src/share/vm/opto/type.cpp

Thu, 17 Jan 2013 10:25:16 -0500

author
hseigel
date
Thu, 17 Jan 2013 10:25:16 -0500
changeset 4465
203f64878aab
parent 4201
aaeb9add1ab3
child 4760
96ef09c26978
permissions
-rw-r--r--

7102489: RFE: cleanup jlong typedef on __APPLE__and _LLP64 systems.
Summary: Define jlong as long on all LP64 platforms and add JLONG_FORMAT macro.
Reviewed-by: dholmes, coleenp, mikael, kvn

duke@435 1 /*
hseigel@4465 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
coleenp@4037 26 #include "ci/ciMethodData.hpp"
stefank@2314 27 #include "ci/ciTypeFlow.hpp"
stefank@2314 28 #include "classfile/symbolTable.hpp"
stefank@2314 29 #include "classfile/systemDictionary.hpp"
stefank@2314 30 #include "compiler/compileLog.hpp"
stefank@2314 31 #include "libadt/dict.hpp"
stefank@2314 32 #include "memory/gcLocker.hpp"
stefank@2314 33 #include "memory/oopFactory.hpp"
stefank@2314 34 #include "memory/resourceArea.hpp"
stefank@2314 35 #include "oops/instanceKlass.hpp"
never@2658 36 #include "oops/instanceMirrorKlass.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "oops/typeArrayKlass.hpp"
stefank@2314 39 #include "opto/matcher.hpp"
stefank@2314 40 #include "opto/node.hpp"
stefank@2314 41 #include "opto/opcodes.hpp"
stefank@2314 42 #include "opto/type.hpp"
stefank@2314 43
duke@435 44 // Portions of code courtesy of Clifford Click
duke@435 45
duke@435 46 // Optimization - Graph Style
duke@435 47
duke@435 48 // Dictionary of types shared among compilations.
duke@435 49 Dict* Type::_shared_type_dict = NULL;
duke@435 50
duke@435 51 // Array which maps compiler types to Basic Types
coleenp@4037 52 Type::TypeInfo Type::_type_info[Type::lastype] = {
coleenp@4037 53 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
coleenp@4037 54 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
coleenp@4037 55 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
coleenp@4037 56 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
coleenp@4037 57 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
coleenp@4037 58 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
coleenp@4037 59 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
roland@4159 60 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass
coleenp@4037 61 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
coleenp@4037 62 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
coleenp@4037 63
dlong@4201 64 #ifndef SPARC
coleenp@4037 65 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS
coleenp@4037 66 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
coleenp@4037 67 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
coleenp@4037 68 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY
coleenp@4037 69 #else
coleenp@4037 70 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
coleenp@4037 71 { Bad, T_ILLEGAL, "vectord:", false, Op_RegD, relocInfo::none }, // VectorD
coleenp@4037 72 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
coleenp@4037 73 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
coleenp@4037 74 #endif // IA32 || AMD64
coleenp@4037 75 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr
coleenp@4037 76 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr
coleenp@4037 77 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr
coleenp@4037 78 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr
coleenp@4037 79 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr
coleenp@4037 80 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr
coleenp@4037 81 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr
coleenp@4037 82 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function
coleenp@4037 83 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio
coleenp@4037 84 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address
coleenp@4037 85 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory
coleenp@4037 86 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop
coleenp@4037 87 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon
coleenp@4037 88 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot
coleenp@4037 89 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop
coleenp@4037 90 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon
coleenp@4037 91 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot
coleenp@4037 92 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom
duke@435 93 };
duke@435 94
duke@435 95 // Map ideal registers (machine types) to ideal types
duke@435 96 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 97
duke@435 98 // Map basic types to canonical Type* pointers.
duke@435 99 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 100
duke@435 101 // Map basic types to constant-zero Types.
duke@435 102 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 103
duke@435 104 // Map basic types to array-body alias types.
duke@435 105 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 106
duke@435 107 //=============================================================================
duke@435 108 // Convenience common pre-built types.
duke@435 109 const Type *Type::ABIO; // State-of-machine only
duke@435 110 const Type *Type::BOTTOM; // All values
duke@435 111 const Type *Type::CONTROL; // Control only
duke@435 112 const Type *Type::DOUBLE; // All doubles
duke@435 113 const Type *Type::FLOAT; // All floats
duke@435 114 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 115 const Type *Type::MEMORY; // Abstract store only
duke@435 116 const Type *Type::RETURN_ADDRESS;
duke@435 117 const Type *Type::TOP; // No values in set
duke@435 118
duke@435 119 //------------------------------get_const_type---------------------------
duke@435 120 const Type* Type::get_const_type(ciType* type) {
duke@435 121 if (type == NULL) {
duke@435 122 return NULL;
duke@435 123 } else if (type->is_primitive_type()) {
duke@435 124 return get_const_basic_type(type->basic_type());
duke@435 125 } else {
duke@435 126 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 127 }
duke@435 128 }
duke@435 129
duke@435 130 //---------------------------array_element_basic_type---------------------------------
duke@435 131 // Mapping to the array element's basic type.
duke@435 132 BasicType Type::array_element_basic_type() const {
duke@435 133 BasicType bt = basic_type();
duke@435 134 if (bt == T_INT) {
duke@435 135 if (this == TypeInt::INT) return T_INT;
duke@435 136 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 137 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 138 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 139 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 140 return T_VOID;
duke@435 141 }
duke@435 142 return bt;
duke@435 143 }
duke@435 144
duke@435 145 //---------------------------get_typeflow_type---------------------------------
duke@435 146 // Import a type produced by ciTypeFlow.
duke@435 147 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 148 switch (type->basic_type()) {
duke@435 149
duke@435 150 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 151 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 152 return Type::BOTTOM;
duke@435 153
duke@435 154 case ciTypeFlow::StateVector::T_TOP:
duke@435 155 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 156 return Type::TOP;
duke@435 157
duke@435 158 case ciTypeFlow::StateVector::T_NULL:
duke@435 159 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 160 return TypePtr::NULL_PTR;
duke@435 161
duke@435 162 case ciTypeFlow::StateVector::T_LONG2:
duke@435 163 // The ciTypeFlow pass pushes a long, then the half.
duke@435 164 // We do the same.
duke@435 165 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 166 return TypeInt::TOP;
duke@435 167
duke@435 168 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 169 // The ciTypeFlow pass pushes double, then the half.
duke@435 170 // Our convention is the same.
duke@435 171 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 172 return Type::TOP;
duke@435 173
duke@435 174 case T_ADDRESS:
duke@435 175 assert(type->is_return_address(), "");
duke@435 176 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 177
duke@435 178 default:
duke@435 179 // make sure we did not mix up the cases:
duke@435 180 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 181 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 182 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 183 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 184 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 185 assert(!type->is_return_address(), "");
duke@435 186
duke@435 187 return Type::get_const_type(type);
duke@435 188 }
duke@435 189 }
duke@435 190
duke@435 191
duke@435 192 //------------------------------make-------------------------------------------
duke@435 193 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 194 // and look for an existing copy in the type dictionary.
duke@435 195 const Type *Type::make( enum TYPES t ) {
duke@435 196 return (new Type(t))->hashcons();
duke@435 197 }
kvn@658 198
duke@435 199 //------------------------------cmp--------------------------------------------
duke@435 200 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 201 if( t1->_base != t2->_base )
duke@435 202 return 1; // Missed badly
duke@435 203 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 204 return !t1->eq(t2); // Return ZERO if equal
duke@435 205 }
duke@435 206
duke@435 207 //------------------------------hash-------------------------------------------
duke@435 208 int Type::uhash( const Type *const t ) {
duke@435 209 return t->hash();
duke@435 210 }
duke@435 211
kvn@1975 212 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
kvn@1975 213
duke@435 214 //--------------------------Initialize_shared----------------------------------
duke@435 215 void Type::Initialize_shared(Compile* current) {
duke@435 216 // This method does not need to be locked because the first system
duke@435 217 // compilations (stub compilations) occur serially. If they are
duke@435 218 // changed to proceed in parallel, then this section will need
duke@435 219 // locking.
duke@435 220
duke@435 221 Arena* save = current->type_arena();
zgu@3900 222 Arena* shared_type_arena = new (mtCompiler)Arena();
duke@435 223
duke@435 224 current->set_type_arena(shared_type_arena);
duke@435 225 _shared_type_dict =
duke@435 226 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 227 shared_type_arena, 128 );
duke@435 228 current->set_type_dict(_shared_type_dict);
duke@435 229
duke@435 230 // Make shared pre-built types.
duke@435 231 CONTROL = make(Control); // Control only
duke@435 232 TOP = make(Top); // No values in set
duke@435 233 MEMORY = make(Memory); // Abstract store only
duke@435 234 ABIO = make(Abio); // State-of-machine only
duke@435 235 RETURN_ADDRESS=make(Return_Address);
duke@435 236 FLOAT = make(FloatBot); // All floats
duke@435 237 DOUBLE = make(DoubleBot); // All doubles
duke@435 238 BOTTOM = make(Bottom); // Everything
duke@435 239 HALF = make(Half); // Placeholder half of doublewide type
duke@435 240
duke@435 241 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 242 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 243
duke@435 244 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 245 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 246
duke@435 247 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 248 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 249 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 250 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 251 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 252 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 253 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 254 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 255 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 256 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 257 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
twisti@1059 258 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
duke@435 259 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 260 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 261 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 262 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 263 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 264 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
duke@435 265 // CmpL is overloaded both as the bytecode computation returning
duke@435 266 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 267 // compare returning optimizer ideal-type flags.
duke@435 268 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 269 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 270 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 271 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
kvn@1975 272 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 273
duke@435 274 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 275 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 276 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 277 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 278 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 279 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 280 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
duke@435 281
duke@435 282 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 283 fboth[0] = Type::CONTROL;
duke@435 284 fboth[1] = Type::CONTROL;
duke@435 285 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 286
duke@435 287 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 288 ffalse[0] = Type::CONTROL;
duke@435 289 ffalse[1] = Type::TOP;
duke@435 290 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 291
duke@435 292 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 293 fneither[0] = Type::TOP;
duke@435 294 fneither[1] = Type::TOP;
duke@435 295 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 296
duke@435 297 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 298 ftrue[0] = Type::TOP;
duke@435 299 ftrue[1] = Type::CONTROL;
duke@435 300 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 301
duke@435 302 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 303 floop[0] = Type::CONTROL;
duke@435 304 floop[1] = TypeInt::INT;
duke@435 305 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 306
duke@435 307 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 308 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 309 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 310
duke@435 311 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 312 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 313
duke@435 314 const Type **fmembar = TypeTuple::fields(0);
duke@435 315 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 316
duke@435 317 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 318 fsc[0] = TypeInt::CC;
duke@435 319 fsc[1] = Type::MEMORY;
duke@435 320 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 321
duke@435 322 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 323 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 324 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 325 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 326 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 327 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 328 false, 0, oopDesc::klass_offset_in_bytes());
kvn@1427 329 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
duke@435 330
coleenp@4037 331 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
coleenp@4037 332
coleenp@548 333 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 334 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 335
roland@4159 336 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
roland@4159 337
coleenp@548 338 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 339 mreg2type[Op_Set ] = 0;
coleenp@548 340 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 341 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 342 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 343 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 344 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 345 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 346 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 347
kvn@2116 348 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
kvn@598 349
kvn@598 350 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 351
kvn@598 352 #ifdef _LP64
kvn@598 353 if (UseCompressedOops) {
coleenp@4037 354 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
kvn@598 355 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 356 } else
kvn@598 357 #endif
kvn@598 358 {
kvn@598 359 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 360 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 361 }
duke@435 362 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 363 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 364 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 365 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 366 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 367 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 368 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 369
kvn@598 370 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 371 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 372 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 373 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 374 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 375 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 376 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 377 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 378 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 379 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 380 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 381 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 382
duke@435 383 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 384 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 385
duke@435 386 const Type **fi2c = TypeTuple::fields(2);
coleenp@4037 387 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
duke@435 388 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 389 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 390
duke@435 391 const Type **intpair = TypeTuple::fields(2);
duke@435 392 intpair[0] = TypeInt::INT;
duke@435 393 intpair[1] = TypeInt::INT;
duke@435 394 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 395
duke@435 396 const Type **longpair = TypeTuple::fields(2);
duke@435 397 longpair[0] = TypeLong::LONG;
duke@435 398 longpair[1] = TypeLong::LONG;
duke@435 399 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 400
roland@4159 401 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
roland@4159 402 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
roland@4159 403 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
roland@4159 404 _const_basic_type[T_CHAR] = TypeInt::CHAR;
roland@4159 405 _const_basic_type[T_BYTE] = TypeInt::BYTE;
roland@4159 406 _const_basic_type[T_SHORT] = TypeInt::SHORT;
roland@4159 407 _const_basic_type[T_INT] = TypeInt::INT;
roland@4159 408 _const_basic_type[T_LONG] = TypeLong::LONG;
roland@4159 409 _const_basic_type[T_FLOAT] = Type::FLOAT;
roland@4159 410 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
roland@4159 411 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
roland@4159 412 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
roland@4159 413 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
roland@4159 414 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
roland@4159 415 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not?
roland@4159 416
roland@4159 417 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
roland@4159 418 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
roland@4159 419 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
roland@4159 420 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
roland@4159 421 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
roland@4159 422 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
roland@4159 423 _zero_type[T_INT] = TypeInt::ZERO;
roland@4159 424 _zero_type[T_LONG] = TypeLong::ZERO;
roland@4159 425 _zero_type[T_FLOAT] = TypeF::ZERO;
roland@4159 426 _zero_type[T_DOUBLE] = TypeD::ZERO;
roland@4159 427 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
roland@4159 428 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
roland@4159 429 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
roland@4159 430 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 431
duke@435 432 // get_zero_type() should not happen for T_CONFLICT
duke@435 433 _zero_type[T_CONFLICT]= NULL;
duke@435 434
kvn@3882 435 // Vector predefined types, it needs initialized _const_basic_type[].
kvn@3882 436 if (Matcher::vector_size_supported(T_BYTE,4)) {
kvn@3882 437 TypeVect::VECTS = TypeVect::make(T_BYTE,4);
kvn@3882 438 }
kvn@3882 439 if (Matcher::vector_size_supported(T_FLOAT,2)) {
kvn@3882 440 TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
kvn@3882 441 }
kvn@3882 442 if (Matcher::vector_size_supported(T_FLOAT,4)) {
kvn@3882 443 TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
kvn@3882 444 }
kvn@3882 445 if (Matcher::vector_size_supported(T_FLOAT,8)) {
kvn@3882 446 TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
kvn@3882 447 }
kvn@3882 448 mreg2type[Op_VecS] = TypeVect::VECTS;
kvn@3882 449 mreg2type[Op_VecD] = TypeVect::VECTD;
kvn@3882 450 mreg2type[Op_VecX] = TypeVect::VECTX;
kvn@3882 451 mreg2type[Op_VecY] = TypeVect::VECTY;
kvn@3882 452
duke@435 453 // Restore working type arena.
duke@435 454 current->set_type_arena(save);
duke@435 455 current->set_type_dict(NULL);
duke@435 456 }
duke@435 457
duke@435 458 //------------------------------Initialize-------------------------------------
duke@435 459 void Type::Initialize(Compile* current) {
duke@435 460 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 461
duke@435 462 if (_shared_type_dict == NULL) {
duke@435 463 Initialize_shared(current);
duke@435 464 }
duke@435 465
duke@435 466 Arena* type_arena = current->type_arena();
duke@435 467
duke@435 468 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 469 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 470 current->set_type_dict(tdic);
duke@435 471
duke@435 472 // Transfer the shared types.
duke@435 473 DictI i(_shared_type_dict);
duke@435 474 for( ; i.test(); ++i ) {
duke@435 475 Type* t = (Type*)i._value;
duke@435 476 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 477 }
duke@435 478 }
duke@435 479
duke@435 480 //------------------------------hashcons---------------------------------------
duke@435 481 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 482 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 483 // current Type in the Type table.
duke@435 484 const Type *Type::hashcons(void) {
duke@435 485 debug_only(base()); // Check the assertion in Type::base().
duke@435 486 // Look up the Type in the Type dictionary
duke@435 487 Dict *tdic = type_dict();
duke@435 488 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 489 if( old ) { // Pre-existing Type?
duke@435 490 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 491 delete this; // Yes, Nuke this guy
duke@435 492 assert( old->_dual, "" );
duke@435 493 return old; // Return pre-existing
duke@435 494 }
duke@435 495
duke@435 496 // Every type has a dual (to make my lattice symmetric).
duke@435 497 // Since we just discovered a new Type, compute its dual right now.
duke@435 498 assert( !_dual, "" ); // No dual yet
duke@435 499 _dual = xdual(); // Compute the dual
duke@435 500 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 501 _dual = this;
duke@435 502 return this;
duke@435 503 }
duke@435 504 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 505 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 506 // New Type, insert into Type table
duke@435 507 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 508 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 509 #ifdef ASSERT
duke@435 510 Type *dual_dual = (Type*)_dual->xdual();
duke@435 511 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 512 delete dual_dual;
duke@435 513 #endif
duke@435 514 return this; // Return new Type
duke@435 515 }
duke@435 516
duke@435 517 //------------------------------eq---------------------------------------------
duke@435 518 // Structural equality check for Type representations
duke@435 519 bool Type::eq( const Type * ) const {
duke@435 520 return true; // Nothing else can go wrong
duke@435 521 }
duke@435 522
duke@435 523 //------------------------------hash-------------------------------------------
duke@435 524 // Type-specific hashing function.
duke@435 525 int Type::hash(void) const {
duke@435 526 return _base;
duke@435 527 }
duke@435 528
duke@435 529 //------------------------------is_finite--------------------------------------
duke@435 530 // Has a finite value
duke@435 531 bool Type::is_finite() const {
duke@435 532 return false;
duke@435 533 }
duke@435 534
duke@435 535 //------------------------------is_nan-----------------------------------------
duke@435 536 // Is not a number (NaN)
duke@435 537 bool Type::is_nan() const {
duke@435 538 return false;
duke@435 539 }
duke@435 540
kvn@1255 541 //----------------------interface_vs_oop---------------------------------------
kvn@1255 542 #ifdef ASSERT
kvn@1255 543 bool Type::interface_vs_oop(const Type *t) const {
kvn@1255 544 bool result = false;
kvn@1255 545
kvn@1427 546 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
kvn@1427 547 const TypePtr* t_ptr = t->make_ptr();
kvn@1427 548 if( this_ptr == NULL || t_ptr == NULL )
kvn@1427 549 return result;
kvn@1427 550
kvn@1427 551 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
kvn@1427 552 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
kvn@1255 553 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
kvn@1255 554 bool this_interface = this_inst->klass()->is_interface();
kvn@1255 555 bool t_interface = t_inst->klass()->is_interface();
kvn@1255 556 result = this_interface ^ t_interface;
kvn@1255 557 }
kvn@1255 558
kvn@1255 559 return result;
kvn@1255 560 }
kvn@1255 561 #endif
kvn@1255 562
duke@435 563 //------------------------------meet-------------------------------------------
duke@435 564 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 565 // commutative and the lattice is symmetric.
duke@435 566 const Type *Type::meet( const Type *t ) const {
coleenp@548 567 if (isa_narrowoop() && t->isa_narrowoop()) {
kvn@656 568 const Type* result = make_ptr()->meet(t->make_ptr());
kvn@656 569 return result->make_narrowoop();
coleenp@548 570 }
roland@4159 571 if (isa_narrowklass() && t->isa_narrowklass()) {
roland@4159 572 const Type* result = make_ptr()->meet(t->make_ptr());
roland@4159 573 return result->make_narrowklass();
roland@4159 574 }
coleenp@548 575
duke@435 576 const Type *mt = xmeet(t);
coleenp@548 577 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
roland@4159 578 if (isa_narrowklass() || t->isa_narrowklass()) return mt;
duke@435 579 #ifdef ASSERT
duke@435 580 assert( mt == t->xmeet(this), "meet not commutative" );
duke@435 581 const Type* dual_join = mt->_dual;
duke@435 582 const Type *t2t = dual_join->xmeet(t->_dual);
duke@435 583 const Type *t2this = dual_join->xmeet( _dual);
duke@435 584
duke@435 585 // Interface meet Oop is Not Symmetric:
duke@435 586 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 587 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
kvn@1255 588
kvn@1255 589 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
duke@435 590 tty->print_cr("=== Meet Not Symmetric ===");
duke@435 591 tty->print("t = "); t->dump(); tty->cr();
duke@435 592 tty->print("this= "); dump(); tty->cr();
duke@435 593 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
duke@435 594
duke@435 595 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
duke@435 596 tty->print("this_dual= "); _dual->dump(); tty->cr();
duke@435 597 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
duke@435 598
duke@435 599 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
duke@435 600 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 601
duke@435 602 fatal("meet not symmetric" );
duke@435 603 }
duke@435 604 #endif
duke@435 605 return mt;
duke@435 606 }
duke@435 607
duke@435 608 //------------------------------xmeet------------------------------------------
duke@435 609 // Compute the MEET of two types. It returns a new Type object.
duke@435 610 const Type *Type::xmeet( const Type *t ) const {
duke@435 611 // Perform a fast test for common case; meeting the same types together.
duke@435 612 if( this == t ) return this; // Meeting same type-rep?
duke@435 613
duke@435 614 // Meeting TOP with anything?
duke@435 615 if( _base == Top ) return t;
duke@435 616
duke@435 617 // Meeting BOTTOM with anything?
duke@435 618 if( _base == Bottom ) return BOTTOM;
duke@435 619
duke@435 620 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 621 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 622 switch (t->base()) { // Switch on original type
duke@435 623
duke@435 624 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 625 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 626 case FloatCon:
duke@435 627 case DoubleCon:
duke@435 628 case Int:
duke@435 629 case Long:
duke@435 630 return t->xmeet(this);
duke@435 631
duke@435 632 case OopPtr:
duke@435 633 return t->xmeet(this);
duke@435 634
duke@435 635 case InstPtr:
duke@435 636 return t->xmeet(this);
duke@435 637
coleenp@4037 638 case MetadataPtr:
duke@435 639 case KlassPtr:
duke@435 640 return t->xmeet(this);
duke@435 641
duke@435 642 case AryPtr:
duke@435 643 return t->xmeet(this);
duke@435 644
coleenp@548 645 case NarrowOop:
coleenp@548 646 return t->xmeet(this);
coleenp@548 647
roland@4159 648 case NarrowKlass:
roland@4159 649 return t->xmeet(this);
roland@4159 650
duke@435 651 case Bad: // Type check
duke@435 652 default: // Bogus type not in lattice
duke@435 653 typerr(t);
duke@435 654 return Type::BOTTOM;
duke@435 655
duke@435 656 case Bottom: // Ye Olde Default
duke@435 657 return t;
duke@435 658
duke@435 659 case FloatTop:
duke@435 660 if( _base == FloatTop ) return this;
duke@435 661 case FloatBot: // Float
duke@435 662 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 663 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 664 typerr(t);
duke@435 665 return Type::BOTTOM;
duke@435 666
duke@435 667 case DoubleTop:
duke@435 668 if( _base == DoubleTop ) return this;
duke@435 669 case DoubleBot: // Double
duke@435 670 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 671 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 672 typerr(t);
duke@435 673 return Type::BOTTOM;
duke@435 674
duke@435 675 // These next few cases must match exactly or it is a compile-time error.
duke@435 676 case Control: // Control of code
duke@435 677 case Abio: // State of world outside of program
duke@435 678 case Memory:
duke@435 679 if( _base == t->_base ) return this;
duke@435 680 typerr(t);
duke@435 681 return Type::BOTTOM;
duke@435 682
duke@435 683 case Top: // Top of the lattice
duke@435 684 return this;
duke@435 685 }
duke@435 686
duke@435 687 // The type is unchanged
duke@435 688 return this;
duke@435 689 }
duke@435 690
duke@435 691 //-----------------------------filter------------------------------------------
duke@435 692 const Type *Type::filter( const Type *kills ) const {
duke@435 693 const Type* ft = join(kills);
duke@435 694 if (ft->empty())
duke@435 695 return Type::TOP; // Canonical empty value
duke@435 696 return ft;
duke@435 697 }
duke@435 698
duke@435 699 //------------------------------xdual------------------------------------------
duke@435 700 // Compute dual right now.
duke@435 701 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 702 Bad, // Bad
duke@435 703 Control, // Control
duke@435 704 Bottom, // Top
duke@435 705 Bad, // Int - handled in v-call
duke@435 706 Bad, // Long - handled in v-call
duke@435 707 Half, // Half
coleenp@548 708 Bad, // NarrowOop - handled in v-call
roland@4159 709 Bad, // NarrowKlass - handled in v-call
duke@435 710
duke@435 711 Bad, // Tuple - handled in v-call
duke@435 712 Bad, // Array - handled in v-call
kvn@3882 713 Bad, // VectorS - handled in v-call
kvn@3882 714 Bad, // VectorD - handled in v-call
kvn@3882 715 Bad, // VectorX - handled in v-call
kvn@3882 716 Bad, // VectorY - handled in v-call
duke@435 717
duke@435 718 Bad, // AnyPtr - handled in v-call
duke@435 719 Bad, // RawPtr - handled in v-call
duke@435 720 Bad, // OopPtr - handled in v-call
duke@435 721 Bad, // InstPtr - handled in v-call
duke@435 722 Bad, // AryPtr - handled in v-call
coleenp@4037 723
coleenp@4037 724 Bad, // MetadataPtr - handled in v-call
duke@435 725 Bad, // KlassPtr - handled in v-call
duke@435 726
duke@435 727 Bad, // Function - handled in v-call
duke@435 728 Abio, // Abio
duke@435 729 Return_Address,// Return_Address
duke@435 730 Memory, // Memory
duke@435 731 FloatBot, // FloatTop
duke@435 732 FloatCon, // FloatCon
duke@435 733 FloatTop, // FloatBot
duke@435 734 DoubleBot, // DoubleTop
duke@435 735 DoubleCon, // DoubleCon
duke@435 736 DoubleTop, // DoubleBot
duke@435 737 Top // Bottom
duke@435 738 };
duke@435 739
duke@435 740 const Type *Type::xdual() const {
duke@435 741 // Note: the base() accessor asserts the sanity of _base.
coleenp@4037 742 assert(_type_info[base()].dual_type != Bad, "implement with v-call");
coleenp@4037 743 return new Type(_type_info[_base].dual_type);
duke@435 744 }
duke@435 745
duke@435 746 //------------------------------has_memory-------------------------------------
duke@435 747 bool Type::has_memory() const {
duke@435 748 Type::TYPES tx = base();
duke@435 749 if (tx == Memory) return true;
duke@435 750 if (tx == Tuple) {
duke@435 751 const TypeTuple *t = is_tuple();
duke@435 752 for (uint i=0; i < t->cnt(); i++) {
duke@435 753 tx = t->field_at(i)->base();
duke@435 754 if (tx == Memory) return true;
duke@435 755 }
duke@435 756 }
duke@435 757 return false;
duke@435 758 }
duke@435 759
duke@435 760 #ifndef PRODUCT
duke@435 761 //------------------------------dump2------------------------------------------
duke@435 762 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
coleenp@4037 763 st->print(_type_info[_base].msg);
duke@435 764 }
duke@435 765
duke@435 766 //------------------------------dump-------------------------------------------
duke@435 767 void Type::dump_on(outputStream *st) const {
duke@435 768 ResourceMark rm;
duke@435 769 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 770 dump2(d,1, st);
kvn@598 771 if (is_ptr_to_narrowoop()) {
coleenp@548 772 st->print(" [narrow]");
roland@4159 773 } else if (is_ptr_to_narrowklass()) {
roland@4159 774 st->print(" [narrowklass]");
coleenp@548 775 }
duke@435 776 }
duke@435 777 #endif
duke@435 778
duke@435 779 //------------------------------singleton--------------------------------------
duke@435 780 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 781 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 782 bool Type::singleton(void) const {
duke@435 783 return _base == Top || _base == Half;
duke@435 784 }
duke@435 785
duke@435 786 //------------------------------empty------------------------------------------
duke@435 787 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 788 bool Type::empty(void) const {
duke@435 789 switch (_base) {
duke@435 790 case DoubleTop:
duke@435 791 case FloatTop:
duke@435 792 case Top:
duke@435 793 return true;
duke@435 794
duke@435 795 case Half:
duke@435 796 case Abio:
duke@435 797 case Return_Address:
duke@435 798 case Memory:
duke@435 799 case Bottom:
duke@435 800 case FloatBot:
duke@435 801 case DoubleBot:
duke@435 802 return false; // never a singleton, therefore never empty
duke@435 803 }
duke@435 804
duke@435 805 ShouldNotReachHere();
duke@435 806 return false;
duke@435 807 }
duke@435 808
duke@435 809 //------------------------------dump_stats-------------------------------------
duke@435 810 // Dump collected statistics to stderr
duke@435 811 #ifndef PRODUCT
duke@435 812 void Type::dump_stats() {
duke@435 813 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 814 }
duke@435 815 #endif
duke@435 816
duke@435 817 //------------------------------typerr-----------------------------------------
duke@435 818 void Type::typerr( const Type *t ) const {
duke@435 819 #ifndef PRODUCT
duke@435 820 tty->print("\nError mixing types: ");
duke@435 821 dump();
duke@435 822 tty->print(" and ");
duke@435 823 t->dump();
duke@435 824 tty->print("\n");
duke@435 825 #endif
duke@435 826 ShouldNotReachHere();
duke@435 827 }
duke@435 828
duke@435 829
duke@435 830 //=============================================================================
duke@435 831 // Convenience common pre-built types.
duke@435 832 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 833 const TypeF *TypeF::ONE; // Floating point one
duke@435 834
duke@435 835 //------------------------------make-------------------------------------------
duke@435 836 // Create a float constant
duke@435 837 const TypeF *TypeF::make(float f) {
duke@435 838 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 839 }
duke@435 840
duke@435 841 //------------------------------meet-------------------------------------------
duke@435 842 // Compute the MEET of two types. It returns a new Type object.
duke@435 843 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 844 // Perform a fast test for common case; meeting the same types together.
duke@435 845 if( this == t ) return this; // Meeting same type-rep?
duke@435 846
duke@435 847 // Current "this->_base" is FloatCon
duke@435 848 switch (t->base()) { // Switch on original type
duke@435 849 case AnyPtr: // Mixing with oops happens when javac
duke@435 850 case RawPtr: // reuses local variables
duke@435 851 case OopPtr:
duke@435 852 case InstPtr:
coleenp@4037 853 case AryPtr:
coleenp@4037 854 case MetadataPtr:
duke@435 855 case KlassPtr:
kvn@728 856 case NarrowOop:
roland@4159 857 case NarrowKlass:
duke@435 858 case Int:
duke@435 859 case Long:
duke@435 860 case DoubleTop:
duke@435 861 case DoubleCon:
duke@435 862 case DoubleBot:
duke@435 863 case Bottom: // Ye Olde Default
duke@435 864 return Type::BOTTOM;
duke@435 865
duke@435 866 case FloatBot:
duke@435 867 return t;
duke@435 868
duke@435 869 default: // All else is a mistake
duke@435 870 typerr(t);
duke@435 871
duke@435 872 case FloatCon: // Float-constant vs Float-constant?
duke@435 873 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 874 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 875 // all the same representation in C++
duke@435 876 return FLOAT; // Return generic float
duke@435 877 // Equal constants
duke@435 878 case Top:
duke@435 879 case FloatTop:
duke@435 880 break; // Return the float constant
duke@435 881 }
duke@435 882 return this; // Return the float constant
duke@435 883 }
duke@435 884
duke@435 885 //------------------------------xdual------------------------------------------
duke@435 886 // Dual: symmetric
duke@435 887 const Type *TypeF::xdual() const {
duke@435 888 return this;
duke@435 889 }
duke@435 890
duke@435 891 //------------------------------eq---------------------------------------------
duke@435 892 // Structural equality check for Type representations
duke@435 893 bool TypeF::eq( const Type *t ) const {
duke@435 894 if( g_isnan(_f) ||
duke@435 895 g_isnan(t->getf()) ) {
duke@435 896 // One or both are NANs. If both are NANs return true, else false.
duke@435 897 return (g_isnan(_f) && g_isnan(t->getf()));
duke@435 898 }
duke@435 899 if (_f == t->getf()) {
duke@435 900 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 901 if (_f == 0.0) {
duke@435 902 // difference between positive and negative zero
duke@435 903 if (jint_cast(_f) != jint_cast(t->getf())) return false;
duke@435 904 }
duke@435 905 return true;
duke@435 906 }
duke@435 907 return false;
duke@435 908 }
duke@435 909
duke@435 910 //------------------------------hash-------------------------------------------
duke@435 911 // Type-specific hashing function.
duke@435 912 int TypeF::hash(void) const {
duke@435 913 return *(int*)(&_f);
duke@435 914 }
duke@435 915
duke@435 916 //------------------------------is_finite--------------------------------------
duke@435 917 // Has a finite value
duke@435 918 bool TypeF::is_finite() const {
duke@435 919 return g_isfinite(getf()) != 0;
duke@435 920 }
duke@435 921
duke@435 922 //------------------------------is_nan-----------------------------------------
duke@435 923 // Is not a number (NaN)
duke@435 924 bool TypeF::is_nan() const {
duke@435 925 return g_isnan(getf()) != 0;
duke@435 926 }
duke@435 927
duke@435 928 //------------------------------dump2------------------------------------------
duke@435 929 // Dump float constant Type
duke@435 930 #ifndef PRODUCT
duke@435 931 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 932 Type::dump2(d,depth, st);
duke@435 933 st->print("%f", _f);
duke@435 934 }
duke@435 935 #endif
duke@435 936
duke@435 937 //------------------------------singleton--------------------------------------
duke@435 938 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 939 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 940 // or a single symbol.
duke@435 941 bool TypeF::singleton(void) const {
duke@435 942 return true; // Always a singleton
duke@435 943 }
duke@435 944
duke@435 945 bool TypeF::empty(void) const {
duke@435 946 return false; // always exactly a singleton
duke@435 947 }
duke@435 948
duke@435 949 //=============================================================================
duke@435 950 // Convenience common pre-built types.
duke@435 951 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 952 const TypeD *TypeD::ONE; // Floating point one
duke@435 953
duke@435 954 //------------------------------make-------------------------------------------
duke@435 955 const TypeD *TypeD::make(double d) {
duke@435 956 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 957 }
duke@435 958
duke@435 959 //------------------------------meet-------------------------------------------
duke@435 960 // Compute the MEET of two types. It returns a new Type object.
duke@435 961 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 962 // Perform a fast test for common case; meeting the same types together.
duke@435 963 if( this == t ) return this; // Meeting same type-rep?
duke@435 964
duke@435 965 // Current "this->_base" is DoubleCon
duke@435 966 switch (t->base()) { // Switch on original type
duke@435 967 case AnyPtr: // Mixing with oops happens when javac
duke@435 968 case RawPtr: // reuses local variables
duke@435 969 case OopPtr:
duke@435 970 case InstPtr:
coleenp@4037 971 case AryPtr:
coleenp@4037 972 case MetadataPtr:
duke@435 973 case KlassPtr:
never@618 974 case NarrowOop:
roland@4159 975 case NarrowKlass:
duke@435 976 case Int:
duke@435 977 case Long:
duke@435 978 case FloatTop:
duke@435 979 case FloatCon:
duke@435 980 case FloatBot:
duke@435 981 case Bottom: // Ye Olde Default
duke@435 982 return Type::BOTTOM;
duke@435 983
duke@435 984 case DoubleBot:
duke@435 985 return t;
duke@435 986
duke@435 987 default: // All else is a mistake
duke@435 988 typerr(t);
duke@435 989
duke@435 990 case DoubleCon: // Double-constant vs Double-constant?
duke@435 991 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 992 return DOUBLE; // Return generic double
duke@435 993 case Top:
duke@435 994 case DoubleTop:
duke@435 995 break;
duke@435 996 }
duke@435 997 return this; // Return the double constant
duke@435 998 }
duke@435 999
duke@435 1000 //------------------------------xdual------------------------------------------
duke@435 1001 // Dual: symmetric
duke@435 1002 const Type *TypeD::xdual() const {
duke@435 1003 return this;
duke@435 1004 }
duke@435 1005
duke@435 1006 //------------------------------eq---------------------------------------------
duke@435 1007 // Structural equality check for Type representations
duke@435 1008 bool TypeD::eq( const Type *t ) const {
duke@435 1009 if( g_isnan(_d) ||
duke@435 1010 g_isnan(t->getd()) ) {
duke@435 1011 // One or both are NANs. If both are NANs return true, else false.
duke@435 1012 return (g_isnan(_d) && g_isnan(t->getd()));
duke@435 1013 }
duke@435 1014 if (_d == t->getd()) {
duke@435 1015 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 1016 if (_d == 0.0) {
duke@435 1017 // difference between positive and negative zero
duke@435 1018 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
duke@435 1019 }
duke@435 1020 return true;
duke@435 1021 }
duke@435 1022 return false;
duke@435 1023 }
duke@435 1024
duke@435 1025 //------------------------------hash-------------------------------------------
duke@435 1026 // Type-specific hashing function.
duke@435 1027 int TypeD::hash(void) const {
duke@435 1028 return *(int*)(&_d);
duke@435 1029 }
duke@435 1030
duke@435 1031 //------------------------------is_finite--------------------------------------
duke@435 1032 // Has a finite value
duke@435 1033 bool TypeD::is_finite() const {
duke@435 1034 return g_isfinite(getd()) != 0;
duke@435 1035 }
duke@435 1036
duke@435 1037 //------------------------------is_nan-----------------------------------------
duke@435 1038 // Is not a number (NaN)
duke@435 1039 bool TypeD::is_nan() const {
duke@435 1040 return g_isnan(getd()) != 0;
duke@435 1041 }
duke@435 1042
duke@435 1043 //------------------------------dump2------------------------------------------
duke@435 1044 // Dump double constant Type
duke@435 1045 #ifndef PRODUCT
duke@435 1046 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1047 Type::dump2(d,depth,st);
duke@435 1048 st->print("%f", _d);
duke@435 1049 }
duke@435 1050 #endif
duke@435 1051
duke@435 1052 //------------------------------singleton--------------------------------------
duke@435 1053 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1054 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1055 // or a single symbol.
duke@435 1056 bool TypeD::singleton(void) const {
duke@435 1057 return true; // Always a singleton
duke@435 1058 }
duke@435 1059
duke@435 1060 bool TypeD::empty(void) const {
duke@435 1061 return false; // always exactly a singleton
duke@435 1062 }
duke@435 1063
duke@435 1064 //=============================================================================
duke@435 1065 // Convience common pre-built types.
duke@435 1066 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1067 const TypeInt *TypeInt::ZERO; // 0
duke@435 1068 const TypeInt *TypeInt::ONE; // 1
duke@435 1069 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1070 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1071 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1072 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1073 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1074 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1075 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1076 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
twisti@1059 1077 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
duke@435 1078 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1079 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1080 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1081 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1082 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1083 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 1084
duke@435 1085 //------------------------------TypeInt----------------------------------------
duke@435 1086 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1087 }
duke@435 1088
duke@435 1089 //------------------------------make-------------------------------------------
duke@435 1090 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1091 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1092 }
duke@435 1093
kvn@1975 1094 static int normalize_int_widen( jint lo, jint hi, int w ) {
duke@435 1095 // Certain normalizations keep us sane when comparing types.
duke@435 1096 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1097 if (lo <= hi) {
kvn@1975 1098 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1099 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
kvn@1975 1100 } else {
kvn@1975 1101 if ((juint)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1102 if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
duke@435 1103 }
kvn@1975 1104 return w;
kvn@1975 1105 }
kvn@1975 1106
kvn@1975 1107 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
kvn@1975 1108 w = normalize_int_widen(lo, hi, w);
duke@435 1109 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1110 }
duke@435 1111
duke@435 1112 //------------------------------meet-------------------------------------------
duke@435 1113 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1114 // with reference count equal to the number of Types pointing at it.
duke@435 1115 // Caller should wrap a Types around it.
duke@435 1116 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1117 // Perform a fast test for common case; meeting the same types together.
duke@435 1118 if( this == t ) return this; // Meeting same type?
duke@435 1119
duke@435 1120 // Currently "this->_base" is a TypeInt
duke@435 1121 switch (t->base()) { // Switch on original type
duke@435 1122 case AnyPtr: // Mixing with oops happens when javac
duke@435 1123 case RawPtr: // reuses local variables
duke@435 1124 case OopPtr:
duke@435 1125 case InstPtr:
coleenp@4037 1126 case AryPtr:
coleenp@4037 1127 case MetadataPtr:
duke@435 1128 case KlassPtr:
never@618 1129 case NarrowOop:
roland@4159 1130 case NarrowKlass:
duke@435 1131 case Long:
duke@435 1132 case FloatTop:
duke@435 1133 case FloatCon:
duke@435 1134 case FloatBot:
duke@435 1135 case DoubleTop:
duke@435 1136 case DoubleCon:
duke@435 1137 case DoubleBot:
duke@435 1138 case Bottom: // Ye Olde Default
duke@435 1139 return Type::BOTTOM;
duke@435 1140 default: // All else is a mistake
duke@435 1141 typerr(t);
duke@435 1142 case Top: // No change
duke@435 1143 return this;
duke@435 1144 case Int: // Int vs Int?
duke@435 1145 break;
duke@435 1146 }
duke@435 1147
duke@435 1148 // Expand covered set
duke@435 1149 const TypeInt *r = t->is_int();
kvn@1975 1150 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1151 }
duke@435 1152
duke@435 1153 //------------------------------xdual------------------------------------------
duke@435 1154 // Dual: reverse hi & lo; flip widen
duke@435 1155 const Type *TypeInt::xdual() const {
kvn@1975 1156 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1157 return new TypeInt(_hi,_lo,w);
duke@435 1158 }
duke@435 1159
duke@435 1160 //------------------------------widen------------------------------------------
duke@435 1161 // Only happens for optimistic top-down optimizations.
never@1444 1162 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
duke@435 1163 // Coming from TOP or such; no widening
duke@435 1164 if( old->base() != Int ) return this;
duke@435 1165 const TypeInt *ot = old->is_int();
duke@435 1166
duke@435 1167 // If new guy is equal to old guy, no widening
duke@435 1168 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1169 return old;
duke@435 1170
duke@435 1171 // If new guy contains old, then we widened
duke@435 1172 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1173 // New contains old
duke@435 1174 // If new guy is already wider than old, no widening
duke@435 1175 if( _widen > ot->_widen ) return this;
duke@435 1176 // If old guy was a constant, do not bother
duke@435 1177 if (ot->_lo == ot->_hi) return this;
duke@435 1178 // Now widen new guy.
duke@435 1179 // Check for widening too far
duke@435 1180 if (_widen == WidenMax) {
never@1444 1181 int max = max_jint;
never@1444 1182 int min = min_jint;
never@1444 1183 if (limit->isa_int()) {
never@1444 1184 max = limit->is_int()->_hi;
never@1444 1185 min = limit->is_int()->_lo;
never@1444 1186 }
never@1444 1187 if (min < _lo && _hi < max) {
duke@435 1188 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1189 // which is closer to its respective limit.
duke@435 1190 if (_lo >= 0 || // easy common case
never@1444 1191 (juint)(_lo - min) >= (juint)(max - _hi)) {
duke@435 1192 // Try to widen to an unsigned range type of 31 bits:
never@1444 1193 return make(_lo, max, WidenMax);
duke@435 1194 } else {
never@1444 1195 return make(min, _hi, WidenMax);
duke@435 1196 }
duke@435 1197 }
duke@435 1198 return TypeInt::INT;
duke@435 1199 }
duke@435 1200 // Returned widened new guy
duke@435 1201 return make(_lo,_hi,_widen+1);
duke@435 1202 }
duke@435 1203
duke@435 1204 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1205 // bottom. Return the wider fellow.
duke@435 1206 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1207 return old;
duke@435 1208
duke@435 1209 //fatal("Integer value range is not subset");
duke@435 1210 //return this;
duke@435 1211 return TypeInt::INT;
duke@435 1212 }
duke@435 1213
duke@435 1214 //------------------------------narrow---------------------------------------
duke@435 1215 // Only happens for pessimistic optimizations.
duke@435 1216 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1217 if (_lo >= _hi) return this; // already narrow enough
duke@435 1218 if (old == NULL) return this;
duke@435 1219 const TypeInt* ot = old->isa_int();
duke@435 1220 if (ot == NULL) return this;
duke@435 1221 jint olo = ot->_lo;
duke@435 1222 jint ohi = ot->_hi;
duke@435 1223
duke@435 1224 // If new guy is equal to old guy, no narrowing
duke@435 1225 if (_lo == olo && _hi == ohi) return old;
duke@435 1226
duke@435 1227 // If old guy was maximum range, allow the narrowing
duke@435 1228 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1229
duke@435 1230 if (_lo < olo || _hi > ohi)
duke@435 1231 return this; // doesn't narrow; pretty wierd
duke@435 1232
duke@435 1233 // The new type narrows the old type, so look for a "death march".
duke@435 1234 // See comments on PhaseTransform::saturate.
duke@435 1235 juint nrange = _hi - _lo;
duke@435 1236 juint orange = ohi - olo;
duke@435 1237 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1238 // Use the new type only if the range shrinks a lot.
duke@435 1239 // We do not want the optimizer computing 2^31 point by point.
duke@435 1240 return old;
duke@435 1241 }
duke@435 1242
duke@435 1243 return this;
duke@435 1244 }
duke@435 1245
duke@435 1246 //-----------------------------filter------------------------------------------
duke@435 1247 const Type *TypeInt::filter( const Type *kills ) const {
duke@435 1248 const TypeInt* ft = join(kills)->isa_int();
kvn@1975 1249 if (ft == NULL || ft->empty())
duke@435 1250 return Type::TOP; // Canonical empty value
duke@435 1251 if (ft->_widen < this->_widen) {
duke@435 1252 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1253 // The widen bits must be allowed to run freely through the graph.
duke@435 1254 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1255 }
duke@435 1256 return ft;
duke@435 1257 }
duke@435 1258
duke@435 1259 //------------------------------eq---------------------------------------------
duke@435 1260 // Structural equality check for Type representations
duke@435 1261 bool TypeInt::eq( const Type *t ) const {
duke@435 1262 const TypeInt *r = t->is_int(); // Handy access
duke@435 1263 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1264 }
duke@435 1265
duke@435 1266 //------------------------------hash-------------------------------------------
duke@435 1267 // Type-specific hashing function.
duke@435 1268 int TypeInt::hash(void) const {
duke@435 1269 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1270 }
duke@435 1271
duke@435 1272 //------------------------------is_finite--------------------------------------
duke@435 1273 // Has a finite value
duke@435 1274 bool TypeInt::is_finite() const {
duke@435 1275 return true;
duke@435 1276 }
duke@435 1277
duke@435 1278 //------------------------------dump2------------------------------------------
duke@435 1279 // Dump TypeInt
duke@435 1280 #ifndef PRODUCT
duke@435 1281 static const char* intname(char* buf, jint n) {
duke@435 1282 if (n == min_jint)
duke@435 1283 return "min";
duke@435 1284 else if (n < min_jint + 10000)
duke@435 1285 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1286 else if (n == max_jint)
duke@435 1287 return "max";
duke@435 1288 else if (n > max_jint - 10000)
duke@435 1289 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1290 else
duke@435 1291 sprintf(buf, INT32_FORMAT, n);
duke@435 1292 return buf;
duke@435 1293 }
duke@435 1294
duke@435 1295 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1296 char buf[40], buf2[40];
duke@435 1297 if (_lo == min_jint && _hi == max_jint)
duke@435 1298 st->print("int");
duke@435 1299 else if (is_con())
duke@435 1300 st->print("int:%s", intname(buf, get_con()));
duke@435 1301 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1302 st->print("bool");
duke@435 1303 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1304 st->print("byte");
duke@435 1305 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1306 st->print("char");
duke@435 1307 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1308 st->print("short");
duke@435 1309 else if (_hi == max_jint)
duke@435 1310 st->print("int:>=%s", intname(buf, _lo));
duke@435 1311 else if (_lo == min_jint)
duke@435 1312 st->print("int:<=%s", intname(buf, _hi));
duke@435 1313 else
duke@435 1314 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1315
duke@435 1316 if (_widen != 0 && this != TypeInt::INT)
duke@435 1317 st->print(":%.*s", _widen, "wwww");
duke@435 1318 }
duke@435 1319 #endif
duke@435 1320
duke@435 1321 //------------------------------singleton--------------------------------------
duke@435 1322 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1323 // constants.
duke@435 1324 bool TypeInt::singleton(void) const {
duke@435 1325 return _lo >= _hi;
duke@435 1326 }
duke@435 1327
duke@435 1328 bool TypeInt::empty(void) const {
duke@435 1329 return _lo > _hi;
duke@435 1330 }
duke@435 1331
duke@435 1332 //=============================================================================
duke@435 1333 // Convenience common pre-built types.
duke@435 1334 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1335 const TypeLong *TypeLong::ZERO; // 0
duke@435 1336 const TypeLong *TypeLong::ONE; // 1
duke@435 1337 const TypeLong *TypeLong::POS; // >=0
duke@435 1338 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1339 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1340 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
duke@435 1341
duke@435 1342 //------------------------------TypeLong---------------------------------------
duke@435 1343 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1344 }
duke@435 1345
duke@435 1346 //------------------------------make-------------------------------------------
duke@435 1347 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1348 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1349 }
duke@435 1350
kvn@1975 1351 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
kvn@1975 1352 // Certain normalizations keep us sane when comparing types.
kvn@1975 1353 // The 'SMALLINT' covers constants.
kvn@1975 1354 if (lo <= hi) {
kvn@1975 1355 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1356 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
kvn@1975 1357 } else {
kvn@1975 1358 if ((julong)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1359 if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
kvn@1975 1360 }
kvn@1975 1361 return w;
kvn@1975 1362 }
kvn@1975 1363
duke@435 1364 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
kvn@1975 1365 w = normalize_long_widen(lo, hi, w);
duke@435 1366 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1367 }
duke@435 1368
duke@435 1369
duke@435 1370 //------------------------------meet-------------------------------------------
duke@435 1371 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1372 // with reference count equal to the number of Types pointing at it.
duke@435 1373 // Caller should wrap a Types around it.
duke@435 1374 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1375 // Perform a fast test for common case; meeting the same types together.
duke@435 1376 if( this == t ) return this; // Meeting same type?
duke@435 1377
duke@435 1378 // Currently "this->_base" is a TypeLong
duke@435 1379 switch (t->base()) { // Switch on original type
duke@435 1380 case AnyPtr: // Mixing with oops happens when javac
duke@435 1381 case RawPtr: // reuses local variables
duke@435 1382 case OopPtr:
duke@435 1383 case InstPtr:
coleenp@4037 1384 case AryPtr:
coleenp@4037 1385 case MetadataPtr:
duke@435 1386 case KlassPtr:
never@618 1387 case NarrowOop:
roland@4159 1388 case NarrowKlass:
duke@435 1389 case Int:
duke@435 1390 case FloatTop:
duke@435 1391 case FloatCon:
duke@435 1392 case FloatBot:
duke@435 1393 case DoubleTop:
duke@435 1394 case DoubleCon:
duke@435 1395 case DoubleBot:
duke@435 1396 case Bottom: // Ye Olde Default
duke@435 1397 return Type::BOTTOM;
duke@435 1398 default: // All else is a mistake
duke@435 1399 typerr(t);
duke@435 1400 case Top: // No change
duke@435 1401 return this;
duke@435 1402 case Long: // Long vs Long?
duke@435 1403 break;
duke@435 1404 }
duke@435 1405
duke@435 1406 // Expand covered set
duke@435 1407 const TypeLong *r = t->is_long(); // Turn into a TypeLong
kvn@1975 1408 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1409 }
duke@435 1410
duke@435 1411 //------------------------------xdual------------------------------------------
duke@435 1412 // Dual: reverse hi & lo; flip widen
duke@435 1413 const Type *TypeLong::xdual() const {
kvn@1975 1414 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1415 return new TypeLong(_hi,_lo,w);
duke@435 1416 }
duke@435 1417
duke@435 1418 //------------------------------widen------------------------------------------
duke@435 1419 // Only happens for optimistic top-down optimizations.
never@1444 1420 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
duke@435 1421 // Coming from TOP or such; no widening
duke@435 1422 if( old->base() != Long ) return this;
duke@435 1423 const TypeLong *ot = old->is_long();
duke@435 1424
duke@435 1425 // If new guy is equal to old guy, no widening
duke@435 1426 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1427 return old;
duke@435 1428
duke@435 1429 // If new guy contains old, then we widened
duke@435 1430 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1431 // New contains old
duke@435 1432 // If new guy is already wider than old, no widening
duke@435 1433 if( _widen > ot->_widen ) return this;
duke@435 1434 // If old guy was a constant, do not bother
duke@435 1435 if (ot->_lo == ot->_hi) return this;
duke@435 1436 // Now widen new guy.
duke@435 1437 // Check for widening too far
duke@435 1438 if (_widen == WidenMax) {
never@1444 1439 jlong max = max_jlong;
never@1444 1440 jlong min = min_jlong;
never@1444 1441 if (limit->isa_long()) {
never@1444 1442 max = limit->is_long()->_hi;
never@1444 1443 min = limit->is_long()->_lo;
never@1444 1444 }
never@1444 1445 if (min < _lo && _hi < max) {
duke@435 1446 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1447 // which is closer to its respective limit.
duke@435 1448 if (_lo >= 0 || // easy common case
never@1444 1449 (julong)(_lo - min) >= (julong)(max - _hi)) {
duke@435 1450 // Try to widen to an unsigned range type of 32/63 bits:
never@1444 1451 if (max >= max_juint && _hi < max_juint)
duke@435 1452 return make(_lo, max_juint, WidenMax);
duke@435 1453 else
never@1444 1454 return make(_lo, max, WidenMax);
duke@435 1455 } else {
never@1444 1456 return make(min, _hi, WidenMax);
duke@435 1457 }
duke@435 1458 }
duke@435 1459 return TypeLong::LONG;
duke@435 1460 }
duke@435 1461 // Returned widened new guy
duke@435 1462 return make(_lo,_hi,_widen+1);
duke@435 1463 }
duke@435 1464
duke@435 1465 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1466 // bottom. Return the wider fellow.
duke@435 1467 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1468 return old;
duke@435 1469
duke@435 1470 // fatal("Long value range is not subset");
duke@435 1471 // return this;
duke@435 1472 return TypeLong::LONG;
duke@435 1473 }
duke@435 1474
duke@435 1475 //------------------------------narrow----------------------------------------
duke@435 1476 // Only happens for pessimistic optimizations.
duke@435 1477 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1478 if (_lo >= _hi) return this; // already narrow enough
duke@435 1479 if (old == NULL) return this;
duke@435 1480 const TypeLong* ot = old->isa_long();
duke@435 1481 if (ot == NULL) return this;
duke@435 1482 jlong olo = ot->_lo;
duke@435 1483 jlong ohi = ot->_hi;
duke@435 1484
duke@435 1485 // If new guy is equal to old guy, no narrowing
duke@435 1486 if (_lo == olo && _hi == ohi) return old;
duke@435 1487
duke@435 1488 // If old guy was maximum range, allow the narrowing
duke@435 1489 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1490
duke@435 1491 if (_lo < olo || _hi > ohi)
duke@435 1492 return this; // doesn't narrow; pretty wierd
duke@435 1493
duke@435 1494 // The new type narrows the old type, so look for a "death march".
duke@435 1495 // See comments on PhaseTransform::saturate.
duke@435 1496 julong nrange = _hi - _lo;
duke@435 1497 julong orange = ohi - olo;
duke@435 1498 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1499 // Use the new type only if the range shrinks a lot.
duke@435 1500 // We do not want the optimizer computing 2^31 point by point.
duke@435 1501 return old;
duke@435 1502 }
duke@435 1503
duke@435 1504 return this;
duke@435 1505 }
duke@435 1506
duke@435 1507 //-----------------------------filter------------------------------------------
duke@435 1508 const Type *TypeLong::filter( const Type *kills ) const {
duke@435 1509 const TypeLong* ft = join(kills)->isa_long();
kvn@1975 1510 if (ft == NULL || ft->empty())
duke@435 1511 return Type::TOP; // Canonical empty value
duke@435 1512 if (ft->_widen < this->_widen) {
duke@435 1513 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1514 // The widen bits must be allowed to run freely through the graph.
duke@435 1515 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1516 }
duke@435 1517 return ft;
duke@435 1518 }
duke@435 1519
duke@435 1520 //------------------------------eq---------------------------------------------
duke@435 1521 // Structural equality check for Type representations
duke@435 1522 bool TypeLong::eq( const Type *t ) const {
duke@435 1523 const TypeLong *r = t->is_long(); // Handy access
duke@435 1524 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1525 }
duke@435 1526
duke@435 1527 //------------------------------hash-------------------------------------------
duke@435 1528 // Type-specific hashing function.
duke@435 1529 int TypeLong::hash(void) const {
duke@435 1530 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1531 }
duke@435 1532
duke@435 1533 //------------------------------is_finite--------------------------------------
duke@435 1534 // Has a finite value
duke@435 1535 bool TypeLong::is_finite() const {
duke@435 1536 return true;
duke@435 1537 }
duke@435 1538
duke@435 1539 //------------------------------dump2------------------------------------------
duke@435 1540 // Dump TypeLong
duke@435 1541 #ifndef PRODUCT
duke@435 1542 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1543 if (n > x) {
duke@435 1544 if (n >= x + 10000) return NULL;
hseigel@4465 1545 sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
duke@435 1546 } else if (n < x) {
duke@435 1547 if (n <= x - 10000) return NULL;
hseigel@4465 1548 sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
duke@435 1549 } else {
duke@435 1550 return xname;
duke@435 1551 }
duke@435 1552 return buf;
duke@435 1553 }
duke@435 1554
duke@435 1555 static const char* longname(char* buf, jlong n) {
duke@435 1556 const char* str;
duke@435 1557 if (n == min_jlong)
duke@435 1558 return "min";
duke@435 1559 else if (n < min_jlong + 10000)
hseigel@4465 1560 sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
duke@435 1561 else if (n == max_jlong)
duke@435 1562 return "max";
duke@435 1563 else if (n > max_jlong - 10000)
hseigel@4465 1564 sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
duke@435 1565 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1566 return str;
duke@435 1567 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1568 return str;
duke@435 1569 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1570 return str;
duke@435 1571 else
hseigel@4465 1572 sprintf(buf, JLONG_FORMAT, n);
duke@435 1573 return buf;
duke@435 1574 }
duke@435 1575
duke@435 1576 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1577 char buf[80], buf2[80];
duke@435 1578 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1579 st->print("long");
duke@435 1580 else if (is_con())
duke@435 1581 st->print("long:%s", longname(buf, get_con()));
duke@435 1582 else if (_hi == max_jlong)
duke@435 1583 st->print("long:>=%s", longname(buf, _lo));
duke@435 1584 else if (_lo == min_jlong)
duke@435 1585 st->print("long:<=%s", longname(buf, _hi));
duke@435 1586 else
duke@435 1587 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1588
duke@435 1589 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1590 st->print(":%.*s", _widen, "wwww");
duke@435 1591 }
duke@435 1592 #endif
duke@435 1593
duke@435 1594 //------------------------------singleton--------------------------------------
duke@435 1595 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1596 // constants
duke@435 1597 bool TypeLong::singleton(void) const {
duke@435 1598 return _lo >= _hi;
duke@435 1599 }
duke@435 1600
duke@435 1601 bool TypeLong::empty(void) const {
duke@435 1602 return _lo > _hi;
duke@435 1603 }
duke@435 1604
duke@435 1605 //=============================================================================
duke@435 1606 // Convenience common pre-built types.
duke@435 1607 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1608 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1609 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1610 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1611 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1612 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1613 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1614 const TypeTuple *TypeTuple::START_I2C;
duke@435 1615 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1616 const TypeTuple *TypeTuple::LONG_PAIR;
duke@435 1617
duke@435 1618
duke@435 1619 //------------------------------make-------------------------------------------
duke@435 1620 // Make a TypeTuple from the range of a method signature
duke@435 1621 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1622 ciType* return_type = sig->return_type();
duke@435 1623 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1624 const Type **field_array = fields(total_fields);
duke@435 1625 switch (return_type->basic_type()) {
duke@435 1626 case T_LONG:
duke@435 1627 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1628 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1629 break;
duke@435 1630 case T_DOUBLE:
duke@435 1631 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1632 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1633 break;
duke@435 1634 case T_OBJECT:
duke@435 1635 case T_ARRAY:
duke@435 1636 case T_BOOLEAN:
duke@435 1637 case T_CHAR:
duke@435 1638 case T_FLOAT:
duke@435 1639 case T_BYTE:
duke@435 1640 case T_SHORT:
duke@435 1641 case T_INT:
duke@435 1642 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1643 break;
duke@435 1644 case T_VOID:
duke@435 1645 break;
duke@435 1646 default:
duke@435 1647 ShouldNotReachHere();
duke@435 1648 }
duke@435 1649 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1650 }
duke@435 1651
duke@435 1652 // Make a TypeTuple from the domain of a method signature
duke@435 1653 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1654 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1655
duke@435 1656 uint pos = TypeFunc::Parms;
duke@435 1657 const Type **field_array;
duke@435 1658 if (recv != NULL) {
duke@435 1659 total_fields++;
duke@435 1660 field_array = fields(total_fields);
duke@435 1661 // Use get_const_type here because it respects UseUniqueSubclasses:
duke@435 1662 field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
duke@435 1663 } else {
duke@435 1664 field_array = fields(total_fields);
duke@435 1665 }
duke@435 1666
duke@435 1667 int i = 0;
duke@435 1668 while (pos < total_fields) {
duke@435 1669 ciType* type = sig->type_at(i);
duke@435 1670
duke@435 1671 switch (type->basic_type()) {
duke@435 1672 case T_LONG:
duke@435 1673 field_array[pos++] = TypeLong::LONG;
duke@435 1674 field_array[pos++] = Type::HALF;
duke@435 1675 break;
duke@435 1676 case T_DOUBLE:
duke@435 1677 field_array[pos++] = Type::DOUBLE;
duke@435 1678 field_array[pos++] = Type::HALF;
duke@435 1679 break;
duke@435 1680 case T_OBJECT:
duke@435 1681 case T_ARRAY:
duke@435 1682 case T_BOOLEAN:
duke@435 1683 case T_CHAR:
duke@435 1684 case T_FLOAT:
duke@435 1685 case T_BYTE:
duke@435 1686 case T_SHORT:
duke@435 1687 case T_INT:
duke@435 1688 field_array[pos++] = get_const_type(type);
duke@435 1689 break;
duke@435 1690 default:
duke@435 1691 ShouldNotReachHere();
duke@435 1692 }
duke@435 1693 i++;
duke@435 1694 }
duke@435 1695 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1696 }
duke@435 1697
duke@435 1698 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1699 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1700 }
duke@435 1701
duke@435 1702 //------------------------------fields-----------------------------------------
duke@435 1703 // Subroutine call type with space allocated for argument types
duke@435 1704 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1705 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1706 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1707 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1708 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1709 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1710 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1711
duke@435 1712 return flds;
duke@435 1713 }
duke@435 1714
duke@435 1715 //------------------------------meet-------------------------------------------
duke@435 1716 // Compute the MEET of two types. It returns a new Type object.
duke@435 1717 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1718 // Perform a fast test for common case; meeting the same types together.
duke@435 1719 if( this == t ) return this; // Meeting same type-rep?
duke@435 1720
duke@435 1721 // Current "this->_base" is Tuple
duke@435 1722 switch (t->base()) { // switch on original type
duke@435 1723
duke@435 1724 case Bottom: // Ye Olde Default
duke@435 1725 return t;
duke@435 1726
duke@435 1727 default: // All else is a mistake
duke@435 1728 typerr(t);
duke@435 1729
duke@435 1730 case Tuple: { // Meeting 2 signatures?
duke@435 1731 const TypeTuple *x = t->is_tuple();
duke@435 1732 assert( _cnt == x->_cnt, "" );
duke@435 1733 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1734 for( uint i=0; i<_cnt; i++ )
duke@435 1735 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1736 return TypeTuple::make(_cnt,fields);
duke@435 1737 }
duke@435 1738 case Top:
duke@435 1739 break;
duke@435 1740 }
duke@435 1741 return this; // Return the double constant
duke@435 1742 }
duke@435 1743
duke@435 1744 //------------------------------xdual------------------------------------------
duke@435 1745 // Dual: compute field-by-field dual
duke@435 1746 const Type *TypeTuple::xdual() const {
duke@435 1747 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1748 for( uint i=0; i<_cnt; i++ )
duke@435 1749 fields[i] = _fields[i]->dual();
duke@435 1750 return new TypeTuple(_cnt,fields);
duke@435 1751 }
duke@435 1752
duke@435 1753 //------------------------------eq---------------------------------------------
duke@435 1754 // Structural equality check for Type representations
duke@435 1755 bool TypeTuple::eq( const Type *t ) const {
duke@435 1756 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1757 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1758 for (uint i = 0; i < _cnt; i++)
duke@435 1759 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1760 return false; // Missed
duke@435 1761 return true;
duke@435 1762 }
duke@435 1763
duke@435 1764 //------------------------------hash-------------------------------------------
duke@435 1765 // Type-specific hashing function.
duke@435 1766 int TypeTuple::hash(void) const {
duke@435 1767 intptr_t sum = _cnt;
duke@435 1768 for( uint i=0; i<_cnt; i++ )
duke@435 1769 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1770 return sum;
duke@435 1771 }
duke@435 1772
duke@435 1773 //------------------------------dump2------------------------------------------
duke@435 1774 // Dump signature Type
duke@435 1775 #ifndef PRODUCT
duke@435 1776 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1777 st->print("{");
duke@435 1778 if( !depth || d[this] ) { // Check for recursive print
duke@435 1779 st->print("...}");
duke@435 1780 return;
duke@435 1781 }
duke@435 1782 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1783 if( _cnt ) {
duke@435 1784 uint i;
duke@435 1785 for( i=0; i<_cnt-1; i++ ) {
duke@435 1786 st->print("%d:", i);
duke@435 1787 _fields[i]->dump2(d, depth-1, st);
duke@435 1788 st->print(", ");
duke@435 1789 }
duke@435 1790 st->print("%d:", i);
duke@435 1791 _fields[i]->dump2(d, depth-1, st);
duke@435 1792 }
duke@435 1793 st->print("}");
duke@435 1794 }
duke@435 1795 #endif
duke@435 1796
duke@435 1797 //------------------------------singleton--------------------------------------
duke@435 1798 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1799 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1800 // or a single symbol.
duke@435 1801 bool TypeTuple::singleton(void) const {
duke@435 1802 return false; // Never a singleton
duke@435 1803 }
duke@435 1804
duke@435 1805 bool TypeTuple::empty(void) const {
duke@435 1806 for( uint i=0; i<_cnt; i++ ) {
duke@435 1807 if (_fields[i]->empty()) return true;
duke@435 1808 }
duke@435 1809 return false;
duke@435 1810 }
duke@435 1811
duke@435 1812 //=============================================================================
duke@435 1813 // Convenience common pre-built types.
duke@435 1814
duke@435 1815 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1816 // Certain normalizations keep us sane when comparing types.
duke@435 1817 // We do not want arrayOop variables to differ only by the wideness
duke@435 1818 // of their index types. Pick minimum wideness, since that is the
duke@435 1819 // forced wideness of small ranges anyway.
duke@435 1820 if (size->_widen != Type::WidenMin)
duke@435 1821 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1822 else
duke@435 1823 return size;
duke@435 1824 }
duke@435 1825
duke@435 1826 //------------------------------make-------------------------------------------
duke@435 1827 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
coleenp@548 1828 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1829 elem = elem->make_narrowoop();
coleenp@548 1830 }
duke@435 1831 size = normalize_array_size(size);
duke@435 1832 return (TypeAry*)(new TypeAry(elem,size))->hashcons();
duke@435 1833 }
duke@435 1834
duke@435 1835 //------------------------------meet-------------------------------------------
duke@435 1836 // Compute the MEET of two types. It returns a new Type object.
duke@435 1837 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1838 // Perform a fast test for common case; meeting the same types together.
duke@435 1839 if( this == t ) return this; // Meeting same type-rep?
duke@435 1840
duke@435 1841 // Current "this->_base" is Ary
duke@435 1842 switch (t->base()) { // switch on original type
duke@435 1843
duke@435 1844 case Bottom: // Ye Olde Default
duke@435 1845 return t;
duke@435 1846
duke@435 1847 default: // All else is a mistake
duke@435 1848 typerr(t);
duke@435 1849
duke@435 1850 case Array: { // Meeting 2 arrays?
duke@435 1851 const TypeAry *a = t->is_ary();
duke@435 1852 return TypeAry::make(_elem->meet(a->_elem),
duke@435 1853 _size->xmeet(a->_size)->is_int());
duke@435 1854 }
duke@435 1855 case Top:
duke@435 1856 break;
duke@435 1857 }
duke@435 1858 return this; // Return the double constant
duke@435 1859 }
duke@435 1860
duke@435 1861 //------------------------------xdual------------------------------------------
duke@435 1862 // Dual: compute field-by-field dual
duke@435 1863 const Type *TypeAry::xdual() const {
duke@435 1864 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1865 size_dual = normalize_array_size(size_dual);
duke@435 1866 return new TypeAry( _elem->dual(), size_dual);
duke@435 1867 }
duke@435 1868
duke@435 1869 //------------------------------eq---------------------------------------------
duke@435 1870 // Structural equality check for Type representations
duke@435 1871 bool TypeAry::eq( const Type *t ) const {
duke@435 1872 const TypeAry *a = (const TypeAry*)t;
duke@435 1873 return _elem == a->_elem &&
duke@435 1874 _size == a->_size;
duke@435 1875 }
duke@435 1876
duke@435 1877 //------------------------------hash-------------------------------------------
duke@435 1878 // Type-specific hashing function.
duke@435 1879 int TypeAry::hash(void) const {
duke@435 1880 return (intptr_t)_elem + (intptr_t)_size;
duke@435 1881 }
duke@435 1882
kvn@1255 1883 //----------------------interface_vs_oop---------------------------------------
kvn@1255 1884 #ifdef ASSERT
kvn@1255 1885 bool TypeAry::interface_vs_oop(const Type *t) const {
kvn@1255 1886 const TypeAry* t_ary = t->is_ary();
kvn@1255 1887 if (t_ary) {
kvn@1255 1888 return _elem->interface_vs_oop(t_ary->_elem);
kvn@1255 1889 }
kvn@1255 1890 return false;
kvn@1255 1891 }
kvn@1255 1892 #endif
kvn@1255 1893
duke@435 1894 //------------------------------dump2------------------------------------------
duke@435 1895 #ifndef PRODUCT
duke@435 1896 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1897 _elem->dump2(d, depth, st);
duke@435 1898 st->print("[");
duke@435 1899 _size->dump2(d, depth, st);
duke@435 1900 st->print("]");
duke@435 1901 }
duke@435 1902 #endif
duke@435 1903
duke@435 1904 //------------------------------singleton--------------------------------------
duke@435 1905 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1906 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1907 // or a single symbol.
duke@435 1908 bool TypeAry::singleton(void) const {
duke@435 1909 return false; // Never a singleton
duke@435 1910 }
duke@435 1911
duke@435 1912 bool TypeAry::empty(void) const {
duke@435 1913 return _elem->empty() || _size->empty();
duke@435 1914 }
duke@435 1915
duke@435 1916 //--------------------------ary_must_be_exact----------------------------------
duke@435 1917 bool TypeAry::ary_must_be_exact() const {
duke@435 1918 if (!UseExactTypes) return false;
duke@435 1919 // This logic looks at the element type of an array, and returns true
duke@435 1920 // if the element type is either a primitive or a final instance class.
duke@435 1921 // In such cases, an array built on this ary must have no subclasses.
duke@435 1922 if (_elem == BOTTOM) return false; // general array not exact
duke@435 1923 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 1924 const TypeOopPtr* toop = NULL;
kvn@656 1925 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 1926 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 1927 } else {
coleenp@548 1928 toop = _elem->isa_oopptr();
coleenp@548 1929 }
duke@435 1930 if (!toop) return true; // a primitive type, like int
duke@435 1931 ciKlass* tklass = toop->klass();
duke@435 1932 if (tklass == NULL) return false; // unloaded class
duke@435 1933 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 1934 const TypeInstPtr* tinst;
coleenp@548 1935 if (_elem->isa_narrowoop())
kvn@656 1936 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 1937 else
coleenp@548 1938 tinst = _elem->isa_instptr();
kvn@656 1939 if (tinst)
kvn@656 1940 return tklass->as_instance_klass()->is_final();
coleenp@548 1941 const TypeAryPtr* tap;
coleenp@548 1942 if (_elem->isa_narrowoop())
kvn@656 1943 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 1944 else
coleenp@548 1945 tap = _elem->isa_aryptr();
kvn@656 1946 if (tap)
kvn@656 1947 return tap->ary()->ary_must_be_exact();
duke@435 1948 return false;
duke@435 1949 }
duke@435 1950
kvn@3882 1951 //==============================TypeVect=======================================
kvn@3882 1952 // Convenience common pre-built types.
kvn@3882 1953 const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors
kvn@3882 1954 const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors
kvn@3882 1955 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
kvn@3882 1956 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
kvn@3882 1957
kvn@3882 1958 //------------------------------make-------------------------------------------
kvn@3882 1959 const TypeVect* TypeVect::make(const Type *elem, uint length) {
kvn@3882 1960 BasicType elem_bt = elem->array_element_basic_type();
kvn@3882 1961 assert(is_java_primitive(elem_bt), "only primitive types in vector");
kvn@3882 1962 assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
kvn@3882 1963 assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
kvn@3882 1964 int size = length * type2aelembytes(elem_bt);
kvn@3882 1965 switch (Matcher::vector_ideal_reg(size)) {
kvn@3882 1966 case Op_VecS:
kvn@3882 1967 return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
kvn@3882 1968 case Op_VecD:
kvn@3882 1969 case Op_RegD:
kvn@3882 1970 return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
kvn@3882 1971 case Op_VecX:
kvn@3882 1972 return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
kvn@3882 1973 case Op_VecY:
kvn@3882 1974 return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
kvn@3882 1975 }
kvn@3882 1976 ShouldNotReachHere();
kvn@3882 1977 return NULL;
kvn@3882 1978 }
kvn@3882 1979
kvn@3882 1980 //------------------------------meet-------------------------------------------
kvn@3882 1981 // Compute the MEET of two types. It returns a new Type object.
kvn@3882 1982 const Type *TypeVect::xmeet( const Type *t ) const {
kvn@3882 1983 // Perform a fast test for common case; meeting the same types together.
kvn@3882 1984 if( this == t ) return this; // Meeting same type-rep?
kvn@3882 1985
kvn@3882 1986 // Current "this->_base" is Vector
kvn@3882 1987 switch (t->base()) { // switch on original type
kvn@3882 1988
kvn@3882 1989 case Bottom: // Ye Olde Default
kvn@3882 1990 return t;
kvn@3882 1991
kvn@3882 1992 default: // All else is a mistake
kvn@3882 1993 typerr(t);
kvn@3882 1994
kvn@3882 1995 case VectorS:
kvn@3882 1996 case VectorD:
kvn@3882 1997 case VectorX:
kvn@3882 1998 case VectorY: { // Meeting 2 vectors?
kvn@3882 1999 const TypeVect* v = t->is_vect();
kvn@3882 2000 assert( base() == v->base(), "");
kvn@3882 2001 assert(length() == v->length(), "");
kvn@3882 2002 assert(element_basic_type() == v->element_basic_type(), "");
kvn@3882 2003 return TypeVect::make(_elem->xmeet(v->_elem), _length);
kvn@3882 2004 }
kvn@3882 2005 case Top:
kvn@3882 2006 break;
kvn@3882 2007 }
kvn@3882 2008 return this;
kvn@3882 2009 }
kvn@3882 2010
kvn@3882 2011 //------------------------------xdual------------------------------------------
kvn@3882 2012 // Dual: compute field-by-field dual
kvn@3882 2013 const Type *TypeVect::xdual() const {
kvn@3882 2014 return new TypeVect(base(), _elem->dual(), _length);
kvn@3882 2015 }
kvn@3882 2016
kvn@3882 2017 //------------------------------eq---------------------------------------------
kvn@3882 2018 // Structural equality check for Type representations
kvn@3882 2019 bool TypeVect::eq(const Type *t) const {
kvn@3882 2020 const TypeVect *v = t->is_vect();
kvn@3882 2021 return (_elem == v->_elem) && (_length == v->_length);
kvn@3882 2022 }
kvn@3882 2023
kvn@3882 2024 //------------------------------hash-------------------------------------------
kvn@3882 2025 // Type-specific hashing function.
kvn@3882 2026 int TypeVect::hash(void) const {
kvn@3882 2027 return (intptr_t)_elem + (intptr_t)_length;
kvn@3882 2028 }
kvn@3882 2029
kvn@3882 2030 //------------------------------singleton--------------------------------------
kvn@3882 2031 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
kvn@3882 2032 // constants (Ldi nodes). Vector is singleton if all elements are the same
kvn@3882 2033 // constant value (when vector is created with Replicate code).
kvn@3882 2034 bool TypeVect::singleton(void) const {
kvn@3882 2035 // There is no Con node for vectors yet.
kvn@3882 2036 // return _elem->singleton();
kvn@3882 2037 return false;
kvn@3882 2038 }
kvn@3882 2039
kvn@3882 2040 bool TypeVect::empty(void) const {
kvn@3882 2041 return _elem->empty();
kvn@3882 2042 }
kvn@3882 2043
kvn@3882 2044 //------------------------------dump2------------------------------------------
kvn@3882 2045 #ifndef PRODUCT
kvn@3882 2046 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
kvn@3882 2047 switch (base()) {
kvn@3882 2048 case VectorS:
kvn@3882 2049 st->print("vectors["); break;
kvn@3882 2050 case VectorD:
kvn@3882 2051 st->print("vectord["); break;
kvn@3882 2052 case VectorX:
kvn@3882 2053 st->print("vectorx["); break;
kvn@3882 2054 case VectorY:
kvn@3882 2055 st->print("vectory["); break;
kvn@3882 2056 default:
kvn@3882 2057 ShouldNotReachHere();
kvn@3882 2058 }
kvn@3882 2059 st->print("%d]:{", _length);
kvn@3882 2060 _elem->dump2(d, depth, st);
kvn@3882 2061 st->print("}");
kvn@3882 2062 }
kvn@3882 2063 #endif
kvn@3882 2064
kvn@3882 2065
duke@435 2066 //=============================================================================
duke@435 2067 // Convenience common pre-built types.
duke@435 2068 const TypePtr *TypePtr::NULL_PTR;
duke@435 2069 const TypePtr *TypePtr::NOTNULL;
duke@435 2070 const TypePtr *TypePtr::BOTTOM;
duke@435 2071
duke@435 2072 //------------------------------meet-------------------------------------------
duke@435 2073 // Meet over the PTR enum
duke@435 2074 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 2075 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 2076 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 2077 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2078 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2079 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 2080 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 2081 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 2082 };
duke@435 2083
duke@435 2084 //------------------------------make-------------------------------------------
duke@435 2085 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 2086 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 2087 }
duke@435 2088
duke@435 2089 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2090 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2091 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 2092 if( ptr == _ptr ) return this;
duke@435 2093 return make(_base, ptr, _offset);
duke@435 2094 }
duke@435 2095
duke@435 2096 //------------------------------get_con----------------------------------------
duke@435 2097 intptr_t TypePtr::get_con() const {
duke@435 2098 assert( _ptr == Null, "" );
duke@435 2099 return _offset;
duke@435 2100 }
duke@435 2101
duke@435 2102 //------------------------------meet-------------------------------------------
duke@435 2103 // Compute the MEET of two types. It returns a new Type object.
duke@435 2104 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 2105 // Perform a fast test for common case; meeting the same types together.
duke@435 2106 if( this == t ) return this; // Meeting same type-rep?
duke@435 2107
duke@435 2108 // Current "this->_base" is AnyPtr
duke@435 2109 switch (t->base()) { // switch on original type
duke@435 2110 case Int: // Mixing ints & oops happens when javac
duke@435 2111 case Long: // reuses local variables
duke@435 2112 case FloatTop:
duke@435 2113 case FloatCon:
duke@435 2114 case FloatBot:
duke@435 2115 case DoubleTop:
duke@435 2116 case DoubleCon:
duke@435 2117 case DoubleBot:
coleenp@548 2118 case NarrowOop:
roland@4159 2119 case NarrowKlass:
duke@435 2120 case Bottom: // Ye Olde Default
duke@435 2121 return Type::BOTTOM;
duke@435 2122 case Top:
duke@435 2123 return this;
duke@435 2124
duke@435 2125 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2126 const TypePtr *tp = t->is_ptr();
duke@435 2127 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 2128 }
duke@435 2129 case RawPtr: // For these, flip the call around to cut down
duke@435 2130 case OopPtr:
duke@435 2131 case InstPtr: // on the cases I have to handle.
coleenp@4037 2132 case AryPtr:
coleenp@4037 2133 case MetadataPtr:
duke@435 2134 case KlassPtr:
duke@435 2135 return t->xmeet(this); // Call in reverse direction
duke@435 2136 default: // All else is a mistake
duke@435 2137 typerr(t);
duke@435 2138
duke@435 2139 }
duke@435 2140 return this;
duke@435 2141 }
duke@435 2142
duke@435 2143 //------------------------------meet_offset------------------------------------
duke@435 2144 int TypePtr::meet_offset( int offset ) const {
duke@435 2145 // Either is 'TOP' offset? Return the other offset!
duke@435 2146 if( _offset == OffsetTop ) return offset;
duke@435 2147 if( offset == OffsetTop ) return _offset;
duke@435 2148 // If either is different, return 'BOTTOM' offset
duke@435 2149 if( _offset != offset ) return OffsetBot;
duke@435 2150 return _offset;
duke@435 2151 }
duke@435 2152
duke@435 2153 //------------------------------dual_offset------------------------------------
duke@435 2154 int TypePtr::dual_offset( ) const {
duke@435 2155 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 2156 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 2157 return _offset; // Map everything else into self
duke@435 2158 }
duke@435 2159
duke@435 2160 //------------------------------xdual------------------------------------------
duke@435 2161 // Dual: compute field-by-field dual
duke@435 2162 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 2163 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 2164 };
duke@435 2165 const Type *TypePtr::xdual() const {
duke@435 2166 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 2167 }
duke@435 2168
kvn@741 2169 //------------------------------xadd_offset------------------------------------
kvn@741 2170 int TypePtr::xadd_offset( intptr_t offset ) const {
kvn@741 2171 // Adding to 'TOP' offset? Return 'TOP'!
kvn@741 2172 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
kvn@741 2173 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
kvn@741 2174 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
kvn@741 2175 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
kvn@741 2176 offset += (intptr_t)_offset;
kvn@741 2177 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
kvn@741 2178
kvn@741 2179 // assert( _offset >= 0 && _offset+offset >= 0, "" );
kvn@741 2180 // It is possible to construct a negative offset during PhaseCCP
kvn@741 2181
kvn@741 2182 return (int)offset; // Sum valid offsets
kvn@741 2183 }
kvn@741 2184
duke@435 2185 //------------------------------add_offset-------------------------------------
kvn@741 2186 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
kvn@741 2187 return make( AnyPtr, _ptr, xadd_offset(offset) );
duke@435 2188 }
duke@435 2189
duke@435 2190 //------------------------------eq---------------------------------------------
duke@435 2191 // Structural equality check for Type representations
duke@435 2192 bool TypePtr::eq( const Type *t ) const {
duke@435 2193 const TypePtr *a = (const TypePtr*)t;
duke@435 2194 return _ptr == a->ptr() && _offset == a->offset();
duke@435 2195 }
duke@435 2196
duke@435 2197 //------------------------------hash-------------------------------------------
duke@435 2198 // Type-specific hashing function.
duke@435 2199 int TypePtr::hash(void) const {
duke@435 2200 return _ptr + _offset;
duke@435 2201 }
duke@435 2202
duke@435 2203 //------------------------------dump2------------------------------------------
duke@435 2204 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 2205 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 2206 };
duke@435 2207
duke@435 2208 #ifndef PRODUCT
duke@435 2209 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2210 if( _ptr == Null ) st->print("NULL");
duke@435 2211 else st->print("%s *", ptr_msg[_ptr]);
duke@435 2212 if( _offset == OffsetTop ) st->print("+top");
duke@435 2213 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 2214 else if( _offset ) st->print("+%d", _offset);
duke@435 2215 }
duke@435 2216 #endif
duke@435 2217
duke@435 2218 //------------------------------singleton--------------------------------------
duke@435 2219 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2220 // constants
duke@435 2221 bool TypePtr::singleton(void) const {
duke@435 2222 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2223 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2224 }
duke@435 2225
duke@435 2226 bool TypePtr::empty(void) const {
duke@435 2227 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2228 }
duke@435 2229
duke@435 2230 //=============================================================================
duke@435 2231 // Convenience common pre-built types.
duke@435 2232 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2233 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2234
duke@435 2235 //------------------------------make-------------------------------------------
duke@435 2236 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2237 assert( ptr != Constant, "what is the constant?" );
duke@435 2238 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2239 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2240 }
duke@435 2241
duke@435 2242 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2243 assert( bits, "Use TypePtr for NULL" );
duke@435 2244 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2245 }
duke@435 2246
duke@435 2247 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2248 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2249 assert( ptr != Constant, "what is the constant?" );
duke@435 2250 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2251 assert( _bits==0, "Why cast a constant address?");
duke@435 2252 if( ptr == _ptr ) return this;
duke@435 2253 return make(ptr);
duke@435 2254 }
duke@435 2255
duke@435 2256 //------------------------------get_con----------------------------------------
duke@435 2257 intptr_t TypeRawPtr::get_con() const {
duke@435 2258 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2259 return (intptr_t)_bits;
duke@435 2260 }
duke@435 2261
duke@435 2262 //------------------------------meet-------------------------------------------
duke@435 2263 // Compute the MEET of two types. It returns a new Type object.
duke@435 2264 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2265 // Perform a fast test for common case; meeting the same types together.
duke@435 2266 if( this == t ) return this; // Meeting same type-rep?
duke@435 2267
duke@435 2268 // Current "this->_base" is RawPtr
duke@435 2269 switch( t->base() ) { // switch on original type
duke@435 2270 case Bottom: // Ye Olde Default
duke@435 2271 return t;
duke@435 2272 case Top:
duke@435 2273 return this;
duke@435 2274 case AnyPtr: // Meeting to AnyPtrs
duke@435 2275 break;
duke@435 2276 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2277 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2278 enum PTR ptr = meet_ptr( tptr );
duke@435 2279 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2280 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2281 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2282 ptr = NotNull; // Fall down in lattice
duke@435 2283 }
duke@435 2284 return make( ptr );
duke@435 2285 }
duke@435 2286
duke@435 2287 case OopPtr:
duke@435 2288 case InstPtr:
coleenp@4037 2289 case AryPtr:
coleenp@4037 2290 case MetadataPtr:
duke@435 2291 case KlassPtr:
duke@435 2292 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2293 default: // All else is a mistake
duke@435 2294 typerr(t);
duke@435 2295 }
duke@435 2296
duke@435 2297 // Found an AnyPtr type vs self-RawPtr type
duke@435 2298 const TypePtr *tp = t->is_ptr();
duke@435 2299 switch (tp->ptr()) {
duke@435 2300 case TypePtr::TopPTR: return this;
duke@435 2301 case TypePtr::BotPTR: return t;
duke@435 2302 case TypePtr::Null:
duke@435 2303 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2304 return TypeRawPtr::BOTTOM;
duke@435 2305 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2306 case TypePtr::AnyNull:
duke@435 2307 if( _ptr == TypePtr::Constant) return this;
duke@435 2308 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2309 default: ShouldNotReachHere();
duke@435 2310 }
duke@435 2311 return this;
duke@435 2312 }
duke@435 2313
duke@435 2314 //------------------------------xdual------------------------------------------
duke@435 2315 // Dual: compute field-by-field dual
duke@435 2316 const Type *TypeRawPtr::xdual() const {
duke@435 2317 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2318 }
duke@435 2319
duke@435 2320 //------------------------------add_offset-------------------------------------
kvn@741 2321 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
duke@435 2322 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2323 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2324 if( offset == 0 ) return this; // No change
duke@435 2325 switch (_ptr) {
duke@435 2326 case TypePtr::TopPTR:
duke@435 2327 case TypePtr::BotPTR:
duke@435 2328 case TypePtr::NotNull:
duke@435 2329 return this;
duke@435 2330 case TypePtr::Null:
kvn@2435 2331 case TypePtr::Constant: {
kvn@2435 2332 address bits = _bits+offset;
kvn@2435 2333 if ( bits == 0 ) return TypePtr::NULL_PTR;
kvn@2435 2334 return make( bits );
kvn@2435 2335 }
duke@435 2336 default: ShouldNotReachHere();
duke@435 2337 }
duke@435 2338 return NULL; // Lint noise
duke@435 2339 }
duke@435 2340
duke@435 2341 //------------------------------eq---------------------------------------------
duke@435 2342 // Structural equality check for Type representations
duke@435 2343 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2344 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2345 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2346 }
duke@435 2347
duke@435 2348 //------------------------------hash-------------------------------------------
duke@435 2349 // Type-specific hashing function.
duke@435 2350 int TypeRawPtr::hash(void) const {
duke@435 2351 return (intptr_t)_bits + TypePtr::hash();
duke@435 2352 }
duke@435 2353
duke@435 2354 //------------------------------dump2------------------------------------------
duke@435 2355 #ifndef PRODUCT
duke@435 2356 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2357 if( _ptr == Constant )
duke@435 2358 st->print(INTPTR_FORMAT, _bits);
duke@435 2359 else
duke@435 2360 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2361 }
duke@435 2362 #endif
duke@435 2363
duke@435 2364 //=============================================================================
duke@435 2365 // Convenience common pre-built type.
duke@435 2366 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2367
kvn@598 2368 //------------------------------TypeOopPtr-------------------------------------
kvn@598 2369 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
kvn@598 2370 : TypePtr(t, ptr, offset),
kvn@598 2371 _const_oop(o), _klass(k),
kvn@598 2372 _klass_is_exact(xk),
kvn@598 2373 _is_ptr_to_narrowoop(false),
roland@4159 2374 _is_ptr_to_narrowklass(false),
kvn@598 2375 _instance_id(instance_id) {
kvn@598 2376 #ifdef _LP64
roland@4159 2377 if (_offset != 0) {
coleenp@4037 2378 if (_offset == oopDesc::klass_offset_in_bytes()) {
roland@4159 2379 _is_ptr_to_narrowklass = UseCompressedKlassPointers;
coleenp@4037 2380 } else if (klass() == NULL) {
coleenp@4037 2381 // Array with unknown body type
kvn@598 2382 assert(this->isa_aryptr(), "only arrays without klass");
roland@4159 2383 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2384 } else if (this->isa_aryptr()) {
roland@4159 2385 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
kvn@598 2386 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2387 } else if (klass()->is_instance_klass()) {
kvn@598 2388 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2389 ciField* field = NULL;
kvn@598 2390 if (this->isa_klassptr()) {
never@2658 2391 // Perm objects don't use compressed references
kvn@598 2392 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2393 // unsafe access
roland@4159 2394 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2395 } else { // exclude unsafe ops
kvn@598 2396 assert(this->isa_instptr(), "must be an instance ptr.");
never@2658 2397
never@2658 2398 if (klass() == ciEnv::current()->Class_klass() &&
never@2658 2399 (_offset == java_lang_Class::klass_offset_in_bytes() ||
never@2658 2400 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
never@2658 2401 // Special hidden fields from the Class.
never@2658 2402 assert(this->isa_instptr(), "must be an instance ptr.");
coleenp@4037 2403 _is_ptr_to_narrowoop = false;
never@2658 2404 } else if (klass() == ciEnv::current()->Class_klass() &&
coleenp@4047 2405 _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
never@2658 2406 // Static fields
never@2658 2407 assert(o != NULL, "must be constant");
never@2658 2408 ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 2409 ciField* field = k->get_field_by_offset(_offset, true);
never@2658 2410 assert(field != NULL, "missing field");
kvn@598 2411 BasicType basic_elem_type = field->layout_type();
roland@4159 2412 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2413 basic_elem_type == T_ARRAY);
kvn@598 2414 } else {
never@2658 2415 // Instance fields which contains a compressed oop references.
never@2658 2416 field = ik->get_field_by_offset(_offset, false);
never@2658 2417 if (field != NULL) {
never@2658 2418 BasicType basic_elem_type = field->layout_type();
roland@4159 2419 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2420 basic_elem_type == T_ARRAY);
never@2658 2421 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
never@2658 2422 // Compile::find_alias_type() cast exactness on all types to verify
never@2658 2423 // that it does not affect alias type.
roland@4159 2424 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2425 } else {
never@2658 2426 // Type for the copy start in LibraryCallKit::inline_native_clone().
roland@4159 2427 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2428 }
kvn@598 2429 }
kvn@598 2430 }
kvn@598 2431 }
kvn@598 2432 }
kvn@598 2433 #endif
kvn@598 2434 }
kvn@598 2435
duke@435 2436 //------------------------------make-------------------------------------------
duke@435 2437 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
kvn@1393 2438 int offset, int instance_id) {
duke@435 2439 assert(ptr != Constant, "no constant generic pointers");
coleenp@4037 2440 ciKlass* k = Compile::current()->env()->Object_klass();
duke@435 2441 bool xk = false;
duke@435 2442 ciObject* o = NULL;
kvn@1393 2443 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
duke@435 2444 }
duke@435 2445
duke@435 2446
duke@435 2447 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2448 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2449 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2450 if( ptr == _ptr ) return this;
kvn@1427 2451 return make(ptr, _offset, _instance_id);
duke@435 2452 }
duke@435 2453
kvn@682 2454 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2455 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2456 // There are no instances of a general oop.
duke@435 2457 // Return self unchanged.
duke@435 2458 return this;
duke@435 2459 }
duke@435 2460
duke@435 2461 //-----------------------------cast_to_exactness-------------------------------
duke@435 2462 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2463 // There is no such thing as an exact general oop.
duke@435 2464 // Return self unchanged.
duke@435 2465 return this;
duke@435 2466 }
duke@435 2467
duke@435 2468
duke@435 2469 //------------------------------as_klass_type----------------------------------
duke@435 2470 // Return the klass type corresponding to this instance or array type.
duke@435 2471 // It is the type that is loaded from an object of this type.
duke@435 2472 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2473 ciKlass* k = klass();
duke@435 2474 bool xk = klass_is_exact();
coleenp@4037 2475 if (k == NULL)
duke@435 2476 return TypeKlassPtr::OBJECT;
duke@435 2477 else
duke@435 2478 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2479 }
duke@435 2480
duke@435 2481
duke@435 2482 //------------------------------meet-------------------------------------------
duke@435 2483 // Compute the MEET of two types. It returns a new Type object.
duke@435 2484 const Type *TypeOopPtr::xmeet( const Type *t ) const {
duke@435 2485 // Perform a fast test for common case; meeting the same types together.
duke@435 2486 if( this == t ) return this; // Meeting same type-rep?
duke@435 2487
duke@435 2488 // Current "this->_base" is OopPtr
duke@435 2489 switch (t->base()) { // switch on original type
duke@435 2490
duke@435 2491 case Int: // Mixing ints & oops happens when javac
duke@435 2492 case Long: // reuses local variables
duke@435 2493 case FloatTop:
duke@435 2494 case FloatCon:
duke@435 2495 case FloatBot:
duke@435 2496 case DoubleTop:
duke@435 2497 case DoubleCon:
duke@435 2498 case DoubleBot:
kvn@728 2499 case NarrowOop:
roland@4159 2500 case NarrowKlass:
duke@435 2501 case Bottom: // Ye Olde Default
duke@435 2502 return Type::BOTTOM;
duke@435 2503 case Top:
duke@435 2504 return this;
duke@435 2505
duke@435 2506 default: // All else is a mistake
duke@435 2507 typerr(t);
duke@435 2508
duke@435 2509 case RawPtr:
coleenp@4037 2510 case MetadataPtr:
coleenp@4037 2511 case KlassPtr:
duke@435 2512 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2513
duke@435 2514 case AnyPtr: {
duke@435 2515 // Found an AnyPtr type vs self-OopPtr type
duke@435 2516 const TypePtr *tp = t->is_ptr();
duke@435 2517 int offset = meet_offset(tp->offset());
duke@435 2518 PTR ptr = meet_ptr(tp->ptr());
duke@435 2519 switch (tp->ptr()) {
duke@435 2520 case Null:
duke@435 2521 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2522 // else fall through:
duke@435 2523 case TopPTR:
kvn@1427 2524 case AnyNull: {
kvn@1427 2525 int instance_id = meet_instance_id(InstanceTop);
kvn@1427 2526 return make(ptr, offset, instance_id);
kvn@1427 2527 }
duke@435 2528 case BotPTR:
duke@435 2529 case NotNull:
duke@435 2530 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2531 default: typerr(t);
duke@435 2532 }
duke@435 2533 }
duke@435 2534
duke@435 2535 case OopPtr: { // Meeting to other OopPtrs
duke@435 2536 const TypeOopPtr *tp = t->is_oopptr();
kvn@1393 2537 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 2538 return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
duke@435 2539 }
duke@435 2540
duke@435 2541 case InstPtr: // For these, flip the call around to cut down
duke@435 2542 case AryPtr:
duke@435 2543 return t->xmeet(this); // Call in reverse direction
duke@435 2544
duke@435 2545 } // End of switch
duke@435 2546 return this; // Return the double constant
duke@435 2547 }
duke@435 2548
duke@435 2549
duke@435 2550 //------------------------------xdual------------------------------------------
duke@435 2551 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2552 const Type *TypeOopPtr::xdual() const {
coleenp@4037 2553 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
duke@435 2554 assert(const_oop() == NULL, "no constants here");
kvn@658 2555 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 2556 }
duke@435 2557
duke@435 2558 //--------------------------make_from_klass_common-----------------------------
duke@435 2559 // Computes the element-type given a klass.
duke@435 2560 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2561 if (klass->is_instance_klass()) {
duke@435 2562 Compile* C = Compile::current();
duke@435 2563 Dependencies* deps = C->dependencies();
duke@435 2564 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2565 // Element is an instance
duke@435 2566 bool klass_is_exact = false;
duke@435 2567 if (klass->is_loaded()) {
duke@435 2568 // Try to set klass_is_exact.
duke@435 2569 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2570 klass_is_exact = ik->is_final();
duke@435 2571 if (!klass_is_exact && klass_change
duke@435 2572 && deps != NULL && UseUniqueSubclasses) {
duke@435 2573 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2574 if (sub != NULL) {
duke@435 2575 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2576 klass = ik = sub;
duke@435 2577 klass_is_exact = sub->is_final();
duke@435 2578 }
duke@435 2579 }
duke@435 2580 if (!klass_is_exact && try_for_exact
duke@435 2581 && deps != NULL && UseExactTypes) {
duke@435 2582 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2583 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2584 deps->assert_leaf_type(ik);
duke@435 2585 klass_is_exact = true;
duke@435 2586 }
duke@435 2587 }
duke@435 2588 }
duke@435 2589 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2590 } else if (klass->is_obj_array_klass()) {
duke@435 2591 // Element is an object array. Recursively call ourself.
duke@435 2592 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2593 bool xk = etype->klass_is_exact();
duke@435 2594 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2595 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2596 // are all not-null. This is not true in generally, as code can
duke@435 2597 // slam NULLs down in the subarrays.
duke@435 2598 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2599 return arr;
duke@435 2600 } else if (klass->is_type_array_klass()) {
duke@435 2601 // Element is an typeArray
duke@435 2602 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2603 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2604 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2605 // is not-null. That was not true in general.
duke@435 2606 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2607 return arr;
duke@435 2608 } else {
duke@435 2609 ShouldNotReachHere();
duke@435 2610 return NULL;
duke@435 2611 }
duke@435 2612 }
duke@435 2613
duke@435 2614 //------------------------------make_from_constant-----------------------------
duke@435 2615 // Make a java pointer from an oop constant
jrose@1424 2616 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
duke@435 2617 assert(!o->is_null_object(), "null object not yet handled here.");
twisti@3885 2618 ciKlass* klass = o->klass();
duke@435 2619 if (klass->is_instance_klass()) {
duke@435 2620 // Element is an instance
jrose@1424 2621 if (require_constant) {
jrose@1424 2622 if (!o->can_be_constant()) return NULL;
jrose@1424 2623 } else if (!o->should_be_constant()) {
duke@435 2624 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
duke@435 2625 }
duke@435 2626 return TypeInstPtr::make(o);
duke@435 2627 } else if (klass->is_obj_array_klass()) {
duke@435 2628 // Element is an object array. Recursively call ourself.
coleenp@4037 2629 const Type *etype =
coleenp@4037 2630 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
duke@435 2631 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2632 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2633 // are all not-null. This is not true in generally, as code can
duke@435 2634 // slam NULLs down in the subarrays.
jrose@1424 2635 if (require_constant) {
jrose@1424 2636 if (!o->can_be_constant()) return NULL;
jrose@1424 2637 } else if (!o->should_be_constant()) {
duke@435 2638 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2639 }
coleenp@4037 2640 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
coleenp@4037 2641 return arr;
duke@435 2642 } else if (klass->is_type_array_klass()) {
duke@435 2643 // Element is an typeArray
coleenp@4037 2644 const Type* etype =
coleenp@4037 2645 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2646 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2647 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2648 // is not-null. That was not true in general.
jrose@1424 2649 if (require_constant) {
jrose@1424 2650 if (!o->can_be_constant()) return NULL;
jrose@1424 2651 } else if (!o->should_be_constant()) {
duke@435 2652 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2653 }
coleenp@4037 2654 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
coleenp@4037 2655 return arr;
duke@435 2656 }
duke@435 2657
twisti@3885 2658 fatal("unhandled object type");
duke@435 2659 return NULL;
duke@435 2660 }
duke@435 2661
duke@435 2662 //------------------------------get_con----------------------------------------
duke@435 2663 intptr_t TypeOopPtr::get_con() const {
duke@435 2664 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2665 assert( _offset >= 0, "" );
duke@435 2666
duke@435 2667 if (_offset != 0) {
duke@435 2668 // After being ported to the compiler interface, the compiler no longer
duke@435 2669 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2670 // to a handle at compile time. This handle is embedded in the generated
duke@435 2671 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2672 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2673 // have access to the addresses!). This does not seem to currently happen,
twisti@1040 2674 // but this assertion here is to help prevent its occurence.
duke@435 2675 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2676 ShouldNotReachHere();
duke@435 2677 }
duke@435 2678
jrose@1424 2679 return (intptr_t)const_oop()->constant_encoding();
duke@435 2680 }
duke@435 2681
duke@435 2682
duke@435 2683 //-----------------------------filter------------------------------------------
duke@435 2684 // Do not allow interface-vs.-noninterface joins to collapse to top.
duke@435 2685 const Type *TypeOopPtr::filter( const Type *kills ) const {
duke@435 2686
duke@435 2687 const Type* ft = join(kills);
duke@435 2688 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2689 const TypeInstPtr* ktip = kills->isa_instptr();
never@990 2690 const TypeKlassPtr* ftkp = ft->isa_klassptr();
never@990 2691 const TypeKlassPtr* ktkp = kills->isa_klassptr();
duke@435 2692
duke@435 2693 if (ft->empty()) {
duke@435 2694 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2695 // interface. This can happen because the bytecodes do not contain
duke@435 2696 // enough type info to distinguish a Java-level interface variable
duke@435 2697 // from a Java-level object variable. If we meet 2 classes which
duke@435 2698 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2699 // doesn't implement I, we have no way to tell if the result should
duke@435 2700 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2701 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2702 // uplift the type.
duke@435 2703 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
duke@435 2704 return kills; // Uplift to interface
never@990 2705 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
never@990 2706 return kills; // Uplift to interface
duke@435 2707
duke@435 2708 return Type::TOP; // Canonical empty value
duke@435 2709 }
duke@435 2710
duke@435 2711 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2712 // the join should report back the class. However, if we have a J/L/Object
duke@435 2713 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2714 // join report an interface back out. This isn't possible but happens
duke@435 2715 // because the type system doesn't interact well with interfaces.
duke@435 2716 if (ftip != NULL && ktip != NULL &&
duke@435 2717 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2718 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2719 // Happens in a CTW of rt.jar, 320-341, no extra flags
kvn@1770 2720 assert(!ftip->klass_is_exact(), "interface could not be exact");
duke@435 2721 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2722 }
kvn@1770 2723 // Interface klass type could be exact in opposite to interface type,
kvn@1770 2724 // return it here instead of incorrect Constant ptr J/L/Object (6894807).
never@990 2725 if (ftkp != NULL && ktkp != NULL &&
never@990 2726 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
kvn@1770 2727 !ftkp->klass_is_exact() && // Keep exact interface klass
never@990 2728 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
never@990 2729 return ktkp->cast_to_ptr_type(ftkp->ptr());
never@990 2730 }
duke@435 2731
duke@435 2732 return ft;
duke@435 2733 }
duke@435 2734
duke@435 2735 //------------------------------eq---------------------------------------------
duke@435 2736 // Structural equality check for Type representations
duke@435 2737 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2738 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2739 if (_klass_is_exact != a->_klass_is_exact ||
duke@435 2740 _instance_id != a->_instance_id) return false;
duke@435 2741 ciObject* one = const_oop();
duke@435 2742 ciObject* two = a->const_oop();
duke@435 2743 if (one == NULL || two == NULL) {
duke@435 2744 return (one == two) && TypePtr::eq(t);
duke@435 2745 } else {
duke@435 2746 return one->equals(two) && TypePtr::eq(t);
duke@435 2747 }
duke@435 2748 }
duke@435 2749
duke@435 2750 //------------------------------hash-------------------------------------------
duke@435 2751 // Type-specific hashing function.
duke@435 2752 int TypeOopPtr::hash(void) const {
duke@435 2753 return
duke@435 2754 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2755 _klass_is_exact +
duke@435 2756 _instance_id +
duke@435 2757 TypePtr::hash();
duke@435 2758 }
duke@435 2759
duke@435 2760 //------------------------------dump2------------------------------------------
duke@435 2761 #ifndef PRODUCT
duke@435 2762 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2763 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2764 if( _klass_is_exact ) st->print(":exact");
duke@435 2765 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2766 switch( _offset ) {
duke@435 2767 case OffsetTop: st->print("+top"); break;
duke@435 2768 case OffsetBot: st->print("+any"); break;
duke@435 2769 case 0: break;
duke@435 2770 default: st->print("+%d",_offset); break;
duke@435 2771 }
kvn@658 2772 if (_instance_id == InstanceTop)
kvn@658 2773 st->print(",iid=top");
kvn@658 2774 else if (_instance_id != InstanceBot)
duke@435 2775 st->print(",iid=%d",_instance_id);
duke@435 2776 }
duke@435 2777 #endif
duke@435 2778
duke@435 2779 //------------------------------singleton--------------------------------------
duke@435 2780 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2781 // constants
duke@435 2782 bool TypeOopPtr::singleton(void) const {
duke@435 2783 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2784 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2785 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2786 }
duke@435 2787
duke@435 2788 //------------------------------add_offset-------------------------------------
kvn@741 2789 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
kvn@1427 2790 return make( _ptr, xadd_offset(offset), _instance_id);
duke@435 2791 }
duke@435 2792
kvn@658 2793 //------------------------------meet_instance_id--------------------------------
kvn@658 2794 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 2795 // Either is 'TOP' instance? Return the other instance!
kvn@658 2796 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 2797 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 2798 // If either is different, return 'BOTTOM' instance
kvn@658 2799 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 2800 return _instance_id;
duke@435 2801 }
duke@435 2802
kvn@658 2803 //------------------------------dual_instance_id--------------------------------
kvn@658 2804 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 2805 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 2806 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 2807 return _instance_id; // Map everything else into self
kvn@658 2808 }
kvn@658 2809
kvn@658 2810
duke@435 2811 //=============================================================================
duke@435 2812 // Convenience common pre-built types.
duke@435 2813 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 2814 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 2815 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 2816 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 2817 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 2818
duke@435 2819 //------------------------------TypeInstPtr-------------------------------------
duke@435 2820 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
duke@435 2821 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
duke@435 2822 assert(k != NULL &&
duke@435 2823 (k->is_loaded() || o == NULL),
duke@435 2824 "cannot have constants with non-loaded klass");
duke@435 2825 };
duke@435 2826
duke@435 2827 //------------------------------make-------------------------------------------
duke@435 2828 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 2829 ciKlass* k,
duke@435 2830 bool xk,
duke@435 2831 ciObject* o,
duke@435 2832 int offset,
duke@435 2833 int instance_id) {
coleenp@4037 2834 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
duke@435 2835 // Either const_oop() is NULL or else ptr is Constant
duke@435 2836 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 2837 "constant pointers must have a value supplied" );
duke@435 2838 // Ptr is never Null
duke@435 2839 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 2840
kvn@682 2841 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 2842 if (!UseExactTypes) xk = false;
duke@435 2843 if (ptr == Constant) {
duke@435 2844 // Note: This case includes meta-object constants, such as methods.
duke@435 2845 xk = true;
duke@435 2846 } else if (k->is_loaded()) {
duke@435 2847 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 2848 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 2849 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 2850 }
duke@435 2851
duke@435 2852 // Now hash this baby
duke@435 2853 TypeInstPtr *result =
duke@435 2854 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
duke@435 2855
duke@435 2856 return result;
duke@435 2857 }
duke@435 2858
duke@435 2859
duke@435 2860 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2861 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2862 if( ptr == _ptr ) return this;
duke@435 2863 // Reconstruct _sig info here since not a problem with later lazy
duke@435 2864 // construction, _sig will show up on demand.
kvn@658 2865 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
duke@435 2866 }
duke@435 2867
duke@435 2868
duke@435 2869 //-----------------------------cast_to_exactness-------------------------------
duke@435 2870 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2871 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 2872 if (!UseExactTypes) return this;
duke@435 2873 if (!_klass->is_loaded()) return this;
duke@435 2874 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 2875 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 2876 if( ik->is_interface() ) return this; // cannot set xk
duke@435 2877 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
duke@435 2878 }
duke@435 2879
kvn@682 2880 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2881 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 2882 if( instance_id == _instance_id ) return this;
kvn@682 2883 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
duke@435 2884 }
duke@435 2885
duke@435 2886 //------------------------------xmeet_unloaded---------------------------------
duke@435 2887 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 2888 // Assume classes are different since called after check for same name/class-loader
duke@435 2889 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 2890 int off = meet_offset(tinst->offset());
duke@435 2891 PTR ptr = meet_ptr(tinst->ptr());
kvn@1427 2892 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 2893
duke@435 2894 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 2895 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 2896 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 2897 //
duke@435 2898 // Meet unloaded class with java/lang/Object
duke@435 2899 //
duke@435 2900 // Meet
duke@435 2901 // | Unloaded Class
duke@435 2902 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 2903 // ===================================================================
duke@435 2904 // TOP | ..........................Unloaded......................|
duke@435 2905 // AnyNull | U-AN |................Unloaded......................|
duke@435 2906 // Constant | ... O-NN .................................. | O-BOT |
duke@435 2907 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 2908 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 2909 //
duke@435 2910 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 2911 //
duke@435 2912 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
kvn@1427 2913 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
duke@435 2914 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2915 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 2916 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2917 else { return TypeInstPtr::NOTNULL; }
duke@435 2918 }
duke@435 2919 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 2920
duke@435 2921 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 2922 }
duke@435 2923
duke@435 2924 // Both are unloaded, not the same class, not Object
duke@435 2925 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 2926 if( ptr != TypePtr::BotPTR ) {
duke@435 2927 return TypeInstPtr::NOTNULL;
duke@435 2928 }
duke@435 2929 return TypeInstPtr::BOTTOM;
duke@435 2930 }
duke@435 2931
duke@435 2932
duke@435 2933 //------------------------------meet-------------------------------------------
duke@435 2934 // Compute the MEET of two types. It returns a new Type object.
duke@435 2935 const Type *TypeInstPtr::xmeet( const Type *t ) const {
duke@435 2936 // Perform a fast test for common case; meeting the same types together.
duke@435 2937 if( this == t ) return this; // Meeting same type-rep?
duke@435 2938
duke@435 2939 // Current "this->_base" is Pointer
duke@435 2940 switch (t->base()) { // switch on original type
duke@435 2941
duke@435 2942 case Int: // Mixing ints & oops happens when javac
duke@435 2943 case Long: // reuses local variables
duke@435 2944 case FloatTop:
duke@435 2945 case FloatCon:
duke@435 2946 case FloatBot:
duke@435 2947 case DoubleTop:
duke@435 2948 case DoubleCon:
duke@435 2949 case DoubleBot:
coleenp@548 2950 case NarrowOop:
roland@4159 2951 case NarrowKlass:
duke@435 2952 case Bottom: // Ye Olde Default
duke@435 2953 return Type::BOTTOM;
duke@435 2954 case Top:
duke@435 2955 return this;
duke@435 2956
duke@435 2957 default: // All else is a mistake
duke@435 2958 typerr(t);
duke@435 2959
coleenp@4037 2960 case MetadataPtr:
coleenp@4037 2961 case KlassPtr:
duke@435 2962 case RawPtr: return TypePtr::BOTTOM;
duke@435 2963
duke@435 2964 case AryPtr: { // All arrays inherit from Object class
duke@435 2965 const TypeAryPtr *tp = t->is_aryptr();
duke@435 2966 int offset = meet_offset(tp->offset());
duke@435 2967 PTR ptr = meet_ptr(tp->ptr());
kvn@658 2968 int instance_id = meet_instance_id(tp->instance_id());
duke@435 2969 switch (ptr) {
duke@435 2970 case TopPTR:
duke@435 2971 case AnyNull: // Fall 'down' to dual of object klass
duke@435 2972 if (klass()->equals(ciEnv::current()->Object_klass())) {
kvn@658 2973 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2974 } else {
duke@435 2975 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 2976 ptr = NotNull;
kvn@658 2977 instance_id = InstanceBot;
kvn@658 2978 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
duke@435 2979 }
duke@435 2980 case Constant:
duke@435 2981 case NotNull:
duke@435 2982 case BotPTR: // Fall down to object klass
duke@435 2983 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 2984 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 2985 // If 'this' (InstPtr) is above the centerline and it is Object class
twisti@1040 2986 // then we can subclass in the Java class hierarchy.
duke@435 2987 if (klass()->equals(ciEnv::current()->Object_klass())) {
duke@435 2988 // that is, tp's array type is a subtype of my klass
kvn@1714 2989 return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
kvn@1714 2990 tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2991 }
duke@435 2992 }
duke@435 2993 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 2994 // The meet falls down to Object class below centerline.
duke@435 2995 if( ptr == Constant )
duke@435 2996 ptr = NotNull;
kvn@658 2997 instance_id = InstanceBot;
kvn@658 2998 return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
duke@435 2999 default: typerr(t);
duke@435 3000 }
duke@435 3001 }
duke@435 3002
duke@435 3003 case OopPtr: { // Meeting to OopPtrs
duke@435 3004 // Found a OopPtr type vs self-InstPtr type
kvn@1393 3005 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3006 int offset = meet_offset(tp->offset());
duke@435 3007 PTR ptr = meet_ptr(tp->ptr());
duke@435 3008 switch (tp->ptr()) {
duke@435 3009 case TopPTR:
kvn@658 3010 case AnyNull: {
kvn@658 3011 int instance_id = meet_instance_id(InstanceTop);
duke@435 3012 return make(ptr, klass(), klass_is_exact(),
kvn@658 3013 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 3014 }
duke@435 3015 case NotNull:
kvn@1393 3016 case BotPTR: {
kvn@1393 3017 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 3018 return TypeOopPtr::make(ptr, offset, instance_id);
kvn@1393 3019 }
duke@435 3020 default: typerr(t);
duke@435 3021 }
duke@435 3022 }
duke@435 3023
duke@435 3024 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3025 // Found an AnyPtr type vs self-InstPtr type
duke@435 3026 const TypePtr *tp = t->is_ptr();
duke@435 3027 int offset = meet_offset(tp->offset());
duke@435 3028 PTR ptr = meet_ptr(tp->ptr());
duke@435 3029 switch (tp->ptr()) {
duke@435 3030 case Null:
duke@435 3031 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
kvn@658 3032 // else fall through to AnyNull
duke@435 3033 case TopPTR:
kvn@658 3034 case AnyNull: {
kvn@658 3035 int instance_id = meet_instance_id(InstanceTop);
duke@435 3036 return make( ptr, klass(), klass_is_exact(),
kvn@658 3037 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 3038 }
duke@435 3039 case NotNull:
duke@435 3040 case BotPTR:
duke@435 3041 return TypePtr::make( AnyPtr, ptr, offset );
duke@435 3042 default: typerr(t);
duke@435 3043 }
duke@435 3044 }
duke@435 3045
duke@435 3046 /*
duke@435 3047 A-top }
duke@435 3048 / | \ } Tops
duke@435 3049 B-top A-any C-top }
duke@435 3050 | / | \ | } Any-nulls
duke@435 3051 B-any | C-any }
duke@435 3052 | | |
duke@435 3053 B-con A-con C-con } constants; not comparable across classes
duke@435 3054 | | |
duke@435 3055 B-not | C-not }
duke@435 3056 | \ | / | } not-nulls
duke@435 3057 B-bot A-not C-bot }
duke@435 3058 \ | / } Bottoms
duke@435 3059 A-bot }
duke@435 3060 */
duke@435 3061
duke@435 3062 case InstPtr: { // Meeting 2 Oops?
duke@435 3063 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 3064 const TypeInstPtr *tinst = t->is_instptr();
duke@435 3065 int off = meet_offset( tinst->offset() );
duke@435 3066 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 3067 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 3068
duke@435 3069 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3070 // If we have constants, then we created oops so classes are loaded
duke@435 3071 // and we can handle the constants further down. This case handles
duke@435 3072 // both-not-loaded or both-loaded classes
duke@435 3073 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
duke@435 3074 return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
duke@435 3075 }
duke@435 3076
duke@435 3077 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3078 ciKlass* tinst_klass = tinst->klass();
duke@435 3079 ciKlass* this_klass = this->klass();
duke@435 3080 bool tinst_xk = tinst->klass_is_exact();
duke@435 3081 bool this_xk = this->klass_is_exact();
duke@435 3082 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 3083 // One of these classes has not been loaded
duke@435 3084 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 3085 #ifndef PRODUCT
duke@435 3086 if( PrintOpto && Verbose ) {
duke@435 3087 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 3088 tty->print(" this == "); this->dump(); tty->cr();
duke@435 3089 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 3090 }
duke@435 3091 #endif
duke@435 3092 return unloaded_meet;
duke@435 3093 }
duke@435 3094
duke@435 3095 // Handle mixing oops and interfaces first.
duke@435 3096 if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
duke@435 3097 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 3098 tinst_klass = this_klass;
duke@435 3099 this_klass = tmp;
duke@435 3100 bool tmp2 = tinst_xk;
duke@435 3101 tinst_xk = this_xk;
duke@435 3102 this_xk = tmp2;
duke@435 3103 }
duke@435 3104 if (tinst_klass->is_interface() &&
duke@435 3105 !(this_klass->is_interface() ||
duke@435 3106 // Treat java/lang/Object as an honorary interface,
duke@435 3107 // because we need a bottom for the interface hierarchy.
duke@435 3108 this_klass == ciEnv::current()->Object_klass())) {
duke@435 3109 // Oop meets interface!
duke@435 3110
duke@435 3111 // See if the oop subtypes (implements) interface.
duke@435 3112 ciKlass *k;
duke@435 3113 bool xk;
duke@435 3114 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3115 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 3116 // on whether we are both above the centerline or either is
duke@435 3117 // below the centerline. If we are on the centerline
duke@435 3118 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 3119 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 3120 // If we are keeping this_klass, keep its exactness too.
duke@435 3121 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 3122 } else { // Does not implement, fall to Object
duke@435 3123 // Oop does not implement interface, so mixing falls to Object
duke@435 3124 // just like the verifier does (if both are above the
duke@435 3125 // centerline fall to interface)
duke@435 3126 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 3127 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 3128 // Watch out for Constant vs. AnyNull interface.
duke@435 3129 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 3130 instance_id = InstanceBot;
duke@435 3131 }
duke@435 3132 ciObject* o = NULL; // the Constant value, if any
duke@435 3133 if (ptr == Constant) {
duke@435 3134 // Find out which constant.
duke@435 3135 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 3136 }
kvn@658 3137 return make( ptr, k, xk, o, off, instance_id );
duke@435 3138 }
duke@435 3139
duke@435 3140 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 3141
duke@435 3142 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 3143 // If we split one up & one down AND they subtype, take the down man.
duke@435 3144 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3145 // If both are up and they subtype, take the subtype class.
duke@435 3146 // If both are up and they do NOT subtype, "fall hard".
duke@435 3147 // If both are down and they subtype, take the supertype class.
duke@435 3148 // If both are down and they do NOT subtype, "fall hard".
duke@435 3149 // Constants treated as down.
duke@435 3150
duke@435 3151 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 3152 // "fall hard"; "fall hard" becomes the default case:
duke@435 3153 // If we split one up & one down AND they subtype, take the down man.
duke@435 3154 // If both are up and they subtype, take the subtype class.
duke@435 3155
duke@435 3156 // If both are down and they subtype, "fall hard".
duke@435 3157 // If both are down and they do NOT subtype, "fall hard".
duke@435 3158 // If both are up and they do NOT subtype, "fall hard".
duke@435 3159 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3160
duke@435 3161 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 3162 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 3163 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 3164 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 3165
duke@435 3166 // Check for subtyping:
duke@435 3167 ciKlass *subtype = NULL;
duke@435 3168 bool subtype_exact = false;
duke@435 3169 if( tinst_klass->equals(this_klass) ) {
duke@435 3170 subtype = this_klass;
duke@435 3171 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 3172 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3173 subtype = this_klass; // Pick subtyping class
duke@435 3174 subtype_exact = this_xk;
duke@435 3175 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 3176 subtype = tinst_klass; // Pick subtyping class
duke@435 3177 subtype_exact = tinst_xk;
duke@435 3178 }
duke@435 3179
duke@435 3180 if( subtype ) {
duke@435 3181 if( above_centerline(ptr) ) { // both are up?
duke@435 3182 this_klass = tinst_klass = subtype;
duke@435 3183 this_xk = tinst_xk = subtype_exact;
duke@435 3184 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 3185 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 3186 this_xk = tinst_xk;
duke@435 3187 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 3188 tinst_klass = this_klass; // this is down; keep down man
duke@435 3189 tinst_xk = this_xk;
duke@435 3190 } else {
duke@435 3191 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 3192 }
duke@435 3193 }
duke@435 3194
duke@435 3195 // Check for classes now being equal
duke@435 3196 if (tinst_klass->equals(this_klass)) {
duke@435 3197 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3198 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3199 // handled elsewhere).
duke@435 3200 ciObject* o = NULL; // Assume not constant when done
duke@435 3201 ciObject* this_oop = const_oop();
duke@435 3202 ciObject* tinst_oop = tinst->const_oop();
duke@435 3203 if( ptr == Constant ) {
duke@435 3204 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 3205 this_oop->equals(tinst_oop) )
duke@435 3206 o = this_oop;
duke@435 3207 else if (above_centerline(this ->_ptr))
duke@435 3208 o = tinst_oop;
duke@435 3209 else if (above_centerline(tinst ->_ptr))
duke@435 3210 o = this_oop;
duke@435 3211 else
duke@435 3212 ptr = NotNull;
duke@435 3213 }
duke@435 3214 return make( ptr, this_klass, this_xk, o, off, instance_id );
duke@435 3215 } // Else classes are not equal
duke@435 3216
duke@435 3217 // Since klasses are different, we require a LCA in the Java
duke@435 3218 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3219 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3220 ptr = NotNull;
kvn@682 3221 instance_id = InstanceBot;
duke@435 3222
duke@435 3223 // Now we find the LCA of Java classes
duke@435 3224 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
kvn@658 3225 return make( ptr, k, false, NULL, off, instance_id );
duke@435 3226 } // End of case InstPtr
duke@435 3227
duke@435 3228 } // End of switch
duke@435 3229 return this; // Return the double constant
duke@435 3230 }
duke@435 3231
duke@435 3232
duke@435 3233 //------------------------java_mirror_type--------------------------------------
duke@435 3234 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3235 // must be a singleton type
duke@435 3236 if( const_oop() == NULL ) return NULL;
duke@435 3237
duke@435 3238 // must be of type java.lang.Class
duke@435 3239 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3240
duke@435 3241 return const_oop()->as_instance()->java_mirror_type();
duke@435 3242 }
duke@435 3243
duke@435 3244
duke@435 3245 //------------------------------xdual------------------------------------------
duke@435 3246 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
twisti@1040 3247 // inheritance mechanism.
duke@435 3248 const Type *TypeInstPtr::xdual() const {
kvn@658 3249 return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 3250 }
duke@435 3251
duke@435 3252 //------------------------------eq---------------------------------------------
duke@435 3253 // Structural equality check for Type representations
duke@435 3254 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3255 const TypeInstPtr *p = t->is_instptr();
duke@435 3256 return
duke@435 3257 klass()->equals(p->klass()) &&
duke@435 3258 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3259 }
duke@435 3260
duke@435 3261 //------------------------------hash-------------------------------------------
duke@435 3262 // Type-specific hashing function.
duke@435 3263 int TypeInstPtr::hash(void) const {
duke@435 3264 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 3265 return hash;
duke@435 3266 }
duke@435 3267
duke@435 3268 //------------------------------dump2------------------------------------------
duke@435 3269 // Dump oop Type
duke@435 3270 #ifndef PRODUCT
duke@435 3271 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3272 // Print the name of the klass.
duke@435 3273 klass()->print_name_on(st);
duke@435 3274
duke@435 3275 switch( _ptr ) {
duke@435 3276 case Constant:
duke@435 3277 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3278 if (WizardMode || Verbose) {
duke@435 3279 const_oop()->print_oop(st);
duke@435 3280 }
duke@435 3281 case BotPTR:
duke@435 3282 if (!WizardMode && !Verbose) {
duke@435 3283 if( _klass_is_exact ) st->print(":exact");
duke@435 3284 break;
duke@435 3285 }
duke@435 3286 case TopPTR:
duke@435 3287 case AnyNull:
duke@435 3288 case NotNull:
duke@435 3289 st->print(":%s", ptr_msg[_ptr]);
duke@435 3290 if( _klass_is_exact ) st->print(":exact");
duke@435 3291 break;
duke@435 3292 }
duke@435 3293
duke@435 3294 if( _offset ) { // Dump offset, if any
duke@435 3295 if( _offset == OffsetBot ) st->print("+any");
duke@435 3296 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3297 else st->print("+%d", _offset);
duke@435 3298 }
duke@435 3299
duke@435 3300 st->print(" *");
kvn@658 3301 if (_instance_id == InstanceTop)
kvn@658 3302 st->print(",iid=top");
kvn@658 3303 else if (_instance_id != InstanceBot)
duke@435 3304 st->print(",iid=%d",_instance_id);
duke@435 3305 }
duke@435 3306 #endif
duke@435 3307
duke@435 3308 //------------------------------add_offset-------------------------------------
kvn@741 3309 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
duke@435 3310 return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
duke@435 3311 }
duke@435 3312
duke@435 3313 //=============================================================================
duke@435 3314 // Convenience common pre-built types.
duke@435 3315 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3316 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3317 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3318 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3319 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3320 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3321 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3322 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3323 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3324 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3325
duke@435 3326 //------------------------------make-------------------------------------------
duke@435 3327 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3328 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3329 "integral arrays must be pre-equipped with a class");
duke@435 3330 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3331 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3332 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3333 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3334 }
duke@435 3335
duke@435 3336 //------------------------------make-------------------------------------------
duke@435 3337 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3338 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3339 "integral arrays must be pre-equipped with a class");
duke@435 3340 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3341 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3342 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3343 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3344 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3345 }
duke@435 3346
duke@435 3347 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3348 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3349 if( ptr == _ptr ) return this;
kvn@658 3350 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3351 }
duke@435 3352
duke@435 3353
duke@435 3354 //-----------------------------cast_to_exactness-------------------------------
duke@435 3355 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3356 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3357 if (!UseExactTypes) return this;
duke@435 3358 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
duke@435 3359 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
duke@435 3360 }
duke@435 3361
kvn@682 3362 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3363 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3364 if( instance_id == _instance_id ) return this;
kvn@682 3365 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
duke@435 3366 }
duke@435 3367
duke@435 3368 //-----------------------------narrow_size_type-------------------------------
duke@435 3369 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3370 // which is kind of slow (and cached elsewhere by other users).
duke@435 3371 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3372 static jint max_array_length(BasicType etype) {
duke@435 3373 jint& cache = max_array_length_cache[etype];
duke@435 3374 jint res = cache;
duke@435 3375 if (res == 0) {
duke@435 3376 switch (etype) {
coleenp@548 3377 case T_NARROWOOP:
coleenp@548 3378 etype = T_OBJECT;
coleenp@548 3379 break;
roland@4159 3380 case T_NARROWKLASS:
duke@435 3381 case T_CONFLICT:
duke@435 3382 case T_ILLEGAL:
duke@435 3383 case T_VOID:
duke@435 3384 etype = T_BYTE; // will produce conservatively high value
duke@435 3385 }
duke@435 3386 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3387 }
duke@435 3388 return res;
duke@435 3389 }
duke@435 3390
duke@435 3391 // Narrow the given size type to the index range for the given array base type.
duke@435 3392 // Return NULL if the resulting int type becomes empty.
rasbold@801 3393 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
duke@435 3394 jint hi = size->_hi;
duke@435 3395 jint lo = size->_lo;
duke@435 3396 jint min_lo = 0;
rasbold@801 3397 jint max_hi = max_array_length(elem()->basic_type());
duke@435 3398 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3399 bool chg = false;
duke@435 3400 if (lo < min_lo) { lo = min_lo; chg = true; }
duke@435 3401 if (hi > max_hi) { hi = max_hi; chg = true; }
twisti@1040 3402 // Negative length arrays will produce weird intermediate dead fast-path code
duke@435 3403 if (lo > hi)
rasbold@801 3404 return TypeInt::ZERO;
duke@435 3405 if (!chg)
duke@435 3406 return size;
duke@435 3407 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3408 }
duke@435 3409
duke@435 3410 //-------------------------------cast_to_size----------------------------------
duke@435 3411 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3412 assert(new_size != NULL, "");
rasbold@801 3413 new_size = narrow_size_type(new_size);
duke@435 3414 if (new_size == size()) return this;
duke@435 3415 const TypeAry* new_ary = TypeAry::make(elem(), new_size);
kvn@658 3416 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3417 }
duke@435 3418
duke@435 3419
duke@435 3420 //------------------------------eq---------------------------------------------
duke@435 3421 // Structural equality check for Type representations
duke@435 3422 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3423 const TypeAryPtr *p = t->is_aryptr();
duke@435 3424 return
duke@435 3425 _ary == p->_ary && // Check array
duke@435 3426 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3427 }
duke@435 3428
duke@435 3429 //------------------------------hash-------------------------------------------
duke@435 3430 // Type-specific hashing function.
duke@435 3431 int TypeAryPtr::hash(void) const {
duke@435 3432 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3433 }
duke@435 3434
duke@435 3435 //------------------------------meet-------------------------------------------
duke@435 3436 // Compute the MEET of two types. It returns a new Type object.
duke@435 3437 const Type *TypeAryPtr::xmeet( const Type *t ) const {
duke@435 3438 // Perform a fast test for common case; meeting the same types together.
duke@435 3439 if( this == t ) return this; // Meeting same type-rep?
duke@435 3440 // Current "this->_base" is Pointer
duke@435 3441 switch (t->base()) { // switch on original type
duke@435 3442
duke@435 3443 // Mixing ints & oops happens when javac reuses local variables
duke@435 3444 case Int:
duke@435 3445 case Long:
duke@435 3446 case FloatTop:
duke@435 3447 case FloatCon:
duke@435 3448 case FloatBot:
duke@435 3449 case DoubleTop:
duke@435 3450 case DoubleCon:
duke@435 3451 case DoubleBot:
coleenp@548 3452 case NarrowOop:
roland@4159 3453 case NarrowKlass:
duke@435 3454 case Bottom: // Ye Olde Default
duke@435 3455 return Type::BOTTOM;
duke@435 3456 case Top:
duke@435 3457 return this;
duke@435 3458
duke@435 3459 default: // All else is a mistake
duke@435 3460 typerr(t);
duke@435 3461
duke@435 3462 case OopPtr: { // Meeting to OopPtrs
duke@435 3463 // Found a OopPtr type vs self-AryPtr type
kvn@1393 3464 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3465 int offset = meet_offset(tp->offset());
duke@435 3466 PTR ptr = meet_ptr(tp->ptr());
duke@435 3467 switch (tp->ptr()) {
duke@435 3468 case TopPTR:
kvn@658 3469 case AnyNull: {
kvn@658 3470 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3471 return make(ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3472 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3473 }
duke@435 3474 case BotPTR:
kvn@1393 3475 case NotNull: {
kvn@1393 3476 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 3477 return TypeOopPtr::make(ptr, offset, instance_id);
kvn@1393 3478 }
duke@435 3479 default: ShouldNotReachHere();
duke@435 3480 }
duke@435 3481 }
duke@435 3482
duke@435 3483 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3484 // Found an AnyPtr type vs self-AryPtr type
duke@435 3485 const TypePtr *tp = t->is_ptr();
duke@435 3486 int offset = meet_offset(tp->offset());
duke@435 3487 PTR ptr = meet_ptr(tp->ptr());
duke@435 3488 switch (tp->ptr()) {
duke@435 3489 case TopPTR:
duke@435 3490 return this;
duke@435 3491 case BotPTR:
duke@435 3492 case NotNull:
duke@435 3493 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3494 case Null:
duke@435 3495 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3496 // else fall through to AnyNull
kvn@658 3497 case AnyNull: {
kvn@658 3498 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3499 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3500 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3501 }
duke@435 3502 default: ShouldNotReachHere();
duke@435 3503 }
duke@435 3504 }
duke@435 3505
coleenp@4037 3506 case MetadataPtr:
coleenp@4037 3507 case KlassPtr:
duke@435 3508 case RawPtr: return TypePtr::BOTTOM;
duke@435 3509
duke@435 3510 case AryPtr: { // Meeting 2 references?
duke@435 3511 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3512 int off = meet_offset(tap->offset());
duke@435 3513 const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
duke@435 3514 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3515 int instance_id = meet_instance_id(tap->instance_id());
duke@435 3516 ciKlass* lazy_klass = NULL;
duke@435 3517 if (tary->_elem->isa_int()) {
duke@435 3518 // Integral array element types have irrelevant lattice relations.
duke@435 3519 // It is the klass that determines array layout, not the element type.
duke@435 3520 if (_klass == NULL)
duke@435 3521 lazy_klass = tap->_klass;
duke@435 3522 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3523 lazy_klass = _klass;
duke@435 3524 } else {
duke@435 3525 // Something like byte[int+] meets char[int+].
duke@435 3526 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3527 instance_id = InstanceBot;
duke@435 3528 tary = TypeAry::make(Type::BOTTOM, tary->_size);
duke@435 3529 }
kvn@2633 3530 } else // Non integral arrays.
kvn@2633 3531 // Must fall to bottom if exact klasses in upper lattice
kvn@2633 3532 // are not equal or super klass is exact.
kvn@2633 3533 if ( above_centerline(ptr) && klass() != tap->klass() &&
kvn@2633 3534 // meet with top[] and bottom[] are processed further down:
kvn@2633 3535 tap ->_klass != NULL && this->_klass != NULL &&
kvn@2633 3536 // both are exact and not equal:
kvn@2633 3537 ((tap ->_klass_is_exact && this->_klass_is_exact) ||
kvn@2633 3538 // 'tap' is exact and super or unrelated:
kvn@2633 3539 (tap ->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
kvn@2633 3540 // 'this' is exact and super or unrelated:
kvn@2633 3541 (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
kvn@2633 3542 tary = TypeAry::make(Type::BOTTOM, tary->_size);
kvn@2633 3543 return make( NotNull, NULL, tary, lazy_klass, false, off, InstanceBot );
duke@435 3544 }
kvn@2633 3545
kvn@2120 3546 bool xk = false;
duke@435 3547 switch (tap->ptr()) {
duke@435 3548 case AnyNull:
duke@435 3549 case TopPTR:
duke@435 3550 // Compute new klass on demand, do not use tap->_klass
duke@435 3551 xk = (tap->_klass_is_exact | this->_klass_is_exact);
kvn@658 3552 return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
duke@435 3553 case Constant: {
duke@435 3554 ciObject* o = const_oop();
duke@435 3555 if( _ptr == Constant ) {
duke@435 3556 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
jrose@1424 3557 xk = (klass() == tap->klass());
duke@435 3558 ptr = NotNull;
duke@435 3559 o = NULL;
kvn@682 3560 instance_id = InstanceBot;
jrose@1424 3561 } else {
jrose@1424 3562 xk = true;
duke@435 3563 }
duke@435 3564 } else if( above_centerline(_ptr) ) {
duke@435 3565 o = tap->const_oop();
jrose@1424 3566 xk = true;
jrose@1424 3567 } else {
kvn@2120 3568 // Only precise for identical arrays
kvn@2120 3569 xk = this->_klass_is_exact && (klass() == tap->klass());
duke@435 3570 }
kvn@2120 3571 return TypeAryPtr::make( ptr, o, tary, lazy_klass, xk, off, instance_id );
duke@435 3572 }
duke@435 3573 case NotNull:
duke@435 3574 case BotPTR:
duke@435 3575 // Compute new klass on demand, do not use tap->_klass
duke@435 3576 if (above_centerline(this->_ptr))
duke@435 3577 xk = tap->_klass_is_exact;
duke@435 3578 else if (above_centerline(tap->_ptr))
duke@435 3579 xk = this->_klass_is_exact;
duke@435 3580 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 3581 (klass() == tap->klass()); // Only precise for identical arrays
kvn@658 3582 return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
duke@435 3583 default: ShouldNotReachHere();
duke@435 3584 }
duke@435 3585 }
duke@435 3586
duke@435 3587 // All arrays inherit from Object class
duke@435 3588 case InstPtr: {
duke@435 3589 const TypeInstPtr *tp = t->is_instptr();
duke@435 3590 int offset = meet_offset(tp->offset());
duke@435 3591 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3592 int instance_id = meet_instance_id(tp->instance_id());
duke@435 3593 switch (ptr) {
duke@435 3594 case TopPTR:
duke@435 3595 case AnyNull: // Fall 'down' to dual of object klass
duke@435 3596 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
kvn@658 3597 return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3598 } else {
duke@435 3599 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3600 ptr = NotNull;
kvn@658 3601 instance_id = InstanceBot;
kvn@658 3602 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3603 }
duke@435 3604 case Constant:
duke@435 3605 case NotNull:
duke@435 3606 case BotPTR: // Fall down to object klass
duke@435 3607 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3608 if (above_centerline(tp->ptr())) {
duke@435 3609 // If 'tp' is above the centerline and it is Object class
twisti@1040 3610 // then we can subclass in the Java class hierarchy.
duke@435 3611 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3612 // that is, my array type is a subtype of 'tp' klass
kvn@1714 3613 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@1714 3614 _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3615 }
duke@435 3616 }
duke@435 3617 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 3618 // The meet falls down to Object class below centerline.
duke@435 3619 if( ptr == Constant )
duke@435 3620 ptr = NotNull;
kvn@658 3621 instance_id = InstanceBot;
kvn@658 3622 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3623 default: typerr(t);
duke@435 3624 }
duke@435 3625 }
duke@435 3626 }
duke@435 3627 return this; // Lint noise
duke@435 3628 }
duke@435 3629
duke@435 3630 //------------------------------xdual------------------------------------------
duke@435 3631 // Dual: compute field-by-field dual
duke@435 3632 const Type *TypeAryPtr::xdual() const {
kvn@658 3633 return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
duke@435 3634 }
duke@435 3635
kvn@1255 3636 //----------------------interface_vs_oop---------------------------------------
kvn@1255 3637 #ifdef ASSERT
kvn@1255 3638 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
kvn@1255 3639 const TypeAryPtr* t_aryptr = t->isa_aryptr();
kvn@1255 3640 if (t_aryptr) {
kvn@1255 3641 return _ary->interface_vs_oop(t_aryptr->_ary);
kvn@1255 3642 }
kvn@1255 3643 return false;
kvn@1255 3644 }
kvn@1255 3645 #endif
kvn@1255 3646
duke@435 3647 //------------------------------dump2------------------------------------------
duke@435 3648 #ifndef PRODUCT
duke@435 3649 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3650 _ary->dump2(d,depth,st);
duke@435 3651 switch( _ptr ) {
duke@435 3652 case Constant:
duke@435 3653 const_oop()->print(st);
duke@435 3654 break;
duke@435 3655 case BotPTR:
duke@435 3656 if (!WizardMode && !Verbose) {
duke@435 3657 if( _klass_is_exact ) st->print(":exact");
duke@435 3658 break;
duke@435 3659 }
duke@435 3660 case TopPTR:
duke@435 3661 case AnyNull:
duke@435 3662 case NotNull:
duke@435 3663 st->print(":%s", ptr_msg[_ptr]);
duke@435 3664 if( _klass_is_exact ) st->print(":exact");
duke@435 3665 break;
duke@435 3666 }
duke@435 3667
kvn@499 3668 if( _offset != 0 ) {
kvn@499 3669 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 3670 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 3671 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 3672 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 3673 else {
kvn@499 3674 BasicType basic_elem_type = elem()->basic_type();
kvn@499 3675 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 3676 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 3677 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 3678 }
kvn@499 3679 }
kvn@499 3680 st->print(" *");
kvn@658 3681 if (_instance_id == InstanceTop)
kvn@658 3682 st->print(",iid=top");
kvn@658 3683 else if (_instance_id != InstanceBot)
duke@435 3684 st->print(",iid=%d",_instance_id);
duke@435 3685 }
duke@435 3686 #endif
duke@435 3687
duke@435 3688 bool TypeAryPtr::empty(void) const {
duke@435 3689 if (_ary->empty()) return true;
duke@435 3690 return TypeOopPtr::empty();
duke@435 3691 }
duke@435 3692
duke@435 3693 //------------------------------add_offset-------------------------------------
kvn@741 3694 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
duke@435 3695 return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
duke@435 3696 }
duke@435 3697
duke@435 3698
duke@435 3699 //=============================================================================
coleenp@548 3700
coleenp@548 3701 //------------------------------hash-------------------------------------------
coleenp@548 3702 // Type-specific hashing function.
roland@4159 3703 int TypeNarrowPtr::hash(void) const {
never@1262 3704 return _ptrtype->hash() + 7;
coleenp@548 3705 }
coleenp@548 3706
roland@4159 3707 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton
roland@4159 3708 return _ptrtype->singleton();
roland@4159 3709 }
roland@4159 3710
roland@4159 3711 bool TypeNarrowPtr::empty(void) const {
roland@4159 3712 return _ptrtype->empty();
roland@4159 3713 }
roland@4159 3714
roland@4159 3715 intptr_t TypeNarrowPtr::get_con() const {
roland@4159 3716 return _ptrtype->get_con();
roland@4159 3717 }
roland@4159 3718
roland@4159 3719 bool TypeNarrowPtr::eq( const Type *t ) const {
roland@4159 3720 const TypeNarrowPtr* tc = isa_same_narrowptr(t);
coleenp@548 3721 if (tc != NULL) {
never@1262 3722 if (_ptrtype->base() != tc->_ptrtype->base()) {
coleenp@548 3723 return false;
coleenp@548 3724 }
never@1262 3725 return tc->_ptrtype->eq(_ptrtype);
coleenp@548 3726 }
coleenp@548 3727 return false;
coleenp@548 3728 }
coleenp@548 3729
roland@4159 3730 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now.
roland@4159 3731 const TypePtr* odual = _ptrtype->dual()->is_ptr();
roland@4159 3732 return make_same_narrowptr(odual);
roland@4159 3733 }
roland@4159 3734
roland@4159 3735
roland@4159 3736 const Type *TypeNarrowPtr::filter( const Type *kills ) const {
roland@4159 3737 if (isa_same_narrowptr(kills)) {
roland@4159 3738 const Type* ft =_ptrtype->filter(is_same_narrowptr(kills)->_ptrtype);
roland@4159 3739 if (ft->empty())
roland@4159 3740 return Type::TOP; // Canonical empty value
roland@4159 3741 if (ft->isa_ptr()) {
roland@4159 3742 return make_hash_same_narrowptr(ft->isa_ptr());
roland@4159 3743 }
roland@4159 3744 return ft;
roland@4159 3745 } else if (kills->isa_ptr()) {
roland@4159 3746 const Type* ft = _ptrtype->join(kills);
roland@4159 3747 if (ft->empty())
roland@4159 3748 return Type::TOP; // Canonical empty value
roland@4159 3749 return ft;
roland@4159 3750 } else {
roland@4159 3751 return Type::TOP;
roland@4159 3752 }
coleenp@548 3753 }
coleenp@548 3754
kvn@728 3755 //------------------------------xmeet------------------------------------------
coleenp@548 3756 // Compute the MEET of two types. It returns a new Type object.
roland@4159 3757 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
coleenp@548 3758 // Perform a fast test for common case; meeting the same types together.
coleenp@548 3759 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 3760
roland@4159 3761 if (t->base() == base()) {
roland@4159 3762 const Type* result = _ptrtype->xmeet(t->make_ptr());
roland@4159 3763 if (result->isa_ptr()) {
roland@4159 3764 return make_hash_same_narrowptr(result->is_ptr());
roland@4159 3765 }
roland@4159 3766 return result;
roland@4159 3767 }
roland@4159 3768
roland@4159 3769 // Current "this->_base" is NarrowKlass or NarrowOop
coleenp@548 3770 switch (t->base()) { // switch on original type
coleenp@548 3771
coleenp@548 3772 case Int: // Mixing ints & oops happens when javac
coleenp@548 3773 case Long: // reuses local variables
coleenp@548 3774 case FloatTop:
coleenp@548 3775 case FloatCon:
coleenp@548 3776 case FloatBot:
coleenp@548 3777 case DoubleTop:
coleenp@548 3778 case DoubleCon:
coleenp@548 3779 case DoubleBot:
kvn@728 3780 case AnyPtr:
kvn@728 3781 case RawPtr:
kvn@728 3782 case OopPtr:
kvn@728 3783 case InstPtr:
coleenp@4037 3784 case AryPtr:
coleenp@4037 3785 case MetadataPtr:
kvn@728 3786 case KlassPtr:
roland@4159 3787 case NarrowOop:
roland@4159 3788 case NarrowKlass:
kvn@728 3789
coleenp@548 3790 case Bottom: // Ye Olde Default
coleenp@548 3791 return Type::BOTTOM;
coleenp@548 3792 case Top:
coleenp@548 3793 return this;
coleenp@548 3794
coleenp@548 3795 default: // All else is a mistake
coleenp@548 3796 typerr(t);
coleenp@548 3797
coleenp@548 3798 } // End of switch
kvn@728 3799
kvn@728 3800 return this;
coleenp@548 3801 }
coleenp@548 3802
roland@4159 3803 #ifndef PRODUCT
roland@4159 3804 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 3805 _ptrtype->dump2(d, depth, st);
roland@4159 3806 }
roland@4159 3807 #endif
roland@4159 3808
roland@4159 3809 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
roland@4159 3810 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
roland@4159 3811
roland@4159 3812
roland@4159 3813 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
roland@4159 3814 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
roland@4159 3815 }
roland@4159 3816
coleenp@548 3817
coleenp@548 3818 #ifndef PRODUCT
coleenp@548 3819 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
never@852 3820 st->print("narrowoop: ");
roland@4159 3821 TypeNarrowPtr::dump2(d, depth, st);
coleenp@548 3822 }
coleenp@548 3823 #endif
coleenp@548 3824
roland@4159 3825 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
roland@4159 3826
roland@4159 3827 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
roland@4159 3828 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
roland@4159 3829 }
roland@4159 3830
roland@4159 3831 #ifndef PRODUCT
roland@4159 3832 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 3833 st->print("narrowklass: ");
roland@4159 3834 TypeNarrowPtr::dump2(d, depth, st);
roland@4159 3835 }
roland@4159 3836 #endif
coleenp@548 3837
coleenp@4037 3838
coleenp@4037 3839 //------------------------------eq---------------------------------------------
coleenp@4037 3840 // Structural equality check for Type representations
coleenp@4037 3841 bool TypeMetadataPtr::eq( const Type *t ) const {
coleenp@4037 3842 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
coleenp@4037 3843 ciMetadata* one = metadata();
coleenp@4037 3844 ciMetadata* two = a->metadata();
coleenp@4037 3845 if (one == NULL || two == NULL) {
coleenp@4037 3846 return (one == two) && TypePtr::eq(t);
coleenp@4037 3847 } else {
coleenp@4037 3848 return one->equals(two) && TypePtr::eq(t);
coleenp@4037 3849 }
coleenp@4037 3850 }
coleenp@4037 3851
coleenp@4037 3852 //------------------------------hash-------------------------------------------
coleenp@4037 3853 // Type-specific hashing function.
coleenp@4037 3854 int TypeMetadataPtr::hash(void) const {
coleenp@4037 3855 return
coleenp@4037 3856 (metadata() ? metadata()->hash() : 0) +
coleenp@4037 3857 TypePtr::hash();
coleenp@4037 3858 }
coleenp@4037 3859
coleenp@4037 3860 //------------------------------singleton--------------------------------------
coleenp@4037 3861 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 3862 // constants
coleenp@4037 3863 bool TypeMetadataPtr::singleton(void) const {
coleenp@4037 3864 // detune optimizer to not generate constant metadta + constant offset as a constant!
coleenp@4037 3865 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 3866 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 3867 }
coleenp@4037 3868
coleenp@4037 3869 //------------------------------add_offset-------------------------------------
coleenp@4037 3870 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
coleenp@4037 3871 return make( _ptr, _metadata, xadd_offset(offset));
coleenp@4037 3872 }
coleenp@4037 3873
coleenp@4037 3874 //-----------------------------filter------------------------------------------
coleenp@4037 3875 // Do not allow interface-vs.-noninterface joins to collapse to top.
coleenp@4037 3876 const Type *TypeMetadataPtr::filter( const Type *kills ) const {
coleenp@4037 3877 const TypeMetadataPtr* ft = join(kills)->isa_metadataptr();
coleenp@4037 3878 if (ft == NULL || ft->empty())
coleenp@4037 3879 return Type::TOP; // Canonical empty value
coleenp@4037 3880 return ft;
coleenp@4037 3881 }
coleenp@4037 3882
coleenp@4037 3883 //------------------------------get_con----------------------------------------
coleenp@4037 3884 intptr_t TypeMetadataPtr::get_con() const {
coleenp@4037 3885 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 3886 assert( _offset >= 0, "" );
coleenp@4037 3887
coleenp@4037 3888 if (_offset != 0) {
coleenp@4037 3889 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 3890 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 3891 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 3892 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 3893 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 3894 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 3895 // but this assertion here is to help prevent its occurence.
coleenp@4037 3896 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 3897 ShouldNotReachHere();
coleenp@4037 3898 }
coleenp@4037 3899
coleenp@4037 3900 return (intptr_t)metadata()->constant_encoding();
coleenp@4037 3901 }
coleenp@4037 3902
coleenp@4037 3903 //------------------------------cast_to_ptr_type-------------------------------
coleenp@4037 3904 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
coleenp@4037 3905 if( ptr == _ptr ) return this;
coleenp@4037 3906 return make(ptr, metadata(), _offset);
coleenp@4037 3907 }
coleenp@4037 3908
coleenp@4037 3909 //------------------------------meet-------------------------------------------
coleenp@4037 3910 // Compute the MEET of two types. It returns a new Type object.
coleenp@4037 3911 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
coleenp@4037 3912 // Perform a fast test for common case; meeting the same types together.
coleenp@4037 3913 if( this == t ) return this; // Meeting same type-rep?
coleenp@4037 3914
coleenp@4037 3915 // Current "this->_base" is OopPtr
coleenp@4037 3916 switch (t->base()) { // switch on original type
coleenp@4037 3917
coleenp@4037 3918 case Int: // Mixing ints & oops happens when javac
coleenp@4037 3919 case Long: // reuses local variables
coleenp@4037 3920 case FloatTop:
coleenp@4037 3921 case FloatCon:
coleenp@4037 3922 case FloatBot:
coleenp@4037 3923 case DoubleTop:
coleenp@4037 3924 case DoubleCon:
coleenp@4037 3925 case DoubleBot:
coleenp@4037 3926 case NarrowOop:
roland@4159 3927 case NarrowKlass:
coleenp@4037 3928 case Bottom: // Ye Olde Default
coleenp@4037 3929 return Type::BOTTOM;
coleenp@4037 3930 case Top:
coleenp@4037 3931 return this;
coleenp@4037 3932
coleenp@4037 3933 default: // All else is a mistake
coleenp@4037 3934 typerr(t);
coleenp@4037 3935
coleenp@4037 3936 case AnyPtr: {
coleenp@4037 3937 // Found an AnyPtr type vs self-OopPtr type
coleenp@4037 3938 const TypePtr *tp = t->is_ptr();
coleenp@4037 3939 int offset = meet_offset(tp->offset());
coleenp@4037 3940 PTR ptr = meet_ptr(tp->ptr());
coleenp@4037 3941 switch (tp->ptr()) {
coleenp@4037 3942 case Null:
coleenp@4037 3943 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 3944 // else fall through:
coleenp@4037 3945 case TopPTR:
coleenp@4037 3946 case AnyNull: {
coleenp@4037 3947 return make(ptr, NULL, offset);
coleenp@4037 3948 }
coleenp@4037 3949 case BotPTR:
coleenp@4037 3950 case NotNull:
coleenp@4037 3951 return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 3952 default: typerr(t);
coleenp@4037 3953 }
coleenp@4037 3954 }
coleenp@4037 3955
coleenp@4037 3956 case RawPtr:
coleenp@4037 3957 case KlassPtr:
coleenp@4037 3958 case OopPtr:
coleenp@4037 3959 case InstPtr:
coleenp@4037 3960 case AryPtr:
coleenp@4037 3961 return TypePtr::BOTTOM; // Oop meet raw is not well defined
coleenp@4037 3962
roland@4040 3963 case MetadataPtr: {
roland@4040 3964 const TypeMetadataPtr *tp = t->is_metadataptr();
roland@4040 3965 int offset = meet_offset(tp->offset());
roland@4040 3966 PTR tptr = tp->ptr();
roland@4040 3967 PTR ptr = meet_ptr(tptr);
roland@4040 3968 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
roland@4040 3969 if (tptr == TopPTR || _ptr == TopPTR ||
roland@4040 3970 metadata()->equals(tp->metadata())) {
roland@4040 3971 return make(ptr, md, offset);
roland@4040 3972 }
roland@4040 3973 // metadata is different
roland@4040 3974 if( ptr == Constant ) { // Cannot be equal constants, so...
roland@4040 3975 if( tptr == Constant && _ptr != Constant) return t;
roland@4040 3976 if( _ptr == Constant && tptr != Constant) return this;
roland@4040 3977 ptr = NotNull; // Fall down in lattice
roland@4040 3978 }
roland@4040 3979 return make(ptr, NULL, offset);
coleenp@4037 3980 break;
roland@4040 3981 }
coleenp@4037 3982 } // End of switch
coleenp@4037 3983 return this; // Return the double constant
coleenp@4037 3984 }
coleenp@4037 3985
coleenp@4037 3986
coleenp@4037 3987 //------------------------------xdual------------------------------------------
coleenp@4037 3988 // Dual of a pure metadata pointer.
coleenp@4037 3989 const Type *TypeMetadataPtr::xdual() const {
coleenp@4037 3990 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
coleenp@4037 3991 }
coleenp@4037 3992
coleenp@4037 3993 //------------------------------dump2------------------------------------------
coleenp@4037 3994 #ifndef PRODUCT
coleenp@4037 3995 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
coleenp@4037 3996 st->print("metadataptr:%s", ptr_msg[_ptr]);
coleenp@4037 3997 if( metadata() ) st->print(INTPTR_FORMAT, metadata());
coleenp@4037 3998 switch( _offset ) {
coleenp@4037 3999 case OffsetTop: st->print("+top"); break;
coleenp@4037 4000 case OffsetBot: st->print("+any"); break;
coleenp@4037 4001 case 0: break;
coleenp@4037 4002 default: st->print("+%d",_offset); break;
coleenp@4037 4003 }
coleenp@4037 4004 }
coleenp@4037 4005 #endif
coleenp@4037 4006
coleenp@4037 4007
coleenp@4037 4008 //=============================================================================
coleenp@4037 4009 // Convenience common pre-built type.
coleenp@4037 4010 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
coleenp@4037 4011
coleenp@4037 4012 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
coleenp@4037 4013 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
coleenp@4037 4014 }
coleenp@4037 4015
coleenp@4037 4016 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
coleenp@4037 4017 return make(Constant, m, 0);
coleenp@4037 4018 }
coleenp@4037 4019 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
coleenp@4037 4020 return make(Constant, m, 0);
coleenp@4037 4021 }
coleenp@4037 4022
coleenp@4037 4023 //------------------------------make-------------------------------------------
coleenp@4037 4024 // Create a meta data constant
coleenp@4037 4025 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
coleenp@4037 4026 assert(m == NULL || !m->is_klass(), "wrong type");
coleenp@4037 4027 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
coleenp@4037 4028 }
coleenp@4037 4029
coleenp@4037 4030
coleenp@548 4031 //=============================================================================
duke@435 4032 // Convenience common pre-built types.
duke@435 4033
duke@435 4034 // Not-null object klass or below
duke@435 4035 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 4036 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 4037
coleenp@4037 4038 //------------------------------TypeKlassPtr-----------------------------------
duke@435 4039 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
coleenp@4037 4040 : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
duke@435 4041 }
duke@435 4042
duke@435 4043 //------------------------------make-------------------------------------------
duke@435 4044 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 4045 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 4046 assert( k != NULL, "Expect a non-NULL klass");
coleenp@4037 4047 assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
duke@435 4048 TypeKlassPtr *r =
duke@435 4049 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 4050
duke@435 4051 return r;
duke@435 4052 }
duke@435 4053
duke@435 4054 //------------------------------eq---------------------------------------------
duke@435 4055 // Structural equality check for Type representations
duke@435 4056 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 4057 const TypeKlassPtr *p = t->is_klassptr();
duke@435 4058 return
duke@435 4059 klass()->equals(p->klass()) &&
coleenp@4037 4060 TypePtr::eq(p);
duke@435 4061 }
duke@435 4062
duke@435 4063 //------------------------------hash-------------------------------------------
duke@435 4064 // Type-specific hashing function.
duke@435 4065 int TypeKlassPtr::hash(void) const {
coleenp@4037 4066 return klass()->hash() + TypePtr::hash();
coleenp@4037 4067 }
coleenp@4037 4068
coleenp@4037 4069 //------------------------------singleton--------------------------------------
coleenp@4037 4070 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 4071 // constants
coleenp@4037 4072 bool TypeKlassPtr::singleton(void) const {
coleenp@4037 4073 // detune optimizer to not generate constant klass + constant offset as a constant!
coleenp@4037 4074 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 4075 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 4076 }
duke@435 4077
kvn@2116 4078 //----------------------compute_klass------------------------------------------
kvn@2116 4079 // Compute the defining klass for this class
kvn@2116 4080 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
kvn@2116 4081 // Compute _klass based on element type.
duke@435 4082 ciKlass* k_ary = NULL;
duke@435 4083 const TypeInstPtr *tinst;
duke@435 4084 const TypeAryPtr *tary;
coleenp@548 4085 const Type* el = elem();
coleenp@548 4086 if (el->isa_narrowoop()) {
kvn@656 4087 el = el->make_ptr();
coleenp@548 4088 }
coleenp@548 4089
duke@435 4090 // Get element klass
coleenp@548 4091 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 4092 // Compute array klass from element klass
duke@435 4093 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 4094 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 4095 // Compute array klass from element klass
duke@435 4096 ciKlass* k_elem = tary->klass();
duke@435 4097 // If element type is something like bottom[], k_elem will be null.
duke@435 4098 if (k_elem != NULL)
duke@435 4099 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 4100 } else if ((el->base() == Type::Top) ||
coleenp@548 4101 (el->base() == Type::Bottom)) {
duke@435 4102 // element type of Bottom occurs from meet of basic type
duke@435 4103 // and object; Top occurs when doing join on Bottom.
duke@435 4104 // Leave k_ary at NULL.
duke@435 4105 } else {
duke@435 4106 // Cannot compute array klass directly from basic type,
duke@435 4107 // since subtypes of TypeInt all have basic type T_INT.
kvn@2116 4108 #ifdef ASSERT
kvn@2116 4109 if (verify && el->isa_int()) {
kvn@2116 4110 // Check simple cases when verifying klass.
kvn@2116 4111 BasicType bt = T_ILLEGAL;
kvn@2116 4112 if (el == TypeInt::BYTE) {
kvn@2116 4113 bt = T_BYTE;
kvn@2116 4114 } else if (el == TypeInt::SHORT) {
kvn@2116 4115 bt = T_SHORT;
kvn@2116 4116 } else if (el == TypeInt::CHAR) {
kvn@2116 4117 bt = T_CHAR;
kvn@2116 4118 } else if (el == TypeInt::INT) {
kvn@2116 4119 bt = T_INT;
kvn@2116 4120 } else {
kvn@2116 4121 return _klass; // just return specified klass
kvn@2116 4122 }
kvn@2116 4123 return ciTypeArrayKlass::make(bt);
kvn@2116 4124 }
kvn@2116 4125 #endif
coleenp@548 4126 assert(!el->isa_int(),
duke@435 4127 "integral arrays must be pre-equipped with a class");
duke@435 4128 // Compute array klass directly from basic type
coleenp@548 4129 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 4130 }
kvn@2116 4131 return k_ary;
kvn@2116 4132 }
kvn@2116 4133
kvn@2116 4134 //------------------------------klass------------------------------------------
kvn@2116 4135 // Return the defining klass for this class
kvn@2116 4136 ciKlass* TypeAryPtr::klass() const {
kvn@2116 4137 if( _klass ) return _klass; // Return cached value, if possible
kvn@2116 4138
kvn@2116 4139 // Oops, need to compute _klass and cache it
kvn@2116 4140 ciKlass* k_ary = compute_klass();
duke@435 4141
kvn@2636 4142 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
duke@435 4143 // The _klass field acts as a cache of the underlying
duke@435 4144 // ciKlass for this array type. In order to set the field,
duke@435 4145 // we need to cast away const-ness.
duke@435 4146 //
duke@435 4147 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 4148 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 4149 // active compilations. However, the ciKlass which represents
duke@435 4150 // this Type is *not* shared between compilations, so caching
duke@435 4151 // this value would result in fetching a dangling pointer.
duke@435 4152 //
duke@435 4153 // Recomputing the underlying ciKlass for each request is
duke@435 4154 // a bit less efficient than caching, but calls to
duke@435 4155 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 4156 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 4157 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 4158 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 4159 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 4160 }
kvn@598 4161 }
duke@435 4162 return k_ary;
duke@435 4163 }
duke@435 4164
duke@435 4165
duke@435 4166 //------------------------------add_offset-------------------------------------
duke@435 4167 // Access internals of klass object
kvn@741 4168 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
duke@435 4169 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 4170 }
duke@435 4171
duke@435 4172 //------------------------------cast_to_ptr_type-------------------------------
duke@435 4173 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
kvn@992 4174 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
duke@435 4175 if( ptr == _ptr ) return this;
duke@435 4176 return make(ptr, _klass, _offset);
duke@435 4177 }
duke@435 4178
duke@435 4179
duke@435 4180 //-----------------------------cast_to_exactness-------------------------------
duke@435 4181 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 4182 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 4183 if (!UseExactTypes) return this;
duke@435 4184 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 4185 }
duke@435 4186
duke@435 4187
duke@435 4188 //-----------------------------as_instance_type--------------------------------
duke@435 4189 // Corresponding type for an instance of the given class.
duke@435 4190 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 4191 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 4192 ciKlass* k = klass();
duke@435 4193 bool xk = klass_is_exact();
duke@435 4194 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 4195 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
duke@435 4196 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 4197 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 4198 }
duke@435 4199
duke@435 4200
duke@435 4201 //------------------------------xmeet------------------------------------------
duke@435 4202 // Compute the MEET of two types, return a new Type object.
duke@435 4203 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 4204 // Perform a fast test for common case; meeting the same types together.
duke@435 4205 if( this == t ) return this; // Meeting same type-rep?
duke@435 4206
duke@435 4207 // Current "this->_base" is Pointer
duke@435 4208 switch (t->base()) { // switch on original type
duke@435 4209
duke@435 4210 case Int: // Mixing ints & oops happens when javac
duke@435 4211 case Long: // reuses local variables
duke@435 4212 case FloatTop:
duke@435 4213 case FloatCon:
duke@435 4214 case FloatBot:
duke@435 4215 case DoubleTop:
duke@435 4216 case DoubleCon:
duke@435 4217 case DoubleBot:
kvn@728 4218 case NarrowOop:
roland@4159 4219 case NarrowKlass:
duke@435 4220 case Bottom: // Ye Olde Default
duke@435 4221 return Type::BOTTOM;
duke@435 4222 case Top:
duke@435 4223 return this;
duke@435 4224
duke@435 4225 default: // All else is a mistake
duke@435 4226 typerr(t);
duke@435 4227
duke@435 4228 case AnyPtr: { // Meeting to AnyPtrs
duke@435 4229 // Found an AnyPtr type vs self-KlassPtr type
duke@435 4230 const TypePtr *tp = t->is_ptr();
duke@435 4231 int offset = meet_offset(tp->offset());
duke@435 4232 PTR ptr = meet_ptr(tp->ptr());
duke@435 4233 switch (tp->ptr()) {
duke@435 4234 case TopPTR:
duke@435 4235 return this;
duke@435 4236 case Null:
duke@435 4237 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 4238 case AnyNull:
duke@435 4239 return make( ptr, klass(), offset );
duke@435 4240 case BotPTR:
duke@435 4241 case NotNull:
duke@435 4242 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 4243 default: typerr(t);
duke@435 4244 }
duke@435 4245 }
duke@435 4246
coleenp@4037 4247 case RawPtr:
coleenp@4037 4248 case MetadataPtr:
coleenp@4037 4249 case OopPtr:
duke@435 4250 case AryPtr: // Meet with AryPtr
duke@435 4251 case InstPtr: // Meet with InstPtr
coleenp@4037 4252 return TypePtr::BOTTOM;
duke@435 4253
duke@435 4254 //
duke@435 4255 // A-top }
duke@435 4256 // / | \ } Tops
duke@435 4257 // B-top A-any C-top }
duke@435 4258 // | / | \ | } Any-nulls
duke@435 4259 // B-any | C-any }
duke@435 4260 // | | |
duke@435 4261 // B-con A-con C-con } constants; not comparable across classes
duke@435 4262 // | | |
duke@435 4263 // B-not | C-not }
duke@435 4264 // | \ | / | } not-nulls
duke@435 4265 // B-bot A-not C-bot }
duke@435 4266 // \ | / } Bottoms
duke@435 4267 // A-bot }
duke@435 4268 //
duke@435 4269
duke@435 4270 case KlassPtr: { // Meet two KlassPtr types
duke@435 4271 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 4272 int off = meet_offset(tkls->offset());
duke@435 4273 PTR ptr = meet_ptr(tkls->ptr());
duke@435 4274
duke@435 4275 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 4276 // If we have constants, then we created oops so classes are loaded
duke@435 4277 // and we can handle the constants further down. This case handles
duke@435 4278 // not-loaded classes
duke@435 4279 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 4280 return make( ptr, klass(), off );
duke@435 4281 }
duke@435 4282
duke@435 4283 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 4284 ciKlass* tkls_klass = tkls->klass();
duke@435 4285 ciKlass* this_klass = this->klass();
duke@435 4286 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 4287 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 4288
duke@435 4289 // If 'this' type is above the centerline and is a superclass of the
duke@435 4290 // other, we can treat 'this' as having the same type as the other.
duke@435 4291 if ((above_centerline(this->ptr())) &&
duke@435 4292 tkls_klass->is_subtype_of(this_klass)) {
duke@435 4293 this_klass = tkls_klass;
duke@435 4294 }
duke@435 4295 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 4296 // other, we can treat 'tinst' as having the same type as the other.
duke@435 4297 if ((above_centerline(tkls->ptr())) &&
duke@435 4298 this_klass->is_subtype_of(tkls_klass)) {
duke@435 4299 tkls_klass = this_klass;
duke@435 4300 }
duke@435 4301
duke@435 4302 // Check for classes now being equal
duke@435 4303 if (tkls_klass->equals(this_klass)) {
duke@435 4304 // If the klasses are equal, the constants may still differ. Fall to
duke@435 4305 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 4306 // handled elsewhere).
duke@435 4307 if( ptr == Constant ) {
coleenp@4037 4308 if (this->_ptr == Constant && tkls->_ptr == Constant &&
coleenp@4037 4309 this->klass()->equals(tkls->klass()));
coleenp@4037 4310 else if (above_centerline(this->ptr()));
coleenp@4037 4311 else if (above_centerline(tkls->ptr()));
duke@435 4312 else
duke@435 4313 ptr = NotNull;
duke@435 4314 }
duke@435 4315 return make( ptr, this_klass, off );
duke@435 4316 } // Else classes are not equal
duke@435 4317
duke@435 4318 // Since klasses are different, we require the LCA in the Java
duke@435 4319 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 4320 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 4321 ptr = NotNull;
duke@435 4322 // Now we find the LCA of Java classes
duke@435 4323 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 4324 return make( ptr, k, off );
duke@435 4325 } // End of case KlassPtr
duke@435 4326
duke@435 4327 } // End of switch
duke@435 4328 return this; // Return the double constant
duke@435 4329 }
duke@435 4330
duke@435 4331 //------------------------------xdual------------------------------------------
duke@435 4332 // Dual: compute field-by-field dual
duke@435 4333 const Type *TypeKlassPtr::xdual() const {
duke@435 4334 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 4335 }
duke@435 4336
coleenp@4037 4337 //------------------------------get_con----------------------------------------
coleenp@4037 4338 intptr_t TypeKlassPtr::get_con() const {
coleenp@4037 4339 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4340 assert( _offset >= 0, "" );
coleenp@4037 4341
coleenp@4037 4342 if (_offset != 0) {
coleenp@4037 4343 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4344 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4345 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4346 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4347 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4348 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4349 // but this assertion here is to help prevent its occurence.
coleenp@4037 4350 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4351 ShouldNotReachHere();
coleenp@4037 4352 }
coleenp@4037 4353
coleenp@4037 4354 return (intptr_t)klass()->constant_encoding();
coleenp@4037 4355 }
duke@435 4356 //------------------------------dump2------------------------------------------
duke@435 4357 // Dump Klass Type
duke@435 4358 #ifndef PRODUCT
duke@435 4359 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 4360 switch( _ptr ) {
duke@435 4361 case Constant:
duke@435 4362 st->print("precise ");
duke@435 4363 case NotNull:
duke@435 4364 {
duke@435 4365 const char *name = klass()->name()->as_utf8();
duke@435 4366 if( name ) {
duke@435 4367 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 4368 } else {
duke@435 4369 ShouldNotReachHere();
duke@435 4370 }
duke@435 4371 }
duke@435 4372 case BotPTR:
duke@435 4373 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 4374 case TopPTR:
duke@435 4375 case AnyNull:
duke@435 4376 st->print(":%s", ptr_msg[_ptr]);
duke@435 4377 if( _klass_is_exact ) st->print(":exact");
duke@435 4378 break;
duke@435 4379 }
duke@435 4380
duke@435 4381 if( _offset ) { // Dump offset, if any
duke@435 4382 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 4383 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 4384 else { st->print("+%d", _offset); }
duke@435 4385 }
duke@435 4386
duke@435 4387 st->print(" *");
duke@435 4388 }
duke@435 4389 #endif
duke@435 4390
duke@435 4391
duke@435 4392
duke@435 4393 //=============================================================================
duke@435 4394 // Convenience common pre-built types.
duke@435 4395
duke@435 4396 //------------------------------make-------------------------------------------
duke@435 4397 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 4398 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 4399 }
duke@435 4400
duke@435 4401 //------------------------------make-------------------------------------------
duke@435 4402 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 4403 Compile* C = Compile::current();
duke@435 4404 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 4405 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 4406 const TypeTuple *domain;
twisti@1572 4407 if (method->is_static()) {
duke@435 4408 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 4409 } else {
duke@435 4410 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 4411 }
duke@435 4412 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 4413 tf = TypeFunc::make(domain, range);
duke@435 4414 C->set_last_tf(method, tf); // fill cache
duke@435 4415 return tf;
duke@435 4416 }
duke@435 4417
duke@435 4418 //------------------------------meet-------------------------------------------
duke@435 4419 // Compute the MEET of two types. It returns a new Type object.
duke@435 4420 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 4421 // Perform a fast test for common case; meeting the same types together.
duke@435 4422 if( this == t ) return this; // Meeting same type-rep?
duke@435 4423
duke@435 4424 // Current "this->_base" is Func
duke@435 4425 switch (t->base()) { // switch on original type
duke@435 4426
duke@435 4427 case Bottom: // Ye Olde Default
duke@435 4428 return t;
duke@435 4429
duke@435 4430 default: // All else is a mistake
duke@435 4431 typerr(t);
duke@435 4432
duke@435 4433 case Top:
duke@435 4434 break;
duke@435 4435 }
duke@435 4436 return this; // Return the double constant
duke@435 4437 }
duke@435 4438
duke@435 4439 //------------------------------xdual------------------------------------------
duke@435 4440 // Dual: compute field-by-field dual
duke@435 4441 const Type *TypeFunc::xdual() const {
duke@435 4442 return this;
duke@435 4443 }
duke@435 4444
duke@435 4445 //------------------------------eq---------------------------------------------
duke@435 4446 // Structural equality check for Type representations
duke@435 4447 bool TypeFunc::eq( const Type *t ) const {
duke@435 4448 const TypeFunc *a = (const TypeFunc*)t;
duke@435 4449 return _domain == a->_domain &&
duke@435 4450 _range == a->_range;
duke@435 4451 }
duke@435 4452
duke@435 4453 //------------------------------hash-------------------------------------------
duke@435 4454 // Type-specific hashing function.
duke@435 4455 int TypeFunc::hash(void) const {
duke@435 4456 return (intptr_t)_domain + (intptr_t)_range;
duke@435 4457 }
duke@435 4458
duke@435 4459 //------------------------------dump2------------------------------------------
duke@435 4460 // Dump Function Type
duke@435 4461 #ifndef PRODUCT
duke@435 4462 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4463 if( _range->_cnt <= Parms )
duke@435 4464 st->print("void");
duke@435 4465 else {
duke@435 4466 uint i;
duke@435 4467 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 4468 _range->field_at(i)->dump2(d,depth,st);
duke@435 4469 st->print("/");
duke@435 4470 }
duke@435 4471 _range->field_at(i)->dump2(d,depth,st);
duke@435 4472 }
duke@435 4473 st->print(" ");
duke@435 4474 st->print("( ");
duke@435 4475 if( !depth || d[this] ) { // Check for recursive dump
duke@435 4476 st->print("...)");
duke@435 4477 return;
duke@435 4478 }
duke@435 4479 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 4480 if (Parms < _domain->_cnt)
duke@435 4481 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 4482 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 4483 st->print(", ");
duke@435 4484 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 4485 }
duke@435 4486 st->print(" )");
duke@435 4487 }
duke@435 4488 #endif
duke@435 4489
duke@435 4490 //------------------------------singleton--------------------------------------
duke@435 4491 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 4492 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 4493 // or a single symbol.
duke@435 4494 bool TypeFunc::singleton(void) const {
duke@435 4495 return false; // Never a singleton
duke@435 4496 }
duke@435 4497
duke@435 4498 bool TypeFunc::empty(void) const {
duke@435 4499 return false; // Never empty
duke@435 4500 }
duke@435 4501
duke@435 4502
duke@435 4503 BasicType TypeFunc::return_type() const{
duke@435 4504 if (range()->cnt() == TypeFunc::Parms) {
duke@435 4505 return T_VOID;
duke@435 4506 }
duke@435 4507 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 4508 }

mercurial