src/share/vm/opto/type.cpp

Thu, 23 Jan 2014 12:08:28 +0100

author
rbackman
date
Thu, 23 Jan 2014 12:08:28 +0100
changeset 6375
085b304a1cc5
parent 6313
de95063c0e34
child 6380
62825ea7e51f
permissions
-rw-r--r--

8027754: Enable loop optimizations for loops with MathExact inside
Reviewed-by: kvn, iveresov

duke@435 1 /*
hseigel@4465 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
coleenp@4037 26 #include "ci/ciMethodData.hpp"
stefank@2314 27 #include "ci/ciTypeFlow.hpp"
stefank@2314 28 #include "classfile/symbolTable.hpp"
stefank@2314 29 #include "classfile/systemDictionary.hpp"
stefank@2314 30 #include "compiler/compileLog.hpp"
stefank@2314 31 #include "libadt/dict.hpp"
stefank@2314 32 #include "memory/gcLocker.hpp"
stefank@2314 33 #include "memory/oopFactory.hpp"
stefank@2314 34 #include "memory/resourceArea.hpp"
stefank@2314 35 #include "oops/instanceKlass.hpp"
never@2658 36 #include "oops/instanceMirrorKlass.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "oops/typeArrayKlass.hpp"
stefank@2314 39 #include "opto/matcher.hpp"
stefank@2314 40 #include "opto/node.hpp"
stefank@2314 41 #include "opto/opcodes.hpp"
stefank@2314 42 #include "opto/type.hpp"
stefank@2314 43
duke@435 44 // Portions of code courtesy of Clifford Click
duke@435 45
duke@435 46 // Optimization - Graph Style
duke@435 47
duke@435 48 // Dictionary of types shared among compilations.
duke@435 49 Dict* Type::_shared_type_dict = NULL;
duke@435 50
duke@435 51 // Array which maps compiler types to Basic Types
coleenp@4037 52 Type::TypeInfo Type::_type_info[Type::lastype] = {
coleenp@4037 53 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
coleenp@4037 54 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
coleenp@4037 55 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
coleenp@4037 56 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
coleenp@4037 57 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
coleenp@4037 58 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
coleenp@4037 59 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
roland@4159 60 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass
coleenp@4037 61 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
coleenp@4037 62 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
coleenp@4037 63
dlong@4201 64 #ifndef SPARC
coleenp@4037 65 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS
coleenp@4037 66 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
coleenp@4037 67 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
coleenp@4037 68 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY
coleenp@4037 69 #else
coleenp@4037 70 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
coleenp@4037 71 { Bad, T_ILLEGAL, "vectord:", false, Op_RegD, relocInfo::none }, // VectorD
coleenp@4037 72 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
coleenp@4037 73 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
coleenp@4037 74 #endif // IA32 || AMD64
coleenp@4037 75 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr
coleenp@4037 76 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr
coleenp@4037 77 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr
coleenp@4037 78 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr
coleenp@4037 79 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr
coleenp@4037 80 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr
coleenp@4037 81 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr
coleenp@4037 82 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function
coleenp@4037 83 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio
coleenp@4037 84 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address
coleenp@4037 85 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory
coleenp@4037 86 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop
coleenp@4037 87 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon
coleenp@4037 88 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot
coleenp@4037 89 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop
coleenp@4037 90 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon
coleenp@4037 91 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot
coleenp@4037 92 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom
duke@435 93 };
duke@435 94
duke@435 95 // Map ideal registers (machine types) to ideal types
duke@435 96 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 97
duke@435 98 // Map basic types to canonical Type* pointers.
duke@435 99 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 100
duke@435 101 // Map basic types to constant-zero Types.
duke@435 102 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 103
duke@435 104 // Map basic types to array-body alias types.
duke@435 105 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 106
duke@435 107 //=============================================================================
duke@435 108 // Convenience common pre-built types.
duke@435 109 const Type *Type::ABIO; // State-of-machine only
duke@435 110 const Type *Type::BOTTOM; // All values
duke@435 111 const Type *Type::CONTROL; // Control only
duke@435 112 const Type *Type::DOUBLE; // All doubles
duke@435 113 const Type *Type::FLOAT; // All floats
duke@435 114 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 115 const Type *Type::MEMORY; // Abstract store only
duke@435 116 const Type *Type::RETURN_ADDRESS;
duke@435 117 const Type *Type::TOP; // No values in set
duke@435 118
duke@435 119 //------------------------------get_const_type---------------------------
duke@435 120 const Type* Type::get_const_type(ciType* type) {
duke@435 121 if (type == NULL) {
duke@435 122 return NULL;
duke@435 123 } else if (type->is_primitive_type()) {
duke@435 124 return get_const_basic_type(type->basic_type());
duke@435 125 } else {
duke@435 126 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 127 }
duke@435 128 }
duke@435 129
duke@435 130 //---------------------------array_element_basic_type---------------------------------
duke@435 131 // Mapping to the array element's basic type.
duke@435 132 BasicType Type::array_element_basic_type() const {
duke@435 133 BasicType bt = basic_type();
duke@435 134 if (bt == T_INT) {
duke@435 135 if (this == TypeInt::INT) return T_INT;
duke@435 136 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 137 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 138 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 139 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 140 return T_VOID;
duke@435 141 }
duke@435 142 return bt;
duke@435 143 }
duke@435 144
duke@435 145 //---------------------------get_typeflow_type---------------------------------
duke@435 146 // Import a type produced by ciTypeFlow.
duke@435 147 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 148 switch (type->basic_type()) {
duke@435 149
duke@435 150 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 151 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 152 return Type::BOTTOM;
duke@435 153
duke@435 154 case ciTypeFlow::StateVector::T_TOP:
duke@435 155 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 156 return Type::TOP;
duke@435 157
duke@435 158 case ciTypeFlow::StateVector::T_NULL:
duke@435 159 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 160 return TypePtr::NULL_PTR;
duke@435 161
duke@435 162 case ciTypeFlow::StateVector::T_LONG2:
duke@435 163 // The ciTypeFlow pass pushes a long, then the half.
duke@435 164 // We do the same.
duke@435 165 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 166 return TypeInt::TOP;
duke@435 167
duke@435 168 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 169 // The ciTypeFlow pass pushes double, then the half.
duke@435 170 // Our convention is the same.
duke@435 171 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 172 return Type::TOP;
duke@435 173
duke@435 174 case T_ADDRESS:
duke@435 175 assert(type->is_return_address(), "");
duke@435 176 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 177
duke@435 178 default:
duke@435 179 // make sure we did not mix up the cases:
duke@435 180 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 181 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 182 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 183 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 184 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 185 assert(!type->is_return_address(), "");
duke@435 186
duke@435 187 return Type::get_const_type(type);
duke@435 188 }
duke@435 189 }
duke@435 190
duke@435 191
vlivanov@5658 192 //-----------------------make_from_constant------------------------------------
vlivanov@5658 193 const Type* Type::make_from_constant(ciConstant constant,
vlivanov@5658 194 bool require_constant, bool is_autobox_cache) {
vlivanov@5658 195 switch (constant.basic_type()) {
vlivanov@5658 196 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
vlivanov@5658 197 case T_CHAR: return TypeInt::make(constant.as_char());
vlivanov@5658 198 case T_BYTE: return TypeInt::make(constant.as_byte());
vlivanov@5658 199 case T_SHORT: return TypeInt::make(constant.as_short());
vlivanov@5658 200 case T_INT: return TypeInt::make(constant.as_int());
vlivanov@5658 201 case T_LONG: return TypeLong::make(constant.as_long());
vlivanov@5658 202 case T_FLOAT: return TypeF::make(constant.as_float());
vlivanov@5658 203 case T_DOUBLE: return TypeD::make(constant.as_double());
vlivanov@5658 204 case T_ARRAY:
vlivanov@5658 205 case T_OBJECT:
vlivanov@5658 206 {
vlivanov@5658 207 // cases:
vlivanov@5658 208 // can_be_constant = (oop not scavengable || ScavengeRootsInCode != 0)
vlivanov@5658 209 // should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
vlivanov@5658 210 // An oop is not scavengable if it is in the perm gen.
vlivanov@5658 211 ciObject* oop_constant = constant.as_object();
vlivanov@5658 212 if (oop_constant->is_null_object()) {
vlivanov@5658 213 return Type::get_zero_type(T_OBJECT);
vlivanov@5658 214 } else if (require_constant || oop_constant->should_be_constant()) {
vlivanov@5658 215 return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
vlivanov@5658 216 }
vlivanov@5658 217 }
vlivanov@5658 218 }
vlivanov@5658 219 // Fall through to failure
vlivanov@5658 220 return NULL;
vlivanov@5658 221 }
vlivanov@5658 222
vlivanov@5658 223
duke@435 224 //------------------------------make-------------------------------------------
duke@435 225 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 226 // and look for an existing copy in the type dictionary.
duke@435 227 const Type *Type::make( enum TYPES t ) {
duke@435 228 return (new Type(t))->hashcons();
duke@435 229 }
kvn@658 230
duke@435 231 //------------------------------cmp--------------------------------------------
duke@435 232 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 233 if( t1->_base != t2->_base )
duke@435 234 return 1; // Missed badly
duke@435 235 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 236 return !t1->eq(t2); // Return ZERO if equal
duke@435 237 }
duke@435 238
roland@6313 239 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
roland@6313 240 if (!include_speculative) {
roland@6313 241 return remove_speculative();
roland@6313 242 }
roland@6313 243 return this;
roland@6313 244 }
roland@6313 245
duke@435 246 //------------------------------hash-------------------------------------------
duke@435 247 int Type::uhash( const Type *const t ) {
duke@435 248 return t->hash();
duke@435 249 }
duke@435 250
kvn@1975 251 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
kvn@1975 252
duke@435 253 //--------------------------Initialize_shared----------------------------------
duke@435 254 void Type::Initialize_shared(Compile* current) {
duke@435 255 // This method does not need to be locked because the first system
duke@435 256 // compilations (stub compilations) occur serially. If they are
duke@435 257 // changed to proceed in parallel, then this section will need
duke@435 258 // locking.
duke@435 259
duke@435 260 Arena* save = current->type_arena();
zgu@3900 261 Arena* shared_type_arena = new (mtCompiler)Arena();
duke@435 262
duke@435 263 current->set_type_arena(shared_type_arena);
duke@435 264 _shared_type_dict =
duke@435 265 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 266 shared_type_arena, 128 );
duke@435 267 current->set_type_dict(_shared_type_dict);
duke@435 268
duke@435 269 // Make shared pre-built types.
duke@435 270 CONTROL = make(Control); // Control only
duke@435 271 TOP = make(Top); // No values in set
duke@435 272 MEMORY = make(Memory); // Abstract store only
duke@435 273 ABIO = make(Abio); // State-of-machine only
duke@435 274 RETURN_ADDRESS=make(Return_Address);
duke@435 275 FLOAT = make(FloatBot); // All floats
duke@435 276 DOUBLE = make(DoubleBot); // All doubles
duke@435 277 BOTTOM = make(Bottom); // Everything
duke@435 278 HALF = make(Half); // Placeholder half of doublewide type
duke@435 279
duke@435 280 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 281 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 282
duke@435 283 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 284 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 285
duke@435 286 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 287 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 288 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 289 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 290 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 291 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 292 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 293 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 294 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 295 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 296 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
twisti@1059 297 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
duke@435 298 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 299 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 300 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 301 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 302 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 303 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
rbackman@6375 304 TypeInt::TYPE_DOMAIN = TypeInt::INT;
duke@435 305 // CmpL is overloaded both as the bytecode computation returning
duke@435 306 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 307 // compare returning optimizer ideal-type flags.
duke@435 308 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 309 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 310 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 311 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
kvn@1975 312 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 313
duke@435 314 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 315 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 316 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 317 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 318 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 319 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 320 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
rbackman@6375 321 TypeLong::TYPE_DOMAIN = TypeLong::LONG;
duke@435 322
duke@435 323 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 324 fboth[0] = Type::CONTROL;
duke@435 325 fboth[1] = Type::CONTROL;
duke@435 326 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 327
duke@435 328 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 329 ffalse[0] = Type::CONTROL;
duke@435 330 ffalse[1] = Type::TOP;
duke@435 331 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 332
duke@435 333 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 334 fneither[0] = Type::TOP;
duke@435 335 fneither[1] = Type::TOP;
duke@435 336 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 337
duke@435 338 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 339 ftrue[0] = Type::TOP;
duke@435 340 ftrue[1] = Type::CONTROL;
duke@435 341 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 342
duke@435 343 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 344 floop[0] = Type::CONTROL;
duke@435 345 floop[1] = TypeInt::INT;
duke@435 346 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 347
duke@435 348 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 349 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 350 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 351
duke@435 352 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 353 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 354
duke@435 355 const Type **fmembar = TypeTuple::fields(0);
duke@435 356 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 357
duke@435 358 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 359 fsc[0] = TypeInt::CC;
duke@435 360 fsc[1] = Type::MEMORY;
duke@435 361 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 362
duke@435 363 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 364 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 365 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 366 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 367 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 368 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 369 false, 0, oopDesc::klass_offset_in_bytes());
roland@5991 370 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
duke@435 371
coleenp@4037 372 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
coleenp@4037 373
coleenp@548 374 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 375 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 376
roland@4159 377 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
roland@4159 378
coleenp@548 379 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 380 mreg2type[Op_Set ] = 0;
coleenp@548 381 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 382 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 383 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 384 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 385 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 386 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 387 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 388
kvn@2116 389 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
kvn@598 390
kvn@598 391 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 392
kvn@598 393 #ifdef _LP64
kvn@598 394 if (UseCompressedOops) {
coleenp@4037 395 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
kvn@598 396 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 397 } else
kvn@598 398 #endif
kvn@598 399 {
kvn@598 400 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 401 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 402 }
duke@435 403 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 404 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 405 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 406 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 407 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 408 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 409 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 410
kvn@598 411 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 412 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 413 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 414 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 415 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 416 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 417 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 418 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 419 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 420 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 421 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 422 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 423
duke@435 424 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 425 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 426
duke@435 427 const Type **fi2c = TypeTuple::fields(2);
coleenp@4037 428 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
duke@435 429 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 430 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 431
duke@435 432 const Type **intpair = TypeTuple::fields(2);
duke@435 433 intpair[0] = TypeInt::INT;
duke@435 434 intpair[1] = TypeInt::INT;
duke@435 435 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 436
duke@435 437 const Type **longpair = TypeTuple::fields(2);
duke@435 438 longpair[0] = TypeLong::LONG;
duke@435 439 longpair[1] = TypeLong::LONG;
duke@435 440 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 441
rbackman@5791 442 const Type **intccpair = TypeTuple::fields(2);
rbackman@5791 443 intccpair[0] = TypeInt::INT;
rbackman@5791 444 intccpair[1] = TypeInt::CC;
rbackman@5791 445 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
rbackman@5791 446
rbackman@5997 447 const Type **longccpair = TypeTuple::fields(2);
rbackman@5997 448 longccpair[0] = TypeLong::LONG;
rbackman@5997 449 longccpair[1] = TypeInt::CC;
rbackman@5997 450 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
rbackman@5997 451
roland@4159 452 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
roland@4159 453 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
roland@4159 454 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
roland@4159 455 _const_basic_type[T_CHAR] = TypeInt::CHAR;
roland@4159 456 _const_basic_type[T_BYTE] = TypeInt::BYTE;
roland@4159 457 _const_basic_type[T_SHORT] = TypeInt::SHORT;
roland@4159 458 _const_basic_type[T_INT] = TypeInt::INT;
roland@4159 459 _const_basic_type[T_LONG] = TypeLong::LONG;
roland@4159 460 _const_basic_type[T_FLOAT] = Type::FLOAT;
roland@4159 461 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
roland@4159 462 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
roland@4159 463 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
roland@4159 464 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
roland@4159 465 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
roland@4159 466 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not?
roland@4159 467
roland@4159 468 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
roland@4159 469 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
roland@4159 470 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
roland@4159 471 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
roland@4159 472 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
roland@4159 473 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
roland@4159 474 _zero_type[T_INT] = TypeInt::ZERO;
roland@4159 475 _zero_type[T_LONG] = TypeLong::ZERO;
roland@4159 476 _zero_type[T_FLOAT] = TypeF::ZERO;
roland@4159 477 _zero_type[T_DOUBLE] = TypeD::ZERO;
roland@4159 478 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
roland@4159 479 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
roland@4159 480 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
roland@4159 481 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 482
duke@435 483 // get_zero_type() should not happen for T_CONFLICT
duke@435 484 _zero_type[T_CONFLICT]= NULL;
duke@435 485
kvn@3882 486 // Vector predefined types, it needs initialized _const_basic_type[].
kvn@3882 487 if (Matcher::vector_size_supported(T_BYTE,4)) {
kvn@3882 488 TypeVect::VECTS = TypeVect::make(T_BYTE,4);
kvn@3882 489 }
kvn@3882 490 if (Matcher::vector_size_supported(T_FLOAT,2)) {
kvn@3882 491 TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
kvn@3882 492 }
kvn@3882 493 if (Matcher::vector_size_supported(T_FLOAT,4)) {
kvn@3882 494 TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
kvn@3882 495 }
kvn@3882 496 if (Matcher::vector_size_supported(T_FLOAT,8)) {
kvn@3882 497 TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
kvn@3882 498 }
kvn@3882 499 mreg2type[Op_VecS] = TypeVect::VECTS;
kvn@3882 500 mreg2type[Op_VecD] = TypeVect::VECTD;
kvn@3882 501 mreg2type[Op_VecX] = TypeVect::VECTX;
kvn@3882 502 mreg2type[Op_VecY] = TypeVect::VECTY;
kvn@3882 503
duke@435 504 // Restore working type arena.
duke@435 505 current->set_type_arena(save);
duke@435 506 current->set_type_dict(NULL);
duke@435 507 }
duke@435 508
duke@435 509 //------------------------------Initialize-------------------------------------
duke@435 510 void Type::Initialize(Compile* current) {
duke@435 511 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 512
duke@435 513 if (_shared_type_dict == NULL) {
duke@435 514 Initialize_shared(current);
duke@435 515 }
duke@435 516
duke@435 517 Arena* type_arena = current->type_arena();
duke@435 518
duke@435 519 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 520 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 521 current->set_type_dict(tdic);
duke@435 522
duke@435 523 // Transfer the shared types.
duke@435 524 DictI i(_shared_type_dict);
duke@435 525 for( ; i.test(); ++i ) {
duke@435 526 Type* t = (Type*)i._value;
duke@435 527 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 528 }
duke@435 529 }
duke@435 530
duke@435 531 //------------------------------hashcons---------------------------------------
duke@435 532 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 533 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 534 // current Type in the Type table.
duke@435 535 const Type *Type::hashcons(void) {
duke@435 536 debug_only(base()); // Check the assertion in Type::base().
duke@435 537 // Look up the Type in the Type dictionary
duke@435 538 Dict *tdic = type_dict();
duke@435 539 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 540 if( old ) { // Pre-existing Type?
duke@435 541 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 542 delete this; // Yes, Nuke this guy
duke@435 543 assert( old->_dual, "" );
duke@435 544 return old; // Return pre-existing
duke@435 545 }
duke@435 546
duke@435 547 // Every type has a dual (to make my lattice symmetric).
duke@435 548 // Since we just discovered a new Type, compute its dual right now.
duke@435 549 assert( !_dual, "" ); // No dual yet
duke@435 550 _dual = xdual(); // Compute the dual
duke@435 551 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 552 _dual = this;
duke@435 553 return this;
duke@435 554 }
duke@435 555 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 556 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 557 // New Type, insert into Type table
duke@435 558 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 559 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 560 #ifdef ASSERT
duke@435 561 Type *dual_dual = (Type*)_dual->xdual();
duke@435 562 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 563 delete dual_dual;
duke@435 564 #endif
duke@435 565 return this; // Return new Type
duke@435 566 }
duke@435 567
duke@435 568 //------------------------------eq---------------------------------------------
duke@435 569 // Structural equality check for Type representations
duke@435 570 bool Type::eq( const Type * ) const {
duke@435 571 return true; // Nothing else can go wrong
duke@435 572 }
duke@435 573
duke@435 574 //------------------------------hash-------------------------------------------
duke@435 575 // Type-specific hashing function.
duke@435 576 int Type::hash(void) const {
duke@435 577 return _base;
duke@435 578 }
duke@435 579
duke@435 580 //------------------------------is_finite--------------------------------------
duke@435 581 // Has a finite value
duke@435 582 bool Type::is_finite() const {
duke@435 583 return false;
duke@435 584 }
duke@435 585
duke@435 586 //------------------------------is_nan-----------------------------------------
duke@435 587 // Is not a number (NaN)
duke@435 588 bool Type::is_nan() const {
duke@435 589 return false;
duke@435 590 }
duke@435 591
kvn@1255 592 //----------------------interface_vs_oop---------------------------------------
kvn@1255 593 #ifdef ASSERT
roland@5991 594 bool Type::interface_vs_oop_helper(const Type *t) const {
kvn@1255 595 bool result = false;
kvn@1255 596
kvn@1427 597 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
kvn@1427 598 const TypePtr* t_ptr = t->make_ptr();
kvn@1427 599 if( this_ptr == NULL || t_ptr == NULL )
kvn@1427 600 return result;
kvn@1427 601
kvn@1427 602 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
kvn@1427 603 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
kvn@1255 604 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
kvn@1255 605 bool this_interface = this_inst->klass()->is_interface();
kvn@1255 606 bool t_interface = t_inst->klass()->is_interface();
kvn@1255 607 result = this_interface ^ t_interface;
kvn@1255 608 }
kvn@1255 609
kvn@1255 610 return result;
kvn@1255 611 }
roland@5991 612
roland@5991 613 bool Type::interface_vs_oop(const Type *t) const {
roland@5991 614 if (interface_vs_oop_helper(t)) {
roland@5991 615 return true;
roland@5991 616 }
roland@5991 617 // Now check the speculative parts as well
roland@5991 618 const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
roland@5991 619 const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
roland@5991 620 if (this_spec != NULL && t_spec != NULL) {
roland@5991 621 if (this_spec->interface_vs_oop_helper(t_spec)) {
roland@5991 622 return true;
roland@5991 623 }
roland@5991 624 return false;
roland@5991 625 }
roland@5991 626 if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
roland@5991 627 return true;
roland@5991 628 }
roland@5991 629 if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
roland@5991 630 return true;
roland@5991 631 }
roland@5991 632 return false;
roland@5991 633 }
roland@5991 634
kvn@1255 635 #endif
kvn@1255 636
duke@435 637 //------------------------------meet-------------------------------------------
duke@435 638 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 639 // commutative and the lattice is symmetric.
roland@6313 640 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
coleenp@548 641 if (isa_narrowoop() && t->isa_narrowoop()) {
roland@6313 642 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
kvn@656 643 return result->make_narrowoop();
coleenp@548 644 }
roland@4159 645 if (isa_narrowklass() && t->isa_narrowklass()) {
roland@6313 646 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
roland@4159 647 return result->make_narrowklass();
roland@4159 648 }
coleenp@548 649
roland@6313 650 const Type *this_t = maybe_remove_speculative(include_speculative);
roland@6313 651 t = t->maybe_remove_speculative(include_speculative);
roland@6313 652
roland@6313 653 const Type *mt = this_t->xmeet(t);
coleenp@548 654 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
roland@4159 655 if (isa_narrowklass() || t->isa_narrowklass()) return mt;
duke@435 656 #ifdef ASSERT
roland@6313 657 assert(mt == t->xmeet(this_t), "meet not commutative");
duke@435 658 const Type* dual_join = mt->_dual;
duke@435 659 const Type *t2t = dual_join->xmeet(t->_dual);
roland@6313 660 const Type *t2this = dual_join->xmeet(this_t->_dual);
duke@435 661
duke@435 662 // Interface meet Oop is Not Symmetric:
duke@435 663 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 664 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
kvn@1255 665
roland@6313 666 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
duke@435 667 tty->print_cr("=== Meet Not Symmetric ===");
roland@6313 668 tty->print("t = "); t->dump(); tty->cr();
roland@6313 669 tty->print("this= "); this_t->dump(); tty->cr();
roland@6313 670 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
roland@6313 671
roland@6313 672 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
roland@6313 673 tty->print("this_dual= "); this_t->_dual->dump(); tty->cr();
roland@6313 674 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
roland@6313 675
roland@6313 676 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
roland@6313 677 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 678
duke@435 679 fatal("meet not symmetric" );
duke@435 680 }
duke@435 681 #endif
duke@435 682 return mt;
duke@435 683 }
duke@435 684
duke@435 685 //------------------------------xmeet------------------------------------------
duke@435 686 // Compute the MEET of two types. It returns a new Type object.
duke@435 687 const Type *Type::xmeet( const Type *t ) const {
duke@435 688 // Perform a fast test for common case; meeting the same types together.
duke@435 689 if( this == t ) return this; // Meeting same type-rep?
duke@435 690
duke@435 691 // Meeting TOP with anything?
duke@435 692 if( _base == Top ) return t;
duke@435 693
duke@435 694 // Meeting BOTTOM with anything?
duke@435 695 if( _base == Bottom ) return BOTTOM;
duke@435 696
duke@435 697 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 698 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 699 switch (t->base()) { // Switch on original type
duke@435 700
duke@435 701 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 702 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 703 case FloatCon:
duke@435 704 case DoubleCon:
duke@435 705 case Int:
duke@435 706 case Long:
duke@435 707 return t->xmeet(this);
duke@435 708
duke@435 709 case OopPtr:
duke@435 710 return t->xmeet(this);
duke@435 711
duke@435 712 case InstPtr:
duke@435 713 return t->xmeet(this);
duke@435 714
coleenp@4037 715 case MetadataPtr:
duke@435 716 case KlassPtr:
duke@435 717 return t->xmeet(this);
duke@435 718
duke@435 719 case AryPtr:
duke@435 720 return t->xmeet(this);
duke@435 721
coleenp@548 722 case NarrowOop:
coleenp@548 723 return t->xmeet(this);
coleenp@548 724
roland@4159 725 case NarrowKlass:
roland@4159 726 return t->xmeet(this);
roland@4159 727
duke@435 728 case Bad: // Type check
duke@435 729 default: // Bogus type not in lattice
duke@435 730 typerr(t);
duke@435 731 return Type::BOTTOM;
duke@435 732
duke@435 733 case Bottom: // Ye Olde Default
duke@435 734 return t;
duke@435 735
duke@435 736 case FloatTop:
duke@435 737 if( _base == FloatTop ) return this;
duke@435 738 case FloatBot: // Float
duke@435 739 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 740 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 741 typerr(t);
duke@435 742 return Type::BOTTOM;
duke@435 743
duke@435 744 case DoubleTop:
duke@435 745 if( _base == DoubleTop ) return this;
duke@435 746 case DoubleBot: // Double
duke@435 747 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 748 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 749 typerr(t);
duke@435 750 return Type::BOTTOM;
duke@435 751
duke@435 752 // These next few cases must match exactly or it is a compile-time error.
duke@435 753 case Control: // Control of code
duke@435 754 case Abio: // State of world outside of program
duke@435 755 case Memory:
duke@435 756 if( _base == t->_base ) return this;
duke@435 757 typerr(t);
duke@435 758 return Type::BOTTOM;
duke@435 759
duke@435 760 case Top: // Top of the lattice
duke@435 761 return this;
duke@435 762 }
duke@435 763
duke@435 764 // The type is unchanged
duke@435 765 return this;
duke@435 766 }
duke@435 767
duke@435 768 //-----------------------------filter------------------------------------------
roland@6313 769 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 770 const Type* ft = join_helper(kills, include_speculative);
duke@435 771 if (ft->empty())
duke@435 772 return Type::TOP; // Canonical empty value
duke@435 773 return ft;
duke@435 774 }
duke@435 775
duke@435 776 //------------------------------xdual------------------------------------------
duke@435 777 // Compute dual right now.
duke@435 778 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 779 Bad, // Bad
duke@435 780 Control, // Control
duke@435 781 Bottom, // Top
duke@435 782 Bad, // Int - handled in v-call
duke@435 783 Bad, // Long - handled in v-call
duke@435 784 Half, // Half
coleenp@548 785 Bad, // NarrowOop - handled in v-call
roland@4159 786 Bad, // NarrowKlass - handled in v-call
duke@435 787
duke@435 788 Bad, // Tuple - handled in v-call
duke@435 789 Bad, // Array - handled in v-call
kvn@3882 790 Bad, // VectorS - handled in v-call
kvn@3882 791 Bad, // VectorD - handled in v-call
kvn@3882 792 Bad, // VectorX - handled in v-call
kvn@3882 793 Bad, // VectorY - handled in v-call
duke@435 794
duke@435 795 Bad, // AnyPtr - handled in v-call
duke@435 796 Bad, // RawPtr - handled in v-call
duke@435 797 Bad, // OopPtr - handled in v-call
duke@435 798 Bad, // InstPtr - handled in v-call
duke@435 799 Bad, // AryPtr - handled in v-call
coleenp@4037 800
coleenp@4037 801 Bad, // MetadataPtr - handled in v-call
duke@435 802 Bad, // KlassPtr - handled in v-call
duke@435 803
duke@435 804 Bad, // Function - handled in v-call
duke@435 805 Abio, // Abio
duke@435 806 Return_Address,// Return_Address
duke@435 807 Memory, // Memory
duke@435 808 FloatBot, // FloatTop
duke@435 809 FloatCon, // FloatCon
duke@435 810 FloatTop, // FloatBot
duke@435 811 DoubleBot, // DoubleTop
duke@435 812 DoubleCon, // DoubleCon
duke@435 813 DoubleTop, // DoubleBot
duke@435 814 Top // Bottom
duke@435 815 };
duke@435 816
duke@435 817 const Type *Type::xdual() const {
duke@435 818 // Note: the base() accessor asserts the sanity of _base.
coleenp@4037 819 assert(_type_info[base()].dual_type != Bad, "implement with v-call");
coleenp@4037 820 return new Type(_type_info[_base].dual_type);
duke@435 821 }
duke@435 822
duke@435 823 //------------------------------has_memory-------------------------------------
duke@435 824 bool Type::has_memory() const {
duke@435 825 Type::TYPES tx = base();
duke@435 826 if (tx == Memory) return true;
duke@435 827 if (tx == Tuple) {
duke@435 828 const TypeTuple *t = is_tuple();
duke@435 829 for (uint i=0; i < t->cnt(); i++) {
duke@435 830 tx = t->field_at(i)->base();
duke@435 831 if (tx == Memory) return true;
duke@435 832 }
duke@435 833 }
duke@435 834 return false;
duke@435 835 }
duke@435 836
duke@435 837 #ifndef PRODUCT
duke@435 838 //------------------------------dump2------------------------------------------
duke@435 839 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
coleenp@4037 840 st->print(_type_info[_base].msg);
duke@435 841 }
duke@435 842
duke@435 843 //------------------------------dump-------------------------------------------
duke@435 844 void Type::dump_on(outputStream *st) const {
duke@435 845 ResourceMark rm;
duke@435 846 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 847 dump2(d,1, st);
kvn@598 848 if (is_ptr_to_narrowoop()) {
coleenp@548 849 st->print(" [narrow]");
roland@4159 850 } else if (is_ptr_to_narrowklass()) {
roland@4159 851 st->print(" [narrowklass]");
coleenp@548 852 }
duke@435 853 }
duke@435 854 #endif
duke@435 855
duke@435 856 //------------------------------singleton--------------------------------------
duke@435 857 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 858 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 859 bool Type::singleton(void) const {
duke@435 860 return _base == Top || _base == Half;
duke@435 861 }
duke@435 862
duke@435 863 //------------------------------empty------------------------------------------
duke@435 864 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 865 bool Type::empty(void) const {
duke@435 866 switch (_base) {
duke@435 867 case DoubleTop:
duke@435 868 case FloatTop:
duke@435 869 case Top:
duke@435 870 return true;
duke@435 871
duke@435 872 case Half:
duke@435 873 case Abio:
duke@435 874 case Return_Address:
duke@435 875 case Memory:
duke@435 876 case Bottom:
duke@435 877 case FloatBot:
duke@435 878 case DoubleBot:
duke@435 879 return false; // never a singleton, therefore never empty
duke@435 880 }
duke@435 881
duke@435 882 ShouldNotReachHere();
duke@435 883 return false;
duke@435 884 }
duke@435 885
duke@435 886 //------------------------------dump_stats-------------------------------------
duke@435 887 // Dump collected statistics to stderr
duke@435 888 #ifndef PRODUCT
duke@435 889 void Type::dump_stats() {
duke@435 890 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 891 }
duke@435 892 #endif
duke@435 893
duke@435 894 //------------------------------typerr-----------------------------------------
duke@435 895 void Type::typerr( const Type *t ) const {
duke@435 896 #ifndef PRODUCT
duke@435 897 tty->print("\nError mixing types: ");
duke@435 898 dump();
duke@435 899 tty->print(" and ");
duke@435 900 t->dump();
duke@435 901 tty->print("\n");
duke@435 902 #endif
duke@435 903 ShouldNotReachHere();
duke@435 904 }
duke@435 905
duke@435 906
duke@435 907 //=============================================================================
duke@435 908 // Convenience common pre-built types.
duke@435 909 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 910 const TypeF *TypeF::ONE; // Floating point one
duke@435 911
duke@435 912 //------------------------------make-------------------------------------------
duke@435 913 // Create a float constant
duke@435 914 const TypeF *TypeF::make(float f) {
duke@435 915 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 916 }
duke@435 917
duke@435 918 //------------------------------meet-------------------------------------------
duke@435 919 // Compute the MEET of two types. It returns a new Type object.
duke@435 920 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 921 // Perform a fast test for common case; meeting the same types together.
duke@435 922 if( this == t ) return this; // Meeting same type-rep?
duke@435 923
duke@435 924 // Current "this->_base" is FloatCon
duke@435 925 switch (t->base()) { // Switch on original type
duke@435 926 case AnyPtr: // Mixing with oops happens when javac
duke@435 927 case RawPtr: // reuses local variables
duke@435 928 case OopPtr:
duke@435 929 case InstPtr:
coleenp@4037 930 case AryPtr:
coleenp@4037 931 case MetadataPtr:
duke@435 932 case KlassPtr:
kvn@728 933 case NarrowOop:
roland@4159 934 case NarrowKlass:
duke@435 935 case Int:
duke@435 936 case Long:
duke@435 937 case DoubleTop:
duke@435 938 case DoubleCon:
duke@435 939 case DoubleBot:
duke@435 940 case Bottom: // Ye Olde Default
duke@435 941 return Type::BOTTOM;
duke@435 942
duke@435 943 case FloatBot:
duke@435 944 return t;
duke@435 945
duke@435 946 default: // All else is a mistake
duke@435 947 typerr(t);
duke@435 948
duke@435 949 case FloatCon: // Float-constant vs Float-constant?
duke@435 950 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 951 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 952 // all the same representation in C++
duke@435 953 return FLOAT; // Return generic float
duke@435 954 // Equal constants
duke@435 955 case Top:
duke@435 956 case FloatTop:
duke@435 957 break; // Return the float constant
duke@435 958 }
duke@435 959 return this; // Return the float constant
duke@435 960 }
duke@435 961
duke@435 962 //------------------------------xdual------------------------------------------
duke@435 963 // Dual: symmetric
duke@435 964 const Type *TypeF::xdual() const {
duke@435 965 return this;
duke@435 966 }
duke@435 967
duke@435 968 //------------------------------eq---------------------------------------------
duke@435 969 // Structural equality check for Type representations
duke@435 970 bool TypeF::eq( const Type *t ) const {
duke@435 971 if( g_isnan(_f) ||
duke@435 972 g_isnan(t->getf()) ) {
duke@435 973 // One or both are NANs. If both are NANs return true, else false.
duke@435 974 return (g_isnan(_f) && g_isnan(t->getf()));
duke@435 975 }
duke@435 976 if (_f == t->getf()) {
duke@435 977 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 978 if (_f == 0.0) {
duke@435 979 // difference between positive and negative zero
duke@435 980 if (jint_cast(_f) != jint_cast(t->getf())) return false;
duke@435 981 }
duke@435 982 return true;
duke@435 983 }
duke@435 984 return false;
duke@435 985 }
duke@435 986
duke@435 987 //------------------------------hash-------------------------------------------
duke@435 988 // Type-specific hashing function.
duke@435 989 int TypeF::hash(void) const {
duke@435 990 return *(int*)(&_f);
duke@435 991 }
duke@435 992
duke@435 993 //------------------------------is_finite--------------------------------------
duke@435 994 // Has a finite value
duke@435 995 bool TypeF::is_finite() const {
duke@435 996 return g_isfinite(getf()) != 0;
duke@435 997 }
duke@435 998
duke@435 999 //------------------------------is_nan-----------------------------------------
duke@435 1000 // Is not a number (NaN)
duke@435 1001 bool TypeF::is_nan() const {
duke@435 1002 return g_isnan(getf()) != 0;
duke@435 1003 }
duke@435 1004
duke@435 1005 //------------------------------dump2------------------------------------------
duke@435 1006 // Dump float constant Type
duke@435 1007 #ifndef PRODUCT
duke@435 1008 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1009 Type::dump2(d,depth, st);
duke@435 1010 st->print("%f", _f);
duke@435 1011 }
duke@435 1012 #endif
duke@435 1013
duke@435 1014 //------------------------------singleton--------------------------------------
duke@435 1015 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1016 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1017 // or a single symbol.
duke@435 1018 bool TypeF::singleton(void) const {
duke@435 1019 return true; // Always a singleton
duke@435 1020 }
duke@435 1021
duke@435 1022 bool TypeF::empty(void) const {
duke@435 1023 return false; // always exactly a singleton
duke@435 1024 }
duke@435 1025
duke@435 1026 //=============================================================================
duke@435 1027 // Convenience common pre-built types.
duke@435 1028 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 1029 const TypeD *TypeD::ONE; // Floating point one
duke@435 1030
duke@435 1031 //------------------------------make-------------------------------------------
duke@435 1032 const TypeD *TypeD::make(double d) {
duke@435 1033 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 1034 }
duke@435 1035
duke@435 1036 //------------------------------meet-------------------------------------------
duke@435 1037 // Compute the MEET of two types. It returns a new Type object.
duke@435 1038 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 1039 // Perform a fast test for common case; meeting the same types together.
duke@435 1040 if( this == t ) return this; // Meeting same type-rep?
duke@435 1041
duke@435 1042 // Current "this->_base" is DoubleCon
duke@435 1043 switch (t->base()) { // Switch on original type
duke@435 1044 case AnyPtr: // Mixing with oops happens when javac
duke@435 1045 case RawPtr: // reuses local variables
duke@435 1046 case OopPtr:
duke@435 1047 case InstPtr:
coleenp@4037 1048 case AryPtr:
coleenp@4037 1049 case MetadataPtr:
duke@435 1050 case KlassPtr:
never@618 1051 case NarrowOop:
roland@4159 1052 case NarrowKlass:
duke@435 1053 case Int:
duke@435 1054 case Long:
duke@435 1055 case FloatTop:
duke@435 1056 case FloatCon:
duke@435 1057 case FloatBot:
duke@435 1058 case Bottom: // Ye Olde Default
duke@435 1059 return Type::BOTTOM;
duke@435 1060
duke@435 1061 case DoubleBot:
duke@435 1062 return t;
duke@435 1063
duke@435 1064 default: // All else is a mistake
duke@435 1065 typerr(t);
duke@435 1066
duke@435 1067 case DoubleCon: // Double-constant vs Double-constant?
duke@435 1068 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 1069 return DOUBLE; // Return generic double
duke@435 1070 case Top:
duke@435 1071 case DoubleTop:
duke@435 1072 break;
duke@435 1073 }
duke@435 1074 return this; // Return the double constant
duke@435 1075 }
duke@435 1076
duke@435 1077 //------------------------------xdual------------------------------------------
duke@435 1078 // Dual: symmetric
duke@435 1079 const Type *TypeD::xdual() const {
duke@435 1080 return this;
duke@435 1081 }
duke@435 1082
duke@435 1083 //------------------------------eq---------------------------------------------
duke@435 1084 // Structural equality check for Type representations
duke@435 1085 bool TypeD::eq( const Type *t ) const {
duke@435 1086 if( g_isnan(_d) ||
duke@435 1087 g_isnan(t->getd()) ) {
duke@435 1088 // One or both are NANs. If both are NANs return true, else false.
duke@435 1089 return (g_isnan(_d) && g_isnan(t->getd()));
duke@435 1090 }
duke@435 1091 if (_d == t->getd()) {
duke@435 1092 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 1093 if (_d == 0.0) {
duke@435 1094 // difference between positive and negative zero
duke@435 1095 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
duke@435 1096 }
duke@435 1097 return true;
duke@435 1098 }
duke@435 1099 return false;
duke@435 1100 }
duke@435 1101
duke@435 1102 //------------------------------hash-------------------------------------------
duke@435 1103 // Type-specific hashing function.
duke@435 1104 int TypeD::hash(void) const {
duke@435 1105 return *(int*)(&_d);
duke@435 1106 }
duke@435 1107
duke@435 1108 //------------------------------is_finite--------------------------------------
duke@435 1109 // Has a finite value
duke@435 1110 bool TypeD::is_finite() const {
duke@435 1111 return g_isfinite(getd()) != 0;
duke@435 1112 }
duke@435 1113
duke@435 1114 //------------------------------is_nan-----------------------------------------
duke@435 1115 // Is not a number (NaN)
duke@435 1116 bool TypeD::is_nan() const {
duke@435 1117 return g_isnan(getd()) != 0;
duke@435 1118 }
duke@435 1119
duke@435 1120 //------------------------------dump2------------------------------------------
duke@435 1121 // Dump double constant Type
duke@435 1122 #ifndef PRODUCT
duke@435 1123 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1124 Type::dump2(d,depth,st);
duke@435 1125 st->print("%f", _d);
duke@435 1126 }
duke@435 1127 #endif
duke@435 1128
duke@435 1129 //------------------------------singleton--------------------------------------
duke@435 1130 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1131 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1132 // or a single symbol.
duke@435 1133 bool TypeD::singleton(void) const {
duke@435 1134 return true; // Always a singleton
duke@435 1135 }
duke@435 1136
duke@435 1137 bool TypeD::empty(void) const {
duke@435 1138 return false; // always exactly a singleton
duke@435 1139 }
duke@435 1140
duke@435 1141 //=============================================================================
duke@435 1142 // Convience common pre-built types.
duke@435 1143 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1144 const TypeInt *TypeInt::ZERO; // 0
duke@435 1145 const TypeInt *TypeInt::ONE; // 1
duke@435 1146 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1147 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1148 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1149 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1150 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1151 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1152 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1153 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
twisti@1059 1154 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
duke@435 1155 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1156 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1157 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1158 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1159 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1160 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
rbackman@6375 1161 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
duke@435 1162
duke@435 1163 //------------------------------TypeInt----------------------------------------
duke@435 1164 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1165 }
duke@435 1166
duke@435 1167 //------------------------------make-------------------------------------------
duke@435 1168 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1169 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1170 }
duke@435 1171
kvn@1975 1172 static int normalize_int_widen( jint lo, jint hi, int w ) {
duke@435 1173 // Certain normalizations keep us sane when comparing types.
duke@435 1174 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1175 if (lo <= hi) {
kvn@1975 1176 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1177 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
kvn@1975 1178 } else {
kvn@1975 1179 if ((juint)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1180 if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
duke@435 1181 }
kvn@1975 1182 return w;
kvn@1975 1183 }
kvn@1975 1184
kvn@1975 1185 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
kvn@1975 1186 w = normalize_int_widen(lo, hi, w);
duke@435 1187 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1188 }
duke@435 1189
duke@435 1190 //------------------------------meet-------------------------------------------
duke@435 1191 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1192 // with reference count equal to the number of Types pointing at it.
duke@435 1193 // Caller should wrap a Types around it.
duke@435 1194 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1195 // Perform a fast test for common case; meeting the same types together.
duke@435 1196 if( this == t ) return this; // Meeting same type?
duke@435 1197
duke@435 1198 // Currently "this->_base" is a TypeInt
duke@435 1199 switch (t->base()) { // Switch on original type
duke@435 1200 case AnyPtr: // Mixing with oops happens when javac
duke@435 1201 case RawPtr: // reuses local variables
duke@435 1202 case OopPtr:
duke@435 1203 case InstPtr:
coleenp@4037 1204 case AryPtr:
coleenp@4037 1205 case MetadataPtr:
duke@435 1206 case KlassPtr:
never@618 1207 case NarrowOop:
roland@4159 1208 case NarrowKlass:
duke@435 1209 case Long:
duke@435 1210 case FloatTop:
duke@435 1211 case FloatCon:
duke@435 1212 case FloatBot:
duke@435 1213 case DoubleTop:
duke@435 1214 case DoubleCon:
duke@435 1215 case DoubleBot:
duke@435 1216 case Bottom: // Ye Olde Default
duke@435 1217 return Type::BOTTOM;
duke@435 1218 default: // All else is a mistake
duke@435 1219 typerr(t);
duke@435 1220 case Top: // No change
duke@435 1221 return this;
duke@435 1222 case Int: // Int vs Int?
duke@435 1223 break;
duke@435 1224 }
duke@435 1225
duke@435 1226 // Expand covered set
duke@435 1227 const TypeInt *r = t->is_int();
kvn@1975 1228 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1229 }
duke@435 1230
duke@435 1231 //------------------------------xdual------------------------------------------
duke@435 1232 // Dual: reverse hi & lo; flip widen
duke@435 1233 const Type *TypeInt::xdual() const {
kvn@1975 1234 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1235 return new TypeInt(_hi,_lo,w);
duke@435 1236 }
duke@435 1237
duke@435 1238 //------------------------------widen------------------------------------------
duke@435 1239 // Only happens for optimistic top-down optimizations.
never@1444 1240 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
duke@435 1241 // Coming from TOP or such; no widening
duke@435 1242 if( old->base() != Int ) return this;
duke@435 1243 const TypeInt *ot = old->is_int();
duke@435 1244
duke@435 1245 // If new guy is equal to old guy, no widening
duke@435 1246 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1247 return old;
duke@435 1248
duke@435 1249 // If new guy contains old, then we widened
duke@435 1250 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1251 // New contains old
duke@435 1252 // If new guy is already wider than old, no widening
duke@435 1253 if( _widen > ot->_widen ) return this;
duke@435 1254 // If old guy was a constant, do not bother
duke@435 1255 if (ot->_lo == ot->_hi) return this;
duke@435 1256 // Now widen new guy.
duke@435 1257 // Check for widening too far
duke@435 1258 if (_widen == WidenMax) {
never@1444 1259 int max = max_jint;
never@1444 1260 int min = min_jint;
never@1444 1261 if (limit->isa_int()) {
never@1444 1262 max = limit->is_int()->_hi;
never@1444 1263 min = limit->is_int()->_lo;
never@1444 1264 }
never@1444 1265 if (min < _lo && _hi < max) {
duke@435 1266 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1267 // which is closer to its respective limit.
duke@435 1268 if (_lo >= 0 || // easy common case
never@1444 1269 (juint)(_lo - min) >= (juint)(max - _hi)) {
duke@435 1270 // Try to widen to an unsigned range type of 31 bits:
never@1444 1271 return make(_lo, max, WidenMax);
duke@435 1272 } else {
never@1444 1273 return make(min, _hi, WidenMax);
duke@435 1274 }
duke@435 1275 }
duke@435 1276 return TypeInt::INT;
duke@435 1277 }
duke@435 1278 // Returned widened new guy
duke@435 1279 return make(_lo,_hi,_widen+1);
duke@435 1280 }
duke@435 1281
duke@435 1282 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1283 // bottom. Return the wider fellow.
duke@435 1284 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1285 return old;
duke@435 1286
duke@435 1287 //fatal("Integer value range is not subset");
duke@435 1288 //return this;
duke@435 1289 return TypeInt::INT;
duke@435 1290 }
duke@435 1291
duke@435 1292 //------------------------------narrow---------------------------------------
duke@435 1293 // Only happens for pessimistic optimizations.
duke@435 1294 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1295 if (_lo >= _hi) return this; // already narrow enough
duke@435 1296 if (old == NULL) return this;
duke@435 1297 const TypeInt* ot = old->isa_int();
duke@435 1298 if (ot == NULL) return this;
duke@435 1299 jint olo = ot->_lo;
duke@435 1300 jint ohi = ot->_hi;
duke@435 1301
duke@435 1302 // If new guy is equal to old guy, no narrowing
duke@435 1303 if (_lo == olo && _hi == ohi) return old;
duke@435 1304
duke@435 1305 // If old guy was maximum range, allow the narrowing
duke@435 1306 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1307
duke@435 1308 if (_lo < olo || _hi > ohi)
duke@435 1309 return this; // doesn't narrow; pretty wierd
duke@435 1310
duke@435 1311 // The new type narrows the old type, so look for a "death march".
duke@435 1312 // See comments on PhaseTransform::saturate.
duke@435 1313 juint nrange = _hi - _lo;
duke@435 1314 juint orange = ohi - olo;
duke@435 1315 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1316 // Use the new type only if the range shrinks a lot.
duke@435 1317 // We do not want the optimizer computing 2^31 point by point.
duke@435 1318 return old;
duke@435 1319 }
duke@435 1320
duke@435 1321 return this;
duke@435 1322 }
duke@435 1323
duke@435 1324 //-----------------------------filter------------------------------------------
roland@6313 1325 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 1326 const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
kvn@1975 1327 if (ft == NULL || ft->empty())
duke@435 1328 return Type::TOP; // Canonical empty value
duke@435 1329 if (ft->_widen < this->_widen) {
duke@435 1330 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1331 // The widen bits must be allowed to run freely through the graph.
duke@435 1332 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1333 }
duke@435 1334 return ft;
duke@435 1335 }
duke@435 1336
duke@435 1337 //------------------------------eq---------------------------------------------
duke@435 1338 // Structural equality check for Type representations
duke@435 1339 bool TypeInt::eq( const Type *t ) const {
duke@435 1340 const TypeInt *r = t->is_int(); // Handy access
duke@435 1341 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1342 }
duke@435 1343
duke@435 1344 //------------------------------hash-------------------------------------------
duke@435 1345 // Type-specific hashing function.
duke@435 1346 int TypeInt::hash(void) const {
duke@435 1347 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1348 }
duke@435 1349
duke@435 1350 //------------------------------is_finite--------------------------------------
duke@435 1351 // Has a finite value
duke@435 1352 bool TypeInt::is_finite() const {
duke@435 1353 return true;
duke@435 1354 }
duke@435 1355
duke@435 1356 //------------------------------dump2------------------------------------------
duke@435 1357 // Dump TypeInt
duke@435 1358 #ifndef PRODUCT
duke@435 1359 static const char* intname(char* buf, jint n) {
duke@435 1360 if (n == min_jint)
duke@435 1361 return "min";
duke@435 1362 else if (n < min_jint + 10000)
duke@435 1363 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1364 else if (n == max_jint)
duke@435 1365 return "max";
duke@435 1366 else if (n > max_jint - 10000)
duke@435 1367 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1368 else
duke@435 1369 sprintf(buf, INT32_FORMAT, n);
duke@435 1370 return buf;
duke@435 1371 }
duke@435 1372
duke@435 1373 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1374 char buf[40], buf2[40];
duke@435 1375 if (_lo == min_jint && _hi == max_jint)
duke@435 1376 st->print("int");
duke@435 1377 else if (is_con())
duke@435 1378 st->print("int:%s", intname(buf, get_con()));
duke@435 1379 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1380 st->print("bool");
duke@435 1381 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1382 st->print("byte");
duke@435 1383 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1384 st->print("char");
duke@435 1385 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1386 st->print("short");
duke@435 1387 else if (_hi == max_jint)
duke@435 1388 st->print("int:>=%s", intname(buf, _lo));
duke@435 1389 else if (_lo == min_jint)
duke@435 1390 st->print("int:<=%s", intname(buf, _hi));
duke@435 1391 else
duke@435 1392 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1393
duke@435 1394 if (_widen != 0 && this != TypeInt::INT)
duke@435 1395 st->print(":%.*s", _widen, "wwww");
duke@435 1396 }
duke@435 1397 #endif
duke@435 1398
duke@435 1399 //------------------------------singleton--------------------------------------
duke@435 1400 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1401 // constants.
duke@435 1402 bool TypeInt::singleton(void) const {
duke@435 1403 return _lo >= _hi;
duke@435 1404 }
duke@435 1405
duke@435 1406 bool TypeInt::empty(void) const {
duke@435 1407 return _lo > _hi;
duke@435 1408 }
duke@435 1409
duke@435 1410 //=============================================================================
duke@435 1411 // Convenience common pre-built types.
duke@435 1412 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1413 const TypeLong *TypeLong::ZERO; // 0
duke@435 1414 const TypeLong *TypeLong::ONE; // 1
duke@435 1415 const TypeLong *TypeLong::POS; // >=0
duke@435 1416 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1417 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1418 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
rbackman@6375 1419 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
duke@435 1420
duke@435 1421 //------------------------------TypeLong---------------------------------------
duke@435 1422 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1423 }
duke@435 1424
duke@435 1425 //------------------------------make-------------------------------------------
duke@435 1426 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1427 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1428 }
duke@435 1429
kvn@1975 1430 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
kvn@1975 1431 // Certain normalizations keep us sane when comparing types.
kvn@1975 1432 // The 'SMALLINT' covers constants.
kvn@1975 1433 if (lo <= hi) {
kvn@1975 1434 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1435 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
kvn@1975 1436 } else {
kvn@1975 1437 if ((julong)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1438 if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
kvn@1975 1439 }
kvn@1975 1440 return w;
kvn@1975 1441 }
kvn@1975 1442
duke@435 1443 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
kvn@1975 1444 w = normalize_long_widen(lo, hi, w);
duke@435 1445 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1446 }
duke@435 1447
duke@435 1448
duke@435 1449 //------------------------------meet-------------------------------------------
duke@435 1450 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1451 // with reference count equal to the number of Types pointing at it.
duke@435 1452 // Caller should wrap a Types around it.
duke@435 1453 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1454 // Perform a fast test for common case; meeting the same types together.
duke@435 1455 if( this == t ) return this; // Meeting same type?
duke@435 1456
duke@435 1457 // Currently "this->_base" is a TypeLong
duke@435 1458 switch (t->base()) { // Switch on original type
duke@435 1459 case AnyPtr: // Mixing with oops happens when javac
duke@435 1460 case RawPtr: // reuses local variables
duke@435 1461 case OopPtr:
duke@435 1462 case InstPtr:
coleenp@4037 1463 case AryPtr:
coleenp@4037 1464 case MetadataPtr:
duke@435 1465 case KlassPtr:
never@618 1466 case NarrowOop:
roland@4159 1467 case NarrowKlass:
duke@435 1468 case Int:
duke@435 1469 case FloatTop:
duke@435 1470 case FloatCon:
duke@435 1471 case FloatBot:
duke@435 1472 case DoubleTop:
duke@435 1473 case DoubleCon:
duke@435 1474 case DoubleBot:
duke@435 1475 case Bottom: // Ye Olde Default
duke@435 1476 return Type::BOTTOM;
duke@435 1477 default: // All else is a mistake
duke@435 1478 typerr(t);
duke@435 1479 case Top: // No change
duke@435 1480 return this;
duke@435 1481 case Long: // Long vs Long?
duke@435 1482 break;
duke@435 1483 }
duke@435 1484
duke@435 1485 // Expand covered set
duke@435 1486 const TypeLong *r = t->is_long(); // Turn into a TypeLong
kvn@1975 1487 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1488 }
duke@435 1489
duke@435 1490 //------------------------------xdual------------------------------------------
duke@435 1491 // Dual: reverse hi & lo; flip widen
duke@435 1492 const Type *TypeLong::xdual() const {
kvn@1975 1493 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1494 return new TypeLong(_hi,_lo,w);
duke@435 1495 }
duke@435 1496
duke@435 1497 //------------------------------widen------------------------------------------
duke@435 1498 // Only happens for optimistic top-down optimizations.
never@1444 1499 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
duke@435 1500 // Coming from TOP or such; no widening
duke@435 1501 if( old->base() != Long ) return this;
duke@435 1502 const TypeLong *ot = old->is_long();
duke@435 1503
duke@435 1504 // If new guy is equal to old guy, no widening
duke@435 1505 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1506 return old;
duke@435 1507
duke@435 1508 // If new guy contains old, then we widened
duke@435 1509 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1510 // New contains old
duke@435 1511 // If new guy is already wider than old, no widening
duke@435 1512 if( _widen > ot->_widen ) return this;
duke@435 1513 // If old guy was a constant, do not bother
duke@435 1514 if (ot->_lo == ot->_hi) return this;
duke@435 1515 // Now widen new guy.
duke@435 1516 // Check for widening too far
duke@435 1517 if (_widen == WidenMax) {
never@1444 1518 jlong max = max_jlong;
never@1444 1519 jlong min = min_jlong;
never@1444 1520 if (limit->isa_long()) {
never@1444 1521 max = limit->is_long()->_hi;
never@1444 1522 min = limit->is_long()->_lo;
never@1444 1523 }
never@1444 1524 if (min < _lo && _hi < max) {
duke@435 1525 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1526 // which is closer to its respective limit.
duke@435 1527 if (_lo >= 0 || // easy common case
never@1444 1528 (julong)(_lo - min) >= (julong)(max - _hi)) {
duke@435 1529 // Try to widen to an unsigned range type of 32/63 bits:
never@1444 1530 if (max >= max_juint && _hi < max_juint)
duke@435 1531 return make(_lo, max_juint, WidenMax);
duke@435 1532 else
never@1444 1533 return make(_lo, max, WidenMax);
duke@435 1534 } else {
never@1444 1535 return make(min, _hi, WidenMax);
duke@435 1536 }
duke@435 1537 }
duke@435 1538 return TypeLong::LONG;
duke@435 1539 }
duke@435 1540 // Returned widened new guy
duke@435 1541 return make(_lo,_hi,_widen+1);
duke@435 1542 }
duke@435 1543
duke@435 1544 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1545 // bottom. Return the wider fellow.
duke@435 1546 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1547 return old;
duke@435 1548
duke@435 1549 // fatal("Long value range is not subset");
duke@435 1550 // return this;
duke@435 1551 return TypeLong::LONG;
duke@435 1552 }
duke@435 1553
duke@435 1554 //------------------------------narrow----------------------------------------
duke@435 1555 // Only happens for pessimistic optimizations.
duke@435 1556 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1557 if (_lo >= _hi) return this; // already narrow enough
duke@435 1558 if (old == NULL) return this;
duke@435 1559 const TypeLong* ot = old->isa_long();
duke@435 1560 if (ot == NULL) return this;
duke@435 1561 jlong olo = ot->_lo;
duke@435 1562 jlong ohi = ot->_hi;
duke@435 1563
duke@435 1564 // If new guy is equal to old guy, no narrowing
duke@435 1565 if (_lo == olo && _hi == ohi) return old;
duke@435 1566
duke@435 1567 // If old guy was maximum range, allow the narrowing
duke@435 1568 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1569
duke@435 1570 if (_lo < olo || _hi > ohi)
duke@435 1571 return this; // doesn't narrow; pretty wierd
duke@435 1572
duke@435 1573 // The new type narrows the old type, so look for a "death march".
duke@435 1574 // See comments on PhaseTransform::saturate.
duke@435 1575 julong nrange = _hi - _lo;
duke@435 1576 julong orange = ohi - olo;
duke@435 1577 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1578 // Use the new type only if the range shrinks a lot.
duke@435 1579 // We do not want the optimizer computing 2^31 point by point.
duke@435 1580 return old;
duke@435 1581 }
duke@435 1582
duke@435 1583 return this;
duke@435 1584 }
duke@435 1585
duke@435 1586 //-----------------------------filter------------------------------------------
roland@6313 1587 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 1588 const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
kvn@1975 1589 if (ft == NULL || ft->empty())
duke@435 1590 return Type::TOP; // Canonical empty value
duke@435 1591 if (ft->_widen < this->_widen) {
duke@435 1592 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1593 // The widen bits must be allowed to run freely through the graph.
duke@435 1594 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1595 }
duke@435 1596 return ft;
duke@435 1597 }
duke@435 1598
duke@435 1599 //------------------------------eq---------------------------------------------
duke@435 1600 // Structural equality check for Type representations
duke@435 1601 bool TypeLong::eq( const Type *t ) const {
duke@435 1602 const TypeLong *r = t->is_long(); // Handy access
duke@435 1603 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1604 }
duke@435 1605
duke@435 1606 //------------------------------hash-------------------------------------------
duke@435 1607 // Type-specific hashing function.
duke@435 1608 int TypeLong::hash(void) const {
duke@435 1609 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1610 }
duke@435 1611
duke@435 1612 //------------------------------is_finite--------------------------------------
duke@435 1613 // Has a finite value
duke@435 1614 bool TypeLong::is_finite() const {
duke@435 1615 return true;
duke@435 1616 }
duke@435 1617
duke@435 1618 //------------------------------dump2------------------------------------------
duke@435 1619 // Dump TypeLong
duke@435 1620 #ifndef PRODUCT
duke@435 1621 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1622 if (n > x) {
duke@435 1623 if (n >= x + 10000) return NULL;
hseigel@4465 1624 sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
duke@435 1625 } else if (n < x) {
duke@435 1626 if (n <= x - 10000) return NULL;
hseigel@4465 1627 sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
duke@435 1628 } else {
duke@435 1629 return xname;
duke@435 1630 }
duke@435 1631 return buf;
duke@435 1632 }
duke@435 1633
duke@435 1634 static const char* longname(char* buf, jlong n) {
duke@435 1635 const char* str;
duke@435 1636 if (n == min_jlong)
duke@435 1637 return "min";
duke@435 1638 else if (n < min_jlong + 10000)
hseigel@4465 1639 sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
duke@435 1640 else if (n == max_jlong)
duke@435 1641 return "max";
duke@435 1642 else if (n > max_jlong - 10000)
hseigel@4465 1643 sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
duke@435 1644 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1645 return str;
duke@435 1646 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1647 return str;
duke@435 1648 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1649 return str;
duke@435 1650 else
hseigel@4465 1651 sprintf(buf, JLONG_FORMAT, n);
duke@435 1652 return buf;
duke@435 1653 }
duke@435 1654
duke@435 1655 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1656 char buf[80], buf2[80];
duke@435 1657 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1658 st->print("long");
duke@435 1659 else if (is_con())
duke@435 1660 st->print("long:%s", longname(buf, get_con()));
duke@435 1661 else if (_hi == max_jlong)
duke@435 1662 st->print("long:>=%s", longname(buf, _lo));
duke@435 1663 else if (_lo == min_jlong)
duke@435 1664 st->print("long:<=%s", longname(buf, _hi));
duke@435 1665 else
duke@435 1666 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1667
duke@435 1668 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1669 st->print(":%.*s", _widen, "wwww");
duke@435 1670 }
duke@435 1671 #endif
duke@435 1672
duke@435 1673 //------------------------------singleton--------------------------------------
duke@435 1674 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1675 // constants
duke@435 1676 bool TypeLong::singleton(void) const {
duke@435 1677 return _lo >= _hi;
duke@435 1678 }
duke@435 1679
duke@435 1680 bool TypeLong::empty(void) const {
duke@435 1681 return _lo > _hi;
duke@435 1682 }
duke@435 1683
duke@435 1684 //=============================================================================
duke@435 1685 // Convenience common pre-built types.
duke@435 1686 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1687 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1688 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1689 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1690 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1691 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1692 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1693 const TypeTuple *TypeTuple::START_I2C;
duke@435 1694 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1695 const TypeTuple *TypeTuple::LONG_PAIR;
rbackman@5791 1696 const TypeTuple *TypeTuple::INT_CC_PAIR;
rbackman@5997 1697 const TypeTuple *TypeTuple::LONG_CC_PAIR;
duke@435 1698
duke@435 1699
duke@435 1700 //------------------------------make-------------------------------------------
duke@435 1701 // Make a TypeTuple from the range of a method signature
duke@435 1702 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1703 ciType* return_type = sig->return_type();
duke@435 1704 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1705 const Type **field_array = fields(total_fields);
duke@435 1706 switch (return_type->basic_type()) {
duke@435 1707 case T_LONG:
duke@435 1708 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1709 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1710 break;
duke@435 1711 case T_DOUBLE:
duke@435 1712 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1713 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1714 break;
duke@435 1715 case T_OBJECT:
duke@435 1716 case T_ARRAY:
duke@435 1717 case T_BOOLEAN:
duke@435 1718 case T_CHAR:
duke@435 1719 case T_FLOAT:
duke@435 1720 case T_BYTE:
duke@435 1721 case T_SHORT:
duke@435 1722 case T_INT:
duke@435 1723 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1724 break;
duke@435 1725 case T_VOID:
duke@435 1726 break;
duke@435 1727 default:
duke@435 1728 ShouldNotReachHere();
duke@435 1729 }
duke@435 1730 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1731 }
duke@435 1732
duke@435 1733 // Make a TypeTuple from the domain of a method signature
duke@435 1734 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1735 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1736
duke@435 1737 uint pos = TypeFunc::Parms;
duke@435 1738 const Type **field_array;
duke@435 1739 if (recv != NULL) {
duke@435 1740 total_fields++;
duke@435 1741 field_array = fields(total_fields);
duke@435 1742 // Use get_const_type here because it respects UseUniqueSubclasses:
roland@6313 1743 field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
duke@435 1744 } else {
duke@435 1745 field_array = fields(total_fields);
duke@435 1746 }
duke@435 1747
duke@435 1748 int i = 0;
duke@435 1749 while (pos < total_fields) {
duke@435 1750 ciType* type = sig->type_at(i);
duke@435 1751
duke@435 1752 switch (type->basic_type()) {
duke@435 1753 case T_LONG:
duke@435 1754 field_array[pos++] = TypeLong::LONG;
duke@435 1755 field_array[pos++] = Type::HALF;
duke@435 1756 break;
duke@435 1757 case T_DOUBLE:
duke@435 1758 field_array[pos++] = Type::DOUBLE;
duke@435 1759 field_array[pos++] = Type::HALF;
duke@435 1760 break;
duke@435 1761 case T_OBJECT:
duke@435 1762 case T_ARRAY:
duke@435 1763 case T_BOOLEAN:
duke@435 1764 case T_CHAR:
duke@435 1765 case T_FLOAT:
duke@435 1766 case T_BYTE:
duke@435 1767 case T_SHORT:
duke@435 1768 case T_INT:
duke@435 1769 field_array[pos++] = get_const_type(type);
duke@435 1770 break;
duke@435 1771 default:
duke@435 1772 ShouldNotReachHere();
duke@435 1773 }
duke@435 1774 i++;
duke@435 1775 }
duke@435 1776 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1777 }
duke@435 1778
duke@435 1779 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1780 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1781 }
duke@435 1782
duke@435 1783 //------------------------------fields-----------------------------------------
duke@435 1784 // Subroutine call type with space allocated for argument types
duke@435 1785 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1786 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1787 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1788 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1789 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1790 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1791 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1792
duke@435 1793 return flds;
duke@435 1794 }
duke@435 1795
duke@435 1796 //------------------------------meet-------------------------------------------
duke@435 1797 // Compute the MEET of two types. It returns a new Type object.
duke@435 1798 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1799 // Perform a fast test for common case; meeting the same types together.
duke@435 1800 if( this == t ) return this; // Meeting same type-rep?
duke@435 1801
duke@435 1802 // Current "this->_base" is Tuple
duke@435 1803 switch (t->base()) { // switch on original type
duke@435 1804
duke@435 1805 case Bottom: // Ye Olde Default
duke@435 1806 return t;
duke@435 1807
duke@435 1808 default: // All else is a mistake
duke@435 1809 typerr(t);
duke@435 1810
duke@435 1811 case Tuple: { // Meeting 2 signatures?
duke@435 1812 const TypeTuple *x = t->is_tuple();
duke@435 1813 assert( _cnt == x->_cnt, "" );
duke@435 1814 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1815 for( uint i=0; i<_cnt; i++ )
duke@435 1816 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1817 return TypeTuple::make(_cnt,fields);
duke@435 1818 }
duke@435 1819 case Top:
duke@435 1820 break;
duke@435 1821 }
duke@435 1822 return this; // Return the double constant
duke@435 1823 }
duke@435 1824
duke@435 1825 //------------------------------xdual------------------------------------------
duke@435 1826 // Dual: compute field-by-field dual
duke@435 1827 const Type *TypeTuple::xdual() const {
duke@435 1828 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1829 for( uint i=0; i<_cnt; i++ )
duke@435 1830 fields[i] = _fields[i]->dual();
duke@435 1831 return new TypeTuple(_cnt,fields);
duke@435 1832 }
duke@435 1833
duke@435 1834 //------------------------------eq---------------------------------------------
duke@435 1835 // Structural equality check for Type representations
duke@435 1836 bool TypeTuple::eq( const Type *t ) const {
duke@435 1837 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1838 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1839 for (uint i = 0; i < _cnt; i++)
duke@435 1840 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1841 return false; // Missed
duke@435 1842 return true;
duke@435 1843 }
duke@435 1844
duke@435 1845 //------------------------------hash-------------------------------------------
duke@435 1846 // Type-specific hashing function.
duke@435 1847 int TypeTuple::hash(void) const {
duke@435 1848 intptr_t sum = _cnt;
duke@435 1849 for( uint i=0; i<_cnt; i++ )
duke@435 1850 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1851 return sum;
duke@435 1852 }
duke@435 1853
duke@435 1854 //------------------------------dump2------------------------------------------
duke@435 1855 // Dump signature Type
duke@435 1856 #ifndef PRODUCT
duke@435 1857 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1858 st->print("{");
duke@435 1859 if( !depth || d[this] ) { // Check for recursive print
duke@435 1860 st->print("...}");
duke@435 1861 return;
duke@435 1862 }
duke@435 1863 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1864 if( _cnt ) {
duke@435 1865 uint i;
duke@435 1866 for( i=0; i<_cnt-1; i++ ) {
duke@435 1867 st->print("%d:", i);
duke@435 1868 _fields[i]->dump2(d, depth-1, st);
duke@435 1869 st->print(", ");
duke@435 1870 }
duke@435 1871 st->print("%d:", i);
duke@435 1872 _fields[i]->dump2(d, depth-1, st);
duke@435 1873 }
duke@435 1874 st->print("}");
duke@435 1875 }
duke@435 1876 #endif
duke@435 1877
duke@435 1878 //------------------------------singleton--------------------------------------
duke@435 1879 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1880 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1881 // or a single symbol.
duke@435 1882 bool TypeTuple::singleton(void) const {
duke@435 1883 return false; // Never a singleton
duke@435 1884 }
duke@435 1885
duke@435 1886 bool TypeTuple::empty(void) const {
duke@435 1887 for( uint i=0; i<_cnt; i++ ) {
duke@435 1888 if (_fields[i]->empty()) return true;
duke@435 1889 }
duke@435 1890 return false;
duke@435 1891 }
duke@435 1892
duke@435 1893 //=============================================================================
duke@435 1894 // Convenience common pre-built types.
duke@435 1895
duke@435 1896 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1897 // Certain normalizations keep us sane when comparing types.
duke@435 1898 // We do not want arrayOop variables to differ only by the wideness
duke@435 1899 // of their index types. Pick minimum wideness, since that is the
duke@435 1900 // forced wideness of small ranges anyway.
duke@435 1901 if (size->_widen != Type::WidenMin)
duke@435 1902 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1903 else
duke@435 1904 return size;
duke@435 1905 }
duke@435 1906
duke@435 1907 //------------------------------make-------------------------------------------
vlivanov@5658 1908 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
coleenp@548 1909 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1910 elem = elem->make_narrowoop();
coleenp@548 1911 }
duke@435 1912 size = normalize_array_size(size);
vlivanov@5658 1913 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
duke@435 1914 }
duke@435 1915
duke@435 1916 //------------------------------meet-------------------------------------------
duke@435 1917 // Compute the MEET of two types. It returns a new Type object.
duke@435 1918 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1919 // Perform a fast test for common case; meeting the same types together.
duke@435 1920 if( this == t ) return this; // Meeting same type-rep?
duke@435 1921
duke@435 1922 // Current "this->_base" is Ary
duke@435 1923 switch (t->base()) { // switch on original type
duke@435 1924
duke@435 1925 case Bottom: // Ye Olde Default
duke@435 1926 return t;
duke@435 1927
duke@435 1928 default: // All else is a mistake
duke@435 1929 typerr(t);
duke@435 1930
duke@435 1931 case Array: { // Meeting 2 arrays?
duke@435 1932 const TypeAry *a = t->is_ary();
roland@6313 1933 return TypeAry::make(_elem->meet_speculative(a->_elem),
vlivanov@5658 1934 _size->xmeet(a->_size)->is_int(),
vlivanov@5658 1935 _stable & a->_stable);
duke@435 1936 }
duke@435 1937 case Top:
duke@435 1938 break;
duke@435 1939 }
duke@435 1940 return this; // Return the double constant
duke@435 1941 }
duke@435 1942
duke@435 1943 //------------------------------xdual------------------------------------------
duke@435 1944 // Dual: compute field-by-field dual
duke@435 1945 const Type *TypeAry::xdual() const {
duke@435 1946 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1947 size_dual = normalize_array_size(size_dual);
vlivanov@5658 1948 return new TypeAry(_elem->dual(), size_dual, !_stable);
duke@435 1949 }
duke@435 1950
duke@435 1951 //------------------------------eq---------------------------------------------
duke@435 1952 // Structural equality check for Type representations
duke@435 1953 bool TypeAry::eq( const Type *t ) const {
duke@435 1954 const TypeAry *a = (const TypeAry*)t;
duke@435 1955 return _elem == a->_elem &&
vlivanov@5658 1956 _stable == a->_stable &&
duke@435 1957 _size == a->_size;
duke@435 1958 }
duke@435 1959
duke@435 1960 //------------------------------hash-------------------------------------------
duke@435 1961 // Type-specific hashing function.
duke@435 1962 int TypeAry::hash(void) const {
vlivanov@5658 1963 return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
duke@435 1964 }
duke@435 1965
roland@6313 1966 /**
roland@6313 1967 * Return same type without a speculative part in the element
roland@6313 1968 */
roland@6313 1969 const Type* TypeAry::remove_speculative() const {
roland@6313 1970 return make(_elem->remove_speculative(), _size, _stable);
roland@6313 1971 }
roland@6313 1972
kvn@1255 1973 //----------------------interface_vs_oop---------------------------------------
kvn@1255 1974 #ifdef ASSERT
kvn@1255 1975 bool TypeAry::interface_vs_oop(const Type *t) const {
kvn@1255 1976 const TypeAry* t_ary = t->is_ary();
kvn@1255 1977 if (t_ary) {
kvn@1255 1978 return _elem->interface_vs_oop(t_ary->_elem);
kvn@1255 1979 }
kvn@1255 1980 return false;
kvn@1255 1981 }
kvn@1255 1982 #endif
kvn@1255 1983
duke@435 1984 //------------------------------dump2------------------------------------------
duke@435 1985 #ifndef PRODUCT
duke@435 1986 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
vlivanov@5658 1987 if (_stable) st->print("stable:");
duke@435 1988 _elem->dump2(d, depth, st);
duke@435 1989 st->print("[");
duke@435 1990 _size->dump2(d, depth, st);
duke@435 1991 st->print("]");
duke@435 1992 }
duke@435 1993 #endif
duke@435 1994
duke@435 1995 //------------------------------singleton--------------------------------------
duke@435 1996 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1997 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1998 // or a single symbol.
duke@435 1999 bool TypeAry::singleton(void) const {
duke@435 2000 return false; // Never a singleton
duke@435 2001 }
duke@435 2002
duke@435 2003 bool TypeAry::empty(void) const {
duke@435 2004 return _elem->empty() || _size->empty();
duke@435 2005 }
duke@435 2006
duke@435 2007 //--------------------------ary_must_be_exact----------------------------------
duke@435 2008 bool TypeAry::ary_must_be_exact() const {
duke@435 2009 if (!UseExactTypes) return false;
duke@435 2010 // This logic looks at the element type of an array, and returns true
duke@435 2011 // if the element type is either a primitive or a final instance class.
duke@435 2012 // In such cases, an array built on this ary must have no subclasses.
duke@435 2013 if (_elem == BOTTOM) return false; // general array not exact
duke@435 2014 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 2015 const TypeOopPtr* toop = NULL;
kvn@656 2016 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 2017 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 2018 } else {
coleenp@548 2019 toop = _elem->isa_oopptr();
coleenp@548 2020 }
duke@435 2021 if (!toop) return true; // a primitive type, like int
duke@435 2022 ciKlass* tklass = toop->klass();
duke@435 2023 if (tklass == NULL) return false; // unloaded class
duke@435 2024 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 2025 const TypeInstPtr* tinst;
coleenp@548 2026 if (_elem->isa_narrowoop())
kvn@656 2027 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 2028 else
coleenp@548 2029 tinst = _elem->isa_instptr();
kvn@656 2030 if (tinst)
kvn@656 2031 return tklass->as_instance_klass()->is_final();
coleenp@548 2032 const TypeAryPtr* tap;
coleenp@548 2033 if (_elem->isa_narrowoop())
kvn@656 2034 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 2035 else
coleenp@548 2036 tap = _elem->isa_aryptr();
kvn@656 2037 if (tap)
kvn@656 2038 return tap->ary()->ary_must_be_exact();
duke@435 2039 return false;
duke@435 2040 }
duke@435 2041
kvn@3882 2042 //==============================TypeVect=======================================
kvn@3882 2043 // Convenience common pre-built types.
kvn@3882 2044 const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors
kvn@3882 2045 const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors
kvn@3882 2046 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
kvn@3882 2047 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
kvn@3882 2048
kvn@3882 2049 //------------------------------make-------------------------------------------
kvn@3882 2050 const TypeVect* TypeVect::make(const Type *elem, uint length) {
kvn@3882 2051 BasicType elem_bt = elem->array_element_basic_type();
kvn@3882 2052 assert(is_java_primitive(elem_bt), "only primitive types in vector");
kvn@3882 2053 assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
kvn@3882 2054 assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
kvn@3882 2055 int size = length * type2aelembytes(elem_bt);
kvn@3882 2056 switch (Matcher::vector_ideal_reg(size)) {
kvn@3882 2057 case Op_VecS:
kvn@3882 2058 return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
kvn@3882 2059 case Op_VecD:
kvn@3882 2060 case Op_RegD:
kvn@3882 2061 return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
kvn@3882 2062 case Op_VecX:
kvn@3882 2063 return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
kvn@3882 2064 case Op_VecY:
kvn@3882 2065 return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
kvn@3882 2066 }
kvn@3882 2067 ShouldNotReachHere();
kvn@3882 2068 return NULL;
kvn@3882 2069 }
kvn@3882 2070
kvn@3882 2071 //------------------------------meet-------------------------------------------
kvn@3882 2072 // Compute the MEET of two types. It returns a new Type object.
kvn@3882 2073 const Type *TypeVect::xmeet( const Type *t ) const {
kvn@3882 2074 // Perform a fast test for common case; meeting the same types together.
kvn@3882 2075 if( this == t ) return this; // Meeting same type-rep?
kvn@3882 2076
kvn@3882 2077 // Current "this->_base" is Vector
kvn@3882 2078 switch (t->base()) { // switch on original type
kvn@3882 2079
kvn@3882 2080 case Bottom: // Ye Olde Default
kvn@3882 2081 return t;
kvn@3882 2082
kvn@3882 2083 default: // All else is a mistake
kvn@3882 2084 typerr(t);
kvn@3882 2085
kvn@3882 2086 case VectorS:
kvn@3882 2087 case VectorD:
kvn@3882 2088 case VectorX:
kvn@3882 2089 case VectorY: { // Meeting 2 vectors?
kvn@3882 2090 const TypeVect* v = t->is_vect();
kvn@3882 2091 assert( base() == v->base(), "");
kvn@3882 2092 assert(length() == v->length(), "");
kvn@3882 2093 assert(element_basic_type() == v->element_basic_type(), "");
kvn@3882 2094 return TypeVect::make(_elem->xmeet(v->_elem), _length);
kvn@3882 2095 }
kvn@3882 2096 case Top:
kvn@3882 2097 break;
kvn@3882 2098 }
kvn@3882 2099 return this;
kvn@3882 2100 }
kvn@3882 2101
kvn@3882 2102 //------------------------------xdual------------------------------------------
kvn@3882 2103 // Dual: compute field-by-field dual
kvn@3882 2104 const Type *TypeVect::xdual() const {
kvn@3882 2105 return new TypeVect(base(), _elem->dual(), _length);
kvn@3882 2106 }
kvn@3882 2107
kvn@3882 2108 //------------------------------eq---------------------------------------------
kvn@3882 2109 // Structural equality check for Type representations
kvn@3882 2110 bool TypeVect::eq(const Type *t) const {
kvn@3882 2111 const TypeVect *v = t->is_vect();
kvn@3882 2112 return (_elem == v->_elem) && (_length == v->_length);
kvn@3882 2113 }
kvn@3882 2114
kvn@3882 2115 //------------------------------hash-------------------------------------------
kvn@3882 2116 // Type-specific hashing function.
kvn@3882 2117 int TypeVect::hash(void) const {
kvn@3882 2118 return (intptr_t)_elem + (intptr_t)_length;
kvn@3882 2119 }
kvn@3882 2120
kvn@3882 2121 //------------------------------singleton--------------------------------------
kvn@3882 2122 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
kvn@3882 2123 // constants (Ldi nodes). Vector is singleton if all elements are the same
kvn@3882 2124 // constant value (when vector is created with Replicate code).
kvn@3882 2125 bool TypeVect::singleton(void) const {
kvn@3882 2126 // There is no Con node for vectors yet.
kvn@3882 2127 // return _elem->singleton();
kvn@3882 2128 return false;
kvn@3882 2129 }
kvn@3882 2130
kvn@3882 2131 bool TypeVect::empty(void) const {
kvn@3882 2132 return _elem->empty();
kvn@3882 2133 }
kvn@3882 2134
kvn@3882 2135 //------------------------------dump2------------------------------------------
kvn@3882 2136 #ifndef PRODUCT
kvn@3882 2137 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
kvn@3882 2138 switch (base()) {
kvn@3882 2139 case VectorS:
kvn@3882 2140 st->print("vectors["); break;
kvn@3882 2141 case VectorD:
kvn@3882 2142 st->print("vectord["); break;
kvn@3882 2143 case VectorX:
kvn@3882 2144 st->print("vectorx["); break;
kvn@3882 2145 case VectorY:
kvn@3882 2146 st->print("vectory["); break;
kvn@3882 2147 default:
kvn@3882 2148 ShouldNotReachHere();
kvn@3882 2149 }
kvn@3882 2150 st->print("%d]:{", _length);
kvn@3882 2151 _elem->dump2(d, depth, st);
kvn@3882 2152 st->print("}");
kvn@3882 2153 }
kvn@3882 2154 #endif
kvn@3882 2155
kvn@3882 2156
duke@435 2157 //=============================================================================
duke@435 2158 // Convenience common pre-built types.
duke@435 2159 const TypePtr *TypePtr::NULL_PTR;
duke@435 2160 const TypePtr *TypePtr::NOTNULL;
duke@435 2161 const TypePtr *TypePtr::BOTTOM;
duke@435 2162
duke@435 2163 //------------------------------meet-------------------------------------------
duke@435 2164 // Meet over the PTR enum
duke@435 2165 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 2166 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 2167 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 2168 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2169 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2170 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 2171 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 2172 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 2173 };
duke@435 2174
duke@435 2175 //------------------------------make-------------------------------------------
duke@435 2176 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 2177 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 2178 }
duke@435 2179
duke@435 2180 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2181 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2182 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 2183 if( ptr == _ptr ) return this;
duke@435 2184 return make(_base, ptr, _offset);
duke@435 2185 }
duke@435 2186
duke@435 2187 //------------------------------get_con----------------------------------------
duke@435 2188 intptr_t TypePtr::get_con() const {
duke@435 2189 assert( _ptr == Null, "" );
duke@435 2190 return _offset;
duke@435 2191 }
duke@435 2192
duke@435 2193 //------------------------------meet-------------------------------------------
duke@435 2194 // Compute the MEET of two types. It returns a new Type object.
duke@435 2195 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 2196 // Perform a fast test for common case; meeting the same types together.
duke@435 2197 if( this == t ) return this; // Meeting same type-rep?
duke@435 2198
duke@435 2199 // Current "this->_base" is AnyPtr
duke@435 2200 switch (t->base()) { // switch on original type
duke@435 2201 case Int: // Mixing ints & oops happens when javac
duke@435 2202 case Long: // reuses local variables
duke@435 2203 case FloatTop:
duke@435 2204 case FloatCon:
duke@435 2205 case FloatBot:
duke@435 2206 case DoubleTop:
duke@435 2207 case DoubleCon:
duke@435 2208 case DoubleBot:
coleenp@548 2209 case NarrowOop:
roland@4159 2210 case NarrowKlass:
duke@435 2211 case Bottom: // Ye Olde Default
duke@435 2212 return Type::BOTTOM;
duke@435 2213 case Top:
duke@435 2214 return this;
duke@435 2215
duke@435 2216 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2217 const TypePtr *tp = t->is_ptr();
duke@435 2218 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 2219 }
duke@435 2220 case RawPtr: // For these, flip the call around to cut down
duke@435 2221 case OopPtr:
duke@435 2222 case InstPtr: // on the cases I have to handle.
coleenp@4037 2223 case AryPtr:
coleenp@4037 2224 case MetadataPtr:
duke@435 2225 case KlassPtr:
duke@435 2226 return t->xmeet(this); // Call in reverse direction
duke@435 2227 default: // All else is a mistake
duke@435 2228 typerr(t);
duke@435 2229
duke@435 2230 }
duke@435 2231 return this;
duke@435 2232 }
duke@435 2233
duke@435 2234 //------------------------------meet_offset------------------------------------
duke@435 2235 int TypePtr::meet_offset( int offset ) const {
duke@435 2236 // Either is 'TOP' offset? Return the other offset!
duke@435 2237 if( _offset == OffsetTop ) return offset;
duke@435 2238 if( offset == OffsetTop ) return _offset;
duke@435 2239 // If either is different, return 'BOTTOM' offset
duke@435 2240 if( _offset != offset ) return OffsetBot;
duke@435 2241 return _offset;
duke@435 2242 }
duke@435 2243
duke@435 2244 //------------------------------dual_offset------------------------------------
duke@435 2245 int TypePtr::dual_offset( ) const {
duke@435 2246 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 2247 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 2248 return _offset; // Map everything else into self
duke@435 2249 }
duke@435 2250
duke@435 2251 //------------------------------xdual------------------------------------------
duke@435 2252 // Dual: compute field-by-field dual
duke@435 2253 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 2254 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 2255 };
duke@435 2256 const Type *TypePtr::xdual() const {
duke@435 2257 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 2258 }
duke@435 2259
kvn@741 2260 //------------------------------xadd_offset------------------------------------
kvn@741 2261 int TypePtr::xadd_offset( intptr_t offset ) const {
kvn@741 2262 // Adding to 'TOP' offset? Return 'TOP'!
kvn@741 2263 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
kvn@741 2264 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
kvn@741 2265 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
kvn@741 2266 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
kvn@741 2267 offset += (intptr_t)_offset;
kvn@741 2268 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
kvn@741 2269
kvn@741 2270 // assert( _offset >= 0 && _offset+offset >= 0, "" );
kvn@741 2271 // It is possible to construct a negative offset during PhaseCCP
kvn@741 2272
kvn@741 2273 return (int)offset; // Sum valid offsets
kvn@741 2274 }
kvn@741 2275
duke@435 2276 //------------------------------add_offset-------------------------------------
kvn@741 2277 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
kvn@741 2278 return make( AnyPtr, _ptr, xadd_offset(offset) );
duke@435 2279 }
duke@435 2280
duke@435 2281 //------------------------------eq---------------------------------------------
duke@435 2282 // Structural equality check for Type representations
duke@435 2283 bool TypePtr::eq( const Type *t ) const {
duke@435 2284 const TypePtr *a = (const TypePtr*)t;
duke@435 2285 return _ptr == a->ptr() && _offset == a->offset();
duke@435 2286 }
duke@435 2287
duke@435 2288 //------------------------------hash-------------------------------------------
duke@435 2289 // Type-specific hashing function.
duke@435 2290 int TypePtr::hash(void) const {
duke@435 2291 return _ptr + _offset;
duke@435 2292 }
duke@435 2293
duke@435 2294 //------------------------------dump2------------------------------------------
duke@435 2295 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 2296 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 2297 };
duke@435 2298
duke@435 2299 #ifndef PRODUCT
duke@435 2300 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2301 if( _ptr == Null ) st->print("NULL");
duke@435 2302 else st->print("%s *", ptr_msg[_ptr]);
duke@435 2303 if( _offset == OffsetTop ) st->print("+top");
duke@435 2304 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 2305 else if( _offset ) st->print("+%d", _offset);
duke@435 2306 }
duke@435 2307 #endif
duke@435 2308
duke@435 2309 //------------------------------singleton--------------------------------------
duke@435 2310 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2311 // constants
duke@435 2312 bool TypePtr::singleton(void) const {
duke@435 2313 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2314 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2315 }
duke@435 2316
duke@435 2317 bool TypePtr::empty(void) const {
duke@435 2318 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2319 }
duke@435 2320
duke@435 2321 //=============================================================================
duke@435 2322 // Convenience common pre-built types.
duke@435 2323 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2324 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2325
duke@435 2326 //------------------------------make-------------------------------------------
duke@435 2327 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2328 assert( ptr != Constant, "what is the constant?" );
duke@435 2329 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2330 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2331 }
duke@435 2332
duke@435 2333 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2334 assert( bits, "Use TypePtr for NULL" );
duke@435 2335 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2336 }
duke@435 2337
duke@435 2338 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2339 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2340 assert( ptr != Constant, "what is the constant?" );
duke@435 2341 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2342 assert( _bits==0, "Why cast a constant address?");
duke@435 2343 if( ptr == _ptr ) return this;
duke@435 2344 return make(ptr);
duke@435 2345 }
duke@435 2346
duke@435 2347 //------------------------------get_con----------------------------------------
duke@435 2348 intptr_t TypeRawPtr::get_con() const {
duke@435 2349 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2350 return (intptr_t)_bits;
duke@435 2351 }
duke@435 2352
duke@435 2353 //------------------------------meet-------------------------------------------
duke@435 2354 // Compute the MEET of two types. It returns a new Type object.
duke@435 2355 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2356 // Perform a fast test for common case; meeting the same types together.
duke@435 2357 if( this == t ) return this; // Meeting same type-rep?
duke@435 2358
duke@435 2359 // Current "this->_base" is RawPtr
duke@435 2360 switch( t->base() ) { // switch on original type
duke@435 2361 case Bottom: // Ye Olde Default
duke@435 2362 return t;
duke@435 2363 case Top:
duke@435 2364 return this;
duke@435 2365 case AnyPtr: // Meeting to AnyPtrs
duke@435 2366 break;
duke@435 2367 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2368 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2369 enum PTR ptr = meet_ptr( tptr );
duke@435 2370 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2371 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2372 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2373 ptr = NotNull; // Fall down in lattice
duke@435 2374 }
duke@435 2375 return make( ptr );
duke@435 2376 }
duke@435 2377
duke@435 2378 case OopPtr:
duke@435 2379 case InstPtr:
coleenp@4037 2380 case AryPtr:
coleenp@4037 2381 case MetadataPtr:
duke@435 2382 case KlassPtr:
duke@435 2383 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2384 default: // All else is a mistake
duke@435 2385 typerr(t);
duke@435 2386 }
duke@435 2387
duke@435 2388 // Found an AnyPtr type vs self-RawPtr type
duke@435 2389 const TypePtr *tp = t->is_ptr();
duke@435 2390 switch (tp->ptr()) {
duke@435 2391 case TypePtr::TopPTR: return this;
duke@435 2392 case TypePtr::BotPTR: return t;
duke@435 2393 case TypePtr::Null:
duke@435 2394 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2395 return TypeRawPtr::BOTTOM;
duke@435 2396 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2397 case TypePtr::AnyNull:
duke@435 2398 if( _ptr == TypePtr::Constant) return this;
duke@435 2399 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2400 default: ShouldNotReachHere();
duke@435 2401 }
duke@435 2402 return this;
duke@435 2403 }
duke@435 2404
duke@435 2405 //------------------------------xdual------------------------------------------
duke@435 2406 // Dual: compute field-by-field dual
duke@435 2407 const Type *TypeRawPtr::xdual() const {
duke@435 2408 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2409 }
duke@435 2410
duke@435 2411 //------------------------------add_offset-------------------------------------
kvn@741 2412 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
duke@435 2413 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2414 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2415 if( offset == 0 ) return this; // No change
duke@435 2416 switch (_ptr) {
duke@435 2417 case TypePtr::TopPTR:
duke@435 2418 case TypePtr::BotPTR:
duke@435 2419 case TypePtr::NotNull:
duke@435 2420 return this;
duke@435 2421 case TypePtr::Null:
kvn@2435 2422 case TypePtr::Constant: {
kvn@2435 2423 address bits = _bits+offset;
kvn@2435 2424 if ( bits == 0 ) return TypePtr::NULL_PTR;
kvn@2435 2425 return make( bits );
kvn@2435 2426 }
duke@435 2427 default: ShouldNotReachHere();
duke@435 2428 }
duke@435 2429 return NULL; // Lint noise
duke@435 2430 }
duke@435 2431
duke@435 2432 //------------------------------eq---------------------------------------------
duke@435 2433 // Structural equality check for Type representations
duke@435 2434 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2435 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2436 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2437 }
duke@435 2438
duke@435 2439 //------------------------------hash-------------------------------------------
duke@435 2440 // Type-specific hashing function.
duke@435 2441 int TypeRawPtr::hash(void) const {
duke@435 2442 return (intptr_t)_bits + TypePtr::hash();
duke@435 2443 }
duke@435 2444
duke@435 2445 //------------------------------dump2------------------------------------------
duke@435 2446 #ifndef PRODUCT
duke@435 2447 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2448 if( _ptr == Constant )
duke@435 2449 st->print(INTPTR_FORMAT, _bits);
duke@435 2450 else
duke@435 2451 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2452 }
duke@435 2453 #endif
duke@435 2454
duke@435 2455 //=============================================================================
duke@435 2456 // Convenience common pre-built type.
duke@435 2457 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2458
kvn@598 2459 //------------------------------TypeOopPtr-------------------------------------
roland@5991 2460 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative)
kvn@598 2461 : TypePtr(t, ptr, offset),
kvn@598 2462 _const_oop(o), _klass(k),
kvn@598 2463 _klass_is_exact(xk),
kvn@598 2464 _is_ptr_to_narrowoop(false),
roland@4159 2465 _is_ptr_to_narrowklass(false),
kvn@5110 2466 _is_ptr_to_boxed_value(false),
roland@5991 2467 _instance_id(instance_id),
roland@5991 2468 _speculative(speculative) {
kvn@5110 2469 if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
kvn@5110 2470 (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
kvn@5110 2471 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
kvn@5110 2472 }
kvn@598 2473 #ifdef _LP64
roland@4159 2474 if (_offset != 0) {
coleenp@4037 2475 if (_offset == oopDesc::klass_offset_in_bytes()) {
ehelin@5694 2476 _is_ptr_to_narrowklass = UseCompressedClassPointers;
coleenp@4037 2477 } else if (klass() == NULL) {
coleenp@4037 2478 // Array with unknown body type
kvn@598 2479 assert(this->isa_aryptr(), "only arrays without klass");
roland@4159 2480 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2481 } else if (this->isa_aryptr()) {
roland@4159 2482 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
kvn@598 2483 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2484 } else if (klass()->is_instance_klass()) {
kvn@598 2485 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2486 ciField* field = NULL;
kvn@598 2487 if (this->isa_klassptr()) {
never@2658 2488 // Perm objects don't use compressed references
kvn@598 2489 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2490 // unsafe access
roland@4159 2491 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2492 } else { // exclude unsafe ops
kvn@598 2493 assert(this->isa_instptr(), "must be an instance ptr.");
never@2658 2494
never@2658 2495 if (klass() == ciEnv::current()->Class_klass() &&
never@2658 2496 (_offset == java_lang_Class::klass_offset_in_bytes() ||
never@2658 2497 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
never@2658 2498 // Special hidden fields from the Class.
never@2658 2499 assert(this->isa_instptr(), "must be an instance ptr.");
coleenp@4037 2500 _is_ptr_to_narrowoop = false;
never@2658 2501 } else if (klass() == ciEnv::current()->Class_klass() &&
coleenp@4047 2502 _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
never@2658 2503 // Static fields
never@2658 2504 assert(o != NULL, "must be constant");
never@2658 2505 ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 2506 ciField* field = k->get_field_by_offset(_offset, true);
never@2658 2507 assert(field != NULL, "missing field");
kvn@598 2508 BasicType basic_elem_type = field->layout_type();
roland@4159 2509 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2510 basic_elem_type == T_ARRAY);
kvn@598 2511 } else {
never@2658 2512 // Instance fields which contains a compressed oop references.
never@2658 2513 field = ik->get_field_by_offset(_offset, false);
never@2658 2514 if (field != NULL) {
never@2658 2515 BasicType basic_elem_type = field->layout_type();
roland@4159 2516 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2517 basic_elem_type == T_ARRAY);
never@2658 2518 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
never@2658 2519 // Compile::find_alias_type() cast exactness on all types to verify
never@2658 2520 // that it does not affect alias type.
roland@4159 2521 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2522 } else {
never@2658 2523 // Type for the copy start in LibraryCallKit::inline_native_clone().
roland@4159 2524 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2525 }
kvn@598 2526 }
kvn@598 2527 }
kvn@598 2528 }
kvn@598 2529 }
kvn@598 2530 #endif
kvn@598 2531 }
kvn@598 2532
duke@435 2533 //------------------------------make-------------------------------------------
duke@435 2534 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
roland@5991 2535 int offset, int instance_id, const TypeOopPtr* speculative) {
duke@435 2536 assert(ptr != Constant, "no constant generic pointers");
coleenp@4037 2537 ciKlass* k = Compile::current()->env()->Object_klass();
duke@435 2538 bool xk = false;
duke@435 2539 ciObject* o = NULL;
roland@5991 2540 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative))->hashcons();
duke@435 2541 }
duke@435 2542
duke@435 2543
duke@435 2544 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2545 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2546 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2547 if( ptr == _ptr ) return this;
roland@5991 2548 return make(ptr, _offset, _instance_id, _speculative);
duke@435 2549 }
duke@435 2550
kvn@682 2551 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2552 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2553 // There are no instances of a general oop.
duke@435 2554 // Return self unchanged.
duke@435 2555 return this;
duke@435 2556 }
duke@435 2557
duke@435 2558 //-----------------------------cast_to_exactness-------------------------------
duke@435 2559 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2560 // There is no such thing as an exact general oop.
duke@435 2561 // Return self unchanged.
duke@435 2562 return this;
duke@435 2563 }
duke@435 2564
duke@435 2565
duke@435 2566 //------------------------------as_klass_type----------------------------------
duke@435 2567 // Return the klass type corresponding to this instance or array type.
duke@435 2568 // It is the type that is loaded from an object of this type.
duke@435 2569 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2570 ciKlass* k = klass();
duke@435 2571 bool xk = klass_is_exact();
coleenp@4037 2572 if (k == NULL)
duke@435 2573 return TypeKlassPtr::OBJECT;
duke@435 2574 else
duke@435 2575 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2576 }
duke@435 2577
roland@5991 2578 const Type *TypeOopPtr::xmeet(const Type *t) const {
roland@5991 2579 const Type* res = xmeet_helper(t);
roland@5991 2580 if (res->isa_oopptr() == NULL) {
roland@5991 2581 return res;
roland@5991 2582 }
roland@5991 2583
roland@6313 2584 const TypeOopPtr* res_oopptr = res->is_oopptr();
roland@6313 2585 if (res_oopptr->speculative() != NULL) {
roland@5991 2586 // type->speculative() == NULL means that speculation is no better
roland@5991 2587 // than type, i.e. type->speculative() == type. So there are 2
roland@5991 2588 // ways to represent the fact that we have no useful speculative
roland@5991 2589 // data and we should use a single one to be able to test for
roland@5991 2590 // equality between types. Check whether type->speculative() ==
roland@5991 2591 // type and set speculative to NULL if it is the case.
roland@5991 2592 if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
roland@5991 2593 return res_oopptr->remove_speculative();
roland@5991 2594 }
roland@5991 2595 }
roland@5991 2596
roland@5991 2597 return res;
roland@5991 2598 }
duke@435 2599
duke@435 2600 //------------------------------meet-------------------------------------------
duke@435 2601 // Compute the MEET of two types. It returns a new Type object.
roland@5991 2602 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
duke@435 2603 // Perform a fast test for common case; meeting the same types together.
duke@435 2604 if( this == t ) return this; // Meeting same type-rep?
duke@435 2605
duke@435 2606 // Current "this->_base" is OopPtr
duke@435 2607 switch (t->base()) { // switch on original type
duke@435 2608
duke@435 2609 case Int: // Mixing ints & oops happens when javac
duke@435 2610 case Long: // reuses local variables
duke@435 2611 case FloatTop:
duke@435 2612 case FloatCon:
duke@435 2613 case FloatBot:
duke@435 2614 case DoubleTop:
duke@435 2615 case DoubleCon:
duke@435 2616 case DoubleBot:
kvn@728 2617 case NarrowOop:
roland@4159 2618 case NarrowKlass:
duke@435 2619 case Bottom: // Ye Olde Default
duke@435 2620 return Type::BOTTOM;
duke@435 2621 case Top:
duke@435 2622 return this;
duke@435 2623
duke@435 2624 default: // All else is a mistake
duke@435 2625 typerr(t);
duke@435 2626
duke@435 2627 case RawPtr:
coleenp@4037 2628 case MetadataPtr:
coleenp@4037 2629 case KlassPtr:
duke@435 2630 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2631
duke@435 2632 case AnyPtr: {
duke@435 2633 // Found an AnyPtr type vs self-OopPtr type
duke@435 2634 const TypePtr *tp = t->is_ptr();
duke@435 2635 int offset = meet_offset(tp->offset());
duke@435 2636 PTR ptr = meet_ptr(tp->ptr());
duke@435 2637 switch (tp->ptr()) {
duke@435 2638 case Null:
duke@435 2639 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2640 // else fall through:
duke@435 2641 case TopPTR:
kvn@1427 2642 case AnyNull: {
kvn@1427 2643 int instance_id = meet_instance_id(InstanceTop);
roland@5991 2644 const TypeOopPtr* speculative = _speculative;
roland@5991 2645 return make(ptr, offset, instance_id, speculative);
kvn@1427 2646 }
duke@435 2647 case BotPTR:
duke@435 2648 case NotNull:
duke@435 2649 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2650 default: typerr(t);
duke@435 2651 }
duke@435 2652 }
duke@435 2653
duke@435 2654 case OopPtr: { // Meeting to other OopPtrs
duke@435 2655 const TypeOopPtr *tp = t->is_oopptr();
kvn@1393 2656 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 2657 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@5991 2658 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative);
duke@435 2659 }
duke@435 2660
duke@435 2661 case InstPtr: // For these, flip the call around to cut down
duke@435 2662 case AryPtr:
duke@435 2663 return t->xmeet(this); // Call in reverse direction
duke@435 2664
duke@435 2665 } // End of switch
duke@435 2666 return this; // Return the double constant
duke@435 2667 }
duke@435 2668
duke@435 2669
duke@435 2670 //------------------------------xdual------------------------------------------
duke@435 2671 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2672 const Type *TypeOopPtr::xdual() const {
coleenp@4037 2673 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
duke@435 2674 assert(const_oop() == NULL, "no constants here");
roland@5991 2675 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative());
duke@435 2676 }
duke@435 2677
duke@435 2678 //--------------------------make_from_klass_common-----------------------------
duke@435 2679 // Computes the element-type given a klass.
duke@435 2680 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2681 if (klass->is_instance_klass()) {
duke@435 2682 Compile* C = Compile::current();
duke@435 2683 Dependencies* deps = C->dependencies();
duke@435 2684 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2685 // Element is an instance
duke@435 2686 bool klass_is_exact = false;
duke@435 2687 if (klass->is_loaded()) {
duke@435 2688 // Try to set klass_is_exact.
duke@435 2689 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2690 klass_is_exact = ik->is_final();
duke@435 2691 if (!klass_is_exact && klass_change
duke@435 2692 && deps != NULL && UseUniqueSubclasses) {
duke@435 2693 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2694 if (sub != NULL) {
duke@435 2695 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2696 klass = ik = sub;
duke@435 2697 klass_is_exact = sub->is_final();
duke@435 2698 }
duke@435 2699 }
duke@435 2700 if (!klass_is_exact && try_for_exact
duke@435 2701 && deps != NULL && UseExactTypes) {
duke@435 2702 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2703 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2704 deps->assert_leaf_type(ik);
duke@435 2705 klass_is_exact = true;
duke@435 2706 }
duke@435 2707 }
duke@435 2708 }
duke@435 2709 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2710 } else if (klass->is_obj_array_klass()) {
duke@435 2711 // Element is an object array. Recursively call ourself.
duke@435 2712 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2713 bool xk = etype->klass_is_exact();
duke@435 2714 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2715 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2716 // are all not-null. This is not true in generally, as code can
duke@435 2717 // slam NULLs down in the subarrays.
duke@435 2718 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2719 return arr;
duke@435 2720 } else if (klass->is_type_array_klass()) {
duke@435 2721 // Element is an typeArray
duke@435 2722 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2723 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2724 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2725 // is not-null. That was not true in general.
duke@435 2726 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2727 return arr;
duke@435 2728 } else {
duke@435 2729 ShouldNotReachHere();
duke@435 2730 return NULL;
duke@435 2731 }
duke@435 2732 }
duke@435 2733
duke@435 2734 //------------------------------make_from_constant-----------------------------
duke@435 2735 // Make a java pointer from an oop constant
kvn@5110 2736 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
kvn@5110 2737 bool require_constant,
kvn@5110 2738 bool is_autobox_cache) {
kvn@5110 2739 assert(!o->is_null_object(), "null object not yet handled here.");
kvn@5110 2740 ciKlass* klass = o->klass();
kvn@5110 2741 if (klass->is_instance_klass()) {
kvn@5110 2742 // Element is an instance
kvn@5110 2743 if (require_constant) {
kvn@5110 2744 if (!o->can_be_constant()) return NULL;
kvn@5110 2745 } else if (!o->should_be_constant()) {
kvn@5110 2746 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
kvn@5110 2747 }
kvn@5110 2748 return TypeInstPtr::make(o);
kvn@5110 2749 } else if (klass->is_obj_array_klass()) {
kvn@5110 2750 // Element is an object array. Recursively call ourself.
kvn@5110 2751 const TypeOopPtr *etype =
coleenp@4037 2752 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
kvn@5110 2753 if (is_autobox_cache) {
kvn@5110 2754 // The pointers in the autobox arrays are always non-null.
kvn@5110 2755 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
kvn@5110 2756 }
kvn@5110 2757 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
kvn@5110 2758 // We used to pass NotNull in here, asserting that the sub-arrays
kvn@5110 2759 // are all not-null. This is not true in generally, as code can
kvn@5110 2760 // slam NULLs down in the subarrays.
kvn@5110 2761 if (require_constant) {
kvn@5110 2762 if (!o->can_be_constant()) return NULL;
kvn@5110 2763 } else if (!o->should_be_constant()) {
kvn@5110 2764 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
kvn@5110 2765 }
roland@5991 2766 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, is_autobox_cache);
coleenp@4037 2767 return arr;
kvn@5110 2768 } else if (klass->is_type_array_klass()) {
kvn@5110 2769 // Element is an typeArray
coleenp@4037 2770 const Type* etype =
coleenp@4037 2771 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
kvn@5110 2772 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
kvn@5110 2773 // We used to pass NotNull in here, asserting that the array pointer
kvn@5110 2774 // is not-null. That was not true in general.
kvn@5110 2775 if (require_constant) {
kvn@5110 2776 if (!o->can_be_constant()) return NULL;
kvn@5110 2777 } else if (!o->should_be_constant()) {
kvn@5110 2778 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
kvn@5110 2779 }
coleenp@4037 2780 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
coleenp@4037 2781 return arr;
duke@435 2782 }
duke@435 2783
twisti@3885 2784 fatal("unhandled object type");
duke@435 2785 return NULL;
duke@435 2786 }
duke@435 2787
duke@435 2788 //------------------------------get_con----------------------------------------
duke@435 2789 intptr_t TypeOopPtr::get_con() const {
duke@435 2790 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2791 assert( _offset >= 0, "" );
duke@435 2792
duke@435 2793 if (_offset != 0) {
duke@435 2794 // After being ported to the compiler interface, the compiler no longer
duke@435 2795 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2796 // to a handle at compile time. This handle is embedded in the generated
duke@435 2797 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2798 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2799 // have access to the addresses!). This does not seem to currently happen,
twisti@1040 2800 // but this assertion here is to help prevent its occurence.
duke@435 2801 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2802 ShouldNotReachHere();
duke@435 2803 }
duke@435 2804
jrose@1424 2805 return (intptr_t)const_oop()->constant_encoding();
duke@435 2806 }
duke@435 2807
duke@435 2808
duke@435 2809 //-----------------------------filter------------------------------------------
duke@435 2810 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 2811 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 2812
roland@6313 2813 const Type* ft = join_helper(kills, include_speculative);
duke@435 2814 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2815 const TypeInstPtr* ktip = kills->isa_instptr();
duke@435 2816
duke@435 2817 if (ft->empty()) {
duke@435 2818 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2819 // interface. This can happen because the bytecodes do not contain
duke@435 2820 // enough type info to distinguish a Java-level interface variable
duke@435 2821 // from a Java-level object variable. If we meet 2 classes which
duke@435 2822 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2823 // doesn't implement I, we have no way to tell if the result should
duke@435 2824 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2825 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2826 // uplift the type.
duke@435 2827 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
duke@435 2828 return kills; // Uplift to interface
duke@435 2829
duke@435 2830 return Type::TOP; // Canonical empty value
duke@435 2831 }
duke@435 2832
duke@435 2833 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2834 // the join should report back the class. However, if we have a J/L/Object
duke@435 2835 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2836 // join report an interface back out. This isn't possible but happens
duke@435 2837 // because the type system doesn't interact well with interfaces.
duke@435 2838 if (ftip != NULL && ktip != NULL &&
duke@435 2839 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2840 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2841 // Happens in a CTW of rt.jar, 320-341, no extra flags
kvn@1770 2842 assert(!ftip->klass_is_exact(), "interface could not be exact");
duke@435 2843 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2844 }
duke@435 2845
duke@435 2846 return ft;
duke@435 2847 }
duke@435 2848
duke@435 2849 //------------------------------eq---------------------------------------------
duke@435 2850 // Structural equality check for Type representations
duke@435 2851 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2852 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2853 if (_klass_is_exact != a->_klass_is_exact ||
roland@5991 2854 _instance_id != a->_instance_id ||
roland@5991 2855 !eq_speculative(a)) return false;
duke@435 2856 ciObject* one = const_oop();
duke@435 2857 ciObject* two = a->const_oop();
duke@435 2858 if (one == NULL || two == NULL) {
duke@435 2859 return (one == two) && TypePtr::eq(t);
duke@435 2860 } else {
duke@435 2861 return one->equals(two) && TypePtr::eq(t);
duke@435 2862 }
duke@435 2863 }
duke@435 2864
duke@435 2865 //------------------------------hash-------------------------------------------
duke@435 2866 // Type-specific hashing function.
duke@435 2867 int TypeOopPtr::hash(void) const {
duke@435 2868 return
duke@435 2869 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2870 _klass_is_exact +
duke@435 2871 _instance_id +
roland@5991 2872 hash_speculative() +
duke@435 2873 TypePtr::hash();
duke@435 2874 }
duke@435 2875
duke@435 2876 //------------------------------dump2------------------------------------------
duke@435 2877 #ifndef PRODUCT
duke@435 2878 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2879 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2880 if( _klass_is_exact ) st->print(":exact");
duke@435 2881 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2882 switch( _offset ) {
duke@435 2883 case OffsetTop: st->print("+top"); break;
duke@435 2884 case OffsetBot: st->print("+any"); break;
duke@435 2885 case 0: break;
duke@435 2886 default: st->print("+%d",_offset); break;
duke@435 2887 }
kvn@658 2888 if (_instance_id == InstanceTop)
kvn@658 2889 st->print(",iid=top");
kvn@658 2890 else if (_instance_id != InstanceBot)
duke@435 2891 st->print(",iid=%d",_instance_id);
roland@5991 2892
roland@5991 2893 dump_speculative(st);
roland@5991 2894 }
roland@5991 2895
roland@5991 2896 /**
roland@5991 2897 *dump the speculative part of the type
roland@5991 2898 */
roland@5991 2899 void TypeOopPtr::dump_speculative(outputStream *st) const {
roland@5991 2900 if (_speculative != NULL) {
roland@5991 2901 st->print(" (speculative=");
roland@5991 2902 _speculative->dump_on(st);
roland@5991 2903 st->print(")");
roland@5991 2904 }
duke@435 2905 }
duke@435 2906 #endif
duke@435 2907
duke@435 2908 //------------------------------singleton--------------------------------------
duke@435 2909 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2910 // constants
duke@435 2911 bool TypeOopPtr::singleton(void) const {
duke@435 2912 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2913 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2914 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2915 }
duke@435 2916
duke@435 2917 //------------------------------add_offset-------------------------------------
roland@5991 2918 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
roland@5991 2919 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset));
roland@5991 2920 }
roland@5991 2921
roland@5991 2922 /**
roland@5991 2923 * Return same type without a speculative part
roland@5991 2924 */
roland@6313 2925 const Type* TypeOopPtr::remove_speculative() const {
roland@6313 2926 if (_speculative == NULL) {
roland@6313 2927 return this;
roland@6313 2928 }
roland@5991 2929 return make(_ptr, _offset, _instance_id, NULL);
duke@435 2930 }
duke@435 2931
kvn@658 2932 //------------------------------meet_instance_id--------------------------------
kvn@658 2933 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 2934 // Either is 'TOP' instance? Return the other instance!
kvn@658 2935 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 2936 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 2937 // If either is different, return 'BOTTOM' instance
kvn@658 2938 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 2939 return _instance_id;
duke@435 2940 }
duke@435 2941
kvn@658 2942 //------------------------------dual_instance_id--------------------------------
kvn@658 2943 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 2944 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 2945 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 2946 return _instance_id; // Map everything else into self
kvn@658 2947 }
kvn@658 2948
roland@5991 2949 /**
roland@5991 2950 * meet of the speculative parts of 2 types
roland@5991 2951 *
roland@5991 2952 * @param other type to meet with
roland@5991 2953 */
roland@6313 2954 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
roland@5991 2955 bool this_has_spec = (_speculative != NULL);
roland@5991 2956 bool other_has_spec = (other->speculative() != NULL);
roland@5991 2957
roland@5991 2958 if (!this_has_spec && !other_has_spec) {
roland@5991 2959 return NULL;
roland@5991 2960 }
roland@5991 2961
roland@5991 2962 // If we are at a point where control flow meets and one branch has
roland@5991 2963 // a speculative type and the other has not, we meet the speculative
roland@5991 2964 // type of one branch with the actual type of the other. If the
roland@5991 2965 // actual type is exact and the speculative is as well, then the
roland@5991 2966 // result is a speculative type which is exact and we can continue
roland@5991 2967 // speculation further.
roland@5991 2968 const TypeOopPtr* this_spec = _speculative;
roland@5991 2969 const TypeOopPtr* other_spec = other->speculative();
roland@5991 2970
roland@5991 2971 if (!this_has_spec) {
roland@5991 2972 this_spec = this;
roland@5991 2973 }
roland@5991 2974
roland@5991 2975 if (!other_has_spec) {
roland@5991 2976 other_spec = other;
roland@5991 2977 }
roland@5991 2978
roland@6313 2979 return this_spec->meet_speculative(other_spec)->is_oopptr();
roland@5991 2980 }
roland@5991 2981
roland@5991 2982 /**
roland@5991 2983 * dual of the speculative part of the type
roland@5991 2984 */
roland@5991 2985 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
roland@5991 2986 if (_speculative == NULL) {
roland@5991 2987 return NULL;
roland@5991 2988 }
roland@5991 2989 return _speculative->dual()->is_oopptr();
roland@5991 2990 }
roland@5991 2991
roland@5991 2992 /**
roland@5991 2993 * add offset to the speculative part of the type
roland@5991 2994 *
roland@5991 2995 * @param offset offset to add
roland@5991 2996 */
roland@5991 2997 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
roland@5991 2998 if (_speculative == NULL) {
roland@5991 2999 return NULL;
roland@5991 3000 }
roland@5991 3001 return _speculative->add_offset(offset)->is_oopptr();
roland@5991 3002 }
roland@5991 3003
roland@5991 3004 /**
roland@5991 3005 * Are the speculative parts of 2 types equal?
roland@5991 3006 *
roland@5991 3007 * @param other type to compare this one to
roland@5991 3008 */
roland@5991 3009 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
roland@5991 3010 if (_speculative == NULL || other->speculative() == NULL) {
roland@5991 3011 return _speculative == other->speculative();
roland@5991 3012 }
roland@5991 3013
roland@5991 3014 if (_speculative->base() != other->speculative()->base()) {
roland@5991 3015 return false;
roland@5991 3016 }
roland@5991 3017
roland@5991 3018 return _speculative->eq(other->speculative());
roland@5991 3019 }
roland@5991 3020
roland@5991 3021 /**
roland@5991 3022 * Hash of the speculative part of the type
roland@5991 3023 */
roland@5991 3024 int TypeOopPtr::hash_speculative() const {
roland@5991 3025 if (_speculative == NULL) {
roland@5991 3026 return 0;
roland@5991 3027 }
roland@5991 3028
roland@5991 3029 return _speculative->hash();
roland@5991 3030 }
roland@5991 3031
kvn@658 3032
duke@435 3033 //=============================================================================
duke@435 3034 // Convenience common pre-built types.
duke@435 3035 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 3036 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 3037 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 3038 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 3039 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 3040
duke@435 3041 //------------------------------TypeInstPtr-------------------------------------
roland@5991 3042 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative)
roland@5991 3043 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative), _name(k->name()) {
duke@435 3044 assert(k != NULL &&
duke@435 3045 (k->is_loaded() || o == NULL),
duke@435 3046 "cannot have constants with non-loaded klass");
duke@435 3047 };
duke@435 3048
duke@435 3049 //------------------------------make-------------------------------------------
duke@435 3050 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 3051 ciKlass* k,
duke@435 3052 bool xk,
duke@435 3053 ciObject* o,
duke@435 3054 int offset,
roland@5991 3055 int instance_id,
roland@5991 3056 const TypeOopPtr* speculative) {
coleenp@4037 3057 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
duke@435 3058 // Either const_oop() is NULL or else ptr is Constant
duke@435 3059 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 3060 "constant pointers must have a value supplied" );
duke@435 3061 // Ptr is never Null
duke@435 3062 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 3063
kvn@682 3064 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3065 if (!UseExactTypes) xk = false;
duke@435 3066 if (ptr == Constant) {
duke@435 3067 // Note: This case includes meta-object constants, such as methods.
duke@435 3068 xk = true;
duke@435 3069 } else if (k->is_loaded()) {
duke@435 3070 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 3071 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 3072 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 3073 }
duke@435 3074
duke@435 3075 // Now hash this baby
duke@435 3076 TypeInstPtr *result =
roland@5991 3077 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative))->hashcons();
duke@435 3078
duke@435 3079 return result;
duke@435 3080 }
duke@435 3081
kvn@5110 3082 /**
kvn@5110 3083 * Create constant type for a constant boxed value
kvn@5110 3084 */
kvn@5110 3085 const Type* TypeInstPtr::get_const_boxed_value() const {
kvn@5110 3086 assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
kvn@5110 3087 assert((const_oop() != NULL), "should be called only for constant object");
kvn@5110 3088 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
kvn@5110 3089 BasicType bt = constant.basic_type();
kvn@5110 3090 switch (bt) {
kvn@5110 3091 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
kvn@5110 3092 case T_INT: return TypeInt::make(constant.as_int());
kvn@5110 3093 case T_CHAR: return TypeInt::make(constant.as_char());
kvn@5110 3094 case T_BYTE: return TypeInt::make(constant.as_byte());
kvn@5110 3095 case T_SHORT: return TypeInt::make(constant.as_short());
kvn@5110 3096 case T_FLOAT: return TypeF::make(constant.as_float());
kvn@5110 3097 case T_DOUBLE: return TypeD::make(constant.as_double());
kvn@5110 3098 case T_LONG: return TypeLong::make(constant.as_long());
kvn@5110 3099 default: break;
kvn@5110 3100 }
kvn@5110 3101 fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
kvn@5110 3102 return NULL;
kvn@5110 3103 }
duke@435 3104
duke@435 3105 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3106 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3107 if( ptr == _ptr ) return this;
duke@435 3108 // Reconstruct _sig info here since not a problem with later lazy
duke@435 3109 // construction, _sig will show up on demand.
roland@5991 3110 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative);
duke@435 3111 }
duke@435 3112
duke@435 3113
duke@435 3114 //-----------------------------cast_to_exactness-------------------------------
duke@435 3115 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3116 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3117 if (!UseExactTypes) return this;
duke@435 3118 if (!_klass->is_loaded()) return this;
duke@435 3119 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 3120 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 3121 if( ik->is_interface() ) return this; // cannot set xk
roland@5991 3122 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative);
duke@435 3123 }
duke@435 3124
kvn@682 3125 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3126 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3127 if( instance_id == _instance_id ) return this;
roland@5991 3128 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative);
duke@435 3129 }
duke@435 3130
duke@435 3131 //------------------------------xmeet_unloaded---------------------------------
duke@435 3132 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 3133 // Assume classes are different since called after check for same name/class-loader
duke@435 3134 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 3135 int off = meet_offset(tinst->offset());
duke@435 3136 PTR ptr = meet_ptr(tinst->ptr());
kvn@1427 3137 int instance_id = meet_instance_id(tinst->instance_id());
roland@6313 3138 const TypeOopPtr* speculative = xmeet_speculative(tinst);
duke@435 3139
duke@435 3140 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 3141 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 3142 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3143 //
duke@435 3144 // Meet unloaded class with java/lang/Object
duke@435 3145 //
duke@435 3146 // Meet
duke@435 3147 // | Unloaded Class
duke@435 3148 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 3149 // ===================================================================
duke@435 3150 // TOP | ..........................Unloaded......................|
duke@435 3151 // AnyNull | U-AN |................Unloaded......................|
duke@435 3152 // Constant | ... O-NN .................................. | O-BOT |
duke@435 3153 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 3154 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 3155 //
duke@435 3156 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 3157 //
duke@435 3158 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
roland@5991 3159 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative); }
duke@435 3160 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 3161 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 3162 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 3163 else { return TypeInstPtr::NOTNULL; }
duke@435 3164 }
duke@435 3165 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 3166
duke@435 3167 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 3168 }
duke@435 3169
duke@435 3170 // Both are unloaded, not the same class, not Object
duke@435 3171 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 3172 if( ptr != TypePtr::BotPTR ) {
duke@435 3173 return TypeInstPtr::NOTNULL;
duke@435 3174 }
duke@435 3175 return TypeInstPtr::BOTTOM;
duke@435 3176 }
duke@435 3177
duke@435 3178
duke@435 3179 //------------------------------meet-------------------------------------------
duke@435 3180 // Compute the MEET of two types. It returns a new Type object.
roland@5991 3181 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
duke@435 3182 // Perform a fast test for common case; meeting the same types together.
duke@435 3183 if( this == t ) return this; // Meeting same type-rep?
duke@435 3184
duke@435 3185 // Current "this->_base" is Pointer
duke@435 3186 switch (t->base()) { // switch on original type
duke@435 3187
duke@435 3188 case Int: // Mixing ints & oops happens when javac
duke@435 3189 case Long: // reuses local variables
duke@435 3190 case FloatTop:
duke@435 3191 case FloatCon:
duke@435 3192 case FloatBot:
duke@435 3193 case DoubleTop:
duke@435 3194 case DoubleCon:
duke@435 3195 case DoubleBot:
coleenp@548 3196 case NarrowOop:
roland@4159 3197 case NarrowKlass:
duke@435 3198 case Bottom: // Ye Olde Default
duke@435 3199 return Type::BOTTOM;
duke@435 3200 case Top:
duke@435 3201 return this;
duke@435 3202
duke@435 3203 default: // All else is a mistake
duke@435 3204 typerr(t);
duke@435 3205
coleenp@4037 3206 case MetadataPtr:
coleenp@4037 3207 case KlassPtr:
duke@435 3208 case RawPtr: return TypePtr::BOTTOM;
duke@435 3209
duke@435 3210 case AryPtr: { // All arrays inherit from Object class
duke@435 3211 const TypeAryPtr *tp = t->is_aryptr();
duke@435 3212 int offset = meet_offset(tp->offset());
duke@435 3213 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3214 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3215 const TypeOopPtr* speculative = xmeet_speculative(tp);
duke@435 3216 switch (ptr) {
duke@435 3217 case TopPTR:
duke@435 3218 case AnyNull: // Fall 'down' to dual of object klass
roland@5991 3219 // For instances when a subclass meets a superclass we fall
roland@5991 3220 // below the centerline when the superclass is exact. We need to
roland@5991 3221 // do the same here.
roland@5991 3222 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
roland@5991 3223 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative);
duke@435 3224 } else {
duke@435 3225 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3226 ptr = NotNull;
kvn@658 3227 instance_id = InstanceBot;
roland@5991 3228 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative);
duke@435 3229 }
duke@435 3230 case Constant:
duke@435 3231 case NotNull:
duke@435 3232 case BotPTR: // Fall down to object klass
duke@435 3233 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3234 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 3235 // If 'this' (InstPtr) is above the centerline and it is Object class
twisti@1040 3236 // then we can subclass in the Java class hierarchy.
roland@5991 3237 // For instances when a subclass meets a superclass we fall
roland@5991 3238 // below the centerline when the superclass is exact. We need
roland@5991 3239 // to do the same here.
roland@5991 3240 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
duke@435 3241 // that is, tp's array type is a subtype of my klass
kvn@1714 3242 return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
roland@5991 3243 tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative);
duke@435 3244 }
duke@435 3245 }
duke@435 3246 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 3247 // The meet falls down to Object class below centerline.
duke@435 3248 if( ptr == Constant )
duke@435 3249 ptr = NotNull;
kvn@658 3250 instance_id = InstanceBot;
roland@5991 3251 return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative);
duke@435 3252 default: typerr(t);
duke@435 3253 }
duke@435 3254 }
duke@435 3255
duke@435 3256 case OopPtr: { // Meeting to OopPtrs
duke@435 3257 // Found a OopPtr type vs self-InstPtr type
kvn@1393 3258 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3259 int offset = meet_offset(tp->offset());
duke@435 3260 PTR ptr = meet_ptr(tp->ptr());
duke@435 3261 switch (tp->ptr()) {
duke@435 3262 case TopPTR:
kvn@658 3263 case AnyNull: {
kvn@658 3264 int instance_id = meet_instance_id(InstanceTop);
roland@6313 3265 const TypeOopPtr* speculative = xmeet_speculative(tp);
duke@435 3266 return make(ptr, klass(), klass_is_exact(),
roland@5991 3267 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative);
kvn@658 3268 }
duke@435 3269 case NotNull:
kvn@1393 3270 case BotPTR: {
kvn@1393 3271 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3272 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@5991 3273 return TypeOopPtr::make(ptr, offset, instance_id, speculative);
kvn@1393 3274 }
duke@435 3275 default: typerr(t);
duke@435 3276 }
duke@435 3277 }
duke@435 3278
duke@435 3279 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3280 // Found an AnyPtr type vs self-InstPtr type
duke@435 3281 const TypePtr *tp = t->is_ptr();
duke@435 3282 int offset = meet_offset(tp->offset());
duke@435 3283 PTR ptr = meet_ptr(tp->ptr());
duke@435 3284 switch (tp->ptr()) {
duke@435 3285 case Null:
roland@5991 3286 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3287 // else fall through to AnyNull
duke@435 3288 case TopPTR:
kvn@658 3289 case AnyNull: {
kvn@658 3290 int instance_id = meet_instance_id(InstanceTop);
roland@5991 3291 const TypeOopPtr* speculative = _speculative;
roland@5991 3292 return make(ptr, klass(), klass_is_exact(),
roland@5991 3293 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative);
kvn@658 3294 }
duke@435 3295 case NotNull:
duke@435 3296 case BotPTR:
roland@5991 3297 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3298 default: typerr(t);
duke@435 3299 }
duke@435 3300 }
duke@435 3301
duke@435 3302 /*
duke@435 3303 A-top }
duke@435 3304 / | \ } Tops
duke@435 3305 B-top A-any C-top }
duke@435 3306 | / | \ | } Any-nulls
duke@435 3307 B-any | C-any }
duke@435 3308 | | |
duke@435 3309 B-con A-con C-con } constants; not comparable across classes
duke@435 3310 | | |
duke@435 3311 B-not | C-not }
duke@435 3312 | \ | / | } not-nulls
duke@435 3313 B-bot A-not C-bot }
duke@435 3314 \ | / } Bottoms
duke@435 3315 A-bot }
duke@435 3316 */
duke@435 3317
duke@435 3318 case InstPtr: { // Meeting 2 Oops?
duke@435 3319 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 3320 const TypeInstPtr *tinst = t->is_instptr();
duke@435 3321 int off = meet_offset( tinst->offset() );
duke@435 3322 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 3323 int instance_id = meet_instance_id(tinst->instance_id());
roland@6313 3324 const TypeOopPtr* speculative = xmeet_speculative(tinst);
duke@435 3325
duke@435 3326 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3327 // If we have constants, then we created oops so classes are loaded
duke@435 3328 // and we can handle the constants further down. This case handles
duke@435 3329 // both-not-loaded or both-loaded classes
duke@435 3330 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
roland@5991 3331 return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative);
duke@435 3332 }
duke@435 3333
duke@435 3334 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3335 ciKlass* tinst_klass = tinst->klass();
duke@435 3336 ciKlass* this_klass = this->klass();
duke@435 3337 bool tinst_xk = tinst->klass_is_exact();
duke@435 3338 bool this_xk = this->klass_is_exact();
duke@435 3339 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 3340 // One of these classes has not been loaded
duke@435 3341 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 3342 #ifndef PRODUCT
duke@435 3343 if( PrintOpto && Verbose ) {
duke@435 3344 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 3345 tty->print(" this == "); this->dump(); tty->cr();
duke@435 3346 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 3347 }
duke@435 3348 #endif
duke@435 3349 return unloaded_meet;
duke@435 3350 }
duke@435 3351
duke@435 3352 // Handle mixing oops and interfaces first.
roland@5991 3353 if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
roland@5991 3354 tinst_klass == ciEnv::current()->Object_klass())) {
duke@435 3355 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 3356 tinst_klass = this_klass;
duke@435 3357 this_klass = tmp;
duke@435 3358 bool tmp2 = tinst_xk;
duke@435 3359 tinst_xk = this_xk;
duke@435 3360 this_xk = tmp2;
duke@435 3361 }
duke@435 3362 if (tinst_klass->is_interface() &&
duke@435 3363 !(this_klass->is_interface() ||
duke@435 3364 // Treat java/lang/Object as an honorary interface,
duke@435 3365 // because we need a bottom for the interface hierarchy.
duke@435 3366 this_klass == ciEnv::current()->Object_klass())) {
duke@435 3367 // Oop meets interface!
duke@435 3368
duke@435 3369 // See if the oop subtypes (implements) interface.
duke@435 3370 ciKlass *k;
duke@435 3371 bool xk;
duke@435 3372 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3373 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 3374 // on whether we are both above the centerline or either is
duke@435 3375 // below the centerline. If we are on the centerline
duke@435 3376 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 3377 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 3378 // If we are keeping this_klass, keep its exactness too.
duke@435 3379 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 3380 } else { // Does not implement, fall to Object
duke@435 3381 // Oop does not implement interface, so mixing falls to Object
duke@435 3382 // just like the verifier does (if both are above the
duke@435 3383 // centerline fall to interface)
duke@435 3384 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 3385 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 3386 // Watch out for Constant vs. AnyNull interface.
duke@435 3387 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 3388 instance_id = InstanceBot;
duke@435 3389 }
duke@435 3390 ciObject* o = NULL; // the Constant value, if any
duke@435 3391 if (ptr == Constant) {
duke@435 3392 // Find out which constant.
duke@435 3393 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 3394 }
roland@5991 3395 return make(ptr, k, xk, o, off, instance_id, speculative);
duke@435 3396 }
duke@435 3397
duke@435 3398 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 3399
duke@435 3400 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 3401 // If we split one up & one down AND they subtype, take the down man.
duke@435 3402 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3403 // If both are up and they subtype, take the subtype class.
duke@435 3404 // If both are up and they do NOT subtype, "fall hard".
duke@435 3405 // If both are down and they subtype, take the supertype class.
duke@435 3406 // If both are down and they do NOT subtype, "fall hard".
duke@435 3407 // Constants treated as down.
duke@435 3408
duke@435 3409 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 3410 // "fall hard"; "fall hard" becomes the default case:
duke@435 3411 // If we split one up & one down AND they subtype, take the down man.
duke@435 3412 // If both are up and they subtype, take the subtype class.
duke@435 3413
duke@435 3414 // If both are down and they subtype, "fall hard".
duke@435 3415 // If both are down and they do NOT subtype, "fall hard".
duke@435 3416 // If both are up and they do NOT subtype, "fall hard".
duke@435 3417 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3418
duke@435 3419 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 3420 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 3421 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 3422 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 3423
duke@435 3424 // Check for subtyping:
duke@435 3425 ciKlass *subtype = NULL;
duke@435 3426 bool subtype_exact = false;
duke@435 3427 if( tinst_klass->equals(this_klass) ) {
duke@435 3428 subtype = this_klass;
duke@435 3429 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 3430 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3431 subtype = this_klass; // Pick subtyping class
duke@435 3432 subtype_exact = this_xk;
duke@435 3433 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 3434 subtype = tinst_klass; // Pick subtyping class
duke@435 3435 subtype_exact = tinst_xk;
duke@435 3436 }
duke@435 3437
duke@435 3438 if( subtype ) {
duke@435 3439 if( above_centerline(ptr) ) { // both are up?
duke@435 3440 this_klass = tinst_klass = subtype;
duke@435 3441 this_xk = tinst_xk = subtype_exact;
duke@435 3442 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 3443 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 3444 this_xk = tinst_xk;
duke@435 3445 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 3446 tinst_klass = this_klass; // this is down; keep down man
duke@435 3447 tinst_xk = this_xk;
duke@435 3448 } else {
duke@435 3449 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 3450 }
duke@435 3451 }
duke@435 3452
duke@435 3453 // Check for classes now being equal
duke@435 3454 if (tinst_klass->equals(this_klass)) {
duke@435 3455 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3456 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3457 // handled elsewhere).
duke@435 3458 ciObject* o = NULL; // Assume not constant when done
duke@435 3459 ciObject* this_oop = const_oop();
duke@435 3460 ciObject* tinst_oop = tinst->const_oop();
duke@435 3461 if( ptr == Constant ) {
duke@435 3462 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 3463 this_oop->equals(tinst_oop) )
duke@435 3464 o = this_oop;
duke@435 3465 else if (above_centerline(this ->_ptr))
duke@435 3466 o = tinst_oop;
duke@435 3467 else if (above_centerline(tinst ->_ptr))
duke@435 3468 o = this_oop;
duke@435 3469 else
duke@435 3470 ptr = NotNull;
duke@435 3471 }
roland@5991 3472 return make(ptr, this_klass, this_xk, o, off, instance_id, speculative);
duke@435 3473 } // Else classes are not equal
duke@435 3474
duke@435 3475 // Since klasses are different, we require a LCA in the Java
duke@435 3476 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3477 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3478 ptr = NotNull;
kvn@682 3479 instance_id = InstanceBot;
duke@435 3480
duke@435 3481 // Now we find the LCA of Java classes
duke@435 3482 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
roland@5991 3483 return make(ptr, k, false, NULL, off, instance_id, speculative);
duke@435 3484 } // End of case InstPtr
duke@435 3485
duke@435 3486 } // End of switch
duke@435 3487 return this; // Return the double constant
duke@435 3488 }
duke@435 3489
duke@435 3490
duke@435 3491 //------------------------java_mirror_type--------------------------------------
duke@435 3492 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3493 // must be a singleton type
duke@435 3494 if( const_oop() == NULL ) return NULL;
duke@435 3495
duke@435 3496 // must be of type java.lang.Class
duke@435 3497 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3498
duke@435 3499 return const_oop()->as_instance()->java_mirror_type();
duke@435 3500 }
duke@435 3501
duke@435 3502
duke@435 3503 //------------------------------xdual------------------------------------------
duke@435 3504 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
twisti@1040 3505 // inheritance mechanism.
duke@435 3506 const Type *TypeInstPtr::xdual() const {
roland@5991 3507 return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative());
duke@435 3508 }
duke@435 3509
duke@435 3510 //------------------------------eq---------------------------------------------
duke@435 3511 // Structural equality check for Type representations
duke@435 3512 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3513 const TypeInstPtr *p = t->is_instptr();
duke@435 3514 return
duke@435 3515 klass()->equals(p->klass()) &&
duke@435 3516 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3517 }
duke@435 3518
duke@435 3519 //------------------------------hash-------------------------------------------
duke@435 3520 // Type-specific hashing function.
duke@435 3521 int TypeInstPtr::hash(void) const {
duke@435 3522 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 3523 return hash;
duke@435 3524 }
duke@435 3525
duke@435 3526 //------------------------------dump2------------------------------------------
duke@435 3527 // Dump oop Type
duke@435 3528 #ifndef PRODUCT
duke@435 3529 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3530 // Print the name of the klass.
duke@435 3531 klass()->print_name_on(st);
duke@435 3532
duke@435 3533 switch( _ptr ) {
duke@435 3534 case Constant:
duke@435 3535 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3536 if (WizardMode || Verbose) {
duke@435 3537 const_oop()->print_oop(st);
duke@435 3538 }
duke@435 3539 case BotPTR:
duke@435 3540 if (!WizardMode && !Verbose) {
duke@435 3541 if( _klass_is_exact ) st->print(":exact");
duke@435 3542 break;
duke@435 3543 }
duke@435 3544 case TopPTR:
duke@435 3545 case AnyNull:
duke@435 3546 case NotNull:
duke@435 3547 st->print(":%s", ptr_msg[_ptr]);
duke@435 3548 if( _klass_is_exact ) st->print(":exact");
duke@435 3549 break;
duke@435 3550 }
duke@435 3551
duke@435 3552 if( _offset ) { // Dump offset, if any
duke@435 3553 if( _offset == OffsetBot ) st->print("+any");
duke@435 3554 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3555 else st->print("+%d", _offset);
duke@435 3556 }
duke@435 3557
duke@435 3558 st->print(" *");
kvn@658 3559 if (_instance_id == InstanceTop)
kvn@658 3560 st->print(",iid=top");
kvn@658 3561 else if (_instance_id != InstanceBot)
duke@435 3562 st->print(",iid=%d",_instance_id);
roland@5991 3563
roland@5991 3564 dump_speculative(st);
duke@435 3565 }
duke@435 3566 #endif
duke@435 3567
duke@435 3568 //------------------------------add_offset-------------------------------------
roland@5991 3569 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
roland@5991 3570 return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
roland@5991 3571 }
roland@5991 3572
roland@6313 3573 const Type *TypeInstPtr::remove_speculative() const {
roland@6313 3574 if (_speculative == NULL) {
roland@6313 3575 return this;
roland@6313 3576 }
roland@5991 3577 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL);
duke@435 3578 }
duke@435 3579
duke@435 3580 //=============================================================================
duke@435 3581 // Convenience common pre-built types.
duke@435 3582 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3583 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3584 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3585 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3586 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3587 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3588 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3589 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3590 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3591 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3592
duke@435 3593 //------------------------------make-------------------------------------------
roland@5991 3594 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative) {
duke@435 3595 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3596 "integral arrays must be pre-equipped with a class");
duke@435 3597 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3598 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3599 if (!UseExactTypes) xk = (ptr == Constant);
roland@5991 3600 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative))->hashcons();
duke@435 3601 }
duke@435 3602
duke@435 3603 //------------------------------make-------------------------------------------
roland@5991 3604 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, bool is_autobox_cache) {
duke@435 3605 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3606 "integral arrays must be pre-equipped with a class");
duke@435 3607 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3608 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3609 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3610 if (!UseExactTypes) xk = (ptr == Constant);
roland@5991 3611 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative))->hashcons();
duke@435 3612 }
duke@435 3613
duke@435 3614 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3615 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3616 if( ptr == _ptr ) return this;
roland@5991 3617 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative);
duke@435 3618 }
duke@435 3619
duke@435 3620
duke@435 3621 //-----------------------------cast_to_exactness-------------------------------
duke@435 3622 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3623 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3624 if (!UseExactTypes) return this;
duke@435 3625 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
roland@5991 3626 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative);
duke@435 3627 }
duke@435 3628
kvn@682 3629 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3630 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3631 if( instance_id == _instance_id ) return this;
roland@5991 3632 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative);
duke@435 3633 }
duke@435 3634
duke@435 3635 //-----------------------------narrow_size_type-------------------------------
duke@435 3636 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3637 // which is kind of slow (and cached elsewhere by other users).
duke@435 3638 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3639 static jint max_array_length(BasicType etype) {
duke@435 3640 jint& cache = max_array_length_cache[etype];
duke@435 3641 jint res = cache;
duke@435 3642 if (res == 0) {
duke@435 3643 switch (etype) {
coleenp@548 3644 case T_NARROWOOP:
coleenp@548 3645 etype = T_OBJECT;
coleenp@548 3646 break;
roland@4159 3647 case T_NARROWKLASS:
duke@435 3648 case T_CONFLICT:
duke@435 3649 case T_ILLEGAL:
duke@435 3650 case T_VOID:
duke@435 3651 etype = T_BYTE; // will produce conservatively high value
duke@435 3652 }
duke@435 3653 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3654 }
duke@435 3655 return res;
duke@435 3656 }
duke@435 3657
duke@435 3658 // Narrow the given size type to the index range for the given array base type.
duke@435 3659 // Return NULL if the resulting int type becomes empty.
rasbold@801 3660 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
duke@435 3661 jint hi = size->_hi;
duke@435 3662 jint lo = size->_lo;
duke@435 3663 jint min_lo = 0;
rasbold@801 3664 jint max_hi = max_array_length(elem()->basic_type());
duke@435 3665 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3666 bool chg = false;
kvn@5110 3667 if (lo < min_lo) {
kvn@5110 3668 lo = min_lo;
kvn@5110 3669 if (size->is_con()) {
kvn@5110 3670 hi = lo;
kvn@5110 3671 }
kvn@5110 3672 chg = true;
kvn@5110 3673 }
kvn@5110 3674 if (hi > max_hi) {
kvn@5110 3675 hi = max_hi;
kvn@5110 3676 if (size->is_con()) {
kvn@5110 3677 lo = hi;
kvn@5110 3678 }
kvn@5110 3679 chg = true;
kvn@5110 3680 }
twisti@1040 3681 // Negative length arrays will produce weird intermediate dead fast-path code
duke@435 3682 if (lo > hi)
rasbold@801 3683 return TypeInt::ZERO;
duke@435 3684 if (!chg)
duke@435 3685 return size;
duke@435 3686 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3687 }
duke@435 3688
duke@435 3689 //-------------------------------cast_to_size----------------------------------
duke@435 3690 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3691 assert(new_size != NULL, "");
rasbold@801 3692 new_size = narrow_size_type(new_size);
duke@435 3693 if (new_size == size()) return this;
vlivanov@5658 3694 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
roland@5991 3695 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative);
duke@435 3696 }
duke@435 3697
duke@435 3698
vlivanov@5658 3699 //------------------------------cast_to_stable---------------------------------
vlivanov@5658 3700 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
vlivanov@5658 3701 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
vlivanov@5658 3702 return this;
vlivanov@5658 3703
vlivanov@5658 3704 const Type* elem = this->elem();
vlivanov@5658 3705 const TypePtr* elem_ptr = elem->make_ptr();
vlivanov@5658 3706
vlivanov@5658 3707 if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
vlivanov@5658 3708 // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
vlivanov@5658 3709 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
vlivanov@5658 3710 }
vlivanov@5658 3711
vlivanov@5658 3712 const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
vlivanov@5658 3713
vlivanov@5658 3714 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
vlivanov@5658 3715 }
vlivanov@5658 3716
vlivanov@5658 3717 //-----------------------------stable_dimension--------------------------------
vlivanov@5658 3718 int TypeAryPtr::stable_dimension() const {
vlivanov@5658 3719 if (!is_stable()) return 0;
vlivanov@5658 3720 int dim = 1;
vlivanov@5658 3721 const TypePtr* elem_ptr = elem()->make_ptr();
vlivanov@5658 3722 if (elem_ptr != NULL && elem_ptr->isa_aryptr())
vlivanov@5658 3723 dim += elem_ptr->is_aryptr()->stable_dimension();
vlivanov@5658 3724 return dim;
vlivanov@5658 3725 }
vlivanov@5658 3726
duke@435 3727 //------------------------------eq---------------------------------------------
duke@435 3728 // Structural equality check for Type representations
duke@435 3729 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3730 const TypeAryPtr *p = t->is_aryptr();
duke@435 3731 return
duke@435 3732 _ary == p->_ary && // Check array
duke@435 3733 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3734 }
duke@435 3735
duke@435 3736 //------------------------------hash-------------------------------------------
duke@435 3737 // Type-specific hashing function.
duke@435 3738 int TypeAryPtr::hash(void) const {
duke@435 3739 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3740 }
duke@435 3741
duke@435 3742 //------------------------------meet-------------------------------------------
duke@435 3743 // Compute the MEET of two types. It returns a new Type object.
roland@5991 3744 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
duke@435 3745 // Perform a fast test for common case; meeting the same types together.
duke@435 3746 if( this == t ) return this; // Meeting same type-rep?
duke@435 3747 // Current "this->_base" is Pointer
duke@435 3748 switch (t->base()) { // switch on original type
duke@435 3749
duke@435 3750 // Mixing ints & oops happens when javac reuses local variables
duke@435 3751 case Int:
duke@435 3752 case Long:
duke@435 3753 case FloatTop:
duke@435 3754 case FloatCon:
duke@435 3755 case FloatBot:
duke@435 3756 case DoubleTop:
duke@435 3757 case DoubleCon:
duke@435 3758 case DoubleBot:
coleenp@548 3759 case NarrowOop:
roland@4159 3760 case NarrowKlass:
duke@435 3761 case Bottom: // Ye Olde Default
duke@435 3762 return Type::BOTTOM;
duke@435 3763 case Top:
duke@435 3764 return this;
duke@435 3765
duke@435 3766 default: // All else is a mistake
duke@435 3767 typerr(t);
duke@435 3768
duke@435 3769 case OopPtr: { // Meeting to OopPtrs
duke@435 3770 // Found a OopPtr type vs self-AryPtr type
kvn@1393 3771 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3772 int offset = meet_offset(tp->offset());
duke@435 3773 PTR ptr = meet_ptr(tp->ptr());
duke@435 3774 switch (tp->ptr()) {
duke@435 3775 case TopPTR:
kvn@658 3776 case AnyNull: {
kvn@658 3777 int instance_id = meet_instance_id(InstanceTop);
roland@6313 3778 const TypeOopPtr* speculative = xmeet_speculative(tp);
kvn@658 3779 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@5991 3780 _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
kvn@658 3781 }
duke@435 3782 case BotPTR:
kvn@1393 3783 case NotNull: {
kvn@1393 3784 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3785 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@5991 3786 return TypeOopPtr::make(ptr, offset, instance_id, speculative);
kvn@1393 3787 }
duke@435 3788 default: ShouldNotReachHere();
duke@435 3789 }
duke@435 3790 }
duke@435 3791
duke@435 3792 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3793 // Found an AnyPtr type vs self-AryPtr type
duke@435 3794 const TypePtr *tp = t->is_ptr();
duke@435 3795 int offset = meet_offset(tp->offset());
duke@435 3796 PTR ptr = meet_ptr(tp->ptr());
duke@435 3797 switch (tp->ptr()) {
duke@435 3798 case TopPTR:
duke@435 3799 return this;
duke@435 3800 case BotPTR:
duke@435 3801 case NotNull:
duke@435 3802 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3803 case Null:
duke@435 3804 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3805 // else fall through to AnyNull
kvn@658 3806 case AnyNull: {
kvn@658 3807 int instance_id = meet_instance_id(InstanceTop);
roland@5991 3808 const TypeOopPtr* speculative = _speculative;
roland@5991 3809 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@5991 3810 _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
kvn@658 3811 }
duke@435 3812 default: ShouldNotReachHere();
duke@435 3813 }
duke@435 3814 }
duke@435 3815
coleenp@4037 3816 case MetadataPtr:
coleenp@4037 3817 case KlassPtr:
duke@435 3818 case RawPtr: return TypePtr::BOTTOM;
duke@435 3819
duke@435 3820 case AryPtr: { // Meeting 2 references?
duke@435 3821 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3822 int off = meet_offset(tap->offset());
roland@6313 3823 const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
duke@435 3824 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3825 int instance_id = meet_instance_id(tap->instance_id());
roland@6313 3826 const TypeOopPtr* speculative = xmeet_speculative(tap);
duke@435 3827 ciKlass* lazy_klass = NULL;
duke@435 3828 if (tary->_elem->isa_int()) {
duke@435 3829 // Integral array element types have irrelevant lattice relations.
duke@435 3830 // It is the klass that determines array layout, not the element type.
duke@435 3831 if (_klass == NULL)
duke@435 3832 lazy_klass = tap->_klass;
duke@435 3833 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3834 lazy_klass = _klass;
duke@435 3835 } else {
duke@435 3836 // Something like byte[int+] meets char[int+].
duke@435 3837 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3838 instance_id = InstanceBot;
vlivanov@5658 3839 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
duke@435 3840 }
kvn@2633 3841 } else // Non integral arrays.
roland@6214 3842 // Must fall to bottom if exact klasses in upper lattice
roland@6214 3843 // are not equal or super klass is exact.
roland@6214 3844 if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
roland@6214 3845 // meet with top[] and bottom[] are processed further down:
roland@6214 3846 tap->_klass != NULL && this->_klass != NULL &&
roland@6214 3847 // both are exact and not equal:
roland@6214 3848 ((tap->_klass_is_exact && this->_klass_is_exact) ||
roland@6214 3849 // 'tap' is exact and super or unrelated:
roland@6214 3850 (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
roland@6214 3851 // 'this' is exact and super or unrelated:
roland@6214 3852 (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
vlivanov@5658 3853 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
roland@5991 3854 return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
duke@435 3855 }
kvn@2633 3856
kvn@2120 3857 bool xk = false;
duke@435 3858 switch (tap->ptr()) {
duke@435 3859 case AnyNull:
duke@435 3860 case TopPTR:
duke@435 3861 // Compute new klass on demand, do not use tap->_klass
roland@5991 3862 if (below_centerline(this->_ptr)) {
roland@5991 3863 xk = this->_klass_is_exact;
roland@5991 3864 } else {
roland@5991 3865 xk = (tap->_klass_is_exact | this->_klass_is_exact);
roland@5991 3866 }
roland@5991 3867 return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative);
duke@435 3868 case Constant: {
duke@435 3869 ciObject* o = const_oop();
duke@435 3870 if( _ptr == Constant ) {
duke@435 3871 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
jrose@1424 3872 xk = (klass() == tap->klass());
duke@435 3873 ptr = NotNull;
duke@435 3874 o = NULL;
kvn@682 3875 instance_id = InstanceBot;
jrose@1424 3876 } else {
jrose@1424 3877 xk = true;
duke@435 3878 }
roland@5991 3879 } else if(above_centerline(_ptr)) {
duke@435 3880 o = tap->const_oop();
jrose@1424 3881 xk = true;
jrose@1424 3882 } else {
kvn@2120 3883 // Only precise for identical arrays
kvn@2120 3884 xk = this->_klass_is_exact && (klass() == tap->klass());
duke@435 3885 }
roland@5991 3886 return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative);
duke@435 3887 }
duke@435 3888 case NotNull:
duke@435 3889 case BotPTR:
duke@435 3890 // Compute new klass on demand, do not use tap->_klass
duke@435 3891 if (above_centerline(this->_ptr))
duke@435 3892 xk = tap->_klass_is_exact;
duke@435 3893 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 3894 (klass() == tap->klass()); // Only precise for identical arrays
roland@5991 3895 return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative);
duke@435 3896 default: ShouldNotReachHere();
duke@435 3897 }
duke@435 3898 }
duke@435 3899
duke@435 3900 // All arrays inherit from Object class
duke@435 3901 case InstPtr: {
duke@435 3902 const TypeInstPtr *tp = t->is_instptr();
duke@435 3903 int offset = meet_offset(tp->offset());
duke@435 3904 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3905 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3906 const TypeOopPtr* speculative = xmeet_speculative(tp);
duke@435 3907 switch (ptr) {
duke@435 3908 case TopPTR:
duke@435 3909 case AnyNull: // Fall 'down' to dual of object klass
roland@5991 3910 // For instances when a subclass meets a superclass we fall
roland@5991 3911 // below the centerline when the superclass is exact. We need to
roland@5991 3912 // do the same here.
roland@5991 3913 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
roland@5991 3914 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
duke@435 3915 } else {
duke@435 3916 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3917 ptr = NotNull;
kvn@658 3918 instance_id = InstanceBot;
roland@5991 3919 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative);
duke@435 3920 }
duke@435 3921 case Constant:
duke@435 3922 case NotNull:
duke@435 3923 case BotPTR: // Fall down to object klass
duke@435 3924 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3925 if (above_centerline(tp->ptr())) {
duke@435 3926 // If 'tp' is above the centerline and it is Object class
twisti@1040 3927 // then we can subclass in the Java class hierarchy.
roland@5991 3928 // For instances when a subclass meets a superclass we fall
roland@5991 3929 // below the centerline when the superclass is exact. We need
roland@5991 3930 // to do the same here.
roland@5991 3931 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
duke@435 3932 // that is, my array type is a subtype of 'tp' klass
roland@5991 3933 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@5991 3934 _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
duke@435 3935 }
duke@435 3936 }
duke@435 3937 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 3938 // The meet falls down to Object class below centerline.
duke@435 3939 if( ptr == Constant )
duke@435 3940 ptr = NotNull;
kvn@658 3941 instance_id = InstanceBot;
roland@5991 3942 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative);
duke@435 3943 default: typerr(t);
duke@435 3944 }
duke@435 3945 }
duke@435 3946 }
duke@435 3947 return this; // Lint noise
duke@435 3948 }
duke@435 3949
duke@435 3950 //------------------------------xdual------------------------------------------
duke@435 3951 // Dual: compute field-by-field dual
duke@435 3952 const Type *TypeAryPtr::xdual() const {
roland@5991 3953 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative());
duke@435 3954 }
duke@435 3955
kvn@1255 3956 //----------------------interface_vs_oop---------------------------------------
kvn@1255 3957 #ifdef ASSERT
kvn@1255 3958 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
kvn@1255 3959 const TypeAryPtr* t_aryptr = t->isa_aryptr();
kvn@1255 3960 if (t_aryptr) {
kvn@1255 3961 return _ary->interface_vs_oop(t_aryptr->_ary);
kvn@1255 3962 }
kvn@1255 3963 return false;
kvn@1255 3964 }
kvn@1255 3965 #endif
kvn@1255 3966
duke@435 3967 //------------------------------dump2------------------------------------------
duke@435 3968 #ifndef PRODUCT
duke@435 3969 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3970 _ary->dump2(d,depth,st);
duke@435 3971 switch( _ptr ) {
duke@435 3972 case Constant:
duke@435 3973 const_oop()->print(st);
duke@435 3974 break;
duke@435 3975 case BotPTR:
duke@435 3976 if (!WizardMode && !Verbose) {
duke@435 3977 if( _klass_is_exact ) st->print(":exact");
duke@435 3978 break;
duke@435 3979 }
duke@435 3980 case TopPTR:
duke@435 3981 case AnyNull:
duke@435 3982 case NotNull:
duke@435 3983 st->print(":%s", ptr_msg[_ptr]);
duke@435 3984 if( _klass_is_exact ) st->print(":exact");
duke@435 3985 break;
duke@435 3986 }
duke@435 3987
kvn@499 3988 if( _offset != 0 ) {
kvn@499 3989 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 3990 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 3991 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 3992 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 3993 else {
kvn@499 3994 BasicType basic_elem_type = elem()->basic_type();
kvn@499 3995 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 3996 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 3997 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 3998 }
kvn@499 3999 }
kvn@499 4000 st->print(" *");
kvn@658 4001 if (_instance_id == InstanceTop)
kvn@658 4002 st->print(",iid=top");
kvn@658 4003 else if (_instance_id != InstanceBot)
duke@435 4004 st->print(",iid=%d",_instance_id);
roland@5991 4005
roland@5991 4006 dump_speculative(st);
duke@435 4007 }
duke@435 4008 #endif
duke@435 4009
duke@435 4010 bool TypeAryPtr::empty(void) const {
duke@435 4011 if (_ary->empty()) return true;
duke@435 4012 return TypeOopPtr::empty();
duke@435 4013 }
duke@435 4014
duke@435 4015 //------------------------------add_offset-------------------------------------
roland@5991 4016 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
roland@5991 4017 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset));
roland@5991 4018 }
roland@5991 4019
roland@6313 4020 const Type *TypeAryPtr::remove_speculative() const {
roland@6313 4021 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL);
roland@5991 4022 }
duke@435 4023
duke@435 4024 //=============================================================================
coleenp@548 4025
coleenp@548 4026 //------------------------------hash-------------------------------------------
coleenp@548 4027 // Type-specific hashing function.
roland@4159 4028 int TypeNarrowPtr::hash(void) const {
never@1262 4029 return _ptrtype->hash() + 7;
coleenp@548 4030 }
coleenp@548 4031
roland@4159 4032 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton
roland@4159 4033 return _ptrtype->singleton();
roland@4159 4034 }
roland@4159 4035
roland@4159 4036 bool TypeNarrowPtr::empty(void) const {
roland@4159 4037 return _ptrtype->empty();
roland@4159 4038 }
roland@4159 4039
roland@4159 4040 intptr_t TypeNarrowPtr::get_con() const {
roland@4159 4041 return _ptrtype->get_con();
roland@4159 4042 }
roland@4159 4043
roland@4159 4044 bool TypeNarrowPtr::eq( const Type *t ) const {
roland@4159 4045 const TypeNarrowPtr* tc = isa_same_narrowptr(t);
coleenp@548 4046 if (tc != NULL) {
never@1262 4047 if (_ptrtype->base() != tc->_ptrtype->base()) {
coleenp@548 4048 return false;
coleenp@548 4049 }
never@1262 4050 return tc->_ptrtype->eq(_ptrtype);
coleenp@548 4051 }
coleenp@548 4052 return false;
coleenp@548 4053 }
coleenp@548 4054
roland@4159 4055 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now.
roland@4159 4056 const TypePtr* odual = _ptrtype->dual()->is_ptr();
roland@4159 4057 return make_same_narrowptr(odual);
roland@4159 4058 }
roland@4159 4059
roland@4159 4060
roland@6313 4061 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@4159 4062 if (isa_same_narrowptr(kills)) {
roland@6313 4063 const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
roland@4159 4064 if (ft->empty())
roland@4159 4065 return Type::TOP; // Canonical empty value
roland@4159 4066 if (ft->isa_ptr()) {
roland@4159 4067 return make_hash_same_narrowptr(ft->isa_ptr());
roland@4159 4068 }
roland@4159 4069 return ft;
roland@4159 4070 } else if (kills->isa_ptr()) {
roland@6313 4071 const Type* ft = _ptrtype->join_helper(kills, include_speculative);
roland@4159 4072 if (ft->empty())
roland@4159 4073 return Type::TOP; // Canonical empty value
roland@4159 4074 return ft;
roland@4159 4075 } else {
roland@4159 4076 return Type::TOP;
roland@4159 4077 }
coleenp@548 4078 }
coleenp@548 4079
kvn@728 4080 //------------------------------xmeet------------------------------------------
coleenp@548 4081 // Compute the MEET of two types. It returns a new Type object.
roland@4159 4082 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
coleenp@548 4083 // Perform a fast test for common case; meeting the same types together.
coleenp@548 4084 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 4085
roland@4159 4086 if (t->base() == base()) {
roland@4159 4087 const Type* result = _ptrtype->xmeet(t->make_ptr());
roland@4159 4088 if (result->isa_ptr()) {
roland@4159 4089 return make_hash_same_narrowptr(result->is_ptr());
roland@4159 4090 }
roland@4159 4091 return result;
roland@4159 4092 }
roland@4159 4093
roland@4159 4094 // Current "this->_base" is NarrowKlass or NarrowOop
coleenp@548 4095 switch (t->base()) { // switch on original type
coleenp@548 4096
coleenp@548 4097 case Int: // Mixing ints & oops happens when javac
coleenp@548 4098 case Long: // reuses local variables
coleenp@548 4099 case FloatTop:
coleenp@548 4100 case FloatCon:
coleenp@548 4101 case FloatBot:
coleenp@548 4102 case DoubleTop:
coleenp@548 4103 case DoubleCon:
coleenp@548 4104 case DoubleBot:
kvn@728 4105 case AnyPtr:
kvn@728 4106 case RawPtr:
kvn@728 4107 case OopPtr:
kvn@728 4108 case InstPtr:
coleenp@4037 4109 case AryPtr:
coleenp@4037 4110 case MetadataPtr:
kvn@728 4111 case KlassPtr:
roland@4159 4112 case NarrowOop:
roland@4159 4113 case NarrowKlass:
kvn@728 4114
coleenp@548 4115 case Bottom: // Ye Olde Default
coleenp@548 4116 return Type::BOTTOM;
coleenp@548 4117 case Top:
coleenp@548 4118 return this;
coleenp@548 4119
coleenp@548 4120 default: // All else is a mistake
coleenp@548 4121 typerr(t);
coleenp@548 4122
coleenp@548 4123 } // End of switch
kvn@728 4124
kvn@728 4125 return this;
coleenp@548 4126 }
coleenp@548 4127
roland@4159 4128 #ifndef PRODUCT
roland@4159 4129 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 4130 _ptrtype->dump2(d, depth, st);
roland@4159 4131 }
roland@4159 4132 #endif
roland@4159 4133
roland@4159 4134 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
roland@4159 4135 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
roland@4159 4136
roland@4159 4137
roland@4159 4138 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
roland@4159 4139 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
roland@4159 4140 }
roland@4159 4141
coleenp@548 4142
coleenp@548 4143 #ifndef PRODUCT
coleenp@548 4144 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
never@852 4145 st->print("narrowoop: ");
roland@4159 4146 TypeNarrowPtr::dump2(d, depth, st);
coleenp@548 4147 }
coleenp@548 4148 #endif
coleenp@548 4149
roland@4159 4150 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
roland@4159 4151
roland@4159 4152 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
roland@4159 4153 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
roland@4159 4154 }
roland@4159 4155
roland@4159 4156 #ifndef PRODUCT
roland@4159 4157 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 4158 st->print("narrowklass: ");
roland@4159 4159 TypeNarrowPtr::dump2(d, depth, st);
roland@4159 4160 }
roland@4159 4161 #endif
coleenp@548 4162
coleenp@4037 4163
coleenp@4037 4164 //------------------------------eq---------------------------------------------
coleenp@4037 4165 // Structural equality check for Type representations
coleenp@4037 4166 bool TypeMetadataPtr::eq( const Type *t ) const {
coleenp@4037 4167 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
coleenp@4037 4168 ciMetadata* one = metadata();
coleenp@4037 4169 ciMetadata* two = a->metadata();
coleenp@4037 4170 if (one == NULL || two == NULL) {
coleenp@4037 4171 return (one == two) && TypePtr::eq(t);
coleenp@4037 4172 } else {
coleenp@4037 4173 return one->equals(two) && TypePtr::eq(t);
coleenp@4037 4174 }
coleenp@4037 4175 }
coleenp@4037 4176
coleenp@4037 4177 //------------------------------hash-------------------------------------------
coleenp@4037 4178 // Type-specific hashing function.
coleenp@4037 4179 int TypeMetadataPtr::hash(void) const {
coleenp@4037 4180 return
coleenp@4037 4181 (metadata() ? metadata()->hash() : 0) +
coleenp@4037 4182 TypePtr::hash();
coleenp@4037 4183 }
coleenp@4037 4184
coleenp@4037 4185 //------------------------------singleton--------------------------------------
coleenp@4037 4186 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 4187 // constants
coleenp@4037 4188 bool TypeMetadataPtr::singleton(void) const {
coleenp@4037 4189 // detune optimizer to not generate constant metadta + constant offset as a constant!
coleenp@4037 4190 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 4191 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 4192 }
coleenp@4037 4193
coleenp@4037 4194 //------------------------------add_offset-------------------------------------
coleenp@4037 4195 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
coleenp@4037 4196 return make( _ptr, _metadata, xadd_offset(offset));
coleenp@4037 4197 }
coleenp@4037 4198
coleenp@4037 4199 //-----------------------------filter------------------------------------------
coleenp@4037 4200 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 4201 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 4202 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
coleenp@4037 4203 if (ft == NULL || ft->empty())
coleenp@4037 4204 return Type::TOP; // Canonical empty value
coleenp@4037 4205 return ft;
coleenp@4037 4206 }
coleenp@4037 4207
coleenp@4037 4208 //------------------------------get_con----------------------------------------
coleenp@4037 4209 intptr_t TypeMetadataPtr::get_con() const {
coleenp@4037 4210 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4211 assert( _offset >= 0, "" );
coleenp@4037 4212
coleenp@4037 4213 if (_offset != 0) {
coleenp@4037 4214 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4215 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4216 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4217 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4218 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4219 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4220 // but this assertion here is to help prevent its occurence.
coleenp@4037 4221 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4222 ShouldNotReachHere();
coleenp@4037 4223 }
coleenp@4037 4224
coleenp@4037 4225 return (intptr_t)metadata()->constant_encoding();
coleenp@4037 4226 }
coleenp@4037 4227
coleenp@4037 4228 //------------------------------cast_to_ptr_type-------------------------------
coleenp@4037 4229 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
coleenp@4037 4230 if( ptr == _ptr ) return this;
coleenp@4037 4231 return make(ptr, metadata(), _offset);
coleenp@4037 4232 }
coleenp@4037 4233
coleenp@4037 4234 //------------------------------meet-------------------------------------------
coleenp@4037 4235 // Compute the MEET of two types. It returns a new Type object.
coleenp@4037 4236 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
coleenp@4037 4237 // Perform a fast test for common case; meeting the same types together.
coleenp@4037 4238 if( this == t ) return this; // Meeting same type-rep?
coleenp@4037 4239
coleenp@4037 4240 // Current "this->_base" is OopPtr
coleenp@4037 4241 switch (t->base()) { // switch on original type
coleenp@4037 4242
coleenp@4037 4243 case Int: // Mixing ints & oops happens when javac
coleenp@4037 4244 case Long: // reuses local variables
coleenp@4037 4245 case FloatTop:
coleenp@4037 4246 case FloatCon:
coleenp@4037 4247 case FloatBot:
coleenp@4037 4248 case DoubleTop:
coleenp@4037 4249 case DoubleCon:
coleenp@4037 4250 case DoubleBot:
coleenp@4037 4251 case NarrowOop:
roland@4159 4252 case NarrowKlass:
coleenp@4037 4253 case Bottom: // Ye Olde Default
coleenp@4037 4254 return Type::BOTTOM;
coleenp@4037 4255 case Top:
coleenp@4037 4256 return this;
coleenp@4037 4257
coleenp@4037 4258 default: // All else is a mistake
coleenp@4037 4259 typerr(t);
coleenp@4037 4260
coleenp@4037 4261 case AnyPtr: {
coleenp@4037 4262 // Found an AnyPtr type vs self-OopPtr type
coleenp@4037 4263 const TypePtr *tp = t->is_ptr();
coleenp@4037 4264 int offset = meet_offset(tp->offset());
coleenp@4037 4265 PTR ptr = meet_ptr(tp->ptr());
coleenp@4037 4266 switch (tp->ptr()) {
coleenp@4037 4267 case Null:
coleenp@4037 4268 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 4269 // else fall through:
coleenp@4037 4270 case TopPTR:
coleenp@4037 4271 case AnyNull: {
coleenp@4037 4272 return make(ptr, NULL, offset);
coleenp@4037 4273 }
coleenp@4037 4274 case BotPTR:
coleenp@4037 4275 case NotNull:
coleenp@4037 4276 return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 4277 default: typerr(t);
coleenp@4037 4278 }
coleenp@4037 4279 }
coleenp@4037 4280
coleenp@4037 4281 case RawPtr:
coleenp@4037 4282 case KlassPtr:
coleenp@4037 4283 case OopPtr:
coleenp@4037 4284 case InstPtr:
coleenp@4037 4285 case AryPtr:
coleenp@4037 4286 return TypePtr::BOTTOM; // Oop meet raw is not well defined
coleenp@4037 4287
roland@4040 4288 case MetadataPtr: {
roland@4040 4289 const TypeMetadataPtr *tp = t->is_metadataptr();
roland@4040 4290 int offset = meet_offset(tp->offset());
roland@4040 4291 PTR tptr = tp->ptr();
roland@4040 4292 PTR ptr = meet_ptr(tptr);
roland@4040 4293 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
roland@4040 4294 if (tptr == TopPTR || _ptr == TopPTR ||
roland@4040 4295 metadata()->equals(tp->metadata())) {
roland@4040 4296 return make(ptr, md, offset);
roland@4040 4297 }
roland@4040 4298 // metadata is different
roland@4040 4299 if( ptr == Constant ) { // Cannot be equal constants, so...
roland@4040 4300 if( tptr == Constant && _ptr != Constant) return t;
roland@4040 4301 if( _ptr == Constant && tptr != Constant) return this;
roland@4040 4302 ptr = NotNull; // Fall down in lattice
roland@4040 4303 }
roland@4040 4304 return make(ptr, NULL, offset);
coleenp@4037 4305 break;
roland@4040 4306 }
coleenp@4037 4307 } // End of switch
coleenp@4037 4308 return this; // Return the double constant
coleenp@4037 4309 }
coleenp@4037 4310
coleenp@4037 4311
coleenp@4037 4312 //------------------------------xdual------------------------------------------
coleenp@4037 4313 // Dual of a pure metadata pointer.
coleenp@4037 4314 const Type *TypeMetadataPtr::xdual() const {
coleenp@4037 4315 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
coleenp@4037 4316 }
coleenp@4037 4317
coleenp@4037 4318 //------------------------------dump2------------------------------------------
coleenp@4037 4319 #ifndef PRODUCT
coleenp@4037 4320 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
coleenp@4037 4321 st->print("metadataptr:%s", ptr_msg[_ptr]);
coleenp@4037 4322 if( metadata() ) st->print(INTPTR_FORMAT, metadata());
coleenp@4037 4323 switch( _offset ) {
coleenp@4037 4324 case OffsetTop: st->print("+top"); break;
coleenp@4037 4325 case OffsetBot: st->print("+any"); break;
coleenp@4037 4326 case 0: break;
coleenp@4037 4327 default: st->print("+%d",_offset); break;
coleenp@4037 4328 }
coleenp@4037 4329 }
coleenp@4037 4330 #endif
coleenp@4037 4331
coleenp@4037 4332
coleenp@4037 4333 //=============================================================================
coleenp@4037 4334 // Convenience common pre-built type.
coleenp@4037 4335 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
coleenp@4037 4336
coleenp@4037 4337 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
coleenp@4037 4338 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
coleenp@4037 4339 }
coleenp@4037 4340
coleenp@4037 4341 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
coleenp@4037 4342 return make(Constant, m, 0);
coleenp@4037 4343 }
coleenp@4037 4344 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
coleenp@4037 4345 return make(Constant, m, 0);
coleenp@4037 4346 }
coleenp@4037 4347
coleenp@4037 4348 //------------------------------make-------------------------------------------
coleenp@4037 4349 // Create a meta data constant
coleenp@4037 4350 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
coleenp@4037 4351 assert(m == NULL || !m->is_klass(), "wrong type");
coleenp@4037 4352 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
coleenp@4037 4353 }
coleenp@4037 4354
coleenp@4037 4355
coleenp@548 4356 //=============================================================================
duke@435 4357 // Convenience common pre-built types.
duke@435 4358
duke@435 4359 // Not-null object klass or below
duke@435 4360 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 4361 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 4362
coleenp@4037 4363 //------------------------------TypeKlassPtr-----------------------------------
duke@435 4364 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
coleenp@4037 4365 : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
duke@435 4366 }
duke@435 4367
duke@435 4368 //------------------------------make-------------------------------------------
duke@435 4369 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 4370 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 4371 assert( k != NULL, "Expect a non-NULL klass");
coleenp@4037 4372 assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
duke@435 4373 TypeKlassPtr *r =
duke@435 4374 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 4375
duke@435 4376 return r;
duke@435 4377 }
duke@435 4378
duke@435 4379 //------------------------------eq---------------------------------------------
duke@435 4380 // Structural equality check for Type representations
duke@435 4381 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 4382 const TypeKlassPtr *p = t->is_klassptr();
duke@435 4383 return
duke@435 4384 klass()->equals(p->klass()) &&
coleenp@4037 4385 TypePtr::eq(p);
duke@435 4386 }
duke@435 4387
duke@435 4388 //------------------------------hash-------------------------------------------
duke@435 4389 // Type-specific hashing function.
duke@435 4390 int TypeKlassPtr::hash(void) const {
coleenp@4037 4391 return klass()->hash() + TypePtr::hash();
coleenp@4037 4392 }
coleenp@4037 4393
coleenp@4037 4394 //------------------------------singleton--------------------------------------
coleenp@4037 4395 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 4396 // constants
coleenp@4037 4397 bool TypeKlassPtr::singleton(void) const {
coleenp@4037 4398 // detune optimizer to not generate constant klass + constant offset as a constant!
coleenp@4037 4399 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 4400 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 4401 }
duke@435 4402
roland@6043 4403 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 4404 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@6043 4405 // logic here mirrors the one from TypeOopPtr::filter. See comments
roland@6043 4406 // there.
roland@6313 4407 const Type* ft = join_helper(kills, include_speculative);
roland@6043 4408 const TypeKlassPtr* ftkp = ft->isa_klassptr();
roland@6043 4409 const TypeKlassPtr* ktkp = kills->isa_klassptr();
roland@6043 4410
roland@6043 4411 if (ft->empty()) {
roland@6043 4412 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
roland@6043 4413 return kills; // Uplift to interface
roland@6043 4414
roland@6043 4415 return Type::TOP; // Canonical empty value
roland@6043 4416 }
roland@6043 4417
roland@6043 4418 // Interface klass type could be exact in opposite to interface type,
roland@6043 4419 // return it here instead of incorrect Constant ptr J/L/Object (6894807).
roland@6043 4420 if (ftkp != NULL && ktkp != NULL &&
roland@6043 4421 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
roland@6043 4422 !ftkp->klass_is_exact() && // Keep exact interface klass
roland@6043 4423 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
roland@6043 4424 return ktkp->cast_to_ptr_type(ftkp->ptr());
roland@6043 4425 }
roland@6043 4426
roland@6043 4427 return ft;
roland@6043 4428 }
roland@6043 4429
kvn@2116 4430 //----------------------compute_klass------------------------------------------
kvn@2116 4431 // Compute the defining klass for this class
kvn@2116 4432 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
kvn@2116 4433 // Compute _klass based on element type.
duke@435 4434 ciKlass* k_ary = NULL;
duke@435 4435 const TypeInstPtr *tinst;
duke@435 4436 const TypeAryPtr *tary;
coleenp@548 4437 const Type* el = elem();
coleenp@548 4438 if (el->isa_narrowoop()) {
kvn@656 4439 el = el->make_ptr();
coleenp@548 4440 }
coleenp@548 4441
duke@435 4442 // Get element klass
coleenp@548 4443 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 4444 // Compute array klass from element klass
duke@435 4445 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 4446 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 4447 // Compute array klass from element klass
duke@435 4448 ciKlass* k_elem = tary->klass();
duke@435 4449 // If element type is something like bottom[], k_elem will be null.
duke@435 4450 if (k_elem != NULL)
duke@435 4451 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 4452 } else if ((el->base() == Type::Top) ||
coleenp@548 4453 (el->base() == Type::Bottom)) {
duke@435 4454 // element type of Bottom occurs from meet of basic type
duke@435 4455 // and object; Top occurs when doing join on Bottom.
duke@435 4456 // Leave k_ary at NULL.
duke@435 4457 } else {
duke@435 4458 // Cannot compute array klass directly from basic type,
duke@435 4459 // since subtypes of TypeInt all have basic type T_INT.
kvn@2116 4460 #ifdef ASSERT
kvn@2116 4461 if (verify && el->isa_int()) {
kvn@2116 4462 // Check simple cases when verifying klass.
kvn@2116 4463 BasicType bt = T_ILLEGAL;
kvn@2116 4464 if (el == TypeInt::BYTE) {
kvn@2116 4465 bt = T_BYTE;
kvn@2116 4466 } else if (el == TypeInt::SHORT) {
kvn@2116 4467 bt = T_SHORT;
kvn@2116 4468 } else if (el == TypeInt::CHAR) {
kvn@2116 4469 bt = T_CHAR;
kvn@2116 4470 } else if (el == TypeInt::INT) {
kvn@2116 4471 bt = T_INT;
kvn@2116 4472 } else {
kvn@2116 4473 return _klass; // just return specified klass
kvn@2116 4474 }
kvn@2116 4475 return ciTypeArrayKlass::make(bt);
kvn@2116 4476 }
kvn@2116 4477 #endif
coleenp@548 4478 assert(!el->isa_int(),
duke@435 4479 "integral arrays must be pre-equipped with a class");
duke@435 4480 // Compute array klass directly from basic type
coleenp@548 4481 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 4482 }
kvn@2116 4483 return k_ary;
kvn@2116 4484 }
kvn@2116 4485
kvn@2116 4486 //------------------------------klass------------------------------------------
kvn@2116 4487 // Return the defining klass for this class
kvn@2116 4488 ciKlass* TypeAryPtr::klass() const {
kvn@2116 4489 if( _klass ) return _klass; // Return cached value, if possible
kvn@2116 4490
kvn@2116 4491 // Oops, need to compute _klass and cache it
kvn@2116 4492 ciKlass* k_ary = compute_klass();
duke@435 4493
kvn@2636 4494 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
duke@435 4495 // The _klass field acts as a cache of the underlying
duke@435 4496 // ciKlass for this array type. In order to set the field,
duke@435 4497 // we need to cast away const-ness.
duke@435 4498 //
duke@435 4499 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 4500 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 4501 // active compilations. However, the ciKlass which represents
duke@435 4502 // this Type is *not* shared between compilations, so caching
duke@435 4503 // this value would result in fetching a dangling pointer.
duke@435 4504 //
duke@435 4505 // Recomputing the underlying ciKlass for each request is
duke@435 4506 // a bit less efficient than caching, but calls to
duke@435 4507 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 4508 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 4509 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 4510 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 4511 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 4512 }
kvn@598 4513 }
duke@435 4514 return k_ary;
duke@435 4515 }
duke@435 4516
duke@435 4517
duke@435 4518 //------------------------------add_offset-------------------------------------
duke@435 4519 // Access internals of klass object
kvn@741 4520 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
duke@435 4521 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 4522 }
duke@435 4523
duke@435 4524 //------------------------------cast_to_ptr_type-------------------------------
duke@435 4525 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
kvn@992 4526 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
duke@435 4527 if( ptr == _ptr ) return this;
duke@435 4528 return make(ptr, _klass, _offset);
duke@435 4529 }
duke@435 4530
duke@435 4531
duke@435 4532 //-----------------------------cast_to_exactness-------------------------------
duke@435 4533 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 4534 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 4535 if (!UseExactTypes) return this;
duke@435 4536 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 4537 }
duke@435 4538
duke@435 4539
duke@435 4540 //-----------------------------as_instance_type--------------------------------
duke@435 4541 // Corresponding type for an instance of the given class.
duke@435 4542 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 4543 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 4544 ciKlass* k = klass();
duke@435 4545 bool xk = klass_is_exact();
duke@435 4546 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 4547 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
morris@4760 4548 guarantee(toop != NULL, "need type for given klass");
duke@435 4549 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 4550 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 4551 }
duke@435 4552
duke@435 4553
duke@435 4554 //------------------------------xmeet------------------------------------------
duke@435 4555 // Compute the MEET of two types, return a new Type object.
duke@435 4556 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 4557 // Perform a fast test for common case; meeting the same types together.
duke@435 4558 if( this == t ) return this; // Meeting same type-rep?
duke@435 4559
duke@435 4560 // Current "this->_base" is Pointer
duke@435 4561 switch (t->base()) { // switch on original type
duke@435 4562
duke@435 4563 case Int: // Mixing ints & oops happens when javac
duke@435 4564 case Long: // reuses local variables
duke@435 4565 case FloatTop:
duke@435 4566 case FloatCon:
duke@435 4567 case FloatBot:
duke@435 4568 case DoubleTop:
duke@435 4569 case DoubleCon:
duke@435 4570 case DoubleBot:
kvn@728 4571 case NarrowOop:
roland@4159 4572 case NarrowKlass:
duke@435 4573 case Bottom: // Ye Olde Default
duke@435 4574 return Type::BOTTOM;
duke@435 4575 case Top:
duke@435 4576 return this;
duke@435 4577
duke@435 4578 default: // All else is a mistake
duke@435 4579 typerr(t);
duke@435 4580
duke@435 4581 case AnyPtr: { // Meeting to AnyPtrs
duke@435 4582 // Found an AnyPtr type vs self-KlassPtr type
duke@435 4583 const TypePtr *tp = t->is_ptr();
duke@435 4584 int offset = meet_offset(tp->offset());
duke@435 4585 PTR ptr = meet_ptr(tp->ptr());
duke@435 4586 switch (tp->ptr()) {
duke@435 4587 case TopPTR:
duke@435 4588 return this;
duke@435 4589 case Null:
duke@435 4590 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 4591 case AnyNull:
duke@435 4592 return make( ptr, klass(), offset );
duke@435 4593 case BotPTR:
duke@435 4594 case NotNull:
duke@435 4595 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 4596 default: typerr(t);
duke@435 4597 }
duke@435 4598 }
duke@435 4599
coleenp@4037 4600 case RawPtr:
coleenp@4037 4601 case MetadataPtr:
coleenp@4037 4602 case OopPtr:
duke@435 4603 case AryPtr: // Meet with AryPtr
duke@435 4604 case InstPtr: // Meet with InstPtr
coleenp@4037 4605 return TypePtr::BOTTOM;
duke@435 4606
duke@435 4607 //
duke@435 4608 // A-top }
duke@435 4609 // / | \ } Tops
duke@435 4610 // B-top A-any C-top }
duke@435 4611 // | / | \ | } Any-nulls
duke@435 4612 // B-any | C-any }
duke@435 4613 // | | |
duke@435 4614 // B-con A-con C-con } constants; not comparable across classes
duke@435 4615 // | | |
duke@435 4616 // B-not | C-not }
duke@435 4617 // | \ | / | } not-nulls
duke@435 4618 // B-bot A-not C-bot }
duke@435 4619 // \ | / } Bottoms
duke@435 4620 // A-bot }
duke@435 4621 //
duke@435 4622
duke@435 4623 case KlassPtr: { // Meet two KlassPtr types
duke@435 4624 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 4625 int off = meet_offset(tkls->offset());
duke@435 4626 PTR ptr = meet_ptr(tkls->ptr());
duke@435 4627
duke@435 4628 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 4629 // If we have constants, then we created oops so classes are loaded
duke@435 4630 // and we can handle the constants further down. This case handles
duke@435 4631 // not-loaded classes
duke@435 4632 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 4633 return make( ptr, klass(), off );
duke@435 4634 }
duke@435 4635
duke@435 4636 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 4637 ciKlass* tkls_klass = tkls->klass();
duke@435 4638 ciKlass* this_klass = this->klass();
duke@435 4639 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 4640 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 4641
duke@435 4642 // If 'this' type is above the centerline and is a superclass of the
duke@435 4643 // other, we can treat 'this' as having the same type as the other.
duke@435 4644 if ((above_centerline(this->ptr())) &&
duke@435 4645 tkls_klass->is_subtype_of(this_klass)) {
duke@435 4646 this_klass = tkls_klass;
duke@435 4647 }
duke@435 4648 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 4649 // other, we can treat 'tinst' as having the same type as the other.
duke@435 4650 if ((above_centerline(tkls->ptr())) &&
duke@435 4651 this_klass->is_subtype_of(tkls_klass)) {
duke@435 4652 tkls_klass = this_klass;
duke@435 4653 }
duke@435 4654
duke@435 4655 // Check for classes now being equal
duke@435 4656 if (tkls_klass->equals(this_klass)) {
duke@435 4657 // If the klasses are equal, the constants may still differ. Fall to
duke@435 4658 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 4659 // handled elsewhere).
duke@435 4660 if( ptr == Constant ) {
coleenp@4037 4661 if (this->_ptr == Constant && tkls->_ptr == Constant &&
coleenp@4037 4662 this->klass()->equals(tkls->klass()));
coleenp@4037 4663 else if (above_centerline(this->ptr()));
coleenp@4037 4664 else if (above_centerline(tkls->ptr()));
duke@435 4665 else
duke@435 4666 ptr = NotNull;
duke@435 4667 }
duke@435 4668 return make( ptr, this_klass, off );
duke@435 4669 } // Else classes are not equal
duke@435 4670
duke@435 4671 // Since klasses are different, we require the LCA in the Java
duke@435 4672 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 4673 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 4674 ptr = NotNull;
duke@435 4675 // Now we find the LCA of Java classes
duke@435 4676 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 4677 return make( ptr, k, off );
duke@435 4678 } // End of case KlassPtr
duke@435 4679
duke@435 4680 } // End of switch
duke@435 4681 return this; // Return the double constant
duke@435 4682 }
duke@435 4683
duke@435 4684 //------------------------------xdual------------------------------------------
duke@435 4685 // Dual: compute field-by-field dual
duke@435 4686 const Type *TypeKlassPtr::xdual() const {
duke@435 4687 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 4688 }
duke@435 4689
coleenp@4037 4690 //------------------------------get_con----------------------------------------
coleenp@4037 4691 intptr_t TypeKlassPtr::get_con() const {
coleenp@4037 4692 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4693 assert( _offset >= 0, "" );
coleenp@4037 4694
coleenp@4037 4695 if (_offset != 0) {
coleenp@4037 4696 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4697 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4698 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4699 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4700 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4701 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4702 // but this assertion here is to help prevent its occurence.
coleenp@4037 4703 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4704 ShouldNotReachHere();
coleenp@4037 4705 }
coleenp@4037 4706
coleenp@4037 4707 return (intptr_t)klass()->constant_encoding();
coleenp@4037 4708 }
duke@435 4709 //------------------------------dump2------------------------------------------
duke@435 4710 // Dump Klass Type
duke@435 4711 #ifndef PRODUCT
duke@435 4712 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 4713 switch( _ptr ) {
duke@435 4714 case Constant:
duke@435 4715 st->print("precise ");
duke@435 4716 case NotNull:
duke@435 4717 {
duke@435 4718 const char *name = klass()->name()->as_utf8();
duke@435 4719 if( name ) {
duke@435 4720 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 4721 } else {
duke@435 4722 ShouldNotReachHere();
duke@435 4723 }
duke@435 4724 }
duke@435 4725 case BotPTR:
duke@435 4726 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 4727 case TopPTR:
duke@435 4728 case AnyNull:
duke@435 4729 st->print(":%s", ptr_msg[_ptr]);
duke@435 4730 if( _klass_is_exact ) st->print(":exact");
duke@435 4731 break;
duke@435 4732 }
duke@435 4733
duke@435 4734 if( _offset ) { // Dump offset, if any
duke@435 4735 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 4736 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 4737 else { st->print("+%d", _offset); }
duke@435 4738 }
duke@435 4739
duke@435 4740 st->print(" *");
duke@435 4741 }
duke@435 4742 #endif
duke@435 4743
duke@435 4744
duke@435 4745
duke@435 4746 //=============================================================================
duke@435 4747 // Convenience common pre-built types.
duke@435 4748
duke@435 4749 //------------------------------make-------------------------------------------
duke@435 4750 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 4751 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 4752 }
duke@435 4753
duke@435 4754 //------------------------------make-------------------------------------------
duke@435 4755 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 4756 Compile* C = Compile::current();
duke@435 4757 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 4758 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 4759 const TypeTuple *domain;
twisti@1572 4760 if (method->is_static()) {
duke@435 4761 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 4762 } else {
duke@435 4763 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 4764 }
duke@435 4765 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 4766 tf = TypeFunc::make(domain, range);
duke@435 4767 C->set_last_tf(method, tf); // fill cache
duke@435 4768 return tf;
duke@435 4769 }
duke@435 4770
duke@435 4771 //------------------------------meet-------------------------------------------
duke@435 4772 // Compute the MEET of two types. It returns a new Type object.
duke@435 4773 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 4774 // Perform a fast test for common case; meeting the same types together.
duke@435 4775 if( this == t ) return this; // Meeting same type-rep?
duke@435 4776
duke@435 4777 // Current "this->_base" is Func
duke@435 4778 switch (t->base()) { // switch on original type
duke@435 4779
duke@435 4780 case Bottom: // Ye Olde Default
duke@435 4781 return t;
duke@435 4782
duke@435 4783 default: // All else is a mistake
duke@435 4784 typerr(t);
duke@435 4785
duke@435 4786 case Top:
duke@435 4787 break;
duke@435 4788 }
duke@435 4789 return this; // Return the double constant
duke@435 4790 }
duke@435 4791
duke@435 4792 //------------------------------xdual------------------------------------------
duke@435 4793 // Dual: compute field-by-field dual
duke@435 4794 const Type *TypeFunc::xdual() const {
duke@435 4795 return this;
duke@435 4796 }
duke@435 4797
duke@435 4798 //------------------------------eq---------------------------------------------
duke@435 4799 // Structural equality check for Type representations
duke@435 4800 bool TypeFunc::eq( const Type *t ) const {
duke@435 4801 const TypeFunc *a = (const TypeFunc*)t;
duke@435 4802 return _domain == a->_domain &&
duke@435 4803 _range == a->_range;
duke@435 4804 }
duke@435 4805
duke@435 4806 //------------------------------hash-------------------------------------------
duke@435 4807 // Type-specific hashing function.
duke@435 4808 int TypeFunc::hash(void) const {
duke@435 4809 return (intptr_t)_domain + (intptr_t)_range;
duke@435 4810 }
duke@435 4811
duke@435 4812 //------------------------------dump2------------------------------------------
duke@435 4813 // Dump Function Type
duke@435 4814 #ifndef PRODUCT
duke@435 4815 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4816 if( _range->_cnt <= Parms )
duke@435 4817 st->print("void");
duke@435 4818 else {
duke@435 4819 uint i;
duke@435 4820 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 4821 _range->field_at(i)->dump2(d,depth,st);
duke@435 4822 st->print("/");
duke@435 4823 }
duke@435 4824 _range->field_at(i)->dump2(d,depth,st);
duke@435 4825 }
duke@435 4826 st->print(" ");
duke@435 4827 st->print("( ");
duke@435 4828 if( !depth || d[this] ) { // Check for recursive dump
duke@435 4829 st->print("...)");
duke@435 4830 return;
duke@435 4831 }
duke@435 4832 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 4833 if (Parms < _domain->_cnt)
duke@435 4834 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 4835 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 4836 st->print(", ");
duke@435 4837 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 4838 }
duke@435 4839 st->print(" )");
duke@435 4840 }
duke@435 4841 #endif
duke@435 4842
duke@435 4843 //------------------------------singleton--------------------------------------
duke@435 4844 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 4845 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 4846 // or a single symbol.
duke@435 4847 bool TypeFunc::singleton(void) const {
duke@435 4848 return false; // Never a singleton
duke@435 4849 }
duke@435 4850
duke@435 4851 bool TypeFunc::empty(void) const {
duke@435 4852 return false; // Never empty
duke@435 4853 }
duke@435 4854
duke@435 4855
duke@435 4856 BasicType TypeFunc::return_type() const{
duke@435 4857 if (range()->cnt() == TypeFunc::Parms) {
duke@435 4858 return T_VOID;
duke@435 4859 }
duke@435 4860 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 4861 }

mercurial