src/share/vm/opto/type.cpp

Thu, 21 Apr 2016 21:53:15 +0530

author
shshahma
date
Thu, 21 Apr 2016 21:53:15 +0530
changeset 8422
09687c445ce1
parent 7873
2a55e4998f0d
child 8424
2094cac55c59
permissions
-rw-r--r--

8141551: C2 can not handle returns with inccompatible interface arrays
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "ci/ciTypeFlow.hpp"
    28 #include "classfile/symbolTable.hpp"
    29 #include "classfile/systemDictionary.hpp"
    30 #include "compiler/compileLog.hpp"
    31 #include "libadt/dict.hpp"
    32 #include "memory/gcLocker.hpp"
    33 #include "memory/oopFactory.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "oops/instanceKlass.hpp"
    36 #include "oops/instanceMirrorKlass.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "oops/typeArrayKlass.hpp"
    39 #include "opto/matcher.hpp"
    40 #include "opto/node.hpp"
    41 #include "opto/opcodes.hpp"
    42 #include "opto/type.hpp"
    44 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    46 // Portions of code courtesy of Clifford Click
    48 // Optimization - Graph Style
    50 // Dictionary of types shared among compilations.
    51 Dict* Type::_shared_type_dict = NULL;
    53 // Array which maps compiler types to Basic Types
    54 Type::TypeInfo Type::_type_info[Type::lastype] = {
    55   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
    56   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
    57   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
    58   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
    59   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
    60   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
    61   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
    62   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
    63   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
    64   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
    66 #ifdef SPARC
    67   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
    68   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
    69   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
    70   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
    71 #elif defined(PPC64)
    72   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
    73   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
    74   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
    75   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
    76 #else // all other
    77   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
    78   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
    79   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
    80   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
    81 #endif
    82   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
    83   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
    84   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
    85   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
    86   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
    87   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
    88   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
    89   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
    90   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
    91   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
    92   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
    93   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
    94   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
    95   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
    96   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
    97   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
    98   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
    99   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
   100 };
   102 // Map ideal registers (machine types) to ideal types
   103 const Type *Type::mreg2type[_last_machine_leaf];
   105 // Map basic types to canonical Type* pointers.
   106 const Type* Type::     _const_basic_type[T_CONFLICT+1];
   108 // Map basic types to constant-zero Types.
   109 const Type* Type::            _zero_type[T_CONFLICT+1];
   111 // Map basic types to array-body alias types.
   112 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
   114 //=============================================================================
   115 // Convenience common pre-built types.
   116 const Type *Type::ABIO;         // State-of-machine only
   117 const Type *Type::BOTTOM;       // All values
   118 const Type *Type::CONTROL;      // Control only
   119 const Type *Type::DOUBLE;       // All doubles
   120 const Type *Type::FLOAT;        // All floats
   121 const Type *Type::HALF;         // Placeholder half of doublewide type
   122 const Type *Type::MEMORY;       // Abstract store only
   123 const Type *Type::RETURN_ADDRESS;
   124 const Type *Type::TOP;          // No values in set
   126 //------------------------------get_const_type---------------------------
   127 const Type* Type::get_const_type(ciType* type) {
   128   if (type == NULL) {
   129     return NULL;
   130   } else if (type->is_primitive_type()) {
   131     return get_const_basic_type(type->basic_type());
   132   } else {
   133     return TypeOopPtr::make_from_klass(type->as_klass());
   134   }
   135 }
   137 //---------------------------array_element_basic_type---------------------------------
   138 // Mapping to the array element's basic type.
   139 BasicType Type::array_element_basic_type() const {
   140   BasicType bt = basic_type();
   141   if (bt == T_INT) {
   142     if (this == TypeInt::INT)   return T_INT;
   143     if (this == TypeInt::CHAR)  return T_CHAR;
   144     if (this == TypeInt::BYTE)  return T_BYTE;
   145     if (this == TypeInt::BOOL)  return T_BOOLEAN;
   146     if (this == TypeInt::SHORT) return T_SHORT;
   147     return T_VOID;
   148   }
   149   return bt;
   150 }
   152 // For two instance arrays of same dimension, return the base element types.
   153 // Otherwise or if the arrays have different dimensions, return NULL.
   154 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
   155                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
   157   if (e1) *e1 = NULL;
   158   if (e2) *e2 = NULL;
   159   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
   160   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
   162   if (a1tap != NULL && a2tap != NULL) {
   163     // Handle multidimensional arrays
   164     const TypePtr* a1tp = a1tap->elem()->make_ptr();
   165     const TypePtr* a2tp = a2tap->elem()->make_ptr();
   166     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
   167       a1tap = a1tp->is_aryptr();
   168       a2tap = a2tp->is_aryptr();
   169       a1tp = a1tap->elem()->make_ptr();
   170       a2tp = a2tap->elem()->make_ptr();
   171     }
   172     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
   173       if (e1) *e1 = a1tp->is_instptr();
   174       if (e2) *e2 = a2tp->is_instptr();
   175     }
   176   }
   177 }
   179 //---------------------------get_typeflow_type---------------------------------
   180 // Import a type produced by ciTypeFlow.
   181 const Type* Type::get_typeflow_type(ciType* type) {
   182   switch (type->basic_type()) {
   184   case ciTypeFlow::StateVector::T_BOTTOM:
   185     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
   186     return Type::BOTTOM;
   188   case ciTypeFlow::StateVector::T_TOP:
   189     assert(type == ciTypeFlow::StateVector::top_type(), "");
   190     return Type::TOP;
   192   case ciTypeFlow::StateVector::T_NULL:
   193     assert(type == ciTypeFlow::StateVector::null_type(), "");
   194     return TypePtr::NULL_PTR;
   196   case ciTypeFlow::StateVector::T_LONG2:
   197     // The ciTypeFlow pass pushes a long, then the half.
   198     // We do the same.
   199     assert(type == ciTypeFlow::StateVector::long2_type(), "");
   200     return TypeInt::TOP;
   202   case ciTypeFlow::StateVector::T_DOUBLE2:
   203     // The ciTypeFlow pass pushes double, then the half.
   204     // Our convention is the same.
   205     assert(type == ciTypeFlow::StateVector::double2_type(), "");
   206     return Type::TOP;
   208   case T_ADDRESS:
   209     assert(type->is_return_address(), "");
   210     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
   212   default:
   213     // make sure we did not mix up the cases:
   214     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
   215     assert(type != ciTypeFlow::StateVector::top_type(), "");
   216     assert(type != ciTypeFlow::StateVector::null_type(), "");
   217     assert(type != ciTypeFlow::StateVector::long2_type(), "");
   218     assert(type != ciTypeFlow::StateVector::double2_type(), "");
   219     assert(!type->is_return_address(), "");
   221     return Type::get_const_type(type);
   222   }
   223 }
   226 //-----------------------make_from_constant------------------------------------
   227 const Type* Type::make_from_constant(ciConstant constant,
   228                                      bool require_constant, bool is_autobox_cache) {
   229   switch (constant.basic_type()) {
   230   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
   231   case T_CHAR:     return TypeInt::make(constant.as_char());
   232   case T_BYTE:     return TypeInt::make(constant.as_byte());
   233   case T_SHORT:    return TypeInt::make(constant.as_short());
   234   case T_INT:      return TypeInt::make(constant.as_int());
   235   case T_LONG:     return TypeLong::make(constant.as_long());
   236   case T_FLOAT:    return TypeF::make(constant.as_float());
   237   case T_DOUBLE:   return TypeD::make(constant.as_double());
   238   case T_ARRAY:
   239   case T_OBJECT:
   240     {
   241       // cases:
   242       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
   243       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
   244       // An oop is not scavengable if it is in the perm gen.
   245       ciObject* oop_constant = constant.as_object();
   246       if (oop_constant->is_null_object()) {
   247         return Type::get_zero_type(T_OBJECT);
   248       } else if (require_constant || oop_constant->should_be_constant()) {
   249         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
   250       }
   251     }
   252   }
   253   // Fall through to failure
   254   return NULL;
   255 }
   258 //------------------------------make-------------------------------------------
   259 // Create a simple Type, with default empty symbol sets.  Then hashcons it
   260 // and look for an existing copy in the type dictionary.
   261 const Type *Type::make( enum TYPES t ) {
   262   return (new Type(t))->hashcons();
   263 }
   265 //------------------------------cmp--------------------------------------------
   266 int Type::cmp( const Type *const t1, const Type *const t2 ) {
   267   if( t1->_base != t2->_base )
   268     return 1;                   // Missed badly
   269   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
   270   return !t1->eq(t2);           // Return ZERO if equal
   271 }
   273 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
   274   if (!include_speculative) {
   275     return remove_speculative();
   276   }
   277   return this;
   278 }
   280 //------------------------------hash-------------------------------------------
   281 int Type::uhash( const Type *const t ) {
   282   return t->hash();
   283 }
   285 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
   287 //--------------------------Initialize_shared----------------------------------
   288 void Type::Initialize_shared(Compile* current) {
   289   // This method does not need to be locked because the first system
   290   // compilations (stub compilations) occur serially.  If they are
   291   // changed to proceed in parallel, then this section will need
   292   // locking.
   294   Arena* save = current->type_arena();
   295   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
   297   current->set_type_arena(shared_type_arena);
   298   _shared_type_dict =
   299     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
   300                                   shared_type_arena, 128 );
   301   current->set_type_dict(_shared_type_dict);
   303   // Make shared pre-built types.
   304   CONTROL = make(Control);      // Control only
   305   TOP     = make(Top);          // No values in set
   306   MEMORY  = make(Memory);       // Abstract store only
   307   ABIO    = make(Abio);         // State-of-machine only
   308   RETURN_ADDRESS=make(Return_Address);
   309   FLOAT   = make(FloatBot);     // All floats
   310   DOUBLE  = make(DoubleBot);    // All doubles
   311   BOTTOM  = make(Bottom);       // Everything
   312   HALF    = make(Half);         // Placeholder half of doublewide type
   314   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
   315   TypeF::ONE  = TypeF::make(1.0); // Float 1
   317   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
   318   TypeD::ONE  = TypeD::make(1.0); // Double 1
   320   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
   321   TypeInt::ZERO    = TypeInt::make( 0);  //  0
   322   TypeInt::ONE     = TypeInt::make( 1);  //  1
   323   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
   324   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
   325   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
   326   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
   327   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
   328   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
   329   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
   330   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
   331   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
   332   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
   333   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
   334   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
   335   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
   336   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
   337   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
   338   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
   339   // CmpL is overloaded both as the bytecode computation returning
   340   // a trinary (-1,0,+1) integer result AND as an efficient long
   341   // compare returning optimizer ideal-type flags.
   342   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
   343   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
   344   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
   345   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
   346   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
   348   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
   349   TypeLong::ZERO    = TypeLong::make( 0);        //  0
   350   TypeLong::ONE     = TypeLong::make( 1);        //  1
   351   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
   352   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
   353   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
   354   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
   355   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
   357   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   358   fboth[0] = Type::CONTROL;
   359   fboth[1] = Type::CONTROL;
   360   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
   362   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   363   ffalse[0] = Type::CONTROL;
   364   ffalse[1] = Type::TOP;
   365   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
   367   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   368   fneither[0] = Type::TOP;
   369   fneither[1] = Type::TOP;
   370   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
   372   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   373   ftrue[0] = Type::TOP;
   374   ftrue[1] = Type::CONTROL;
   375   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
   377   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   378   floop[0] = Type::CONTROL;
   379   floop[1] = TypeInt::INT;
   380   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
   382   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
   383   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
   384   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
   386   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
   387   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
   389   const Type **fmembar = TypeTuple::fields(0);
   390   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
   392   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   393   fsc[0] = TypeInt::CC;
   394   fsc[1] = Type::MEMORY;
   395   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
   397   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
   398   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
   399   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
   400   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   401                                            false, 0, oopDesc::mark_offset_in_bytes());
   402   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   403                                            false, 0, oopDesc::klass_offset_in_bytes());
   404   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
   406   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
   408   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
   409   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
   411   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
   413   mreg2type[Op_Node] = Type::BOTTOM;
   414   mreg2type[Op_Set ] = 0;
   415   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
   416   mreg2type[Op_RegI] = TypeInt::INT;
   417   mreg2type[Op_RegP] = TypePtr::BOTTOM;
   418   mreg2type[Op_RegF] = Type::FLOAT;
   419   mreg2type[Op_RegD] = Type::DOUBLE;
   420   mreg2type[Op_RegL] = TypeLong::LONG;
   421   mreg2type[Op_RegFlags] = TypeInt::CC;
   423   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
   425   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   427 #ifdef _LP64
   428   if (UseCompressedOops) {
   429     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
   430     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
   431   } else
   432 #endif
   433   {
   434     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
   435     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   436   }
   437   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
   438   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
   439   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
   440   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
   441   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
   442   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
   443   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
   445   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
   446   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
   447   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
   448   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
   449   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
   450   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
   451   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
   452   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
   453   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
   454   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
   455   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
   456   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
   458   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
   459   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
   461   const Type **fi2c = TypeTuple::fields(2);
   462   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
   463   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
   464   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
   466   const Type **intpair = TypeTuple::fields(2);
   467   intpair[0] = TypeInt::INT;
   468   intpair[1] = TypeInt::INT;
   469   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
   471   const Type **longpair = TypeTuple::fields(2);
   472   longpair[0] = TypeLong::LONG;
   473   longpair[1] = TypeLong::LONG;
   474   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
   476   const Type **intccpair = TypeTuple::fields(2);
   477   intccpair[0] = TypeInt::INT;
   478   intccpair[1] = TypeInt::CC;
   479   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
   481   const Type **longccpair = TypeTuple::fields(2);
   482   longccpair[0] = TypeLong::LONG;
   483   longccpair[1] = TypeInt::CC;
   484   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
   486   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
   487   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
   488   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
   489   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
   490   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
   491   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
   492   _const_basic_type[T_INT]         = TypeInt::INT;
   493   _const_basic_type[T_LONG]        = TypeLong::LONG;
   494   _const_basic_type[T_FLOAT]       = Type::FLOAT;
   495   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
   496   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
   497   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
   498   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
   499   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
   500   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
   502   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
   503   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
   504   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
   505   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
   506   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
   507   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
   508   _zero_type[T_INT]         = TypeInt::ZERO;
   509   _zero_type[T_LONG]        = TypeLong::ZERO;
   510   _zero_type[T_FLOAT]       = TypeF::ZERO;
   511   _zero_type[T_DOUBLE]      = TypeD::ZERO;
   512   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
   513   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
   514   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
   515   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
   517   // get_zero_type() should not happen for T_CONFLICT
   518   _zero_type[T_CONFLICT]= NULL;
   520   // Vector predefined types, it needs initialized _const_basic_type[].
   521   if (Matcher::vector_size_supported(T_BYTE,4)) {
   522     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
   523   }
   524   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   525     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
   526   }
   527   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   528     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
   529   }
   530   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   531     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
   532   }
   533   mreg2type[Op_VecS] = TypeVect::VECTS;
   534   mreg2type[Op_VecD] = TypeVect::VECTD;
   535   mreg2type[Op_VecX] = TypeVect::VECTX;
   536   mreg2type[Op_VecY] = TypeVect::VECTY;
   538   // Restore working type arena.
   539   current->set_type_arena(save);
   540   current->set_type_dict(NULL);
   541 }
   543 //------------------------------Initialize-------------------------------------
   544 void Type::Initialize(Compile* current) {
   545   assert(current->type_arena() != NULL, "must have created type arena");
   547   if (_shared_type_dict == NULL) {
   548     Initialize_shared(current);
   549   }
   551   Arena* type_arena = current->type_arena();
   553   // Create the hash-cons'ing dictionary with top-level storage allocation
   554   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
   555   current->set_type_dict(tdic);
   557   // Transfer the shared types.
   558   DictI i(_shared_type_dict);
   559   for( ; i.test(); ++i ) {
   560     Type* t = (Type*)i._value;
   561     tdic->Insert(t,t);  // New Type, insert into Type table
   562   }
   563 }
   565 //------------------------------hashcons---------------------------------------
   566 // Do the hash-cons trick.  If the Type already exists in the type table,
   567 // delete the current Type and return the existing Type.  Otherwise stick the
   568 // current Type in the Type table.
   569 const Type *Type::hashcons(void) {
   570   debug_only(base());           // Check the assertion in Type::base().
   571   // Look up the Type in the Type dictionary
   572   Dict *tdic = type_dict();
   573   Type* old = (Type*)(tdic->Insert(this, this, false));
   574   if( old ) {                   // Pre-existing Type?
   575     if( old != this )           // Yes, this guy is not the pre-existing?
   576       delete this;              // Yes, Nuke this guy
   577     assert( old->_dual, "" );
   578     return old;                 // Return pre-existing
   579   }
   581   // Every type has a dual (to make my lattice symmetric).
   582   // Since we just discovered a new Type, compute its dual right now.
   583   assert( !_dual, "" );         // No dual yet
   584   _dual = xdual();              // Compute the dual
   585   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
   586     _dual = this;
   587     return this;
   588   }
   589   assert( !_dual->_dual, "" );  // No reverse dual yet
   590   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
   591   // New Type, insert into Type table
   592   tdic->Insert((void*)_dual,(void*)_dual);
   593   ((Type*)_dual)->_dual = this; // Finish up being symmetric
   594 #ifdef ASSERT
   595   Type *dual_dual = (Type*)_dual->xdual();
   596   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
   597   delete dual_dual;
   598 #endif
   599   return this;                  // Return new Type
   600 }
   602 //------------------------------eq---------------------------------------------
   603 // Structural equality check for Type representations
   604 bool Type::eq( const Type * ) const {
   605   return true;                  // Nothing else can go wrong
   606 }
   608 //------------------------------hash-------------------------------------------
   609 // Type-specific hashing function.
   610 int Type::hash(void) const {
   611   return _base;
   612 }
   614 //------------------------------is_finite--------------------------------------
   615 // Has a finite value
   616 bool Type::is_finite() const {
   617   return false;
   618 }
   620 //------------------------------is_nan-----------------------------------------
   621 // Is not a number (NaN)
   622 bool Type::is_nan()    const {
   623   return false;
   624 }
   626 //----------------------interface_vs_oop---------------------------------------
   627 #ifdef ASSERT
   628 bool Type::interface_vs_oop_helper(const Type *t) const {
   629   bool result = false;
   631   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
   632   const TypePtr*    t_ptr =    t->make_ptr();
   633   if( this_ptr == NULL || t_ptr == NULL )
   634     return result;
   636   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
   637   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
   638   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
   639     bool this_interface = this_inst->klass()->is_interface();
   640     bool    t_interface =    t_inst->klass()->is_interface();
   641     result = this_interface ^ t_interface;
   642   }
   644   return result;
   645 }
   647 bool Type::interface_vs_oop(const Type *t) const {
   648   if (interface_vs_oop_helper(t)) {
   649     return true;
   650   }
   651   // Now check the speculative parts as well
   652   const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
   653   const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
   654   if (this_spec != NULL && t_spec != NULL) {
   655     if (this_spec->interface_vs_oop_helper(t_spec)) {
   656       return true;
   657     }
   658     return false;
   659   }
   660   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
   661     return true;
   662   }
   663   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
   664     return true;
   665   }
   666   return false;
   667 }
   669 #endif
   671 //------------------------------meet-------------------------------------------
   672 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
   673 // commutative and the lattice is symmetric.
   674 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
   675   if (isa_narrowoop() && t->isa_narrowoop()) {
   676     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
   677     return result->make_narrowoop();
   678   }
   679   if (isa_narrowklass() && t->isa_narrowklass()) {
   680     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
   681     return result->make_narrowklass();
   682   }
   684   const Type *this_t = maybe_remove_speculative(include_speculative);
   685   t = t->maybe_remove_speculative(include_speculative);
   687   const Type *mt = this_t->xmeet(t);
   688   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
   689   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
   690 #ifdef ASSERT
   691   assert(mt == t->xmeet(this_t), "meet not commutative");
   692   const Type* dual_join = mt->_dual;
   693   const Type *t2t    = dual_join->xmeet(t->_dual);
   694   const Type *t2this = dual_join->xmeet(this_t->_dual);
   696   // Interface meet Oop is Not Symmetric:
   697   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
   698   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
   700   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
   701     tty->print_cr("=== Meet Not Symmetric ===");
   702     tty->print("t   =                   ");              t->dump(); tty->cr();
   703     tty->print("this=                   ");         this_t->dump(); tty->cr();
   704     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
   706     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
   707     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
   708     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
   710     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
   711     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
   713     fatal("meet not symmetric" );
   714   }
   715 #endif
   716   return mt;
   717 }
   719 //------------------------------xmeet------------------------------------------
   720 // Compute the MEET of two types.  It returns a new Type object.
   721 const Type *Type::xmeet( const Type *t ) const {
   722   // Perform a fast test for common case; meeting the same types together.
   723   if( this == t ) return this;  // Meeting same type-rep?
   725   // Meeting TOP with anything?
   726   if( _base == Top ) return t;
   728   // Meeting BOTTOM with anything?
   729   if( _base == Bottom ) return BOTTOM;
   731   // Current "this->_base" is one of: Bad, Multi, Control, Top,
   732   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
   733   switch (t->base()) {  // Switch on original type
   735   // Cut in half the number of cases I must handle.  Only need cases for when
   736   // the given enum "t->type" is less than or equal to the local enum "type".
   737   case FloatCon:
   738   case DoubleCon:
   739   case Int:
   740   case Long:
   741     return t->xmeet(this);
   743   case OopPtr:
   744     return t->xmeet(this);
   746   case InstPtr:
   747     return t->xmeet(this);
   749   case MetadataPtr:
   750   case KlassPtr:
   751     return t->xmeet(this);
   753   case AryPtr:
   754     return t->xmeet(this);
   756   case NarrowOop:
   757     return t->xmeet(this);
   759   case NarrowKlass:
   760     return t->xmeet(this);
   762   case Bad:                     // Type check
   763   default:                      // Bogus type not in lattice
   764     typerr(t);
   765     return Type::BOTTOM;
   767   case Bottom:                  // Ye Olde Default
   768     return t;
   770   case FloatTop:
   771     if( _base == FloatTop ) return this;
   772   case FloatBot:                // Float
   773     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
   774     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
   775     typerr(t);
   776     return Type::BOTTOM;
   778   case DoubleTop:
   779     if( _base == DoubleTop ) return this;
   780   case DoubleBot:               // Double
   781     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
   782     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
   783     typerr(t);
   784     return Type::BOTTOM;
   786   // These next few cases must match exactly or it is a compile-time error.
   787   case Control:                 // Control of code
   788   case Abio:                    // State of world outside of program
   789   case Memory:
   790     if( _base == t->_base )  return this;
   791     typerr(t);
   792     return Type::BOTTOM;
   794   case Top:                     // Top of the lattice
   795     return this;
   796   }
   798   // The type is unchanged
   799   return this;
   800 }
   802 //-----------------------------filter------------------------------------------
   803 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
   804   const Type* ft = join_helper(kills, include_speculative);
   805   if (ft->empty())
   806     return Type::TOP;           // Canonical empty value
   807   return ft;
   808 }
   810 //------------------------------xdual------------------------------------------
   811 // Compute dual right now.
   812 const Type::TYPES Type::dual_type[Type::lastype] = {
   813   Bad,          // Bad
   814   Control,      // Control
   815   Bottom,       // Top
   816   Bad,          // Int - handled in v-call
   817   Bad,          // Long - handled in v-call
   818   Half,         // Half
   819   Bad,          // NarrowOop - handled in v-call
   820   Bad,          // NarrowKlass - handled in v-call
   822   Bad,          // Tuple - handled in v-call
   823   Bad,          // Array - handled in v-call
   824   Bad,          // VectorS - handled in v-call
   825   Bad,          // VectorD - handled in v-call
   826   Bad,          // VectorX - handled in v-call
   827   Bad,          // VectorY - handled in v-call
   829   Bad,          // AnyPtr - handled in v-call
   830   Bad,          // RawPtr - handled in v-call
   831   Bad,          // OopPtr - handled in v-call
   832   Bad,          // InstPtr - handled in v-call
   833   Bad,          // AryPtr - handled in v-call
   835   Bad,          //  MetadataPtr - handled in v-call
   836   Bad,          // KlassPtr - handled in v-call
   838   Bad,          // Function - handled in v-call
   839   Abio,         // Abio
   840   Return_Address,// Return_Address
   841   Memory,       // Memory
   842   FloatBot,     // FloatTop
   843   FloatCon,     // FloatCon
   844   FloatTop,     // FloatBot
   845   DoubleBot,    // DoubleTop
   846   DoubleCon,    // DoubleCon
   847   DoubleTop,    // DoubleBot
   848   Top           // Bottom
   849 };
   851 const Type *Type::xdual() const {
   852   // Note: the base() accessor asserts the sanity of _base.
   853   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
   854   return new Type(_type_info[_base].dual_type);
   855 }
   857 //------------------------------has_memory-------------------------------------
   858 bool Type::has_memory() const {
   859   Type::TYPES tx = base();
   860   if (tx == Memory) return true;
   861   if (tx == Tuple) {
   862     const TypeTuple *t = is_tuple();
   863     for (uint i=0; i < t->cnt(); i++) {
   864       tx = t->field_at(i)->base();
   865       if (tx == Memory)  return true;
   866     }
   867   }
   868   return false;
   869 }
   871 #ifndef PRODUCT
   872 //------------------------------dump2------------------------------------------
   873 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
   874   st->print("%s", _type_info[_base].msg);
   875 }
   877 //------------------------------dump-------------------------------------------
   878 void Type::dump_on(outputStream *st) const {
   879   ResourceMark rm;
   880   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
   881   dump2(d,1, st);
   882   if (is_ptr_to_narrowoop()) {
   883     st->print(" [narrow]");
   884   } else if (is_ptr_to_narrowklass()) {
   885     st->print(" [narrowklass]");
   886   }
   887 }
   888 #endif
   890 //------------------------------singleton--------------------------------------
   891 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   892 // constants (Ldi nodes).  Singletons are integer, float or double constants.
   893 bool Type::singleton(void) const {
   894   return _base == Top || _base == Half;
   895 }
   897 //------------------------------empty------------------------------------------
   898 // TRUE if Type is a type with no values, FALSE otherwise.
   899 bool Type::empty(void) const {
   900   switch (_base) {
   901   case DoubleTop:
   902   case FloatTop:
   903   case Top:
   904     return true;
   906   case Half:
   907   case Abio:
   908   case Return_Address:
   909   case Memory:
   910   case Bottom:
   911   case FloatBot:
   912   case DoubleBot:
   913     return false;  // never a singleton, therefore never empty
   914   }
   916   ShouldNotReachHere();
   917   return false;
   918 }
   920 //------------------------------dump_stats-------------------------------------
   921 // Dump collected statistics to stderr
   922 #ifndef PRODUCT
   923 void Type::dump_stats() {
   924   tty->print("Types made: %d\n", type_dict()->Size());
   925 }
   926 #endif
   928 //------------------------------typerr-----------------------------------------
   929 void Type::typerr( const Type *t ) const {
   930 #ifndef PRODUCT
   931   tty->print("\nError mixing types: ");
   932   dump();
   933   tty->print(" and ");
   934   t->dump();
   935   tty->print("\n");
   936 #endif
   937   ShouldNotReachHere();
   938 }
   941 //=============================================================================
   942 // Convenience common pre-built types.
   943 const TypeF *TypeF::ZERO;       // Floating point zero
   944 const TypeF *TypeF::ONE;        // Floating point one
   946 //------------------------------make-------------------------------------------
   947 // Create a float constant
   948 const TypeF *TypeF::make(float f) {
   949   return (TypeF*)(new TypeF(f))->hashcons();
   950 }
   952 //------------------------------meet-------------------------------------------
   953 // Compute the MEET of two types.  It returns a new Type object.
   954 const Type *TypeF::xmeet( const Type *t ) const {
   955   // Perform a fast test for common case; meeting the same types together.
   956   if( this == t ) return this;  // Meeting same type-rep?
   958   // Current "this->_base" is FloatCon
   959   switch (t->base()) {          // Switch on original type
   960   case AnyPtr:                  // Mixing with oops happens when javac
   961   case RawPtr:                  // reuses local variables
   962   case OopPtr:
   963   case InstPtr:
   964   case AryPtr:
   965   case MetadataPtr:
   966   case KlassPtr:
   967   case NarrowOop:
   968   case NarrowKlass:
   969   case Int:
   970   case Long:
   971   case DoubleTop:
   972   case DoubleCon:
   973   case DoubleBot:
   974   case Bottom:                  // Ye Olde Default
   975     return Type::BOTTOM;
   977   case FloatBot:
   978     return t;
   980   default:                      // All else is a mistake
   981     typerr(t);
   983   case FloatCon:                // Float-constant vs Float-constant?
   984     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
   985                                 // must compare bitwise as positive zero, negative zero and NaN have
   986                                 // all the same representation in C++
   987       return FLOAT;             // Return generic float
   988                                 // Equal constants
   989   case Top:
   990   case FloatTop:
   991     break;                      // Return the float constant
   992   }
   993   return this;                  // Return the float constant
   994 }
   996 //------------------------------xdual------------------------------------------
   997 // Dual: symmetric
   998 const Type *TypeF::xdual() const {
   999   return this;
  1002 //------------------------------eq---------------------------------------------
  1003 // Structural equality check for Type representations
  1004 bool TypeF::eq( const Type *t ) const {
  1005   if( g_isnan(_f) ||
  1006       g_isnan(t->getf()) ) {
  1007     // One or both are NANs.  If both are NANs return true, else false.
  1008     return (g_isnan(_f) && g_isnan(t->getf()));
  1010   if (_f == t->getf()) {
  1011     // (NaN is impossible at this point, since it is not equal even to itself)
  1012     if (_f == 0.0) {
  1013       // difference between positive and negative zero
  1014       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
  1016     return true;
  1018   return false;
  1021 //------------------------------hash-------------------------------------------
  1022 // Type-specific hashing function.
  1023 int TypeF::hash(void) const {
  1024   return *(int*)(&_f);
  1027 //------------------------------is_finite--------------------------------------
  1028 // Has a finite value
  1029 bool TypeF::is_finite() const {
  1030   return g_isfinite(getf()) != 0;
  1033 //------------------------------is_nan-----------------------------------------
  1034 // Is not a number (NaN)
  1035 bool TypeF::is_nan()    const {
  1036   return g_isnan(getf()) != 0;
  1039 //------------------------------dump2------------------------------------------
  1040 // Dump float constant Type
  1041 #ifndef PRODUCT
  1042 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
  1043   Type::dump2(d,depth, st);
  1044   st->print("%f", _f);
  1046 #endif
  1048 //------------------------------singleton--------------------------------------
  1049 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1050 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1051 // or a single symbol.
  1052 bool TypeF::singleton(void) const {
  1053   return true;                  // Always a singleton
  1056 bool TypeF::empty(void) const {
  1057   return false;                 // always exactly a singleton
  1060 //=============================================================================
  1061 // Convenience common pre-built types.
  1062 const TypeD *TypeD::ZERO;       // Floating point zero
  1063 const TypeD *TypeD::ONE;        // Floating point one
  1065 //------------------------------make-------------------------------------------
  1066 const TypeD *TypeD::make(double d) {
  1067   return (TypeD*)(new TypeD(d))->hashcons();
  1070 //------------------------------meet-------------------------------------------
  1071 // Compute the MEET of two types.  It returns a new Type object.
  1072 const Type *TypeD::xmeet( const Type *t ) const {
  1073   // Perform a fast test for common case; meeting the same types together.
  1074   if( this == t ) return this;  // Meeting same type-rep?
  1076   // Current "this->_base" is DoubleCon
  1077   switch (t->base()) {          // Switch on original type
  1078   case AnyPtr:                  // Mixing with oops happens when javac
  1079   case RawPtr:                  // reuses local variables
  1080   case OopPtr:
  1081   case InstPtr:
  1082   case AryPtr:
  1083   case MetadataPtr:
  1084   case KlassPtr:
  1085   case NarrowOop:
  1086   case NarrowKlass:
  1087   case Int:
  1088   case Long:
  1089   case FloatTop:
  1090   case FloatCon:
  1091   case FloatBot:
  1092   case Bottom:                  // Ye Olde Default
  1093     return Type::BOTTOM;
  1095   case DoubleBot:
  1096     return t;
  1098   default:                      // All else is a mistake
  1099     typerr(t);
  1101   case DoubleCon:               // Double-constant vs Double-constant?
  1102     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
  1103       return DOUBLE;            // Return generic double
  1104   case Top:
  1105   case DoubleTop:
  1106     break;
  1108   return this;                  // Return the double constant
  1111 //------------------------------xdual------------------------------------------
  1112 // Dual: symmetric
  1113 const Type *TypeD::xdual() const {
  1114   return this;
  1117 //------------------------------eq---------------------------------------------
  1118 // Structural equality check for Type representations
  1119 bool TypeD::eq( const Type *t ) const {
  1120   if( g_isnan(_d) ||
  1121       g_isnan(t->getd()) ) {
  1122     // One or both are NANs.  If both are NANs return true, else false.
  1123     return (g_isnan(_d) && g_isnan(t->getd()));
  1125   if (_d == t->getd()) {
  1126     // (NaN is impossible at this point, since it is not equal even to itself)
  1127     if (_d == 0.0) {
  1128       // difference between positive and negative zero
  1129       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
  1131     return true;
  1133   return false;
  1136 //------------------------------hash-------------------------------------------
  1137 // Type-specific hashing function.
  1138 int TypeD::hash(void) const {
  1139   return *(int*)(&_d);
  1142 //------------------------------is_finite--------------------------------------
  1143 // Has a finite value
  1144 bool TypeD::is_finite() const {
  1145   return g_isfinite(getd()) != 0;
  1148 //------------------------------is_nan-----------------------------------------
  1149 // Is not a number (NaN)
  1150 bool TypeD::is_nan()    const {
  1151   return g_isnan(getd()) != 0;
  1154 //------------------------------dump2------------------------------------------
  1155 // Dump double constant Type
  1156 #ifndef PRODUCT
  1157 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
  1158   Type::dump2(d,depth,st);
  1159   st->print("%f", _d);
  1161 #endif
  1163 //------------------------------singleton--------------------------------------
  1164 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1165 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1166 // or a single symbol.
  1167 bool TypeD::singleton(void) const {
  1168   return true;                  // Always a singleton
  1171 bool TypeD::empty(void) const {
  1172   return false;                 // always exactly a singleton
  1175 //=============================================================================
  1176 // Convience common pre-built types.
  1177 const TypeInt *TypeInt::MINUS_1;// -1
  1178 const TypeInt *TypeInt::ZERO;   // 0
  1179 const TypeInt *TypeInt::ONE;    // 1
  1180 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
  1181 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
  1182 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
  1183 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
  1184 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
  1185 const TypeInt *TypeInt::CC_LE;  // [-1,0]
  1186 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
  1187 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
  1188 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
  1189 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
  1190 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
  1191 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
  1192 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
  1193 const TypeInt *TypeInt::INT;    // 32-bit integers
  1194 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
  1195 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
  1197 //------------------------------TypeInt----------------------------------------
  1198 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
  1201 //------------------------------make-------------------------------------------
  1202 const TypeInt *TypeInt::make( jint lo ) {
  1203   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
  1206 static int normalize_int_widen( jint lo, jint hi, int w ) {
  1207   // Certain normalizations keep us sane when comparing types.
  1208   // The 'SMALLINT' covers constants and also CC and its relatives.
  1209   if (lo <= hi) {
  1210     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
  1211     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
  1212   } else {
  1213     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
  1214     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
  1216   return w;
  1219 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
  1220   w = normalize_int_widen(lo, hi, w);
  1221   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
  1224 //------------------------------meet-------------------------------------------
  1225 // Compute the MEET of two types.  It returns a new Type representation object
  1226 // with reference count equal to the number of Types pointing at it.
  1227 // Caller should wrap a Types around it.
  1228 const Type *TypeInt::xmeet( const Type *t ) const {
  1229   // Perform a fast test for common case; meeting the same types together.
  1230   if( this == t ) return this;  // Meeting same type?
  1232   // Currently "this->_base" is a TypeInt
  1233   switch (t->base()) {          // Switch on original type
  1234   case AnyPtr:                  // Mixing with oops happens when javac
  1235   case RawPtr:                  // reuses local variables
  1236   case OopPtr:
  1237   case InstPtr:
  1238   case AryPtr:
  1239   case MetadataPtr:
  1240   case KlassPtr:
  1241   case NarrowOop:
  1242   case NarrowKlass:
  1243   case Long:
  1244   case FloatTop:
  1245   case FloatCon:
  1246   case FloatBot:
  1247   case DoubleTop:
  1248   case DoubleCon:
  1249   case DoubleBot:
  1250   case Bottom:                  // Ye Olde Default
  1251     return Type::BOTTOM;
  1252   default:                      // All else is a mistake
  1253     typerr(t);
  1254   case Top:                     // No change
  1255     return this;
  1256   case Int:                     // Int vs Int?
  1257     break;
  1260   // Expand covered set
  1261   const TypeInt *r = t->is_int();
  1262   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1265 //------------------------------xdual------------------------------------------
  1266 // Dual: reverse hi & lo; flip widen
  1267 const Type *TypeInt::xdual() const {
  1268   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
  1269   return new TypeInt(_hi,_lo,w);
  1272 //------------------------------widen------------------------------------------
  1273 // Only happens for optimistic top-down optimizations.
  1274 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
  1275   // Coming from TOP or such; no widening
  1276   if( old->base() != Int ) return this;
  1277   const TypeInt *ot = old->is_int();
  1279   // If new guy is equal to old guy, no widening
  1280   if( _lo == ot->_lo && _hi == ot->_hi )
  1281     return old;
  1283   // If new guy contains old, then we widened
  1284   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1285     // New contains old
  1286     // If new guy is already wider than old, no widening
  1287     if( _widen > ot->_widen ) return this;
  1288     // If old guy was a constant, do not bother
  1289     if (ot->_lo == ot->_hi)  return this;
  1290     // Now widen new guy.
  1291     // Check for widening too far
  1292     if (_widen == WidenMax) {
  1293       int max = max_jint;
  1294       int min = min_jint;
  1295       if (limit->isa_int()) {
  1296         max = limit->is_int()->_hi;
  1297         min = limit->is_int()->_lo;
  1299       if (min < _lo && _hi < max) {
  1300         // If neither endpoint is extremal yet, push out the endpoint
  1301         // which is closer to its respective limit.
  1302         if (_lo >= 0 ||                 // easy common case
  1303             (juint)(_lo - min) >= (juint)(max - _hi)) {
  1304           // Try to widen to an unsigned range type of 31 bits:
  1305           return make(_lo, max, WidenMax);
  1306         } else {
  1307           return make(min, _hi, WidenMax);
  1310       return TypeInt::INT;
  1312     // Returned widened new guy
  1313     return make(_lo,_hi,_widen+1);
  1316   // If old guy contains new, then we probably widened too far & dropped to
  1317   // bottom.  Return the wider fellow.
  1318   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1319     return old;
  1321   //fatal("Integer value range is not subset");
  1322   //return this;
  1323   return TypeInt::INT;
  1326 //------------------------------narrow---------------------------------------
  1327 // Only happens for pessimistic optimizations.
  1328 const Type *TypeInt::narrow( const Type *old ) const {
  1329   if (_lo >= _hi)  return this;   // already narrow enough
  1330   if (old == NULL)  return this;
  1331   const TypeInt* ot = old->isa_int();
  1332   if (ot == NULL)  return this;
  1333   jint olo = ot->_lo;
  1334   jint ohi = ot->_hi;
  1336   // If new guy is equal to old guy, no narrowing
  1337   if (_lo == olo && _hi == ohi)  return old;
  1339   // If old guy was maximum range, allow the narrowing
  1340   if (olo == min_jint && ohi == max_jint)  return this;
  1342   if (_lo < olo || _hi > ohi)
  1343     return this;                // doesn't narrow; pretty wierd
  1345   // The new type narrows the old type, so look for a "death march".
  1346   // See comments on PhaseTransform::saturate.
  1347   juint nrange = _hi - _lo;
  1348   juint orange = ohi - olo;
  1349   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1350     // Use the new type only if the range shrinks a lot.
  1351     // We do not want the optimizer computing 2^31 point by point.
  1352     return old;
  1355   return this;
  1358 //-----------------------------filter------------------------------------------
  1359 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
  1360   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
  1361   if (ft == NULL || ft->empty())
  1362     return Type::TOP;           // Canonical empty value
  1363   if (ft->_widen < this->_widen) {
  1364     // Do not allow the value of kill->_widen to affect the outcome.
  1365     // The widen bits must be allowed to run freely through the graph.
  1366     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
  1368   return ft;
  1371 //------------------------------eq---------------------------------------------
  1372 // Structural equality check for Type representations
  1373 bool TypeInt::eq( const Type *t ) const {
  1374   const TypeInt *r = t->is_int(); // Handy access
  1375   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
  1378 //------------------------------hash-------------------------------------------
  1379 // Type-specific hashing function.
  1380 int TypeInt::hash(void) const {
  1381   return _lo+_hi+_widen+(int)Type::Int;
  1384 //------------------------------is_finite--------------------------------------
  1385 // Has a finite value
  1386 bool TypeInt::is_finite() const {
  1387   return true;
  1390 //------------------------------dump2------------------------------------------
  1391 // Dump TypeInt
  1392 #ifndef PRODUCT
  1393 static const char* intname(char* buf, jint n) {
  1394   if (n == min_jint)
  1395     return "min";
  1396   else if (n < min_jint + 10000)
  1397     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
  1398   else if (n == max_jint)
  1399     return "max";
  1400   else if (n > max_jint - 10000)
  1401     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
  1402   else
  1403     sprintf(buf, INT32_FORMAT, n);
  1404   return buf;
  1407 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
  1408   char buf[40], buf2[40];
  1409   if (_lo == min_jint && _hi == max_jint)
  1410     st->print("int");
  1411   else if (is_con())
  1412     st->print("int:%s", intname(buf, get_con()));
  1413   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
  1414     st->print("bool");
  1415   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
  1416     st->print("byte");
  1417   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
  1418     st->print("char");
  1419   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
  1420     st->print("short");
  1421   else if (_hi == max_jint)
  1422     st->print("int:>=%s", intname(buf, _lo));
  1423   else if (_lo == min_jint)
  1424     st->print("int:<=%s", intname(buf, _hi));
  1425   else
  1426     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
  1428   if (_widen != 0 && this != TypeInt::INT)
  1429     st->print(":%.*s", _widen, "wwww");
  1431 #endif
  1433 //------------------------------singleton--------------------------------------
  1434 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1435 // constants.
  1436 bool TypeInt::singleton(void) const {
  1437   return _lo >= _hi;
  1440 bool TypeInt::empty(void) const {
  1441   return _lo > _hi;
  1444 //=============================================================================
  1445 // Convenience common pre-built types.
  1446 const TypeLong *TypeLong::MINUS_1;// -1
  1447 const TypeLong *TypeLong::ZERO; // 0
  1448 const TypeLong *TypeLong::ONE;  // 1
  1449 const TypeLong *TypeLong::POS;  // >=0
  1450 const TypeLong *TypeLong::LONG; // 64-bit integers
  1451 const TypeLong *TypeLong::INT;  // 32-bit subrange
  1452 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
  1453 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
  1455 //------------------------------TypeLong---------------------------------------
  1456 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
  1459 //------------------------------make-------------------------------------------
  1460 const TypeLong *TypeLong::make( jlong lo ) {
  1461   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
  1464 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
  1465   // Certain normalizations keep us sane when comparing types.
  1466   // The 'SMALLINT' covers constants.
  1467   if (lo <= hi) {
  1468     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
  1469     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
  1470   } else {
  1471     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
  1472     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
  1474   return w;
  1477 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
  1478   w = normalize_long_widen(lo, hi, w);
  1479   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
  1483 //------------------------------meet-------------------------------------------
  1484 // Compute the MEET of two types.  It returns a new Type representation object
  1485 // with reference count equal to the number of Types pointing at it.
  1486 // Caller should wrap a Types around it.
  1487 const Type *TypeLong::xmeet( const Type *t ) const {
  1488   // Perform a fast test for common case; meeting the same types together.
  1489   if( this == t ) return this;  // Meeting same type?
  1491   // Currently "this->_base" is a TypeLong
  1492   switch (t->base()) {          // Switch on original type
  1493   case AnyPtr:                  // Mixing with oops happens when javac
  1494   case RawPtr:                  // reuses local variables
  1495   case OopPtr:
  1496   case InstPtr:
  1497   case AryPtr:
  1498   case MetadataPtr:
  1499   case KlassPtr:
  1500   case NarrowOop:
  1501   case NarrowKlass:
  1502   case Int:
  1503   case FloatTop:
  1504   case FloatCon:
  1505   case FloatBot:
  1506   case DoubleTop:
  1507   case DoubleCon:
  1508   case DoubleBot:
  1509   case Bottom:                  // Ye Olde Default
  1510     return Type::BOTTOM;
  1511   default:                      // All else is a mistake
  1512     typerr(t);
  1513   case Top:                     // No change
  1514     return this;
  1515   case Long:                    // Long vs Long?
  1516     break;
  1519   // Expand covered set
  1520   const TypeLong *r = t->is_long(); // Turn into a TypeLong
  1521   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1524 //------------------------------xdual------------------------------------------
  1525 // Dual: reverse hi & lo; flip widen
  1526 const Type *TypeLong::xdual() const {
  1527   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
  1528   return new TypeLong(_hi,_lo,w);
  1531 //------------------------------widen------------------------------------------
  1532 // Only happens for optimistic top-down optimizations.
  1533 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
  1534   // Coming from TOP or such; no widening
  1535   if( old->base() != Long ) return this;
  1536   const TypeLong *ot = old->is_long();
  1538   // If new guy is equal to old guy, no widening
  1539   if( _lo == ot->_lo && _hi == ot->_hi )
  1540     return old;
  1542   // If new guy contains old, then we widened
  1543   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1544     // New contains old
  1545     // If new guy is already wider than old, no widening
  1546     if( _widen > ot->_widen ) return this;
  1547     // If old guy was a constant, do not bother
  1548     if (ot->_lo == ot->_hi)  return this;
  1549     // Now widen new guy.
  1550     // Check for widening too far
  1551     if (_widen == WidenMax) {
  1552       jlong max = max_jlong;
  1553       jlong min = min_jlong;
  1554       if (limit->isa_long()) {
  1555         max = limit->is_long()->_hi;
  1556         min = limit->is_long()->_lo;
  1558       if (min < _lo && _hi < max) {
  1559         // If neither endpoint is extremal yet, push out the endpoint
  1560         // which is closer to its respective limit.
  1561         if (_lo >= 0 ||                 // easy common case
  1562             (julong)(_lo - min) >= (julong)(max - _hi)) {
  1563           // Try to widen to an unsigned range type of 32/63 bits:
  1564           if (max >= max_juint && _hi < max_juint)
  1565             return make(_lo, max_juint, WidenMax);
  1566           else
  1567             return make(_lo, max, WidenMax);
  1568         } else {
  1569           return make(min, _hi, WidenMax);
  1572       return TypeLong::LONG;
  1574     // Returned widened new guy
  1575     return make(_lo,_hi,_widen+1);
  1578   // If old guy contains new, then we probably widened too far & dropped to
  1579   // bottom.  Return the wider fellow.
  1580   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1581     return old;
  1583   //  fatal("Long value range is not subset");
  1584   // return this;
  1585   return TypeLong::LONG;
  1588 //------------------------------narrow----------------------------------------
  1589 // Only happens for pessimistic optimizations.
  1590 const Type *TypeLong::narrow( const Type *old ) const {
  1591   if (_lo >= _hi)  return this;   // already narrow enough
  1592   if (old == NULL)  return this;
  1593   const TypeLong* ot = old->isa_long();
  1594   if (ot == NULL)  return this;
  1595   jlong olo = ot->_lo;
  1596   jlong ohi = ot->_hi;
  1598   // If new guy is equal to old guy, no narrowing
  1599   if (_lo == olo && _hi == ohi)  return old;
  1601   // If old guy was maximum range, allow the narrowing
  1602   if (olo == min_jlong && ohi == max_jlong)  return this;
  1604   if (_lo < olo || _hi > ohi)
  1605     return this;                // doesn't narrow; pretty wierd
  1607   // The new type narrows the old type, so look for a "death march".
  1608   // See comments on PhaseTransform::saturate.
  1609   julong nrange = _hi - _lo;
  1610   julong orange = ohi - olo;
  1611   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1612     // Use the new type only if the range shrinks a lot.
  1613     // We do not want the optimizer computing 2^31 point by point.
  1614     return old;
  1617   return this;
  1620 //-----------------------------filter------------------------------------------
  1621 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
  1622   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
  1623   if (ft == NULL || ft->empty())
  1624     return Type::TOP;           // Canonical empty value
  1625   if (ft->_widen < this->_widen) {
  1626     // Do not allow the value of kill->_widen to affect the outcome.
  1627     // The widen bits must be allowed to run freely through the graph.
  1628     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
  1630   return ft;
  1633 //------------------------------eq---------------------------------------------
  1634 // Structural equality check for Type representations
  1635 bool TypeLong::eq( const Type *t ) const {
  1636   const TypeLong *r = t->is_long(); // Handy access
  1637   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
  1640 //------------------------------hash-------------------------------------------
  1641 // Type-specific hashing function.
  1642 int TypeLong::hash(void) const {
  1643   return (int)(_lo+_hi+_widen+(int)Type::Long);
  1646 //------------------------------is_finite--------------------------------------
  1647 // Has a finite value
  1648 bool TypeLong::is_finite() const {
  1649   return true;
  1652 //------------------------------dump2------------------------------------------
  1653 // Dump TypeLong
  1654 #ifndef PRODUCT
  1655 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
  1656   if (n > x) {
  1657     if (n >= x + 10000)  return NULL;
  1658     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
  1659   } else if (n < x) {
  1660     if (n <= x - 10000)  return NULL;
  1661     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
  1662   } else {
  1663     return xname;
  1665   return buf;
  1668 static const char* longname(char* buf, jlong n) {
  1669   const char* str;
  1670   if (n == min_jlong)
  1671     return "min";
  1672   else if (n < min_jlong + 10000)
  1673     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
  1674   else if (n == max_jlong)
  1675     return "max";
  1676   else if (n > max_jlong - 10000)
  1677     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
  1678   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
  1679     return str;
  1680   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
  1681     return str;
  1682   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
  1683     return str;
  1684   else
  1685     sprintf(buf, JLONG_FORMAT, n);
  1686   return buf;
  1689 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
  1690   char buf[80], buf2[80];
  1691   if (_lo == min_jlong && _hi == max_jlong)
  1692     st->print("long");
  1693   else if (is_con())
  1694     st->print("long:%s", longname(buf, get_con()));
  1695   else if (_hi == max_jlong)
  1696     st->print("long:>=%s", longname(buf, _lo));
  1697   else if (_lo == min_jlong)
  1698     st->print("long:<=%s", longname(buf, _hi));
  1699   else
  1700     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
  1702   if (_widen != 0 && this != TypeLong::LONG)
  1703     st->print(":%.*s", _widen, "wwww");
  1705 #endif
  1707 //------------------------------singleton--------------------------------------
  1708 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1709 // constants
  1710 bool TypeLong::singleton(void) const {
  1711   return _lo >= _hi;
  1714 bool TypeLong::empty(void) const {
  1715   return _lo > _hi;
  1718 //=============================================================================
  1719 // Convenience common pre-built types.
  1720 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
  1721 const TypeTuple *TypeTuple::IFFALSE;
  1722 const TypeTuple *TypeTuple::IFTRUE;
  1723 const TypeTuple *TypeTuple::IFNEITHER;
  1724 const TypeTuple *TypeTuple::LOOPBODY;
  1725 const TypeTuple *TypeTuple::MEMBAR;
  1726 const TypeTuple *TypeTuple::STORECONDITIONAL;
  1727 const TypeTuple *TypeTuple::START_I2C;
  1728 const TypeTuple *TypeTuple::INT_PAIR;
  1729 const TypeTuple *TypeTuple::LONG_PAIR;
  1730 const TypeTuple *TypeTuple::INT_CC_PAIR;
  1731 const TypeTuple *TypeTuple::LONG_CC_PAIR;
  1734 //------------------------------make-------------------------------------------
  1735 // Make a TypeTuple from the range of a method signature
  1736 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
  1737   ciType* return_type = sig->return_type();
  1738   uint total_fields = TypeFunc::Parms + return_type->size();
  1739   const Type **field_array = fields(total_fields);
  1740   switch (return_type->basic_type()) {
  1741   case T_LONG:
  1742     field_array[TypeFunc::Parms]   = TypeLong::LONG;
  1743     field_array[TypeFunc::Parms+1] = Type::HALF;
  1744     break;
  1745   case T_DOUBLE:
  1746     field_array[TypeFunc::Parms]   = Type::DOUBLE;
  1747     field_array[TypeFunc::Parms+1] = Type::HALF;
  1748     break;
  1749   case T_OBJECT:
  1750   case T_ARRAY:
  1751   case T_BOOLEAN:
  1752   case T_CHAR:
  1753   case T_FLOAT:
  1754   case T_BYTE:
  1755   case T_SHORT:
  1756   case T_INT:
  1757     field_array[TypeFunc::Parms] = get_const_type(return_type);
  1758     break;
  1759   case T_VOID:
  1760     break;
  1761   default:
  1762     ShouldNotReachHere();
  1764   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1767 // Make a TypeTuple from the domain of a method signature
  1768 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
  1769   uint total_fields = TypeFunc::Parms + sig->size();
  1771   uint pos = TypeFunc::Parms;
  1772   const Type **field_array;
  1773   if (recv != NULL) {
  1774     total_fields++;
  1775     field_array = fields(total_fields);
  1776     // Use get_const_type here because it respects UseUniqueSubclasses:
  1777     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
  1778   } else {
  1779     field_array = fields(total_fields);
  1782   int i = 0;
  1783   while (pos < total_fields) {
  1784     ciType* type = sig->type_at(i);
  1786     switch (type->basic_type()) {
  1787     case T_LONG:
  1788       field_array[pos++] = TypeLong::LONG;
  1789       field_array[pos++] = Type::HALF;
  1790       break;
  1791     case T_DOUBLE:
  1792       field_array[pos++] = Type::DOUBLE;
  1793       field_array[pos++] = Type::HALF;
  1794       break;
  1795     case T_OBJECT:
  1796     case T_ARRAY:
  1797     case T_BOOLEAN:
  1798     case T_CHAR:
  1799     case T_FLOAT:
  1800     case T_BYTE:
  1801     case T_SHORT:
  1802     case T_INT:
  1803       field_array[pos++] = get_const_type(type);
  1804       break;
  1805     default:
  1806       ShouldNotReachHere();
  1808     i++;
  1810   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1813 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
  1814   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
  1817 //------------------------------fields-----------------------------------------
  1818 // Subroutine call type with space allocated for argument types
  1819 const Type **TypeTuple::fields( uint arg_cnt ) {
  1820   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
  1821   flds[TypeFunc::Control  ] = Type::CONTROL;
  1822   flds[TypeFunc::I_O      ] = Type::ABIO;
  1823   flds[TypeFunc::Memory   ] = Type::MEMORY;
  1824   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
  1825   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
  1827   return flds;
  1830 //------------------------------meet-------------------------------------------
  1831 // Compute the MEET of two types.  It returns a new Type object.
  1832 const Type *TypeTuple::xmeet( const Type *t ) const {
  1833   // Perform a fast test for common case; meeting the same types together.
  1834   if( this == t ) return this;  // Meeting same type-rep?
  1836   // Current "this->_base" is Tuple
  1837   switch (t->base()) {          // switch on original type
  1839   case Bottom:                  // Ye Olde Default
  1840     return t;
  1842   default:                      // All else is a mistake
  1843     typerr(t);
  1845   case Tuple: {                 // Meeting 2 signatures?
  1846     const TypeTuple *x = t->is_tuple();
  1847     assert( _cnt == x->_cnt, "" );
  1848     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1849     for( uint i=0; i<_cnt; i++ )
  1850       fields[i] = field_at(i)->xmeet( x->field_at(i) );
  1851     return TypeTuple::make(_cnt,fields);
  1853   case Top:
  1854     break;
  1856   return this;                  // Return the double constant
  1859 //------------------------------xdual------------------------------------------
  1860 // Dual: compute field-by-field dual
  1861 const Type *TypeTuple::xdual() const {
  1862   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1863   for( uint i=0; i<_cnt; i++ )
  1864     fields[i] = _fields[i]->dual();
  1865   return new TypeTuple(_cnt,fields);
  1868 //------------------------------eq---------------------------------------------
  1869 // Structural equality check for Type representations
  1870 bool TypeTuple::eq( const Type *t ) const {
  1871   const TypeTuple *s = (const TypeTuple *)t;
  1872   if (_cnt != s->_cnt)  return false;  // Unequal field counts
  1873   for (uint i = 0; i < _cnt; i++)
  1874     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
  1875       return false;             // Missed
  1876   return true;
  1879 //------------------------------hash-------------------------------------------
  1880 // Type-specific hashing function.
  1881 int TypeTuple::hash(void) const {
  1882   intptr_t sum = _cnt;
  1883   for( uint i=0; i<_cnt; i++ )
  1884     sum += (intptr_t)_fields[i];     // Hash on pointers directly
  1885   return sum;
  1888 //------------------------------dump2------------------------------------------
  1889 // Dump signature Type
  1890 #ifndef PRODUCT
  1891 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
  1892   st->print("{");
  1893   if( !depth || d[this] ) {     // Check for recursive print
  1894     st->print("...}");
  1895     return;
  1897   d.Insert((void*)this, (void*)this);   // Stop recursion
  1898   if( _cnt ) {
  1899     uint i;
  1900     for( i=0; i<_cnt-1; i++ ) {
  1901       st->print("%d:", i);
  1902       _fields[i]->dump2(d, depth-1, st);
  1903       st->print(", ");
  1905     st->print("%d:", i);
  1906     _fields[i]->dump2(d, depth-1, st);
  1908   st->print("}");
  1910 #endif
  1912 //------------------------------singleton--------------------------------------
  1913 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1914 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1915 // or a single symbol.
  1916 bool TypeTuple::singleton(void) const {
  1917   return false;                 // Never a singleton
  1920 bool TypeTuple::empty(void) const {
  1921   for( uint i=0; i<_cnt; i++ ) {
  1922     if (_fields[i]->empty())  return true;
  1924   return false;
  1927 //=============================================================================
  1928 // Convenience common pre-built types.
  1930 inline const TypeInt* normalize_array_size(const TypeInt* size) {
  1931   // Certain normalizations keep us sane when comparing types.
  1932   // We do not want arrayOop variables to differ only by the wideness
  1933   // of their index types.  Pick minimum wideness, since that is the
  1934   // forced wideness of small ranges anyway.
  1935   if (size->_widen != Type::WidenMin)
  1936     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
  1937   else
  1938     return size;
  1941 //------------------------------make-------------------------------------------
  1942 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
  1943   if (UseCompressedOops && elem->isa_oopptr()) {
  1944     elem = elem->make_narrowoop();
  1946   size = normalize_array_size(size);
  1947   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
  1950 //------------------------------meet-------------------------------------------
  1951 // Compute the MEET of two types.  It returns a new Type object.
  1952 const Type *TypeAry::xmeet( const Type *t ) const {
  1953   // Perform a fast test for common case; meeting the same types together.
  1954   if( this == t ) return this;  // Meeting same type-rep?
  1956   // Current "this->_base" is Ary
  1957   switch (t->base()) {          // switch on original type
  1959   case Bottom:                  // Ye Olde Default
  1960     return t;
  1962   default:                      // All else is a mistake
  1963     typerr(t);
  1965   case Array: {                 // Meeting 2 arrays?
  1966     const TypeAry *a = t->is_ary();
  1967     return TypeAry::make(_elem->meet_speculative(a->_elem),
  1968                          _size->xmeet(a->_size)->is_int(),
  1969                          _stable & a->_stable);
  1971   case Top:
  1972     break;
  1974   return this;                  // Return the double constant
  1977 //------------------------------xdual------------------------------------------
  1978 // Dual: compute field-by-field dual
  1979 const Type *TypeAry::xdual() const {
  1980   const TypeInt* size_dual = _size->dual()->is_int();
  1981   size_dual = normalize_array_size(size_dual);
  1982   return new TypeAry(_elem->dual(), size_dual, !_stable);
  1985 //------------------------------eq---------------------------------------------
  1986 // Structural equality check for Type representations
  1987 bool TypeAry::eq( const Type *t ) const {
  1988   const TypeAry *a = (const TypeAry*)t;
  1989   return _elem == a->_elem &&
  1990     _stable == a->_stable &&
  1991     _size == a->_size;
  1994 //------------------------------hash-------------------------------------------
  1995 // Type-specific hashing function.
  1996 int TypeAry::hash(void) const {
  1997   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
  2000 /**
  2001  * Return same type without a speculative part in the element
  2002  */
  2003 const Type* TypeAry::remove_speculative() const {
  2004   return make(_elem->remove_speculative(), _size, _stable);
  2007 //----------------------interface_vs_oop---------------------------------------
  2008 #ifdef ASSERT
  2009 bool TypeAry::interface_vs_oop(const Type *t) const {
  2010   const TypeAry* t_ary = t->is_ary();
  2011   if (t_ary) {
  2012     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
  2013     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
  2014     if(this_ptr != NULL && t_ptr != NULL) {
  2015       return this_ptr->interface_vs_oop(t_ptr);
  2018   return false;
  2020 #endif
  2022 //------------------------------dump2------------------------------------------
  2023 #ifndef PRODUCT
  2024 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
  2025   if (_stable)  st->print("stable:");
  2026   _elem->dump2(d, depth, st);
  2027   st->print("[");
  2028   _size->dump2(d, depth, st);
  2029   st->print("]");
  2031 #endif
  2033 //------------------------------singleton--------------------------------------
  2034 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2035 // constants (Ldi nodes).  Singletons are integer, float or double constants
  2036 // or a single symbol.
  2037 bool TypeAry::singleton(void) const {
  2038   return false;                 // Never a singleton
  2041 bool TypeAry::empty(void) const {
  2042   return _elem->empty() || _size->empty();
  2045 //--------------------------ary_must_be_exact----------------------------------
  2046 bool TypeAry::ary_must_be_exact() const {
  2047   if (!UseExactTypes)       return false;
  2048   // This logic looks at the element type of an array, and returns true
  2049   // if the element type is either a primitive or a final instance class.
  2050   // In such cases, an array built on this ary must have no subclasses.
  2051   if (_elem == BOTTOM)      return false;  // general array not exact
  2052   if (_elem == TOP   )      return false;  // inverted general array not exact
  2053   const TypeOopPtr*  toop = NULL;
  2054   if (UseCompressedOops && _elem->isa_narrowoop()) {
  2055     toop = _elem->make_ptr()->isa_oopptr();
  2056   } else {
  2057     toop = _elem->isa_oopptr();
  2059   if (!toop)                return true;   // a primitive type, like int
  2060   ciKlass* tklass = toop->klass();
  2061   if (tklass == NULL)       return false;  // unloaded class
  2062   if (!tklass->is_loaded()) return false;  // unloaded class
  2063   const TypeInstPtr* tinst;
  2064   if (_elem->isa_narrowoop())
  2065     tinst = _elem->make_ptr()->isa_instptr();
  2066   else
  2067     tinst = _elem->isa_instptr();
  2068   if (tinst)
  2069     return tklass->as_instance_klass()->is_final();
  2070   const TypeAryPtr*  tap;
  2071   if (_elem->isa_narrowoop())
  2072     tap = _elem->make_ptr()->isa_aryptr();
  2073   else
  2074     tap = _elem->isa_aryptr();
  2075   if (tap)
  2076     return tap->ary()->ary_must_be_exact();
  2077   return false;
  2080 //==============================TypeVect=======================================
  2081 // Convenience common pre-built types.
  2082 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
  2083 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
  2084 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
  2085 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
  2087 //------------------------------make-------------------------------------------
  2088 const TypeVect* TypeVect::make(const Type *elem, uint length) {
  2089   BasicType elem_bt = elem->array_element_basic_type();
  2090   assert(is_java_primitive(elem_bt), "only primitive types in vector");
  2091   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
  2092   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
  2093   int size = length * type2aelembytes(elem_bt);
  2094   switch (Matcher::vector_ideal_reg(size)) {
  2095   case Op_VecS:
  2096     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
  2097   case Op_RegL:
  2098   case Op_VecD:
  2099   case Op_RegD:
  2100     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
  2101   case Op_VecX:
  2102     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
  2103   case Op_VecY:
  2104     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
  2106  ShouldNotReachHere();
  2107   return NULL;
  2110 //------------------------------meet-------------------------------------------
  2111 // Compute the MEET of two types.  It returns a new Type object.
  2112 const Type *TypeVect::xmeet( const Type *t ) const {
  2113   // Perform a fast test for common case; meeting the same types together.
  2114   if( this == t ) return this;  // Meeting same type-rep?
  2116   // Current "this->_base" is Vector
  2117   switch (t->base()) {          // switch on original type
  2119   case Bottom:                  // Ye Olde Default
  2120     return t;
  2122   default:                      // All else is a mistake
  2123     typerr(t);
  2125   case VectorS:
  2126   case VectorD:
  2127   case VectorX:
  2128   case VectorY: {                // Meeting 2 vectors?
  2129     const TypeVect* v = t->is_vect();
  2130     assert(  base() == v->base(), "");
  2131     assert(length() == v->length(), "");
  2132     assert(element_basic_type() == v->element_basic_type(), "");
  2133     return TypeVect::make(_elem->xmeet(v->_elem), _length);
  2135   case Top:
  2136     break;
  2138   return this;
  2141 //------------------------------xdual------------------------------------------
  2142 // Dual: compute field-by-field dual
  2143 const Type *TypeVect::xdual() const {
  2144   return new TypeVect(base(), _elem->dual(), _length);
  2147 //------------------------------eq---------------------------------------------
  2148 // Structural equality check for Type representations
  2149 bool TypeVect::eq(const Type *t) const {
  2150   const TypeVect *v = t->is_vect();
  2151   return (_elem == v->_elem) && (_length == v->_length);
  2154 //------------------------------hash-------------------------------------------
  2155 // Type-specific hashing function.
  2156 int TypeVect::hash(void) const {
  2157   return (intptr_t)_elem + (intptr_t)_length;
  2160 //------------------------------singleton--------------------------------------
  2161 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2162 // constants (Ldi nodes).  Vector is singleton if all elements are the same
  2163 // constant value (when vector is created with Replicate code).
  2164 bool TypeVect::singleton(void) const {
  2165 // There is no Con node for vectors yet.
  2166 //  return _elem->singleton();
  2167   return false;
  2170 bool TypeVect::empty(void) const {
  2171   return _elem->empty();
  2174 //------------------------------dump2------------------------------------------
  2175 #ifndef PRODUCT
  2176 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
  2177   switch (base()) {
  2178   case VectorS:
  2179     st->print("vectors["); break;
  2180   case VectorD:
  2181     st->print("vectord["); break;
  2182   case VectorX:
  2183     st->print("vectorx["); break;
  2184   case VectorY:
  2185     st->print("vectory["); break;
  2186   default:
  2187     ShouldNotReachHere();
  2189   st->print("%d]:{", _length);
  2190   _elem->dump2(d, depth, st);
  2191   st->print("}");
  2193 #endif
  2196 //=============================================================================
  2197 // Convenience common pre-built types.
  2198 const TypePtr *TypePtr::NULL_PTR;
  2199 const TypePtr *TypePtr::NOTNULL;
  2200 const TypePtr *TypePtr::BOTTOM;
  2202 //------------------------------meet-------------------------------------------
  2203 // Meet over the PTR enum
  2204 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
  2205   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
  2206   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
  2207   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
  2208   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
  2209   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
  2210   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
  2211   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
  2212 };
  2214 //------------------------------make-------------------------------------------
  2215 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
  2216   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
  2219 //------------------------------cast_to_ptr_type-------------------------------
  2220 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
  2221   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
  2222   if( ptr == _ptr ) return this;
  2223   return make(_base, ptr, _offset);
  2226 //------------------------------get_con----------------------------------------
  2227 intptr_t TypePtr::get_con() const {
  2228   assert( _ptr == Null, "" );
  2229   return _offset;
  2232 //------------------------------meet-------------------------------------------
  2233 // Compute the MEET of two types.  It returns a new Type object.
  2234 const Type *TypePtr::xmeet( const Type *t ) const {
  2235   // Perform a fast test for common case; meeting the same types together.
  2236   if( this == t ) return this;  // Meeting same type-rep?
  2238   // Current "this->_base" is AnyPtr
  2239   switch (t->base()) {          // switch on original type
  2240   case Int:                     // Mixing ints & oops happens when javac
  2241   case Long:                    // reuses local variables
  2242   case FloatTop:
  2243   case FloatCon:
  2244   case FloatBot:
  2245   case DoubleTop:
  2246   case DoubleCon:
  2247   case DoubleBot:
  2248   case NarrowOop:
  2249   case NarrowKlass:
  2250   case Bottom:                  // Ye Olde Default
  2251     return Type::BOTTOM;
  2252   case Top:
  2253     return this;
  2255   case AnyPtr: {                // Meeting to AnyPtrs
  2256     const TypePtr *tp = t->is_ptr();
  2257     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
  2259   case RawPtr:                  // For these, flip the call around to cut down
  2260   case OopPtr:
  2261   case InstPtr:                 // on the cases I have to handle.
  2262   case AryPtr:
  2263   case MetadataPtr:
  2264   case KlassPtr:
  2265     return t->xmeet(this);      // Call in reverse direction
  2266   default:                      // All else is a mistake
  2267     typerr(t);
  2270   return this;
  2273 //------------------------------meet_offset------------------------------------
  2274 int TypePtr::meet_offset( int offset ) const {
  2275   // Either is 'TOP' offset?  Return the other offset!
  2276   if( _offset == OffsetTop ) return offset;
  2277   if( offset == OffsetTop ) return _offset;
  2278   // If either is different, return 'BOTTOM' offset
  2279   if( _offset != offset ) return OffsetBot;
  2280   return _offset;
  2283 //------------------------------dual_offset------------------------------------
  2284 int TypePtr::dual_offset( ) const {
  2285   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
  2286   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
  2287   return _offset;               // Map everything else into self
  2290 //------------------------------xdual------------------------------------------
  2291 // Dual: compute field-by-field dual
  2292 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
  2293   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
  2294 };
  2295 const Type *TypePtr::xdual() const {
  2296   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
  2299 //------------------------------xadd_offset------------------------------------
  2300 int TypePtr::xadd_offset( intptr_t offset ) const {
  2301   // Adding to 'TOP' offset?  Return 'TOP'!
  2302   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
  2303   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  2304   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
  2305   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  2306   offset += (intptr_t)_offset;
  2307   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
  2309   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  2310   // It is possible to construct a negative offset during PhaseCCP
  2312   return (int)offset;        // Sum valid offsets
  2315 //------------------------------add_offset-------------------------------------
  2316 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
  2317   return make( AnyPtr, _ptr, xadd_offset(offset) );
  2320 //------------------------------eq---------------------------------------------
  2321 // Structural equality check for Type representations
  2322 bool TypePtr::eq( const Type *t ) const {
  2323   const TypePtr *a = (const TypePtr*)t;
  2324   return _ptr == a->ptr() && _offset == a->offset();
  2327 //------------------------------hash-------------------------------------------
  2328 // Type-specific hashing function.
  2329 int TypePtr::hash(void) const {
  2330   return _ptr + _offset;
  2333 //------------------------------dump2------------------------------------------
  2334 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
  2335   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
  2336 };
  2338 #ifndef PRODUCT
  2339 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2340   if( _ptr == Null ) st->print("NULL");
  2341   else st->print("%s *", ptr_msg[_ptr]);
  2342   if( _offset == OffsetTop ) st->print("+top");
  2343   else if( _offset == OffsetBot ) st->print("+bot");
  2344   else if( _offset ) st->print("+%d", _offset);
  2346 #endif
  2348 //------------------------------singleton--------------------------------------
  2349 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2350 // constants
  2351 bool TypePtr::singleton(void) const {
  2352   // TopPTR, Null, AnyNull, Constant are all singletons
  2353   return (_offset != OffsetBot) && !below_centerline(_ptr);
  2356 bool TypePtr::empty(void) const {
  2357   return (_offset == OffsetTop) || above_centerline(_ptr);
  2360 //=============================================================================
  2361 // Convenience common pre-built types.
  2362 const TypeRawPtr *TypeRawPtr::BOTTOM;
  2363 const TypeRawPtr *TypeRawPtr::NOTNULL;
  2365 //------------------------------make-------------------------------------------
  2366 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
  2367   assert( ptr != Constant, "what is the constant?" );
  2368   assert( ptr != Null, "Use TypePtr for NULL" );
  2369   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
  2372 const TypeRawPtr *TypeRawPtr::make( address bits ) {
  2373   assert( bits, "Use TypePtr for NULL" );
  2374   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
  2377 //------------------------------cast_to_ptr_type-------------------------------
  2378 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
  2379   assert( ptr != Constant, "what is the constant?" );
  2380   assert( ptr != Null, "Use TypePtr for NULL" );
  2381   assert( _bits==0, "Why cast a constant address?");
  2382   if( ptr == _ptr ) return this;
  2383   return make(ptr);
  2386 //------------------------------get_con----------------------------------------
  2387 intptr_t TypeRawPtr::get_con() const {
  2388   assert( _ptr == Null || _ptr == Constant, "" );
  2389   return (intptr_t)_bits;
  2392 //------------------------------meet-------------------------------------------
  2393 // Compute the MEET of two types.  It returns a new Type object.
  2394 const Type *TypeRawPtr::xmeet( const Type *t ) const {
  2395   // Perform a fast test for common case; meeting the same types together.
  2396   if( this == t ) return this;  // Meeting same type-rep?
  2398   // Current "this->_base" is RawPtr
  2399   switch( t->base() ) {         // switch on original type
  2400   case Bottom:                  // Ye Olde Default
  2401     return t;
  2402   case Top:
  2403     return this;
  2404   case AnyPtr:                  // Meeting to AnyPtrs
  2405     break;
  2406   case RawPtr: {                // might be top, bot, any/not or constant
  2407     enum PTR tptr = t->is_ptr()->ptr();
  2408     enum PTR ptr = meet_ptr( tptr );
  2409     if( ptr == Constant ) {     // Cannot be equal constants, so...
  2410       if( tptr == Constant && _ptr != Constant)  return t;
  2411       if( _ptr == Constant && tptr != Constant)  return this;
  2412       ptr = NotNull;            // Fall down in lattice
  2414     return make( ptr );
  2417   case OopPtr:
  2418   case InstPtr:
  2419   case AryPtr:
  2420   case MetadataPtr:
  2421   case KlassPtr:
  2422     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2423   default:                      // All else is a mistake
  2424     typerr(t);
  2427   // Found an AnyPtr type vs self-RawPtr type
  2428   const TypePtr *tp = t->is_ptr();
  2429   switch (tp->ptr()) {
  2430   case TypePtr::TopPTR:  return this;
  2431   case TypePtr::BotPTR:  return t;
  2432   case TypePtr::Null:
  2433     if( _ptr == TypePtr::TopPTR ) return t;
  2434     return TypeRawPtr::BOTTOM;
  2435   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
  2436   case TypePtr::AnyNull:
  2437     if( _ptr == TypePtr::Constant) return this;
  2438     return make( meet_ptr(TypePtr::AnyNull) );
  2439   default: ShouldNotReachHere();
  2441   return this;
  2444 //------------------------------xdual------------------------------------------
  2445 // Dual: compute field-by-field dual
  2446 const Type *TypeRawPtr::xdual() const {
  2447   return new TypeRawPtr( dual_ptr(), _bits );
  2450 //------------------------------add_offset-------------------------------------
  2451 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
  2452   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
  2453   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
  2454   if( offset == 0 ) return this; // No change
  2455   switch (_ptr) {
  2456   case TypePtr::TopPTR:
  2457   case TypePtr::BotPTR:
  2458   case TypePtr::NotNull:
  2459     return this;
  2460   case TypePtr::Null:
  2461   case TypePtr::Constant: {
  2462     address bits = _bits+offset;
  2463     if ( bits == 0 ) return TypePtr::NULL_PTR;
  2464     return make( bits );
  2466   default:  ShouldNotReachHere();
  2468   return NULL;                  // Lint noise
  2471 //------------------------------eq---------------------------------------------
  2472 // Structural equality check for Type representations
  2473 bool TypeRawPtr::eq( const Type *t ) const {
  2474   const TypeRawPtr *a = (const TypeRawPtr*)t;
  2475   return _bits == a->_bits && TypePtr::eq(t);
  2478 //------------------------------hash-------------------------------------------
  2479 // Type-specific hashing function.
  2480 int TypeRawPtr::hash(void) const {
  2481   return (intptr_t)_bits + TypePtr::hash();
  2484 //------------------------------dump2------------------------------------------
  2485 #ifndef PRODUCT
  2486 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2487   if( _ptr == Constant )
  2488     st->print(INTPTR_FORMAT, _bits);
  2489   else
  2490     st->print("rawptr:%s", ptr_msg[_ptr]);
  2492 #endif
  2494 //=============================================================================
  2495 // Convenience common pre-built type.
  2496 const TypeOopPtr *TypeOopPtr::BOTTOM;
  2498 //------------------------------TypeOopPtr-------------------------------------
  2499 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth)
  2500   : TypePtr(t, ptr, offset),
  2501     _const_oop(o), _klass(k),
  2502     _klass_is_exact(xk),
  2503     _is_ptr_to_narrowoop(false),
  2504     _is_ptr_to_narrowklass(false),
  2505     _is_ptr_to_boxed_value(false),
  2506     _instance_id(instance_id),
  2507     _speculative(speculative),
  2508     _inline_depth(inline_depth){
  2509   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
  2510       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
  2511     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
  2513 #ifdef _LP64
  2514   if (_offset != 0) {
  2515     if (_offset == oopDesc::klass_offset_in_bytes()) {
  2516       _is_ptr_to_narrowklass = UseCompressedClassPointers;
  2517     } else if (klass() == NULL) {
  2518       // Array with unknown body type
  2519       assert(this->isa_aryptr(), "only arrays without klass");
  2520       _is_ptr_to_narrowoop = UseCompressedOops;
  2521     } else if (this->isa_aryptr()) {
  2522       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
  2523                              _offset != arrayOopDesc::length_offset_in_bytes());
  2524     } else if (klass()->is_instance_klass()) {
  2525       ciInstanceKlass* ik = klass()->as_instance_klass();
  2526       ciField* field = NULL;
  2527       if (this->isa_klassptr()) {
  2528         // Perm objects don't use compressed references
  2529       } else if (_offset == OffsetBot || _offset == OffsetTop) {
  2530         // unsafe access
  2531         _is_ptr_to_narrowoop = UseCompressedOops;
  2532       } else { // exclude unsafe ops
  2533         assert(this->isa_instptr(), "must be an instance ptr.");
  2535         if (klass() == ciEnv::current()->Class_klass() &&
  2536             (_offset == java_lang_Class::klass_offset_in_bytes() ||
  2537              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2538           // Special hidden fields from the Class.
  2539           assert(this->isa_instptr(), "must be an instance ptr.");
  2540           _is_ptr_to_narrowoop = false;
  2541         } else if (klass() == ciEnv::current()->Class_klass() &&
  2542                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
  2543           // Static fields
  2544           assert(o != NULL, "must be constant");
  2545           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
  2546           ciField* field = k->get_field_by_offset(_offset, true);
  2547           assert(field != NULL, "missing field");
  2548           BasicType basic_elem_type = field->layout_type();
  2549           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
  2550                                                        basic_elem_type == T_ARRAY);
  2551         } else {
  2552           // Instance fields which contains a compressed oop references.
  2553           field = ik->get_field_by_offset(_offset, false);
  2554           if (field != NULL) {
  2555             BasicType basic_elem_type = field->layout_type();
  2556             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
  2557                                                          basic_elem_type == T_ARRAY);
  2558           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
  2559             // Compile::find_alias_type() cast exactness on all types to verify
  2560             // that it does not affect alias type.
  2561             _is_ptr_to_narrowoop = UseCompressedOops;
  2562           } else {
  2563             // Type for the copy start in LibraryCallKit::inline_native_clone().
  2564             _is_ptr_to_narrowoop = UseCompressedOops;
  2570 #endif
  2573 //------------------------------make-------------------------------------------
  2574 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
  2575                                    int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
  2576   assert(ptr != Constant, "no constant generic pointers");
  2577   ciKlass*  k = Compile::current()->env()->Object_klass();
  2578   bool      xk = false;
  2579   ciObject* o = NULL;
  2580   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
  2584 //------------------------------cast_to_ptr_type-------------------------------
  2585 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
  2586   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
  2587   if( ptr == _ptr ) return this;
  2588   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
  2591 //-----------------------------cast_to_instance_id----------------------------
  2592 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
  2593   // There are no instances of a general oop.
  2594   // Return self unchanged.
  2595   return this;
  2598 //-----------------------------cast_to_exactness-------------------------------
  2599 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
  2600   // There is no such thing as an exact general oop.
  2601   // Return self unchanged.
  2602   return this;
  2606 //------------------------------as_klass_type----------------------------------
  2607 // Return the klass type corresponding to this instance or array type.
  2608 // It is the type that is loaded from an object of this type.
  2609 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
  2610   ciKlass* k = klass();
  2611   bool    xk = klass_is_exact();
  2612   if (k == NULL)
  2613     return TypeKlassPtr::OBJECT;
  2614   else
  2615     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
  2618 const Type *TypeOopPtr::xmeet(const Type *t) const {
  2619   const Type* res = xmeet_helper(t);
  2620   if (res->isa_oopptr() == NULL) {
  2621     return res;
  2624   const TypeOopPtr* res_oopptr = res->is_oopptr();
  2625   if (res_oopptr->speculative() != NULL) {
  2626     // type->speculative() == NULL means that speculation is no better
  2627     // than type, i.e. type->speculative() == type. So there are 2
  2628     // ways to represent the fact that we have no useful speculative
  2629     // data and we should use a single one to be able to test for
  2630     // equality between types. Check whether type->speculative() ==
  2631     // type and set speculative to NULL if it is the case.
  2632     if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
  2633       return res_oopptr->remove_speculative();
  2637   return res;
  2640 //------------------------------meet-------------------------------------------
  2641 // Compute the MEET of two types.  It returns a new Type object.
  2642 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
  2643   // Perform a fast test for common case; meeting the same types together.
  2644   if( this == t ) return this;  // Meeting same type-rep?
  2646   // Current "this->_base" is OopPtr
  2647   switch (t->base()) {          // switch on original type
  2649   case Int:                     // Mixing ints & oops happens when javac
  2650   case Long:                    // reuses local variables
  2651   case FloatTop:
  2652   case FloatCon:
  2653   case FloatBot:
  2654   case DoubleTop:
  2655   case DoubleCon:
  2656   case DoubleBot:
  2657   case NarrowOop:
  2658   case NarrowKlass:
  2659   case Bottom:                  // Ye Olde Default
  2660     return Type::BOTTOM;
  2661   case Top:
  2662     return this;
  2664   default:                      // All else is a mistake
  2665     typerr(t);
  2667   case RawPtr:
  2668   case MetadataPtr:
  2669   case KlassPtr:
  2670     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2672   case AnyPtr: {
  2673     // Found an AnyPtr type vs self-OopPtr type
  2674     const TypePtr *tp = t->is_ptr();
  2675     int offset = meet_offset(tp->offset());
  2676     PTR ptr = meet_ptr(tp->ptr());
  2677     switch (tp->ptr()) {
  2678     case Null:
  2679       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  2680       // else fall through:
  2681     case TopPTR:
  2682     case AnyNull: {
  2683       int instance_id = meet_instance_id(InstanceTop);
  2684       const TypeOopPtr* speculative = _speculative;
  2685       return make(ptr, offset, instance_id, speculative, _inline_depth);
  2687     case BotPTR:
  2688     case NotNull:
  2689       return TypePtr::make(AnyPtr, ptr, offset);
  2690     default: typerr(t);
  2694   case OopPtr: {                 // Meeting to other OopPtrs
  2695     const TypeOopPtr *tp = t->is_oopptr();
  2696     int instance_id = meet_instance_id(tp->instance_id());
  2697     const TypeOopPtr* speculative = xmeet_speculative(tp);
  2698     int depth = meet_inline_depth(tp->inline_depth());
  2699     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
  2702   case InstPtr:                  // For these, flip the call around to cut down
  2703   case AryPtr:
  2704     return t->xmeet(this);      // Call in reverse direction
  2706   } // End of switch
  2707   return this;                  // Return the double constant
  2711 //------------------------------xdual------------------------------------------
  2712 // Dual of a pure heap pointer.  No relevant klass or oop information.
  2713 const Type *TypeOopPtr::xdual() const {
  2714   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
  2715   assert(const_oop() == NULL,             "no constants here");
  2716   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
  2719 //--------------------------make_from_klass_common-----------------------------
  2720 // Computes the element-type given a klass.
  2721 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
  2722   if (klass->is_instance_klass()) {
  2723     Compile* C = Compile::current();
  2724     Dependencies* deps = C->dependencies();
  2725     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
  2726     // Element is an instance
  2727     bool klass_is_exact = false;
  2728     if (klass->is_loaded()) {
  2729       // Try to set klass_is_exact.
  2730       ciInstanceKlass* ik = klass->as_instance_klass();
  2731       klass_is_exact = ik->is_final();
  2732       if (!klass_is_exact && klass_change
  2733           && deps != NULL && UseUniqueSubclasses) {
  2734         ciInstanceKlass* sub = ik->unique_concrete_subklass();
  2735         if (sub != NULL) {
  2736           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
  2737           klass = ik = sub;
  2738           klass_is_exact = sub->is_final();
  2741       if (!klass_is_exact && try_for_exact
  2742           && deps != NULL && UseExactTypes) {
  2743         if (!ik->is_interface() && !ik->has_subklass()) {
  2744           // Add a dependence; if concrete subclass added we need to recompile
  2745           deps->assert_leaf_type(ik);
  2746           klass_is_exact = true;
  2750     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
  2751   } else if (klass->is_obj_array_klass()) {
  2752     // Element is an object array. Recursively call ourself.
  2753     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
  2754     bool xk = etype->klass_is_exact();
  2755     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2756     // We used to pass NotNull in here, asserting that the sub-arrays
  2757     // are all not-null.  This is not true in generally, as code can
  2758     // slam NULLs down in the subarrays.
  2759     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
  2760     return arr;
  2761   } else if (klass->is_type_array_klass()) {
  2762     // Element is an typeArray
  2763     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
  2764     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2765     // We used to pass NotNull in here, asserting that the array pointer
  2766     // is not-null. That was not true in general.
  2767     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
  2768     return arr;
  2769   } else {
  2770     ShouldNotReachHere();
  2771     return NULL;
  2775 //------------------------------make_from_constant-----------------------------
  2776 // Make a java pointer from an oop constant
  2777 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
  2778                                                  bool require_constant,
  2779                                                  bool is_autobox_cache) {
  2780   assert(!o->is_null_object(), "null object not yet handled here.");
  2781   ciKlass* klass = o->klass();
  2782   if (klass->is_instance_klass()) {
  2783     // Element is an instance
  2784     if (require_constant) {
  2785       if (!o->can_be_constant())  return NULL;
  2786     } else if (!o->should_be_constant()) {
  2787       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
  2789     return TypeInstPtr::make(o);
  2790   } else if (klass->is_obj_array_klass()) {
  2791     // Element is an object array. Recursively call ourself.
  2792     const TypeOopPtr *etype =
  2793       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
  2794     if (is_autobox_cache) {
  2795       // The pointers in the autobox arrays are always non-null.
  2796       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  2798     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2799     // We used to pass NotNull in here, asserting that the sub-arrays
  2800     // are all not-null.  This is not true in generally, as code can
  2801     // slam NULLs down in the subarrays.
  2802     if (require_constant) {
  2803       if (!o->can_be_constant())  return NULL;
  2804     } else if (!o->should_be_constant()) {
  2805       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2807     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, InlineDepthBottom, is_autobox_cache);
  2808     return arr;
  2809   } else if (klass->is_type_array_klass()) {
  2810     // Element is an typeArray
  2811     const Type* etype =
  2812       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
  2813     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2814     // We used to pass NotNull in here, asserting that the array pointer
  2815     // is not-null. That was not true in general.
  2816     if (require_constant) {
  2817       if (!o->can_be_constant())  return NULL;
  2818     } else if (!o->should_be_constant()) {
  2819       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2821     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2822     return arr;
  2825   fatal("unhandled object type");
  2826   return NULL;
  2829 //------------------------------get_con----------------------------------------
  2830 intptr_t TypeOopPtr::get_con() const {
  2831   assert( _ptr == Null || _ptr == Constant, "" );
  2832   assert( _offset >= 0, "" );
  2834   if (_offset != 0) {
  2835     // After being ported to the compiler interface, the compiler no longer
  2836     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  2837     // to a handle at compile time.  This handle is embedded in the generated
  2838     // code and dereferenced at the time the nmethod is made.  Until that time,
  2839     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  2840     // have access to the addresses!).  This does not seem to currently happen,
  2841     // but this assertion here is to help prevent its occurence.
  2842     tty->print_cr("Found oop constant with non-zero offset");
  2843     ShouldNotReachHere();
  2846   return (intptr_t)const_oop()->constant_encoding();
  2850 //-----------------------------filter------------------------------------------
  2851 // Do not allow interface-vs.-noninterface joins to collapse to top.
  2852 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
  2854   const Type* ft = join_helper(kills, include_speculative);
  2855   const TypeInstPtr* ftip = ft->isa_instptr();
  2856   const TypeInstPtr* ktip = kills->isa_instptr();
  2858   if (ft->empty()) {
  2859     // Check for evil case of 'this' being a class and 'kills' expecting an
  2860     // interface.  This can happen because the bytecodes do not contain
  2861     // enough type info to distinguish a Java-level interface variable
  2862     // from a Java-level object variable.  If we meet 2 classes which
  2863     // both implement interface I, but their meet is at 'j/l/O' which
  2864     // doesn't implement I, we have no way to tell if the result should
  2865     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
  2866     // into a Phi which "knows" it's an Interface type we'll have to
  2867     // uplift the type.
  2868     if (!empty()) {
  2869       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
  2870         return kills;           // Uplift to interface
  2872       // Also check for evil cases of 'this' being a class array
  2873       // and 'kills' expecting an array of interfaces.
  2874       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
  2875       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
  2876         return kills;           // Uplift to array of interface
  2880     return Type::TOP;           // Canonical empty value
  2883   // If we have an interface-typed Phi or cast and we narrow to a class type,
  2884   // the join should report back the class.  However, if we have a J/L/Object
  2885   // class-typed Phi and an interface flows in, it's possible that the meet &
  2886   // join report an interface back out.  This isn't possible but happens
  2887   // because the type system doesn't interact well with interfaces.
  2888   if (ftip != NULL && ktip != NULL &&
  2889       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
  2890       ktip->is_loaded() && !ktip->klass()->is_interface()) {
  2891     // Happens in a CTW of rt.jar, 320-341, no extra flags
  2892     assert(!ftip->klass_is_exact(), "interface could not be exact");
  2893     return ktip->cast_to_ptr_type(ftip->ptr());
  2896   return ft;
  2899 //------------------------------eq---------------------------------------------
  2900 // Structural equality check for Type representations
  2901 bool TypeOopPtr::eq( const Type *t ) const {
  2902   const TypeOopPtr *a = (const TypeOopPtr*)t;
  2903   if (_klass_is_exact != a->_klass_is_exact ||
  2904       _instance_id != a->_instance_id ||
  2905       !eq_speculative(a) ||
  2906       _inline_depth != a->_inline_depth)  return false;
  2907   ciObject* one = const_oop();
  2908   ciObject* two = a->const_oop();
  2909   if (one == NULL || two == NULL) {
  2910     return (one == two) && TypePtr::eq(t);
  2911   } else {
  2912     return one->equals(two) && TypePtr::eq(t);
  2916 //------------------------------hash-------------------------------------------
  2917 // Type-specific hashing function.
  2918 int TypeOopPtr::hash(void) const {
  2919   return
  2920     (const_oop() ? const_oop()->hash() : 0) +
  2921     _klass_is_exact +
  2922     _instance_id +
  2923     hash_speculative() +
  2924     _inline_depth +
  2925     TypePtr::hash();
  2928 //------------------------------dump2------------------------------------------
  2929 #ifndef PRODUCT
  2930 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2931   st->print("oopptr:%s", ptr_msg[_ptr]);
  2932   if( _klass_is_exact ) st->print(":exact");
  2933   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
  2934   switch( _offset ) {
  2935   case OffsetTop: st->print("+top"); break;
  2936   case OffsetBot: st->print("+any"); break;
  2937   case         0: break;
  2938   default:        st->print("+%d",_offset); break;
  2940   if (_instance_id == InstanceTop)
  2941     st->print(",iid=top");
  2942   else if (_instance_id != InstanceBot)
  2943     st->print(",iid=%d",_instance_id);
  2945   dump_inline_depth(st);
  2946   dump_speculative(st);
  2949 /**
  2950  *dump the speculative part of the type
  2951  */
  2952 void TypeOopPtr::dump_speculative(outputStream *st) const {
  2953   if (_speculative != NULL) {
  2954     st->print(" (speculative=");
  2955     _speculative->dump_on(st);
  2956     st->print(")");
  2960 void TypeOopPtr::dump_inline_depth(outputStream *st) const {
  2961   if (_inline_depth != InlineDepthBottom) {
  2962     if (_inline_depth == InlineDepthTop) {
  2963       st->print(" (inline_depth=InlineDepthTop)");
  2964     } else {
  2965       st->print(" (inline_depth=%d)", _inline_depth);
  2969 #endif
  2971 //------------------------------singleton--------------------------------------
  2972 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2973 // constants
  2974 bool TypeOopPtr::singleton(void) const {
  2975   // detune optimizer to not generate constant oop + constant offset as a constant!
  2976   // TopPTR, Null, AnyNull, Constant are all singletons
  2977   return (_offset == 0) && !below_centerline(_ptr);
  2980 //------------------------------add_offset-------------------------------------
  2981 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
  2982   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
  2985 /**
  2986  * Return same type without a speculative part
  2987  */
  2988 const Type* TypeOopPtr::remove_speculative() const {
  2989   if (_speculative == NULL) {
  2990     return this;
  2992   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
  2993   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
  2996 /**
  2997  * Return same type but with a different inline depth (used for speculation)
  2999  * @param depth  depth to meet with
  3000  */
  3001 const TypeOopPtr* TypeOopPtr::with_inline_depth(int depth) const {
  3002   if (!UseInlineDepthForSpeculativeTypes) {
  3003     return this;
  3005   return make(_ptr, _offset, _instance_id, _speculative, depth);
  3008 /**
  3009  * Check whether new profiling would improve speculative type
  3011  * @param   exact_kls    class from profiling
  3012  * @param   inline_depth inlining depth of profile point
  3014  * @return  true if type profile is valuable
  3015  */
  3016 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
  3017   // no way to improve an already exact type
  3018   if (klass_is_exact()) {
  3019     return false;
  3021   // no profiling?
  3022   if (exact_kls == NULL) {
  3023     return false;
  3025   // no speculative type or non exact speculative type?
  3026   if (speculative_type() == NULL) {
  3027     return true;
  3029   // If the node already has an exact speculative type keep it,
  3030   // unless it was provided by profiling that is at a deeper
  3031   // inlining level. Profiling at a higher inlining depth is
  3032   // expected to be less accurate.
  3033   if (_speculative->inline_depth() == InlineDepthBottom) {
  3034     return false;
  3036   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
  3037   return inline_depth < _speculative->inline_depth();
  3040 //------------------------------meet_instance_id--------------------------------
  3041 int TypeOopPtr::meet_instance_id( int instance_id ) const {
  3042   // Either is 'TOP' instance?  Return the other instance!
  3043   if( _instance_id == InstanceTop ) return  instance_id;
  3044   if(  instance_id == InstanceTop ) return _instance_id;
  3045   // If either is different, return 'BOTTOM' instance
  3046   if( _instance_id != instance_id ) return InstanceBot;
  3047   return _instance_id;
  3050 //------------------------------dual_instance_id--------------------------------
  3051 int TypeOopPtr::dual_instance_id( ) const {
  3052   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
  3053   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
  3054   return _instance_id;              // Map everything else into self
  3057 /**
  3058  * meet of the speculative parts of 2 types
  3060  * @param other  type to meet with
  3061  */
  3062 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
  3063   bool this_has_spec = (_speculative != NULL);
  3064   bool other_has_spec = (other->speculative() != NULL);
  3066   if (!this_has_spec && !other_has_spec) {
  3067     return NULL;
  3070   // If we are at a point where control flow meets and one branch has
  3071   // a speculative type and the other has not, we meet the speculative
  3072   // type of one branch with the actual type of the other. If the
  3073   // actual type is exact and the speculative is as well, then the
  3074   // result is a speculative type which is exact and we can continue
  3075   // speculation further.
  3076   const TypeOopPtr* this_spec = _speculative;
  3077   const TypeOopPtr* other_spec = other->speculative();
  3079   if (!this_has_spec) {
  3080     this_spec = this;
  3083   if (!other_has_spec) {
  3084     other_spec = other;
  3087   return this_spec->meet_speculative(other_spec)->is_oopptr();
  3090 /**
  3091  * dual of the speculative part of the type
  3092  */
  3093 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
  3094   if (_speculative == NULL) {
  3095     return NULL;
  3097   return _speculative->dual()->is_oopptr();
  3100 /**
  3101  * add offset to the speculative part of the type
  3103  * @param offset  offset to add
  3104  */
  3105 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
  3106   if (_speculative == NULL) {
  3107     return NULL;
  3109   return _speculative->add_offset(offset)->is_oopptr();
  3112 /**
  3113  * Are the speculative parts of 2 types equal?
  3115  * @param other  type to compare this one to
  3116  */
  3117 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
  3118   if (_speculative == NULL || other->speculative() == NULL) {
  3119     return _speculative == other->speculative();
  3122   if (_speculative->base() != other->speculative()->base()) {
  3123     return false;
  3126   return _speculative->eq(other->speculative());
  3129 /**
  3130  * Hash of the speculative part of the type
  3131  */
  3132 int TypeOopPtr::hash_speculative() const {
  3133   if (_speculative == NULL) {
  3134     return 0;
  3137   return _speculative->hash();
  3140 /**
  3141  * dual of the inline depth for this type (used for speculation)
  3142  */
  3143 int TypeOopPtr::dual_inline_depth() const {
  3144   return -inline_depth();
  3147 /**
  3148  * meet of 2 inline depth (used for speculation)
  3150  * @param depth  depth to meet with
  3151  */
  3152 int TypeOopPtr::meet_inline_depth(int depth) const {
  3153   return MAX2(inline_depth(), depth);
  3156 //=============================================================================
  3157 // Convenience common pre-built types.
  3158 const TypeInstPtr *TypeInstPtr::NOTNULL;
  3159 const TypeInstPtr *TypeInstPtr::BOTTOM;
  3160 const TypeInstPtr *TypeInstPtr::MIRROR;
  3161 const TypeInstPtr *TypeInstPtr::MARK;
  3162 const TypeInstPtr *TypeInstPtr::KLASS;
  3164 //------------------------------TypeInstPtr-------------------------------------
  3165 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative, int inline_depth)
  3166   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth), _name(k->name()) {
  3167    assert(k != NULL &&
  3168           (k->is_loaded() || o == NULL),
  3169           "cannot have constants with non-loaded klass");
  3170 };
  3172 //------------------------------make-------------------------------------------
  3173 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
  3174                                      ciKlass* k,
  3175                                      bool xk,
  3176                                      ciObject* o,
  3177                                      int offset,
  3178                                      int instance_id,
  3179                                      const TypeOopPtr* speculative,
  3180                                      int inline_depth) {
  3181   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
  3182   // Either const_oop() is NULL or else ptr is Constant
  3183   assert( (!o && ptr != Constant) || (o && ptr == Constant),
  3184           "constant pointers must have a value supplied" );
  3185   // Ptr is never Null
  3186   assert( ptr != Null, "NULL pointers are not typed" );
  3188   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3189   if (!UseExactTypes)  xk = false;
  3190   if (ptr == Constant) {
  3191     // Note:  This case includes meta-object constants, such as methods.
  3192     xk = true;
  3193   } else if (k->is_loaded()) {
  3194     ciInstanceKlass* ik = k->as_instance_klass();
  3195     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
  3196     if (xk && ik->is_interface())  xk = false;  // no exact interface
  3199   // Now hash this baby
  3200   TypeInstPtr *result =
  3201     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
  3203   return result;
  3206 /**
  3207  *  Create constant type for a constant boxed value
  3208  */
  3209 const Type* TypeInstPtr::get_const_boxed_value() const {
  3210   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
  3211   assert((const_oop() != NULL), "should be called only for constant object");
  3212   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
  3213   BasicType bt = constant.basic_type();
  3214   switch (bt) {
  3215     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
  3216     case T_INT:      return TypeInt::make(constant.as_int());
  3217     case T_CHAR:     return TypeInt::make(constant.as_char());
  3218     case T_BYTE:     return TypeInt::make(constant.as_byte());
  3219     case T_SHORT:    return TypeInt::make(constant.as_short());
  3220     case T_FLOAT:    return TypeF::make(constant.as_float());
  3221     case T_DOUBLE:   return TypeD::make(constant.as_double());
  3222     case T_LONG:     return TypeLong::make(constant.as_long());
  3223     default:         break;
  3225   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
  3226   return NULL;
  3229 //------------------------------cast_to_ptr_type-------------------------------
  3230 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
  3231   if( ptr == _ptr ) return this;
  3232   // Reconstruct _sig info here since not a problem with later lazy
  3233   // construction, _sig will show up on demand.
  3234   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
  3238 //-----------------------------cast_to_exactness-------------------------------
  3239 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
  3240   if( klass_is_exact == _klass_is_exact ) return this;
  3241   if (!UseExactTypes)  return this;
  3242   if (!_klass->is_loaded())  return this;
  3243   ciInstanceKlass* ik = _klass->as_instance_klass();
  3244   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
  3245   if( ik->is_interface() )              return this;  // cannot set xk
  3246   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
  3249 //-----------------------------cast_to_instance_id----------------------------
  3250 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
  3251   if( instance_id == _instance_id ) return this;
  3252   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
  3255 //------------------------------xmeet_unloaded---------------------------------
  3256 // Compute the MEET of two InstPtrs when at least one is unloaded.
  3257 // Assume classes are different since called after check for same name/class-loader
  3258 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
  3259     int off = meet_offset(tinst->offset());
  3260     PTR ptr = meet_ptr(tinst->ptr());
  3261     int instance_id = meet_instance_id(tinst->instance_id());
  3262     const TypeOopPtr* speculative = xmeet_speculative(tinst);
  3263     int depth = meet_inline_depth(tinst->inline_depth());
  3265     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
  3266     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
  3267     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3268       //
  3269       // Meet unloaded class with java/lang/Object
  3270       //
  3271       // Meet
  3272       //          |                     Unloaded Class
  3273       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
  3274       //  ===================================================================
  3275       //   TOP    | ..........................Unloaded......................|
  3276       //  AnyNull |  U-AN    |................Unloaded......................|
  3277       // Constant | ... O-NN .................................. |   O-BOT   |
  3278       //  NotNull | ... O-NN .................................. |   O-BOT   |
  3279       //  BOTTOM  | ........................Object-BOTTOM ..................|
  3280       //
  3281       assert(loaded->ptr() != TypePtr::Null, "insanity check");
  3282       //
  3283       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
  3284       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
  3285       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
  3286       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
  3287         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
  3288         else                                      { return TypeInstPtr::NOTNULL; }
  3290       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
  3292       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
  3295     // Both are unloaded, not the same class, not Object
  3296     // Or meet unloaded with a different loaded class, not java/lang/Object
  3297     if( ptr != TypePtr::BotPTR ) {
  3298       return TypeInstPtr::NOTNULL;
  3300     return TypeInstPtr::BOTTOM;
  3304 //------------------------------meet-------------------------------------------
  3305 // Compute the MEET of two types.  It returns a new Type object.
  3306 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
  3307   // Perform a fast test for common case; meeting the same types together.
  3308   if( this == t ) return this;  // Meeting same type-rep?
  3310   // Current "this->_base" is Pointer
  3311   switch (t->base()) {          // switch on original type
  3313   case Int:                     // Mixing ints & oops happens when javac
  3314   case Long:                    // reuses local variables
  3315   case FloatTop:
  3316   case FloatCon:
  3317   case FloatBot:
  3318   case DoubleTop:
  3319   case DoubleCon:
  3320   case DoubleBot:
  3321   case NarrowOop:
  3322   case NarrowKlass:
  3323   case Bottom:                  // Ye Olde Default
  3324     return Type::BOTTOM;
  3325   case Top:
  3326     return this;
  3328   default:                      // All else is a mistake
  3329     typerr(t);
  3331   case MetadataPtr:
  3332   case KlassPtr:
  3333   case RawPtr: return TypePtr::BOTTOM;
  3335   case AryPtr: {                // All arrays inherit from Object class
  3336     const TypeAryPtr *tp = t->is_aryptr();
  3337     int offset = meet_offset(tp->offset());
  3338     PTR ptr = meet_ptr(tp->ptr());
  3339     int instance_id = meet_instance_id(tp->instance_id());
  3340     const TypeOopPtr* speculative = xmeet_speculative(tp);
  3341     int depth = meet_inline_depth(tp->inline_depth());
  3342     switch (ptr) {
  3343     case TopPTR:
  3344     case AnyNull:                // Fall 'down' to dual of object klass
  3345       // For instances when a subclass meets a superclass we fall
  3346       // below the centerline when the superclass is exact. We need to
  3347       // do the same here.
  3348       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
  3349         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
  3350       } else {
  3351         // cannot subclass, so the meet has to fall badly below the centerline
  3352         ptr = NotNull;
  3353         instance_id = InstanceBot;
  3354         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
  3356     case Constant:
  3357     case NotNull:
  3358     case BotPTR:                // Fall down to object klass
  3359       // LCA is object_klass, but if we subclass from the top we can do better
  3360       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
  3361         // If 'this' (InstPtr) is above the centerline and it is Object class
  3362         // then we can subclass in the Java class hierarchy.
  3363         // For instances when a subclass meets a superclass we fall
  3364         // below the centerline when the superclass is exact. We need
  3365         // to do the same here.
  3366         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
  3367           // that is, tp's array type is a subtype of my klass
  3368           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
  3369                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
  3372       // The other case cannot happen, since I cannot be a subtype of an array.
  3373       // The meet falls down to Object class below centerline.
  3374       if( ptr == Constant )
  3375          ptr = NotNull;
  3376       instance_id = InstanceBot;
  3377       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
  3378     default: typerr(t);
  3382   case OopPtr: {                // Meeting to OopPtrs
  3383     // Found a OopPtr type vs self-InstPtr type
  3384     const TypeOopPtr *tp = t->is_oopptr();
  3385     int offset = meet_offset(tp->offset());
  3386     PTR ptr = meet_ptr(tp->ptr());
  3387     switch (tp->ptr()) {
  3388     case TopPTR:
  3389     case AnyNull: {
  3390       int instance_id = meet_instance_id(InstanceTop);
  3391       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3392       int depth = meet_inline_depth(tp->inline_depth());
  3393       return make(ptr, klass(), klass_is_exact(),
  3394                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
  3396     case NotNull:
  3397     case BotPTR: {
  3398       int instance_id = meet_instance_id(tp->instance_id());
  3399       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3400       int depth = meet_inline_depth(tp->inline_depth());
  3401       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
  3403     default: typerr(t);
  3407   case AnyPtr: {                // Meeting to AnyPtrs
  3408     // Found an AnyPtr type vs self-InstPtr type
  3409     const TypePtr *tp = t->is_ptr();
  3410     int offset = meet_offset(tp->offset());
  3411     PTR ptr = meet_ptr(tp->ptr());
  3412     switch (tp->ptr()) {
  3413     case Null:
  3414       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3415       // else fall through to AnyNull
  3416     case TopPTR:
  3417     case AnyNull: {
  3418       int instance_id = meet_instance_id(InstanceTop);
  3419       const TypeOopPtr* speculative = _speculative;
  3420       return make(ptr, klass(), klass_is_exact(),
  3421                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, _inline_depth);
  3423     case NotNull:
  3424     case BotPTR:
  3425       return TypePtr::make(AnyPtr, ptr, offset);
  3426     default: typerr(t);
  3430   /*
  3431                  A-top         }
  3432                /   |   \       }  Tops
  3433            B-top A-any C-top   }
  3434               | /  |  \ |      }  Any-nulls
  3435            B-any   |   C-any   }
  3436               |    |    |
  3437            B-con A-con C-con   } constants; not comparable across classes
  3438               |    |    |
  3439            B-not   |   C-not   }
  3440               | \  |  / |      }  not-nulls
  3441            B-bot A-not C-bot   }
  3442                \   |   /       }  Bottoms
  3443                  A-bot         }
  3444   */
  3446   case InstPtr: {                // Meeting 2 Oops?
  3447     // Found an InstPtr sub-type vs self-InstPtr type
  3448     const TypeInstPtr *tinst = t->is_instptr();
  3449     int off = meet_offset( tinst->offset() );
  3450     PTR ptr = meet_ptr( tinst->ptr() );
  3451     int instance_id = meet_instance_id(tinst->instance_id());
  3452     const TypeOopPtr* speculative = xmeet_speculative(tinst);
  3453     int depth = meet_inline_depth(tinst->inline_depth());
  3455     // Check for easy case; klasses are equal (and perhaps not loaded!)
  3456     // If we have constants, then we created oops so classes are loaded
  3457     // and we can handle the constants further down.  This case handles
  3458     // both-not-loaded or both-loaded classes
  3459     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
  3460       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
  3463     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  3464     ciKlass* tinst_klass = tinst->klass();
  3465     ciKlass* this_klass  = this->klass();
  3466     bool tinst_xk = tinst->klass_is_exact();
  3467     bool this_xk  = this->klass_is_exact();
  3468     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
  3469       // One of these classes has not been loaded
  3470       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
  3471 #ifndef PRODUCT
  3472       if( PrintOpto && Verbose ) {
  3473         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
  3474         tty->print("  this == "); this->dump(); tty->cr();
  3475         tty->print(" tinst == "); tinst->dump(); tty->cr();
  3477 #endif
  3478       return unloaded_meet;
  3481     // Handle mixing oops and interfaces first.
  3482     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
  3483                                         tinst_klass == ciEnv::current()->Object_klass())) {
  3484       ciKlass *tmp = tinst_klass; // Swap interface around
  3485       tinst_klass = this_klass;
  3486       this_klass = tmp;
  3487       bool tmp2 = tinst_xk;
  3488       tinst_xk = this_xk;
  3489       this_xk = tmp2;
  3491     if (tinst_klass->is_interface() &&
  3492         !(this_klass->is_interface() ||
  3493           // Treat java/lang/Object as an honorary interface,
  3494           // because we need a bottom for the interface hierarchy.
  3495           this_klass == ciEnv::current()->Object_klass())) {
  3496       // Oop meets interface!
  3498       // See if the oop subtypes (implements) interface.
  3499       ciKlass *k;
  3500       bool xk;
  3501       if( this_klass->is_subtype_of( tinst_klass ) ) {
  3502         // Oop indeed subtypes.  Now keep oop or interface depending
  3503         // on whether we are both above the centerline or either is
  3504         // below the centerline.  If we are on the centerline
  3505         // (e.g., Constant vs. AnyNull interface), use the constant.
  3506         k  = below_centerline(ptr) ? tinst_klass : this_klass;
  3507         // If we are keeping this_klass, keep its exactness too.
  3508         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
  3509       } else {                  // Does not implement, fall to Object
  3510         // Oop does not implement interface, so mixing falls to Object
  3511         // just like the verifier does (if both are above the
  3512         // centerline fall to interface)
  3513         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
  3514         xk = above_centerline(ptr) ? tinst_xk : false;
  3515         // Watch out for Constant vs. AnyNull interface.
  3516         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
  3517         instance_id = InstanceBot;
  3519       ciObject* o = NULL;  // the Constant value, if any
  3520       if (ptr == Constant) {
  3521         // Find out which constant.
  3522         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
  3524       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
  3527     // Either oop vs oop or interface vs interface or interface vs Object
  3529     // !!! Here's how the symmetry requirement breaks down into invariants:
  3530     // If we split one up & one down AND they subtype, take the down man.
  3531     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3532     // If both are up and they subtype, take the subtype class.
  3533     // If both are up and they do NOT subtype, "fall hard".
  3534     // If both are down and they subtype, take the supertype class.
  3535     // If both are down and they do NOT subtype, "fall hard".
  3536     // Constants treated as down.
  3538     // Now, reorder the above list; observe that both-down+subtype is also
  3539     // "fall hard"; "fall hard" becomes the default case:
  3540     // If we split one up & one down AND they subtype, take the down man.
  3541     // If both are up and they subtype, take the subtype class.
  3543     // If both are down and they subtype, "fall hard".
  3544     // If both are down and they do NOT subtype, "fall hard".
  3545     // If both are up and they do NOT subtype, "fall hard".
  3546     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3548     // If a proper subtype is exact, and we return it, we return it exactly.
  3549     // If a proper supertype is exact, there can be no subtyping relationship!
  3550     // If both types are equal to the subtype, exactness is and-ed below the
  3551     // centerline and or-ed above it.  (N.B. Constants are always exact.)
  3553     // Check for subtyping:
  3554     ciKlass *subtype = NULL;
  3555     bool subtype_exact = false;
  3556     if( tinst_klass->equals(this_klass) ) {
  3557       subtype = this_klass;
  3558       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
  3559     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
  3560       subtype = this_klass;     // Pick subtyping class
  3561       subtype_exact = this_xk;
  3562     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
  3563       subtype = tinst_klass;    // Pick subtyping class
  3564       subtype_exact = tinst_xk;
  3567     if( subtype ) {
  3568       if( above_centerline(ptr) ) { // both are up?
  3569         this_klass = tinst_klass = subtype;
  3570         this_xk = tinst_xk = subtype_exact;
  3571       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
  3572         this_klass = tinst_klass; // tinst is down; keep down man
  3573         this_xk = tinst_xk;
  3574       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
  3575         tinst_klass = this_klass; // this is down; keep down man
  3576         tinst_xk = this_xk;
  3577       } else {
  3578         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
  3582     // Check for classes now being equal
  3583     if (tinst_klass->equals(this_klass)) {
  3584       // If the klasses are equal, the constants may still differ.  Fall to
  3585       // NotNull if they do (neither constant is NULL; that is a special case
  3586       // handled elsewhere).
  3587       ciObject* o = NULL;             // Assume not constant when done
  3588       ciObject* this_oop  = const_oop();
  3589       ciObject* tinst_oop = tinst->const_oop();
  3590       if( ptr == Constant ) {
  3591         if (this_oop != NULL && tinst_oop != NULL &&
  3592             this_oop->equals(tinst_oop) )
  3593           o = this_oop;
  3594         else if (above_centerline(this ->_ptr))
  3595           o = tinst_oop;
  3596         else if (above_centerline(tinst ->_ptr))
  3597           o = this_oop;
  3598         else
  3599           ptr = NotNull;
  3601       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
  3602     } // Else classes are not equal
  3604     // Since klasses are different, we require a LCA in the Java
  3605     // class hierarchy - which means we have to fall to at least NotNull.
  3606     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  3607       ptr = NotNull;
  3608     instance_id = InstanceBot;
  3610     // Now we find the LCA of Java classes
  3611     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
  3612     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
  3613   } // End of case InstPtr
  3615   } // End of switch
  3616   return this;                  // Return the double constant
  3620 //------------------------java_mirror_type--------------------------------------
  3621 ciType* TypeInstPtr::java_mirror_type() const {
  3622   // must be a singleton type
  3623   if( const_oop() == NULL )  return NULL;
  3625   // must be of type java.lang.Class
  3626   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
  3628   return const_oop()->as_instance()->java_mirror_type();
  3632 //------------------------------xdual------------------------------------------
  3633 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
  3634 // inheritance mechanism.
  3635 const Type *TypeInstPtr::xdual() const {
  3636   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
  3639 //------------------------------eq---------------------------------------------
  3640 // Structural equality check for Type representations
  3641 bool TypeInstPtr::eq( const Type *t ) const {
  3642   const TypeInstPtr *p = t->is_instptr();
  3643   return
  3644     klass()->equals(p->klass()) &&
  3645     TypeOopPtr::eq(p);          // Check sub-type stuff
  3648 //------------------------------hash-------------------------------------------
  3649 // Type-specific hashing function.
  3650 int TypeInstPtr::hash(void) const {
  3651   int hash = klass()->hash() + TypeOopPtr::hash();
  3652   return hash;
  3655 //------------------------------dump2------------------------------------------
  3656 // Dump oop Type
  3657 #ifndef PRODUCT
  3658 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3659   // Print the name of the klass.
  3660   klass()->print_name_on(st);
  3662   switch( _ptr ) {
  3663   case Constant:
  3664     // TO DO: Make CI print the hex address of the underlying oop.
  3665     if (WizardMode || Verbose) {
  3666       const_oop()->print_oop(st);
  3668   case BotPTR:
  3669     if (!WizardMode && !Verbose) {
  3670       if( _klass_is_exact ) st->print(":exact");
  3671       break;
  3673   case TopPTR:
  3674   case AnyNull:
  3675   case NotNull:
  3676     st->print(":%s", ptr_msg[_ptr]);
  3677     if( _klass_is_exact ) st->print(":exact");
  3678     break;
  3681   if( _offset ) {               // Dump offset, if any
  3682     if( _offset == OffsetBot )      st->print("+any");
  3683     else if( _offset == OffsetTop ) st->print("+unknown");
  3684     else st->print("+%d", _offset);
  3687   st->print(" *");
  3688   if (_instance_id == InstanceTop)
  3689     st->print(",iid=top");
  3690   else if (_instance_id != InstanceBot)
  3691     st->print(",iid=%d",_instance_id);
  3693   dump_inline_depth(st);
  3694   dump_speculative(st);
  3696 #endif
  3698 //------------------------------add_offset-------------------------------------
  3699 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
  3700   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
  3703 const Type *TypeInstPtr::remove_speculative() const {
  3704   if (_speculative == NULL) {
  3705     return this;
  3707   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
  3708   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL, _inline_depth);
  3711 const TypeOopPtr *TypeInstPtr::with_inline_depth(int depth) const {
  3712   if (!UseInlineDepthForSpeculativeTypes) {
  3713     return this;
  3715   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
  3718 //=============================================================================
  3719 // Convenience common pre-built types.
  3720 const TypeAryPtr *TypeAryPtr::RANGE;
  3721 const TypeAryPtr *TypeAryPtr::OOPS;
  3722 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
  3723 const TypeAryPtr *TypeAryPtr::BYTES;
  3724 const TypeAryPtr *TypeAryPtr::SHORTS;
  3725 const TypeAryPtr *TypeAryPtr::CHARS;
  3726 const TypeAryPtr *TypeAryPtr::INTS;
  3727 const TypeAryPtr *TypeAryPtr::LONGS;
  3728 const TypeAryPtr *TypeAryPtr::FLOATS;
  3729 const TypeAryPtr *TypeAryPtr::DOUBLES;
  3731 //------------------------------make-------------------------------------------
  3732 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
  3733   assert(!(k == NULL && ary->_elem->isa_int()),
  3734          "integral arrays must be pre-equipped with a class");
  3735   if (!xk)  xk = ary->ary_must_be_exact();
  3736   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3737   if (!UseExactTypes)  xk = (ptr == Constant);
  3738   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
  3741 //------------------------------make-------------------------------------------
  3742 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth, bool is_autobox_cache) {
  3743   assert(!(k == NULL && ary->_elem->isa_int()),
  3744          "integral arrays must be pre-equipped with a class");
  3745   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
  3746   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
  3747   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3748   if (!UseExactTypes)  xk = (ptr == Constant);
  3749   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
  3752 //------------------------------cast_to_ptr_type-------------------------------
  3753 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
  3754   if( ptr == _ptr ) return this;
  3755   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
  3759 //-----------------------------cast_to_exactness-------------------------------
  3760 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
  3761   if( klass_is_exact == _klass_is_exact ) return this;
  3762   if (!UseExactTypes)  return this;
  3763   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
  3764   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
  3767 //-----------------------------cast_to_instance_id----------------------------
  3768 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
  3769   if( instance_id == _instance_id ) return this;
  3770   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
  3773 //-----------------------------narrow_size_type-------------------------------
  3774 // Local cache for arrayOopDesc::max_array_length(etype),
  3775 // which is kind of slow (and cached elsewhere by other users).
  3776 static jint max_array_length_cache[T_CONFLICT+1];
  3777 static jint max_array_length(BasicType etype) {
  3778   jint& cache = max_array_length_cache[etype];
  3779   jint res = cache;
  3780   if (res == 0) {
  3781     switch (etype) {
  3782     case T_NARROWOOP:
  3783       etype = T_OBJECT;
  3784       break;
  3785     case T_NARROWKLASS:
  3786     case T_CONFLICT:
  3787     case T_ILLEGAL:
  3788     case T_VOID:
  3789       etype = T_BYTE;           // will produce conservatively high value
  3791     cache = res = arrayOopDesc::max_array_length(etype);
  3793   return res;
  3796 // Narrow the given size type to the index range for the given array base type.
  3797 // Return NULL if the resulting int type becomes empty.
  3798 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
  3799   jint hi = size->_hi;
  3800   jint lo = size->_lo;
  3801   jint min_lo = 0;
  3802   jint max_hi = max_array_length(elem()->basic_type());
  3803   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
  3804   bool chg = false;
  3805   if (lo < min_lo) {
  3806     lo = min_lo;
  3807     if (size->is_con()) {
  3808       hi = lo;
  3810     chg = true;
  3812   if (hi > max_hi) {
  3813     hi = max_hi;
  3814     if (size->is_con()) {
  3815       lo = hi;
  3817     chg = true;
  3819   // Negative length arrays will produce weird intermediate dead fast-path code
  3820   if (lo > hi)
  3821     return TypeInt::ZERO;
  3822   if (!chg)
  3823     return size;
  3824   return TypeInt::make(lo, hi, Type::WidenMin);
  3827 //-------------------------------cast_to_size----------------------------------
  3828 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
  3829   assert(new_size != NULL, "");
  3830   new_size = narrow_size_type(new_size);
  3831   if (new_size == size())  return this;
  3832   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
  3833   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
  3837 //------------------------------cast_to_stable---------------------------------
  3838 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
  3839   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
  3840     return this;
  3842   const Type* elem = this->elem();
  3843   const TypePtr* elem_ptr = elem->make_ptr();
  3845   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
  3846     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
  3847     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
  3850   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
  3852   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
  3855 //-----------------------------stable_dimension--------------------------------
  3856 int TypeAryPtr::stable_dimension() const {
  3857   if (!is_stable())  return 0;
  3858   int dim = 1;
  3859   const TypePtr* elem_ptr = elem()->make_ptr();
  3860   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
  3861     dim += elem_ptr->is_aryptr()->stable_dimension();
  3862   return dim;
  3865 //------------------------------eq---------------------------------------------
  3866 // Structural equality check for Type representations
  3867 bool TypeAryPtr::eq( const Type *t ) const {
  3868   const TypeAryPtr *p = t->is_aryptr();
  3869   return
  3870     _ary == p->_ary &&  // Check array
  3871     TypeOopPtr::eq(p);  // Check sub-parts
  3874 //------------------------------hash-------------------------------------------
  3875 // Type-specific hashing function.
  3876 int TypeAryPtr::hash(void) const {
  3877   return (intptr_t)_ary + TypeOopPtr::hash();
  3880 //------------------------------meet-------------------------------------------
  3881 // Compute the MEET of two types.  It returns a new Type object.
  3882 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
  3883   // Perform a fast test for common case; meeting the same types together.
  3884   if( this == t ) return this;  // Meeting same type-rep?
  3885   // Current "this->_base" is Pointer
  3886   switch (t->base()) {          // switch on original type
  3888   // Mixing ints & oops happens when javac reuses local variables
  3889   case Int:
  3890   case Long:
  3891   case FloatTop:
  3892   case FloatCon:
  3893   case FloatBot:
  3894   case DoubleTop:
  3895   case DoubleCon:
  3896   case DoubleBot:
  3897   case NarrowOop:
  3898   case NarrowKlass:
  3899   case Bottom:                  // Ye Olde Default
  3900     return Type::BOTTOM;
  3901   case Top:
  3902     return this;
  3904   default:                      // All else is a mistake
  3905     typerr(t);
  3907   case OopPtr: {                // Meeting to OopPtrs
  3908     // Found a OopPtr type vs self-AryPtr type
  3909     const TypeOopPtr *tp = t->is_oopptr();
  3910     int offset = meet_offset(tp->offset());
  3911     PTR ptr = meet_ptr(tp->ptr());
  3912     int depth = meet_inline_depth(tp->inline_depth());
  3913     switch (tp->ptr()) {
  3914     case TopPTR:
  3915     case AnyNull: {
  3916       int instance_id = meet_instance_id(InstanceTop);
  3917       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3918       return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3919                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
  3921     case BotPTR:
  3922     case NotNull: {
  3923       int instance_id = meet_instance_id(tp->instance_id());
  3924       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3925       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
  3927     default: ShouldNotReachHere();
  3931   case AnyPtr: {                // Meeting two AnyPtrs
  3932     // Found an AnyPtr type vs self-AryPtr type
  3933     const TypePtr *tp = t->is_ptr();
  3934     int offset = meet_offset(tp->offset());
  3935     PTR ptr = meet_ptr(tp->ptr());
  3936     switch (tp->ptr()) {
  3937     case TopPTR:
  3938       return this;
  3939     case BotPTR:
  3940     case NotNull:
  3941       return TypePtr::make(AnyPtr, ptr, offset);
  3942     case Null:
  3943       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3944       // else fall through to AnyNull
  3945     case AnyNull: {
  3946       int instance_id = meet_instance_id(InstanceTop);
  3947       const TypeOopPtr* speculative = _speculative;
  3948       return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3949                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, _inline_depth);
  3951     default: ShouldNotReachHere();
  3955   case MetadataPtr:
  3956   case KlassPtr:
  3957   case RawPtr: return TypePtr::BOTTOM;
  3959   case AryPtr: {                // Meeting 2 references?
  3960     const TypeAryPtr *tap = t->is_aryptr();
  3961     int off = meet_offset(tap->offset());
  3962     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
  3963     PTR ptr = meet_ptr(tap->ptr());
  3964     int instance_id = meet_instance_id(tap->instance_id());
  3965     const TypeOopPtr* speculative = xmeet_speculative(tap);
  3966     int depth = meet_inline_depth(tap->inline_depth());
  3967     ciKlass* lazy_klass = NULL;
  3968     if (tary->_elem->isa_int()) {
  3969       // Integral array element types have irrelevant lattice relations.
  3970       // It is the klass that determines array layout, not the element type.
  3971       if (_klass == NULL)
  3972         lazy_klass = tap->_klass;
  3973       else if (tap->_klass == NULL || tap->_klass == _klass) {
  3974         lazy_klass = _klass;
  3975       } else {
  3976         // Something like byte[int+] meets char[int+].
  3977         // This must fall to bottom, not (int[-128..65535])[int+].
  3978         instance_id = InstanceBot;
  3979         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
  3981     } else // Non integral arrays.
  3982       // Must fall to bottom if exact klasses in upper lattice
  3983       // are not equal or super klass is exact.
  3984       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
  3985           // meet with top[] and bottom[] are processed further down:
  3986           tap->_klass != NULL  && this->_klass != NULL   &&
  3987           // both are exact and not equal:
  3988           ((tap->_klass_is_exact && this->_klass_is_exact) ||
  3989            // 'tap'  is exact and super or unrelated:
  3990            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
  3991            // 'this' is exact and super or unrelated:
  3992            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
  3993       if (above_centerline(ptr)) {
  3994         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
  3996       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
  3999     bool xk = false;
  4000     switch (tap->ptr()) {
  4001     case AnyNull:
  4002     case TopPTR:
  4003       // Compute new klass on demand, do not use tap->_klass
  4004       if (below_centerline(this->_ptr)) {
  4005         xk = this->_klass_is_exact;
  4006       } else {
  4007         xk = (tap->_klass_is_exact | this->_klass_is_exact);
  4009       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
  4010     case Constant: {
  4011       ciObject* o = const_oop();
  4012       if( _ptr == Constant ) {
  4013         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
  4014           xk = (klass() == tap->klass());
  4015           ptr = NotNull;
  4016           o = NULL;
  4017           instance_id = InstanceBot;
  4018         } else {
  4019           xk = true;
  4021       } else if(above_centerline(_ptr)) {
  4022         o = tap->const_oop();
  4023         xk = true;
  4024       } else {
  4025         // Only precise for identical arrays
  4026         xk = this->_klass_is_exact && (klass() == tap->klass());
  4028       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
  4030     case NotNull:
  4031     case BotPTR:
  4032       // Compute new klass on demand, do not use tap->_klass
  4033       if (above_centerline(this->_ptr))
  4034             xk = tap->_klass_is_exact;
  4035       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
  4036               (klass() == tap->klass()); // Only precise for identical arrays
  4037       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
  4038     default: ShouldNotReachHere();
  4042   // All arrays inherit from Object class
  4043   case InstPtr: {
  4044     const TypeInstPtr *tp = t->is_instptr();
  4045     int offset = meet_offset(tp->offset());
  4046     PTR ptr = meet_ptr(tp->ptr());
  4047     int instance_id = meet_instance_id(tp->instance_id());
  4048     const TypeOopPtr* speculative = xmeet_speculative(tp);
  4049     int depth = meet_inline_depth(tp->inline_depth());
  4050     switch (ptr) {
  4051     case TopPTR:
  4052     case AnyNull:                // Fall 'down' to dual of object klass
  4053       // For instances when a subclass meets a superclass we fall
  4054       // below the centerline when the superclass is exact. We need to
  4055       // do the same here.
  4056       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
  4057         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
  4058       } else {
  4059         // cannot subclass, so the meet has to fall badly below the centerline
  4060         ptr = NotNull;
  4061         instance_id = InstanceBot;
  4062         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
  4064     case Constant:
  4065     case NotNull:
  4066     case BotPTR:                // Fall down to object klass
  4067       // LCA is object_klass, but if we subclass from the top we can do better
  4068       if (above_centerline(tp->ptr())) {
  4069         // If 'tp'  is above the centerline and it is Object class
  4070         // then we can subclass in the Java class hierarchy.
  4071         // For instances when a subclass meets a superclass we fall
  4072         // below the centerline when the superclass is exact. We need
  4073         // to do the same here.
  4074         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
  4075           // that is, my array type is a subtype of 'tp' klass
  4076           return make(ptr, (ptr == Constant ? const_oop() : NULL),
  4077                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
  4080       // The other case cannot happen, since t cannot be a subtype of an array.
  4081       // The meet falls down to Object class below centerline.
  4082       if( ptr == Constant )
  4083          ptr = NotNull;
  4084       instance_id = InstanceBot;
  4085       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
  4086     default: typerr(t);
  4090   return this;                  // Lint noise
  4093 //------------------------------xdual------------------------------------------
  4094 // Dual: compute field-by-field dual
  4095 const Type *TypeAryPtr::xdual() const {
  4096   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
  4099 //----------------------interface_vs_oop---------------------------------------
  4100 #ifdef ASSERT
  4101 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
  4102   const TypeAryPtr* t_aryptr = t->isa_aryptr();
  4103   if (t_aryptr) {
  4104     return _ary->interface_vs_oop(t_aryptr->_ary);
  4106   return false;
  4108 #endif
  4110 //------------------------------dump2------------------------------------------
  4111 #ifndef PRODUCT
  4112 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  4113   _ary->dump2(d,depth,st);
  4114   switch( _ptr ) {
  4115   case Constant:
  4116     const_oop()->print(st);
  4117     break;
  4118   case BotPTR:
  4119     if (!WizardMode && !Verbose) {
  4120       if( _klass_is_exact ) st->print(":exact");
  4121       break;
  4123   case TopPTR:
  4124   case AnyNull:
  4125   case NotNull:
  4126     st->print(":%s", ptr_msg[_ptr]);
  4127     if( _klass_is_exact ) st->print(":exact");
  4128     break;
  4131   if( _offset != 0 ) {
  4132     int header_size = objArrayOopDesc::header_size() * wordSize;
  4133     if( _offset == OffsetTop )       st->print("+undefined");
  4134     else if( _offset == OffsetBot )  st->print("+any");
  4135     else if( _offset < header_size ) st->print("+%d", _offset);
  4136     else {
  4137       BasicType basic_elem_type = elem()->basic_type();
  4138       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  4139       int elem_size = type2aelembytes(basic_elem_type);
  4140       st->print("[%d]", (_offset - array_base)/elem_size);
  4143   st->print(" *");
  4144   if (_instance_id == InstanceTop)
  4145     st->print(",iid=top");
  4146   else if (_instance_id != InstanceBot)
  4147     st->print(",iid=%d",_instance_id);
  4149   dump_inline_depth(st);
  4150   dump_speculative(st);
  4152 #endif
  4154 bool TypeAryPtr::empty(void) const {
  4155   if (_ary->empty())       return true;
  4156   return TypeOopPtr::empty();
  4159 //------------------------------add_offset-------------------------------------
  4160 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
  4161   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
  4164 const Type *TypeAryPtr::remove_speculative() const {
  4165   if (_speculative == NULL) {
  4166     return this;
  4168   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
  4169   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
  4172 const TypeOopPtr *TypeAryPtr::with_inline_depth(int depth) const {
  4173   if (!UseInlineDepthForSpeculativeTypes) {
  4174     return this;
  4176   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
  4179 //=============================================================================
  4181 //------------------------------hash-------------------------------------------
  4182 // Type-specific hashing function.
  4183 int TypeNarrowPtr::hash(void) const {
  4184   return _ptrtype->hash() + 7;
  4187 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
  4188   return _ptrtype->singleton();
  4191 bool TypeNarrowPtr::empty(void) const {
  4192   return _ptrtype->empty();
  4195 intptr_t TypeNarrowPtr::get_con() const {
  4196   return _ptrtype->get_con();
  4199 bool TypeNarrowPtr::eq( const Type *t ) const {
  4200   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
  4201   if (tc != NULL) {
  4202     if (_ptrtype->base() != tc->_ptrtype->base()) {
  4203       return false;
  4205     return tc->_ptrtype->eq(_ptrtype);
  4207   return false;
  4210 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
  4211   const TypePtr* odual = _ptrtype->dual()->is_ptr();
  4212   return make_same_narrowptr(odual);
  4216 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
  4217   if (isa_same_narrowptr(kills)) {
  4218     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
  4219     if (ft->empty())
  4220       return Type::TOP;           // Canonical empty value
  4221     if (ft->isa_ptr()) {
  4222       return make_hash_same_narrowptr(ft->isa_ptr());
  4224     return ft;
  4225   } else if (kills->isa_ptr()) {
  4226     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
  4227     if (ft->empty())
  4228       return Type::TOP;           // Canonical empty value
  4229     return ft;
  4230   } else {
  4231     return Type::TOP;
  4235 //------------------------------xmeet------------------------------------------
  4236 // Compute the MEET of two types.  It returns a new Type object.
  4237 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
  4238   // Perform a fast test for common case; meeting the same types together.
  4239   if( this == t ) return this;  // Meeting same type-rep?
  4241   if (t->base() == base()) {
  4242     const Type* result = _ptrtype->xmeet(t->make_ptr());
  4243     if (result->isa_ptr()) {
  4244       return make_hash_same_narrowptr(result->is_ptr());
  4246     return result;
  4249   // Current "this->_base" is NarrowKlass or NarrowOop
  4250   switch (t->base()) {          // switch on original type
  4252   case Int:                     // Mixing ints & oops happens when javac
  4253   case Long:                    // reuses local variables
  4254   case FloatTop:
  4255   case FloatCon:
  4256   case FloatBot:
  4257   case DoubleTop:
  4258   case DoubleCon:
  4259   case DoubleBot:
  4260   case AnyPtr:
  4261   case RawPtr:
  4262   case OopPtr:
  4263   case InstPtr:
  4264   case AryPtr:
  4265   case MetadataPtr:
  4266   case KlassPtr:
  4267   case NarrowOop:
  4268   case NarrowKlass:
  4270   case Bottom:                  // Ye Olde Default
  4271     return Type::BOTTOM;
  4272   case Top:
  4273     return this;
  4275   default:                      // All else is a mistake
  4276     typerr(t);
  4278   } // End of switch
  4280   return this;
  4283 #ifndef PRODUCT
  4284 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  4285   _ptrtype->dump2(d, depth, st);
  4287 #endif
  4289 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
  4290 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
  4293 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
  4294   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
  4298 #ifndef PRODUCT
  4299 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
  4300   st->print("narrowoop: ");
  4301   TypeNarrowPtr::dump2(d, depth, st);
  4303 #endif
  4305 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
  4307 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
  4308   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
  4311 #ifndef PRODUCT
  4312 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
  4313   st->print("narrowklass: ");
  4314   TypeNarrowPtr::dump2(d, depth, st);
  4316 #endif
  4319 //------------------------------eq---------------------------------------------
  4320 // Structural equality check for Type representations
  4321 bool TypeMetadataPtr::eq( const Type *t ) const {
  4322   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
  4323   ciMetadata* one = metadata();
  4324   ciMetadata* two = a->metadata();
  4325   if (one == NULL || two == NULL) {
  4326     return (one == two) && TypePtr::eq(t);
  4327   } else {
  4328     return one->equals(two) && TypePtr::eq(t);
  4332 //------------------------------hash-------------------------------------------
  4333 // Type-specific hashing function.
  4334 int TypeMetadataPtr::hash(void) const {
  4335   return
  4336     (metadata() ? metadata()->hash() : 0) +
  4337     TypePtr::hash();
  4340 //------------------------------singleton--------------------------------------
  4341 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4342 // constants
  4343 bool TypeMetadataPtr::singleton(void) const {
  4344   // detune optimizer to not generate constant metadta + constant offset as a constant!
  4345   // TopPTR, Null, AnyNull, Constant are all singletons
  4346   return (_offset == 0) && !below_centerline(_ptr);
  4349 //------------------------------add_offset-------------------------------------
  4350 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
  4351   return make( _ptr, _metadata, xadd_offset(offset));
  4354 //-----------------------------filter------------------------------------------
  4355 // Do not allow interface-vs.-noninterface joins to collapse to top.
  4356 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
  4357   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
  4358   if (ft == NULL || ft->empty())
  4359     return Type::TOP;           // Canonical empty value
  4360   return ft;
  4363  //------------------------------get_con----------------------------------------
  4364 intptr_t TypeMetadataPtr::get_con() const {
  4365   assert( _ptr == Null || _ptr == Constant, "" );
  4366   assert( _offset >= 0, "" );
  4368   if (_offset != 0) {
  4369     // After being ported to the compiler interface, the compiler no longer
  4370     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  4371     // to a handle at compile time.  This handle is embedded in the generated
  4372     // code and dereferenced at the time the nmethod is made.  Until that time,
  4373     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  4374     // have access to the addresses!).  This does not seem to currently happen,
  4375     // but this assertion here is to help prevent its occurence.
  4376     tty->print_cr("Found oop constant with non-zero offset");
  4377     ShouldNotReachHere();
  4380   return (intptr_t)metadata()->constant_encoding();
  4383 //------------------------------cast_to_ptr_type-------------------------------
  4384 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
  4385   if( ptr == _ptr ) return this;
  4386   return make(ptr, metadata(), _offset);
  4389 //------------------------------meet-------------------------------------------
  4390 // Compute the MEET of two types.  It returns a new Type object.
  4391 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
  4392   // Perform a fast test for common case; meeting the same types together.
  4393   if( this == t ) return this;  // Meeting same type-rep?
  4395   // Current "this->_base" is OopPtr
  4396   switch (t->base()) {          // switch on original type
  4398   case Int:                     // Mixing ints & oops happens when javac
  4399   case Long:                    // reuses local variables
  4400   case FloatTop:
  4401   case FloatCon:
  4402   case FloatBot:
  4403   case DoubleTop:
  4404   case DoubleCon:
  4405   case DoubleBot:
  4406   case NarrowOop:
  4407   case NarrowKlass:
  4408   case Bottom:                  // Ye Olde Default
  4409     return Type::BOTTOM;
  4410   case Top:
  4411     return this;
  4413   default:                      // All else is a mistake
  4414     typerr(t);
  4416   case AnyPtr: {
  4417     // Found an AnyPtr type vs self-OopPtr type
  4418     const TypePtr *tp = t->is_ptr();
  4419     int offset = meet_offset(tp->offset());
  4420     PTR ptr = meet_ptr(tp->ptr());
  4421     switch (tp->ptr()) {
  4422     case Null:
  4423       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  4424       // else fall through:
  4425     case TopPTR:
  4426     case AnyNull: {
  4427       return make(ptr, _metadata, offset);
  4429     case BotPTR:
  4430     case NotNull:
  4431       return TypePtr::make(AnyPtr, ptr, offset);
  4432     default: typerr(t);
  4436   case RawPtr:
  4437   case KlassPtr:
  4438   case OopPtr:
  4439   case InstPtr:
  4440   case AryPtr:
  4441     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  4443   case MetadataPtr: {
  4444     const TypeMetadataPtr *tp = t->is_metadataptr();
  4445     int offset = meet_offset(tp->offset());
  4446     PTR tptr = tp->ptr();
  4447     PTR ptr = meet_ptr(tptr);
  4448     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
  4449     if (tptr == TopPTR || _ptr == TopPTR ||
  4450         metadata()->equals(tp->metadata())) {
  4451       return make(ptr, md, offset);
  4453     // metadata is different
  4454     if( ptr == Constant ) {  // Cannot be equal constants, so...
  4455       if( tptr == Constant && _ptr != Constant)  return t;
  4456       if( _ptr == Constant && tptr != Constant)  return this;
  4457       ptr = NotNull;            // Fall down in lattice
  4459     return make(ptr, NULL, offset);
  4460     break;
  4462   } // End of switch
  4463   return this;                  // Return the double constant
  4467 //------------------------------xdual------------------------------------------
  4468 // Dual of a pure metadata pointer.
  4469 const Type *TypeMetadataPtr::xdual() const {
  4470   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
  4473 //------------------------------dump2------------------------------------------
  4474 #ifndef PRODUCT
  4475 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  4476   st->print("metadataptr:%s", ptr_msg[_ptr]);
  4477   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
  4478   switch( _offset ) {
  4479   case OffsetTop: st->print("+top"); break;
  4480   case OffsetBot: st->print("+any"); break;
  4481   case         0: break;
  4482   default:        st->print("+%d",_offset); break;
  4485 #endif
  4488 //=============================================================================
  4489 // Convenience common pre-built type.
  4490 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
  4492 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
  4493   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
  4496 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
  4497   return make(Constant, m, 0);
  4499 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
  4500   return make(Constant, m, 0);
  4503 //------------------------------make-------------------------------------------
  4504 // Create a meta data constant
  4505 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
  4506   assert(m == NULL || !m->is_klass(), "wrong type");
  4507   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
  4511 //=============================================================================
  4512 // Convenience common pre-built types.
  4514 // Not-null object klass or below
  4515 const TypeKlassPtr *TypeKlassPtr::OBJECT;
  4516 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
  4518 //------------------------------TypeKlassPtr-----------------------------------
  4519 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
  4520   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
  4523 //------------------------------make-------------------------------------------
  4524 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
  4525 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
  4526   assert( k != NULL, "Expect a non-NULL klass");
  4527   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
  4528   TypeKlassPtr *r =
  4529     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
  4531   return r;
  4534 //------------------------------eq---------------------------------------------
  4535 // Structural equality check for Type representations
  4536 bool TypeKlassPtr::eq( const Type *t ) const {
  4537   const TypeKlassPtr *p = t->is_klassptr();
  4538   return
  4539     klass()->equals(p->klass()) &&
  4540     TypePtr::eq(p);
  4543 //------------------------------hash-------------------------------------------
  4544 // Type-specific hashing function.
  4545 int TypeKlassPtr::hash(void) const {
  4546   return klass()->hash() + TypePtr::hash();
  4549 //------------------------------singleton--------------------------------------
  4550 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4551 // constants
  4552 bool TypeKlassPtr::singleton(void) const {
  4553   // detune optimizer to not generate constant klass + constant offset as a constant!
  4554   // TopPTR, Null, AnyNull, Constant are all singletons
  4555   return (_offset == 0) && !below_centerline(_ptr);
  4558 // Do not allow interface-vs.-noninterface joins to collapse to top.
  4559 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
  4560   // logic here mirrors the one from TypeOopPtr::filter. See comments
  4561   // there.
  4562   const Type* ft = join_helper(kills, include_speculative);
  4563   const TypeKlassPtr* ftkp = ft->isa_klassptr();
  4564   const TypeKlassPtr* ktkp = kills->isa_klassptr();
  4566   if (ft->empty()) {
  4567     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
  4568       return kills;             // Uplift to interface
  4570     return Type::TOP;           // Canonical empty value
  4573   // Interface klass type could be exact in opposite to interface type,
  4574   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
  4575   if (ftkp != NULL && ktkp != NULL &&
  4576       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
  4577       !ftkp->klass_is_exact() && // Keep exact interface klass
  4578       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
  4579     return ktkp->cast_to_ptr_type(ftkp->ptr());
  4582   return ft;
  4585 //----------------------compute_klass------------------------------------------
  4586 // Compute the defining klass for this class
  4587 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
  4588   // Compute _klass based on element type.
  4589   ciKlass* k_ary = NULL;
  4590   const TypeInstPtr *tinst;
  4591   const TypeAryPtr *tary;
  4592   const Type* el = elem();
  4593   if (el->isa_narrowoop()) {
  4594     el = el->make_ptr();
  4597   // Get element klass
  4598   if ((tinst = el->isa_instptr()) != NULL) {
  4599     // Compute array klass from element klass
  4600     k_ary = ciObjArrayKlass::make(tinst->klass());
  4601   } else if ((tary = el->isa_aryptr()) != NULL) {
  4602     // Compute array klass from element klass
  4603     ciKlass* k_elem = tary->klass();
  4604     // If element type is something like bottom[], k_elem will be null.
  4605     if (k_elem != NULL)
  4606       k_ary = ciObjArrayKlass::make(k_elem);
  4607   } else if ((el->base() == Type::Top) ||
  4608              (el->base() == Type::Bottom)) {
  4609     // element type of Bottom occurs from meet of basic type
  4610     // and object; Top occurs when doing join on Bottom.
  4611     // Leave k_ary at NULL.
  4612   } else {
  4613     // Cannot compute array klass directly from basic type,
  4614     // since subtypes of TypeInt all have basic type T_INT.
  4615 #ifdef ASSERT
  4616     if (verify && el->isa_int()) {
  4617       // Check simple cases when verifying klass.
  4618       BasicType bt = T_ILLEGAL;
  4619       if (el == TypeInt::BYTE) {
  4620         bt = T_BYTE;
  4621       } else if (el == TypeInt::SHORT) {
  4622         bt = T_SHORT;
  4623       } else if (el == TypeInt::CHAR) {
  4624         bt = T_CHAR;
  4625       } else if (el == TypeInt::INT) {
  4626         bt = T_INT;
  4627       } else {
  4628         return _klass; // just return specified klass
  4630       return ciTypeArrayKlass::make(bt);
  4632 #endif
  4633     assert(!el->isa_int(),
  4634            "integral arrays must be pre-equipped with a class");
  4635     // Compute array klass directly from basic type
  4636     k_ary = ciTypeArrayKlass::make(el->basic_type());
  4638   return k_ary;
  4641 //------------------------------klass------------------------------------------
  4642 // Return the defining klass for this class
  4643 ciKlass* TypeAryPtr::klass() const {
  4644   if( _klass ) return _klass;   // Return cached value, if possible
  4646   // Oops, need to compute _klass and cache it
  4647   ciKlass* k_ary = compute_klass();
  4649   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
  4650     // The _klass field acts as a cache of the underlying
  4651     // ciKlass for this array type.  In order to set the field,
  4652     // we need to cast away const-ness.
  4653     //
  4654     // IMPORTANT NOTE: we *never* set the _klass field for the
  4655     // type TypeAryPtr::OOPS.  This Type is shared between all
  4656     // active compilations.  However, the ciKlass which represents
  4657     // this Type is *not* shared between compilations, so caching
  4658     // this value would result in fetching a dangling pointer.
  4659     //
  4660     // Recomputing the underlying ciKlass for each request is
  4661     // a bit less efficient than caching, but calls to
  4662     // TypeAryPtr::OOPS->klass() are not common enough to matter.
  4663     ((TypeAryPtr*)this)->_klass = k_ary;
  4664     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
  4665         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
  4666       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
  4669   return k_ary;
  4673 //------------------------------add_offset-------------------------------------
  4674 // Access internals of klass object
  4675 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
  4676   return make( _ptr, klass(), xadd_offset(offset) );
  4679 //------------------------------cast_to_ptr_type-------------------------------
  4680 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
  4681   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
  4682   if( ptr == _ptr ) return this;
  4683   return make(ptr, _klass, _offset);
  4687 //-----------------------------cast_to_exactness-------------------------------
  4688 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
  4689   if( klass_is_exact == _klass_is_exact ) return this;
  4690   if (!UseExactTypes)  return this;
  4691   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
  4695 //-----------------------------as_instance_type--------------------------------
  4696 // Corresponding type for an instance of the given class.
  4697 // It will be NotNull, and exact if and only if the klass type is exact.
  4698 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
  4699   ciKlass* k = klass();
  4700   bool    xk = klass_is_exact();
  4701   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
  4702   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
  4703   guarantee(toop != NULL, "need type for given klass");
  4704   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  4705   return toop->cast_to_exactness(xk)->is_oopptr();
  4709 //------------------------------xmeet------------------------------------------
  4710 // Compute the MEET of two types, return a new Type object.
  4711 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
  4712   // Perform a fast test for common case; meeting the same types together.
  4713   if( this == t ) return this;  // Meeting same type-rep?
  4715   // Current "this->_base" is Pointer
  4716   switch (t->base()) {          // switch on original type
  4718   case Int:                     // Mixing ints & oops happens when javac
  4719   case Long:                    // reuses local variables
  4720   case FloatTop:
  4721   case FloatCon:
  4722   case FloatBot:
  4723   case DoubleTop:
  4724   case DoubleCon:
  4725   case DoubleBot:
  4726   case NarrowOop:
  4727   case NarrowKlass:
  4728   case Bottom:                  // Ye Olde Default
  4729     return Type::BOTTOM;
  4730   case Top:
  4731     return this;
  4733   default:                      // All else is a mistake
  4734     typerr(t);
  4736   case AnyPtr: {                // Meeting to AnyPtrs
  4737     // Found an AnyPtr type vs self-KlassPtr type
  4738     const TypePtr *tp = t->is_ptr();
  4739     int offset = meet_offset(tp->offset());
  4740     PTR ptr = meet_ptr(tp->ptr());
  4741     switch (tp->ptr()) {
  4742     case TopPTR:
  4743       return this;
  4744     case Null:
  4745       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  4746     case AnyNull:
  4747       return make( ptr, klass(), offset );
  4748     case BotPTR:
  4749     case NotNull:
  4750       return TypePtr::make(AnyPtr, ptr, offset);
  4751     default: typerr(t);
  4755   case RawPtr:
  4756   case MetadataPtr:
  4757   case OopPtr:
  4758   case AryPtr:                  // Meet with AryPtr
  4759   case InstPtr:                 // Meet with InstPtr
  4760     return TypePtr::BOTTOM;
  4762   //
  4763   //             A-top         }
  4764   //           /   |   \       }  Tops
  4765   //       B-top A-any C-top   }
  4766   //          | /  |  \ |      }  Any-nulls
  4767   //       B-any   |   C-any   }
  4768   //          |    |    |
  4769   //       B-con A-con C-con   } constants; not comparable across classes
  4770   //          |    |    |
  4771   //       B-not   |   C-not   }
  4772   //          | \  |  / |      }  not-nulls
  4773   //       B-bot A-not C-bot   }
  4774   //           \   |   /       }  Bottoms
  4775   //             A-bot         }
  4776   //
  4778   case KlassPtr: {  // Meet two KlassPtr types
  4779     const TypeKlassPtr *tkls = t->is_klassptr();
  4780     int  off     = meet_offset(tkls->offset());
  4781     PTR  ptr     = meet_ptr(tkls->ptr());
  4783     // Check for easy case; klasses are equal (and perhaps not loaded!)
  4784     // If we have constants, then we created oops so classes are loaded
  4785     // and we can handle the constants further down.  This case handles
  4786     // not-loaded classes
  4787     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
  4788       return make( ptr, klass(), off );
  4791     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  4792     ciKlass* tkls_klass = tkls->klass();
  4793     ciKlass* this_klass = this->klass();
  4794     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
  4795     assert( this_klass->is_loaded(), "This class should have been loaded.");
  4797     // If 'this' type is above the centerline and is a superclass of the
  4798     // other, we can treat 'this' as having the same type as the other.
  4799     if ((above_centerline(this->ptr())) &&
  4800         tkls_klass->is_subtype_of(this_klass)) {
  4801       this_klass = tkls_klass;
  4803     // If 'tinst' type is above the centerline and is a superclass of the
  4804     // other, we can treat 'tinst' as having the same type as the other.
  4805     if ((above_centerline(tkls->ptr())) &&
  4806         this_klass->is_subtype_of(tkls_klass)) {
  4807       tkls_klass = this_klass;
  4810     // Check for classes now being equal
  4811     if (tkls_klass->equals(this_klass)) {
  4812       // If the klasses are equal, the constants may still differ.  Fall to
  4813       // NotNull if they do (neither constant is NULL; that is a special case
  4814       // handled elsewhere).
  4815       if( ptr == Constant ) {
  4816         if (this->_ptr == Constant && tkls->_ptr == Constant &&
  4817             this->klass()->equals(tkls->klass()));
  4818         else if (above_centerline(this->ptr()));
  4819         else if (above_centerline(tkls->ptr()));
  4820         else
  4821           ptr = NotNull;
  4823       return make( ptr, this_klass, off );
  4824     } // Else classes are not equal
  4826     // Since klasses are different, we require the LCA in the Java
  4827     // class hierarchy - which means we have to fall to at least NotNull.
  4828     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  4829       ptr = NotNull;
  4830     // Now we find the LCA of Java classes
  4831     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
  4832     return   make( ptr, k, off );
  4833   } // End of case KlassPtr
  4835   } // End of switch
  4836   return this;                  // Return the double constant
  4839 //------------------------------xdual------------------------------------------
  4840 // Dual: compute field-by-field dual
  4841 const Type    *TypeKlassPtr::xdual() const {
  4842   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
  4845 //------------------------------get_con----------------------------------------
  4846 intptr_t TypeKlassPtr::get_con() const {
  4847   assert( _ptr == Null || _ptr == Constant, "" );
  4848   assert( _offset >= 0, "" );
  4850   if (_offset != 0) {
  4851     // After being ported to the compiler interface, the compiler no longer
  4852     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  4853     // to a handle at compile time.  This handle is embedded in the generated
  4854     // code and dereferenced at the time the nmethod is made.  Until that time,
  4855     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  4856     // have access to the addresses!).  This does not seem to currently happen,
  4857     // but this assertion here is to help prevent its occurence.
  4858     tty->print_cr("Found oop constant with non-zero offset");
  4859     ShouldNotReachHere();
  4862   return (intptr_t)klass()->constant_encoding();
  4864 //------------------------------dump2------------------------------------------
  4865 // Dump Klass Type
  4866 #ifndef PRODUCT
  4867 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  4868   switch( _ptr ) {
  4869   case Constant:
  4870     st->print("precise ");
  4871   case NotNull:
  4873       const char *name = klass()->name()->as_utf8();
  4874       if( name ) {
  4875         st->print("klass %s: " INTPTR_FORMAT, name, klass());
  4876       } else {
  4877         ShouldNotReachHere();
  4880   case BotPTR:
  4881     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
  4882   case TopPTR:
  4883   case AnyNull:
  4884     st->print(":%s", ptr_msg[_ptr]);
  4885     if( _klass_is_exact ) st->print(":exact");
  4886     break;
  4889   if( _offset ) {               // Dump offset, if any
  4890     if( _offset == OffsetBot )      { st->print("+any"); }
  4891     else if( _offset == OffsetTop ) { st->print("+unknown"); }
  4892     else                            { st->print("+%d", _offset); }
  4895   st->print(" *");
  4897 #endif
  4901 //=============================================================================
  4902 // Convenience common pre-built types.
  4904 //------------------------------make-------------------------------------------
  4905 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
  4906   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
  4909 //------------------------------make-------------------------------------------
  4910 const TypeFunc *TypeFunc::make(ciMethod* method) {
  4911   Compile* C = Compile::current();
  4912   const TypeFunc* tf = C->last_tf(method); // check cache
  4913   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
  4914   const TypeTuple *domain;
  4915   if (method->is_static()) {
  4916     domain = TypeTuple::make_domain(NULL, method->signature());
  4917   } else {
  4918     domain = TypeTuple::make_domain(method->holder(), method->signature());
  4920   const TypeTuple *range  = TypeTuple::make_range(method->signature());
  4921   tf = TypeFunc::make(domain, range);
  4922   C->set_last_tf(method, tf);  // fill cache
  4923   return tf;
  4926 //------------------------------meet-------------------------------------------
  4927 // Compute the MEET of two types.  It returns a new Type object.
  4928 const Type *TypeFunc::xmeet( const Type *t ) const {
  4929   // Perform a fast test for common case; meeting the same types together.
  4930   if( this == t ) return this;  // Meeting same type-rep?
  4932   // Current "this->_base" is Func
  4933   switch (t->base()) {          // switch on original type
  4935   case Bottom:                  // Ye Olde Default
  4936     return t;
  4938   default:                      // All else is a mistake
  4939     typerr(t);
  4941   case Top:
  4942     break;
  4944   return this;                  // Return the double constant
  4947 //------------------------------xdual------------------------------------------
  4948 // Dual: compute field-by-field dual
  4949 const Type *TypeFunc::xdual() const {
  4950   return this;
  4953 //------------------------------eq---------------------------------------------
  4954 // Structural equality check for Type representations
  4955 bool TypeFunc::eq( const Type *t ) const {
  4956   const TypeFunc *a = (const TypeFunc*)t;
  4957   return _domain == a->_domain &&
  4958     _range == a->_range;
  4961 //------------------------------hash-------------------------------------------
  4962 // Type-specific hashing function.
  4963 int TypeFunc::hash(void) const {
  4964   return (intptr_t)_domain + (intptr_t)_range;
  4967 //------------------------------dump2------------------------------------------
  4968 // Dump Function Type
  4969 #ifndef PRODUCT
  4970 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
  4971   if( _range->_cnt <= Parms )
  4972     st->print("void");
  4973   else {
  4974     uint i;
  4975     for (i = Parms; i < _range->_cnt-1; i++) {
  4976       _range->field_at(i)->dump2(d,depth,st);
  4977       st->print("/");
  4979     _range->field_at(i)->dump2(d,depth,st);
  4981   st->print(" ");
  4982   st->print("( ");
  4983   if( !depth || d[this] ) {     // Check for recursive dump
  4984     st->print("...)");
  4985     return;
  4987   d.Insert((void*)this,(void*)this);    // Stop recursion
  4988   if (Parms < _domain->_cnt)
  4989     _domain->field_at(Parms)->dump2(d,depth-1,st);
  4990   for (uint i = Parms+1; i < _domain->_cnt; i++) {
  4991     st->print(", ");
  4992     _domain->field_at(i)->dump2(d,depth-1,st);
  4994   st->print(" )");
  4996 #endif
  4998 //------------------------------singleton--------------------------------------
  4999 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  5000 // constants (Ldi nodes).  Singletons are integer, float or double constants
  5001 // or a single symbol.
  5002 bool TypeFunc::singleton(void) const {
  5003   return false;                 // Never a singleton
  5006 bool TypeFunc::empty(void) const {
  5007   return false;                 // Never empty
  5011 BasicType TypeFunc::return_type() const{
  5012   if (range()->cnt() == TypeFunc::Parms) {
  5013     return T_VOID;
  5015   return range()->field_at(TypeFunc::Parms)->basic_type();

mercurial