src/share/vm/opto/type.cpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2120
114e6b93e9e1
child 2435
78e248949382
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

duke@435 1 /*
stefank@2314 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "ci/ciTypeFlow.hpp"
stefank@2314 27 #include "classfile/symbolTable.hpp"
stefank@2314 28 #include "classfile/systemDictionary.hpp"
stefank@2314 29 #include "compiler/compileLog.hpp"
stefank@2314 30 #include "libadt/dict.hpp"
stefank@2314 31 #include "memory/gcLocker.hpp"
stefank@2314 32 #include "memory/oopFactory.hpp"
stefank@2314 33 #include "memory/resourceArea.hpp"
stefank@2314 34 #include "oops/instanceKlass.hpp"
stefank@2314 35 #include "oops/klassKlass.hpp"
stefank@2314 36 #include "oops/objArrayKlass.hpp"
stefank@2314 37 #include "oops/typeArrayKlass.hpp"
stefank@2314 38 #include "opto/matcher.hpp"
stefank@2314 39 #include "opto/node.hpp"
stefank@2314 40 #include "opto/opcodes.hpp"
stefank@2314 41 #include "opto/type.hpp"
stefank@2314 42
duke@435 43 // Portions of code courtesy of Clifford Click
duke@435 44
duke@435 45 // Optimization - Graph Style
duke@435 46
duke@435 47 // Dictionary of types shared among compilations.
duke@435 48 Dict* Type::_shared_type_dict = NULL;
duke@435 49
duke@435 50 // Array which maps compiler types to Basic Types
duke@435 51 const BasicType Type::_basic_type[Type::lastype] = {
duke@435 52 T_ILLEGAL, // Bad
duke@435 53 T_ILLEGAL, // Control
duke@435 54 T_VOID, // Top
duke@435 55 T_INT, // Int
duke@435 56 T_LONG, // Long
duke@435 57 T_VOID, // Half
coleenp@548 58 T_NARROWOOP, // NarrowOop
duke@435 59
duke@435 60 T_ILLEGAL, // Tuple
duke@435 61 T_ARRAY, // Array
duke@435 62
duke@435 63 T_ADDRESS, // AnyPtr // shows up in factory methods for NULL_PTR
duke@435 64 T_ADDRESS, // RawPtr
duke@435 65 T_OBJECT, // OopPtr
duke@435 66 T_OBJECT, // InstPtr
duke@435 67 T_OBJECT, // AryPtr
duke@435 68 T_OBJECT, // KlassPtr
duke@435 69
duke@435 70 T_OBJECT, // Function
duke@435 71 T_ILLEGAL, // Abio
duke@435 72 T_ADDRESS, // Return_Address
duke@435 73 T_ILLEGAL, // Memory
duke@435 74 T_FLOAT, // FloatTop
duke@435 75 T_FLOAT, // FloatCon
duke@435 76 T_FLOAT, // FloatBot
duke@435 77 T_DOUBLE, // DoubleTop
duke@435 78 T_DOUBLE, // DoubleCon
duke@435 79 T_DOUBLE, // DoubleBot
duke@435 80 T_ILLEGAL, // Bottom
duke@435 81 };
duke@435 82
duke@435 83 // Map ideal registers (machine types) to ideal types
duke@435 84 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 85
duke@435 86 // Map basic types to canonical Type* pointers.
duke@435 87 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 88
duke@435 89 // Map basic types to constant-zero Types.
duke@435 90 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 91
duke@435 92 // Map basic types to array-body alias types.
duke@435 93 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 94
duke@435 95 //=============================================================================
duke@435 96 // Convenience common pre-built types.
duke@435 97 const Type *Type::ABIO; // State-of-machine only
duke@435 98 const Type *Type::BOTTOM; // All values
duke@435 99 const Type *Type::CONTROL; // Control only
duke@435 100 const Type *Type::DOUBLE; // All doubles
duke@435 101 const Type *Type::FLOAT; // All floats
duke@435 102 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 103 const Type *Type::MEMORY; // Abstract store only
duke@435 104 const Type *Type::RETURN_ADDRESS;
duke@435 105 const Type *Type::TOP; // No values in set
duke@435 106
duke@435 107 //------------------------------get_const_type---------------------------
duke@435 108 const Type* Type::get_const_type(ciType* type) {
duke@435 109 if (type == NULL) {
duke@435 110 return NULL;
duke@435 111 } else if (type->is_primitive_type()) {
duke@435 112 return get_const_basic_type(type->basic_type());
duke@435 113 } else {
duke@435 114 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 115 }
duke@435 116 }
duke@435 117
duke@435 118 //---------------------------array_element_basic_type---------------------------------
duke@435 119 // Mapping to the array element's basic type.
duke@435 120 BasicType Type::array_element_basic_type() const {
duke@435 121 BasicType bt = basic_type();
duke@435 122 if (bt == T_INT) {
duke@435 123 if (this == TypeInt::INT) return T_INT;
duke@435 124 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 125 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 126 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 127 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 128 return T_VOID;
duke@435 129 }
duke@435 130 return bt;
duke@435 131 }
duke@435 132
duke@435 133 //---------------------------get_typeflow_type---------------------------------
duke@435 134 // Import a type produced by ciTypeFlow.
duke@435 135 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 136 switch (type->basic_type()) {
duke@435 137
duke@435 138 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 139 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 140 return Type::BOTTOM;
duke@435 141
duke@435 142 case ciTypeFlow::StateVector::T_TOP:
duke@435 143 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 144 return Type::TOP;
duke@435 145
duke@435 146 case ciTypeFlow::StateVector::T_NULL:
duke@435 147 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 148 return TypePtr::NULL_PTR;
duke@435 149
duke@435 150 case ciTypeFlow::StateVector::T_LONG2:
duke@435 151 // The ciTypeFlow pass pushes a long, then the half.
duke@435 152 // We do the same.
duke@435 153 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 154 return TypeInt::TOP;
duke@435 155
duke@435 156 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 157 // The ciTypeFlow pass pushes double, then the half.
duke@435 158 // Our convention is the same.
duke@435 159 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 160 return Type::TOP;
duke@435 161
duke@435 162 case T_ADDRESS:
duke@435 163 assert(type->is_return_address(), "");
duke@435 164 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 165
duke@435 166 default:
duke@435 167 // make sure we did not mix up the cases:
duke@435 168 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 169 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 170 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 171 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 172 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 173 assert(!type->is_return_address(), "");
duke@435 174
duke@435 175 return Type::get_const_type(type);
duke@435 176 }
duke@435 177 }
duke@435 178
duke@435 179
duke@435 180 //------------------------------make-------------------------------------------
duke@435 181 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 182 // and look for an existing copy in the type dictionary.
duke@435 183 const Type *Type::make( enum TYPES t ) {
duke@435 184 return (new Type(t))->hashcons();
duke@435 185 }
kvn@658 186
duke@435 187 //------------------------------cmp--------------------------------------------
duke@435 188 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 189 if( t1->_base != t2->_base )
duke@435 190 return 1; // Missed badly
duke@435 191 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 192 return !t1->eq(t2); // Return ZERO if equal
duke@435 193 }
duke@435 194
duke@435 195 //------------------------------hash-------------------------------------------
duke@435 196 int Type::uhash( const Type *const t ) {
duke@435 197 return t->hash();
duke@435 198 }
duke@435 199
kvn@1975 200 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
kvn@1975 201
duke@435 202 //--------------------------Initialize_shared----------------------------------
duke@435 203 void Type::Initialize_shared(Compile* current) {
duke@435 204 // This method does not need to be locked because the first system
duke@435 205 // compilations (stub compilations) occur serially. If they are
duke@435 206 // changed to proceed in parallel, then this section will need
duke@435 207 // locking.
duke@435 208
duke@435 209 Arena* save = current->type_arena();
duke@435 210 Arena* shared_type_arena = new Arena();
duke@435 211
duke@435 212 current->set_type_arena(shared_type_arena);
duke@435 213 _shared_type_dict =
duke@435 214 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 215 shared_type_arena, 128 );
duke@435 216 current->set_type_dict(_shared_type_dict);
duke@435 217
duke@435 218 // Make shared pre-built types.
duke@435 219 CONTROL = make(Control); // Control only
duke@435 220 TOP = make(Top); // No values in set
duke@435 221 MEMORY = make(Memory); // Abstract store only
duke@435 222 ABIO = make(Abio); // State-of-machine only
duke@435 223 RETURN_ADDRESS=make(Return_Address);
duke@435 224 FLOAT = make(FloatBot); // All floats
duke@435 225 DOUBLE = make(DoubleBot); // All doubles
duke@435 226 BOTTOM = make(Bottom); // Everything
duke@435 227 HALF = make(Half); // Placeholder half of doublewide type
duke@435 228
duke@435 229 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 230 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 231
duke@435 232 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 233 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 234
duke@435 235 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 236 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 237 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 238 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 239 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 240 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 241 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 242 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 243 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 244 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 245 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
twisti@1059 246 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
duke@435 247 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 248 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 249 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 250 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 251 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 252 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
duke@435 253 // CmpL is overloaded both as the bytecode computation returning
duke@435 254 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 255 // compare returning optimizer ideal-type flags.
duke@435 256 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 257 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 258 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 259 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
kvn@1975 260 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 261
duke@435 262 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 263 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 264 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 265 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 266 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 267 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 268 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
duke@435 269
duke@435 270 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 271 fboth[0] = Type::CONTROL;
duke@435 272 fboth[1] = Type::CONTROL;
duke@435 273 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 274
duke@435 275 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 276 ffalse[0] = Type::CONTROL;
duke@435 277 ffalse[1] = Type::TOP;
duke@435 278 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 279
duke@435 280 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 281 fneither[0] = Type::TOP;
duke@435 282 fneither[1] = Type::TOP;
duke@435 283 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 284
duke@435 285 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 286 ftrue[0] = Type::TOP;
duke@435 287 ftrue[1] = Type::CONTROL;
duke@435 288 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 289
duke@435 290 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 291 floop[0] = Type::CONTROL;
duke@435 292 floop[1] = TypeInt::INT;
duke@435 293 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 294
duke@435 295 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 296 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 297 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 298
duke@435 299 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 300 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 301
duke@435 302 const Type **fmembar = TypeTuple::fields(0);
duke@435 303 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 304
duke@435 305 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 306 fsc[0] = TypeInt::CC;
duke@435 307 fsc[1] = Type::MEMORY;
duke@435 308 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 309
duke@435 310 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 311 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 312 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 313 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 314 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 315 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 316 false, 0, oopDesc::klass_offset_in_bytes());
kvn@1427 317 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
duke@435 318
coleenp@548 319 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 320 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 321
coleenp@548 322 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 323 mreg2type[Op_Set ] = 0;
coleenp@548 324 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 325 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 326 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 327 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 328 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 329 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 330 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 331
kvn@2116 332 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
kvn@598 333
kvn@598 334 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 335
kvn@598 336 #ifdef _LP64
kvn@598 337 if (UseCompressedOops) {
kvn@598 338 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 339 } else
kvn@598 340 #endif
kvn@598 341 {
kvn@598 342 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 343 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 344 }
duke@435 345 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 346 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 347 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 348 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 349 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 350 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 351 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 352
kvn@598 353 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 354 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 355 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 356 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 357 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 358 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 359 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 360 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 361 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 362 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 363 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 364 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 365
duke@435 366 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 367 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 368
duke@435 369 const Type **fi2c = TypeTuple::fields(2);
duke@435 370 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
duke@435 371 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 372 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 373
duke@435 374 const Type **intpair = TypeTuple::fields(2);
duke@435 375 intpair[0] = TypeInt::INT;
duke@435 376 intpair[1] = TypeInt::INT;
duke@435 377 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 378
duke@435 379 const Type **longpair = TypeTuple::fields(2);
duke@435 380 longpair[0] = TypeLong::LONG;
duke@435 381 longpair[1] = TypeLong::LONG;
duke@435 382 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 383
coleenp@548 384 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
duke@435 385 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
duke@435 386 _const_basic_type[T_CHAR] = TypeInt::CHAR;
duke@435 387 _const_basic_type[T_BYTE] = TypeInt::BYTE;
duke@435 388 _const_basic_type[T_SHORT] = TypeInt::SHORT;
duke@435 389 _const_basic_type[T_INT] = TypeInt::INT;
duke@435 390 _const_basic_type[T_LONG] = TypeLong::LONG;
duke@435 391 _const_basic_type[T_FLOAT] = Type::FLOAT;
duke@435 392 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
duke@435 393 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
duke@435 394 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
duke@435 395 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
duke@435 396 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
duke@435 397 _const_basic_type[T_CONFLICT]= Type::BOTTOM; // why not?
duke@435 398
coleenp@548 399 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
duke@435 400 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
duke@435 401 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
duke@435 402 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
duke@435 403 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
duke@435 404 _zero_type[T_INT] = TypeInt::ZERO;
duke@435 405 _zero_type[T_LONG] = TypeLong::ZERO;
duke@435 406 _zero_type[T_FLOAT] = TypeF::ZERO;
duke@435 407 _zero_type[T_DOUBLE] = TypeD::ZERO;
duke@435 408 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
duke@435 409 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
duke@435 410 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
duke@435 411 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 412
duke@435 413 // get_zero_type() should not happen for T_CONFLICT
duke@435 414 _zero_type[T_CONFLICT]= NULL;
duke@435 415
duke@435 416 // Restore working type arena.
duke@435 417 current->set_type_arena(save);
duke@435 418 current->set_type_dict(NULL);
duke@435 419 }
duke@435 420
duke@435 421 //------------------------------Initialize-------------------------------------
duke@435 422 void Type::Initialize(Compile* current) {
duke@435 423 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 424
duke@435 425 if (_shared_type_dict == NULL) {
duke@435 426 Initialize_shared(current);
duke@435 427 }
duke@435 428
duke@435 429 Arena* type_arena = current->type_arena();
duke@435 430
duke@435 431 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 432 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 433 current->set_type_dict(tdic);
duke@435 434
duke@435 435 // Transfer the shared types.
duke@435 436 DictI i(_shared_type_dict);
duke@435 437 for( ; i.test(); ++i ) {
duke@435 438 Type* t = (Type*)i._value;
duke@435 439 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 440 }
coleenp@548 441
coleenp@548 442 #ifdef ASSERT
coleenp@548 443 verify_lastype();
coleenp@548 444 #endif
duke@435 445 }
duke@435 446
duke@435 447 //------------------------------hashcons---------------------------------------
duke@435 448 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 449 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 450 // current Type in the Type table.
duke@435 451 const Type *Type::hashcons(void) {
duke@435 452 debug_only(base()); // Check the assertion in Type::base().
duke@435 453 // Look up the Type in the Type dictionary
duke@435 454 Dict *tdic = type_dict();
duke@435 455 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 456 if( old ) { // Pre-existing Type?
duke@435 457 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 458 delete this; // Yes, Nuke this guy
duke@435 459 assert( old->_dual, "" );
duke@435 460 return old; // Return pre-existing
duke@435 461 }
duke@435 462
duke@435 463 // Every type has a dual (to make my lattice symmetric).
duke@435 464 // Since we just discovered a new Type, compute its dual right now.
duke@435 465 assert( !_dual, "" ); // No dual yet
duke@435 466 _dual = xdual(); // Compute the dual
duke@435 467 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 468 _dual = this;
duke@435 469 return this;
duke@435 470 }
duke@435 471 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 472 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 473 // New Type, insert into Type table
duke@435 474 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 475 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 476 #ifdef ASSERT
duke@435 477 Type *dual_dual = (Type*)_dual->xdual();
duke@435 478 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 479 delete dual_dual;
duke@435 480 #endif
duke@435 481 return this; // Return new Type
duke@435 482 }
duke@435 483
duke@435 484 //------------------------------eq---------------------------------------------
duke@435 485 // Structural equality check for Type representations
duke@435 486 bool Type::eq( const Type * ) const {
duke@435 487 return true; // Nothing else can go wrong
duke@435 488 }
duke@435 489
duke@435 490 //------------------------------hash-------------------------------------------
duke@435 491 // Type-specific hashing function.
duke@435 492 int Type::hash(void) const {
duke@435 493 return _base;
duke@435 494 }
duke@435 495
duke@435 496 //------------------------------is_finite--------------------------------------
duke@435 497 // Has a finite value
duke@435 498 bool Type::is_finite() const {
duke@435 499 return false;
duke@435 500 }
duke@435 501
duke@435 502 //------------------------------is_nan-----------------------------------------
duke@435 503 // Is not a number (NaN)
duke@435 504 bool Type::is_nan() const {
duke@435 505 return false;
duke@435 506 }
duke@435 507
kvn@1255 508 //----------------------interface_vs_oop---------------------------------------
kvn@1255 509 #ifdef ASSERT
kvn@1255 510 bool Type::interface_vs_oop(const Type *t) const {
kvn@1255 511 bool result = false;
kvn@1255 512
kvn@1427 513 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
kvn@1427 514 const TypePtr* t_ptr = t->make_ptr();
kvn@1427 515 if( this_ptr == NULL || t_ptr == NULL )
kvn@1427 516 return result;
kvn@1427 517
kvn@1427 518 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
kvn@1427 519 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
kvn@1255 520 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
kvn@1255 521 bool this_interface = this_inst->klass()->is_interface();
kvn@1255 522 bool t_interface = t_inst->klass()->is_interface();
kvn@1255 523 result = this_interface ^ t_interface;
kvn@1255 524 }
kvn@1255 525
kvn@1255 526 return result;
kvn@1255 527 }
kvn@1255 528 #endif
kvn@1255 529
duke@435 530 //------------------------------meet-------------------------------------------
duke@435 531 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 532 // commutative and the lattice is symmetric.
duke@435 533 const Type *Type::meet( const Type *t ) const {
coleenp@548 534 if (isa_narrowoop() && t->isa_narrowoop()) {
kvn@656 535 const Type* result = make_ptr()->meet(t->make_ptr());
kvn@656 536 return result->make_narrowoop();
coleenp@548 537 }
coleenp@548 538
duke@435 539 const Type *mt = xmeet(t);
coleenp@548 540 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
duke@435 541 #ifdef ASSERT
duke@435 542 assert( mt == t->xmeet(this), "meet not commutative" );
duke@435 543 const Type* dual_join = mt->_dual;
duke@435 544 const Type *t2t = dual_join->xmeet(t->_dual);
duke@435 545 const Type *t2this = dual_join->xmeet( _dual);
duke@435 546
duke@435 547 // Interface meet Oop is Not Symmetric:
duke@435 548 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 549 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
kvn@1255 550
kvn@1255 551 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
duke@435 552 tty->print_cr("=== Meet Not Symmetric ===");
duke@435 553 tty->print("t = "); t->dump(); tty->cr();
duke@435 554 tty->print("this= "); dump(); tty->cr();
duke@435 555 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
duke@435 556
duke@435 557 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
duke@435 558 tty->print("this_dual= "); _dual->dump(); tty->cr();
duke@435 559 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
duke@435 560
duke@435 561 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
duke@435 562 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 563
duke@435 564 fatal("meet not symmetric" );
duke@435 565 }
duke@435 566 #endif
duke@435 567 return mt;
duke@435 568 }
duke@435 569
duke@435 570 //------------------------------xmeet------------------------------------------
duke@435 571 // Compute the MEET of two types. It returns a new Type object.
duke@435 572 const Type *Type::xmeet( const Type *t ) const {
duke@435 573 // Perform a fast test for common case; meeting the same types together.
duke@435 574 if( this == t ) return this; // Meeting same type-rep?
duke@435 575
duke@435 576 // Meeting TOP with anything?
duke@435 577 if( _base == Top ) return t;
duke@435 578
duke@435 579 // Meeting BOTTOM with anything?
duke@435 580 if( _base == Bottom ) return BOTTOM;
duke@435 581
duke@435 582 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 583 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 584 switch (t->base()) { // Switch on original type
duke@435 585
duke@435 586 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 587 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 588 case FloatCon:
duke@435 589 case DoubleCon:
duke@435 590 case Int:
duke@435 591 case Long:
duke@435 592 return t->xmeet(this);
duke@435 593
duke@435 594 case OopPtr:
duke@435 595 return t->xmeet(this);
duke@435 596
duke@435 597 case InstPtr:
duke@435 598 return t->xmeet(this);
duke@435 599
duke@435 600 case KlassPtr:
duke@435 601 return t->xmeet(this);
duke@435 602
duke@435 603 case AryPtr:
duke@435 604 return t->xmeet(this);
duke@435 605
coleenp@548 606 case NarrowOop:
coleenp@548 607 return t->xmeet(this);
coleenp@548 608
duke@435 609 case Bad: // Type check
duke@435 610 default: // Bogus type not in lattice
duke@435 611 typerr(t);
duke@435 612 return Type::BOTTOM;
duke@435 613
duke@435 614 case Bottom: // Ye Olde Default
duke@435 615 return t;
duke@435 616
duke@435 617 case FloatTop:
duke@435 618 if( _base == FloatTop ) return this;
duke@435 619 case FloatBot: // Float
duke@435 620 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 621 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 622 typerr(t);
duke@435 623 return Type::BOTTOM;
duke@435 624
duke@435 625 case DoubleTop:
duke@435 626 if( _base == DoubleTop ) return this;
duke@435 627 case DoubleBot: // Double
duke@435 628 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 629 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 630 typerr(t);
duke@435 631 return Type::BOTTOM;
duke@435 632
duke@435 633 // These next few cases must match exactly or it is a compile-time error.
duke@435 634 case Control: // Control of code
duke@435 635 case Abio: // State of world outside of program
duke@435 636 case Memory:
duke@435 637 if( _base == t->_base ) return this;
duke@435 638 typerr(t);
duke@435 639 return Type::BOTTOM;
duke@435 640
duke@435 641 case Top: // Top of the lattice
duke@435 642 return this;
duke@435 643 }
duke@435 644
duke@435 645 // The type is unchanged
duke@435 646 return this;
duke@435 647 }
duke@435 648
duke@435 649 //-----------------------------filter------------------------------------------
duke@435 650 const Type *Type::filter( const Type *kills ) const {
duke@435 651 const Type* ft = join(kills);
duke@435 652 if (ft->empty())
duke@435 653 return Type::TOP; // Canonical empty value
duke@435 654 return ft;
duke@435 655 }
duke@435 656
duke@435 657 //------------------------------xdual------------------------------------------
duke@435 658 // Compute dual right now.
duke@435 659 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 660 Bad, // Bad
duke@435 661 Control, // Control
duke@435 662 Bottom, // Top
duke@435 663 Bad, // Int - handled in v-call
duke@435 664 Bad, // Long - handled in v-call
duke@435 665 Half, // Half
coleenp@548 666 Bad, // NarrowOop - handled in v-call
duke@435 667
duke@435 668 Bad, // Tuple - handled in v-call
duke@435 669 Bad, // Array - handled in v-call
duke@435 670
duke@435 671 Bad, // AnyPtr - handled in v-call
duke@435 672 Bad, // RawPtr - handled in v-call
duke@435 673 Bad, // OopPtr - handled in v-call
duke@435 674 Bad, // InstPtr - handled in v-call
duke@435 675 Bad, // AryPtr - handled in v-call
duke@435 676 Bad, // KlassPtr - handled in v-call
duke@435 677
duke@435 678 Bad, // Function - handled in v-call
duke@435 679 Abio, // Abio
duke@435 680 Return_Address,// Return_Address
duke@435 681 Memory, // Memory
duke@435 682 FloatBot, // FloatTop
duke@435 683 FloatCon, // FloatCon
duke@435 684 FloatTop, // FloatBot
duke@435 685 DoubleBot, // DoubleTop
duke@435 686 DoubleCon, // DoubleCon
duke@435 687 DoubleTop, // DoubleBot
duke@435 688 Top // Bottom
duke@435 689 };
duke@435 690
duke@435 691 const Type *Type::xdual() const {
duke@435 692 // Note: the base() accessor asserts the sanity of _base.
duke@435 693 assert(dual_type[base()] != Bad, "implement with v-call");
duke@435 694 return new Type(dual_type[_base]);
duke@435 695 }
duke@435 696
duke@435 697 //------------------------------has_memory-------------------------------------
duke@435 698 bool Type::has_memory() const {
duke@435 699 Type::TYPES tx = base();
duke@435 700 if (tx == Memory) return true;
duke@435 701 if (tx == Tuple) {
duke@435 702 const TypeTuple *t = is_tuple();
duke@435 703 for (uint i=0; i < t->cnt(); i++) {
duke@435 704 tx = t->field_at(i)->base();
duke@435 705 if (tx == Memory) return true;
duke@435 706 }
duke@435 707 }
duke@435 708 return false;
duke@435 709 }
duke@435 710
duke@435 711 #ifndef PRODUCT
duke@435 712 //------------------------------dump2------------------------------------------
duke@435 713 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 714 st->print(msg[_base]);
duke@435 715 }
duke@435 716
duke@435 717 //------------------------------dump-------------------------------------------
duke@435 718 void Type::dump_on(outputStream *st) const {
duke@435 719 ResourceMark rm;
duke@435 720 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 721 dump2(d,1, st);
kvn@598 722 if (is_ptr_to_narrowoop()) {
coleenp@548 723 st->print(" [narrow]");
coleenp@548 724 }
duke@435 725 }
duke@435 726
duke@435 727 //------------------------------data-------------------------------------------
duke@435 728 const char * const Type::msg[Type::lastype] = {
coleenp@548 729 "bad","control","top","int:","long:","half", "narrowoop:",
duke@435 730 "tuple:", "aryptr",
duke@435 731 "anyptr:", "rawptr:", "java:", "inst:", "ary:", "klass:",
duke@435 732 "func", "abIO", "return_address", "memory",
duke@435 733 "float_top", "ftcon:", "float",
duke@435 734 "double_top", "dblcon:", "double",
duke@435 735 "bottom"
duke@435 736 };
duke@435 737 #endif
duke@435 738
duke@435 739 //------------------------------singleton--------------------------------------
duke@435 740 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 741 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 742 bool Type::singleton(void) const {
duke@435 743 return _base == Top || _base == Half;
duke@435 744 }
duke@435 745
duke@435 746 //------------------------------empty------------------------------------------
duke@435 747 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 748 bool Type::empty(void) const {
duke@435 749 switch (_base) {
duke@435 750 case DoubleTop:
duke@435 751 case FloatTop:
duke@435 752 case Top:
duke@435 753 return true;
duke@435 754
duke@435 755 case Half:
duke@435 756 case Abio:
duke@435 757 case Return_Address:
duke@435 758 case Memory:
duke@435 759 case Bottom:
duke@435 760 case FloatBot:
duke@435 761 case DoubleBot:
duke@435 762 return false; // never a singleton, therefore never empty
duke@435 763 }
duke@435 764
duke@435 765 ShouldNotReachHere();
duke@435 766 return false;
duke@435 767 }
duke@435 768
duke@435 769 //------------------------------dump_stats-------------------------------------
duke@435 770 // Dump collected statistics to stderr
duke@435 771 #ifndef PRODUCT
duke@435 772 void Type::dump_stats() {
duke@435 773 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 774 }
duke@435 775 #endif
duke@435 776
duke@435 777 //------------------------------typerr-----------------------------------------
duke@435 778 void Type::typerr( const Type *t ) const {
duke@435 779 #ifndef PRODUCT
duke@435 780 tty->print("\nError mixing types: ");
duke@435 781 dump();
duke@435 782 tty->print(" and ");
duke@435 783 t->dump();
duke@435 784 tty->print("\n");
duke@435 785 #endif
duke@435 786 ShouldNotReachHere();
duke@435 787 }
duke@435 788
duke@435 789 //------------------------------isa_oop_ptr------------------------------------
duke@435 790 // Return true if type is an oop pointer type. False for raw pointers.
duke@435 791 static char isa_oop_ptr_tbl[Type::lastype] = {
coleenp@548 792 0,0,0,0,0,0,0/*narrowoop*/,0/*tuple*/, 0/*ary*/,
duke@435 793 0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
duke@435 794 0/*func*/,0,0/*return_address*/,0,
duke@435 795 /*floats*/0,0,0, /*doubles*/0,0,0,
duke@435 796 0
duke@435 797 };
duke@435 798 bool Type::isa_oop_ptr() const {
duke@435 799 return isa_oop_ptr_tbl[_base] != 0;
duke@435 800 }
duke@435 801
duke@435 802 //------------------------------dump_stats-------------------------------------
duke@435 803 // // Check that arrays match type enum
duke@435 804 #ifndef PRODUCT
duke@435 805 void Type::verify_lastype() {
duke@435 806 // Check that arrays match enumeration
duke@435 807 assert( Type::dual_type [Type::lastype - 1] == Type::Top, "did not update array");
duke@435 808 assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
duke@435 809 // assert( PhiNode::tbl [Type::lastype - 1] == NULL, "did not update array");
duke@435 810 assert( Matcher::base2reg[Type::lastype - 1] == 0, "did not update array");
duke@435 811 assert( isa_oop_ptr_tbl [Type::lastype - 1] == (char)0, "did not update array");
duke@435 812 }
duke@435 813 #endif
duke@435 814
duke@435 815 //=============================================================================
duke@435 816 // Convenience common pre-built types.
duke@435 817 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 818 const TypeF *TypeF::ONE; // Floating point one
duke@435 819
duke@435 820 //------------------------------make-------------------------------------------
duke@435 821 // Create a float constant
duke@435 822 const TypeF *TypeF::make(float f) {
duke@435 823 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 824 }
duke@435 825
duke@435 826 //------------------------------meet-------------------------------------------
duke@435 827 // Compute the MEET of two types. It returns a new Type object.
duke@435 828 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 829 // Perform a fast test for common case; meeting the same types together.
duke@435 830 if( this == t ) return this; // Meeting same type-rep?
duke@435 831
duke@435 832 // Current "this->_base" is FloatCon
duke@435 833 switch (t->base()) { // Switch on original type
duke@435 834 case AnyPtr: // Mixing with oops happens when javac
duke@435 835 case RawPtr: // reuses local variables
duke@435 836 case OopPtr:
duke@435 837 case InstPtr:
duke@435 838 case KlassPtr:
duke@435 839 case AryPtr:
kvn@728 840 case NarrowOop:
duke@435 841 case Int:
duke@435 842 case Long:
duke@435 843 case DoubleTop:
duke@435 844 case DoubleCon:
duke@435 845 case DoubleBot:
duke@435 846 case Bottom: // Ye Olde Default
duke@435 847 return Type::BOTTOM;
duke@435 848
duke@435 849 case FloatBot:
duke@435 850 return t;
duke@435 851
duke@435 852 default: // All else is a mistake
duke@435 853 typerr(t);
duke@435 854
duke@435 855 case FloatCon: // Float-constant vs Float-constant?
duke@435 856 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 857 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 858 // all the same representation in C++
duke@435 859 return FLOAT; // Return generic float
duke@435 860 // Equal constants
duke@435 861 case Top:
duke@435 862 case FloatTop:
duke@435 863 break; // Return the float constant
duke@435 864 }
duke@435 865 return this; // Return the float constant
duke@435 866 }
duke@435 867
duke@435 868 //------------------------------xdual------------------------------------------
duke@435 869 // Dual: symmetric
duke@435 870 const Type *TypeF::xdual() const {
duke@435 871 return this;
duke@435 872 }
duke@435 873
duke@435 874 //------------------------------eq---------------------------------------------
duke@435 875 // Structural equality check for Type representations
duke@435 876 bool TypeF::eq( const Type *t ) const {
duke@435 877 if( g_isnan(_f) ||
duke@435 878 g_isnan(t->getf()) ) {
duke@435 879 // One or both are NANs. If both are NANs return true, else false.
duke@435 880 return (g_isnan(_f) && g_isnan(t->getf()));
duke@435 881 }
duke@435 882 if (_f == t->getf()) {
duke@435 883 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 884 if (_f == 0.0) {
duke@435 885 // difference between positive and negative zero
duke@435 886 if (jint_cast(_f) != jint_cast(t->getf())) return false;
duke@435 887 }
duke@435 888 return true;
duke@435 889 }
duke@435 890 return false;
duke@435 891 }
duke@435 892
duke@435 893 //------------------------------hash-------------------------------------------
duke@435 894 // Type-specific hashing function.
duke@435 895 int TypeF::hash(void) const {
duke@435 896 return *(int*)(&_f);
duke@435 897 }
duke@435 898
duke@435 899 //------------------------------is_finite--------------------------------------
duke@435 900 // Has a finite value
duke@435 901 bool TypeF::is_finite() const {
duke@435 902 return g_isfinite(getf()) != 0;
duke@435 903 }
duke@435 904
duke@435 905 //------------------------------is_nan-----------------------------------------
duke@435 906 // Is not a number (NaN)
duke@435 907 bool TypeF::is_nan() const {
duke@435 908 return g_isnan(getf()) != 0;
duke@435 909 }
duke@435 910
duke@435 911 //------------------------------dump2------------------------------------------
duke@435 912 // Dump float constant Type
duke@435 913 #ifndef PRODUCT
duke@435 914 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 915 Type::dump2(d,depth, st);
duke@435 916 st->print("%f", _f);
duke@435 917 }
duke@435 918 #endif
duke@435 919
duke@435 920 //------------------------------singleton--------------------------------------
duke@435 921 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 922 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 923 // or a single symbol.
duke@435 924 bool TypeF::singleton(void) const {
duke@435 925 return true; // Always a singleton
duke@435 926 }
duke@435 927
duke@435 928 bool TypeF::empty(void) const {
duke@435 929 return false; // always exactly a singleton
duke@435 930 }
duke@435 931
duke@435 932 //=============================================================================
duke@435 933 // Convenience common pre-built types.
duke@435 934 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 935 const TypeD *TypeD::ONE; // Floating point one
duke@435 936
duke@435 937 //------------------------------make-------------------------------------------
duke@435 938 const TypeD *TypeD::make(double d) {
duke@435 939 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 940 }
duke@435 941
duke@435 942 //------------------------------meet-------------------------------------------
duke@435 943 // Compute the MEET of two types. It returns a new Type object.
duke@435 944 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 945 // Perform a fast test for common case; meeting the same types together.
duke@435 946 if( this == t ) return this; // Meeting same type-rep?
duke@435 947
duke@435 948 // Current "this->_base" is DoubleCon
duke@435 949 switch (t->base()) { // Switch on original type
duke@435 950 case AnyPtr: // Mixing with oops happens when javac
duke@435 951 case RawPtr: // reuses local variables
duke@435 952 case OopPtr:
duke@435 953 case InstPtr:
duke@435 954 case KlassPtr:
duke@435 955 case AryPtr:
never@618 956 case NarrowOop:
duke@435 957 case Int:
duke@435 958 case Long:
duke@435 959 case FloatTop:
duke@435 960 case FloatCon:
duke@435 961 case FloatBot:
duke@435 962 case Bottom: // Ye Olde Default
duke@435 963 return Type::BOTTOM;
duke@435 964
duke@435 965 case DoubleBot:
duke@435 966 return t;
duke@435 967
duke@435 968 default: // All else is a mistake
duke@435 969 typerr(t);
duke@435 970
duke@435 971 case DoubleCon: // Double-constant vs Double-constant?
duke@435 972 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 973 return DOUBLE; // Return generic double
duke@435 974 case Top:
duke@435 975 case DoubleTop:
duke@435 976 break;
duke@435 977 }
duke@435 978 return this; // Return the double constant
duke@435 979 }
duke@435 980
duke@435 981 //------------------------------xdual------------------------------------------
duke@435 982 // Dual: symmetric
duke@435 983 const Type *TypeD::xdual() const {
duke@435 984 return this;
duke@435 985 }
duke@435 986
duke@435 987 //------------------------------eq---------------------------------------------
duke@435 988 // Structural equality check for Type representations
duke@435 989 bool TypeD::eq( const Type *t ) const {
duke@435 990 if( g_isnan(_d) ||
duke@435 991 g_isnan(t->getd()) ) {
duke@435 992 // One or both are NANs. If both are NANs return true, else false.
duke@435 993 return (g_isnan(_d) && g_isnan(t->getd()));
duke@435 994 }
duke@435 995 if (_d == t->getd()) {
duke@435 996 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 997 if (_d == 0.0) {
duke@435 998 // difference between positive and negative zero
duke@435 999 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
duke@435 1000 }
duke@435 1001 return true;
duke@435 1002 }
duke@435 1003 return false;
duke@435 1004 }
duke@435 1005
duke@435 1006 //------------------------------hash-------------------------------------------
duke@435 1007 // Type-specific hashing function.
duke@435 1008 int TypeD::hash(void) const {
duke@435 1009 return *(int*)(&_d);
duke@435 1010 }
duke@435 1011
duke@435 1012 //------------------------------is_finite--------------------------------------
duke@435 1013 // Has a finite value
duke@435 1014 bool TypeD::is_finite() const {
duke@435 1015 return g_isfinite(getd()) != 0;
duke@435 1016 }
duke@435 1017
duke@435 1018 //------------------------------is_nan-----------------------------------------
duke@435 1019 // Is not a number (NaN)
duke@435 1020 bool TypeD::is_nan() const {
duke@435 1021 return g_isnan(getd()) != 0;
duke@435 1022 }
duke@435 1023
duke@435 1024 //------------------------------dump2------------------------------------------
duke@435 1025 // Dump double constant Type
duke@435 1026 #ifndef PRODUCT
duke@435 1027 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1028 Type::dump2(d,depth,st);
duke@435 1029 st->print("%f", _d);
duke@435 1030 }
duke@435 1031 #endif
duke@435 1032
duke@435 1033 //------------------------------singleton--------------------------------------
duke@435 1034 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1035 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1036 // or a single symbol.
duke@435 1037 bool TypeD::singleton(void) const {
duke@435 1038 return true; // Always a singleton
duke@435 1039 }
duke@435 1040
duke@435 1041 bool TypeD::empty(void) const {
duke@435 1042 return false; // always exactly a singleton
duke@435 1043 }
duke@435 1044
duke@435 1045 //=============================================================================
duke@435 1046 // Convience common pre-built types.
duke@435 1047 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1048 const TypeInt *TypeInt::ZERO; // 0
duke@435 1049 const TypeInt *TypeInt::ONE; // 1
duke@435 1050 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1051 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1052 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1053 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1054 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1055 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1056 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1057 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
twisti@1059 1058 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
duke@435 1059 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1060 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1061 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1062 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1063 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1064 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 1065
duke@435 1066 //------------------------------TypeInt----------------------------------------
duke@435 1067 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1068 }
duke@435 1069
duke@435 1070 //------------------------------make-------------------------------------------
duke@435 1071 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1072 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1073 }
duke@435 1074
kvn@1975 1075 static int normalize_int_widen( jint lo, jint hi, int w ) {
duke@435 1076 // Certain normalizations keep us sane when comparing types.
duke@435 1077 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1078 if (lo <= hi) {
kvn@1975 1079 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1080 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
kvn@1975 1081 } else {
kvn@1975 1082 if ((juint)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1083 if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
duke@435 1084 }
kvn@1975 1085 return w;
kvn@1975 1086 }
kvn@1975 1087
kvn@1975 1088 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
kvn@1975 1089 w = normalize_int_widen(lo, hi, w);
duke@435 1090 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1091 }
duke@435 1092
duke@435 1093 //------------------------------meet-------------------------------------------
duke@435 1094 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1095 // with reference count equal to the number of Types pointing at it.
duke@435 1096 // Caller should wrap a Types around it.
duke@435 1097 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1098 // Perform a fast test for common case; meeting the same types together.
duke@435 1099 if( this == t ) return this; // Meeting same type?
duke@435 1100
duke@435 1101 // Currently "this->_base" is a TypeInt
duke@435 1102 switch (t->base()) { // Switch on original type
duke@435 1103 case AnyPtr: // Mixing with oops happens when javac
duke@435 1104 case RawPtr: // reuses local variables
duke@435 1105 case OopPtr:
duke@435 1106 case InstPtr:
duke@435 1107 case KlassPtr:
duke@435 1108 case AryPtr:
never@618 1109 case NarrowOop:
duke@435 1110 case Long:
duke@435 1111 case FloatTop:
duke@435 1112 case FloatCon:
duke@435 1113 case FloatBot:
duke@435 1114 case DoubleTop:
duke@435 1115 case DoubleCon:
duke@435 1116 case DoubleBot:
duke@435 1117 case Bottom: // Ye Olde Default
duke@435 1118 return Type::BOTTOM;
duke@435 1119 default: // All else is a mistake
duke@435 1120 typerr(t);
duke@435 1121 case Top: // No change
duke@435 1122 return this;
duke@435 1123 case Int: // Int vs Int?
duke@435 1124 break;
duke@435 1125 }
duke@435 1126
duke@435 1127 // Expand covered set
duke@435 1128 const TypeInt *r = t->is_int();
kvn@1975 1129 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1130 }
duke@435 1131
duke@435 1132 //------------------------------xdual------------------------------------------
duke@435 1133 // Dual: reverse hi & lo; flip widen
duke@435 1134 const Type *TypeInt::xdual() const {
kvn@1975 1135 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1136 return new TypeInt(_hi,_lo,w);
duke@435 1137 }
duke@435 1138
duke@435 1139 //------------------------------widen------------------------------------------
duke@435 1140 // Only happens for optimistic top-down optimizations.
never@1444 1141 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
duke@435 1142 // Coming from TOP or such; no widening
duke@435 1143 if( old->base() != Int ) return this;
duke@435 1144 const TypeInt *ot = old->is_int();
duke@435 1145
duke@435 1146 // If new guy is equal to old guy, no widening
duke@435 1147 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1148 return old;
duke@435 1149
duke@435 1150 // If new guy contains old, then we widened
duke@435 1151 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1152 // New contains old
duke@435 1153 // If new guy is already wider than old, no widening
duke@435 1154 if( _widen > ot->_widen ) return this;
duke@435 1155 // If old guy was a constant, do not bother
duke@435 1156 if (ot->_lo == ot->_hi) return this;
duke@435 1157 // Now widen new guy.
duke@435 1158 // Check for widening too far
duke@435 1159 if (_widen == WidenMax) {
never@1444 1160 int max = max_jint;
never@1444 1161 int min = min_jint;
never@1444 1162 if (limit->isa_int()) {
never@1444 1163 max = limit->is_int()->_hi;
never@1444 1164 min = limit->is_int()->_lo;
never@1444 1165 }
never@1444 1166 if (min < _lo && _hi < max) {
duke@435 1167 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1168 // which is closer to its respective limit.
duke@435 1169 if (_lo >= 0 || // easy common case
never@1444 1170 (juint)(_lo - min) >= (juint)(max - _hi)) {
duke@435 1171 // Try to widen to an unsigned range type of 31 bits:
never@1444 1172 return make(_lo, max, WidenMax);
duke@435 1173 } else {
never@1444 1174 return make(min, _hi, WidenMax);
duke@435 1175 }
duke@435 1176 }
duke@435 1177 return TypeInt::INT;
duke@435 1178 }
duke@435 1179 // Returned widened new guy
duke@435 1180 return make(_lo,_hi,_widen+1);
duke@435 1181 }
duke@435 1182
duke@435 1183 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1184 // bottom. Return the wider fellow.
duke@435 1185 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1186 return old;
duke@435 1187
duke@435 1188 //fatal("Integer value range is not subset");
duke@435 1189 //return this;
duke@435 1190 return TypeInt::INT;
duke@435 1191 }
duke@435 1192
duke@435 1193 //------------------------------narrow---------------------------------------
duke@435 1194 // Only happens for pessimistic optimizations.
duke@435 1195 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1196 if (_lo >= _hi) return this; // already narrow enough
duke@435 1197 if (old == NULL) return this;
duke@435 1198 const TypeInt* ot = old->isa_int();
duke@435 1199 if (ot == NULL) return this;
duke@435 1200 jint olo = ot->_lo;
duke@435 1201 jint ohi = ot->_hi;
duke@435 1202
duke@435 1203 // If new guy is equal to old guy, no narrowing
duke@435 1204 if (_lo == olo && _hi == ohi) return old;
duke@435 1205
duke@435 1206 // If old guy was maximum range, allow the narrowing
duke@435 1207 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1208
duke@435 1209 if (_lo < olo || _hi > ohi)
duke@435 1210 return this; // doesn't narrow; pretty wierd
duke@435 1211
duke@435 1212 // The new type narrows the old type, so look for a "death march".
duke@435 1213 // See comments on PhaseTransform::saturate.
duke@435 1214 juint nrange = _hi - _lo;
duke@435 1215 juint orange = ohi - olo;
duke@435 1216 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1217 // Use the new type only if the range shrinks a lot.
duke@435 1218 // We do not want the optimizer computing 2^31 point by point.
duke@435 1219 return old;
duke@435 1220 }
duke@435 1221
duke@435 1222 return this;
duke@435 1223 }
duke@435 1224
duke@435 1225 //-----------------------------filter------------------------------------------
duke@435 1226 const Type *TypeInt::filter( const Type *kills ) const {
duke@435 1227 const TypeInt* ft = join(kills)->isa_int();
kvn@1975 1228 if (ft == NULL || ft->empty())
duke@435 1229 return Type::TOP; // Canonical empty value
duke@435 1230 if (ft->_widen < this->_widen) {
duke@435 1231 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1232 // The widen bits must be allowed to run freely through the graph.
duke@435 1233 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1234 }
duke@435 1235 return ft;
duke@435 1236 }
duke@435 1237
duke@435 1238 //------------------------------eq---------------------------------------------
duke@435 1239 // Structural equality check for Type representations
duke@435 1240 bool TypeInt::eq( const Type *t ) const {
duke@435 1241 const TypeInt *r = t->is_int(); // Handy access
duke@435 1242 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1243 }
duke@435 1244
duke@435 1245 //------------------------------hash-------------------------------------------
duke@435 1246 // Type-specific hashing function.
duke@435 1247 int TypeInt::hash(void) const {
duke@435 1248 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1249 }
duke@435 1250
duke@435 1251 //------------------------------is_finite--------------------------------------
duke@435 1252 // Has a finite value
duke@435 1253 bool TypeInt::is_finite() const {
duke@435 1254 return true;
duke@435 1255 }
duke@435 1256
duke@435 1257 //------------------------------dump2------------------------------------------
duke@435 1258 // Dump TypeInt
duke@435 1259 #ifndef PRODUCT
duke@435 1260 static const char* intname(char* buf, jint n) {
duke@435 1261 if (n == min_jint)
duke@435 1262 return "min";
duke@435 1263 else if (n < min_jint + 10000)
duke@435 1264 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1265 else if (n == max_jint)
duke@435 1266 return "max";
duke@435 1267 else if (n > max_jint - 10000)
duke@435 1268 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1269 else
duke@435 1270 sprintf(buf, INT32_FORMAT, n);
duke@435 1271 return buf;
duke@435 1272 }
duke@435 1273
duke@435 1274 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1275 char buf[40], buf2[40];
duke@435 1276 if (_lo == min_jint && _hi == max_jint)
duke@435 1277 st->print("int");
duke@435 1278 else if (is_con())
duke@435 1279 st->print("int:%s", intname(buf, get_con()));
duke@435 1280 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1281 st->print("bool");
duke@435 1282 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1283 st->print("byte");
duke@435 1284 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1285 st->print("char");
duke@435 1286 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1287 st->print("short");
duke@435 1288 else if (_hi == max_jint)
duke@435 1289 st->print("int:>=%s", intname(buf, _lo));
duke@435 1290 else if (_lo == min_jint)
duke@435 1291 st->print("int:<=%s", intname(buf, _hi));
duke@435 1292 else
duke@435 1293 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1294
duke@435 1295 if (_widen != 0 && this != TypeInt::INT)
duke@435 1296 st->print(":%.*s", _widen, "wwww");
duke@435 1297 }
duke@435 1298 #endif
duke@435 1299
duke@435 1300 //------------------------------singleton--------------------------------------
duke@435 1301 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1302 // constants.
duke@435 1303 bool TypeInt::singleton(void) const {
duke@435 1304 return _lo >= _hi;
duke@435 1305 }
duke@435 1306
duke@435 1307 bool TypeInt::empty(void) const {
duke@435 1308 return _lo > _hi;
duke@435 1309 }
duke@435 1310
duke@435 1311 //=============================================================================
duke@435 1312 // Convenience common pre-built types.
duke@435 1313 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1314 const TypeLong *TypeLong::ZERO; // 0
duke@435 1315 const TypeLong *TypeLong::ONE; // 1
duke@435 1316 const TypeLong *TypeLong::POS; // >=0
duke@435 1317 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1318 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1319 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
duke@435 1320
duke@435 1321 //------------------------------TypeLong---------------------------------------
duke@435 1322 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1323 }
duke@435 1324
duke@435 1325 //------------------------------make-------------------------------------------
duke@435 1326 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1327 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1328 }
duke@435 1329
kvn@1975 1330 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
kvn@1975 1331 // Certain normalizations keep us sane when comparing types.
kvn@1975 1332 // The 'SMALLINT' covers constants.
kvn@1975 1333 if (lo <= hi) {
kvn@1975 1334 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1335 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
kvn@1975 1336 } else {
kvn@1975 1337 if ((julong)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1338 if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
kvn@1975 1339 }
kvn@1975 1340 return w;
kvn@1975 1341 }
kvn@1975 1342
duke@435 1343 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
kvn@1975 1344 w = normalize_long_widen(lo, hi, w);
duke@435 1345 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1346 }
duke@435 1347
duke@435 1348
duke@435 1349 //------------------------------meet-------------------------------------------
duke@435 1350 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1351 // with reference count equal to the number of Types pointing at it.
duke@435 1352 // Caller should wrap a Types around it.
duke@435 1353 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1354 // Perform a fast test for common case; meeting the same types together.
duke@435 1355 if( this == t ) return this; // Meeting same type?
duke@435 1356
duke@435 1357 // Currently "this->_base" is a TypeLong
duke@435 1358 switch (t->base()) { // Switch on original type
duke@435 1359 case AnyPtr: // Mixing with oops happens when javac
duke@435 1360 case RawPtr: // reuses local variables
duke@435 1361 case OopPtr:
duke@435 1362 case InstPtr:
duke@435 1363 case KlassPtr:
duke@435 1364 case AryPtr:
never@618 1365 case NarrowOop:
duke@435 1366 case Int:
duke@435 1367 case FloatTop:
duke@435 1368 case FloatCon:
duke@435 1369 case FloatBot:
duke@435 1370 case DoubleTop:
duke@435 1371 case DoubleCon:
duke@435 1372 case DoubleBot:
duke@435 1373 case Bottom: // Ye Olde Default
duke@435 1374 return Type::BOTTOM;
duke@435 1375 default: // All else is a mistake
duke@435 1376 typerr(t);
duke@435 1377 case Top: // No change
duke@435 1378 return this;
duke@435 1379 case Long: // Long vs Long?
duke@435 1380 break;
duke@435 1381 }
duke@435 1382
duke@435 1383 // Expand covered set
duke@435 1384 const TypeLong *r = t->is_long(); // Turn into a TypeLong
kvn@1975 1385 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1386 }
duke@435 1387
duke@435 1388 //------------------------------xdual------------------------------------------
duke@435 1389 // Dual: reverse hi & lo; flip widen
duke@435 1390 const Type *TypeLong::xdual() const {
kvn@1975 1391 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1392 return new TypeLong(_hi,_lo,w);
duke@435 1393 }
duke@435 1394
duke@435 1395 //------------------------------widen------------------------------------------
duke@435 1396 // Only happens for optimistic top-down optimizations.
never@1444 1397 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
duke@435 1398 // Coming from TOP or such; no widening
duke@435 1399 if( old->base() != Long ) return this;
duke@435 1400 const TypeLong *ot = old->is_long();
duke@435 1401
duke@435 1402 // If new guy is equal to old guy, no widening
duke@435 1403 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1404 return old;
duke@435 1405
duke@435 1406 // If new guy contains old, then we widened
duke@435 1407 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1408 // New contains old
duke@435 1409 // If new guy is already wider than old, no widening
duke@435 1410 if( _widen > ot->_widen ) return this;
duke@435 1411 // If old guy was a constant, do not bother
duke@435 1412 if (ot->_lo == ot->_hi) return this;
duke@435 1413 // Now widen new guy.
duke@435 1414 // Check for widening too far
duke@435 1415 if (_widen == WidenMax) {
never@1444 1416 jlong max = max_jlong;
never@1444 1417 jlong min = min_jlong;
never@1444 1418 if (limit->isa_long()) {
never@1444 1419 max = limit->is_long()->_hi;
never@1444 1420 min = limit->is_long()->_lo;
never@1444 1421 }
never@1444 1422 if (min < _lo && _hi < max) {
duke@435 1423 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1424 // which is closer to its respective limit.
duke@435 1425 if (_lo >= 0 || // easy common case
never@1444 1426 (julong)(_lo - min) >= (julong)(max - _hi)) {
duke@435 1427 // Try to widen to an unsigned range type of 32/63 bits:
never@1444 1428 if (max >= max_juint && _hi < max_juint)
duke@435 1429 return make(_lo, max_juint, WidenMax);
duke@435 1430 else
never@1444 1431 return make(_lo, max, WidenMax);
duke@435 1432 } else {
never@1444 1433 return make(min, _hi, WidenMax);
duke@435 1434 }
duke@435 1435 }
duke@435 1436 return TypeLong::LONG;
duke@435 1437 }
duke@435 1438 // Returned widened new guy
duke@435 1439 return make(_lo,_hi,_widen+1);
duke@435 1440 }
duke@435 1441
duke@435 1442 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1443 // bottom. Return the wider fellow.
duke@435 1444 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1445 return old;
duke@435 1446
duke@435 1447 // fatal("Long value range is not subset");
duke@435 1448 // return this;
duke@435 1449 return TypeLong::LONG;
duke@435 1450 }
duke@435 1451
duke@435 1452 //------------------------------narrow----------------------------------------
duke@435 1453 // Only happens for pessimistic optimizations.
duke@435 1454 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1455 if (_lo >= _hi) return this; // already narrow enough
duke@435 1456 if (old == NULL) return this;
duke@435 1457 const TypeLong* ot = old->isa_long();
duke@435 1458 if (ot == NULL) return this;
duke@435 1459 jlong olo = ot->_lo;
duke@435 1460 jlong ohi = ot->_hi;
duke@435 1461
duke@435 1462 // If new guy is equal to old guy, no narrowing
duke@435 1463 if (_lo == olo && _hi == ohi) return old;
duke@435 1464
duke@435 1465 // If old guy was maximum range, allow the narrowing
duke@435 1466 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1467
duke@435 1468 if (_lo < olo || _hi > ohi)
duke@435 1469 return this; // doesn't narrow; pretty wierd
duke@435 1470
duke@435 1471 // The new type narrows the old type, so look for a "death march".
duke@435 1472 // See comments on PhaseTransform::saturate.
duke@435 1473 julong nrange = _hi - _lo;
duke@435 1474 julong orange = ohi - olo;
duke@435 1475 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1476 // Use the new type only if the range shrinks a lot.
duke@435 1477 // We do not want the optimizer computing 2^31 point by point.
duke@435 1478 return old;
duke@435 1479 }
duke@435 1480
duke@435 1481 return this;
duke@435 1482 }
duke@435 1483
duke@435 1484 //-----------------------------filter------------------------------------------
duke@435 1485 const Type *TypeLong::filter( const Type *kills ) const {
duke@435 1486 const TypeLong* ft = join(kills)->isa_long();
kvn@1975 1487 if (ft == NULL || ft->empty())
duke@435 1488 return Type::TOP; // Canonical empty value
duke@435 1489 if (ft->_widen < this->_widen) {
duke@435 1490 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1491 // The widen bits must be allowed to run freely through the graph.
duke@435 1492 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1493 }
duke@435 1494 return ft;
duke@435 1495 }
duke@435 1496
duke@435 1497 //------------------------------eq---------------------------------------------
duke@435 1498 // Structural equality check for Type representations
duke@435 1499 bool TypeLong::eq( const Type *t ) const {
duke@435 1500 const TypeLong *r = t->is_long(); // Handy access
duke@435 1501 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1502 }
duke@435 1503
duke@435 1504 //------------------------------hash-------------------------------------------
duke@435 1505 // Type-specific hashing function.
duke@435 1506 int TypeLong::hash(void) const {
duke@435 1507 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1508 }
duke@435 1509
duke@435 1510 //------------------------------is_finite--------------------------------------
duke@435 1511 // Has a finite value
duke@435 1512 bool TypeLong::is_finite() const {
duke@435 1513 return true;
duke@435 1514 }
duke@435 1515
duke@435 1516 //------------------------------dump2------------------------------------------
duke@435 1517 // Dump TypeLong
duke@435 1518 #ifndef PRODUCT
duke@435 1519 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1520 if (n > x) {
duke@435 1521 if (n >= x + 10000) return NULL;
duke@435 1522 sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
duke@435 1523 } else if (n < x) {
duke@435 1524 if (n <= x - 10000) return NULL;
duke@435 1525 sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
duke@435 1526 } else {
duke@435 1527 return xname;
duke@435 1528 }
duke@435 1529 return buf;
duke@435 1530 }
duke@435 1531
duke@435 1532 static const char* longname(char* buf, jlong n) {
duke@435 1533 const char* str;
duke@435 1534 if (n == min_jlong)
duke@435 1535 return "min";
duke@435 1536 else if (n < min_jlong + 10000)
duke@435 1537 sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
duke@435 1538 else if (n == max_jlong)
duke@435 1539 return "max";
duke@435 1540 else if (n > max_jlong - 10000)
duke@435 1541 sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
duke@435 1542 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1543 return str;
duke@435 1544 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1545 return str;
duke@435 1546 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1547 return str;
duke@435 1548 else
duke@435 1549 sprintf(buf, INT64_FORMAT, n);
duke@435 1550 return buf;
duke@435 1551 }
duke@435 1552
duke@435 1553 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1554 char buf[80], buf2[80];
duke@435 1555 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1556 st->print("long");
duke@435 1557 else if (is_con())
duke@435 1558 st->print("long:%s", longname(buf, get_con()));
duke@435 1559 else if (_hi == max_jlong)
duke@435 1560 st->print("long:>=%s", longname(buf, _lo));
duke@435 1561 else if (_lo == min_jlong)
duke@435 1562 st->print("long:<=%s", longname(buf, _hi));
duke@435 1563 else
duke@435 1564 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1565
duke@435 1566 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1567 st->print(":%.*s", _widen, "wwww");
duke@435 1568 }
duke@435 1569 #endif
duke@435 1570
duke@435 1571 //------------------------------singleton--------------------------------------
duke@435 1572 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1573 // constants
duke@435 1574 bool TypeLong::singleton(void) const {
duke@435 1575 return _lo >= _hi;
duke@435 1576 }
duke@435 1577
duke@435 1578 bool TypeLong::empty(void) const {
duke@435 1579 return _lo > _hi;
duke@435 1580 }
duke@435 1581
duke@435 1582 //=============================================================================
duke@435 1583 // Convenience common pre-built types.
duke@435 1584 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1585 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1586 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1587 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1588 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1589 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1590 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1591 const TypeTuple *TypeTuple::START_I2C;
duke@435 1592 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1593 const TypeTuple *TypeTuple::LONG_PAIR;
duke@435 1594
duke@435 1595
duke@435 1596 //------------------------------make-------------------------------------------
duke@435 1597 // Make a TypeTuple from the range of a method signature
duke@435 1598 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1599 ciType* return_type = sig->return_type();
duke@435 1600 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1601 const Type **field_array = fields(total_fields);
duke@435 1602 switch (return_type->basic_type()) {
duke@435 1603 case T_LONG:
duke@435 1604 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1605 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1606 break;
duke@435 1607 case T_DOUBLE:
duke@435 1608 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1609 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1610 break;
duke@435 1611 case T_OBJECT:
duke@435 1612 case T_ARRAY:
duke@435 1613 case T_BOOLEAN:
duke@435 1614 case T_CHAR:
duke@435 1615 case T_FLOAT:
duke@435 1616 case T_BYTE:
duke@435 1617 case T_SHORT:
duke@435 1618 case T_INT:
duke@435 1619 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1620 break;
duke@435 1621 case T_VOID:
duke@435 1622 break;
duke@435 1623 default:
duke@435 1624 ShouldNotReachHere();
duke@435 1625 }
duke@435 1626 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1627 }
duke@435 1628
duke@435 1629 // Make a TypeTuple from the domain of a method signature
duke@435 1630 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1631 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1632
duke@435 1633 uint pos = TypeFunc::Parms;
duke@435 1634 const Type **field_array;
duke@435 1635 if (recv != NULL) {
duke@435 1636 total_fields++;
duke@435 1637 field_array = fields(total_fields);
duke@435 1638 // Use get_const_type here because it respects UseUniqueSubclasses:
duke@435 1639 field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
duke@435 1640 } else {
duke@435 1641 field_array = fields(total_fields);
duke@435 1642 }
duke@435 1643
duke@435 1644 int i = 0;
duke@435 1645 while (pos < total_fields) {
duke@435 1646 ciType* type = sig->type_at(i);
duke@435 1647
duke@435 1648 switch (type->basic_type()) {
duke@435 1649 case T_LONG:
duke@435 1650 field_array[pos++] = TypeLong::LONG;
duke@435 1651 field_array[pos++] = Type::HALF;
duke@435 1652 break;
duke@435 1653 case T_DOUBLE:
duke@435 1654 field_array[pos++] = Type::DOUBLE;
duke@435 1655 field_array[pos++] = Type::HALF;
duke@435 1656 break;
duke@435 1657 case T_OBJECT:
duke@435 1658 case T_ARRAY:
duke@435 1659 case T_BOOLEAN:
duke@435 1660 case T_CHAR:
duke@435 1661 case T_FLOAT:
duke@435 1662 case T_BYTE:
duke@435 1663 case T_SHORT:
duke@435 1664 case T_INT:
duke@435 1665 field_array[pos++] = get_const_type(type);
duke@435 1666 break;
duke@435 1667 default:
duke@435 1668 ShouldNotReachHere();
duke@435 1669 }
duke@435 1670 i++;
duke@435 1671 }
duke@435 1672 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1673 }
duke@435 1674
duke@435 1675 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1676 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1677 }
duke@435 1678
duke@435 1679 //------------------------------fields-----------------------------------------
duke@435 1680 // Subroutine call type with space allocated for argument types
duke@435 1681 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1682 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1683 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1684 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1685 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1686 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1687 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1688
duke@435 1689 return flds;
duke@435 1690 }
duke@435 1691
duke@435 1692 //------------------------------meet-------------------------------------------
duke@435 1693 // Compute the MEET of two types. It returns a new Type object.
duke@435 1694 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1695 // Perform a fast test for common case; meeting the same types together.
duke@435 1696 if( this == t ) return this; // Meeting same type-rep?
duke@435 1697
duke@435 1698 // Current "this->_base" is Tuple
duke@435 1699 switch (t->base()) { // switch on original type
duke@435 1700
duke@435 1701 case Bottom: // Ye Olde Default
duke@435 1702 return t;
duke@435 1703
duke@435 1704 default: // All else is a mistake
duke@435 1705 typerr(t);
duke@435 1706
duke@435 1707 case Tuple: { // Meeting 2 signatures?
duke@435 1708 const TypeTuple *x = t->is_tuple();
duke@435 1709 assert( _cnt == x->_cnt, "" );
duke@435 1710 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1711 for( uint i=0; i<_cnt; i++ )
duke@435 1712 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1713 return TypeTuple::make(_cnt,fields);
duke@435 1714 }
duke@435 1715 case Top:
duke@435 1716 break;
duke@435 1717 }
duke@435 1718 return this; // Return the double constant
duke@435 1719 }
duke@435 1720
duke@435 1721 //------------------------------xdual------------------------------------------
duke@435 1722 // Dual: compute field-by-field dual
duke@435 1723 const Type *TypeTuple::xdual() const {
duke@435 1724 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1725 for( uint i=0; i<_cnt; i++ )
duke@435 1726 fields[i] = _fields[i]->dual();
duke@435 1727 return new TypeTuple(_cnt,fields);
duke@435 1728 }
duke@435 1729
duke@435 1730 //------------------------------eq---------------------------------------------
duke@435 1731 // Structural equality check for Type representations
duke@435 1732 bool TypeTuple::eq( const Type *t ) const {
duke@435 1733 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1734 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1735 for (uint i = 0; i < _cnt; i++)
duke@435 1736 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1737 return false; // Missed
duke@435 1738 return true;
duke@435 1739 }
duke@435 1740
duke@435 1741 //------------------------------hash-------------------------------------------
duke@435 1742 // Type-specific hashing function.
duke@435 1743 int TypeTuple::hash(void) const {
duke@435 1744 intptr_t sum = _cnt;
duke@435 1745 for( uint i=0; i<_cnt; i++ )
duke@435 1746 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1747 return sum;
duke@435 1748 }
duke@435 1749
duke@435 1750 //------------------------------dump2------------------------------------------
duke@435 1751 // Dump signature Type
duke@435 1752 #ifndef PRODUCT
duke@435 1753 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1754 st->print("{");
duke@435 1755 if( !depth || d[this] ) { // Check for recursive print
duke@435 1756 st->print("...}");
duke@435 1757 return;
duke@435 1758 }
duke@435 1759 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1760 if( _cnt ) {
duke@435 1761 uint i;
duke@435 1762 for( i=0; i<_cnt-1; i++ ) {
duke@435 1763 st->print("%d:", i);
duke@435 1764 _fields[i]->dump2(d, depth-1, st);
duke@435 1765 st->print(", ");
duke@435 1766 }
duke@435 1767 st->print("%d:", i);
duke@435 1768 _fields[i]->dump2(d, depth-1, st);
duke@435 1769 }
duke@435 1770 st->print("}");
duke@435 1771 }
duke@435 1772 #endif
duke@435 1773
duke@435 1774 //------------------------------singleton--------------------------------------
duke@435 1775 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1776 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1777 // or a single symbol.
duke@435 1778 bool TypeTuple::singleton(void) const {
duke@435 1779 return false; // Never a singleton
duke@435 1780 }
duke@435 1781
duke@435 1782 bool TypeTuple::empty(void) const {
duke@435 1783 for( uint i=0; i<_cnt; i++ ) {
duke@435 1784 if (_fields[i]->empty()) return true;
duke@435 1785 }
duke@435 1786 return false;
duke@435 1787 }
duke@435 1788
duke@435 1789 //=============================================================================
duke@435 1790 // Convenience common pre-built types.
duke@435 1791
duke@435 1792 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1793 // Certain normalizations keep us sane when comparing types.
duke@435 1794 // We do not want arrayOop variables to differ only by the wideness
duke@435 1795 // of their index types. Pick minimum wideness, since that is the
duke@435 1796 // forced wideness of small ranges anyway.
duke@435 1797 if (size->_widen != Type::WidenMin)
duke@435 1798 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1799 else
duke@435 1800 return size;
duke@435 1801 }
duke@435 1802
duke@435 1803 //------------------------------make-------------------------------------------
duke@435 1804 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
coleenp@548 1805 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1806 elem = elem->make_narrowoop();
coleenp@548 1807 }
duke@435 1808 size = normalize_array_size(size);
duke@435 1809 return (TypeAry*)(new TypeAry(elem,size))->hashcons();
duke@435 1810 }
duke@435 1811
duke@435 1812 //------------------------------meet-------------------------------------------
duke@435 1813 // Compute the MEET of two types. It returns a new Type object.
duke@435 1814 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1815 // Perform a fast test for common case; meeting the same types together.
duke@435 1816 if( this == t ) return this; // Meeting same type-rep?
duke@435 1817
duke@435 1818 // Current "this->_base" is Ary
duke@435 1819 switch (t->base()) { // switch on original type
duke@435 1820
duke@435 1821 case Bottom: // Ye Olde Default
duke@435 1822 return t;
duke@435 1823
duke@435 1824 default: // All else is a mistake
duke@435 1825 typerr(t);
duke@435 1826
duke@435 1827 case Array: { // Meeting 2 arrays?
duke@435 1828 const TypeAry *a = t->is_ary();
duke@435 1829 return TypeAry::make(_elem->meet(a->_elem),
duke@435 1830 _size->xmeet(a->_size)->is_int());
duke@435 1831 }
duke@435 1832 case Top:
duke@435 1833 break;
duke@435 1834 }
duke@435 1835 return this; // Return the double constant
duke@435 1836 }
duke@435 1837
duke@435 1838 //------------------------------xdual------------------------------------------
duke@435 1839 // Dual: compute field-by-field dual
duke@435 1840 const Type *TypeAry::xdual() const {
duke@435 1841 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1842 size_dual = normalize_array_size(size_dual);
duke@435 1843 return new TypeAry( _elem->dual(), size_dual);
duke@435 1844 }
duke@435 1845
duke@435 1846 //------------------------------eq---------------------------------------------
duke@435 1847 // Structural equality check for Type representations
duke@435 1848 bool TypeAry::eq( const Type *t ) const {
duke@435 1849 const TypeAry *a = (const TypeAry*)t;
duke@435 1850 return _elem == a->_elem &&
duke@435 1851 _size == a->_size;
duke@435 1852 }
duke@435 1853
duke@435 1854 //------------------------------hash-------------------------------------------
duke@435 1855 // Type-specific hashing function.
duke@435 1856 int TypeAry::hash(void) const {
duke@435 1857 return (intptr_t)_elem + (intptr_t)_size;
duke@435 1858 }
duke@435 1859
kvn@1255 1860 //----------------------interface_vs_oop---------------------------------------
kvn@1255 1861 #ifdef ASSERT
kvn@1255 1862 bool TypeAry::interface_vs_oop(const Type *t) const {
kvn@1255 1863 const TypeAry* t_ary = t->is_ary();
kvn@1255 1864 if (t_ary) {
kvn@1255 1865 return _elem->interface_vs_oop(t_ary->_elem);
kvn@1255 1866 }
kvn@1255 1867 return false;
kvn@1255 1868 }
kvn@1255 1869 #endif
kvn@1255 1870
duke@435 1871 //------------------------------dump2------------------------------------------
duke@435 1872 #ifndef PRODUCT
duke@435 1873 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1874 _elem->dump2(d, depth, st);
duke@435 1875 st->print("[");
duke@435 1876 _size->dump2(d, depth, st);
duke@435 1877 st->print("]");
duke@435 1878 }
duke@435 1879 #endif
duke@435 1880
duke@435 1881 //------------------------------singleton--------------------------------------
duke@435 1882 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1883 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1884 // or a single symbol.
duke@435 1885 bool TypeAry::singleton(void) const {
duke@435 1886 return false; // Never a singleton
duke@435 1887 }
duke@435 1888
duke@435 1889 bool TypeAry::empty(void) const {
duke@435 1890 return _elem->empty() || _size->empty();
duke@435 1891 }
duke@435 1892
duke@435 1893 //--------------------------ary_must_be_exact----------------------------------
duke@435 1894 bool TypeAry::ary_must_be_exact() const {
duke@435 1895 if (!UseExactTypes) return false;
duke@435 1896 // This logic looks at the element type of an array, and returns true
duke@435 1897 // if the element type is either a primitive or a final instance class.
duke@435 1898 // In such cases, an array built on this ary must have no subclasses.
duke@435 1899 if (_elem == BOTTOM) return false; // general array not exact
duke@435 1900 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 1901 const TypeOopPtr* toop = NULL;
kvn@656 1902 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 1903 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 1904 } else {
coleenp@548 1905 toop = _elem->isa_oopptr();
coleenp@548 1906 }
duke@435 1907 if (!toop) return true; // a primitive type, like int
duke@435 1908 ciKlass* tklass = toop->klass();
duke@435 1909 if (tklass == NULL) return false; // unloaded class
duke@435 1910 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 1911 const TypeInstPtr* tinst;
coleenp@548 1912 if (_elem->isa_narrowoop())
kvn@656 1913 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 1914 else
coleenp@548 1915 tinst = _elem->isa_instptr();
kvn@656 1916 if (tinst)
kvn@656 1917 return tklass->as_instance_klass()->is_final();
coleenp@548 1918 const TypeAryPtr* tap;
coleenp@548 1919 if (_elem->isa_narrowoop())
kvn@656 1920 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 1921 else
coleenp@548 1922 tap = _elem->isa_aryptr();
kvn@656 1923 if (tap)
kvn@656 1924 return tap->ary()->ary_must_be_exact();
duke@435 1925 return false;
duke@435 1926 }
duke@435 1927
duke@435 1928 //=============================================================================
duke@435 1929 // Convenience common pre-built types.
duke@435 1930 const TypePtr *TypePtr::NULL_PTR;
duke@435 1931 const TypePtr *TypePtr::NOTNULL;
duke@435 1932 const TypePtr *TypePtr::BOTTOM;
duke@435 1933
duke@435 1934 //------------------------------meet-------------------------------------------
duke@435 1935 // Meet over the PTR enum
duke@435 1936 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 1937 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 1938 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 1939 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 1940 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 1941 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 1942 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 1943 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 1944 };
duke@435 1945
duke@435 1946 //------------------------------make-------------------------------------------
duke@435 1947 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 1948 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 1949 }
duke@435 1950
duke@435 1951 //------------------------------cast_to_ptr_type-------------------------------
duke@435 1952 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 1953 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 1954 if( ptr == _ptr ) return this;
duke@435 1955 return make(_base, ptr, _offset);
duke@435 1956 }
duke@435 1957
duke@435 1958 //------------------------------get_con----------------------------------------
duke@435 1959 intptr_t TypePtr::get_con() const {
duke@435 1960 assert( _ptr == Null, "" );
duke@435 1961 return _offset;
duke@435 1962 }
duke@435 1963
duke@435 1964 //------------------------------meet-------------------------------------------
duke@435 1965 // Compute the MEET of two types. It returns a new Type object.
duke@435 1966 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 1967 // Perform a fast test for common case; meeting the same types together.
duke@435 1968 if( this == t ) return this; // Meeting same type-rep?
duke@435 1969
duke@435 1970 // Current "this->_base" is AnyPtr
duke@435 1971 switch (t->base()) { // switch on original type
duke@435 1972 case Int: // Mixing ints & oops happens when javac
duke@435 1973 case Long: // reuses local variables
duke@435 1974 case FloatTop:
duke@435 1975 case FloatCon:
duke@435 1976 case FloatBot:
duke@435 1977 case DoubleTop:
duke@435 1978 case DoubleCon:
duke@435 1979 case DoubleBot:
coleenp@548 1980 case NarrowOop:
duke@435 1981 case Bottom: // Ye Olde Default
duke@435 1982 return Type::BOTTOM;
duke@435 1983 case Top:
duke@435 1984 return this;
duke@435 1985
duke@435 1986 case AnyPtr: { // Meeting to AnyPtrs
duke@435 1987 const TypePtr *tp = t->is_ptr();
duke@435 1988 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 1989 }
duke@435 1990 case RawPtr: // For these, flip the call around to cut down
duke@435 1991 case OopPtr:
duke@435 1992 case InstPtr: // on the cases I have to handle.
duke@435 1993 case KlassPtr:
duke@435 1994 case AryPtr:
duke@435 1995 return t->xmeet(this); // Call in reverse direction
duke@435 1996 default: // All else is a mistake
duke@435 1997 typerr(t);
duke@435 1998
duke@435 1999 }
duke@435 2000 return this;
duke@435 2001 }
duke@435 2002
duke@435 2003 //------------------------------meet_offset------------------------------------
duke@435 2004 int TypePtr::meet_offset( int offset ) const {
duke@435 2005 // Either is 'TOP' offset? Return the other offset!
duke@435 2006 if( _offset == OffsetTop ) return offset;
duke@435 2007 if( offset == OffsetTop ) return _offset;
duke@435 2008 // If either is different, return 'BOTTOM' offset
duke@435 2009 if( _offset != offset ) return OffsetBot;
duke@435 2010 return _offset;
duke@435 2011 }
duke@435 2012
duke@435 2013 //------------------------------dual_offset------------------------------------
duke@435 2014 int TypePtr::dual_offset( ) const {
duke@435 2015 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 2016 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 2017 return _offset; // Map everything else into self
duke@435 2018 }
duke@435 2019
duke@435 2020 //------------------------------xdual------------------------------------------
duke@435 2021 // Dual: compute field-by-field dual
duke@435 2022 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 2023 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 2024 };
duke@435 2025 const Type *TypePtr::xdual() const {
duke@435 2026 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 2027 }
duke@435 2028
kvn@741 2029 //------------------------------xadd_offset------------------------------------
kvn@741 2030 int TypePtr::xadd_offset( intptr_t offset ) const {
kvn@741 2031 // Adding to 'TOP' offset? Return 'TOP'!
kvn@741 2032 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
kvn@741 2033 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
kvn@741 2034 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
kvn@741 2035 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
kvn@741 2036 offset += (intptr_t)_offset;
kvn@741 2037 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
kvn@741 2038
kvn@741 2039 // assert( _offset >= 0 && _offset+offset >= 0, "" );
kvn@741 2040 // It is possible to construct a negative offset during PhaseCCP
kvn@741 2041
kvn@741 2042 return (int)offset; // Sum valid offsets
kvn@741 2043 }
kvn@741 2044
duke@435 2045 //------------------------------add_offset-------------------------------------
kvn@741 2046 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
kvn@741 2047 return make( AnyPtr, _ptr, xadd_offset(offset) );
duke@435 2048 }
duke@435 2049
duke@435 2050 //------------------------------eq---------------------------------------------
duke@435 2051 // Structural equality check for Type representations
duke@435 2052 bool TypePtr::eq( const Type *t ) const {
duke@435 2053 const TypePtr *a = (const TypePtr*)t;
duke@435 2054 return _ptr == a->ptr() && _offset == a->offset();
duke@435 2055 }
duke@435 2056
duke@435 2057 //------------------------------hash-------------------------------------------
duke@435 2058 // Type-specific hashing function.
duke@435 2059 int TypePtr::hash(void) const {
duke@435 2060 return _ptr + _offset;
duke@435 2061 }
duke@435 2062
duke@435 2063 //------------------------------dump2------------------------------------------
duke@435 2064 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 2065 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 2066 };
duke@435 2067
duke@435 2068 #ifndef PRODUCT
duke@435 2069 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2070 if( _ptr == Null ) st->print("NULL");
duke@435 2071 else st->print("%s *", ptr_msg[_ptr]);
duke@435 2072 if( _offset == OffsetTop ) st->print("+top");
duke@435 2073 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 2074 else if( _offset ) st->print("+%d", _offset);
duke@435 2075 }
duke@435 2076 #endif
duke@435 2077
duke@435 2078 //------------------------------singleton--------------------------------------
duke@435 2079 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2080 // constants
duke@435 2081 bool TypePtr::singleton(void) const {
duke@435 2082 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2083 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2084 }
duke@435 2085
duke@435 2086 bool TypePtr::empty(void) const {
duke@435 2087 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2088 }
duke@435 2089
duke@435 2090 //=============================================================================
duke@435 2091 // Convenience common pre-built types.
duke@435 2092 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2093 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2094
duke@435 2095 //------------------------------make-------------------------------------------
duke@435 2096 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2097 assert( ptr != Constant, "what is the constant?" );
duke@435 2098 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2099 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2100 }
duke@435 2101
duke@435 2102 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2103 assert( bits, "Use TypePtr for NULL" );
duke@435 2104 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2105 }
duke@435 2106
duke@435 2107 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2108 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2109 assert( ptr != Constant, "what is the constant?" );
duke@435 2110 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2111 assert( _bits==0, "Why cast a constant address?");
duke@435 2112 if( ptr == _ptr ) return this;
duke@435 2113 return make(ptr);
duke@435 2114 }
duke@435 2115
duke@435 2116 //------------------------------get_con----------------------------------------
duke@435 2117 intptr_t TypeRawPtr::get_con() const {
duke@435 2118 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2119 return (intptr_t)_bits;
duke@435 2120 }
duke@435 2121
duke@435 2122 //------------------------------meet-------------------------------------------
duke@435 2123 // Compute the MEET of two types. It returns a new Type object.
duke@435 2124 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2125 // Perform a fast test for common case; meeting the same types together.
duke@435 2126 if( this == t ) return this; // Meeting same type-rep?
duke@435 2127
duke@435 2128 // Current "this->_base" is RawPtr
duke@435 2129 switch( t->base() ) { // switch on original type
duke@435 2130 case Bottom: // Ye Olde Default
duke@435 2131 return t;
duke@435 2132 case Top:
duke@435 2133 return this;
duke@435 2134 case AnyPtr: // Meeting to AnyPtrs
duke@435 2135 break;
duke@435 2136 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2137 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2138 enum PTR ptr = meet_ptr( tptr );
duke@435 2139 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2140 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2141 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2142 ptr = NotNull; // Fall down in lattice
duke@435 2143 }
duke@435 2144 return make( ptr );
duke@435 2145 }
duke@435 2146
duke@435 2147 case OopPtr:
duke@435 2148 case InstPtr:
duke@435 2149 case KlassPtr:
duke@435 2150 case AryPtr:
duke@435 2151 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2152 default: // All else is a mistake
duke@435 2153 typerr(t);
duke@435 2154 }
duke@435 2155
duke@435 2156 // Found an AnyPtr type vs self-RawPtr type
duke@435 2157 const TypePtr *tp = t->is_ptr();
duke@435 2158 switch (tp->ptr()) {
duke@435 2159 case TypePtr::TopPTR: return this;
duke@435 2160 case TypePtr::BotPTR: return t;
duke@435 2161 case TypePtr::Null:
duke@435 2162 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2163 return TypeRawPtr::BOTTOM;
duke@435 2164 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2165 case TypePtr::AnyNull:
duke@435 2166 if( _ptr == TypePtr::Constant) return this;
duke@435 2167 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2168 default: ShouldNotReachHere();
duke@435 2169 }
duke@435 2170 return this;
duke@435 2171 }
duke@435 2172
duke@435 2173 //------------------------------xdual------------------------------------------
duke@435 2174 // Dual: compute field-by-field dual
duke@435 2175 const Type *TypeRawPtr::xdual() const {
duke@435 2176 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2177 }
duke@435 2178
duke@435 2179 //------------------------------add_offset-------------------------------------
kvn@741 2180 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
duke@435 2181 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2182 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2183 if( offset == 0 ) return this; // No change
duke@435 2184 switch (_ptr) {
duke@435 2185 case TypePtr::TopPTR:
duke@435 2186 case TypePtr::BotPTR:
duke@435 2187 case TypePtr::NotNull:
duke@435 2188 return this;
duke@435 2189 case TypePtr::Null:
duke@435 2190 case TypePtr::Constant:
duke@435 2191 return make( _bits+offset );
duke@435 2192 default: ShouldNotReachHere();
duke@435 2193 }
duke@435 2194 return NULL; // Lint noise
duke@435 2195 }
duke@435 2196
duke@435 2197 //------------------------------eq---------------------------------------------
duke@435 2198 // Structural equality check for Type representations
duke@435 2199 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2200 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2201 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2202 }
duke@435 2203
duke@435 2204 //------------------------------hash-------------------------------------------
duke@435 2205 // Type-specific hashing function.
duke@435 2206 int TypeRawPtr::hash(void) const {
duke@435 2207 return (intptr_t)_bits + TypePtr::hash();
duke@435 2208 }
duke@435 2209
duke@435 2210 //------------------------------dump2------------------------------------------
duke@435 2211 #ifndef PRODUCT
duke@435 2212 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2213 if( _ptr == Constant )
duke@435 2214 st->print(INTPTR_FORMAT, _bits);
duke@435 2215 else
duke@435 2216 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2217 }
duke@435 2218 #endif
duke@435 2219
duke@435 2220 //=============================================================================
duke@435 2221 // Convenience common pre-built type.
duke@435 2222 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2223
kvn@598 2224 //------------------------------TypeOopPtr-------------------------------------
kvn@598 2225 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
kvn@598 2226 : TypePtr(t, ptr, offset),
kvn@598 2227 _const_oop(o), _klass(k),
kvn@598 2228 _klass_is_exact(xk),
kvn@598 2229 _is_ptr_to_narrowoop(false),
kvn@598 2230 _instance_id(instance_id) {
kvn@598 2231 #ifdef _LP64
kvn@598 2232 if (UseCompressedOops && _offset != 0) {
kvn@598 2233 if (klass() == NULL) {
kvn@598 2234 assert(this->isa_aryptr(), "only arrays without klass");
kvn@598 2235 _is_ptr_to_narrowoop = true;
kvn@598 2236 } else if (_offset == oopDesc::klass_offset_in_bytes()) {
kvn@598 2237 _is_ptr_to_narrowoop = true;
kvn@598 2238 } else if (this->isa_aryptr()) {
kvn@598 2239 _is_ptr_to_narrowoop = (klass()->is_obj_array_klass() &&
kvn@598 2240 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2241 } else if (klass() == ciEnv::current()->Class_klass() &&
kvn@598 2242 (_offset == java_lang_Class::klass_offset_in_bytes() ||
kvn@598 2243 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
kvn@598 2244 // Special hidden fields from the Class.
kvn@598 2245 assert(this->isa_instptr(), "must be an instance ptr.");
kvn@598 2246 _is_ptr_to_narrowoop = true;
kvn@598 2247 } else if (klass()->is_instance_klass()) {
kvn@598 2248 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2249 ciField* field = NULL;
kvn@598 2250 if (this->isa_klassptr()) {
kvn@598 2251 // Perm objects don't use compressed references, except for
kvn@598 2252 // static fields which are currently compressed.
kvn@598 2253 field = ik->get_field_by_offset(_offset, true);
kvn@598 2254 if (field != NULL) {
kvn@598 2255 BasicType basic_elem_type = field->layout_type();
kvn@598 2256 _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
kvn@598 2257 basic_elem_type == T_ARRAY);
kvn@598 2258 }
kvn@598 2259 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2260 // unsafe access
kvn@598 2261 _is_ptr_to_narrowoop = true;
kvn@598 2262 } else { // exclude unsafe ops
kvn@598 2263 assert(this->isa_instptr(), "must be an instance ptr.");
kvn@598 2264 // Field which contains a compressed oop references.
kvn@598 2265 field = ik->get_field_by_offset(_offset, false);
kvn@598 2266 if (field != NULL) {
kvn@598 2267 BasicType basic_elem_type = field->layout_type();
kvn@598 2268 _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
kvn@598 2269 basic_elem_type == T_ARRAY);
kvn@598 2270 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
kvn@598 2271 // Compile::find_alias_type() cast exactness on all types to verify
kvn@598 2272 // that it does not affect alias type.
kvn@598 2273 _is_ptr_to_narrowoop = true;
kvn@598 2274 } else {
kvn@598 2275 // Type for the copy start in LibraryCallKit::inline_native_clone().
kvn@598 2276 assert(!klass_is_exact(), "only non-exact klass");
kvn@598 2277 _is_ptr_to_narrowoop = true;
kvn@598 2278 }
kvn@598 2279 }
kvn@598 2280 }
kvn@598 2281 }
kvn@598 2282 #endif
kvn@598 2283 }
kvn@598 2284
duke@435 2285 //------------------------------make-------------------------------------------
duke@435 2286 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
kvn@1393 2287 int offset, int instance_id) {
duke@435 2288 assert(ptr != Constant, "no constant generic pointers");
duke@435 2289 ciKlass* k = ciKlassKlass::make();
duke@435 2290 bool xk = false;
duke@435 2291 ciObject* o = NULL;
kvn@1393 2292 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
duke@435 2293 }
duke@435 2294
duke@435 2295
duke@435 2296 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2297 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2298 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2299 if( ptr == _ptr ) return this;
kvn@1427 2300 return make(ptr, _offset, _instance_id);
duke@435 2301 }
duke@435 2302
kvn@682 2303 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2304 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2305 // There are no instances of a general oop.
duke@435 2306 // Return self unchanged.
duke@435 2307 return this;
duke@435 2308 }
duke@435 2309
duke@435 2310 //-----------------------------cast_to_exactness-------------------------------
duke@435 2311 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2312 // There is no such thing as an exact general oop.
duke@435 2313 // Return self unchanged.
duke@435 2314 return this;
duke@435 2315 }
duke@435 2316
duke@435 2317
duke@435 2318 //------------------------------as_klass_type----------------------------------
duke@435 2319 // Return the klass type corresponding to this instance or array type.
duke@435 2320 // It is the type that is loaded from an object of this type.
duke@435 2321 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2322 ciKlass* k = klass();
duke@435 2323 bool xk = klass_is_exact();
duke@435 2324 if (k == NULL || !k->is_java_klass())
duke@435 2325 return TypeKlassPtr::OBJECT;
duke@435 2326 else
duke@435 2327 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2328 }
duke@435 2329
duke@435 2330
duke@435 2331 //------------------------------meet-------------------------------------------
duke@435 2332 // Compute the MEET of two types. It returns a new Type object.
duke@435 2333 const Type *TypeOopPtr::xmeet( const Type *t ) const {
duke@435 2334 // Perform a fast test for common case; meeting the same types together.
duke@435 2335 if( this == t ) return this; // Meeting same type-rep?
duke@435 2336
duke@435 2337 // Current "this->_base" is OopPtr
duke@435 2338 switch (t->base()) { // switch on original type
duke@435 2339
duke@435 2340 case Int: // Mixing ints & oops happens when javac
duke@435 2341 case Long: // reuses local variables
duke@435 2342 case FloatTop:
duke@435 2343 case FloatCon:
duke@435 2344 case FloatBot:
duke@435 2345 case DoubleTop:
duke@435 2346 case DoubleCon:
duke@435 2347 case DoubleBot:
kvn@728 2348 case NarrowOop:
duke@435 2349 case Bottom: // Ye Olde Default
duke@435 2350 return Type::BOTTOM;
duke@435 2351 case Top:
duke@435 2352 return this;
duke@435 2353
duke@435 2354 default: // All else is a mistake
duke@435 2355 typerr(t);
duke@435 2356
duke@435 2357 case RawPtr:
duke@435 2358 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2359
duke@435 2360 case AnyPtr: {
duke@435 2361 // Found an AnyPtr type vs self-OopPtr type
duke@435 2362 const TypePtr *tp = t->is_ptr();
duke@435 2363 int offset = meet_offset(tp->offset());
duke@435 2364 PTR ptr = meet_ptr(tp->ptr());
duke@435 2365 switch (tp->ptr()) {
duke@435 2366 case Null:
duke@435 2367 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2368 // else fall through:
duke@435 2369 case TopPTR:
kvn@1427 2370 case AnyNull: {
kvn@1427 2371 int instance_id = meet_instance_id(InstanceTop);
kvn@1427 2372 return make(ptr, offset, instance_id);
kvn@1427 2373 }
duke@435 2374 case BotPTR:
duke@435 2375 case NotNull:
duke@435 2376 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2377 default: typerr(t);
duke@435 2378 }
duke@435 2379 }
duke@435 2380
duke@435 2381 case OopPtr: { // Meeting to other OopPtrs
duke@435 2382 const TypeOopPtr *tp = t->is_oopptr();
kvn@1393 2383 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 2384 return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
duke@435 2385 }
duke@435 2386
duke@435 2387 case InstPtr: // For these, flip the call around to cut down
duke@435 2388 case KlassPtr: // on the cases I have to handle.
duke@435 2389 case AryPtr:
duke@435 2390 return t->xmeet(this); // Call in reverse direction
duke@435 2391
duke@435 2392 } // End of switch
duke@435 2393 return this; // Return the double constant
duke@435 2394 }
duke@435 2395
duke@435 2396
duke@435 2397 //------------------------------xdual------------------------------------------
duke@435 2398 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2399 const Type *TypeOopPtr::xdual() const {
duke@435 2400 assert(klass() == ciKlassKlass::make(), "no klasses here");
duke@435 2401 assert(const_oop() == NULL, "no constants here");
kvn@658 2402 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 2403 }
duke@435 2404
duke@435 2405 //--------------------------make_from_klass_common-----------------------------
duke@435 2406 // Computes the element-type given a klass.
duke@435 2407 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2408 assert(klass->is_java_klass(), "must be java language klass");
duke@435 2409 if (klass->is_instance_klass()) {
duke@435 2410 Compile* C = Compile::current();
duke@435 2411 Dependencies* deps = C->dependencies();
duke@435 2412 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2413 // Element is an instance
duke@435 2414 bool klass_is_exact = false;
duke@435 2415 if (klass->is_loaded()) {
duke@435 2416 // Try to set klass_is_exact.
duke@435 2417 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2418 klass_is_exact = ik->is_final();
duke@435 2419 if (!klass_is_exact && klass_change
duke@435 2420 && deps != NULL && UseUniqueSubclasses) {
duke@435 2421 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2422 if (sub != NULL) {
duke@435 2423 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2424 klass = ik = sub;
duke@435 2425 klass_is_exact = sub->is_final();
duke@435 2426 }
duke@435 2427 }
duke@435 2428 if (!klass_is_exact && try_for_exact
duke@435 2429 && deps != NULL && UseExactTypes) {
duke@435 2430 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2431 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2432 deps->assert_leaf_type(ik);
duke@435 2433 klass_is_exact = true;
duke@435 2434 }
duke@435 2435 }
duke@435 2436 }
duke@435 2437 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2438 } else if (klass->is_obj_array_klass()) {
duke@435 2439 // Element is an object array. Recursively call ourself.
duke@435 2440 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2441 bool xk = etype->klass_is_exact();
duke@435 2442 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2443 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2444 // are all not-null. This is not true in generally, as code can
duke@435 2445 // slam NULLs down in the subarrays.
duke@435 2446 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2447 return arr;
duke@435 2448 } else if (klass->is_type_array_klass()) {
duke@435 2449 // Element is an typeArray
duke@435 2450 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2451 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2452 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2453 // is not-null. That was not true in general.
duke@435 2454 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2455 return arr;
duke@435 2456 } else {
duke@435 2457 ShouldNotReachHere();
duke@435 2458 return NULL;
duke@435 2459 }
duke@435 2460 }
duke@435 2461
duke@435 2462 //------------------------------make_from_constant-----------------------------
duke@435 2463 // Make a java pointer from an oop constant
jrose@1424 2464 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
twisti@1572 2465 if (o->is_method_data() || o->is_method() || o->is_cpcache()) {
duke@435 2466 // Treat much like a typeArray of bytes, like below, but fake the type...
duke@435 2467 const Type* etype = (Type*)get_const_basic_type(T_BYTE);
duke@435 2468 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2469 ciKlass *klass = ciTypeArrayKlass::make((BasicType) T_BYTE);
jrose@1424 2470 assert(o->can_be_constant(), "method data oops should be tenured");
duke@435 2471 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2472 return arr;
duke@435 2473 } else {
duke@435 2474 assert(o->is_java_object(), "must be java language object");
duke@435 2475 assert(!o->is_null_object(), "null object not yet handled here.");
duke@435 2476 ciKlass *klass = o->klass();
duke@435 2477 if (klass->is_instance_klass()) {
duke@435 2478 // Element is an instance
jrose@1424 2479 if (require_constant) {
jrose@1424 2480 if (!o->can_be_constant()) return NULL;
jrose@1424 2481 } else if (!o->should_be_constant()) {
duke@435 2482 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
duke@435 2483 }
duke@435 2484 return TypeInstPtr::make(o);
duke@435 2485 } else if (klass->is_obj_array_klass()) {
duke@435 2486 // Element is an object array. Recursively call ourself.
duke@435 2487 const Type *etype =
duke@435 2488 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
duke@435 2489 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2490 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2491 // are all not-null. This is not true in generally, as code can
duke@435 2492 // slam NULLs down in the subarrays.
jrose@1424 2493 if (require_constant) {
jrose@1424 2494 if (!o->can_be_constant()) return NULL;
jrose@1424 2495 } else if (!o->should_be_constant()) {
duke@435 2496 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2497 }
duke@435 2498 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2499 return arr;
duke@435 2500 } else if (klass->is_type_array_klass()) {
duke@435 2501 // Element is an typeArray
duke@435 2502 const Type* etype =
duke@435 2503 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2504 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2505 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2506 // is not-null. That was not true in general.
jrose@1424 2507 if (require_constant) {
jrose@1424 2508 if (!o->can_be_constant()) return NULL;
jrose@1424 2509 } else if (!o->should_be_constant()) {
duke@435 2510 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2511 }
duke@435 2512 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2513 return arr;
duke@435 2514 }
duke@435 2515 }
duke@435 2516
duke@435 2517 ShouldNotReachHere();
duke@435 2518 return NULL;
duke@435 2519 }
duke@435 2520
duke@435 2521 //------------------------------get_con----------------------------------------
duke@435 2522 intptr_t TypeOopPtr::get_con() const {
duke@435 2523 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2524 assert( _offset >= 0, "" );
duke@435 2525
duke@435 2526 if (_offset != 0) {
duke@435 2527 // After being ported to the compiler interface, the compiler no longer
duke@435 2528 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2529 // to a handle at compile time. This handle is embedded in the generated
duke@435 2530 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2531 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2532 // have access to the addresses!). This does not seem to currently happen,
twisti@1040 2533 // but this assertion here is to help prevent its occurence.
duke@435 2534 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2535 ShouldNotReachHere();
duke@435 2536 }
duke@435 2537
jrose@1424 2538 return (intptr_t)const_oop()->constant_encoding();
duke@435 2539 }
duke@435 2540
duke@435 2541
duke@435 2542 //-----------------------------filter------------------------------------------
duke@435 2543 // Do not allow interface-vs.-noninterface joins to collapse to top.
duke@435 2544 const Type *TypeOopPtr::filter( const Type *kills ) const {
duke@435 2545
duke@435 2546 const Type* ft = join(kills);
duke@435 2547 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2548 const TypeInstPtr* ktip = kills->isa_instptr();
never@990 2549 const TypeKlassPtr* ftkp = ft->isa_klassptr();
never@990 2550 const TypeKlassPtr* ktkp = kills->isa_klassptr();
duke@435 2551
duke@435 2552 if (ft->empty()) {
duke@435 2553 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2554 // interface. This can happen because the bytecodes do not contain
duke@435 2555 // enough type info to distinguish a Java-level interface variable
duke@435 2556 // from a Java-level object variable. If we meet 2 classes which
duke@435 2557 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2558 // doesn't implement I, we have no way to tell if the result should
duke@435 2559 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2560 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2561 // uplift the type.
duke@435 2562 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
duke@435 2563 return kills; // Uplift to interface
never@990 2564 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
never@990 2565 return kills; // Uplift to interface
duke@435 2566
duke@435 2567 return Type::TOP; // Canonical empty value
duke@435 2568 }
duke@435 2569
duke@435 2570 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2571 // the join should report back the class. However, if we have a J/L/Object
duke@435 2572 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2573 // join report an interface back out. This isn't possible but happens
duke@435 2574 // because the type system doesn't interact well with interfaces.
duke@435 2575 if (ftip != NULL && ktip != NULL &&
duke@435 2576 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2577 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2578 // Happens in a CTW of rt.jar, 320-341, no extra flags
kvn@1770 2579 assert(!ftip->klass_is_exact(), "interface could not be exact");
duke@435 2580 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2581 }
kvn@1770 2582 // Interface klass type could be exact in opposite to interface type,
kvn@1770 2583 // return it here instead of incorrect Constant ptr J/L/Object (6894807).
never@990 2584 if (ftkp != NULL && ktkp != NULL &&
never@990 2585 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
kvn@1770 2586 !ftkp->klass_is_exact() && // Keep exact interface klass
never@990 2587 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
never@990 2588 return ktkp->cast_to_ptr_type(ftkp->ptr());
never@990 2589 }
duke@435 2590
duke@435 2591 return ft;
duke@435 2592 }
duke@435 2593
duke@435 2594 //------------------------------eq---------------------------------------------
duke@435 2595 // Structural equality check for Type representations
duke@435 2596 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2597 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2598 if (_klass_is_exact != a->_klass_is_exact ||
duke@435 2599 _instance_id != a->_instance_id) return false;
duke@435 2600 ciObject* one = const_oop();
duke@435 2601 ciObject* two = a->const_oop();
duke@435 2602 if (one == NULL || two == NULL) {
duke@435 2603 return (one == two) && TypePtr::eq(t);
duke@435 2604 } else {
duke@435 2605 return one->equals(two) && TypePtr::eq(t);
duke@435 2606 }
duke@435 2607 }
duke@435 2608
duke@435 2609 //------------------------------hash-------------------------------------------
duke@435 2610 // Type-specific hashing function.
duke@435 2611 int TypeOopPtr::hash(void) const {
duke@435 2612 return
duke@435 2613 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2614 _klass_is_exact +
duke@435 2615 _instance_id +
duke@435 2616 TypePtr::hash();
duke@435 2617 }
duke@435 2618
duke@435 2619 //------------------------------dump2------------------------------------------
duke@435 2620 #ifndef PRODUCT
duke@435 2621 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2622 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2623 if( _klass_is_exact ) st->print(":exact");
duke@435 2624 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2625 switch( _offset ) {
duke@435 2626 case OffsetTop: st->print("+top"); break;
duke@435 2627 case OffsetBot: st->print("+any"); break;
duke@435 2628 case 0: break;
duke@435 2629 default: st->print("+%d",_offset); break;
duke@435 2630 }
kvn@658 2631 if (_instance_id == InstanceTop)
kvn@658 2632 st->print(",iid=top");
kvn@658 2633 else if (_instance_id != InstanceBot)
duke@435 2634 st->print(",iid=%d",_instance_id);
duke@435 2635 }
duke@435 2636 #endif
duke@435 2637
duke@435 2638 //------------------------------singleton--------------------------------------
duke@435 2639 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2640 // constants
duke@435 2641 bool TypeOopPtr::singleton(void) const {
duke@435 2642 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2643 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2644 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2645 }
duke@435 2646
duke@435 2647 //------------------------------add_offset-------------------------------------
kvn@741 2648 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
kvn@1427 2649 return make( _ptr, xadd_offset(offset), _instance_id);
duke@435 2650 }
duke@435 2651
kvn@658 2652 //------------------------------meet_instance_id--------------------------------
kvn@658 2653 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 2654 // Either is 'TOP' instance? Return the other instance!
kvn@658 2655 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 2656 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 2657 // If either is different, return 'BOTTOM' instance
kvn@658 2658 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 2659 return _instance_id;
duke@435 2660 }
duke@435 2661
kvn@658 2662 //------------------------------dual_instance_id--------------------------------
kvn@658 2663 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 2664 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 2665 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 2666 return _instance_id; // Map everything else into self
kvn@658 2667 }
kvn@658 2668
kvn@658 2669
duke@435 2670 //=============================================================================
duke@435 2671 // Convenience common pre-built types.
duke@435 2672 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 2673 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 2674 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 2675 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 2676 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 2677
duke@435 2678 //------------------------------TypeInstPtr-------------------------------------
duke@435 2679 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
duke@435 2680 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
duke@435 2681 assert(k != NULL &&
duke@435 2682 (k->is_loaded() || o == NULL),
duke@435 2683 "cannot have constants with non-loaded klass");
duke@435 2684 };
duke@435 2685
duke@435 2686 //------------------------------make-------------------------------------------
duke@435 2687 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 2688 ciKlass* k,
duke@435 2689 bool xk,
duke@435 2690 ciObject* o,
duke@435 2691 int offset,
duke@435 2692 int instance_id) {
duke@435 2693 assert( !k->is_loaded() || k->is_instance_klass() ||
duke@435 2694 k->is_method_klass(), "Must be for instance or method");
duke@435 2695 // Either const_oop() is NULL or else ptr is Constant
duke@435 2696 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 2697 "constant pointers must have a value supplied" );
duke@435 2698 // Ptr is never Null
duke@435 2699 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 2700
kvn@682 2701 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 2702 if (!UseExactTypes) xk = false;
duke@435 2703 if (ptr == Constant) {
duke@435 2704 // Note: This case includes meta-object constants, such as methods.
duke@435 2705 xk = true;
duke@435 2706 } else if (k->is_loaded()) {
duke@435 2707 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 2708 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 2709 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 2710 }
duke@435 2711
duke@435 2712 // Now hash this baby
duke@435 2713 TypeInstPtr *result =
duke@435 2714 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
duke@435 2715
duke@435 2716 return result;
duke@435 2717 }
duke@435 2718
duke@435 2719
duke@435 2720 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2721 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2722 if( ptr == _ptr ) return this;
duke@435 2723 // Reconstruct _sig info here since not a problem with later lazy
duke@435 2724 // construction, _sig will show up on demand.
kvn@658 2725 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
duke@435 2726 }
duke@435 2727
duke@435 2728
duke@435 2729 //-----------------------------cast_to_exactness-------------------------------
duke@435 2730 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2731 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 2732 if (!UseExactTypes) return this;
duke@435 2733 if (!_klass->is_loaded()) return this;
duke@435 2734 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 2735 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 2736 if( ik->is_interface() ) return this; // cannot set xk
duke@435 2737 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
duke@435 2738 }
duke@435 2739
kvn@682 2740 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2741 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 2742 if( instance_id == _instance_id ) return this;
kvn@682 2743 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
duke@435 2744 }
duke@435 2745
duke@435 2746 //------------------------------xmeet_unloaded---------------------------------
duke@435 2747 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 2748 // Assume classes are different since called after check for same name/class-loader
duke@435 2749 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 2750 int off = meet_offset(tinst->offset());
duke@435 2751 PTR ptr = meet_ptr(tinst->ptr());
kvn@1427 2752 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 2753
duke@435 2754 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 2755 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 2756 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 2757 //
duke@435 2758 // Meet unloaded class with java/lang/Object
duke@435 2759 //
duke@435 2760 // Meet
duke@435 2761 // | Unloaded Class
duke@435 2762 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 2763 // ===================================================================
duke@435 2764 // TOP | ..........................Unloaded......................|
duke@435 2765 // AnyNull | U-AN |................Unloaded......................|
duke@435 2766 // Constant | ... O-NN .................................. | O-BOT |
duke@435 2767 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 2768 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 2769 //
duke@435 2770 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 2771 //
duke@435 2772 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
kvn@1427 2773 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
duke@435 2774 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2775 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 2776 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2777 else { return TypeInstPtr::NOTNULL; }
duke@435 2778 }
duke@435 2779 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 2780
duke@435 2781 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 2782 }
duke@435 2783
duke@435 2784 // Both are unloaded, not the same class, not Object
duke@435 2785 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 2786 if( ptr != TypePtr::BotPTR ) {
duke@435 2787 return TypeInstPtr::NOTNULL;
duke@435 2788 }
duke@435 2789 return TypeInstPtr::BOTTOM;
duke@435 2790 }
duke@435 2791
duke@435 2792
duke@435 2793 //------------------------------meet-------------------------------------------
duke@435 2794 // Compute the MEET of two types. It returns a new Type object.
duke@435 2795 const Type *TypeInstPtr::xmeet( const Type *t ) const {
duke@435 2796 // Perform a fast test for common case; meeting the same types together.
duke@435 2797 if( this == t ) return this; // Meeting same type-rep?
duke@435 2798
duke@435 2799 // Current "this->_base" is Pointer
duke@435 2800 switch (t->base()) { // switch on original type
duke@435 2801
duke@435 2802 case Int: // Mixing ints & oops happens when javac
duke@435 2803 case Long: // reuses local variables
duke@435 2804 case FloatTop:
duke@435 2805 case FloatCon:
duke@435 2806 case FloatBot:
duke@435 2807 case DoubleTop:
duke@435 2808 case DoubleCon:
duke@435 2809 case DoubleBot:
coleenp@548 2810 case NarrowOop:
duke@435 2811 case Bottom: // Ye Olde Default
duke@435 2812 return Type::BOTTOM;
duke@435 2813 case Top:
duke@435 2814 return this;
duke@435 2815
duke@435 2816 default: // All else is a mistake
duke@435 2817 typerr(t);
duke@435 2818
duke@435 2819 case RawPtr: return TypePtr::BOTTOM;
duke@435 2820
duke@435 2821 case AryPtr: { // All arrays inherit from Object class
duke@435 2822 const TypeAryPtr *tp = t->is_aryptr();
duke@435 2823 int offset = meet_offset(tp->offset());
duke@435 2824 PTR ptr = meet_ptr(tp->ptr());
kvn@658 2825 int instance_id = meet_instance_id(tp->instance_id());
duke@435 2826 switch (ptr) {
duke@435 2827 case TopPTR:
duke@435 2828 case AnyNull: // Fall 'down' to dual of object klass
duke@435 2829 if (klass()->equals(ciEnv::current()->Object_klass())) {
kvn@658 2830 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2831 } else {
duke@435 2832 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 2833 ptr = NotNull;
kvn@658 2834 instance_id = InstanceBot;
kvn@658 2835 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
duke@435 2836 }
duke@435 2837 case Constant:
duke@435 2838 case NotNull:
duke@435 2839 case BotPTR: // Fall down to object klass
duke@435 2840 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 2841 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 2842 // If 'this' (InstPtr) is above the centerline and it is Object class
twisti@1040 2843 // then we can subclass in the Java class hierarchy.
duke@435 2844 if (klass()->equals(ciEnv::current()->Object_klass())) {
duke@435 2845 // that is, tp's array type is a subtype of my klass
kvn@1714 2846 return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
kvn@1714 2847 tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2848 }
duke@435 2849 }
duke@435 2850 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 2851 // The meet falls down to Object class below centerline.
duke@435 2852 if( ptr == Constant )
duke@435 2853 ptr = NotNull;
kvn@658 2854 instance_id = InstanceBot;
kvn@658 2855 return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
duke@435 2856 default: typerr(t);
duke@435 2857 }
duke@435 2858 }
duke@435 2859
duke@435 2860 case OopPtr: { // Meeting to OopPtrs
duke@435 2861 // Found a OopPtr type vs self-InstPtr type
kvn@1393 2862 const TypeOopPtr *tp = t->is_oopptr();
duke@435 2863 int offset = meet_offset(tp->offset());
duke@435 2864 PTR ptr = meet_ptr(tp->ptr());
duke@435 2865 switch (tp->ptr()) {
duke@435 2866 case TopPTR:
kvn@658 2867 case AnyNull: {
kvn@658 2868 int instance_id = meet_instance_id(InstanceTop);
duke@435 2869 return make(ptr, klass(), klass_is_exact(),
kvn@658 2870 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 2871 }
duke@435 2872 case NotNull:
kvn@1393 2873 case BotPTR: {
kvn@1393 2874 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 2875 return TypeOopPtr::make(ptr, offset, instance_id);
kvn@1393 2876 }
duke@435 2877 default: typerr(t);
duke@435 2878 }
duke@435 2879 }
duke@435 2880
duke@435 2881 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2882 // Found an AnyPtr type vs self-InstPtr type
duke@435 2883 const TypePtr *tp = t->is_ptr();
duke@435 2884 int offset = meet_offset(tp->offset());
duke@435 2885 PTR ptr = meet_ptr(tp->ptr());
duke@435 2886 switch (tp->ptr()) {
duke@435 2887 case Null:
duke@435 2888 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
kvn@658 2889 // else fall through to AnyNull
duke@435 2890 case TopPTR:
kvn@658 2891 case AnyNull: {
kvn@658 2892 int instance_id = meet_instance_id(InstanceTop);
duke@435 2893 return make( ptr, klass(), klass_is_exact(),
kvn@658 2894 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 2895 }
duke@435 2896 case NotNull:
duke@435 2897 case BotPTR:
duke@435 2898 return TypePtr::make( AnyPtr, ptr, offset );
duke@435 2899 default: typerr(t);
duke@435 2900 }
duke@435 2901 }
duke@435 2902
duke@435 2903 /*
duke@435 2904 A-top }
duke@435 2905 / | \ } Tops
duke@435 2906 B-top A-any C-top }
duke@435 2907 | / | \ | } Any-nulls
duke@435 2908 B-any | C-any }
duke@435 2909 | | |
duke@435 2910 B-con A-con C-con } constants; not comparable across classes
duke@435 2911 | | |
duke@435 2912 B-not | C-not }
duke@435 2913 | \ | / | } not-nulls
duke@435 2914 B-bot A-not C-bot }
duke@435 2915 \ | / } Bottoms
duke@435 2916 A-bot }
duke@435 2917 */
duke@435 2918
duke@435 2919 case InstPtr: { // Meeting 2 Oops?
duke@435 2920 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 2921 const TypeInstPtr *tinst = t->is_instptr();
duke@435 2922 int off = meet_offset( tinst->offset() );
duke@435 2923 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 2924 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 2925
duke@435 2926 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 2927 // If we have constants, then we created oops so classes are loaded
duke@435 2928 // and we can handle the constants further down. This case handles
duke@435 2929 // both-not-loaded or both-loaded classes
duke@435 2930 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
duke@435 2931 return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
duke@435 2932 }
duke@435 2933
duke@435 2934 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 2935 ciKlass* tinst_klass = tinst->klass();
duke@435 2936 ciKlass* this_klass = this->klass();
duke@435 2937 bool tinst_xk = tinst->klass_is_exact();
duke@435 2938 bool this_xk = this->klass_is_exact();
duke@435 2939 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 2940 // One of these classes has not been loaded
duke@435 2941 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 2942 #ifndef PRODUCT
duke@435 2943 if( PrintOpto && Verbose ) {
duke@435 2944 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 2945 tty->print(" this == "); this->dump(); tty->cr();
duke@435 2946 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 2947 }
duke@435 2948 #endif
duke@435 2949 return unloaded_meet;
duke@435 2950 }
duke@435 2951
duke@435 2952 // Handle mixing oops and interfaces first.
duke@435 2953 if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
duke@435 2954 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 2955 tinst_klass = this_klass;
duke@435 2956 this_klass = tmp;
duke@435 2957 bool tmp2 = tinst_xk;
duke@435 2958 tinst_xk = this_xk;
duke@435 2959 this_xk = tmp2;
duke@435 2960 }
duke@435 2961 if (tinst_klass->is_interface() &&
duke@435 2962 !(this_klass->is_interface() ||
duke@435 2963 // Treat java/lang/Object as an honorary interface,
duke@435 2964 // because we need a bottom for the interface hierarchy.
duke@435 2965 this_klass == ciEnv::current()->Object_klass())) {
duke@435 2966 // Oop meets interface!
duke@435 2967
duke@435 2968 // See if the oop subtypes (implements) interface.
duke@435 2969 ciKlass *k;
duke@435 2970 bool xk;
duke@435 2971 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 2972 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 2973 // on whether we are both above the centerline or either is
duke@435 2974 // below the centerline. If we are on the centerline
duke@435 2975 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 2976 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 2977 // If we are keeping this_klass, keep its exactness too.
duke@435 2978 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 2979 } else { // Does not implement, fall to Object
duke@435 2980 // Oop does not implement interface, so mixing falls to Object
duke@435 2981 // just like the verifier does (if both are above the
duke@435 2982 // centerline fall to interface)
duke@435 2983 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 2984 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 2985 // Watch out for Constant vs. AnyNull interface.
duke@435 2986 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 2987 instance_id = InstanceBot;
duke@435 2988 }
duke@435 2989 ciObject* o = NULL; // the Constant value, if any
duke@435 2990 if (ptr == Constant) {
duke@435 2991 // Find out which constant.
duke@435 2992 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 2993 }
kvn@658 2994 return make( ptr, k, xk, o, off, instance_id );
duke@435 2995 }
duke@435 2996
duke@435 2997 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 2998
duke@435 2999 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 3000 // If we split one up & one down AND they subtype, take the down man.
duke@435 3001 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3002 // If both are up and they subtype, take the subtype class.
duke@435 3003 // If both are up and they do NOT subtype, "fall hard".
duke@435 3004 // If both are down and they subtype, take the supertype class.
duke@435 3005 // If both are down and they do NOT subtype, "fall hard".
duke@435 3006 // Constants treated as down.
duke@435 3007
duke@435 3008 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 3009 // "fall hard"; "fall hard" becomes the default case:
duke@435 3010 // If we split one up & one down AND they subtype, take the down man.
duke@435 3011 // If both are up and they subtype, take the subtype class.
duke@435 3012
duke@435 3013 // If both are down and they subtype, "fall hard".
duke@435 3014 // If both are down and they do NOT subtype, "fall hard".
duke@435 3015 // If both are up and they do NOT subtype, "fall hard".
duke@435 3016 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3017
duke@435 3018 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 3019 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 3020 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 3021 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 3022
duke@435 3023 // Check for subtyping:
duke@435 3024 ciKlass *subtype = NULL;
duke@435 3025 bool subtype_exact = false;
duke@435 3026 if( tinst_klass->equals(this_klass) ) {
duke@435 3027 subtype = this_klass;
duke@435 3028 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 3029 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3030 subtype = this_klass; // Pick subtyping class
duke@435 3031 subtype_exact = this_xk;
duke@435 3032 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 3033 subtype = tinst_klass; // Pick subtyping class
duke@435 3034 subtype_exact = tinst_xk;
duke@435 3035 }
duke@435 3036
duke@435 3037 if( subtype ) {
duke@435 3038 if( above_centerline(ptr) ) { // both are up?
duke@435 3039 this_klass = tinst_klass = subtype;
duke@435 3040 this_xk = tinst_xk = subtype_exact;
duke@435 3041 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 3042 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 3043 this_xk = tinst_xk;
duke@435 3044 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 3045 tinst_klass = this_klass; // this is down; keep down man
duke@435 3046 tinst_xk = this_xk;
duke@435 3047 } else {
duke@435 3048 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 3049 }
duke@435 3050 }
duke@435 3051
duke@435 3052 // Check for classes now being equal
duke@435 3053 if (tinst_klass->equals(this_klass)) {
duke@435 3054 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3055 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3056 // handled elsewhere).
duke@435 3057 ciObject* o = NULL; // Assume not constant when done
duke@435 3058 ciObject* this_oop = const_oop();
duke@435 3059 ciObject* tinst_oop = tinst->const_oop();
duke@435 3060 if( ptr == Constant ) {
duke@435 3061 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 3062 this_oop->equals(tinst_oop) )
duke@435 3063 o = this_oop;
duke@435 3064 else if (above_centerline(this ->_ptr))
duke@435 3065 o = tinst_oop;
duke@435 3066 else if (above_centerline(tinst ->_ptr))
duke@435 3067 o = this_oop;
duke@435 3068 else
duke@435 3069 ptr = NotNull;
duke@435 3070 }
duke@435 3071 return make( ptr, this_klass, this_xk, o, off, instance_id );
duke@435 3072 } // Else classes are not equal
duke@435 3073
duke@435 3074 // Since klasses are different, we require a LCA in the Java
duke@435 3075 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3076 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3077 ptr = NotNull;
kvn@682 3078 instance_id = InstanceBot;
duke@435 3079
duke@435 3080 // Now we find the LCA of Java classes
duke@435 3081 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
kvn@658 3082 return make( ptr, k, false, NULL, off, instance_id );
duke@435 3083 } // End of case InstPtr
duke@435 3084
duke@435 3085 case KlassPtr:
duke@435 3086 return TypeInstPtr::BOTTOM;
duke@435 3087
duke@435 3088 } // End of switch
duke@435 3089 return this; // Return the double constant
duke@435 3090 }
duke@435 3091
duke@435 3092
duke@435 3093 //------------------------java_mirror_type--------------------------------------
duke@435 3094 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3095 // must be a singleton type
duke@435 3096 if( const_oop() == NULL ) return NULL;
duke@435 3097
duke@435 3098 // must be of type java.lang.Class
duke@435 3099 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3100
duke@435 3101 return const_oop()->as_instance()->java_mirror_type();
duke@435 3102 }
duke@435 3103
duke@435 3104
duke@435 3105 //------------------------------xdual------------------------------------------
duke@435 3106 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
twisti@1040 3107 // inheritance mechanism.
duke@435 3108 const Type *TypeInstPtr::xdual() const {
kvn@658 3109 return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 3110 }
duke@435 3111
duke@435 3112 //------------------------------eq---------------------------------------------
duke@435 3113 // Structural equality check for Type representations
duke@435 3114 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3115 const TypeInstPtr *p = t->is_instptr();
duke@435 3116 return
duke@435 3117 klass()->equals(p->klass()) &&
duke@435 3118 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3119 }
duke@435 3120
duke@435 3121 //------------------------------hash-------------------------------------------
duke@435 3122 // Type-specific hashing function.
duke@435 3123 int TypeInstPtr::hash(void) const {
duke@435 3124 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 3125 return hash;
duke@435 3126 }
duke@435 3127
duke@435 3128 //------------------------------dump2------------------------------------------
duke@435 3129 // Dump oop Type
duke@435 3130 #ifndef PRODUCT
duke@435 3131 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3132 // Print the name of the klass.
duke@435 3133 klass()->print_name_on(st);
duke@435 3134
duke@435 3135 switch( _ptr ) {
duke@435 3136 case Constant:
duke@435 3137 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3138 if (WizardMode || Verbose) {
duke@435 3139 const_oop()->print_oop(st);
duke@435 3140 }
duke@435 3141 case BotPTR:
duke@435 3142 if (!WizardMode && !Verbose) {
duke@435 3143 if( _klass_is_exact ) st->print(":exact");
duke@435 3144 break;
duke@435 3145 }
duke@435 3146 case TopPTR:
duke@435 3147 case AnyNull:
duke@435 3148 case NotNull:
duke@435 3149 st->print(":%s", ptr_msg[_ptr]);
duke@435 3150 if( _klass_is_exact ) st->print(":exact");
duke@435 3151 break;
duke@435 3152 }
duke@435 3153
duke@435 3154 if( _offset ) { // Dump offset, if any
duke@435 3155 if( _offset == OffsetBot ) st->print("+any");
duke@435 3156 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3157 else st->print("+%d", _offset);
duke@435 3158 }
duke@435 3159
duke@435 3160 st->print(" *");
kvn@658 3161 if (_instance_id == InstanceTop)
kvn@658 3162 st->print(",iid=top");
kvn@658 3163 else if (_instance_id != InstanceBot)
duke@435 3164 st->print(",iid=%d",_instance_id);
duke@435 3165 }
duke@435 3166 #endif
duke@435 3167
duke@435 3168 //------------------------------add_offset-------------------------------------
kvn@741 3169 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
duke@435 3170 return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
duke@435 3171 }
duke@435 3172
duke@435 3173 //=============================================================================
duke@435 3174 // Convenience common pre-built types.
duke@435 3175 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3176 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3177 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3178 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3179 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3180 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3181 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3182 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3183 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3184 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3185
duke@435 3186 //------------------------------make-------------------------------------------
duke@435 3187 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3188 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3189 "integral arrays must be pre-equipped with a class");
duke@435 3190 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3191 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3192 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3193 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3194 }
duke@435 3195
duke@435 3196 //------------------------------make-------------------------------------------
duke@435 3197 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3198 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3199 "integral arrays must be pre-equipped with a class");
duke@435 3200 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3201 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3202 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3203 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3204 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3205 }
duke@435 3206
duke@435 3207 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3208 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3209 if( ptr == _ptr ) return this;
kvn@658 3210 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3211 }
duke@435 3212
duke@435 3213
duke@435 3214 //-----------------------------cast_to_exactness-------------------------------
duke@435 3215 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3216 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3217 if (!UseExactTypes) return this;
duke@435 3218 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
duke@435 3219 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
duke@435 3220 }
duke@435 3221
kvn@682 3222 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3223 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3224 if( instance_id == _instance_id ) return this;
kvn@682 3225 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
duke@435 3226 }
duke@435 3227
duke@435 3228 //-----------------------------narrow_size_type-------------------------------
duke@435 3229 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3230 // which is kind of slow (and cached elsewhere by other users).
duke@435 3231 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3232 static jint max_array_length(BasicType etype) {
duke@435 3233 jint& cache = max_array_length_cache[etype];
duke@435 3234 jint res = cache;
duke@435 3235 if (res == 0) {
duke@435 3236 switch (etype) {
coleenp@548 3237 case T_NARROWOOP:
coleenp@548 3238 etype = T_OBJECT;
coleenp@548 3239 break;
duke@435 3240 case T_CONFLICT:
duke@435 3241 case T_ILLEGAL:
duke@435 3242 case T_VOID:
duke@435 3243 etype = T_BYTE; // will produce conservatively high value
duke@435 3244 }
duke@435 3245 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3246 }
duke@435 3247 return res;
duke@435 3248 }
duke@435 3249
duke@435 3250 // Narrow the given size type to the index range for the given array base type.
duke@435 3251 // Return NULL if the resulting int type becomes empty.
rasbold@801 3252 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
duke@435 3253 jint hi = size->_hi;
duke@435 3254 jint lo = size->_lo;
duke@435 3255 jint min_lo = 0;
rasbold@801 3256 jint max_hi = max_array_length(elem()->basic_type());
duke@435 3257 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3258 bool chg = false;
duke@435 3259 if (lo < min_lo) { lo = min_lo; chg = true; }
duke@435 3260 if (hi > max_hi) { hi = max_hi; chg = true; }
twisti@1040 3261 // Negative length arrays will produce weird intermediate dead fast-path code
duke@435 3262 if (lo > hi)
rasbold@801 3263 return TypeInt::ZERO;
duke@435 3264 if (!chg)
duke@435 3265 return size;
duke@435 3266 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3267 }
duke@435 3268
duke@435 3269 //-------------------------------cast_to_size----------------------------------
duke@435 3270 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3271 assert(new_size != NULL, "");
rasbold@801 3272 new_size = narrow_size_type(new_size);
duke@435 3273 if (new_size == size()) return this;
duke@435 3274 const TypeAry* new_ary = TypeAry::make(elem(), new_size);
kvn@658 3275 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3276 }
duke@435 3277
duke@435 3278
duke@435 3279 //------------------------------eq---------------------------------------------
duke@435 3280 // Structural equality check for Type representations
duke@435 3281 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3282 const TypeAryPtr *p = t->is_aryptr();
duke@435 3283 return
duke@435 3284 _ary == p->_ary && // Check array
duke@435 3285 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3286 }
duke@435 3287
duke@435 3288 //------------------------------hash-------------------------------------------
duke@435 3289 // Type-specific hashing function.
duke@435 3290 int TypeAryPtr::hash(void) const {
duke@435 3291 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3292 }
duke@435 3293
duke@435 3294 //------------------------------meet-------------------------------------------
duke@435 3295 // Compute the MEET of two types. It returns a new Type object.
duke@435 3296 const Type *TypeAryPtr::xmeet( const Type *t ) const {
duke@435 3297 // Perform a fast test for common case; meeting the same types together.
duke@435 3298 if( this == t ) return this; // Meeting same type-rep?
duke@435 3299 // Current "this->_base" is Pointer
duke@435 3300 switch (t->base()) { // switch on original type
duke@435 3301
duke@435 3302 // Mixing ints & oops happens when javac reuses local variables
duke@435 3303 case Int:
duke@435 3304 case Long:
duke@435 3305 case FloatTop:
duke@435 3306 case FloatCon:
duke@435 3307 case FloatBot:
duke@435 3308 case DoubleTop:
duke@435 3309 case DoubleCon:
duke@435 3310 case DoubleBot:
coleenp@548 3311 case NarrowOop:
duke@435 3312 case Bottom: // Ye Olde Default
duke@435 3313 return Type::BOTTOM;
duke@435 3314 case Top:
duke@435 3315 return this;
duke@435 3316
duke@435 3317 default: // All else is a mistake
duke@435 3318 typerr(t);
duke@435 3319
duke@435 3320 case OopPtr: { // Meeting to OopPtrs
duke@435 3321 // Found a OopPtr type vs self-AryPtr type
kvn@1393 3322 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3323 int offset = meet_offset(tp->offset());
duke@435 3324 PTR ptr = meet_ptr(tp->ptr());
duke@435 3325 switch (tp->ptr()) {
duke@435 3326 case TopPTR:
kvn@658 3327 case AnyNull: {
kvn@658 3328 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3329 return make(ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3330 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3331 }
duke@435 3332 case BotPTR:
kvn@1393 3333 case NotNull: {
kvn@1393 3334 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 3335 return TypeOopPtr::make(ptr, offset, instance_id);
kvn@1393 3336 }
duke@435 3337 default: ShouldNotReachHere();
duke@435 3338 }
duke@435 3339 }
duke@435 3340
duke@435 3341 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3342 // Found an AnyPtr type vs self-AryPtr type
duke@435 3343 const TypePtr *tp = t->is_ptr();
duke@435 3344 int offset = meet_offset(tp->offset());
duke@435 3345 PTR ptr = meet_ptr(tp->ptr());
duke@435 3346 switch (tp->ptr()) {
duke@435 3347 case TopPTR:
duke@435 3348 return this;
duke@435 3349 case BotPTR:
duke@435 3350 case NotNull:
duke@435 3351 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3352 case Null:
duke@435 3353 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3354 // else fall through to AnyNull
kvn@658 3355 case AnyNull: {
kvn@658 3356 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3357 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3358 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3359 }
duke@435 3360 default: ShouldNotReachHere();
duke@435 3361 }
duke@435 3362 }
duke@435 3363
duke@435 3364 case RawPtr: return TypePtr::BOTTOM;
duke@435 3365
duke@435 3366 case AryPtr: { // Meeting 2 references?
duke@435 3367 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3368 int off = meet_offset(tap->offset());
duke@435 3369 const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
duke@435 3370 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3371 int instance_id = meet_instance_id(tap->instance_id());
duke@435 3372 ciKlass* lazy_klass = NULL;
duke@435 3373 if (tary->_elem->isa_int()) {
duke@435 3374 // Integral array element types have irrelevant lattice relations.
duke@435 3375 // It is the klass that determines array layout, not the element type.
duke@435 3376 if (_klass == NULL)
duke@435 3377 lazy_klass = tap->_klass;
duke@435 3378 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3379 lazy_klass = _klass;
duke@435 3380 } else {
duke@435 3381 // Something like byte[int+] meets char[int+].
duke@435 3382 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3383 instance_id = InstanceBot;
duke@435 3384 tary = TypeAry::make(Type::BOTTOM, tary->_size);
duke@435 3385 }
duke@435 3386 }
kvn@2120 3387 bool xk = false;
duke@435 3388 switch (tap->ptr()) {
duke@435 3389 case AnyNull:
duke@435 3390 case TopPTR:
duke@435 3391 // Compute new klass on demand, do not use tap->_klass
duke@435 3392 xk = (tap->_klass_is_exact | this->_klass_is_exact);
kvn@658 3393 return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
duke@435 3394 case Constant: {
duke@435 3395 ciObject* o = const_oop();
duke@435 3396 if( _ptr == Constant ) {
duke@435 3397 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
jrose@1424 3398 xk = (klass() == tap->klass());
duke@435 3399 ptr = NotNull;
duke@435 3400 o = NULL;
kvn@682 3401 instance_id = InstanceBot;
jrose@1424 3402 } else {
jrose@1424 3403 xk = true;
duke@435 3404 }
duke@435 3405 } else if( above_centerline(_ptr) ) {
duke@435 3406 o = tap->const_oop();
jrose@1424 3407 xk = true;
jrose@1424 3408 } else {
kvn@2120 3409 // Only precise for identical arrays
kvn@2120 3410 xk = this->_klass_is_exact && (klass() == tap->klass());
duke@435 3411 }
kvn@2120 3412 return TypeAryPtr::make( ptr, o, tary, lazy_klass, xk, off, instance_id );
duke@435 3413 }
duke@435 3414 case NotNull:
duke@435 3415 case BotPTR:
duke@435 3416 // Compute new klass on demand, do not use tap->_klass
duke@435 3417 if (above_centerline(this->_ptr))
duke@435 3418 xk = tap->_klass_is_exact;
duke@435 3419 else if (above_centerline(tap->_ptr))
duke@435 3420 xk = this->_klass_is_exact;
duke@435 3421 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 3422 (klass() == tap->klass()); // Only precise for identical arrays
kvn@658 3423 return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
duke@435 3424 default: ShouldNotReachHere();
duke@435 3425 }
duke@435 3426 }
duke@435 3427
duke@435 3428 // All arrays inherit from Object class
duke@435 3429 case InstPtr: {
duke@435 3430 const TypeInstPtr *tp = t->is_instptr();
duke@435 3431 int offset = meet_offset(tp->offset());
duke@435 3432 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3433 int instance_id = meet_instance_id(tp->instance_id());
duke@435 3434 switch (ptr) {
duke@435 3435 case TopPTR:
duke@435 3436 case AnyNull: // Fall 'down' to dual of object klass
duke@435 3437 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
kvn@658 3438 return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3439 } else {
duke@435 3440 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3441 ptr = NotNull;
kvn@658 3442 instance_id = InstanceBot;
kvn@658 3443 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3444 }
duke@435 3445 case Constant:
duke@435 3446 case NotNull:
duke@435 3447 case BotPTR: // Fall down to object klass
duke@435 3448 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3449 if (above_centerline(tp->ptr())) {
duke@435 3450 // If 'tp' is above the centerline and it is Object class
twisti@1040 3451 // then we can subclass in the Java class hierarchy.
duke@435 3452 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3453 // that is, my array type is a subtype of 'tp' klass
kvn@1714 3454 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@1714 3455 _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3456 }
duke@435 3457 }
duke@435 3458 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 3459 // The meet falls down to Object class below centerline.
duke@435 3460 if( ptr == Constant )
duke@435 3461 ptr = NotNull;
kvn@658 3462 instance_id = InstanceBot;
kvn@658 3463 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3464 default: typerr(t);
duke@435 3465 }
duke@435 3466 }
duke@435 3467
duke@435 3468 case KlassPtr:
duke@435 3469 return TypeInstPtr::BOTTOM;
duke@435 3470
duke@435 3471 }
duke@435 3472 return this; // Lint noise
duke@435 3473 }
duke@435 3474
duke@435 3475 //------------------------------xdual------------------------------------------
duke@435 3476 // Dual: compute field-by-field dual
duke@435 3477 const Type *TypeAryPtr::xdual() const {
kvn@658 3478 return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
duke@435 3479 }
duke@435 3480
kvn@1255 3481 //----------------------interface_vs_oop---------------------------------------
kvn@1255 3482 #ifdef ASSERT
kvn@1255 3483 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
kvn@1255 3484 const TypeAryPtr* t_aryptr = t->isa_aryptr();
kvn@1255 3485 if (t_aryptr) {
kvn@1255 3486 return _ary->interface_vs_oop(t_aryptr->_ary);
kvn@1255 3487 }
kvn@1255 3488 return false;
kvn@1255 3489 }
kvn@1255 3490 #endif
kvn@1255 3491
duke@435 3492 //------------------------------dump2------------------------------------------
duke@435 3493 #ifndef PRODUCT
duke@435 3494 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3495 _ary->dump2(d,depth,st);
duke@435 3496 switch( _ptr ) {
duke@435 3497 case Constant:
duke@435 3498 const_oop()->print(st);
duke@435 3499 break;
duke@435 3500 case BotPTR:
duke@435 3501 if (!WizardMode && !Verbose) {
duke@435 3502 if( _klass_is_exact ) st->print(":exact");
duke@435 3503 break;
duke@435 3504 }
duke@435 3505 case TopPTR:
duke@435 3506 case AnyNull:
duke@435 3507 case NotNull:
duke@435 3508 st->print(":%s", ptr_msg[_ptr]);
duke@435 3509 if( _klass_is_exact ) st->print(":exact");
duke@435 3510 break;
duke@435 3511 }
duke@435 3512
kvn@499 3513 if( _offset != 0 ) {
kvn@499 3514 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 3515 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 3516 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 3517 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 3518 else {
kvn@499 3519 BasicType basic_elem_type = elem()->basic_type();
kvn@499 3520 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 3521 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 3522 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 3523 }
kvn@499 3524 }
kvn@499 3525 st->print(" *");
kvn@658 3526 if (_instance_id == InstanceTop)
kvn@658 3527 st->print(",iid=top");
kvn@658 3528 else if (_instance_id != InstanceBot)
duke@435 3529 st->print(",iid=%d",_instance_id);
duke@435 3530 }
duke@435 3531 #endif
duke@435 3532
duke@435 3533 bool TypeAryPtr::empty(void) const {
duke@435 3534 if (_ary->empty()) return true;
duke@435 3535 return TypeOopPtr::empty();
duke@435 3536 }
duke@435 3537
duke@435 3538 //------------------------------add_offset-------------------------------------
kvn@741 3539 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
duke@435 3540 return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
duke@435 3541 }
duke@435 3542
duke@435 3543
duke@435 3544 //=============================================================================
coleenp@548 3545 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
coleenp@548 3546 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
coleenp@548 3547
coleenp@548 3548
coleenp@548 3549 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
coleenp@548 3550 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
coleenp@548 3551 }
coleenp@548 3552
coleenp@548 3553 //------------------------------hash-------------------------------------------
coleenp@548 3554 // Type-specific hashing function.
coleenp@548 3555 int TypeNarrowOop::hash(void) const {
never@1262 3556 return _ptrtype->hash() + 7;
coleenp@548 3557 }
coleenp@548 3558
coleenp@548 3559
coleenp@548 3560 bool TypeNarrowOop::eq( const Type *t ) const {
coleenp@548 3561 const TypeNarrowOop* tc = t->isa_narrowoop();
coleenp@548 3562 if (tc != NULL) {
never@1262 3563 if (_ptrtype->base() != tc->_ptrtype->base()) {
coleenp@548 3564 return false;
coleenp@548 3565 }
never@1262 3566 return tc->_ptrtype->eq(_ptrtype);
coleenp@548 3567 }
coleenp@548 3568 return false;
coleenp@548 3569 }
coleenp@548 3570
coleenp@548 3571 bool TypeNarrowOop::singleton(void) const { // TRUE if type is a singleton
never@1262 3572 return _ptrtype->singleton();
coleenp@548 3573 }
coleenp@548 3574
coleenp@548 3575 bool TypeNarrowOop::empty(void) const {
never@1262 3576 return _ptrtype->empty();
coleenp@548 3577 }
coleenp@548 3578
kvn@728 3579 //------------------------------xmeet------------------------------------------
coleenp@548 3580 // Compute the MEET of two types. It returns a new Type object.
coleenp@548 3581 const Type *TypeNarrowOop::xmeet( const Type *t ) const {
coleenp@548 3582 // Perform a fast test for common case; meeting the same types together.
coleenp@548 3583 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 3584
coleenp@548 3585
coleenp@548 3586 // Current "this->_base" is OopPtr
coleenp@548 3587 switch (t->base()) { // switch on original type
coleenp@548 3588
coleenp@548 3589 case Int: // Mixing ints & oops happens when javac
coleenp@548 3590 case Long: // reuses local variables
coleenp@548 3591 case FloatTop:
coleenp@548 3592 case FloatCon:
coleenp@548 3593 case FloatBot:
coleenp@548 3594 case DoubleTop:
coleenp@548 3595 case DoubleCon:
coleenp@548 3596 case DoubleBot:
kvn@728 3597 case AnyPtr:
kvn@728 3598 case RawPtr:
kvn@728 3599 case OopPtr:
kvn@728 3600 case InstPtr:
kvn@728 3601 case KlassPtr:
kvn@728 3602 case AryPtr:
kvn@728 3603
coleenp@548 3604 case Bottom: // Ye Olde Default
coleenp@548 3605 return Type::BOTTOM;
coleenp@548 3606 case Top:
coleenp@548 3607 return this;
coleenp@548 3608
coleenp@548 3609 case NarrowOop: {
never@1262 3610 const Type* result = _ptrtype->xmeet(t->make_ptr());
coleenp@548 3611 if (result->isa_ptr()) {
coleenp@548 3612 return TypeNarrowOop::make(result->is_ptr());
coleenp@548 3613 }
coleenp@548 3614 return result;
coleenp@548 3615 }
coleenp@548 3616
coleenp@548 3617 default: // All else is a mistake
coleenp@548 3618 typerr(t);
coleenp@548 3619
coleenp@548 3620 } // End of switch
kvn@728 3621
kvn@728 3622 return this;
coleenp@548 3623 }
coleenp@548 3624
coleenp@548 3625 const Type *TypeNarrowOop::xdual() const { // Compute dual right now.
never@1262 3626 const TypePtr* odual = _ptrtype->dual()->is_ptr();
coleenp@548 3627 return new TypeNarrowOop(odual);
coleenp@548 3628 }
coleenp@548 3629
coleenp@548 3630 const Type *TypeNarrowOop::filter( const Type *kills ) const {
coleenp@548 3631 if (kills->isa_narrowoop()) {
never@1262 3632 const Type* ft =_ptrtype->filter(kills->is_narrowoop()->_ptrtype);
coleenp@548 3633 if (ft->empty())
coleenp@548 3634 return Type::TOP; // Canonical empty value
coleenp@548 3635 if (ft->isa_ptr()) {
coleenp@548 3636 return make(ft->isa_ptr());
coleenp@548 3637 }
coleenp@548 3638 return ft;
coleenp@548 3639 } else if (kills->isa_ptr()) {
never@1262 3640 const Type* ft = _ptrtype->join(kills);
coleenp@548 3641 if (ft->empty())
coleenp@548 3642 return Type::TOP; // Canonical empty value
coleenp@548 3643 return ft;
coleenp@548 3644 } else {
coleenp@548 3645 return Type::TOP;
coleenp@548 3646 }
coleenp@548 3647 }
coleenp@548 3648
coleenp@548 3649
coleenp@548 3650 intptr_t TypeNarrowOop::get_con() const {
never@1262 3651 return _ptrtype->get_con();
coleenp@548 3652 }
coleenp@548 3653
coleenp@548 3654 #ifndef PRODUCT
coleenp@548 3655 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
never@852 3656 st->print("narrowoop: ");
never@1262 3657 _ptrtype->dump2(d, depth, st);
coleenp@548 3658 }
coleenp@548 3659 #endif
coleenp@548 3660
coleenp@548 3661
coleenp@548 3662 //=============================================================================
duke@435 3663 // Convenience common pre-built types.
duke@435 3664
duke@435 3665 // Not-null object klass or below
duke@435 3666 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 3667 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 3668
duke@435 3669 //------------------------------TypeKlasPtr------------------------------------
duke@435 3670 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
duke@435 3671 : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
duke@435 3672 }
duke@435 3673
duke@435 3674 //------------------------------make-------------------------------------------
duke@435 3675 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 3676 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 3677 assert( k != NULL, "Expect a non-NULL klass");
duke@435 3678 assert(k->is_instance_klass() || k->is_array_klass() ||
duke@435 3679 k->is_method_klass(), "Incorrect type of klass oop");
duke@435 3680 TypeKlassPtr *r =
duke@435 3681 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 3682
duke@435 3683 return r;
duke@435 3684 }
duke@435 3685
duke@435 3686 //------------------------------eq---------------------------------------------
duke@435 3687 // Structural equality check for Type representations
duke@435 3688 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 3689 const TypeKlassPtr *p = t->is_klassptr();
duke@435 3690 return
duke@435 3691 klass()->equals(p->klass()) &&
duke@435 3692 TypeOopPtr::eq(p);
duke@435 3693 }
duke@435 3694
duke@435 3695 //------------------------------hash-------------------------------------------
duke@435 3696 // Type-specific hashing function.
duke@435 3697 int TypeKlassPtr::hash(void) const {
duke@435 3698 return klass()->hash() + TypeOopPtr::hash();
duke@435 3699 }
duke@435 3700
duke@435 3701
kvn@2116 3702 //----------------------compute_klass------------------------------------------
kvn@2116 3703 // Compute the defining klass for this class
kvn@2116 3704 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
kvn@2116 3705 // Compute _klass based on element type.
duke@435 3706 ciKlass* k_ary = NULL;
duke@435 3707 const TypeInstPtr *tinst;
duke@435 3708 const TypeAryPtr *tary;
coleenp@548 3709 const Type* el = elem();
coleenp@548 3710 if (el->isa_narrowoop()) {
kvn@656 3711 el = el->make_ptr();
coleenp@548 3712 }
coleenp@548 3713
duke@435 3714 // Get element klass
coleenp@548 3715 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 3716 // Compute array klass from element klass
duke@435 3717 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 3718 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 3719 // Compute array klass from element klass
duke@435 3720 ciKlass* k_elem = tary->klass();
duke@435 3721 // If element type is something like bottom[], k_elem will be null.
duke@435 3722 if (k_elem != NULL)
duke@435 3723 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 3724 } else if ((el->base() == Type::Top) ||
coleenp@548 3725 (el->base() == Type::Bottom)) {
duke@435 3726 // element type of Bottom occurs from meet of basic type
duke@435 3727 // and object; Top occurs when doing join on Bottom.
duke@435 3728 // Leave k_ary at NULL.
duke@435 3729 } else {
duke@435 3730 // Cannot compute array klass directly from basic type,
duke@435 3731 // since subtypes of TypeInt all have basic type T_INT.
kvn@2116 3732 #ifdef ASSERT
kvn@2116 3733 if (verify && el->isa_int()) {
kvn@2116 3734 // Check simple cases when verifying klass.
kvn@2116 3735 BasicType bt = T_ILLEGAL;
kvn@2116 3736 if (el == TypeInt::BYTE) {
kvn@2116 3737 bt = T_BYTE;
kvn@2116 3738 } else if (el == TypeInt::SHORT) {
kvn@2116 3739 bt = T_SHORT;
kvn@2116 3740 } else if (el == TypeInt::CHAR) {
kvn@2116 3741 bt = T_CHAR;
kvn@2116 3742 } else if (el == TypeInt::INT) {
kvn@2116 3743 bt = T_INT;
kvn@2116 3744 } else {
kvn@2116 3745 return _klass; // just return specified klass
kvn@2116 3746 }
kvn@2116 3747 return ciTypeArrayKlass::make(bt);
kvn@2116 3748 }
kvn@2116 3749 #endif
coleenp@548 3750 assert(!el->isa_int(),
duke@435 3751 "integral arrays must be pre-equipped with a class");
duke@435 3752 // Compute array klass directly from basic type
coleenp@548 3753 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 3754 }
kvn@2116 3755 return k_ary;
kvn@2116 3756 }
kvn@2116 3757
kvn@2116 3758 //------------------------------klass------------------------------------------
kvn@2116 3759 // Return the defining klass for this class
kvn@2116 3760 ciKlass* TypeAryPtr::klass() const {
kvn@2116 3761 if( _klass ) return _klass; // Return cached value, if possible
kvn@2116 3762
kvn@2116 3763 // Oops, need to compute _klass and cache it
kvn@2116 3764 ciKlass* k_ary = compute_klass();
duke@435 3765
kvn@598 3766 if( this != TypeAryPtr::OOPS ) {
duke@435 3767 // The _klass field acts as a cache of the underlying
duke@435 3768 // ciKlass for this array type. In order to set the field,
duke@435 3769 // we need to cast away const-ness.
duke@435 3770 //
duke@435 3771 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 3772 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 3773 // active compilations. However, the ciKlass which represents
duke@435 3774 // this Type is *not* shared between compilations, so caching
duke@435 3775 // this value would result in fetching a dangling pointer.
duke@435 3776 //
duke@435 3777 // Recomputing the underlying ciKlass for each request is
duke@435 3778 // a bit less efficient than caching, but calls to
duke@435 3779 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 3780 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 3781 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 3782 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 3783 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 3784 }
kvn@598 3785 }
duke@435 3786 return k_ary;
duke@435 3787 }
duke@435 3788
duke@435 3789
duke@435 3790 //------------------------------add_offset-------------------------------------
duke@435 3791 // Access internals of klass object
kvn@741 3792 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
duke@435 3793 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 3794 }
duke@435 3795
duke@435 3796 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3797 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
kvn@992 3798 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
duke@435 3799 if( ptr == _ptr ) return this;
duke@435 3800 return make(ptr, _klass, _offset);
duke@435 3801 }
duke@435 3802
duke@435 3803
duke@435 3804 //-----------------------------cast_to_exactness-------------------------------
duke@435 3805 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3806 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3807 if (!UseExactTypes) return this;
duke@435 3808 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 3809 }
duke@435 3810
duke@435 3811
duke@435 3812 //-----------------------------as_instance_type--------------------------------
duke@435 3813 // Corresponding type for an instance of the given class.
duke@435 3814 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 3815 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 3816 ciKlass* k = klass();
duke@435 3817 bool xk = klass_is_exact();
duke@435 3818 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 3819 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
duke@435 3820 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 3821 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 3822 }
duke@435 3823
duke@435 3824
duke@435 3825 //------------------------------xmeet------------------------------------------
duke@435 3826 // Compute the MEET of two types, return a new Type object.
duke@435 3827 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 3828 // Perform a fast test for common case; meeting the same types together.
duke@435 3829 if( this == t ) return this; // Meeting same type-rep?
duke@435 3830
duke@435 3831 // Current "this->_base" is Pointer
duke@435 3832 switch (t->base()) { // switch on original type
duke@435 3833
duke@435 3834 case Int: // Mixing ints & oops happens when javac
duke@435 3835 case Long: // reuses local variables
duke@435 3836 case FloatTop:
duke@435 3837 case FloatCon:
duke@435 3838 case FloatBot:
duke@435 3839 case DoubleTop:
duke@435 3840 case DoubleCon:
duke@435 3841 case DoubleBot:
kvn@728 3842 case NarrowOop:
duke@435 3843 case Bottom: // Ye Olde Default
duke@435 3844 return Type::BOTTOM;
duke@435 3845 case Top:
duke@435 3846 return this;
duke@435 3847
duke@435 3848 default: // All else is a mistake
duke@435 3849 typerr(t);
duke@435 3850
duke@435 3851 case RawPtr: return TypePtr::BOTTOM;
duke@435 3852
duke@435 3853 case OopPtr: { // Meeting to OopPtrs
duke@435 3854 // Found a OopPtr type vs self-KlassPtr type
duke@435 3855 const TypePtr *tp = t->is_oopptr();
duke@435 3856 int offset = meet_offset(tp->offset());
duke@435 3857 PTR ptr = meet_ptr(tp->ptr());
duke@435 3858 switch (tp->ptr()) {
duke@435 3859 case TopPTR:
duke@435 3860 case AnyNull:
duke@435 3861 return make(ptr, klass(), offset);
duke@435 3862 case BotPTR:
duke@435 3863 case NotNull:
duke@435 3864 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3865 default: typerr(t);
duke@435 3866 }
duke@435 3867 }
duke@435 3868
duke@435 3869 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3870 // Found an AnyPtr type vs self-KlassPtr type
duke@435 3871 const TypePtr *tp = t->is_ptr();
duke@435 3872 int offset = meet_offset(tp->offset());
duke@435 3873 PTR ptr = meet_ptr(tp->ptr());
duke@435 3874 switch (tp->ptr()) {
duke@435 3875 case TopPTR:
duke@435 3876 return this;
duke@435 3877 case Null:
duke@435 3878 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 3879 case AnyNull:
duke@435 3880 return make( ptr, klass(), offset );
duke@435 3881 case BotPTR:
duke@435 3882 case NotNull:
duke@435 3883 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3884 default: typerr(t);
duke@435 3885 }
duke@435 3886 }
duke@435 3887
duke@435 3888 case AryPtr: // Meet with AryPtr
duke@435 3889 case InstPtr: // Meet with InstPtr
duke@435 3890 return TypeInstPtr::BOTTOM;
duke@435 3891
duke@435 3892 //
duke@435 3893 // A-top }
duke@435 3894 // / | \ } Tops
duke@435 3895 // B-top A-any C-top }
duke@435 3896 // | / | \ | } Any-nulls
duke@435 3897 // B-any | C-any }
duke@435 3898 // | | |
duke@435 3899 // B-con A-con C-con } constants; not comparable across classes
duke@435 3900 // | | |
duke@435 3901 // B-not | C-not }
duke@435 3902 // | \ | / | } not-nulls
duke@435 3903 // B-bot A-not C-bot }
duke@435 3904 // \ | / } Bottoms
duke@435 3905 // A-bot }
duke@435 3906 //
duke@435 3907
duke@435 3908 case KlassPtr: { // Meet two KlassPtr types
duke@435 3909 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 3910 int off = meet_offset(tkls->offset());
duke@435 3911 PTR ptr = meet_ptr(tkls->ptr());
duke@435 3912
duke@435 3913 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3914 // If we have constants, then we created oops so classes are loaded
duke@435 3915 // and we can handle the constants further down. This case handles
duke@435 3916 // not-loaded classes
duke@435 3917 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 3918 return make( ptr, klass(), off );
duke@435 3919 }
duke@435 3920
duke@435 3921 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3922 ciKlass* tkls_klass = tkls->klass();
duke@435 3923 ciKlass* this_klass = this->klass();
duke@435 3924 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 3925 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 3926
duke@435 3927 // If 'this' type is above the centerline and is a superclass of the
duke@435 3928 // other, we can treat 'this' as having the same type as the other.
duke@435 3929 if ((above_centerline(this->ptr())) &&
duke@435 3930 tkls_klass->is_subtype_of(this_klass)) {
duke@435 3931 this_klass = tkls_klass;
duke@435 3932 }
duke@435 3933 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 3934 // other, we can treat 'tinst' as having the same type as the other.
duke@435 3935 if ((above_centerline(tkls->ptr())) &&
duke@435 3936 this_klass->is_subtype_of(tkls_klass)) {
duke@435 3937 tkls_klass = this_klass;
duke@435 3938 }
duke@435 3939
duke@435 3940 // Check for classes now being equal
duke@435 3941 if (tkls_klass->equals(this_klass)) {
duke@435 3942 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3943 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3944 // handled elsewhere).
duke@435 3945 ciObject* o = NULL; // Assume not constant when done
duke@435 3946 ciObject* this_oop = const_oop();
duke@435 3947 ciObject* tkls_oop = tkls->const_oop();
duke@435 3948 if( ptr == Constant ) {
duke@435 3949 if (this_oop != NULL && tkls_oop != NULL &&
duke@435 3950 this_oop->equals(tkls_oop) )
duke@435 3951 o = this_oop;
duke@435 3952 else if (above_centerline(this->ptr()))
duke@435 3953 o = tkls_oop;
duke@435 3954 else if (above_centerline(tkls->ptr()))
duke@435 3955 o = this_oop;
duke@435 3956 else
duke@435 3957 ptr = NotNull;
duke@435 3958 }
duke@435 3959 return make( ptr, this_klass, off );
duke@435 3960 } // Else classes are not equal
duke@435 3961
duke@435 3962 // Since klasses are different, we require the LCA in the Java
duke@435 3963 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3964 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3965 ptr = NotNull;
duke@435 3966 // Now we find the LCA of Java classes
duke@435 3967 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 3968 return make( ptr, k, off );
duke@435 3969 } // End of case KlassPtr
duke@435 3970
duke@435 3971 } // End of switch
duke@435 3972 return this; // Return the double constant
duke@435 3973 }
duke@435 3974
duke@435 3975 //------------------------------xdual------------------------------------------
duke@435 3976 // Dual: compute field-by-field dual
duke@435 3977 const Type *TypeKlassPtr::xdual() const {
duke@435 3978 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 3979 }
duke@435 3980
duke@435 3981 //------------------------------dump2------------------------------------------
duke@435 3982 // Dump Klass Type
duke@435 3983 #ifndef PRODUCT
duke@435 3984 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 3985 switch( _ptr ) {
duke@435 3986 case Constant:
duke@435 3987 st->print("precise ");
duke@435 3988 case NotNull:
duke@435 3989 {
duke@435 3990 const char *name = klass()->name()->as_utf8();
duke@435 3991 if( name ) {
duke@435 3992 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 3993 } else {
duke@435 3994 ShouldNotReachHere();
duke@435 3995 }
duke@435 3996 }
duke@435 3997 case BotPTR:
duke@435 3998 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 3999 case TopPTR:
duke@435 4000 case AnyNull:
duke@435 4001 st->print(":%s", ptr_msg[_ptr]);
duke@435 4002 if( _klass_is_exact ) st->print(":exact");
duke@435 4003 break;
duke@435 4004 }
duke@435 4005
duke@435 4006 if( _offset ) { // Dump offset, if any
duke@435 4007 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 4008 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 4009 else { st->print("+%d", _offset); }
duke@435 4010 }
duke@435 4011
duke@435 4012 st->print(" *");
duke@435 4013 }
duke@435 4014 #endif
duke@435 4015
duke@435 4016
duke@435 4017
duke@435 4018 //=============================================================================
duke@435 4019 // Convenience common pre-built types.
duke@435 4020
duke@435 4021 //------------------------------make-------------------------------------------
duke@435 4022 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 4023 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 4024 }
duke@435 4025
duke@435 4026 //------------------------------make-------------------------------------------
duke@435 4027 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 4028 Compile* C = Compile::current();
duke@435 4029 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 4030 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 4031 const TypeTuple *domain;
twisti@1572 4032 if (method->is_static()) {
duke@435 4033 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 4034 } else {
duke@435 4035 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 4036 }
duke@435 4037 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 4038 tf = TypeFunc::make(domain, range);
duke@435 4039 C->set_last_tf(method, tf); // fill cache
duke@435 4040 return tf;
duke@435 4041 }
duke@435 4042
duke@435 4043 //------------------------------meet-------------------------------------------
duke@435 4044 // Compute the MEET of two types. It returns a new Type object.
duke@435 4045 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 4046 // Perform a fast test for common case; meeting the same types together.
duke@435 4047 if( this == t ) return this; // Meeting same type-rep?
duke@435 4048
duke@435 4049 // Current "this->_base" is Func
duke@435 4050 switch (t->base()) { // switch on original type
duke@435 4051
duke@435 4052 case Bottom: // Ye Olde Default
duke@435 4053 return t;
duke@435 4054
duke@435 4055 default: // All else is a mistake
duke@435 4056 typerr(t);
duke@435 4057
duke@435 4058 case Top:
duke@435 4059 break;
duke@435 4060 }
duke@435 4061 return this; // Return the double constant
duke@435 4062 }
duke@435 4063
duke@435 4064 //------------------------------xdual------------------------------------------
duke@435 4065 // Dual: compute field-by-field dual
duke@435 4066 const Type *TypeFunc::xdual() const {
duke@435 4067 return this;
duke@435 4068 }
duke@435 4069
duke@435 4070 //------------------------------eq---------------------------------------------
duke@435 4071 // Structural equality check for Type representations
duke@435 4072 bool TypeFunc::eq( const Type *t ) const {
duke@435 4073 const TypeFunc *a = (const TypeFunc*)t;
duke@435 4074 return _domain == a->_domain &&
duke@435 4075 _range == a->_range;
duke@435 4076 }
duke@435 4077
duke@435 4078 //------------------------------hash-------------------------------------------
duke@435 4079 // Type-specific hashing function.
duke@435 4080 int TypeFunc::hash(void) const {
duke@435 4081 return (intptr_t)_domain + (intptr_t)_range;
duke@435 4082 }
duke@435 4083
duke@435 4084 //------------------------------dump2------------------------------------------
duke@435 4085 // Dump Function Type
duke@435 4086 #ifndef PRODUCT
duke@435 4087 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4088 if( _range->_cnt <= Parms )
duke@435 4089 st->print("void");
duke@435 4090 else {
duke@435 4091 uint i;
duke@435 4092 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 4093 _range->field_at(i)->dump2(d,depth,st);
duke@435 4094 st->print("/");
duke@435 4095 }
duke@435 4096 _range->field_at(i)->dump2(d,depth,st);
duke@435 4097 }
duke@435 4098 st->print(" ");
duke@435 4099 st->print("( ");
duke@435 4100 if( !depth || d[this] ) { // Check for recursive dump
duke@435 4101 st->print("...)");
duke@435 4102 return;
duke@435 4103 }
duke@435 4104 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 4105 if (Parms < _domain->_cnt)
duke@435 4106 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 4107 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 4108 st->print(", ");
duke@435 4109 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 4110 }
duke@435 4111 st->print(" )");
duke@435 4112 }
duke@435 4113
duke@435 4114 //------------------------------print_flattened--------------------------------
duke@435 4115 // Print a 'flattened' signature
duke@435 4116 static const char * const flat_type_msg[Type::lastype] = {
coleenp@548 4117 "bad","control","top","int","long","_", "narrowoop",
duke@435 4118 "tuple:", "array:",
duke@435 4119 "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
duke@435 4120 "func", "abIO", "return_address", "mem",
duke@435 4121 "float_top", "ftcon:", "flt",
duke@435 4122 "double_top", "dblcon:", "dbl",
duke@435 4123 "bottom"
duke@435 4124 };
duke@435 4125
duke@435 4126 void TypeFunc::print_flattened() const {
duke@435 4127 if( _range->_cnt <= Parms )
duke@435 4128 tty->print("void");
duke@435 4129 else {
duke@435 4130 uint i;
duke@435 4131 for (i = Parms; i < _range->_cnt-1; i++)
duke@435 4132 tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
duke@435 4133 tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
duke@435 4134 }
duke@435 4135 tty->print(" ( ");
duke@435 4136 if (Parms < _domain->_cnt)
duke@435 4137 tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
duke@435 4138 for (uint i = Parms+1; i < _domain->_cnt; i++)
duke@435 4139 tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
duke@435 4140 tty->print(" )");
duke@435 4141 }
duke@435 4142 #endif
duke@435 4143
duke@435 4144 //------------------------------singleton--------------------------------------
duke@435 4145 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 4146 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 4147 // or a single symbol.
duke@435 4148 bool TypeFunc::singleton(void) const {
duke@435 4149 return false; // Never a singleton
duke@435 4150 }
duke@435 4151
duke@435 4152 bool TypeFunc::empty(void) const {
duke@435 4153 return false; // Never empty
duke@435 4154 }
duke@435 4155
duke@435 4156
duke@435 4157 BasicType TypeFunc::return_type() const{
duke@435 4158 if (range()->cnt() == TypeFunc::Parms) {
duke@435 4159 return T_VOID;
duke@435 4160 }
duke@435 4161 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 4162 }

mercurial