src/share/vm/opto/type.cpp

Wed, 27 Aug 2014 08:19:12 -0400

author
zgu
date
Wed, 27 Aug 2014 08:19:12 -0400
changeset 7074
833b0f92429a
parent 6680
78bbf4d43a14
child 7535
7ae4e26cb1e0
child 7693
2163da41681e
permissions
-rw-r--r--

8046598: Scalable Native memory tracking development
Summary: Enhance scalability of native memory tracking
Reviewed-by: coleenp, ctornqvi, gtriantafill

duke@435 1 /*
drchase@6680 2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
coleenp@4037 26 #include "ci/ciMethodData.hpp"
stefank@2314 27 #include "ci/ciTypeFlow.hpp"
stefank@2314 28 #include "classfile/symbolTable.hpp"
stefank@2314 29 #include "classfile/systemDictionary.hpp"
stefank@2314 30 #include "compiler/compileLog.hpp"
stefank@2314 31 #include "libadt/dict.hpp"
stefank@2314 32 #include "memory/gcLocker.hpp"
stefank@2314 33 #include "memory/oopFactory.hpp"
stefank@2314 34 #include "memory/resourceArea.hpp"
stefank@2314 35 #include "oops/instanceKlass.hpp"
never@2658 36 #include "oops/instanceMirrorKlass.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "oops/typeArrayKlass.hpp"
stefank@2314 39 #include "opto/matcher.hpp"
stefank@2314 40 #include "opto/node.hpp"
stefank@2314 41 #include "opto/opcodes.hpp"
stefank@2314 42 #include "opto/type.hpp"
stefank@2314 43
drchase@6680 44 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6680 45
duke@435 46 // Portions of code courtesy of Clifford Click
duke@435 47
duke@435 48 // Optimization - Graph Style
duke@435 49
duke@435 50 // Dictionary of types shared among compilations.
duke@435 51 Dict* Type::_shared_type_dict = NULL;
duke@435 52
duke@435 53 // Array which maps compiler types to Basic Types
coleenp@4037 54 Type::TypeInfo Type::_type_info[Type::lastype] = {
coleenp@4037 55 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
coleenp@4037 56 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
coleenp@4037 57 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
coleenp@4037 58 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
coleenp@4037 59 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
coleenp@4037 60 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
coleenp@4037 61 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
roland@4159 62 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass
coleenp@4037 63 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
coleenp@4037 64 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
coleenp@4037 65
goetz@6487 66 #ifdef SPARC
goetz@6487 67 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
goetz@6487 68 { Bad, T_ILLEGAL, "vectord:", false, Op_RegD, relocInfo::none }, // VectorD
goetz@6487 69 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
goetz@6487 70 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
goetz@6487 71 #elif defined(PPC64)
goetz@6487 72 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
goetz@6487 73 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD
goetz@6487 74 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
goetz@6487 75 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
goetz@6487 76 #else // all other
coleenp@4037 77 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS
coleenp@4037 78 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
coleenp@4037 79 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
coleenp@4037 80 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY
goetz@6487 81 #endif
coleenp@4037 82 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr
coleenp@4037 83 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr
coleenp@4037 84 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr
coleenp@4037 85 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr
coleenp@4037 86 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr
coleenp@4037 87 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr
coleenp@4037 88 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr
coleenp@4037 89 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function
coleenp@4037 90 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio
coleenp@4037 91 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address
coleenp@4037 92 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory
coleenp@4037 93 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop
coleenp@4037 94 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon
coleenp@4037 95 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot
coleenp@4037 96 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop
coleenp@4037 97 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon
coleenp@4037 98 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot
coleenp@4037 99 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom
duke@435 100 };
duke@435 101
duke@435 102 // Map ideal registers (machine types) to ideal types
duke@435 103 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 104
duke@435 105 // Map basic types to canonical Type* pointers.
duke@435 106 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 107
duke@435 108 // Map basic types to constant-zero Types.
duke@435 109 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 110
duke@435 111 // Map basic types to array-body alias types.
duke@435 112 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 113
duke@435 114 //=============================================================================
duke@435 115 // Convenience common pre-built types.
duke@435 116 const Type *Type::ABIO; // State-of-machine only
duke@435 117 const Type *Type::BOTTOM; // All values
duke@435 118 const Type *Type::CONTROL; // Control only
duke@435 119 const Type *Type::DOUBLE; // All doubles
duke@435 120 const Type *Type::FLOAT; // All floats
duke@435 121 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 122 const Type *Type::MEMORY; // Abstract store only
duke@435 123 const Type *Type::RETURN_ADDRESS;
duke@435 124 const Type *Type::TOP; // No values in set
duke@435 125
duke@435 126 //------------------------------get_const_type---------------------------
duke@435 127 const Type* Type::get_const_type(ciType* type) {
duke@435 128 if (type == NULL) {
duke@435 129 return NULL;
duke@435 130 } else if (type->is_primitive_type()) {
duke@435 131 return get_const_basic_type(type->basic_type());
duke@435 132 } else {
duke@435 133 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 134 }
duke@435 135 }
duke@435 136
duke@435 137 //---------------------------array_element_basic_type---------------------------------
duke@435 138 // Mapping to the array element's basic type.
duke@435 139 BasicType Type::array_element_basic_type() const {
duke@435 140 BasicType bt = basic_type();
duke@435 141 if (bt == T_INT) {
duke@435 142 if (this == TypeInt::INT) return T_INT;
duke@435 143 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 144 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 145 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 146 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 147 return T_VOID;
duke@435 148 }
duke@435 149 return bt;
duke@435 150 }
duke@435 151
duke@435 152 //---------------------------get_typeflow_type---------------------------------
duke@435 153 // Import a type produced by ciTypeFlow.
duke@435 154 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 155 switch (type->basic_type()) {
duke@435 156
duke@435 157 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 158 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 159 return Type::BOTTOM;
duke@435 160
duke@435 161 case ciTypeFlow::StateVector::T_TOP:
duke@435 162 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 163 return Type::TOP;
duke@435 164
duke@435 165 case ciTypeFlow::StateVector::T_NULL:
duke@435 166 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 167 return TypePtr::NULL_PTR;
duke@435 168
duke@435 169 case ciTypeFlow::StateVector::T_LONG2:
duke@435 170 // The ciTypeFlow pass pushes a long, then the half.
duke@435 171 // We do the same.
duke@435 172 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 173 return TypeInt::TOP;
duke@435 174
duke@435 175 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 176 // The ciTypeFlow pass pushes double, then the half.
duke@435 177 // Our convention is the same.
duke@435 178 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 179 return Type::TOP;
duke@435 180
duke@435 181 case T_ADDRESS:
duke@435 182 assert(type->is_return_address(), "");
duke@435 183 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 184
duke@435 185 default:
duke@435 186 // make sure we did not mix up the cases:
duke@435 187 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 188 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 189 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 190 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 191 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 192 assert(!type->is_return_address(), "");
duke@435 193
duke@435 194 return Type::get_const_type(type);
duke@435 195 }
duke@435 196 }
duke@435 197
duke@435 198
vlivanov@5658 199 //-----------------------make_from_constant------------------------------------
vlivanov@5658 200 const Type* Type::make_from_constant(ciConstant constant,
vlivanov@5658 201 bool require_constant, bool is_autobox_cache) {
vlivanov@5658 202 switch (constant.basic_type()) {
vlivanov@5658 203 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
vlivanov@5658 204 case T_CHAR: return TypeInt::make(constant.as_char());
vlivanov@5658 205 case T_BYTE: return TypeInt::make(constant.as_byte());
vlivanov@5658 206 case T_SHORT: return TypeInt::make(constant.as_short());
vlivanov@5658 207 case T_INT: return TypeInt::make(constant.as_int());
vlivanov@5658 208 case T_LONG: return TypeLong::make(constant.as_long());
vlivanov@5658 209 case T_FLOAT: return TypeF::make(constant.as_float());
vlivanov@5658 210 case T_DOUBLE: return TypeD::make(constant.as_double());
vlivanov@5658 211 case T_ARRAY:
vlivanov@5658 212 case T_OBJECT:
vlivanov@5658 213 {
vlivanov@5658 214 // cases:
vlivanov@5658 215 // can_be_constant = (oop not scavengable || ScavengeRootsInCode != 0)
vlivanov@5658 216 // should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
vlivanov@5658 217 // An oop is not scavengable if it is in the perm gen.
vlivanov@5658 218 ciObject* oop_constant = constant.as_object();
vlivanov@5658 219 if (oop_constant->is_null_object()) {
vlivanov@5658 220 return Type::get_zero_type(T_OBJECT);
vlivanov@5658 221 } else if (require_constant || oop_constant->should_be_constant()) {
vlivanov@5658 222 return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
vlivanov@5658 223 }
vlivanov@5658 224 }
vlivanov@5658 225 }
vlivanov@5658 226 // Fall through to failure
vlivanov@5658 227 return NULL;
vlivanov@5658 228 }
vlivanov@5658 229
vlivanov@5658 230
duke@435 231 //------------------------------make-------------------------------------------
duke@435 232 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 233 // and look for an existing copy in the type dictionary.
duke@435 234 const Type *Type::make( enum TYPES t ) {
duke@435 235 return (new Type(t))->hashcons();
duke@435 236 }
kvn@658 237
duke@435 238 //------------------------------cmp--------------------------------------------
duke@435 239 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 240 if( t1->_base != t2->_base )
duke@435 241 return 1; // Missed badly
duke@435 242 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 243 return !t1->eq(t2); // Return ZERO if equal
duke@435 244 }
duke@435 245
roland@6313 246 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
roland@6313 247 if (!include_speculative) {
roland@6313 248 return remove_speculative();
roland@6313 249 }
roland@6313 250 return this;
roland@6313 251 }
roland@6313 252
duke@435 253 //------------------------------hash-------------------------------------------
duke@435 254 int Type::uhash( const Type *const t ) {
duke@435 255 return t->hash();
duke@435 256 }
duke@435 257
kvn@1975 258 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
kvn@1975 259
duke@435 260 //--------------------------Initialize_shared----------------------------------
duke@435 261 void Type::Initialize_shared(Compile* current) {
duke@435 262 // This method does not need to be locked because the first system
duke@435 263 // compilations (stub compilations) occur serially. If they are
duke@435 264 // changed to proceed in parallel, then this section will need
duke@435 265 // locking.
duke@435 266
duke@435 267 Arena* save = current->type_arena();
zgu@7074 268 Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
duke@435 269
duke@435 270 current->set_type_arena(shared_type_arena);
duke@435 271 _shared_type_dict =
duke@435 272 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 273 shared_type_arena, 128 );
duke@435 274 current->set_type_dict(_shared_type_dict);
duke@435 275
duke@435 276 // Make shared pre-built types.
duke@435 277 CONTROL = make(Control); // Control only
duke@435 278 TOP = make(Top); // No values in set
duke@435 279 MEMORY = make(Memory); // Abstract store only
duke@435 280 ABIO = make(Abio); // State-of-machine only
duke@435 281 RETURN_ADDRESS=make(Return_Address);
duke@435 282 FLOAT = make(FloatBot); // All floats
duke@435 283 DOUBLE = make(DoubleBot); // All doubles
duke@435 284 BOTTOM = make(Bottom); // Everything
duke@435 285 HALF = make(Half); // Placeholder half of doublewide type
duke@435 286
duke@435 287 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 288 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 289
duke@435 290 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 291 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 292
duke@435 293 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 294 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 295 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 296 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 297 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 298 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 299 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 300 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 301 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 302 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 303 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
twisti@1059 304 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
duke@435 305 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 306 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 307 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 308 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 309 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 310 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
rbackman@6375 311 TypeInt::TYPE_DOMAIN = TypeInt::INT;
duke@435 312 // CmpL is overloaded both as the bytecode computation returning
duke@435 313 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 314 // compare returning optimizer ideal-type flags.
duke@435 315 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 316 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 317 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 318 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
kvn@1975 319 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 320
duke@435 321 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 322 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 323 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 324 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 325 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 326 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 327 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
rbackman@6375 328 TypeLong::TYPE_DOMAIN = TypeLong::LONG;
duke@435 329
duke@435 330 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 331 fboth[0] = Type::CONTROL;
duke@435 332 fboth[1] = Type::CONTROL;
duke@435 333 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 334
duke@435 335 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 336 ffalse[0] = Type::CONTROL;
duke@435 337 ffalse[1] = Type::TOP;
duke@435 338 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 339
duke@435 340 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 341 fneither[0] = Type::TOP;
duke@435 342 fneither[1] = Type::TOP;
duke@435 343 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 344
duke@435 345 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 346 ftrue[0] = Type::TOP;
duke@435 347 ftrue[1] = Type::CONTROL;
duke@435 348 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 349
duke@435 350 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 351 floop[0] = Type::CONTROL;
duke@435 352 floop[1] = TypeInt::INT;
duke@435 353 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 354
duke@435 355 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 356 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 357 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 358
duke@435 359 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 360 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 361
duke@435 362 const Type **fmembar = TypeTuple::fields(0);
duke@435 363 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 364
duke@435 365 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 366 fsc[0] = TypeInt::CC;
duke@435 367 fsc[1] = Type::MEMORY;
duke@435 368 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 369
duke@435 370 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 371 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 372 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 373 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 374 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 375 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 376 false, 0, oopDesc::klass_offset_in_bytes());
roland@5991 377 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
duke@435 378
coleenp@4037 379 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
coleenp@4037 380
coleenp@548 381 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 382 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 383
roland@4159 384 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
roland@4159 385
coleenp@548 386 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 387 mreg2type[Op_Set ] = 0;
coleenp@548 388 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 389 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 390 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 391 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 392 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 393 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 394 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 395
kvn@2116 396 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
kvn@598 397
kvn@598 398 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 399
kvn@598 400 #ifdef _LP64
kvn@598 401 if (UseCompressedOops) {
coleenp@4037 402 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
kvn@598 403 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 404 } else
kvn@598 405 #endif
kvn@598 406 {
kvn@598 407 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 408 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 409 }
duke@435 410 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 411 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 412 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 413 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 414 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 415 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 416 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 417
kvn@598 418 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 419 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 420 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 421 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 422 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 423 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 424 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 425 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 426 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 427 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 428 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 429 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 430
duke@435 431 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 432 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 433
duke@435 434 const Type **fi2c = TypeTuple::fields(2);
coleenp@4037 435 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
duke@435 436 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 437 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 438
duke@435 439 const Type **intpair = TypeTuple::fields(2);
duke@435 440 intpair[0] = TypeInt::INT;
duke@435 441 intpair[1] = TypeInt::INT;
duke@435 442 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 443
duke@435 444 const Type **longpair = TypeTuple::fields(2);
duke@435 445 longpair[0] = TypeLong::LONG;
duke@435 446 longpair[1] = TypeLong::LONG;
duke@435 447 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 448
rbackman@5791 449 const Type **intccpair = TypeTuple::fields(2);
rbackman@5791 450 intccpair[0] = TypeInt::INT;
rbackman@5791 451 intccpair[1] = TypeInt::CC;
rbackman@5791 452 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
rbackman@5791 453
rbackman@5997 454 const Type **longccpair = TypeTuple::fields(2);
rbackman@5997 455 longccpair[0] = TypeLong::LONG;
rbackman@5997 456 longccpair[1] = TypeInt::CC;
rbackman@5997 457 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
rbackman@5997 458
roland@4159 459 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
roland@4159 460 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
roland@4159 461 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
roland@4159 462 _const_basic_type[T_CHAR] = TypeInt::CHAR;
roland@4159 463 _const_basic_type[T_BYTE] = TypeInt::BYTE;
roland@4159 464 _const_basic_type[T_SHORT] = TypeInt::SHORT;
roland@4159 465 _const_basic_type[T_INT] = TypeInt::INT;
roland@4159 466 _const_basic_type[T_LONG] = TypeLong::LONG;
roland@4159 467 _const_basic_type[T_FLOAT] = Type::FLOAT;
roland@4159 468 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
roland@4159 469 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
roland@4159 470 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
roland@4159 471 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
roland@4159 472 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
roland@4159 473 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not?
roland@4159 474
roland@4159 475 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
roland@4159 476 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
roland@4159 477 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
roland@4159 478 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
roland@4159 479 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
roland@4159 480 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
roland@4159 481 _zero_type[T_INT] = TypeInt::ZERO;
roland@4159 482 _zero_type[T_LONG] = TypeLong::ZERO;
roland@4159 483 _zero_type[T_FLOAT] = TypeF::ZERO;
roland@4159 484 _zero_type[T_DOUBLE] = TypeD::ZERO;
roland@4159 485 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
roland@4159 486 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
roland@4159 487 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
roland@4159 488 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 489
duke@435 490 // get_zero_type() should not happen for T_CONFLICT
duke@435 491 _zero_type[T_CONFLICT]= NULL;
duke@435 492
kvn@3882 493 // Vector predefined types, it needs initialized _const_basic_type[].
kvn@3882 494 if (Matcher::vector_size_supported(T_BYTE,4)) {
kvn@3882 495 TypeVect::VECTS = TypeVect::make(T_BYTE,4);
kvn@3882 496 }
kvn@3882 497 if (Matcher::vector_size_supported(T_FLOAT,2)) {
kvn@3882 498 TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
kvn@3882 499 }
kvn@3882 500 if (Matcher::vector_size_supported(T_FLOAT,4)) {
kvn@3882 501 TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
kvn@3882 502 }
kvn@3882 503 if (Matcher::vector_size_supported(T_FLOAT,8)) {
kvn@3882 504 TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
kvn@3882 505 }
kvn@3882 506 mreg2type[Op_VecS] = TypeVect::VECTS;
kvn@3882 507 mreg2type[Op_VecD] = TypeVect::VECTD;
kvn@3882 508 mreg2type[Op_VecX] = TypeVect::VECTX;
kvn@3882 509 mreg2type[Op_VecY] = TypeVect::VECTY;
kvn@3882 510
duke@435 511 // Restore working type arena.
duke@435 512 current->set_type_arena(save);
duke@435 513 current->set_type_dict(NULL);
duke@435 514 }
duke@435 515
duke@435 516 //------------------------------Initialize-------------------------------------
duke@435 517 void Type::Initialize(Compile* current) {
duke@435 518 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 519
duke@435 520 if (_shared_type_dict == NULL) {
duke@435 521 Initialize_shared(current);
duke@435 522 }
duke@435 523
duke@435 524 Arena* type_arena = current->type_arena();
duke@435 525
duke@435 526 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 527 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 528 current->set_type_dict(tdic);
duke@435 529
duke@435 530 // Transfer the shared types.
duke@435 531 DictI i(_shared_type_dict);
duke@435 532 for( ; i.test(); ++i ) {
duke@435 533 Type* t = (Type*)i._value;
duke@435 534 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 535 }
duke@435 536 }
duke@435 537
duke@435 538 //------------------------------hashcons---------------------------------------
duke@435 539 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 540 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 541 // current Type in the Type table.
duke@435 542 const Type *Type::hashcons(void) {
duke@435 543 debug_only(base()); // Check the assertion in Type::base().
duke@435 544 // Look up the Type in the Type dictionary
duke@435 545 Dict *tdic = type_dict();
duke@435 546 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 547 if( old ) { // Pre-existing Type?
duke@435 548 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 549 delete this; // Yes, Nuke this guy
duke@435 550 assert( old->_dual, "" );
duke@435 551 return old; // Return pre-existing
duke@435 552 }
duke@435 553
duke@435 554 // Every type has a dual (to make my lattice symmetric).
duke@435 555 // Since we just discovered a new Type, compute its dual right now.
duke@435 556 assert( !_dual, "" ); // No dual yet
duke@435 557 _dual = xdual(); // Compute the dual
duke@435 558 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 559 _dual = this;
duke@435 560 return this;
duke@435 561 }
duke@435 562 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 563 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 564 // New Type, insert into Type table
duke@435 565 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 566 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 567 #ifdef ASSERT
duke@435 568 Type *dual_dual = (Type*)_dual->xdual();
duke@435 569 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 570 delete dual_dual;
duke@435 571 #endif
duke@435 572 return this; // Return new Type
duke@435 573 }
duke@435 574
duke@435 575 //------------------------------eq---------------------------------------------
duke@435 576 // Structural equality check for Type representations
duke@435 577 bool Type::eq( const Type * ) const {
duke@435 578 return true; // Nothing else can go wrong
duke@435 579 }
duke@435 580
duke@435 581 //------------------------------hash-------------------------------------------
duke@435 582 // Type-specific hashing function.
duke@435 583 int Type::hash(void) const {
duke@435 584 return _base;
duke@435 585 }
duke@435 586
duke@435 587 //------------------------------is_finite--------------------------------------
duke@435 588 // Has a finite value
duke@435 589 bool Type::is_finite() const {
duke@435 590 return false;
duke@435 591 }
duke@435 592
duke@435 593 //------------------------------is_nan-----------------------------------------
duke@435 594 // Is not a number (NaN)
duke@435 595 bool Type::is_nan() const {
duke@435 596 return false;
duke@435 597 }
duke@435 598
kvn@1255 599 //----------------------interface_vs_oop---------------------------------------
kvn@1255 600 #ifdef ASSERT
roland@5991 601 bool Type::interface_vs_oop_helper(const Type *t) const {
kvn@1255 602 bool result = false;
kvn@1255 603
kvn@1427 604 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
kvn@1427 605 const TypePtr* t_ptr = t->make_ptr();
kvn@1427 606 if( this_ptr == NULL || t_ptr == NULL )
kvn@1427 607 return result;
kvn@1427 608
kvn@1427 609 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
kvn@1427 610 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
kvn@1255 611 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
kvn@1255 612 bool this_interface = this_inst->klass()->is_interface();
kvn@1255 613 bool t_interface = t_inst->klass()->is_interface();
kvn@1255 614 result = this_interface ^ t_interface;
kvn@1255 615 }
kvn@1255 616
kvn@1255 617 return result;
kvn@1255 618 }
roland@5991 619
roland@5991 620 bool Type::interface_vs_oop(const Type *t) const {
roland@5991 621 if (interface_vs_oop_helper(t)) {
roland@5991 622 return true;
roland@5991 623 }
roland@5991 624 // Now check the speculative parts as well
roland@5991 625 const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
roland@5991 626 const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
roland@5991 627 if (this_spec != NULL && t_spec != NULL) {
roland@5991 628 if (this_spec->interface_vs_oop_helper(t_spec)) {
roland@5991 629 return true;
roland@5991 630 }
roland@5991 631 return false;
roland@5991 632 }
roland@5991 633 if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
roland@5991 634 return true;
roland@5991 635 }
roland@5991 636 if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
roland@5991 637 return true;
roland@5991 638 }
roland@5991 639 return false;
roland@5991 640 }
roland@5991 641
kvn@1255 642 #endif
kvn@1255 643
duke@435 644 //------------------------------meet-------------------------------------------
duke@435 645 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 646 // commutative and the lattice is symmetric.
roland@6313 647 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
coleenp@548 648 if (isa_narrowoop() && t->isa_narrowoop()) {
roland@6313 649 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
kvn@656 650 return result->make_narrowoop();
coleenp@548 651 }
roland@4159 652 if (isa_narrowklass() && t->isa_narrowklass()) {
roland@6313 653 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
roland@4159 654 return result->make_narrowklass();
roland@4159 655 }
coleenp@548 656
roland@6313 657 const Type *this_t = maybe_remove_speculative(include_speculative);
roland@6313 658 t = t->maybe_remove_speculative(include_speculative);
roland@6313 659
roland@6313 660 const Type *mt = this_t->xmeet(t);
coleenp@548 661 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
roland@4159 662 if (isa_narrowklass() || t->isa_narrowklass()) return mt;
duke@435 663 #ifdef ASSERT
roland@6313 664 assert(mt == t->xmeet(this_t), "meet not commutative");
duke@435 665 const Type* dual_join = mt->_dual;
duke@435 666 const Type *t2t = dual_join->xmeet(t->_dual);
roland@6313 667 const Type *t2this = dual_join->xmeet(this_t->_dual);
duke@435 668
duke@435 669 // Interface meet Oop is Not Symmetric:
duke@435 670 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 671 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
kvn@1255 672
roland@6313 673 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
duke@435 674 tty->print_cr("=== Meet Not Symmetric ===");
roland@6313 675 tty->print("t = "); t->dump(); tty->cr();
roland@6313 676 tty->print("this= "); this_t->dump(); tty->cr();
roland@6313 677 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
roland@6313 678
roland@6313 679 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
roland@6313 680 tty->print("this_dual= "); this_t->_dual->dump(); tty->cr();
roland@6313 681 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
roland@6313 682
roland@6313 683 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
roland@6313 684 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 685
duke@435 686 fatal("meet not symmetric" );
duke@435 687 }
duke@435 688 #endif
duke@435 689 return mt;
duke@435 690 }
duke@435 691
duke@435 692 //------------------------------xmeet------------------------------------------
duke@435 693 // Compute the MEET of two types. It returns a new Type object.
duke@435 694 const Type *Type::xmeet( const Type *t ) const {
duke@435 695 // Perform a fast test for common case; meeting the same types together.
duke@435 696 if( this == t ) return this; // Meeting same type-rep?
duke@435 697
duke@435 698 // Meeting TOP with anything?
duke@435 699 if( _base == Top ) return t;
duke@435 700
duke@435 701 // Meeting BOTTOM with anything?
duke@435 702 if( _base == Bottom ) return BOTTOM;
duke@435 703
duke@435 704 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 705 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 706 switch (t->base()) { // Switch on original type
duke@435 707
duke@435 708 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 709 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 710 case FloatCon:
duke@435 711 case DoubleCon:
duke@435 712 case Int:
duke@435 713 case Long:
duke@435 714 return t->xmeet(this);
duke@435 715
duke@435 716 case OopPtr:
duke@435 717 return t->xmeet(this);
duke@435 718
duke@435 719 case InstPtr:
duke@435 720 return t->xmeet(this);
duke@435 721
coleenp@4037 722 case MetadataPtr:
duke@435 723 case KlassPtr:
duke@435 724 return t->xmeet(this);
duke@435 725
duke@435 726 case AryPtr:
duke@435 727 return t->xmeet(this);
duke@435 728
coleenp@548 729 case NarrowOop:
coleenp@548 730 return t->xmeet(this);
coleenp@548 731
roland@4159 732 case NarrowKlass:
roland@4159 733 return t->xmeet(this);
roland@4159 734
duke@435 735 case Bad: // Type check
duke@435 736 default: // Bogus type not in lattice
duke@435 737 typerr(t);
duke@435 738 return Type::BOTTOM;
duke@435 739
duke@435 740 case Bottom: // Ye Olde Default
duke@435 741 return t;
duke@435 742
duke@435 743 case FloatTop:
duke@435 744 if( _base == FloatTop ) return this;
duke@435 745 case FloatBot: // Float
duke@435 746 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 747 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 748 typerr(t);
duke@435 749 return Type::BOTTOM;
duke@435 750
duke@435 751 case DoubleTop:
duke@435 752 if( _base == DoubleTop ) return this;
duke@435 753 case DoubleBot: // Double
duke@435 754 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 755 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 756 typerr(t);
duke@435 757 return Type::BOTTOM;
duke@435 758
duke@435 759 // These next few cases must match exactly or it is a compile-time error.
duke@435 760 case Control: // Control of code
duke@435 761 case Abio: // State of world outside of program
duke@435 762 case Memory:
duke@435 763 if( _base == t->_base ) return this;
duke@435 764 typerr(t);
duke@435 765 return Type::BOTTOM;
duke@435 766
duke@435 767 case Top: // Top of the lattice
duke@435 768 return this;
duke@435 769 }
duke@435 770
duke@435 771 // The type is unchanged
duke@435 772 return this;
duke@435 773 }
duke@435 774
duke@435 775 //-----------------------------filter------------------------------------------
roland@6313 776 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 777 const Type* ft = join_helper(kills, include_speculative);
duke@435 778 if (ft->empty())
duke@435 779 return Type::TOP; // Canonical empty value
duke@435 780 return ft;
duke@435 781 }
duke@435 782
duke@435 783 //------------------------------xdual------------------------------------------
duke@435 784 // Compute dual right now.
duke@435 785 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 786 Bad, // Bad
duke@435 787 Control, // Control
duke@435 788 Bottom, // Top
duke@435 789 Bad, // Int - handled in v-call
duke@435 790 Bad, // Long - handled in v-call
duke@435 791 Half, // Half
coleenp@548 792 Bad, // NarrowOop - handled in v-call
roland@4159 793 Bad, // NarrowKlass - handled in v-call
duke@435 794
duke@435 795 Bad, // Tuple - handled in v-call
duke@435 796 Bad, // Array - handled in v-call
kvn@3882 797 Bad, // VectorS - handled in v-call
kvn@3882 798 Bad, // VectorD - handled in v-call
kvn@3882 799 Bad, // VectorX - handled in v-call
kvn@3882 800 Bad, // VectorY - handled in v-call
duke@435 801
duke@435 802 Bad, // AnyPtr - handled in v-call
duke@435 803 Bad, // RawPtr - handled in v-call
duke@435 804 Bad, // OopPtr - handled in v-call
duke@435 805 Bad, // InstPtr - handled in v-call
duke@435 806 Bad, // AryPtr - handled in v-call
coleenp@4037 807
coleenp@4037 808 Bad, // MetadataPtr - handled in v-call
duke@435 809 Bad, // KlassPtr - handled in v-call
duke@435 810
duke@435 811 Bad, // Function - handled in v-call
duke@435 812 Abio, // Abio
duke@435 813 Return_Address,// Return_Address
duke@435 814 Memory, // Memory
duke@435 815 FloatBot, // FloatTop
duke@435 816 FloatCon, // FloatCon
duke@435 817 FloatTop, // FloatBot
duke@435 818 DoubleBot, // DoubleTop
duke@435 819 DoubleCon, // DoubleCon
duke@435 820 DoubleTop, // DoubleBot
duke@435 821 Top // Bottom
duke@435 822 };
duke@435 823
duke@435 824 const Type *Type::xdual() const {
duke@435 825 // Note: the base() accessor asserts the sanity of _base.
coleenp@4037 826 assert(_type_info[base()].dual_type != Bad, "implement with v-call");
coleenp@4037 827 return new Type(_type_info[_base].dual_type);
duke@435 828 }
duke@435 829
duke@435 830 //------------------------------has_memory-------------------------------------
duke@435 831 bool Type::has_memory() const {
duke@435 832 Type::TYPES tx = base();
duke@435 833 if (tx == Memory) return true;
duke@435 834 if (tx == Tuple) {
duke@435 835 const TypeTuple *t = is_tuple();
duke@435 836 for (uint i=0; i < t->cnt(); i++) {
duke@435 837 tx = t->field_at(i)->base();
duke@435 838 if (tx == Memory) return true;
duke@435 839 }
duke@435 840 }
duke@435 841 return false;
duke@435 842 }
duke@435 843
duke@435 844 #ifndef PRODUCT
duke@435 845 //------------------------------dump2------------------------------------------
duke@435 846 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
drchase@6680 847 st->print("%s", _type_info[_base].msg);
duke@435 848 }
duke@435 849
duke@435 850 //------------------------------dump-------------------------------------------
duke@435 851 void Type::dump_on(outputStream *st) const {
duke@435 852 ResourceMark rm;
duke@435 853 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 854 dump2(d,1, st);
kvn@598 855 if (is_ptr_to_narrowoop()) {
coleenp@548 856 st->print(" [narrow]");
roland@4159 857 } else if (is_ptr_to_narrowklass()) {
roland@4159 858 st->print(" [narrowklass]");
coleenp@548 859 }
duke@435 860 }
duke@435 861 #endif
duke@435 862
duke@435 863 //------------------------------singleton--------------------------------------
duke@435 864 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 865 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 866 bool Type::singleton(void) const {
duke@435 867 return _base == Top || _base == Half;
duke@435 868 }
duke@435 869
duke@435 870 //------------------------------empty------------------------------------------
duke@435 871 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 872 bool Type::empty(void) const {
duke@435 873 switch (_base) {
duke@435 874 case DoubleTop:
duke@435 875 case FloatTop:
duke@435 876 case Top:
duke@435 877 return true;
duke@435 878
duke@435 879 case Half:
duke@435 880 case Abio:
duke@435 881 case Return_Address:
duke@435 882 case Memory:
duke@435 883 case Bottom:
duke@435 884 case FloatBot:
duke@435 885 case DoubleBot:
duke@435 886 return false; // never a singleton, therefore never empty
duke@435 887 }
duke@435 888
duke@435 889 ShouldNotReachHere();
duke@435 890 return false;
duke@435 891 }
duke@435 892
duke@435 893 //------------------------------dump_stats-------------------------------------
duke@435 894 // Dump collected statistics to stderr
duke@435 895 #ifndef PRODUCT
duke@435 896 void Type::dump_stats() {
duke@435 897 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 898 }
duke@435 899 #endif
duke@435 900
duke@435 901 //------------------------------typerr-----------------------------------------
duke@435 902 void Type::typerr( const Type *t ) const {
duke@435 903 #ifndef PRODUCT
duke@435 904 tty->print("\nError mixing types: ");
duke@435 905 dump();
duke@435 906 tty->print(" and ");
duke@435 907 t->dump();
duke@435 908 tty->print("\n");
duke@435 909 #endif
duke@435 910 ShouldNotReachHere();
duke@435 911 }
duke@435 912
duke@435 913
duke@435 914 //=============================================================================
duke@435 915 // Convenience common pre-built types.
duke@435 916 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 917 const TypeF *TypeF::ONE; // Floating point one
duke@435 918
duke@435 919 //------------------------------make-------------------------------------------
duke@435 920 // Create a float constant
duke@435 921 const TypeF *TypeF::make(float f) {
duke@435 922 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 923 }
duke@435 924
duke@435 925 //------------------------------meet-------------------------------------------
duke@435 926 // Compute the MEET of two types. It returns a new Type object.
duke@435 927 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 928 // Perform a fast test for common case; meeting the same types together.
duke@435 929 if( this == t ) return this; // Meeting same type-rep?
duke@435 930
duke@435 931 // Current "this->_base" is FloatCon
duke@435 932 switch (t->base()) { // Switch on original type
duke@435 933 case AnyPtr: // Mixing with oops happens when javac
duke@435 934 case RawPtr: // reuses local variables
duke@435 935 case OopPtr:
duke@435 936 case InstPtr:
coleenp@4037 937 case AryPtr:
coleenp@4037 938 case MetadataPtr:
duke@435 939 case KlassPtr:
kvn@728 940 case NarrowOop:
roland@4159 941 case NarrowKlass:
duke@435 942 case Int:
duke@435 943 case Long:
duke@435 944 case DoubleTop:
duke@435 945 case DoubleCon:
duke@435 946 case DoubleBot:
duke@435 947 case Bottom: // Ye Olde Default
duke@435 948 return Type::BOTTOM;
duke@435 949
duke@435 950 case FloatBot:
duke@435 951 return t;
duke@435 952
duke@435 953 default: // All else is a mistake
duke@435 954 typerr(t);
duke@435 955
duke@435 956 case FloatCon: // Float-constant vs Float-constant?
duke@435 957 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 958 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 959 // all the same representation in C++
duke@435 960 return FLOAT; // Return generic float
duke@435 961 // Equal constants
duke@435 962 case Top:
duke@435 963 case FloatTop:
duke@435 964 break; // Return the float constant
duke@435 965 }
duke@435 966 return this; // Return the float constant
duke@435 967 }
duke@435 968
duke@435 969 //------------------------------xdual------------------------------------------
duke@435 970 // Dual: symmetric
duke@435 971 const Type *TypeF::xdual() const {
duke@435 972 return this;
duke@435 973 }
duke@435 974
duke@435 975 //------------------------------eq---------------------------------------------
duke@435 976 // Structural equality check for Type representations
duke@435 977 bool TypeF::eq( const Type *t ) const {
duke@435 978 if( g_isnan(_f) ||
duke@435 979 g_isnan(t->getf()) ) {
duke@435 980 // One or both are NANs. If both are NANs return true, else false.
duke@435 981 return (g_isnan(_f) && g_isnan(t->getf()));
duke@435 982 }
duke@435 983 if (_f == t->getf()) {
duke@435 984 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 985 if (_f == 0.0) {
duke@435 986 // difference between positive and negative zero
duke@435 987 if (jint_cast(_f) != jint_cast(t->getf())) return false;
duke@435 988 }
duke@435 989 return true;
duke@435 990 }
duke@435 991 return false;
duke@435 992 }
duke@435 993
duke@435 994 //------------------------------hash-------------------------------------------
duke@435 995 // Type-specific hashing function.
duke@435 996 int TypeF::hash(void) const {
duke@435 997 return *(int*)(&_f);
duke@435 998 }
duke@435 999
duke@435 1000 //------------------------------is_finite--------------------------------------
duke@435 1001 // Has a finite value
duke@435 1002 bool TypeF::is_finite() const {
duke@435 1003 return g_isfinite(getf()) != 0;
duke@435 1004 }
duke@435 1005
duke@435 1006 //------------------------------is_nan-----------------------------------------
duke@435 1007 // Is not a number (NaN)
duke@435 1008 bool TypeF::is_nan() const {
duke@435 1009 return g_isnan(getf()) != 0;
duke@435 1010 }
duke@435 1011
duke@435 1012 //------------------------------dump2------------------------------------------
duke@435 1013 // Dump float constant Type
duke@435 1014 #ifndef PRODUCT
duke@435 1015 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1016 Type::dump2(d,depth, st);
duke@435 1017 st->print("%f", _f);
duke@435 1018 }
duke@435 1019 #endif
duke@435 1020
duke@435 1021 //------------------------------singleton--------------------------------------
duke@435 1022 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1023 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1024 // or a single symbol.
duke@435 1025 bool TypeF::singleton(void) const {
duke@435 1026 return true; // Always a singleton
duke@435 1027 }
duke@435 1028
duke@435 1029 bool TypeF::empty(void) const {
duke@435 1030 return false; // always exactly a singleton
duke@435 1031 }
duke@435 1032
duke@435 1033 //=============================================================================
duke@435 1034 // Convenience common pre-built types.
duke@435 1035 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 1036 const TypeD *TypeD::ONE; // Floating point one
duke@435 1037
duke@435 1038 //------------------------------make-------------------------------------------
duke@435 1039 const TypeD *TypeD::make(double d) {
duke@435 1040 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 1041 }
duke@435 1042
duke@435 1043 //------------------------------meet-------------------------------------------
duke@435 1044 // Compute the MEET of two types. It returns a new Type object.
duke@435 1045 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 1046 // Perform a fast test for common case; meeting the same types together.
duke@435 1047 if( this == t ) return this; // Meeting same type-rep?
duke@435 1048
duke@435 1049 // Current "this->_base" is DoubleCon
duke@435 1050 switch (t->base()) { // Switch on original type
duke@435 1051 case AnyPtr: // Mixing with oops happens when javac
duke@435 1052 case RawPtr: // reuses local variables
duke@435 1053 case OopPtr:
duke@435 1054 case InstPtr:
coleenp@4037 1055 case AryPtr:
coleenp@4037 1056 case MetadataPtr:
duke@435 1057 case KlassPtr:
never@618 1058 case NarrowOop:
roland@4159 1059 case NarrowKlass:
duke@435 1060 case Int:
duke@435 1061 case Long:
duke@435 1062 case FloatTop:
duke@435 1063 case FloatCon:
duke@435 1064 case FloatBot:
duke@435 1065 case Bottom: // Ye Olde Default
duke@435 1066 return Type::BOTTOM;
duke@435 1067
duke@435 1068 case DoubleBot:
duke@435 1069 return t;
duke@435 1070
duke@435 1071 default: // All else is a mistake
duke@435 1072 typerr(t);
duke@435 1073
duke@435 1074 case DoubleCon: // Double-constant vs Double-constant?
duke@435 1075 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 1076 return DOUBLE; // Return generic double
duke@435 1077 case Top:
duke@435 1078 case DoubleTop:
duke@435 1079 break;
duke@435 1080 }
duke@435 1081 return this; // Return the double constant
duke@435 1082 }
duke@435 1083
duke@435 1084 //------------------------------xdual------------------------------------------
duke@435 1085 // Dual: symmetric
duke@435 1086 const Type *TypeD::xdual() const {
duke@435 1087 return this;
duke@435 1088 }
duke@435 1089
duke@435 1090 //------------------------------eq---------------------------------------------
duke@435 1091 // Structural equality check for Type representations
duke@435 1092 bool TypeD::eq( const Type *t ) const {
duke@435 1093 if( g_isnan(_d) ||
duke@435 1094 g_isnan(t->getd()) ) {
duke@435 1095 // One or both are NANs. If both are NANs return true, else false.
duke@435 1096 return (g_isnan(_d) && g_isnan(t->getd()));
duke@435 1097 }
duke@435 1098 if (_d == t->getd()) {
duke@435 1099 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 1100 if (_d == 0.0) {
duke@435 1101 // difference between positive and negative zero
duke@435 1102 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
duke@435 1103 }
duke@435 1104 return true;
duke@435 1105 }
duke@435 1106 return false;
duke@435 1107 }
duke@435 1108
duke@435 1109 //------------------------------hash-------------------------------------------
duke@435 1110 // Type-specific hashing function.
duke@435 1111 int TypeD::hash(void) const {
duke@435 1112 return *(int*)(&_d);
duke@435 1113 }
duke@435 1114
duke@435 1115 //------------------------------is_finite--------------------------------------
duke@435 1116 // Has a finite value
duke@435 1117 bool TypeD::is_finite() const {
duke@435 1118 return g_isfinite(getd()) != 0;
duke@435 1119 }
duke@435 1120
duke@435 1121 //------------------------------is_nan-----------------------------------------
duke@435 1122 // Is not a number (NaN)
duke@435 1123 bool TypeD::is_nan() const {
duke@435 1124 return g_isnan(getd()) != 0;
duke@435 1125 }
duke@435 1126
duke@435 1127 //------------------------------dump2------------------------------------------
duke@435 1128 // Dump double constant Type
duke@435 1129 #ifndef PRODUCT
duke@435 1130 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1131 Type::dump2(d,depth,st);
duke@435 1132 st->print("%f", _d);
duke@435 1133 }
duke@435 1134 #endif
duke@435 1135
duke@435 1136 //------------------------------singleton--------------------------------------
duke@435 1137 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1138 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1139 // or a single symbol.
duke@435 1140 bool TypeD::singleton(void) const {
duke@435 1141 return true; // Always a singleton
duke@435 1142 }
duke@435 1143
duke@435 1144 bool TypeD::empty(void) const {
duke@435 1145 return false; // always exactly a singleton
duke@435 1146 }
duke@435 1147
duke@435 1148 //=============================================================================
duke@435 1149 // Convience common pre-built types.
duke@435 1150 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1151 const TypeInt *TypeInt::ZERO; // 0
duke@435 1152 const TypeInt *TypeInt::ONE; // 1
duke@435 1153 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1154 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1155 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1156 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1157 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1158 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1159 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1160 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
twisti@1059 1161 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
duke@435 1162 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1163 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1164 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1165 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1166 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1167 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
rbackman@6375 1168 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
duke@435 1169
duke@435 1170 //------------------------------TypeInt----------------------------------------
duke@435 1171 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1172 }
duke@435 1173
duke@435 1174 //------------------------------make-------------------------------------------
duke@435 1175 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1176 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1177 }
duke@435 1178
kvn@1975 1179 static int normalize_int_widen( jint lo, jint hi, int w ) {
duke@435 1180 // Certain normalizations keep us sane when comparing types.
duke@435 1181 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1182 if (lo <= hi) {
kvn@1975 1183 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1184 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
kvn@1975 1185 } else {
kvn@1975 1186 if ((juint)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1187 if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
duke@435 1188 }
kvn@1975 1189 return w;
kvn@1975 1190 }
kvn@1975 1191
kvn@1975 1192 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
kvn@1975 1193 w = normalize_int_widen(lo, hi, w);
duke@435 1194 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1195 }
duke@435 1196
duke@435 1197 //------------------------------meet-------------------------------------------
duke@435 1198 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1199 // with reference count equal to the number of Types pointing at it.
duke@435 1200 // Caller should wrap a Types around it.
duke@435 1201 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1202 // Perform a fast test for common case; meeting the same types together.
duke@435 1203 if( this == t ) return this; // Meeting same type?
duke@435 1204
duke@435 1205 // Currently "this->_base" is a TypeInt
duke@435 1206 switch (t->base()) { // Switch on original type
duke@435 1207 case AnyPtr: // Mixing with oops happens when javac
duke@435 1208 case RawPtr: // reuses local variables
duke@435 1209 case OopPtr:
duke@435 1210 case InstPtr:
coleenp@4037 1211 case AryPtr:
coleenp@4037 1212 case MetadataPtr:
duke@435 1213 case KlassPtr:
never@618 1214 case NarrowOop:
roland@4159 1215 case NarrowKlass:
duke@435 1216 case Long:
duke@435 1217 case FloatTop:
duke@435 1218 case FloatCon:
duke@435 1219 case FloatBot:
duke@435 1220 case DoubleTop:
duke@435 1221 case DoubleCon:
duke@435 1222 case DoubleBot:
duke@435 1223 case Bottom: // Ye Olde Default
duke@435 1224 return Type::BOTTOM;
duke@435 1225 default: // All else is a mistake
duke@435 1226 typerr(t);
duke@435 1227 case Top: // No change
duke@435 1228 return this;
duke@435 1229 case Int: // Int vs Int?
duke@435 1230 break;
duke@435 1231 }
duke@435 1232
duke@435 1233 // Expand covered set
duke@435 1234 const TypeInt *r = t->is_int();
kvn@1975 1235 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1236 }
duke@435 1237
duke@435 1238 //------------------------------xdual------------------------------------------
duke@435 1239 // Dual: reverse hi & lo; flip widen
duke@435 1240 const Type *TypeInt::xdual() const {
kvn@1975 1241 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1242 return new TypeInt(_hi,_lo,w);
duke@435 1243 }
duke@435 1244
duke@435 1245 //------------------------------widen------------------------------------------
duke@435 1246 // Only happens for optimistic top-down optimizations.
never@1444 1247 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
duke@435 1248 // Coming from TOP or such; no widening
duke@435 1249 if( old->base() != Int ) return this;
duke@435 1250 const TypeInt *ot = old->is_int();
duke@435 1251
duke@435 1252 // If new guy is equal to old guy, no widening
duke@435 1253 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1254 return old;
duke@435 1255
duke@435 1256 // If new guy contains old, then we widened
duke@435 1257 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1258 // New contains old
duke@435 1259 // If new guy is already wider than old, no widening
duke@435 1260 if( _widen > ot->_widen ) return this;
duke@435 1261 // If old guy was a constant, do not bother
duke@435 1262 if (ot->_lo == ot->_hi) return this;
duke@435 1263 // Now widen new guy.
duke@435 1264 // Check for widening too far
duke@435 1265 if (_widen == WidenMax) {
never@1444 1266 int max = max_jint;
never@1444 1267 int min = min_jint;
never@1444 1268 if (limit->isa_int()) {
never@1444 1269 max = limit->is_int()->_hi;
never@1444 1270 min = limit->is_int()->_lo;
never@1444 1271 }
never@1444 1272 if (min < _lo && _hi < max) {
duke@435 1273 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1274 // which is closer to its respective limit.
duke@435 1275 if (_lo >= 0 || // easy common case
never@1444 1276 (juint)(_lo - min) >= (juint)(max - _hi)) {
duke@435 1277 // Try to widen to an unsigned range type of 31 bits:
never@1444 1278 return make(_lo, max, WidenMax);
duke@435 1279 } else {
never@1444 1280 return make(min, _hi, WidenMax);
duke@435 1281 }
duke@435 1282 }
duke@435 1283 return TypeInt::INT;
duke@435 1284 }
duke@435 1285 // Returned widened new guy
duke@435 1286 return make(_lo,_hi,_widen+1);
duke@435 1287 }
duke@435 1288
duke@435 1289 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1290 // bottom. Return the wider fellow.
duke@435 1291 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1292 return old;
duke@435 1293
duke@435 1294 //fatal("Integer value range is not subset");
duke@435 1295 //return this;
duke@435 1296 return TypeInt::INT;
duke@435 1297 }
duke@435 1298
duke@435 1299 //------------------------------narrow---------------------------------------
duke@435 1300 // Only happens for pessimistic optimizations.
duke@435 1301 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1302 if (_lo >= _hi) return this; // already narrow enough
duke@435 1303 if (old == NULL) return this;
duke@435 1304 const TypeInt* ot = old->isa_int();
duke@435 1305 if (ot == NULL) return this;
duke@435 1306 jint olo = ot->_lo;
duke@435 1307 jint ohi = ot->_hi;
duke@435 1308
duke@435 1309 // If new guy is equal to old guy, no narrowing
duke@435 1310 if (_lo == olo && _hi == ohi) return old;
duke@435 1311
duke@435 1312 // If old guy was maximum range, allow the narrowing
duke@435 1313 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1314
duke@435 1315 if (_lo < olo || _hi > ohi)
duke@435 1316 return this; // doesn't narrow; pretty wierd
duke@435 1317
duke@435 1318 // The new type narrows the old type, so look for a "death march".
duke@435 1319 // See comments on PhaseTransform::saturate.
duke@435 1320 juint nrange = _hi - _lo;
duke@435 1321 juint orange = ohi - olo;
duke@435 1322 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1323 // Use the new type only if the range shrinks a lot.
duke@435 1324 // We do not want the optimizer computing 2^31 point by point.
duke@435 1325 return old;
duke@435 1326 }
duke@435 1327
duke@435 1328 return this;
duke@435 1329 }
duke@435 1330
duke@435 1331 //-----------------------------filter------------------------------------------
roland@6313 1332 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 1333 const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
kvn@1975 1334 if (ft == NULL || ft->empty())
duke@435 1335 return Type::TOP; // Canonical empty value
duke@435 1336 if (ft->_widen < this->_widen) {
duke@435 1337 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1338 // The widen bits must be allowed to run freely through the graph.
duke@435 1339 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1340 }
duke@435 1341 return ft;
duke@435 1342 }
duke@435 1343
duke@435 1344 //------------------------------eq---------------------------------------------
duke@435 1345 // Structural equality check for Type representations
duke@435 1346 bool TypeInt::eq( const Type *t ) const {
duke@435 1347 const TypeInt *r = t->is_int(); // Handy access
duke@435 1348 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1349 }
duke@435 1350
duke@435 1351 //------------------------------hash-------------------------------------------
duke@435 1352 // Type-specific hashing function.
duke@435 1353 int TypeInt::hash(void) const {
duke@435 1354 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1355 }
duke@435 1356
duke@435 1357 //------------------------------is_finite--------------------------------------
duke@435 1358 // Has a finite value
duke@435 1359 bool TypeInt::is_finite() const {
duke@435 1360 return true;
duke@435 1361 }
duke@435 1362
duke@435 1363 //------------------------------dump2------------------------------------------
duke@435 1364 // Dump TypeInt
duke@435 1365 #ifndef PRODUCT
duke@435 1366 static const char* intname(char* buf, jint n) {
duke@435 1367 if (n == min_jint)
duke@435 1368 return "min";
duke@435 1369 else if (n < min_jint + 10000)
duke@435 1370 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1371 else if (n == max_jint)
duke@435 1372 return "max";
duke@435 1373 else if (n > max_jint - 10000)
duke@435 1374 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1375 else
duke@435 1376 sprintf(buf, INT32_FORMAT, n);
duke@435 1377 return buf;
duke@435 1378 }
duke@435 1379
duke@435 1380 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1381 char buf[40], buf2[40];
duke@435 1382 if (_lo == min_jint && _hi == max_jint)
duke@435 1383 st->print("int");
duke@435 1384 else if (is_con())
duke@435 1385 st->print("int:%s", intname(buf, get_con()));
duke@435 1386 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1387 st->print("bool");
duke@435 1388 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1389 st->print("byte");
duke@435 1390 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1391 st->print("char");
duke@435 1392 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1393 st->print("short");
duke@435 1394 else if (_hi == max_jint)
duke@435 1395 st->print("int:>=%s", intname(buf, _lo));
duke@435 1396 else if (_lo == min_jint)
duke@435 1397 st->print("int:<=%s", intname(buf, _hi));
duke@435 1398 else
duke@435 1399 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1400
duke@435 1401 if (_widen != 0 && this != TypeInt::INT)
duke@435 1402 st->print(":%.*s", _widen, "wwww");
duke@435 1403 }
duke@435 1404 #endif
duke@435 1405
duke@435 1406 //------------------------------singleton--------------------------------------
duke@435 1407 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1408 // constants.
duke@435 1409 bool TypeInt::singleton(void) const {
duke@435 1410 return _lo >= _hi;
duke@435 1411 }
duke@435 1412
duke@435 1413 bool TypeInt::empty(void) const {
duke@435 1414 return _lo > _hi;
duke@435 1415 }
duke@435 1416
duke@435 1417 //=============================================================================
duke@435 1418 // Convenience common pre-built types.
duke@435 1419 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1420 const TypeLong *TypeLong::ZERO; // 0
duke@435 1421 const TypeLong *TypeLong::ONE; // 1
duke@435 1422 const TypeLong *TypeLong::POS; // >=0
duke@435 1423 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1424 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1425 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
rbackman@6375 1426 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
duke@435 1427
duke@435 1428 //------------------------------TypeLong---------------------------------------
duke@435 1429 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1430 }
duke@435 1431
duke@435 1432 //------------------------------make-------------------------------------------
duke@435 1433 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1434 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1435 }
duke@435 1436
kvn@1975 1437 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
kvn@1975 1438 // Certain normalizations keep us sane when comparing types.
kvn@1975 1439 // The 'SMALLINT' covers constants.
kvn@1975 1440 if (lo <= hi) {
kvn@1975 1441 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1442 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
kvn@1975 1443 } else {
kvn@1975 1444 if ((julong)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1445 if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
kvn@1975 1446 }
kvn@1975 1447 return w;
kvn@1975 1448 }
kvn@1975 1449
duke@435 1450 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
kvn@1975 1451 w = normalize_long_widen(lo, hi, w);
duke@435 1452 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1453 }
duke@435 1454
duke@435 1455
duke@435 1456 //------------------------------meet-------------------------------------------
duke@435 1457 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1458 // with reference count equal to the number of Types pointing at it.
duke@435 1459 // Caller should wrap a Types around it.
duke@435 1460 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1461 // Perform a fast test for common case; meeting the same types together.
duke@435 1462 if( this == t ) return this; // Meeting same type?
duke@435 1463
duke@435 1464 // Currently "this->_base" is a TypeLong
duke@435 1465 switch (t->base()) { // Switch on original type
duke@435 1466 case AnyPtr: // Mixing with oops happens when javac
duke@435 1467 case RawPtr: // reuses local variables
duke@435 1468 case OopPtr:
duke@435 1469 case InstPtr:
coleenp@4037 1470 case AryPtr:
coleenp@4037 1471 case MetadataPtr:
duke@435 1472 case KlassPtr:
never@618 1473 case NarrowOop:
roland@4159 1474 case NarrowKlass:
duke@435 1475 case Int:
duke@435 1476 case FloatTop:
duke@435 1477 case FloatCon:
duke@435 1478 case FloatBot:
duke@435 1479 case DoubleTop:
duke@435 1480 case DoubleCon:
duke@435 1481 case DoubleBot:
duke@435 1482 case Bottom: // Ye Olde Default
duke@435 1483 return Type::BOTTOM;
duke@435 1484 default: // All else is a mistake
duke@435 1485 typerr(t);
duke@435 1486 case Top: // No change
duke@435 1487 return this;
duke@435 1488 case Long: // Long vs Long?
duke@435 1489 break;
duke@435 1490 }
duke@435 1491
duke@435 1492 // Expand covered set
duke@435 1493 const TypeLong *r = t->is_long(); // Turn into a TypeLong
kvn@1975 1494 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1495 }
duke@435 1496
duke@435 1497 //------------------------------xdual------------------------------------------
duke@435 1498 // Dual: reverse hi & lo; flip widen
duke@435 1499 const Type *TypeLong::xdual() const {
kvn@1975 1500 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1501 return new TypeLong(_hi,_lo,w);
duke@435 1502 }
duke@435 1503
duke@435 1504 //------------------------------widen------------------------------------------
duke@435 1505 // Only happens for optimistic top-down optimizations.
never@1444 1506 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
duke@435 1507 // Coming from TOP or such; no widening
duke@435 1508 if( old->base() != Long ) return this;
duke@435 1509 const TypeLong *ot = old->is_long();
duke@435 1510
duke@435 1511 // If new guy is equal to old guy, no widening
duke@435 1512 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1513 return old;
duke@435 1514
duke@435 1515 // If new guy contains old, then we widened
duke@435 1516 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1517 // New contains old
duke@435 1518 // If new guy is already wider than old, no widening
duke@435 1519 if( _widen > ot->_widen ) return this;
duke@435 1520 // If old guy was a constant, do not bother
duke@435 1521 if (ot->_lo == ot->_hi) return this;
duke@435 1522 // Now widen new guy.
duke@435 1523 // Check for widening too far
duke@435 1524 if (_widen == WidenMax) {
never@1444 1525 jlong max = max_jlong;
never@1444 1526 jlong min = min_jlong;
never@1444 1527 if (limit->isa_long()) {
never@1444 1528 max = limit->is_long()->_hi;
never@1444 1529 min = limit->is_long()->_lo;
never@1444 1530 }
never@1444 1531 if (min < _lo && _hi < max) {
duke@435 1532 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1533 // which is closer to its respective limit.
duke@435 1534 if (_lo >= 0 || // easy common case
never@1444 1535 (julong)(_lo - min) >= (julong)(max - _hi)) {
duke@435 1536 // Try to widen to an unsigned range type of 32/63 bits:
never@1444 1537 if (max >= max_juint && _hi < max_juint)
duke@435 1538 return make(_lo, max_juint, WidenMax);
duke@435 1539 else
never@1444 1540 return make(_lo, max, WidenMax);
duke@435 1541 } else {
never@1444 1542 return make(min, _hi, WidenMax);
duke@435 1543 }
duke@435 1544 }
duke@435 1545 return TypeLong::LONG;
duke@435 1546 }
duke@435 1547 // Returned widened new guy
duke@435 1548 return make(_lo,_hi,_widen+1);
duke@435 1549 }
duke@435 1550
duke@435 1551 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1552 // bottom. Return the wider fellow.
duke@435 1553 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1554 return old;
duke@435 1555
duke@435 1556 // fatal("Long value range is not subset");
duke@435 1557 // return this;
duke@435 1558 return TypeLong::LONG;
duke@435 1559 }
duke@435 1560
duke@435 1561 //------------------------------narrow----------------------------------------
duke@435 1562 // Only happens for pessimistic optimizations.
duke@435 1563 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1564 if (_lo >= _hi) return this; // already narrow enough
duke@435 1565 if (old == NULL) return this;
duke@435 1566 const TypeLong* ot = old->isa_long();
duke@435 1567 if (ot == NULL) return this;
duke@435 1568 jlong olo = ot->_lo;
duke@435 1569 jlong ohi = ot->_hi;
duke@435 1570
duke@435 1571 // If new guy is equal to old guy, no narrowing
duke@435 1572 if (_lo == olo && _hi == ohi) return old;
duke@435 1573
duke@435 1574 // If old guy was maximum range, allow the narrowing
duke@435 1575 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1576
duke@435 1577 if (_lo < olo || _hi > ohi)
duke@435 1578 return this; // doesn't narrow; pretty wierd
duke@435 1579
duke@435 1580 // The new type narrows the old type, so look for a "death march".
duke@435 1581 // See comments on PhaseTransform::saturate.
duke@435 1582 julong nrange = _hi - _lo;
duke@435 1583 julong orange = ohi - olo;
duke@435 1584 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1585 // Use the new type only if the range shrinks a lot.
duke@435 1586 // We do not want the optimizer computing 2^31 point by point.
duke@435 1587 return old;
duke@435 1588 }
duke@435 1589
duke@435 1590 return this;
duke@435 1591 }
duke@435 1592
duke@435 1593 //-----------------------------filter------------------------------------------
roland@6313 1594 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 1595 const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
kvn@1975 1596 if (ft == NULL || ft->empty())
duke@435 1597 return Type::TOP; // Canonical empty value
duke@435 1598 if (ft->_widen < this->_widen) {
duke@435 1599 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1600 // The widen bits must be allowed to run freely through the graph.
duke@435 1601 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1602 }
duke@435 1603 return ft;
duke@435 1604 }
duke@435 1605
duke@435 1606 //------------------------------eq---------------------------------------------
duke@435 1607 // Structural equality check for Type representations
duke@435 1608 bool TypeLong::eq( const Type *t ) const {
duke@435 1609 const TypeLong *r = t->is_long(); // Handy access
duke@435 1610 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1611 }
duke@435 1612
duke@435 1613 //------------------------------hash-------------------------------------------
duke@435 1614 // Type-specific hashing function.
duke@435 1615 int TypeLong::hash(void) const {
duke@435 1616 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1617 }
duke@435 1618
duke@435 1619 //------------------------------is_finite--------------------------------------
duke@435 1620 // Has a finite value
duke@435 1621 bool TypeLong::is_finite() const {
duke@435 1622 return true;
duke@435 1623 }
duke@435 1624
duke@435 1625 //------------------------------dump2------------------------------------------
duke@435 1626 // Dump TypeLong
duke@435 1627 #ifndef PRODUCT
duke@435 1628 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1629 if (n > x) {
duke@435 1630 if (n >= x + 10000) return NULL;
hseigel@4465 1631 sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
duke@435 1632 } else if (n < x) {
duke@435 1633 if (n <= x - 10000) return NULL;
hseigel@4465 1634 sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
duke@435 1635 } else {
duke@435 1636 return xname;
duke@435 1637 }
duke@435 1638 return buf;
duke@435 1639 }
duke@435 1640
duke@435 1641 static const char* longname(char* buf, jlong n) {
duke@435 1642 const char* str;
duke@435 1643 if (n == min_jlong)
duke@435 1644 return "min";
duke@435 1645 else if (n < min_jlong + 10000)
hseigel@4465 1646 sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
duke@435 1647 else if (n == max_jlong)
duke@435 1648 return "max";
duke@435 1649 else if (n > max_jlong - 10000)
hseigel@4465 1650 sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
duke@435 1651 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1652 return str;
duke@435 1653 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1654 return str;
duke@435 1655 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1656 return str;
duke@435 1657 else
hseigel@4465 1658 sprintf(buf, JLONG_FORMAT, n);
duke@435 1659 return buf;
duke@435 1660 }
duke@435 1661
duke@435 1662 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1663 char buf[80], buf2[80];
duke@435 1664 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1665 st->print("long");
duke@435 1666 else if (is_con())
duke@435 1667 st->print("long:%s", longname(buf, get_con()));
duke@435 1668 else if (_hi == max_jlong)
duke@435 1669 st->print("long:>=%s", longname(buf, _lo));
duke@435 1670 else if (_lo == min_jlong)
duke@435 1671 st->print("long:<=%s", longname(buf, _hi));
duke@435 1672 else
duke@435 1673 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1674
duke@435 1675 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1676 st->print(":%.*s", _widen, "wwww");
duke@435 1677 }
duke@435 1678 #endif
duke@435 1679
duke@435 1680 //------------------------------singleton--------------------------------------
duke@435 1681 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1682 // constants
duke@435 1683 bool TypeLong::singleton(void) const {
duke@435 1684 return _lo >= _hi;
duke@435 1685 }
duke@435 1686
duke@435 1687 bool TypeLong::empty(void) const {
duke@435 1688 return _lo > _hi;
duke@435 1689 }
duke@435 1690
duke@435 1691 //=============================================================================
duke@435 1692 // Convenience common pre-built types.
duke@435 1693 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1694 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1695 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1696 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1697 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1698 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1699 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1700 const TypeTuple *TypeTuple::START_I2C;
duke@435 1701 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1702 const TypeTuple *TypeTuple::LONG_PAIR;
rbackman@5791 1703 const TypeTuple *TypeTuple::INT_CC_PAIR;
rbackman@5997 1704 const TypeTuple *TypeTuple::LONG_CC_PAIR;
duke@435 1705
duke@435 1706
duke@435 1707 //------------------------------make-------------------------------------------
duke@435 1708 // Make a TypeTuple from the range of a method signature
duke@435 1709 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1710 ciType* return_type = sig->return_type();
duke@435 1711 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1712 const Type **field_array = fields(total_fields);
duke@435 1713 switch (return_type->basic_type()) {
duke@435 1714 case T_LONG:
duke@435 1715 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1716 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1717 break;
duke@435 1718 case T_DOUBLE:
duke@435 1719 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1720 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1721 break;
duke@435 1722 case T_OBJECT:
duke@435 1723 case T_ARRAY:
duke@435 1724 case T_BOOLEAN:
duke@435 1725 case T_CHAR:
duke@435 1726 case T_FLOAT:
duke@435 1727 case T_BYTE:
duke@435 1728 case T_SHORT:
duke@435 1729 case T_INT:
duke@435 1730 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1731 break;
duke@435 1732 case T_VOID:
duke@435 1733 break;
duke@435 1734 default:
duke@435 1735 ShouldNotReachHere();
duke@435 1736 }
duke@435 1737 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1738 }
duke@435 1739
duke@435 1740 // Make a TypeTuple from the domain of a method signature
duke@435 1741 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1742 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1743
duke@435 1744 uint pos = TypeFunc::Parms;
duke@435 1745 const Type **field_array;
duke@435 1746 if (recv != NULL) {
duke@435 1747 total_fields++;
duke@435 1748 field_array = fields(total_fields);
duke@435 1749 // Use get_const_type here because it respects UseUniqueSubclasses:
roland@6313 1750 field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
duke@435 1751 } else {
duke@435 1752 field_array = fields(total_fields);
duke@435 1753 }
duke@435 1754
duke@435 1755 int i = 0;
duke@435 1756 while (pos < total_fields) {
duke@435 1757 ciType* type = sig->type_at(i);
duke@435 1758
duke@435 1759 switch (type->basic_type()) {
duke@435 1760 case T_LONG:
duke@435 1761 field_array[pos++] = TypeLong::LONG;
duke@435 1762 field_array[pos++] = Type::HALF;
duke@435 1763 break;
duke@435 1764 case T_DOUBLE:
duke@435 1765 field_array[pos++] = Type::DOUBLE;
duke@435 1766 field_array[pos++] = Type::HALF;
duke@435 1767 break;
duke@435 1768 case T_OBJECT:
duke@435 1769 case T_ARRAY:
duke@435 1770 case T_BOOLEAN:
duke@435 1771 case T_CHAR:
duke@435 1772 case T_FLOAT:
duke@435 1773 case T_BYTE:
duke@435 1774 case T_SHORT:
duke@435 1775 case T_INT:
duke@435 1776 field_array[pos++] = get_const_type(type);
duke@435 1777 break;
duke@435 1778 default:
duke@435 1779 ShouldNotReachHere();
duke@435 1780 }
duke@435 1781 i++;
duke@435 1782 }
duke@435 1783 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1784 }
duke@435 1785
duke@435 1786 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1787 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1788 }
duke@435 1789
duke@435 1790 //------------------------------fields-----------------------------------------
duke@435 1791 // Subroutine call type with space allocated for argument types
duke@435 1792 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1793 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1794 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1795 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1796 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1797 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1798 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1799
duke@435 1800 return flds;
duke@435 1801 }
duke@435 1802
duke@435 1803 //------------------------------meet-------------------------------------------
duke@435 1804 // Compute the MEET of two types. It returns a new Type object.
duke@435 1805 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1806 // Perform a fast test for common case; meeting the same types together.
duke@435 1807 if( this == t ) return this; // Meeting same type-rep?
duke@435 1808
duke@435 1809 // Current "this->_base" is Tuple
duke@435 1810 switch (t->base()) { // switch on original type
duke@435 1811
duke@435 1812 case Bottom: // Ye Olde Default
duke@435 1813 return t;
duke@435 1814
duke@435 1815 default: // All else is a mistake
duke@435 1816 typerr(t);
duke@435 1817
duke@435 1818 case Tuple: { // Meeting 2 signatures?
duke@435 1819 const TypeTuple *x = t->is_tuple();
duke@435 1820 assert( _cnt == x->_cnt, "" );
duke@435 1821 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1822 for( uint i=0; i<_cnt; i++ )
duke@435 1823 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1824 return TypeTuple::make(_cnt,fields);
duke@435 1825 }
duke@435 1826 case Top:
duke@435 1827 break;
duke@435 1828 }
duke@435 1829 return this; // Return the double constant
duke@435 1830 }
duke@435 1831
duke@435 1832 //------------------------------xdual------------------------------------------
duke@435 1833 // Dual: compute field-by-field dual
duke@435 1834 const Type *TypeTuple::xdual() const {
duke@435 1835 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1836 for( uint i=0; i<_cnt; i++ )
duke@435 1837 fields[i] = _fields[i]->dual();
duke@435 1838 return new TypeTuple(_cnt,fields);
duke@435 1839 }
duke@435 1840
duke@435 1841 //------------------------------eq---------------------------------------------
duke@435 1842 // Structural equality check for Type representations
duke@435 1843 bool TypeTuple::eq( const Type *t ) const {
duke@435 1844 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1845 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1846 for (uint i = 0; i < _cnt; i++)
duke@435 1847 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1848 return false; // Missed
duke@435 1849 return true;
duke@435 1850 }
duke@435 1851
duke@435 1852 //------------------------------hash-------------------------------------------
duke@435 1853 // Type-specific hashing function.
duke@435 1854 int TypeTuple::hash(void) const {
duke@435 1855 intptr_t sum = _cnt;
duke@435 1856 for( uint i=0; i<_cnt; i++ )
duke@435 1857 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1858 return sum;
duke@435 1859 }
duke@435 1860
duke@435 1861 //------------------------------dump2------------------------------------------
duke@435 1862 // Dump signature Type
duke@435 1863 #ifndef PRODUCT
duke@435 1864 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1865 st->print("{");
duke@435 1866 if( !depth || d[this] ) { // Check for recursive print
duke@435 1867 st->print("...}");
duke@435 1868 return;
duke@435 1869 }
duke@435 1870 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1871 if( _cnt ) {
duke@435 1872 uint i;
duke@435 1873 for( i=0; i<_cnt-1; i++ ) {
duke@435 1874 st->print("%d:", i);
duke@435 1875 _fields[i]->dump2(d, depth-1, st);
duke@435 1876 st->print(", ");
duke@435 1877 }
duke@435 1878 st->print("%d:", i);
duke@435 1879 _fields[i]->dump2(d, depth-1, st);
duke@435 1880 }
duke@435 1881 st->print("}");
duke@435 1882 }
duke@435 1883 #endif
duke@435 1884
duke@435 1885 //------------------------------singleton--------------------------------------
duke@435 1886 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1887 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1888 // or a single symbol.
duke@435 1889 bool TypeTuple::singleton(void) const {
duke@435 1890 return false; // Never a singleton
duke@435 1891 }
duke@435 1892
duke@435 1893 bool TypeTuple::empty(void) const {
duke@435 1894 for( uint i=0; i<_cnt; i++ ) {
duke@435 1895 if (_fields[i]->empty()) return true;
duke@435 1896 }
duke@435 1897 return false;
duke@435 1898 }
duke@435 1899
duke@435 1900 //=============================================================================
duke@435 1901 // Convenience common pre-built types.
duke@435 1902
duke@435 1903 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1904 // Certain normalizations keep us sane when comparing types.
duke@435 1905 // We do not want arrayOop variables to differ only by the wideness
duke@435 1906 // of their index types. Pick minimum wideness, since that is the
duke@435 1907 // forced wideness of small ranges anyway.
duke@435 1908 if (size->_widen != Type::WidenMin)
duke@435 1909 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1910 else
duke@435 1911 return size;
duke@435 1912 }
duke@435 1913
duke@435 1914 //------------------------------make-------------------------------------------
vlivanov@5658 1915 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
coleenp@548 1916 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1917 elem = elem->make_narrowoop();
coleenp@548 1918 }
duke@435 1919 size = normalize_array_size(size);
vlivanov@5658 1920 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
duke@435 1921 }
duke@435 1922
duke@435 1923 //------------------------------meet-------------------------------------------
duke@435 1924 // Compute the MEET of two types. It returns a new Type object.
duke@435 1925 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1926 // Perform a fast test for common case; meeting the same types together.
duke@435 1927 if( this == t ) return this; // Meeting same type-rep?
duke@435 1928
duke@435 1929 // Current "this->_base" is Ary
duke@435 1930 switch (t->base()) { // switch on original type
duke@435 1931
duke@435 1932 case Bottom: // Ye Olde Default
duke@435 1933 return t;
duke@435 1934
duke@435 1935 default: // All else is a mistake
duke@435 1936 typerr(t);
duke@435 1937
duke@435 1938 case Array: { // Meeting 2 arrays?
duke@435 1939 const TypeAry *a = t->is_ary();
roland@6313 1940 return TypeAry::make(_elem->meet_speculative(a->_elem),
vlivanov@5658 1941 _size->xmeet(a->_size)->is_int(),
vlivanov@5658 1942 _stable & a->_stable);
duke@435 1943 }
duke@435 1944 case Top:
duke@435 1945 break;
duke@435 1946 }
duke@435 1947 return this; // Return the double constant
duke@435 1948 }
duke@435 1949
duke@435 1950 //------------------------------xdual------------------------------------------
duke@435 1951 // Dual: compute field-by-field dual
duke@435 1952 const Type *TypeAry::xdual() const {
duke@435 1953 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1954 size_dual = normalize_array_size(size_dual);
vlivanov@5658 1955 return new TypeAry(_elem->dual(), size_dual, !_stable);
duke@435 1956 }
duke@435 1957
duke@435 1958 //------------------------------eq---------------------------------------------
duke@435 1959 // Structural equality check for Type representations
duke@435 1960 bool TypeAry::eq( const Type *t ) const {
duke@435 1961 const TypeAry *a = (const TypeAry*)t;
duke@435 1962 return _elem == a->_elem &&
vlivanov@5658 1963 _stable == a->_stable &&
duke@435 1964 _size == a->_size;
duke@435 1965 }
duke@435 1966
duke@435 1967 //------------------------------hash-------------------------------------------
duke@435 1968 // Type-specific hashing function.
duke@435 1969 int TypeAry::hash(void) const {
vlivanov@5658 1970 return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
duke@435 1971 }
duke@435 1972
roland@6313 1973 /**
roland@6313 1974 * Return same type without a speculative part in the element
roland@6313 1975 */
roland@6313 1976 const Type* TypeAry::remove_speculative() const {
roland@6313 1977 return make(_elem->remove_speculative(), _size, _stable);
roland@6313 1978 }
roland@6313 1979
kvn@1255 1980 //----------------------interface_vs_oop---------------------------------------
kvn@1255 1981 #ifdef ASSERT
kvn@1255 1982 bool TypeAry::interface_vs_oop(const Type *t) const {
kvn@1255 1983 const TypeAry* t_ary = t->is_ary();
kvn@1255 1984 if (t_ary) {
kvn@1255 1985 return _elem->interface_vs_oop(t_ary->_elem);
kvn@1255 1986 }
kvn@1255 1987 return false;
kvn@1255 1988 }
kvn@1255 1989 #endif
kvn@1255 1990
duke@435 1991 //------------------------------dump2------------------------------------------
duke@435 1992 #ifndef PRODUCT
duke@435 1993 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
vlivanov@5658 1994 if (_stable) st->print("stable:");
duke@435 1995 _elem->dump2(d, depth, st);
duke@435 1996 st->print("[");
duke@435 1997 _size->dump2(d, depth, st);
duke@435 1998 st->print("]");
duke@435 1999 }
duke@435 2000 #endif
duke@435 2001
duke@435 2002 //------------------------------singleton--------------------------------------
duke@435 2003 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2004 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 2005 // or a single symbol.
duke@435 2006 bool TypeAry::singleton(void) const {
duke@435 2007 return false; // Never a singleton
duke@435 2008 }
duke@435 2009
duke@435 2010 bool TypeAry::empty(void) const {
duke@435 2011 return _elem->empty() || _size->empty();
duke@435 2012 }
duke@435 2013
duke@435 2014 //--------------------------ary_must_be_exact----------------------------------
duke@435 2015 bool TypeAry::ary_must_be_exact() const {
duke@435 2016 if (!UseExactTypes) return false;
duke@435 2017 // This logic looks at the element type of an array, and returns true
duke@435 2018 // if the element type is either a primitive or a final instance class.
duke@435 2019 // In such cases, an array built on this ary must have no subclasses.
duke@435 2020 if (_elem == BOTTOM) return false; // general array not exact
duke@435 2021 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 2022 const TypeOopPtr* toop = NULL;
kvn@656 2023 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 2024 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 2025 } else {
coleenp@548 2026 toop = _elem->isa_oopptr();
coleenp@548 2027 }
duke@435 2028 if (!toop) return true; // a primitive type, like int
duke@435 2029 ciKlass* tklass = toop->klass();
duke@435 2030 if (tklass == NULL) return false; // unloaded class
duke@435 2031 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 2032 const TypeInstPtr* tinst;
coleenp@548 2033 if (_elem->isa_narrowoop())
kvn@656 2034 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 2035 else
coleenp@548 2036 tinst = _elem->isa_instptr();
kvn@656 2037 if (tinst)
kvn@656 2038 return tklass->as_instance_klass()->is_final();
coleenp@548 2039 const TypeAryPtr* tap;
coleenp@548 2040 if (_elem->isa_narrowoop())
kvn@656 2041 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 2042 else
coleenp@548 2043 tap = _elem->isa_aryptr();
kvn@656 2044 if (tap)
kvn@656 2045 return tap->ary()->ary_must_be_exact();
duke@435 2046 return false;
duke@435 2047 }
duke@435 2048
kvn@3882 2049 //==============================TypeVect=======================================
kvn@3882 2050 // Convenience common pre-built types.
kvn@3882 2051 const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors
kvn@3882 2052 const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors
kvn@3882 2053 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
kvn@3882 2054 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
kvn@3882 2055
kvn@3882 2056 //------------------------------make-------------------------------------------
kvn@3882 2057 const TypeVect* TypeVect::make(const Type *elem, uint length) {
kvn@3882 2058 BasicType elem_bt = elem->array_element_basic_type();
kvn@3882 2059 assert(is_java_primitive(elem_bt), "only primitive types in vector");
kvn@3882 2060 assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
kvn@3882 2061 assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
kvn@3882 2062 int size = length * type2aelembytes(elem_bt);
kvn@3882 2063 switch (Matcher::vector_ideal_reg(size)) {
kvn@3882 2064 case Op_VecS:
kvn@3882 2065 return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
goetz@6487 2066 case Op_RegL:
kvn@3882 2067 case Op_VecD:
kvn@3882 2068 case Op_RegD:
kvn@3882 2069 return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
kvn@3882 2070 case Op_VecX:
kvn@3882 2071 return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
kvn@3882 2072 case Op_VecY:
kvn@3882 2073 return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
kvn@3882 2074 }
kvn@3882 2075 ShouldNotReachHere();
kvn@3882 2076 return NULL;
kvn@3882 2077 }
kvn@3882 2078
kvn@3882 2079 //------------------------------meet-------------------------------------------
kvn@3882 2080 // Compute the MEET of two types. It returns a new Type object.
kvn@3882 2081 const Type *TypeVect::xmeet( const Type *t ) const {
kvn@3882 2082 // Perform a fast test for common case; meeting the same types together.
kvn@3882 2083 if( this == t ) return this; // Meeting same type-rep?
kvn@3882 2084
kvn@3882 2085 // Current "this->_base" is Vector
kvn@3882 2086 switch (t->base()) { // switch on original type
kvn@3882 2087
kvn@3882 2088 case Bottom: // Ye Olde Default
kvn@3882 2089 return t;
kvn@3882 2090
kvn@3882 2091 default: // All else is a mistake
kvn@3882 2092 typerr(t);
kvn@3882 2093
kvn@3882 2094 case VectorS:
kvn@3882 2095 case VectorD:
kvn@3882 2096 case VectorX:
kvn@3882 2097 case VectorY: { // Meeting 2 vectors?
kvn@3882 2098 const TypeVect* v = t->is_vect();
kvn@3882 2099 assert( base() == v->base(), "");
kvn@3882 2100 assert(length() == v->length(), "");
kvn@3882 2101 assert(element_basic_type() == v->element_basic_type(), "");
kvn@3882 2102 return TypeVect::make(_elem->xmeet(v->_elem), _length);
kvn@3882 2103 }
kvn@3882 2104 case Top:
kvn@3882 2105 break;
kvn@3882 2106 }
kvn@3882 2107 return this;
kvn@3882 2108 }
kvn@3882 2109
kvn@3882 2110 //------------------------------xdual------------------------------------------
kvn@3882 2111 // Dual: compute field-by-field dual
kvn@3882 2112 const Type *TypeVect::xdual() const {
kvn@3882 2113 return new TypeVect(base(), _elem->dual(), _length);
kvn@3882 2114 }
kvn@3882 2115
kvn@3882 2116 //------------------------------eq---------------------------------------------
kvn@3882 2117 // Structural equality check for Type representations
kvn@3882 2118 bool TypeVect::eq(const Type *t) const {
kvn@3882 2119 const TypeVect *v = t->is_vect();
kvn@3882 2120 return (_elem == v->_elem) && (_length == v->_length);
kvn@3882 2121 }
kvn@3882 2122
kvn@3882 2123 //------------------------------hash-------------------------------------------
kvn@3882 2124 // Type-specific hashing function.
kvn@3882 2125 int TypeVect::hash(void) const {
kvn@3882 2126 return (intptr_t)_elem + (intptr_t)_length;
kvn@3882 2127 }
kvn@3882 2128
kvn@3882 2129 //------------------------------singleton--------------------------------------
kvn@3882 2130 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
kvn@3882 2131 // constants (Ldi nodes). Vector is singleton if all elements are the same
kvn@3882 2132 // constant value (when vector is created with Replicate code).
kvn@3882 2133 bool TypeVect::singleton(void) const {
kvn@3882 2134 // There is no Con node for vectors yet.
kvn@3882 2135 // return _elem->singleton();
kvn@3882 2136 return false;
kvn@3882 2137 }
kvn@3882 2138
kvn@3882 2139 bool TypeVect::empty(void) const {
kvn@3882 2140 return _elem->empty();
kvn@3882 2141 }
kvn@3882 2142
kvn@3882 2143 //------------------------------dump2------------------------------------------
kvn@3882 2144 #ifndef PRODUCT
kvn@3882 2145 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
kvn@3882 2146 switch (base()) {
kvn@3882 2147 case VectorS:
kvn@3882 2148 st->print("vectors["); break;
kvn@3882 2149 case VectorD:
kvn@3882 2150 st->print("vectord["); break;
kvn@3882 2151 case VectorX:
kvn@3882 2152 st->print("vectorx["); break;
kvn@3882 2153 case VectorY:
kvn@3882 2154 st->print("vectory["); break;
kvn@3882 2155 default:
kvn@3882 2156 ShouldNotReachHere();
kvn@3882 2157 }
kvn@3882 2158 st->print("%d]:{", _length);
kvn@3882 2159 _elem->dump2(d, depth, st);
kvn@3882 2160 st->print("}");
kvn@3882 2161 }
kvn@3882 2162 #endif
kvn@3882 2163
kvn@3882 2164
duke@435 2165 //=============================================================================
duke@435 2166 // Convenience common pre-built types.
duke@435 2167 const TypePtr *TypePtr::NULL_PTR;
duke@435 2168 const TypePtr *TypePtr::NOTNULL;
duke@435 2169 const TypePtr *TypePtr::BOTTOM;
duke@435 2170
duke@435 2171 //------------------------------meet-------------------------------------------
duke@435 2172 // Meet over the PTR enum
duke@435 2173 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 2174 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 2175 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 2176 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2177 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2178 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 2179 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 2180 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 2181 };
duke@435 2182
duke@435 2183 //------------------------------make-------------------------------------------
duke@435 2184 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 2185 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 2186 }
duke@435 2187
duke@435 2188 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2189 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2190 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 2191 if( ptr == _ptr ) return this;
duke@435 2192 return make(_base, ptr, _offset);
duke@435 2193 }
duke@435 2194
duke@435 2195 //------------------------------get_con----------------------------------------
duke@435 2196 intptr_t TypePtr::get_con() const {
duke@435 2197 assert( _ptr == Null, "" );
duke@435 2198 return _offset;
duke@435 2199 }
duke@435 2200
duke@435 2201 //------------------------------meet-------------------------------------------
duke@435 2202 // Compute the MEET of two types. It returns a new Type object.
duke@435 2203 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 2204 // Perform a fast test for common case; meeting the same types together.
duke@435 2205 if( this == t ) return this; // Meeting same type-rep?
duke@435 2206
duke@435 2207 // Current "this->_base" is AnyPtr
duke@435 2208 switch (t->base()) { // switch on original type
duke@435 2209 case Int: // Mixing ints & oops happens when javac
duke@435 2210 case Long: // reuses local variables
duke@435 2211 case FloatTop:
duke@435 2212 case FloatCon:
duke@435 2213 case FloatBot:
duke@435 2214 case DoubleTop:
duke@435 2215 case DoubleCon:
duke@435 2216 case DoubleBot:
coleenp@548 2217 case NarrowOop:
roland@4159 2218 case NarrowKlass:
duke@435 2219 case Bottom: // Ye Olde Default
duke@435 2220 return Type::BOTTOM;
duke@435 2221 case Top:
duke@435 2222 return this;
duke@435 2223
duke@435 2224 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2225 const TypePtr *tp = t->is_ptr();
duke@435 2226 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 2227 }
duke@435 2228 case RawPtr: // For these, flip the call around to cut down
duke@435 2229 case OopPtr:
duke@435 2230 case InstPtr: // on the cases I have to handle.
coleenp@4037 2231 case AryPtr:
coleenp@4037 2232 case MetadataPtr:
duke@435 2233 case KlassPtr:
duke@435 2234 return t->xmeet(this); // Call in reverse direction
duke@435 2235 default: // All else is a mistake
duke@435 2236 typerr(t);
duke@435 2237
duke@435 2238 }
duke@435 2239 return this;
duke@435 2240 }
duke@435 2241
duke@435 2242 //------------------------------meet_offset------------------------------------
duke@435 2243 int TypePtr::meet_offset( int offset ) const {
duke@435 2244 // Either is 'TOP' offset? Return the other offset!
duke@435 2245 if( _offset == OffsetTop ) return offset;
duke@435 2246 if( offset == OffsetTop ) return _offset;
duke@435 2247 // If either is different, return 'BOTTOM' offset
duke@435 2248 if( _offset != offset ) return OffsetBot;
duke@435 2249 return _offset;
duke@435 2250 }
duke@435 2251
duke@435 2252 //------------------------------dual_offset------------------------------------
duke@435 2253 int TypePtr::dual_offset( ) const {
duke@435 2254 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 2255 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 2256 return _offset; // Map everything else into self
duke@435 2257 }
duke@435 2258
duke@435 2259 //------------------------------xdual------------------------------------------
duke@435 2260 // Dual: compute field-by-field dual
duke@435 2261 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 2262 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 2263 };
duke@435 2264 const Type *TypePtr::xdual() const {
duke@435 2265 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 2266 }
duke@435 2267
kvn@741 2268 //------------------------------xadd_offset------------------------------------
kvn@741 2269 int TypePtr::xadd_offset( intptr_t offset ) const {
kvn@741 2270 // Adding to 'TOP' offset? Return 'TOP'!
kvn@741 2271 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
kvn@741 2272 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
kvn@741 2273 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
kvn@741 2274 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
kvn@741 2275 offset += (intptr_t)_offset;
kvn@741 2276 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
kvn@741 2277
kvn@741 2278 // assert( _offset >= 0 && _offset+offset >= 0, "" );
kvn@741 2279 // It is possible to construct a negative offset during PhaseCCP
kvn@741 2280
kvn@741 2281 return (int)offset; // Sum valid offsets
kvn@741 2282 }
kvn@741 2283
duke@435 2284 //------------------------------add_offset-------------------------------------
kvn@741 2285 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
kvn@741 2286 return make( AnyPtr, _ptr, xadd_offset(offset) );
duke@435 2287 }
duke@435 2288
duke@435 2289 //------------------------------eq---------------------------------------------
duke@435 2290 // Structural equality check for Type representations
duke@435 2291 bool TypePtr::eq( const Type *t ) const {
duke@435 2292 const TypePtr *a = (const TypePtr*)t;
duke@435 2293 return _ptr == a->ptr() && _offset == a->offset();
duke@435 2294 }
duke@435 2295
duke@435 2296 //------------------------------hash-------------------------------------------
duke@435 2297 // Type-specific hashing function.
duke@435 2298 int TypePtr::hash(void) const {
duke@435 2299 return _ptr + _offset;
duke@435 2300 }
duke@435 2301
duke@435 2302 //------------------------------dump2------------------------------------------
duke@435 2303 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 2304 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 2305 };
duke@435 2306
duke@435 2307 #ifndef PRODUCT
duke@435 2308 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2309 if( _ptr == Null ) st->print("NULL");
duke@435 2310 else st->print("%s *", ptr_msg[_ptr]);
duke@435 2311 if( _offset == OffsetTop ) st->print("+top");
duke@435 2312 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 2313 else if( _offset ) st->print("+%d", _offset);
duke@435 2314 }
duke@435 2315 #endif
duke@435 2316
duke@435 2317 //------------------------------singleton--------------------------------------
duke@435 2318 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2319 // constants
duke@435 2320 bool TypePtr::singleton(void) const {
duke@435 2321 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2322 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2323 }
duke@435 2324
duke@435 2325 bool TypePtr::empty(void) const {
duke@435 2326 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2327 }
duke@435 2328
duke@435 2329 //=============================================================================
duke@435 2330 // Convenience common pre-built types.
duke@435 2331 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2332 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2333
duke@435 2334 //------------------------------make-------------------------------------------
duke@435 2335 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2336 assert( ptr != Constant, "what is the constant?" );
duke@435 2337 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2338 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2339 }
duke@435 2340
duke@435 2341 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2342 assert( bits, "Use TypePtr for NULL" );
duke@435 2343 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2344 }
duke@435 2345
duke@435 2346 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2347 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2348 assert( ptr != Constant, "what is the constant?" );
duke@435 2349 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2350 assert( _bits==0, "Why cast a constant address?");
duke@435 2351 if( ptr == _ptr ) return this;
duke@435 2352 return make(ptr);
duke@435 2353 }
duke@435 2354
duke@435 2355 //------------------------------get_con----------------------------------------
duke@435 2356 intptr_t TypeRawPtr::get_con() const {
duke@435 2357 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2358 return (intptr_t)_bits;
duke@435 2359 }
duke@435 2360
duke@435 2361 //------------------------------meet-------------------------------------------
duke@435 2362 // Compute the MEET of two types. It returns a new Type object.
duke@435 2363 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2364 // Perform a fast test for common case; meeting the same types together.
duke@435 2365 if( this == t ) return this; // Meeting same type-rep?
duke@435 2366
duke@435 2367 // Current "this->_base" is RawPtr
duke@435 2368 switch( t->base() ) { // switch on original type
duke@435 2369 case Bottom: // Ye Olde Default
duke@435 2370 return t;
duke@435 2371 case Top:
duke@435 2372 return this;
duke@435 2373 case AnyPtr: // Meeting to AnyPtrs
duke@435 2374 break;
duke@435 2375 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2376 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2377 enum PTR ptr = meet_ptr( tptr );
duke@435 2378 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2379 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2380 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2381 ptr = NotNull; // Fall down in lattice
duke@435 2382 }
duke@435 2383 return make( ptr );
duke@435 2384 }
duke@435 2385
duke@435 2386 case OopPtr:
duke@435 2387 case InstPtr:
coleenp@4037 2388 case AryPtr:
coleenp@4037 2389 case MetadataPtr:
duke@435 2390 case KlassPtr:
duke@435 2391 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2392 default: // All else is a mistake
duke@435 2393 typerr(t);
duke@435 2394 }
duke@435 2395
duke@435 2396 // Found an AnyPtr type vs self-RawPtr type
duke@435 2397 const TypePtr *tp = t->is_ptr();
duke@435 2398 switch (tp->ptr()) {
duke@435 2399 case TypePtr::TopPTR: return this;
duke@435 2400 case TypePtr::BotPTR: return t;
duke@435 2401 case TypePtr::Null:
duke@435 2402 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2403 return TypeRawPtr::BOTTOM;
duke@435 2404 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2405 case TypePtr::AnyNull:
duke@435 2406 if( _ptr == TypePtr::Constant) return this;
duke@435 2407 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2408 default: ShouldNotReachHere();
duke@435 2409 }
duke@435 2410 return this;
duke@435 2411 }
duke@435 2412
duke@435 2413 //------------------------------xdual------------------------------------------
duke@435 2414 // Dual: compute field-by-field dual
duke@435 2415 const Type *TypeRawPtr::xdual() const {
duke@435 2416 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2417 }
duke@435 2418
duke@435 2419 //------------------------------add_offset-------------------------------------
kvn@741 2420 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
duke@435 2421 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2422 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2423 if( offset == 0 ) return this; // No change
duke@435 2424 switch (_ptr) {
duke@435 2425 case TypePtr::TopPTR:
duke@435 2426 case TypePtr::BotPTR:
duke@435 2427 case TypePtr::NotNull:
duke@435 2428 return this;
duke@435 2429 case TypePtr::Null:
kvn@2435 2430 case TypePtr::Constant: {
kvn@2435 2431 address bits = _bits+offset;
kvn@2435 2432 if ( bits == 0 ) return TypePtr::NULL_PTR;
kvn@2435 2433 return make( bits );
kvn@2435 2434 }
duke@435 2435 default: ShouldNotReachHere();
duke@435 2436 }
duke@435 2437 return NULL; // Lint noise
duke@435 2438 }
duke@435 2439
duke@435 2440 //------------------------------eq---------------------------------------------
duke@435 2441 // Structural equality check for Type representations
duke@435 2442 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2443 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2444 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2445 }
duke@435 2446
duke@435 2447 //------------------------------hash-------------------------------------------
duke@435 2448 // Type-specific hashing function.
duke@435 2449 int TypeRawPtr::hash(void) const {
duke@435 2450 return (intptr_t)_bits + TypePtr::hash();
duke@435 2451 }
duke@435 2452
duke@435 2453 //------------------------------dump2------------------------------------------
duke@435 2454 #ifndef PRODUCT
duke@435 2455 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2456 if( _ptr == Constant )
duke@435 2457 st->print(INTPTR_FORMAT, _bits);
duke@435 2458 else
duke@435 2459 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2460 }
duke@435 2461 #endif
duke@435 2462
duke@435 2463 //=============================================================================
duke@435 2464 // Convenience common pre-built type.
duke@435 2465 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2466
kvn@598 2467 //------------------------------TypeOopPtr-------------------------------------
roland@6380 2468 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth)
kvn@598 2469 : TypePtr(t, ptr, offset),
kvn@598 2470 _const_oop(o), _klass(k),
kvn@598 2471 _klass_is_exact(xk),
kvn@598 2472 _is_ptr_to_narrowoop(false),
roland@4159 2473 _is_ptr_to_narrowklass(false),
kvn@5110 2474 _is_ptr_to_boxed_value(false),
roland@5991 2475 _instance_id(instance_id),
roland@6380 2476 _speculative(speculative),
roland@6380 2477 _inline_depth(inline_depth){
kvn@5110 2478 if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
kvn@5110 2479 (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
kvn@5110 2480 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
kvn@5110 2481 }
kvn@598 2482 #ifdef _LP64
roland@4159 2483 if (_offset != 0) {
coleenp@4037 2484 if (_offset == oopDesc::klass_offset_in_bytes()) {
ehelin@5694 2485 _is_ptr_to_narrowklass = UseCompressedClassPointers;
coleenp@4037 2486 } else if (klass() == NULL) {
coleenp@4037 2487 // Array with unknown body type
kvn@598 2488 assert(this->isa_aryptr(), "only arrays without klass");
roland@4159 2489 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2490 } else if (this->isa_aryptr()) {
roland@4159 2491 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
kvn@598 2492 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2493 } else if (klass()->is_instance_klass()) {
kvn@598 2494 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2495 ciField* field = NULL;
kvn@598 2496 if (this->isa_klassptr()) {
never@2658 2497 // Perm objects don't use compressed references
kvn@598 2498 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2499 // unsafe access
roland@4159 2500 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2501 } else { // exclude unsafe ops
kvn@598 2502 assert(this->isa_instptr(), "must be an instance ptr.");
never@2658 2503
never@2658 2504 if (klass() == ciEnv::current()->Class_klass() &&
never@2658 2505 (_offset == java_lang_Class::klass_offset_in_bytes() ||
never@2658 2506 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
never@2658 2507 // Special hidden fields from the Class.
never@2658 2508 assert(this->isa_instptr(), "must be an instance ptr.");
coleenp@4037 2509 _is_ptr_to_narrowoop = false;
never@2658 2510 } else if (klass() == ciEnv::current()->Class_klass() &&
coleenp@4047 2511 _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
never@2658 2512 // Static fields
never@2658 2513 assert(o != NULL, "must be constant");
never@2658 2514 ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 2515 ciField* field = k->get_field_by_offset(_offset, true);
never@2658 2516 assert(field != NULL, "missing field");
kvn@598 2517 BasicType basic_elem_type = field->layout_type();
roland@4159 2518 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2519 basic_elem_type == T_ARRAY);
kvn@598 2520 } else {
never@2658 2521 // Instance fields which contains a compressed oop references.
never@2658 2522 field = ik->get_field_by_offset(_offset, false);
never@2658 2523 if (field != NULL) {
never@2658 2524 BasicType basic_elem_type = field->layout_type();
roland@4159 2525 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2526 basic_elem_type == T_ARRAY);
never@2658 2527 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
never@2658 2528 // Compile::find_alias_type() cast exactness on all types to verify
never@2658 2529 // that it does not affect alias type.
roland@4159 2530 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2531 } else {
never@2658 2532 // Type for the copy start in LibraryCallKit::inline_native_clone().
roland@4159 2533 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2534 }
kvn@598 2535 }
kvn@598 2536 }
kvn@598 2537 }
kvn@598 2538 }
kvn@598 2539 #endif
kvn@598 2540 }
kvn@598 2541
duke@435 2542 //------------------------------make-------------------------------------------
duke@435 2543 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
roland@6380 2544 int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
duke@435 2545 assert(ptr != Constant, "no constant generic pointers");
coleenp@4037 2546 ciKlass* k = Compile::current()->env()->Object_klass();
duke@435 2547 bool xk = false;
duke@435 2548 ciObject* o = NULL;
roland@6380 2549 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
duke@435 2550 }
duke@435 2551
duke@435 2552
duke@435 2553 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2554 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2555 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2556 if( ptr == _ptr ) return this;
roland@6380 2557 return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
duke@435 2558 }
duke@435 2559
kvn@682 2560 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2561 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2562 // There are no instances of a general oop.
duke@435 2563 // Return self unchanged.
duke@435 2564 return this;
duke@435 2565 }
duke@435 2566
duke@435 2567 //-----------------------------cast_to_exactness-------------------------------
duke@435 2568 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2569 // There is no such thing as an exact general oop.
duke@435 2570 // Return self unchanged.
duke@435 2571 return this;
duke@435 2572 }
duke@435 2573
duke@435 2574
duke@435 2575 //------------------------------as_klass_type----------------------------------
duke@435 2576 // Return the klass type corresponding to this instance or array type.
duke@435 2577 // It is the type that is loaded from an object of this type.
duke@435 2578 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2579 ciKlass* k = klass();
duke@435 2580 bool xk = klass_is_exact();
coleenp@4037 2581 if (k == NULL)
duke@435 2582 return TypeKlassPtr::OBJECT;
duke@435 2583 else
duke@435 2584 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2585 }
duke@435 2586
roland@5991 2587 const Type *TypeOopPtr::xmeet(const Type *t) const {
roland@5991 2588 const Type* res = xmeet_helper(t);
roland@5991 2589 if (res->isa_oopptr() == NULL) {
roland@5991 2590 return res;
roland@5991 2591 }
roland@5991 2592
roland@6313 2593 const TypeOopPtr* res_oopptr = res->is_oopptr();
roland@6313 2594 if (res_oopptr->speculative() != NULL) {
roland@5991 2595 // type->speculative() == NULL means that speculation is no better
roland@5991 2596 // than type, i.e. type->speculative() == type. So there are 2
roland@5991 2597 // ways to represent the fact that we have no useful speculative
roland@5991 2598 // data and we should use a single one to be able to test for
roland@5991 2599 // equality between types. Check whether type->speculative() ==
roland@5991 2600 // type and set speculative to NULL if it is the case.
roland@5991 2601 if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
roland@5991 2602 return res_oopptr->remove_speculative();
roland@5991 2603 }
roland@5991 2604 }
roland@5991 2605
roland@5991 2606 return res;
roland@5991 2607 }
duke@435 2608
duke@435 2609 //------------------------------meet-------------------------------------------
duke@435 2610 // Compute the MEET of two types. It returns a new Type object.
roland@5991 2611 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
duke@435 2612 // Perform a fast test for common case; meeting the same types together.
duke@435 2613 if( this == t ) return this; // Meeting same type-rep?
duke@435 2614
duke@435 2615 // Current "this->_base" is OopPtr
duke@435 2616 switch (t->base()) { // switch on original type
duke@435 2617
duke@435 2618 case Int: // Mixing ints & oops happens when javac
duke@435 2619 case Long: // reuses local variables
duke@435 2620 case FloatTop:
duke@435 2621 case FloatCon:
duke@435 2622 case FloatBot:
duke@435 2623 case DoubleTop:
duke@435 2624 case DoubleCon:
duke@435 2625 case DoubleBot:
kvn@728 2626 case NarrowOop:
roland@4159 2627 case NarrowKlass:
duke@435 2628 case Bottom: // Ye Olde Default
duke@435 2629 return Type::BOTTOM;
duke@435 2630 case Top:
duke@435 2631 return this;
duke@435 2632
duke@435 2633 default: // All else is a mistake
duke@435 2634 typerr(t);
duke@435 2635
duke@435 2636 case RawPtr:
coleenp@4037 2637 case MetadataPtr:
coleenp@4037 2638 case KlassPtr:
duke@435 2639 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2640
duke@435 2641 case AnyPtr: {
duke@435 2642 // Found an AnyPtr type vs self-OopPtr type
duke@435 2643 const TypePtr *tp = t->is_ptr();
duke@435 2644 int offset = meet_offset(tp->offset());
duke@435 2645 PTR ptr = meet_ptr(tp->ptr());
duke@435 2646 switch (tp->ptr()) {
duke@435 2647 case Null:
duke@435 2648 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2649 // else fall through:
duke@435 2650 case TopPTR:
kvn@1427 2651 case AnyNull: {
kvn@1427 2652 int instance_id = meet_instance_id(InstanceTop);
roland@5991 2653 const TypeOopPtr* speculative = _speculative;
roland@6380 2654 return make(ptr, offset, instance_id, speculative, _inline_depth);
kvn@1427 2655 }
duke@435 2656 case BotPTR:
duke@435 2657 case NotNull:
duke@435 2658 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2659 default: typerr(t);
duke@435 2660 }
duke@435 2661 }
duke@435 2662
duke@435 2663 case OopPtr: { // Meeting to other OopPtrs
duke@435 2664 const TypeOopPtr *tp = t->is_oopptr();
kvn@1393 2665 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 2666 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 2667 int depth = meet_inline_depth(tp->inline_depth());
roland@6380 2668 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
duke@435 2669 }
duke@435 2670
duke@435 2671 case InstPtr: // For these, flip the call around to cut down
duke@435 2672 case AryPtr:
duke@435 2673 return t->xmeet(this); // Call in reverse direction
duke@435 2674
duke@435 2675 } // End of switch
duke@435 2676 return this; // Return the double constant
duke@435 2677 }
duke@435 2678
duke@435 2679
duke@435 2680 //------------------------------xdual------------------------------------------
duke@435 2681 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2682 const Type *TypeOopPtr::xdual() const {
coleenp@4037 2683 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
duke@435 2684 assert(const_oop() == NULL, "no constants here");
roland@6380 2685 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
duke@435 2686 }
duke@435 2687
duke@435 2688 //--------------------------make_from_klass_common-----------------------------
duke@435 2689 // Computes the element-type given a klass.
duke@435 2690 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2691 if (klass->is_instance_klass()) {
duke@435 2692 Compile* C = Compile::current();
duke@435 2693 Dependencies* deps = C->dependencies();
duke@435 2694 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2695 // Element is an instance
duke@435 2696 bool klass_is_exact = false;
duke@435 2697 if (klass->is_loaded()) {
duke@435 2698 // Try to set klass_is_exact.
duke@435 2699 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2700 klass_is_exact = ik->is_final();
duke@435 2701 if (!klass_is_exact && klass_change
duke@435 2702 && deps != NULL && UseUniqueSubclasses) {
duke@435 2703 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2704 if (sub != NULL) {
duke@435 2705 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2706 klass = ik = sub;
duke@435 2707 klass_is_exact = sub->is_final();
duke@435 2708 }
duke@435 2709 }
duke@435 2710 if (!klass_is_exact && try_for_exact
duke@435 2711 && deps != NULL && UseExactTypes) {
duke@435 2712 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2713 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2714 deps->assert_leaf_type(ik);
duke@435 2715 klass_is_exact = true;
duke@435 2716 }
duke@435 2717 }
duke@435 2718 }
duke@435 2719 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2720 } else if (klass->is_obj_array_klass()) {
duke@435 2721 // Element is an object array. Recursively call ourself.
duke@435 2722 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2723 bool xk = etype->klass_is_exact();
duke@435 2724 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2725 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2726 // are all not-null. This is not true in generally, as code can
duke@435 2727 // slam NULLs down in the subarrays.
duke@435 2728 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2729 return arr;
duke@435 2730 } else if (klass->is_type_array_klass()) {
duke@435 2731 // Element is an typeArray
duke@435 2732 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2733 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2734 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2735 // is not-null. That was not true in general.
duke@435 2736 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2737 return arr;
duke@435 2738 } else {
duke@435 2739 ShouldNotReachHere();
duke@435 2740 return NULL;
duke@435 2741 }
duke@435 2742 }
duke@435 2743
duke@435 2744 //------------------------------make_from_constant-----------------------------
duke@435 2745 // Make a java pointer from an oop constant
kvn@5110 2746 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
kvn@5110 2747 bool require_constant,
kvn@5110 2748 bool is_autobox_cache) {
kvn@5110 2749 assert(!o->is_null_object(), "null object not yet handled here.");
kvn@5110 2750 ciKlass* klass = o->klass();
kvn@5110 2751 if (klass->is_instance_klass()) {
kvn@5110 2752 // Element is an instance
kvn@5110 2753 if (require_constant) {
kvn@5110 2754 if (!o->can_be_constant()) return NULL;
kvn@5110 2755 } else if (!o->should_be_constant()) {
kvn@5110 2756 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
kvn@5110 2757 }
kvn@5110 2758 return TypeInstPtr::make(o);
kvn@5110 2759 } else if (klass->is_obj_array_klass()) {
kvn@5110 2760 // Element is an object array. Recursively call ourself.
kvn@5110 2761 const TypeOopPtr *etype =
coleenp@4037 2762 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
kvn@5110 2763 if (is_autobox_cache) {
kvn@5110 2764 // The pointers in the autobox arrays are always non-null.
kvn@5110 2765 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
kvn@5110 2766 }
kvn@5110 2767 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
kvn@5110 2768 // We used to pass NotNull in here, asserting that the sub-arrays
kvn@5110 2769 // are all not-null. This is not true in generally, as code can
kvn@5110 2770 // slam NULLs down in the subarrays.
kvn@5110 2771 if (require_constant) {
kvn@5110 2772 if (!o->can_be_constant()) return NULL;
kvn@5110 2773 } else if (!o->should_be_constant()) {
kvn@5110 2774 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
kvn@5110 2775 }
roland@6380 2776 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, InlineDepthBottom, is_autobox_cache);
coleenp@4037 2777 return arr;
kvn@5110 2778 } else if (klass->is_type_array_klass()) {
kvn@5110 2779 // Element is an typeArray
coleenp@4037 2780 const Type* etype =
coleenp@4037 2781 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
kvn@5110 2782 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
kvn@5110 2783 // We used to pass NotNull in here, asserting that the array pointer
kvn@5110 2784 // is not-null. That was not true in general.
kvn@5110 2785 if (require_constant) {
kvn@5110 2786 if (!o->can_be_constant()) return NULL;
kvn@5110 2787 } else if (!o->should_be_constant()) {
kvn@5110 2788 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
kvn@5110 2789 }
coleenp@4037 2790 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
coleenp@4037 2791 return arr;
duke@435 2792 }
duke@435 2793
twisti@3885 2794 fatal("unhandled object type");
duke@435 2795 return NULL;
duke@435 2796 }
duke@435 2797
duke@435 2798 //------------------------------get_con----------------------------------------
duke@435 2799 intptr_t TypeOopPtr::get_con() const {
duke@435 2800 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2801 assert( _offset >= 0, "" );
duke@435 2802
duke@435 2803 if (_offset != 0) {
duke@435 2804 // After being ported to the compiler interface, the compiler no longer
duke@435 2805 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2806 // to a handle at compile time. This handle is embedded in the generated
duke@435 2807 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2808 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2809 // have access to the addresses!). This does not seem to currently happen,
twisti@1040 2810 // but this assertion here is to help prevent its occurence.
duke@435 2811 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2812 ShouldNotReachHere();
duke@435 2813 }
duke@435 2814
jrose@1424 2815 return (intptr_t)const_oop()->constant_encoding();
duke@435 2816 }
duke@435 2817
duke@435 2818
duke@435 2819 //-----------------------------filter------------------------------------------
duke@435 2820 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 2821 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 2822
roland@6313 2823 const Type* ft = join_helper(kills, include_speculative);
duke@435 2824 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2825 const TypeInstPtr* ktip = kills->isa_instptr();
duke@435 2826
duke@435 2827 if (ft->empty()) {
duke@435 2828 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2829 // interface. This can happen because the bytecodes do not contain
duke@435 2830 // enough type info to distinguish a Java-level interface variable
duke@435 2831 // from a Java-level object variable. If we meet 2 classes which
duke@435 2832 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2833 // doesn't implement I, we have no way to tell if the result should
duke@435 2834 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2835 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2836 // uplift the type.
duke@435 2837 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
duke@435 2838 return kills; // Uplift to interface
duke@435 2839
duke@435 2840 return Type::TOP; // Canonical empty value
duke@435 2841 }
duke@435 2842
duke@435 2843 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2844 // the join should report back the class. However, if we have a J/L/Object
duke@435 2845 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2846 // join report an interface back out. This isn't possible but happens
duke@435 2847 // because the type system doesn't interact well with interfaces.
duke@435 2848 if (ftip != NULL && ktip != NULL &&
duke@435 2849 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2850 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2851 // Happens in a CTW of rt.jar, 320-341, no extra flags
kvn@1770 2852 assert(!ftip->klass_is_exact(), "interface could not be exact");
duke@435 2853 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2854 }
duke@435 2855
duke@435 2856 return ft;
duke@435 2857 }
duke@435 2858
duke@435 2859 //------------------------------eq---------------------------------------------
duke@435 2860 // Structural equality check for Type representations
duke@435 2861 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2862 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2863 if (_klass_is_exact != a->_klass_is_exact ||
roland@5991 2864 _instance_id != a->_instance_id ||
roland@6380 2865 !eq_speculative(a) ||
roland@6380 2866 _inline_depth != a->_inline_depth) return false;
duke@435 2867 ciObject* one = const_oop();
duke@435 2868 ciObject* two = a->const_oop();
duke@435 2869 if (one == NULL || two == NULL) {
duke@435 2870 return (one == two) && TypePtr::eq(t);
duke@435 2871 } else {
duke@435 2872 return one->equals(two) && TypePtr::eq(t);
duke@435 2873 }
duke@435 2874 }
duke@435 2875
duke@435 2876 //------------------------------hash-------------------------------------------
duke@435 2877 // Type-specific hashing function.
duke@435 2878 int TypeOopPtr::hash(void) const {
duke@435 2879 return
duke@435 2880 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2881 _klass_is_exact +
duke@435 2882 _instance_id +
roland@5991 2883 hash_speculative() +
roland@6380 2884 _inline_depth +
duke@435 2885 TypePtr::hash();
duke@435 2886 }
duke@435 2887
duke@435 2888 //------------------------------dump2------------------------------------------
duke@435 2889 #ifndef PRODUCT
duke@435 2890 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2891 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2892 if( _klass_is_exact ) st->print(":exact");
duke@435 2893 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2894 switch( _offset ) {
duke@435 2895 case OffsetTop: st->print("+top"); break;
duke@435 2896 case OffsetBot: st->print("+any"); break;
duke@435 2897 case 0: break;
duke@435 2898 default: st->print("+%d",_offset); break;
duke@435 2899 }
kvn@658 2900 if (_instance_id == InstanceTop)
kvn@658 2901 st->print(",iid=top");
kvn@658 2902 else if (_instance_id != InstanceBot)
duke@435 2903 st->print(",iid=%d",_instance_id);
roland@5991 2904
roland@6380 2905 dump_inline_depth(st);
roland@5991 2906 dump_speculative(st);
roland@5991 2907 }
roland@5991 2908
roland@5991 2909 /**
roland@5991 2910 *dump the speculative part of the type
roland@5991 2911 */
roland@5991 2912 void TypeOopPtr::dump_speculative(outputStream *st) const {
roland@5991 2913 if (_speculative != NULL) {
roland@5991 2914 st->print(" (speculative=");
roland@5991 2915 _speculative->dump_on(st);
roland@5991 2916 st->print(")");
roland@5991 2917 }
duke@435 2918 }
roland@6380 2919
roland@6380 2920 void TypeOopPtr::dump_inline_depth(outputStream *st) const {
roland@6380 2921 if (_inline_depth != InlineDepthBottom) {
roland@6380 2922 if (_inline_depth == InlineDepthTop) {
roland@6380 2923 st->print(" (inline_depth=InlineDepthTop)");
roland@6380 2924 } else {
roland@6380 2925 st->print(" (inline_depth=%d)", _inline_depth);
roland@6380 2926 }
roland@6380 2927 }
roland@6380 2928 }
duke@435 2929 #endif
duke@435 2930
duke@435 2931 //------------------------------singleton--------------------------------------
duke@435 2932 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2933 // constants
duke@435 2934 bool TypeOopPtr::singleton(void) const {
duke@435 2935 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2936 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2937 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2938 }
duke@435 2939
duke@435 2940 //------------------------------add_offset-------------------------------------
roland@5991 2941 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
roland@6380 2942 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
roland@5991 2943 }
roland@5991 2944
roland@5991 2945 /**
roland@5991 2946 * Return same type without a speculative part
roland@5991 2947 */
roland@6313 2948 const Type* TypeOopPtr::remove_speculative() const {
roland@6313 2949 if (_speculative == NULL) {
roland@6313 2950 return this;
roland@6313 2951 }
roland@6380 2952 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
roland@6380 2953 return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
roland@6380 2954 }
roland@6380 2955
roland@6380 2956 /**
roland@6380 2957 * Return same type but with a different inline depth (used for speculation)
roland@6380 2958 *
roland@6380 2959 * @param depth depth to meet with
roland@6380 2960 */
roland@6380 2961 const TypeOopPtr* TypeOopPtr::with_inline_depth(int depth) const {
roland@6380 2962 if (!UseInlineDepthForSpeculativeTypes) {
roland@6380 2963 return this;
roland@6380 2964 }
roland@6380 2965 return make(_ptr, _offset, _instance_id, _speculative, depth);
roland@6380 2966 }
roland@6380 2967
roland@6380 2968 /**
roland@6380 2969 * Check whether new profiling would improve speculative type
roland@6380 2970 *
roland@6380 2971 * @param exact_kls class from profiling
roland@6380 2972 * @param inline_depth inlining depth of profile point
roland@6380 2973 *
roland@6380 2974 * @return true if type profile is valuable
roland@6380 2975 */
roland@6380 2976 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
roland@6380 2977 // no way to improve an already exact type
roland@6380 2978 if (klass_is_exact()) {
roland@6380 2979 return false;
roland@6380 2980 }
roland@6380 2981 // no profiling?
roland@6380 2982 if (exact_kls == NULL) {
roland@6380 2983 return false;
roland@6380 2984 }
roland@6380 2985 // no speculative type or non exact speculative type?
roland@6380 2986 if (speculative_type() == NULL) {
roland@6380 2987 return true;
roland@6380 2988 }
roland@6380 2989 // If the node already has an exact speculative type keep it,
roland@6380 2990 // unless it was provided by profiling that is at a deeper
roland@6380 2991 // inlining level. Profiling at a higher inlining depth is
roland@6380 2992 // expected to be less accurate.
roland@6380 2993 if (_speculative->inline_depth() == InlineDepthBottom) {
roland@6380 2994 return false;
roland@6380 2995 }
roland@6380 2996 assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
roland@6380 2997 return inline_depth < _speculative->inline_depth();
duke@435 2998 }
duke@435 2999
kvn@658 3000 //------------------------------meet_instance_id--------------------------------
kvn@658 3001 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 3002 // Either is 'TOP' instance? Return the other instance!
kvn@658 3003 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 3004 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 3005 // If either is different, return 'BOTTOM' instance
kvn@658 3006 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 3007 return _instance_id;
duke@435 3008 }
duke@435 3009
kvn@658 3010 //------------------------------dual_instance_id--------------------------------
kvn@658 3011 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 3012 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 3013 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 3014 return _instance_id; // Map everything else into self
kvn@658 3015 }
kvn@658 3016
roland@5991 3017 /**
roland@5991 3018 * meet of the speculative parts of 2 types
roland@5991 3019 *
roland@5991 3020 * @param other type to meet with
roland@5991 3021 */
roland@6313 3022 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
roland@5991 3023 bool this_has_spec = (_speculative != NULL);
roland@5991 3024 bool other_has_spec = (other->speculative() != NULL);
roland@5991 3025
roland@5991 3026 if (!this_has_spec && !other_has_spec) {
roland@5991 3027 return NULL;
roland@5991 3028 }
roland@5991 3029
roland@5991 3030 // If we are at a point where control flow meets and one branch has
roland@5991 3031 // a speculative type and the other has not, we meet the speculative
roland@5991 3032 // type of one branch with the actual type of the other. If the
roland@5991 3033 // actual type is exact and the speculative is as well, then the
roland@5991 3034 // result is a speculative type which is exact and we can continue
roland@5991 3035 // speculation further.
roland@5991 3036 const TypeOopPtr* this_spec = _speculative;
roland@5991 3037 const TypeOopPtr* other_spec = other->speculative();
roland@5991 3038
roland@5991 3039 if (!this_has_spec) {
roland@5991 3040 this_spec = this;
roland@5991 3041 }
roland@5991 3042
roland@5991 3043 if (!other_has_spec) {
roland@5991 3044 other_spec = other;
roland@5991 3045 }
roland@5991 3046
roland@6313 3047 return this_spec->meet_speculative(other_spec)->is_oopptr();
roland@5991 3048 }
roland@5991 3049
roland@5991 3050 /**
roland@5991 3051 * dual of the speculative part of the type
roland@5991 3052 */
roland@5991 3053 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
roland@5991 3054 if (_speculative == NULL) {
roland@5991 3055 return NULL;
roland@5991 3056 }
roland@5991 3057 return _speculative->dual()->is_oopptr();
roland@5991 3058 }
roland@5991 3059
roland@5991 3060 /**
roland@5991 3061 * add offset to the speculative part of the type
roland@5991 3062 *
roland@5991 3063 * @param offset offset to add
roland@5991 3064 */
roland@5991 3065 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
roland@5991 3066 if (_speculative == NULL) {
roland@5991 3067 return NULL;
roland@5991 3068 }
roland@5991 3069 return _speculative->add_offset(offset)->is_oopptr();
roland@5991 3070 }
roland@5991 3071
roland@5991 3072 /**
roland@5991 3073 * Are the speculative parts of 2 types equal?
roland@5991 3074 *
roland@5991 3075 * @param other type to compare this one to
roland@5991 3076 */
roland@5991 3077 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
roland@5991 3078 if (_speculative == NULL || other->speculative() == NULL) {
roland@5991 3079 return _speculative == other->speculative();
roland@5991 3080 }
roland@5991 3081
roland@5991 3082 if (_speculative->base() != other->speculative()->base()) {
roland@5991 3083 return false;
roland@5991 3084 }
roland@5991 3085
roland@5991 3086 return _speculative->eq(other->speculative());
roland@5991 3087 }
roland@5991 3088
roland@5991 3089 /**
roland@5991 3090 * Hash of the speculative part of the type
roland@5991 3091 */
roland@5991 3092 int TypeOopPtr::hash_speculative() const {
roland@5991 3093 if (_speculative == NULL) {
roland@5991 3094 return 0;
roland@5991 3095 }
roland@5991 3096
roland@5991 3097 return _speculative->hash();
roland@5991 3098 }
roland@5991 3099
roland@6380 3100 /**
roland@6380 3101 * dual of the inline depth for this type (used for speculation)
roland@6380 3102 */
roland@6380 3103 int TypeOopPtr::dual_inline_depth() const {
roland@6380 3104 return -inline_depth();
roland@6380 3105 }
roland@6380 3106
roland@6380 3107 /**
roland@6380 3108 * meet of 2 inline depth (used for speculation)
roland@6380 3109 *
roland@6380 3110 * @param depth depth to meet with
roland@6380 3111 */
roland@6380 3112 int TypeOopPtr::meet_inline_depth(int depth) const {
roland@6380 3113 return MAX2(inline_depth(), depth);
roland@6380 3114 }
kvn@658 3115
duke@435 3116 //=============================================================================
duke@435 3117 // Convenience common pre-built types.
duke@435 3118 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 3119 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 3120 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 3121 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 3122 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 3123
duke@435 3124 //------------------------------TypeInstPtr-------------------------------------
roland@6380 3125 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative, int inline_depth)
roland@6380 3126 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth), _name(k->name()) {
duke@435 3127 assert(k != NULL &&
duke@435 3128 (k->is_loaded() || o == NULL),
duke@435 3129 "cannot have constants with non-loaded klass");
duke@435 3130 };
duke@435 3131
duke@435 3132 //------------------------------make-------------------------------------------
duke@435 3133 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 3134 ciKlass* k,
duke@435 3135 bool xk,
duke@435 3136 ciObject* o,
duke@435 3137 int offset,
roland@5991 3138 int instance_id,
roland@6380 3139 const TypeOopPtr* speculative,
roland@6380 3140 int inline_depth) {
coleenp@4037 3141 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
duke@435 3142 // Either const_oop() is NULL or else ptr is Constant
duke@435 3143 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 3144 "constant pointers must have a value supplied" );
duke@435 3145 // Ptr is never Null
duke@435 3146 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 3147
kvn@682 3148 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3149 if (!UseExactTypes) xk = false;
duke@435 3150 if (ptr == Constant) {
duke@435 3151 // Note: This case includes meta-object constants, such as methods.
duke@435 3152 xk = true;
duke@435 3153 } else if (k->is_loaded()) {
duke@435 3154 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 3155 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 3156 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 3157 }
duke@435 3158
duke@435 3159 // Now hash this baby
duke@435 3160 TypeInstPtr *result =
roland@6380 3161 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
duke@435 3162
duke@435 3163 return result;
duke@435 3164 }
duke@435 3165
kvn@5110 3166 /**
kvn@5110 3167 * Create constant type for a constant boxed value
kvn@5110 3168 */
kvn@5110 3169 const Type* TypeInstPtr::get_const_boxed_value() const {
kvn@5110 3170 assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
kvn@5110 3171 assert((const_oop() != NULL), "should be called only for constant object");
kvn@5110 3172 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
kvn@5110 3173 BasicType bt = constant.basic_type();
kvn@5110 3174 switch (bt) {
kvn@5110 3175 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
kvn@5110 3176 case T_INT: return TypeInt::make(constant.as_int());
kvn@5110 3177 case T_CHAR: return TypeInt::make(constant.as_char());
kvn@5110 3178 case T_BYTE: return TypeInt::make(constant.as_byte());
kvn@5110 3179 case T_SHORT: return TypeInt::make(constant.as_short());
kvn@5110 3180 case T_FLOAT: return TypeF::make(constant.as_float());
kvn@5110 3181 case T_DOUBLE: return TypeD::make(constant.as_double());
kvn@5110 3182 case T_LONG: return TypeLong::make(constant.as_long());
kvn@5110 3183 default: break;
kvn@5110 3184 }
kvn@5110 3185 fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
kvn@5110 3186 return NULL;
kvn@5110 3187 }
duke@435 3188
duke@435 3189 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3190 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3191 if( ptr == _ptr ) return this;
duke@435 3192 // Reconstruct _sig info here since not a problem with later lazy
duke@435 3193 // construction, _sig will show up on demand.
roland@6380 3194 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
duke@435 3195 }
duke@435 3196
duke@435 3197
duke@435 3198 //-----------------------------cast_to_exactness-------------------------------
duke@435 3199 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3200 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3201 if (!UseExactTypes) return this;
duke@435 3202 if (!_klass->is_loaded()) return this;
duke@435 3203 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 3204 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 3205 if( ik->is_interface() ) return this; // cannot set xk
roland@6380 3206 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
duke@435 3207 }
duke@435 3208
kvn@682 3209 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3210 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3211 if( instance_id == _instance_id ) return this;
roland@6380 3212 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
duke@435 3213 }
duke@435 3214
duke@435 3215 //------------------------------xmeet_unloaded---------------------------------
duke@435 3216 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 3217 // Assume classes are different since called after check for same name/class-loader
duke@435 3218 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 3219 int off = meet_offset(tinst->offset());
duke@435 3220 PTR ptr = meet_ptr(tinst->ptr());
kvn@1427 3221 int instance_id = meet_instance_id(tinst->instance_id());
roland@6313 3222 const TypeOopPtr* speculative = xmeet_speculative(tinst);
roland@6380 3223 int depth = meet_inline_depth(tinst->inline_depth());
duke@435 3224
duke@435 3225 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 3226 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 3227 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3228 //
duke@435 3229 // Meet unloaded class with java/lang/Object
duke@435 3230 //
duke@435 3231 // Meet
duke@435 3232 // | Unloaded Class
duke@435 3233 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 3234 // ===================================================================
duke@435 3235 // TOP | ..........................Unloaded......................|
duke@435 3236 // AnyNull | U-AN |................Unloaded......................|
duke@435 3237 // Constant | ... O-NN .................................. | O-BOT |
duke@435 3238 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 3239 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 3240 //
duke@435 3241 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 3242 //
duke@435 3243 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
roland@6380 3244 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
duke@435 3245 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 3246 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 3247 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 3248 else { return TypeInstPtr::NOTNULL; }
duke@435 3249 }
duke@435 3250 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 3251
duke@435 3252 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 3253 }
duke@435 3254
duke@435 3255 // Both are unloaded, not the same class, not Object
duke@435 3256 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 3257 if( ptr != TypePtr::BotPTR ) {
duke@435 3258 return TypeInstPtr::NOTNULL;
duke@435 3259 }
duke@435 3260 return TypeInstPtr::BOTTOM;
duke@435 3261 }
duke@435 3262
duke@435 3263
duke@435 3264 //------------------------------meet-------------------------------------------
duke@435 3265 // Compute the MEET of two types. It returns a new Type object.
roland@5991 3266 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
duke@435 3267 // Perform a fast test for common case; meeting the same types together.
duke@435 3268 if( this == t ) return this; // Meeting same type-rep?
duke@435 3269
duke@435 3270 // Current "this->_base" is Pointer
duke@435 3271 switch (t->base()) { // switch on original type
duke@435 3272
duke@435 3273 case Int: // Mixing ints & oops happens when javac
duke@435 3274 case Long: // reuses local variables
duke@435 3275 case FloatTop:
duke@435 3276 case FloatCon:
duke@435 3277 case FloatBot:
duke@435 3278 case DoubleTop:
duke@435 3279 case DoubleCon:
duke@435 3280 case DoubleBot:
coleenp@548 3281 case NarrowOop:
roland@4159 3282 case NarrowKlass:
duke@435 3283 case Bottom: // Ye Olde Default
duke@435 3284 return Type::BOTTOM;
duke@435 3285 case Top:
duke@435 3286 return this;
duke@435 3287
duke@435 3288 default: // All else is a mistake
duke@435 3289 typerr(t);
duke@435 3290
coleenp@4037 3291 case MetadataPtr:
coleenp@4037 3292 case KlassPtr:
duke@435 3293 case RawPtr: return TypePtr::BOTTOM;
duke@435 3294
duke@435 3295 case AryPtr: { // All arrays inherit from Object class
duke@435 3296 const TypeAryPtr *tp = t->is_aryptr();
duke@435 3297 int offset = meet_offset(tp->offset());
duke@435 3298 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3299 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3300 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 3301 int depth = meet_inline_depth(tp->inline_depth());
duke@435 3302 switch (ptr) {
duke@435 3303 case TopPTR:
duke@435 3304 case AnyNull: // Fall 'down' to dual of object klass
roland@5991 3305 // For instances when a subclass meets a superclass we fall
roland@5991 3306 // below the centerline when the superclass is exact. We need to
roland@5991 3307 // do the same here.
roland@5991 3308 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
roland@6380 3309 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
duke@435 3310 } else {
duke@435 3311 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3312 ptr = NotNull;
kvn@658 3313 instance_id = InstanceBot;
roland@6380 3314 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
duke@435 3315 }
duke@435 3316 case Constant:
duke@435 3317 case NotNull:
duke@435 3318 case BotPTR: // Fall down to object klass
duke@435 3319 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3320 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 3321 // If 'this' (InstPtr) is above the centerline and it is Object class
twisti@1040 3322 // then we can subclass in the Java class hierarchy.
roland@5991 3323 // For instances when a subclass meets a superclass we fall
roland@5991 3324 // below the centerline when the superclass is exact. We need
roland@5991 3325 // to do the same here.
roland@5991 3326 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
duke@435 3327 // that is, tp's array type is a subtype of my klass
kvn@1714 3328 return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
roland@6380 3329 tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
duke@435 3330 }
duke@435 3331 }
duke@435 3332 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 3333 // The meet falls down to Object class below centerline.
duke@435 3334 if( ptr == Constant )
duke@435 3335 ptr = NotNull;
kvn@658 3336 instance_id = InstanceBot;
roland@6380 3337 return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
duke@435 3338 default: typerr(t);
duke@435 3339 }
duke@435 3340 }
duke@435 3341
duke@435 3342 case OopPtr: { // Meeting to OopPtrs
duke@435 3343 // Found a OopPtr type vs self-InstPtr type
kvn@1393 3344 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3345 int offset = meet_offset(tp->offset());
duke@435 3346 PTR ptr = meet_ptr(tp->ptr());
duke@435 3347 switch (tp->ptr()) {
duke@435 3348 case TopPTR:
kvn@658 3349 case AnyNull: {
kvn@658 3350 int instance_id = meet_instance_id(InstanceTop);
roland@6313 3351 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 3352 int depth = meet_inline_depth(tp->inline_depth());
duke@435 3353 return make(ptr, klass(), klass_is_exact(),
roland@6380 3354 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
kvn@658 3355 }
duke@435 3356 case NotNull:
kvn@1393 3357 case BotPTR: {
kvn@1393 3358 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3359 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 3360 int depth = meet_inline_depth(tp->inline_depth());
roland@6380 3361 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
kvn@1393 3362 }
duke@435 3363 default: typerr(t);
duke@435 3364 }
duke@435 3365 }
duke@435 3366
duke@435 3367 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3368 // Found an AnyPtr type vs self-InstPtr type
duke@435 3369 const TypePtr *tp = t->is_ptr();
duke@435 3370 int offset = meet_offset(tp->offset());
duke@435 3371 PTR ptr = meet_ptr(tp->ptr());
duke@435 3372 switch (tp->ptr()) {
duke@435 3373 case Null:
roland@5991 3374 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3375 // else fall through to AnyNull
duke@435 3376 case TopPTR:
kvn@658 3377 case AnyNull: {
kvn@658 3378 int instance_id = meet_instance_id(InstanceTop);
roland@5991 3379 const TypeOopPtr* speculative = _speculative;
roland@5991 3380 return make(ptr, klass(), klass_is_exact(),
roland@6380 3381 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, _inline_depth);
kvn@658 3382 }
duke@435 3383 case NotNull:
duke@435 3384 case BotPTR:
roland@5991 3385 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3386 default: typerr(t);
duke@435 3387 }
duke@435 3388 }
duke@435 3389
duke@435 3390 /*
duke@435 3391 A-top }
duke@435 3392 / | \ } Tops
duke@435 3393 B-top A-any C-top }
duke@435 3394 | / | \ | } Any-nulls
duke@435 3395 B-any | C-any }
duke@435 3396 | | |
duke@435 3397 B-con A-con C-con } constants; not comparable across classes
duke@435 3398 | | |
duke@435 3399 B-not | C-not }
duke@435 3400 | \ | / | } not-nulls
duke@435 3401 B-bot A-not C-bot }
duke@435 3402 \ | / } Bottoms
duke@435 3403 A-bot }
duke@435 3404 */
duke@435 3405
duke@435 3406 case InstPtr: { // Meeting 2 Oops?
duke@435 3407 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 3408 const TypeInstPtr *tinst = t->is_instptr();
duke@435 3409 int off = meet_offset( tinst->offset() );
duke@435 3410 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 3411 int instance_id = meet_instance_id(tinst->instance_id());
roland@6313 3412 const TypeOopPtr* speculative = xmeet_speculative(tinst);
roland@6380 3413 int depth = meet_inline_depth(tinst->inline_depth());
duke@435 3414
duke@435 3415 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3416 // If we have constants, then we created oops so classes are loaded
duke@435 3417 // and we can handle the constants further down. This case handles
duke@435 3418 // both-not-loaded or both-loaded classes
duke@435 3419 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
roland@6380 3420 return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
duke@435 3421 }
duke@435 3422
duke@435 3423 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3424 ciKlass* tinst_klass = tinst->klass();
duke@435 3425 ciKlass* this_klass = this->klass();
duke@435 3426 bool tinst_xk = tinst->klass_is_exact();
duke@435 3427 bool this_xk = this->klass_is_exact();
duke@435 3428 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 3429 // One of these classes has not been loaded
duke@435 3430 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 3431 #ifndef PRODUCT
duke@435 3432 if( PrintOpto && Verbose ) {
duke@435 3433 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 3434 tty->print(" this == "); this->dump(); tty->cr();
duke@435 3435 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 3436 }
duke@435 3437 #endif
duke@435 3438 return unloaded_meet;
duke@435 3439 }
duke@435 3440
duke@435 3441 // Handle mixing oops and interfaces first.
roland@5991 3442 if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
roland@5991 3443 tinst_klass == ciEnv::current()->Object_klass())) {
duke@435 3444 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 3445 tinst_klass = this_klass;
duke@435 3446 this_klass = tmp;
duke@435 3447 bool tmp2 = tinst_xk;
duke@435 3448 tinst_xk = this_xk;
duke@435 3449 this_xk = tmp2;
duke@435 3450 }
duke@435 3451 if (tinst_klass->is_interface() &&
duke@435 3452 !(this_klass->is_interface() ||
duke@435 3453 // Treat java/lang/Object as an honorary interface,
duke@435 3454 // because we need a bottom for the interface hierarchy.
duke@435 3455 this_klass == ciEnv::current()->Object_klass())) {
duke@435 3456 // Oop meets interface!
duke@435 3457
duke@435 3458 // See if the oop subtypes (implements) interface.
duke@435 3459 ciKlass *k;
duke@435 3460 bool xk;
duke@435 3461 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3462 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 3463 // on whether we are both above the centerline or either is
duke@435 3464 // below the centerline. If we are on the centerline
duke@435 3465 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 3466 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 3467 // If we are keeping this_klass, keep its exactness too.
duke@435 3468 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 3469 } else { // Does not implement, fall to Object
duke@435 3470 // Oop does not implement interface, so mixing falls to Object
duke@435 3471 // just like the verifier does (if both are above the
duke@435 3472 // centerline fall to interface)
duke@435 3473 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 3474 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 3475 // Watch out for Constant vs. AnyNull interface.
duke@435 3476 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 3477 instance_id = InstanceBot;
duke@435 3478 }
duke@435 3479 ciObject* o = NULL; // the Constant value, if any
duke@435 3480 if (ptr == Constant) {
duke@435 3481 // Find out which constant.
duke@435 3482 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 3483 }
roland@6380 3484 return make(ptr, k, xk, o, off, instance_id, speculative, depth);
duke@435 3485 }
duke@435 3486
duke@435 3487 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 3488
duke@435 3489 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 3490 // If we split one up & one down AND they subtype, take the down man.
duke@435 3491 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3492 // If both are up and they subtype, take the subtype class.
duke@435 3493 // If both are up and they do NOT subtype, "fall hard".
duke@435 3494 // If both are down and they subtype, take the supertype class.
duke@435 3495 // If both are down and they do NOT subtype, "fall hard".
duke@435 3496 // Constants treated as down.
duke@435 3497
duke@435 3498 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 3499 // "fall hard"; "fall hard" becomes the default case:
duke@435 3500 // If we split one up & one down AND they subtype, take the down man.
duke@435 3501 // If both are up and they subtype, take the subtype class.
duke@435 3502
duke@435 3503 // If both are down and they subtype, "fall hard".
duke@435 3504 // If both are down and they do NOT subtype, "fall hard".
duke@435 3505 // If both are up and they do NOT subtype, "fall hard".
duke@435 3506 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3507
duke@435 3508 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 3509 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 3510 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 3511 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 3512
duke@435 3513 // Check for subtyping:
duke@435 3514 ciKlass *subtype = NULL;
duke@435 3515 bool subtype_exact = false;
duke@435 3516 if( tinst_klass->equals(this_klass) ) {
duke@435 3517 subtype = this_klass;
duke@435 3518 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 3519 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3520 subtype = this_klass; // Pick subtyping class
duke@435 3521 subtype_exact = this_xk;
duke@435 3522 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 3523 subtype = tinst_klass; // Pick subtyping class
duke@435 3524 subtype_exact = tinst_xk;
duke@435 3525 }
duke@435 3526
duke@435 3527 if( subtype ) {
duke@435 3528 if( above_centerline(ptr) ) { // both are up?
duke@435 3529 this_klass = tinst_klass = subtype;
duke@435 3530 this_xk = tinst_xk = subtype_exact;
duke@435 3531 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 3532 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 3533 this_xk = tinst_xk;
duke@435 3534 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 3535 tinst_klass = this_klass; // this is down; keep down man
duke@435 3536 tinst_xk = this_xk;
duke@435 3537 } else {
duke@435 3538 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 3539 }
duke@435 3540 }
duke@435 3541
duke@435 3542 // Check for classes now being equal
duke@435 3543 if (tinst_klass->equals(this_klass)) {
duke@435 3544 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3545 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3546 // handled elsewhere).
duke@435 3547 ciObject* o = NULL; // Assume not constant when done
duke@435 3548 ciObject* this_oop = const_oop();
duke@435 3549 ciObject* tinst_oop = tinst->const_oop();
duke@435 3550 if( ptr == Constant ) {
duke@435 3551 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 3552 this_oop->equals(tinst_oop) )
duke@435 3553 o = this_oop;
duke@435 3554 else if (above_centerline(this ->_ptr))
duke@435 3555 o = tinst_oop;
duke@435 3556 else if (above_centerline(tinst ->_ptr))
duke@435 3557 o = this_oop;
duke@435 3558 else
duke@435 3559 ptr = NotNull;
duke@435 3560 }
roland@6380 3561 return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
duke@435 3562 } // Else classes are not equal
duke@435 3563
duke@435 3564 // Since klasses are different, we require a LCA in the Java
duke@435 3565 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3566 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3567 ptr = NotNull;
kvn@682 3568 instance_id = InstanceBot;
duke@435 3569
duke@435 3570 // Now we find the LCA of Java classes
duke@435 3571 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
roland@6380 3572 return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
duke@435 3573 } // End of case InstPtr
duke@435 3574
duke@435 3575 } // End of switch
duke@435 3576 return this; // Return the double constant
duke@435 3577 }
duke@435 3578
duke@435 3579
duke@435 3580 //------------------------java_mirror_type--------------------------------------
duke@435 3581 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3582 // must be a singleton type
duke@435 3583 if( const_oop() == NULL ) return NULL;
duke@435 3584
duke@435 3585 // must be of type java.lang.Class
duke@435 3586 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3587
duke@435 3588 return const_oop()->as_instance()->java_mirror_type();
duke@435 3589 }
duke@435 3590
duke@435 3591
duke@435 3592 //------------------------------xdual------------------------------------------
duke@435 3593 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
twisti@1040 3594 // inheritance mechanism.
duke@435 3595 const Type *TypeInstPtr::xdual() const {
roland@6380 3596 return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
duke@435 3597 }
duke@435 3598
duke@435 3599 //------------------------------eq---------------------------------------------
duke@435 3600 // Structural equality check for Type representations
duke@435 3601 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3602 const TypeInstPtr *p = t->is_instptr();
duke@435 3603 return
duke@435 3604 klass()->equals(p->klass()) &&
duke@435 3605 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3606 }
duke@435 3607
duke@435 3608 //------------------------------hash-------------------------------------------
duke@435 3609 // Type-specific hashing function.
duke@435 3610 int TypeInstPtr::hash(void) const {
duke@435 3611 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 3612 return hash;
duke@435 3613 }
duke@435 3614
duke@435 3615 //------------------------------dump2------------------------------------------
duke@435 3616 // Dump oop Type
duke@435 3617 #ifndef PRODUCT
duke@435 3618 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3619 // Print the name of the klass.
duke@435 3620 klass()->print_name_on(st);
duke@435 3621
duke@435 3622 switch( _ptr ) {
duke@435 3623 case Constant:
duke@435 3624 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3625 if (WizardMode || Verbose) {
duke@435 3626 const_oop()->print_oop(st);
duke@435 3627 }
duke@435 3628 case BotPTR:
duke@435 3629 if (!WizardMode && !Verbose) {
duke@435 3630 if( _klass_is_exact ) st->print(":exact");
duke@435 3631 break;
duke@435 3632 }
duke@435 3633 case TopPTR:
duke@435 3634 case AnyNull:
duke@435 3635 case NotNull:
duke@435 3636 st->print(":%s", ptr_msg[_ptr]);
duke@435 3637 if( _klass_is_exact ) st->print(":exact");
duke@435 3638 break;
duke@435 3639 }
duke@435 3640
duke@435 3641 if( _offset ) { // Dump offset, if any
duke@435 3642 if( _offset == OffsetBot ) st->print("+any");
duke@435 3643 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3644 else st->print("+%d", _offset);
duke@435 3645 }
duke@435 3646
duke@435 3647 st->print(" *");
kvn@658 3648 if (_instance_id == InstanceTop)
kvn@658 3649 st->print(",iid=top");
kvn@658 3650 else if (_instance_id != InstanceBot)
duke@435 3651 st->print(",iid=%d",_instance_id);
roland@5991 3652
roland@6380 3653 dump_inline_depth(st);
roland@5991 3654 dump_speculative(st);
duke@435 3655 }
duke@435 3656 #endif
duke@435 3657
duke@435 3658 //------------------------------add_offset-------------------------------------
roland@5991 3659 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
roland@5991 3660 return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
roland@5991 3661 }
roland@5991 3662
roland@6313 3663 const Type *TypeInstPtr::remove_speculative() const {
roland@6313 3664 if (_speculative == NULL) {
roland@6313 3665 return this;
roland@6313 3666 }
roland@6380 3667 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
roland@6380 3668 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL, _inline_depth);
roland@6380 3669 }
roland@6380 3670
roland@6380 3671 const TypeOopPtr *TypeInstPtr::with_inline_depth(int depth) const {
roland@6380 3672 if (!UseInlineDepthForSpeculativeTypes) {
roland@6380 3673 return this;
roland@6380 3674 }
roland@6380 3675 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
duke@435 3676 }
duke@435 3677
duke@435 3678 //=============================================================================
duke@435 3679 // Convenience common pre-built types.
duke@435 3680 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3681 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3682 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3683 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3684 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3685 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3686 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3687 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3688 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3689 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3690
duke@435 3691 //------------------------------make-------------------------------------------
roland@6380 3692 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
duke@435 3693 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3694 "integral arrays must be pre-equipped with a class");
duke@435 3695 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3696 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3697 if (!UseExactTypes) xk = (ptr == Constant);
roland@6380 3698 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
duke@435 3699 }
duke@435 3700
duke@435 3701 //------------------------------make-------------------------------------------
roland@6380 3702 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth, bool is_autobox_cache) {
duke@435 3703 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3704 "integral arrays must be pre-equipped with a class");
duke@435 3705 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3706 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3707 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3708 if (!UseExactTypes) xk = (ptr == Constant);
roland@6380 3709 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
duke@435 3710 }
duke@435 3711
duke@435 3712 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3713 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3714 if( ptr == _ptr ) return this;
roland@6380 3715 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
duke@435 3716 }
duke@435 3717
duke@435 3718
duke@435 3719 //-----------------------------cast_to_exactness-------------------------------
duke@435 3720 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3721 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3722 if (!UseExactTypes) return this;
duke@435 3723 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
roland@6380 3724 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
duke@435 3725 }
duke@435 3726
kvn@682 3727 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3728 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3729 if( instance_id == _instance_id ) return this;
roland@6380 3730 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
duke@435 3731 }
duke@435 3732
duke@435 3733 //-----------------------------narrow_size_type-------------------------------
duke@435 3734 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3735 // which is kind of slow (and cached elsewhere by other users).
duke@435 3736 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3737 static jint max_array_length(BasicType etype) {
duke@435 3738 jint& cache = max_array_length_cache[etype];
duke@435 3739 jint res = cache;
duke@435 3740 if (res == 0) {
duke@435 3741 switch (etype) {
coleenp@548 3742 case T_NARROWOOP:
coleenp@548 3743 etype = T_OBJECT;
coleenp@548 3744 break;
roland@4159 3745 case T_NARROWKLASS:
duke@435 3746 case T_CONFLICT:
duke@435 3747 case T_ILLEGAL:
duke@435 3748 case T_VOID:
duke@435 3749 etype = T_BYTE; // will produce conservatively high value
duke@435 3750 }
duke@435 3751 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3752 }
duke@435 3753 return res;
duke@435 3754 }
duke@435 3755
duke@435 3756 // Narrow the given size type to the index range for the given array base type.
duke@435 3757 // Return NULL if the resulting int type becomes empty.
rasbold@801 3758 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
duke@435 3759 jint hi = size->_hi;
duke@435 3760 jint lo = size->_lo;
duke@435 3761 jint min_lo = 0;
rasbold@801 3762 jint max_hi = max_array_length(elem()->basic_type());
duke@435 3763 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3764 bool chg = false;
kvn@5110 3765 if (lo < min_lo) {
kvn@5110 3766 lo = min_lo;
kvn@5110 3767 if (size->is_con()) {
kvn@5110 3768 hi = lo;
kvn@5110 3769 }
kvn@5110 3770 chg = true;
kvn@5110 3771 }
kvn@5110 3772 if (hi > max_hi) {
kvn@5110 3773 hi = max_hi;
kvn@5110 3774 if (size->is_con()) {
kvn@5110 3775 lo = hi;
kvn@5110 3776 }
kvn@5110 3777 chg = true;
kvn@5110 3778 }
twisti@1040 3779 // Negative length arrays will produce weird intermediate dead fast-path code
duke@435 3780 if (lo > hi)
rasbold@801 3781 return TypeInt::ZERO;
duke@435 3782 if (!chg)
duke@435 3783 return size;
duke@435 3784 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3785 }
duke@435 3786
duke@435 3787 //-------------------------------cast_to_size----------------------------------
duke@435 3788 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3789 assert(new_size != NULL, "");
rasbold@801 3790 new_size = narrow_size_type(new_size);
duke@435 3791 if (new_size == size()) return this;
vlivanov@5658 3792 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
roland@6380 3793 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
duke@435 3794 }
duke@435 3795
duke@435 3796
vlivanov@5658 3797 //------------------------------cast_to_stable---------------------------------
vlivanov@5658 3798 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
vlivanov@5658 3799 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
vlivanov@5658 3800 return this;
vlivanov@5658 3801
vlivanov@5658 3802 const Type* elem = this->elem();
vlivanov@5658 3803 const TypePtr* elem_ptr = elem->make_ptr();
vlivanov@5658 3804
vlivanov@5658 3805 if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
vlivanov@5658 3806 // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
vlivanov@5658 3807 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
vlivanov@5658 3808 }
vlivanov@5658 3809
vlivanov@5658 3810 const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
vlivanov@5658 3811
vlivanov@5658 3812 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
vlivanov@5658 3813 }
vlivanov@5658 3814
vlivanov@5658 3815 //-----------------------------stable_dimension--------------------------------
vlivanov@5658 3816 int TypeAryPtr::stable_dimension() const {
vlivanov@5658 3817 if (!is_stable()) return 0;
vlivanov@5658 3818 int dim = 1;
vlivanov@5658 3819 const TypePtr* elem_ptr = elem()->make_ptr();
vlivanov@5658 3820 if (elem_ptr != NULL && elem_ptr->isa_aryptr())
vlivanov@5658 3821 dim += elem_ptr->is_aryptr()->stable_dimension();
vlivanov@5658 3822 return dim;
vlivanov@5658 3823 }
vlivanov@5658 3824
duke@435 3825 //------------------------------eq---------------------------------------------
duke@435 3826 // Structural equality check for Type representations
duke@435 3827 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3828 const TypeAryPtr *p = t->is_aryptr();
duke@435 3829 return
duke@435 3830 _ary == p->_ary && // Check array
duke@435 3831 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3832 }
duke@435 3833
duke@435 3834 //------------------------------hash-------------------------------------------
duke@435 3835 // Type-specific hashing function.
duke@435 3836 int TypeAryPtr::hash(void) const {
duke@435 3837 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3838 }
duke@435 3839
duke@435 3840 //------------------------------meet-------------------------------------------
duke@435 3841 // Compute the MEET of two types. It returns a new Type object.
roland@5991 3842 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
duke@435 3843 // Perform a fast test for common case; meeting the same types together.
duke@435 3844 if( this == t ) return this; // Meeting same type-rep?
duke@435 3845 // Current "this->_base" is Pointer
duke@435 3846 switch (t->base()) { // switch on original type
duke@435 3847
duke@435 3848 // Mixing ints & oops happens when javac reuses local variables
duke@435 3849 case Int:
duke@435 3850 case Long:
duke@435 3851 case FloatTop:
duke@435 3852 case FloatCon:
duke@435 3853 case FloatBot:
duke@435 3854 case DoubleTop:
duke@435 3855 case DoubleCon:
duke@435 3856 case DoubleBot:
coleenp@548 3857 case NarrowOop:
roland@4159 3858 case NarrowKlass:
duke@435 3859 case Bottom: // Ye Olde Default
duke@435 3860 return Type::BOTTOM;
duke@435 3861 case Top:
duke@435 3862 return this;
duke@435 3863
duke@435 3864 default: // All else is a mistake
duke@435 3865 typerr(t);
duke@435 3866
duke@435 3867 case OopPtr: { // Meeting to OopPtrs
duke@435 3868 // Found a OopPtr type vs self-AryPtr type
kvn@1393 3869 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3870 int offset = meet_offset(tp->offset());
duke@435 3871 PTR ptr = meet_ptr(tp->ptr());
roland@6380 3872 int depth = meet_inline_depth(tp->inline_depth());
duke@435 3873 switch (tp->ptr()) {
duke@435 3874 case TopPTR:
kvn@658 3875 case AnyNull: {
kvn@658 3876 int instance_id = meet_instance_id(InstanceTop);
roland@6313 3877 const TypeOopPtr* speculative = xmeet_speculative(tp);
kvn@658 3878 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@6380 3879 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
kvn@658 3880 }
duke@435 3881 case BotPTR:
kvn@1393 3882 case NotNull: {
kvn@1393 3883 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3884 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 3885 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
kvn@1393 3886 }
duke@435 3887 default: ShouldNotReachHere();
duke@435 3888 }
duke@435 3889 }
duke@435 3890
duke@435 3891 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3892 // Found an AnyPtr type vs self-AryPtr type
duke@435 3893 const TypePtr *tp = t->is_ptr();
duke@435 3894 int offset = meet_offset(tp->offset());
duke@435 3895 PTR ptr = meet_ptr(tp->ptr());
duke@435 3896 switch (tp->ptr()) {
duke@435 3897 case TopPTR:
duke@435 3898 return this;
duke@435 3899 case BotPTR:
duke@435 3900 case NotNull:
duke@435 3901 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3902 case Null:
duke@435 3903 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3904 // else fall through to AnyNull
kvn@658 3905 case AnyNull: {
kvn@658 3906 int instance_id = meet_instance_id(InstanceTop);
roland@5991 3907 const TypeOopPtr* speculative = _speculative;
roland@5991 3908 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@6380 3909 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, _inline_depth);
kvn@658 3910 }
duke@435 3911 default: ShouldNotReachHere();
duke@435 3912 }
duke@435 3913 }
duke@435 3914
coleenp@4037 3915 case MetadataPtr:
coleenp@4037 3916 case KlassPtr:
duke@435 3917 case RawPtr: return TypePtr::BOTTOM;
duke@435 3918
duke@435 3919 case AryPtr: { // Meeting 2 references?
duke@435 3920 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3921 int off = meet_offset(tap->offset());
roland@6313 3922 const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
duke@435 3923 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3924 int instance_id = meet_instance_id(tap->instance_id());
roland@6313 3925 const TypeOopPtr* speculative = xmeet_speculative(tap);
roland@6380 3926 int depth = meet_inline_depth(tap->inline_depth());
duke@435 3927 ciKlass* lazy_klass = NULL;
duke@435 3928 if (tary->_elem->isa_int()) {
duke@435 3929 // Integral array element types have irrelevant lattice relations.
duke@435 3930 // It is the klass that determines array layout, not the element type.
duke@435 3931 if (_klass == NULL)
duke@435 3932 lazy_klass = tap->_klass;
duke@435 3933 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3934 lazy_klass = _klass;
duke@435 3935 } else {
duke@435 3936 // Something like byte[int+] meets char[int+].
duke@435 3937 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3938 instance_id = InstanceBot;
vlivanov@5658 3939 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
duke@435 3940 }
kvn@2633 3941 } else // Non integral arrays.
roland@6214 3942 // Must fall to bottom if exact klasses in upper lattice
roland@6214 3943 // are not equal or super klass is exact.
roland@6214 3944 if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
roland@6214 3945 // meet with top[] and bottom[] are processed further down:
roland@6214 3946 tap->_klass != NULL && this->_klass != NULL &&
roland@6214 3947 // both are exact and not equal:
roland@6214 3948 ((tap->_klass_is_exact && this->_klass_is_exact) ||
roland@6214 3949 // 'tap' is exact and super or unrelated:
roland@6214 3950 (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
roland@6214 3951 // 'this' is exact and super or unrelated:
roland@6214 3952 (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
vlivanov@5658 3953 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
roland@5991 3954 return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
duke@435 3955 }
kvn@2633 3956
kvn@2120 3957 bool xk = false;
duke@435 3958 switch (tap->ptr()) {
duke@435 3959 case AnyNull:
duke@435 3960 case TopPTR:
duke@435 3961 // Compute new klass on demand, do not use tap->_klass
roland@5991 3962 if (below_centerline(this->_ptr)) {
roland@5991 3963 xk = this->_klass_is_exact;
roland@5991 3964 } else {
roland@5991 3965 xk = (tap->_klass_is_exact | this->_klass_is_exact);
roland@5991 3966 }
roland@6380 3967 return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
duke@435 3968 case Constant: {
duke@435 3969 ciObject* o = const_oop();
duke@435 3970 if( _ptr == Constant ) {
duke@435 3971 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
jrose@1424 3972 xk = (klass() == tap->klass());
duke@435 3973 ptr = NotNull;
duke@435 3974 o = NULL;
kvn@682 3975 instance_id = InstanceBot;
jrose@1424 3976 } else {
jrose@1424 3977 xk = true;
duke@435 3978 }
roland@5991 3979 } else if(above_centerline(_ptr)) {
duke@435 3980 o = tap->const_oop();
jrose@1424 3981 xk = true;
jrose@1424 3982 } else {
kvn@2120 3983 // Only precise for identical arrays
kvn@2120 3984 xk = this->_klass_is_exact && (klass() == tap->klass());
duke@435 3985 }
roland@6380 3986 return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
duke@435 3987 }
duke@435 3988 case NotNull:
duke@435 3989 case BotPTR:
duke@435 3990 // Compute new klass on demand, do not use tap->_klass
duke@435 3991 if (above_centerline(this->_ptr))
duke@435 3992 xk = tap->_klass_is_exact;
duke@435 3993 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 3994 (klass() == tap->klass()); // Only precise for identical arrays
roland@6380 3995 return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
duke@435 3996 default: ShouldNotReachHere();
duke@435 3997 }
duke@435 3998 }
duke@435 3999
duke@435 4000 // All arrays inherit from Object class
duke@435 4001 case InstPtr: {
duke@435 4002 const TypeInstPtr *tp = t->is_instptr();
duke@435 4003 int offset = meet_offset(tp->offset());
duke@435 4004 PTR ptr = meet_ptr(tp->ptr());
kvn@658 4005 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 4006 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 4007 int depth = meet_inline_depth(tp->inline_depth());
duke@435 4008 switch (ptr) {
duke@435 4009 case TopPTR:
duke@435 4010 case AnyNull: // Fall 'down' to dual of object klass
roland@5991 4011 // For instances when a subclass meets a superclass we fall
roland@5991 4012 // below the centerline when the superclass is exact. We need to
roland@5991 4013 // do the same here.
roland@5991 4014 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
roland@6380 4015 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
duke@435 4016 } else {
duke@435 4017 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 4018 ptr = NotNull;
kvn@658 4019 instance_id = InstanceBot;
roland@6380 4020 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
duke@435 4021 }
duke@435 4022 case Constant:
duke@435 4023 case NotNull:
duke@435 4024 case BotPTR: // Fall down to object klass
duke@435 4025 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 4026 if (above_centerline(tp->ptr())) {
duke@435 4027 // If 'tp' is above the centerline and it is Object class
twisti@1040 4028 // then we can subclass in the Java class hierarchy.
roland@5991 4029 // For instances when a subclass meets a superclass we fall
roland@5991 4030 // below the centerline when the superclass is exact. We need
roland@5991 4031 // to do the same here.
roland@5991 4032 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
duke@435 4033 // that is, my array type is a subtype of 'tp' klass
roland@5991 4034 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@6380 4035 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
duke@435 4036 }
duke@435 4037 }
duke@435 4038 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 4039 // The meet falls down to Object class below centerline.
duke@435 4040 if( ptr == Constant )
duke@435 4041 ptr = NotNull;
kvn@658 4042 instance_id = InstanceBot;
roland@6380 4043 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
duke@435 4044 default: typerr(t);
duke@435 4045 }
duke@435 4046 }
duke@435 4047 }
duke@435 4048 return this; // Lint noise
duke@435 4049 }
duke@435 4050
duke@435 4051 //------------------------------xdual------------------------------------------
duke@435 4052 // Dual: compute field-by-field dual
duke@435 4053 const Type *TypeAryPtr::xdual() const {
roland@6380 4054 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
duke@435 4055 }
duke@435 4056
kvn@1255 4057 //----------------------interface_vs_oop---------------------------------------
kvn@1255 4058 #ifdef ASSERT
kvn@1255 4059 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
kvn@1255 4060 const TypeAryPtr* t_aryptr = t->isa_aryptr();
kvn@1255 4061 if (t_aryptr) {
kvn@1255 4062 return _ary->interface_vs_oop(t_aryptr->_ary);
kvn@1255 4063 }
kvn@1255 4064 return false;
kvn@1255 4065 }
kvn@1255 4066 #endif
kvn@1255 4067
duke@435 4068 //------------------------------dump2------------------------------------------
duke@435 4069 #ifndef PRODUCT
duke@435 4070 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4071 _ary->dump2(d,depth,st);
duke@435 4072 switch( _ptr ) {
duke@435 4073 case Constant:
duke@435 4074 const_oop()->print(st);
duke@435 4075 break;
duke@435 4076 case BotPTR:
duke@435 4077 if (!WizardMode && !Verbose) {
duke@435 4078 if( _klass_is_exact ) st->print(":exact");
duke@435 4079 break;
duke@435 4080 }
duke@435 4081 case TopPTR:
duke@435 4082 case AnyNull:
duke@435 4083 case NotNull:
duke@435 4084 st->print(":%s", ptr_msg[_ptr]);
duke@435 4085 if( _klass_is_exact ) st->print(":exact");
duke@435 4086 break;
duke@435 4087 }
duke@435 4088
kvn@499 4089 if( _offset != 0 ) {
kvn@499 4090 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 4091 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 4092 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 4093 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 4094 else {
kvn@499 4095 BasicType basic_elem_type = elem()->basic_type();
kvn@499 4096 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 4097 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 4098 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 4099 }
kvn@499 4100 }
kvn@499 4101 st->print(" *");
kvn@658 4102 if (_instance_id == InstanceTop)
kvn@658 4103 st->print(",iid=top");
kvn@658 4104 else if (_instance_id != InstanceBot)
duke@435 4105 st->print(",iid=%d",_instance_id);
roland@5991 4106
roland@6380 4107 dump_inline_depth(st);
roland@5991 4108 dump_speculative(st);
duke@435 4109 }
duke@435 4110 #endif
duke@435 4111
duke@435 4112 bool TypeAryPtr::empty(void) const {
duke@435 4113 if (_ary->empty()) return true;
duke@435 4114 return TypeOopPtr::empty();
duke@435 4115 }
duke@435 4116
duke@435 4117 //------------------------------add_offset-------------------------------------
roland@5991 4118 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
roland@6380 4119 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
roland@5991 4120 }
roland@5991 4121
roland@6313 4122 const Type *TypeAryPtr::remove_speculative() const {
roland@6380 4123 if (_speculative == NULL) {
roland@6380 4124 return this;
roland@6380 4125 }
roland@6380 4126 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
roland@6380 4127 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
roland@6380 4128 }
roland@6380 4129
roland@6380 4130 const TypeOopPtr *TypeAryPtr::with_inline_depth(int depth) const {
roland@6380 4131 if (!UseInlineDepthForSpeculativeTypes) {
roland@6380 4132 return this;
roland@6380 4133 }
roland@6380 4134 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
roland@5991 4135 }
duke@435 4136
duke@435 4137 //=============================================================================
coleenp@548 4138
coleenp@548 4139 //------------------------------hash-------------------------------------------
coleenp@548 4140 // Type-specific hashing function.
roland@4159 4141 int TypeNarrowPtr::hash(void) const {
never@1262 4142 return _ptrtype->hash() + 7;
coleenp@548 4143 }
coleenp@548 4144
roland@4159 4145 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton
roland@4159 4146 return _ptrtype->singleton();
roland@4159 4147 }
roland@4159 4148
roland@4159 4149 bool TypeNarrowPtr::empty(void) const {
roland@4159 4150 return _ptrtype->empty();
roland@4159 4151 }
roland@4159 4152
roland@4159 4153 intptr_t TypeNarrowPtr::get_con() const {
roland@4159 4154 return _ptrtype->get_con();
roland@4159 4155 }
roland@4159 4156
roland@4159 4157 bool TypeNarrowPtr::eq( const Type *t ) const {
roland@4159 4158 const TypeNarrowPtr* tc = isa_same_narrowptr(t);
coleenp@548 4159 if (tc != NULL) {
never@1262 4160 if (_ptrtype->base() != tc->_ptrtype->base()) {
coleenp@548 4161 return false;
coleenp@548 4162 }
never@1262 4163 return tc->_ptrtype->eq(_ptrtype);
coleenp@548 4164 }
coleenp@548 4165 return false;
coleenp@548 4166 }
coleenp@548 4167
roland@4159 4168 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now.
roland@4159 4169 const TypePtr* odual = _ptrtype->dual()->is_ptr();
roland@4159 4170 return make_same_narrowptr(odual);
roland@4159 4171 }
roland@4159 4172
roland@4159 4173
roland@6313 4174 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@4159 4175 if (isa_same_narrowptr(kills)) {
roland@6313 4176 const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
roland@4159 4177 if (ft->empty())
roland@4159 4178 return Type::TOP; // Canonical empty value
roland@4159 4179 if (ft->isa_ptr()) {
roland@4159 4180 return make_hash_same_narrowptr(ft->isa_ptr());
roland@4159 4181 }
roland@4159 4182 return ft;
roland@4159 4183 } else if (kills->isa_ptr()) {
roland@6313 4184 const Type* ft = _ptrtype->join_helper(kills, include_speculative);
roland@4159 4185 if (ft->empty())
roland@4159 4186 return Type::TOP; // Canonical empty value
roland@4159 4187 return ft;
roland@4159 4188 } else {
roland@4159 4189 return Type::TOP;
roland@4159 4190 }
coleenp@548 4191 }
coleenp@548 4192
kvn@728 4193 //------------------------------xmeet------------------------------------------
coleenp@548 4194 // Compute the MEET of two types. It returns a new Type object.
roland@4159 4195 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
coleenp@548 4196 // Perform a fast test for common case; meeting the same types together.
coleenp@548 4197 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 4198
roland@4159 4199 if (t->base() == base()) {
roland@4159 4200 const Type* result = _ptrtype->xmeet(t->make_ptr());
roland@4159 4201 if (result->isa_ptr()) {
roland@4159 4202 return make_hash_same_narrowptr(result->is_ptr());
roland@4159 4203 }
roland@4159 4204 return result;
roland@4159 4205 }
roland@4159 4206
roland@4159 4207 // Current "this->_base" is NarrowKlass or NarrowOop
coleenp@548 4208 switch (t->base()) { // switch on original type
coleenp@548 4209
coleenp@548 4210 case Int: // Mixing ints & oops happens when javac
coleenp@548 4211 case Long: // reuses local variables
coleenp@548 4212 case FloatTop:
coleenp@548 4213 case FloatCon:
coleenp@548 4214 case FloatBot:
coleenp@548 4215 case DoubleTop:
coleenp@548 4216 case DoubleCon:
coleenp@548 4217 case DoubleBot:
kvn@728 4218 case AnyPtr:
kvn@728 4219 case RawPtr:
kvn@728 4220 case OopPtr:
kvn@728 4221 case InstPtr:
coleenp@4037 4222 case AryPtr:
coleenp@4037 4223 case MetadataPtr:
kvn@728 4224 case KlassPtr:
roland@4159 4225 case NarrowOop:
roland@4159 4226 case NarrowKlass:
kvn@728 4227
coleenp@548 4228 case Bottom: // Ye Olde Default
coleenp@548 4229 return Type::BOTTOM;
coleenp@548 4230 case Top:
coleenp@548 4231 return this;
coleenp@548 4232
coleenp@548 4233 default: // All else is a mistake
coleenp@548 4234 typerr(t);
coleenp@548 4235
coleenp@548 4236 } // End of switch
kvn@728 4237
kvn@728 4238 return this;
coleenp@548 4239 }
coleenp@548 4240
roland@4159 4241 #ifndef PRODUCT
roland@4159 4242 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 4243 _ptrtype->dump2(d, depth, st);
roland@4159 4244 }
roland@4159 4245 #endif
roland@4159 4246
roland@4159 4247 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
roland@4159 4248 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
roland@4159 4249
roland@4159 4250
roland@4159 4251 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
roland@4159 4252 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
roland@4159 4253 }
roland@4159 4254
coleenp@548 4255
coleenp@548 4256 #ifndef PRODUCT
coleenp@548 4257 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
never@852 4258 st->print("narrowoop: ");
roland@4159 4259 TypeNarrowPtr::dump2(d, depth, st);
coleenp@548 4260 }
coleenp@548 4261 #endif
coleenp@548 4262
roland@4159 4263 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
roland@4159 4264
roland@4159 4265 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
roland@4159 4266 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
roland@4159 4267 }
roland@4159 4268
roland@4159 4269 #ifndef PRODUCT
roland@4159 4270 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 4271 st->print("narrowklass: ");
roland@4159 4272 TypeNarrowPtr::dump2(d, depth, st);
roland@4159 4273 }
roland@4159 4274 #endif
coleenp@548 4275
coleenp@4037 4276
coleenp@4037 4277 //------------------------------eq---------------------------------------------
coleenp@4037 4278 // Structural equality check for Type representations
coleenp@4037 4279 bool TypeMetadataPtr::eq( const Type *t ) const {
coleenp@4037 4280 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
coleenp@4037 4281 ciMetadata* one = metadata();
coleenp@4037 4282 ciMetadata* two = a->metadata();
coleenp@4037 4283 if (one == NULL || two == NULL) {
coleenp@4037 4284 return (one == two) && TypePtr::eq(t);
coleenp@4037 4285 } else {
coleenp@4037 4286 return one->equals(two) && TypePtr::eq(t);
coleenp@4037 4287 }
coleenp@4037 4288 }
coleenp@4037 4289
coleenp@4037 4290 //------------------------------hash-------------------------------------------
coleenp@4037 4291 // Type-specific hashing function.
coleenp@4037 4292 int TypeMetadataPtr::hash(void) const {
coleenp@4037 4293 return
coleenp@4037 4294 (metadata() ? metadata()->hash() : 0) +
coleenp@4037 4295 TypePtr::hash();
coleenp@4037 4296 }
coleenp@4037 4297
coleenp@4037 4298 //------------------------------singleton--------------------------------------
coleenp@4037 4299 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 4300 // constants
coleenp@4037 4301 bool TypeMetadataPtr::singleton(void) const {
coleenp@4037 4302 // detune optimizer to not generate constant metadta + constant offset as a constant!
coleenp@4037 4303 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 4304 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 4305 }
coleenp@4037 4306
coleenp@4037 4307 //------------------------------add_offset-------------------------------------
coleenp@4037 4308 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
coleenp@4037 4309 return make( _ptr, _metadata, xadd_offset(offset));
coleenp@4037 4310 }
coleenp@4037 4311
coleenp@4037 4312 //-----------------------------filter------------------------------------------
coleenp@4037 4313 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 4314 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 4315 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
coleenp@4037 4316 if (ft == NULL || ft->empty())
coleenp@4037 4317 return Type::TOP; // Canonical empty value
coleenp@4037 4318 return ft;
coleenp@4037 4319 }
coleenp@4037 4320
coleenp@4037 4321 //------------------------------get_con----------------------------------------
coleenp@4037 4322 intptr_t TypeMetadataPtr::get_con() const {
coleenp@4037 4323 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4324 assert( _offset >= 0, "" );
coleenp@4037 4325
coleenp@4037 4326 if (_offset != 0) {
coleenp@4037 4327 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4328 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4329 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4330 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4331 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4332 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4333 // but this assertion here is to help prevent its occurence.
coleenp@4037 4334 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4335 ShouldNotReachHere();
coleenp@4037 4336 }
coleenp@4037 4337
coleenp@4037 4338 return (intptr_t)metadata()->constant_encoding();
coleenp@4037 4339 }
coleenp@4037 4340
coleenp@4037 4341 //------------------------------cast_to_ptr_type-------------------------------
coleenp@4037 4342 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
coleenp@4037 4343 if( ptr == _ptr ) return this;
coleenp@4037 4344 return make(ptr, metadata(), _offset);
coleenp@4037 4345 }
coleenp@4037 4346
coleenp@4037 4347 //------------------------------meet-------------------------------------------
coleenp@4037 4348 // Compute the MEET of two types. It returns a new Type object.
coleenp@4037 4349 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
coleenp@4037 4350 // Perform a fast test for common case; meeting the same types together.
coleenp@4037 4351 if( this == t ) return this; // Meeting same type-rep?
coleenp@4037 4352
coleenp@4037 4353 // Current "this->_base" is OopPtr
coleenp@4037 4354 switch (t->base()) { // switch on original type
coleenp@4037 4355
coleenp@4037 4356 case Int: // Mixing ints & oops happens when javac
coleenp@4037 4357 case Long: // reuses local variables
coleenp@4037 4358 case FloatTop:
coleenp@4037 4359 case FloatCon:
coleenp@4037 4360 case FloatBot:
coleenp@4037 4361 case DoubleTop:
coleenp@4037 4362 case DoubleCon:
coleenp@4037 4363 case DoubleBot:
coleenp@4037 4364 case NarrowOop:
roland@4159 4365 case NarrowKlass:
coleenp@4037 4366 case Bottom: // Ye Olde Default
coleenp@4037 4367 return Type::BOTTOM;
coleenp@4037 4368 case Top:
coleenp@4037 4369 return this;
coleenp@4037 4370
coleenp@4037 4371 default: // All else is a mistake
coleenp@4037 4372 typerr(t);
coleenp@4037 4373
coleenp@4037 4374 case AnyPtr: {
coleenp@4037 4375 // Found an AnyPtr type vs self-OopPtr type
coleenp@4037 4376 const TypePtr *tp = t->is_ptr();
coleenp@4037 4377 int offset = meet_offset(tp->offset());
coleenp@4037 4378 PTR ptr = meet_ptr(tp->ptr());
coleenp@4037 4379 switch (tp->ptr()) {
coleenp@4037 4380 case Null:
coleenp@4037 4381 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 4382 // else fall through:
coleenp@4037 4383 case TopPTR:
coleenp@4037 4384 case AnyNull: {
kvn@6429 4385 return make(ptr, _metadata, offset);
coleenp@4037 4386 }
coleenp@4037 4387 case BotPTR:
coleenp@4037 4388 case NotNull:
coleenp@4037 4389 return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 4390 default: typerr(t);
coleenp@4037 4391 }
coleenp@4037 4392 }
coleenp@4037 4393
coleenp@4037 4394 case RawPtr:
coleenp@4037 4395 case KlassPtr:
coleenp@4037 4396 case OopPtr:
coleenp@4037 4397 case InstPtr:
coleenp@4037 4398 case AryPtr:
coleenp@4037 4399 return TypePtr::BOTTOM; // Oop meet raw is not well defined
coleenp@4037 4400
roland@4040 4401 case MetadataPtr: {
roland@4040 4402 const TypeMetadataPtr *tp = t->is_metadataptr();
roland@4040 4403 int offset = meet_offset(tp->offset());
roland@4040 4404 PTR tptr = tp->ptr();
roland@4040 4405 PTR ptr = meet_ptr(tptr);
roland@4040 4406 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
roland@4040 4407 if (tptr == TopPTR || _ptr == TopPTR ||
roland@4040 4408 metadata()->equals(tp->metadata())) {
roland@4040 4409 return make(ptr, md, offset);
roland@4040 4410 }
roland@4040 4411 // metadata is different
roland@4040 4412 if( ptr == Constant ) { // Cannot be equal constants, so...
roland@4040 4413 if( tptr == Constant && _ptr != Constant) return t;
roland@4040 4414 if( _ptr == Constant && tptr != Constant) return this;
roland@4040 4415 ptr = NotNull; // Fall down in lattice
roland@4040 4416 }
roland@4040 4417 return make(ptr, NULL, offset);
coleenp@4037 4418 break;
roland@4040 4419 }
coleenp@4037 4420 } // End of switch
coleenp@4037 4421 return this; // Return the double constant
coleenp@4037 4422 }
coleenp@4037 4423
coleenp@4037 4424
coleenp@4037 4425 //------------------------------xdual------------------------------------------
coleenp@4037 4426 // Dual of a pure metadata pointer.
coleenp@4037 4427 const Type *TypeMetadataPtr::xdual() const {
coleenp@4037 4428 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
coleenp@4037 4429 }
coleenp@4037 4430
coleenp@4037 4431 //------------------------------dump2------------------------------------------
coleenp@4037 4432 #ifndef PRODUCT
coleenp@4037 4433 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
coleenp@4037 4434 st->print("metadataptr:%s", ptr_msg[_ptr]);
coleenp@4037 4435 if( metadata() ) st->print(INTPTR_FORMAT, metadata());
coleenp@4037 4436 switch( _offset ) {
coleenp@4037 4437 case OffsetTop: st->print("+top"); break;
coleenp@4037 4438 case OffsetBot: st->print("+any"); break;
coleenp@4037 4439 case 0: break;
coleenp@4037 4440 default: st->print("+%d",_offset); break;
coleenp@4037 4441 }
coleenp@4037 4442 }
coleenp@4037 4443 #endif
coleenp@4037 4444
coleenp@4037 4445
coleenp@4037 4446 //=============================================================================
coleenp@4037 4447 // Convenience common pre-built type.
coleenp@4037 4448 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
coleenp@4037 4449
coleenp@4037 4450 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
coleenp@4037 4451 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
coleenp@4037 4452 }
coleenp@4037 4453
coleenp@4037 4454 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
coleenp@4037 4455 return make(Constant, m, 0);
coleenp@4037 4456 }
coleenp@4037 4457 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
coleenp@4037 4458 return make(Constant, m, 0);
coleenp@4037 4459 }
coleenp@4037 4460
coleenp@4037 4461 //------------------------------make-------------------------------------------
coleenp@4037 4462 // Create a meta data constant
coleenp@4037 4463 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
coleenp@4037 4464 assert(m == NULL || !m->is_klass(), "wrong type");
coleenp@4037 4465 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
coleenp@4037 4466 }
coleenp@4037 4467
coleenp@4037 4468
coleenp@548 4469 //=============================================================================
duke@435 4470 // Convenience common pre-built types.
duke@435 4471
duke@435 4472 // Not-null object klass or below
duke@435 4473 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 4474 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 4475
coleenp@4037 4476 //------------------------------TypeKlassPtr-----------------------------------
duke@435 4477 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
coleenp@4037 4478 : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
duke@435 4479 }
duke@435 4480
duke@435 4481 //------------------------------make-------------------------------------------
duke@435 4482 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 4483 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 4484 assert( k != NULL, "Expect a non-NULL klass");
coleenp@4037 4485 assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
duke@435 4486 TypeKlassPtr *r =
duke@435 4487 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 4488
duke@435 4489 return r;
duke@435 4490 }
duke@435 4491
duke@435 4492 //------------------------------eq---------------------------------------------
duke@435 4493 // Structural equality check for Type representations
duke@435 4494 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 4495 const TypeKlassPtr *p = t->is_klassptr();
duke@435 4496 return
duke@435 4497 klass()->equals(p->klass()) &&
coleenp@4037 4498 TypePtr::eq(p);
duke@435 4499 }
duke@435 4500
duke@435 4501 //------------------------------hash-------------------------------------------
duke@435 4502 // Type-specific hashing function.
duke@435 4503 int TypeKlassPtr::hash(void) const {
coleenp@4037 4504 return klass()->hash() + TypePtr::hash();
coleenp@4037 4505 }
coleenp@4037 4506
coleenp@4037 4507 //------------------------------singleton--------------------------------------
coleenp@4037 4508 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 4509 // constants
coleenp@4037 4510 bool TypeKlassPtr::singleton(void) const {
coleenp@4037 4511 // detune optimizer to not generate constant klass + constant offset as a constant!
coleenp@4037 4512 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 4513 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 4514 }
duke@435 4515
roland@6043 4516 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 4517 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@6043 4518 // logic here mirrors the one from TypeOopPtr::filter. See comments
roland@6043 4519 // there.
roland@6313 4520 const Type* ft = join_helper(kills, include_speculative);
roland@6043 4521 const TypeKlassPtr* ftkp = ft->isa_klassptr();
roland@6043 4522 const TypeKlassPtr* ktkp = kills->isa_klassptr();
roland@6043 4523
roland@6043 4524 if (ft->empty()) {
roland@6043 4525 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
roland@6043 4526 return kills; // Uplift to interface
roland@6043 4527
roland@6043 4528 return Type::TOP; // Canonical empty value
roland@6043 4529 }
roland@6043 4530
roland@6043 4531 // Interface klass type could be exact in opposite to interface type,
roland@6043 4532 // return it here instead of incorrect Constant ptr J/L/Object (6894807).
roland@6043 4533 if (ftkp != NULL && ktkp != NULL &&
roland@6043 4534 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
roland@6043 4535 !ftkp->klass_is_exact() && // Keep exact interface klass
roland@6043 4536 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
roland@6043 4537 return ktkp->cast_to_ptr_type(ftkp->ptr());
roland@6043 4538 }
roland@6043 4539
roland@6043 4540 return ft;
roland@6043 4541 }
roland@6043 4542
kvn@2116 4543 //----------------------compute_klass------------------------------------------
kvn@2116 4544 // Compute the defining klass for this class
kvn@2116 4545 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
kvn@2116 4546 // Compute _klass based on element type.
duke@435 4547 ciKlass* k_ary = NULL;
duke@435 4548 const TypeInstPtr *tinst;
duke@435 4549 const TypeAryPtr *tary;
coleenp@548 4550 const Type* el = elem();
coleenp@548 4551 if (el->isa_narrowoop()) {
kvn@656 4552 el = el->make_ptr();
coleenp@548 4553 }
coleenp@548 4554
duke@435 4555 // Get element klass
coleenp@548 4556 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 4557 // Compute array klass from element klass
duke@435 4558 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 4559 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 4560 // Compute array klass from element klass
duke@435 4561 ciKlass* k_elem = tary->klass();
duke@435 4562 // If element type is something like bottom[], k_elem will be null.
duke@435 4563 if (k_elem != NULL)
duke@435 4564 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 4565 } else if ((el->base() == Type::Top) ||
coleenp@548 4566 (el->base() == Type::Bottom)) {
duke@435 4567 // element type of Bottom occurs from meet of basic type
duke@435 4568 // and object; Top occurs when doing join on Bottom.
duke@435 4569 // Leave k_ary at NULL.
duke@435 4570 } else {
duke@435 4571 // Cannot compute array klass directly from basic type,
duke@435 4572 // since subtypes of TypeInt all have basic type T_INT.
kvn@2116 4573 #ifdef ASSERT
kvn@2116 4574 if (verify && el->isa_int()) {
kvn@2116 4575 // Check simple cases when verifying klass.
kvn@2116 4576 BasicType bt = T_ILLEGAL;
kvn@2116 4577 if (el == TypeInt::BYTE) {
kvn@2116 4578 bt = T_BYTE;
kvn@2116 4579 } else if (el == TypeInt::SHORT) {
kvn@2116 4580 bt = T_SHORT;
kvn@2116 4581 } else if (el == TypeInt::CHAR) {
kvn@2116 4582 bt = T_CHAR;
kvn@2116 4583 } else if (el == TypeInt::INT) {
kvn@2116 4584 bt = T_INT;
kvn@2116 4585 } else {
kvn@2116 4586 return _klass; // just return specified klass
kvn@2116 4587 }
kvn@2116 4588 return ciTypeArrayKlass::make(bt);
kvn@2116 4589 }
kvn@2116 4590 #endif
coleenp@548 4591 assert(!el->isa_int(),
duke@435 4592 "integral arrays must be pre-equipped with a class");
duke@435 4593 // Compute array klass directly from basic type
coleenp@548 4594 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 4595 }
kvn@2116 4596 return k_ary;
kvn@2116 4597 }
kvn@2116 4598
kvn@2116 4599 //------------------------------klass------------------------------------------
kvn@2116 4600 // Return the defining klass for this class
kvn@2116 4601 ciKlass* TypeAryPtr::klass() const {
kvn@2116 4602 if( _klass ) return _klass; // Return cached value, if possible
kvn@2116 4603
kvn@2116 4604 // Oops, need to compute _klass and cache it
kvn@2116 4605 ciKlass* k_ary = compute_klass();
duke@435 4606
kvn@2636 4607 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
duke@435 4608 // The _klass field acts as a cache of the underlying
duke@435 4609 // ciKlass for this array type. In order to set the field,
duke@435 4610 // we need to cast away const-ness.
duke@435 4611 //
duke@435 4612 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 4613 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 4614 // active compilations. However, the ciKlass which represents
duke@435 4615 // this Type is *not* shared between compilations, so caching
duke@435 4616 // this value would result in fetching a dangling pointer.
duke@435 4617 //
duke@435 4618 // Recomputing the underlying ciKlass for each request is
duke@435 4619 // a bit less efficient than caching, but calls to
duke@435 4620 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 4621 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 4622 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 4623 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 4624 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 4625 }
kvn@598 4626 }
duke@435 4627 return k_ary;
duke@435 4628 }
duke@435 4629
duke@435 4630
duke@435 4631 //------------------------------add_offset-------------------------------------
duke@435 4632 // Access internals of klass object
kvn@741 4633 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
duke@435 4634 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 4635 }
duke@435 4636
duke@435 4637 //------------------------------cast_to_ptr_type-------------------------------
duke@435 4638 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
kvn@992 4639 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
duke@435 4640 if( ptr == _ptr ) return this;
duke@435 4641 return make(ptr, _klass, _offset);
duke@435 4642 }
duke@435 4643
duke@435 4644
duke@435 4645 //-----------------------------cast_to_exactness-------------------------------
duke@435 4646 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 4647 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 4648 if (!UseExactTypes) return this;
duke@435 4649 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 4650 }
duke@435 4651
duke@435 4652
duke@435 4653 //-----------------------------as_instance_type--------------------------------
duke@435 4654 // Corresponding type for an instance of the given class.
duke@435 4655 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 4656 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 4657 ciKlass* k = klass();
duke@435 4658 bool xk = klass_is_exact();
duke@435 4659 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 4660 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
morris@4760 4661 guarantee(toop != NULL, "need type for given klass");
duke@435 4662 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 4663 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 4664 }
duke@435 4665
duke@435 4666
duke@435 4667 //------------------------------xmeet------------------------------------------
duke@435 4668 // Compute the MEET of two types, return a new Type object.
duke@435 4669 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 4670 // Perform a fast test for common case; meeting the same types together.
duke@435 4671 if( this == t ) return this; // Meeting same type-rep?
duke@435 4672
duke@435 4673 // Current "this->_base" is Pointer
duke@435 4674 switch (t->base()) { // switch on original type
duke@435 4675
duke@435 4676 case Int: // Mixing ints & oops happens when javac
duke@435 4677 case Long: // reuses local variables
duke@435 4678 case FloatTop:
duke@435 4679 case FloatCon:
duke@435 4680 case FloatBot:
duke@435 4681 case DoubleTop:
duke@435 4682 case DoubleCon:
duke@435 4683 case DoubleBot:
kvn@728 4684 case NarrowOop:
roland@4159 4685 case NarrowKlass:
duke@435 4686 case Bottom: // Ye Olde Default
duke@435 4687 return Type::BOTTOM;
duke@435 4688 case Top:
duke@435 4689 return this;
duke@435 4690
duke@435 4691 default: // All else is a mistake
duke@435 4692 typerr(t);
duke@435 4693
duke@435 4694 case AnyPtr: { // Meeting to AnyPtrs
duke@435 4695 // Found an AnyPtr type vs self-KlassPtr type
duke@435 4696 const TypePtr *tp = t->is_ptr();
duke@435 4697 int offset = meet_offset(tp->offset());
duke@435 4698 PTR ptr = meet_ptr(tp->ptr());
duke@435 4699 switch (tp->ptr()) {
duke@435 4700 case TopPTR:
duke@435 4701 return this;
duke@435 4702 case Null:
duke@435 4703 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 4704 case AnyNull:
duke@435 4705 return make( ptr, klass(), offset );
duke@435 4706 case BotPTR:
duke@435 4707 case NotNull:
duke@435 4708 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 4709 default: typerr(t);
duke@435 4710 }
duke@435 4711 }
duke@435 4712
coleenp@4037 4713 case RawPtr:
coleenp@4037 4714 case MetadataPtr:
coleenp@4037 4715 case OopPtr:
duke@435 4716 case AryPtr: // Meet with AryPtr
duke@435 4717 case InstPtr: // Meet with InstPtr
coleenp@4037 4718 return TypePtr::BOTTOM;
duke@435 4719
duke@435 4720 //
duke@435 4721 // A-top }
duke@435 4722 // / | \ } Tops
duke@435 4723 // B-top A-any C-top }
duke@435 4724 // | / | \ | } Any-nulls
duke@435 4725 // B-any | C-any }
duke@435 4726 // | | |
duke@435 4727 // B-con A-con C-con } constants; not comparable across classes
duke@435 4728 // | | |
duke@435 4729 // B-not | C-not }
duke@435 4730 // | \ | / | } not-nulls
duke@435 4731 // B-bot A-not C-bot }
duke@435 4732 // \ | / } Bottoms
duke@435 4733 // A-bot }
duke@435 4734 //
duke@435 4735
duke@435 4736 case KlassPtr: { // Meet two KlassPtr types
duke@435 4737 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 4738 int off = meet_offset(tkls->offset());
duke@435 4739 PTR ptr = meet_ptr(tkls->ptr());
duke@435 4740
duke@435 4741 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 4742 // If we have constants, then we created oops so classes are loaded
duke@435 4743 // and we can handle the constants further down. This case handles
duke@435 4744 // not-loaded classes
duke@435 4745 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 4746 return make( ptr, klass(), off );
duke@435 4747 }
duke@435 4748
duke@435 4749 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 4750 ciKlass* tkls_klass = tkls->klass();
duke@435 4751 ciKlass* this_klass = this->klass();
duke@435 4752 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 4753 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 4754
duke@435 4755 // If 'this' type is above the centerline and is a superclass of the
duke@435 4756 // other, we can treat 'this' as having the same type as the other.
duke@435 4757 if ((above_centerline(this->ptr())) &&
duke@435 4758 tkls_klass->is_subtype_of(this_klass)) {
duke@435 4759 this_klass = tkls_klass;
duke@435 4760 }
duke@435 4761 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 4762 // other, we can treat 'tinst' as having the same type as the other.
duke@435 4763 if ((above_centerline(tkls->ptr())) &&
duke@435 4764 this_klass->is_subtype_of(tkls_klass)) {
duke@435 4765 tkls_klass = this_klass;
duke@435 4766 }
duke@435 4767
duke@435 4768 // Check for classes now being equal
duke@435 4769 if (tkls_klass->equals(this_klass)) {
duke@435 4770 // If the klasses are equal, the constants may still differ. Fall to
duke@435 4771 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 4772 // handled elsewhere).
duke@435 4773 if( ptr == Constant ) {
coleenp@4037 4774 if (this->_ptr == Constant && tkls->_ptr == Constant &&
coleenp@4037 4775 this->klass()->equals(tkls->klass()));
coleenp@4037 4776 else if (above_centerline(this->ptr()));
coleenp@4037 4777 else if (above_centerline(tkls->ptr()));
duke@435 4778 else
duke@435 4779 ptr = NotNull;
duke@435 4780 }
duke@435 4781 return make( ptr, this_klass, off );
duke@435 4782 } // Else classes are not equal
duke@435 4783
duke@435 4784 // Since klasses are different, we require the LCA in the Java
duke@435 4785 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 4786 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 4787 ptr = NotNull;
duke@435 4788 // Now we find the LCA of Java classes
duke@435 4789 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 4790 return make( ptr, k, off );
duke@435 4791 } // End of case KlassPtr
duke@435 4792
duke@435 4793 } // End of switch
duke@435 4794 return this; // Return the double constant
duke@435 4795 }
duke@435 4796
duke@435 4797 //------------------------------xdual------------------------------------------
duke@435 4798 // Dual: compute field-by-field dual
duke@435 4799 const Type *TypeKlassPtr::xdual() const {
duke@435 4800 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 4801 }
duke@435 4802
coleenp@4037 4803 //------------------------------get_con----------------------------------------
coleenp@4037 4804 intptr_t TypeKlassPtr::get_con() const {
coleenp@4037 4805 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4806 assert( _offset >= 0, "" );
coleenp@4037 4807
coleenp@4037 4808 if (_offset != 0) {
coleenp@4037 4809 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4810 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4811 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4812 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4813 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4814 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4815 // but this assertion here is to help prevent its occurence.
coleenp@4037 4816 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4817 ShouldNotReachHere();
coleenp@4037 4818 }
coleenp@4037 4819
coleenp@4037 4820 return (intptr_t)klass()->constant_encoding();
coleenp@4037 4821 }
duke@435 4822 //------------------------------dump2------------------------------------------
duke@435 4823 // Dump Klass Type
duke@435 4824 #ifndef PRODUCT
duke@435 4825 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 4826 switch( _ptr ) {
duke@435 4827 case Constant:
duke@435 4828 st->print("precise ");
duke@435 4829 case NotNull:
duke@435 4830 {
duke@435 4831 const char *name = klass()->name()->as_utf8();
duke@435 4832 if( name ) {
duke@435 4833 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 4834 } else {
duke@435 4835 ShouldNotReachHere();
duke@435 4836 }
duke@435 4837 }
duke@435 4838 case BotPTR:
duke@435 4839 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 4840 case TopPTR:
duke@435 4841 case AnyNull:
duke@435 4842 st->print(":%s", ptr_msg[_ptr]);
duke@435 4843 if( _klass_is_exact ) st->print(":exact");
duke@435 4844 break;
duke@435 4845 }
duke@435 4846
duke@435 4847 if( _offset ) { // Dump offset, if any
duke@435 4848 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 4849 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 4850 else { st->print("+%d", _offset); }
duke@435 4851 }
duke@435 4852
duke@435 4853 st->print(" *");
duke@435 4854 }
duke@435 4855 #endif
duke@435 4856
duke@435 4857
duke@435 4858
duke@435 4859 //=============================================================================
duke@435 4860 // Convenience common pre-built types.
duke@435 4861
duke@435 4862 //------------------------------make-------------------------------------------
duke@435 4863 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 4864 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 4865 }
duke@435 4866
duke@435 4867 //------------------------------make-------------------------------------------
duke@435 4868 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 4869 Compile* C = Compile::current();
duke@435 4870 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 4871 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 4872 const TypeTuple *domain;
twisti@1572 4873 if (method->is_static()) {
duke@435 4874 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 4875 } else {
duke@435 4876 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 4877 }
duke@435 4878 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 4879 tf = TypeFunc::make(domain, range);
duke@435 4880 C->set_last_tf(method, tf); // fill cache
duke@435 4881 return tf;
duke@435 4882 }
duke@435 4883
duke@435 4884 //------------------------------meet-------------------------------------------
duke@435 4885 // Compute the MEET of two types. It returns a new Type object.
duke@435 4886 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 4887 // Perform a fast test for common case; meeting the same types together.
duke@435 4888 if( this == t ) return this; // Meeting same type-rep?
duke@435 4889
duke@435 4890 // Current "this->_base" is Func
duke@435 4891 switch (t->base()) { // switch on original type
duke@435 4892
duke@435 4893 case Bottom: // Ye Olde Default
duke@435 4894 return t;
duke@435 4895
duke@435 4896 default: // All else is a mistake
duke@435 4897 typerr(t);
duke@435 4898
duke@435 4899 case Top:
duke@435 4900 break;
duke@435 4901 }
duke@435 4902 return this; // Return the double constant
duke@435 4903 }
duke@435 4904
duke@435 4905 //------------------------------xdual------------------------------------------
duke@435 4906 // Dual: compute field-by-field dual
duke@435 4907 const Type *TypeFunc::xdual() const {
duke@435 4908 return this;
duke@435 4909 }
duke@435 4910
duke@435 4911 //------------------------------eq---------------------------------------------
duke@435 4912 // Structural equality check for Type representations
duke@435 4913 bool TypeFunc::eq( const Type *t ) const {
duke@435 4914 const TypeFunc *a = (const TypeFunc*)t;
duke@435 4915 return _domain == a->_domain &&
duke@435 4916 _range == a->_range;
duke@435 4917 }
duke@435 4918
duke@435 4919 //------------------------------hash-------------------------------------------
duke@435 4920 // Type-specific hashing function.
duke@435 4921 int TypeFunc::hash(void) const {
duke@435 4922 return (intptr_t)_domain + (intptr_t)_range;
duke@435 4923 }
duke@435 4924
duke@435 4925 //------------------------------dump2------------------------------------------
duke@435 4926 // Dump Function Type
duke@435 4927 #ifndef PRODUCT
duke@435 4928 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4929 if( _range->_cnt <= Parms )
duke@435 4930 st->print("void");
duke@435 4931 else {
duke@435 4932 uint i;
duke@435 4933 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 4934 _range->field_at(i)->dump2(d,depth,st);
duke@435 4935 st->print("/");
duke@435 4936 }
duke@435 4937 _range->field_at(i)->dump2(d,depth,st);
duke@435 4938 }
duke@435 4939 st->print(" ");
duke@435 4940 st->print("( ");
duke@435 4941 if( !depth || d[this] ) { // Check for recursive dump
duke@435 4942 st->print("...)");
duke@435 4943 return;
duke@435 4944 }
duke@435 4945 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 4946 if (Parms < _domain->_cnt)
duke@435 4947 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 4948 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 4949 st->print(", ");
duke@435 4950 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 4951 }
duke@435 4952 st->print(" )");
duke@435 4953 }
duke@435 4954 #endif
duke@435 4955
duke@435 4956 //------------------------------singleton--------------------------------------
duke@435 4957 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 4958 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 4959 // or a single symbol.
duke@435 4960 bool TypeFunc::singleton(void) const {
duke@435 4961 return false; // Never a singleton
duke@435 4962 }
duke@435 4963
duke@435 4964 bool TypeFunc::empty(void) const {
duke@435 4965 return false; // Never empty
duke@435 4966 }
duke@435 4967
duke@435 4968
duke@435 4969 BasicType TypeFunc::return_type() const{
duke@435 4970 if (range()->cnt() == TypeFunc::Parms) {
duke@435 4971 return T_VOID;
duke@435 4972 }
duke@435 4973 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 4974 }

mercurial