src/share/vm/opto/type.cpp

Thu, 21 Apr 2016 21:53:15 +0530

author
shshahma
date
Thu, 21 Apr 2016 21:53:15 +0530
changeset 8422
09687c445ce1
parent 7873
2a55e4998f0d
child 8424
2094cac55c59
permissions
-rw-r--r--

8141551: C2 can not handle returns with inccompatible interface arrays
Reviewed-by: kvn

duke@435 1 /*
drchase@6680 2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
coleenp@4037 26 #include "ci/ciMethodData.hpp"
stefank@2314 27 #include "ci/ciTypeFlow.hpp"
stefank@2314 28 #include "classfile/symbolTable.hpp"
stefank@2314 29 #include "classfile/systemDictionary.hpp"
stefank@2314 30 #include "compiler/compileLog.hpp"
stefank@2314 31 #include "libadt/dict.hpp"
stefank@2314 32 #include "memory/gcLocker.hpp"
stefank@2314 33 #include "memory/oopFactory.hpp"
stefank@2314 34 #include "memory/resourceArea.hpp"
stefank@2314 35 #include "oops/instanceKlass.hpp"
never@2658 36 #include "oops/instanceMirrorKlass.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "oops/typeArrayKlass.hpp"
stefank@2314 39 #include "opto/matcher.hpp"
stefank@2314 40 #include "opto/node.hpp"
stefank@2314 41 #include "opto/opcodes.hpp"
stefank@2314 42 #include "opto/type.hpp"
stefank@2314 43
drchase@6680 44 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6680 45
duke@435 46 // Portions of code courtesy of Clifford Click
duke@435 47
duke@435 48 // Optimization - Graph Style
duke@435 49
duke@435 50 // Dictionary of types shared among compilations.
duke@435 51 Dict* Type::_shared_type_dict = NULL;
duke@435 52
duke@435 53 // Array which maps compiler types to Basic Types
coleenp@4037 54 Type::TypeInfo Type::_type_info[Type::lastype] = {
coleenp@4037 55 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
coleenp@4037 56 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
coleenp@4037 57 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
coleenp@4037 58 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
coleenp@4037 59 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
coleenp@4037 60 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
coleenp@4037 61 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
roland@4159 62 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass
coleenp@4037 63 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
coleenp@4037 64 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
coleenp@4037 65
goetz@6487 66 #ifdef SPARC
goetz@6487 67 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
goetz@6487 68 { Bad, T_ILLEGAL, "vectord:", false, Op_RegD, relocInfo::none }, // VectorD
goetz@6487 69 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
goetz@6487 70 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
goetz@6487 71 #elif defined(PPC64)
goetz@6487 72 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
goetz@6487 73 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD
goetz@6487 74 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
goetz@6487 75 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
goetz@6487 76 #else // all other
coleenp@4037 77 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS
coleenp@4037 78 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
coleenp@4037 79 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
coleenp@4037 80 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY
goetz@6487 81 #endif
coleenp@4037 82 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr
coleenp@4037 83 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr
coleenp@4037 84 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr
coleenp@4037 85 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr
coleenp@4037 86 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr
coleenp@4037 87 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr
coleenp@4037 88 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr
coleenp@4037 89 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function
coleenp@4037 90 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio
coleenp@4037 91 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address
coleenp@4037 92 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory
coleenp@4037 93 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop
coleenp@4037 94 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon
coleenp@4037 95 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot
coleenp@4037 96 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop
coleenp@4037 97 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon
coleenp@4037 98 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot
coleenp@4037 99 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom
duke@435 100 };
duke@435 101
duke@435 102 // Map ideal registers (machine types) to ideal types
duke@435 103 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 104
duke@435 105 // Map basic types to canonical Type* pointers.
duke@435 106 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 107
duke@435 108 // Map basic types to constant-zero Types.
duke@435 109 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 110
duke@435 111 // Map basic types to array-body alias types.
duke@435 112 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 113
duke@435 114 //=============================================================================
duke@435 115 // Convenience common pre-built types.
duke@435 116 const Type *Type::ABIO; // State-of-machine only
duke@435 117 const Type *Type::BOTTOM; // All values
duke@435 118 const Type *Type::CONTROL; // Control only
duke@435 119 const Type *Type::DOUBLE; // All doubles
duke@435 120 const Type *Type::FLOAT; // All floats
duke@435 121 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 122 const Type *Type::MEMORY; // Abstract store only
duke@435 123 const Type *Type::RETURN_ADDRESS;
duke@435 124 const Type *Type::TOP; // No values in set
duke@435 125
duke@435 126 //------------------------------get_const_type---------------------------
duke@435 127 const Type* Type::get_const_type(ciType* type) {
duke@435 128 if (type == NULL) {
duke@435 129 return NULL;
duke@435 130 } else if (type->is_primitive_type()) {
duke@435 131 return get_const_basic_type(type->basic_type());
duke@435 132 } else {
duke@435 133 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 134 }
duke@435 135 }
duke@435 136
duke@435 137 //---------------------------array_element_basic_type---------------------------------
duke@435 138 // Mapping to the array element's basic type.
duke@435 139 BasicType Type::array_element_basic_type() const {
duke@435 140 BasicType bt = basic_type();
duke@435 141 if (bt == T_INT) {
duke@435 142 if (this == TypeInt::INT) return T_INT;
duke@435 143 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 144 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 145 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 146 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 147 return T_VOID;
duke@435 148 }
duke@435 149 return bt;
duke@435 150 }
duke@435 151
shshahma@8422 152 // For two instance arrays of same dimension, return the base element types.
shshahma@8422 153 // Otherwise or if the arrays have different dimensions, return NULL.
shshahma@8422 154 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
shshahma@8422 155 const TypeInstPtr **e1, const TypeInstPtr **e2) {
shshahma@8422 156
shshahma@8422 157 if (e1) *e1 = NULL;
shshahma@8422 158 if (e2) *e2 = NULL;
shshahma@8422 159 const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
shshahma@8422 160 const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
shshahma@8422 161
shshahma@8422 162 if (a1tap != NULL && a2tap != NULL) {
shshahma@8422 163 // Handle multidimensional arrays
shshahma@8422 164 const TypePtr* a1tp = a1tap->elem()->make_ptr();
shshahma@8422 165 const TypePtr* a2tp = a2tap->elem()->make_ptr();
shshahma@8422 166 while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
shshahma@8422 167 a1tap = a1tp->is_aryptr();
shshahma@8422 168 a2tap = a2tp->is_aryptr();
shshahma@8422 169 a1tp = a1tap->elem()->make_ptr();
shshahma@8422 170 a2tp = a2tap->elem()->make_ptr();
shshahma@8422 171 }
shshahma@8422 172 if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
shshahma@8422 173 if (e1) *e1 = a1tp->is_instptr();
shshahma@8422 174 if (e2) *e2 = a2tp->is_instptr();
shshahma@8422 175 }
shshahma@8422 176 }
shshahma@8422 177 }
shshahma@8422 178
duke@435 179 //---------------------------get_typeflow_type---------------------------------
duke@435 180 // Import a type produced by ciTypeFlow.
duke@435 181 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 182 switch (type->basic_type()) {
duke@435 183
duke@435 184 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 185 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 186 return Type::BOTTOM;
duke@435 187
duke@435 188 case ciTypeFlow::StateVector::T_TOP:
duke@435 189 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 190 return Type::TOP;
duke@435 191
duke@435 192 case ciTypeFlow::StateVector::T_NULL:
duke@435 193 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 194 return TypePtr::NULL_PTR;
duke@435 195
duke@435 196 case ciTypeFlow::StateVector::T_LONG2:
duke@435 197 // The ciTypeFlow pass pushes a long, then the half.
duke@435 198 // We do the same.
duke@435 199 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 200 return TypeInt::TOP;
duke@435 201
duke@435 202 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 203 // The ciTypeFlow pass pushes double, then the half.
duke@435 204 // Our convention is the same.
duke@435 205 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 206 return Type::TOP;
duke@435 207
duke@435 208 case T_ADDRESS:
duke@435 209 assert(type->is_return_address(), "");
duke@435 210 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 211
duke@435 212 default:
duke@435 213 // make sure we did not mix up the cases:
duke@435 214 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 215 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 216 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 217 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 218 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 219 assert(!type->is_return_address(), "");
duke@435 220
duke@435 221 return Type::get_const_type(type);
duke@435 222 }
duke@435 223 }
duke@435 224
duke@435 225
vlivanov@5658 226 //-----------------------make_from_constant------------------------------------
vlivanov@5658 227 const Type* Type::make_from_constant(ciConstant constant,
vlivanov@5658 228 bool require_constant, bool is_autobox_cache) {
vlivanov@5658 229 switch (constant.basic_type()) {
vlivanov@5658 230 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
vlivanov@5658 231 case T_CHAR: return TypeInt::make(constant.as_char());
vlivanov@5658 232 case T_BYTE: return TypeInt::make(constant.as_byte());
vlivanov@5658 233 case T_SHORT: return TypeInt::make(constant.as_short());
vlivanov@5658 234 case T_INT: return TypeInt::make(constant.as_int());
vlivanov@5658 235 case T_LONG: return TypeLong::make(constant.as_long());
vlivanov@5658 236 case T_FLOAT: return TypeF::make(constant.as_float());
vlivanov@5658 237 case T_DOUBLE: return TypeD::make(constant.as_double());
vlivanov@5658 238 case T_ARRAY:
vlivanov@5658 239 case T_OBJECT:
vlivanov@5658 240 {
vlivanov@5658 241 // cases:
vlivanov@5658 242 // can_be_constant = (oop not scavengable || ScavengeRootsInCode != 0)
vlivanov@5658 243 // should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
vlivanov@5658 244 // An oop is not scavengable if it is in the perm gen.
vlivanov@5658 245 ciObject* oop_constant = constant.as_object();
vlivanov@5658 246 if (oop_constant->is_null_object()) {
vlivanov@5658 247 return Type::get_zero_type(T_OBJECT);
vlivanov@5658 248 } else if (require_constant || oop_constant->should_be_constant()) {
vlivanov@5658 249 return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
vlivanov@5658 250 }
vlivanov@5658 251 }
vlivanov@5658 252 }
vlivanov@5658 253 // Fall through to failure
vlivanov@5658 254 return NULL;
vlivanov@5658 255 }
vlivanov@5658 256
vlivanov@5658 257
duke@435 258 //------------------------------make-------------------------------------------
duke@435 259 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 260 // and look for an existing copy in the type dictionary.
duke@435 261 const Type *Type::make( enum TYPES t ) {
duke@435 262 return (new Type(t))->hashcons();
duke@435 263 }
kvn@658 264
duke@435 265 //------------------------------cmp--------------------------------------------
duke@435 266 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 267 if( t1->_base != t2->_base )
duke@435 268 return 1; // Missed badly
duke@435 269 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 270 return !t1->eq(t2); // Return ZERO if equal
duke@435 271 }
duke@435 272
roland@6313 273 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
roland@6313 274 if (!include_speculative) {
roland@6313 275 return remove_speculative();
roland@6313 276 }
roland@6313 277 return this;
roland@6313 278 }
roland@6313 279
duke@435 280 //------------------------------hash-------------------------------------------
duke@435 281 int Type::uhash( const Type *const t ) {
duke@435 282 return t->hash();
duke@435 283 }
duke@435 284
kvn@1975 285 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
kvn@1975 286
duke@435 287 //--------------------------Initialize_shared----------------------------------
duke@435 288 void Type::Initialize_shared(Compile* current) {
duke@435 289 // This method does not need to be locked because the first system
duke@435 290 // compilations (stub compilations) occur serially. If they are
duke@435 291 // changed to proceed in parallel, then this section will need
duke@435 292 // locking.
duke@435 293
duke@435 294 Arena* save = current->type_arena();
zgu@7074 295 Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
duke@435 296
duke@435 297 current->set_type_arena(shared_type_arena);
duke@435 298 _shared_type_dict =
duke@435 299 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 300 shared_type_arena, 128 );
duke@435 301 current->set_type_dict(_shared_type_dict);
duke@435 302
duke@435 303 // Make shared pre-built types.
duke@435 304 CONTROL = make(Control); // Control only
duke@435 305 TOP = make(Top); // No values in set
duke@435 306 MEMORY = make(Memory); // Abstract store only
duke@435 307 ABIO = make(Abio); // State-of-machine only
duke@435 308 RETURN_ADDRESS=make(Return_Address);
duke@435 309 FLOAT = make(FloatBot); // All floats
duke@435 310 DOUBLE = make(DoubleBot); // All doubles
duke@435 311 BOTTOM = make(Bottom); // Everything
duke@435 312 HALF = make(Half); // Placeholder half of doublewide type
duke@435 313
duke@435 314 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 315 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 316
duke@435 317 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 318 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 319
duke@435 320 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 321 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 322 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 323 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 324 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 325 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 326 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 327 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 328 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 329 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 330 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
twisti@1059 331 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
duke@435 332 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 333 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 334 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 335 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 336 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 337 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
rbackman@6375 338 TypeInt::TYPE_DOMAIN = TypeInt::INT;
duke@435 339 // CmpL is overloaded both as the bytecode computation returning
duke@435 340 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 341 // compare returning optimizer ideal-type flags.
duke@435 342 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 343 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 344 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 345 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
kvn@1975 346 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 347
duke@435 348 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 349 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 350 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 351 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 352 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 353 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 354 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
rbackman@6375 355 TypeLong::TYPE_DOMAIN = TypeLong::LONG;
duke@435 356
duke@435 357 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 358 fboth[0] = Type::CONTROL;
duke@435 359 fboth[1] = Type::CONTROL;
duke@435 360 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 361
duke@435 362 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 363 ffalse[0] = Type::CONTROL;
duke@435 364 ffalse[1] = Type::TOP;
duke@435 365 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 366
duke@435 367 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 368 fneither[0] = Type::TOP;
duke@435 369 fneither[1] = Type::TOP;
duke@435 370 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 371
duke@435 372 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 373 ftrue[0] = Type::TOP;
duke@435 374 ftrue[1] = Type::CONTROL;
duke@435 375 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 376
duke@435 377 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 378 floop[0] = Type::CONTROL;
duke@435 379 floop[1] = TypeInt::INT;
duke@435 380 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 381
duke@435 382 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 383 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 384 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 385
duke@435 386 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 387 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 388
duke@435 389 const Type **fmembar = TypeTuple::fields(0);
duke@435 390 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 391
duke@435 392 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 393 fsc[0] = TypeInt::CC;
duke@435 394 fsc[1] = Type::MEMORY;
duke@435 395 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 396
duke@435 397 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 398 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 399 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 400 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 401 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 402 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 403 false, 0, oopDesc::klass_offset_in_bytes());
roland@5991 404 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
duke@435 405
coleenp@4037 406 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
coleenp@4037 407
coleenp@548 408 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 409 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 410
roland@4159 411 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
roland@4159 412
coleenp@548 413 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 414 mreg2type[Op_Set ] = 0;
coleenp@548 415 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 416 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 417 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 418 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 419 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 420 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 421 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 422
kvn@2116 423 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
kvn@598 424
kvn@598 425 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 426
kvn@598 427 #ifdef _LP64
kvn@598 428 if (UseCompressedOops) {
coleenp@4037 429 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
kvn@598 430 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 431 } else
kvn@598 432 #endif
kvn@598 433 {
kvn@598 434 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 435 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 436 }
duke@435 437 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 438 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 439 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 440 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 441 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 442 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 443 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 444
kvn@598 445 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 446 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 447 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 448 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 449 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 450 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 451 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 452 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 453 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 454 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 455 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 456 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 457
duke@435 458 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 459 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 460
duke@435 461 const Type **fi2c = TypeTuple::fields(2);
coleenp@4037 462 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
duke@435 463 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 464 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 465
duke@435 466 const Type **intpair = TypeTuple::fields(2);
duke@435 467 intpair[0] = TypeInt::INT;
duke@435 468 intpair[1] = TypeInt::INT;
duke@435 469 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 470
duke@435 471 const Type **longpair = TypeTuple::fields(2);
duke@435 472 longpair[0] = TypeLong::LONG;
duke@435 473 longpair[1] = TypeLong::LONG;
duke@435 474 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 475
rbackman@5791 476 const Type **intccpair = TypeTuple::fields(2);
rbackman@5791 477 intccpair[0] = TypeInt::INT;
rbackman@5791 478 intccpair[1] = TypeInt::CC;
rbackman@5791 479 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
rbackman@5791 480
rbackman@5997 481 const Type **longccpair = TypeTuple::fields(2);
rbackman@5997 482 longccpair[0] = TypeLong::LONG;
rbackman@5997 483 longccpair[1] = TypeInt::CC;
rbackman@5997 484 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
rbackman@5997 485
roland@4159 486 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
roland@4159 487 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
roland@4159 488 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
roland@4159 489 _const_basic_type[T_CHAR] = TypeInt::CHAR;
roland@4159 490 _const_basic_type[T_BYTE] = TypeInt::BYTE;
roland@4159 491 _const_basic_type[T_SHORT] = TypeInt::SHORT;
roland@4159 492 _const_basic_type[T_INT] = TypeInt::INT;
roland@4159 493 _const_basic_type[T_LONG] = TypeLong::LONG;
roland@4159 494 _const_basic_type[T_FLOAT] = Type::FLOAT;
roland@4159 495 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
roland@4159 496 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
roland@4159 497 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
roland@4159 498 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
roland@4159 499 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
roland@4159 500 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not?
roland@4159 501
roland@4159 502 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
roland@4159 503 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
roland@4159 504 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
roland@4159 505 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
roland@4159 506 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
roland@4159 507 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
roland@4159 508 _zero_type[T_INT] = TypeInt::ZERO;
roland@4159 509 _zero_type[T_LONG] = TypeLong::ZERO;
roland@4159 510 _zero_type[T_FLOAT] = TypeF::ZERO;
roland@4159 511 _zero_type[T_DOUBLE] = TypeD::ZERO;
roland@4159 512 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
roland@4159 513 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
roland@4159 514 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
roland@4159 515 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 516
duke@435 517 // get_zero_type() should not happen for T_CONFLICT
duke@435 518 _zero_type[T_CONFLICT]= NULL;
duke@435 519
kvn@3882 520 // Vector predefined types, it needs initialized _const_basic_type[].
kvn@3882 521 if (Matcher::vector_size_supported(T_BYTE,4)) {
kvn@3882 522 TypeVect::VECTS = TypeVect::make(T_BYTE,4);
kvn@3882 523 }
kvn@3882 524 if (Matcher::vector_size_supported(T_FLOAT,2)) {
kvn@3882 525 TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
kvn@3882 526 }
kvn@3882 527 if (Matcher::vector_size_supported(T_FLOAT,4)) {
kvn@3882 528 TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
kvn@3882 529 }
kvn@3882 530 if (Matcher::vector_size_supported(T_FLOAT,8)) {
kvn@3882 531 TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
kvn@3882 532 }
kvn@3882 533 mreg2type[Op_VecS] = TypeVect::VECTS;
kvn@3882 534 mreg2type[Op_VecD] = TypeVect::VECTD;
kvn@3882 535 mreg2type[Op_VecX] = TypeVect::VECTX;
kvn@3882 536 mreg2type[Op_VecY] = TypeVect::VECTY;
kvn@3882 537
duke@435 538 // Restore working type arena.
duke@435 539 current->set_type_arena(save);
duke@435 540 current->set_type_dict(NULL);
duke@435 541 }
duke@435 542
duke@435 543 //------------------------------Initialize-------------------------------------
duke@435 544 void Type::Initialize(Compile* current) {
duke@435 545 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 546
duke@435 547 if (_shared_type_dict == NULL) {
duke@435 548 Initialize_shared(current);
duke@435 549 }
duke@435 550
duke@435 551 Arena* type_arena = current->type_arena();
duke@435 552
duke@435 553 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 554 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 555 current->set_type_dict(tdic);
duke@435 556
duke@435 557 // Transfer the shared types.
duke@435 558 DictI i(_shared_type_dict);
duke@435 559 for( ; i.test(); ++i ) {
duke@435 560 Type* t = (Type*)i._value;
duke@435 561 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 562 }
duke@435 563 }
duke@435 564
duke@435 565 //------------------------------hashcons---------------------------------------
duke@435 566 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 567 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 568 // current Type in the Type table.
duke@435 569 const Type *Type::hashcons(void) {
duke@435 570 debug_only(base()); // Check the assertion in Type::base().
duke@435 571 // Look up the Type in the Type dictionary
duke@435 572 Dict *tdic = type_dict();
duke@435 573 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 574 if( old ) { // Pre-existing Type?
duke@435 575 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 576 delete this; // Yes, Nuke this guy
duke@435 577 assert( old->_dual, "" );
duke@435 578 return old; // Return pre-existing
duke@435 579 }
duke@435 580
duke@435 581 // Every type has a dual (to make my lattice symmetric).
duke@435 582 // Since we just discovered a new Type, compute its dual right now.
duke@435 583 assert( !_dual, "" ); // No dual yet
duke@435 584 _dual = xdual(); // Compute the dual
duke@435 585 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 586 _dual = this;
duke@435 587 return this;
duke@435 588 }
duke@435 589 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 590 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 591 // New Type, insert into Type table
duke@435 592 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 593 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 594 #ifdef ASSERT
duke@435 595 Type *dual_dual = (Type*)_dual->xdual();
duke@435 596 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 597 delete dual_dual;
duke@435 598 #endif
duke@435 599 return this; // Return new Type
duke@435 600 }
duke@435 601
duke@435 602 //------------------------------eq---------------------------------------------
duke@435 603 // Structural equality check for Type representations
duke@435 604 bool Type::eq( const Type * ) const {
duke@435 605 return true; // Nothing else can go wrong
duke@435 606 }
duke@435 607
duke@435 608 //------------------------------hash-------------------------------------------
duke@435 609 // Type-specific hashing function.
duke@435 610 int Type::hash(void) const {
duke@435 611 return _base;
duke@435 612 }
duke@435 613
duke@435 614 //------------------------------is_finite--------------------------------------
duke@435 615 // Has a finite value
duke@435 616 bool Type::is_finite() const {
duke@435 617 return false;
duke@435 618 }
duke@435 619
duke@435 620 //------------------------------is_nan-----------------------------------------
duke@435 621 // Is not a number (NaN)
duke@435 622 bool Type::is_nan() const {
duke@435 623 return false;
duke@435 624 }
duke@435 625
kvn@1255 626 //----------------------interface_vs_oop---------------------------------------
kvn@1255 627 #ifdef ASSERT
roland@5991 628 bool Type::interface_vs_oop_helper(const Type *t) const {
kvn@1255 629 bool result = false;
kvn@1255 630
kvn@1427 631 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
kvn@1427 632 const TypePtr* t_ptr = t->make_ptr();
kvn@1427 633 if( this_ptr == NULL || t_ptr == NULL )
kvn@1427 634 return result;
kvn@1427 635
kvn@1427 636 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
kvn@1427 637 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
kvn@1255 638 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
kvn@1255 639 bool this_interface = this_inst->klass()->is_interface();
kvn@1255 640 bool t_interface = t_inst->klass()->is_interface();
kvn@1255 641 result = this_interface ^ t_interface;
kvn@1255 642 }
kvn@1255 643
kvn@1255 644 return result;
kvn@1255 645 }
roland@5991 646
roland@5991 647 bool Type::interface_vs_oop(const Type *t) const {
roland@5991 648 if (interface_vs_oop_helper(t)) {
roland@5991 649 return true;
roland@5991 650 }
roland@5991 651 // Now check the speculative parts as well
roland@5991 652 const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
roland@5991 653 const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
roland@5991 654 if (this_spec != NULL && t_spec != NULL) {
roland@5991 655 if (this_spec->interface_vs_oop_helper(t_spec)) {
roland@5991 656 return true;
roland@5991 657 }
roland@5991 658 return false;
roland@5991 659 }
roland@5991 660 if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
roland@5991 661 return true;
roland@5991 662 }
roland@5991 663 if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
roland@5991 664 return true;
roland@5991 665 }
roland@5991 666 return false;
roland@5991 667 }
roland@5991 668
kvn@1255 669 #endif
kvn@1255 670
duke@435 671 //------------------------------meet-------------------------------------------
duke@435 672 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 673 // commutative and the lattice is symmetric.
roland@6313 674 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
coleenp@548 675 if (isa_narrowoop() && t->isa_narrowoop()) {
roland@6313 676 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
kvn@656 677 return result->make_narrowoop();
coleenp@548 678 }
roland@4159 679 if (isa_narrowklass() && t->isa_narrowklass()) {
roland@6313 680 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
roland@4159 681 return result->make_narrowklass();
roland@4159 682 }
coleenp@548 683
roland@6313 684 const Type *this_t = maybe_remove_speculative(include_speculative);
roland@6313 685 t = t->maybe_remove_speculative(include_speculative);
roland@6313 686
roland@6313 687 const Type *mt = this_t->xmeet(t);
coleenp@548 688 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
roland@4159 689 if (isa_narrowklass() || t->isa_narrowklass()) return mt;
duke@435 690 #ifdef ASSERT
roland@6313 691 assert(mt == t->xmeet(this_t), "meet not commutative");
duke@435 692 const Type* dual_join = mt->_dual;
duke@435 693 const Type *t2t = dual_join->xmeet(t->_dual);
roland@6313 694 const Type *t2this = dual_join->xmeet(this_t->_dual);
duke@435 695
duke@435 696 // Interface meet Oop is Not Symmetric:
duke@435 697 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 698 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
kvn@1255 699
roland@6313 700 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
duke@435 701 tty->print_cr("=== Meet Not Symmetric ===");
roland@6313 702 tty->print("t = "); t->dump(); tty->cr();
roland@6313 703 tty->print("this= "); this_t->dump(); tty->cr();
roland@6313 704 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
roland@6313 705
roland@6313 706 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
roland@6313 707 tty->print("this_dual= "); this_t->_dual->dump(); tty->cr();
roland@6313 708 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
roland@6313 709
roland@6313 710 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
roland@6313 711 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 712
duke@435 713 fatal("meet not symmetric" );
duke@435 714 }
duke@435 715 #endif
duke@435 716 return mt;
duke@435 717 }
duke@435 718
duke@435 719 //------------------------------xmeet------------------------------------------
duke@435 720 // Compute the MEET of two types. It returns a new Type object.
duke@435 721 const Type *Type::xmeet( const Type *t ) const {
duke@435 722 // Perform a fast test for common case; meeting the same types together.
duke@435 723 if( this == t ) return this; // Meeting same type-rep?
duke@435 724
duke@435 725 // Meeting TOP with anything?
duke@435 726 if( _base == Top ) return t;
duke@435 727
duke@435 728 // Meeting BOTTOM with anything?
duke@435 729 if( _base == Bottom ) return BOTTOM;
duke@435 730
duke@435 731 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 732 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 733 switch (t->base()) { // Switch on original type
duke@435 734
duke@435 735 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 736 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 737 case FloatCon:
duke@435 738 case DoubleCon:
duke@435 739 case Int:
duke@435 740 case Long:
duke@435 741 return t->xmeet(this);
duke@435 742
duke@435 743 case OopPtr:
duke@435 744 return t->xmeet(this);
duke@435 745
duke@435 746 case InstPtr:
duke@435 747 return t->xmeet(this);
duke@435 748
coleenp@4037 749 case MetadataPtr:
duke@435 750 case KlassPtr:
duke@435 751 return t->xmeet(this);
duke@435 752
duke@435 753 case AryPtr:
duke@435 754 return t->xmeet(this);
duke@435 755
coleenp@548 756 case NarrowOop:
coleenp@548 757 return t->xmeet(this);
coleenp@548 758
roland@4159 759 case NarrowKlass:
roland@4159 760 return t->xmeet(this);
roland@4159 761
duke@435 762 case Bad: // Type check
duke@435 763 default: // Bogus type not in lattice
duke@435 764 typerr(t);
duke@435 765 return Type::BOTTOM;
duke@435 766
duke@435 767 case Bottom: // Ye Olde Default
duke@435 768 return t;
duke@435 769
duke@435 770 case FloatTop:
duke@435 771 if( _base == FloatTop ) return this;
duke@435 772 case FloatBot: // Float
duke@435 773 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 774 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 775 typerr(t);
duke@435 776 return Type::BOTTOM;
duke@435 777
duke@435 778 case DoubleTop:
duke@435 779 if( _base == DoubleTop ) return this;
duke@435 780 case DoubleBot: // Double
duke@435 781 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 782 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 783 typerr(t);
duke@435 784 return Type::BOTTOM;
duke@435 785
duke@435 786 // These next few cases must match exactly or it is a compile-time error.
duke@435 787 case Control: // Control of code
duke@435 788 case Abio: // State of world outside of program
duke@435 789 case Memory:
duke@435 790 if( _base == t->_base ) return this;
duke@435 791 typerr(t);
duke@435 792 return Type::BOTTOM;
duke@435 793
duke@435 794 case Top: // Top of the lattice
duke@435 795 return this;
duke@435 796 }
duke@435 797
duke@435 798 // The type is unchanged
duke@435 799 return this;
duke@435 800 }
duke@435 801
duke@435 802 //-----------------------------filter------------------------------------------
roland@6313 803 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 804 const Type* ft = join_helper(kills, include_speculative);
duke@435 805 if (ft->empty())
duke@435 806 return Type::TOP; // Canonical empty value
duke@435 807 return ft;
duke@435 808 }
duke@435 809
duke@435 810 //------------------------------xdual------------------------------------------
duke@435 811 // Compute dual right now.
duke@435 812 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 813 Bad, // Bad
duke@435 814 Control, // Control
duke@435 815 Bottom, // Top
duke@435 816 Bad, // Int - handled in v-call
duke@435 817 Bad, // Long - handled in v-call
duke@435 818 Half, // Half
coleenp@548 819 Bad, // NarrowOop - handled in v-call
roland@4159 820 Bad, // NarrowKlass - handled in v-call
duke@435 821
duke@435 822 Bad, // Tuple - handled in v-call
duke@435 823 Bad, // Array - handled in v-call
kvn@3882 824 Bad, // VectorS - handled in v-call
kvn@3882 825 Bad, // VectorD - handled in v-call
kvn@3882 826 Bad, // VectorX - handled in v-call
kvn@3882 827 Bad, // VectorY - handled in v-call
duke@435 828
duke@435 829 Bad, // AnyPtr - handled in v-call
duke@435 830 Bad, // RawPtr - handled in v-call
duke@435 831 Bad, // OopPtr - handled in v-call
duke@435 832 Bad, // InstPtr - handled in v-call
duke@435 833 Bad, // AryPtr - handled in v-call
coleenp@4037 834
coleenp@4037 835 Bad, // MetadataPtr - handled in v-call
duke@435 836 Bad, // KlassPtr - handled in v-call
duke@435 837
duke@435 838 Bad, // Function - handled in v-call
duke@435 839 Abio, // Abio
duke@435 840 Return_Address,// Return_Address
duke@435 841 Memory, // Memory
duke@435 842 FloatBot, // FloatTop
duke@435 843 FloatCon, // FloatCon
duke@435 844 FloatTop, // FloatBot
duke@435 845 DoubleBot, // DoubleTop
duke@435 846 DoubleCon, // DoubleCon
duke@435 847 DoubleTop, // DoubleBot
duke@435 848 Top // Bottom
duke@435 849 };
duke@435 850
duke@435 851 const Type *Type::xdual() const {
duke@435 852 // Note: the base() accessor asserts the sanity of _base.
coleenp@4037 853 assert(_type_info[base()].dual_type != Bad, "implement with v-call");
coleenp@4037 854 return new Type(_type_info[_base].dual_type);
duke@435 855 }
duke@435 856
duke@435 857 //------------------------------has_memory-------------------------------------
duke@435 858 bool Type::has_memory() const {
duke@435 859 Type::TYPES tx = base();
duke@435 860 if (tx == Memory) return true;
duke@435 861 if (tx == Tuple) {
duke@435 862 const TypeTuple *t = is_tuple();
duke@435 863 for (uint i=0; i < t->cnt(); i++) {
duke@435 864 tx = t->field_at(i)->base();
duke@435 865 if (tx == Memory) return true;
duke@435 866 }
duke@435 867 }
duke@435 868 return false;
duke@435 869 }
duke@435 870
duke@435 871 #ifndef PRODUCT
duke@435 872 //------------------------------dump2------------------------------------------
duke@435 873 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
drchase@6680 874 st->print("%s", _type_info[_base].msg);
duke@435 875 }
duke@435 876
duke@435 877 //------------------------------dump-------------------------------------------
duke@435 878 void Type::dump_on(outputStream *st) const {
duke@435 879 ResourceMark rm;
duke@435 880 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 881 dump2(d,1, st);
kvn@598 882 if (is_ptr_to_narrowoop()) {
coleenp@548 883 st->print(" [narrow]");
roland@4159 884 } else if (is_ptr_to_narrowklass()) {
roland@4159 885 st->print(" [narrowklass]");
coleenp@548 886 }
duke@435 887 }
duke@435 888 #endif
duke@435 889
duke@435 890 //------------------------------singleton--------------------------------------
duke@435 891 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 892 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 893 bool Type::singleton(void) const {
duke@435 894 return _base == Top || _base == Half;
duke@435 895 }
duke@435 896
duke@435 897 //------------------------------empty------------------------------------------
duke@435 898 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 899 bool Type::empty(void) const {
duke@435 900 switch (_base) {
duke@435 901 case DoubleTop:
duke@435 902 case FloatTop:
duke@435 903 case Top:
duke@435 904 return true;
duke@435 905
duke@435 906 case Half:
duke@435 907 case Abio:
duke@435 908 case Return_Address:
duke@435 909 case Memory:
duke@435 910 case Bottom:
duke@435 911 case FloatBot:
duke@435 912 case DoubleBot:
duke@435 913 return false; // never a singleton, therefore never empty
duke@435 914 }
duke@435 915
duke@435 916 ShouldNotReachHere();
duke@435 917 return false;
duke@435 918 }
duke@435 919
duke@435 920 //------------------------------dump_stats-------------------------------------
duke@435 921 // Dump collected statistics to stderr
duke@435 922 #ifndef PRODUCT
duke@435 923 void Type::dump_stats() {
duke@435 924 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 925 }
duke@435 926 #endif
duke@435 927
duke@435 928 //------------------------------typerr-----------------------------------------
duke@435 929 void Type::typerr( const Type *t ) const {
duke@435 930 #ifndef PRODUCT
duke@435 931 tty->print("\nError mixing types: ");
duke@435 932 dump();
duke@435 933 tty->print(" and ");
duke@435 934 t->dump();
duke@435 935 tty->print("\n");
duke@435 936 #endif
duke@435 937 ShouldNotReachHere();
duke@435 938 }
duke@435 939
duke@435 940
duke@435 941 //=============================================================================
duke@435 942 // Convenience common pre-built types.
duke@435 943 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 944 const TypeF *TypeF::ONE; // Floating point one
duke@435 945
duke@435 946 //------------------------------make-------------------------------------------
duke@435 947 // Create a float constant
duke@435 948 const TypeF *TypeF::make(float f) {
duke@435 949 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 950 }
duke@435 951
duke@435 952 //------------------------------meet-------------------------------------------
duke@435 953 // Compute the MEET of two types. It returns a new Type object.
duke@435 954 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 955 // Perform a fast test for common case; meeting the same types together.
duke@435 956 if( this == t ) return this; // Meeting same type-rep?
duke@435 957
duke@435 958 // Current "this->_base" is FloatCon
duke@435 959 switch (t->base()) { // Switch on original type
duke@435 960 case AnyPtr: // Mixing with oops happens when javac
duke@435 961 case RawPtr: // reuses local variables
duke@435 962 case OopPtr:
duke@435 963 case InstPtr:
coleenp@4037 964 case AryPtr:
coleenp@4037 965 case MetadataPtr:
duke@435 966 case KlassPtr:
kvn@728 967 case NarrowOop:
roland@4159 968 case NarrowKlass:
duke@435 969 case Int:
duke@435 970 case Long:
duke@435 971 case DoubleTop:
duke@435 972 case DoubleCon:
duke@435 973 case DoubleBot:
duke@435 974 case Bottom: // Ye Olde Default
duke@435 975 return Type::BOTTOM;
duke@435 976
duke@435 977 case FloatBot:
duke@435 978 return t;
duke@435 979
duke@435 980 default: // All else is a mistake
duke@435 981 typerr(t);
duke@435 982
duke@435 983 case FloatCon: // Float-constant vs Float-constant?
duke@435 984 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 985 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 986 // all the same representation in C++
duke@435 987 return FLOAT; // Return generic float
duke@435 988 // Equal constants
duke@435 989 case Top:
duke@435 990 case FloatTop:
duke@435 991 break; // Return the float constant
duke@435 992 }
duke@435 993 return this; // Return the float constant
duke@435 994 }
duke@435 995
duke@435 996 //------------------------------xdual------------------------------------------
duke@435 997 // Dual: symmetric
duke@435 998 const Type *TypeF::xdual() const {
duke@435 999 return this;
duke@435 1000 }
duke@435 1001
duke@435 1002 //------------------------------eq---------------------------------------------
duke@435 1003 // Structural equality check for Type representations
duke@435 1004 bool TypeF::eq( const Type *t ) const {
duke@435 1005 if( g_isnan(_f) ||
duke@435 1006 g_isnan(t->getf()) ) {
duke@435 1007 // One or both are NANs. If both are NANs return true, else false.
duke@435 1008 return (g_isnan(_f) && g_isnan(t->getf()));
duke@435 1009 }
duke@435 1010 if (_f == t->getf()) {
duke@435 1011 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 1012 if (_f == 0.0) {
duke@435 1013 // difference between positive and negative zero
duke@435 1014 if (jint_cast(_f) != jint_cast(t->getf())) return false;
duke@435 1015 }
duke@435 1016 return true;
duke@435 1017 }
duke@435 1018 return false;
duke@435 1019 }
duke@435 1020
duke@435 1021 //------------------------------hash-------------------------------------------
duke@435 1022 // Type-specific hashing function.
duke@435 1023 int TypeF::hash(void) const {
duke@435 1024 return *(int*)(&_f);
duke@435 1025 }
duke@435 1026
duke@435 1027 //------------------------------is_finite--------------------------------------
duke@435 1028 // Has a finite value
duke@435 1029 bool TypeF::is_finite() const {
duke@435 1030 return g_isfinite(getf()) != 0;
duke@435 1031 }
duke@435 1032
duke@435 1033 //------------------------------is_nan-----------------------------------------
duke@435 1034 // Is not a number (NaN)
duke@435 1035 bool TypeF::is_nan() const {
duke@435 1036 return g_isnan(getf()) != 0;
duke@435 1037 }
duke@435 1038
duke@435 1039 //------------------------------dump2------------------------------------------
duke@435 1040 // Dump float constant Type
duke@435 1041 #ifndef PRODUCT
duke@435 1042 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1043 Type::dump2(d,depth, st);
duke@435 1044 st->print("%f", _f);
duke@435 1045 }
duke@435 1046 #endif
duke@435 1047
duke@435 1048 //------------------------------singleton--------------------------------------
duke@435 1049 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1050 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1051 // or a single symbol.
duke@435 1052 bool TypeF::singleton(void) const {
duke@435 1053 return true; // Always a singleton
duke@435 1054 }
duke@435 1055
duke@435 1056 bool TypeF::empty(void) const {
duke@435 1057 return false; // always exactly a singleton
duke@435 1058 }
duke@435 1059
duke@435 1060 //=============================================================================
duke@435 1061 // Convenience common pre-built types.
duke@435 1062 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 1063 const TypeD *TypeD::ONE; // Floating point one
duke@435 1064
duke@435 1065 //------------------------------make-------------------------------------------
duke@435 1066 const TypeD *TypeD::make(double d) {
duke@435 1067 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 1068 }
duke@435 1069
duke@435 1070 //------------------------------meet-------------------------------------------
duke@435 1071 // Compute the MEET of two types. It returns a new Type object.
duke@435 1072 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 1073 // Perform a fast test for common case; meeting the same types together.
duke@435 1074 if( this == t ) return this; // Meeting same type-rep?
duke@435 1075
duke@435 1076 // Current "this->_base" is DoubleCon
duke@435 1077 switch (t->base()) { // Switch on original type
duke@435 1078 case AnyPtr: // Mixing with oops happens when javac
duke@435 1079 case RawPtr: // reuses local variables
duke@435 1080 case OopPtr:
duke@435 1081 case InstPtr:
coleenp@4037 1082 case AryPtr:
coleenp@4037 1083 case MetadataPtr:
duke@435 1084 case KlassPtr:
never@618 1085 case NarrowOop:
roland@4159 1086 case NarrowKlass:
duke@435 1087 case Int:
duke@435 1088 case Long:
duke@435 1089 case FloatTop:
duke@435 1090 case FloatCon:
duke@435 1091 case FloatBot:
duke@435 1092 case Bottom: // Ye Olde Default
duke@435 1093 return Type::BOTTOM;
duke@435 1094
duke@435 1095 case DoubleBot:
duke@435 1096 return t;
duke@435 1097
duke@435 1098 default: // All else is a mistake
duke@435 1099 typerr(t);
duke@435 1100
duke@435 1101 case DoubleCon: // Double-constant vs Double-constant?
duke@435 1102 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 1103 return DOUBLE; // Return generic double
duke@435 1104 case Top:
duke@435 1105 case DoubleTop:
duke@435 1106 break;
duke@435 1107 }
duke@435 1108 return this; // Return the double constant
duke@435 1109 }
duke@435 1110
duke@435 1111 //------------------------------xdual------------------------------------------
duke@435 1112 // Dual: symmetric
duke@435 1113 const Type *TypeD::xdual() const {
duke@435 1114 return this;
duke@435 1115 }
duke@435 1116
duke@435 1117 //------------------------------eq---------------------------------------------
duke@435 1118 // Structural equality check for Type representations
duke@435 1119 bool TypeD::eq( const Type *t ) const {
duke@435 1120 if( g_isnan(_d) ||
duke@435 1121 g_isnan(t->getd()) ) {
duke@435 1122 // One or both are NANs. If both are NANs return true, else false.
duke@435 1123 return (g_isnan(_d) && g_isnan(t->getd()));
duke@435 1124 }
duke@435 1125 if (_d == t->getd()) {
duke@435 1126 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 1127 if (_d == 0.0) {
duke@435 1128 // difference between positive and negative zero
duke@435 1129 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
duke@435 1130 }
duke@435 1131 return true;
duke@435 1132 }
duke@435 1133 return false;
duke@435 1134 }
duke@435 1135
duke@435 1136 //------------------------------hash-------------------------------------------
duke@435 1137 // Type-specific hashing function.
duke@435 1138 int TypeD::hash(void) const {
duke@435 1139 return *(int*)(&_d);
duke@435 1140 }
duke@435 1141
duke@435 1142 //------------------------------is_finite--------------------------------------
duke@435 1143 // Has a finite value
duke@435 1144 bool TypeD::is_finite() const {
duke@435 1145 return g_isfinite(getd()) != 0;
duke@435 1146 }
duke@435 1147
duke@435 1148 //------------------------------is_nan-----------------------------------------
duke@435 1149 // Is not a number (NaN)
duke@435 1150 bool TypeD::is_nan() const {
duke@435 1151 return g_isnan(getd()) != 0;
duke@435 1152 }
duke@435 1153
duke@435 1154 //------------------------------dump2------------------------------------------
duke@435 1155 // Dump double constant Type
duke@435 1156 #ifndef PRODUCT
duke@435 1157 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1158 Type::dump2(d,depth,st);
duke@435 1159 st->print("%f", _d);
duke@435 1160 }
duke@435 1161 #endif
duke@435 1162
duke@435 1163 //------------------------------singleton--------------------------------------
duke@435 1164 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1165 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1166 // or a single symbol.
duke@435 1167 bool TypeD::singleton(void) const {
duke@435 1168 return true; // Always a singleton
duke@435 1169 }
duke@435 1170
duke@435 1171 bool TypeD::empty(void) const {
duke@435 1172 return false; // always exactly a singleton
duke@435 1173 }
duke@435 1174
duke@435 1175 //=============================================================================
duke@435 1176 // Convience common pre-built types.
duke@435 1177 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1178 const TypeInt *TypeInt::ZERO; // 0
duke@435 1179 const TypeInt *TypeInt::ONE; // 1
duke@435 1180 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1181 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1182 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1183 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1184 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1185 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1186 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1187 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
twisti@1059 1188 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
duke@435 1189 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1190 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1191 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1192 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1193 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1194 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
rbackman@6375 1195 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
duke@435 1196
duke@435 1197 //------------------------------TypeInt----------------------------------------
duke@435 1198 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1199 }
duke@435 1200
duke@435 1201 //------------------------------make-------------------------------------------
duke@435 1202 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1203 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1204 }
duke@435 1205
kvn@1975 1206 static int normalize_int_widen( jint lo, jint hi, int w ) {
duke@435 1207 // Certain normalizations keep us sane when comparing types.
duke@435 1208 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1209 if (lo <= hi) {
sgehwolf@7873 1210 if (((juint)hi - lo) <= SMALLINT) w = Type::WidenMin;
sgehwolf@7873 1211 if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
kvn@1975 1212 } else {
sgehwolf@7873 1213 if (((juint)lo - hi) <= SMALLINT) w = Type::WidenMin;
sgehwolf@7873 1214 if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
duke@435 1215 }
kvn@1975 1216 return w;
kvn@1975 1217 }
kvn@1975 1218
kvn@1975 1219 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
kvn@1975 1220 w = normalize_int_widen(lo, hi, w);
duke@435 1221 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1222 }
duke@435 1223
duke@435 1224 //------------------------------meet-------------------------------------------
duke@435 1225 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1226 // with reference count equal to the number of Types pointing at it.
duke@435 1227 // Caller should wrap a Types around it.
duke@435 1228 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1229 // Perform a fast test for common case; meeting the same types together.
duke@435 1230 if( this == t ) return this; // Meeting same type?
duke@435 1231
duke@435 1232 // Currently "this->_base" is a TypeInt
duke@435 1233 switch (t->base()) { // Switch on original type
duke@435 1234 case AnyPtr: // Mixing with oops happens when javac
duke@435 1235 case RawPtr: // reuses local variables
duke@435 1236 case OopPtr:
duke@435 1237 case InstPtr:
coleenp@4037 1238 case AryPtr:
coleenp@4037 1239 case MetadataPtr:
duke@435 1240 case KlassPtr:
never@618 1241 case NarrowOop:
roland@4159 1242 case NarrowKlass:
duke@435 1243 case Long:
duke@435 1244 case FloatTop:
duke@435 1245 case FloatCon:
duke@435 1246 case FloatBot:
duke@435 1247 case DoubleTop:
duke@435 1248 case DoubleCon:
duke@435 1249 case DoubleBot:
duke@435 1250 case Bottom: // Ye Olde Default
duke@435 1251 return Type::BOTTOM;
duke@435 1252 default: // All else is a mistake
duke@435 1253 typerr(t);
duke@435 1254 case Top: // No change
duke@435 1255 return this;
duke@435 1256 case Int: // Int vs Int?
duke@435 1257 break;
duke@435 1258 }
duke@435 1259
duke@435 1260 // Expand covered set
duke@435 1261 const TypeInt *r = t->is_int();
kvn@1975 1262 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1263 }
duke@435 1264
duke@435 1265 //------------------------------xdual------------------------------------------
duke@435 1266 // Dual: reverse hi & lo; flip widen
duke@435 1267 const Type *TypeInt::xdual() const {
kvn@1975 1268 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1269 return new TypeInt(_hi,_lo,w);
duke@435 1270 }
duke@435 1271
duke@435 1272 //------------------------------widen------------------------------------------
duke@435 1273 // Only happens for optimistic top-down optimizations.
never@1444 1274 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
duke@435 1275 // Coming from TOP or such; no widening
duke@435 1276 if( old->base() != Int ) return this;
duke@435 1277 const TypeInt *ot = old->is_int();
duke@435 1278
duke@435 1279 // If new guy is equal to old guy, no widening
duke@435 1280 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1281 return old;
duke@435 1282
duke@435 1283 // If new guy contains old, then we widened
duke@435 1284 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1285 // New contains old
duke@435 1286 // If new guy is already wider than old, no widening
duke@435 1287 if( _widen > ot->_widen ) return this;
duke@435 1288 // If old guy was a constant, do not bother
duke@435 1289 if (ot->_lo == ot->_hi) return this;
duke@435 1290 // Now widen new guy.
duke@435 1291 // Check for widening too far
duke@435 1292 if (_widen == WidenMax) {
never@1444 1293 int max = max_jint;
never@1444 1294 int min = min_jint;
never@1444 1295 if (limit->isa_int()) {
never@1444 1296 max = limit->is_int()->_hi;
never@1444 1297 min = limit->is_int()->_lo;
never@1444 1298 }
never@1444 1299 if (min < _lo && _hi < max) {
duke@435 1300 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1301 // which is closer to its respective limit.
duke@435 1302 if (_lo >= 0 || // easy common case
never@1444 1303 (juint)(_lo - min) >= (juint)(max - _hi)) {
duke@435 1304 // Try to widen to an unsigned range type of 31 bits:
never@1444 1305 return make(_lo, max, WidenMax);
duke@435 1306 } else {
never@1444 1307 return make(min, _hi, WidenMax);
duke@435 1308 }
duke@435 1309 }
duke@435 1310 return TypeInt::INT;
duke@435 1311 }
duke@435 1312 // Returned widened new guy
duke@435 1313 return make(_lo,_hi,_widen+1);
duke@435 1314 }
duke@435 1315
duke@435 1316 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1317 // bottom. Return the wider fellow.
duke@435 1318 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1319 return old;
duke@435 1320
duke@435 1321 //fatal("Integer value range is not subset");
duke@435 1322 //return this;
duke@435 1323 return TypeInt::INT;
duke@435 1324 }
duke@435 1325
duke@435 1326 //------------------------------narrow---------------------------------------
duke@435 1327 // Only happens for pessimistic optimizations.
duke@435 1328 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1329 if (_lo >= _hi) return this; // already narrow enough
duke@435 1330 if (old == NULL) return this;
duke@435 1331 const TypeInt* ot = old->isa_int();
duke@435 1332 if (ot == NULL) return this;
duke@435 1333 jint olo = ot->_lo;
duke@435 1334 jint ohi = ot->_hi;
duke@435 1335
duke@435 1336 // If new guy is equal to old guy, no narrowing
duke@435 1337 if (_lo == olo && _hi == ohi) return old;
duke@435 1338
duke@435 1339 // If old guy was maximum range, allow the narrowing
duke@435 1340 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1341
duke@435 1342 if (_lo < olo || _hi > ohi)
duke@435 1343 return this; // doesn't narrow; pretty wierd
duke@435 1344
duke@435 1345 // The new type narrows the old type, so look for a "death march".
duke@435 1346 // See comments on PhaseTransform::saturate.
duke@435 1347 juint nrange = _hi - _lo;
duke@435 1348 juint orange = ohi - olo;
duke@435 1349 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1350 // Use the new type only if the range shrinks a lot.
duke@435 1351 // We do not want the optimizer computing 2^31 point by point.
duke@435 1352 return old;
duke@435 1353 }
duke@435 1354
duke@435 1355 return this;
duke@435 1356 }
duke@435 1357
duke@435 1358 //-----------------------------filter------------------------------------------
roland@6313 1359 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 1360 const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
kvn@1975 1361 if (ft == NULL || ft->empty())
duke@435 1362 return Type::TOP; // Canonical empty value
duke@435 1363 if (ft->_widen < this->_widen) {
duke@435 1364 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1365 // The widen bits must be allowed to run freely through the graph.
duke@435 1366 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1367 }
duke@435 1368 return ft;
duke@435 1369 }
duke@435 1370
duke@435 1371 //------------------------------eq---------------------------------------------
duke@435 1372 // Structural equality check for Type representations
duke@435 1373 bool TypeInt::eq( const Type *t ) const {
duke@435 1374 const TypeInt *r = t->is_int(); // Handy access
duke@435 1375 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1376 }
duke@435 1377
duke@435 1378 //------------------------------hash-------------------------------------------
duke@435 1379 // Type-specific hashing function.
duke@435 1380 int TypeInt::hash(void) const {
duke@435 1381 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1382 }
duke@435 1383
duke@435 1384 //------------------------------is_finite--------------------------------------
duke@435 1385 // Has a finite value
duke@435 1386 bool TypeInt::is_finite() const {
duke@435 1387 return true;
duke@435 1388 }
duke@435 1389
duke@435 1390 //------------------------------dump2------------------------------------------
duke@435 1391 // Dump TypeInt
duke@435 1392 #ifndef PRODUCT
duke@435 1393 static const char* intname(char* buf, jint n) {
duke@435 1394 if (n == min_jint)
duke@435 1395 return "min";
duke@435 1396 else if (n < min_jint + 10000)
duke@435 1397 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1398 else if (n == max_jint)
duke@435 1399 return "max";
duke@435 1400 else if (n > max_jint - 10000)
duke@435 1401 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1402 else
duke@435 1403 sprintf(buf, INT32_FORMAT, n);
duke@435 1404 return buf;
duke@435 1405 }
duke@435 1406
duke@435 1407 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1408 char buf[40], buf2[40];
duke@435 1409 if (_lo == min_jint && _hi == max_jint)
duke@435 1410 st->print("int");
duke@435 1411 else if (is_con())
duke@435 1412 st->print("int:%s", intname(buf, get_con()));
duke@435 1413 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1414 st->print("bool");
duke@435 1415 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1416 st->print("byte");
duke@435 1417 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1418 st->print("char");
duke@435 1419 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1420 st->print("short");
duke@435 1421 else if (_hi == max_jint)
duke@435 1422 st->print("int:>=%s", intname(buf, _lo));
duke@435 1423 else if (_lo == min_jint)
duke@435 1424 st->print("int:<=%s", intname(buf, _hi));
duke@435 1425 else
duke@435 1426 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1427
duke@435 1428 if (_widen != 0 && this != TypeInt::INT)
duke@435 1429 st->print(":%.*s", _widen, "wwww");
duke@435 1430 }
duke@435 1431 #endif
duke@435 1432
duke@435 1433 //------------------------------singleton--------------------------------------
duke@435 1434 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1435 // constants.
duke@435 1436 bool TypeInt::singleton(void) const {
duke@435 1437 return _lo >= _hi;
duke@435 1438 }
duke@435 1439
duke@435 1440 bool TypeInt::empty(void) const {
duke@435 1441 return _lo > _hi;
duke@435 1442 }
duke@435 1443
duke@435 1444 //=============================================================================
duke@435 1445 // Convenience common pre-built types.
duke@435 1446 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1447 const TypeLong *TypeLong::ZERO; // 0
duke@435 1448 const TypeLong *TypeLong::ONE; // 1
duke@435 1449 const TypeLong *TypeLong::POS; // >=0
duke@435 1450 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1451 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1452 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
rbackman@6375 1453 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
duke@435 1454
duke@435 1455 //------------------------------TypeLong---------------------------------------
duke@435 1456 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1457 }
duke@435 1458
duke@435 1459 //------------------------------make-------------------------------------------
duke@435 1460 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1461 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1462 }
duke@435 1463
kvn@1975 1464 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
kvn@1975 1465 // Certain normalizations keep us sane when comparing types.
kvn@1975 1466 // The 'SMALLINT' covers constants.
kvn@1975 1467 if (lo <= hi) {
sgehwolf@7873 1468 if (((julong)hi - lo) <= SMALLINT) w = Type::WidenMin;
sgehwolf@7873 1469 if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
kvn@1975 1470 } else {
sgehwolf@7873 1471 if (((julong)lo - hi) <= SMALLINT) w = Type::WidenMin;
sgehwolf@7873 1472 if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
kvn@1975 1473 }
kvn@1975 1474 return w;
kvn@1975 1475 }
kvn@1975 1476
duke@435 1477 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
kvn@1975 1478 w = normalize_long_widen(lo, hi, w);
duke@435 1479 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1480 }
duke@435 1481
duke@435 1482
duke@435 1483 //------------------------------meet-------------------------------------------
duke@435 1484 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1485 // with reference count equal to the number of Types pointing at it.
duke@435 1486 // Caller should wrap a Types around it.
duke@435 1487 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1488 // Perform a fast test for common case; meeting the same types together.
duke@435 1489 if( this == t ) return this; // Meeting same type?
duke@435 1490
duke@435 1491 // Currently "this->_base" is a TypeLong
duke@435 1492 switch (t->base()) { // Switch on original type
duke@435 1493 case AnyPtr: // Mixing with oops happens when javac
duke@435 1494 case RawPtr: // reuses local variables
duke@435 1495 case OopPtr:
duke@435 1496 case InstPtr:
coleenp@4037 1497 case AryPtr:
coleenp@4037 1498 case MetadataPtr:
duke@435 1499 case KlassPtr:
never@618 1500 case NarrowOop:
roland@4159 1501 case NarrowKlass:
duke@435 1502 case Int:
duke@435 1503 case FloatTop:
duke@435 1504 case FloatCon:
duke@435 1505 case FloatBot:
duke@435 1506 case DoubleTop:
duke@435 1507 case DoubleCon:
duke@435 1508 case DoubleBot:
duke@435 1509 case Bottom: // Ye Olde Default
duke@435 1510 return Type::BOTTOM;
duke@435 1511 default: // All else is a mistake
duke@435 1512 typerr(t);
duke@435 1513 case Top: // No change
duke@435 1514 return this;
duke@435 1515 case Long: // Long vs Long?
duke@435 1516 break;
duke@435 1517 }
duke@435 1518
duke@435 1519 // Expand covered set
duke@435 1520 const TypeLong *r = t->is_long(); // Turn into a TypeLong
kvn@1975 1521 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1522 }
duke@435 1523
duke@435 1524 //------------------------------xdual------------------------------------------
duke@435 1525 // Dual: reverse hi & lo; flip widen
duke@435 1526 const Type *TypeLong::xdual() const {
kvn@1975 1527 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1528 return new TypeLong(_hi,_lo,w);
duke@435 1529 }
duke@435 1530
duke@435 1531 //------------------------------widen------------------------------------------
duke@435 1532 // Only happens for optimistic top-down optimizations.
never@1444 1533 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
duke@435 1534 // Coming from TOP or such; no widening
duke@435 1535 if( old->base() != Long ) return this;
duke@435 1536 const TypeLong *ot = old->is_long();
duke@435 1537
duke@435 1538 // If new guy is equal to old guy, no widening
duke@435 1539 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1540 return old;
duke@435 1541
duke@435 1542 // If new guy contains old, then we widened
duke@435 1543 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1544 // New contains old
duke@435 1545 // If new guy is already wider than old, no widening
duke@435 1546 if( _widen > ot->_widen ) return this;
duke@435 1547 // If old guy was a constant, do not bother
duke@435 1548 if (ot->_lo == ot->_hi) return this;
duke@435 1549 // Now widen new guy.
duke@435 1550 // Check for widening too far
duke@435 1551 if (_widen == WidenMax) {
never@1444 1552 jlong max = max_jlong;
never@1444 1553 jlong min = min_jlong;
never@1444 1554 if (limit->isa_long()) {
never@1444 1555 max = limit->is_long()->_hi;
never@1444 1556 min = limit->is_long()->_lo;
never@1444 1557 }
never@1444 1558 if (min < _lo && _hi < max) {
duke@435 1559 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1560 // which is closer to its respective limit.
duke@435 1561 if (_lo >= 0 || // easy common case
never@1444 1562 (julong)(_lo - min) >= (julong)(max - _hi)) {
duke@435 1563 // Try to widen to an unsigned range type of 32/63 bits:
never@1444 1564 if (max >= max_juint && _hi < max_juint)
duke@435 1565 return make(_lo, max_juint, WidenMax);
duke@435 1566 else
never@1444 1567 return make(_lo, max, WidenMax);
duke@435 1568 } else {
never@1444 1569 return make(min, _hi, WidenMax);
duke@435 1570 }
duke@435 1571 }
duke@435 1572 return TypeLong::LONG;
duke@435 1573 }
duke@435 1574 // Returned widened new guy
duke@435 1575 return make(_lo,_hi,_widen+1);
duke@435 1576 }
duke@435 1577
duke@435 1578 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1579 // bottom. Return the wider fellow.
duke@435 1580 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1581 return old;
duke@435 1582
duke@435 1583 // fatal("Long value range is not subset");
duke@435 1584 // return this;
duke@435 1585 return TypeLong::LONG;
duke@435 1586 }
duke@435 1587
duke@435 1588 //------------------------------narrow----------------------------------------
duke@435 1589 // Only happens for pessimistic optimizations.
duke@435 1590 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1591 if (_lo >= _hi) return this; // already narrow enough
duke@435 1592 if (old == NULL) return this;
duke@435 1593 const TypeLong* ot = old->isa_long();
duke@435 1594 if (ot == NULL) return this;
duke@435 1595 jlong olo = ot->_lo;
duke@435 1596 jlong ohi = ot->_hi;
duke@435 1597
duke@435 1598 // If new guy is equal to old guy, no narrowing
duke@435 1599 if (_lo == olo && _hi == ohi) return old;
duke@435 1600
duke@435 1601 // If old guy was maximum range, allow the narrowing
duke@435 1602 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1603
duke@435 1604 if (_lo < olo || _hi > ohi)
duke@435 1605 return this; // doesn't narrow; pretty wierd
duke@435 1606
duke@435 1607 // The new type narrows the old type, so look for a "death march".
duke@435 1608 // See comments on PhaseTransform::saturate.
duke@435 1609 julong nrange = _hi - _lo;
duke@435 1610 julong orange = ohi - olo;
duke@435 1611 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1612 // Use the new type only if the range shrinks a lot.
duke@435 1613 // We do not want the optimizer computing 2^31 point by point.
duke@435 1614 return old;
duke@435 1615 }
duke@435 1616
duke@435 1617 return this;
duke@435 1618 }
duke@435 1619
duke@435 1620 //-----------------------------filter------------------------------------------
roland@6313 1621 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 1622 const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
kvn@1975 1623 if (ft == NULL || ft->empty())
duke@435 1624 return Type::TOP; // Canonical empty value
duke@435 1625 if (ft->_widen < this->_widen) {
duke@435 1626 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1627 // The widen bits must be allowed to run freely through the graph.
duke@435 1628 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1629 }
duke@435 1630 return ft;
duke@435 1631 }
duke@435 1632
duke@435 1633 //------------------------------eq---------------------------------------------
duke@435 1634 // Structural equality check for Type representations
duke@435 1635 bool TypeLong::eq( const Type *t ) const {
duke@435 1636 const TypeLong *r = t->is_long(); // Handy access
duke@435 1637 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1638 }
duke@435 1639
duke@435 1640 //------------------------------hash-------------------------------------------
duke@435 1641 // Type-specific hashing function.
duke@435 1642 int TypeLong::hash(void) const {
duke@435 1643 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1644 }
duke@435 1645
duke@435 1646 //------------------------------is_finite--------------------------------------
duke@435 1647 // Has a finite value
duke@435 1648 bool TypeLong::is_finite() const {
duke@435 1649 return true;
duke@435 1650 }
duke@435 1651
duke@435 1652 //------------------------------dump2------------------------------------------
duke@435 1653 // Dump TypeLong
duke@435 1654 #ifndef PRODUCT
duke@435 1655 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1656 if (n > x) {
duke@435 1657 if (n >= x + 10000) return NULL;
hseigel@4465 1658 sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
duke@435 1659 } else if (n < x) {
duke@435 1660 if (n <= x - 10000) return NULL;
hseigel@4465 1661 sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
duke@435 1662 } else {
duke@435 1663 return xname;
duke@435 1664 }
duke@435 1665 return buf;
duke@435 1666 }
duke@435 1667
duke@435 1668 static const char* longname(char* buf, jlong n) {
duke@435 1669 const char* str;
duke@435 1670 if (n == min_jlong)
duke@435 1671 return "min";
duke@435 1672 else if (n < min_jlong + 10000)
hseigel@4465 1673 sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
duke@435 1674 else if (n == max_jlong)
duke@435 1675 return "max";
duke@435 1676 else if (n > max_jlong - 10000)
hseigel@4465 1677 sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
duke@435 1678 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1679 return str;
duke@435 1680 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1681 return str;
duke@435 1682 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1683 return str;
duke@435 1684 else
hseigel@4465 1685 sprintf(buf, JLONG_FORMAT, n);
duke@435 1686 return buf;
duke@435 1687 }
duke@435 1688
duke@435 1689 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1690 char buf[80], buf2[80];
duke@435 1691 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1692 st->print("long");
duke@435 1693 else if (is_con())
duke@435 1694 st->print("long:%s", longname(buf, get_con()));
duke@435 1695 else if (_hi == max_jlong)
duke@435 1696 st->print("long:>=%s", longname(buf, _lo));
duke@435 1697 else if (_lo == min_jlong)
duke@435 1698 st->print("long:<=%s", longname(buf, _hi));
duke@435 1699 else
duke@435 1700 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1701
duke@435 1702 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1703 st->print(":%.*s", _widen, "wwww");
duke@435 1704 }
duke@435 1705 #endif
duke@435 1706
duke@435 1707 //------------------------------singleton--------------------------------------
duke@435 1708 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1709 // constants
duke@435 1710 bool TypeLong::singleton(void) const {
duke@435 1711 return _lo >= _hi;
duke@435 1712 }
duke@435 1713
duke@435 1714 bool TypeLong::empty(void) const {
duke@435 1715 return _lo > _hi;
duke@435 1716 }
duke@435 1717
duke@435 1718 //=============================================================================
duke@435 1719 // Convenience common pre-built types.
duke@435 1720 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1721 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1722 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1723 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1724 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1725 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1726 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1727 const TypeTuple *TypeTuple::START_I2C;
duke@435 1728 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1729 const TypeTuple *TypeTuple::LONG_PAIR;
rbackman@5791 1730 const TypeTuple *TypeTuple::INT_CC_PAIR;
rbackman@5997 1731 const TypeTuple *TypeTuple::LONG_CC_PAIR;
duke@435 1732
duke@435 1733
duke@435 1734 //------------------------------make-------------------------------------------
duke@435 1735 // Make a TypeTuple from the range of a method signature
duke@435 1736 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1737 ciType* return_type = sig->return_type();
duke@435 1738 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1739 const Type **field_array = fields(total_fields);
duke@435 1740 switch (return_type->basic_type()) {
duke@435 1741 case T_LONG:
duke@435 1742 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1743 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1744 break;
duke@435 1745 case T_DOUBLE:
duke@435 1746 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1747 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1748 break;
duke@435 1749 case T_OBJECT:
duke@435 1750 case T_ARRAY:
duke@435 1751 case T_BOOLEAN:
duke@435 1752 case T_CHAR:
duke@435 1753 case T_FLOAT:
duke@435 1754 case T_BYTE:
duke@435 1755 case T_SHORT:
duke@435 1756 case T_INT:
duke@435 1757 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1758 break;
duke@435 1759 case T_VOID:
duke@435 1760 break;
duke@435 1761 default:
duke@435 1762 ShouldNotReachHere();
duke@435 1763 }
duke@435 1764 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1765 }
duke@435 1766
duke@435 1767 // Make a TypeTuple from the domain of a method signature
duke@435 1768 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1769 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1770
duke@435 1771 uint pos = TypeFunc::Parms;
duke@435 1772 const Type **field_array;
duke@435 1773 if (recv != NULL) {
duke@435 1774 total_fields++;
duke@435 1775 field_array = fields(total_fields);
duke@435 1776 // Use get_const_type here because it respects UseUniqueSubclasses:
roland@6313 1777 field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
duke@435 1778 } else {
duke@435 1779 field_array = fields(total_fields);
duke@435 1780 }
duke@435 1781
duke@435 1782 int i = 0;
duke@435 1783 while (pos < total_fields) {
duke@435 1784 ciType* type = sig->type_at(i);
duke@435 1785
duke@435 1786 switch (type->basic_type()) {
duke@435 1787 case T_LONG:
duke@435 1788 field_array[pos++] = TypeLong::LONG;
duke@435 1789 field_array[pos++] = Type::HALF;
duke@435 1790 break;
duke@435 1791 case T_DOUBLE:
duke@435 1792 field_array[pos++] = Type::DOUBLE;
duke@435 1793 field_array[pos++] = Type::HALF;
duke@435 1794 break;
duke@435 1795 case T_OBJECT:
duke@435 1796 case T_ARRAY:
duke@435 1797 case T_BOOLEAN:
duke@435 1798 case T_CHAR:
duke@435 1799 case T_FLOAT:
duke@435 1800 case T_BYTE:
duke@435 1801 case T_SHORT:
duke@435 1802 case T_INT:
duke@435 1803 field_array[pos++] = get_const_type(type);
duke@435 1804 break;
duke@435 1805 default:
duke@435 1806 ShouldNotReachHere();
duke@435 1807 }
duke@435 1808 i++;
duke@435 1809 }
duke@435 1810 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1811 }
duke@435 1812
duke@435 1813 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1814 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1815 }
duke@435 1816
duke@435 1817 //------------------------------fields-----------------------------------------
duke@435 1818 // Subroutine call type with space allocated for argument types
duke@435 1819 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1820 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1821 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1822 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1823 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1824 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1825 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1826
duke@435 1827 return flds;
duke@435 1828 }
duke@435 1829
duke@435 1830 //------------------------------meet-------------------------------------------
duke@435 1831 // Compute the MEET of two types. It returns a new Type object.
duke@435 1832 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1833 // Perform a fast test for common case; meeting the same types together.
duke@435 1834 if( this == t ) return this; // Meeting same type-rep?
duke@435 1835
duke@435 1836 // Current "this->_base" is Tuple
duke@435 1837 switch (t->base()) { // switch on original type
duke@435 1838
duke@435 1839 case Bottom: // Ye Olde Default
duke@435 1840 return t;
duke@435 1841
duke@435 1842 default: // All else is a mistake
duke@435 1843 typerr(t);
duke@435 1844
duke@435 1845 case Tuple: { // Meeting 2 signatures?
duke@435 1846 const TypeTuple *x = t->is_tuple();
duke@435 1847 assert( _cnt == x->_cnt, "" );
duke@435 1848 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1849 for( uint i=0; i<_cnt; i++ )
duke@435 1850 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1851 return TypeTuple::make(_cnt,fields);
duke@435 1852 }
duke@435 1853 case Top:
duke@435 1854 break;
duke@435 1855 }
duke@435 1856 return this; // Return the double constant
duke@435 1857 }
duke@435 1858
duke@435 1859 //------------------------------xdual------------------------------------------
duke@435 1860 // Dual: compute field-by-field dual
duke@435 1861 const Type *TypeTuple::xdual() const {
duke@435 1862 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1863 for( uint i=0; i<_cnt; i++ )
duke@435 1864 fields[i] = _fields[i]->dual();
duke@435 1865 return new TypeTuple(_cnt,fields);
duke@435 1866 }
duke@435 1867
duke@435 1868 //------------------------------eq---------------------------------------------
duke@435 1869 // Structural equality check for Type representations
duke@435 1870 bool TypeTuple::eq( const Type *t ) const {
duke@435 1871 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1872 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1873 for (uint i = 0; i < _cnt; i++)
duke@435 1874 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1875 return false; // Missed
duke@435 1876 return true;
duke@435 1877 }
duke@435 1878
duke@435 1879 //------------------------------hash-------------------------------------------
duke@435 1880 // Type-specific hashing function.
duke@435 1881 int TypeTuple::hash(void) const {
duke@435 1882 intptr_t sum = _cnt;
duke@435 1883 for( uint i=0; i<_cnt; i++ )
duke@435 1884 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1885 return sum;
duke@435 1886 }
duke@435 1887
duke@435 1888 //------------------------------dump2------------------------------------------
duke@435 1889 // Dump signature Type
duke@435 1890 #ifndef PRODUCT
duke@435 1891 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1892 st->print("{");
duke@435 1893 if( !depth || d[this] ) { // Check for recursive print
duke@435 1894 st->print("...}");
duke@435 1895 return;
duke@435 1896 }
duke@435 1897 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1898 if( _cnt ) {
duke@435 1899 uint i;
duke@435 1900 for( i=0; i<_cnt-1; i++ ) {
duke@435 1901 st->print("%d:", i);
duke@435 1902 _fields[i]->dump2(d, depth-1, st);
duke@435 1903 st->print(", ");
duke@435 1904 }
duke@435 1905 st->print("%d:", i);
duke@435 1906 _fields[i]->dump2(d, depth-1, st);
duke@435 1907 }
duke@435 1908 st->print("}");
duke@435 1909 }
duke@435 1910 #endif
duke@435 1911
duke@435 1912 //------------------------------singleton--------------------------------------
duke@435 1913 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1914 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1915 // or a single symbol.
duke@435 1916 bool TypeTuple::singleton(void) const {
duke@435 1917 return false; // Never a singleton
duke@435 1918 }
duke@435 1919
duke@435 1920 bool TypeTuple::empty(void) const {
duke@435 1921 for( uint i=0; i<_cnt; i++ ) {
duke@435 1922 if (_fields[i]->empty()) return true;
duke@435 1923 }
duke@435 1924 return false;
duke@435 1925 }
duke@435 1926
duke@435 1927 //=============================================================================
duke@435 1928 // Convenience common pre-built types.
duke@435 1929
duke@435 1930 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1931 // Certain normalizations keep us sane when comparing types.
duke@435 1932 // We do not want arrayOop variables to differ only by the wideness
duke@435 1933 // of their index types. Pick minimum wideness, since that is the
duke@435 1934 // forced wideness of small ranges anyway.
duke@435 1935 if (size->_widen != Type::WidenMin)
duke@435 1936 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1937 else
duke@435 1938 return size;
duke@435 1939 }
duke@435 1940
duke@435 1941 //------------------------------make-------------------------------------------
vlivanov@5658 1942 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
coleenp@548 1943 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1944 elem = elem->make_narrowoop();
coleenp@548 1945 }
duke@435 1946 size = normalize_array_size(size);
vlivanov@5658 1947 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
duke@435 1948 }
duke@435 1949
duke@435 1950 //------------------------------meet-------------------------------------------
duke@435 1951 // Compute the MEET of two types. It returns a new Type object.
duke@435 1952 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1953 // Perform a fast test for common case; meeting the same types together.
duke@435 1954 if( this == t ) return this; // Meeting same type-rep?
duke@435 1955
duke@435 1956 // Current "this->_base" is Ary
duke@435 1957 switch (t->base()) { // switch on original type
duke@435 1958
duke@435 1959 case Bottom: // Ye Olde Default
duke@435 1960 return t;
duke@435 1961
duke@435 1962 default: // All else is a mistake
duke@435 1963 typerr(t);
duke@435 1964
duke@435 1965 case Array: { // Meeting 2 arrays?
duke@435 1966 const TypeAry *a = t->is_ary();
roland@6313 1967 return TypeAry::make(_elem->meet_speculative(a->_elem),
vlivanov@5658 1968 _size->xmeet(a->_size)->is_int(),
vlivanov@5658 1969 _stable & a->_stable);
duke@435 1970 }
duke@435 1971 case Top:
duke@435 1972 break;
duke@435 1973 }
duke@435 1974 return this; // Return the double constant
duke@435 1975 }
duke@435 1976
duke@435 1977 //------------------------------xdual------------------------------------------
duke@435 1978 // Dual: compute field-by-field dual
duke@435 1979 const Type *TypeAry::xdual() const {
duke@435 1980 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1981 size_dual = normalize_array_size(size_dual);
vlivanov@5658 1982 return new TypeAry(_elem->dual(), size_dual, !_stable);
duke@435 1983 }
duke@435 1984
duke@435 1985 //------------------------------eq---------------------------------------------
duke@435 1986 // Structural equality check for Type representations
duke@435 1987 bool TypeAry::eq( const Type *t ) const {
duke@435 1988 const TypeAry *a = (const TypeAry*)t;
duke@435 1989 return _elem == a->_elem &&
vlivanov@5658 1990 _stable == a->_stable &&
duke@435 1991 _size == a->_size;
duke@435 1992 }
duke@435 1993
duke@435 1994 //------------------------------hash-------------------------------------------
duke@435 1995 // Type-specific hashing function.
duke@435 1996 int TypeAry::hash(void) const {
vlivanov@5658 1997 return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
duke@435 1998 }
duke@435 1999
roland@6313 2000 /**
roland@6313 2001 * Return same type without a speculative part in the element
roland@6313 2002 */
roland@6313 2003 const Type* TypeAry::remove_speculative() const {
roland@6313 2004 return make(_elem->remove_speculative(), _size, _stable);
roland@6313 2005 }
roland@6313 2006
kvn@1255 2007 //----------------------interface_vs_oop---------------------------------------
kvn@1255 2008 #ifdef ASSERT
kvn@1255 2009 bool TypeAry::interface_vs_oop(const Type *t) const {
kvn@1255 2010 const TypeAry* t_ary = t->is_ary();
kvn@1255 2011 if (t_ary) {
shshahma@8422 2012 const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
shshahma@8422 2013 const TypePtr* t_ptr = t_ary->_elem->make_ptr();
shshahma@8422 2014 if(this_ptr != NULL && t_ptr != NULL) {
shshahma@8422 2015 return this_ptr->interface_vs_oop(t_ptr);
shshahma@8422 2016 }
kvn@1255 2017 }
kvn@1255 2018 return false;
kvn@1255 2019 }
kvn@1255 2020 #endif
kvn@1255 2021
duke@435 2022 //------------------------------dump2------------------------------------------
duke@435 2023 #ifndef PRODUCT
duke@435 2024 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
vlivanov@5658 2025 if (_stable) st->print("stable:");
duke@435 2026 _elem->dump2(d, depth, st);
duke@435 2027 st->print("[");
duke@435 2028 _size->dump2(d, depth, st);
duke@435 2029 st->print("]");
duke@435 2030 }
duke@435 2031 #endif
duke@435 2032
duke@435 2033 //------------------------------singleton--------------------------------------
duke@435 2034 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2035 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 2036 // or a single symbol.
duke@435 2037 bool TypeAry::singleton(void) const {
duke@435 2038 return false; // Never a singleton
duke@435 2039 }
duke@435 2040
duke@435 2041 bool TypeAry::empty(void) const {
duke@435 2042 return _elem->empty() || _size->empty();
duke@435 2043 }
duke@435 2044
duke@435 2045 //--------------------------ary_must_be_exact----------------------------------
duke@435 2046 bool TypeAry::ary_must_be_exact() const {
duke@435 2047 if (!UseExactTypes) return false;
duke@435 2048 // This logic looks at the element type of an array, and returns true
duke@435 2049 // if the element type is either a primitive or a final instance class.
duke@435 2050 // In such cases, an array built on this ary must have no subclasses.
duke@435 2051 if (_elem == BOTTOM) return false; // general array not exact
duke@435 2052 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 2053 const TypeOopPtr* toop = NULL;
kvn@656 2054 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 2055 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 2056 } else {
coleenp@548 2057 toop = _elem->isa_oopptr();
coleenp@548 2058 }
duke@435 2059 if (!toop) return true; // a primitive type, like int
duke@435 2060 ciKlass* tklass = toop->klass();
duke@435 2061 if (tklass == NULL) return false; // unloaded class
duke@435 2062 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 2063 const TypeInstPtr* tinst;
coleenp@548 2064 if (_elem->isa_narrowoop())
kvn@656 2065 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 2066 else
coleenp@548 2067 tinst = _elem->isa_instptr();
kvn@656 2068 if (tinst)
kvn@656 2069 return tklass->as_instance_klass()->is_final();
coleenp@548 2070 const TypeAryPtr* tap;
coleenp@548 2071 if (_elem->isa_narrowoop())
kvn@656 2072 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 2073 else
coleenp@548 2074 tap = _elem->isa_aryptr();
kvn@656 2075 if (tap)
kvn@656 2076 return tap->ary()->ary_must_be_exact();
duke@435 2077 return false;
duke@435 2078 }
duke@435 2079
kvn@3882 2080 //==============================TypeVect=======================================
kvn@3882 2081 // Convenience common pre-built types.
kvn@3882 2082 const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors
kvn@3882 2083 const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors
kvn@3882 2084 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
kvn@3882 2085 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
kvn@3882 2086
kvn@3882 2087 //------------------------------make-------------------------------------------
kvn@3882 2088 const TypeVect* TypeVect::make(const Type *elem, uint length) {
kvn@3882 2089 BasicType elem_bt = elem->array_element_basic_type();
kvn@3882 2090 assert(is_java_primitive(elem_bt), "only primitive types in vector");
kvn@3882 2091 assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
kvn@3882 2092 assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
kvn@3882 2093 int size = length * type2aelembytes(elem_bt);
kvn@3882 2094 switch (Matcher::vector_ideal_reg(size)) {
kvn@3882 2095 case Op_VecS:
kvn@3882 2096 return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
goetz@6487 2097 case Op_RegL:
kvn@3882 2098 case Op_VecD:
kvn@3882 2099 case Op_RegD:
kvn@3882 2100 return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
kvn@3882 2101 case Op_VecX:
kvn@3882 2102 return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
kvn@3882 2103 case Op_VecY:
kvn@3882 2104 return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
kvn@3882 2105 }
kvn@3882 2106 ShouldNotReachHere();
kvn@3882 2107 return NULL;
kvn@3882 2108 }
kvn@3882 2109
kvn@3882 2110 //------------------------------meet-------------------------------------------
kvn@3882 2111 // Compute the MEET of two types. It returns a new Type object.
kvn@3882 2112 const Type *TypeVect::xmeet( const Type *t ) const {
kvn@3882 2113 // Perform a fast test for common case; meeting the same types together.
kvn@3882 2114 if( this == t ) return this; // Meeting same type-rep?
kvn@3882 2115
kvn@3882 2116 // Current "this->_base" is Vector
kvn@3882 2117 switch (t->base()) { // switch on original type
kvn@3882 2118
kvn@3882 2119 case Bottom: // Ye Olde Default
kvn@3882 2120 return t;
kvn@3882 2121
kvn@3882 2122 default: // All else is a mistake
kvn@3882 2123 typerr(t);
kvn@3882 2124
kvn@3882 2125 case VectorS:
kvn@3882 2126 case VectorD:
kvn@3882 2127 case VectorX:
kvn@3882 2128 case VectorY: { // Meeting 2 vectors?
kvn@3882 2129 const TypeVect* v = t->is_vect();
kvn@3882 2130 assert( base() == v->base(), "");
kvn@3882 2131 assert(length() == v->length(), "");
kvn@3882 2132 assert(element_basic_type() == v->element_basic_type(), "");
kvn@3882 2133 return TypeVect::make(_elem->xmeet(v->_elem), _length);
kvn@3882 2134 }
kvn@3882 2135 case Top:
kvn@3882 2136 break;
kvn@3882 2137 }
kvn@3882 2138 return this;
kvn@3882 2139 }
kvn@3882 2140
kvn@3882 2141 //------------------------------xdual------------------------------------------
kvn@3882 2142 // Dual: compute field-by-field dual
kvn@3882 2143 const Type *TypeVect::xdual() const {
kvn@3882 2144 return new TypeVect(base(), _elem->dual(), _length);
kvn@3882 2145 }
kvn@3882 2146
kvn@3882 2147 //------------------------------eq---------------------------------------------
kvn@3882 2148 // Structural equality check for Type representations
kvn@3882 2149 bool TypeVect::eq(const Type *t) const {
kvn@3882 2150 const TypeVect *v = t->is_vect();
kvn@3882 2151 return (_elem == v->_elem) && (_length == v->_length);
kvn@3882 2152 }
kvn@3882 2153
kvn@3882 2154 //------------------------------hash-------------------------------------------
kvn@3882 2155 // Type-specific hashing function.
kvn@3882 2156 int TypeVect::hash(void) const {
kvn@3882 2157 return (intptr_t)_elem + (intptr_t)_length;
kvn@3882 2158 }
kvn@3882 2159
kvn@3882 2160 //------------------------------singleton--------------------------------------
kvn@3882 2161 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
kvn@3882 2162 // constants (Ldi nodes). Vector is singleton if all elements are the same
kvn@3882 2163 // constant value (when vector is created with Replicate code).
kvn@3882 2164 bool TypeVect::singleton(void) const {
kvn@3882 2165 // There is no Con node for vectors yet.
kvn@3882 2166 // return _elem->singleton();
kvn@3882 2167 return false;
kvn@3882 2168 }
kvn@3882 2169
kvn@3882 2170 bool TypeVect::empty(void) const {
kvn@3882 2171 return _elem->empty();
kvn@3882 2172 }
kvn@3882 2173
kvn@3882 2174 //------------------------------dump2------------------------------------------
kvn@3882 2175 #ifndef PRODUCT
kvn@3882 2176 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
kvn@3882 2177 switch (base()) {
kvn@3882 2178 case VectorS:
kvn@3882 2179 st->print("vectors["); break;
kvn@3882 2180 case VectorD:
kvn@3882 2181 st->print("vectord["); break;
kvn@3882 2182 case VectorX:
kvn@3882 2183 st->print("vectorx["); break;
kvn@3882 2184 case VectorY:
kvn@3882 2185 st->print("vectory["); break;
kvn@3882 2186 default:
kvn@3882 2187 ShouldNotReachHere();
kvn@3882 2188 }
kvn@3882 2189 st->print("%d]:{", _length);
kvn@3882 2190 _elem->dump2(d, depth, st);
kvn@3882 2191 st->print("}");
kvn@3882 2192 }
kvn@3882 2193 #endif
kvn@3882 2194
kvn@3882 2195
duke@435 2196 //=============================================================================
duke@435 2197 // Convenience common pre-built types.
duke@435 2198 const TypePtr *TypePtr::NULL_PTR;
duke@435 2199 const TypePtr *TypePtr::NOTNULL;
duke@435 2200 const TypePtr *TypePtr::BOTTOM;
duke@435 2201
duke@435 2202 //------------------------------meet-------------------------------------------
duke@435 2203 // Meet over the PTR enum
duke@435 2204 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 2205 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 2206 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 2207 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2208 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2209 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 2210 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 2211 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 2212 };
duke@435 2213
duke@435 2214 //------------------------------make-------------------------------------------
duke@435 2215 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 2216 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 2217 }
duke@435 2218
duke@435 2219 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2220 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2221 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 2222 if( ptr == _ptr ) return this;
duke@435 2223 return make(_base, ptr, _offset);
duke@435 2224 }
duke@435 2225
duke@435 2226 //------------------------------get_con----------------------------------------
duke@435 2227 intptr_t TypePtr::get_con() const {
duke@435 2228 assert( _ptr == Null, "" );
duke@435 2229 return _offset;
duke@435 2230 }
duke@435 2231
duke@435 2232 //------------------------------meet-------------------------------------------
duke@435 2233 // Compute the MEET of two types. It returns a new Type object.
duke@435 2234 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 2235 // Perform a fast test for common case; meeting the same types together.
duke@435 2236 if( this == t ) return this; // Meeting same type-rep?
duke@435 2237
duke@435 2238 // Current "this->_base" is AnyPtr
duke@435 2239 switch (t->base()) { // switch on original type
duke@435 2240 case Int: // Mixing ints & oops happens when javac
duke@435 2241 case Long: // reuses local variables
duke@435 2242 case FloatTop:
duke@435 2243 case FloatCon:
duke@435 2244 case FloatBot:
duke@435 2245 case DoubleTop:
duke@435 2246 case DoubleCon:
duke@435 2247 case DoubleBot:
coleenp@548 2248 case NarrowOop:
roland@4159 2249 case NarrowKlass:
duke@435 2250 case Bottom: // Ye Olde Default
duke@435 2251 return Type::BOTTOM;
duke@435 2252 case Top:
duke@435 2253 return this;
duke@435 2254
duke@435 2255 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2256 const TypePtr *tp = t->is_ptr();
duke@435 2257 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 2258 }
duke@435 2259 case RawPtr: // For these, flip the call around to cut down
duke@435 2260 case OopPtr:
duke@435 2261 case InstPtr: // on the cases I have to handle.
coleenp@4037 2262 case AryPtr:
coleenp@4037 2263 case MetadataPtr:
duke@435 2264 case KlassPtr:
duke@435 2265 return t->xmeet(this); // Call in reverse direction
duke@435 2266 default: // All else is a mistake
duke@435 2267 typerr(t);
duke@435 2268
duke@435 2269 }
duke@435 2270 return this;
duke@435 2271 }
duke@435 2272
duke@435 2273 //------------------------------meet_offset------------------------------------
duke@435 2274 int TypePtr::meet_offset( int offset ) const {
duke@435 2275 // Either is 'TOP' offset? Return the other offset!
duke@435 2276 if( _offset == OffsetTop ) return offset;
duke@435 2277 if( offset == OffsetTop ) return _offset;
duke@435 2278 // If either is different, return 'BOTTOM' offset
duke@435 2279 if( _offset != offset ) return OffsetBot;
duke@435 2280 return _offset;
duke@435 2281 }
duke@435 2282
duke@435 2283 //------------------------------dual_offset------------------------------------
duke@435 2284 int TypePtr::dual_offset( ) const {
duke@435 2285 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 2286 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 2287 return _offset; // Map everything else into self
duke@435 2288 }
duke@435 2289
duke@435 2290 //------------------------------xdual------------------------------------------
duke@435 2291 // Dual: compute field-by-field dual
duke@435 2292 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 2293 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 2294 };
duke@435 2295 const Type *TypePtr::xdual() const {
duke@435 2296 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 2297 }
duke@435 2298
kvn@741 2299 //------------------------------xadd_offset------------------------------------
kvn@741 2300 int TypePtr::xadd_offset( intptr_t offset ) const {
kvn@741 2301 // Adding to 'TOP' offset? Return 'TOP'!
kvn@741 2302 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
kvn@741 2303 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
kvn@741 2304 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
kvn@741 2305 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
kvn@741 2306 offset += (intptr_t)_offset;
kvn@741 2307 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
kvn@741 2308
kvn@741 2309 // assert( _offset >= 0 && _offset+offset >= 0, "" );
kvn@741 2310 // It is possible to construct a negative offset during PhaseCCP
kvn@741 2311
kvn@741 2312 return (int)offset; // Sum valid offsets
kvn@741 2313 }
kvn@741 2314
duke@435 2315 //------------------------------add_offset-------------------------------------
kvn@741 2316 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
kvn@741 2317 return make( AnyPtr, _ptr, xadd_offset(offset) );
duke@435 2318 }
duke@435 2319
duke@435 2320 //------------------------------eq---------------------------------------------
duke@435 2321 // Structural equality check for Type representations
duke@435 2322 bool TypePtr::eq( const Type *t ) const {
duke@435 2323 const TypePtr *a = (const TypePtr*)t;
duke@435 2324 return _ptr == a->ptr() && _offset == a->offset();
duke@435 2325 }
duke@435 2326
duke@435 2327 //------------------------------hash-------------------------------------------
duke@435 2328 // Type-specific hashing function.
duke@435 2329 int TypePtr::hash(void) const {
duke@435 2330 return _ptr + _offset;
duke@435 2331 }
duke@435 2332
duke@435 2333 //------------------------------dump2------------------------------------------
duke@435 2334 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 2335 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 2336 };
duke@435 2337
duke@435 2338 #ifndef PRODUCT
duke@435 2339 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2340 if( _ptr == Null ) st->print("NULL");
duke@435 2341 else st->print("%s *", ptr_msg[_ptr]);
duke@435 2342 if( _offset == OffsetTop ) st->print("+top");
duke@435 2343 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 2344 else if( _offset ) st->print("+%d", _offset);
duke@435 2345 }
duke@435 2346 #endif
duke@435 2347
duke@435 2348 //------------------------------singleton--------------------------------------
duke@435 2349 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2350 // constants
duke@435 2351 bool TypePtr::singleton(void) const {
duke@435 2352 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2353 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2354 }
duke@435 2355
duke@435 2356 bool TypePtr::empty(void) const {
duke@435 2357 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2358 }
duke@435 2359
duke@435 2360 //=============================================================================
duke@435 2361 // Convenience common pre-built types.
duke@435 2362 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2363 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2364
duke@435 2365 //------------------------------make-------------------------------------------
duke@435 2366 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2367 assert( ptr != Constant, "what is the constant?" );
duke@435 2368 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2369 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2370 }
duke@435 2371
duke@435 2372 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2373 assert( bits, "Use TypePtr for NULL" );
duke@435 2374 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2375 }
duke@435 2376
duke@435 2377 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2378 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2379 assert( ptr != Constant, "what is the constant?" );
duke@435 2380 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2381 assert( _bits==0, "Why cast a constant address?");
duke@435 2382 if( ptr == _ptr ) return this;
duke@435 2383 return make(ptr);
duke@435 2384 }
duke@435 2385
duke@435 2386 //------------------------------get_con----------------------------------------
duke@435 2387 intptr_t TypeRawPtr::get_con() const {
duke@435 2388 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2389 return (intptr_t)_bits;
duke@435 2390 }
duke@435 2391
duke@435 2392 //------------------------------meet-------------------------------------------
duke@435 2393 // Compute the MEET of two types. It returns a new Type object.
duke@435 2394 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2395 // Perform a fast test for common case; meeting the same types together.
duke@435 2396 if( this == t ) return this; // Meeting same type-rep?
duke@435 2397
duke@435 2398 // Current "this->_base" is RawPtr
duke@435 2399 switch( t->base() ) { // switch on original type
duke@435 2400 case Bottom: // Ye Olde Default
duke@435 2401 return t;
duke@435 2402 case Top:
duke@435 2403 return this;
duke@435 2404 case AnyPtr: // Meeting to AnyPtrs
duke@435 2405 break;
duke@435 2406 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2407 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2408 enum PTR ptr = meet_ptr( tptr );
duke@435 2409 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2410 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2411 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2412 ptr = NotNull; // Fall down in lattice
duke@435 2413 }
duke@435 2414 return make( ptr );
duke@435 2415 }
duke@435 2416
duke@435 2417 case OopPtr:
duke@435 2418 case InstPtr:
coleenp@4037 2419 case AryPtr:
coleenp@4037 2420 case MetadataPtr:
duke@435 2421 case KlassPtr:
duke@435 2422 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2423 default: // All else is a mistake
duke@435 2424 typerr(t);
duke@435 2425 }
duke@435 2426
duke@435 2427 // Found an AnyPtr type vs self-RawPtr type
duke@435 2428 const TypePtr *tp = t->is_ptr();
duke@435 2429 switch (tp->ptr()) {
duke@435 2430 case TypePtr::TopPTR: return this;
duke@435 2431 case TypePtr::BotPTR: return t;
duke@435 2432 case TypePtr::Null:
duke@435 2433 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2434 return TypeRawPtr::BOTTOM;
duke@435 2435 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2436 case TypePtr::AnyNull:
duke@435 2437 if( _ptr == TypePtr::Constant) return this;
duke@435 2438 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2439 default: ShouldNotReachHere();
duke@435 2440 }
duke@435 2441 return this;
duke@435 2442 }
duke@435 2443
duke@435 2444 //------------------------------xdual------------------------------------------
duke@435 2445 // Dual: compute field-by-field dual
duke@435 2446 const Type *TypeRawPtr::xdual() const {
duke@435 2447 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2448 }
duke@435 2449
duke@435 2450 //------------------------------add_offset-------------------------------------
kvn@741 2451 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
duke@435 2452 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2453 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2454 if( offset == 0 ) return this; // No change
duke@435 2455 switch (_ptr) {
duke@435 2456 case TypePtr::TopPTR:
duke@435 2457 case TypePtr::BotPTR:
duke@435 2458 case TypePtr::NotNull:
duke@435 2459 return this;
duke@435 2460 case TypePtr::Null:
kvn@2435 2461 case TypePtr::Constant: {
kvn@2435 2462 address bits = _bits+offset;
kvn@2435 2463 if ( bits == 0 ) return TypePtr::NULL_PTR;
kvn@2435 2464 return make( bits );
kvn@2435 2465 }
duke@435 2466 default: ShouldNotReachHere();
duke@435 2467 }
duke@435 2468 return NULL; // Lint noise
duke@435 2469 }
duke@435 2470
duke@435 2471 //------------------------------eq---------------------------------------------
duke@435 2472 // Structural equality check for Type representations
duke@435 2473 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2474 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2475 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2476 }
duke@435 2477
duke@435 2478 //------------------------------hash-------------------------------------------
duke@435 2479 // Type-specific hashing function.
duke@435 2480 int TypeRawPtr::hash(void) const {
duke@435 2481 return (intptr_t)_bits + TypePtr::hash();
duke@435 2482 }
duke@435 2483
duke@435 2484 //------------------------------dump2------------------------------------------
duke@435 2485 #ifndef PRODUCT
duke@435 2486 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2487 if( _ptr == Constant )
duke@435 2488 st->print(INTPTR_FORMAT, _bits);
duke@435 2489 else
duke@435 2490 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2491 }
duke@435 2492 #endif
duke@435 2493
duke@435 2494 //=============================================================================
duke@435 2495 // Convenience common pre-built type.
duke@435 2496 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2497
kvn@598 2498 //------------------------------TypeOopPtr-------------------------------------
roland@6380 2499 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth)
kvn@598 2500 : TypePtr(t, ptr, offset),
kvn@598 2501 _const_oop(o), _klass(k),
kvn@598 2502 _klass_is_exact(xk),
kvn@598 2503 _is_ptr_to_narrowoop(false),
roland@4159 2504 _is_ptr_to_narrowklass(false),
kvn@5110 2505 _is_ptr_to_boxed_value(false),
roland@5991 2506 _instance_id(instance_id),
roland@6380 2507 _speculative(speculative),
roland@6380 2508 _inline_depth(inline_depth){
kvn@5110 2509 if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
kvn@5110 2510 (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
kvn@5110 2511 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
kvn@5110 2512 }
kvn@598 2513 #ifdef _LP64
roland@4159 2514 if (_offset != 0) {
coleenp@4037 2515 if (_offset == oopDesc::klass_offset_in_bytes()) {
ehelin@5694 2516 _is_ptr_to_narrowklass = UseCompressedClassPointers;
coleenp@4037 2517 } else if (klass() == NULL) {
coleenp@4037 2518 // Array with unknown body type
kvn@598 2519 assert(this->isa_aryptr(), "only arrays without klass");
roland@4159 2520 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2521 } else if (this->isa_aryptr()) {
roland@4159 2522 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
kvn@598 2523 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2524 } else if (klass()->is_instance_klass()) {
kvn@598 2525 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2526 ciField* field = NULL;
kvn@598 2527 if (this->isa_klassptr()) {
never@2658 2528 // Perm objects don't use compressed references
kvn@598 2529 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2530 // unsafe access
roland@4159 2531 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2532 } else { // exclude unsafe ops
kvn@598 2533 assert(this->isa_instptr(), "must be an instance ptr.");
never@2658 2534
never@2658 2535 if (klass() == ciEnv::current()->Class_klass() &&
never@2658 2536 (_offset == java_lang_Class::klass_offset_in_bytes() ||
never@2658 2537 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
never@2658 2538 // Special hidden fields from the Class.
never@2658 2539 assert(this->isa_instptr(), "must be an instance ptr.");
coleenp@4037 2540 _is_ptr_to_narrowoop = false;
never@2658 2541 } else if (klass() == ciEnv::current()->Class_klass() &&
coleenp@4047 2542 _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
never@2658 2543 // Static fields
never@2658 2544 assert(o != NULL, "must be constant");
never@2658 2545 ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 2546 ciField* field = k->get_field_by_offset(_offset, true);
never@2658 2547 assert(field != NULL, "missing field");
kvn@598 2548 BasicType basic_elem_type = field->layout_type();
roland@4159 2549 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2550 basic_elem_type == T_ARRAY);
kvn@598 2551 } else {
never@2658 2552 // Instance fields which contains a compressed oop references.
never@2658 2553 field = ik->get_field_by_offset(_offset, false);
never@2658 2554 if (field != NULL) {
never@2658 2555 BasicType basic_elem_type = field->layout_type();
roland@4159 2556 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2557 basic_elem_type == T_ARRAY);
never@2658 2558 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
never@2658 2559 // Compile::find_alias_type() cast exactness on all types to verify
never@2658 2560 // that it does not affect alias type.
roland@4159 2561 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2562 } else {
never@2658 2563 // Type for the copy start in LibraryCallKit::inline_native_clone().
roland@4159 2564 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2565 }
kvn@598 2566 }
kvn@598 2567 }
kvn@598 2568 }
kvn@598 2569 }
kvn@598 2570 #endif
kvn@598 2571 }
kvn@598 2572
duke@435 2573 //------------------------------make-------------------------------------------
duke@435 2574 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
roland@6380 2575 int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
duke@435 2576 assert(ptr != Constant, "no constant generic pointers");
coleenp@4037 2577 ciKlass* k = Compile::current()->env()->Object_klass();
duke@435 2578 bool xk = false;
duke@435 2579 ciObject* o = NULL;
roland@6380 2580 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
duke@435 2581 }
duke@435 2582
duke@435 2583
duke@435 2584 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2585 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2586 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2587 if( ptr == _ptr ) return this;
roland@6380 2588 return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
duke@435 2589 }
duke@435 2590
kvn@682 2591 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2592 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2593 // There are no instances of a general oop.
duke@435 2594 // Return self unchanged.
duke@435 2595 return this;
duke@435 2596 }
duke@435 2597
duke@435 2598 //-----------------------------cast_to_exactness-------------------------------
duke@435 2599 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2600 // There is no such thing as an exact general oop.
duke@435 2601 // Return self unchanged.
duke@435 2602 return this;
duke@435 2603 }
duke@435 2604
duke@435 2605
duke@435 2606 //------------------------------as_klass_type----------------------------------
duke@435 2607 // Return the klass type corresponding to this instance or array type.
duke@435 2608 // It is the type that is loaded from an object of this type.
duke@435 2609 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2610 ciKlass* k = klass();
duke@435 2611 bool xk = klass_is_exact();
coleenp@4037 2612 if (k == NULL)
duke@435 2613 return TypeKlassPtr::OBJECT;
duke@435 2614 else
duke@435 2615 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2616 }
duke@435 2617
roland@5991 2618 const Type *TypeOopPtr::xmeet(const Type *t) const {
roland@5991 2619 const Type* res = xmeet_helper(t);
roland@5991 2620 if (res->isa_oopptr() == NULL) {
roland@5991 2621 return res;
roland@5991 2622 }
roland@5991 2623
roland@6313 2624 const TypeOopPtr* res_oopptr = res->is_oopptr();
roland@6313 2625 if (res_oopptr->speculative() != NULL) {
roland@5991 2626 // type->speculative() == NULL means that speculation is no better
roland@5991 2627 // than type, i.e. type->speculative() == type. So there are 2
roland@5991 2628 // ways to represent the fact that we have no useful speculative
roland@5991 2629 // data and we should use a single one to be able to test for
roland@5991 2630 // equality between types. Check whether type->speculative() ==
roland@5991 2631 // type and set speculative to NULL if it is the case.
roland@5991 2632 if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
roland@5991 2633 return res_oopptr->remove_speculative();
roland@5991 2634 }
roland@5991 2635 }
roland@5991 2636
roland@5991 2637 return res;
roland@5991 2638 }
duke@435 2639
duke@435 2640 //------------------------------meet-------------------------------------------
duke@435 2641 // Compute the MEET of two types. It returns a new Type object.
roland@5991 2642 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
duke@435 2643 // Perform a fast test for common case; meeting the same types together.
duke@435 2644 if( this == t ) return this; // Meeting same type-rep?
duke@435 2645
duke@435 2646 // Current "this->_base" is OopPtr
duke@435 2647 switch (t->base()) { // switch on original type
duke@435 2648
duke@435 2649 case Int: // Mixing ints & oops happens when javac
duke@435 2650 case Long: // reuses local variables
duke@435 2651 case FloatTop:
duke@435 2652 case FloatCon:
duke@435 2653 case FloatBot:
duke@435 2654 case DoubleTop:
duke@435 2655 case DoubleCon:
duke@435 2656 case DoubleBot:
kvn@728 2657 case NarrowOop:
roland@4159 2658 case NarrowKlass:
duke@435 2659 case Bottom: // Ye Olde Default
duke@435 2660 return Type::BOTTOM;
duke@435 2661 case Top:
duke@435 2662 return this;
duke@435 2663
duke@435 2664 default: // All else is a mistake
duke@435 2665 typerr(t);
duke@435 2666
duke@435 2667 case RawPtr:
coleenp@4037 2668 case MetadataPtr:
coleenp@4037 2669 case KlassPtr:
duke@435 2670 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2671
duke@435 2672 case AnyPtr: {
duke@435 2673 // Found an AnyPtr type vs self-OopPtr type
duke@435 2674 const TypePtr *tp = t->is_ptr();
duke@435 2675 int offset = meet_offset(tp->offset());
duke@435 2676 PTR ptr = meet_ptr(tp->ptr());
duke@435 2677 switch (tp->ptr()) {
duke@435 2678 case Null:
duke@435 2679 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2680 // else fall through:
duke@435 2681 case TopPTR:
kvn@1427 2682 case AnyNull: {
kvn@1427 2683 int instance_id = meet_instance_id(InstanceTop);
roland@5991 2684 const TypeOopPtr* speculative = _speculative;
roland@6380 2685 return make(ptr, offset, instance_id, speculative, _inline_depth);
kvn@1427 2686 }
duke@435 2687 case BotPTR:
duke@435 2688 case NotNull:
duke@435 2689 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2690 default: typerr(t);
duke@435 2691 }
duke@435 2692 }
duke@435 2693
duke@435 2694 case OopPtr: { // Meeting to other OopPtrs
duke@435 2695 const TypeOopPtr *tp = t->is_oopptr();
kvn@1393 2696 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 2697 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 2698 int depth = meet_inline_depth(tp->inline_depth());
roland@6380 2699 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
duke@435 2700 }
duke@435 2701
duke@435 2702 case InstPtr: // For these, flip the call around to cut down
duke@435 2703 case AryPtr:
duke@435 2704 return t->xmeet(this); // Call in reverse direction
duke@435 2705
duke@435 2706 } // End of switch
duke@435 2707 return this; // Return the double constant
duke@435 2708 }
duke@435 2709
duke@435 2710
duke@435 2711 //------------------------------xdual------------------------------------------
duke@435 2712 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2713 const Type *TypeOopPtr::xdual() const {
coleenp@4037 2714 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
duke@435 2715 assert(const_oop() == NULL, "no constants here");
roland@6380 2716 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
duke@435 2717 }
duke@435 2718
duke@435 2719 //--------------------------make_from_klass_common-----------------------------
duke@435 2720 // Computes the element-type given a klass.
duke@435 2721 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2722 if (klass->is_instance_klass()) {
duke@435 2723 Compile* C = Compile::current();
duke@435 2724 Dependencies* deps = C->dependencies();
duke@435 2725 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2726 // Element is an instance
duke@435 2727 bool klass_is_exact = false;
duke@435 2728 if (klass->is_loaded()) {
duke@435 2729 // Try to set klass_is_exact.
duke@435 2730 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2731 klass_is_exact = ik->is_final();
duke@435 2732 if (!klass_is_exact && klass_change
duke@435 2733 && deps != NULL && UseUniqueSubclasses) {
duke@435 2734 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2735 if (sub != NULL) {
duke@435 2736 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2737 klass = ik = sub;
duke@435 2738 klass_is_exact = sub->is_final();
duke@435 2739 }
duke@435 2740 }
duke@435 2741 if (!klass_is_exact && try_for_exact
duke@435 2742 && deps != NULL && UseExactTypes) {
duke@435 2743 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2744 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2745 deps->assert_leaf_type(ik);
duke@435 2746 klass_is_exact = true;
duke@435 2747 }
duke@435 2748 }
duke@435 2749 }
duke@435 2750 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2751 } else if (klass->is_obj_array_klass()) {
duke@435 2752 // Element is an object array. Recursively call ourself.
duke@435 2753 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2754 bool xk = etype->klass_is_exact();
duke@435 2755 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2756 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2757 // are all not-null. This is not true in generally, as code can
duke@435 2758 // slam NULLs down in the subarrays.
duke@435 2759 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2760 return arr;
duke@435 2761 } else if (klass->is_type_array_klass()) {
duke@435 2762 // Element is an typeArray
duke@435 2763 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2764 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2765 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2766 // is not-null. That was not true in general.
duke@435 2767 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2768 return arr;
duke@435 2769 } else {
duke@435 2770 ShouldNotReachHere();
duke@435 2771 return NULL;
duke@435 2772 }
duke@435 2773 }
duke@435 2774
duke@435 2775 //------------------------------make_from_constant-----------------------------
duke@435 2776 // Make a java pointer from an oop constant
kvn@5110 2777 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
kvn@5110 2778 bool require_constant,
kvn@5110 2779 bool is_autobox_cache) {
kvn@5110 2780 assert(!o->is_null_object(), "null object not yet handled here.");
kvn@5110 2781 ciKlass* klass = o->klass();
kvn@5110 2782 if (klass->is_instance_klass()) {
kvn@5110 2783 // Element is an instance
kvn@5110 2784 if (require_constant) {
kvn@5110 2785 if (!o->can_be_constant()) return NULL;
kvn@5110 2786 } else if (!o->should_be_constant()) {
kvn@5110 2787 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
kvn@5110 2788 }
kvn@5110 2789 return TypeInstPtr::make(o);
kvn@5110 2790 } else if (klass->is_obj_array_klass()) {
kvn@5110 2791 // Element is an object array. Recursively call ourself.
kvn@5110 2792 const TypeOopPtr *etype =
coleenp@4037 2793 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
kvn@5110 2794 if (is_autobox_cache) {
kvn@5110 2795 // The pointers in the autobox arrays are always non-null.
kvn@5110 2796 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
kvn@5110 2797 }
kvn@5110 2798 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
kvn@5110 2799 // We used to pass NotNull in here, asserting that the sub-arrays
kvn@5110 2800 // are all not-null. This is not true in generally, as code can
kvn@5110 2801 // slam NULLs down in the subarrays.
kvn@5110 2802 if (require_constant) {
kvn@5110 2803 if (!o->can_be_constant()) return NULL;
kvn@5110 2804 } else if (!o->should_be_constant()) {
kvn@5110 2805 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
kvn@5110 2806 }
roland@6380 2807 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, InlineDepthBottom, is_autobox_cache);
coleenp@4037 2808 return arr;
kvn@5110 2809 } else if (klass->is_type_array_klass()) {
kvn@5110 2810 // Element is an typeArray
coleenp@4037 2811 const Type* etype =
coleenp@4037 2812 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
kvn@5110 2813 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
kvn@5110 2814 // We used to pass NotNull in here, asserting that the array pointer
kvn@5110 2815 // is not-null. That was not true in general.
kvn@5110 2816 if (require_constant) {
kvn@5110 2817 if (!o->can_be_constant()) return NULL;
kvn@5110 2818 } else if (!o->should_be_constant()) {
kvn@5110 2819 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
kvn@5110 2820 }
coleenp@4037 2821 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
coleenp@4037 2822 return arr;
duke@435 2823 }
duke@435 2824
twisti@3885 2825 fatal("unhandled object type");
duke@435 2826 return NULL;
duke@435 2827 }
duke@435 2828
duke@435 2829 //------------------------------get_con----------------------------------------
duke@435 2830 intptr_t TypeOopPtr::get_con() const {
duke@435 2831 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2832 assert( _offset >= 0, "" );
duke@435 2833
duke@435 2834 if (_offset != 0) {
duke@435 2835 // After being ported to the compiler interface, the compiler no longer
duke@435 2836 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2837 // to a handle at compile time. This handle is embedded in the generated
duke@435 2838 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2839 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2840 // have access to the addresses!). This does not seem to currently happen,
twisti@1040 2841 // but this assertion here is to help prevent its occurence.
duke@435 2842 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2843 ShouldNotReachHere();
duke@435 2844 }
duke@435 2845
jrose@1424 2846 return (intptr_t)const_oop()->constant_encoding();
duke@435 2847 }
duke@435 2848
duke@435 2849
duke@435 2850 //-----------------------------filter------------------------------------------
duke@435 2851 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 2852 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 2853
roland@6313 2854 const Type* ft = join_helper(kills, include_speculative);
duke@435 2855 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2856 const TypeInstPtr* ktip = kills->isa_instptr();
duke@435 2857
duke@435 2858 if (ft->empty()) {
duke@435 2859 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2860 // interface. This can happen because the bytecodes do not contain
duke@435 2861 // enough type info to distinguish a Java-level interface variable
duke@435 2862 // from a Java-level object variable. If we meet 2 classes which
duke@435 2863 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2864 // doesn't implement I, we have no way to tell if the result should
duke@435 2865 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2866 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2867 // uplift the type.
shshahma@8422 2868 if (!empty()) {
shshahma@8422 2869 if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
shshahma@8422 2870 return kills; // Uplift to interface
shshahma@8422 2871 }
shshahma@8422 2872 // Also check for evil cases of 'this' being a class array
shshahma@8422 2873 // and 'kills' expecting an array of interfaces.
shshahma@8422 2874 Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
shshahma@8422 2875 if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
shshahma@8422 2876 return kills; // Uplift to array of interface
shshahma@8422 2877 }
shshahma@8422 2878 }
duke@435 2879
duke@435 2880 return Type::TOP; // Canonical empty value
duke@435 2881 }
duke@435 2882
duke@435 2883 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2884 // the join should report back the class. However, if we have a J/L/Object
duke@435 2885 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2886 // join report an interface back out. This isn't possible but happens
duke@435 2887 // because the type system doesn't interact well with interfaces.
duke@435 2888 if (ftip != NULL && ktip != NULL &&
duke@435 2889 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2890 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2891 // Happens in a CTW of rt.jar, 320-341, no extra flags
kvn@1770 2892 assert(!ftip->klass_is_exact(), "interface could not be exact");
duke@435 2893 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2894 }
duke@435 2895
duke@435 2896 return ft;
duke@435 2897 }
duke@435 2898
duke@435 2899 //------------------------------eq---------------------------------------------
duke@435 2900 // Structural equality check for Type representations
duke@435 2901 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2902 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2903 if (_klass_is_exact != a->_klass_is_exact ||
roland@5991 2904 _instance_id != a->_instance_id ||
roland@6380 2905 !eq_speculative(a) ||
roland@6380 2906 _inline_depth != a->_inline_depth) return false;
duke@435 2907 ciObject* one = const_oop();
duke@435 2908 ciObject* two = a->const_oop();
duke@435 2909 if (one == NULL || two == NULL) {
duke@435 2910 return (one == two) && TypePtr::eq(t);
duke@435 2911 } else {
duke@435 2912 return one->equals(two) && TypePtr::eq(t);
duke@435 2913 }
duke@435 2914 }
duke@435 2915
duke@435 2916 //------------------------------hash-------------------------------------------
duke@435 2917 // Type-specific hashing function.
duke@435 2918 int TypeOopPtr::hash(void) const {
duke@435 2919 return
duke@435 2920 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2921 _klass_is_exact +
duke@435 2922 _instance_id +
roland@5991 2923 hash_speculative() +
roland@6380 2924 _inline_depth +
duke@435 2925 TypePtr::hash();
duke@435 2926 }
duke@435 2927
duke@435 2928 //------------------------------dump2------------------------------------------
duke@435 2929 #ifndef PRODUCT
duke@435 2930 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2931 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2932 if( _klass_is_exact ) st->print(":exact");
duke@435 2933 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2934 switch( _offset ) {
duke@435 2935 case OffsetTop: st->print("+top"); break;
duke@435 2936 case OffsetBot: st->print("+any"); break;
duke@435 2937 case 0: break;
duke@435 2938 default: st->print("+%d",_offset); break;
duke@435 2939 }
kvn@658 2940 if (_instance_id == InstanceTop)
kvn@658 2941 st->print(",iid=top");
kvn@658 2942 else if (_instance_id != InstanceBot)
duke@435 2943 st->print(",iid=%d",_instance_id);
roland@5991 2944
roland@6380 2945 dump_inline_depth(st);
roland@5991 2946 dump_speculative(st);
roland@5991 2947 }
roland@5991 2948
roland@5991 2949 /**
roland@5991 2950 *dump the speculative part of the type
roland@5991 2951 */
roland@5991 2952 void TypeOopPtr::dump_speculative(outputStream *st) const {
roland@5991 2953 if (_speculative != NULL) {
roland@5991 2954 st->print(" (speculative=");
roland@5991 2955 _speculative->dump_on(st);
roland@5991 2956 st->print(")");
roland@5991 2957 }
duke@435 2958 }
roland@6380 2959
roland@6380 2960 void TypeOopPtr::dump_inline_depth(outputStream *st) const {
roland@6380 2961 if (_inline_depth != InlineDepthBottom) {
roland@6380 2962 if (_inline_depth == InlineDepthTop) {
roland@6380 2963 st->print(" (inline_depth=InlineDepthTop)");
roland@6380 2964 } else {
roland@6380 2965 st->print(" (inline_depth=%d)", _inline_depth);
roland@6380 2966 }
roland@6380 2967 }
roland@6380 2968 }
duke@435 2969 #endif
duke@435 2970
duke@435 2971 //------------------------------singleton--------------------------------------
duke@435 2972 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2973 // constants
duke@435 2974 bool TypeOopPtr::singleton(void) const {
duke@435 2975 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2976 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2977 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2978 }
duke@435 2979
duke@435 2980 //------------------------------add_offset-------------------------------------
roland@5991 2981 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
roland@6380 2982 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
roland@5991 2983 }
roland@5991 2984
roland@5991 2985 /**
roland@5991 2986 * Return same type without a speculative part
roland@5991 2987 */
roland@6313 2988 const Type* TypeOopPtr::remove_speculative() const {
roland@6313 2989 if (_speculative == NULL) {
roland@6313 2990 return this;
roland@6313 2991 }
roland@6380 2992 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
roland@6380 2993 return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
roland@6380 2994 }
roland@6380 2995
roland@6380 2996 /**
roland@6380 2997 * Return same type but with a different inline depth (used for speculation)
roland@6380 2998 *
roland@6380 2999 * @param depth depth to meet with
roland@6380 3000 */
roland@6380 3001 const TypeOopPtr* TypeOopPtr::with_inline_depth(int depth) const {
roland@6380 3002 if (!UseInlineDepthForSpeculativeTypes) {
roland@6380 3003 return this;
roland@6380 3004 }
roland@6380 3005 return make(_ptr, _offset, _instance_id, _speculative, depth);
roland@6380 3006 }
roland@6380 3007
roland@6380 3008 /**
roland@6380 3009 * Check whether new profiling would improve speculative type
roland@6380 3010 *
roland@6380 3011 * @param exact_kls class from profiling
roland@6380 3012 * @param inline_depth inlining depth of profile point
roland@6380 3013 *
roland@6380 3014 * @return true if type profile is valuable
roland@6380 3015 */
roland@6380 3016 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
roland@6380 3017 // no way to improve an already exact type
roland@6380 3018 if (klass_is_exact()) {
roland@6380 3019 return false;
roland@6380 3020 }
roland@6380 3021 // no profiling?
roland@6380 3022 if (exact_kls == NULL) {
roland@6380 3023 return false;
roland@6380 3024 }
roland@6380 3025 // no speculative type or non exact speculative type?
roland@6380 3026 if (speculative_type() == NULL) {
roland@6380 3027 return true;
roland@6380 3028 }
roland@6380 3029 // If the node already has an exact speculative type keep it,
roland@6380 3030 // unless it was provided by profiling that is at a deeper
roland@6380 3031 // inlining level. Profiling at a higher inlining depth is
roland@6380 3032 // expected to be less accurate.
roland@6380 3033 if (_speculative->inline_depth() == InlineDepthBottom) {
roland@6380 3034 return false;
roland@6380 3035 }
roland@6380 3036 assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
roland@6380 3037 return inline_depth < _speculative->inline_depth();
duke@435 3038 }
duke@435 3039
kvn@658 3040 //------------------------------meet_instance_id--------------------------------
kvn@658 3041 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 3042 // Either is 'TOP' instance? Return the other instance!
kvn@658 3043 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 3044 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 3045 // If either is different, return 'BOTTOM' instance
kvn@658 3046 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 3047 return _instance_id;
duke@435 3048 }
duke@435 3049
kvn@658 3050 //------------------------------dual_instance_id--------------------------------
kvn@658 3051 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 3052 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 3053 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 3054 return _instance_id; // Map everything else into self
kvn@658 3055 }
kvn@658 3056
roland@5991 3057 /**
roland@5991 3058 * meet of the speculative parts of 2 types
roland@5991 3059 *
roland@5991 3060 * @param other type to meet with
roland@5991 3061 */
roland@6313 3062 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
roland@5991 3063 bool this_has_spec = (_speculative != NULL);
roland@5991 3064 bool other_has_spec = (other->speculative() != NULL);
roland@5991 3065
roland@5991 3066 if (!this_has_spec && !other_has_spec) {
roland@5991 3067 return NULL;
roland@5991 3068 }
roland@5991 3069
roland@5991 3070 // If we are at a point where control flow meets and one branch has
roland@5991 3071 // a speculative type and the other has not, we meet the speculative
roland@5991 3072 // type of one branch with the actual type of the other. If the
roland@5991 3073 // actual type is exact and the speculative is as well, then the
roland@5991 3074 // result is a speculative type which is exact and we can continue
roland@5991 3075 // speculation further.
roland@5991 3076 const TypeOopPtr* this_spec = _speculative;
roland@5991 3077 const TypeOopPtr* other_spec = other->speculative();
roland@5991 3078
roland@5991 3079 if (!this_has_spec) {
roland@5991 3080 this_spec = this;
roland@5991 3081 }
roland@5991 3082
roland@5991 3083 if (!other_has_spec) {
roland@5991 3084 other_spec = other;
roland@5991 3085 }
roland@5991 3086
roland@6313 3087 return this_spec->meet_speculative(other_spec)->is_oopptr();
roland@5991 3088 }
roland@5991 3089
roland@5991 3090 /**
roland@5991 3091 * dual of the speculative part of the type
roland@5991 3092 */
roland@5991 3093 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
roland@5991 3094 if (_speculative == NULL) {
roland@5991 3095 return NULL;
roland@5991 3096 }
roland@5991 3097 return _speculative->dual()->is_oopptr();
roland@5991 3098 }
roland@5991 3099
roland@5991 3100 /**
roland@5991 3101 * add offset to the speculative part of the type
roland@5991 3102 *
roland@5991 3103 * @param offset offset to add
roland@5991 3104 */
roland@5991 3105 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
roland@5991 3106 if (_speculative == NULL) {
roland@5991 3107 return NULL;
roland@5991 3108 }
roland@5991 3109 return _speculative->add_offset(offset)->is_oopptr();
roland@5991 3110 }
roland@5991 3111
roland@5991 3112 /**
roland@5991 3113 * Are the speculative parts of 2 types equal?
roland@5991 3114 *
roland@5991 3115 * @param other type to compare this one to
roland@5991 3116 */
roland@5991 3117 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
roland@5991 3118 if (_speculative == NULL || other->speculative() == NULL) {
roland@5991 3119 return _speculative == other->speculative();
roland@5991 3120 }
roland@5991 3121
roland@5991 3122 if (_speculative->base() != other->speculative()->base()) {
roland@5991 3123 return false;
roland@5991 3124 }
roland@5991 3125
roland@5991 3126 return _speculative->eq(other->speculative());
roland@5991 3127 }
roland@5991 3128
roland@5991 3129 /**
roland@5991 3130 * Hash of the speculative part of the type
roland@5991 3131 */
roland@5991 3132 int TypeOopPtr::hash_speculative() const {
roland@5991 3133 if (_speculative == NULL) {
roland@5991 3134 return 0;
roland@5991 3135 }
roland@5991 3136
roland@5991 3137 return _speculative->hash();
roland@5991 3138 }
roland@5991 3139
roland@6380 3140 /**
roland@6380 3141 * dual of the inline depth for this type (used for speculation)
roland@6380 3142 */
roland@6380 3143 int TypeOopPtr::dual_inline_depth() const {
roland@6380 3144 return -inline_depth();
roland@6380 3145 }
roland@6380 3146
roland@6380 3147 /**
roland@6380 3148 * meet of 2 inline depth (used for speculation)
roland@6380 3149 *
roland@6380 3150 * @param depth depth to meet with
roland@6380 3151 */
roland@6380 3152 int TypeOopPtr::meet_inline_depth(int depth) const {
roland@6380 3153 return MAX2(inline_depth(), depth);
roland@6380 3154 }
kvn@658 3155
duke@435 3156 //=============================================================================
duke@435 3157 // Convenience common pre-built types.
duke@435 3158 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 3159 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 3160 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 3161 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 3162 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 3163
duke@435 3164 //------------------------------TypeInstPtr-------------------------------------
roland@6380 3165 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative, int inline_depth)
roland@6380 3166 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth), _name(k->name()) {
duke@435 3167 assert(k != NULL &&
duke@435 3168 (k->is_loaded() || o == NULL),
duke@435 3169 "cannot have constants with non-loaded klass");
duke@435 3170 };
duke@435 3171
duke@435 3172 //------------------------------make-------------------------------------------
duke@435 3173 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 3174 ciKlass* k,
duke@435 3175 bool xk,
duke@435 3176 ciObject* o,
duke@435 3177 int offset,
roland@5991 3178 int instance_id,
roland@6380 3179 const TypeOopPtr* speculative,
roland@6380 3180 int inline_depth) {
coleenp@4037 3181 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
duke@435 3182 // Either const_oop() is NULL or else ptr is Constant
duke@435 3183 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 3184 "constant pointers must have a value supplied" );
duke@435 3185 // Ptr is never Null
duke@435 3186 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 3187
kvn@682 3188 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3189 if (!UseExactTypes) xk = false;
duke@435 3190 if (ptr == Constant) {
duke@435 3191 // Note: This case includes meta-object constants, such as methods.
duke@435 3192 xk = true;
duke@435 3193 } else if (k->is_loaded()) {
duke@435 3194 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 3195 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 3196 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 3197 }
duke@435 3198
duke@435 3199 // Now hash this baby
duke@435 3200 TypeInstPtr *result =
roland@6380 3201 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
duke@435 3202
duke@435 3203 return result;
duke@435 3204 }
duke@435 3205
kvn@5110 3206 /**
kvn@5110 3207 * Create constant type for a constant boxed value
kvn@5110 3208 */
kvn@5110 3209 const Type* TypeInstPtr::get_const_boxed_value() const {
kvn@5110 3210 assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
kvn@5110 3211 assert((const_oop() != NULL), "should be called only for constant object");
kvn@5110 3212 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
kvn@5110 3213 BasicType bt = constant.basic_type();
kvn@5110 3214 switch (bt) {
kvn@5110 3215 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
kvn@5110 3216 case T_INT: return TypeInt::make(constant.as_int());
kvn@5110 3217 case T_CHAR: return TypeInt::make(constant.as_char());
kvn@5110 3218 case T_BYTE: return TypeInt::make(constant.as_byte());
kvn@5110 3219 case T_SHORT: return TypeInt::make(constant.as_short());
kvn@5110 3220 case T_FLOAT: return TypeF::make(constant.as_float());
kvn@5110 3221 case T_DOUBLE: return TypeD::make(constant.as_double());
kvn@5110 3222 case T_LONG: return TypeLong::make(constant.as_long());
kvn@5110 3223 default: break;
kvn@5110 3224 }
kvn@5110 3225 fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
kvn@5110 3226 return NULL;
kvn@5110 3227 }
duke@435 3228
duke@435 3229 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3230 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3231 if( ptr == _ptr ) return this;
duke@435 3232 // Reconstruct _sig info here since not a problem with later lazy
duke@435 3233 // construction, _sig will show up on demand.
roland@6380 3234 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
duke@435 3235 }
duke@435 3236
duke@435 3237
duke@435 3238 //-----------------------------cast_to_exactness-------------------------------
duke@435 3239 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3240 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3241 if (!UseExactTypes) return this;
duke@435 3242 if (!_klass->is_loaded()) return this;
duke@435 3243 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 3244 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 3245 if( ik->is_interface() ) return this; // cannot set xk
roland@6380 3246 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
duke@435 3247 }
duke@435 3248
kvn@682 3249 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3250 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3251 if( instance_id == _instance_id ) return this;
roland@6380 3252 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
duke@435 3253 }
duke@435 3254
duke@435 3255 //------------------------------xmeet_unloaded---------------------------------
duke@435 3256 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 3257 // Assume classes are different since called after check for same name/class-loader
duke@435 3258 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 3259 int off = meet_offset(tinst->offset());
duke@435 3260 PTR ptr = meet_ptr(tinst->ptr());
kvn@1427 3261 int instance_id = meet_instance_id(tinst->instance_id());
roland@6313 3262 const TypeOopPtr* speculative = xmeet_speculative(tinst);
roland@6380 3263 int depth = meet_inline_depth(tinst->inline_depth());
duke@435 3264
duke@435 3265 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 3266 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 3267 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3268 //
duke@435 3269 // Meet unloaded class with java/lang/Object
duke@435 3270 //
duke@435 3271 // Meet
duke@435 3272 // | Unloaded Class
duke@435 3273 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 3274 // ===================================================================
duke@435 3275 // TOP | ..........................Unloaded......................|
duke@435 3276 // AnyNull | U-AN |................Unloaded......................|
duke@435 3277 // Constant | ... O-NN .................................. | O-BOT |
duke@435 3278 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 3279 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 3280 //
duke@435 3281 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 3282 //
duke@435 3283 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
roland@6380 3284 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
duke@435 3285 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 3286 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 3287 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 3288 else { return TypeInstPtr::NOTNULL; }
duke@435 3289 }
duke@435 3290 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 3291
duke@435 3292 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 3293 }
duke@435 3294
duke@435 3295 // Both are unloaded, not the same class, not Object
duke@435 3296 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 3297 if( ptr != TypePtr::BotPTR ) {
duke@435 3298 return TypeInstPtr::NOTNULL;
duke@435 3299 }
duke@435 3300 return TypeInstPtr::BOTTOM;
duke@435 3301 }
duke@435 3302
duke@435 3303
duke@435 3304 //------------------------------meet-------------------------------------------
duke@435 3305 // Compute the MEET of two types. It returns a new Type object.
roland@5991 3306 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
duke@435 3307 // Perform a fast test for common case; meeting the same types together.
duke@435 3308 if( this == t ) return this; // Meeting same type-rep?
duke@435 3309
duke@435 3310 // Current "this->_base" is Pointer
duke@435 3311 switch (t->base()) { // switch on original type
duke@435 3312
duke@435 3313 case Int: // Mixing ints & oops happens when javac
duke@435 3314 case Long: // reuses local variables
duke@435 3315 case FloatTop:
duke@435 3316 case FloatCon:
duke@435 3317 case FloatBot:
duke@435 3318 case DoubleTop:
duke@435 3319 case DoubleCon:
duke@435 3320 case DoubleBot:
coleenp@548 3321 case NarrowOop:
roland@4159 3322 case NarrowKlass:
duke@435 3323 case Bottom: // Ye Olde Default
duke@435 3324 return Type::BOTTOM;
duke@435 3325 case Top:
duke@435 3326 return this;
duke@435 3327
duke@435 3328 default: // All else is a mistake
duke@435 3329 typerr(t);
duke@435 3330
coleenp@4037 3331 case MetadataPtr:
coleenp@4037 3332 case KlassPtr:
duke@435 3333 case RawPtr: return TypePtr::BOTTOM;
duke@435 3334
duke@435 3335 case AryPtr: { // All arrays inherit from Object class
duke@435 3336 const TypeAryPtr *tp = t->is_aryptr();
duke@435 3337 int offset = meet_offset(tp->offset());
duke@435 3338 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3339 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3340 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 3341 int depth = meet_inline_depth(tp->inline_depth());
duke@435 3342 switch (ptr) {
duke@435 3343 case TopPTR:
duke@435 3344 case AnyNull: // Fall 'down' to dual of object klass
roland@5991 3345 // For instances when a subclass meets a superclass we fall
roland@5991 3346 // below the centerline when the superclass is exact. We need to
roland@5991 3347 // do the same here.
roland@5991 3348 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
roland@6380 3349 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
duke@435 3350 } else {
duke@435 3351 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3352 ptr = NotNull;
kvn@658 3353 instance_id = InstanceBot;
roland@6380 3354 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
duke@435 3355 }
duke@435 3356 case Constant:
duke@435 3357 case NotNull:
duke@435 3358 case BotPTR: // Fall down to object klass
duke@435 3359 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3360 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 3361 // If 'this' (InstPtr) is above the centerline and it is Object class
twisti@1040 3362 // then we can subclass in the Java class hierarchy.
roland@5991 3363 // For instances when a subclass meets a superclass we fall
roland@5991 3364 // below the centerline when the superclass is exact. We need
roland@5991 3365 // to do the same here.
roland@5991 3366 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
duke@435 3367 // that is, tp's array type is a subtype of my klass
kvn@1714 3368 return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
roland@6380 3369 tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
duke@435 3370 }
duke@435 3371 }
duke@435 3372 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 3373 // The meet falls down to Object class below centerline.
duke@435 3374 if( ptr == Constant )
duke@435 3375 ptr = NotNull;
kvn@658 3376 instance_id = InstanceBot;
roland@6380 3377 return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
duke@435 3378 default: typerr(t);
duke@435 3379 }
duke@435 3380 }
duke@435 3381
duke@435 3382 case OopPtr: { // Meeting to OopPtrs
duke@435 3383 // Found a OopPtr type vs self-InstPtr type
kvn@1393 3384 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3385 int offset = meet_offset(tp->offset());
duke@435 3386 PTR ptr = meet_ptr(tp->ptr());
duke@435 3387 switch (tp->ptr()) {
duke@435 3388 case TopPTR:
kvn@658 3389 case AnyNull: {
kvn@658 3390 int instance_id = meet_instance_id(InstanceTop);
roland@6313 3391 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 3392 int depth = meet_inline_depth(tp->inline_depth());
duke@435 3393 return make(ptr, klass(), klass_is_exact(),
roland@6380 3394 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
kvn@658 3395 }
duke@435 3396 case NotNull:
kvn@1393 3397 case BotPTR: {
kvn@1393 3398 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3399 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 3400 int depth = meet_inline_depth(tp->inline_depth());
roland@6380 3401 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
kvn@1393 3402 }
duke@435 3403 default: typerr(t);
duke@435 3404 }
duke@435 3405 }
duke@435 3406
duke@435 3407 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3408 // Found an AnyPtr type vs self-InstPtr type
duke@435 3409 const TypePtr *tp = t->is_ptr();
duke@435 3410 int offset = meet_offset(tp->offset());
duke@435 3411 PTR ptr = meet_ptr(tp->ptr());
duke@435 3412 switch (tp->ptr()) {
duke@435 3413 case Null:
roland@5991 3414 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3415 // else fall through to AnyNull
duke@435 3416 case TopPTR:
kvn@658 3417 case AnyNull: {
kvn@658 3418 int instance_id = meet_instance_id(InstanceTop);
roland@5991 3419 const TypeOopPtr* speculative = _speculative;
roland@5991 3420 return make(ptr, klass(), klass_is_exact(),
roland@6380 3421 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, _inline_depth);
kvn@658 3422 }
duke@435 3423 case NotNull:
duke@435 3424 case BotPTR:
roland@5991 3425 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3426 default: typerr(t);
duke@435 3427 }
duke@435 3428 }
duke@435 3429
duke@435 3430 /*
duke@435 3431 A-top }
duke@435 3432 / | \ } Tops
duke@435 3433 B-top A-any C-top }
duke@435 3434 | / | \ | } Any-nulls
duke@435 3435 B-any | C-any }
duke@435 3436 | | |
duke@435 3437 B-con A-con C-con } constants; not comparable across classes
duke@435 3438 | | |
duke@435 3439 B-not | C-not }
duke@435 3440 | \ | / | } not-nulls
duke@435 3441 B-bot A-not C-bot }
duke@435 3442 \ | / } Bottoms
duke@435 3443 A-bot }
duke@435 3444 */
duke@435 3445
duke@435 3446 case InstPtr: { // Meeting 2 Oops?
duke@435 3447 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 3448 const TypeInstPtr *tinst = t->is_instptr();
duke@435 3449 int off = meet_offset( tinst->offset() );
duke@435 3450 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 3451 int instance_id = meet_instance_id(tinst->instance_id());
roland@6313 3452 const TypeOopPtr* speculative = xmeet_speculative(tinst);
roland@6380 3453 int depth = meet_inline_depth(tinst->inline_depth());
duke@435 3454
duke@435 3455 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3456 // If we have constants, then we created oops so classes are loaded
duke@435 3457 // and we can handle the constants further down. This case handles
duke@435 3458 // both-not-loaded or both-loaded classes
duke@435 3459 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
roland@6380 3460 return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
duke@435 3461 }
duke@435 3462
duke@435 3463 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3464 ciKlass* tinst_klass = tinst->klass();
duke@435 3465 ciKlass* this_klass = this->klass();
duke@435 3466 bool tinst_xk = tinst->klass_is_exact();
duke@435 3467 bool this_xk = this->klass_is_exact();
duke@435 3468 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 3469 // One of these classes has not been loaded
duke@435 3470 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 3471 #ifndef PRODUCT
duke@435 3472 if( PrintOpto && Verbose ) {
duke@435 3473 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 3474 tty->print(" this == "); this->dump(); tty->cr();
duke@435 3475 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 3476 }
duke@435 3477 #endif
duke@435 3478 return unloaded_meet;
duke@435 3479 }
duke@435 3480
duke@435 3481 // Handle mixing oops and interfaces first.
roland@5991 3482 if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
roland@5991 3483 tinst_klass == ciEnv::current()->Object_klass())) {
duke@435 3484 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 3485 tinst_klass = this_klass;
duke@435 3486 this_klass = tmp;
duke@435 3487 bool tmp2 = tinst_xk;
duke@435 3488 tinst_xk = this_xk;
duke@435 3489 this_xk = tmp2;
duke@435 3490 }
duke@435 3491 if (tinst_klass->is_interface() &&
duke@435 3492 !(this_klass->is_interface() ||
duke@435 3493 // Treat java/lang/Object as an honorary interface,
duke@435 3494 // because we need a bottom for the interface hierarchy.
duke@435 3495 this_klass == ciEnv::current()->Object_klass())) {
duke@435 3496 // Oop meets interface!
duke@435 3497
duke@435 3498 // See if the oop subtypes (implements) interface.
duke@435 3499 ciKlass *k;
duke@435 3500 bool xk;
duke@435 3501 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3502 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 3503 // on whether we are both above the centerline or either is
duke@435 3504 // below the centerline. If we are on the centerline
duke@435 3505 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 3506 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 3507 // If we are keeping this_klass, keep its exactness too.
duke@435 3508 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 3509 } else { // Does not implement, fall to Object
duke@435 3510 // Oop does not implement interface, so mixing falls to Object
duke@435 3511 // just like the verifier does (if both are above the
duke@435 3512 // centerline fall to interface)
duke@435 3513 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 3514 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 3515 // Watch out for Constant vs. AnyNull interface.
duke@435 3516 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 3517 instance_id = InstanceBot;
duke@435 3518 }
duke@435 3519 ciObject* o = NULL; // the Constant value, if any
duke@435 3520 if (ptr == Constant) {
duke@435 3521 // Find out which constant.
duke@435 3522 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 3523 }
roland@6380 3524 return make(ptr, k, xk, o, off, instance_id, speculative, depth);
duke@435 3525 }
duke@435 3526
duke@435 3527 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 3528
duke@435 3529 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 3530 // If we split one up & one down AND they subtype, take the down man.
duke@435 3531 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3532 // If both are up and they subtype, take the subtype class.
duke@435 3533 // If both are up and they do NOT subtype, "fall hard".
duke@435 3534 // If both are down and they subtype, take the supertype class.
duke@435 3535 // If both are down and they do NOT subtype, "fall hard".
duke@435 3536 // Constants treated as down.
duke@435 3537
duke@435 3538 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 3539 // "fall hard"; "fall hard" becomes the default case:
duke@435 3540 // If we split one up & one down AND they subtype, take the down man.
duke@435 3541 // If both are up and they subtype, take the subtype class.
duke@435 3542
duke@435 3543 // If both are down and they subtype, "fall hard".
duke@435 3544 // If both are down and they do NOT subtype, "fall hard".
duke@435 3545 // If both are up and they do NOT subtype, "fall hard".
duke@435 3546 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3547
duke@435 3548 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 3549 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 3550 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 3551 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 3552
duke@435 3553 // Check for subtyping:
duke@435 3554 ciKlass *subtype = NULL;
duke@435 3555 bool subtype_exact = false;
duke@435 3556 if( tinst_klass->equals(this_klass) ) {
duke@435 3557 subtype = this_klass;
duke@435 3558 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 3559 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3560 subtype = this_klass; // Pick subtyping class
duke@435 3561 subtype_exact = this_xk;
duke@435 3562 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 3563 subtype = tinst_klass; // Pick subtyping class
duke@435 3564 subtype_exact = tinst_xk;
duke@435 3565 }
duke@435 3566
duke@435 3567 if( subtype ) {
duke@435 3568 if( above_centerline(ptr) ) { // both are up?
duke@435 3569 this_klass = tinst_klass = subtype;
duke@435 3570 this_xk = tinst_xk = subtype_exact;
duke@435 3571 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 3572 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 3573 this_xk = tinst_xk;
duke@435 3574 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 3575 tinst_klass = this_klass; // this is down; keep down man
duke@435 3576 tinst_xk = this_xk;
duke@435 3577 } else {
duke@435 3578 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 3579 }
duke@435 3580 }
duke@435 3581
duke@435 3582 // Check for classes now being equal
duke@435 3583 if (tinst_klass->equals(this_klass)) {
duke@435 3584 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3585 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3586 // handled elsewhere).
duke@435 3587 ciObject* o = NULL; // Assume not constant when done
duke@435 3588 ciObject* this_oop = const_oop();
duke@435 3589 ciObject* tinst_oop = tinst->const_oop();
duke@435 3590 if( ptr == Constant ) {
duke@435 3591 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 3592 this_oop->equals(tinst_oop) )
duke@435 3593 o = this_oop;
duke@435 3594 else if (above_centerline(this ->_ptr))
duke@435 3595 o = tinst_oop;
duke@435 3596 else if (above_centerline(tinst ->_ptr))
duke@435 3597 o = this_oop;
duke@435 3598 else
duke@435 3599 ptr = NotNull;
duke@435 3600 }
roland@6380 3601 return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
duke@435 3602 } // Else classes are not equal
duke@435 3603
duke@435 3604 // Since klasses are different, we require a LCA in the Java
duke@435 3605 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3606 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3607 ptr = NotNull;
kvn@682 3608 instance_id = InstanceBot;
duke@435 3609
duke@435 3610 // Now we find the LCA of Java classes
duke@435 3611 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
roland@6380 3612 return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
duke@435 3613 } // End of case InstPtr
duke@435 3614
duke@435 3615 } // End of switch
duke@435 3616 return this; // Return the double constant
duke@435 3617 }
duke@435 3618
duke@435 3619
duke@435 3620 //------------------------java_mirror_type--------------------------------------
duke@435 3621 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3622 // must be a singleton type
duke@435 3623 if( const_oop() == NULL ) return NULL;
duke@435 3624
duke@435 3625 // must be of type java.lang.Class
duke@435 3626 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3627
duke@435 3628 return const_oop()->as_instance()->java_mirror_type();
duke@435 3629 }
duke@435 3630
duke@435 3631
duke@435 3632 //------------------------------xdual------------------------------------------
duke@435 3633 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
twisti@1040 3634 // inheritance mechanism.
duke@435 3635 const Type *TypeInstPtr::xdual() const {
roland@6380 3636 return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
duke@435 3637 }
duke@435 3638
duke@435 3639 //------------------------------eq---------------------------------------------
duke@435 3640 // Structural equality check for Type representations
duke@435 3641 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3642 const TypeInstPtr *p = t->is_instptr();
duke@435 3643 return
duke@435 3644 klass()->equals(p->klass()) &&
duke@435 3645 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3646 }
duke@435 3647
duke@435 3648 //------------------------------hash-------------------------------------------
duke@435 3649 // Type-specific hashing function.
duke@435 3650 int TypeInstPtr::hash(void) const {
duke@435 3651 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 3652 return hash;
duke@435 3653 }
duke@435 3654
duke@435 3655 //------------------------------dump2------------------------------------------
duke@435 3656 // Dump oop Type
duke@435 3657 #ifndef PRODUCT
duke@435 3658 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3659 // Print the name of the klass.
duke@435 3660 klass()->print_name_on(st);
duke@435 3661
duke@435 3662 switch( _ptr ) {
duke@435 3663 case Constant:
duke@435 3664 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3665 if (WizardMode || Verbose) {
duke@435 3666 const_oop()->print_oop(st);
duke@435 3667 }
duke@435 3668 case BotPTR:
duke@435 3669 if (!WizardMode && !Verbose) {
duke@435 3670 if( _klass_is_exact ) st->print(":exact");
duke@435 3671 break;
duke@435 3672 }
duke@435 3673 case TopPTR:
duke@435 3674 case AnyNull:
duke@435 3675 case NotNull:
duke@435 3676 st->print(":%s", ptr_msg[_ptr]);
duke@435 3677 if( _klass_is_exact ) st->print(":exact");
duke@435 3678 break;
duke@435 3679 }
duke@435 3680
duke@435 3681 if( _offset ) { // Dump offset, if any
duke@435 3682 if( _offset == OffsetBot ) st->print("+any");
duke@435 3683 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3684 else st->print("+%d", _offset);
duke@435 3685 }
duke@435 3686
duke@435 3687 st->print(" *");
kvn@658 3688 if (_instance_id == InstanceTop)
kvn@658 3689 st->print(",iid=top");
kvn@658 3690 else if (_instance_id != InstanceBot)
duke@435 3691 st->print(",iid=%d",_instance_id);
roland@5991 3692
roland@6380 3693 dump_inline_depth(st);
roland@5991 3694 dump_speculative(st);
duke@435 3695 }
duke@435 3696 #endif
duke@435 3697
duke@435 3698 //------------------------------add_offset-------------------------------------
roland@5991 3699 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
roland@5991 3700 return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
roland@5991 3701 }
roland@5991 3702
roland@6313 3703 const Type *TypeInstPtr::remove_speculative() const {
roland@6313 3704 if (_speculative == NULL) {
roland@6313 3705 return this;
roland@6313 3706 }
roland@6380 3707 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
roland@6380 3708 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL, _inline_depth);
roland@6380 3709 }
roland@6380 3710
roland@6380 3711 const TypeOopPtr *TypeInstPtr::with_inline_depth(int depth) const {
roland@6380 3712 if (!UseInlineDepthForSpeculativeTypes) {
roland@6380 3713 return this;
roland@6380 3714 }
roland@6380 3715 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
duke@435 3716 }
duke@435 3717
duke@435 3718 //=============================================================================
duke@435 3719 // Convenience common pre-built types.
duke@435 3720 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3721 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3722 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3723 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3724 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3725 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3726 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3727 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3728 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3729 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3730
duke@435 3731 //------------------------------make-------------------------------------------
roland@6380 3732 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
duke@435 3733 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3734 "integral arrays must be pre-equipped with a class");
duke@435 3735 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3736 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3737 if (!UseExactTypes) xk = (ptr == Constant);
roland@6380 3738 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
duke@435 3739 }
duke@435 3740
duke@435 3741 //------------------------------make-------------------------------------------
roland@6380 3742 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth, bool is_autobox_cache) {
duke@435 3743 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3744 "integral arrays must be pre-equipped with a class");
duke@435 3745 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3746 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3747 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3748 if (!UseExactTypes) xk = (ptr == Constant);
roland@6380 3749 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
duke@435 3750 }
duke@435 3751
duke@435 3752 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3753 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3754 if( ptr == _ptr ) return this;
roland@6380 3755 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
duke@435 3756 }
duke@435 3757
duke@435 3758
duke@435 3759 //-----------------------------cast_to_exactness-------------------------------
duke@435 3760 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3761 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3762 if (!UseExactTypes) return this;
duke@435 3763 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
roland@6380 3764 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
duke@435 3765 }
duke@435 3766
kvn@682 3767 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3768 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3769 if( instance_id == _instance_id ) return this;
roland@6380 3770 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
duke@435 3771 }
duke@435 3772
duke@435 3773 //-----------------------------narrow_size_type-------------------------------
duke@435 3774 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3775 // which is kind of slow (and cached elsewhere by other users).
duke@435 3776 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3777 static jint max_array_length(BasicType etype) {
duke@435 3778 jint& cache = max_array_length_cache[etype];
duke@435 3779 jint res = cache;
duke@435 3780 if (res == 0) {
duke@435 3781 switch (etype) {
coleenp@548 3782 case T_NARROWOOP:
coleenp@548 3783 etype = T_OBJECT;
coleenp@548 3784 break;
roland@4159 3785 case T_NARROWKLASS:
duke@435 3786 case T_CONFLICT:
duke@435 3787 case T_ILLEGAL:
duke@435 3788 case T_VOID:
duke@435 3789 etype = T_BYTE; // will produce conservatively high value
duke@435 3790 }
duke@435 3791 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3792 }
duke@435 3793 return res;
duke@435 3794 }
duke@435 3795
duke@435 3796 // Narrow the given size type to the index range for the given array base type.
duke@435 3797 // Return NULL if the resulting int type becomes empty.
rasbold@801 3798 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
duke@435 3799 jint hi = size->_hi;
duke@435 3800 jint lo = size->_lo;
duke@435 3801 jint min_lo = 0;
rasbold@801 3802 jint max_hi = max_array_length(elem()->basic_type());
duke@435 3803 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3804 bool chg = false;
kvn@5110 3805 if (lo < min_lo) {
kvn@5110 3806 lo = min_lo;
kvn@5110 3807 if (size->is_con()) {
kvn@5110 3808 hi = lo;
kvn@5110 3809 }
kvn@5110 3810 chg = true;
kvn@5110 3811 }
kvn@5110 3812 if (hi > max_hi) {
kvn@5110 3813 hi = max_hi;
kvn@5110 3814 if (size->is_con()) {
kvn@5110 3815 lo = hi;
kvn@5110 3816 }
kvn@5110 3817 chg = true;
kvn@5110 3818 }
twisti@1040 3819 // Negative length arrays will produce weird intermediate dead fast-path code
duke@435 3820 if (lo > hi)
rasbold@801 3821 return TypeInt::ZERO;
duke@435 3822 if (!chg)
duke@435 3823 return size;
duke@435 3824 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3825 }
duke@435 3826
duke@435 3827 //-------------------------------cast_to_size----------------------------------
duke@435 3828 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3829 assert(new_size != NULL, "");
rasbold@801 3830 new_size = narrow_size_type(new_size);
duke@435 3831 if (new_size == size()) return this;
vlivanov@5658 3832 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
roland@6380 3833 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
duke@435 3834 }
duke@435 3835
duke@435 3836
vlivanov@5658 3837 //------------------------------cast_to_stable---------------------------------
vlivanov@5658 3838 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
vlivanov@5658 3839 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
vlivanov@5658 3840 return this;
vlivanov@5658 3841
vlivanov@5658 3842 const Type* elem = this->elem();
vlivanov@5658 3843 const TypePtr* elem_ptr = elem->make_ptr();
vlivanov@5658 3844
vlivanov@5658 3845 if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
vlivanov@5658 3846 // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
vlivanov@5658 3847 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
vlivanov@5658 3848 }
vlivanov@5658 3849
vlivanov@5658 3850 const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
vlivanov@5658 3851
vlivanov@5658 3852 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
vlivanov@5658 3853 }
vlivanov@5658 3854
vlivanov@5658 3855 //-----------------------------stable_dimension--------------------------------
vlivanov@5658 3856 int TypeAryPtr::stable_dimension() const {
vlivanov@5658 3857 if (!is_stable()) return 0;
vlivanov@5658 3858 int dim = 1;
vlivanov@5658 3859 const TypePtr* elem_ptr = elem()->make_ptr();
vlivanov@5658 3860 if (elem_ptr != NULL && elem_ptr->isa_aryptr())
vlivanov@5658 3861 dim += elem_ptr->is_aryptr()->stable_dimension();
vlivanov@5658 3862 return dim;
vlivanov@5658 3863 }
vlivanov@5658 3864
duke@435 3865 //------------------------------eq---------------------------------------------
duke@435 3866 // Structural equality check for Type representations
duke@435 3867 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3868 const TypeAryPtr *p = t->is_aryptr();
duke@435 3869 return
duke@435 3870 _ary == p->_ary && // Check array
duke@435 3871 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3872 }
duke@435 3873
duke@435 3874 //------------------------------hash-------------------------------------------
duke@435 3875 // Type-specific hashing function.
duke@435 3876 int TypeAryPtr::hash(void) const {
duke@435 3877 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3878 }
duke@435 3879
duke@435 3880 //------------------------------meet-------------------------------------------
duke@435 3881 // Compute the MEET of two types. It returns a new Type object.
roland@5991 3882 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
duke@435 3883 // Perform a fast test for common case; meeting the same types together.
duke@435 3884 if( this == t ) return this; // Meeting same type-rep?
duke@435 3885 // Current "this->_base" is Pointer
duke@435 3886 switch (t->base()) { // switch on original type
duke@435 3887
duke@435 3888 // Mixing ints & oops happens when javac reuses local variables
duke@435 3889 case Int:
duke@435 3890 case Long:
duke@435 3891 case FloatTop:
duke@435 3892 case FloatCon:
duke@435 3893 case FloatBot:
duke@435 3894 case DoubleTop:
duke@435 3895 case DoubleCon:
duke@435 3896 case DoubleBot:
coleenp@548 3897 case NarrowOop:
roland@4159 3898 case NarrowKlass:
duke@435 3899 case Bottom: // Ye Olde Default
duke@435 3900 return Type::BOTTOM;
duke@435 3901 case Top:
duke@435 3902 return this;
duke@435 3903
duke@435 3904 default: // All else is a mistake
duke@435 3905 typerr(t);
duke@435 3906
duke@435 3907 case OopPtr: { // Meeting to OopPtrs
duke@435 3908 // Found a OopPtr type vs self-AryPtr type
kvn@1393 3909 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3910 int offset = meet_offset(tp->offset());
duke@435 3911 PTR ptr = meet_ptr(tp->ptr());
roland@6380 3912 int depth = meet_inline_depth(tp->inline_depth());
duke@435 3913 switch (tp->ptr()) {
duke@435 3914 case TopPTR:
kvn@658 3915 case AnyNull: {
kvn@658 3916 int instance_id = meet_instance_id(InstanceTop);
roland@6313 3917 const TypeOopPtr* speculative = xmeet_speculative(tp);
kvn@658 3918 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@6380 3919 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
kvn@658 3920 }
duke@435 3921 case BotPTR:
kvn@1393 3922 case NotNull: {
kvn@1393 3923 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3924 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 3925 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
kvn@1393 3926 }
duke@435 3927 default: ShouldNotReachHere();
duke@435 3928 }
duke@435 3929 }
duke@435 3930
duke@435 3931 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3932 // Found an AnyPtr type vs self-AryPtr type
duke@435 3933 const TypePtr *tp = t->is_ptr();
duke@435 3934 int offset = meet_offset(tp->offset());
duke@435 3935 PTR ptr = meet_ptr(tp->ptr());
duke@435 3936 switch (tp->ptr()) {
duke@435 3937 case TopPTR:
duke@435 3938 return this;
duke@435 3939 case BotPTR:
duke@435 3940 case NotNull:
duke@435 3941 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3942 case Null:
duke@435 3943 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3944 // else fall through to AnyNull
kvn@658 3945 case AnyNull: {
kvn@658 3946 int instance_id = meet_instance_id(InstanceTop);
roland@5991 3947 const TypeOopPtr* speculative = _speculative;
roland@5991 3948 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@6380 3949 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, _inline_depth);
kvn@658 3950 }
duke@435 3951 default: ShouldNotReachHere();
duke@435 3952 }
duke@435 3953 }
duke@435 3954
coleenp@4037 3955 case MetadataPtr:
coleenp@4037 3956 case KlassPtr:
duke@435 3957 case RawPtr: return TypePtr::BOTTOM;
duke@435 3958
duke@435 3959 case AryPtr: { // Meeting 2 references?
duke@435 3960 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3961 int off = meet_offset(tap->offset());
roland@6313 3962 const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
duke@435 3963 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3964 int instance_id = meet_instance_id(tap->instance_id());
roland@6313 3965 const TypeOopPtr* speculative = xmeet_speculative(tap);
roland@6380 3966 int depth = meet_inline_depth(tap->inline_depth());
duke@435 3967 ciKlass* lazy_klass = NULL;
duke@435 3968 if (tary->_elem->isa_int()) {
duke@435 3969 // Integral array element types have irrelevant lattice relations.
duke@435 3970 // It is the klass that determines array layout, not the element type.
duke@435 3971 if (_klass == NULL)
duke@435 3972 lazy_klass = tap->_klass;
duke@435 3973 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3974 lazy_klass = _klass;
duke@435 3975 } else {
duke@435 3976 // Something like byte[int+] meets char[int+].
duke@435 3977 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3978 instance_id = InstanceBot;
vlivanov@5658 3979 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
duke@435 3980 }
kvn@2633 3981 } else // Non integral arrays.
roland@6214 3982 // Must fall to bottom if exact klasses in upper lattice
roland@6214 3983 // are not equal or super klass is exact.
roland@6214 3984 if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
roland@6214 3985 // meet with top[] and bottom[] are processed further down:
roland@6214 3986 tap->_klass != NULL && this->_klass != NULL &&
roland@6214 3987 // both are exact and not equal:
roland@6214 3988 ((tap->_klass_is_exact && this->_klass_is_exact) ||
roland@6214 3989 // 'tap' is exact and super or unrelated:
roland@6214 3990 (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
roland@6214 3991 // 'this' is exact and super or unrelated:
roland@6214 3992 (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
roland@7693 3993 if (above_centerline(ptr)) {
roland@7693 3994 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
roland@7693 3995 }
roland@5991 3996 return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
duke@435 3997 }
kvn@2633 3998
kvn@2120 3999 bool xk = false;
duke@435 4000 switch (tap->ptr()) {
duke@435 4001 case AnyNull:
duke@435 4002 case TopPTR:
duke@435 4003 // Compute new klass on demand, do not use tap->_klass
roland@5991 4004 if (below_centerline(this->_ptr)) {
roland@5991 4005 xk = this->_klass_is_exact;
roland@5991 4006 } else {
roland@5991 4007 xk = (tap->_klass_is_exact | this->_klass_is_exact);
roland@5991 4008 }
roland@6380 4009 return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
duke@435 4010 case Constant: {
duke@435 4011 ciObject* o = const_oop();
duke@435 4012 if( _ptr == Constant ) {
duke@435 4013 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
jrose@1424 4014 xk = (klass() == tap->klass());
duke@435 4015 ptr = NotNull;
duke@435 4016 o = NULL;
kvn@682 4017 instance_id = InstanceBot;
jrose@1424 4018 } else {
jrose@1424 4019 xk = true;
duke@435 4020 }
roland@5991 4021 } else if(above_centerline(_ptr)) {
duke@435 4022 o = tap->const_oop();
jrose@1424 4023 xk = true;
jrose@1424 4024 } else {
kvn@2120 4025 // Only precise for identical arrays
kvn@2120 4026 xk = this->_klass_is_exact && (klass() == tap->klass());
duke@435 4027 }
roland@6380 4028 return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
duke@435 4029 }
duke@435 4030 case NotNull:
duke@435 4031 case BotPTR:
duke@435 4032 // Compute new klass on demand, do not use tap->_klass
duke@435 4033 if (above_centerline(this->_ptr))
duke@435 4034 xk = tap->_klass_is_exact;
duke@435 4035 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 4036 (klass() == tap->klass()); // Only precise for identical arrays
roland@6380 4037 return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
duke@435 4038 default: ShouldNotReachHere();
duke@435 4039 }
duke@435 4040 }
duke@435 4041
duke@435 4042 // All arrays inherit from Object class
duke@435 4043 case InstPtr: {
duke@435 4044 const TypeInstPtr *tp = t->is_instptr();
duke@435 4045 int offset = meet_offset(tp->offset());
duke@435 4046 PTR ptr = meet_ptr(tp->ptr());
kvn@658 4047 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 4048 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 4049 int depth = meet_inline_depth(tp->inline_depth());
duke@435 4050 switch (ptr) {
duke@435 4051 case TopPTR:
duke@435 4052 case AnyNull: // Fall 'down' to dual of object klass
roland@5991 4053 // For instances when a subclass meets a superclass we fall
roland@5991 4054 // below the centerline when the superclass is exact. We need to
roland@5991 4055 // do the same here.
roland@5991 4056 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
roland@6380 4057 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
duke@435 4058 } else {
duke@435 4059 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 4060 ptr = NotNull;
kvn@658 4061 instance_id = InstanceBot;
roland@6380 4062 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
duke@435 4063 }
duke@435 4064 case Constant:
duke@435 4065 case NotNull:
duke@435 4066 case BotPTR: // Fall down to object klass
duke@435 4067 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 4068 if (above_centerline(tp->ptr())) {
duke@435 4069 // If 'tp' is above the centerline and it is Object class
twisti@1040 4070 // then we can subclass in the Java class hierarchy.
roland@5991 4071 // For instances when a subclass meets a superclass we fall
roland@5991 4072 // below the centerline when the superclass is exact. We need
roland@5991 4073 // to do the same here.
roland@5991 4074 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
duke@435 4075 // that is, my array type is a subtype of 'tp' klass
roland@5991 4076 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@6380 4077 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
duke@435 4078 }
duke@435 4079 }
duke@435 4080 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 4081 // The meet falls down to Object class below centerline.
duke@435 4082 if( ptr == Constant )
duke@435 4083 ptr = NotNull;
kvn@658 4084 instance_id = InstanceBot;
roland@6380 4085 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
duke@435 4086 default: typerr(t);
duke@435 4087 }
duke@435 4088 }
duke@435 4089 }
duke@435 4090 return this; // Lint noise
duke@435 4091 }
duke@435 4092
duke@435 4093 //------------------------------xdual------------------------------------------
duke@435 4094 // Dual: compute field-by-field dual
duke@435 4095 const Type *TypeAryPtr::xdual() const {
roland@6380 4096 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
duke@435 4097 }
duke@435 4098
kvn@1255 4099 //----------------------interface_vs_oop---------------------------------------
kvn@1255 4100 #ifdef ASSERT
kvn@1255 4101 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
kvn@1255 4102 const TypeAryPtr* t_aryptr = t->isa_aryptr();
kvn@1255 4103 if (t_aryptr) {
kvn@1255 4104 return _ary->interface_vs_oop(t_aryptr->_ary);
kvn@1255 4105 }
kvn@1255 4106 return false;
kvn@1255 4107 }
kvn@1255 4108 #endif
kvn@1255 4109
duke@435 4110 //------------------------------dump2------------------------------------------
duke@435 4111 #ifndef PRODUCT
duke@435 4112 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4113 _ary->dump2(d,depth,st);
duke@435 4114 switch( _ptr ) {
duke@435 4115 case Constant:
duke@435 4116 const_oop()->print(st);
duke@435 4117 break;
duke@435 4118 case BotPTR:
duke@435 4119 if (!WizardMode && !Verbose) {
duke@435 4120 if( _klass_is_exact ) st->print(":exact");
duke@435 4121 break;
duke@435 4122 }
duke@435 4123 case TopPTR:
duke@435 4124 case AnyNull:
duke@435 4125 case NotNull:
duke@435 4126 st->print(":%s", ptr_msg[_ptr]);
duke@435 4127 if( _klass_is_exact ) st->print(":exact");
duke@435 4128 break;
duke@435 4129 }
duke@435 4130
kvn@499 4131 if( _offset != 0 ) {
kvn@499 4132 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 4133 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 4134 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 4135 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 4136 else {
kvn@499 4137 BasicType basic_elem_type = elem()->basic_type();
kvn@499 4138 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 4139 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 4140 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 4141 }
kvn@499 4142 }
kvn@499 4143 st->print(" *");
kvn@658 4144 if (_instance_id == InstanceTop)
kvn@658 4145 st->print(",iid=top");
kvn@658 4146 else if (_instance_id != InstanceBot)
duke@435 4147 st->print(",iid=%d",_instance_id);
roland@5991 4148
roland@6380 4149 dump_inline_depth(st);
roland@5991 4150 dump_speculative(st);
duke@435 4151 }
duke@435 4152 #endif
duke@435 4153
duke@435 4154 bool TypeAryPtr::empty(void) const {
duke@435 4155 if (_ary->empty()) return true;
duke@435 4156 return TypeOopPtr::empty();
duke@435 4157 }
duke@435 4158
duke@435 4159 //------------------------------add_offset-------------------------------------
roland@5991 4160 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
roland@6380 4161 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
roland@5991 4162 }
roland@5991 4163
roland@6313 4164 const Type *TypeAryPtr::remove_speculative() const {
roland@6380 4165 if (_speculative == NULL) {
roland@6380 4166 return this;
roland@6380 4167 }
roland@6380 4168 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
roland@6380 4169 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
roland@6380 4170 }
roland@6380 4171
roland@6380 4172 const TypeOopPtr *TypeAryPtr::with_inline_depth(int depth) const {
roland@6380 4173 if (!UseInlineDepthForSpeculativeTypes) {
roland@6380 4174 return this;
roland@6380 4175 }
roland@6380 4176 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
roland@5991 4177 }
duke@435 4178
duke@435 4179 //=============================================================================
coleenp@548 4180
coleenp@548 4181 //------------------------------hash-------------------------------------------
coleenp@548 4182 // Type-specific hashing function.
roland@4159 4183 int TypeNarrowPtr::hash(void) const {
never@1262 4184 return _ptrtype->hash() + 7;
coleenp@548 4185 }
coleenp@548 4186
roland@4159 4187 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton
roland@4159 4188 return _ptrtype->singleton();
roland@4159 4189 }
roland@4159 4190
roland@4159 4191 bool TypeNarrowPtr::empty(void) const {
roland@4159 4192 return _ptrtype->empty();
roland@4159 4193 }
roland@4159 4194
roland@4159 4195 intptr_t TypeNarrowPtr::get_con() const {
roland@4159 4196 return _ptrtype->get_con();
roland@4159 4197 }
roland@4159 4198
roland@4159 4199 bool TypeNarrowPtr::eq( const Type *t ) const {
roland@4159 4200 const TypeNarrowPtr* tc = isa_same_narrowptr(t);
coleenp@548 4201 if (tc != NULL) {
never@1262 4202 if (_ptrtype->base() != tc->_ptrtype->base()) {
coleenp@548 4203 return false;
coleenp@548 4204 }
never@1262 4205 return tc->_ptrtype->eq(_ptrtype);
coleenp@548 4206 }
coleenp@548 4207 return false;
coleenp@548 4208 }
coleenp@548 4209
roland@4159 4210 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now.
roland@4159 4211 const TypePtr* odual = _ptrtype->dual()->is_ptr();
roland@4159 4212 return make_same_narrowptr(odual);
roland@4159 4213 }
roland@4159 4214
roland@4159 4215
roland@6313 4216 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@4159 4217 if (isa_same_narrowptr(kills)) {
roland@6313 4218 const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
roland@4159 4219 if (ft->empty())
roland@4159 4220 return Type::TOP; // Canonical empty value
roland@4159 4221 if (ft->isa_ptr()) {
roland@4159 4222 return make_hash_same_narrowptr(ft->isa_ptr());
roland@4159 4223 }
roland@4159 4224 return ft;
roland@4159 4225 } else if (kills->isa_ptr()) {
roland@6313 4226 const Type* ft = _ptrtype->join_helper(kills, include_speculative);
roland@4159 4227 if (ft->empty())
roland@4159 4228 return Type::TOP; // Canonical empty value
roland@4159 4229 return ft;
roland@4159 4230 } else {
roland@4159 4231 return Type::TOP;
roland@4159 4232 }
coleenp@548 4233 }
coleenp@548 4234
kvn@728 4235 //------------------------------xmeet------------------------------------------
coleenp@548 4236 // Compute the MEET of two types. It returns a new Type object.
roland@4159 4237 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
coleenp@548 4238 // Perform a fast test for common case; meeting the same types together.
coleenp@548 4239 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 4240
roland@4159 4241 if (t->base() == base()) {
roland@4159 4242 const Type* result = _ptrtype->xmeet(t->make_ptr());
roland@4159 4243 if (result->isa_ptr()) {
roland@4159 4244 return make_hash_same_narrowptr(result->is_ptr());
roland@4159 4245 }
roland@4159 4246 return result;
roland@4159 4247 }
roland@4159 4248
roland@4159 4249 // Current "this->_base" is NarrowKlass or NarrowOop
coleenp@548 4250 switch (t->base()) { // switch on original type
coleenp@548 4251
coleenp@548 4252 case Int: // Mixing ints & oops happens when javac
coleenp@548 4253 case Long: // reuses local variables
coleenp@548 4254 case FloatTop:
coleenp@548 4255 case FloatCon:
coleenp@548 4256 case FloatBot:
coleenp@548 4257 case DoubleTop:
coleenp@548 4258 case DoubleCon:
coleenp@548 4259 case DoubleBot:
kvn@728 4260 case AnyPtr:
kvn@728 4261 case RawPtr:
kvn@728 4262 case OopPtr:
kvn@728 4263 case InstPtr:
coleenp@4037 4264 case AryPtr:
coleenp@4037 4265 case MetadataPtr:
kvn@728 4266 case KlassPtr:
roland@4159 4267 case NarrowOop:
roland@4159 4268 case NarrowKlass:
kvn@728 4269
coleenp@548 4270 case Bottom: // Ye Olde Default
coleenp@548 4271 return Type::BOTTOM;
coleenp@548 4272 case Top:
coleenp@548 4273 return this;
coleenp@548 4274
coleenp@548 4275 default: // All else is a mistake
coleenp@548 4276 typerr(t);
coleenp@548 4277
coleenp@548 4278 } // End of switch
kvn@728 4279
kvn@728 4280 return this;
coleenp@548 4281 }
coleenp@548 4282
roland@4159 4283 #ifndef PRODUCT
roland@4159 4284 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 4285 _ptrtype->dump2(d, depth, st);
roland@4159 4286 }
roland@4159 4287 #endif
roland@4159 4288
roland@4159 4289 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
roland@4159 4290 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
roland@4159 4291
roland@4159 4292
roland@4159 4293 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
roland@4159 4294 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
roland@4159 4295 }
roland@4159 4296
coleenp@548 4297
coleenp@548 4298 #ifndef PRODUCT
coleenp@548 4299 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
never@852 4300 st->print("narrowoop: ");
roland@4159 4301 TypeNarrowPtr::dump2(d, depth, st);
coleenp@548 4302 }
coleenp@548 4303 #endif
coleenp@548 4304
roland@4159 4305 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
roland@4159 4306
roland@4159 4307 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
roland@4159 4308 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
roland@4159 4309 }
roland@4159 4310
roland@4159 4311 #ifndef PRODUCT
roland@4159 4312 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 4313 st->print("narrowklass: ");
roland@4159 4314 TypeNarrowPtr::dump2(d, depth, st);
roland@4159 4315 }
roland@4159 4316 #endif
coleenp@548 4317
coleenp@4037 4318
coleenp@4037 4319 //------------------------------eq---------------------------------------------
coleenp@4037 4320 // Structural equality check for Type representations
coleenp@4037 4321 bool TypeMetadataPtr::eq( const Type *t ) const {
coleenp@4037 4322 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
coleenp@4037 4323 ciMetadata* one = metadata();
coleenp@4037 4324 ciMetadata* two = a->metadata();
coleenp@4037 4325 if (one == NULL || two == NULL) {
coleenp@4037 4326 return (one == two) && TypePtr::eq(t);
coleenp@4037 4327 } else {
coleenp@4037 4328 return one->equals(two) && TypePtr::eq(t);
coleenp@4037 4329 }
coleenp@4037 4330 }
coleenp@4037 4331
coleenp@4037 4332 //------------------------------hash-------------------------------------------
coleenp@4037 4333 // Type-specific hashing function.
coleenp@4037 4334 int TypeMetadataPtr::hash(void) const {
coleenp@4037 4335 return
coleenp@4037 4336 (metadata() ? metadata()->hash() : 0) +
coleenp@4037 4337 TypePtr::hash();
coleenp@4037 4338 }
coleenp@4037 4339
coleenp@4037 4340 //------------------------------singleton--------------------------------------
coleenp@4037 4341 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 4342 // constants
coleenp@4037 4343 bool TypeMetadataPtr::singleton(void) const {
coleenp@4037 4344 // detune optimizer to not generate constant metadta + constant offset as a constant!
coleenp@4037 4345 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 4346 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 4347 }
coleenp@4037 4348
coleenp@4037 4349 //------------------------------add_offset-------------------------------------
coleenp@4037 4350 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
coleenp@4037 4351 return make( _ptr, _metadata, xadd_offset(offset));
coleenp@4037 4352 }
coleenp@4037 4353
coleenp@4037 4354 //-----------------------------filter------------------------------------------
coleenp@4037 4355 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 4356 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 4357 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
coleenp@4037 4358 if (ft == NULL || ft->empty())
coleenp@4037 4359 return Type::TOP; // Canonical empty value
coleenp@4037 4360 return ft;
coleenp@4037 4361 }
coleenp@4037 4362
coleenp@4037 4363 //------------------------------get_con----------------------------------------
coleenp@4037 4364 intptr_t TypeMetadataPtr::get_con() const {
coleenp@4037 4365 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4366 assert( _offset >= 0, "" );
coleenp@4037 4367
coleenp@4037 4368 if (_offset != 0) {
coleenp@4037 4369 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4370 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4371 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4372 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4373 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4374 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4375 // but this assertion here is to help prevent its occurence.
coleenp@4037 4376 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4377 ShouldNotReachHere();
coleenp@4037 4378 }
coleenp@4037 4379
coleenp@4037 4380 return (intptr_t)metadata()->constant_encoding();
coleenp@4037 4381 }
coleenp@4037 4382
coleenp@4037 4383 //------------------------------cast_to_ptr_type-------------------------------
coleenp@4037 4384 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
coleenp@4037 4385 if( ptr == _ptr ) return this;
coleenp@4037 4386 return make(ptr, metadata(), _offset);
coleenp@4037 4387 }
coleenp@4037 4388
coleenp@4037 4389 //------------------------------meet-------------------------------------------
coleenp@4037 4390 // Compute the MEET of two types. It returns a new Type object.
coleenp@4037 4391 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
coleenp@4037 4392 // Perform a fast test for common case; meeting the same types together.
coleenp@4037 4393 if( this == t ) return this; // Meeting same type-rep?
coleenp@4037 4394
coleenp@4037 4395 // Current "this->_base" is OopPtr
coleenp@4037 4396 switch (t->base()) { // switch on original type
coleenp@4037 4397
coleenp@4037 4398 case Int: // Mixing ints & oops happens when javac
coleenp@4037 4399 case Long: // reuses local variables
coleenp@4037 4400 case FloatTop:
coleenp@4037 4401 case FloatCon:
coleenp@4037 4402 case FloatBot:
coleenp@4037 4403 case DoubleTop:
coleenp@4037 4404 case DoubleCon:
coleenp@4037 4405 case DoubleBot:
coleenp@4037 4406 case NarrowOop:
roland@4159 4407 case NarrowKlass:
coleenp@4037 4408 case Bottom: // Ye Olde Default
coleenp@4037 4409 return Type::BOTTOM;
coleenp@4037 4410 case Top:
coleenp@4037 4411 return this;
coleenp@4037 4412
coleenp@4037 4413 default: // All else is a mistake
coleenp@4037 4414 typerr(t);
coleenp@4037 4415
coleenp@4037 4416 case AnyPtr: {
coleenp@4037 4417 // Found an AnyPtr type vs self-OopPtr type
coleenp@4037 4418 const TypePtr *tp = t->is_ptr();
coleenp@4037 4419 int offset = meet_offset(tp->offset());
coleenp@4037 4420 PTR ptr = meet_ptr(tp->ptr());
coleenp@4037 4421 switch (tp->ptr()) {
coleenp@4037 4422 case Null:
coleenp@4037 4423 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 4424 // else fall through:
coleenp@4037 4425 case TopPTR:
coleenp@4037 4426 case AnyNull: {
kvn@6429 4427 return make(ptr, _metadata, offset);
coleenp@4037 4428 }
coleenp@4037 4429 case BotPTR:
coleenp@4037 4430 case NotNull:
coleenp@4037 4431 return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 4432 default: typerr(t);
coleenp@4037 4433 }
coleenp@4037 4434 }
coleenp@4037 4435
coleenp@4037 4436 case RawPtr:
coleenp@4037 4437 case KlassPtr:
coleenp@4037 4438 case OopPtr:
coleenp@4037 4439 case InstPtr:
coleenp@4037 4440 case AryPtr:
coleenp@4037 4441 return TypePtr::BOTTOM; // Oop meet raw is not well defined
coleenp@4037 4442
roland@4040 4443 case MetadataPtr: {
roland@4040 4444 const TypeMetadataPtr *tp = t->is_metadataptr();
roland@4040 4445 int offset = meet_offset(tp->offset());
roland@4040 4446 PTR tptr = tp->ptr();
roland@4040 4447 PTR ptr = meet_ptr(tptr);
roland@4040 4448 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
roland@4040 4449 if (tptr == TopPTR || _ptr == TopPTR ||
roland@4040 4450 metadata()->equals(tp->metadata())) {
roland@4040 4451 return make(ptr, md, offset);
roland@4040 4452 }
roland@4040 4453 // metadata is different
roland@4040 4454 if( ptr == Constant ) { // Cannot be equal constants, so...
roland@4040 4455 if( tptr == Constant && _ptr != Constant) return t;
roland@4040 4456 if( _ptr == Constant && tptr != Constant) return this;
roland@4040 4457 ptr = NotNull; // Fall down in lattice
roland@4040 4458 }
roland@4040 4459 return make(ptr, NULL, offset);
coleenp@4037 4460 break;
roland@4040 4461 }
coleenp@4037 4462 } // End of switch
coleenp@4037 4463 return this; // Return the double constant
coleenp@4037 4464 }
coleenp@4037 4465
coleenp@4037 4466
coleenp@4037 4467 //------------------------------xdual------------------------------------------
coleenp@4037 4468 // Dual of a pure metadata pointer.
coleenp@4037 4469 const Type *TypeMetadataPtr::xdual() const {
coleenp@4037 4470 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
coleenp@4037 4471 }
coleenp@4037 4472
coleenp@4037 4473 //------------------------------dump2------------------------------------------
coleenp@4037 4474 #ifndef PRODUCT
coleenp@4037 4475 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
coleenp@4037 4476 st->print("metadataptr:%s", ptr_msg[_ptr]);
coleenp@4037 4477 if( metadata() ) st->print(INTPTR_FORMAT, metadata());
coleenp@4037 4478 switch( _offset ) {
coleenp@4037 4479 case OffsetTop: st->print("+top"); break;
coleenp@4037 4480 case OffsetBot: st->print("+any"); break;
coleenp@4037 4481 case 0: break;
coleenp@4037 4482 default: st->print("+%d",_offset); break;
coleenp@4037 4483 }
coleenp@4037 4484 }
coleenp@4037 4485 #endif
coleenp@4037 4486
coleenp@4037 4487
coleenp@4037 4488 //=============================================================================
coleenp@4037 4489 // Convenience common pre-built type.
coleenp@4037 4490 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
coleenp@4037 4491
coleenp@4037 4492 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
coleenp@4037 4493 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
coleenp@4037 4494 }
coleenp@4037 4495
coleenp@4037 4496 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
coleenp@4037 4497 return make(Constant, m, 0);
coleenp@4037 4498 }
coleenp@4037 4499 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
coleenp@4037 4500 return make(Constant, m, 0);
coleenp@4037 4501 }
coleenp@4037 4502
coleenp@4037 4503 //------------------------------make-------------------------------------------
coleenp@4037 4504 // Create a meta data constant
coleenp@4037 4505 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
coleenp@4037 4506 assert(m == NULL || !m->is_klass(), "wrong type");
coleenp@4037 4507 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
coleenp@4037 4508 }
coleenp@4037 4509
coleenp@4037 4510
coleenp@548 4511 //=============================================================================
duke@435 4512 // Convenience common pre-built types.
duke@435 4513
duke@435 4514 // Not-null object klass or below
duke@435 4515 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 4516 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 4517
coleenp@4037 4518 //------------------------------TypeKlassPtr-----------------------------------
duke@435 4519 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
coleenp@4037 4520 : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
duke@435 4521 }
duke@435 4522
duke@435 4523 //------------------------------make-------------------------------------------
duke@435 4524 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 4525 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 4526 assert( k != NULL, "Expect a non-NULL klass");
coleenp@4037 4527 assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
duke@435 4528 TypeKlassPtr *r =
duke@435 4529 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 4530
duke@435 4531 return r;
duke@435 4532 }
duke@435 4533
duke@435 4534 //------------------------------eq---------------------------------------------
duke@435 4535 // Structural equality check for Type representations
duke@435 4536 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 4537 const TypeKlassPtr *p = t->is_klassptr();
duke@435 4538 return
duke@435 4539 klass()->equals(p->klass()) &&
coleenp@4037 4540 TypePtr::eq(p);
duke@435 4541 }
duke@435 4542
duke@435 4543 //------------------------------hash-------------------------------------------
duke@435 4544 // Type-specific hashing function.
duke@435 4545 int TypeKlassPtr::hash(void) const {
coleenp@4037 4546 return klass()->hash() + TypePtr::hash();
coleenp@4037 4547 }
coleenp@4037 4548
coleenp@4037 4549 //------------------------------singleton--------------------------------------
coleenp@4037 4550 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 4551 // constants
coleenp@4037 4552 bool TypeKlassPtr::singleton(void) const {
coleenp@4037 4553 // detune optimizer to not generate constant klass + constant offset as a constant!
coleenp@4037 4554 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 4555 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 4556 }
duke@435 4557
roland@6043 4558 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 4559 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@6043 4560 // logic here mirrors the one from TypeOopPtr::filter. See comments
roland@6043 4561 // there.
roland@6313 4562 const Type* ft = join_helper(kills, include_speculative);
roland@6043 4563 const TypeKlassPtr* ftkp = ft->isa_klassptr();
roland@6043 4564 const TypeKlassPtr* ktkp = kills->isa_klassptr();
roland@6043 4565
roland@6043 4566 if (ft->empty()) {
roland@6043 4567 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
roland@6043 4568 return kills; // Uplift to interface
roland@6043 4569
roland@6043 4570 return Type::TOP; // Canonical empty value
roland@6043 4571 }
roland@6043 4572
roland@6043 4573 // Interface klass type could be exact in opposite to interface type,
roland@6043 4574 // return it here instead of incorrect Constant ptr J/L/Object (6894807).
roland@6043 4575 if (ftkp != NULL && ktkp != NULL &&
roland@6043 4576 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
roland@6043 4577 !ftkp->klass_is_exact() && // Keep exact interface klass
roland@6043 4578 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
roland@6043 4579 return ktkp->cast_to_ptr_type(ftkp->ptr());
roland@6043 4580 }
roland@6043 4581
roland@6043 4582 return ft;
roland@6043 4583 }
roland@6043 4584
kvn@2116 4585 //----------------------compute_klass------------------------------------------
kvn@2116 4586 // Compute the defining klass for this class
kvn@2116 4587 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
kvn@2116 4588 // Compute _klass based on element type.
duke@435 4589 ciKlass* k_ary = NULL;
duke@435 4590 const TypeInstPtr *tinst;
duke@435 4591 const TypeAryPtr *tary;
coleenp@548 4592 const Type* el = elem();
coleenp@548 4593 if (el->isa_narrowoop()) {
kvn@656 4594 el = el->make_ptr();
coleenp@548 4595 }
coleenp@548 4596
duke@435 4597 // Get element klass
coleenp@548 4598 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 4599 // Compute array klass from element klass
duke@435 4600 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 4601 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 4602 // Compute array klass from element klass
duke@435 4603 ciKlass* k_elem = tary->klass();
duke@435 4604 // If element type is something like bottom[], k_elem will be null.
duke@435 4605 if (k_elem != NULL)
duke@435 4606 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 4607 } else if ((el->base() == Type::Top) ||
coleenp@548 4608 (el->base() == Type::Bottom)) {
duke@435 4609 // element type of Bottom occurs from meet of basic type
duke@435 4610 // and object; Top occurs when doing join on Bottom.
duke@435 4611 // Leave k_ary at NULL.
duke@435 4612 } else {
duke@435 4613 // Cannot compute array klass directly from basic type,
duke@435 4614 // since subtypes of TypeInt all have basic type T_INT.
kvn@2116 4615 #ifdef ASSERT
kvn@2116 4616 if (verify && el->isa_int()) {
kvn@2116 4617 // Check simple cases when verifying klass.
kvn@2116 4618 BasicType bt = T_ILLEGAL;
kvn@2116 4619 if (el == TypeInt::BYTE) {
kvn@2116 4620 bt = T_BYTE;
kvn@2116 4621 } else if (el == TypeInt::SHORT) {
kvn@2116 4622 bt = T_SHORT;
kvn@2116 4623 } else if (el == TypeInt::CHAR) {
kvn@2116 4624 bt = T_CHAR;
kvn@2116 4625 } else if (el == TypeInt::INT) {
kvn@2116 4626 bt = T_INT;
kvn@2116 4627 } else {
kvn@2116 4628 return _klass; // just return specified klass
kvn@2116 4629 }
kvn@2116 4630 return ciTypeArrayKlass::make(bt);
kvn@2116 4631 }
kvn@2116 4632 #endif
coleenp@548 4633 assert(!el->isa_int(),
duke@435 4634 "integral arrays must be pre-equipped with a class");
duke@435 4635 // Compute array klass directly from basic type
coleenp@548 4636 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 4637 }
kvn@2116 4638 return k_ary;
kvn@2116 4639 }
kvn@2116 4640
kvn@2116 4641 //------------------------------klass------------------------------------------
kvn@2116 4642 // Return the defining klass for this class
kvn@2116 4643 ciKlass* TypeAryPtr::klass() const {
kvn@2116 4644 if( _klass ) return _klass; // Return cached value, if possible
kvn@2116 4645
kvn@2116 4646 // Oops, need to compute _klass and cache it
kvn@2116 4647 ciKlass* k_ary = compute_klass();
duke@435 4648
kvn@2636 4649 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
duke@435 4650 // The _klass field acts as a cache of the underlying
duke@435 4651 // ciKlass for this array type. In order to set the field,
duke@435 4652 // we need to cast away const-ness.
duke@435 4653 //
duke@435 4654 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 4655 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 4656 // active compilations. However, the ciKlass which represents
duke@435 4657 // this Type is *not* shared between compilations, so caching
duke@435 4658 // this value would result in fetching a dangling pointer.
duke@435 4659 //
duke@435 4660 // Recomputing the underlying ciKlass for each request is
duke@435 4661 // a bit less efficient than caching, but calls to
duke@435 4662 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 4663 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 4664 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 4665 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 4666 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 4667 }
kvn@598 4668 }
duke@435 4669 return k_ary;
duke@435 4670 }
duke@435 4671
duke@435 4672
duke@435 4673 //------------------------------add_offset-------------------------------------
duke@435 4674 // Access internals of klass object
kvn@741 4675 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
duke@435 4676 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 4677 }
duke@435 4678
duke@435 4679 //------------------------------cast_to_ptr_type-------------------------------
duke@435 4680 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
kvn@992 4681 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
duke@435 4682 if( ptr == _ptr ) return this;
duke@435 4683 return make(ptr, _klass, _offset);
duke@435 4684 }
duke@435 4685
duke@435 4686
duke@435 4687 //-----------------------------cast_to_exactness-------------------------------
duke@435 4688 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 4689 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 4690 if (!UseExactTypes) return this;
duke@435 4691 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 4692 }
duke@435 4693
duke@435 4694
duke@435 4695 //-----------------------------as_instance_type--------------------------------
duke@435 4696 // Corresponding type for an instance of the given class.
duke@435 4697 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 4698 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 4699 ciKlass* k = klass();
duke@435 4700 bool xk = klass_is_exact();
duke@435 4701 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 4702 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
morris@4760 4703 guarantee(toop != NULL, "need type for given klass");
duke@435 4704 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 4705 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 4706 }
duke@435 4707
duke@435 4708
duke@435 4709 //------------------------------xmeet------------------------------------------
duke@435 4710 // Compute the MEET of two types, return a new Type object.
duke@435 4711 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 4712 // Perform a fast test for common case; meeting the same types together.
duke@435 4713 if( this == t ) return this; // Meeting same type-rep?
duke@435 4714
duke@435 4715 // Current "this->_base" is Pointer
duke@435 4716 switch (t->base()) { // switch on original type
duke@435 4717
duke@435 4718 case Int: // Mixing ints & oops happens when javac
duke@435 4719 case Long: // reuses local variables
duke@435 4720 case FloatTop:
duke@435 4721 case FloatCon:
duke@435 4722 case FloatBot:
duke@435 4723 case DoubleTop:
duke@435 4724 case DoubleCon:
duke@435 4725 case DoubleBot:
kvn@728 4726 case NarrowOop:
roland@4159 4727 case NarrowKlass:
duke@435 4728 case Bottom: // Ye Olde Default
duke@435 4729 return Type::BOTTOM;
duke@435 4730 case Top:
duke@435 4731 return this;
duke@435 4732
duke@435 4733 default: // All else is a mistake
duke@435 4734 typerr(t);
duke@435 4735
duke@435 4736 case AnyPtr: { // Meeting to AnyPtrs
duke@435 4737 // Found an AnyPtr type vs self-KlassPtr type
duke@435 4738 const TypePtr *tp = t->is_ptr();
duke@435 4739 int offset = meet_offset(tp->offset());
duke@435 4740 PTR ptr = meet_ptr(tp->ptr());
duke@435 4741 switch (tp->ptr()) {
duke@435 4742 case TopPTR:
duke@435 4743 return this;
duke@435 4744 case Null:
duke@435 4745 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 4746 case AnyNull:
duke@435 4747 return make( ptr, klass(), offset );
duke@435 4748 case BotPTR:
duke@435 4749 case NotNull:
duke@435 4750 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 4751 default: typerr(t);
duke@435 4752 }
duke@435 4753 }
duke@435 4754
coleenp@4037 4755 case RawPtr:
coleenp@4037 4756 case MetadataPtr:
coleenp@4037 4757 case OopPtr:
duke@435 4758 case AryPtr: // Meet with AryPtr
duke@435 4759 case InstPtr: // Meet with InstPtr
coleenp@4037 4760 return TypePtr::BOTTOM;
duke@435 4761
duke@435 4762 //
duke@435 4763 // A-top }
duke@435 4764 // / | \ } Tops
duke@435 4765 // B-top A-any C-top }
duke@435 4766 // | / | \ | } Any-nulls
duke@435 4767 // B-any | C-any }
duke@435 4768 // | | |
duke@435 4769 // B-con A-con C-con } constants; not comparable across classes
duke@435 4770 // | | |
duke@435 4771 // B-not | C-not }
duke@435 4772 // | \ | / | } not-nulls
duke@435 4773 // B-bot A-not C-bot }
duke@435 4774 // \ | / } Bottoms
duke@435 4775 // A-bot }
duke@435 4776 //
duke@435 4777
duke@435 4778 case KlassPtr: { // Meet two KlassPtr types
duke@435 4779 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 4780 int off = meet_offset(tkls->offset());
duke@435 4781 PTR ptr = meet_ptr(tkls->ptr());
duke@435 4782
duke@435 4783 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 4784 // If we have constants, then we created oops so classes are loaded
duke@435 4785 // and we can handle the constants further down. This case handles
duke@435 4786 // not-loaded classes
duke@435 4787 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 4788 return make( ptr, klass(), off );
duke@435 4789 }
duke@435 4790
duke@435 4791 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 4792 ciKlass* tkls_klass = tkls->klass();
duke@435 4793 ciKlass* this_klass = this->klass();
duke@435 4794 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 4795 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 4796
duke@435 4797 // If 'this' type is above the centerline and is a superclass of the
duke@435 4798 // other, we can treat 'this' as having the same type as the other.
duke@435 4799 if ((above_centerline(this->ptr())) &&
duke@435 4800 tkls_klass->is_subtype_of(this_klass)) {
duke@435 4801 this_klass = tkls_klass;
duke@435 4802 }
duke@435 4803 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 4804 // other, we can treat 'tinst' as having the same type as the other.
duke@435 4805 if ((above_centerline(tkls->ptr())) &&
duke@435 4806 this_klass->is_subtype_of(tkls_klass)) {
duke@435 4807 tkls_klass = this_klass;
duke@435 4808 }
duke@435 4809
duke@435 4810 // Check for classes now being equal
duke@435 4811 if (tkls_klass->equals(this_klass)) {
duke@435 4812 // If the klasses are equal, the constants may still differ. Fall to
duke@435 4813 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 4814 // handled elsewhere).
duke@435 4815 if( ptr == Constant ) {
coleenp@4037 4816 if (this->_ptr == Constant && tkls->_ptr == Constant &&
coleenp@4037 4817 this->klass()->equals(tkls->klass()));
coleenp@4037 4818 else if (above_centerline(this->ptr()));
coleenp@4037 4819 else if (above_centerline(tkls->ptr()));
duke@435 4820 else
duke@435 4821 ptr = NotNull;
duke@435 4822 }
duke@435 4823 return make( ptr, this_klass, off );
duke@435 4824 } // Else classes are not equal
duke@435 4825
duke@435 4826 // Since klasses are different, we require the LCA in the Java
duke@435 4827 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 4828 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 4829 ptr = NotNull;
duke@435 4830 // Now we find the LCA of Java classes
duke@435 4831 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 4832 return make( ptr, k, off );
duke@435 4833 } // End of case KlassPtr
duke@435 4834
duke@435 4835 } // End of switch
duke@435 4836 return this; // Return the double constant
duke@435 4837 }
duke@435 4838
duke@435 4839 //------------------------------xdual------------------------------------------
duke@435 4840 // Dual: compute field-by-field dual
duke@435 4841 const Type *TypeKlassPtr::xdual() const {
duke@435 4842 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 4843 }
duke@435 4844
coleenp@4037 4845 //------------------------------get_con----------------------------------------
coleenp@4037 4846 intptr_t TypeKlassPtr::get_con() const {
coleenp@4037 4847 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4848 assert( _offset >= 0, "" );
coleenp@4037 4849
coleenp@4037 4850 if (_offset != 0) {
coleenp@4037 4851 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4852 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4853 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4854 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4855 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4856 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4857 // but this assertion here is to help prevent its occurence.
coleenp@4037 4858 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4859 ShouldNotReachHere();
coleenp@4037 4860 }
coleenp@4037 4861
coleenp@4037 4862 return (intptr_t)klass()->constant_encoding();
coleenp@4037 4863 }
duke@435 4864 //------------------------------dump2------------------------------------------
duke@435 4865 // Dump Klass Type
duke@435 4866 #ifndef PRODUCT
duke@435 4867 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 4868 switch( _ptr ) {
duke@435 4869 case Constant:
duke@435 4870 st->print("precise ");
duke@435 4871 case NotNull:
duke@435 4872 {
duke@435 4873 const char *name = klass()->name()->as_utf8();
duke@435 4874 if( name ) {
duke@435 4875 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 4876 } else {
duke@435 4877 ShouldNotReachHere();
duke@435 4878 }
duke@435 4879 }
duke@435 4880 case BotPTR:
duke@435 4881 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 4882 case TopPTR:
duke@435 4883 case AnyNull:
duke@435 4884 st->print(":%s", ptr_msg[_ptr]);
duke@435 4885 if( _klass_is_exact ) st->print(":exact");
duke@435 4886 break;
duke@435 4887 }
duke@435 4888
duke@435 4889 if( _offset ) { // Dump offset, if any
duke@435 4890 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 4891 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 4892 else { st->print("+%d", _offset); }
duke@435 4893 }
duke@435 4894
duke@435 4895 st->print(" *");
duke@435 4896 }
duke@435 4897 #endif
duke@435 4898
duke@435 4899
duke@435 4900
duke@435 4901 //=============================================================================
duke@435 4902 // Convenience common pre-built types.
duke@435 4903
duke@435 4904 //------------------------------make-------------------------------------------
duke@435 4905 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 4906 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 4907 }
duke@435 4908
duke@435 4909 //------------------------------make-------------------------------------------
duke@435 4910 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 4911 Compile* C = Compile::current();
duke@435 4912 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 4913 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 4914 const TypeTuple *domain;
twisti@1572 4915 if (method->is_static()) {
duke@435 4916 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 4917 } else {
duke@435 4918 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 4919 }
duke@435 4920 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 4921 tf = TypeFunc::make(domain, range);
duke@435 4922 C->set_last_tf(method, tf); // fill cache
duke@435 4923 return tf;
duke@435 4924 }
duke@435 4925
duke@435 4926 //------------------------------meet-------------------------------------------
duke@435 4927 // Compute the MEET of two types. It returns a new Type object.
duke@435 4928 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 4929 // Perform a fast test for common case; meeting the same types together.
duke@435 4930 if( this == t ) return this; // Meeting same type-rep?
duke@435 4931
duke@435 4932 // Current "this->_base" is Func
duke@435 4933 switch (t->base()) { // switch on original type
duke@435 4934
duke@435 4935 case Bottom: // Ye Olde Default
duke@435 4936 return t;
duke@435 4937
duke@435 4938 default: // All else is a mistake
duke@435 4939 typerr(t);
duke@435 4940
duke@435 4941 case Top:
duke@435 4942 break;
duke@435 4943 }
duke@435 4944 return this; // Return the double constant
duke@435 4945 }
duke@435 4946
duke@435 4947 //------------------------------xdual------------------------------------------
duke@435 4948 // Dual: compute field-by-field dual
duke@435 4949 const Type *TypeFunc::xdual() const {
duke@435 4950 return this;
duke@435 4951 }
duke@435 4952
duke@435 4953 //------------------------------eq---------------------------------------------
duke@435 4954 // Structural equality check for Type representations
duke@435 4955 bool TypeFunc::eq( const Type *t ) const {
duke@435 4956 const TypeFunc *a = (const TypeFunc*)t;
duke@435 4957 return _domain == a->_domain &&
duke@435 4958 _range == a->_range;
duke@435 4959 }
duke@435 4960
duke@435 4961 //------------------------------hash-------------------------------------------
duke@435 4962 // Type-specific hashing function.
duke@435 4963 int TypeFunc::hash(void) const {
duke@435 4964 return (intptr_t)_domain + (intptr_t)_range;
duke@435 4965 }
duke@435 4966
duke@435 4967 //------------------------------dump2------------------------------------------
duke@435 4968 // Dump Function Type
duke@435 4969 #ifndef PRODUCT
duke@435 4970 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4971 if( _range->_cnt <= Parms )
duke@435 4972 st->print("void");
duke@435 4973 else {
duke@435 4974 uint i;
duke@435 4975 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 4976 _range->field_at(i)->dump2(d,depth,st);
duke@435 4977 st->print("/");
duke@435 4978 }
duke@435 4979 _range->field_at(i)->dump2(d,depth,st);
duke@435 4980 }
duke@435 4981 st->print(" ");
duke@435 4982 st->print("( ");
duke@435 4983 if( !depth || d[this] ) { // Check for recursive dump
duke@435 4984 st->print("...)");
duke@435 4985 return;
duke@435 4986 }
duke@435 4987 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 4988 if (Parms < _domain->_cnt)
duke@435 4989 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 4990 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 4991 st->print(", ");
duke@435 4992 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 4993 }
duke@435 4994 st->print(" )");
duke@435 4995 }
duke@435 4996 #endif
duke@435 4997
duke@435 4998 //------------------------------singleton--------------------------------------
duke@435 4999 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 5000 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 5001 // or a single symbol.
duke@435 5002 bool TypeFunc::singleton(void) const {
duke@435 5003 return false; // Never a singleton
duke@435 5004 }
duke@435 5005
duke@435 5006 bool TypeFunc::empty(void) const {
duke@435 5007 return false; // Never empty
duke@435 5008 }
duke@435 5009
duke@435 5010
duke@435 5011 BasicType TypeFunc::return_type() const{
duke@435 5012 if (range()->cnt() == TypeFunc::Parms) {
duke@435 5013 return T_VOID;
duke@435 5014 }
duke@435 5015 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 5016 }

mercurial