meeting to AnyPtrs
duke@435 2087 break;
duke@435 2088 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2089 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2090 enum PTR ptr = meet_ptr( tptr );
duke@435 2091 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2092 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2093 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2094 ptr = NotNull; // Fall down in lattice
duke@435 2095 }
duke@435 2096 return make( ptr );
duke@435 2097 }
duke@435 2098
duke@435 2099 case OopPtr:
duke@435 2100 case InstPtr:
duke@435 2101 case KlassPtr:
duke@435 2102 case AryPtr:
duke@435 2103 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2104 default: // All else is a mistake
duke@435 2105 typerr(t);
duke@435 2106 }
duke@435 2107
duke@435 2108 // Found an AnyPtr type vs self-RawPtr type
duke@435 2109 const TypePtr *tp = t->is_ptr();
duke@435 2110 switch (tp->ptr()) {
duke@435 2111 case TypePtr::TopPTR: return this;
duke@435 2112 case TypePtr::BotPTR: return t;
duke@435 2113 case TypePtr::Null:
duke@435 2114 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2115 return TypeRawPtr::BOTTOM;
duke@435 2116 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2117 case TypePtr::AnyNull:
duke@435 2118 if( _ptr == TypePtr::Constant) return this;
duke@435 2119 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2120 default: ShouldNotReachHere();
duke@435 2121 }
duke@435 2122 return this;
duke@435 2123 }
duke@435 2124
duke@435 2125 //------------------------------xdual------------------------------------------
duke@435 2126 // Dual: compute field-by-field dual
duke@435 2127 const Type *TypeRawPtr::xdual() const {
duke@435 2128 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2129 }
duke@435 2130
duke@435 2131 //------------------------------add_offset-------------------------------------
kvn@741 2132 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
duke@435 2133 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2134 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2135 if( offset == 0 ) return this; // No change
duke@435 2136 switch (_ptr) {
duke@435 2137 case TypePtr::TopPTR:
duke@435 2138 case TypePtr::BotPTR:
duke@435 2139 case TypePtr::NotNull:
duke@435 2140 return this;
duke@435 2141 case TypePtr::Null:
duke@435 2142 case TypePtr::Constant:
duke@435 2143 return make( _bits+offset );
duke@435 2144 default: ShouldNotReachHere();
duke@435 2145 }
duke@435 2146 return NULL; // Lint noise
duke@435 2147 }
duke@435 2148
duke@435 2149 //------------------------------eq---------------------------------------------
duke@435 2150 // Structural equality check for Type representations
duke@435 2151 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2152 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2153 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2154 }
duke@435 2155
duke@435 2156 //------------------------------hash-------------------------------------------
duke@435 2157 // Type-specific hashing function.
duke@435 2158 int TypeRawPtr::hash(void) const {
duke@435 2159 return (intptr_t)_bits + TypePtr::hash();
duke@435 2160 }
duke@435 2161
duke@435 2162 //------------------------------dump2------------------------------------------
duke@435 2163 #ifndef PRODUCT
duke@435 2164 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2165 if( _ptr == Constant )
duke@435 2166 st->print(INTPTR_FORMAT, _bits);
duke@435 2167 else
duke@435 2168 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2169 }
duke@435 2170 #endif
duke@435 2171
duke@435 2172 //=============================================================================
duke@435 2173 // Convenience common pre-built type.
duke@435 2174 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2175
kvn@598 2176 //------------------------------TypeOopPtr-------------------------------------
kvn@598 2177 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
kvn@598 2178 : TypePtr(t, ptr, offset),
kvn@598 2179 _const_oop(o), _klass(k),
kvn@598 2180 _klass_is_exact(xk),
kvn@598 2181 _is_ptr_to_narrowoop(false),
kvn@598 2182 _instance_id(instance_id) {
kvn@598 2183 #ifdef _LP64
kvn@598 2184 if (UseCompressedOops && _offset != 0) {
kvn@598 2185 if (klass() == NULL) {
kvn@598 2186 assert(this->isa_aryptr(), "only arrays without klass");
kvn@598 2187 _is_ptr_to_narrowoop = true;
kvn@598 2188 } else if (_offset == oopDesc::klass_offset_in_bytes()) {
kvn@598 2189 _is_ptr_to_narrowoop = true;
kvn@598 2190 } else if (this->isa_aryptr()) {
kvn@598 2191 _is_ptr_to_narrowoop = (klass()->is_obj_array_klass() &&
kvn@598 2192 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2193 } else if (klass() == ciEnv::current()->Class_klass() &&
kvn@598 2194 (_offset == java_lang_Class::klass_offset_in_bytes() ||
kvn@598 2195 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
kvn@598 2196 // Special hidden fields from the Class.
kvn@598 2197 assert(this->isa_instptr(), "must be an instance ptr.");
kvn@598 2198 _is_ptr_to_narrowoop = true;
kvn@598 2199 } else if (klass()->is_instance_klass()) {
kvn@598 2200 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2201 ciField* field = NULL;
kvn@598 2202 if (this->isa_klassptr()) {
kvn@598 2203 // Perm objects don't use compressed references, except for
kvn@598 2204 // static fields which are currently compressed.
kvn@598 2205 field = ik->get_field_by_offset(_offset, true);
kvn@598 2206 if (field != NULL) {
kvn@598 2207 BasicType basic_elem_type = field->layout_type();
kvn@598 2208 _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
kvn@598 2209 basic_elem_type == T_ARRAY);
kvn@598 2210 }
kvn@598 2211 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2212 // unsafe access
kvn@598 2213 _is_ptr_to_narrowoop = true;
kvn@598 2214 } else { // exclude unsafe ops
kvn@598 2215 assert(this->isa_instptr(), "must be an instance ptr.");
kvn@598 2216 // Field which contains a compressed oop references.
kvn@598 2217 field = ik->get_field_by_offset(_offset, false);
kvn@598 2218 if (field != NULL) {
kvn@598 2219 BasicType basic_elem_type = field->layout_type();
kvn@598 2220 _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
kvn@598 2221 basic_elem_type == T_ARRAY);
kvn@598 2222 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
kvn@598 2223 // Compile::find_alias_type() cast exactness on all types to verify
kvn@598 2224 // that it does not affect alias type.
kvn@598 2225 _is_ptr_to_narrowoop = true;
kvn@598 2226 } else {
kvn@598 2227 // Type for the copy start in LibraryCallKit::inline_native_clone().
kvn@598 2228 assert(!klass_is_exact(), "only non-exact klass");
kvn@598 2229 _is_ptr_to_narrowoop = true;
kvn@598 2230 }
kvn@598 2231 }
kvn@598 2232 }
kvn@598 2233 }
kvn@598 2234 #endif
kvn@598 2235 }
kvn@598 2236
duke@435 2237 //------------------------------make-------------------------------------------
duke@435 2238 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
kvn@1393 2239 int offset, int instance_id) {
duke@435 2240 assert(ptr != Constant, "no constant generic pointers");
duke@435 2241 ciKlass* k = ciKlassKlass::make();
duke@435 2242 bool xk = false;
duke@435 2243 ciObject* o = NULL;
kvn@1393 2244 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
duke@435 2245 }
duke@435 2246
duke@435 2247
duke@435 2248 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2249 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2250 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2251 if( ptr == _ptr ) return this;
duke@435 2252 return make(ptr, _offset);
duke@435 2253 }
duke@435 2254
kvn@682 2255 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2256 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2257 // There are no instances of a general oop.
duke@435 2258 // Return self unchanged.
duke@435 2259 return this;
duke@435 2260 }
duke@435 2261
duke@435 2262 //-----------------------------cast_to_exactness-------------------------------
duke@435 2263 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2264 // There is no such thing as an exact general oop.
duke@435 2265 // Return self unchanged.
duke@435 2266 return this;
duke@435 2267 }
duke@435 2268
duke@435 2269
duke@435 2270 //------------------------------as_klass_type----------------------------------
duke@435 2271 // Return the klass type corresponding to this instance or array type.
duke@435 2272 // It is the type that is loaded from an object of this type.
duke@435 2273 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2274 ciKlass* k = klass();
duke@435 2275 bool xk = klass_is_exact();
duke@435 2276 if (k == NULL || !k->is_java_klass())
duke@435 2277 return TypeKlassPtr::OBJECT;
duke@435 2278 else
duke@435 2279 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2280 }
duke@435 2281
duke@435 2282
duke@435 2283 //------------------------------meet-------------------------------------------
duke@435 2284 // Compute the MEET of two types. It returns a new Type object.
duke@435 2285 const Type *TypeOopPtr::xmeet( const Type *t ) const {
duke@435 2286 // Perform a fast test for common case; meeting the same types together.
duke@435 2287 if( this == t ) return this; // Meeting same type-rep?
duke@435 2288
duke@435 2289 // Current "this->_base" is OopPtr
duke@435 2290 switch (t->base()) { // switch on original type
duke@435 2291
duke@435 2292 case Int: // Mixing ints & oops happens when javac
duke@435 2293 case Long: // reuses local variables
duke@435 2294 case FloatTop:
duke@435 2295 case FloatCon:
duke@435 2296 case FloatBot:
duke@435 2297 case DoubleTop:
duke@435 2298 case DoubleCon:
duke@435 2299 case DoubleBot:
kvn@728 2300 case NarrowOop:
duke@435 2301 case Bottom: // Ye Olde Default
duke@435 2302 return Type::BOTTOM;
duke@435 2303 case Top:
duke@435 2304 return this;
duke@435 2305
duke@435 2306 default: // All else is a mistake
duke@435 2307 typerr(t);
duke@435 2308
duke@435 2309 case RawPtr:
duke@435 2310 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2311
duke@435 2312 case AnyPtr: {
duke@435 2313 // Found an AnyPtr type vs self-OopPtr type
duke@435 2314 const TypePtr *tp = t->is_ptr();
duke@435 2315 int offset = meet_offset(tp->offset());
duke@435 2316 PTR ptr = meet_ptr(tp->ptr());
duke@435 2317 switch (tp->ptr()) {
duke@435 2318 case Null:
duke@435 2319 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2320 // else fall through:
duke@435 2321 case TopPTR:
duke@435 2322 case AnyNull:
duke@435 2323 return make(ptr, offset);
duke@435 2324 case BotPTR:
duke@435 2325 case NotNull:
duke@435 2326 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2327 default: typerr(t);
duke@435 2328 }
duke@435 2329 }
duke@435 2330
duke@435 2331 case OopPtr: { // Meeting to other OopPtrs
duke@435 2332 const TypeOopPtr *tp = t->is_oopptr();
kvn@1393 2333 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 2334 return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
duke@435 2335 }
duke@435 2336
duke@435 2337 case InstPtr: // For these, flip the call around to cut down
duke@435 2338 case KlassPtr: // on the cases I have to handle.
duke@435 2339 case AryPtr:
duke@435 2340 return t->xmeet(this); // Call in reverse direction
duke@435 2341
duke@435 2342 } // End of switch
duke@435 2343 return this; // Return the double constant
duke@435 2344 }
duke@435 2345
duke@435 2346
duke@435 2347 //------------------------------xdual------------------------------------------
duke@435 2348 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2349 const Type *TypeOopPtr::xdual() const {
duke@435 2350 assert(klass() == ciKlassKlass::make(), "no klasses here");
duke@435 2351 assert(const_oop() == NULL, "no constants here");
kvn@658 2352 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 2353 }
duke@435 2354
duke@435 2355 //--------------------------make_from_klass_common-----------------------------
duke@435 2356 // Computes the element-type given a klass.
duke@435 2357 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2358 assert(klass->is_java_klass(), "must be java language klass");
duke@435 2359 if (klass->is_instance_klass()) {
duke@435 2360 Compile* C = Compile::current();
duke@435 2361 Dependencies* deps = C->dependencies();
duke@435 2362 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2363 // Element is an instance
duke@435 2364 bool klass_is_exact = false;
duke@435 2365 if (klass->is_loaded()) {
duke@435 2366 // Try to set klass_is_exact.
duke@435 2367 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2368 klass_is_exact = ik->is_final();
duke@435 2369 if (!klass_is_exact && klass_change
duke@435 2370 && deps != NULL && UseUniqueSubclasses) {
duke@435 2371 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2372 if (sub != NULL) {
duke@435 2373 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2374 klass = ik = sub;
duke@435 2375 klass_is_exact = sub->is_final();
duke@435 2376 }
duke@435 2377 }
duke@435 2378 if (!klass_is_exact && try_for_exact
duke@435 2379 && deps != NULL && UseExactTypes) {
duke@435 2380 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2381 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2382 deps->assert_leaf_type(ik);
duke@435 2383 klass_is_exact = true;
duke@435 2384 }
duke@435 2385 }
duke@435 2386 }
duke@435 2387 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2388 } else if (klass->is_obj_array_klass()) {
duke@435 2389 // Element is an object array. Recursively call ourself.
duke@435 2390 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2391 bool xk = etype->klass_is_exact();
duke@435 2392 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2393 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2394 // are all not-null. This is not true in generally, as code can
duke@435 2395 // slam NULLs down in the subarrays.
duke@435 2396 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2397 return arr;
duke@435 2398 } else if (klass->is_type_array_klass()) {
duke@435 2399 // Element is an typeArray
duke@435 2400 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2401 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2402 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2403 // is not-null. That was not true in general.
duke@435 2404 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2405 return arr;
duke@435 2406 } else {
duke@435 2407 ShouldNotReachHere();
duke@435 2408 return NULL;
duke@435 2409 }
duke@435 2410 }
duke@435 2411
duke@435 2412 //------------------------------make_from_constant-----------------------------
duke@435 2413 // Make a java pointer from an oop constant
jrose@1424 2414 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
duke@435 2415 if (o->is_method_data() || o->is_method()) {
duke@435 2416 // Treat much like a typeArray of bytes, like below, but fake the type...
duke@435 2417 const Type* etype = (Type*)get_const_basic_type(T_BYTE);
duke@435 2418 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2419 ciKlass *klass = ciTypeArrayKlass::make((BasicType) T_BYTE);
jrose@1424 2420 assert(o->can_be_constant(), "method data oops should be tenured");
duke@435 2421 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2422 return arr;
duke@435 2423 } else {
duke@435 2424 assert(o->is_java_object(), "must be java language object");
duke@435 2425 assert(!o->is_null_object(), "null object not yet handled here.");
duke@435 2426 ciKlass *klass = o->klass();
duke@435 2427 if (klass->is_instance_klass()) {
duke@435 2428 // Element is an instance
jrose@1424 2429 if (require_constant) {
jrose@1424 2430 if (!o->can_be_constant()) return NULL;
jrose@1424 2431 } else if (!o->should_be_constant()) {
duke@435 2432 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
duke@435 2433 }
duke@435 2434 return TypeInstPtr::make(o);
duke@435 2435 } else if (klass->is_obj_array_klass()) {
duke@435 2436 // Element is an object array. Recursively call ourself.
duke@435 2437 const Type *etype =
duke@435 2438 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
duke@435 2439 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2440 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2441 // are all not-null. This is not true in generally, as code can
duke@435 2442 // slam NULLs down in the subarrays.
jrose@1424 2443 if (require_constant) {
jrose@1424 2444 if (!o->can_be_constant()) return NULL;
jrose@1424 2445 } else if (!o->should_be_constant()) {
duke@435 2446 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2447 }
duke@435 2448 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2449 return arr;
duke@435 2450 } else if (klass->is_type_array_klass()) {
duke@435 2451 // Element is an typeArray
duke@435 2452 const Type* etype =
duke@435 2453 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2454 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2455 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2456 // is not-null. That was not true in general.
jrose@1424 2457 if (require_constant) {
jrose@1424 2458 if (!o->can_be_constant()) return NULL;
jrose@1424 2459 } else if (!o->should_be_constant()) {
duke@435 2460 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2461 }
duke@435 2462 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2463 return arr;
duke@435 2464 }
duke@435 2465 }
duke@435 2466
duke@435 2467 ShouldNotReachHere();
duke@435 2468 return NULL;
duke@435 2469 }
duke@435 2470
duke@435 2471 //------------------------------get_con----------------------------------------
duke@435 2472 intptr_t TypeOopPtr::get_con() const {
duke@435 2473 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2474 assert( _offset >= 0, "" );
duke@435 2475
duke@435 2476 if (_offset != 0) {
duke@435 2477 // After being ported to the compiler interface, the compiler no longer
duke@435 2478 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2479 // to a handle at compile time. This handle is embedded in the generated
duke@435 2480 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2481 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2482 // have access to the addresses!). This does not seem to currently happen,
twisti@1040 2483 // but this assertion here is to help prevent its occurence.
duke@435 2484 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2485 ShouldNotReachHere();
duke@435 2486 }
duke@435 2487
jrose@1424 2488 return (intptr_t)const_oop()->constant_encoding();
duke@435 2489 }
duke@435 2490
duke@435 2491
duke@435 2492 //-----------------------------filter------------------------------------------
duke@435 2493 // Do not allow interface-vs.-noninterface joins to collapse to top.
duke@435 2494 const Type *TypeOopPtr::filter( const Type *kills ) const {
duke@435 2495
duke@435 2496 const Type* ft = join(kills);
duke@435 2497 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2498 const TypeInstPtr* ktip = kills->isa_instptr();
never@990 2499 const TypeKlassPtr* ftkp = ft->isa_klassptr();
never@990 2500 const TypeKlassPtr* ktkp = kills->isa_klassptr();
duke@435 2501
duke@435 2502 if (ft->empty()) {
duke@435 2503 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2504 // interface. This can happen because the bytecodes do not contain
duke@435 2505 // enough type info to distinguish a Java-level interface variable
duke@435 2506 // from a Java-level object variable. If we meet 2 classes which
duke@435 2507 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2508 // doesn't implement I, we have no way to tell if the result should
duke@435 2509 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2510 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2511 // uplift the type.
duke@435 2512 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
duke@435 2513 return kills; // Uplift to interface
never@990 2514 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
never@990 2515 return kills; // Uplift to interface
duke@435 2516
duke@435 2517 return Type::TOP; // Canonical empty value
duke@435 2518 }
duke@435 2519
duke@435 2520 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2521 // the join should report back the class. However, if we have a J/L/Object
duke@435 2522 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2523 // join report an interface back out. This isn't possible but happens
duke@435 2524 // because the type system doesn't interact well with interfaces.
duke@435 2525 if (ftip != NULL && ktip != NULL &&
duke@435 2526 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2527 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2528 // Happens in a CTW of rt.jar, 320-341, no extra flags
duke@435 2529 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2530 }
never@990 2531 if (ftkp != NULL && ktkp != NULL &&
never@990 2532 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
never@990 2533 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
never@990 2534 // Happens in a CTW of rt.jar, 320-341, no extra flags
never@990 2535 return ktkp->cast_to_ptr_type(ftkp->ptr());
never@990 2536 }
duke@435 2537
duke@435 2538 return ft;
duke@435 2539 }
duke@435 2540
duke@435 2541 //------------------------------eq---------------------------------------------
duke@435 2542 // Structural equality check for Type representations
duke@435 2543 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2544 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2545 if (_klass_is_exact != a->_klass_is_exact ||
duke@435 2546 _instance_id != a->_instance_id) return false;
duke@435 2547 ciObject* one = const_oop();
duke@435 2548 ciObject* two = a->const_oop();
duke@435 2549 if (one == NULL || two == NULL) {
duke@435 2550 return (one == two) && TypePtr::eq(t);
duke@435 2551 } else {
duke@435 2552 return one->equals(two) && TypePtr::eq(t);
duke@435 2553 }
duke@435 2554 }
duke@435 2555
duke@435 2556 //------------------------------hash-------------------------------------------
duke@435 2557 // Type-specific hashing function.
duke@435 2558 int TypeOopPtr::hash(void) const {
duke@435 2559 return
duke@435 2560 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2561 _klass_is_exact +
duke@435 2562 _instance_id +
duke@435 2563 TypePtr::hash();
duke@435 2564 }
duke@435 2565
duke@435 2566 //------------------------------dump2------------------------------------------
duke@435 2567 #ifndef PRODUCT
duke@435 2568 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2569 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2570 if( _klass_is_exact ) st->print(":exact");
duke@435 2571 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2572 switch( _offset ) {
duke@435 2573 case OffsetTop: st->print("+top"); break;
duke@435 2574 case OffsetBot: st->print("+any"); break;
duke@435 2575 case 0: break;
duke@435 2576 default: st->print("+%d",_offset); break;
duke@435 2577 }
kvn@658 2578 if (_instance_id == InstanceTop)
kvn@658 2579 st->print(",iid=top");
kvn@658 2580 else if (_instance_id != InstanceBot)
duke@435 2581 st->print(",iid=%d",_instance_id);
duke@435 2582 }
duke@435 2583 #endif
duke@435 2584
duke@435 2585 //------------------------------singleton--------------------------------------
duke@435 2586 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2587 // constants
duke@435 2588 bool TypeOopPtr::singleton(void) const {
duke@435 2589 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2590 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2591 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2592 }
duke@435 2593
duke@435 2594 //------------------------------add_offset-------------------------------------
kvn@741 2595 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
duke@435 2596 return make( _ptr, xadd_offset(offset) );
duke@435 2597 }
duke@435 2598
kvn@658 2599 //------------------------------meet_instance_id--------------------------------
kvn@658 2600 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 2601 // Either is 'TOP' instance? Return the other instance!
kvn@658 2602 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 2603 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 2604 // If either is different, return 'BOTTOM' instance
kvn@658 2605 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 2606 return _instance_id;
duke@435 2607 }
duke@435 2608
kvn@658 2609 //------------------------------dual_instance_id--------------------------------
kvn@658 2610 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 2611 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 2612 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 2613 return _instance_id; // Map everything else into self
kvn@658 2614 }
kvn@658 2615
kvn@658 2616
duke@435 2617 //=============================================================================
duke@435 2618 // Convenience common pre-built types.
duke@435 2619 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 2620 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 2621 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 2622 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 2623 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 2624
duke@435 2625 //------------------------------TypeInstPtr-------------------------------------
duke@435 2626 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
duke@435 2627 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
duke@435 2628 assert(k != NULL &&
duke@435 2629 (k->is_loaded() || o == NULL),
duke@435 2630 "cannot have constants with non-loaded klass");
duke@435 2631 };
duke@435 2632
duke@435 2633 //------------------------------make-------------------------------------------
duke@435 2634 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 2635 ciKlass* k,
duke@435 2636 bool xk,
duke@435 2637 ciObject* o,
duke@435 2638 int offset,
duke@435 2639 int instance_id) {
duke@435 2640 assert( !k->is_loaded() || k->is_instance_klass() ||
duke@435 2641 k->is_method_klass(), "Must be for instance or method");
duke@435 2642 // Either const_oop() is NULL or else ptr is Constant
duke@435 2643 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 2644 "constant pointers must have a value supplied" );
duke@435 2645 // Ptr is never Null
duke@435 2646 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 2647
kvn@682 2648 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 2649 if (!UseExactTypes) xk = false;
duke@435 2650 if (ptr == Constant) {
duke@435 2651 // Note: This case includes meta-object constants, such as methods.
duke@435 2652 xk = true;
duke@435 2653 } else if (k->is_loaded()) {
duke@435 2654 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 2655 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 2656 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 2657 }
duke@435 2658
duke@435 2659 // Now hash this baby
duke@435 2660 TypeInstPtr *result =
duke@435 2661 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
duke@435 2662
duke@435 2663 return result;
duke@435 2664 }
duke@435 2665
duke@435 2666
duke@435 2667 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2668 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2669 if( ptr == _ptr ) return this;
duke@435 2670 // Reconstruct _sig info here since not a problem with later lazy
duke@435 2671 // construction, _sig will show up on demand.
kvn@658 2672 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
duke@435 2673 }
duke@435 2674
duke@435 2675
duke@435 2676 //-----------------------------cast_to_exactness-------------------------------
duke@435 2677 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2678 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 2679 if (!UseExactTypes) return this;
duke@435 2680 if (!_klass->is_loaded()) return this;
duke@435 2681 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 2682 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 2683 if( ik->is_interface() ) return this; // cannot set xk
duke@435 2684 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
duke@435 2685 }
duke@435 2686
kvn@682 2687 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2688 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 2689 if( instance_id == _instance_id ) return this;
kvn@682 2690 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
duke@435 2691 }
duke@435 2692
duke@435 2693 //------------------------------xmeet_unloaded---------------------------------
duke@435 2694 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 2695 // Assume classes are different since called after check for same name/class-loader
duke@435 2696 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 2697 int off = meet_offset(tinst->offset());
duke@435 2698 PTR ptr = meet_ptr(tinst->ptr());
duke@435 2699
duke@435 2700 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 2701 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 2702 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 2703 //
duke@435 2704 // Meet unloaded class with java/lang/Object
duke@435 2705 //
duke@435 2706 // Meet
duke@435 2707 // | Unloaded Class
duke@435 2708 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 2709 // ===================================================================
duke@435 2710 // TOP | ..........................Unloaded......................|
duke@435 2711 // AnyNull | U-AN |................Unloaded......................|
duke@435 2712 // Constant | ... O-NN .................................. | O-BOT |
duke@435 2713 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 2714 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 2715 //
duke@435 2716 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 2717 //
duke@435 2718 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 2719 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass() ); }
duke@435 2720 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2721 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 2722 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2723 else { return TypeInstPtr::NOTNULL; }
duke@435 2724 }
duke@435 2725 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 2726
duke@435 2727 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 2728 }
duke@435 2729
duke@435 2730 // Both are unloaded, not the same class, not Object
duke@435 2731 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 2732 if( ptr != TypePtr::BotPTR ) {
duke@435 2733 return TypeInstPtr::NOTNULL;
duke@435 2734 }
duke@435 2735 return TypeInstPtr::BOTTOM;
duke@435 2736 }
duke@435 2737
duke@435 2738
duke@435 2739 //------------------------------meet-------------------------------------------
duke@435 2740 // Compute the MEET of two types. It returns a new Type object.
duke@435 2741 const Type *TypeInstPtr::xmeet( const Type *t ) const {
duke@435 2742 // Perform a fast test for common case; meeting the same types together.
duke@435 2743 if( this == t ) return this; // Meeting same type-rep?
duke@435 2744
duke@435 2745 // Current "this->_base" is Pointer
duke@435 2746 switch (t->base()) { // switch on original type
duke@435 2747
duke@435 2748 case Int: // Mixing ints & oops happens when javac
duke@435 2749 case Long: // reuses local variables
duke@435 2750 case FloatTop:
duke@435 2751 case FloatCon:
duke@435 2752 case FloatBot:
duke@435 2753 case DoubleTop:
duke@435 2754 case DoubleCon:
duke@435 2755 case DoubleBot:
coleenp@548 2756 case NarrowOop:
duke@435 2757 case Bottom: // Ye Olde Default
duke@435 2758 return Type::BOTTOM;
duke@435 2759 case Top:
duke@435 2760 return this;
duke@435 2761
duke@435 2762 default: // All else is a mistake
duke@435 2763 typerr(t);
duke@435 2764
duke@435 2765 case RawPtr: return TypePtr::BOTTOM;
duke@435 2766
duke@435 2767 case AryPtr: { // All arrays inherit from Object class
duke@435 2768 const TypeAryPtr *tp = t->is_aryptr();
duke@435 2769 int offset = meet_offset(tp->offset());
duke@435 2770 PTR ptr = meet_ptr(tp->ptr());
kvn@658 2771 int instance_id = meet_instance_id(tp->instance_id());
duke@435 2772 switch (ptr) {
duke@435 2773 case TopPTR:
duke@435 2774 case AnyNull: // Fall 'down' to dual of object klass
duke@435 2775 if (klass()->equals(ciEnv::current()->Object_klass())) {
kvn@658 2776 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2777 } else {
duke@435 2778 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 2779 ptr = NotNull;
kvn@658 2780 instance_id = InstanceBot;
kvn@658 2781 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
duke@435 2782 }
duke@435 2783 case Constant:
duke@435 2784 case NotNull:
duke@435 2785 case BotPTR: // Fall down to object klass
duke@435 2786 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 2787 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 2788 // If 'this' (InstPtr) is above the centerline and it is Object class
twisti@1040 2789 // then we can subclass in the Java class hierarchy.
duke@435 2790 if (klass()->equals(ciEnv::current()->Object_klass())) {
duke@435 2791 // that is, tp's array type is a subtype of my klass
kvn@658 2792 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2793 }
duke@435 2794 }
duke@435 2795 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 2796 // The meet falls down to Object class below centerline.
duke@435 2797 if( ptr == Constant )
duke@435 2798 ptr = NotNull;
kvn@658 2799 instance_id = InstanceBot;
kvn@658 2800 return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
duke@435 2801 default: typerr(t);
duke@435 2802 }
duke@435 2803 }
duke@435 2804
duke@435 2805 case OopPtr: { // Meeting to OopPtrs
duke@435 2806 // Found a OopPtr type vs self-InstPtr type
kvn@1393 2807 const TypeOopPtr *tp = t->is_oopptr();
duke@435 2808 int offset = meet_offset(tp->offset());
duke@435 2809 PTR ptr = meet_ptr(tp->ptr());
duke@435 2810 switch (tp->ptr()) {
duke@435 2811 case TopPTR:
kvn@658 2812 case AnyNull: {
kvn@658 2813 int instance_id = meet_instance_id(InstanceTop);
duke@435 2814 return make(ptr, klass(), klass_is_exact(),
kvn@658 2815 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 2816 }
duke@435 2817 case NotNull:
kvn@1393 2818 case BotPTR: {
kvn@1393 2819 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 2820 return TypeOopPtr::make(ptr, offset, instance_id);
kvn@1393 2821 }
duke@435 2822 default: typerr(t);
duke@435 2823 }
duke@435 2824 }
duke@435 2825
duke@435 2826 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2827 // Found an AnyPtr type vs self-InstPtr type
duke@435 2828 const TypePtr *tp = t->is_ptr();
duke@435 2829 int offset = meet_offset(tp->offset());
duke@435 2830 PTR ptr = meet_ptr(tp->ptr());
duke@435 2831 switch (tp->ptr()) {
duke@435 2832 case Null:
duke@435 2833 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
kvn@658 2834 // else fall through to AnyNull
duke@435 2835 case TopPTR:
kvn@658 2836 case AnyNull: {
kvn@658 2837 int instance_id = meet_instance_id(InstanceTop);
duke@435 2838 return make( ptr, klass(), klass_is_exact(),
kvn@658 2839 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 2840 }
duke@435 2841 case NotNull:
duke@435 2842 case BotPTR:
duke@435 2843 return TypePtr::make( AnyPtr, ptr, offset );
duke@435 2844 default: typerr(t);
duke@435 2845 }
duke@435 2846 }
duke@435 2847
duke@435 2848 /*
duke@435 2849 A-top }
duke@435 2850 / | \ } Tops
duke@435 2851 B-top A-any C-top }
duke@435 2852 | / | \ | } Any-nulls
duke@435 2853 B-any | C-any }
duke@435 2854 | | |
duke@435 2855 B-con A-con C-con } constants; not comparable across classes
duke@435 2856 | | |
duke@435 2857 B-not | C-not }
duke@435 2858 | \ | / | } not-nulls
duke@435 2859 B-bot A-not C-bot }
duke@435 2860 \ | / } Bottoms
duke@435 2861 A-bot }
duke@435 2862 */
duke@435 2863
duke@435 2864 case InstPtr: { // Meeting 2 Oops?
duke@435 2865 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 2866 const TypeInstPtr *tinst = t->is_instptr();
duke@435 2867 int off = meet_offset( tinst->offset() );
duke@435 2868 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 2869 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 2870
duke@435 2871 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 2872 // If we have constants, then we created oops so classes are loaded
duke@435 2873 // and we can handle the constants further down. This case handles
duke@435 2874 // both-not-loaded or both-loaded classes
duke@435 2875 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
duke@435 2876 return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
duke@435 2877 }
duke@435 2878
duke@435 2879 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 2880 ciKlass* tinst_klass = tinst->klass();
duke@435 2881 ciKlass* this_klass = this->klass();
duke@435 2882 bool tinst_xk = tinst->klass_is_exact();
duke@435 2883 bool this_xk = this->klass_is_exact();
duke@435 2884 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 2885 // One of these classes has not been loaded
duke@435 2886 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 2887 #ifndef PRODUCT
duke@435 2888 if( PrintOpto && Verbose ) {
duke@435 2889 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 2890 tty->print(" this == "); this->dump(); tty->cr();
duke@435 2891 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 2892 }
duke@435 2893 #endif
duke@435 2894 return unloaded_meet;
duke@435 2895 }
duke@435 2896
duke@435 2897 // Handle mixing oops and interfaces first.
duke@435 2898 if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
duke@435 2899 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 2900 tinst_klass = this_klass;
duke@435 2901 this_klass = tmp;
duke@435 2902 bool tmp2 = tinst_xk;
duke@435 2903 tinst_xk = this_xk;
duke@435 2904 this_xk = tmp2;
duke@435 2905 }
duke@435 2906 if (tinst_klass->is_interface() &&
duke@435 2907 !(this_klass->is_interface() ||
duke@435 2908 // Treat java/lang/Object as an honorary interface,
duke@435 2909 // because we need a bottom for the interface hierarchy.
duke@435 2910 this_klass == ciEnv::current()->Object_klass())) {
duke@435 2911 // Oop meets interface!
duke@435 2912
duke@435 2913 // See if the oop subtypes (implements) interface.
duke@435 2914 ciKlass *k;
duke@435 2915 bool xk;
duke@435 2916 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 2917 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 2918 // on whether we are both above the centerline or either is
duke@435 2919 // below the centerline. If we are on the centerline
duke@435 2920 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 2921 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 2922 // If we are keeping this_klass, keep its exactness too.
duke@435 2923 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 2924 } else { // Does not implement, fall to Object
duke@435 2925 // Oop does not implement interface, so mixing falls to Object
duke@435 2926 // just like the verifier does (if both are above the
duke@435 2927 // centerline fall to interface)
duke@435 2928 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 2929 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 2930 // Watch out for Constant vs. AnyNull interface.
duke@435 2931 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 2932 instance_id = InstanceBot;
duke@435 2933 }
duke@435 2934 ciObject* o = NULL; // the Constant value, if any
duke@435 2935 if (ptr == Constant) {
duke@435 2936 // Find out which constant.
duke@435 2937 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 2938 }
kvn@658 2939 return make( ptr, k, xk, o, off, instance_id );
duke@435 2940 }
duke@435 2941
duke@435 2942 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 2943
duke@435 2944 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 2945 // If we split one up & one down AND they subtype, take the down man.
duke@435 2946 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 2947 // If both are up and they subtype, take the subtype class.
duke@435 2948 // If both are up and they do NOT subtype, "fall hard".
duke@435 2949 // If both are down and they subtype, take the supertype class.
duke@435 2950 // If both are down and they do NOT subtype, "fall hard".
duke@435 2951 // Constants treated as down.
duke@435 2952
duke@435 2953 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 2954 // "fall hard"; "fall hard" becomes the default case:
duke@435 2955 // If we split one up & one down AND they subtype, take the down man.
duke@435 2956 // If both are up and they subtype, take the subtype class.
duke@435 2957
duke@435 2958 // If both are down and they subtype, "fall hard".
duke@435 2959 // If both are down and they do NOT subtype, "fall hard".
duke@435 2960 // If both are up and they do NOT subtype, "fall hard".
duke@435 2961 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 2962
duke@435 2963 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 2964 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 2965 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 2966 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 2967
duke@435 2968 // Check for subtyping:
duke@435 2969 ciKlass *subtype = NULL;
duke@435 2970 bool subtype_exact = false;
duke@435 2971 if( tinst_klass->equals(this_klass) ) {
duke@435 2972 subtype = this_klass;
duke@435 2973 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 2974 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 2975 subtype = this_klass; // Pick subtyping class
duke@435 2976 subtype_exact = this_xk;
duke@435 2977 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 2978 subtype = tinst_klass; // Pick subtyping class
duke@435 2979 subtype_exact = tinst_xk;
duke@435 2980 }
duke@435 2981
duke@435 2982 if( subtype ) {
duke@435 2983 if( above_centerline(ptr) ) { // both are up?
duke@435 2984 this_klass = tinst_klass = subtype;
duke@435 2985 this_xk = tinst_xk = subtype_exact;
duke@435 2986 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 2987 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 2988 this_xk = tinst_xk;
duke@435 2989 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 2990 tinst_klass = this_klass; // this is down; keep down man
duke@435 2991 tinst_xk = this_xk;
duke@435 2992 } else {
duke@435 2993 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 2994 }
duke@435 2995 }
duke@435 2996
duke@435 2997 // Check for classes now being equal
duke@435 2998 if (tinst_klass->equals(this_klass)) {
duke@435 2999 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3000 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3001 // handled elsewhere).
duke@435 3002 ciObject* o = NULL; // Assume not constant when done
duke@435 3003 ciObject* this_oop = const_oop();
duke@435 3004 ciObject* tinst_oop = tinst->const_oop();
duke@435 3005 if( ptr == Constant ) {
duke@435 3006 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 3007 this_oop->equals(tinst_oop) )
duke@435 3008 o = this_oop;
duke@435 3009 else if (above_centerline(this ->_ptr))
duke@435 3010 o = tinst_oop;
duke@435 3011 else if (above_centerline(tinst ->_ptr))
duke@435 3012 o = this_oop;
duke@435 3013 else
duke@435 3014 ptr = NotNull;
duke@435 3015 }
duke@435 3016 return make( ptr, this_klass, this_xk, o, off, instance_id );
duke@435 3017 } // Else classes are not equal
duke@435 3018
duke@435 3019 // Since klasses are different, we require a LCA in the Java
duke@435 3020 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3021 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3022 ptr = NotNull;
kvn@682 3023 instance_id = InstanceBot;
duke@435 3024
duke@435 3025 // Now we find the LCA of Java classes
duke@435 3026 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
kvn@658 3027 return make( ptr, k, false, NULL, off, instance_id );
duke@435 3028 } // End of case InstPtr
duke@435 3029
duke@435 3030 case KlassPtr:
duke@435 3031 return TypeInstPtr::BOTTOM;
duke@435 3032
duke@435 3033 } // End of switch
duke@435 3034 return this; // Return the double constant
duke@435 3035 }
duke@435 3036
duke@435 3037
duke@435 3038 //------------------------java_mirror_type--------------------------------------
duke@435 3039 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3040 // must be a singleton type
duke@435 3041 if( const_oop() == NULL ) return NULL;
duke@435 3042
duke@435 3043 // must be of type java.lang.Class
duke@435 3044 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3045
duke@435 3046 return const_oop()->as_instance()->java_mirror_type();
duke@435 3047 }
duke@435 3048
duke@435 3049
duke@435 3050 //------------------------------xdual------------------------------------------
duke@435 3051 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
twisti@1040 3052 // inheritance mechanism.
duke@435 3053 const Type *TypeInstPtr::xdual() const {
kvn@658 3054 return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 3055 }
duke@435 3056
duke@435 3057 //------------------------------eq---------------------------------------------
duke@435 3058 // Structural equality check for Type representations
duke@435 3059 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3060 const TypeInstPtr *p = t->is_instptr();
duke@435 3061 return
duke@435 3062 klass()->equals(p->klass()) &&
duke@435 3063 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3064 }
duke@435 3065
duke@435 3066 //------------------------------hash-------------------------------------------
duke@435 3067 // Type-specific hashing function.
duke@435 3068 int TypeInstPtr::hash(void) const {
duke@435 3069 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 3070 return hash;
duke@435 3071 }
duke@435 3072
duke@435 3073 //------------------------------dump2------------------------------------------
duke@435 3074 // Dump oop Type
duke@435 3075 #ifndef PRODUCT
duke@435 3076 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3077 // Print the name of the klass.
duke@435 3078 klass()->print_name_on(st);
duke@435 3079
duke@435 3080 switch( _ptr ) {
duke@435 3081 case Constant:
duke@435 3082 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3083 if (WizardMode || Verbose) {
duke@435 3084 const_oop()->print_oop(st);
duke@435 3085 }
duke@435 3086 case BotPTR:
duke@435 3087 if (!WizardMode && !Verbose) {
duke@435 3088 if( _klass_is_exact ) st->print(":exact");
duke@435 3089 break;
duke@435 3090 }
duke@435 3091 case TopPTR:
duke@435 3092 case AnyNull:
duke@435 3093 case NotNull:
duke@435 3094 st->print(":%s", ptr_msg[_ptr]);
duke@435 3095 if( _klass_is_exact ) st->print(":exact");
duke@435 3096 break;
duke@435 3097 }
duke@435 3098
duke@435 3099 if( _offset ) { // Dump offset, if any
duke@435 3100 if( _offset == OffsetBot ) st->print("+any");
duke@435 3101 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3102 else st->print("+%d", _offset);
duke@435 3103 }
duke@435 3104
duke@435 3105 st->print(" *");
kvn@658 3106 if (_instance_id == InstanceTop)
kvn@658 3107 st->print(",iid=top");
kvn@658 3108 else if (_instance_id != InstanceBot)
duke@435 3109 st->print(",iid=%d",_instance_id);
duke@435 3110 }
duke@435 3111 #endif
duke@435 3112
duke@435 3113 //------------------------------add_offset-------------------------------------
kvn@741 3114 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
duke@435 3115 return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
duke@435 3116 }
duke@435 3117
duke@435 3118 //=============================================================================
duke@435 3119 // Convenience common pre-built types.
duke@435 3120 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3121 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3122 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3123 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3124 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3125 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3126 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3127 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3128 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3129 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3130
duke@435 3131 //------------------------------make-------------------------------------------
duke@435 3132 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3133 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3134 "integral arrays must be pre-equipped with a class");
duke@435 3135 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3136 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3137 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3138 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3139 }
duke@435 3140
duke@435 3141 //------------------------------make-------------------------------------------
duke@435 3142 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3143 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3144 "integral arrays must be pre-equipped with a class");
duke@435 3145 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3146 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3147 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3148 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3149 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3150 }
duke@435 3151
duke@435 3152 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3153 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3154 if( ptr == _ptr ) return this;
kvn@658 3155 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3156 }
duke@435 3157
duke@435 3158
duke@435 3159 //-----------------------------cast_to_exactness-------------------------------
duke@435 3160 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3161 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3162 if (!UseExactTypes) return this;
duke@435 3163 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
duke@435 3164 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
duke@435 3165 }
duke@435 3166
kvn@682 3167 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3168 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3169 if( instance_id == _instance_id ) return this;
kvn@682 3170 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
duke@435 3171 }
duke@435 3172
duke@435 3173 //-----------------------------narrow_size_type-------------------------------
duke@435 3174 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3175 // which is kind of slow (and cached elsewhere by other users).
duke@435 3176 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3177 static jint max_array_length(BasicType etype) {
duke@435 3178 jint& cache = max_array_length_cache[etype];
duke@435 3179 jint res = cache;
duke@435 3180 if (res == 0) {
duke@435 3181 switch (etype) {
coleenp@548 3182 case T_NARROWOOP:
coleenp@548 3183 etype = T_OBJECT;
coleenp@548 3184 break;
duke@435 3185 case T_CONFLICT:
duke@435 3186 case T_ILLEGAL:
duke@435 3187 case T_VOID:
duke@435 3188 etype = T_BYTE; // will produce conservatively high value
duke@435 3189 }
duke@435 3190 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3191 }
duke@435 3192 return res;
duke@435 3193 }
duke@435 3194
duke@435 3195 // Narrow the given size type to the index range for the given array base type.
duke@435 3196 // Return NULL if the resulting int type becomes empty.
rasbold@801 3197 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
duke@435 3198 jint hi = size->_hi;
duke@435 3199 jint lo = size->_lo;
duke@435 3200 jint min_lo = 0;
rasbold@801 3201 jint max_hi = max_array_length(elem()->basic_type());
duke@435 3202 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3203 bool chg = false;
duke@435 3204 if (lo < min_lo) { lo = min_lo; chg = true; }
duke@435 3205 if (hi > max_hi) { hi = max_hi; chg = true; }
twisti@1040 3206 // Negative length arrays will produce weird intermediate dead fast-path code
duke@435 3207 if (lo > hi)
rasbold@801 3208 return TypeInt::ZERO;
duke@435 3209 if (!chg)
duke@435 3210 return size;
duke@435 3211 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3212 }
duke@435 3213
duke@435 3214 //-------------------------------cast_to_size----------------------------------
duke@435 3215 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3216 assert(new_size != NULL, "");
rasbold@801 3217 new_size = narrow_size_type(new_size);
duke@435 3218 if (new_size == size()) return this;
duke@435 3219 const TypeAry* new_ary = TypeAry::make(elem(), new_size);
kvn@658 3220 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3221 }
duke@435 3222
duke@435 3223
duke@435 3224 //------------------------------eq---------------------------------------------
duke@435 3225 // Structural equality check for Type representations
duke@435 3226 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3227 const TypeAryPtr *p = t->is_aryptr();
duke@435 3228 return
duke@435 3229 _ary == p->_ary && // Check array
duke@435 3230 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3231 }
duke@435 3232
duke@435 3233 //------------------------------hash-------------------------------------------
duke@435 3234 // Type-specific hashing function.
duke@435 3235 int TypeAryPtr::hash(void) const {
duke@435 3236 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3237 }
duke@435 3238
duke@435 3239 //------------------------------meet-------------------------------------------
duke@435 3240 // Compute the MEET of two types. It returns a new Type object.
duke@435 3241 const Type *TypeAryPtr::xmeet( const Type *t ) const {
duke@435 3242 // Perform a fast test for common case; meeting the same types together.
duke@435 3243 if( this == t ) return this; // Meeting same type-rep?
duke@435 3244 // Current "this->_base" is Pointer
duke@435 3245 switch (t->base()) { // switch on original type
duke@435 3246
duke@435 3247 // Mixing ints & oops happens when javac reuses local variables
duke@435 3248 case Int:
duke@435 3249 case Long:
duke@435 3250 case FloatTop:
duke@435 3251 case FloatCon:
duke@435 3252 case FloatBot:
duke@435 3253 case DoubleTop:
duke@435 3254 case DoubleCon:
duke@435 3255 case DoubleBot:
coleenp@548 3256 case NarrowOop:
duke@435 3257 case Bottom: // Ye Olde Default
duke@435 3258 return Type::BOTTOM;
duke@435 3259 case Top:
duke@435 3260 return this;
duke@435 3261
duke@435 3262 default: // All else is a mistake
duke@435 3263 typerr(t);
duke@435 3264
duke@435 3265 case OopPtr: { // Meeting to OopPtrs
duke@435 3266 // Found a OopPtr type vs self-AryPtr type
kvn@1393 3267 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3268 int offset = meet_offset(tp->offset());
duke@435 3269 PTR ptr = meet_ptr(tp->ptr());
duke@435 3270 switch (tp->ptr()) {
duke@435 3271 case TopPTR:
kvn@658 3272 case AnyNull: {
kvn@658 3273 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3274 return make(ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3275 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3276 }
duke@435 3277 case BotPTR:
kvn@1393 3278 case NotNull: {
kvn@1393 3279 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 3280 return TypeOopPtr::make(ptr, offset, instance_id);
kvn@1393 3281 }
duke@435 3282 default: ShouldNotReachHere();
duke@435 3283 }
duke@435 3284 }
duke@435 3285
duke@435 3286 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3287 // Found an AnyPtr type vs self-AryPtr type
duke@435 3288 const TypePtr *tp = t->is_ptr();
duke@435 3289 int offset = meet_offset(tp->offset());
duke@435 3290 PTR ptr = meet_ptr(tp->ptr());
duke@435 3291 switch (tp->ptr()) {
duke@435 3292 case TopPTR:
duke@435 3293 return this;
duke@435 3294 case BotPTR:
duke@435 3295 case NotNull:
duke@435 3296 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3297 case Null:
duke@435 3298 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3299 // else fall through to AnyNull
kvn@658 3300 case AnyNull: {
kvn@658 3301 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3302 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3303 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3304 }
duke@435 3305 default: ShouldNotReachHere();
duke@435 3306 }
duke@435 3307 }
duke@435 3308
duke@435 3309 case RawPtr: return TypePtr::BOTTOM;
duke@435 3310
duke@435 3311 case AryPtr: { // Meeting 2 references?
duke@435 3312 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3313 int off = meet_offset(tap->offset());
duke@435 3314 const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
duke@435 3315 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3316 int instance_id = meet_instance_id(tap->instance_id());
duke@435 3317 ciKlass* lazy_klass = NULL;
duke@435 3318 if (tary->_elem->isa_int()) {
duke@435 3319 // Integral array element types have irrelevant lattice relations.
duke@435 3320 // It is the klass that determines array layout, not the element type.
duke@435 3321 if (_klass == NULL)
duke@435 3322 lazy_klass = tap->_klass;
duke@435 3323 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3324 lazy_klass = _klass;
duke@435 3325 } else {
duke@435 3326 // Something like byte[int+] meets char[int+].
duke@435 3327 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3328 instance_id = InstanceBot;
duke@435 3329 tary = TypeAry::make(Type::BOTTOM, tary->_size);
duke@435 3330 }
duke@435 3331 }
duke@435 3332 bool xk;
duke@435 3333 switch (tap->ptr()) {
duke@435 3334 case AnyNull:
duke@435 3335 case TopPTR:
duke@435 3336 // Compute new klass on demand, do not use tap->_klass
duke@435 3337 xk = (tap->_klass_is_exact | this->_klass_is_exact);
kvn@658 3338 return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
duke@435 3339 case Constant: {
duke@435 3340 ciObject* o = const_oop();
duke@435 3341 if( _ptr == Constant ) {
duke@435 3342 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
jrose@1424 3343 xk = (klass() == tap->klass());
duke@435 3344 ptr = NotNull;
duke@435 3345 o = NULL;
kvn@682 3346 instance_id = InstanceBot;
jrose@1424 3347 } else {
jrose@1424 3348 xk = true;
duke@435 3349 }
duke@435 3350 } else if( above_centerline(_ptr) ) {
duke@435 3351 o = tap->const_oop();
jrose@1424 3352 xk = true;
jrose@1424 3353 } else {
jrose@1424 3354 xk = this->_klass_is_exact;
duke@435 3355 }
kvn@658 3356 return TypeAryPtr::make( ptr, o, tary, tap->_klass, xk, off, instance_id );
duke@435 3357 }
duke@435 3358 case NotNull:
duke@435 3359 case BotPTR:
duke@435 3360 // Compute new klass on demand, do not use tap->_klass
duke@435 3361 if (above_centerline(this->_ptr))
duke@435 3362 xk = tap->_klass_is_exact;
duke@435 3363 else if (above_centerline(tap->_ptr))
duke@435 3364 xk = this->_klass_is_exact;
duke@435 3365 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 3366 (klass() == tap->klass()); // Only precise for identical arrays
kvn@658 3367 return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
duke@435 3368 default: ShouldNotReachHere();
duke@435 3369 }
duke@435 3370 }
duke@435 3371
duke@435 3372 // All arrays inherit from Object class
duke@435 3373 case InstPtr: {
duke@435 3374 const TypeInstPtr *tp = t->is_instptr();
duke@435 3375 int offset = meet_offset(tp->offset());
duke@435 3376 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3377 int instance_id = meet_instance_id(tp->instance_id());
duke@435 3378 switch (ptr) {
duke@435 3379 case TopPTR:
duke@435 3380 case AnyNull: // Fall 'down' to dual of object klass
duke@435 3381 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
kvn@658 3382 return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3383 } else {
duke@435 3384 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3385 ptr = NotNull;
kvn@658 3386 instance_id = InstanceBot;
kvn@658 3387 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3388 }
duke@435 3389 case Constant:
duke@435 3390 case NotNull:
duke@435 3391 case BotPTR: // Fall down to object klass
duke@435 3392 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3393 if (above_centerline(tp->ptr())) {
duke@435 3394 // If 'tp' is above the centerline and it is Object class
twisti@1040 3395 // then we can subclass in the Java class hierarchy.
duke@435 3396 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3397 // that is, my array type is a subtype of 'tp' klass
kvn@658 3398 return make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3399 }
duke@435 3400 }
duke@435 3401 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 3402 // The meet falls down to Object class below centerline.
duke@435 3403 if( ptr == Constant )
duke@435 3404 ptr = NotNull;
kvn@658 3405 instance_id = InstanceBot;
kvn@658 3406 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3407 default: typerr(t);
duke@435 3408 }
duke@435 3409 }
duke@435 3410
duke@435 3411 case KlassPtr:
duke@435 3412 return TypeInstPtr::BOTTOM;
duke@435 3413
duke@435 3414 }
duke@435 3415 return this; // Lint noise
duke@435 3416 }
duke@435 3417
duke@435 3418 //------------------------------xdual------------------------------------------
duke@435 3419 // Dual: compute field-by-field dual
duke@435 3420 const Type *TypeAryPtr::xdual() const {
kvn@658 3421 return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
duke@435 3422 }
duke@435 3423
kvn@1255 3424 //----------------------interface_vs_oop---------------------------------------
kvn@1255 3425 #ifdef ASSERT
kvn@1255 3426 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
kvn@1255 3427 const TypeAryPtr* t_aryptr = t->isa_aryptr();
kvn@1255 3428 if (t_aryptr) {
kvn@1255 3429 return _ary->interface_vs_oop(t_aryptr->_ary);
kvn@1255 3430 }
kvn@1255 3431 return false;
kvn@1255 3432 }
kvn@1255 3433 #endif
kvn@1255 3434
duke@435 3435 //------------------------------dump2------------------------------------------
duke@435 3436 #ifndef PRODUCT
duke@435 3437 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3438 _ary->dump2(d,depth,st);
duke@435 3439 switch( _ptr ) {
duke@435 3440 case Constant:
duke@435 3441 const_oop()->print(st);
duke@435 3442 break;
duke@435 3443 case BotPTR:
duke@435 3444 if (!WizardMode && !Verbose) {
duke@435 3445 if( _klass_is_exact ) st->print(":exact");
duke@435 3446 break;
duke@435 3447 }
duke@435 3448 case TopPTR:
duke@435 3449 case AnyNull:
duke@435 3450 case NotNull:
duke@435 3451 st->print(":%s", ptr_msg[_ptr]);
duke@435 3452 if( _klass_is_exact ) st->print(":exact");
duke@435 3453 break;
duke@435 3454 }
duke@435 3455
kvn@499 3456 if( _offset != 0 ) {
kvn@499 3457 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 3458 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 3459 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 3460 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 3461 else {
kvn@499 3462 BasicType basic_elem_type = elem()->basic_type();
kvn@499 3463 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 3464 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 3465 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 3466 }
kvn@499 3467 }
kvn@499 3468 st->print(" *");
kvn@658 3469 if (_instance_id == InstanceTop)
kvn@658 3470 st->print(",iid=top");
kvn@658 3471 else if (_instance_id != InstanceBot)
duke@435 3472 st->print(",iid=%d",_instance_id);
duke@435 3473 }
duke@435 3474 #endif
duke@435 3475
duke@435 3476 bool TypeAryPtr::empty(void) const {
duke@435 3477 if (_ary->empty()) return true;
duke@435 3478 return TypeOopPtr::empty();
duke@435 3479 }
duke@435 3480
duke@435 3481 //------------------------------add_offset-------------------------------------
kvn@741 3482 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
duke@435 3483 return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
duke@435 3484 }
duke@435 3485
duke@435 3486
duke@435 3487 //=============================================================================
coleenp@548 3488 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
coleenp@548 3489 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
coleenp@548 3490
coleenp@548 3491
coleenp@548 3492 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
coleenp@548 3493 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
coleenp@548 3494 }
coleenp@548 3495
coleenp@548 3496 //------------------------------hash-------------------------------------------
coleenp@548 3497 // Type-specific hashing function.
coleenp@548 3498 int TypeNarrowOop::hash(void) const {
never@1262 3499 return _ptrtype->hash() + 7;
coleenp@548 3500 }
coleenp@548 3501
coleenp@548 3502
coleenp@548 3503 bool TypeNarrowOop::eq( const Type *t ) const {
coleenp@548 3504 const TypeNarrowOop* tc = t->isa_narrowoop();
coleenp@548 3505 if (tc != NULL) {
never@1262 3506 if (_ptrtype->base() != tc->_ptrtype->base()) {
coleenp@548 3507 return false;
coleenp@548 3508 }
never@1262 3509 return tc->_ptrtype->eq(_ptrtype);
coleenp@548 3510 }
coleenp@548 3511 return false;
coleenp@548 3512 }
coleenp@548 3513
coleenp@548 3514 bool TypeNarrowOop::singleton(void) const { // TRUE if type is a singleton
never@1262 3515 return _ptrtype->singleton();
coleenp@548 3516 }
coleenp@548 3517
coleenp@548 3518 bool TypeNarrowOop::empty(void) const {
never@1262 3519 return _ptrtype->empty();
coleenp@548 3520 }
coleenp@548 3521
kvn@728 3522 //------------------------------xmeet------------------------------------------
coleenp@548 3523 // Compute the MEET of two types. It returns a new Type object.
coleenp@548 3524 const Type *TypeNarrowOop::xmeet( const Type *t ) const {
coleenp@548 3525 // Perform a fast test for common case; meeting the same types together.
coleenp@548 3526 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 3527
coleenp@548 3528
coleenp@548 3529 // Current "this->_base" is OopPtr
coleenp@548 3530 switch (t->base()) { // switch on original type
coleenp@548 3531
coleenp@548 3532 case Int: // Mixing ints & oops happens when javac
coleenp@548 3533 case Long: // reuses local variables
coleenp@548 3534 case FloatTop:
coleenp@548 3535 case FloatCon:
coleenp@548 3536 case FloatBot:
coleenp@548 3537 case DoubleTop:
coleenp@548 3538 case DoubleCon:
coleenp@548 3539 case DoubleBot:
kvn@728 3540 case AnyPtr:
kvn@728 3541 case RawPtr:
kvn@728 3542 case OopPtr:
kvn@728 3543 case InstPtr:
kvn@728 3544 case KlassPtr:
kvn@728 3545 case AryPtr:
kvn@728 3546
coleenp@548 3547 case Bottom: // Ye Olde Default
coleenp@548 3548 return Type::BOTTOM;
coleenp@548 3549 case Top:
coleenp@548 3550 return this;
coleenp@548 3551
coleenp@548 3552 case NarrowOop: {
never@1262 3553 const Type* result = _ptrtype->xmeet(t->make_ptr());
coleenp@548 3554 if (result->isa_ptr()) {
coleenp@548 3555 return TypeNarrowOop::make(result->is_ptr());
coleenp@548 3556 }
coleenp@548 3557 return result;
coleenp@548 3558 }
coleenp@548 3559
coleenp@548 3560 default: // All else is a mistake
coleenp@548 3561 typerr(t);
coleenp@548 3562
coleenp@548 3563 } // End of switch
kvn@728 3564
kvn@728 3565 return this;
coleenp@548 3566 }
coleenp@548 3567
coleenp@548 3568 const Type *TypeNarrowOop::xdual() const { // Compute dual right now.
never@1262 3569 const TypePtr* odual = _ptrtype->dual()->is_ptr();
coleenp@548 3570 return new TypeNarrowOop(odual);
coleenp@548 3571 }
coleenp@548 3572
coleenp@548 3573 const Type *TypeNarrowOop::filter( const Type *kills ) const {
coleenp@548 3574 if (kills->isa_narrowoop()) {
never@1262 3575 const Type* ft =_ptrtype->filter(kills->is_narrowoop()->_ptrtype);
coleenp@548 3576 if (ft->empty())
coleenp@548 3577 return Type::TOP; // Canonical empty value
coleenp@548 3578 if (ft->isa_ptr()) {
coleenp@548 3579 return make(ft->isa_ptr());
coleenp@548 3580 }
coleenp@548 3581 return ft;
coleenp@548 3582 } else if (kills->isa_ptr()) {
never@1262 3583 const Type* ft = _ptrtype->join(kills);
coleenp@548 3584 if (ft->empty())
coleenp@548 3585 return Type::TOP; // Canonical empty value
coleenp@548 3586 return ft;
coleenp@548 3587 } else {
coleenp@548 3588 return Type::TOP;
coleenp@548 3589 }
coleenp@548 3590 }
coleenp@548 3591
coleenp@548 3592
coleenp@548 3593 intptr_t TypeNarrowOop::get_con() const {
never@1262 3594 return _ptrtype->get_con();
coleenp@548 3595 }
coleenp@548 3596
coleenp@548 3597 #ifndef PRODUCT
coleenp@548 3598 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
never@852 3599 st->print("narrowoop: ");
never@1262 3600 _ptrtype->dump2(d, depth, st);
coleenp@548 3601 }
coleenp@548 3602 #endif
coleenp@548 3603
coleenp@548 3604
coleenp@548 3605 //=============================================================================
duke@435 3606 // Convenience common pre-built types.
duke@435 3607
duke@435 3608 // Not-null object klass or below
duke@435 3609 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 3610 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 3611
duke@435 3612 //------------------------------TypeKlasPtr------------------------------------
duke@435 3613 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
duke@435 3614 : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
duke@435 3615 }
duke@435 3616
duke@435 3617 //------------------------------make-------------------------------------------
duke@435 3618 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 3619 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 3620 assert( k != NULL, "Expect a non-NULL klass");
duke@435 3621 assert(k->is_instance_klass() || k->is_array_klass() ||
duke@435 3622 k->is_method_klass(), "Incorrect type of klass oop");
duke@435 3623 TypeKlassPtr *r =
duke@435 3624 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 3625
duke@435 3626 return r;
duke@435 3627 }
duke@435 3628
duke@435 3629 //------------------------------eq---------------------------------------------
duke@435 3630 // Structural equality check for Type representations
duke@435 3631 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 3632 const TypeKlassPtr *p = t->is_klassptr();
duke@435 3633 return
duke@435 3634 klass()->equals(p->klass()) &&
duke@435 3635 TypeOopPtr::eq(p);
duke@435 3636 }
duke@435 3637
duke@435 3638 //------------------------------hash-------------------------------------------
duke@435 3639 // Type-specific hashing function.
duke@435 3640 int TypeKlassPtr::hash(void) const {
duke@435 3641 return klass()->hash() + TypeOopPtr::hash();
duke@435 3642 }
duke@435 3643
duke@435 3644
duke@435 3645 //------------------------------klass------------------------------------------
duke@435 3646 // Return the defining klass for this class
duke@435 3647 ciKlass* TypeAryPtr::klass() const {
duke@435 3648 if( _klass ) return _klass; // Return cached value, if possible
duke@435 3649
duke@435 3650 // Oops, need to compute _klass and cache it
duke@435 3651 ciKlass* k_ary = NULL;
duke@435 3652 const TypeInstPtr *tinst;
duke@435 3653 const TypeAryPtr *tary;
coleenp@548 3654 const Type* el = elem();
coleenp@548 3655 if (el->isa_narrowoop()) {
kvn@656 3656 el = el->make_ptr();
coleenp@548 3657 }
coleenp@548 3658
duke@435 3659 // Get element klass
coleenp@548 3660 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 3661 // Compute array klass from element klass
duke@435 3662 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 3663 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 3664 // Compute array klass from element klass
duke@435 3665 ciKlass* k_elem = tary->klass();
duke@435 3666 // If element type is something like bottom[], k_elem will be null.
duke@435 3667 if (k_elem != NULL)
duke@435 3668 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 3669 } else if ((el->base() == Type::Top) ||
coleenp@548 3670 (el->base() == Type::Bottom)) {
duke@435 3671 // element type of Bottom occurs from meet of basic type
duke@435 3672 // and object; Top occurs when doing join on Bottom.
duke@435 3673 // Leave k_ary at NULL.
duke@435 3674 } else {
duke@435 3675 // Cannot compute array klass directly from basic type,
duke@435 3676 // since subtypes of TypeInt all have basic type T_INT.
coleenp@548 3677 assert(!el->isa_int(),
duke@435 3678 "integral arrays must be pre-equipped with a class");
duke@435 3679 // Compute array klass directly from basic type
coleenp@548 3680 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 3681 }
duke@435 3682
kvn@598 3683 if( this != TypeAryPtr::OOPS ) {
duke@435 3684 // The _klass field acts as a cache of the underlying
duke@435 3685 // ciKlass for this array type. In order to set the field,
duke@435 3686 // we need to cast away const-ness.
duke@435 3687 //
duke@435 3688 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 3689 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 3690 // active compilations. However, the ciKlass which represents
duke@435 3691 // this Type is *not* shared between compilations, so caching
duke@435 3692 // this value would result in fetching a dangling pointer.
duke@435 3693 //
duke@435 3694 // Recomputing the underlying ciKlass for each request is
duke@435 3695 // a bit less efficient than caching, but calls to
duke@435 3696 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 3697 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 3698 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 3699 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 3700 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 3701 }
kvn@598 3702 }
duke@435 3703 return k_ary;
duke@435 3704 }
duke@435 3705
duke@435 3706
duke@435 3707 //------------------------------add_offset-------------------------------------
duke@435 3708 // Access internals of klass object
kvn@741 3709 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
duke@435 3710 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 3711 }
duke@435 3712
duke@435 3713 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3714 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
kvn@992 3715 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
duke@435 3716 if( ptr == _ptr ) return this;
duke@435 3717 return make(ptr, _klass, _offset);
duke@435 3718 }
duke@435 3719
duke@435 3720
duke@435 3721 //-----------------------------cast_to_exactness-------------------------------
duke@435 3722 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3723 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3724 if (!UseExactTypes) return this;
duke@435 3725 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 3726 }
duke@435 3727
duke@435 3728
duke@435 3729 //-----------------------------as_instance_type--------------------------------
duke@435 3730 // Corresponding type for an instance of the given class.
duke@435 3731 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 3732 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 3733 ciKlass* k = klass();
duke@435 3734 bool xk = klass_is_exact();
duke@435 3735 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 3736 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
duke@435 3737 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 3738 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 3739 }
duke@435 3740
duke@435 3741
duke@435 3742 //------------------------------xmeet------------------------------------------
duke@435 3743 // Compute the MEET of two types, return a new Type object.
duke@435 3744 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 3745 // Perform a fast test for common case; meeting the same types together.
duke@435 3746 if( this == t ) return this; // Meeting same type-rep?
duke@435 3747
duke@435 3748 // Current "this->_base" is Pointer
duke@435 3749 switch (t->base()) { // switch on original type
duke@435 3750
duke@435 3751 case Int: // Mixing ints & oops happens when javac
duke@435 3752 case Long: // reuses local variables
duke@435 3753 case FloatTop:
duke@435 3754 case FloatCon:
duke@435 3755 case FloatBot:
duke@435 3756 case DoubleTop:
duke@435 3757 case DoubleCon:
duke@435 3758 case DoubleBot:
kvn@728 3759 case NarrowOop:
duke@435 3760 case Bottom: // Ye Olde Default
duke@435 3761 return Type::BOTTOM;
duke@435 3762 case Top:
duke@435 3763 return this;
duke@435 3764
duke@435 3765 default: // All else is a mistake
duke@435 3766 typerr(t);
duke@435 3767
duke@435 3768 case RawPtr: return TypePtr::BOTTOM;
duke@435 3769
duke@435 3770 case OopPtr: { // Meeting to OopPtrs
duke@435 3771 // Found a OopPtr type vs self-KlassPtr type
duke@435 3772 const TypePtr *tp = t->is_oopptr();
duke@435 3773 int offset = meet_offset(tp->offset());
duke@435 3774 PTR ptr = meet_ptr(tp->ptr());
duke@435 3775 switch (tp->ptr()) {
duke@435 3776 case TopPTR:
duke@435 3777 case AnyNull:
duke@435 3778 return make(ptr, klass(), offset);
duke@435 3779 case BotPTR:
duke@435 3780 case NotNull:
duke@435 3781 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3782 default: typerr(t);
duke@435 3783 }
duke@435 3784 }
duke@435 3785
duke@435 3786 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3787 // Found an AnyPtr type vs self-KlassPtr type
duke@435 3788 const TypePtr *tp = t->is_ptr();
duke@435 3789 int offset = meet_offset(tp->offset());
duke@435 3790 PTR ptr = meet_ptr(tp->ptr());
duke@435 3791 switch (tp->ptr()) {
duke@435 3792 case TopPTR:
duke@435 3793 return this;
duke@435 3794 case Null:
duke@435 3795 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 3796 case AnyNull:
duke@435 3797 return make( ptr, klass(), offset );
duke@435 3798 case BotPTR:
duke@435 3799 case NotNull:
duke@435 3800 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3801 default: typerr(t);
duke@435 3802 }
duke@435 3803 }
duke@435 3804
duke@435 3805 case AryPtr: // Meet with AryPtr
duke@435 3806 case InstPtr: // Meet with InstPtr
duke@435 3807 return TypeInstPtr::BOTTOM;
duke@435 3808
duke@435 3809 //
duke@435 3810 // A-top }
duke@435 3811 // / | \ } Tops
duke@435 3812 // B-top A-any C-top }
duke@435 3813 // | / | \ | } Any-nulls
duke@435 3814 // B-any | C-any }
duke@435 3815 // | | |
duke@435 3816 // B-con A-con C-con } constants; not comparable across classes
duke@435 3817 // | | |
duke@435 3818 // B-not | C-not }
duke@435 3819 // | \ | / | } not-nulls
duke@435 3820 // B-bot A-not C-bot }
duke@435 3821 // \ | / } Bottoms
duke@435 3822 // A-bot }
duke@435 3823 //
duke@435 3824
duke@435 3825 case KlassPtr: { // Meet two KlassPtr types
duke@435 3826 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 3827 int off = meet_offset(tkls->offset());
duke@435 3828 PTR ptr = meet_ptr(tkls->ptr());
duke@435 3829
duke@435 3830 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3831 // If we have constants, then we created oops so classes are loaded
duke@435 3832 // and we can handle the constants further down. This case handles
duke@435 3833 // not-loaded classes
duke@435 3834 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 3835 return make( ptr, klass(), off );
duke@435 3836 }
duke@435 3837
duke@435 3838 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3839 ciKlass* tkls_klass = tkls->klass();
duke@435 3840 ciKlass* this_klass = this->klass();
duke@435 3841 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 3842 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 3843
duke@435 3844 // If 'this' type is above the centerline and is a superclass of the
duke@435 3845 // other, we can treat 'this' as having the same type as the other.
duke@435 3846 if ((above_centerline(this->ptr())) &&
duke@435 3847 tkls_klass->is_subtype_of(this_klass)) {
duke@435 3848 this_klass = tkls_klass;
duke@435 3849 }
duke@435 3850 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 3851 // other, we can treat 'tinst' as having the same type as the other.
duke@435 3852 if ((above_centerline(tkls->ptr())) &&
duke@435 3853 this_klass->is_subtype_of(tkls_klass)) {
duke@435 3854 tkls_klass = this_klass;
duke@435 3855 }
duke@435 3856
duke@435 3857 // Check for classes now being equal
duke@435 3858 if (tkls_klass->equals(this_klass)) {
duke@435 3859 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3860 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3861 // handled elsewhere).
duke@435 3862 ciObject* o = NULL; // Assume not constant when done
duke@435 3863 ciObject* this_oop = const_oop();
duke@435 3864 ciObject* tkls_oop = tkls->const_oop();
duke@435 3865 if( ptr == Constant ) {
duke@435 3866 if (this_oop != NULL && tkls_oop != NULL &&
duke@435 3867 this_oop->equals(tkls_oop) )
duke@435 3868 o = this_oop;
duke@435 3869 else if (above_centerline(this->ptr()))
duke@435 3870 o = tkls_oop;
duke@435 3871 else if (above_centerline(tkls->ptr()))
duke@435 3872 o = this_oop;
duke@435 3873 else
duke@435 3874 ptr = NotNull;
duke@435 3875 }
duke@435 3876 return make( ptr, this_klass, off );
duke@435 3877 } // Else classes are not equal
duke@435 3878
duke@435 3879 // Since klasses are different, we require the LCA in the Java
duke@435 3880 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3881 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3882 ptr = NotNull;
duke@435 3883 // Now we find the LCA of Java classes
duke@435 3884 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 3885 return make( ptr, k, off );
duke@435 3886 } // End of case KlassPtr
duke@435 3887
duke@435 3888 } // End of switch
duke@435 3889 return this; // Return the double constant
duke@435 3890 }
duke@435 3891
duke@435 3892 //------------------------------xdual------------------------------------------
duke@435 3893 // Dual: compute field-by-field dual
duke@435 3894 const Type *TypeKlassPtr::xdual() const {
duke@435 3895 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 3896 }
duke@435 3897
duke@435 3898 //------------------------------dump2------------------------------------------
duke@435 3899 // Dump Klass Type
duke@435 3900 #ifndef PRODUCT
duke@435 3901 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 3902 switch( _ptr ) {
duke@435 3903 case Constant:
duke@435 3904 st->print("precise ");
duke@435 3905 case NotNull:
duke@435 3906 {
duke@435 3907 const char *name = klass()->name()->as_utf8();
duke@435 3908 if( name ) {
duke@435 3909 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 3910 } else {
duke@435 3911 ShouldNotReachHere();
duke@435 3912 }
duke@435 3913 }
duke@435 3914 case BotPTR:
duke@435 3915 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 3916 case TopPTR:
duke@435 3917 case AnyNull:
duke@435 3918 st->print(":%s", ptr_msg[_ptr]);
duke@435 3919 if( _klass_is_exact ) st->print(":exact");
duke@435 3920 break;
duke@435 3921 }
duke@435 3922
duke@435 3923 if( _offset ) { // Dump offset, if any
duke@435 3924 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 3925 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 3926 else { st->print("+%d", _offset); }
duke@435 3927 }
duke@435 3928
duke@435 3929 st->print(" *");
duke@435 3930 }
duke@435 3931 #endif
duke@435 3932
duke@435 3933
duke@435 3934
duke@435 3935 //=============================================================================
duke@435 3936 // Convenience common pre-built types.
duke@435 3937
duke@435 3938 //------------------------------make-------------------------------------------
duke@435 3939 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 3940 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 3941 }
duke@435 3942
duke@435 3943 //------------------------------make-------------------------------------------
duke@435 3944 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 3945 Compile* C = Compile::current();
duke@435 3946 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 3947 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 3948 const TypeTuple *domain;
duke@435 3949 if (method->flags().is_static()) {
duke@435 3950 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 3951 } else {
duke@435 3952 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 3953 }
duke@435 3954 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 3955 tf = TypeFunc::make(domain, range);
duke@435 3956 C->set_last_tf(method, tf); // fill cache
duke@435 3957 return tf;
duke@435 3958 }
duke@435 3959
duke@435 3960 //------------------------------meet-------------------------------------------
duke@435 3961 // Compute the MEET of two types. It returns a new Type object.
duke@435 3962 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 3963 // Perform a fast test for common case; meeting the same types together.
duke@435 3964 if( this == t ) return this; // Meeting same type-rep?
duke@435 3965
duke@435 3966 // Current "this->_base" is Func
duke@435 3967 switch (t->base()) { // switch on original type
duke@435 3968
duke@435 3969 case Bottom: // Ye Olde Default
duke@435 3970 return t;
duke@435 3971
duke@435 3972 default: // All else is a mistake
duke@435 3973 typerr(t);
duke@435 3974
duke@435 3975 case Top:
duke@435 3976 break;
duke@435 3977 }
duke@435 3978 return this; // Return the double constant
duke@435 3979 }
duke@435 3980
duke@435 3981 //------------------------------xdual------------------------------------------
duke@435 3982 // Dual: compute field-by-field dual
duke@435 3983 const Type *TypeFunc::xdual() const {
duke@435 3984 return this;
duke@435 3985 }
duke@435 3986
duke@435 3987 //------------------------------eq---------------------------------------------
duke@435 3988 // Structural equality check for Type representations
duke@435 3989 bool TypeFunc::eq( const Type *t ) const {
duke@435 3990 const TypeFunc *a = (const TypeFunc*)t;
duke@435 3991 return _domain == a->_domain &&
duke@435 3992 _range == a->_range;
duke@435 3993 }
duke@435 3994
duke@435 3995 //------------------------------hash-------------------------------------------
duke@435 3996 // Type-specific hashing function.
duke@435 3997 int TypeFunc::hash(void) const {
duke@435 3998 return (intptr_t)_domain + (intptr_t)_range;
duke@435 3999 }
duke@435 4000
duke@435 4001 //------------------------------dump2------------------------------------------
duke@435 4002 // Dump Function Type
duke@435 4003 #ifndef PRODUCT
duke@435 4004 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4005 if( _range->_cnt <= Parms )
duke@435 4006 st->print("void");
duke@435 4007 else {
duke@435 4008 uint i;
duke@435 4009 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 4010 _range->field_at(i)->dump2(d,depth,st);
duke@435 4011 st->print("/");
duke@435 4012 }
duke@435 4013 _range->field_at(i)->dump2(d,depth,st);
duke@435 4014 }
duke@435 4015 st->print(" ");
duke@435 4016 st->print("( ");
duke@435 4017 if( !depth || d[this] ) { // Check for recursive dump
duke@435 4018 st->print("...)");
duke@435 4019 return;
duke@435 4020 }
duke@435 4021 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 4022 if (Parms < _domain->_cnt)
duke@435 4023 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 4024 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 4025 st->print(", ");
duke@435 4026 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 4027 }
duke@435 4028 st->print(" )");
duke@435 4029 }
duke@435 4030
duke@435 4031 //------------------------------print_flattened--------------------------------
duke@435 4032 // Print a 'flattened' signature
duke@435 4033 static const char * const flat_type_msg[Type::lastype] = {
coleenp@548 4034 "bad","control","top","int","long","_", "narrowoop",
duke@435 4035 "tuple:", "array:",
duke@435 4036 "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
duke@435 4037 "func", "abIO", "return_address", "mem",
duke@435 4038 "float_top", "ftcon:", "flt",
duke@435 4039 "double_top", "dblcon:", "dbl",
duke@435 4040 "bottom"
duke@435 4041 };
duke@435 4042
duke@435 4043 void TypeFunc::print_flattened() const {
duke@435 4044 if( _range->_cnt <= Parms )
duke@435 4045 tty->print("void");
duke@435 4046 else {
duke@435 4047 uint i;
duke@435 4048 for (i = Parms; i < _range->_cnt-1; i++)
duke@435 4049 tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
duke@435 4050 tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
duke@435 4051 }
duke@435 4052 tty->print(" ( ");
duke@435 4053 if (Parms < _domain->_cnt)
duke@435 4054 tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
duke@435 4055 for (uint i = Parms+1; i < _domain->_cnt; i++)
duke@435 4056 tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
duke@435 4057 tty->print(" )");
duke@435 4058 }
duke@435 4059 #endif
duke@435 4060
duke@435 4061 //------------------------------singleton--------------------------------------
duke@435 4062 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 4063 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 4064 // or a single symbol.
duke@435 4065 bool TypeFunc::singleton(void) const {
duke@435 4066 return false; // Never a singleton
duke@435 4067 }
duke@435 4068
duke@435 4069 bool TypeFunc::empty(void) const {
duke@435 4070 return false; // Never empty
duke@435 4071 }
duke@435 4072
duke@435 4073
duke@435 4074 BasicType TypeFunc::return_type() const{
duke@435 4075 if (range()->cnt() == TypeFunc::Parms) {
duke@435 4076 return T_VOID;
duke@435 4077 }
duke@435 4078 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 4079 }

mercurial