src/share/vm/opto/type.cpp

Tue, 30 Jun 2020 18:05:34 +0200

author
roland
date
Tue, 30 Jun 2020 18:05:34 +0200
changeset 9985
8712be1ae49a
parent 9840
9efdbe72ed1d
child 10015
eb7ce841ccec
permissions
-rw-r--r--

8240676: Meet not symmetric failure when running lucene on jdk8
Reviewed-by: kvn, thartmann

duke@435 1 /*
dbuck@9512 2 * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
coleenp@4037 26 #include "ci/ciMethodData.hpp"
stefank@2314 27 #include "ci/ciTypeFlow.hpp"
stefank@2314 28 #include "classfile/symbolTable.hpp"
stefank@2314 29 #include "classfile/systemDictionary.hpp"
stefank@2314 30 #include "compiler/compileLog.hpp"
stefank@2314 31 #include "libadt/dict.hpp"
stefank@2314 32 #include "memory/gcLocker.hpp"
stefank@2314 33 #include "memory/oopFactory.hpp"
stefank@2314 34 #include "memory/resourceArea.hpp"
stefank@2314 35 #include "oops/instanceKlass.hpp"
never@2658 36 #include "oops/instanceMirrorKlass.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "oops/typeArrayKlass.hpp"
stefank@2314 39 #include "opto/matcher.hpp"
stefank@2314 40 #include "opto/node.hpp"
stefank@2314 41 #include "opto/opcodes.hpp"
stefank@2314 42 #include "opto/type.hpp"
stefank@2314 43
drchase@6680 44 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6680 45
duke@435 46 // Portions of code courtesy of Clifford Click
duke@435 47
duke@435 48 // Optimization - Graph Style
duke@435 49
duke@435 50 // Dictionary of types shared among compilations.
duke@435 51 Dict* Type::_shared_type_dict = NULL;
duke@435 52
duke@435 53 // Array which maps compiler types to Basic Types
kevinw@9333 54 const Type::TypeInfo Type::_type_info[Type::lastype] = {
coleenp@4037 55 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
coleenp@4037 56 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
coleenp@4037 57 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
coleenp@4037 58 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
coleenp@4037 59 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
coleenp@4037 60 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
coleenp@4037 61 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
roland@4159 62 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass
coleenp@4037 63 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
coleenp@4037 64 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
coleenp@4037 65
goetz@6487 66 #ifdef SPARC
goetz@6487 67 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
goetz@6487 68 { Bad, T_ILLEGAL, "vectord:", false, Op_RegD, relocInfo::none }, // VectorD
goetz@6487 69 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
goetz@6487 70 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
goetz@6487 71 #elif defined(PPC64)
goetz@6487 72 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
goetz@6487 73 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD
goetz@6487 74 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
goetz@6487 75 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
goetz@6487 76 #else // all other
coleenp@4037 77 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS
coleenp@4037 78 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
coleenp@4037 79 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
coleenp@4037 80 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY
goetz@6487 81 #endif
coleenp@4037 82 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr
coleenp@4037 83 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr
coleenp@4037 84 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr
coleenp@4037 85 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr
coleenp@4037 86 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr
coleenp@4037 87 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr
coleenp@4037 88 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr
coleenp@4037 89 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function
coleenp@4037 90 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio
coleenp@4037 91 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address
coleenp@4037 92 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory
coleenp@4037 93 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop
coleenp@4037 94 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon
coleenp@4037 95 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot
coleenp@4037 96 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop
coleenp@4037 97 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon
coleenp@4037 98 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot
coleenp@4037 99 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom
duke@435 100 };
duke@435 101
duke@435 102 // Map ideal registers (machine types) to ideal types
duke@435 103 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 104
duke@435 105 // Map basic types to canonical Type* pointers.
duke@435 106 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 107
duke@435 108 // Map basic types to constant-zero Types.
duke@435 109 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 110
duke@435 111 // Map basic types to array-body alias types.
duke@435 112 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 113
duke@435 114 //=============================================================================
duke@435 115 // Convenience common pre-built types.
duke@435 116 const Type *Type::ABIO; // State-of-machine only
duke@435 117 const Type *Type::BOTTOM; // All values
duke@435 118 const Type *Type::CONTROL; // Control only
duke@435 119 const Type *Type::DOUBLE; // All doubles
duke@435 120 const Type *Type::FLOAT; // All floats
duke@435 121 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 122 const Type *Type::MEMORY; // Abstract store only
duke@435 123 const Type *Type::RETURN_ADDRESS;
duke@435 124 const Type *Type::TOP; // No values in set
duke@435 125
duke@435 126 //------------------------------get_const_type---------------------------
duke@435 127 const Type* Type::get_const_type(ciType* type) {
duke@435 128 if (type == NULL) {
duke@435 129 return NULL;
duke@435 130 } else if (type->is_primitive_type()) {
duke@435 131 return get_const_basic_type(type->basic_type());
duke@435 132 } else {
duke@435 133 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 134 }
duke@435 135 }
duke@435 136
duke@435 137 //---------------------------array_element_basic_type---------------------------------
duke@435 138 // Mapping to the array element's basic type.
duke@435 139 BasicType Type::array_element_basic_type() const {
duke@435 140 BasicType bt = basic_type();
duke@435 141 if (bt == T_INT) {
duke@435 142 if (this == TypeInt::INT) return T_INT;
duke@435 143 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 144 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 145 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 146 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 147 return T_VOID;
duke@435 148 }
duke@435 149 return bt;
duke@435 150 }
duke@435 151
shshahma@8422 152 // For two instance arrays of same dimension, return the base element types.
shshahma@8422 153 // Otherwise or if the arrays have different dimensions, return NULL.
shshahma@8422 154 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
shshahma@8422 155 const TypeInstPtr **e1, const TypeInstPtr **e2) {
shshahma@8422 156
shshahma@8422 157 if (e1) *e1 = NULL;
shshahma@8422 158 if (e2) *e2 = NULL;
shshahma@8422 159 const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
shshahma@8422 160 const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
shshahma@8422 161
shshahma@8422 162 if (a1tap != NULL && a2tap != NULL) {
shshahma@8422 163 // Handle multidimensional arrays
shshahma@8422 164 const TypePtr* a1tp = a1tap->elem()->make_ptr();
shshahma@8422 165 const TypePtr* a2tp = a2tap->elem()->make_ptr();
shshahma@8422 166 while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
shshahma@8422 167 a1tap = a1tp->is_aryptr();
shshahma@8422 168 a2tap = a2tp->is_aryptr();
shshahma@8422 169 a1tp = a1tap->elem()->make_ptr();
shshahma@8422 170 a2tp = a2tap->elem()->make_ptr();
shshahma@8422 171 }
shshahma@8422 172 if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
shshahma@8422 173 if (e1) *e1 = a1tp->is_instptr();
shshahma@8422 174 if (e2) *e2 = a2tp->is_instptr();
shshahma@8422 175 }
shshahma@8422 176 }
shshahma@8422 177 }
shshahma@8422 178
duke@435 179 //---------------------------get_typeflow_type---------------------------------
duke@435 180 // Import a type produced by ciTypeFlow.
duke@435 181 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 182 switch (type->basic_type()) {
duke@435 183
duke@435 184 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 185 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 186 return Type::BOTTOM;
duke@435 187
duke@435 188 case ciTypeFlow::StateVector::T_TOP:
duke@435 189 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 190 return Type::TOP;
duke@435 191
duke@435 192 case ciTypeFlow::StateVector::T_NULL:
duke@435 193 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 194 return TypePtr::NULL_PTR;
duke@435 195
duke@435 196 case ciTypeFlow::StateVector::T_LONG2:
duke@435 197 // The ciTypeFlow pass pushes a long, then the half.
duke@435 198 // We do the same.
duke@435 199 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 200 return TypeInt::TOP;
duke@435 201
duke@435 202 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 203 // The ciTypeFlow pass pushes double, then the half.
duke@435 204 // Our convention is the same.
duke@435 205 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 206 return Type::TOP;
duke@435 207
duke@435 208 case T_ADDRESS:
duke@435 209 assert(type->is_return_address(), "");
duke@435 210 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 211
duke@435 212 default:
duke@435 213 // make sure we did not mix up the cases:
duke@435 214 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 215 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 216 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 217 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 218 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 219 assert(!type->is_return_address(), "");
duke@435 220
duke@435 221 return Type::get_const_type(type);
duke@435 222 }
duke@435 223 }
duke@435 224
duke@435 225
vlivanov@5658 226 //-----------------------make_from_constant------------------------------------
vlivanov@5658 227 const Type* Type::make_from_constant(ciConstant constant,
vlivanov@5658 228 bool require_constant, bool is_autobox_cache) {
vlivanov@5658 229 switch (constant.basic_type()) {
vlivanov@5658 230 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
vlivanov@5658 231 case T_CHAR: return TypeInt::make(constant.as_char());
vlivanov@5658 232 case T_BYTE: return TypeInt::make(constant.as_byte());
vlivanov@5658 233 case T_SHORT: return TypeInt::make(constant.as_short());
vlivanov@5658 234 case T_INT: return TypeInt::make(constant.as_int());
vlivanov@5658 235 case T_LONG: return TypeLong::make(constant.as_long());
vlivanov@5658 236 case T_FLOAT: return TypeF::make(constant.as_float());
vlivanov@5658 237 case T_DOUBLE: return TypeD::make(constant.as_double());
vlivanov@5658 238 case T_ARRAY:
vlivanov@5658 239 case T_OBJECT:
vlivanov@5658 240 {
vlivanov@5658 241 // cases:
vlivanov@5658 242 // can_be_constant = (oop not scavengable || ScavengeRootsInCode != 0)
vlivanov@5658 243 // should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
vlivanov@5658 244 // An oop is not scavengable if it is in the perm gen.
vlivanov@5658 245 ciObject* oop_constant = constant.as_object();
vlivanov@5658 246 if (oop_constant->is_null_object()) {
vlivanov@5658 247 return Type::get_zero_type(T_OBJECT);
vlivanov@5658 248 } else if (require_constant || oop_constant->should_be_constant()) {
vlivanov@5658 249 return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
vlivanov@5658 250 }
vlivanov@5658 251 }
vlivanov@5658 252 }
vlivanov@5658 253 // Fall through to failure
vlivanov@5658 254 return NULL;
vlivanov@5658 255 }
vlivanov@5658 256
vlivanov@5658 257
duke@435 258 //------------------------------make-------------------------------------------
duke@435 259 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 260 // and look for an existing copy in the type dictionary.
duke@435 261 const Type *Type::make( enum TYPES t ) {
duke@435 262 return (new Type(t))->hashcons();
duke@435 263 }
kvn@658 264
duke@435 265 //------------------------------cmp--------------------------------------------
duke@435 266 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 267 if( t1->_base != t2->_base )
duke@435 268 return 1; // Missed badly
duke@435 269 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 270 return !t1->eq(t2); // Return ZERO if equal
duke@435 271 }
duke@435 272
roland@6313 273 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
roland@6313 274 if (!include_speculative) {
roland@6313 275 return remove_speculative();
roland@6313 276 }
roland@6313 277 return this;
roland@6313 278 }
roland@6313 279
duke@435 280 //------------------------------hash-------------------------------------------
duke@435 281 int Type::uhash( const Type *const t ) {
duke@435 282 return t->hash();
duke@435 283 }
duke@435 284
kvn@1975 285 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
kvn@1975 286
duke@435 287 //--------------------------Initialize_shared----------------------------------
duke@435 288 void Type::Initialize_shared(Compile* current) {
duke@435 289 // This method does not need to be locked because the first system
duke@435 290 // compilations (stub compilations) occur serially. If they are
duke@435 291 // changed to proceed in parallel, then this section will need
duke@435 292 // locking.
duke@435 293
duke@435 294 Arena* save = current->type_arena();
zgu@7074 295 Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
duke@435 296
duke@435 297 current->set_type_arena(shared_type_arena);
duke@435 298 _shared_type_dict =
duke@435 299 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 300 shared_type_arena, 128 );
duke@435 301 current->set_type_dict(_shared_type_dict);
duke@435 302
duke@435 303 // Make shared pre-built types.
duke@435 304 CONTROL = make(Control); // Control only
duke@435 305 TOP = make(Top); // No values in set
duke@435 306 MEMORY = make(Memory); // Abstract store only
duke@435 307 ABIO = make(Abio); // State-of-machine only
duke@435 308 RETURN_ADDRESS=make(Return_Address);
duke@435 309 FLOAT = make(FloatBot); // All floats
duke@435 310 DOUBLE = make(DoubleBot); // All doubles
duke@435 311 BOTTOM = make(Bottom); // Everything
duke@435 312 HALF = make(Half); // Placeholder half of doublewide type
duke@435 313
duke@435 314 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 315 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 316
duke@435 317 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 318 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 319
duke@435 320 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 321 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 322 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 323 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 324 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 325 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 326 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 327 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 328 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 329 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 330 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
twisti@1059 331 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
duke@435 332 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 333 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 334 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 335 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 336 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 337 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
rbackman@6375 338 TypeInt::TYPE_DOMAIN = TypeInt::INT;
duke@435 339 // CmpL is overloaded both as the bytecode computation returning
duke@435 340 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 341 // compare returning optimizer ideal-type flags.
duke@435 342 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 343 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 344 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 345 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
kvn@1975 346 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 347
duke@435 348 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 349 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 350 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 351 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 352 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 353 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 354 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
rbackman@6375 355 TypeLong::TYPE_DOMAIN = TypeLong::LONG;
duke@435 356
duke@435 357 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 358 fboth[0] = Type::CONTROL;
duke@435 359 fboth[1] = Type::CONTROL;
duke@435 360 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 361
duke@435 362 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 363 ffalse[0] = Type::CONTROL;
duke@435 364 ffalse[1] = Type::TOP;
duke@435 365 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 366
duke@435 367 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 368 fneither[0] = Type::TOP;
duke@435 369 fneither[1] = Type::TOP;
duke@435 370 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 371
duke@435 372 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 373 ftrue[0] = Type::TOP;
duke@435 374 ftrue[1] = Type::CONTROL;
duke@435 375 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 376
duke@435 377 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 378 floop[0] = Type::CONTROL;
duke@435 379 floop[1] = TypeInt::INT;
duke@435 380 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 381
duke@435 382 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 383 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 384 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 385
duke@435 386 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 387 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 388
duke@435 389 const Type **fmembar = TypeTuple::fields(0);
duke@435 390 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 391
duke@435 392 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 393 fsc[0] = TypeInt::CC;
duke@435 394 fsc[1] = Type::MEMORY;
duke@435 395 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 396
duke@435 397 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 398 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 399 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 400 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 401 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 402 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 403 false, 0, oopDesc::klass_offset_in_bytes());
roland@5991 404 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
duke@435 405
coleenp@4037 406 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
coleenp@4037 407
coleenp@548 408 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 409 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 410
roland@4159 411 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
roland@4159 412
coleenp@548 413 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 414 mreg2type[Op_Set ] = 0;
coleenp@548 415 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 416 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 417 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 418 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 419 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 420 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 421 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 422
kvn@2116 423 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
kvn@598 424
kvn@598 425 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 426
kvn@598 427 #ifdef _LP64
kvn@598 428 if (UseCompressedOops) {
coleenp@4037 429 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
kvn@598 430 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 431 } else
kvn@598 432 #endif
kvn@598 433 {
kvn@598 434 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 435 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 436 }
duke@435 437 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 438 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 439 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 440 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 441 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 442 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 443 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 444
kvn@598 445 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 446 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 447 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 448 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 449 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 450 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 451 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 452 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 453 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 454 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 455 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 456 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 457
duke@435 458 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 459 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 460
duke@435 461 const Type **fi2c = TypeTuple::fields(2);
coleenp@4037 462 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
duke@435 463 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 464 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 465
duke@435 466 const Type **intpair = TypeTuple::fields(2);
duke@435 467 intpair[0] = TypeInt::INT;
duke@435 468 intpair[1] = TypeInt::INT;
duke@435 469 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 470
duke@435 471 const Type **longpair = TypeTuple::fields(2);
duke@435 472 longpair[0] = TypeLong::LONG;
duke@435 473 longpair[1] = TypeLong::LONG;
duke@435 474 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 475
rbackman@5791 476 const Type **intccpair = TypeTuple::fields(2);
rbackman@5791 477 intccpair[0] = TypeInt::INT;
rbackman@5791 478 intccpair[1] = TypeInt::CC;
rbackman@5791 479 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
rbackman@5791 480
rbackman@5997 481 const Type **longccpair = TypeTuple::fields(2);
rbackman@5997 482 longccpair[0] = TypeLong::LONG;
rbackman@5997 483 longccpair[1] = TypeInt::CC;
rbackman@5997 484 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
rbackman@5997 485
roland@4159 486 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
roland@4159 487 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
roland@4159 488 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
roland@4159 489 _const_basic_type[T_CHAR] = TypeInt::CHAR;
roland@4159 490 _const_basic_type[T_BYTE] = TypeInt::BYTE;
roland@4159 491 _const_basic_type[T_SHORT] = TypeInt::SHORT;
roland@4159 492 _const_basic_type[T_INT] = TypeInt::INT;
roland@4159 493 _const_basic_type[T_LONG] = TypeLong::LONG;
roland@4159 494 _const_basic_type[T_FLOAT] = Type::FLOAT;
roland@4159 495 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
roland@4159 496 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
roland@4159 497 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
roland@4159 498 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
roland@4159 499 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
roland@4159 500 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not?
roland@4159 501
roland@4159 502 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
roland@4159 503 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
roland@4159 504 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
roland@4159 505 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
roland@4159 506 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
roland@4159 507 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
roland@4159 508 _zero_type[T_INT] = TypeInt::ZERO;
roland@4159 509 _zero_type[T_LONG] = TypeLong::ZERO;
roland@4159 510 _zero_type[T_FLOAT] = TypeF::ZERO;
roland@4159 511 _zero_type[T_DOUBLE] = TypeD::ZERO;
roland@4159 512 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
roland@4159 513 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
roland@4159 514 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
roland@4159 515 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 516
duke@435 517 // get_zero_type() should not happen for T_CONFLICT
duke@435 518 _zero_type[T_CONFLICT]= NULL;
duke@435 519
kvn@3882 520 // Vector predefined types, it needs initialized _const_basic_type[].
kvn@3882 521 if (Matcher::vector_size_supported(T_BYTE,4)) {
kvn@3882 522 TypeVect::VECTS = TypeVect::make(T_BYTE,4);
kvn@3882 523 }
kvn@3882 524 if (Matcher::vector_size_supported(T_FLOAT,2)) {
kvn@3882 525 TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
kvn@3882 526 }
kvn@3882 527 if (Matcher::vector_size_supported(T_FLOAT,4)) {
kvn@3882 528 TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
kvn@3882 529 }
kvn@3882 530 if (Matcher::vector_size_supported(T_FLOAT,8)) {
kvn@3882 531 TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
kvn@3882 532 }
kvn@3882 533 mreg2type[Op_VecS] = TypeVect::VECTS;
kvn@3882 534 mreg2type[Op_VecD] = TypeVect::VECTD;
kvn@3882 535 mreg2type[Op_VecX] = TypeVect::VECTX;
kvn@3882 536 mreg2type[Op_VecY] = TypeVect::VECTY;
kvn@3882 537
duke@435 538 // Restore working type arena.
duke@435 539 current->set_type_arena(save);
duke@435 540 current->set_type_dict(NULL);
duke@435 541 }
duke@435 542
duke@435 543 //------------------------------Initialize-------------------------------------
duke@435 544 void Type::Initialize(Compile* current) {
duke@435 545 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 546
duke@435 547 if (_shared_type_dict == NULL) {
duke@435 548 Initialize_shared(current);
duke@435 549 }
duke@435 550
duke@435 551 Arena* type_arena = current->type_arena();
duke@435 552
duke@435 553 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 554 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 555 current->set_type_dict(tdic);
duke@435 556
duke@435 557 // Transfer the shared types.
duke@435 558 DictI i(_shared_type_dict);
duke@435 559 for( ; i.test(); ++i ) {
duke@435 560 Type* t = (Type*)i._value;
duke@435 561 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 562 }
duke@435 563 }
duke@435 564
duke@435 565 //------------------------------hashcons---------------------------------------
duke@435 566 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 567 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 568 // current Type in the Type table.
duke@435 569 const Type *Type::hashcons(void) {
duke@435 570 debug_only(base()); // Check the assertion in Type::base().
duke@435 571 // Look up the Type in the Type dictionary
duke@435 572 Dict *tdic = type_dict();
duke@435 573 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 574 if( old ) { // Pre-existing Type?
duke@435 575 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 576 delete this; // Yes, Nuke this guy
duke@435 577 assert( old->_dual, "" );
duke@435 578 return old; // Return pre-existing
duke@435 579 }
duke@435 580
duke@435 581 // Every type has a dual (to make my lattice symmetric).
duke@435 582 // Since we just discovered a new Type, compute its dual right now.
duke@435 583 assert( !_dual, "" ); // No dual yet
duke@435 584 _dual = xdual(); // Compute the dual
duke@435 585 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 586 _dual = this;
duke@435 587 return this;
duke@435 588 }
duke@435 589 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 590 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 591 // New Type, insert into Type table
duke@435 592 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 593 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 594 #ifdef ASSERT
duke@435 595 Type *dual_dual = (Type*)_dual->xdual();
duke@435 596 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 597 delete dual_dual;
duke@435 598 #endif
duke@435 599 return this; // Return new Type
duke@435 600 }
duke@435 601
duke@435 602 //------------------------------eq---------------------------------------------
duke@435 603 // Structural equality check for Type representations
duke@435 604 bool Type::eq( const Type * ) const {
duke@435 605 return true; // Nothing else can go wrong
duke@435 606 }
duke@435 607
duke@435 608 //------------------------------hash-------------------------------------------
duke@435 609 // Type-specific hashing function.
duke@435 610 int Type::hash(void) const {
duke@435 611 return _base;
duke@435 612 }
duke@435 613
duke@435 614 //------------------------------is_finite--------------------------------------
duke@435 615 // Has a finite value
duke@435 616 bool Type::is_finite() const {
duke@435 617 return false;
duke@435 618 }
duke@435 619
duke@435 620 //------------------------------is_nan-----------------------------------------
duke@435 621 // Is not a number (NaN)
duke@435 622 bool Type::is_nan() const {
duke@435 623 return false;
duke@435 624 }
duke@435 625
kvn@1255 626 //----------------------interface_vs_oop---------------------------------------
kvn@1255 627 #ifdef ASSERT
roland@5991 628 bool Type::interface_vs_oop_helper(const Type *t) const {
kvn@1255 629 bool result = false;
kvn@1255 630
kvn@1427 631 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
kvn@1427 632 const TypePtr* t_ptr = t->make_ptr();
kvn@1427 633 if( this_ptr == NULL || t_ptr == NULL )
kvn@1427 634 return result;
kvn@1427 635
kvn@1427 636 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
kvn@1427 637 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
kvn@1255 638 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
kvn@1255 639 bool this_interface = this_inst->klass()->is_interface();
kvn@1255 640 bool t_interface = t_inst->klass()->is_interface();
kvn@1255 641 result = this_interface ^ t_interface;
kvn@1255 642 }
kvn@1255 643
kvn@1255 644 return result;
kvn@1255 645 }
roland@5991 646
roland@5991 647 bool Type::interface_vs_oop(const Type *t) const {
roland@5991 648 if (interface_vs_oop_helper(t)) {
roland@5991 649 return true;
roland@5991 650 }
roland@5991 651 // Now check the speculative parts as well
roland@5991 652 const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
roland@5991 653 const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
roland@5991 654 if (this_spec != NULL && t_spec != NULL) {
roland@5991 655 if (this_spec->interface_vs_oop_helper(t_spec)) {
roland@5991 656 return true;
roland@5991 657 }
roland@5991 658 return false;
roland@5991 659 }
roland@5991 660 if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
roland@5991 661 return true;
roland@5991 662 }
roland@5991 663 if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
roland@5991 664 return true;
roland@5991 665 }
roland@5991 666 return false;
roland@5991 667 }
roland@5991 668
kvn@1255 669 #endif
kvn@1255 670
roland@9985 671 void Type::check_symmetrical(const Type *t, const Type *mt) const {
roland@9985 672 #ifdef ASSERT
roland@9985 673 assert(mt == t->xmeet(this), "meet not commutative");
roland@9985 674 const Type* dual_join = mt->_dual;
roland@9985 675 const Type *t2t = dual_join->xmeet(t->_dual);
roland@9985 676 const Type *t2this = dual_join->xmeet(this->_dual);
roland@9985 677
roland@9985 678 // Interface meet Oop is Not Symmetric:
roland@9985 679 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
roland@9985 680 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
roland@9985 681
roland@9985 682 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this->_dual) ) {
roland@9985 683 tty->print_cr("=== Meet Not Symmetric ===");
roland@9985 684 tty->print("t = "); t->dump(); tty->cr();
roland@9985 685 tty->print("this= "); dump(); tty->cr();
roland@9985 686 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
roland@9985 687
roland@9985 688 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
roland@9985 689 tty->print("this_dual= "); _dual->dump(); tty->cr();
roland@9985 690 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
roland@9985 691
roland@9985 692 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
roland@9985 693 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
roland@9985 694
roland@9985 695 fatal("meet not symmetric" );
roland@9985 696 }
roland@9985 697 #endif
roland@9985 698 }
roland@9985 699
duke@435 700 //------------------------------meet-------------------------------------------
duke@435 701 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 702 // commutative and the lattice is symmetric.
roland@6313 703 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
coleenp@548 704 if (isa_narrowoop() && t->isa_narrowoop()) {
roland@6313 705 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
kvn@656 706 return result->make_narrowoop();
coleenp@548 707 }
roland@4159 708 if (isa_narrowklass() && t->isa_narrowklass()) {
roland@6313 709 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
roland@4159 710 return result->make_narrowklass();
roland@4159 711 }
coleenp@548 712
roland@6313 713 const Type *this_t = maybe_remove_speculative(include_speculative);
roland@6313 714 t = t->maybe_remove_speculative(include_speculative);
roland@6313 715
roland@6313 716 const Type *mt = this_t->xmeet(t);
roland@9985 717 #ifdef ASSERT
coleenp@548 718 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
roland@4159 719 if (isa_narrowklass() || t->isa_narrowklass()) return mt;
roland@9985 720 Compile* C = Compile::current();
roland@9985 721 if (!C->_type_verify_symmetry) {
roland@9985 722 return mt;
duke@435 723 }
roland@9985 724 this_t->check_symmetrical(t, mt);
roland@9985 725 // In the case of an array, computing the meet above, caused the
roland@9985 726 // computation of the meet of the elements which at verification
roland@9985 727 // time caused the computation of the meet of the dual of the
roland@9985 728 // elements. Computing the meet of the dual of the arrays here
roland@9985 729 // causes the meet of the dual of the elements to be computed which
roland@9985 730 // would cause the meet of the dual of the dual of the elements,
roland@9985 731 // that is the meet of the elements already computed above to be
roland@9985 732 // computed. Avoid redundant computations by requesting no
roland@9985 733 // verification.
roland@9985 734 C->_type_verify_symmetry = false;
roland@9985 735 const Type *mt_dual = this_t->_dual->xmeet(t->_dual);
roland@9985 736 this_t->_dual->check_symmetrical(t->_dual, mt_dual);
roland@9985 737 assert(!C->_type_verify_symmetry, "shouldn't have changed");
roland@9985 738 C->_type_verify_symmetry = true;
duke@435 739 #endif
duke@435 740 return mt;
duke@435 741 }
duke@435 742
duke@435 743 //------------------------------xmeet------------------------------------------
duke@435 744 // Compute the MEET of two types. It returns a new Type object.
duke@435 745 const Type *Type::xmeet( const Type *t ) const {
duke@435 746 // Perform a fast test for common case; meeting the same types together.
duke@435 747 if( this == t ) return this; // Meeting same type-rep?
duke@435 748
duke@435 749 // Meeting TOP with anything?
duke@435 750 if( _base == Top ) return t;
duke@435 751
duke@435 752 // Meeting BOTTOM with anything?
duke@435 753 if( _base == Bottom ) return BOTTOM;
duke@435 754
duke@435 755 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 756 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 757 switch (t->base()) { // Switch on original type
duke@435 758
duke@435 759 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 760 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 761 case FloatCon:
duke@435 762 case DoubleCon:
duke@435 763 case Int:
duke@435 764 case Long:
duke@435 765 return t->xmeet(this);
duke@435 766
duke@435 767 case OopPtr:
duke@435 768 return t->xmeet(this);
duke@435 769
duke@435 770 case InstPtr:
duke@435 771 return t->xmeet(this);
duke@435 772
coleenp@4037 773 case MetadataPtr:
duke@435 774 case KlassPtr:
duke@435 775 return t->xmeet(this);
duke@435 776
duke@435 777 case AryPtr:
duke@435 778 return t->xmeet(this);
duke@435 779
coleenp@548 780 case NarrowOop:
coleenp@548 781 return t->xmeet(this);
coleenp@548 782
roland@4159 783 case NarrowKlass:
roland@4159 784 return t->xmeet(this);
roland@4159 785
duke@435 786 case Bad: // Type check
duke@435 787 default: // Bogus type not in lattice
duke@435 788 typerr(t);
duke@435 789 return Type::BOTTOM;
duke@435 790
duke@435 791 case Bottom: // Ye Olde Default
duke@435 792 return t;
duke@435 793
duke@435 794 case FloatTop:
duke@435 795 if( _base == FloatTop ) return this;
duke@435 796 case FloatBot: // Float
duke@435 797 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 798 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 799 typerr(t);
duke@435 800 return Type::BOTTOM;
duke@435 801
duke@435 802 case DoubleTop:
duke@435 803 if( _base == DoubleTop ) return this;
duke@435 804 case DoubleBot: // Double
duke@435 805 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 806 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 807 typerr(t);
duke@435 808 return Type::BOTTOM;
duke@435 809
duke@435 810 // These next few cases must match exactly or it is a compile-time error.
duke@435 811 case Control: // Control of code
duke@435 812 case Abio: // State of world outside of program
duke@435 813 case Memory:
duke@435 814 if( _base == t->_base ) return this;
duke@435 815 typerr(t);
duke@435 816 return Type::BOTTOM;
duke@435 817
duke@435 818 case Top: // Top of the lattice
duke@435 819 return this;
duke@435 820 }
duke@435 821
duke@435 822 // The type is unchanged
duke@435 823 return this;
duke@435 824 }
duke@435 825
duke@435 826 //-----------------------------filter------------------------------------------
roland@6313 827 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 828 const Type* ft = join_helper(kills, include_speculative);
duke@435 829 if (ft->empty())
duke@435 830 return Type::TOP; // Canonical empty value
duke@435 831 return ft;
duke@435 832 }
duke@435 833
duke@435 834 //------------------------------xdual------------------------------------------
duke@435 835 // Compute dual right now.
duke@435 836 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 837 Bad, // Bad
duke@435 838 Control, // Control
duke@435 839 Bottom, // Top
duke@435 840 Bad, // Int - handled in v-call
duke@435 841 Bad, // Long - handled in v-call
duke@435 842 Half, // Half
coleenp@548 843 Bad, // NarrowOop - handled in v-call
roland@4159 844 Bad, // NarrowKlass - handled in v-call
duke@435 845
duke@435 846 Bad, // Tuple - handled in v-call
duke@435 847 Bad, // Array - handled in v-call
kvn@3882 848 Bad, // VectorS - handled in v-call
kvn@3882 849 Bad, // VectorD - handled in v-call
kvn@3882 850 Bad, // VectorX - handled in v-call
kvn@3882 851 Bad, // VectorY - handled in v-call
duke@435 852
duke@435 853 Bad, // AnyPtr - handled in v-call
duke@435 854 Bad, // RawPtr - handled in v-call
duke@435 855 Bad, // OopPtr - handled in v-call
duke@435 856 Bad, // InstPtr - handled in v-call
duke@435 857 Bad, // AryPtr - handled in v-call
coleenp@4037 858
coleenp@4037 859 Bad, // MetadataPtr - handled in v-call
duke@435 860 Bad, // KlassPtr - handled in v-call
duke@435 861
duke@435 862 Bad, // Function - handled in v-call
duke@435 863 Abio, // Abio
duke@435 864 Return_Address,// Return_Address
duke@435 865 Memory, // Memory
duke@435 866 FloatBot, // FloatTop
duke@435 867 FloatCon, // FloatCon
duke@435 868 FloatTop, // FloatBot
duke@435 869 DoubleBot, // DoubleTop
duke@435 870 DoubleCon, // DoubleCon
duke@435 871 DoubleTop, // DoubleBot
duke@435 872 Top // Bottom
duke@435 873 };
duke@435 874
duke@435 875 const Type *Type::xdual() const {
duke@435 876 // Note: the base() accessor asserts the sanity of _base.
coleenp@4037 877 assert(_type_info[base()].dual_type != Bad, "implement with v-call");
coleenp@4037 878 return new Type(_type_info[_base].dual_type);
duke@435 879 }
duke@435 880
duke@435 881 //------------------------------has_memory-------------------------------------
duke@435 882 bool Type::has_memory() const {
duke@435 883 Type::TYPES tx = base();
duke@435 884 if (tx == Memory) return true;
duke@435 885 if (tx == Tuple) {
duke@435 886 const TypeTuple *t = is_tuple();
duke@435 887 for (uint i=0; i < t->cnt(); i++) {
duke@435 888 tx = t->field_at(i)->base();
duke@435 889 if (tx == Memory) return true;
duke@435 890 }
duke@435 891 }
duke@435 892 return false;
duke@435 893 }
duke@435 894
duke@435 895 #ifndef PRODUCT
duke@435 896 //------------------------------dump2------------------------------------------
duke@435 897 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
drchase@6680 898 st->print("%s", _type_info[_base].msg);
duke@435 899 }
duke@435 900
duke@435 901 //------------------------------dump-------------------------------------------
duke@435 902 void Type::dump_on(outputStream *st) const {
duke@435 903 ResourceMark rm;
duke@435 904 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 905 dump2(d,1, st);
kvn@598 906 if (is_ptr_to_narrowoop()) {
coleenp@548 907 st->print(" [narrow]");
roland@4159 908 } else if (is_ptr_to_narrowklass()) {
roland@4159 909 st->print(" [narrowklass]");
coleenp@548 910 }
duke@435 911 }
dbuck@9512 912
dbuck@9512 913 //-----------------------------------------------------------------------------
dbuck@9512 914 const char* Type::str(const Type* t) {
dbuck@9512 915 stringStream ss;
dbuck@9512 916 t->dump_on(&ss);
dbuck@9512 917 return ss.as_string();
dbuck@9512 918 }
duke@435 919 #endif
duke@435 920
duke@435 921 //------------------------------singleton--------------------------------------
duke@435 922 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 923 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 924 bool Type::singleton(void) const {
duke@435 925 return _base == Top || _base == Half;
duke@435 926 }
duke@435 927
duke@435 928 //------------------------------empty------------------------------------------
duke@435 929 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 930 bool Type::empty(void) const {
duke@435 931 switch (_base) {
duke@435 932 case DoubleTop:
duke@435 933 case FloatTop:
duke@435 934 case Top:
duke@435 935 return true;
duke@435 936
duke@435 937 case Half:
duke@435 938 case Abio:
duke@435 939 case Return_Address:
duke@435 940 case Memory:
duke@435 941 case Bottom:
duke@435 942 case FloatBot:
duke@435 943 case DoubleBot:
duke@435 944 return false; // never a singleton, therefore never empty
duke@435 945 }
duke@435 946
duke@435 947 ShouldNotReachHere();
duke@435 948 return false;
duke@435 949 }
duke@435 950
duke@435 951 //------------------------------dump_stats-------------------------------------
duke@435 952 // Dump collected statistics to stderr
duke@435 953 #ifndef PRODUCT
duke@435 954 void Type::dump_stats() {
duke@435 955 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 956 }
duke@435 957 #endif
duke@435 958
duke@435 959 //------------------------------typerr-----------------------------------------
duke@435 960 void Type::typerr( const Type *t ) const {
duke@435 961 #ifndef PRODUCT
duke@435 962 tty->print("\nError mixing types: ");
duke@435 963 dump();
duke@435 964 tty->print(" and ");
duke@435 965 t->dump();
duke@435 966 tty->print("\n");
duke@435 967 #endif
duke@435 968 ShouldNotReachHere();
duke@435 969 }
duke@435 970
duke@435 971
duke@435 972 //=============================================================================
duke@435 973 // Convenience common pre-built types.
duke@435 974 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 975 const TypeF *TypeF::ONE; // Floating point one
duke@435 976
duke@435 977 //------------------------------make-------------------------------------------
duke@435 978 // Create a float constant
duke@435 979 const TypeF *TypeF::make(float f) {
duke@435 980 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 981 }
duke@435 982
duke@435 983 //------------------------------meet-------------------------------------------
duke@435 984 // Compute the MEET of two types. It returns a new Type object.
duke@435 985 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 986 // Perform a fast test for common case; meeting the same types together.
duke@435 987 if( this == t ) return this; // Meeting same type-rep?
duke@435 988
duke@435 989 // Current "this->_base" is FloatCon
duke@435 990 switch (t->base()) { // Switch on original type
duke@435 991 case AnyPtr: // Mixing with oops happens when javac
duke@435 992 case RawPtr: // reuses local variables
duke@435 993 case OopPtr:
duke@435 994 case InstPtr:
coleenp@4037 995 case AryPtr:
coleenp@4037 996 case MetadataPtr:
duke@435 997 case KlassPtr:
kvn@728 998 case NarrowOop:
roland@4159 999 case NarrowKlass:
duke@435 1000 case Int:
duke@435 1001 case Long:
duke@435 1002 case DoubleTop:
duke@435 1003 case DoubleCon:
duke@435 1004 case DoubleBot:
duke@435 1005 case Bottom: // Ye Olde Default
duke@435 1006 return Type::BOTTOM;
duke@435 1007
duke@435 1008 case FloatBot:
duke@435 1009 return t;
duke@435 1010
duke@435 1011 default: // All else is a mistake
duke@435 1012 typerr(t);
duke@435 1013
duke@435 1014 case FloatCon: // Float-constant vs Float-constant?
duke@435 1015 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 1016 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 1017 // all the same representation in C++
duke@435 1018 return FLOAT; // Return generic float
duke@435 1019 // Equal constants
duke@435 1020 case Top:
duke@435 1021 case FloatTop:
duke@435 1022 break; // Return the float constant
duke@435 1023 }
duke@435 1024 return this; // Return the float constant
duke@435 1025 }
duke@435 1026
duke@435 1027 //------------------------------xdual------------------------------------------
duke@435 1028 // Dual: symmetric
duke@435 1029 const Type *TypeF::xdual() const {
duke@435 1030 return this;
duke@435 1031 }
duke@435 1032
duke@435 1033 //------------------------------eq---------------------------------------------
duke@435 1034 // Structural equality check for Type representations
dbuck@8886 1035 bool TypeF::eq(const Type *t) const {
dbuck@8886 1036 // Bitwise comparison to distinguish between +/-0. These values must be treated
dbuck@8886 1037 // as different to be consistent with C1 and the interpreter.
dbuck@8886 1038 return (jint_cast(_f) == jint_cast(t->getf()));
duke@435 1039 }
duke@435 1040
duke@435 1041 //------------------------------hash-------------------------------------------
duke@435 1042 // Type-specific hashing function.
duke@435 1043 int TypeF::hash(void) const {
duke@435 1044 return *(int*)(&_f);
duke@435 1045 }
duke@435 1046
duke@435 1047 //------------------------------is_finite--------------------------------------
duke@435 1048 // Has a finite value
duke@435 1049 bool TypeF::is_finite() const {
duke@435 1050 return g_isfinite(getf()) != 0;
duke@435 1051 }
duke@435 1052
duke@435 1053 //------------------------------is_nan-----------------------------------------
duke@435 1054 // Is not a number (NaN)
duke@435 1055 bool TypeF::is_nan() const {
duke@435 1056 return g_isnan(getf()) != 0;
duke@435 1057 }
duke@435 1058
duke@435 1059 //------------------------------dump2------------------------------------------
duke@435 1060 // Dump float constant Type
duke@435 1061 #ifndef PRODUCT
duke@435 1062 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1063 Type::dump2(d,depth, st);
duke@435 1064 st->print("%f", _f);
duke@435 1065 }
duke@435 1066 #endif
duke@435 1067
duke@435 1068 //------------------------------singleton--------------------------------------
duke@435 1069 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1070 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1071 // or a single symbol.
duke@435 1072 bool TypeF::singleton(void) const {
duke@435 1073 return true; // Always a singleton
duke@435 1074 }
duke@435 1075
duke@435 1076 bool TypeF::empty(void) const {
duke@435 1077 return false; // always exactly a singleton
duke@435 1078 }
duke@435 1079
duke@435 1080 //=============================================================================
duke@435 1081 // Convenience common pre-built types.
duke@435 1082 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 1083 const TypeD *TypeD::ONE; // Floating point one
duke@435 1084
duke@435 1085 //------------------------------make-------------------------------------------
duke@435 1086 const TypeD *TypeD::make(double d) {
duke@435 1087 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 1088 }
duke@435 1089
duke@435 1090 //------------------------------meet-------------------------------------------
duke@435 1091 // Compute the MEET of two types. It returns a new Type object.
duke@435 1092 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 1093 // Perform a fast test for common case; meeting the same types together.
duke@435 1094 if( this == t ) return this; // Meeting same type-rep?
duke@435 1095
duke@435 1096 // Current "this->_base" is DoubleCon
duke@435 1097 switch (t->base()) { // Switch on original type
duke@435 1098 case AnyPtr: // Mixing with oops happens when javac
duke@435 1099 case RawPtr: // reuses local variables
duke@435 1100 case OopPtr:
duke@435 1101 case InstPtr:
coleenp@4037 1102 case AryPtr:
coleenp@4037 1103 case MetadataPtr:
duke@435 1104 case KlassPtr:
never@618 1105 case NarrowOop:
roland@4159 1106 case NarrowKlass:
duke@435 1107 case Int:
duke@435 1108 case Long:
duke@435 1109 case FloatTop:
duke@435 1110 case FloatCon:
duke@435 1111 case FloatBot:
duke@435 1112 case Bottom: // Ye Olde Default
duke@435 1113 return Type::BOTTOM;
duke@435 1114
duke@435 1115 case DoubleBot:
duke@435 1116 return t;
duke@435 1117
duke@435 1118 default: // All else is a mistake
duke@435 1119 typerr(t);
duke@435 1120
duke@435 1121 case DoubleCon: // Double-constant vs Double-constant?
duke@435 1122 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 1123 return DOUBLE; // Return generic double
duke@435 1124 case Top:
duke@435 1125 case DoubleTop:
duke@435 1126 break;
duke@435 1127 }
duke@435 1128 return this; // Return the double constant
duke@435 1129 }
duke@435 1130
duke@435 1131 //------------------------------xdual------------------------------------------
duke@435 1132 // Dual: symmetric
duke@435 1133 const Type *TypeD::xdual() const {
duke@435 1134 return this;
duke@435 1135 }
duke@435 1136
duke@435 1137 //------------------------------eq---------------------------------------------
duke@435 1138 // Structural equality check for Type representations
dbuck@8886 1139 bool TypeD::eq(const Type *t) const {
dbuck@8886 1140 // Bitwise comparison to distinguish between +/-0. These values must be treated
dbuck@8886 1141 // as different to be consistent with C1 and the interpreter.
dbuck@8886 1142 return (jlong_cast(_d) == jlong_cast(t->getd()));
duke@435 1143 }
duke@435 1144
duke@435 1145 //------------------------------hash-------------------------------------------
duke@435 1146 // Type-specific hashing function.
duke@435 1147 int TypeD::hash(void) const {
duke@435 1148 return *(int*)(&_d);
duke@435 1149 }
duke@435 1150
duke@435 1151 //------------------------------is_finite--------------------------------------
duke@435 1152 // Has a finite value
duke@435 1153 bool TypeD::is_finite() const {
duke@435 1154 return g_isfinite(getd()) != 0;
duke@435 1155 }
duke@435 1156
duke@435 1157 //------------------------------is_nan-----------------------------------------
duke@435 1158 // Is not a number (NaN)
duke@435 1159 bool TypeD::is_nan() const {
duke@435 1160 return g_isnan(getd()) != 0;
duke@435 1161 }
duke@435 1162
duke@435 1163 //------------------------------dump2------------------------------------------
duke@435 1164 // Dump double constant Type
duke@435 1165 #ifndef PRODUCT
duke@435 1166 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1167 Type::dump2(d,depth,st);
duke@435 1168 st->print("%f", _d);
duke@435 1169 }
duke@435 1170 #endif
duke@435 1171
duke@435 1172 //------------------------------singleton--------------------------------------
duke@435 1173 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1174 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1175 // or a single symbol.
duke@435 1176 bool TypeD::singleton(void) const {
duke@435 1177 return true; // Always a singleton
duke@435 1178 }
duke@435 1179
duke@435 1180 bool TypeD::empty(void) const {
duke@435 1181 return false; // always exactly a singleton
duke@435 1182 }
duke@435 1183
duke@435 1184 //=============================================================================
duke@435 1185 // Convience common pre-built types.
duke@435 1186 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1187 const TypeInt *TypeInt::ZERO; // 0
duke@435 1188 const TypeInt *TypeInt::ONE; // 1
duke@435 1189 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1190 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1191 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1192 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1193 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1194 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1195 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1196 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
twisti@1059 1197 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
duke@435 1198 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1199 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1200 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1201 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1202 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1203 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
rbackman@6375 1204 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
duke@435 1205
duke@435 1206 //------------------------------TypeInt----------------------------------------
duke@435 1207 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1208 }
duke@435 1209
duke@435 1210 //------------------------------make-------------------------------------------
duke@435 1211 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1212 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1213 }
duke@435 1214
kvn@1975 1215 static int normalize_int_widen( jint lo, jint hi, int w ) {
duke@435 1216 // Certain normalizations keep us sane when comparing types.
duke@435 1217 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1218 if (lo <= hi) {
sgehwolf@7873 1219 if (((juint)hi - lo) <= SMALLINT) w = Type::WidenMin;
sgehwolf@7873 1220 if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
kvn@1975 1221 } else {
sgehwolf@7873 1222 if (((juint)lo - hi) <= SMALLINT) w = Type::WidenMin;
sgehwolf@7873 1223 if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
duke@435 1224 }
kvn@1975 1225 return w;
kvn@1975 1226 }
kvn@1975 1227
kvn@1975 1228 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
kvn@1975 1229 w = normalize_int_widen(lo, hi, w);
duke@435 1230 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1231 }
duke@435 1232
duke@435 1233 //------------------------------meet-------------------------------------------
duke@435 1234 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1235 // with reference count equal to the number of Types pointing at it.
duke@435 1236 // Caller should wrap a Types around it.
duke@435 1237 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1238 // Perform a fast test for common case; meeting the same types together.
duke@435 1239 if( this == t ) return this; // Meeting same type?
duke@435 1240
duke@435 1241 // Currently "this->_base" is a TypeInt
duke@435 1242 switch (t->base()) { // Switch on original type
duke@435 1243 case AnyPtr: // Mixing with oops happens when javac
duke@435 1244 case RawPtr: // reuses local variables
duke@435 1245 case OopPtr:
duke@435 1246 case InstPtr:
coleenp@4037 1247 case AryPtr:
coleenp@4037 1248 case MetadataPtr:
duke@435 1249 case KlassPtr:
never@618 1250 case NarrowOop:
roland@4159 1251 case NarrowKlass:
duke@435 1252 case Long:
duke@435 1253 case FloatTop:
duke@435 1254 case FloatCon:
duke@435 1255 case FloatBot:
duke@435 1256 case DoubleTop:
duke@435 1257 case DoubleCon:
duke@435 1258 case DoubleBot:
duke@435 1259 case Bottom: // Ye Olde Default
duke@435 1260 return Type::BOTTOM;
duke@435 1261 default: // All else is a mistake
duke@435 1262 typerr(t);
duke@435 1263 case Top: // No change
duke@435 1264 return this;
duke@435 1265 case Int: // Int vs Int?
duke@435 1266 break;
duke@435 1267 }
duke@435 1268
duke@435 1269 // Expand covered set
duke@435 1270 const TypeInt *r = t->is_int();
kvn@1975 1271 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1272 }
duke@435 1273
duke@435 1274 //------------------------------xdual------------------------------------------
duke@435 1275 // Dual: reverse hi & lo; flip widen
duke@435 1276 const Type *TypeInt::xdual() const {
kvn@1975 1277 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1278 return new TypeInt(_hi,_lo,w);
duke@435 1279 }
duke@435 1280
duke@435 1281 //------------------------------widen------------------------------------------
duke@435 1282 // Only happens for optimistic top-down optimizations.
never@1444 1283 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
duke@435 1284 // Coming from TOP or such; no widening
duke@435 1285 if( old->base() != Int ) return this;
duke@435 1286 const TypeInt *ot = old->is_int();
duke@435 1287
duke@435 1288 // If new guy is equal to old guy, no widening
duke@435 1289 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1290 return old;
duke@435 1291
duke@435 1292 // If new guy contains old, then we widened
duke@435 1293 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1294 // New contains old
duke@435 1295 // If new guy is already wider than old, no widening
duke@435 1296 if( _widen > ot->_widen ) return this;
duke@435 1297 // If old guy was a constant, do not bother
duke@435 1298 if (ot->_lo == ot->_hi) return this;
duke@435 1299 // Now widen new guy.
duke@435 1300 // Check for widening too far
duke@435 1301 if (_widen == WidenMax) {
never@1444 1302 int max = max_jint;
never@1444 1303 int min = min_jint;
never@1444 1304 if (limit->isa_int()) {
never@1444 1305 max = limit->is_int()->_hi;
never@1444 1306 min = limit->is_int()->_lo;
never@1444 1307 }
never@1444 1308 if (min < _lo && _hi < max) {
duke@435 1309 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1310 // which is closer to its respective limit.
duke@435 1311 if (_lo >= 0 || // easy common case
never@1444 1312 (juint)(_lo - min) >= (juint)(max - _hi)) {
duke@435 1313 // Try to widen to an unsigned range type of 31 bits:
never@1444 1314 return make(_lo, max, WidenMax);
duke@435 1315 } else {
never@1444 1316 return make(min, _hi, WidenMax);
duke@435 1317 }
duke@435 1318 }
duke@435 1319 return TypeInt::INT;
duke@435 1320 }
duke@435 1321 // Returned widened new guy
duke@435 1322 return make(_lo,_hi,_widen+1);
duke@435 1323 }
duke@435 1324
duke@435 1325 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1326 // bottom. Return the wider fellow.
duke@435 1327 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1328 return old;
duke@435 1329
duke@435 1330 //fatal("Integer value range is not subset");
duke@435 1331 //return this;
duke@435 1332 return TypeInt::INT;
duke@435 1333 }
duke@435 1334
duke@435 1335 //------------------------------narrow---------------------------------------
duke@435 1336 // Only happens for pessimistic optimizations.
duke@435 1337 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1338 if (_lo >= _hi) return this; // already narrow enough
duke@435 1339 if (old == NULL) return this;
duke@435 1340 const TypeInt* ot = old->isa_int();
duke@435 1341 if (ot == NULL) return this;
duke@435 1342 jint olo = ot->_lo;
duke@435 1343 jint ohi = ot->_hi;
duke@435 1344
duke@435 1345 // If new guy is equal to old guy, no narrowing
duke@435 1346 if (_lo == olo && _hi == ohi) return old;
duke@435 1347
duke@435 1348 // If old guy was maximum range, allow the narrowing
duke@435 1349 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1350
duke@435 1351 if (_lo < olo || _hi > ohi)
duke@435 1352 return this; // doesn't narrow; pretty wierd
duke@435 1353
duke@435 1354 // The new type narrows the old type, so look for a "death march".
duke@435 1355 // See comments on PhaseTransform::saturate.
aph@9610 1356 juint nrange = (juint)_hi - _lo;
aph@9610 1357 juint orange = (juint)ohi - olo;
duke@435 1358 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1359 // Use the new type only if the range shrinks a lot.
duke@435 1360 // We do not want the optimizer computing 2^31 point by point.
duke@435 1361 return old;
duke@435 1362 }
duke@435 1363
duke@435 1364 return this;
duke@435 1365 }
duke@435 1366
duke@435 1367 //-----------------------------filter------------------------------------------
roland@6313 1368 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 1369 const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
kvn@1975 1370 if (ft == NULL || ft->empty())
duke@435 1371 return Type::TOP; // Canonical empty value
duke@435 1372 if (ft->_widen < this->_widen) {
duke@435 1373 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1374 // The widen bits must be allowed to run freely through the graph.
duke@435 1375 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1376 }
duke@435 1377 return ft;
duke@435 1378 }
duke@435 1379
duke@435 1380 //------------------------------eq---------------------------------------------
duke@435 1381 // Structural equality check for Type representations
duke@435 1382 bool TypeInt::eq( const Type *t ) const {
duke@435 1383 const TypeInt *r = t->is_int(); // Handy access
duke@435 1384 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1385 }
duke@435 1386
duke@435 1387 //------------------------------hash-------------------------------------------
duke@435 1388 // Type-specific hashing function.
duke@435 1389 int TypeInt::hash(void) const {
aph@9610 1390 return java_add(java_add(_lo, _hi), java_add(_widen, (int)Type::Int));
duke@435 1391 }
duke@435 1392
duke@435 1393 //------------------------------is_finite--------------------------------------
duke@435 1394 // Has a finite value
duke@435 1395 bool TypeInt::is_finite() const {
duke@435 1396 return true;
duke@435 1397 }
duke@435 1398
duke@435 1399 //------------------------------dump2------------------------------------------
duke@435 1400 // Dump TypeInt
duke@435 1401 #ifndef PRODUCT
duke@435 1402 static const char* intname(char* buf, jint n) {
duke@435 1403 if (n == min_jint)
duke@435 1404 return "min";
duke@435 1405 else if (n < min_jint + 10000)
duke@435 1406 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1407 else if (n == max_jint)
duke@435 1408 return "max";
duke@435 1409 else if (n > max_jint - 10000)
duke@435 1410 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1411 else
duke@435 1412 sprintf(buf, INT32_FORMAT, n);
duke@435 1413 return buf;
duke@435 1414 }
duke@435 1415
duke@435 1416 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1417 char buf[40], buf2[40];
duke@435 1418 if (_lo == min_jint && _hi == max_jint)
duke@435 1419 st->print("int");
duke@435 1420 else if (is_con())
duke@435 1421 st->print("int:%s", intname(buf, get_con()));
duke@435 1422 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1423 st->print("bool");
duke@435 1424 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1425 st->print("byte");
duke@435 1426 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1427 st->print("char");
duke@435 1428 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1429 st->print("short");
duke@435 1430 else if (_hi == max_jint)
duke@435 1431 st->print("int:>=%s", intname(buf, _lo));
duke@435 1432 else if (_lo == min_jint)
duke@435 1433 st->print("int:<=%s", intname(buf, _hi));
duke@435 1434 else
duke@435 1435 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1436
duke@435 1437 if (_widen != 0 && this != TypeInt::INT)
duke@435 1438 st->print(":%.*s", _widen, "wwww");
duke@435 1439 }
duke@435 1440 #endif
duke@435 1441
duke@435 1442 //------------------------------singleton--------------------------------------
duke@435 1443 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1444 // constants.
duke@435 1445 bool TypeInt::singleton(void) const {
duke@435 1446 return _lo >= _hi;
duke@435 1447 }
duke@435 1448
duke@435 1449 bool TypeInt::empty(void) const {
duke@435 1450 return _lo > _hi;
duke@435 1451 }
duke@435 1452
duke@435 1453 //=============================================================================
duke@435 1454 // Convenience common pre-built types.
duke@435 1455 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1456 const TypeLong *TypeLong::ZERO; // 0
duke@435 1457 const TypeLong *TypeLong::ONE; // 1
duke@435 1458 const TypeLong *TypeLong::POS; // >=0
duke@435 1459 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1460 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1461 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
rbackman@6375 1462 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
duke@435 1463
duke@435 1464 //------------------------------TypeLong---------------------------------------
duke@435 1465 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1466 }
duke@435 1467
duke@435 1468 //------------------------------make-------------------------------------------
duke@435 1469 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1470 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1471 }
duke@435 1472
kvn@1975 1473 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
kvn@1975 1474 // Certain normalizations keep us sane when comparing types.
kvn@1975 1475 // The 'SMALLINT' covers constants.
kvn@1975 1476 if (lo <= hi) {
sgehwolf@7873 1477 if (((julong)hi - lo) <= SMALLINT) w = Type::WidenMin;
sgehwolf@7873 1478 if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
kvn@1975 1479 } else {
sgehwolf@7873 1480 if (((julong)lo - hi) <= SMALLINT) w = Type::WidenMin;
sgehwolf@7873 1481 if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
kvn@1975 1482 }
kvn@1975 1483 return w;
kvn@1975 1484 }
kvn@1975 1485
duke@435 1486 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
kvn@1975 1487 w = normalize_long_widen(lo, hi, w);
duke@435 1488 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1489 }
duke@435 1490
duke@435 1491
duke@435 1492 //------------------------------meet-------------------------------------------
duke@435 1493 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1494 // with reference count equal to the number of Types pointing at it.
duke@435 1495 // Caller should wrap a Types around it.
duke@435 1496 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1497 // Perform a fast test for common case; meeting the same types together.
duke@435 1498 if( this == t ) return this; // Meeting same type?
duke@435 1499
duke@435 1500 // Currently "this->_base" is a TypeLong
duke@435 1501 switch (t->base()) { // Switch on original type
duke@435 1502 case AnyPtr: // Mixing with oops happens when javac
duke@435 1503 case RawPtr: // reuses local variables
duke@435 1504 case OopPtr:
duke@435 1505 case InstPtr:
coleenp@4037 1506 case AryPtr:
coleenp@4037 1507 case MetadataPtr:
duke@435 1508 case KlassPtr:
never@618 1509 case NarrowOop:
roland@4159 1510 case NarrowKlass:
duke@435 1511 case Int:
duke@435 1512 case FloatTop:
duke@435 1513 case FloatCon:
duke@435 1514 case FloatBot:
duke@435 1515 case DoubleTop:
duke@435 1516 case DoubleCon:
duke@435 1517 case DoubleBot:
duke@435 1518 case Bottom: // Ye Olde Default
duke@435 1519 return Type::BOTTOM;
duke@435 1520 default: // All else is a mistake
duke@435 1521 typerr(t);
duke@435 1522 case Top: // No change
duke@435 1523 return this;
duke@435 1524 case Long: // Long vs Long?
duke@435 1525 break;
duke@435 1526 }
duke@435 1527
duke@435 1528 // Expand covered set
duke@435 1529 const TypeLong *r = t->is_long(); // Turn into a TypeLong
kvn@1975 1530 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1531 }
duke@435 1532
duke@435 1533 //------------------------------xdual------------------------------------------
duke@435 1534 // Dual: reverse hi & lo; flip widen
duke@435 1535 const Type *TypeLong::xdual() const {
kvn@1975 1536 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1537 return new TypeLong(_hi,_lo,w);
duke@435 1538 }
duke@435 1539
duke@435 1540 //------------------------------widen------------------------------------------
duke@435 1541 // Only happens for optimistic top-down optimizations.
never@1444 1542 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
duke@435 1543 // Coming from TOP or such; no widening
duke@435 1544 if( old->base() != Long ) return this;
duke@435 1545 const TypeLong *ot = old->is_long();
duke@435 1546
duke@435 1547 // If new guy is equal to old guy, no widening
duke@435 1548 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1549 return old;
duke@435 1550
duke@435 1551 // If new guy contains old, then we widened
duke@435 1552 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1553 // New contains old
duke@435 1554 // If new guy is already wider than old, no widening
duke@435 1555 if( _widen > ot->_widen ) return this;
duke@435 1556 // If old guy was a constant, do not bother
duke@435 1557 if (ot->_lo == ot->_hi) return this;
duke@435 1558 // Now widen new guy.
duke@435 1559 // Check for widening too far
duke@435 1560 if (_widen == WidenMax) {
never@1444 1561 jlong max = max_jlong;
never@1444 1562 jlong min = min_jlong;
never@1444 1563 if (limit->isa_long()) {
never@1444 1564 max = limit->is_long()->_hi;
never@1444 1565 min = limit->is_long()->_lo;
never@1444 1566 }
never@1444 1567 if (min < _lo && _hi < max) {
duke@435 1568 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1569 // which is closer to its respective limit.
duke@435 1570 if (_lo >= 0 || // easy common case
aph@9610 1571 ((julong)_lo - min) >= ((julong)max - _hi)) {
duke@435 1572 // Try to widen to an unsigned range type of 32/63 bits:
never@1444 1573 if (max >= max_juint && _hi < max_juint)
duke@435 1574 return make(_lo, max_juint, WidenMax);
duke@435 1575 else
never@1444 1576 return make(_lo, max, WidenMax);
duke@435 1577 } else {
never@1444 1578 return make(min, _hi, WidenMax);
duke@435 1579 }
duke@435 1580 }
duke@435 1581 return TypeLong::LONG;
duke@435 1582 }
duke@435 1583 // Returned widened new guy
duke@435 1584 return make(_lo,_hi,_widen+1);
duke@435 1585 }
duke@435 1586
duke@435 1587 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1588 // bottom. Return the wider fellow.
duke@435 1589 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1590 return old;
duke@435 1591
duke@435 1592 // fatal("Long value range is not subset");
duke@435 1593 // return this;
duke@435 1594 return TypeLong::LONG;
duke@435 1595 }
duke@435 1596
duke@435 1597 //------------------------------narrow----------------------------------------
duke@435 1598 // Only happens for pessimistic optimizations.
duke@435 1599 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1600 if (_lo >= _hi) return this; // already narrow enough
duke@435 1601 if (old == NULL) return this;
duke@435 1602 const TypeLong* ot = old->isa_long();
duke@435 1603 if (ot == NULL) return this;
duke@435 1604 jlong olo = ot->_lo;
duke@435 1605 jlong ohi = ot->_hi;
duke@435 1606
duke@435 1607 // If new guy is equal to old guy, no narrowing
duke@435 1608 if (_lo == olo && _hi == ohi) return old;
duke@435 1609
duke@435 1610 // If old guy was maximum range, allow the narrowing
duke@435 1611 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1612
duke@435 1613 if (_lo < olo || _hi > ohi)
duke@435 1614 return this; // doesn't narrow; pretty wierd
duke@435 1615
duke@435 1616 // The new type narrows the old type, so look for a "death march".
duke@435 1617 // See comments on PhaseTransform::saturate.
duke@435 1618 julong nrange = _hi - _lo;
duke@435 1619 julong orange = ohi - olo;
duke@435 1620 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1621 // Use the new type only if the range shrinks a lot.
duke@435 1622 // We do not want the optimizer computing 2^31 point by point.
duke@435 1623 return old;
duke@435 1624 }
duke@435 1625
duke@435 1626 return this;
duke@435 1627 }
duke@435 1628
duke@435 1629 //-----------------------------filter------------------------------------------
roland@6313 1630 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 1631 const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
kvn@1975 1632 if (ft == NULL || ft->empty())
duke@435 1633 return Type::TOP; // Canonical empty value
duke@435 1634 if (ft->_widen < this->_widen) {
duke@435 1635 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1636 // The widen bits must be allowed to run freely through the graph.
duke@435 1637 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1638 }
duke@435 1639 return ft;
duke@435 1640 }
duke@435 1641
duke@435 1642 //------------------------------eq---------------------------------------------
duke@435 1643 // Structural equality check for Type representations
duke@435 1644 bool TypeLong::eq( const Type *t ) const {
duke@435 1645 const TypeLong *r = t->is_long(); // Handy access
duke@435 1646 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1647 }
duke@435 1648
duke@435 1649 //------------------------------hash-------------------------------------------
duke@435 1650 // Type-specific hashing function.
duke@435 1651 int TypeLong::hash(void) const {
duke@435 1652 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1653 }
duke@435 1654
duke@435 1655 //------------------------------is_finite--------------------------------------
duke@435 1656 // Has a finite value
duke@435 1657 bool TypeLong::is_finite() const {
duke@435 1658 return true;
duke@435 1659 }
duke@435 1660
duke@435 1661 //------------------------------dump2------------------------------------------
duke@435 1662 // Dump TypeLong
duke@435 1663 #ifndef PRODUCT
duke@435 1664 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1665 if (n > x) {
duke@435 1666 if (n >= x + 10000) return NULL;
hseigel@4465 1667 sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
duke@435 1668 } else if (n < x) {
duke@435 1669 if (n <= x - 10000) return NULL;
hseigel@4465 1670 sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
duke@435 1671 } else {
duke@435 1672 return xname;
duke@435 1673 }
duke@435 1674 return buf;
duke@435 1675 }
duke@435 1676
duke@435 1677 static const char* longname(char* buf, jlong n) {
duke@435 1678 const char* str;
duke@435 1679 if (n == min_jlong)
duke@435 1680 return "min";
duke@435 1681 else if (n < min_jlong + 10000)
hseigel@4465 1682 sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
duke@435 1683 else if (n == max_jlong)
duke@435 1684 return "max";
duke@435 1685 else if (n > max_jlong - 10000)
hseigel@4465 1686 sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
duke@435 1687 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1688 return str;
duke@435 1689 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1690 return str;
duke@435 1691 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1692 return str;
duke@435 1693 else
hseigel@4465 1694 sprintf(buf, JLONG_FORMAT, n);
duke@435 1695 return buf;
duke@435 1696 }
duke@435 1697
duke@435 1698 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1699 char buf[80], buf2[80];
duke@435 1700 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1701 st->print("long");
duke@435 1702 else if (is_con())
duke@435 1703 st->print("long:%s", longname(buf, get_con()));
duke@435 1704 else if (_hi == max_jlong)
duke@435 1705 st->print("long:>=%s", longname(buf, _lo));
duke@435 1706 else if (_lo == min_jlong)
duke@435 1707 st->print("long:<=%s", longname(buf, _hi));
duke@435 1708 else
duke@435 1709 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1710
duke@435 1711 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1712 st->print(":%.*s", _widen, "wwww");
duke@435 1713 }
duke@435 1714 #endif
duke@435 1715
duke@435 1716 //------------------------------singleton--------------------------------------
duke@435 1717 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1718 // constants
duke@435 1719 bool TypeLong::singleton(void) const {
duke@435 1720 return _lo >= _hi;
duke@435 1721 }
duke@435 1722
duke@435 1723 bool TypeLong::empty(void) const {
duke@435 1724 return _lo > _hi;
duke@435 1725 }
duke@435 1726
duke@435 1727 //=============================================================================
duke@435 1728 // Convenience common pre-built types.
duke@435 1729 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1730 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1731 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1732 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1733 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1734 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1735 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1736 const TypeTuple *TypeTuple::START_I2C;
duke@435 1737 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1738 const TypeTuple *TypeTuple::LONG_PAIR;
rbackman@5791 1739 const TypeTuple *TypeTuple::INT_CC_PAIR;
rbackman@5997 1740 const TypeTuple *TypeTuple::LONG_CC_PAIR;
duke@435 1741
duke@435 1742
duke@435 1743 //------------------------------make-------------------------------------------
duke@435 1744 // Make a TypeTuple from the range of a method signature
duke@435 1745 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1746 ciType* return_type = sig->return_type();
duke@435 1747 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1748 const Type **field_array = fields(total_fields);
duke@435 1749 switch (return_type->basic_type()) {
duke@435 1750 case T_LONG:
duke@435 1751 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1752 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1753 break;
duke@435 1754 case T_DOUBLE:
duke@435 1755 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1756 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1757 break;
duke@435 1758 case T_OBJECT:
duke@435 1759 case T_ARRAY:
duke@435 1760 case T_BOOLEAN:
duke@435 1761 case T_CHAR:
duke@435 1762 case T_FLOAT:
duke@435 1763 case T_BYTE:
duke@435 1764 case T_SHORT:
duke@435 1765 case T_INT:
duke@435 1766 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1767 break;
duke@435 1768 case T_VOID:
duke@435 1769 break;
duke@435 1770 default:
duke@435 1771 ShouldNotReachHere();
duke@435 1772 }
duke@435 1773 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1774 }
duke@435 1775
duke@435 1776 // Make a TypeTuple from the domain of a method signature
duke@435 1777 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1778 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1779
duke@435 1780 uint pos = TypeFunc::Parms;
duke@435 1781 const Type **field_array;
duke@435 1782 if (recv != NULL) {
duke@435 1783 total_fields++;
duke@435 1784 field_array = fields(total_fields);
duke@435 1785 // Use get_const_type here because it respects UseUniqueSubclasses:
roland@6313 1786 field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
duke@435 1787 } else {
duke@435 1788 field_array = fields(total_fields);
duke@435 1789 }
duke@435 1790
duke@435 1791 int i = 0;
duke@435 1792 while (pos < total_fields) {
duke@435 1793 ciType* type = sig->type_at(i);
duke@435 1794
duke@435 1795 switch (type->basic_type()) {
duke@435 1796 case T_LONG:
duke@435 1797 field_array[pos++] = TypeLong::LONG;
duke@435 1798 field_array[pos++] = Type::HALF;
duke@435 1799 break;
duke@435 1800 case T_DOUBLE:
duke@435 1801 field_array[pos++] = Type::DOUBLE;
duke@435 1802 field_array[pos++] = Type::HALF;
duke@435 1803 break;
duke@435 1804 case T_OBJECT:
duke@435 1805 case T_ARRAY:
kevinw@8368 1806 case T_FLOAT:
kevinw@8368 1807 case T_INT:
kevinw@8368 1808 field_array[pos++] = get_const_type(type);
kevinw@8368 1809 break;
duke@435 1810 case T_BOOLEAN:
duke@435 1811 case T_CHAR:
duke@435 1812 case T_BYTE:
duke@435 1813 case T_SHORT:
kevinw@8368 1814 field_array[pos++] = TypeInt::INT;
duke@435 1815 break;
duke@435 1816 default:
duke@435 1817 ShouldNotReachHere();
duke@435 1818 }
duke@435 1819 i++;
duke@435 1820 }
duke@435 1821 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1822 }
duke@435 1823
duke@435 1824 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1825 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1826 }
duke@435 1827
duke@435 1828 //------------------------------fields-----------------------------------------
duke@435 1829 // Subroutine call type with space allocated for argument types
duke@435 1830 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1831 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1832 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1833 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1834 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1835 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1836 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1837
duke@435 1838 return flds;
duke@435 1839 }
duke@435 1840
duke@435 1841 //------------------------------meet-------------------------------------------
duke@435 1842 // Compute the MEET of two types. It returns a new Type object.
duke@435 1843 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1844 // Perform a fast test for common case; meeting the same types together.
duke@435 1845 if( this == t ) return this; // Meeting same type-rep?
duke@435 1846
duke@435 1847 // Current "this->_base" is Tuple
duke@435 1848 switch (t->base()) { // switch on original type
duke@435 1849
duke@435 1850 case Bottom: // Ye Olde Default
duke@435 1851 return t;
duke@435 1852
duke@435 1853 default: // All else is a mistake
duke@435 1854 typerr(t);
duke@435 1855
duke@435 1856 case Tuple: { // Meeting 2 signatures?
duke@435 1857 const TypeTuple *x = t->is_tuple();
duke@435 1858 assert( _cnt == x->_cnt, "" );
duke@435 1859 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1860 for( uint i=0; i<_cnt; i++ )
duke@435 1861 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1862 return TypeTuple::make(_cnt,fields);
duke@435 1863 }
duke@435 1864 case Top:
duke@435 1865 break;
duke@435 1866 }
duke@435 1867 return this; // Return the double constant
duke@435 1868 }
duke@435 1869
duke@435 1870 //------------------------------xdual------------------------------------------
duke@435 1871 // Dual: compute field-by-field dual
duke@435 1872 const Type *TypeTuple::xdual() const {
duke@435 1873 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1874 for( uint i=0; i<_cnt; i++ )
duke@435 1875 fields[i] = _fields[i]->dual();
duke@435 1876 return new TypeTuple(_cnt,fields);
duke@435 1877 }
duke@435 1878
duke@435 1879 //------------------------------eq---------------------------------------------
duke@435 1880 // Structural equality check for Type representations
duke@435 1881 bool TypeTuple::eq( const Type *t ) const {
duke@435 1882 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1883 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1884 for (uint i = 0; i < _cnt; i++)
duke@435 1885 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1886 return false; // Missed
duke@435 1887 return true;
duke@435 1888 }
duke@435 1889
duke@435 1890 //------------------------------hash-------------------------------------------
duke@435 1891 // Type-specific hashing function.
duke@435 1892 int TypeTuple::hash(void) const {
duke@435 1893 intptr_t sum = _cnt;
duke@435 1894 for( uint i=0; i<_cnt; i++ )
duke@435 1895 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1896 return sum;
duke@435 1897 }
duke@435 1898
duke@435 1899 //------------------------------dump2------------------------------------------
duke@435 1900 // Dump signature Type
duke@435 1901 #ifndef PRODUCT
duke@435 1902 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1903 st->print("{");
duke@435 1904 if( !depth || d[this] ) { // Check for recursive print
duke@435 1905 st->print("...}");
duke@435 1906 return;
duke@435 1907 }
duke@435 1908 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1909 if( _cnt ) {
duke@435 1910 uint i;
duke@435 1911 for( i=0; i<_cnt-1; i++ ) {
duke@435 1912 st->print("%d:", i);
duke@435 1913 _fields[i]->dump2(d, depth-1, st);
duke@435 1914 st->print(", ");
duke@435 1915 }
duke@435 1916 st->print("%d:", i);
duke@435 1917 _fields[i]->dump2(d, depth-1, st);
duke@435 1918 }
duke@435 1919 st->print("}");
duke@435 1920 }
duke@435 1921 #endif
duke@435 1922
duke@435 1923 //------------------------------singleton--------------------------------------
duke@435 1924 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1925 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1926 // or a single symbol.
duke@435 1927 bool TypeTuple::singleton(void) const {
duke@435 1928 return false; // Never a singleton
duke@435 1929 }
duke@435 1930
duke@435 1931 bool TypeTuple::empty(void) const {
duke@435 1932 for( uint i=0; i<_cnt; i++ ) {
duke@435 1933 if (_fields[i]->empty()) return true;
duke@435 1934 }
duke@435 1935 return false;
duke@435 1936 }
duke@435 1937
duke@435 1938 //=============================================================================
duke@435 1939 // Convenience common pre-built types.
duke@435 1940
duke@435 1941 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1942 // Certain normalizations keep us sane when comparing types.
duke@435 1943 // We do not want arrayOop variables to differ only by the wideness
duke@435 1944 // of their index types. Pick minimum wideness, since that is the
duke@435 1945 // forced wideness of small ranges anyway.
duke@435 1946 if (size->_widen != Type::WidenMin)
duke@435 1947 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1948 else
duke@435 1949 return size;
duke@435 1950 }
duke@435 1951
duke@435 1952 //------------------------------make-------------------------------------------
vlivanov@5658 1953 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
coleenp@548 1954 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1955 elem = elem->make_narrowoop();
coleenp@548 1956 }
duke@435 1957 size = normalize_array_size(size);
vlivanov@5658 1958 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
duke@435 1959 }
duke@435 1960
duke@435 1961 //------------------------------meet-------------------------------------------
duke@435 1962 // Compute the MEET of two types. It returns a new Type object.
duke@435 1963 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1964 // Perform a fast test for common case; meeting the same types together.
duke@435 1965 if( this == t ) return this; // Meeting same type-rep?
duke@435 1966
duke@435 1967 // Current "this->_base" is Ary
duke@435 1968 switch (t->base()) { // switch on original type
duke@435 1969
duke@435 1970 case Bottom: // Ye Olde Default
duke@435 1971 return t;
duke@435 1972
duke@435 1973 default: // All else is a mistake
duke@435 1974 typerr(t);
duke@435 1975
duke@435 1976 case Array: { // Meeting 2 arrays?
duke@435 1977 const TypeAry *a = t->is_ary();
roland@6313 1978 return TypeAry::make(_elem->meet_speculative(a->_elem),
vlivanov@5658 1979 _size->xmeet(a->_size)->is_int(),
vlivanov@5658 1980 _stable & a->_stable);
duke@435 1981 }
duke@435 1982 case Top:
duke@435 1983 break;
duke@435 1984 }
duke@435 1985 return this; // Return the double constant
duke@435 1986 }
duke@435 1987
duke@435 1988 //------------------------------xdual------------------------------------------
duke@435 1989 // Dual: compute field-by-field dual
duke@435 1990 const Type *TypeAry::xdual() const {
duke@435 1991 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1992 size_dual = normalize_array_size(size_dual);
vlivanov@5658 1993 return new TypeAry(_elem->dual(), size_dual, !_stable);
duke@435 1994 }
duke@435 1995
duke@435 1996 //------------------------------eq---------------------------------------------
duke@435 1997 // Structural equality check for Type representations
duke@435 1998 bool TypeAry::eq( const Type *t ) const {
duke@435 1999 const TypeAry *a = (const TypeAry*)t;
duke@435 2000 return _elem == a->_elem &&
vlivanov@5658 2001 _stable == a->_stable &&
duke@435 2002 _size == a->_size;
duke@435 2003 }
duke@435 2004
duke@435 2005 //------------------------------hash-------------------------------------------
duke@435 2006 // Type-specific hashing function.
duke@435 2007 int TypeAry::hash(void) const {
vlivanov@5658 2008 return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
duke@435 2009 }
duke@435 2010
roland@6313 2011 /**
roland@6313 2012 * Return same type without a speculative part in the element
roland@6313 2013 */
roland@6313 2014 const Type* TypeAry::remove_speculative() const {
roland@6313 2015 return make(_elem->remove_speculative(), _size, _stable);
roland@6313 2016 }
roland@6313 2017
kvn@1255 2018 //----------------------interface_vs_oop---------------------------------------
kvn@1255 2019 #ifdef ASSERT
kvn@1255 2020 bool TypeAry::interface_vs_oop(const Type *t) const {
kvn@1255 2021 const TypeAry* t_ary = t->is_ary();
kvn@1255 2022 if (t_ary) {
shshahma@8422 2023 const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
shshahma@8422 2024 const TypePtr* t_ptr = t_ary->_elem->make_ptr();
shshahma@8422 2025 if(this_ptr != NULL && t_ptr != NULL) {
shshahma@8422 2026 return this_ptr->interface_vs_oop(t_ptr);
shshahma@8422 2027 }
kvn@1255 2028 }
kvn@1255 2029 return false;
kvn@1255 2030 }
kvn@1255 2031 #endif
kvn@1255 2032
duke@435 2033 //------------------------------dump2------------------------------------------
duke@435 2034 #ifndef PRODUCT
duke@435 2035 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
vlivanov@5658 2036 if (_stable) st->print("stable:");
duke@435 2037 _elem->dump2(d, depth, st);
duke@435 2038 st->print("[");
duke@435 2039 _size->dump2(d, depth, st);
duke@435 2040 st->print("]");
duke@435 2041 }
duke@435 2042 #endif
duke@435 2043
duke@435 2044 //------------------------------singleton--------------------------------------
duke@435 2045 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2046 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 2047 // or a single symbol.
duke@435 2048 bool TypeAry::singleton(void) const {
duke@435 2049 return false; // Never a singleton
duke@435 2050 }
duke@435 2051
duke@435 2052 bool TypeAry::empty(void) const {
duke@435 2053 return _elem->empty() || _size->empty();
duke@435 2054 }
duke@435 2055
duke@435 2056 //--------------------------ary_must_be_exact----------------------------------
duke@435 2057 bool TypeAry::ary_must_be_exact() const {
duke@435 2058 if (!UseExactTypes) return false;
duke@435 2059 // This logic looks at the element type of an array, and returns true
duke@435 2060 // if the element type is either a primitive or a final instance class.
duke@435 2061 // In such cases, an array built on this ary must have no subclasses.
duke@435 2062 if (_elem == BOTTOM) return false; // general array not exact
duke@435 2063 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 2064 const TypeOopPtr* toop = NULL;
kvn@656 2065 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 2066 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 2067 } else {
coleenp@548 2068 toop = _elem->isa_oopptr();
coleenp@548 2069 }
duke@435 2070 if (!toop) return true; // a primitive type, like int
duke@435 2071 ciKlass* tklass = toop->klass();
duke@435 2072 if (tklass == NULL) return false; // unloaded class
duke@435 2073 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 2074 const TypeInstPtr* tinst;
coleenp@548 2075 if (_elem->isa_narrowoop())
kvn@656 2076 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 2077 else
coleenp@548 2078 tinst = _elem->isa_instptr();
kvn@656 2079 if (tinst)
kvn@656 2080 return tklass->as_instance_klass()->is_final();
coleenp@548 2081 const TypeAryPtr* tap;
coleenp@548 2082 if (_elem->isa_narrowoop())
kvn@656 2083 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 2084 else
coleenp@548 2085 tap = _elem->isa_aryptr();
kvn@656 2086 if (tap)
kvn@656 2087 return tap->ary()->ary_must_be_exact();
duke@435 2088 return false;
duke@435 2089 }
duke@435 2090
kvn@3882 2091 //==============================TypeVect=======================================
kvn@3882 2092 // Convenience common pre-built types.
kvn@3882 2093 const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors
kvn@3882 2094 const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors
kvn@3882 2095 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
kvn@3882 2096 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
kvn@3882 2097
kvn@3882 2098 //------------------------------make-------------------------------------------
kvn@3882 2099 const TypeVect* TypeVect::make(const Type *elem, uint length) {
kvn@3882 2100 BasicType elem_bt = elem->array_element_basic_type();
kvn@3882 2101 assert(is_java_primitive(elem_bt), "only primitive types in vector");
kvn@3882 2102 assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
kvn@3882 2103 assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
kvn@3882 2104 int size = length * type2aelembytes(elem_bt);
kvn@3882 2105 switch (Matcher::vector_ideal_reg(size)) {
kvn@3882 2106 case Op_VecS:
kvn@3882 2107 return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
goetz@6487 2108 case Op_RegL:
kvn@3882 2109 case Op_VecD:
kvn@3882 2110 case Op_RegD:
kvn@3882 2111 return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
kvn@3882 2112 case Op_VecX:
kvn@3882 2113 return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
kvn@3882 2114 case Op_VecY:
kvn@3882 2115 return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
kvn@3882 2116 }
kvn@3882 2117 ShouldNotReachHere();
kvn@3882 2118 return NULL;
kvn@3882 2119 }
kvn@3882 2120
kvn@3882 2121 //------------------------------meet-------------------------------------------
kvn@3882 2122 // Compute the MEET of two types. It returns a new Type object.
kvn@3882 2123 const Type *TypeVect::xmeet( const Type *t ) const {
kvn@3882 2124 // Perform a fast test for common case; meeting the same types together.
kvn@3882 2125 if( this == t ) return this; // Meeting same type-rep?
kvn@3882 2126
kvn@3882 2127 // Current "this->_base" is Vector
kvn@3882 2128 switch (t->base()) { // switch on original type
kvn@3882 2129
kvn@3882 2130 case Bottom: // Ye Olde Default
kvn@3882 2131 return t;
kvn@3882 2132
kvn@3882 2133 default: // All else is a mistake
kvn@3882 2134 typerr(t);
kvn@3882 2135
kvn@3882 2136 case VectorS:
kvn@3882 2137 case VectorD:
kvn@3882 2138 case VectorX:
kvn@3882 2139 case VectorY: { // Meeting 2 vectors?
kvn@3882 2140 const TypeVect* v = t->is_vect();
kvn@3882 2141 assert( base() == v->base(), "");
kvn@3882 2142 assert(length() == v->length(), "");
kvn@3882 2143 assert(element_basic_type() == v->element_basic_type(), "");
kvn@3882 2144 return TypeVect::make(_elem->xmeet(v->_elem), _length);
kvn@3882 2145 }
kvn@3882 2146 case Top:
kvn@3882 2147 break;
kvn@3882 2148 }
kvn@3882 2149 return this;
kvn@3882 2150 }
kvn@3882 2151
kvn@3882 2152 //------------------------------xdual------------------------------------------
kvn@3882 2153 // Dual: compute field-by-field dual
kvn@3882 2154 const Type *TypeVect::xdual() const {
kvn@3882 2155 return new TypeVect(base(), _elem->dual(), _length);
kvn@3882 2156 }
kvn@3882 2157
kvn@3882 2158 //------------------------------eq---------------------------------------------
kvn@3882 2159 // Structural equality check for Type representations
kvn@3882 2160 bool TypeVect::eq(const Type *t) const {
kvn@3882 2161 const TypeVect *v = t->is_vect();
kvn@3882 2162 return (_elem == v->_elem) && (_length == v->_length);
kvn@3882 2163 }
kvn@3882 2164
kvn@3882 2165 //------------------------------hash-------------------------------------------
kvn@3882 2166 // Type-specific hashing function.
kvn@3882 2167 int TypeVect::hash(void) const {
kvn@3882 2168 return (intptr_t)_elem + (intptr_t)_length;
kvn@3882 2169 }
kvn@3882 2170
kvn@3882 2171 //------------------------------singleton--------------------------------------
kvn@3882 2172 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
kvn@3882 2173 // constants (Ldi nodes). Vector is singleton if all elements are the same
kvn@3882 2174 // constant value (when vector is created with Replicate code).
kvn@3882 2175 bool TypeVect::singleton(void) const {
kvn@3882 2176 // There is no Con node for vectors yet.
kvn@3882 2177 // return _elem->singleton();
kvn@3882 2178 return false;
kvn@3882 2179 }
kvn@3882 2180
kvn@3882 2181 bool TypeVect::empty(void) const {
kvn@3882 2182 return _elem->empty();
kvn@3882 2183 }
kvn@3882 2184
kvn@3882 2185 //------------------------------dump2------------------------------------------
kvn@3882 2186 #ifndef PRODUCT
kvn@3882 2187 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
kvn@3882 2188 switch (base()) {
kvn@3882 2189 case VectorS:
kvn@3882 2190 st->print("vectors["); break;
kvn@3882 2191 case VectorD:
kvn@3882 2192 st->print("vectord["); break;
kvn@3882 2193 case VectorX:
kvn@3882 2194 st->print("vectorx["); break;
kvn@3882 2195 case VectorY:
kvn@3882 2196 st->print("vectory["); break;
kvn@3882 2197 default:
kvn@3882 2198 ShouldNotReachHere();
kvn@3882 2199 }
kvn@3882 2200 st->print("%d]:{", _length);
kvn@3882 2201 _elem->dump2(d, depth, st);
kvn@3882 2202 st->print("}");
kvn@3882 2203 }
kvn@3882 2204 #endif
kvn@3882 2205
kvn@3882 2206
duke@435 2207 //=============================================================================
duke@435 2208 // Convenience common pre-built types.
duke@435 2209 const TypePtr *TypePtr::NULL_PTR;
duke@435 2210 const TypePtr *TypePtr::NOTNULL;
duke@435 2211 const TypePtr *TypePtr::BOTTOM;
duke@435 2212
duke@435 2213 //------------------------------meet-------------------------------------------
duke@435 2214 // Meet over the PTR enum
duke@435 2215 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 2216 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 2217 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 2218 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2219 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2220 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 2221 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 2222 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 2223 };
duke@435 2224
duke@435 2225 //------------------------------make-------------------------------------------
duke@435 2226 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 2227 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 2228 }
duke@435 2229
duke@435 2230 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2231 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2232 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 2233 if( ptr == _ptr ) return this;
duke@435 2234 return make(_base, ptr, _offset);
duke@435 2235 }
duke@435 2236
duke@435 2237 //------------------------------get_con----------------------------------------
duke@435 2238 intptr_t TypePtr::get_con() const {
duke@435 2239 assert( _ptr == Null, "" );
duke@435 2240 return _offset;
duke@435 2241 }
duke@435 2242
duke@435 2243 //------------------------------meet-------------------------------------------
duke@435 2244 // Compute the MEET of two types. It returns a new Type object.
duke@435 2245 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 2246 // Perform a fast test for common case; meeting the same types together.
duke@435 2247 if( this == t ) return this; // Meeting same type-rep?
duke@435 2248
duke@435 2249 // Current "this->_base" is AnyPtr
duke@435 2250 switch (t->base()) { // switch on original type
duke@435 2251 case Int: // Mixing ints & oops happens when javac
duke@435 2252 case Long: // reuses local variables
duke@435 2253 case FloatTop:
duke@435 2254 case FloatCon:
duke@435 2255 case FloatBot:
duke@435 2256 case DoubleTop:
duke@435 2257 case DoubleCon:
duke@435 2258 case DoubleBot:
coleenp@548 2259 case NarrowOop:
roland@4159 2260 case NarrowKlass:
duke@435 2261 case Bottom: // Ye Olde Default
duke@435 2262 return Type::BOTTOM;
duke@435 2263 case Top:
duke@435 2264 return this;
duke@435 2265
duke@435 2266 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2267 const TypePtr *tp = t->is_ptr();
duke@435 2268 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 2269 }
duke@435 2270 case RawPtr: // For these, flip the call around to cut down
duke@435 2271 case OopPtr:
duke@435 2272 case InstPtr: // on the cases I have to handle.
coleenp@4037 2273 case AryPtr:
coleenp@4037 2274 case MetadataPtr:
duke@435 2275 case KlassPtr:
duke@435 2276 return t->xmeet(this); // Call in reverse direction
duke@435 2277 default: // All else is a mistake
duke@435 2278 typerr(t);
duke@435 2279
duke@435 2280 }
duke@435 2281 return this;
duke@435 2282 }
duke@435 2283
duke@435 2284 //------------------------------meet_offset------------------------------------
duke@435 2285 int TypePtr::meet_offset( int offset ) const {
duke@435 2286 // Either is 'TOP' offset? Return the other offset!
duke@435 2287 if( _offset == OffsetTop ) return offset;
duke@435 2288 if( offset == OffsetTop ) return _offset;
duke@435 2289 // If either is different, return 'BOTTOM' offset
duke@435 2290 if( _offset != offset ) return OffsetBot;
duke@435 2291 return _offset;
duke@435 2292 }
duke@435 2293
duke@435 2294 //------------------------------dual_offset------------------------------------
duke@435 2295 int TypePtr::dual_offset( ) const {
duke@435 2296 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 2297 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 2298 return _offset; // Map everything else into self
duke@435 2299 }
duke@435 2300
duke@435 2301 //------------------------------xdual------------------------------------------
duke@435 2302 // Dual: compute field-by-field dual
duke@435 2303 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 2304 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 2305 };
duke@435 2306 const Type *TypePtr::xdual() const {
duke@435 2307 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 2308 }
duke@435 2309
kvn@741 2310 //------------------------------xadd_offset------------------------------------
kvn@741 2311 int TypePtr::xadd_offset( intptr_t offset ) const {
kvn@741 2312 // Adding to 'TOP' offset? Return 'TOP'!
kvn@741 2313 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
kvn@741 2314 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
kvn@741 2315 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
kvn@741 2316 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
kvn@741 2317 offset += (intptr_t)_offset;
kvn@741 2318 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
kvn@741 2319
kvn@741 2320 // assert( _offset >= 0 && _offset+offset >= 0, "" );
kvn@741 2321 // It is possible to construct a negative offset during PhaseCCP
kvn@741 2322
kvn@741 2323 return (int)offset; // Sum valid offsets
kvn@741 2324 }
kvn@741 2325
duke@435 2326 //------------------------------add_offset-------------------------------------
kvn@741 2327 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
kvn@741 2328 return make( AnyPtr, _ptr, xadd_offset(offset) );
duke@435 2329 }
duke@435 2330
duke@435 2331 //------------------------------eq---------------------------------------------
duke@435 2332 // Structural equality check for Type representations
duke@435 2333 bool TypePtr::eq( const Type *t ) const {
duke@435 2334 const TypePtr *a = (const TypePtr*)t;
duke@435 2335 return _ptr == a->ptr() && _offset == a->offset();
duke@435 2336 }
duke@435 2337
duke@435 2338 //------------------------------hash-------------------------------------------
duke@435 2339 // Type-specific hashing function.
duke@435 2340 int TypePtr::hash(void) const {
aph@9610 2341 return java_add(_ptr, _offset);
duke@435 2342 }
duke@435 2343
duke@435 2344 //------------------------------dump2------------------------------------------
duke@435 2345 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 2346 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 2347 };
duke@435 2348
duke@435 2349 #ifndef PRODUCT
duke@435 2350 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2351 if( _ptr == Null ) st->print("NULL");
duke@435 2352 else st->print("%s *", ptr_msg[_ptr]);
duke@435 2353 if( _offset == OffsetTop ) st->print("+top");
duke@435 2354 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 2355 else if( _offset ) st->print("+%d", _offset);
duke@435 2356 }
duke@435 2357 #endif
duke@435 2358
duke@435 2359 //------------------------------singleton--------------------------------------
duke@435 2360 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2361 // constants
duke@435 2362 bool TypePtr::singleton(void) const {
duke@435 2363 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2364 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2365 }
duke@435 2366
duke@435 2367 bool TypePtr::empty(void) const {
duke@435 2368 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2369 }
duke@435 2370
duke@435 2371 //=============================================================================
duke@435 2372 // Convenience common pre-built types.
duke@435 2373 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2374 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2375
duke@435 2376 //------------------------------make-------------------------------------------
duke@435 2377 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2378 assert( ptr != Constant, "what is the constant?" );
duke@435 2379 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2380 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2381 }
duke@435 2382
duke@435 2383 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2384 assert( bits, "Use TypePtr for NULL" );
duke@435 2385 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2386 }
duke@435 2387
duke@435 2388 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2389 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2390 assert( ptr != Constant, "what is the constant?" );
duke@435 2391 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2392 assert( _bits==0, "Why cast a constant address?");
duke@435 2393 if( ptr == _ptr ) return this;
duke@435 2394 return make(ptr);
duke@435 2395 }
duke@435 2396
duke@435 2397 //------------------------------get_con----------------------------------------
duke@435 2398 intptr_t TypeRawPtr::get_con() const {
duke@435 2399 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2400 return (intptr_t)_bits;
duke@435 2401 }
duke@435 2402
duke@435 2403 //------------------------------meet-------------------------------------------
duke@435 2404 // Compute the MEET of two types. It returns a new Type object.
duke@435 2405 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2406 // Perform a fast test for common case; meeting the same types together.
duke@435 2407 if( this == t ) return this; // Meeting same type-rep?
duke@435 2408
duke@435 2409 // Current "this->_base" is RawPtr
duke@435 2410 switch( t->base() ) { // switch on original type
duke@435 2411 case Bottom: // Ye Olde Default
duke@435 2412 return t;
duke@435 2413 case Top:
duke@435 2414 return this;
duke@435 2415 case AnyPtr: // Meeting to AnyPtrs
duke@435 2416 break;
duke@435 2417 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2418 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2419 enum PTR ptr = meet_ptr( tptr );
duke@435 2420 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2421 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2422 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2423 ptr = NotNull; // Fall down in lattice
duke@435 2424 }
duke@435 2425 return make( ptr );
duke@435 2426 }
duke@435 2427
duke@435 2428 case OopPtr:
duke@435 2429 case InstPtr:
coleenp@4037 2430 case AryPtr:
coleenp@4037 2431 case MetadataPtr:
duke@435 2432 case KlassPtr:
duke@435 2433 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2434 default: // All else is a mistake
duke@435 2435 typerr(t);
duke@435 2436 }
duke@435 2437
duke@435 2438 // Found an AnyPtr type vs self-RawPtr type
duke@435 2439 const TypePtr *tp = t->is_ptr();
duke@435 2440 switch (tp->ptr()) {
duke@435 2441 case TypePtr::TopPTR: return this;
duke@435 2442 case TypePtr::BotPTR: return t;
duke@435 2443 case TypePtr::Null:
duke@435 2444 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2445 return TypeRawPtr::BOTTOM;
duke@435 2446 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2447 case TypePtr::AnyNull:
duke@435 2448 if( _ptr == TypePtr::Constant) return this;
duke@435 2449 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2450 default: ShouldNotReachHere();
duke@435 2451 }
duke@435 2452 return this;
duke@435 2453 }
duke@435 2454
duke@435 2455 //------------------------------xdual------------------------------------------
duke@435 2456 // Dual: compute field-by-field dual
duke@435 2457 const Type *TypeRawPtr::xdual() const {
duke@435 2458 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2459 }
duke@435 2460
duke@435 2461 //------------------------------add_offset-------------------------------------
kvn@741 2462 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
duke@435 2463 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2464 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2465 if( offset == 0 ) return this; // No change
duke@435 2466 switch (_ptr) {
duke@435 2467 case TypePtr::TopPTR:
duke@435 2468 case TypePtr::BotPTR:
duke@435 2469 case TypePtr::NotNull:
duke@435 2470 return this;
duke@435 2471 case TypePtr::Null:
kvn@2435 2472 case TypePtr::Constant: {
kvn@2435 2473 address bits = _bits+offset;
kvn@2435 2474 if ( bits == 0 ) return TypePtr::NULL_PTR;
kvn@2435 2475 return make( bits );
kvn@2435 2476 }
duke@435 2477 default: ShouldNotReachHere();
duke@435 2478 }
duke@435 2479 return NULL; // Lint noise
duke@435 2480 }
duke@435 2481
duke@435 2482 //------------------------------eq---------------------------------------------
duke@435 2483 // Structural equality check for Type representations
duke@435 2484 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2485 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2486 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2487 }
duke@435 2488
duke@435 2489 //------------------------------hash-------------------------------------------
duke@435 2490 // Type-specific hashing function.
duke@435 2491 int TypeRawPtr::hash(void) const {
duke@435 2492 return (intptr_t)_bits + TypePtr::hash();
duke@435 2493 }
duke@435 2494
duke@435 2495 //------------------------------dump2------------------------------------------
duke@435 2496 #ifndef PRODUCT
duke@435 2497 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2498 if( _ptr == Constant )
duke@435 2499 st->print(INTPTR_FORMAT, _bits);
duke@435 2500 else
duke@435 2501 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2502 }
duke@435 2503 #endif
duke@435 2504
duke@435 2505 //=============================================================================
duke@435 2506 // Convenience common pre-built type.
duke@435 2507 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2508
kvn@598 2509 //------------------------------TypeOopPtr-------------------------------------
roland@6380 2510 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth)
kvn@598 2511 : TypePtr(t, ptr, offset),
kvn@598 2512 _const_oop(o), _klass(k),
kvn@598 2513 _klass_is_exact(xk),
kvn@598 2514 _is_ptr_to_narrowoop(false),
roland@4159 2515 _is_ptr_to_narrowklass(false),
kvn@5110 2516 _is_ptr_to_boxed_value(false),
roland@5991 2517 _instance_id(instance_id),
roland@6380 2518 _speculative(speculative),
roland@6380 2519 _inline_depth(inline_depth){
kvn@5110 2520 if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
kvn@5110 2521 (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
kvn@5110 2522 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
kvn@5110 2523 }
kvn@598 2524 #ifdef _LP64
roland@4159 2525 if (_offset != 0) {
coleenp@4037 2526 if (_offset == oopDesc::klass_offset_in_bytes()) {
ehelin@5694 2527 _is_ptr_to_narrowklass = UseCompressedClassPointers;
coleenp@4037 2528 } else if (klass() == NULL) {
coleenp@4037 2529 // Array with unknown body type
kvn@598 2530 assert(this->isa_aryptr(), "only arrays without klass");
roland@4159 2531 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2532 } else if (this->isa_aryptr()) {
roland@4159 2533 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
kvn@598 2534 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2535 } else if (klass()->is_instance_klass()) {
kvn@598 2536 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2537 ciField* field = NULL;
kvn@598 2538 if (this->isa_klassptr()) {
never@2658 2539 // Perm objects don't use compressed references
kvn@598 2540 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2541 // unsafe access
roland@4159 2542 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2543 } else { // exclude unsafe ops
kvn@598 2544 assert(this->isa_instptr(), "must be an instance ptr.");
never@2658 2545
never@2658 2546 if (klass() == ciEnv::current()->Class_klass() &&
never@2658 2547 (_offset == java_lang_Class::klass_offset_in_bytes() ||
never@2658 2548 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
never@2658 2549 // Special hidden fields from the Class.
never@2658 2550 assert(this->isa_instptr(), "must be an instance ptr.");
coleenp@4037 2551 _is_ptr_to_narrowoop = false;
never@2658 2552 } else if (klass() == ciEnv::current()->Class_klass() &&
coleenp@4047 2553 _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
never@2658 2554 // Static fields
never@2658 2555 assert(o != NULL, "must be constant");
never@2658 2556 ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 2557 ciField* field = k->get_field_by_offset(_offset, true);
never@2658 2558 assert(field != NULL, "missing field");
kvn@598 2559 BasicType basic_elem_type = field->layout_type();
roland@4159 2560 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2561 basic_elem_type == T_ARRAY);
kvn@598 2562 } else {
never@2658 2563 // Instance fields which contains a compressed oop references.
never@2658 2564 field = ik->get_field_by_offset(_offset, false);
never@2658 2565 if (field != NULL) {
never@2658 2566 BasicType basic_elem_type = field->layout_type();
roland@4159 2567 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2568 basic_elem_type == T_ARRAY);
never@2658 2569 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
never@2658 2570 // Compile::find_alias_type() cast exactness on all types to verify
never@2658 2571 // that it does not affect alias type.
roland@4159 2572 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2573 } else {
never@2658 2574 // Type for the copy start in LibraryCallKit::inline_native_clone().
roland@4159 2575 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2576 }
kvn@598 2577 }
kvn@598 2578 }
kvn@598 2579 }
kvn@598 2580 }
kvn@598 2581 #endif
kvn@598 2582 }
kvn@598 2583
duke@435 2584 //------------------------------make-------------------------------------------
duke@435 2585 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
roland@6380 2586 int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
duke@435 2587 assert(ptr != Constant, "no constant generic pointers");
coleenp@4037 2588 ciKlass* k = Compile::current()->env()->Object_klass();
duke@435 2589 bool xk = false;
duke@435 2590 ciObject* o = NULL;
roland@6380 2591 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
duke@435 2592 }
duke@435 2593
duke@435 2594
duke@435 2595 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2596 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2597 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2598 if( ptr == _ptr ) return this;
roland@6380 2599 return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
duke@435 2600 }
duke@435 2601
kvn@682 2602 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2603 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2604 // There are no instances of a general oop.
duke@435 2605 // Return self unchanged.
duke@435 2606 return this;
duke@435 2607 }
duke@435 2608
duke@435 2609 //-----------------------------cast_to_exactness-------------------------------
duke@435 2610 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2611 // There is no such thing as an exact general oop.
duke@435 2612 // Return self unchanged.
duke@435 2613 return this;
duke@435 2614 }
duke@435 2615
duke@435 2616
duke@435 2617 //------------------------------as_klass_type----------------------------------
duke@435 2618 // Return the klass type corresponding to this instance or array type.
duke@435 2619 // It is the type that is loaded from an object of this type.
duke@435 2620 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2621 ciKlass* k = klass();
duke@435 2622 bool xk = klass_is_exact();
coleenp@4037 2623 if (k == NULL)
duke@435 2624 return TypeKlassPtr::OBJECT;
duke@435 2625 else
duke@435 2626 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2627 }
duke@435 2628
roland@5991 2629 const Type *TypeOopPtr::xmeet(const Type *t) const {
roland@5991 2630 const Type* res = xmeet_helper(t);
roland@5991 2631 if (res->isa_oopptr() == NULL) {
roland@5991 2632 return res;
roland@5991 2633 }
roland@5991 2634
roland@6313 2635 const TypeOopPtr* res_oopptr = res->is_oopptr();
roland@6313 2636 if (res_oopptr->speculative() != NULL) {
roland@5991 2637 // type->speculative() == NULL means that speculation is no better
roland@5991 2638 // than type, i.e. type->speculative() == type. So there are 2
roland@5991 2639 // ways to represent the fact that we have no useful speculative
roland@5991 2640 // data and we should use a single one to be able to test for
roland@5991 2641 // equality between types. Check whether type->speculative() ==
roland@5991 2642 // type and set speculative to NULL if it is the case.
roland@5991 2643 if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
roland@5991 2644 return res_oopptr->remove_speculative();
roland@5991 2645 }
roland@5991 2646 }
roland@5991 2647
roland@5991 2648 return res;
roland@5991 2649 }
duke@435 2650
duke@435 2651 //------------------------------meet-------------------------------------------
duke@435 2652 // Compute the MEET of two types. It returns a new Type object.
roland@5991 2653 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
duke@435 2654 // Perform a fast test for common case; meeting the same types together.
duke@435 2655 if( this == t ) return this; // Meeting same type-rep?
duke@435 2656
duke@435 2657 // Current "this->_base" is OopPtr
duke@435 2658 switch (t->base()) { // switch on original type
duke@435 2659
duke@435 2660 case Int: // Mixing ints & oops happens when javac
duke@435 2661 case Long: // reuses local variables
duke@435 2662 case FloatTop:
duke@435 2663 case FloatCon:
duke@435 2664 case FloatBot:
duke@435 2665 case DoubleTop:
duke@435 2666 case DoubleCon:
duke@435 2667 case DoubleBot:
kvn@728 2668 case NarrowOop:
roland@4159 2669 case NarrowKlass:
duke@435 2670 case Bottom: // Ye Olde Default
duke@435 2671 return Type::BOTTOM;
duke@435 2672 case Top:
duke@435 2673 return this;
duke@435 2674
duke@435 2675 default: // All else is a mistake
duke@435 2676 typerr(t);
duke@435 2677
duke@435 2678 case RawPtr:
coleenp@4037 2679 case MetadataPtr:
coleenp@4037 2680 case KlassPtr:
duke@435 2681 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2682
duke@435 2683 case AnyPtr: {
duke@435 2684 // Found an AnyPtr type vs self-OopPtr type
duke@435 2685 const TypePtr *tp = t->is_ptr();
duke@435 2686 int offset = meet_offset(tp->offset());
duke@435 2687 PTR ptr = meet_ptr(tp->ptr());
duke@435 2688 switch (tp->ptr()) {
duke@435 2689 case Null:
duke@435 2690 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2691 // else fall through:
duke@435 2692 case TopPTR:
kvn@1427 2693 case AnyNull: {
kvn@1427 2694 int instance_id = meet_instance_id(InstanceTop);
roland@5991 2695 const TypeOopPtr* speculative = _speculative;
roland@6380 2696 return make(ptr, offset, instance_id, speculative, _inline_depth);
kvn@1427 2697 }
duke@435 2698 case BotPTR:
duke@435 2699 case NotNull:
duke@435 2700 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2701 default: typerr(t);
duke@435 2702 }
duke@435 2703 }
duke@435 2704
duke@435 2705 case OopPtr: { // Meeting to other OopPtrs
duke@435 2706 const TypeOopPtr *tp = t->is_oopptr();
kvn@1393 2707 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 2708 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 2709 int depth = meet_inline_depth(tp->inline_depth());
roland@6380 2710 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
duke@435 2711 }
duke@435 2712
duke@435 2713 case InstPtr: // For these, flip the call around to cut down
duke@435 2714 case AryPtr:
duke@435 2715 return t->xmeet(this); // Call in reverse direction
duke@435 2716
duke@435 2717 } // End of switch
duke@435 2718 return this; // Return the double constant
duke@435 2719 }
duke@435 2720
duke@435 2721
duke@435 2722 //------------------------------xdual------------------------------------------
duke@435 2723 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2724 const Type *TypeOopPtr::xdual() const {
coleenp@4037 2725 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
duke@435 2726 assert(const_oop() == NULL, "no constants here");
roland@6380 2727 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
duke@435 2728 }
duke@435 2729
duke@435 2730 //--------------------------make_from_klass_common-----------------------------
duke@435 2731 // Computes the element-type given a klass.
duke@435 2732 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2733 if (klass->is_instance_klass()) {
duke@435 2734 Compile* C = Compile::current();
duke@435 2735 Dependencies* deps = C->dependencies();
duke@435 2736 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2737 // Element is an instance
duke@435 2738 bool klass_is_exact = false;
duke@435 2739 if (klass->is_loaded()) {
duke@435 2740 // Try to set klass_is_exact.
duke@435 2741 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2742 klass_is_exact = ik->is_final();
duke@435 2743 if (!klass_is_exact && klass_change
duke@435 2744 && deps != NULL && UseUniqueSubclasses) {
duke@435 2745 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2746 if (sub != NULL) {
duke@435 2747 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2748 klass = ik = sub;
duke@435 2749 klass_is_exact = sub->is_final();
duke@435 2750 }
duke@435 2751 }
duke@435 2752 if (!klass_is_exact && try_for_exact
duke@435 2753 && deps != NULL && UseExactTypes) {
duke@435 2754 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2755 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2756 deps->assert_leaf_type(ik);
duke@435 2757 klass_is_exact = true;
duke@435 2758 }
duke@435 2759 }
duke@435 2760 }
duke@435 2761 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2762 } else if (klass->is_obj_array_klass()) {
duke@435 2763 // Element is an object array. Recursively call ourself.
duke@435 2764 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2765 bool xk = etype->klass_is_exact();
duke@435 2766 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2767 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2768 // are all not-null. This is not true in generally, as code can
duke@435 2769 // slam NULLs down in the subarrays.
duke@435 2770 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2771 return arr;
duke@435 2772 } else if (klass->is_type_array_klass()) {
duke@435 2773 // Element is an typeArray
duke@435 2774 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2775 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2776 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2777 // is not-null. That was not true in general.
duke@435 2778 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2779 return arr;
duke@435 2780 } else {
duke@435 2781 ShouldNotReachHere();
duke@435 2782 return NULL;
duke@435 2783 }
duke@435 2784 }
duke@435 2785
duke@435 2786 //------------------------------make_from_constant-----------------------------
duke@435 2787 // Make a java pointer from an oop constant
kvn@5110 2788 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
kvn@5110 2789 bool require_constant,
kvn@5110 2790 bool is_autobox_cache) {
kvn@5110 2791 assert(!o->is_null_object(), "null object not yet handled here.");
kvn@5110 2792 ciKlass* klass = o->klass();
kvn@5110 2793 if (klass->is_instance_klass()) {
kvn@5110 2794 // Element is an instance
kvn@5110 2795 if (require_constant) {
kvn@5110 2796 if (!o->can_be_constant()) return NULL;
kvn@5110 2797 } else if (!o->should_be_constant()) {
kvn@5110 2798 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
kvn@5110 2799 }
kvn@5110 2800 return TypeInstPtr::make(o);
kvn@5110 2801 } else if (klass->is_obj_array_klass()) {
kvn@5110 2802 // Element is an object array. Recursively call ourself.
kvn@5110 2803 const TypeOopPtr *etype =
coleenp@4037 2804 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
kvn@5110 2805 if (is_autobox_cache) {
kvn@5110 2806 // The pointers in the autobox arrays are always non-null.
kvn@5110 2807 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
kvn@5110 2808 }
kvn@5110 2809 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
kvn@5110 2810 // We used to pass NotNull in here, asserting that the sub-arrays
kvn@5110 2811 // are all not-null. This is not true in generally, as code can
kvn@5110 2812 // slam NULLs down in the subarrays.
kvn@5110 2813 if (require_constant) {
kvn@5110 2814 if (!o->can_be_constant()) return NULL;
kvn@5110 2815 } else if (!o->should_be_constant()) {
kvn@5110 2816 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
kvn@5110 2817 }
roland@6380 2818 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, InlineDepthBottom, is_autobox_cache);
coleenp@4037 2819 return arr;
kvn@5110 2820 } else if (klass->is_type_array_klass()) {
kvn@5110 2821 // Element is an typeArray
coleenp@4037 2822 const Type* etype =
coleenp@4037 2823 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
kvn@5110 2824 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
kvn@5110 2825 // We used to pass NotNull in here, asserting that the array pointer
kvn@5110 2826 // is not-null. That was not true in general.
kvn@5110 2827 if (require_constant) {
kvn@5110 2828 if (!o->can_be_constant()) return NULL;
kvn@5110 2829 } else if (!o->should_be_constant()) {
kvn@5110 2830 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
kvn@5110 2831 }
coleenp@4037 2832 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
coleenp@4037 2833 return arr;
duke@435 2834 }
duke@435 2835
twisti@3885 2836 fatal("unhandled object type");
duke@435 2837 return NULL;
duke@435 2838 }
duke@435 2839
duke@435 2840 //------------------------------get_con----------------------------------------
duke@435 2841 intptr_t TypeOopPtr::get_con() const {
duke@435 2842 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2843 assert( _offset >= 0, "" );
duke@435 2844
duke@435 2845 if (_offset != 0) {
duke@435 2846 // After being ported to the compiler interface, the compiler no longer
duke@435 2847 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2848 // to a handle at compile time. This handle is embedded in the generated
duke@435 2849 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2850 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2851 // have access to the addresses!). This does not seem to currently happen,
twisti@1040 2852 // but this assertion here is to help prevent its occurence.
duke@435 2853 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2854 ShouldNotReachHere();
duke@435 2855 }
duke@435 2856
jrose@1424 2857 return (intptr_t)const_oop()->constant_encoding();
duke@435 2858 }
duke@435 2859
duke@435 2860
duke@435 2861 //-----------------------------filter------------------------------------------
duke@435 2862 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 2863 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 2864
roland@6313 2865 const Type* ft = join_helper(kills, include_speculative);
duke@435 2866 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2867 const TypeInstPtr* ktip = kills->isa_instptr();
duke@435 2868
duke@435 2869 if (ft->empty()) {
duke@435 2870 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2871 // interface. This can happen because the bytecodes do not contain
duke@435 2872 // enough type info to distinguish a Java-level interface variable
duke@435 2873 // from a Java-level object variable. If we meet 2 classes which
duke@435 2874 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2875 // doesn't implement I, we have no way to tell if the result should
duke@435 2876 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2877 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2878 // uplift the type.
shshahma@8422 2879 if (!empty()) {
shshahma@8422 2880 if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
shshahma@8422 2881 return kills; // Uplift to interface
shshahma@8422 2882 }
shshahma@8422 2883 // Also check for evil cases of 'this' being a class array
shshahma@8422 2884 // and 'kills' expecting an array of interfaces.
shshahma@8422 2885 Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
shshahma@8422 2886 if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
shshahma@8422 2887 return kills; // Uplift to array of interface
shshahma@8422 2888 }
shshahma@8422 2889 }
duke@435 2890
duke@435 2891 return Type::TOP; // Canonical empty value
duke@435 2892 }
duke@435 2893
duke@435 2894 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2895 // the join should report back the class. However, if we have a J/L/Object
duke@435 2896 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2897 // join report an interface back out. This isn't possible but happens
duke@435 2898 // because the type system doesn't interact well with interfaces.
duke@435 2899 if (ftip != NULL && ktip != NULL &&
duke@435 2900 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2901 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2902 // Happens in a CTW of rt.jar, 320-341, no extra flags
kvn@1770 2903 assert(!ftip->klass_is_exact(), "interface could not be exact");
duke@435 2904 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2905 }
duke@435 2906
duke@435 2907 return ft;
duke@435 2908 }
duke@435 2909
duke@435 2910 //------------------------------eq---------------------------------------------
duke@435 2911 // Structural equality check for Type representations
duke@435 2912 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2913 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2914 if (_klass_is_exact != a->_klass_is_exact ||
roland@5991 2915 _instance_id != a->_instance_id ||
roland@6380 2916 !eq_speculative(a) ||
roland@6380 2917 _inline_depth != a->_inline_depth) return false;
duke@435 2918 ciObject* one = const_oop();
duke@435 2919 ciObject* two = a->const_oop();
duke@435 2920 if (one == NULL || two == NULL) {
duke@435 2921 return (one == two) && TypePtr::eq(t);
duke@435 2922 } else {
duke@435 2923 return one->equals(two) && TypePtr::eq(t);
duke@435 2924 }
duke@435 2925 }
duke@435 2926
duke@435 2927 //------------------------------hash-------------------------------------------
duke@435 2928 // Type-specific hashing function.
duke@435 2929 int TypeOopPtr::hash(void) const {
duke@435 2930 return
aph@9610 2931 java_add(java_add(java_add(const_oop() ? const_oop()->hash() : 0, _klass_is_exact),
aph@9610 2932 java_add(_instance_id , hash_speculative())), java_add(_inline_depth , TypePtr::hash()));
duke@435 2933 }
duke@435 2934
duke@435 2935 //------------------------------dump2------------------------------------------
duke@435 2936 #ifndef PRODUCT
duke@435 2937 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2938 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2939 if( _klass_is_exact ) st->print(":exact");
duke@435 2940 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2941 switch( _offset ) {
duke@435 2942 case OffsetTop: st->print("+top"); break;
duke@435 2943 case OffsetBot: st->print("+any"); break;
duke@435 2944 case 0: break;
duke@435 2945 default: st->print("+%d",_offset); break;
duke@435 2946 }
kvn@658 2947 if (_instance_id == InstanceTop)
kvn@658 2948 st->print(",iid=top");
kvn@658 2949 else if (_instance_id != InstanceBot)
duke@435 2950 st->print(",iid=%d",_instance_id);
roland@5991 2951
roland@6380 2952 dump_inline_depth(st);
roland@5991 2953 dump_speculative(st);
roland@5991 2954 }
roland@5991 2955
roland@5991 2956 /**
roland@5991 2957 *dump the speculative part of the type
roland@5991 2958 */
roland@5991 2959 void TypeOopPtr::dump_speculative(outputStream *st) const {
roland@5991 2960 if (_speculative != NULL) {
roland@5991 2961 st->print(" (speculative=");
roland@5991 2962 _speculative->dump_on(st);
roland@5991 2963 st->print(")");
roland@5991 2964 }
duke@435 2965 }
roland@6380 2966
roland@6380 2967 void TypeOopPtr::dump_inline_depth(outputStream *st) const {
roland@6380 2968 if (_inline_depth != InlineDepthBottom) {
roland@6380 2969 if (_inline_depth == InlineDepthTop) {
roland@6380 2970 st->print(" (inline_depth=InlineDepthTop)");
roland@6380 2971 } else {
roland@6380 2972 st->print(" (inline_depth=%d)", _inline_depth);
roland@6380 2973 }
roland@6380 2974 }
roland@6380 2975 }
duke@435 2976 #endif
duke@435 2977
duke@435 2978 //------------------------------singleton--------------------------------------
duke@435 2979 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2980 // constants
duke@435 2981 bool TypeOopPtr::singleton(void) const {
duke@435 2982 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2983 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2984 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2985 }
duke@435 2986
duke@435 2987 //------------------------------add_offset-------------------------------------
roland@5991 2988 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
roland@6380 2989 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
roland@5991 2990 }
roland@5991 2991
roland@5991 2992 /**
roland@5991 2993 * Return same type without a speculative part
roland@5991 2994 */
roland@6313 2995 const Type* TypeOopPtr::remove_speculative() const {
roland@6313 2996 if (_speculative == NULL) {
roland@6313 2997 return this;
roland@6313 2998 }
roland@6380 2999 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
roland@6380 3000 return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
roland@6380 3001 }
roland@6380 3002
roland@6380 3003 /**
roland@6380 3004 * Return same type but with a different inline depth (used for speculation)
roland@6380 3005 *
roland@6380 3006 * @param depth depth to meet with
roland@6380 3007 */
roland@6380 3008 const TypeOopPtr* TypeOopPtr::with_inline_depth(int depth) const {
roland@6380 3009 if (!UseInlineDepthForSpeculativeTypes) {
roland@6380 3010 return this;
roland@6380 3011 }
roland@6380 3012 return make(_ptr, _offset, _instance_id, _speculative, depth);
roland@6380 3013 }
roland@6380 3014
roland@6380 3015 /**
roland@6380 3016 * Check whether new profiling would improve speculative type
roland@6380 3017 *
roland@6380 3018 * @param exact_kls class from profiling
roland@6380 3019 * @param inline_depth inlining depth of profile point
roland@6380 3020 *
roland@6380 3021 * @return true if type profile is valuable
roland@6380 3022 */
roland@6380 3023 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
roland@6380 3024 // no way to improve an already exact type
roland@6380 3025 if (klass_is_exact()) {
roland@6380 3026 return false;
roland@6380 3027 }
roland@6380 3028 // no profiling?
roland@6380 3029 if (exact_kls == NULL) {
roland@6380 3030 return false;
roland@6380 3031 }
roland@6380 3032 // no speculative type or non exact speculative type?
roland@6380 3033 if (speculative_type() == NULL) {
roland@6380 3034 return true;
roland@6380 3035 }
roland@6380 3036 // If the node already has an exact speculative type keep it,
roland@6380 3037 // unless it was provided by profiling that is at a deeper
roland@6380 3038 // inlining level. Profiling at a higher inlining depth is
roland@6380 3039 // expected to be less accurate.
roland@6380 3040 if (_speculative->inline_depth() == InlineDepthBottom) {
roland@6380 3041 return false;
roland@6380 3042 }
roland@6380 3043 assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
roland@6380 3044 return inline_depth < _speculative->inline_depth();
duke@435 3045 }
duke@435 3046
kvn@658 3047 //------------------------------meet_instance_id--------------------------------
kvn@658 3048 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 3049 // Either is 'TOP' instance? Return the other instance!
kvn@658 3050 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 3051 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 3052 // If either is different, return 'BOTTOM' instance
kvn@658 3053 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 3054 return _instance_id;
duke@435 3055 }
duke@435 3056
kvn@658 3057 //------------------------------dual_instance_id--------------------------------
kvn@658 3058 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 3059 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 3060 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 3061 return _instance_id; // Map everything else into self
kvn@658 3062 }
kvn@658 3063
roland@5991 3064 /**
roland@5991 3065 * meet of the speculative parts of 2 types
roland@5991 3066 *
roland@5991 3067 * @param other type to meet with
roland@5991 3068 */
roland@6313 3069 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
roland@5991 3070 bool this_has_spec = (_speculative != NULL);
roland@5991 3071 bool other_has_spec = (other->speculative() != NULL);
roland@5991 3072
roland@5991 3073 if (!this_has_spec && !other_has_spec) {
roland@5991 3074 return NULL;
roland@5991 3075 }
roland@5991 3076
roland@5991 3077 // If we are at a point where control flow meets and one branch has
roland@5991 3078 // a speculative type and the other has not, we meet the speculative
roland@5991 3079 // type of one branch with the actual type of the other. If the
roland@5991 3080 // actual type is exact and the speculative is as well, then the
roland@5991 3081 // result is a speculative type which is exact and we can continue
roland@5991 3082 // speculation further.
roland@5991 3083 const TypeOopPtr* this_spec = _speculative;
roland@5991 3084 const TypeOopPtr* other_spec = other->speculative();
roland@5991 3085
roland@5991 3086 if (!this_has_spec) {
roland@5991 3087 this_spec = this;
roland@5991 3088 }
roland@5991 3089
roland@5991 3090 if (!other_has_spec) {
roland@5991 3091 other_spec = other;
roland@5991 3092 }
roland@5991 3093
roland@6313 3094 return this_spec->meet_speculative(other_spec)->is_oopptr();
roland@5991 3095 }
roland@5991 3096
roland@5991 3097 /**
roland@5991 3098 * dual of the speculative part of the type
roland@5991 3099 */
roland@5991 3100 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
roland@5991 3101 if (_speculative == NULL) {
roland@5991 3102 return NULL;
roland@5991 3103 }
roland@5991 3104 return _speculative->dual()->is_oopptr();
roland@5991 3105 }
roland@5991 3106
roland@5991 3107 /**
roland@5991 3108 * add offset to the speculative part of the type
roland@5991 3109 *
roland@5991 3110 * @param offset offset to add
roland@5991 3111 */
roland@5991 3112 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
roland@5991 3113 if (_speculative == NULL) {
roland@5991 3114 return NULL;
roland@5991 3115 }
roland@5991 3116 return _speculative->add_offset(offset)->is_oopptr();
roland@5991 3117 }
roland@5991 3118
roland@5991 3119 /**
roland@5991 3120 * Are the speculative parts of 2 types equal?
roland@5991 3121 *
roland@5991 3122 * @param other type to compare this one to
roland@5991 3123 */
roland@5991 3124 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
roland@5991 3125 if (_speculative == NULL || other->speculative() == NULL) {
roland@5991 3126 return _speculative == other->speculative();
roland@5991 3127 }
roland@5991 3128
roland@5991 3129 if (_speculative->base() != other->speculative()->base()) {
roland@5991 3130 return false;
roland@5991 3131 }
roland@5991 3132
roland@5991 3133 return _speculative->eq(other->speculative());
roland@5991 3134 }
roland@5991 3135
roland@5991 3136 /**
roland@5991 3137 * Hash of the speculative part of the type
roland@5991 3138 */
roland@5991 3139 int TypeOopPtr::hash_speculative() const {
roland@5991 3140 if (_speculative == NULL) {
roland@5991 3141 return 0;
roland@5991 3142 }
roland@5991 3143
roland@5991 3144 return _speculative->hash();
roland@5991 3145 }
roland@5991 3146
roland@6380 3147 /**
roland@6380 3148 * dual of the inline depth for this type (used for speculation)
roland@6380 3149 */
roland@6380 3150 int TypeOopPtr::dual_inline_depth() const {
roland@6380 3151 return -inline_depth();
roland@6380 3152 }
roland@6380 3153
roland@6380 3154 /**
roland@6380 3155 * meet of 2 inline depth (used for speculation)
roland@6380 3156 *
roland@6380 3157 * @param depth depth to meet with
roland@6380 3158 */
roland@6380 3159 int TypeOopPtr::meet_inline_depth(int depth) const {
roland@6380 3160 return MAX2(inline_depth(), depth);
roland@6380 3161 }
kvn@658 3162
duke@435 3163 //=============================================================================
duke@435 3164 // Convenience common pre-built types.
duke@435 3165 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 3166 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 3167 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 3168 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 3169 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 3170
duke@435 3171 //------------------------------TypeInstPtr-------------------------------------
roland@6380 3172 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative, int inline_depth)
roland@6380 3173 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth), _name(k->name()) {
duke@435 3174 assert(k != NULL &&
duke@435 3175 (k->is_loaded() || o == NULL),
duke@435 3176 "cannot have constants with non-loaded klass");
duke@435 3177 };
duke@435 3178
duke@435 3179 //------------------------------make-------------------------------------------
duke@435 3180 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 3181 ciKlass* k,
duke@435 3182 bool xk,
duke@435 3183 ciObject* o,
duke@435 3184 int offset,
roland@5991 3185 int instance_id,
roland@6380 3186 const TypeOopPtr* speculative,
roland@6380 3187 int inline_depth) {
coleenp@4037 3188 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
duke@435 3189 // Either const_oop() is NULL or else ptr is Constant
duke@435 3190 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 3191 "constant pointers must have a value supplied" );
duke@435 3192 // Ptr is never Null
duke@435 3193 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 3194
kvn@682 3195 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3196 if (!UseExactTypes) xk = false;
duke@435 3197 if (ptr == Constant) {
duke@435 3198 // Note: This case includes meta-object constants, such as methods.
duke@435 3199 xk = true;
duke@435 3200 } else if (k->is_loaded()) {
duke@435 3201 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 3202 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 3203 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 3204 }
duke@435 3205
duke@435 3206 // Now hash this baby
duke@435 3207 TypeInstPtr *result =
roland@6380 3208 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
duke@435 3209
duke@435 3210 return result;
duke@435 3211 }
duke@435 3212
kvn@5110 3213 /**
kvn@5110 3214 * Create constant type for a constant boxed value
kvn@5110 3215 */
kvn@5110 3216 const Type* TypeInstPtr::get_const_boxed_value() const {
kvn@5110 3217 assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
kvn@5110 3218 assert((const_oop() != NULL), "should be called only for constant object");
kvn@5110 3219 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
kvn@5110 3220 BasicType bt = constant.basic_type();
kvn@5110 3221 switch (bt) {
kvn@5110 3222 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
kvn@5110 3223 case T_INT: return TypeInt::make(constant.as_int());
kvn@5110 3224 case T_CHAR: return TypeInt::make(constant.as_char());
kvn@5110 3225 case T_BYTE: return TypeInt::make(constant.as_byte());
kvn@5110 3226 case T_SHORT: return TypeInt::make(constant.as_short());
kvn@5110 3227 case T_FLOAT: return TypeF::make(constant.as_float());
kvn@5110 3228 case T_DOUBLE: return TypeD::make(constant.as_double());
kvn@5110 3229 case T_LONG: return TypeLong::make(constant.as_long());
kvn@5110 3230 default: break;
kvn@5110 3231 }
kvn@5110 3232 fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
kvn@5110 3233 return NULL;
kvn@5110 3234 }
duke@435 3235
duke@435 3236 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3237 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3238 if( ptr == _ptr ) return this;
duke@435 3239 // Reconstruct _sig info here since not a problem with later lazy
duke@435 3240 // construction, _sig will show up on demand.
roland@6380 3241 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
duke@435 3242 }
duke@435 3243
duke@435 3244
duke@435 3245 //-----------------------------cast_to_exactness-------------------------------
duke@435 3246 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3247 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3248 if (!UseExactTypes) return this;
duke@435 3249 if (!_klass->is_loaded()) return this;
duke@435 3250 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 3251 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 3252 if( ik->is_interface() ) return this; // cannot set xk
roland@6380 3253 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
duke@435 3254 }
duke@435 3255
kvn@682 3256 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3257 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3258 if( instance_id == _instance_id ) return this;
roland@6380 3259 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
duke@435 3260 }
duke@435 3261
duke@435 3262 //------------------------------xmeet_unloaded---------------------------------
duke@435 3263 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 3264 // Assume classes are different since called after check for same name/class-loader
duke@435 3265 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 3266 int off = meet_offset(tinst->offset());
duke@435 3267 PTR ptr = meet_ptr(tinst->ptr());
kvn@1427 3268 int instance_id = meet_instance_id(tinst->instance_id());
roland@6313 3269 const TypeOopPtr* speculative = xmeet_speculative(tinst);
roland@6380 3270 int depth = meet_inline_depth(tinst->inline_depth());
duke@435 3271
duke@435 3272 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 3273 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 3274 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3275 //
duke@435 3276 // Meet unloaded class with java/lang/Object
duke@435 3277 //
duke@435 3278 // Meet
duke@435 3279 // | Unloaded Class
duke@435 3280 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 3281 // ===================================================================
duke@435 3282 // TOP | ..........................Unloaded......................|
duke@435 3283 // AnyNull | U-AN |................Unloaded......................|
duke@435 3284 // Constant | ... O-NN .................................. | O-BOT |
duke@435 3285 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 3286 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 3287 //
duke@435 3288 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 3289 //
duke@435 3290 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
roland@6380 3291 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
duke@435 3292 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 3293 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 3294 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 3295 else { return TypeInstPtr::NOTNULL; }
duke@435 3296 }
duke@435 3297 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 3298
duke@435 3299 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 3300 }
duke@435 3301
duke@435 3302 // Both are unloaded, not the same class, not Object
duke@435 3303 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 3304 if( ptr != TypePtr::BotPTR ) {
duke@435 3305 return TypeInstPtr::NOTNULL;
duke@435 3306 }
duke@435 3307 return TypeInstPtr::BOTTOM;
duke@435 3308 }
duke@435 3309
duke@435 3310
duke@435 3311 //------------------------------meet-------------------------------------------
duke@435 3312 // Compute the MEET of two types. It returns a new Type object.
roland@5991 3313 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
duke@435 3314 // Perform a fast test for common case; meeting the same types together.
duke@435 3315 if( this == t ) return this; // Meeting same type-rep?
duke@435 3316
duke@435 3317 // Current "this->_base" is Pointer
duke@435 3318 switch (t->base()) { // switch on original type
duke@435 3319
duke@435 3320 case Int: // Mixing ints & oops happens when javac
duke@435 3321 case Long: // reuses local variables
duke@435 3322 case FloatTop:
duke@435 3323 case FloatCon:
duke@435 3324 case FloatBot:
duke@435 3325 case DoubleTop:
duke@435 3326 case DoubleCon:
duke@435 3327 case DoubleBot:
coleenp@548 3328 case NarrowOop:
roland@4159 3329 case NarrowKlass:
duke@435 3330 case Bottom: // Ye Olde Default
duke@435 3331 return Type::BOTTOM;
duke@435 3332 case Top:
duke@435 3333 return this;
duke@435 3334
duke@435 3335 default: // All else is a mistake
duke@435 3336 typerr(t);
duke@435 3337
coleenp@4037 3338 case MetadataPtr:
coleenp@4037 3339 case KlassPtr:
duke@435 3340 case RawPtr: return TypePtr::BOTTOM;
duke@435 3341
duke@435 3342 case AryPtr: { // All arrays inherit from Object class
duke@435 3343 const TypeAryPtr *tp = t->is_aryptr();
duke@435 3344 int offset = meet_offset(tp->offset());
duke@435 3345 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3346 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3347 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 3348 int depth = meet_inline_depth(tp->inline_depth());
duke@435 3349 switch (ptr) {
duke@435 3350 case TopPTR:
duke@435 3351 case AnyNull: // Fall 'down' to dual of object klass
roland@5991 3352 // For instances when a subclass meets a superclass we fall
roland@5991 3353 // below the centerline when the superclass is exact. We need to
roland@5991 3354 // do the same here.
roland@5991 3355 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
roland@6380 3356 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
duke@435 3357 } else {
duke@435 3358 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3359 ptr = NotNull;
kvn@658 3360 instance_id = InstanceBot;
roland@6380 3361 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
duke@435 3362 }
duke@435 3363 case Constant:
duke@435 3364 case NotNull:
duke@435 3365 case BotPTR: // Fall down to object klass
duke@435 3366 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3367 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 3368 // If 'this' (InstPtr) is above the centerline and it is Object class
twisti@1040 3369 // then we can subclass in the Java class hierarchy.
roland@5991 3370 // For instances when a subclass meets a superclass we fall
roland@5991 3371 // below the centerline when the superclass is exact. We need
roland@5991 3372 // to do the same here.
roland@5991 3373 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
duke@435 3374 // that is, tp's array type is a subtype of my klass
kvn@1714 3375 return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
roland@6380 3376 tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
duke@435 3377 }
duke@435 3378 }
duke@435 3379 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 3380 // The meet falls down to Object class below centerline.
duke@435 3381 if( ptr == Constant )
duke@435 3382 ptr = NotNull;
kvn@658 3383 instance_id = InstanceBot;
roland@6380 3384 return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
duke@435 3385 default: typerr(t);
duke@435 3386 }
duke@435 3387 }
duke@435 3388
duke@435 3389 case OopPtr: { // Meeting to OopPtrs
duke@435 3390 // Found a OopPtr type vs self-InstPtr type
kvn@1393 3391 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3392 int offset = meet_offset(tp->offset());
duke@435 3393 PTR ptr = meet_ptr(tp->ptr());
duke@435 3394 switch (tp->ptr()) {
duke@435 3395 case TopPTR:
kvn@658 3396 case AnyNull: {
kvn@658 3397 int instance_id = meet_instance_id(InstanceTop);
roland@6313 3398 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 3399 int depth = meet_inline_depth(tp->inline_depth());
duke@435 3400 return make(ptr, klass(), klass_is_exact(),
roland@6380 3401 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
kvn@658 3402 }
duke@435 3403 case NotNull:
kvn@1393 3404 case BotPTR: {
kvn@1393 3405 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3406 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 3407 int depth = meet_inline_depth(tp->inline_depth());
roland@6380 3408 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
kvn@1393 3409 }
duke@435 3410 default: typerr(t);
duke@435 3411 }
duke@435 3412 }
duke@435 3413
duke@435 3414 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3415 // Found an AnyPtr type vs self-InstPtr type
duke@435 3416 const TypePtr *tp = t->is_ptr();
duke@435 3417 int offset = meet_offset(tp->offset());
duke@435 3418 PTR ptr = meet_ptr(tp->ptr());
duke@435 3419 switch (tp->ptr()) {
duke@435 3420 case Null:
roland@5991 3421 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3422 // else fall through to AnyNull
duke@435 3423 case TopPTR:
kvn@658 3424 case AnyNull: {
kvn@658 3425 int instance_id = meet_instance_id(InstanceTop);
roland@5991 3426 const TypeOopPtr* speculative = _speculative;
roland@5991 3427 return make(ptr, klass(), klass_is_exact(),
roland@6380 3428 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, _inline_depth);
kvn@658 3429 }
duke@435 3430 case NotNull:
duke@435 3431 case BotPTR:
roland@5991 3432 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3433 default: typerr(t);
duke@435 3434 }
duke@435 3435 }
duke@435 3436
duke@435 3437 /*
duke@435 3438 A-top }
duke@435 3439 / | \ } Tops
duke@435 3440 B-top A-any C-top }
duke@435 3441 | / | \ | } Any-nulls
duke@435 3442 B-any | C-any }
duke@435 3443 | | |
duke@435 3444 B-con A-con C-con } constants; not comparable across classes
duke@435 3445 | | |
duke@435 3446 B-not | C-not }
duke@435 3447 | \ | / | } not-nulls
duke@435 3448 B-bot A-not C-bot }
duke@435 3449 \ | / } Bottoms
duke@435 3450 A-bot }
duke@435 3451 */
duke@435 3452
duke@435 3453 case InstPtr: { // Meeting 2 Oops?
duke@435 3454 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 3455 const TypeInstPtr *tinst = t->is_instptr();
duke@435 3456 int off = meet_offset( tinst->offset() );
duke@435 3457 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 3458 int instance_id = meet_instance_id(tinst->instance_id());
roland@6313 3459 const TypeOopPtr* speculative = xmeet_speculative(tinst);
roland@6380 3460 int depth = meet_inline_depth(tinst->inline_depth());
duke@435 3461
duke@435 3462 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3463 // If we have constants, then we created oops so classes are loaded
duke@435 3464 // and we can handle the constants further down. This case handles
duke@435 3465 // both-not-loaded or both-loaded classes
duke@435 3466 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
roland@6380 3467 return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
duke@435 3468 }
duke@435 3469
duke@435 3470 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3471 ciKlass* tinst_klass = tinst->klass();
duke@435 3472 ciKlass* this_klass = this->klass();
duke@435 3473 bool tinst_xk = tinst->klass_is_exact();
duke@435 3474 bool this_xk = this->klass_is_exact();
duke@435 3475 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 3476 // One of these classes has not been loaded
duke@435 3477 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 3478 #ifndef PRODUCT
duke@435 3479 if( PrintOpto && Verbose ) {
duke@435 3480 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 3481 tty->print(" this == "); this->dump(); tty->cr();
duke@435 3482 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 3483 }
duke@435 3484 #endif
duke@435 3485 return unloaded_meet;
duke@435 3486 }
duke@435 3487
duke@435 3488 // Handle mixing oops and interfaces first.
roland@5991 3489 if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
roland@5991 3490 tinst_klass == ciEnv::current()->Object_klass())) {
duke@435 3491 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 3492 tinst_klass = this_klass;
duke@435 3493 this_klass = tmp;
duke@435 3494 bool tmp2 = tinst_xk;
duke@435 3495 tinst_xk = this_xk;
duke@435 3496 this_xk = tmp2;
duke@435 3497 }
duke@435 3498 if (tinst_klass->is_interface() &&
duke@435 3499 !(this_klass->is_interface() ||
duke@435 3500 // Treat java/lang/Object as an honorary interface,
duke@435 3501 // because we need a bottom for the interface hierarchy.
duke@435 3502 this_klass == ciEnv::current()->Object_klass())) {
duke@435 3503 // Oop meets interface!
duke@435 3504
duke@435 3505 // See if the oop subtypes (implements) interface.
duke@435 3506 ciKlass *k;
duke@435 3507 bool xk;
duke@435 3508 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3509 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 3510 // on whether we are both above the centerline or either is
duke@435 3511 // below the centerline. If we are on the centerline
duke@435 3512 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 3513 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 3514 // If we are keeping this_klass, keep its exactness too.
duke@435 3515 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 3516 } else { // Does not implement, fall to Object
duke@435 3517 // Oop does not implement interface, so mixing falls to Object
duke@435 3518 // just like the verifier does (if both are above the
duke@435 3519 // centerline fall to interface)
duke@435 3520 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 3521 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 3522 // Watch out for Constant vs. AnyNull interface.
duke@435 3523 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 3524 instance_id = InstanceBot;
duke@435 3525 }
duke@435 3526 ciObject* o = NULL; // the Constant value, if any
duke@435 3527 if (ptr == Constant) {
duke@435 3528 // Find out which constant.
duke@435 3529 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 3530 }
roland@6380 3531 return make(ptr, k, xk, o, off, instance_id, speculative, depth);
duke@435 3532 }
duke@435 3533
duke@435 3534 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 3535
duke@435 3536 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 3537 // If we split one up & one down AND they subtype, take the down man.
duke@435 3538 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3539 // If both are up and they subtype, take the subtype class.
duke@435 3540 // If both are up and they do NOT subtype, "fall hard".
duke@435 3541 // If both are down and they subtype, take the supertype class.
duke@435 3542 // If both are down and they do NOT subtype, "fall hard".
duke@435 3543 // Constants treated as down.
duke@435 3544
duke@435 3545 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 3546 // "fall hard"; "fall hard" becomes the default case:
duke@435 3547 // If we split one up & one down AND they subtype, take the down man.
duke@435 3548 // If both are up and they subtype, take the subtype class.
duke@435 3549
duke@435 3550 // If both are down and they subtype, "fall hard".
duke@435 3551 // If both are down and they do NOT subtype, "fall hard".
duke@435 3552 // If both are up and they do NOT subtype, "fall hard".
duke@435 3553 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3554
duke@435 3555 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 3556 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 3557 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 3558 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 3559
duke@435 3560 // Check for subtyping:
duke@435 3561 ciKlass *subtype = NULL;
duke@435 3562 bool subtype_exact = false;
duke@435 3563 if( tinst_klass->equals(this_klass) ) {
duke@435 3564 subtype = this_klass;
duke@435 3565 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 3566 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3567 subtype = this_klass; // Pick subtyping class
duke@435 3568 subtype_exact = this_xk;
duke@435 3569 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 3570 subtype = tinst_klass; // Pick subtyping class
duke@435 3571 subtype_exact = tinst_xk;
duke@435 3572 }
duke@435 3573
duke@435 3574 if( subtype ) {
duke@435 3575 if( above_centerline(ptr) ) { // both are up?
duke@435 3576 this_klass = tinst_klass = subtype;
duke@435 3577 this_xk = tinst_xk = subtype_exact;
duke@435 3578 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 3579 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 3580 this_xk = tinst_xk;
duke@435 3581 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 3582 tinst_klass = this_klass; // this is down; keep down man
duke@435 3583 tinst_xk = this_xk;
duke@435 3584 } else {
duke@435 3585 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 3586 }
duke@435 3587 }
duke@435 3588
duke@435 3589 // Check for classes now being equal
duke@435 3590 if (tinst_klass->equals(this_klass)) {
duke@435 3591 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3592 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3593 // handled elsewhere).
duke@435 3594 ciObject* o = NULL; // Assume not constant when done
duke@435 3595 ciObject* this_oop = const_oop();
duke@435 3596 ciObject* tinst_oop = tinst->const_oop();
duke@435 3597 if( ptr == Constant ) {
duke@435 3598 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 3599 this_oop->equals(tinst_oop) )
duke@435 3600 o = this_oop;
duke@435 3601 else if (above_centerline(this ->_ptr))
duke@435 3602 o = tinst_oop;
duke@435 3603 else if (above_centerline(tinst ->_ptr))
duke@435 3604 o = this_oop;
duke@435 3605 else
duke@435 3606 ptr = NotNull;
duke@435 3607 }
roland@6380 3608 return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
duke@435 3609 } // Else classes are not equal
duke@435 3610
duke@435 3611 // Since klasses are different, we require a LCA in the Java
duke@435 3612 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3613 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3614 ptr = NotNull;
kvn@682 3615 instance_id = InstanceBot;
duke@435 3616
duke@435 3617 // Now we find the LCA of Java classes
duke@435 3618 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
roland@6380 3619 return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
duke@435 3620 } // End of case InstPtr
duke@435 3621
duke@435 3622 } // End of switch
duke@435 3623 return this; // Return the double constant
duke@435 3624 }
duke@435 3625
duke@435 3626
duke@435 3627 //------------------------java_mirror_type--------------------------------------
duke@435 3628 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3629 // must be a singleton type
duke@435 3630 if( const_oop() == NULL ) return NULL;
duke@435 3631
duke@435 3632 // must be of type java.lang.Class
duke@435 3633 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3634
duke@435 3635 return const_oop()->as_instance()->java_mirror_type();
duke@435 3636 }
duke@435 3637
duke@435 3638
duke@435 3639 //------------------------------xdual------------------------------------------
duke@435 3640 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
twisti@1040 3641 // inheritance mechanism.
duke@435 3642 const Type *TypeInstPtr::xdual() const {
roland@6380 3643 return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
duke@435 3644 }
duke@435 3645
duke@435 3646 //------------------------------eq---------------------------------------------
duke@435 3647 // Structural equality check for Type representations
duke@435 3648 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3649 const TypeInstPtr *p = t->is_instptr();
duke@435 3650 return
duke@435 3651 klass()->equals(p->klass()) &&
duke@435 3652 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3653 }
duke@435 3654
duke@435 3655 //------------------------------hash-------------------------------------------
duke@435 3656 // Type-specific hashing function.
duke@435 3657 int TypeInstPtr::hash(void) const {
aph@9610 3658 int hash = java_add(klass()->hash(), TypeOopPtr::hash());
duke@435 3659 return hash;
duke@435 3660 }
duke@435 3661
duke@435 3662 //------------------------------dump2------------------------------------------
duke@435 3663 // Dump oop Type
duke@435 3664 #ifndef PRODUCT
duke@435 3665 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3666 // Print the name of the klass.
duke@435 3667 klass()->print_name_on(st);
duke@435 3668
duke@435 3669 switch( _ptr ) {
duke@435 3670 case Constant:
duke@435 3671 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3672 if (WizardMode || Verbose) {
duke@435 3673 const_oop()->print_oop(st);
duke@435 3674 }
duke@435 3675 case BotPTR:
duke@435 3676 if (!WizardMode && !Verbose) {
duke@435 3677 if( _klass_is_exact ) st->print(":exact");
duke@435 3678 break;
duke@435 3679 }
duke@435 3680 case TopPTR:
duke@435 3681 case AnyNull:
duke@435 3682 case NotNull:
duke@435 3683 st->print(":%s", ptr_msg[_ptr]);
duke@435 3684 if( _klass_is_exact ) st->print(":exact");
duke@435 3685 break;
duke@435 3686 }
duke@435 3687
duke@435 3688 if( _offset ) { // Dump offset, if any
duke@435 3689 if( _offset == OffsetBot ) st->print("+any");
duke@435 3690 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3691 else st->print("+%d", _offset);
duke@435 3692 }
duke@435 3693
duke@435 3694 st->print(" *");
kvn@658 3695 if (_instance_id == InstanceTop)
kvn@658 3696 st->print(",iid=top");
kvn@658 3697 else if (_instance_id != InstanceBot)
duke@435 3698 st->print(",iid=%d",_instance_id);
roland@5991 3699
roland@6380 3700 dump_inline_depth(st);
roland@5991 3701 dump_speculative(st);
duke@435 3702 }
duke@435 3703 #endif
duke@435 3704
duke@435 3705 //------------------------------add_offset-------------------------------------
roland@5991 3706 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
roland@5991 3707 return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
roland@5991 3708 }
roland@5991 3709
roland@6313 3710 const Type *TypeInstPtr::remove_speculative() const {
roland@6313 3711 if (_speculative == NULL) {
roland@6313 3712 return this;
roland@6313 3713 }
roland@6380 3714 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
roland@6380 3715 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL, _inline_depth);
roland@6380 3716 }
roland@6380 3717
roland@6380 3718 const TypeOopPtr *TypeInstPtr::with_inline_depth(int depth) const {
roland@6380 3719 if (!UseInlineDepthForSpeculativeTypes) {
roland@6380 3720 return this;
roland@6380 3721 }
roland@6380 3722 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
duke@435 3723 }
duke@435 3724
duke@435 3725 //=============================================================================
duke@435 3726 // Convenience common pre-built types.
duke@435 3727 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3728 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3729 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3730 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3731 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3732 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3733 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3734 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3735 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3736 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3737
duke@435 3738 //------------------------------make-------------------------------------------
roland@6380 3739 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
duke@435 3740 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3741 "integral arrays must be pre-equipped with a class");
duke@435 3742 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3743 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3744 if (!UseExactTypes) xk = (ptr == Constant);
roland@6380 3745 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
duke@435 3746 }
duke@435 3747
duke@435 3748 //------------------------------make-------------------------------------------
roland@6380 3749 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth, bool is_autobox_cache) {
duke@435 3750 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3751 "integral arrays must be pre-equipped with a class");
duke@435 3752 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3753 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3754 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3755 if (!UseExactTypes) xk = (ptr == Constant);
roland@6380 3756 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
duke@435 3757 }
duke@435 3758
duke@435 3759 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3760 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3761 if( ptr == _ptr ) return this;
roland@6380 3762 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
duke@435 3763 }
duke@435 3764
duke@435 3765
duke@435 3766 //-----------------------------cast_to_exactness-------------------------------
duke@435 3767 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3768 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3769 if (!UseExactTypes) return this;
duke@435 3770 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
roland@6380 3771 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
duke@435 3772 }
duke@435 3773
kvn@682 3774 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3775 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3776 if( instance_id == _instance_id ) return this;
roland@6380 3777 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
duke@435 3778 }
duke@435 3779
vlivanov@9840 3780 //-----------------------------max_array_length-------------------------------
vlivanov@9840 3781 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
vlivanov@9840 3782 jint TypeAryPtr::max_array_length(BasicType etype) {
vlivanov@9840 3783 if (!is_java_primitive(etype) && !is_reference_type(etype)) {
vlivanov@9840 3784 if (etype == T_NARROWOOP) {
vlivanov@9840 3785 etype = T_OBJECT;
vlivanov@9840 3786 } else if (etype == T_ILLEGAL) { // bottom[]
vlivanov@9840 3787 etype = T_BYTE; // will produce conservatively high value
vlivanov@9840 3788 } else {
vlivanov@9840 3789 fatal(err_msg("not an element type: %s", type2name(etype)));
vlivanov@9840 3790 }
vlivanov@9840 3791 }
vlivanov@9840 3792 return arrayOopDesc::max_array_length(etype);
vlivanov@9840 3793 }
vlivanov@9840 3794
duke@435 3795 //-----------------------------narrow_size_type-------------------------------
duke@435 3796 // Narrow the given size type to the index range for the given array base type.
duke@435 3797 // Return NULL if the resulting int type becomes empty.
rasbold@801 3798 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
duke@435 3799 jint hi = size->_hi;
duke@435 3800 jint lo = size->_lo;
duke@435 3801 jint min_lo = 0;
rasbold@801 3802 jint max_hi = max_array_length(elem()->basic_type());
duke@435 3803 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3804 bool chg = false;
kvn@5110 3805 if (lo < min_lo) {
kvn@5110 3806 lo = min_lo;
kvn@5110 3807 if (size->is_con()) {
kvn@5110 3808 hi = lo;
kvn@5110 3809 }
kvn@5110 3810 chg = true;
kvn@5110 3811 }
kvn@5110 3812 if (hi > max_hi) {
kvn@5110 3813 hi = max_hi;
kvn@5110 3814 if (size->is_con()) {
kvn@5110 3815 lo = hi;
kvn@5110 3816 }
kvn@5110 3817 chg = true;
kvn@5110 3818 }
twisti@1040 3819 // Negative length arrays will produce weird intermediate dead fast-path code
duke@435 3820 if (lo > hi)
rasbold@801 3821 return TypeInt::ZERO;
duke@435 3822 if (!chg)
duke@435 3823 return size;
duke@435 3824 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3825 }
duke@435 3826
duke@435 3827 //-------------------------------cast_to_size----------------------------------
duke@435 3828 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3829 assert(new_size != NULL, "");
rasbold@801 3830 new_size = narrow_size_type(new_size);
duke@435 3831 if (new_size == size()) return this;
vlivanov@5658 3832 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
roland@6380 3833 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
duke@435 3834 }
duke@435 3835
duke@435 3836
vlivanov@5658 3837 //------------------------------cast_to_stable---------------------------------
vlivanov@5658 3838 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
vlivanov@5658 3839 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
vlivanov@5658 3840 return this;
vlivanov@5658 3841
vlivanov@5658 3842 const Type* elem = this->elem();
vlivanov@5658 3843 const TypePtr* elem_ptr = elem->make_ptr();
vlivanov@5658 3844
vlivanov@5658 3845 if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
vlivanov@5658 3846 // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
vlivanov@5658 3847 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
vlivanov@5658 3848 }
vlivanov@5658 3849
vlivanov@5658 3850 const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
vlivanov@5658 3851
vlivanov@5658 3852 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
vlivanov@5658 3853 }
vlivanov@5658 3854
vlivanov@5658 3855 //-----------------------------stable_dimension--------------------------------
vlivanov@5658 3856 int TypeAryPtr::stable_dimension() const {
vlivanov@5658 3857 if (!is_stable()) return 0;
vlivanov@5658 3858 int dim = 1;
vlivanov@5658 3859 const TypePtr* elem_ptr = elem()->make_ptr();
vlivanov@5658 3860 if (elem_ptr != NULL && elem_ptr->isa_aryptr())
vlivanov@5658 3861 dim += elem_ptr->is_aryptr()->stable_dimension();
vlivanov@5658 3862 return dim;
vlivanov@5658 3863 }
vlivanov@5658 3864
duke@435 3865 //------------------------------eq---------------------------------------------
duke@435 3866 // Structural equality check for Type representations
duke@435 3867 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3868 const TypeAryPtr *p = t->is_aryptr();
duke@435 3869 return
duke@435 3870 _ary == p->_ary && // Check array
duke@435 3871 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3872 }
duke@435 3873
duke@435 3874 //------------------------------hash-------------------------------------------
duke@435 3875 // Type-specific hashing function.
duke@435 3876 int TypeAryPtr::hash(void) const {
duke@435 3877 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3878 }
duke@435 3879
duke@435 3880 //------------------------------meet-------------------------------------------
duke@435 3881 // Compute the MEET of two types. It returns a new Type object.
roland@5991 3882 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
duke@435 3883 // Perform a fast test for common case; meeting the same types together.
duke@435 3884 if( this == t ) return this; // Meeting same type-rep?
duke@435 3885 // Current "this->_base" is Pointer
duke@435 3886 switch (t->base()) { // switch on original type
duke@435 3887
duke@435 3888 // Mixing ints & oops happens when javac reuses local variables
duke@435 3889 case Int:
duke@435 3890 case Long:
duke@435 3891 case FloatTop:
duke@435 3892 case FloatCon:
duke@435 3893 case FloatBot:
duke@435 3894 case DoubleTop:
duke@435 3895 case DoubleCon:
duke@435 3896 case DoubleBot:
coleenp@548 3897 case NarrowOop:
roland@4159 3898 case NarrowKlass:
duke@435 3899 case Bottom: // Ye Olde Default
duke@435 3900 return Type::BOTTOM;
duke@435 3901 case Top:
duke@435 3902 return this;
duke@435 3903
duke@435 3904 default: // All else is a mistake
duke@435 3905 typerr(t);
duke@435 3906
duke@435 3907 case OopPtr: { // Meeting to OopPtrs
duke@435 3908 // Found a OopPtr type vs self-AryPtr type
kvn@1393 3909 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3910 int offset = meet_offset(tp->offset());
duke@435 3911 PTR ptr = meet_ptr(tp->ptr());
roland@6380 3912 int depth = meet_inline_depth(tp->inline_depth());
duke@435 3913 switch (tp->ptr()) {
duke@435 3914 case TopPTR:
kvn@658 3915 case AnyNull: {
kvn@658 3916 int instance_id = meet_instance_id(InstanceTop);
roland@6313 3917 const TypeOopPtr* speculative = xmeet_speculative(tp);
kvn@658 3918 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@6380 3919 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
kvn@658 3920 }
duke@435 3921 case BotPTR:
kvn@1393 3922 case NotNull: {
kvn@1393 3923 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3924 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 3925 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
kvn@1393 3926 }
duke@435 3927 default: ShouldNotReachHere();
duke@435 3928 }
duke@435 3929 }
duke@435 3930
duke@435 3931 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3932 // Found an AnyPtr type vs self-AryPtr type
duke@435 3933 const TypePtr *tp = t->is_ptr();
duke@435 3934 int offset = meet_offset(tp->offset());
duke@435 3935 PTR ptr = meet_ptr(tp->ptr());
duke@435 3936 switch (tp->ptr()) {
duke@435 3937 case TopPTR:
duke@435 3938 return this;
duke@435 3939 case BotPTR:
duke@435 3940 case NotNull:
duke@435 3941 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3942 case Null:
duke@435 3943 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3944 // else fall through to AnyNull
kvn@658 3945 case AnyNull: {
kvn@658 3946 int instance_id = meet_instance_id(InstanceTop);
roland@5991 3947 const TypeOopPtr* speculative = _speculative;
roland@5991 3948 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@6380 3949 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, _inline_depth);
kvn@658 3950 }
duke@435 3951 default: ShouldNotReachHere();
duke@435 3952 }
duke@435 3953 }
duke@435 3954
coleenp@4037 3955 case MetadataPtr:
coleenp@4037 3956 case KlassPtr:
duke@435 3957 case RawPtr: return TypePtr::BOTTOM;
duke@435 3958
duke@435 3959 case AryPtr: { // Meeting 2 references?
duke@435 3960 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3961 int off = meet_offset(tap->offset());
roland@6313 3962 const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
duke@435 3963 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3964 int instance_id = meet_instance_id(tap->instance_id());
roland@6313 3965 const TypeOopPtr* speculative = xmeet_speculative(tap);
roland@6380 3966 int depth = meet_inline_depth(tap->inline_depth());
duke@435 3967 ciKlass* lazy_klass = NULL;
duke@435 3968 if (tary->_elem->isa_int()) {
duke@435 3969 // Integral array element types have irrelevant lattice relations.
duke@435 3970 // It is the klass that determines array layout, not the element type.
duke@435 3971 if (_klass == NULL)
duke@435 3972 lazy_klass = tap->_klass;
duke@435 3973 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3974 lazy_klass = _klass;
duke@435 3975 } else {
duke@435 3976 // Something like byte[int+] meets char[int+].
duke@435 3977 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3978 instance_id = InstanceBot;
vlivanov@5658 3979 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
duke@435 3980 }
kvn@2633 3981 } else // Non integral arrays.
roland@6214 3982 // Must fall to bottom if exact klasses in upper lattice
roland@6214 3983 // are not equal or super klass is exact.
roland@6214 3984 if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
roland@6214 3985 // meet with top[] and bottom[] are processed further down:
roland@6214 3986 tap->_klass != NULL && this->_klass != NULL &&
roland@6214 3987 // both are exact and not equal:
roland@6214 3988 ((tap->_klass_is_exact && this->_klass_is_exact) ||
roland@6214 3989 // 'tap' is exact and super or unrelated:
roland@6214 3990 (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
roland@6214 3991 // 'this' is exact and super or unrelated:
roland@6214 3992 (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
roland@9985 3993 if (above_centerline(ptr) || (tary->_elem->make_ptr() && above_centerline(tary->_elem->make_ptr()->_ptr))) {
roland@7693 3994 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
roland@7693 3995 }
roland@9985 3996 return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
duke@435 3997 }
kvn@2633 3998
kvn@2120 3999 bool xk = false;
duke@435 4000 switch (tap->ptr()) {
duke@435 4001 case AnyNull:
duke@435 4002 case TopPTR:
duke@435 4003 // Compute new klass on demand, do not use tap->_klass
roland@5991 4004 if (below_centerline(this->_ptr)) {
roland@5991 4005 xk = this->_klass_is_exact;
roland@5991 4006 } else {
roland@5991 4007 xk = (tap->_klass_is_exact | this->_klass_is_exact);
roland@5991 4008 }
roland@6380 4009 return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
duke@435 4010 case Constant: {
duke@435 4011 ciObject* o = const_oop();
duke@435 4012 if( _ptr == Constant ) {
duke@435 4013 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
jrose@1424 4014 xk = (klass() == tap->klass());
duke@435 4015 ptr = NotNull;
duke@435 4016 o = NULL;
kvn@682 4017 instance_id = InstanceBot;
jrose@1424 4018 } else {
jrose@1424 4019 xk = true;
duke@435 4020 }
roland@5991 4021 } else if(above_centerline(_ptr)) {
duke@435 4022 o = tap->const_oop();
jrose@1424 4023 xk = true;
jrose@1424 4024 } else {
kvn@2120 4025 // Only precise for identical arrays
kvn@2120 4026 xk = this->_klass_is_exact && (klass() == tap->klass());
duke@435 4027 }
roland@6380 4028 return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
duke@435 4029 }
duke@435 4030 case NotNull:
duke@435 4031 case BotPTR:
duke@435 4032 // Compute new klass on demand, do not use tap->_klass
duke@435 4033 if (above_centerline(this->_ptr))
duke@435 4034 xk = tap->_klass_is_exact;
duke@435 4035 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 4036 (klass() == tap->klass()); // Only precise for identical arrays
roland@6380 4037 return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
duke@435 4038 default: ShouldNotReachHere();
duke@435 4039 }
duke@435 4040 }
duke@435 4041
duke@435 4042 // All arrays inherit from Object class
duke@435 4043 case InstPtr: {
duke@435 4044 const TypeInstPtr *tp = t->is_instptr();
duke@435 4045 int offset = meet_offset(tp->offset());
duke@435 4046 PTR ptr = meet_ptr(tp->ptr());
kvn@658 4047 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 4048 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@6380 4049 int depth = meet_inline_depth(tp->inline_depth());
duke@435 4050 switch (ptr) {
duke@435 4051 case TopPTR:
duke@435 4052 case AnyNull: // Fall 'down' to dual of object klass
roland@5991 4053 // For instances when a subclass meets a superclass we fall
roland@5991 4054 // below the centerline when the superclass is exact. We need to
roland@5991 4055 // do the same here.
roland@5991 4056 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
roland@6380 4057 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
duke@435 4058 } else {
duke@435 4059 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 4060 ptr = NotNull;
kvn@658 4061 instance_id = InstanceBot;
roland@6380 4062 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
duke@435 4063 }
duke@435 4064 case Constant:
duke@435 4065 case NotNull:
duke@435 4066 case BotPTR: // Fall down to object klass
duke@435 4067 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 4068 if (above_centerline(tp->ptr())) {
duke@435 4069 // If 'tp' is above the centerline and it is Object class
twisti@1040 4070 // then we can subclass in the Java class hierarchy.
roland@5991 4071 // For instances when a subclass meets a superclass we fall
roland@5991 4072 // below the centerline when the superclass is exact. We need
roland@5991 4073 // to do the same here.
roland@5991 4074 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
duke@435 4075 // that is, my array type is a subtype of 'tp' klass
roland@5991 4076 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@6380 4077 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
duke@435 4078 }
duke@435 4079 }
duke@435 4080 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 4081 // The meet falls down to Object class below centerline.
duke@435 4082 if( ptr == Constant )
duke@435 4083 ptr = NotNull;
kvn@658 4084 instance_id = InstanceBot;
roland@6380 4085 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
duke@435 4086 default: typerr(t);
duke@435 4087 }
duke@435 4088 }
duke@435 4089 }
duke@435 4090 return this; // Lint noise
duke@435 4091 }
duke@435 4092
duke@435 4093 //------------------------------xdual------------------------------------------
duke@435 4094 // Dual: compute field-by-field dual
duke@435 4095 const Type *TypeAryPtr::xdual() const {
roland@6380 4096 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
duke@435 4097 }
duke@435 4098
kvn@1255 4099 //----------------------interface_vs_oop---------------------------------------
kvn@1255 4100 #ifdef ASSERT
kvn@1255 4101 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
kvn@1255 4102 const TypeAryPtr* t_aryptr = t->isa_aryptr();
kvn@1255 4103 if (t_aryptr) {
kvn@1255 4104 return _ary->interface_vs_oop(t_aryptr->_ary);
kvn@1255 4105 }
kvn@1255 4106 return false;
kvn@1255 4107 }
kvn@1255 4108 #endif
kvn@1255 4109
duke@435 4110 //------------------------------dump2------------------------------------------
duke@435 4111 #ifndef PRODUCT
duke@435 4112 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4113 _ary->dump2(d,depth,st);
duke@435 4114 switch( _ptr ) {
duke@435 4115 case Constant:
duke@435 4116 const_oop()->print(st);
duke@435 4117 break;
duke@435 4118 case BotPTR:
duke@435 4119 if (!WizardMode && !Verbose) {
duke@435 4120 if( _klass_is_exact ) st->print(":exact");
duke@435 4121 break;
duke@435 4122 }
duke@435 4123 case TopPTR:
duke@435 4124 case AnyNull:
duke@435 4125 case NotNull:
duke@435 4126 st->print(":%s", ptr_msg[_ptr]);
duke@435 4127 if( _klass_is_exact ) st->print(":exact");
duke@435 4128 break;
duke@435 4129 }
duke@435 4130
kvn@499 4131 if( _offset != 0 ) {
kvn@499 4132 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 4133 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 4134 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 4135 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 4136 else {
kvn@499 4137 BasicType basic_elem_type = elem()->basic_type();
kvn@499 4138 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 4139 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 4140 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 4141 }
kvn@499 4142 }
kvn@499 4143 st->print(" *");
kvn@658 4144 if (_instance_id == InstanceTop)
kvn@658 4145 st->print(",iid=top");
kvn@658 4146 else if (_instance_id != InstanceBot)
duke@435 4147 st->print(",iid=%d",_instance_id);
roland@5991 4148
roland@6380 4149 dump_inline_depth(st);
roland@5991 4150 dump_speculative(st);
duke@435 4151 }
duke@435 4152 #endif
duke@435 4153
duke@435 4154 bool TypeAryPtr::empty(void) const {
duke@435 4155 if (_ary->empty()) return true;
duke@435 4156 return TypeOopPtr::empty();
duke@435 4157 }
duke@435 4158
duke@435 4159 //------------------------------add_offset-------------------------------------
roland@5991 4160 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
roland@6380 4161 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
roland@5991 4162 }
roland@5991 4163
roland@6313 4164 const Type *TypeAryPtr::remove_speculative() const {
roland@6380 4165 if (_speculative == NULL) {
roland@6380 4166 return this;
roland@6380 4167 }
roland@6380 4168 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
roland@6380 4169 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
roland@6380 4170 }
roland@6380 4171
roland@6380 4172 const TypeOopPtr *TypeAryPtr::with_inline_depth(int depth) const {
roland@6380 4173 if (!UseInlineDepthForSpeculativeTypes) {
roland@6380 4174 return this;
roland@6380 4175 }
roland@6380 4176 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
roland@5991 4177 }
duke@435 4178
duke@435 4179 //=============================================================================
coleenp@548 4180
coleenp@548 4181 //------------------------------hash-------------------------------------------
coleenp@548 4182 // Type-specific hashing function.
roland@4159 4183 int TypeNarrowPtr::hash(void) const {
never@1262 4184 return _ptrtype->hash() + 7;
coleenp@548 4185 }
coleenp@548 4186
roland@4159 4187 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton
roland@4159 4188 return _ptrtype->singleton();
roland@4159 4189 }
roland@4159 4190
roland@4159 4191 bool TypeNarrowPtr::empty(void) const {
roland@4159 4192 return _ptrtype->empty();
roland@4159 4193 }
roland@4159 4194
roland@4159 4195 intptr_t TypeNarrowPtr::get_con() const {
roland@4159 4196 return _ptrtype->get_con();
roland@4159 4197 }
roland@4159 4198
roland@4159 4199 bool TypeNarrowPtr::eq( const Type *t ) const {
roland@4159 4200 const TypeNarrowPtr* tc = isa_same_narrowptr(t);
coleenp@548 4201 if (tc != NULL) {
never@1262 4202 if (_ptrtype->base() != tc->_ptrtype->base()) {
coleenp@548 4203 return false;
coleenp@548 4204 }
never@1262 4205 return tc->_ptrtype->eq(_ptrtype);
coleenp@548 4206 }
coleenp@548 4207 return false;
coleenp@548 4208 }
coleenp@548 4209
roland@4159 4210 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now.
roland@4159 4211 const TypePtr* odual = _ptrtype->dual()->is_ptr();
roland@4159 4212 return make_same_narrowptr(odual);
roland@4159 4213 }
roland@4159 4214
roland@4159 4215
roland@6313 4216 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@4159 4217 if (isa_same_narrowptr(kills)) {
roland@6313 4218 const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
roland@4159 4219 if (ft->empty())
roland@4159 4220 return Type::TOP; // Canonical empty value
roland@4159 4221 if (ft->isa_ptr()) {
roland@4159 4222 return make_hash_same_narrowptr(ft->isa_ptr());
roland@4159 4223 }
roland@4159 4224 return ft;
roland@4159 4225 } else if (kills->isa_ptr()) {
roland@6313 4226 const Type* ft = _ptrtype->join_helper(kills, include_speculative);
roland@4159 4227 if (ft->empty())
roland@4159 4228 return Type::TOP; // Canonical empty value
roland@4159 4229 return ft;
roland@4159 4230 } else {
roland@4159 4231 return Type::TOP;
roland@4159 4232 }
coleenp@548 4233 }
coleenp@548 4234
kvn@728 4235 //------------------------------xmeet------------------------------------------
coleenp@548 4236 // Compute the MEET of two types. It returns a new Type object.
roland@4159 4237 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
coleenp@548 4238 // Perform a fast test for common case; meeting the same types together.
coleenp@548 4239 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 4240
roland@4159 4241 if (t->base() == base()) {
roland@4159 4242 const Type* result = _ptrtype->xmeet(t->make_ptr());
roland@4159 4243 if (result->isa_ptr()) {
roland@4159 4244 return make_hash_same_narrowptr(result->is_ptr());
roland@4159 4245 }
roland@4159 4246 return result;
roland@4159 4247 }
roland@4159 4248
roland@4159 4249 // Current "this->_base" is NarrowKlass or NarrowOop
coleenp@548 4250 switch (t->base()) { // switch on original type
coleenp@548 4251
coleenp@548 4252 case Int: // Mixing ints & oops happens when javac
coleenp@548 4253 case Long: // reuses local variables
coleenp@548 4254 case FloatTop:
coleenp@548 4255 case FloatCon:
coleenp@548 4256 case FloatBot:
coleenp@548 4257 case DoubleTop:
coleenp@548 4258 case DoubleCon:
coleenp@548 4259 case DoubleBot:
kvn@728 4260 case AnyPtr:
kvn@728 4261 case RawPtr:
kvn@728 4262 case OopPtr:
kvn@728 4263 case InstPtr:
coleenp@4037 4264 case AryPtr:
coleenp@4037 4265 case MetadataPtr:
kvn@728 4266 case KlassPtr:
roland@4159 4267 case NarrowOop:
roland@4159 4268 case NarrowKlass:
kvn@728 4269
coleenp@548 4270 case Bottom: // Ye Olde Default
coleenp@548 4271 return Type::BOTTOM;
coleenp@548 4272 case Top:
coleenp@548 4273 return this;
coleenp@548 4274
coleenp@548 4275 default: // All else is a mistake
coleenp@548 4276 typerr(t);
coleenp@548 4277
coleenp@548 4278 } // End of switch
kvn@728 4279
kvn@728 4280 return this;
coleenp@548 4281 }
coleenp@548 4282
roland@4159 4283 #ifndef PRODUCT
roland@4159 4284 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 4285 _ptrtype->dump2(d, depth, st);
roland@4159 4286 }
roland@4159 4287 #endif
roland@4159 4288
roland@4159 4289 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
roland@4159 4290 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
roland@4159 4291
roland@4159 4292
roland@4159 4293 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
roland@4159 4294 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
roland@4159 4295 }
roland@4159 4296
coleenp@548 4297
coleenp@548 4298 #ifndef PRODUCT
coleenp@548 4299 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
never@852 4300 st->print("narrowoop: ");
roland@4159 4301 TypeNarrowPtr::dump2(d, depth, st);
coleenp@548 4302 }
coleenp@548 4303 #endif
coleenp@548 4304
roland@4159 4305 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
roland@4159 4306
roland@4159 4307 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
roland@4159 4308 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
roland@4159 4309 }
roland@4159 4310
roland@4159 4311 #ifndef PRODUCT
roland@4159 4312 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 4313 st->print("narrowklass: ");
roland@4159 4314 TypeNarrowPtr::dump2(d, depth, st);
roland@4159 4315 }
roland@4159 4316 #endif
coleenp@548 4317
coleenp@4037 4318
coleenp@4037 4319 //------------------------------eq---------------------------------------------
coleenp@4037 4320 // Structural equality check for Type representations
coleenp@4037 4321 bool TypeMetadataPtr::eq( const Type *t ) const {
coleenp@4037 4322 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
coleenp@4037 4323 ciMetadata* one = metadata();
coleenp@4037 4324 ciMetadata* two = a->metadata();
coleenp@4037 4325 if (one == NULL || two == NULL) {
coleenp@4037 4326 return (one == two) && TypePtr::eq(t);
coleenp@4037 4327 } else {
coleenp@4037 4328 return one->equals(two) && TypePtr::eq(t);
coleenp@4037 4329 }
coleenp@4037 4330 }
coleenp@4037 4331
coleenp@4037 4332 //------------------------------hash-------------------------------------------
coleenp@4037 4333 // Type-specific hashing function.
coleenp@4037 4334 int TypeMetadataPtr::hash(void) const {
coleenp@4037 4335 return
coleenp@4037 4336 (metadata() ? metadata()->hash() : 0) +
coleenp@4037 4337 TypePtr::hash();
coleenp@4037 4338 }
coleenp@4037 4339
coleenp@4037 4340 //------------------------------singleton--------------------------------------
coleenp@4037 4341 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 4342 // constants
coleenp@4037 4343 bool TypeMetadataPtr::singleton(void) const {
coleenp@4037 4344 // detune optimizer to not generate constant metadta + constant offset as a constant!
coleenp@4037 4345 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 4346 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 4347 }
coleenp@4037 4348
coleenp@4037 4349 //------------------------------add_offset-------------------------------------
coleenp@4037 4350 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
coleenp@4037 4351 return make( _ptr, _metadata, xadd_offset(offset));
coleenp@4037 4352 }
coleenp@4037 4353
coleenp@4037 4354 //-----------------------------filter------------------------------------------
coleenp@4037 4355 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 4356 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 4357 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
coleenp@4037 4358 if (ft == NULL || ft->empty())
coleenp@4037 4359 return Type::TOP; // Canonical empty value
coleenp@4037 4360 return ft;
coleenp@4037 4361 }
coleenp@4037 4362
coleenp@4037 4363 //------------------------------get_con----------------------------------------
coleenp@4037 4364 intptr_t TypeMetadataPtr::get_con() const {
coleenp@4037 4365 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4366 assert( _offset >= 0, "" );
coleenp@4037 4367
coleenp@4037 4368 if (_offset != 0) {
coleenp@4037 4369 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4370 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4371 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4372 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4373 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4374 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4375 // but this assertion here is to help prevent its occurence.
coleenp@4037 4376 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4377 ShouldNotReachHere();
coleenp@4037 4378 }
coleenp@4037 4379
coleenp@4037 4380 return (intptr_t)metadata()->constant_encoding();
coleenp@4037 4381 }
coleenp@4037 4382
coleenp@4037 4383 //------------------------------cast_to_ptr_type-------------------------------
coleenp@4037 4384 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
coleenp@4037 4385 if( ptr == _ptr ) return this;
coleenp@4037 4386 return make(ptr, metadata(), _offset);
coleenp@4037 4387 }
coleenp@4037 4388
coleenp@4037 4389 //------------------------------meet-------------------------------------------
coleenp@4037 4390 // Compute the MEET of two types. It returns a new Type object.
coleenp@4037 4391 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
coleenp@4037 4392 // Perform a fast test for common case; meeting the same types together.
coleenp@4037 4393 if( this == t ) return this; // Meeting same type-rep?
coleenp@4037 4394
coleenp@4037 4395 // Current "this->_base" is OopPtr
coleenp@4037 4396 switch (t->base()) { // switch on original type
coleenp@4037 4397
coleenp@4037 4398 case Int: // Mixing ints & oops happens when javac
coleenp@4037 4399 case Long: // reuses local variables
coleenp@4037 4400 case FloatTop:
coleenp@4037 4401 case FloatCon:
coleenp@4037 4402 case FloatBot:
coleenp@4037 4403 case DoubleTop:
coleenp@4037 4404 case DoubleCon:
coleenp@4037 4405 case DoubleBot:
coleenp@4037 4406 case NarrowOop:
roland@4159 4407 case NarrowKlass:
coleenp@4037 4408 case Bottom: // Ye Olde Default
coleenp@4037 4409 return Type::BOTTOM;
coleenp@4037 4410 case Top:
coleenp@4037 4411 return this;
coleenp@4037 4412
coleenp@4037 4413 default: // All else is a mistake
coleenp@4037 4414 typerr(t);
coleenp@4037 4415
coleenp@4037 4416 case AnyPtr: {
coleenp@4037 4417 // Found an AnyPtr type vs self-OopPtr type
coleenp@4037 4418 const TypePtr *tp = t->is_ptr();
coleenp@4037 4419 int offset = meet_offset(tp->offset());
coleenp@4037 4420 PTR ptr = meet_ptr(tp->ptr());
coleenp@4037 4421 switch (tp->ptr()) {
coleenp@4037 4422 case Null:
coleenp@4037 4423 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 4424 // else fall through:
coleenp@4037 4425 case TopPTR:
coleenp@4037 4426 case AnyNull: {
kvn@6429 4427 return make(ptr, _metadata, offset);
coleenp@4037 4428 }
coleenp@4037 4429 case BotPTR:
coleenp@4037 4430 case NotNull:
coleenp@4037 4431 return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 4432 default: typerr(t);
coleenp@4037 4433 }
coleenp@4037 4434 }
coleenp@4037 4435
coleenp@4037 4436 case RawPtr:
coleenp@4037 4437 case KlassPtr:
coleenp@4037 4438 case OopPtr:
coleenp@4037 4439 case InstPtr:
coleenp@4037 4440 case AryPtr:
coleenp@4037 4441 return TypePtr::BOTTOM; // Oop meet raw is not well defined
coleenp@4037 4442
roland@4040 4443 case MetadataPtr: {
roland@4040 4444 const TypeMetadataPtr *tp = t->is_metadataptr();
roland@4040 4445 int offset = meet_offset(tp->offset());
roland@4040 4446 PTR tptr = tp->ptr();
roland@4040 4447 PTR ptr = meet_ptr(tptr);
roland@4040 4448 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
roland@4040 4449 if (tptr == TopPTR || _ptr == TopPTR ||
roland@4040 4450 metadata()->equals(tp->metadata())) {
roland@4040 4451 return make(ptr, md, offset);
roland@4040 4452 }
roland@4040 4453 // metadata is different
roland@4040 4454 if( ptr == Constant ) { // Cannot be equal constants, so...
roland@4040 4455 if( tptr == Constant && _ptr != Constant) return t;
roland@4040 4456 if( _ptr == Constant && tptr != Constant) return this;
roland@4040 4457 ptr = NotNull; // Fall down in lattice
roland@4040 4458 }
roland@4040 4459 return make(ptr, NULL, offset);
coleenp@4037 4460 break;
roland@4040 4461 }
coleenp@4037 4462 } // End of switch
coleenp@4037 4463 return this; // Return the double constant
coleenp@4037 4464 }
coleenp@4037 4465
coleenp@4037 4466
coleenp@4037 4467 //------------------------------xdual------------------------------------------
coleenp@4037 4468 // Dual of a pure metadata pointer.
coleenp@4037 4469 const Type *TypeMetadataPtr::xdual() const {
coleenp@4037 4470 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
coleenp@4037 4471 }
coleenp@4037 4472
coleenp@4037 4473 //------------------------------dump2------------------------------------------
coleenp@4037 4474 #ifndef PRODUCT
coleenp@4037 4475 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
coleenp@4037 4476 st->print("metadataptr:%s", ptr_msg[_ptr]);
coleenp@4037 4477 if( metadata() ) st->print(INTPTR_FORMAT, metadata());
coleenp@4037 4478 switch( _offset ) {
coleenp@4037 4479 case OffsetTop: st->print("+top"); break;
coleenp@4037 4480 case OffsetBot: st->print("+any"); break;
coleenp@4037 4481 case 0: break;
coleenp@4037 4482 default: st->print("+%d",_offset); break;
coleenp@4037 4483 }
coleenp@4037 4484 }
coleenp@4037 4485 #endif
coleenp@4037 4486
coleenp@4037 4487
coleenp@4037 4488 //=============================================================================
coleenp@4037 4489 // Convenience common pre-built type.
coleenp@4037 4490 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
coleenp@4037 4491
coleenp@4037 4492 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
coleenp@4037 4493 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
coleenp@4037 4494 }
coleenp@4037 4495
coleenp@4037 4496 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
coleenp@4037 4497 return make(Constant, m, 0);
coleenp@4037 4498 }
coleenp@4037 4499 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
coleenp@4037 4500 return make(Constant, m, 0);
coleenp@4037 4501 }
coleenp@4037 4502
coleenp@4037 4503 //------------------------------make-------------------------------------------
coleenp@4037 4504 // Create a meta data constant
coleenp@4037 4505 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
coleenp@4037 4506 assert(m == NULL || !m->is_klass(), "wrong type");
coleenp@4037 4507 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
coleenp@4037 4508 }
coleenp@4037 4509
coleenp@4037 4510
coleenp@548 4511 //=============================================================================
duke@435 4512 // Convenience common pre-built types.
duke@435 4513
duke@435 4514 // Not-null object klass or below
duke@435 4515 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 4516 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 4517
coleenp@4037 4518 //------------------------------TypeKlassPtr-----------------------------------
duke@435 4519 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
coleenp@4037 4520 : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
duke@435 4521 }
duke@435 4522
duke@435 4523 //------------------------------make-------------------------------------------
duke@435 4524 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 4525 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 4526 assert( k != NULL, "Expect a non-NULL klass");
coleenp@4037 4527 assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
duke@435 4528 TypeKlassPtr *r =
duke@435 4529 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 4530
duke@435 4531 return r;
duke@435 4532 }
duke@435 4533
duke@435 4534 //------------------------------eq---------------------------------------------
duke@435 4535 // Structural equality check for Type representations
duke@435 4536 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 4537 const TypeKlassPtr *p = t->is_klassptr();
duke@435 4538 return
duke@435 4539 klass()->equals(p->klass()) &&
coleenp@4037 4540 TypePtr::eq(p);
duke@435 4541 }
duke@435 4542
duke@435 4543 //------------------------------hash-------------------------------------------
duke@435 4544 // Type-specific hashing function.
duke@435 4545 int TypeKlassPtr::hash(void) const {
aph@9610 4546 return java_add(klass()->hash(), TypePtr::hash());
coleenp@4037 4547 }
coleenp@4037 4548
coleenp@4037 4549 //------------------------------singleton--------------------------------------
coleenp@4037 4550 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 4551 // constants
coleenp@4037 4552 bool TypeKlassPtr::singleton(void) const {
coleenp@4037 4553 // detune optimizer to not generate constant klass + constant offset as a constant!
coleenp@4037 4554 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 4555 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 4556 }
duke@435 4557
roland@6043 4558 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 4559 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@6043 4560 // logic here mirrors the one from TypeOopPtr::filter. See comments
roland@6043 4561 // there.
roland@6313 4562 const Type* ft = join_helper(kills, include_speculative);
roland@6043 4563 const TypeKlassPtr* ftkp = ft->isa_klassptr();
roland@6043 4564 const TypeKlassPtr* ktkp = kills->isa_klassptr();
roland@6043 4565
roland@6043 4566 if (ft->empty()) {
roland@6043 4567 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
roland@6043 4568 return kills; // Uplift to interface
roland@6043 4569
roland@6043 4570 return Type::TOP; // Canonical empty value
roland@6043 4571 }
roland@6043 4572
roland@6043 4573 // Interface klass type could be exact in opposite to interface type,
roland@6043 4574 // return it here instead of incorrect Constant ptr J/L/Object (6894807).
roland@6043 4575 if (ftkp != NULL && ktkp != NULL &&
roland@6043 4576 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
roland@6043 4577 !ftkp->klass_is_exact() && // Keep exact interface klass
roland@6043 4578 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
roland@6043 4579 return ktkp->cast_to_ptr_type(ftkp->ptr());
roland@6043 4580 }
roland@6043 4581
roland@6043 4582 return ft;
roland@6043 4583 }
roland@6043 4584
kvn@2116 4585 //----------------------compute_klass------------------------------------------
kvn@2116 4586 // Compute the defining klass for this class
kvn@2116 4587 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
kvn@2116 4588 // Compute _klass based on element type.
duke@435 4589 ciKlass* k_ary = NULL;
duke@435 4590 const TypeInstPtr *tinst;
duke@435 4591 const TypeAryPtr *tary;
coleenp@548 4592 const Type* el = elem();
coleenp@548 4593 if (el->isa_narrowoop()) {
kvn@656 4594 el = el->make_ptr();
coleenp@548 4595 }
coleenp@548 4596
duke@435 4597 // Get element klass
coleenp@548 4598 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 4599 // Compute array klass from element klass
duke@435 4600 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 4601 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 4602 // Compute array klass from element klass
duke@435 4603 ciKlass* k_elem = tary->klass();
duke@435 4604 // If element type is something like bottom[], k_elem will be null.
duke@435 4605 if (k_elem != NULL)
duke@435 4606 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 4607 } else if ((el->base() == Type::Top) ||
coleenp@548 4608 (el->base() == Type::Bottom)) {
duke@435 4609 // element type of Bottom occurs from meet of basic type
duke@435 4610 // and object; Top occurs when doing join on Bottom.
duke@435 4611 // Leave k_ary at NULL.
duke@435 4612 } else {
duke@435 4613 // Cannot compute array klass directly from basic type,
duke@435 4614 // since subtypes of TypeInt all have basic type T_INT.
kvn@2116 4615 #ifdef ASSERT
kvn@2116 4616 if (verify && el->isa_int()) {
kvn@2116 4617 // Check simple cases when verifying klass.
kvn@2116 4618 BasicType bt = T_ILLEGAL;
kvn@2116 4619 if (el == TypeInt::BYTE) {
kvn@2116 4620 bt = T_BYTE;
kvn@2116 4621 } else if (el == TypeInt::SHORT) {
kvn@2116 4622 bt = T_SHORT;
kvn@2116 4623 } else if (el == TypeInt::CHAR) {
kvn@2116 4624 bt = T_CHAR;
kvn@2116 4625 } else if (el == TypeInt::INT) {
kvn@2116 4626 bt = T_INT;
kvn@2116 4627 } else {
kvn@2116 4628 return _klass; // just return specified klass
kvn@2116 4629 }
kvn@2116 4630 return ciTypeArrayKlass::make(bt);
kvn@2116 4631 }
kvn@2116 4632 #endif
coleenp@548 4633 assert(!el->isa_int(),
duke@435 4634 "integral arrays must be pre-equipped with a class");
duke@435 4635 // Compute array klass directly from basic type
coleenp@548 4636 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 4637 }
kvn@2116 4638 return k_ary;
kvn@2116 4639 }
kvn@2116 4640
kvn@2116 4641 //------------------------------klass------------------------------------------
kvn@2116 4642 // Return the defining klass for this class
kvn@2116 4643 ciKlass* TypeAryPtr::klass() const {
kvn@2116 4644 if( _klass ) return _klass; // Return cached value, if possible
kvn@2116 4645
kvn@2116 4646 // Oops, need to compute _klass and cache it
kvn@2116 4647 ciKlass* k_ary = compute_klass();
duke@435 4648
kvn@2636 4649 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
duke@435 4650 // The _klass field acts as a cache of the underlying
duke@435 4651 // ciKlass for this array type. In order to set the field,
duke@435 4652 // we need to cast away const-ness.
duke@435 4653 //
duke@435 4654 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 4655 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 4656 // active compilations. However, the ciKlass which represents
duke@435 4657 // this Type is *not* shared between compilations, so caching
duke@435 4658 // this value would result in fetching a dangling pointer.
duke@435 4659 //
duke@435 4660 // Recomputing the underlying ciKlass for each request is
duke@435 4661 // a bit less efficient than caching, but calls to
duke@435 4662 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 4663 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 4664 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 4665 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 4666 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 4667 }
kvn@598 4668 }
duke@435 4669 return k_ary;
duke@435 4670 }
duke@435 4671
duke@435 4672
duke@435 4673 //------------------------------add_offset-------------------------------------
duke@435 4674 // Access internals of klass object
kvn@741 4675 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
duke@435 4676 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 4677 }
duke@435 4678
duke@435 4679 //------------------------------cast_to_ptr_type-------------------------------
duke@435 4680 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
kvn@992 4681 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
duke@435 4682 if( ptr == _ptr ) return this;
duke@435 4683 return make(ptr, _klass, _offset);
duke@435 4684 }
duke@435 4685
duke@435 4686
duke@435 4687 //-----------------------------cast_to_exactness-------------------------------
duke@435 4688 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 4689 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 4690 if (!UseExactTypes) return this;
duke@435 4691 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 4692 }
duke@435 4693
duke@435 4694
duke@435 4695 //-----------------------------as_instance_type--------------------------------
duke@435 4696 // Corresponding type for an instance of the given class.
duke@435 4697 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 4698 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 4699 ciKlass* k = klass();
duke@435 4700 bool xk = klass_is_exact();
duke@435 4701 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 4702 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
morris@4760 4703 guarantee(toop != NULL, "need type for given klass");
duke@435 4704 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 4705 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 4706 }
duke@435 4707
duke@435 4708
duke@435 4709 //------------------------------xmeet------------------------------------------
duke@435 4710 // Compute the MEET of two types, return a new Type object.
duke@435 4711 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 4712 // Perform a fast test for common case; meeting the same types together.
duke@435 4713 if( this == t ) return this; // Meeting same type-rep?
duke@435 4714
duke@435 4715 // Current "this->_base" is Pointer
duke@435 4716 switch (t->base()) { // switch on original type
duke@435 4717
duke@435 4718 case Int: // Mixing ints & oops happens when javac
duke@435 4719 case Long: // reuses local variables
duke@435 4720 case FloatTop:
duke@435 4721 case FloatCon:
duke@435 4722 case FloatBot:
duke@435 4723 case DoubleTop:
duke@435 4724 case DoubleCon:
duke@435 4725 case DoubleBot:
kvn@728 4726 case NarrowOop:
roland@4159 4727 case NarrowKlass:
duke@435 4728 case Bottom: // Ye Olde Default
duke@435 4729 return Type::BOTTOM;
duke@435 4730 case Top:
duke@435 4731 return this;
duke@435 4732
duke@435 4733 default: // All else is a mistake
duke@435 4734 typerr(t);
duke@435 4735
duke@435 4736 case AnyPtr: { // Meeting to AnyPtrs
duke@435 4737 // Found an AnyPtr type vs self-KlassPtr type
duke@435 4738 const TypePtr *tp = t->is_ptr();
duke@435 4739 int offset = meet_offset(tp->offset());
duke@435 4740 PTR ptr = meet_ptr(tp->ptr());
duke@435 4741 switch (tp->ptr()) {
duke@435 4742 case TopPTR:
duke@435 4743 return this;
duke@435 4744 case Null:
duke@435 4745 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 4746 case AnyNull:
duke@435 4747 return make( ptr, klass(), offset );
duke@435 4748 case BotPTR:
duke@435 4749 case NotNull:
duke@435 4750 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 4751 default: typerr(t);
duke@435 4752 }
duke@435 4753 }
duke@435 4754
coleenp@4037 4755 case RawPtr:
coleenp@4037 4756 case MetadataPtr:
coleenp@4037 4757 case OopPtr:
duke@435 4758 case AryPtr: // Meet with AryPtr
duke@435 4759 case InstPtr: // Meet with InstPtr
coleenp@4037 4760 return TypePtr::BOTTOM;
duke@435 4761
duke@435 4762 //
duke@435 4763 // A-top }
duke@435 4764 // / | \ } Tops
duke@435 4765 // B-top A-any C-top }
duke@435 4766 // | / | \ | } Any-nulls
duke@435 4767 // B-any | C-any }
duke@435 4768 // | | |
duke@435 4769 // B-con A-con C-con } constants; not comparable across classes
duke@435 4770 // | | |
duke@435 4771 // B-not | C-not }
duke@435 4772 // | \ | / | } not-nulls
duke@435 4773 // B-bot A-not C-bot }
duke@435 4774 // \ | / } Bottoms
duke@435 4775 // A-bot }
duke@435 4776 //
duke@435 4777
duke@435 4778 case KlassPtr: { // Meet two KlassPtr types
duke@435 4779 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 4780 int off = meet_offset(tkls->offset());
duke@435 4781 PTR ptr = meet_ptr(tkls->ptr());
duke@435 4782
duke@435 4783 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 4784 // If we have constants, then we created oops so classes are loaded
duke@435 4785 // and we can handle the constants further down. This case handles
duke@435 4786 // not-loaded classes
duke@435 4787 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 4788 return make( ptr, klass(), off );
duke@435 4789 }
duke@435 4790
duke@435 4791 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 4792 ciKlass* tkls_klass = tkls->klass();
duke@435 4793 ciKlass* this_klass = this->klass();
duke@435 4794 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 4795 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 4796
duke@435 4797 // If 'this' type is above the centerline and is a superclass of the
duke@435 4798 // other, we can treat 'this' as having the same type as the other.
duke@435 4799 if ((above_centerline(this->ptr())) &&
duke@435 4800 tkls_klass->is_subtype_of(this_klass)) {
duke@435 4801 this_klass = tkls_klass;
duke@435 4802 }
duke@435 4803 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 4804 // other, we can treat 'tinst' as having the same type as the other.
duke@435 4805 if ((above_centerline(tkls->ptr())) &&
duke@435 4806 this_klass->is_subtype_of(tkls_klass)) {
duke@435 4807 tkls_klass = this_klass;
duke@435 4808 }
duke@435 4809
duke@435 4810 // Check for classes now being equal
duke@435 4811 if (tkls_klass->equals(this_klass)) {
duke@435 4812 // If the klasses are equal, the constants may still differ. Fall to
duke@435 4813 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 4814 // handled elsewhere).
duke@435 4815 if( ptr == Constant ) {
coleenp@4037 4816 if (this->_ptr == Constant && tkls->_ptr == Constant &&
coleenp@4037 4817 this->klass()->equals(tkls->klass()));
coleenp@4037 4818 else if (above_centerline(this->ptr()));
coleenp@4037 4819 else if (above_centerline(tkls->ptr()));
duke@435 4820 else
duke@435 4821 ptr = NotNull;
duke@435 4822 }
duke@435 4823 return make( ptr, this_klass, off );
duke@435 4824 } // Else classes are not equal
duke@435 4825
duke@435 4826 // Since klasses are different, we require the LCA in the Java
duke@435 4827 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 4828 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 4829 ptr = NotNull;
duke@435 4830 // Now we find the LCA of Java classes
duke@435 4831 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 4832 return make( ptr, k, off );
duke@435 4833 } // End of case KlassPtr
duke@435 4834
duke@435 4835 } // End of switch
duke@435 4836 return this; // Return the double constant
duke@435 4837 }
duke@435 4838
duke@435 4839 //------------------------------xdual------------------------------------------
duke@435 4840 // Dual: compute field-by-field dual
duke@435 4841 const Type *TypeKlassPtr::xdual() const {
duke@435 4842 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 4843 }
duke@435 4844
coleenp@4037 4845 //------------------------------get_con----------------------------------------
coleenp@4037 4846 intptr_t TypeKlassPtr::get_con() const {
coleenp@4037 4847 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4848 assert( _offset >= 0, "" );
coleenp@4037 4849
coleenp@4037 4850 if (_offset != 0) {
coleenp@4037 4851 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4852 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4853 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4854 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4855 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4856 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4857 // but this assertion here is to help prevent its occurence.
coleenp@4037 4858 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4859 ShouldNotReachHere();
coleenp@4037 4860 }
coleenp@4037 4861
coleenp@4037 4862 return (intptr_t)klass()->constant_encoding();
coleenp@4037 4863 }
duke@435 4864 //------------------------------dump2------------------------------------------
duke@435 4865 // Dump Klass Type
duke@435 4866 #ifndef PRODUCT
duke@435 4867 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 4868 switch( _ptr ) {
duke@435 4869 case Constant:
duke@435 4870 st->print("precise ");
duke@435 4871 case NotNull:
duke@435 4872 {
duke@435 4873 const char *name = klass()->name()->as_utf8();
duke@435 4874 if( name ) {
duke@435 4875 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 4876 } else {
duke@435 4877 ShouldNotReachHere();
duke@435 4878 }
duke@435 4879 }
duke@435 4880 case BotPTR:
duke@435 4881 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 4882 case TopPTR:
duke@435 4883 case AnyNull:
duke@435 4884 st->print(":%s", ptr_msg[_ptr]);
duke@435 4885 if( _klass_is_exact ) st->print(":exact");
duke@435 4886 break;
duke@435 4887 }
duke@435 4888
duke@435 4889 if( _offset ) { // Dump offset, if any
duke@435 4890 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 4891 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 4892 else { st->print("+%d", _offset); }
duke@435 4893 }
duke@435 4894
duke@435 4895 st->print(" *");
duke@435 4896 }
duke@435 4897 #endif
duke@435 4898
duke@435 4899
duke@435 4900
duke@435 4901 //=============================================================================
duke@435 4902 // Convenience common pre-built types.
duke@435 4903
duke@435 4904 //------------------------------make-------------------------------------------
duke@435 4905 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 4906 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 4907 }
duke@435 4908
duke@435 4909 //------------------------------make-------------------------------------------
duke@435 4910 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 4911 Compile* C = Compile::current();
duke@435 4912 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 4913 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 4914 const TypeTuple *domain;
twisti@1572 4915 if (method->is_static()) {
duke@435 4916 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 4917 } else {
duke@435 4918 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 4919 }
duke@435 4920 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 4921 tf = TypeFunc::make(domain, range);
duke@435 4922 C->set_last_tf(method, tf); // fill cache
duke@435 4923 return tf;
duke@435 4924 }
duke@435 4925
duke@435 4926 //------------------------------meet-------------------------------------------
duke@435 4927 // Compute the MEET of two types. It returns a new Type object.
duke@435 4928 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 4929 // Perform a fast test for common case; meeting the same types together.
duke@435 4930 if( this == t ) return this; // Meeting same type-rep?
duke@435 4931
duke@435 4932 // Current "this->_base" is Func
duke@435 4933 switch (t->base()) { // switch on original type
duke@435 4934
duke@435 4935 case Bottom: // Ye Olde Default
duke@435 4936 return t;
duke@435 4937
duke@435 4938 default: // All else is a mistake
duke@435 4939 typerr(t);
duke@435 4940
duke@435 4941 case Top:
duke@435 4942 break;
duke@435 4943 }
duke@435 4944 return this; // Return the double constant
duke@435 4945 }
duke@435 4946
duke@435 4947 //------------------------------xdual------------------------------------------
duke@435 4948 // Dual: compute field-by-field dual
duke@435 4949 const Type *TypeFunc::xdual() const {
duke@435 4950 return this;
duke@435 4951 }
duke@435 4952
duke@435 4953 //------------------------------eq---------------------------------------------
duke@435 4954 // Structural equality check for Type representations
duke@435 4955 bool TypeFunc::eq( const Type *t ) const {
duke@435 4956 const TypeFunc *a = (const TypeFunc*)t;
duke@435 4957 return _domain == a->_domain &&
duke@435 4958 _range == a->_range;
duke@435 4959 }
duke@435 4960
duke@435 4961 //------------------------------hash-------------------------------------------
duke@435 4962 // Type-specific hashing function.
duke@435 4963 int TypeFunc::hash(void) const {
duke@435 4964 return (intptr_t)_domain + (intptr_t)_range;
duke@435 4965 }
duke@435 4966
duke@435 4967 //------------------------------dump2------------------------------------------
duke@435 4968 // Dump Function Type
duke@435 4969 #ifndef PRODUCT
duke@435 4970 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4971 if( _range->_cnt <= Parms )
duke@435 4972 st->print("void");
duke@435 4973 else {
duke@435 4974 uint i;
duke@435 4975 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 4976 _range->field_at(i)->dump2(d,depth,st);
duke@435 4977 st->print("/");
duke@435 4978 }
duke@435 4979 _range->field_at(i)->dump2(d,depth,st);
duke@435 4980 }
duke@435 4981 st->print(" ");
duke@435 4982 st->print("( ");
duke@435 4983 if( !depth || d[this] ) { // Check for recursive dump
duke@435 4984 st->print("...)");
duke@435 4985 return;
duke@435 4986 }
duke@435 4987 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 4988 if (Parms < _domain->_cnt)
duke@435 4989 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 4990 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 4991 st->print(", ");
duke@435 4992 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 4993 }
duke@435 4994 st->print(" )");
duke@435 4995 }
duke@435 4996 #endif
duke@435 4997
duke@435 4998 //------------------------------singleton--------------------------------------
duke@435 4999 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 5000 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 5001 // or a single symbol.
duke@435 5002 bool TypeFunc::singleton(void) const {
duke@435 5003 return false; // Never a singleton
duke@435 5004 }
duke@435 5005
duke@435 5006 bool TypeFunc::empty(void) const {
duke@435 5007 return false; // Never empty
duke@435 5008 }
duke@435 5009
duke@435 5010
duke@435 5011 BasicType TypeFunc::return_type() const{
duke@435 5012 if (range()->cnt() == TypeFunc::Parms) {
duke@435 5013 return T_VOID;
duke@435 5014 }
duke@435 5015 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 5016 }

mercurial