src/share/vm/opto/type.cpp

Wed, 27 Aug 2014 08:19:12 -0400

author
zgu
date
Wed, 27 Aug 2014 08:19:12 -0400
changeset 7074
833b0f92429a
parent 6680
78bbf4d43a14
child 7535
7ae4e26cb1e0
child 7693
2163da41681e
permissions
-rw-r--r--

8046598: Scalable Native memory tracking development
Summary: Enhance scalability of native memory tracking
Reviewed-by: coleenp, ctornqvi, gtriantafill

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "ci/ciTypeFlow.hpp"
    28 #include "classfile/symbolTable.hpp"
    29 #include "classfile/systemDictionary.hpp"
    30 #include "compiler/compileLog.hpp"
    31 #include "libadt/dict.hpp"
    32 #include "memory/gcLocker.hpp"
    33 #include "memory/oopFactory.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "oops/instanceKlass.hpp"
    36 #include "oops/instanceMirrorKlass.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "oops/typeArrayKlass.hpp"
    39 #include "opto/matcher.hpp"
    40 #include "opto/node.hpp"
    41 #include "opto/opcodes.hpp"
    42 #include "opto/type.hpp"
    44 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    46 // Portions of code courtesy of Clifford Click
    48 // Optimization - Graph Style
    50 // Dictionary of types shared among compilations.
    51 Dict* Type::_shared_type_dict = NULL;
    53 // Array which maps compiler types to Basic Types
    54 Type::TypeInfo Type::_type_info[Type::lastype] = {
    55   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
    56   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
    57   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
    58   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
    59   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
    60   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
    61   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
    62   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
    63   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
    64   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
    66 #ifdef SPARC
    67   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
    68   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
    69   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
    70   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
    71 #elif defined(PPC64)
    72   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
    73   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
    74   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
    75   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
    76 #else // all other
    77   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
    78   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
    79   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
    80   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
    81 #endif
    82   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
    83   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
    84   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
    85   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
    86   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
    87   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
    88   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
    89   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
    90   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
    91   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
    92   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
    93   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
    94   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
    95   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
    96   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
    97   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
    98   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
    99   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
   100 };
   102 // Map ideal registers (machine types) to ideal types
   103 const Type *Type::mreg2type[_last_machine_leaf];
   105 // Map basic types to canonical Type* pointers.
   106 const Type* Type::     _const_basic_type[T_CONFLICT+1];
   108 // Map basic types to constant-zero Types.
   109 const Type* Type::            _zero_type[T_CONFLICT+1];
   111 // Map basic types to array-body alias types.
   112 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
   114 //=============================================================================
   115 // Convenience common pre-built types.
   116 const Type *Type::ABIO;         // State-of-machine only
   117 const Type *Type::BOTTOM;       // All values
   118 const Type *Type::CONTROL;      // Control only
   119 const Type *Type::DOUBLE;       // All doubles
   120 const Type *Type::FLOAT;        // All floats
   121 const Type *Type::HALF;         // Placeholder half of doublewide type
   122 const Type *Type::MEMORY;       // Abstract store only
   123 const Type *Type::RETURN_ADDRESS;
   124 const Type *Type::TOP;          // No values in set
   126 //------------------------------get_const_type---------------------------
   127 const Type* Type::get_const_type(ciType* type) {
   128   if (type == NULL) {
   129     return NULL;
   130   } else if (type->is_primitive_type()) {
   131     return get_const_basic_type(type->basic_type());
   132   } else {
   133     return TypeOopPtr::make_from_klass(type->as_klass());
   134   }
   135 }
   137 //---------------------------array_element_basic_type---------------------------------
   138 // Mapping to the array element's basic type.
   139 BasicType Type::array_element_basic_type() const {
   140   BasicType bt = basic_type();
   141   if (bt == T_INT) {
   142     if (this == TypeInt::INT)   return T_INT;
   143     if (this == TypeInt::CHAR)  return T_CHAR;
   144     if (this == TypeInt::BYTE)  return T_BYTE;
   145     if (this == TypeInt::BOOL)  return T_BOOLEAN;
   146     if (this == TypeInt::SHORT) return T_SHORT;
   147     return T_VOID;
   148   }
   149   return bt;
   150 }
   152 //---------------------------get_typeflow_type---------------------------------
   153 // Import a type produced by ciTypeFlow.
   154 const Type* Type::get_typeflow_type(ciType* type) {
   155   switch (type->basic_type()) {
   157   case ciTypeFlow::StateVector::T_BOTTOM:
   158     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
   159     return Type::BOTTOM;
   161   case ciTypeFlow::StateVector::T_TOP:
   162     assert(type == ciTypeFlow::StateVector::top_type(), "");
   163     return Type::TOP;
   165   case ciTypeFlow::StateVector::T_NULL:
   166     assert(type == ciTypeFlow::StateVector::null_type(), "");
   167     return TypePtr::NULL_PTR;
   169   case ciTypeFlow::StateVector::T_LONG2:
   170     // The ciTypeFlow pass pushes a long, then the half.
   171     // We do the same.
   172     assert(type == ciTypeFlow::StateVector::long2_type(), "");
   173     return TypeInt::TOP;
   175   case ciTypeFlow::StateVector::T_DOUBLE2:
   176     // The ciTypeFlow pass pushes double, then the half.
   177     // Our convention is the same.
   178     assert(type == ciTypeFlow::StateVector::double2_type(), "");
   179     return Type::TOP;
   181   case T_ADDRESS:
   182     assert(type->is_return_address(), "");
   183     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
   185   default:
   186     // make sure we did not mix up the cases:
   187     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
   188     assert(type != ciTypeFlow::StateVector::top_type(), "");
   189     assert(type != ciTypeFlow::StateVector::null_type(), "");
   190     assert(type != ciTypeFlow::StateVector::long2_type(), "");
   191     assert(type != ciTypeFlow::StateVector::double2_type(), "");
   192     assert(!type->is_return_address(), "");
   194     return Type::get_const_type(type);
   195   }
   196 }
   199 //-----------------------make_from_constant------------------------------------
   200 const Type* Type::make_from_constant(ciConstant constant,
   201                                      bool require_constant, bool is_autobox_cache) {
   202   switch (constant.basic_type()) {
   203   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
   204   case T_CHAR:     return TypeInt::make(constant.as_char());
   205   case T_BYTE:     return TypeInt::make(constant.as_byte());
   206   case T_SHORT:    return TypeInt::make(constant.as_short());
   207   case T_INT:      return TypeInt::make(constant.as_int());
   208   case T_LONG:     return TypeLong::make(constant.as_long());
   209   case T_FLOAT:    return TypeF::make(constant.as_float());
   210   case T_DOUBLE:   return TypeD::make(constant.as_double());
   211   case T_ARRAY:
   212   case T_OBJECT:
   213     {
   214       // cases:
   215       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
   216       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
   217       // An oop is not scavengable if it is in the perm gen.
   218       ciObject* oop_constant = constant.as_object();
   219       if (oop_constant->is_null_object()) {
   220         return Type::get_zero_type(T_OBJECT);
   221       } else if (require_constant || oop_constant->should_be_constant()) {
   222         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
   223       }
   224     }
   225   }
   226   // Fall through to failure
   227   return NULL;
   228 }
   231 //------------------------------make-------------------------------------------
   232 // Create a simple Type, with default empty symbol sets.  Then hashcons it
   233 // and look for an existing copy in the type dictionary.
   234 const Type *Type::make( enum TYPES t ) {
   235   return (new Type(t))->hashcons();
   236 }
   238 //------------------------------cmp--------------------------------------------
   239 int Type::cmp( const Type *const t1, const Type *const t2 ) {
   240   if( t1->_base != t2->_base )
   241     return 1;                   // Missed badly
   242   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
   243   return !t1->eq(t2);           // Return ZERO if equal
   244 }
   246 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
   247   if (!include_speculative) {
   248     return remove_speculative();
   249   }
   250   return this;
   251 }
   253 //------------------------------hash-------------------------------------------
   254 int Type::uhash( const Type *const t ) {
   255   return t->hash();
   256 }
   258 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
   260 //--------------------------Initialize_shared----------------------------------
   261 void Type::Initialize_shared(Compile* current) {
   262   // This method does not need to be locked because the first system
   263   // compilations (stub compilations) occur serially.  If they are
   264   // changed to proceed in parallel, then this section will need
   265   // locking.
   267   Arena* save = current->type_arena();
   268   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
   270   current->set_type_arena(shared_type_arena);
   271   _shared_type_dict =
   272     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
   273                                   shared_type_arena, 128 );
   274   current->set_type_dict(_shared_type_dict);
   276   // Make shared pre-built types.
   277   CONTROL = make(Control);      // Control only
   278   TOP     = make(Top);          // No values in set
   279   MEMORY  = make(Memory);       // Abstract store only
   280   ABIO    = make(Abio);         // State-of-machine only
   281   RETURN_ADDRESS=make(Return_Address);
   282   FLOAT   = make(FloatBot);     // All floats
   283   DOUBLE  = make(DoubleBot);    // All doubles
   284   BOTTOM  = make(Bottom);       // Everything
   285   HALF    = make(Half);         // Placeholder half of doublewide type
   287   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
   288   TypeF::ONE  = TypeF::make(1.0); // Float 1
   290   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
   291   TypeD::ONE  = TypeD::make(1.0); // Double 1
   293   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
   294   TypeInt::ZERO    = TypeInt::make( 0);  //  0
   295   TypeInt::ONE     = TypeInt::make( 1);  //  1
   296   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
   297   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
   298   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
   299   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
   300   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
   301   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
   302   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
   303   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
   304   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
   305   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
   306   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
   307   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
   308   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
   309   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
   310   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
   311   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
   312   // CmpL is overloaded both as the bytecode computation returning
   313   // a trinary (-1,0,+1) integer result AND as an efficient long
   314   // compare returning optimizer ideal-type flags.
   315   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
   316   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
   317   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
   318   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
   319   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
   321   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
   322   TypeLong::ZERO    = TypeLong::make( 0);        //  0
   323   TypeLong::ONE     = TypeLong::make( 1);        //  1
   324   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
   325   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
   326   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
   327   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
   328   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
   330   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   331   fboth[0] = Type::CONTROL;
   332   fboth[1] = Type::CONTROL;
   333   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
   335   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   336   ffalse[0] = Type::CONTROL;
   337   ffalse[1] = Type::TOP;
   338   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
   340   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   341   fneither[0] = Type::TOP;
   342   fneither[1] = Type::TOP;
   343   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
   345   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   346   ftrue[0] = Type::TOP;
   347   ftrue[1] = Type::CONTROL;
   348   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
   350   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   351   floop[0] = Type::CONTROL;
   352   floop[1] = TypeInt::INT;
   353   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
   355   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
   356   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
   357   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
   359   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
   360   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
   362   const Type **fmembar = TypeTuple::fields(0);
   363   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
   365   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   366   fsc[0] = TypeInt::CC;
   367   fsc[1] = Type::MEMORY;
   368   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
   370   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
   371   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
   372   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
   373   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   374                                            false, 0, oopDesc::mark_offset_in_bytes());
   375   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   376                                            false, 0, oopDesc::klass_offset_in_bytes());
   377   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
   379   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
   381   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
   382   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
   384   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
   386   mreg2type[Op_Node] = Type::BOTTOM;
   387   mreg2type[Op_Set ] = 0;
   388   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
   389   mreg2type[Op_RegI] = TypeInt::INT;
   390   mreg2type[Op_RegP] = TypePtr::BOTTOM;
   391   mreg2type[Op_RegF] = Type::FLOAT;
   392   mreg2type[Op_RegD] = Type::DOUBLE;
   393   mreg2type[Op_RegL] = TypeLong::LONG;
   394   mreg2type[Op_RegFlags] = TypeInt::CC;
   396   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
   398   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   400 #ifdef _LP64
   401   if (UseCompressedOops) {
   402     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
   403     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
   404   } else
   405 #endif
   406   {
   407     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
   408     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   409   }
   410   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
   411   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
   412   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
   413   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
   414   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
   415   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
   416   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
   418   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
   419   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
   420   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
   421   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
   422   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
   423   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
   424   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
   425   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
   426   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
   427   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
   428   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
   429   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
   431   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
   432   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
   434   const Type **fi2c = TypeTuple::fields(2);
   435   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
   436   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
   437   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
   439   const Type **intpair = TypeTuple::fields(2);
   440   intpair[0] = TypeInt::INT;
   441   intpair[1] = TypeInt::INT;
   442   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
   444   const Type **longpair = TypeTuple::fields(2);
   445   longpair[0] = TypeLong::LONG;
   446   longpair[1] = TypeLong::LONG;
   447   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
   449   const Type **intccpair = TypeTuple::fields(2);
   450   intccpair[0] = TypeInt::INT;
   451   intccpair[1] = TypeInt::CC;
   452   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
   454   const Type **longccpair = TypeTuple::fields(2);
   455   longccpair[0] = TypeLong::LONG;
   456   longccpair[1] = TypeInt::CC;
   457   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
   459   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
   460   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
   461   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
   462   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
   463   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
   464   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
   465   _const_basic_type[T_INT]         = TypeInt::INT;
   466   _const_basic_type[T_LONG]        = TypeLong::LONG;
   467   _const_basic_type[T_FLOAT]       = Type::FLOAT;
   468   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
   469   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
   470   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
   471   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
   472   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
   473   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
   475   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
   476   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
   477   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
   478   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
   479   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
   480   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
   481   _zero_type[T_INT]         = TypeInt::ZERO;
   482   _zero_type[T_LONG]        = TypeLong::ZERO;
   483   _zero_type[T_FLOAT]       = TypeF::ZERO;
   484   _zero_type[T_DOUBLE]      = TypeD::ZERO;
   485   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
   486   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
   487   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
   488   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
   490   // get_zero_type() should not happen for T_CONFLICT
   491   _zero_type[T_CONFLICT]= NULL;
   493   // Vector predefined types, it needs initialized _const_basic_type[].
   494   if (Matcher::vector_size_supported(T_BYTE,4)) {
   495     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
   496   }
   497   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   498     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
   499   }
   500   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   501     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
   502   }
   503   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   504     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
   505   }
   506   mreg2type[Op_VecS] = TypeVect::VECTS;
   507   mreg2type[Op_VecD] = TypeVect::VECTD;
   508   mreg2type[Op_VecX] = TypeVect::VECTX;
   509   mreg2type[Op_VecY] = TypeVect::VECTY;
   511   // Restore working type arena.
   512   current->set_type_arena(save);
   513   current->set_type_dict(NULL);
   514 }
   516 //------------------------------Initialize-------------------------------------
   517 void Type::Initialize(Compile* current) {
   518   assert(current->type_arena() != NULL, "must have created type arena");
   520   if (_shared_type_dict == NULL) {
   521     Initialize_shared(current);
   522   }
   524   Arena* type_arena = current->type_arena();
   526   // Create the hash-cons'ing dictionary with top-level storage allocation
   527   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
   528   current->set_type_dict(tdic);
   530   // Transfer the shared types.
   531   DictI i(_shared_type_dict);
   532   for( ; i.test(); ++i ) {
   533     Type* t = (Type*)i._value;
   534     tdic->Insert(t,t);  // New Type, insert into Type table
   535   }
   536 }
   538 //------------------------------hashcons---------------------------------------
   539 // Do the hash-cons trick.  If the Type already exists in the type table,
   540 // delete the current Type and return the existing Type.  Otherwise stick the
   541 // current Type in the Type table.
   542 const Type *Type::hashcons(void) {
   543   debug_only(base());           // Check the assertion in Type::base().
   544   // Look up the Type in the Type dictionary
   545   Dict *tdic = type_dict();
   546   Type* old = (Type*)(tdic->Insert(this, this, false));
   547   if( old ) {                   // Pre-existing Type?
   548     if( old != this )           // Yes, this guy is not the pre-existing?
   549       delete this;              // Yes, Nuke this guy
   550     assert( old->_dual, "" );
   551     return old;                 // Return pre-existing
   552   }
   554   // Every type has a dual (to make my lattice symmetric).
   555   // Since we just discovered a new Type, compute its dual right now.
   556   assert( !_dual, "" );         // No dual yet
   557   _dual = xdual();              // Compute the dual
   558   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
   559     _dual = this;
   560     return this;
   561   }
   562   assert( !_dual->_dual, "" );  // No reverse dual yet
   563   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
   564   // New Type, insert into Type table
   565   tdic->Insert((void*)_dual,(void*)_dual);
   566   ((Type*)_dual)->_dual = this; // Finish up being symmetric
   567 #ifdef ASSERT
   568   Type *dual_dual = (Type*)_dual->xdual();
   569   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
   570   delete dual_dual;
   571 #endif
   572   return this;                  // Return new Type
   573 }
   575 //------------------------------eq---------------------------------------------
   576 // Structural equality check for Type representations
   577 bool Type::eq( const Type * ) const {
   578   return true;                  // Nothing else can go wrong
   579 }
   581 //------------------------------hash-------------------------------------------
   582 // Type-specific hashing function.
   583 int Type::hash(void) const {
   584   return _base;
   585 }
   587 //------------------------------is_finite--------------------------------------
   588 // Has a finite value
   589 bool Type::is_finite() const {
   590   return false;
   591 }
   593 //------------------------------is_nan-----------------------------------------
   594 // Is not a number (NaN)
   595 bool Type::is_nan()    const {
   596   return false;
   597 }
   599 //----------------------interface_vs_oop---------------------------------------
   600 #ifdef ASSERT
   601 bool Type::interface_vs_oop_helper(const Type *t) const {
   602   bool result = false;
   604   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
   605   const TypePtr*    t_ptr =    t->make_ptr();
   606   if( this_ptr == NULL || t_ptr == NULL )
   607     return result;
   609   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
   610   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
   611   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
   612     bool this_interface = this_inst->klass()->is_interface();
   613     bool    t_interface =    t_inst->klass()->is_interface();
   614     result = this_interface ^ t_interface;
   615   }
   617   return result;
   618 }
   620 bool Type::interface_vs_oop(const Type *t) const {
   621   if (interface_vs_oop_helper(t)) {
   622     return true;
   623   }
   624   // Now check the speculative parts as well
   625   const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
   626   const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
   627   if (this_spec != NULL && t_spec != NULL) {
   628     if (this_spec->interface_vs_oop_helper(t_spec)) {
   629       return true;
   630     }
   631     return false;
   632   }
   633   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
   634     return true;
   635   }
   636   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
   637     return true;
   638   }
   639   return false;
   640 }
   642 #endif
   644 //------------------------------meet-------------------------------------------
   645 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
   646 // commutative and the lattice is symmetric.
   647 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
   648   if (isa_narrowoop() && t->isa_narrowoop()) {
   649     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
   650     return result->make_narrowoop();
   651   }
   652   if (isa_narrowklass() && t->isa_narrowklass()) {
   653     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
   654     return result->make_narrowklass();
   655   }
   657   const Type *this_t = maybe_remove_speculative(include_speculative);
   658   t = t->maybe_remove_speculative(include_speculative);
   660   const Type *mt = this_t->xmeet(t);
   661   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
   662   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
   663 #ifdef ASSERT
   664   assert(mt == t->xmeet(this_t), "meet not commutative");
   665   const Type* dual_join = mt->_dual;
   666   const Type *t2t    = dual_join->xmeet(t->_dual);
   667   const Type *t2this = dual_join->xmeet(this_t->_dual);
   669   // Interface meet Oop is Not Symmetric:
   670   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
   671   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
   673   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
   674     tty->print_cr("=== Meet Not Symmetric ===");
   675     tty->print("t   =                   ");              t->dump(); tty->cr();
   676     tty->print("this=                   ");         this_t->dump(); tty->cr();
   677     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
   679     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
   680     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
   681     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
   683     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
   684     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
   686     fatal("meet not symmetric" );
   687   }
   688 #endif
   689   return mt;
   690 }
   692 //------------------------------xmeet------------------------------------------
   693 // Compute the MEET of two types.  It returns a new Type object.
   694 const Type *Type::xmeet( const Type *t ) const {
   695   // Perform a fast test for common case; meeting the same types together.
   696   if( this == t ) return this;  // Meeting same type-rep?
   698   // Meeting TOP with anything?
   699   if( _base == Top ) return t;
   701   // Meeting BOTTOM with anything?
   702   if( _base == Bottom ) return BOTTOM;
   704   // Current "this->_base" is one of: Bad, Multi, Control, Top,
   705   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
   706   switch (t->base()) {  // Switch on original type
   708   // Cut in half the number of cases I must handle.  Only need cases for when
   709   // the given enum "t->type" is less than or equal to the local enum "type".
   710   case FloatCon:
   711   case DoubleCon:
   712   case Int:
   713   case Long:
   714     return t->xmeet(this);
   716   case OopPtr:
   717     return t->xmeet(this);
   719   case InstPtr:
   720     return t->xmeet(this);
   722   case MetadataPtr:
   723   case KlassPtr:
   724     return t->xmeet(this);
   726   case AryPtr:
   727     return t->xmeet(this);
   729   case NarrowOop:
   730     return t->xmeet(this);
   732   case NarrowKlass:
   733     return t->xmeet(this);
   735   case Bad:                     // Type check
   736   default:                      // Bogus type not in lattice
   737     typerr(t);
   738     return Type::BOTTOM;
   740   case Bottom:                  // Ye Olde Default
   741     return t;
   743   case FloatTop:
   744     if( _base == FloatTop ) return this;
   745   case FloatBot:                // Float
   746     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
   747     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
   748     typerr(t);
   749     return Type::BOTTOM;
   751   case DoubleTop:
   752     if( _base == DoubleTop ) return this;
   753   case DoubleBot:               // Double
   754     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
   755     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
   756     typerr(t);
   757     return Type::BOTTOM;
   759   // These next few cases must match exactly or it is a compile-time error.
   760   case Control:                 // Control of code
   761   case Abio:                    // State of world outside of program
   762   case Memory:
   763     if( _base == t->_base )  return this;
   764     typerr(t);
   765     return Type::BOTTOM;
   767   case Top:                     // Top of the lattice
   768     return this;
   769   }
   771   // The type is unchanged
   772   return this;
   773 }
   775 //-----------------------------filter------------------------------------------
   776 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
   777   const Type* ft = join_helper(kills, include_speculative);
   778   if (ft->empty())
   779     return Type::TOP;           // Canonical empty value
   780   return ft;
   781 }
   783 //------------------------------xdual------------------------------------------
   784 // Compute dual right now.
   785 const Type::TYPES Type::dual_type[Type::lastype] = {
   786   Bad,          // Bad
   787   Control,      // Control
   788   Bottom,       // Top
   789   Bad,          // Int - handled in v-call
   790   Bad,          // Long - handled in v-call
   791   Half,         // Half
   792   Bad,          // NarrowOop - handled in v-call
   793   Bad,          // NarrowKlass - handled in v-call
   795   Bad,          // Tuple - handled in v-call
   796   Bad,          // Array - handled in v-call
   797   Bad,          // VectorS - handled in v-call
   798   Bad,          // VectorD - handled in v-call
   799   Bad,          // VectorX - handled in v-call
   800   Bad,          // VectorY - handled in v-call
   802   Bad,          // AnyPtr - handled in v-call
   803   Bad,          // RawPtr - handled in v-call
   804   Bad,          // OopPtr - handled in v-call
   805   Bad,          // InstPtr - handled in v-call
   806   Bad,          // AryPtr - handled in v-call
   808   Bad,          //  MetadataPtr - handled in v-call
   809   Bad,          // KlassPtr - handled in v-call
   811   Bad,          // Function - handled in v-call
   812   Abio,         // Abio
   813   Return_Address,// Return_Address
   814   Memory,       // Memory
   815   FloatBot,     // FloatTop
   816   FloatCon,     // FloatCon
   817   FloatTop,     // FloatBot
   818   DoubleBot,    // DoubleTop
   819   DoubleCon,    // DoubleCon
   820   DoubleTop,    // DoubleBot
   821   Top           // Bottom
   822 };
   824 const Type *Type::xdual() const {
   825   // Note: the base() accessor asserts the sanity of _base.
   826   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
   827   return new Type(_type_info[_base].dual_type);
   828 }
   830 //------------------------------has_memory-------------------------------------
   831 bool Type::has_memory() const {
   832   Type::TYPES tx = base();
   833   if (tx == Memory) return true;
   834   if (tx == Tuple) {
   835     const TypeTuple *t = is_tuple();
   836     for (uint i=0; i < t->cnt(); i++) {
   837       tx = t->field_at(i)->base();
   838       if (tx == Memory)  return true;
   839     }
   840   }
   841   return false;
   842 }
   844 #ifndef PRODUCT
   845 //------------------------------dump2------------------------------------------
   846 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
   847   st->print("%s", _type_info[_base].msg);
   848 }
   850 //------------------------------dump-------------------------------------------
   851 void Type::dump_on(outputStream *st) const {
   852   ResourceMark rm;
   853   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
   854   dump2(d,1, st);
   855   if (is_ptr_to_narrowoop()) {
   856     st->print(" [narrow]");
   857   } else if (is_ptr_to_narrowklass()) {
   858     st->print(" [narrowklass]");
   859   }
   860 }
   861 #endif
   863 //------------------------------singleton--------------------------------------
   864 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   865 // constants (Ldi nodes).  Singletons are integer, float or double constants.
   866 bool Type::singleton(void) const {
   867   return _base == Top || _base == Half;
   868 }
   870 //------------------------------empty------------------------------------------
   871 // TRUE if Type is a type with no values, FALSE otherwise.
   872 bool Type::empty(void) const {
   873   switch (_base) {
   874   case DoubleTop:
   875   case FloatTop:
   876   case Top:
   877     return true;
   879   case Half:
   880   case Abio:
   881   case Return_Address:
   882   case Memory:
   883   case Bottom:
   884   case FloatBot:
   885   case DoubleBot:
   886     return false;  // never a singleton, therefore never empty
   887   }
   889   ShouldNotReachHere();
   890   return false;
   891 }
   893 //------------------------------dump_stats-------------------------------------
   894 // Dump collected statistics to stderr
   895 #ifndef PRODUCT
   896 void Type::dump_stats() {
   897   tty->print("Types made: %d\n", type_dict()->Size());
   898 }
   899 #endif
   901 //------------------------------typerr-----------------------------------------
   902 void Type::typerr( const Type *t ) const {
   903 #ifndef PRODUCT
   904   tty->print("\nError mixing types: ");
   905   dump();
   906   tty->print(" and ");
   907   t->dump();
   908   tty->print("\n");
   909 #endif
   910   ShouldNotReachHere();
   911 }
   914 //=============================================================================
   915 // Convenience common pre-built types.
   916 const TypeF *TypeF::ZERO;       // Floating point zero
   917 const TypeF *TypeF::ONE;        // Floating point one
   919 //------------------------------make-------------------------------------------
   920 // Create a float constant
   921 const TypeF *TypeF::make(float f) {
   922   return (TypeF*)(new TypeF(f))->hashcons();
   923 }
   925 //------------------------------meet-------------------------------------------
   926 // Compute the MEET of two types.  It returns a new Type object.
   927 const Type *TypeF::xmeet( const Type *t ) const {
   928   // Perform a fast test for common case; meeting the same types together.
   929   if( this == t ) return this;  // Meeting same type-rep?
   931   // Current "this->_base" is FloatCon
   932   switch (t->base()) {          // Switch on original type
   933   case AnyPtr:                  // Mixing with oops happens when javac
   934   case RawPtr:                  // reuses local variables
   935   case OopPtr:
   936   case InstPtr:
   937   case AryPtr:
   938   case MetadataPtr:
   939   case KlassPtr:
   940   case NarrowOop:
   941   case NarrowKlass:
   942   case Int:
   943   case Long:
   944   case DoubleTop:
   945   case DoubleCon:
   946   case DoubleBot:
   947   case Bottom:                  // Ye Olde Default
   948     return Type::BOTTOM;
   950   case FloatBot:
   951     return t;
   953   default:                      // All else is a mistake
   954     typerr(t);
   956   case FloatCon:                // Float-constant vs Float-constant?
   957     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
   958                                 // must compare bitwise as positive zero, negative zero and NaN have
   959                                 // all the same representation in C++
   960       return FLOAT;             // Return generic float
   961                                 // Equal constants
   962   case Top:
   963   case FloatTop:
   964     break;                      // Return the float constant
   965   }
   966   return this;                  // Return the float constant
   967 }
   969 //------------------------------xdual------------------------------------------
   970 // Dual: symmetric
   971 const Type *TypeF::xdual() const {
   972   return this;
   973 }
   975 //------------------------------eq---------------------------------------------
   976 // Structural equality check for Type representations
   977 bool TypeF::eq( const Type *t ) const {
   978   if( g_isnan(_f) ||
   979       g_isnan(t->getf()) ) {
   980     // One or both are NANs.  If both are NANs return true, else false.
   981     return (g_isnan(_f) && g_isnan(t->getf()));
   982   }
   983   if (_f == t->getf()) {
   984     // (NaN is impossible at this point, since it is not equal even to itself)
   985     if (_f == 0.0) {
   986       // difference between positive and negative zero
   987       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
   988     }
   989     return true;
   990   }
   991   return false;
   992 }
   994 //------------------------------hash-------------------------------------------
   995 // Type-specific hashing function.
   996 int TypeF::hash(void) const {
   997   return *(int*)(&_f);
   998 }
  1000 //------------------------------is_finite--------------------------------------
  1001 // Has a finite value
  1002 bool TypeF::is_finite() const {
  1003   return g_isfinite(getf()) != 0;
  1006 //------------------------------is_nan-----------------------------------------
  1007 // Is not a number (NaN)
  1008 bool TypeF::is_nan()    const {
  1009   return g_isnan(getf()) != 0;
  1012 //------------------------------dump2------------------------------------------
  1013 // Dump float constant Type
  1014 #ifndef PRODUCT
  1015 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
  1016   Type::dump2(d,depth, st);
  1017   st->print("%f", _f);
  1019 #endif
  1021 //------------------------------singleton--------------------------------------
  1022 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1023 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1024 // or a single symbol.
  1025 bool TypeF::singleton(void) const {
  1026   return true;                  // Always a singleton
  1029 bool TypeF::empty(void) const {
  1030   return false;                 // always exactly a singleton
  1033 //=============================================================================
  1034 // Convenience common pre-built types.
  1035 const TypeD *TypeD::ZERO;       // Floating point zero
  1036 const TypeD *TypeD::ONE;        // Floating point one
  1038 //------------------------------make-------------------------------------------
  1039 const TypeD *TypeD::make(double d) {
  1040   return (TypeD*)(new TypeD(d))->hashcons();
  1043 //------------------------------meet-------------------------------------------
  1044 // Compute the MEET of two types.  It returns a new Type object.
  1045 const Type *TypeD::xmeet( const Type *t ) const {
  1046   // Perform a fast test for common case; meeting the same types together.
  1047   if( this == t ) return this;  // Meeting same type-rep?
  1049   // Current "this->_base" is DoubleCon
  1050   switch (t->base()) {          // Switch on original type
  1051   case AnyPtr:                  // Mixing with oops happens when javac
  1052   case RawPtr:                  // reuses local variables
  1053   case OopPtr:
  1054   case InstPtr:
  1055   case AryPtr:
  1056   case MetadataPtr:
  1057   case KlassPtr:
  1058   case NarrowOop:
  1059   case NarrowKlass:
  1060   case Int:
  1061   case Long:
  1062   case FloatTop:
  1063   case FloatCon:
  1064   case FloatBot:
  1065   case Bottom:                  // Ye Olde Default
  1066     return Type::BOTTOM;
  1068   case DoubleBot:
  1069     return t;
  1071   default:                      // All else is a mistake
  1072     typerr(t);
  1074   case DoubleCon:               // Double-constant vs Double-constant?
  1075     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
  1076       return DOUBLE;            // Return generic double
  1077   case Top:
  1078   case DoubleTop:
  1079     break;
  1081   return this;                  // Return the double constant
  1084 //------------------------------xdual------------------------------------------
  1085 // Dual: symmetric
  1086 const Type *TypeD::xdual() const {
  1087   return this;
  1090 //------------------------------eq---------------------------------------------
  1091 // Structural equality check for Type representations
  1092 bool TypeD::eq( const Type *t ) const {
  1093   if( g_isnan(_d) ||
  1094       g_isnan(t->getd()) ) {
  1095     // One or both are NANs.  If both are NANs return true, else false.
  1096     return (g_isnan(_d) && g_isnan(t->getd()));
  1098   if (_d == t->getd()) {
  1099     // (NaN is impossible at this point, since it is not equal even to itself)
  1100     if (_d == 0.0) {
  1101       // difference between positive and negative zero
  1102       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
  1104     return true;
  1106   return false;
  1109 //------------------------------hash-------------------------------------------
  1110 // Type-specific hashing function.
  1111 int TypeD::hash(void) const {
  1112   return *(int*)(&_d);
  1115 //------------------------------is_finite--------------------------------------
  1116 // Has a finite value
  1117 bool TypeD::is_finite() const {
  1118   return g_isfinite(getd()) != 0;
  1121 //------------------------------is_nan-----------------------------------------
  1122 // Is not a number (NaN)
  1123 bool TypeD::is_nan()    const {
  1124   return g_isnan(getd()) != 0;
  1127 //------------------------------dump2------------------------------------------
  1128 // Dump double constant Type
  1129 #ifndef PRODUCT
  1130 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
  1131   Type::dump2(d,depth,st);
  1132   st->print("%f", _d);
  1134 #endif
  1136 //------------------------------singleton--------------------------------------
  1137 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1138 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1139 // or a single symbol.
  1140 bool TypeD::singleton(void) const {
  1141   return true;                  // Always a singleton
  1144 bool TypeD::empty(void) const {
  1145   return false;                 // always exactly a singleton
  1148 //=============================================================================
  1149 // Convience common pre-built types.
  1150 const TypeInt *TypeInt::MINUS_1;// -1
  1151 const TypeInt *TypeInt::ZERO;   // 0
  1152 const TypeInt *TypeInt::ONE;    // 1
  1153 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
  1154 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
  1155 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
  1156 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
  1157 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
  1158 const TypeInt *TypeInt::CC_LE;  // [-1,0]
  1159 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
  1160 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
  1161 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
  1162 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
  1163 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
  1164 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
  1165 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
  1166 const TypeInt *TypeInt::INT;    // 32-bit integers
  1167 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
  1168 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
  1170 //------------------------------TypeInt----------------------------------------
  1171 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
  1174 //------------------------------make-------------------------------------------
  1175 const TypeInt *TypeInt::make( jint lo ) {
  1176   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
  1179 static int normalize_int_widen( jint lo, jint hi, int w ) {
  1180   // Certain normalizations keep us sane when comparing types.
  1181   // The 'SMALLINT' covers constants and also CC and its relatives.
  1182   if (lo <= hi) {
  1183     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
  1184     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
  1185   } else {
  1186     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
  1187     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
  1189   return w;
  1192 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
  1193   w = normalize_int_widen(lo, hi, w);
  1194   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
  1197 //------------------------------meet-------------------------------------------
  1198 // Compute the MEET of two types.  It returns a new Type representation object
  1199 // with reference count equal to the number of Types pointing at it.
  1200 // Caller should wrap a Types around it.
  1201 const Type *TypeInt::xmeet( const Type *t ) const {
  1202   // Perform a fast test for common case; meeting the same types together.
  1203   if( this == t ) return this;  // Meeting same type?
  1205   // Currently "this->_base" is a TypeInt
  1206   switch (t->base()) {          // Switch on original type
  1207   case AnyPtr:                  // Mixing with oops happens when javac
  1208   case RawPtr:                  // reuses local variables
  1209   case OopPtr:
  1210   case InstPtr:
  1211   case AryPtr:
  1212   case MetadataPtr:
  1213   case KlassPtr:
  1214   case NarrowOop:
  1215   case NarrowKlass:
  1216   case Long:
  1217   case FloatTop:
  1218   case FloatCon:
  1219   case FloatBot:
  1220   case DoubleTop:
  1221   case DoubleCon:
  1222   case DoubleBot:
  1223   case Bottom:                  // Ye Olde Default
  1224     return Type::BOTTOM;
  1225   default:                      // All else is a mistake
  1226     typerr(t);
  1227   case Top:                     // No change
  1228     return this;
  1229   case Int:                     // Int vs Int?
  1230     break;
  1233   // Expand covered set
  1234   const TypeInt *r = t->is_int();
  1235   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1238 //------------------------------xdual------------------------------------------
  1239 // Dual: reverse hi & lo; flip widen
  1240 const Type *TypeInt::xdual() const {
  1241   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
  1242   return new TypeInt(_hi,_lo,w);
  1245 //------------------------------widen------------------------------------------
  1246 // Only happens for optimistic top-down optimizations.
  1247 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
  1248   // Coming from TOP or such; no widening
  1249   if( old->base() != Int ) return this;
  1250   const TypeInt *ot = old->is_int();
  1252   // If new guy is equal to old guy, no widening
  1253   if( _lo == ot->_lo && _hi == ot->_hi )
  1254     return old;
  1256   // If new guy contains old, then we widened
  1257   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1258     // New contains old
  1259     // If new guy is already wider than old, no widening
  1260     if( _widen > ot->_widen ) return this;
  1261     // If old guy was a constant, do not bother
  1262     if (ot->_lo == ot->_hi)  return this;
  1263     // Now widen new guy.
  1264     // Check for widening too far
  1265     if (_widen == WidenMax) {
  1266       int max = max_jint;
  1267       int min = min_jint;
  1268       if (limit->isa_int()) {
  1269         max = limit->is_int()->_hi;
  1270         min = limit->is_int()->_lo;
  1272       if (min < _lo && _hi < max) {
  1273         // If neither endpoint is extremal yet, push out the endpoint
  1274         // which is closer to its respective limit.
  1275         if (_lo >= 0 ||                 // easy common case
  1276             (juint)(_lo - min) >= (juint)(max - _hi)) {
  1277           // Try to widen to an unsigned range type of 31 bits:
  1278           return make(_lo, max, WidenMax);
  1279         } else {
  1280           return make(min, _hi, WidenMax);
  1283       return TypeInt::INT;
  1285     // Returned widened new guy
  1286     return make(_lo,_hi,_widen+1);
  1289   // If old guy contains new, then we probably widened too far & dropped to
  1290   // bottom.  Return the wider fellow.
  1291   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1292     return old;
  1294   //fatal("Integer value range is not subset");
  1295   //return this;
  1296   return TypeInt::INT;
  1299 //------------------------------narrow---------------------------------------
  1300 // Only happens for pessimistic optimizations.
  1301 const Type *TypeInt::narrow( const Type *old ) const {
  1302   if (_lo >= _hi)  return this;   // already narrow enough
  1303   if (old == NULL)  return this;
  1304   const TypeInt* ot = old->isa_int();
  1305   if (ot == NULL)  return this;
  1306   jint olo = ot->_lo;
  1307   jint ohi = ot->_hi;
  1309   // If new guy is equal to old guy, no narrowing
  1310   if (_lo == olo && _hi == ohi)  return old;
  1312   // If old guy was maximum range, allow the narrowing
  1313   if (olo == min_jint && ohi == max_jint)  return this;
  1315   if (_lo < olo || _hi > ohi)
  1316     return this;                // doesn't narrow; pretty wierd
  1318   // The new type narrows the old type, so look for a "death march".
  1319   // See comments on PhaseTransform::saturate.
  1320   juint nrange = _hi - _lo;
  1321   juint orange = ohi - olo;
  1322   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1323     // Use the new type only if the range shrinks a lot.
  1324     // We do not want the optimizer computing 2^31 point by point.
  1325     return old;
  1328   return this;
  1331 //-----------------------------filter------------------------------------------
  1332 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
  1333   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
  1334   if (ft == NULL || ft->empty())
  1335     return Type::TOP;           // Canonical empty value
  1336   if (ft->_widen < this->_widen) {
  1337     // Do not allow the value of kill->_widen to affect the outcome.
  1338     // The widen bits must be allowed to run freely through the graph.
  1339     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
  1341   return ft;
  1344 //------------------------------eq---------------------------------------------
  1345 // Structural equality check for Type representations
  1346 bool TypeInt::eq( const Type *t ) const {
  1347   const TypeInt *r = t->is_int(); // Handy access
  1348   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
  1351 //------------------------------hash-------------------------------------------
  1352 // Type-specific hashing function.
  1353 int TypeInt::hash(void) const {
  1354   return _lo+_hi+_widen+(int)Type::Int;
  1357 //------------------------------is_finite--------------------------------------
  1358 // Has a finite value
  1359 bool TypeInt::is_finite() const {
  1360   return true;
  1363 //------------------------------dump2------------------------------------------
  1364 // Dump TypeInt
  1365 #ifndef PRODUCT
  1366 static const char* intname(char* buf, jint n) {
  1367   if (n == min_jint)
  1368     return "min";
  1369   else if (n < min_jint + 10000)
  1370     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
  1371   else if (n == max_jint)
  1372     return "max";
  1373   else if (n > max_jint - 10000)
  1374     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
  1375   else
  1376     sprintf(buf, INT32_FORMAT, n);
  1377   return buf;
  1380 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
  1381   char buf[40], buf2[40];
  1382   if (_lo == min_jint && _hi == max_jint)
  1383     st->print("int");
  1384   else if (is_con())
  1385     st->print("int:%s", intname(buf, get_con()));
  1386   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
  1387     st->print("bool");
  1388   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
  1389     st->print("byte");
  1390   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
  1391     st->print("char");
  1392   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
  1393     st->print("short");
  1394   else if (_hi == max_jint)
  1395     st->print("int:>=%s", intname(buf, _lo));
  1396   else if (_lo == min_jint)
  1397     st->print("int:<=%s", intname(buf, _hi));
  1398   else
  1399     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
  1401   if (_widen != 0 && this != TypeInt::INT)
  1402     st->print(":%.*s", _widen, "wwww");
  1404 #endif
  1406 //------------------------------singleton--------------------------------------
  1407 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1408 // constants.
  1409 bool TypeInt::singleton(void) const {
  1410   return _lo >= _hi;
  1413 bool TypeInt::empty(void) const {
  1414   return _lo > _hi;
  1417 //=============================================================================
  1418 // Convenience common pre-built types.
  1419 const TypeLong *TypeLong::MINUS_1;// -1
  1420 const TypeLong *TypeLong::ZERO; // 0
  1421 const TypeLong *TypeLong::ONE;  // 1
  1422 const TypeLong *TypeLong::POS;  // >=0
  1423 const TypeLong *TypeLong::LONG; // 64-bit integers
  1424 const TypeLong *TypeLong::INT;  // 32-bit subrange
  1425 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
  1426 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
  1428 //------------------------------TypeLong---------------------------------------
  1429 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
  1432 //------------------------------make-------------------------------------------
  1433 const TypeLong *TypeLong::make( jlong lo ) {
  1434   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
  1437 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
  1438   // Certain normalizations keep us sane when comparing types.
  1439   // The 'SMALLINT' covers constants.
  1440   if (lo <= hi) {
  1441     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
  1442     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
  1443   } else {
  1444     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
  1445     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
  1447   return w;
  1450 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
  1451   w = normalize_long_widen(lo, hi, w);
  1452   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
  1456 //------------------------------meet-------------------------------------------
  1457 // Compute the MEET of two types.  It returns a new Type representation object
  1458 // with reference count equal to the number of Types pointing at it.
  1459 // Caller should wrap a Types around it.
  1460 const Type *TypeLong::xmeet( const Type *t ) const {
  1461   // Perform a fast test for common case; meeting the same types together.
  1462   if( this == t ) return this;  // Meeting same type?
  1464   // Currently "this->_base" is a TypeLong
  1465   switch (t->base()) {          // Switch on original type
  1466   case AnyPtr:                  // Mixing with oops happens when javac
  1467   case RawPtr:                  // reuses local variables
  1468   case OopPtr:
  1469   case InstPtr:
  1470   case AryPtr:
  1471   case MetadataPtr:
  1472   case KlassPtr:
  1473   case NarrowOop:
  1474   case NarrowKlass:
  1475   case Int:
  1476   case FloatTop:
  1477   case FloatCon:
  1478   case FloatBot:
  1479   case DoubleTop:
  1480   case DoubleCon:
  1481   case DoubleBot:
  1482   case Bottom:                  // Ye Olde Default
  1483     return Type::BOTTOM;
  1484   default:                      // All else is a mistake
  1485     typerr(t);
  1486   case Top:                     // No change
  1487     return this;
  1488   case Long:                    // Long vs Long?
  1489     break;
  1492   // Expand covered set
  1493   const TypeLong *r = t->is_long(); // Turn into a TypeLong
  1494   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1497 //------------------------------xdual------------------------------------------
  1498 // Dual: reverse hi & lo; flip widen
  1499 const Type *TypeLong::xdual() const {
  1500   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
  1501   return new TypeLong(_hi,_lo,w);
  1504 //------------------------------widen------------------------------------------
  1505 // Only happens for optimistic top-down optimizations.
  1506 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
  1507   // Coming from TOP or such; no widening
  1508   if( old->base() != Long ) return this;
  1509   const TypeLong *ot = old->is_long();
  1511   // If new guy is equal to old guy, no widening
  1512   if( _lo == ot->_lo && _hi == ot->_hi )
  1513     return old;
  1515   // If new guy contains old, then we widened
  1516   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1517     // New contains old
  1518     // If new guy is already wider than old, no widening
  1519     if( _widen > ot->_widen ) return this;
  1520     // If old guy was a constant, do not bother
  1521     if (ot->_lo == ot->_hi)  return this;
  1522     // Now widen new guy.
  1523     // Check for widening too far
  1524     if (_widen == WidenMax) {
  1525       jlong max = max_jlong;
  1526       jlong min = min_jlong;
  1527       if (limit->isa_long()) {
  1528         max = limit->is_long()->_hi;
  1529         min = limit->is_long()->_lo;
  1531       if (min < _lo && _hi < max) {
  1532         // If neither endpoint is extremal yet, push out the endpoint
  1533         // which is closer to its respective limit.
  1534         if (_lo >= 0 ||                 // easy common case
  1535             (julong)(_lo - min) >= (julong)(max - _hi)) {
  1536           // Try to widen to an unsigned range type of 32/63 bits:
  1537           if (max >= max_juint && _hi < max_juint)
  1538             return make(_lo, max_juint, WidenMax);
  1539           else
  1540             return make(_lo, max, WidenMax);
  1541         } else {
  1542           return make(min, _hi, WidenMax);
  1545       return TypeLong::LONG;
  1547     // Returned widened new guy
  1548     return make(_lo,_hi,_widen+1);
  1551   // If old guy contains new, then we probably widened too far & dropped to
  1552   // bottom.  Return the wider fellow.
  1553   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1554     return old;
  1556   //  fatal("Long value range is not subset");
  1557   // return this;
  1558   return TypeLong::LONG;
  1561 //------------------------------narrow----------------------------------------
  1562 // Only happens for pessimistic optimizations.
  1563 const Type *TypeLong::narrow( const Type *old ) const {
  1564   if (_lo >= _hi)  return this;   // already narrow enough
  1565   if (old == NULL)  return this;
  1566   const TypeLong* ot = old->isa_long();
  1567   if (ot == NULL)  return this;
  1568   jlong olo = ot->_lo;
  1569   jlong ohi = ot->_hi;
  1571   // If new guy is equal to old guy, no narrowing
  1572   if (_lo == olo && _hi == ohi)  return old;
  1574   // If old guy was maximum range, allow the narrowing
  1575   if (olo == min_jlong && ohi == max_jlong)  return this;
  1577   if (_lo < olo || _hi > ohi)
  1578     return this;                // doesn't narrow; pretty wierd
  1580   // The new type narrows the old type, so look for a "death march".
  1581   // See comments on PhaseTransform::saturate.
  1582   julong nrange = _hi - _lo;
  1583   julong orange = ohi - olo;
  1584   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1585     // Use the new type only if the range shrinks a lot.
  1586     // We do not want the optimizer computing 2^31 point by point.
  1587     return old;
  1590   return this;
  1593 //-----------------------------filter------------------------------------------
  1594 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
  1595   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
  1596   if (ft == NULL || ft->empty())
  1597     return Type::TOP;           // Canonical empty value
  1598   if (ft->_widen < this->_widen) {
  1599     // Do not allow the value of kill->_widen to affect the outcome.
  1600     // The widen bits must be allowed to run freely through the graph.
  1601     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
  1603   return ft;
  1606 //------------------------------eq---------------------------------------------
  1607 // Structural equality check for Type representations
  1608 bool TypeLong::eq( const Type *t ) const {
  1609   const TypeLong *r = t->is_long(); // Handy access
  1610   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
  1613 //------------------------------hash-------------------------------------------
  1614 // Type-specific hashing function.
  1615 int TypeLong::hash(void) const {
  1616   return (int)(_lo+_hi+_widen+(int)Type::Long);
  1619 //------------------------------is_finite--------------------------------------
  1620 // Has a finite value
  1621 bool TypeLong::is_finite() const {
  1622   return true;
  1625 //------------------------------dump2------------------------------------------
  1626 // Dump TypeLong
  1627 #ifndef PRODUCT
  1628 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
  1629   if (n > x) {
  1630     if (n >= x + 10000)  return NULL;
  1631     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
  1632   } else if (n < x) {
  1633     if (n <= x - 10000)  return NULL;
  1634     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
  1635   } else {
  1636     return xname;
  1638   return buf;
  1641 static const char* longname(char* buf, jlong n) {
  1642   const char* str;
  1643   if (n == min_jlong)
  1644     return "min";
  1645   else if (n < min_jlong + 10000)
  1646     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
  1647   else if (n == max_jlong)
  1648     return "max";
  1649   else if (n > max_jlong - 10000)
  1650     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
  1651   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
  1652     return str;
  1653   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
  1654     return str;
  1655   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
  1656     return str;
  1657   else
  1658     sprintf(buf, JLONG_FORMAT, n);
  1659   return buf;
  1662 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
  1663   char buf[80], buf2[80];
  1664   if (_lo == min_jlong && _hi == max_jlong)
  1665     st->print("long");
  1666   else if (is_con())
  1667     st->print("long:%s", longname(buf, get_con()));
  1668   else if (_hi == max_jlong)
  1669     st->print("long:>=%s", longname(buf, _lo));
  1670   else if (_lo == min_jlong)
  1671     st->print("long:<=%s", longname(buf, _hi));
  1672   else
  1673     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
  1675   if (_widen != 0 && this != TypeLong::LONG)
  1676     st->print(":%.*s", _widen, "wwww");
  1678 #endif
  1680 //------------------------------singleton--------------------------------------
  1681 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1682 // constants
  1683 bool TypeLong::singleton(void) const {
  1684   return _lo >= _hi;
  1687 bool TypeLong::empty(void) const {
  1688   return _lo > _hi;
  1691 //=============================================================================
  1692 // Convenience common pre-built types.
  1693 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
  1694 const TypeTuple *TypeTuple::IFFALSE;
  1695 const TypeTuple *TypeTuple::IFTRUE;
  1696 const TypeTuple *TypeTuple::IFNEITHER;
  1697 const TypeTuple *TypeTuple::LOOPBODY;
  1698 const TypeTuple *TypeTuple::MEMBAR;
  1699 const TypeTuple *TypeTuple::STORECONDITIONAL;
  1700 const TypeTuple *TypeTuple::START_I2C;
  1701 const TypeTuple *TypeTuple::INT_PAIR;
  1702 const TypeTuple *TypeTuple::LONG_PAIR;
  1703 const TypeTuple *TypeTuple::INT_CC_PAIR;
  1704 const TypeTuple *TypeTuple::LONG_CC_PAIR;
  1707 //------------------------------make-------------------------------------------
  1708 // Make a TypeTuple from the range of a method signature
  1709 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
  1710   ciType* return_type = sig->return_type();
  1711   uint total_fields = TypeFunc::Parms + return_type->size();
  1712   const Type **field_array = fields(total_fields);
  1713   switch (return_type->basic_type()) {
  1714   case T_LONG:
  1715     field_array[TypeFunc::Parms]   = TypeLong::LONG;
  1716     field_array[TypeFunc::Parms+1] = Type::HALF;
  1717     break;
  1718   case T_DOUBLE:
  1719     field_array[TypeFunc::Parms]   = Type::DOUBLE;
  1720     field_array[TypeFunc::Parms+1] = Type::HALF;
  1721     break;
  1722   case T_OBJECT:
  1723   case T_ARRAY:
  1724   case T_BOOLEAN:
  1725   case T_CHAR:
  1726   case T_FLOAT:
  1727   case T_BYTE:
  1728   case T_SHORT:
  1729   case T_INT:
  1730     field_array[TypeFunc::Parms] = get_const_type(return_type);
  1731     break;
  1732   case T_VOID:
  1733     break;
  1734   default:
  1735     ShouldNotReachHere();
  1737   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1740 // Make a TypeTuple from the domain of a method signature
  1741 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
  1742   uint total_fields = TypeFunc::Parms + sig->size();
  1744   uint pos = TypeFunc::Parms;
  1745   const Type **field_array;
  1746   if (recv != NULL) {
  1747     total_fields++;
  1748     field_array = fields(total_fields);
  1749     // Use get_const_type here because it respects UseUniqueSubclasses:
  1750     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
  1751   } else {
  1752     field_array = fields(total_fields);
  1755   int i = 0;
  1756   while (pos < total_fields) {
  1757     ciType* type = sig->type_at(i);
  1759     switch (type->basic_type()) {
  1760     case T_LONG:
  1761       field_array[pos++] = TypeLong::LONG;
  1762       field_array[pos++] = Type::HALF;
  1763       break;
  1764     case T_DOUBLE:
  1765       field_array[pos++] = Type::DOUBLE;
  1766       field_array[pos++] = Type::HALF;
  1767       break;
  1768     case T_OBJECT:
  1769     case T_ARRAY:
  1770     case T_BOOLEAN:
  1771     case T_CHAR:
  1772     case T_FLOAT:
  1773     case T_BYTE:
  1774     case T_SHORT:
  1775     case T_INT:
  1776       field_array[pos++] = get_const_type(type);
  1777       break;
  1778     default:
  1779       ShouldNotReachHere();
  1781     i++;
  1783   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1786 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
  1787   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
  1790 //------------------------------fields-----------------------------------------
  1791 // Subroutine call type with space allocated for argument types
  1792 const Type **TypeTuple::fields( uint arg_cnt ) {
  1793   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
  1794   flds[TypeFunc::Control  ] = Type::CONTROL;
  1795   flds[TypeFunc::I_O      ] = Type::ABIO;
  1796   flds[TypeFunc::Memory   ] = Type::MEMORY;
  1797   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
  1798   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
  1800   return flds;
  1803 //------------------------------meet-------------------------------------------
  1804 // Compute the MEET of two types.  It returns a new Type object.
  1805 const Type *TypeTuple::xmeet( const Type *t ) const {
  1806   // Perform a fast test for common case; meeting the same types together.
  1807   if( this == t ) return this;  // Meeting same type-rep?
  1809   // Current "this->_base" is Tuple
  1810   switch (t->base()) {          // switch on original type
  1812   case Bottom:                  // Ye Olde Default
  1813     return t;
  1815   default:                      // All else is a mistake
  1816     typerr(t);
  1818   case Tuple: {                 // Meeting 2 signatures?
  1819     const TypeTuple *x = t->is_tuple();
  1820     assert( _cnt == x->_cnt, "" );
  1821     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1822     for( uint i=0; i<_cnt; i++ )
  1823       fields[i] = field_at(i)->xmeet( x->field_at(i) );
  1824     return TypeTuple::make(_cnt,fields);
  1826   case Top:
  1827     break;
  1829   return this;                  // Return the double constant
  1832 //------------------------------xdual------------------------------------------
  1833 // Dual: compute field-by-field dual
  1834 const Type *TypeTuple::xdual() const {
  1835   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1836   for( uint i=0; i<_cnt; i++ )
  1837     fields[i] = _fields[i]->dual();
  1838   return new TypeTuple(_cnt,fields);
  1841 //------------------------------eq---------------------------------------------
  1842 // Structural equality check for Type representations
  1843 bool TypeTuple::eq( const Type *t ) const {
  1844   const TypeTuple *s = (const TypeTuple *)t;
  1845   if (_cnt != s->_cnt)  return false;  // Unequal field counts
  1846   for (uint i = 0; i < _cnt; i++)
  1847     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
  1848       return false;             // Missed
  1849   return true;
  1852 //------------------------------hash-------------------------------------------
  1853 // Type-specific hashing function.
  1854 int TypeTuple::hash(void) const {
  1855   intptr_t sum = _cnt;
  1856   for( uint i=0; i<_cnt; i++ )
  1857     sum += (intptr_t)_fields[i];     // Hash on pointers directly
  1858   return sum;
  1861 //------------------------------dump2------------------------------------------
  1862 // Dump signature Type
  1863 #ifndef PRODUCT
  1864 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
  1865   st->print("{");
  1866   if( !depth || d[this] ) {     // Check for recursive print
  1867     st->print("...}");
  1868     return;
  1870   d.Insert((void*)this, (void*)this);   // Stop recursion
  1871   if( _cnt ) {
  1872     uint i;
  1873     for( i=0; i<_cnt-1; i++ ) {
  1874       st->print("%d:", i);
  1875       _fields[i]->dump2(d, depth-1, st);
  1876       st->print(", ");
  1878     st->print("%d:", i);
  1879     _fields[i]->dump2(d, depth-1, st);
  1881   st->print("}");
  1883 #endif
  1885 //------------------------------singleton--------------------------------------
  1886 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1887 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1888 // or a single symbol.
  1889 bool TypeTuple::singleton(void) const {
  1890   return false;                 // Never a singleton
  1893 bool TypeTuple::empty(void) const {
  1894   for( uint i=0; i<_cnt; i++ ) {
  1895     if (_fields[i]->empty())  return true;
  1897   return false;
  1900 //=============================================================================
  1901 // Convenience common pre-built types.
  1903 inline const TypeInt* normalize_array_size(const TypeInt* size) {
  1904   // Certain normalizations keep us sane when comparing types.
  1905   // We do not want arrayOop variables to differ only by the wideness
  1906   // of their index types.  Pick minimum wideness, since that is the
  1907   // forced wideness of small ranges anyway.
  1908   if (size->_widen != Type::WidenMin)
  1909     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
  1910   else
  1911     return size;
  1914 //------------------------------make-------------------------------------------
  1915 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
  1916   if (UseCompressedOops && elem->isa_oopptr()) {
  1917     elem = elem->make_narrowoop();
  1919   size = normalize_array_size(size);
  1920   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
  1923 //------------------------------meet-------------------------------------------
  1924 // Compute the MEET of two types.  It returns a new Type object.
  1925 const Type *TypeAry::xmeet( const Type *t ) const {
  1926   // Perform a fast test for common case; meeting the same types together.
  1927   if( this == t ) return this;  // Meeting same type-rep?
  1929   // Current "this->_base" is Ary
  1930   switch (t->base()) {          // switch on original type
  1932   case Bottom:                  // Ye Olde Default
  1933     return t;
  1935   default:                      // All else is a mistake
  1936     typerr(t);
  1938   case Array: {                 // Meeting 2 arrays?
  1939     const TypeAry *a = t->is_ary();
  1940     return TypeAry::make(_elem->meet_speculative(a->_elem),
  1941                          _size->xmeet(a->_size)->is_int(),
  1942                          _stable & a->_stable);
  1944   case Top:
  1945     break;
  1947   return this;                  // Return the double constant
  1950 //------------------------------xdual------------------------------------------
  1951 // Dual: compute field-by-field dual
  1952 const Type *TypeAry::xdual() const {
  1953   const TypeInt* size_dual = _size->dual()->is_int();
  1954   size_dual = normalize_array_size(size_dual);
  1955   return new TypeAry(_elem->dual(), size_dual, !_stable);
  1958 //------------------------------eq---------------------------------------------
  1959 // Structural equality check for Type representations
  1960 bool TypeAry::eq( const Type *t ) const {
  1961   const TypeAry *a = (const TypeAry*)t;
  1962   return _elem == a->_elem &&
  1963     _stable == a->_stable &&
  1964     _size == a->_size;
  1967 //------------------------------hash-------------------------------------------
  1968 // Type-specific hashing function.
  1969 int TypeAry::hash(void) const {
  1970   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
  1973 /**
  1974  * Return same type without a speculative part in the element
  1975  */
  1976 const Type* TypeAry::remove_speculative() const {
  1977   return make(_elem->remove_speculative(), _size, _stable);
  1980 //----------------------interface_vs_oop---------------------------------------
  1981 #ifdef ASSERT
  1982 bool TypeAry::interface_vs_oop(const Type *t) const {
  1983   const TypeAry* t_ary = t->is_ary();
  1984   if (t_ary) {
  1985     return _elem->interface_vs_oop(t_ary->_elem);
  1987   return false;
  1989 #endif
  1991 //------------------------------dump2------------------------------------------
  1992 #ifndef PRODUCT
  1993 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
  1994   if (_stable)  st->print("stable:");
  1995   _elem->dump2(d, depth, st);
  1996   st->print("[");
  1997   _size->dump2(d, depth, st);
  1998   st->print("]");
  2000 #endif
  2002 //------------------------------singleton--------------------------------------
  2003 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2004 // constants (Ldi nodes).  Singletons are integer, float or double constants
  2005 // or a single symbol.
  2006 bool TypeAry::singleton(void) const {
  2007   return false;                 // Never a singleton
  2010 bool TypeAry::empty(void) const {
  2011   return _elem->empty() || _size->empty();
  2014 //--------------------------ary_must_be_exact----------------------------------
  2015 bool TypeAry::ary_must_be_exact() const {
  2016   if (!UseExactTypes)       return false;
  2017   // This logic looks at the element type of an array, and returns true
  2018   // if the element type is either a primitive or a final instance class.
  2019   // In such cases, an array built on this ary must have no subclasses.
  2020   if (_elem == BOTTOM)      return false;  // general array not exact
  2021   if (_elem == TOP   )      return false;  // inverted general array not exact
  2022   const TypeOopPtr*  toop = NULL;
  2023   if (UseCompressedOops && _elem->isa_narrowoop()) {
  2024     toop = _elem->make_ptr()->isa_oopptr();
  2025   } else {
  2026     toop = _elem->isa_oopptr();
  2028   if (!toop)                return true;   // a primitive type, like int
  2029   ciKlass* tklass = toop->klass();
  2030   if (tklass == NULL)       return false;  // unloaded class
  2031   if (!tklass->is_loaded()) return false;  // unloaded class
  2032   const TypeInstPtr* tinst;
  2033   if (_elem->isa_narrowoop())
  2034     tinst = _elem->make_ptr()->isa_instptr();
  2035   else
  2036     tinst = _elem->isa_instptr();
  2037   if (tinst)
  2038     return tklass->as_instance_klass()->is_final();
  2039   const TypeAryPtr*  tap;
  2040   if (_elem->isa_narrowoop())
  2041     tap = _elem->make_ptr()->isa_aryptr();
  2042   else
  2043     tap = _elem->isa_aryptr();
  2044   if (tap)
  2045     return tap->ary()->ary_must_be_exact();
  2046   return false;
  2049 //==============================TypeVect=======================================
  2050 // Convenience common pre-built types.
  2051 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
  2052 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
  2053 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
  2054 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
  2056 //------------------------------make-------------------------------------------
  2057 const TypeVect* TypeVect::make(const Type *elem, uint length) {
  2058   BasicType elem_bt = elem->array_element_basic_type();
  2059   assert(is_java_primitive(elem_bt), "only primitive types in vector");
  2060   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
  2061   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
  2062   int size = length * type2aelembytes(elem_bt);
  2063   switch (Matcher::vector_ideal_reg(size)) {
  2064   case Op_VecS:
  2065     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
  2066   case Op_RegL:
  2067   case Op_VecD:
  2068   case Op_RegD:
  2069     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
  2070   case Op_VecX:
  2071     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
  2072   case Op_VecY:
  2073     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
  2075  ShouldNotReachHere();
  2076   return NULL;
  2079 //------------------------------meet-------------------------------------------
  2080 // Compute the MEET of two types.  It returns a new Type object.
  2081 const Type *TypeVect::xmeet( const Type *t ) const {
  2082   // Perform a fast test for common case; meeting the same types together.
  2083   if( this == t ) return this;  // Meeting same type-rep?
  2085   // Current "this->_base" is Vector
  2086   switch (t->base()) {          // switch on original type
  2088   case Bottom:                  // Ye Olde Default
  2089     return t;
  2091   default:                      // All else is a mistake
  2092     typerr(t);
  2094   case VectorS:
  2095   case VectorD:
  2096   case VectorX:
  2097   case VectorY: {                // Meeting 2 vectors?
  2098     const TypeVect* v = t->is_vect();
  2099     assert(  base() == v->base(), "");
  2100     assert(length() == v->length(), "");
  2101     assert(element_basic_type() == v->element_basic_type(), "");
  2102     return TypeVect::make(_elem->xmeet(v->_elem), _length);
  2104   case Top:
  2105     break;
  2107   return this;
  2110 //------------------------------xdual------------------------------------------
  2111 // Dual: compute field-by-field dual
  2112 const Type *TypeVect::xdual() const {
  2113   return new TypeVect(base(), _elem->dual(), _length);
  2116 //------------------------------eq---------------------------------------------
  2117 // Structural equality check for Type representations
  2118 bool TypeVect::eq(const Type *t) const {
  2119   const TypeVect *v = t->is_vect();
  2120   return (_elem == v->_elem) && (_length == v->_length);
  2123 //------------------------------hash-------------------------------------------
  2124 // Type-specific hashing function.
  2125 int TypeVect::hash(void) const {
  2126   return (intptr_t)_elem + (intptr_t)_length;
  2129 //------------------------------singleton--------------------------------------
  2130 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2131 // constants (Ldi nodes).  Vector is singleton if all elements are the same
  2132 // constant value (when vector is created with Replicate code).
  2133 bool TypeVect::singleton(void) const {
  2134 // There is no Con node for vectors yet.
  2135 //  return _elem->singleton();
  2136   return false;
  2139 bool TypeVect::empty(void) const {
  2140   return _elem->empty();
  2143 //------------------------------dump2------------------------------------------
  2144 #ifndef PRODUCT
  2145 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
  2146   switch (base()) {
  2147   case VectorS:
  2148     st->print("vectors["); break;
  2149   case VectorD:
  2150     st->print("vectord["); break;
  2151   case VectorX:
  2152     st->print("vectorx["); break;
  2153   case VectorY:
  2154     st->print("vectory["); break;
  2155   default:
  2156     ShouldNotReachHere();
  2158   st->print("%d]:{", _length);
  2159   _elem->dump2(d, depth, st);
  2160   st->print("}");
  2162 #endif
  2165 //=============================================================================
  2166 // Convenience common pre-built types.
  2167 const TypePtr *TypePtr::NULL_PTR;
  2168 const TypePtr *TypePtr::NOTNULL;
  2169 const TypePtr *TypePtr::BOTTOM;
  2171 //------------------------------meet-------------------------------------------
  2172 // Meet over the PTR enum
  2173 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
  2174   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
  2175   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
  2176   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
  2177   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
  2178   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
  2179   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
  2180   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
  2181 };
  2183 //------------------------------make-------------------------------------------
  2184 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
  2185   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
  2188 //------------------------------cast_to_ptr_type-------------------------------
  2189 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
  2190   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
  2191   if( ptr == _ptr ) return this;
  2192   return make(_base, ptr, _offset);
  2195 //------------------------------get_con----------------------------------------
  2196 intptr_t TypePtr::get_con() const {
  2197   assert( _ptr == Null, "" );
  2198   return _offset;
  2201 //------------------------------meet-------------------------------------------
  2202 // Compute the MEET of two types.  It returns a new Type object.
  2203 const Type *TypePtr::xmeet( const Type *t ) const {
  2204   // Perform a fast test for common case; meeting the same types together.
  2205   if( this == t ) return this;  // Meeting same type-rep?
  2207   // Current "this->_base" is AnyPtr
  2208   switch (t->base()) {          // switch on original type
  2209   case Int:                     // Mixing ints & oops happens when javac
  2210   case Long:                    // reuses local variables
  2211   case FloatTop:
  2212   case FloatCon:
  2213   case FloatBot:
  2214   case DoubleTop:
  2215   case DoubleCon:
  2216   case DoubleBot:
  2217   case NarrowOop:
  2218   case NarrowKlass:
  2219   case Bottom:                  // Ye Olde Default
  2220     return Type::BOTTOM;
  2221   case Top:
  2222     return this;
  2224   case AnyPtr: {                // Meeting to AnyPtrs
  2225     const TypePtr *tp = t->is_ptr();
  2226     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
  2228   case RawPtr:                  // For these, flip the call around to cut down
  2229   case OopPtr:
  2230   case InstPtr:                 // on the cases I have to handle.
  2231   case AryPtr:
  2232   case MetadataPtr:
  2233   case KlassPtr:
  2234     return t->xmeet(this);      // Call in reverse direction
  2235   default:                      // All else is a mistake
  2236     typerr(t);
  2239   return this;
  2242 //------------------------------meet_offset------------------------------------
  2243 int TypePtr::meet_offset( int offset ) const {
  2244   // Either is 'TOP' offset?  Return the other offset!
  2245   if( _offset == OffsetTop ) return offset;
  2246   if( offset == OffsetTop ) return _offset;
  2247   // If either is different, return 'BOTTOM' offset
  2248   if( _offset != offset ) return OffsetBot;
  2249   return _offset;
  2252 //------------------------------dual_offset------------------------------------
  2253 int TypePtr::dual_offset( ) const {
  2254   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
  2255   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
  2256   return _offset;               // Map everything else into self
  2259 //------------------------------xdual------------------------------------------
  2260 // Dual: compute field-by-field dual
  2261 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
  2262   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
  2263 };
  2264 const Type *TypePtr::xdual() const {
  2265   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
  2268 //------------------------------xadd_offset------------------------------------
  2269 int TypePtr::xadd_offset( intptr_t offset ) const {
  2270   // Adding to 'TOP' offset?  Return 'TOP'!
  2271   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
  2272   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  2273   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
  2274   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  2275   offset += (intptr_t)_offset;
  2276   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
  2278   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  2279   // It is possible to construct a negative offset during PhaseCCP
  2281   return (int)offset;        // Sum valid offsets
  2284 //------------------------------add_offset-------------------------------------
  2285 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
  2286   return make( AnyPtr, _ptr, xadd_offset(offset) );
  2289 //------------------------------eq---------------------------------------------
  2290 // Structural equality check for Type representations
  2291 bool TypePtr::eq( const Type *t ) const {
  2292   const TypePtr *a = (const TypePtr*)t;
  2293   return _ptr == a->ptr() && _offset == a->offset();
  2296 //------------------------------hash-------------------------------------------
  2297 // Type-specific hashing function.
  2298 int TypePtr::hash(void) const {
  2299   return _ptr + _offset;
  2302 //------------------------------dump2------------------------------------------
  2303 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
  2304   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
  2305 };
  2307 #ifndef PRODUCT
  2308 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2309   if( _ptr == Null ) st->print("NULL");
  2310   else st->print("%s *", ptr_msg[_ptr]);
  2311   if( _offset == OffsetTop ) st->print("+top");
  2312   else if( _offset == OffsetBot ) st->print("+bot");
  2313   else if( _offset ) st->print("+%d", _offset);
  2315 #endif
  2317 //------------------------------singleton--------------------------------------
  2318 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2319 // constants
  2320 bool TypePtr::singleton(void) const {
  2321   // TopPTR, Null, AnyNull, Constant are all singletons
  2322   return (_offset != OffsetBot) && !below_centerline(_ptr);
  2325 bool TypePtr::empty(void) const {
  2326   return (_offset == OffsetTop) || above_centerline(_ptr);
  2329 //=============================================================================
  2330 // Convenience common pre-built types.
  2331 const TypeRawPtr *TypeRawPtr::BOTTOM;
  2332 const TypeRawPtr *TypeRawPtr::NOTNULL;
  2334 //------------------------------make-------------------------------------------
  2335 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
  2336   assert( ptr != Constant, "what is the constant?" );
  2337   assert( ptr != Null, "Use TypePtr for NULL" );
  2338   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
  2341 const TypeRawPtr *TypeRawPtr::make( address bits ) {
  2342   assert( bits, "Use TypePtr for NULL" );
  2343   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
  2346 //------------------------------cast_to_ptr_type-------------------------------
  2347 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
  2348   assert( ptr != Constant, "what is the constant?" );
  2349   assert( ptr != Null, "Use TypePtr for NULL" );
  2350   assert( _bits==0, "Why cast a constant address?");
  2351   if( ptr == _ptr ) return this;
  2352   return make(ptr);
  2355 //------------------------------get_con----------------------------------------
  2356 intptr_t TypeRawPtr::get_con() const {
  2357   assert( _ptr == Null || _ptr == Constant, "" );
  2358   return (intptr_t)_bits;
  2361 //------------------------------meet-------------------------------------------
  2362 // Compute the MEET of two types.  It returns a new Type object.
  2363 const Type *TypeRawPtr::xmeet( const Type *t ) const {
  2364   // Perform a fast test for common case; meeting the same types together.
  2365   if( this == t ) return this;  // Meeting same type-rep?
  2367   // Current "this->_base" is RawPtr
  2368   switch( t->base() ) {         // switch on original type
  2369   case Bottom:                  // Ye Olde Default
  2370     return t;
  2371   case Top:
  2372     return this;
  2373   case AnyPtr:                  // Meeting to AnyPtrs
  2374     break;
  2375   case RawPtr: {                // might be top, bot, any/not or constant
  2376     enum PTR tptr = t->is_ptr()->ptr();
  2377     enum PTR ptr = meet_ptr( tptr );
  2378     if( ptr == Constant ) {     // Cannot be equal constants, so...
  2379       if( tptr == Constant && _ptr != Constant)  return t;
  2380       if( _ptr == Constant && tptr != Constant)  return this;
  2381       ptr = NotNull;            // Fall down in lattice
  2383     return make( ptr );
  2386   case OopPtr:
  2387   case InstPtr:
  2388   case AryPtr:
  2389   case MetadataPtr:
  2390   case KlassPtr:
  2391     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2392   default:                      // All else is a mistake
  2393     typerr(t);
  2396   // Found an AnyPtr type vs self-RawPtr type
  2397   const TypePtr *tp = t->is_ptr();
  2398   switch (tp->ptr()) {
  2399   case TypePtr::TopPTR:  return this;
  2400   case TypePtr::BotPTR:  return t;
  2401   case TypePtr::Null:
  2402     if( _ptr == TypePtr::TopPTR ) return t;
  2403     return TypeRawPtr::BOTTOM;
  2404   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
  2405   case TypePtr::AnyNull:
  2406     if( _ptr == TypePtr::Constant) return this;
  2407     return make( meet_ptr(TypePtr::AnyNull) );
  2408   default: ShouldNotReachHere();
  2410   return this;
  2413 //------------------------------xdual------------------------------------------
  2414 // Dual: compute field-by-field dual
  2415 const Type *TypeRawPtr::xdual() const {
  2416   return new TypeRawPtr( dual_ptr(), _bits );
  2419 //------------------------------add_offset-------------------------------------
  2420 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
  2421   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
  2422   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
  2423   if( offset == 0 ) return this; // No change
  2424   switch (_ptr) {
  2425   case TypePtr::TopPTR:
  2426   case TypePtr::BotPTR:
  2427   case TypePtr::NotNull:
  2428     return this;
  2429   case TypePtr::Null:
  2430   case TypePtr::Constant: {
  2431     address bits = _bits+offset;
  2432     if ( bits == 0 ) return TypePtr::NULL_PTR;
  2433     return make( bits );
  2435   default:  ShouldNotReachHere();
  2437   return NULL;                  // Lint noise
  2440 //------------------------------eq---------------------------------------------
  2441 // Structural equality check for Type representations
  2442 bool TypeRawPtr::eq( const Type *t ) const {
  2443   const TypeRawPtr *a = (const TypeRawPtr*)t;
  2444   return _bits == a->_bits && TypePtr::eq(t);
  2447 //------------------------------hash-------------------------------------------
  2448 // Type-specific hashing function.
  2449 int TypeRawPtr::hash(void) const {
  2450   return (intptr_t)_bits + TypePtr::hash();
  2453 //------------------------------dump2------------------------------------------
  2454 #ifndef PRODUCT
  2455 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2456   if( _ptr == Constant )
  2457     st->print(INTPTR_FORMAT, _bits);
  2458   else
  2459     st->print("rawptr:%s", ptr_msg[_ptr]);
  2461 #endif
  2463 //=============================================================================
  2464 // Convenience common pre-built type.
  2465 const TypeOopPtr *TypeOopPtr::BOTTOM;
  2467 //------------------------------TypeOopPtr-------------------------------------
  2468 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth)
  2469   : TypePtr(t, ptr, offset),
  2470     _const_oop(o), _klass(k),
  2471     _klass_is_exact(xk),
  2472     _is_ptr_to_narrowoop(false),
  2473     _is_ptr_to_narrowklass(false),
  2474     _is_ptr_to_boxed_value(false),
  2475     _instance_id(instance_id),
  2476     _speculative(speculative),
  2477     _inline_depth(inline_depth){
  2478   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
  2479       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
  2480     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
  2482 #ifdef _LP64
  2483   if (_offset != 0) {
  2484     if (_offset == oopDesc::klass_offset_in_bytes()) {
  2485       _is_ptr_to_narrowklass = UseCompressedClassPointers;
  2486     } else if (klass() == NULL) {
  2487       // Array with unknown body type
  2488       assert(this->isa_aryptr(), "only arrays without klass");
  2489       _is_ptr_to_narrowoop = UseCompressedOops;
  2490     } else if (this->isa_aryptr()) {
  2491       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
  2492                              _offset != arrayOopDesc::length_offset_in_bytes());
  2493     } else if (klass()->is_instance_klass()) {
  2494       ciInstanceKlass* ik = klass()->as_instance_klass();
  2495       ciField* field = NULL;
  2496       if (this->isa_klassptr()) {
  2497         // Perm objects don't use compressed references
  2498       } else if (_offset == OffsetBot || _offset == OffsetTop) {
  2499         // unsafe access
  2500         _is_ptr_to_narrowoop = UseCompressedOops;
  2501       } else { // exclude unsafe ops
  2502         assert(this->isa_instptr(), "must be an instance ptr.");
  2504         if (klass() == ciEnv::current()->Class_klass() &&
  2505             (_offset == java_lang_Class::klass_offset_in_bytes() ||
  2506              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2507           // Special hidden fields from the Class.
  2508           assert(this->isa_instptr(), "must be an instance ptr.");
  2509           _is_ptr_to_narrowoop = false;
  2510         } else if (klass() == ciEnv::current()->Class_klass() &&
  2511                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
  2512           // Static fields
  2513           assert(o != NULL, "must be constant");
  2514           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
  2515           ciField* field = k->get_field_by_offset(_offset, true);
  2516           assert(field != NULL, "missing field");
  2517           BasicType basic_elem_type = field->layout_type();
  2518           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
  2519                                                        basic_elem_type == T_ARRAY);
  2520         } else {
  2521           // Instance fields which contains a compressed oop references.
  2522           field = ik->get_field_by_offset(_offset, false);
  2523           if (field != NULL) {
  2524             BasicType basic_elem_type = field->layout_type();
  2525             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
  2526                                                          basic_elem_type == T_ARRAY);
  2527           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
  2528             // Compile::find_alias_type() cast exactness on all types to verify
  2529             // that it does not affect alias type.
  2530             _is_ptr_to_narrowoop = UseCompressedOops;
  2531           } else {
  2532             // Type for the copy start in LibraryCallKit::inline_native_clone().
  2533             _is_ptr_to_narrowoop = UseCompressedOops;
  2539 #endif
  2542 //------------------------------make-------------------------------------------
  2543 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
  2544                                    int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
  2545   assert(ptr != Constant, "no constant generic pointers");
  2546   ciKlass*  k = Compile::current()->env()->Object_klass();
  2547   bool      xk = false;
  2548   ciObject* o = NULL;
  2549   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
  2553 //------------------------------cast_to_ptr_type-------------------------------
  2554 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
  2555   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
  2556   if( ptr == _ptr ) return this;
  2557   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
  2560 //-----------------------------cast_to_instance_id----------------------------
  2561 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
  2562   // There are no instances of a general oop.
  2563   // Return self unchanged.
  2564   return this;
  2567 //-----------------------------cast_to_exactness-------------------------------
  2568 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
  2569   // There is no such thing as an exact general oop.
  2570   // Return self unchanged.
  2571   return this;
  2575 //------------------------------as_klass_type----------------------------------
  2576 // Return the klass type corresponding to this instance or array type.
  2577 // It is the type that is loaded from an object of this type.
  2578 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
  2579   ciKlass* k = klass();
  2580   bool    xk = klass_is_exact();
  2581   if (k == NULL)
  2582     return TypeKlassPtr::OBJECT;
  2583   else
  2584     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
  2587 const Type *TypeOopPtr::xmeet(const Type *t) const {
  2588   const Type* res = xmeet_helper(t);
  2589   if (res->isa_oopptr() == NULL) {
  2590     return res;
  2593   const TypeOopPtr* res_oopptr = res->is_oopptr();
  2594   if (res_oopptr->speculative() != NULL) {
  2595     // type->speculative() == NULL means that speculation is no better
  2596     // than type, i.e. type->speculative() == type. So there are 2
  2597     // ways to represent the fact that we have no useful speculative
  2598     // data and we should use a single one to be able to test for
  2599     // equality between types. Check whether type->speculative() ==
  2600     // type and set speculative to NULL if it is the case.
  2601     if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
  2602       return res_oopptr->remove_speculative();
  2606   return res;
  2609 //------------------------------meet-------------------------------------------
  2610 // Compute the MEET of two types.  It returns a new Type object.
  2611 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
  2612   // Perform a fast test for common case; meeting the same types together.
  2613   if( this == t ) return this;  // Meeting same type-rep?
  2615   // Current "this->_base" is OopPtr
  2616   switch (t->base()) {          // switch on original type
  2618   case Int:                     // Mixing ints & oops happens when javac
  2619   case Long:                    // reuses local variables
  2620   case FloatTop:
  2621   case FloatCon:
  2622   case FloatBot:
  2623   case DoubleTop:
  2624   case DoubleCon:
  2625   case DoubleBot:
  2626   case NarrowOop:
  2627   case NarrowKlass:
  2628   case Bottom:                  // Ye Olde Default
  2629     return Type::BOTTOM;
  2630   case Top:
  2631     return this;
  2633   default:                      // All else is a mistake
  2634     typerr(t);
  2636   case RawPtr:
  2637   case MetadataPtr:
  2638   case KlassPtr:
  2639     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2641   case AnyPtr: {
  2642     // Found an AnyPtr type vs self-OopPtr type
  2643     const TypePtr *tp = t->is_ptr();
  2644     int offset = meet_offset(tp->offset());
  2645     PTR ptr = meet_ptr(tp->ptr());
  2646     switch (tp->ptr()) {
  2647     case Null:
  2648       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  2649       // else fall through:
  2650     case TopPTR:
  2651     case AnyNull: {
  2652       int instance_id = meet_instance_id(InstanceTop);
  2653       const TypeOopPtr* speculative = _speculative;
  2654       return make(ptr, offset, instance_id, speculative, _inline_depth);
  2656     case BotPTR:
  2657     case NotNull:
  2658       return TypePtr::make(AnyPtr, ptr, offset);
  2659     default: typerr(t);
  2663   case OopPtr: {                 // Meeting to other OopPtrs
  2664     const TypeOopPtr *tp = t->is_oopptr();
  2665     int instance_id = meet_instance_id(tp->instance_id());
  2666     const TypeOopPtr* speculative = xmeet_speculative(tp);
  2667     int depth = meet_inline_depth(tp->inline_depth());
  2668     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
  2671   case InstPtr:                  // For these, flip the call around to cut down
  2672   case AryPtr:
  2673     return t->xmeet(this);      // Call in reverse direction
  2675   } // End of switch
  2676   return this;                  // Return the double constant
  2680 //------------------------------xdual------------------------------------------
  2681 // Dual of a pure heap pointer.  No relevant klass or oop information.
  2682 const Type *TypeOopPtr::xdual() const {
  2683   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
  2684   assert(const_oop() == NULL,             "no constants here");
  2685   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
  2688 //--------------------------make_from_klass_common-----------------------------
  2689 // Computes the element-type given a klass.
  2690 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
  2691   if (klass->is_instance_klass()) {
  2692     Compile* C = Compile::current();
  2693     Dependencies* deps = C->dependencies();
  2694     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
  2695     // Element is an instance
  2696     bool klass_is_exact = false;
  2697     if (klass->is_loaded()) {
  2698       // Try to set klass_is_exact.
  2699       ciInstanceKlass* ik = klass->as_instance_klass();
  2700       klass_is_exact = ik->is_final();
  2701       if (!klass_is_exact && klass_change
  2702           && deps != NULL && UseUniqueSubclasses) {
  2703         ciInstanceKlass* sub = ik->unique_concrete_subklass();
  2704         if (sub != NULL) {
  2705           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
  2706           klass = ik = sub;
  2707           klass_is_exact = sub->is_final();
  2710       if (!klass_is_exact && try_for_exact
  2711           && deps != NULL && UseExactTypes) {
  2712         if (!ik->is_interface() && !ik->has_subklass()) {
  2713           // Add a dependence; if concrete subclass added we need to recompile
  2714           deps->assert_leaf_type(ik);
  2715           klass_is_exact = true;
  2719     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
  2720   } else if (klass->is_obj_array_klass()) {
  2721     // Element is an object array. Recursively call ourself.
  2722     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
  2723     bool xk = etype->klass_is_exact();
  2724     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2725     // We used to pass NotNull in here, asserting that the sub-arrays
  2726     // are all not-null.  This is not true in generally, as code can
  2727     // slam NULLs down in the subarrays.
  2728     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
  2729     return arr;
  2730   } else if (klass->is_type_array_klass()) {
  2731     // Element is an typeArray
  2732     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
  2733     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2734     // We used to pass NotNull in here, asserting that the array pointer
  2735     // is not-null. That was not true in general.
  2736     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
  2737     return arr;
  2738   } else {
  2739     ShouldNotReachHere();
  2740     return NULL;
  2744 //------------------------------make_from_constant-----------------------------
  2745 // Make a java pointer from an oop constant
  2746 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
  2747                                                  bool require_constant,
  2748                                                  bool is_autobox_cache) {
  2749   assert(!o->is_null_object(), "null object not yet handled here.");
  2750   ciKlass* klass = o->klass();
  2751   if (klass->is_instance_klass()) {
  2752     // Element is an instance
  2753     if (require_constant) {
  2754       if (!o->can_be_constant())  return NULL;
  2755     } else if (!o->should_be_constant()) {
  2756       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
  2758     return TypeInstPtr::make(o);
  2759   } else if (klass->is_obj_array_klass()) {
  2760     // Element is an object array. Recursively call ourself.
  2761     const TypeOopPtr *etype =
  2762       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
  2763     if (is_autobox_cache) {
  2764       // The pointers in the autobox arrays are always non-null.
  2765       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  2767     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2768     // We used to pass NotNull in here, asserting that the sub-arrays
  2769     // are all not-null.  This is not true in generally, as code can
  2770     // slam NULLs down in the subarrays.
  2771     if (require_constant) {
  2772       if (!o->can_be_constant())  return NULL;
  2773     } else if (!o->should_be_constant()) {
  2774       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2776     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, InlineDepthBottom, is_autobox_cache);
  2777     return arr;
  2778   } else if (klass->is_type_array_klass()) {
  2779     // Element is an typeArray
  2780     const Type* etype =
  2781       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
  2782     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2783     // We used to pass NotNull in here, asserting that the array pointer
  2784     // is not-null. That was not true in general.
  2785     if (require_constant) {
  2786       if (!o->can_be_constant())  return NULL;
  2787     } else if (!o->should_be_constant()) {
  2788       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2790     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2791     return arr;
  2794   fatal("unhandled object type");
  2795   return NULL;
  2798 //------------------------------get_con----------------------------------------
  2799 intptr_t TypeOopPtr::get_con() const {
  2800   assert( _ptr == Null || _ptr == Constant, "" );
  2801   assert( _offset >= 0, "" );
  2803   if (_offset != 0) {
  2804     // After being ported to the compiler interface, the compiler no longer
  2805     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  2806     // to a handle at compile time.  This handle is embedded in the generated
  2807     // code and dereferenced at the time the nmethod is made.  Until that time,
  2808     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  2809     // have access to the addresses!).  This does not seem to currently happen,
  2810     // but this assertion here is to help prevent its occurence.
  2811     tty->print_cr("Found oop constant with non-zero offset");
  2812     ShouldNotReachHere();
  2815   return (intptr_t)const_oop()->constant_encoding();
  2819 //-----------------------------filter------------------------------------------
  2820 // Do not allow interface-vs.-noninterface joins to collapse to top.
  2821 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
  2823   const Type* ft = join_helper(kills, include_speculative);
  2824   const TypeInstPtr* ftip = ft->isa_instptr();
  2825   const TypeInstPtr* ktip = kills->isa_instptr();
  2827   if (ft->empty()) {
  2828     // Check for evil case of 'this' being a class and 'kills' expecting an
  2829     // interface.  This can happen because the bytecodes do not contain
  2830     // enough type info to distinguish a Java-level interface variable
  2831     // from a Java-level object variable.  If we meet 2 classes which
  2832     // both implement interface I, but their meet is at 'j/l/O' which
  2833     // doesn't implement I, we have no way to tell if the result should
  2834     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
  2835     // into a Phi which "knows" it's an Interface type we'll have to
  2836     // uplift the type.
  2837     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
  2838       return kills;             // Uplift to interface
  2840     return Type::TOP;           // Canonical empty value
  2843   // If we have an interface-typed Phi or cast and we narrow to a class type,
  2844   // the join should report back the class.  However, if we have a J/L/Object
  2845   // class-typed Phi and an interface flows in, it's possible that the meet &
  2846   // join report an interface back out.  This isn't possible but happens
  2847   // because the type system doesn't interact well with interfaces.
  2848   if (ftip != NULL && ktip != NULL &&
  2849       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
  2850       ktip->is_loaded() && !ktip->klass()->is_interface()) {
  2851     // Happens in a CTW of rt.jar, 320-341, no extra flags
  2852     assert(!ftip->klass_is_exact(), "interface could not be exact");
  2853     return ktip->cast_to_ptr_type(ftip->ptr());
  2856   return ft;
  2859 //------------------------------eq---------------------------------------------
  2860 // Structural equality check for Type representations
  2861 bool TypeOopPtr::eq( const Type *t ) const {
  2862   const TypeOopPtr *a = (const TypeOopPtr*)t;
  2863   if (_klass_is_exact != a->_klass_is_exact ||
  2864       _instance_id != a->_instance_id ||
  2865       !eq_speculative(a) ||
  2866       _inline_depth != a->_inline_depth)  return false;
  2867   ciObject* one = const_oop();
  2868   ciObject* two = a->const_oop();
  2869   if (one == NULL || two == NULL) {
  2870     return (one == two) && TypePtr::eq(t);
  2871   } else {
  2872     return one->equals(two) && TypePtr::eq(t);
  2876 //------------------------------hash-------------------------------------------
  2877 // Type-specific hashing function.
  2878 int TypeOopPtr::hash(void) const {
  2879   return
  2880     (const_oop() ? const_oop()->hash() : 0) +
  2881     _klass_is_exact +
  2882     _instance_id +
  2883     hash_speculative() +
  2884     _inline_depth +
  2885     TypePtr::hash();
  2888 //------------------------------dump2------------------------------------------
  2889 #ifndef PRODUCT
  2890 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2891   st->print("oopptr:%s", ptr_msg[_ptr]);
  2892   if( _klass_is_exact ) st->print(":exact");
  2893   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
  2894   switch( _offset ) {
  2895   case OffsetTop: st->print("+top"); break;
  2896   case OffsetBot: st->print("+any"); break;
  2897   case         0: break;
  2898   default:        st->print("+%d",_offset); break;
  2900   if (_instance_id == InstanceTop)
  2901     st->print(",iid=top");
  2902   else if (_instance_id != InstanceBot)
  2903     st->print(",iid=%d",_instance_id);
  2905   dump_inline_depth(st);
  2906   dump_speculative(st);
  2909 /**
  2910  *dump the speculative part of the type
  2911  */
  2912 void TypeOopPtr::dump_speculative(outputStream *st) const {
  2913   if (_speculative != NULL) {
  2914     st->print(" (speculative=");
  2915     _speculative->dump_on(st);
  2916     st->print(")");
  2920 void TypeOopPtr::dump_inline_depth(outputStream *st) const {
  2921   if (_inline_depth != InlineDepthBottom) {
  2922     if (_inline_depth == InlineDepthTop) {
  2923       st->print(" (inline_depth=InlineDepthTop)");
  2924     } else {
  2925       st->print(" (inline_depth=%d)", _inline_depth);
  2929 #endif
  2931 //------------------------------singleton--------------------------------------
  2932 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2933 // constants
  2934 bool TypeOopPtr::singleton(void) const {
  2935   // detune optimizer to not generate constant oop + constant offset as a constant!
  2936   // TopPTR, Null, AnyNull, Constant are all singletons
  2937   return (_offset == 0) && !below_centerline(_ptr);
  2940 //------------------------------add_offset-------------------------------------
  2941 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
  2942   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
  2945 /**
  2946  * Return same type without a speculative part
  2947  */
  2948 const Type* TypeOopPtr::remove_speculative() const {
  2949   if (_speculative == NULL) {
  2950     return this;
  2952   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
  2953   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
  2956 /**
  2957  * Return same type but with a different inline depth (used for speculation)
  2959  * @param depth  depth to meet with
  2960  */
  2961 const TypeOopPtr* TypeOopPtr::with_inline_depth(int depth) const {
  2962   if (!UseInlineDepthForSpeculativeTypes) {
  2963     return this;
  2965   return make(_ptr, _offset, _instance_id, _speculative, depth);
  2968 /**
  2969  * Check whether new profiling would improve speculative type
  2971  * @param   exact_kls    class from profiling
  2972  * @param   inline_depth inlining depth of profile point
  2974  * @return  true if type profile is valuable
  2975  */
  2976 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
  2977   // no way to improve an already exact type
  2978   if (klass_is_exact()) {
  2979     return false;
  2981   // no profiling?
  2982   if (exact_kls == NULL) {
  2983     return false;
  2985   // no speculative type or non exact speculative type?
  2986   if (speculative_type() == NULL) {
  2987     return true;
  2989   // If the node already has an exact speculative type keep it,
  2990   // unless it was provided by profiling that is at a deeper
  2991   // inlining level. Profiling at a higher inlining depth is
  2992   // expected to be less accurate.
  2993   if (_speculative->inline_depth() == InlineDepthBottom) {
  2994     return false;
  2996   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
  2997   return inline_depth < _speculative->inline_depth();
  3000 //------------------------------meet_instance_id--------------------------------
  3001 int TypeOopPtr::meet_instance_id( int instance_id ) const {
  3002   // Either is 'TOP' instance?  Return the other instance!
  3003   if( _instance_id == InstanceTop ) return  instance_id;
  3004   if(  instance_id == InstanceTop ) return _instance_id;
  3005   // If either is different, return 'BOTTOM' instance
  3006   if( _instance_id != instance_id ) return InstanceBot;
  3007   return _instance_id;
  3010 //------------------------------dual_instance_id--------------------------------
  3011 int TypeOopPtr::dual_instance_id( ) const {
  3012   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
  3013   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
  3014   return _instance_id;              // Map everything else into self
  3017 /**
  3018  * meet of the speculative parts of 2 types
  3020  * @param other  type to meet with
  3021  */
  3022 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
  3023   bool this_has_spec = (_speculative != NULL);
  3024   bool other_has_spec = (other->speculative() != NULL);
  3026   if (!this_has_spec && !other_has_spec) {
  3027     return NULL;
  3030   // If we are at a point where control flow meets and one branch has
  3031   // a speculative type and the other has not, we meet the speculative
  3032   // type of one branch with the actual type of the other. If the
  3033   // actual type is exact and the speculative is as well, then the
  3034   // result is a speculative type which is exact and we can continue
  3035   // speculation further.
  3036   const TypeOopPtr* this_spec = _speculative;
  3037   const TypeOopPtr* other_spec = other->speculative();
  3039   if (!this_has_spec) {
  3040     this_spec = this;
  3043   if (!other_has_spec) {
  3044     other_spec = other;
  3047   return this_spec->meet_speculative(other_spec)->is_oopptr();
  3050 /**
  3051  * dual of the speculative part of the type
  3052  */
  3053 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
  3054   if (_speculative == NULL) {
  3055     return NULL;
  3057   return _speculative->dual()->is_oopptr();
  3060 /**
  3061  * add offset to the speculative part of the type
  3063  * @param offset  offset to add
  3064  */
  3065 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
  3066   if (_speculative == NULL) {
  3067     return NULL;
  3069   return _speculative->add_offset(offset)->is_oopptr();
  3072 /**
  3073  * Are the speculative parts of 2 types equal?
  3075  * @param other  type to compare this one to
  3076  */
  3077 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
  3078   if (_speculative == NULL || other->speculative() == NULL) {
  3079     return _speculative == other->speculative();
  3082   if (_speculative->base() != other->speculative()->base()) {
  3083     return false;
  3086   return _speculative->eq(other->speculative());
  3089 /**
  3090  * Hash of the speculative part of the type
  3091  */
  3092 int TypeOopPtr::hash_speculative() const {
  3093   if (_speculative == NULL) {
  3094     return 0;
  3097   return _speculative->hash();
  3100 /**
  3101  * dual of the inline depth for this type (used for speculation)
  3102  */
  3103 int TypeOopPtr::dual_inline_depth() const {
  3104   return -inline_depth();
  3107 /**
  3108  * meet of 2 inline depth (used for speculation)
  3110  * @param depth  depth to meet with
  3111  */
  3112 int TypeOopPtr::meet_inline_depth(int depth) const {
  3113   return MAX2(inline_depth(), depth);
  3116 //=============================================================================
  3117 // Convenience common pre-built types.
  3118 const TypeInstPtr *TypeInstPtr::NOTNULL;
  3119 const TypeInstPtr *TypeInstPtr::BOTTOM;
  3120 const TypeInstPtr *TypeInstPtr::MIRROR;
  3121 const TypeInstPtr *TypeInstPtr::MARK;
  3122 const TypeInstPtr *TypeInstPtr::KLASS;
  3124 //------------------------------TypeInstPtr-------------------------------------
  3125 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative, int inline_depth)
  3126   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth), _name(k->name()) {
  3127    assert(k != NULL &&
  3128           (k->is_loaded() || o == NULL),
  3129           "cannot have constants with non-loaded klass");
  3130 };
  3132 //------------------------------make-------------------------------------------
  3133 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
  3134                                      ciKlass* k,
  3135                                      bool xk,
  3136                                      ciObject* o,
  3137                                      int offset,
  3138                                      int instance_id,
  3139                                      const TypeOopPtr* speculative,
  3140                                      int inline_depth) {
  3141   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
  3142   // Either const_oop() is NULL or else ptr is Constant
  3143   assert( (!o && ptr != Constant) || (o && ptr == Constant),
  3144           "constant pointers must have a value supplied" );
  3145   // Ptr is never Null
  3146   assert( ptr != Null, "NULL pointers are not typed" );
  3148   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3149   if (!UseExactTypes)  xk = false;
  3150   if (ptr == Constant) {
  3151     // Note:  This case includes meta-object constants, such as methods.
  3152     xk = true;
  3153   } else if (k->is_loaded()) {
  3154     ciInstanceKlass* ik = k->as_instance_klass();
  3155     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
  3156     if (xk && ik->is_interface())  xk = false;  // no exact interface
  3159   // Now hash this baby
  3160   TypeInstPtr *result =
  3161     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
  3163   return result;
  3166 /**
  3167  *  Create constant type for a constant boxed value
  3168  */
  3169 const Type* TypeInstPtr::get_const_boxed_value() const {
  3170   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
  3171   assert((const_oop() != NULL), "should be called only for constant object");
  3172   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
  3173   BasicType bt = constant.basic_type();
  3174   switch (bt) {
  3175     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
  3176     case T_INT:      return TypeInt::make(constant.as_int());
  3177     case T_CHAR:     return TypeInt::make(constant.as_char());
  3178     case T_BYTE:     return TypeInt::make(constant.as_byte());
  3179     case T_SHORT:    return TypeInt::make(constant.as_short());
  3180     case T_FLOAT:    return TypeF::make(constant.as_float());
  3181     case T_DOUBLE:   return TypeD::make(constant.as_double());
  3182     case T_LONG:     return TypeLong::make(constant.as_long());
  3183     default:         break;
  3185   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
  3186   return NULL;
  3189 //------------------------------cast_to_ptr_type-------------------------------
  3190 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
  3191   if( ptr == _ptr ) return this;
  3192   // Reconstruct _sig info here since not a problem with later lazy
  3193   // construction, _sig will show up on demand.
  3194   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
  3198 //-----------------------------cast_to_exactness-------------------------------
  3199 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
  3200   if( klass_is_exact == _klass_is_exact ) return this;
  3201   if (!UseExactTypes)  return this;
  3202   if (!_klass->is_loaded())  return this;
  3203   ciInstanceKlass* ik = _klass->as_instance_klass();
  3204   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
  3205   if( ik->is_interface() )              return this;  // cannot set xk
  3206   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
  3209 //-----------------------------cast_to_instance_id----------------------------
  3210 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
  3211   if( instance_id == _instance_id ) return this;
  3212   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
  3215 //------------------------------xmeet_unloaded---------------------------------
  3216 // Compute the MEET of two InstPtrs when at least one is unloaded.
  3217 // Assume classes are different since called after check for same name/class-loader
  3218 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
  3219     int off = meet_offset(tinst->offset());
  3220     PTR ptr = meet_ptr(tinst->ptr());
  3221     int instance_id = meet_instance_id(tinst->instance_id());
  3222     const TypeOopPtr* speculative = xmeet_speculative(tinst);
  3223     int depth = meet_inline_depth(tinst->inline_depth());
  3225     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
  3226     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
  3227     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3228       //
  3229       // Meet unloaded class with java/lang/Object
  3230       //
  3231       // Meet
  3232       //          |                     Unloaded Class
  3233       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
  3234       //  ===================================================================
  3235       //   TOP    | ..........................Unloaded......................|
  3236       //  AnyNull |  U-AN    |................Unloaded......................|
  3237       // Constant | ... O-NN .................................. |   O-BOT   |
  3238       //  NotNull | ... O-NN .................................. |   O-BOT   |
  3239       //  BOTTOM  | ........................Object-BOTTOM ..................|
  3240       //
  3241       assert(loaded->ptr() != TypePtr::Null, "insanity check");
  3242       //
  3243       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
  3244       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
  3245       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
  3246       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
  3247         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
  3248         else                                      { return TypeInstPtr::NOTNULL; }
  3250       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
  3252       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
  3255     // Both are unloaded, not the same class, not Object
  3256     // Or meet unloaded with a different loaded class, not java/lang/Object
  3257     if( ptr != TypePtr::BotPTR ) {
  3258       return TypeInstPtr::NOTNULL;
  3260     return TypeInstPtr::BOTTOM;
  3264 //------------------------------meet-------------------------------------------
  3265 // Compute the MEET of two types.  It returns a new Type object.
  3266 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
  3267   // Perform a fast test for common case; meeting the same types together.
  3268   if( this == t ) return this;  // Meeting same type-rep?
  3270   // Current "this->_base" is Pointer
  3271   switch (t->base()) {          // switch on original type
  3273   case Int:                     // Mixing ints & oops happens when javac
  3274   case Long:                    // reuses local variables
  3275   case FloatTop:
  3276   case FloatCon:
  3277   case FloatBot:
  3278   case DoubleTop:
  3279   case DoubleCon:
  3280   case DoubleBot:
  3281   case NarrowOop:
  3282   case NarrowKlass:
  3283   case Bottom:                  // Ye Olde Default
  3284     return Type::BOTTOM;
  3285   case Top:
  3286     return this;
  3288   default:                      // All else is a mistake
  3289     typerr(t);
  3291   case MetadataPtr:
  3292   case KlassPtr:
  3293   case RawPtr: return TypePtr::BOTTOM;
  3295   case AryPtr: {                // All arrays inherit from Object class
  3296     const TypeAryPtr *tp = t->is_aryptr();
  3297     int offset = meet_offset(tp->offset());
  3298     PTR ptr = meet_ptr(tp->ptr());
  3299     int instance_id = meet_instance_id(tp->instance_id());
  3300     const TypeOopPtr* speculative = xmeet_speculative(tp);
  3301     int depth = meet_inline_depth(tp->inline_depth());
  3302     switch (ptr) {
  3303     case TopPTR:
  3304     case AnyNull:                // Fall 'down' to dual of object klass
  3305       // For instances when a subclass meets a superclass we fall
  3306       // below the centerline when the superclass is exact. We need to
  3307       // do the same here.
  3308       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
  3309         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
  3310       } else {
  3311         // cannot subclass, so the meet has to fall badly below the centerline
  3312         ptr = NotNull;
  3313         instance_id = InstanceBot;
  3314         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
  3316     case Constant:
  3317     case NotNull:
  3318     case BotPTR:                // Fall down to object klass
  3319       // LCA is object_klass, but if we subclass from the top we can do better
  3320       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
  3321         // If 'this' (InstPtr) is above the centerline and it is Object class
  3322         // then we can subclass in the Java class hierarchy.
  3323         // For instances when a subclass meets a superclass we fall
  3324         // below the centerline when the superclass is exact. We need
  3325         // to do the same here.
  3326         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
  3327           // that is, tp's array type is a subtype of my klass
  3328           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
  3329                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
  3332       // The other case cannot happen, since I cannot be a subtype of an array.
  3333       // The meet falls down to Object class below centerline.
  3334       if( ptr == Constant )
  3335          ptr = NotNull;
  3336       instance_id = InstanceBot;
  3337       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
  3338     default: typerr(t);
  3342   case OopPtr: {                // Meeting to OopPtrs
  3343     // Found a OopPtr type vs self-InstPtr type
  3344     const TypeOopPtr *tp = t->is_oopptr();
  3345     int offset = meet_offset(tp->offset());
  3346     PTR ptr = meet_ptr(tp->ptr());
  3347     switch (tp->ptr()) {
  3348     case TopPTR:
  3349     case AnyNull: {
  3350       int instance_id = meet_instance_id(InstanceTop);
  3351       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3352       int depth = meet_inline_depth(tp->inline_depth());
  3353       return make(ptr, klass(), klass_is_exact(),
  3354                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
  3356     case NotNull:
  3357     case BotPTR: {
  3358       int instance_id = meet_instance_id(tp->instance_id());
  3359       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3360       int depth = meet_inline_depth(tp->inline_depth());
  3361       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
  3363     default: typerr(t);
  3367   case AnyPtr: {                // Meeting to AnyPtrs
  3368     // Found an AnyPtr type vs self-InstPtr type
  3369     const TypePtr *tp = t->is_ptr();
  3370     int offset = meet_offset(tp->offset());
  3371     PTR ptr = meet_ptr(tp->ptr());
  3372     switch (tp->ptr()) {
  3373     case Null:
  3374       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3375       // else fall through to AnyNull
  3376     case TopPTR:
  3377     case AnyNull: {
  3378       int instance_id = meet_instance_id(InstanceTop);
  3379       const TypeOopPtr* speculative = _speculative;
  3380       return make(ptr, klass(), klass_is_exact(),
  3381                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, _inline_depth);
  3383     case NotNull:
  3384     case BotPTR:
  3385       return TypePtr::make(AnyPtr, ptr, offset);
  3386     default: typerr(t);
  3390   /*
  3391                  A-top         }
  3392                /   |   \       }  Tops
  3393            B-top A-any C-top   }
  3394               | /  |  \ |      }  Any-nulls
  3395            B-any   |   C-any   }
  3396               |    |    |
  3397            B-con A-con C-con   } constants; not comparable across classes
  3398               |    |    |
  3399            B-not   |   C-not   }
  3400               | \  |  / |      }  not-nulls
  3401            B-bot A-not C-bot   }
  3402                \   |   /       }  Bottoms
  3403                  A-bot         }
  3404   */
  3406   case InstPtr: {                // Meeting 2 Oops?
  3407     // Found an InstPtr sub-type vs self-InstPtr type
  3408     const TypeInstPtr *tinst = t->is_instptr();
  3409     int off = meet_offset( tinst->offset() );
  3410     PTR ptr = meet_ptr( tinst->ptr() );
  3411     int instance_id = meet_instance_id(tinst->instance_id());
  3412     const TypeOopPtr* speculative = xmeet_speculative(tinst);
  3413     int depth = meet_inline_depth(tinst->inline_depth());
  3415     // Check for easy case; klasses are equal (and perhaps not loaded!)
  3416     // If we have constants, then we created oops so classes are loaded
  3417     // and we can handle the constants further down.  This case handles
  3418     // both-not-loaded or both-loaded classes
  3419     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
  3420       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
  3423     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  3424     ciKlass* tinst_klass = tinst->klass();
  3425     ciKlass* this_klass  = this->klass();
  3426     bool tinst_xk = tinst->klass_is_exact();
  3427     bool this_xk  = this->klass_is_exact();
  3428     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
  3429       // One of these classes has not been loaded
  3430       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
  3431 #ifndef PRODUCT
  3432       if( PrintOpto && Verbose ) {
  3433         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
  3434         tty->print("  this == "); this->dump(); tty->cr();
  3435         tty->print(" tinst == "); tinst->dump(); tty->cr();
  3437 #endif
  3438       return unloaded_meet;
  3441     // Handle mixing oops and interfaces first.
  3442     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
  3443                                         tinst_klass == ciEnv::current()->Object_klass())) {
  3444       ciKlass *tmp = tinst_klass; // Swap interface around
  3445       tinst_klass = this_klass;
  3446       this_klass = tmp;
  3447       bool tmp2 = tinst_xk;
  3448       tinst_xk = this_xk;
  3449       this_xk = tmp2;
  3451     if (tinst_klass->is_interface() &&
  3452         !(this_klass->is_interface() ||
  3453           // Treat java/lang/Object as an honorary interface,
  3454           // because we need a bottom for the interface hierarchy.
  3455           this_klass == ciEnv::current()->Object_klass())) {
  3456       // Oop meets interface!
  3458       // See if the oop subtypes (implements) interface.
  3459       ciKlass *k;
  3460       bool xk;
  3461       if( this_klass->is_subtype_of( tinst_klass ) ) {
  3462         // Oop indeed subtypes.  Now keep oop or interface depending
  3463         // on whether we are both above the centerline or either is
  3464         // below the centerline.  If we are on the centerline
  3465         // (e.g., Constant vs. AnyNull interface), use the constant.
  3466         k  = below_centerline(ptr) ? tinst_klass : this_klass;
  3467         // If we are keeping this_klass, keep its exactness too.
  3468         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
  3469       } else {                  // Does not implement, fall to Object
  3470         // Oop does not implement interface, so mixing falls to Object
  3471         // just like the verifier does (if both are above the
  3472         // centerline fall to interface)
  3473         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
  3474         xk = above_centerline(ptr) ? tinst_xk : false;
  3475         // Watch out for Constant vs. AnyNull interface.
  3476         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
  3477         instance_id = InstanceBot;
  3479       ciObject* o = NULL;  // the Constant value, if any
  3480       if (ptr == Constant) {
  3481         // Find out which constant.
  3482         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
  3484       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
  3487     // Either oop vs oop or interface vs interface or interface vs Object
  3489     // !!! Here's how the symmetry requirement breaks down into invariants:
  3490     // If we split one up & one down AND they subtype, take the down man.
  3491     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3492     // If both are up and they subtype, take the subtype class.
  3493     // If both are up and they do NOT subtype, "fall hard".
  3494     // If both are down and they subtype, take the supertype class.
  3495     // If both are down and they do NOT subtype, "fall hard".
  3496     // Constants treated as down.
  3498     // Now, reorder the above list; observe that both-down+subtype is also
  3499     // "fall hard"; "fall hard" becomes the default case:
  3500     // If we split one up & one down AND they subtype, take the down man.
  3501     // If both are up and they subtype, take the subtype class.
  3503     // If both are down and they subtype, "fall hard".
  3504     // If both are down and they do NOT subtype, "fall hard".
  3505     // If both are up and they do NOT subtype, "fall hard".
  3506     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3508     // If a proper subtype is exact, and we return it, we return it exactly.
  3509     // If a proper supertype is exact, there can be no subtyping relationship!
  3510     // If both types are equal to the subtype, exactness is and-ed below the
  3511     // centerline and or-ed above it.  (N.B. Constants are always exact.)
  3513     // Check for subtyping:
  3514     ciKlass *subtype = NULL;
  3515     bool subtype_exact = false;
  3516     if( tinst_klass->equals(this_klass) ) {
  3517       subtype = this_klass;
  3518       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
  3519     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
  3520       subtype = this_klass;     // Pick subtyping class
  3521       subtype_exact = this_xk;
  3522     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
  3523       subtype = tinst_klass;    // Pick subtyping class
  3524       subtype_exact = tinst_xk;
  3527     if( subtype ) {
  3528       if( above_centerline(ptr) ) { // both are up?
  3529         this_klass = tinst_klass = subtype;
  3530         this_xk = tinst_xk = subtype_exact;
  3531       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
  3532         this_klass = tinst_klass; // tinst is down; keep down man
  3533         this_xk = tinst_xk;
  3534       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
  3535         tinst_klass = this_klass; // this is down; keep down man
  3536         tinst_xk = this_xk;
  3537       } else {
  3538         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
  3542     // Check for classes now being equal
  3543     if (tinst_klass->equals(this_klass)) {
  3544       // If the klasses are equal, the constants may still differ.  Fall to
  3545       // NotNull if they do (neither constant is NULL; that is a special case
  3546       // handled elsewhere).
  3547       ciObject* o = NULL;             // Assume not constant when done
  3548       ciObject* this_oop  = const_oop();
  3549       ciObject* tinst_oop = tinst->const_oop();
  3550       if( ptr == Constant ) {
  3551         if (this_oop != NULL && tinst_oop != NULL &&
  3552             this_oop->equals(tinst_oop) )
  3553           o = this_oop;
  3554         else if (above_centerline(this ->_ptr))
  3555           o = tinst_oop;
  3556         else if (above_centerline(tinst ->_ptr))
  3557           o = this_oop;
  3558         else
  3559           ptr = NotNull;
  3561       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
  3562     } // Else classes are not equal
  3564     // Since klasses are different, we require a LCA in the Java
  3565     // class hierarchy - which means we have to fall to at least NotNull.
  3566     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  3567       ptr = NotNull;
  3568     instance_id = InstanceBot;
  3570     // Now we find the LCA of Java classes
  3571     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
  3572     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
  3573   } // End of case InstPtr
  3575   } // End of switch
  3576   return this;                  // Return the double constant
  3580 //------------------------java_mirror_type--------------------------------------
  3581 ciType* TypeInstPtr::java_mirror_type() const {
  3582   // must be a singleton type
  3583   if( const_oop() == NULL )  return NULL;
  3585   // must be of type java.lang.Class
  3586   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
  3588   return const_oop()->as_instance()->java_mirror_type();
  3592 //------------------------------xdual------------------------------------------
  3593 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
  3594 // inheritance mechanism.
  3595 const Type *TypeInstPtr::xdual() const {
  3596   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
  3599 //------------------------------eq---------------------------------------------
  3600 // Structural equality check for Type representations
  3601 bool TypeInstPtr::eq( const Type *t ) const {
  3602   const TypeInstPtr *p = t->is_instptr();
  3603   return
  3604     klass()->equals(p->klass()) &&
  3605     TypeOopPtr::eq(p);          // Check sub-type stuff
  3608 //------------------------------hash-------------------------------------------
  3609 // Type-specific hashing function.
  3610 int TypeInstPtr::hash(void) const {
  3611   int hash = klass()->hash() + TypeOopPtr::hash();
  3612   return hash;
  3615 //------------------------------dump2------------------------------------------
  3616 // Dump oop Type
  3617 #ifndef PRODUCT
  3618 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3619   // Print the name of the klass.
  3620   klass()->print_name_on(st);
  3622   switch( _ptr ) {
  3623   case Constant:
  3624     // TO DO: Make CI print the hex address of the underlying oop.
  3625     if (WizardMode || Verbose) {
  3626       const_oop()->print_oop(st);
  3628   case BotPTR:
  3629     if (!WizardMode && !Verbose) {
  3630       if( _klass_is_exact ) st->print(":exact");
  3631       break;
  3633   case TopPTR:
  3634   case AnyNull:
  3635   case NotNull:
  3636     st->print(":%s", ptr_msg[_ptr]);
  3637     if( _klass_is_exact ) st->print(":exact");
  3638     break;
  3641   if( _offset ) {               // Dump offset, if any
  3642     if( _offset == OffsetBot )      st->print("+any");
  3643     else if( _offset == OffsetTop ) st->print("+unknown");
  3644     else st->print("+%d", _offset);
  3647   st->print(" *");
  3648   if (_instance_id == InstanceTop)
  3649     st->print(",iid=top");
  3650   else if (_instance_id != InstanceBot)
  3651     st->print(",iid=%d",_instance_id);
  3653   dump_inline_depth(st);
  3654   dump_speculative(st);
  3656 #endif
  3658 //------------------------------add_offset-------------------------------------
  3659 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
  3660   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
  3663 const Type *TypeInstPtr::remove_speculative() const {
  3664   if (_speculative == NULL) {
  3665     return this;
  3667   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
  3668   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL, _inline_depth);
  3671 const TypeOopPtr *TypeInstPtr::with_inline_depth(int depth) const {
  3672   if (!UseInlineDepthForSpeculativeTypes) {
  3673     return this;
  3675   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
  3678 //=============================================================================
  3679 // Convenience common pre-built types.
  3680 const TypeAryPtr *TypeAryPtr::RANGE;
  3681 const TypeAryPtr *TypeAryPtr::OOPS;
  3682 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
  3683 const TypeAryPtr *TypeAryPtr::BYTES;
  3684 const TypeAryPtr *TypeAryPtr::SHORTS;
  3685 const TypeAryPtr *TypeAryPtr::CHARS;
  3686 const TypeAryPtr *TypeAryPtr::INTS;
  3687 const TypeAryPtr *TypeAryPtr::LONGS;
  3688 const TypeAryPtr *TypeAryPtr::FLOATS;
  3689 const TypeAryPtr *TypeAryPtr::DOUBLES;
  3691 //------------------------------make-------------------------------------------
  3692 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
  3693   assert(!(k == NULL && ary->_elem->isa_int()),
  3694          "integral arrays must be pre-equipped with a class");
  3695   if (!xk)  xk = ary->ary_must_be_exact();
  3696   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3697   if (!UseExactTypes)  xk = (ptr == Constant);
  3698   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
  3701 //------------------------------make-------------------------------------------
  3702 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth, bool is_autobox_cache) {
  3703   assert(!(k == NULL && ary->_elem->isa_int()),
  3704          "integral arrays must be pre-equipped with a class");
  3705   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
  3706   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
  3707   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3708   if (!UseExactTypes)  xk = (ptr == Constant);
  3709   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
  3712 //------------------------------cast_to_ptr_type-------------------------------
  3713 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
  3714   if( ptr == _ptr ) return this;
  3715   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
  3719 //-----------------------------cast_to_exactness-------------------------------
  3720 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
  3721   if( klass_is_exact == _klass_is_exact ) return this;
  3722   if (!UseExactTypes)  return this;
  3723   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
  3724   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
  3727 //-----------------------------cast_to_instance_id----------------------------
  3728 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
  3729   if( instance_id == _instance_id ) return this;
  3730   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
  3733 //-----------------------------narrow_size_type-------------------------------
  3734 // Local cache for arrayOopDesc::max_array_length(etype),
  3735 // which is kind of slow (and cached elsewhere by other users).
  3736 static jint max_array_length_cache[T_CONFLICT+1];
  3737 static jint max_array_length(BasicType etype) {
  3738   jint& cache = max_array_length_cache[etype];
  3739   jint res = cache;
  3740   if (res == 0) {
  3741     switch (etype) {
  3742     case T_NARROWOOP:
  3743       etype = T_OBJECT;
  3744       break;
  3745     case T_NARROWKLASS:
  3746     case T_CONFLICT:
  3747     case T_ILLEGAL:
  3748     case T_VOID:
  3749       etype = T_BYTE;           // will produce conservatively high value
  3751     cache = res = arrayOopDesc::max_array_length(etype);
  3753   return res;
  3756 // Narrow the given size type to the index range for the given array base type.
  3757 // Return NULL if the resulting int type becomes empty.
  3758 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
  3759   jint hi = size->_hi;
  3760   jint lo = size->_lo;
  3761   jint min_lo = 0;
  3762   jint max_hi = max_array_length(elem()->basic_type());
  3763   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
  3764   bool chg = false;
  3765   if (lo < min_lo) {
  3766     lo = min_lo;
  3767     if (size->is_con()) {
  3768       hi = lo;
  3770     chg = true;
  3772   if (hi > max_hi) {
  3773     hi = max_hi;
  3774     if (size->is_con()) {
  3775       lo = hi;
  3777     chg = true;
  3779   // Negative length arrays will produce weird intermediate dead fast-path code
  3780   if (lo > hi)
  3781     return TypeInt::ZERO;
  3782   if (!chg)
  3783     return size;
  3784   return TypeInt::make(lo, hi, Type::WidenMin);
  3787 //-------------------------------cast_to_size----------------------------------
  3788 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
  3789   assert(new_size != NULL, "");
  3790   new_size = narrow_size_type(new_size);
  3791   if (new_size == size())  return this;
  3792   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
  3793   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
  3797 //------------------------------cast_to_stable---------------------------------
  3798 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
  3799   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
  3800     return this;
  3802   const Type* elem = this->elem();
  3803   const TypePtr* elem_ptr = elem->make_ptr();
  3805   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
  3806     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
  3807     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
  3810   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
  3812   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
  3815 //-----------------------------stable_dimension--------------------------------
  3816 int TypeAryPtr::stable_dimension() const {
  3817   if (!is_stable())  return 0;
  3818   int dim = 1;
  3819   const TypePtr* elem_ptr = elem()->make_ptr();
  3820   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
  3821     dim += elem_ptr->is_aryptr()->stable_dimension();
  3822   return dim;
  3825 //------------------------------eq---------------------------------------------
  3826 // Structural equality check for Type representations
  3827 bool TypeAryPtr::eq( const Type *t ) const {
  3828   const TypeAryPtr *p = t->is_aryptr();
  3829   return
  3830     _ary == p->_ary &&  // Check array
  3831     TypeOopPtr::eq(p);  // Check sub-parts
  3834 //------------------------------hash-------------------------------------------
  3835 // Type-specific hashing function.
  3836 int TypeAryPtr::hash(void) const {
  3837   return (intptr_t)_ary + TypeOopPtr::hash();
  3840 //------------------------------meet-------------------------------------------
  3841 // Compute the MEET of two types.  It returns a new Type object.
  3842 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
  3843   // Perform a fast test for common case; meeting the same types together.
  3844   if( this == t ) return this;  // Meeting same type-rep?
  3845   // Current "this->_base" is Pointer
  3846   switch (t->base()) {          // switch on original type
  3848   // Mixing ints & oops happens when javac reuses local variables
  3849   case Int:
  3850   case Long:
  3851   case FloatTop:
  3852   case FloatCon:
  3853   case FloatBot:
  3854   case DoubleTop:
  3855   case DoubleCon:
  3856   case DoubleBot:
  3857   case NarrowOop:
  3858   case NarrowKlass:
  3859   case Bottom:                  // Ye Olde Default
  3860     return Type::BOTTOM;
  3861   case Top:
  3862     return this;
  3864   default:                      // All else is a mistake
  3865     typerr(t);
  3867   case OopPtr: {                // Meeting to OopPtrs
  3868     // Found a OopPtr type vs self-AryPtr type
  3869     const TypeOopPtr *tp = t->is_oopptr();
  3870     int offset = meet_offset(tp->offset());
  3871     PTR ptr = meet_ptr(tp->ptr());
  3872     int depth = meet_inline_depth(tp->inline_depth());
  3873     switch (tp->ptr()) {
  3874     case TopPTR:
  3875     case AnyNull: {
  3876       int instance_id = meet_instance_id(InstanceTop);
  3877       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3878       return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3879                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
  3881     case BotPTR:
  3882     case NotNull: {
  3883       int instance_id = meet_instance_id(tp->instance_id());
  3884       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3885       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
  3887     default: ShouldNotReachHere();
  3891   case AnyPtr: {                // Meeting two AnyPtrs
  3892     // Found an AnyPtr type vs self-AryPtr type
  3893     const TypePtr *tp = t->is_ptr();
  3894     int offset = meet_offset(tp->offset());
  3895     PTR ptr = meet_ptr(tp->ptr());
  3896     switch (tp->ptr()) {
  3897     case TopPTR:
  3898       return this;
  3899     case BotPTR:
  3900     case NotNull:
  3901       return TypePtr::make(AnyPtr, ptr, offset);
  3902     case Null:
  3903       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3904       // else fall through to AnyNull
  3905     case AnyNull: {
  3906       int instance_id = meet_instance_id(InstanceTop);
  3907       const TypeOopPtr* speculative = _speculative;
  3908       return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3909                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, _inline_depth);
  3911     default: ShouldNotReachHere();
  3915   case MetadataPtr:
  3916   case KlassPtr:
  3917   case RawPtr: return TypePtr::BOTTOM;
  3919   case AryPtr: {                // Meeting 2 references?
  3920     const TypeAryPtr *tap = t->is_aryptr();
  3921     int off = meet_offset(tap->offset());
  3922     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
  3923     PTR ptr = meet_ptr(tap->ptr());
  3924     int instance_id = meet_instance_id(tap->instance_id());
  3925     const TypeOopPtr* speculative = xmeet_speculative(tap);
  3926     int depth = meet_inline_depth(tap->inline_depth());
  3927     ciKlass* lazy_klass = NULL;
  3928     if (tary->_elem->isa_int()) {
  3929       // Integral array element types have irrelevant lattice relations.
  3930       // It is the klass that determines array layout, not the element type.
  3931       if (_klass == NULL)
  3932         lazy_klass = tap->_klass;
  3933       else if (tap->_klass == NULL || tap->_klass == _klass) {
  3934         lazy_klass = _klass;
  3935       } else {
  3936         // Something like byte[int+] meets char[int+].
  3937         // This must fall to bottom, not (int[-128..65535])[int+].
  3938         instance_id = InstanceBot;
  3939         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
  3941     } else // Non integral arrays.
  3942       // Must fall to bottom if exact klasses in upper lattice
  3943       // are not equal or super klass is exact.
  3944       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
  3945           // meet with top[] and bottom[] are processed further down:
  3946           tap->_klass != NULL  && this->_klass != NULL   &&
  3947           // both are exact and not equal:
  3948           ((tap->_klass_is_exact && this->_klass_is_exact) ||
  3949            // 'tap'  is exact and super or unrelated:
  3950            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
  3951            // 'this' is exact and super or unrelated:
  3952            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
  3953       tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
  3954       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
  3957     bool xk = false;
  3958     switch (tap->ptr()) {
  3959     case AnyNull:
  3960     case TopPTR:
  3961       // Compute new klass on demand, do not use tap->_klass
  3962       if (below_centerline(this->_ptr)) {
  3963         xk = this->_klass_is_exact;
  3964       } else {
  3965         xk = (tap->_klass_is_exact | this->_klass_is_exact);
  3967       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
  3968     case Constant: {
  3969       ciObject* o = const_oop();
  3970       if( _ptr == Constant ) {
  3971         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
  3972           xk = (klass() == tap->klass());
  3973           ptr = NotNull;
  3974           o = NULL;
  3975           instance_id = InstanceBot;
  3976         } else {
  3977           xk = true;
  3979       } else if(above_centerline(_ptr)) {
  3980         o = tap->const_oop();
  3981         xk = true;
  3982       } else {
  3983         // Only precise for identical arrays
  3984         xk = this->_klass_is_exact && (klass() == tap->klass());
  3986       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
  3988     case NotNull:
  3989     case BotPTR:
  3990       // Compute new klass on demand, do not use tap->_klass
  3991       if (above_centerline(this->_ptr))
  3992             xk = tap->_klass_is_exact;
  3993       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
  3994               (klass() == tap->klass()); // Only precise for identical arrays
  3995       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
  3996     default: ShouldNotReachHere();
  4000   // All arrays inherit from Object class
  4001   case InstPtr: {
  4002     const TypeInstPtr *tp = t->is_instptr();
  4003     int offset = meet_offset(tp->offset());
  4004     PTR ptr = meet_ptr(tp->ptr());
  4005     int instance_id = meet_instance_id(tp->instance_id());
  4006     const TypeOopPtr* speculative = xmeet_speculative(tp);
  4007     int depth = meet_inline_depth(tp->inline_depth());
  4008     switch (ptr) {
  4009     case TopPTR:
  4010     case AnyNull:                // Fall 'down' to dual of object klass
  4011       // For instances when a subclass meets a superclass we fall
  4012       // below the centerline when the superclass is exact. We need to
  4013       // do the same here.
  4014       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
  4015         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
  4016       } else {
  4017         // cannot subclass, so the meet has to fall badly below the centerline
  4018         ptr = NotNull;
  4019         instance_id = InstanceBot;
  4020         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
  4022     case Constant:
  4023     case NotNull:
  4024     case BotPTR:                // Fall down to object klass
  4025       // LCA is object_klass, but if we subclass from the top we can do better
  4026       if (above_centerline(tp->ptr())) {
  4027         // If 'tp'  is above the centerline and it is Object class
  4028         // then we can subclass in the Java class hierarchy.
  4029         // For instances when a subclass meets a superclass we fall
  4030         // below the centerline when the superclass is exact. We need
  4031         // to do the same here.
  4032         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
  4033           // that is, my array type is a subtype of 'tp' klass
  4034           return make(ptr, (ptr == Constant ? const_oop() : NULL),
  4035                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
  4038       // The other case cannot happen, since t cannot be a subtype of an array.
  4039       // The meet falls down to Object class below centerline.
  4040       if( ptr == Constant )
  4041          ptr = NotNull;
  4042       instance_id = InstanceBot;
  4043       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
  4044     default: typerr(t);
  4048   return this;                  // Lint noise
  4051 //------------------------------xdual------------------------------------------
  4052 // Dual: compute field-by-field dual
  4053 const Type *TypeAryPtr::xdual() const {
  4054   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
  4057 //----------------------interface_vs_oop---------------------------------------
  4058 #ifdef ASSERT
  4059 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
  4060   const TypeAryPtr* t_aryptr = t->isa_aryptr();
  4061   if (t_aryptr) {
  4062     return _ary->interface_vs_oop(t_aryptr->_ary);
  4064   return false;
  4066 #endif
  4068 //------------------------------dump2------------------------------------------
  4069 #ifndef PRODUCT
  4070 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  4071   _ary->dump2(d,depth,st);
  4072   switch( _ptr ) {
  4073   case Constant:
  4074     const_oop()->print(st);
  4075     break;
  4076   case BotPTR:
  4077     if (!WizardMode && !Verbose) {
  4078       if( _klass_is_exact ) st->print(":exact");
  4079       break;
  4081   case TopPTR:
  4082   case AnyNull:
  4083   case NotNull:
  4084     st->print(":%s", ptr_msg[_ptr]);
  4085     if( _klass_is_exact ) st->print(":exact");
  4086     break;
  4089   if( _offset != 0 ) {
  4090     int header_size = objArrayOopDesc::header_size() * wordSize;
  4091     if( _offset == OffsetTop )       st->print("+undefined");
  4092     else if( _offset == OffsetBot )  st->print("+any");
  4093     else if( _offset < header_size ) st->print("+%d", _offset);
  4094     else {
  4095       BasicType basic_elem_type = elem()->basic_type();
  4096       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  4097       int elem_size = type2aelembytes(basic_elem_type);
  4098       st->print("[%d]", (_offset - array_base)/elem_size);
  4101   st->print(" *");
  4102   if (_instance_id == InstanceTop)
  4103     st->print(",iid=top");
  4104   else if (_instance_id != InstanceBot)
  4105     st->print(",iid=%d",_instance_id);
  4107   dump_inline_depth(st);
  4108   dump_speculative(st);
  4110 #endif
  4112 bool TypeAryPtr::empty(void) const {
  4113   if (_ary->empty())       return true;
  4114   return TypeOopPtr::empty();
  4117 //------------------------------add_offset-------------------------------------
  4118 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
  4119   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
  4122 const Type *TypeAryPtr::remove_speculative() const {
  4123   if (_speculative == NULL) {
  4124     return this;
  4126   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
  4127   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
  4130 const TypeOopPtr *TypeAryPtr::with_inline_depth(int depth) const {
  4131   if (!UseInlineDepthForSpeculativeTypes) {
  4132     return this;
  4134   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
  4137 //=============================================================================
  4139 //------------------------------hash-------------------------------------------
  4140 // Type-specific hashing function.
  4141 int TypeNarrowPtr::hash(void) const {
  4142   return _ptrtype->hash() + 7;
  4145 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
  4146   return _ptrtype->singleton();
  4149 bool TypeNarrowPtr::empty(void) const {
  4150   return _ptrtype->empty();
  4153 intptr_t TypeNarrowPtr::get_con() const {
  4154   return _ptrtype->get_con();
  4157 bool TypeNarrowPtr::eq( const Type *t ) const {
  4158   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
  4159   if (tc != NULL) {
  4160     if (_ptrtype->base() != tc->_ptrtype->base()) {
  4161       return false;
  4163     return tc->_ptrtype->eq(_ptrtype);
  4165   return false;
  4168 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
  4169   const TypePtr* odual = _ptrtype->dual()->is_ptr();
  4170   return make_same_narrowptr(odual);
  4174 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
  4175   if (isa_same_narrowptr(kills)) {
  4176     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
  4177     if (ft->empty())
  4178       return Type::TOP;           // Canonical empty value
  4179     if (ft->isa_ptr()) {
  4180       return make_hash_same_narrowptr(ft->isa_ptr());
  4182     return ft;
  4183   } else if (kills->isa_ptr()) {
  4184     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
  4185     if (ft->empty())
  4186       return Type::TOP;           // Canonical empty value
  4187     return ft;
  4188   } else {
  4189     return Type::TOP;
  4193 //------------------------------xmeet------------------------------------------
  4194 // Compute the MEET of two types.  It returns a new Type object.
  4195 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
  4196   // Perform a fast test for common case; meeting the same types together.
  4197   if( this == t ) return this;  // Meeting same type-rep?
  4199   if (t->base() == base()) {
  4200     const Type* result = _ptrtype->xmeet(t->make_ptr());
  4201     if (result->isa_ptr()) {
  4202       return make_hash_same_narrowptr(result->is_ptr());
  4204     return result;
  4207   // Current "this->_base" is NarrowKlass or NarrowOop
  4208   switch (t->base()) {          // switch on original type
  4210   case Int:                     // Mixing ints & oops happens when javac
  4211   case Long:                    // reuses local variables
  4212   case FloatTop:
  4213   case FloatCon:
  4214   case FloatBot:
  4215   case DoubleTop:
  4216   case DoubleCon:
  4217   case DoubleBot:
  4218   case AnyPtr:
  4219   case RawPtr:
  4220   case OopPtr:
  4221   case InstPtr:
  4222   case AryPtr:
  4223   case MetadataPtr:
  4224   case KlassPtr:
  4225   case NarrowOop:
  4226   case NarrowKlass:
  4228   case Bottom:                  // Ye Olde Default
  4229     return Type::BOTTOM;
  4230   case Top:
  4231     return this;
  4233   default:                      // All else is a mistake
  4234     typerr(t);
  4236   } // End of switch
  4238   return this;
  4241 #ifndef PRODUCT
  4242 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  4243   _ptrtype->dump2(d, depth, st);
  4245 #endif
  4247 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
  4248 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
  4251 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
  4252   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
  4256 #ifndef PRODUCT
  4257 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
  4258   st->print("narrowoop: ");
  4259   TypeNarrowPtr::dump2(d, depth, st);
  4261 #endif
  4263 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
  4265 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
  4266   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
  4269 #ifndef PRODUCT
  4270 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
  4271   st->print("narrowklass: ");
  4272   TypeNarrowPtr::dump2(d, depth, st);
  4274 #endif
  4277 //------------------------------eq---------------------------------------------
  4278 // Structural equality check for Type representations
  4279 bool TypeMetadataPtr::eq( const Type *t ) const {
  4280   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
  4281   ciMetadata* one = metadata();
  4282   ciMetadata* two = a->metadata();
  4283   if (one == NULL || two == NULL) {
  4284     return (one == two) && TypePtr::eq(t);
  4285   } else {
  4286     return one->equals(two) && TypePtr::eq(t);
  4290 //------------------------------hash-------------------------------------------
  4291 // Type-specific hashing function.
  4292 int TypeMetadataPtr::hash(void) const {
  4293   return
  4294     (metadata() ? metadata()->hash() : 0) +
  4295     TypePtr::hash();
  4298 //------------------------------singleton--------------------------------------
  4299 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4300 // constants
  4301 bool TypeMetadataPtr::singleton(void) const {
  4302   // detune optimizer to not generate constant metadta + constant offset as a constant!
  4303   // TopPTR, Null, AnyNull, Constant are all singletons
  4304   return (_offset == 0) && !below_centerline(_ptr);
  4307 //------------------------------add_offset-------------------------------------
  4308 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
  4309   return make( _ptr, _metadata, xadd_offset(offset));
  4312 //-----------------------------filter------------------------------------------
  4313 // Do not allow interface-vs.-noninterface joins to collapse to top.
  4314 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
  4315   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
  4316   if (ft == NULL || ft->empty())
  4317     return Type::TOP;           // Canonical empty value
  4318   return ft;
  4321  //------------------------------get_con----------------------------------------
  4322 intptr_t TypeMetadataPtr::get_con() const {
  4323   assert( _ptr == Null || _ptr == Constant, "" );
  4324   assert( _offset >= 0, "" );
  4326   if (_offset != 0) {
  4327     // After being ported to the compiler interface, the compiler no longer
  4328     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  4329     // to a handle at compile time.  This handle is embedded in the generated
  4330     // code and dereferenced at the time the nmethod is made.  Until that time,
  4331     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  4332     // have access to the addresses!).  This does not seem to currently happen,
  4333     // but this assertion here is to help prevent its occurence.
  4334     tty->print_cr("Found oop constant with non-zero offset");
  4335     ShouldNotReachHere();
  4338   return (intptr_t)metadata()->constant_encoding();
  4341 //------------------------------cast_to_ptr_type-------------------------------
  4342 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
  4343   if( ptr == _ptr ) return this;
  4344   return make(ptr, metadata(), _offset);
  4347 //------------------------------meet-------------------------------------------
  4348 // Compute the MEET of two types.  It returns a new Type object.
  4349 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
  4350   // Perform a fast test for common case; meeting the same types together.
  4351   if( this == t ) return this;  // Meeting same type-rep?
  4353   // Current "this->_base" is OopPtr
  4354   switch (t->base()) {          // switch on original type
  4356   case Int:                     // Mixing ints & oops happens when javac
  4357   case Long:                    // reuses local variables
  4358   case FloatTop:
  4359   case FloatCon:
  4360   case FloatBot:
  4361   case DoubleTop:
  4362   case DoubleCon:
  4363   case DoubleBot:
  4364   case NarrowOop:
  4365   case NarrowKlass:
  4366   case Bottom:                  // Ye Olde Default
  4367     return Type::BOTTOM;
  4368   case Top:
  4369     return this;
  4371   default:                      // All else is a mistake
  4372     typerr(t);
  4374   case AnyPtr: {
  4375     // Found an AnyPtr type vs self-OopPtr type
  4376     const TypePtr *tp = t->is_ptr();
  4377     int offset = meet_offset(tp->offset());
  4378     PTR ptr = meet_ptr(tp->ptr());
  4379     switch (tp->ptr()) {
  4380     case Null:
  4381       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  4382       // else fall through:
  4383     case TopPTR:
  4384     case AnyNull: {
  4385       return make(ptr, _metadata, offset);
  4387     case BotPTR:
  4388     case NotNull:
  4389       return TypePtr::make(AnyPtr, ptr, offset);
  4390     default: typerr(t);
  4394   case RawPtr:
  4395   case KlassPtr:
  4396   case OopPtr:
  4397   case InstPtr:
  4398   case AryPtr:
  4399     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  4401   case MetadataPtr: {
  4402     const TypeMetadataPtr *tp = t->is_metadataptr();
  4403     int offset = meet_offset(tp->offset());
  4404     PTR tptr = tp->ptr();
  4405     PTR ptr = meet_ptr(tptr);
  4406     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
  4407     if (tptr == TopPTR || _ptr == TopPTR ||
  4408         metadata()->equals(tp->metadata())) {
  4409       return make(ptr, md, offset);
  4411     // metadata is different
  4412     if( ptr == Constant ) {  // Cannot be equal constants, so...
  4413       if( tptr == Constant && _ptr != Constant)  return t;
  4414       if( _ptr == Constant && tptr != Constant)  return this;
  4415       ptr = NotNull;            // Fall down in lattice
  4417     return make(ptr, NULL, offset);
  4418     break;
  4420   } // End of switch
  4421   return this;                  // Return the double constant
  4425 //------------------------------xdual------------------------------------------
  4426 // Dual of a pure metadata pointer.
  4427 const Type *TypeMetadataPtr::xdual() const {
  4428   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
  4431 //------------------------------dump2------------------------------------------
  4432 #ifndef PRODUCT
  4433 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  4434   st->print("metadataptr:%s", ptr_msg[_ptr]);
  4435   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
  4436   switch( _offset ) {
  4437   case OffsetTop: st->print("+top"); break;
  4438   case OffsetBot: st->print("+any"); break;
  4439   case         0: break;
  4440   default:        st->print("+%d",_offset); break;
  4443 #endif
  4446 //=============================================================================
  4447 // Convenience common pre-built type.
  4448 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
  4450 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
  4451   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
  4454 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
  4455   return make(Constant, m, 0);
  4457 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
  4458   return make(Constant, m, 0);
  4461 //------------------------------make-------------------------------------------
  4462 // Create a meta data constant
  4463 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
  4464   assert(m == NULL || !m->is_klass(), "wrong type");
  4465   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
  4469 //=============================================================================
  4470 // Convenience common pre-built types.
  4472 // Not-null object klass or below
  4473 const TypeKlassPtr *TypeKlassPtr::OBJECT;
  4474 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
  4476 //------------------------------TypeKlassPtr-----------------------------------
  4477 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
  4478   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
  4481 //------------------------------make-------------------------------------------
  4482 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
  4483 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
  4484   assert( k != NULL, "Expect a non-NULL klass");
  4485   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
  4486   TypeKlassPtr *r =
  4487     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
  4489   return r;
  4492 //------------------------------eq---------------------------------------------
  4493 // Structural equality check for Type representations
  4494 bool TypeKlassPtr::eq( const Type *t ) const {
  4495   const TypeKlassPtr *p = t->is_klassptr();
  4496   return
  4497     klass()->equals(p->klass()) &&
  4498     TypePtr::eq(p);
  4501 //------------------------------hash-------------------------------------------
  4502 // Type-specific hashing function.
  4503 int TypeKlassPtr::hash(void) const {
  4504   return klass()->hash() + TypePtr::hash();
  4507 //------------------------------singleton--------------------------------------
  4508 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4509 // constants
  4510 bool TypeKlassPtr::singleton(void) const {
  4511   // detune optimizer to not generate constant klass + constant offset as a constant!
  4512   // TopPTR, Null, AnyNull, Constant are all singletons
  4513   return (_offset == 0) && !below_centerline(_ptr);
  4516 // Do not allow interface-vs.-noninterface joins to collapse to top.
  4517 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
  4518   // logic here mirrors the one from TypeOopPtr::filter. See comments
  4519   // there.
  4520   const Type* ft = join_helper(kills, include_speculative);
  4521   const TypeKlassPtr* ftkp = ft->isa_klassptr();
  4522   const TypeKlassPtr* ktkp = kills->isa_klassptr();
  4524   if (ft->empty()) {
  4525     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
  4526       return kills;             // Uplift to interface
  4528     return Type::TOP;           // Canonical empty value
  4531   // Interface klass type could be exact in opposite to interface type,
  4532   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
  4533   if (ftkp != NULL && ktkp != NULL &&
  4534       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
  4535       !ftkp->klass_is_exact() && // Keep exact interface klass
  4536       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
  4537     return ktkp->cast_to_ptr_type(ftkp->ptr());
  4540   return ft;
  4543 //----------------------compute_klass------------------------------------------
  4544 // Compute the defining klass for this class
  4545 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
  4546   // Compute _klass based on element type.
  4547   ciKlass* k_ary = NULL;
  4548   const TypeInstPtr *tinst;
  4549   const TypeAryPtr *tary;
  4550   const Type* el = elem();
  4551   if (el->isa_narrowoop()) {
  4552     el = el->make_ptr();
  4555   // Get element klass
  4556   if ((tinst = el->isa_instptr()) != NULL) {
  4557     // Compute array klass from element klass
  4558     k_ary = ciObjArrayKlass::make(tinst->klass());
  4559   } else if ((tary = el->isa_aryptr()) != NULL) {
  4560     // Compute array klass from element klass
  4561     ciKlass* k_elem = tary->klass();
  4562     // If element type is something like bottom[], k_elem will be null.
  4563     if (k_elem != NULL)
  4564       k_ary = ciObjArrayKlass::make(k_elem);
  4565   } else if ((el->base() == Type::Top) ||
  4566              (el->base() == Type::Bottom)) {
  4567     // element type of Bottom occurs from meet of basic type
  4568     // and object; Top occurs when doing join on Bottom.
  4569     // Leave k_ary at NULL.
  4570   } else {
  4571     // Cannot compute array klass directly from basic type,
  4572     // since subtypes of TypeInt all have basic type T_INT.
  4573 #ifdef ASSERT
  4574     if (verify && el->isa_int()) {
  4575       // Check simple cases when verifying klass.
  4576       BasicType bt = T_ILLEGAL;
  4577       if (el == TypeInt::BYTE) {
  4578         bt = T_BYTE;
  4579       } else if (el == TypeInt::SHORT) {
  4580         bt = T_SHORT;
  4581       } else if (el == TypeInt::CHAR) {
  4582         bt = T_CHAR;
  4583       } else if (el == TypeInt::INT) {
  4584         bt = T_INT;
  4585       } else {
  4586         return _klass; // just return specified klass
  4588       return ciTypeArrayKlass::make(bt);
  4590 #endif
  4591     assert(!el->isa_int(),
  4592            "integral arrays must be pre-equipped with a class");
  4593     // Compute array klass directly from basic type
  4594     k_ary = ciTypeArrayKlass::make(el->basic_type());
  4596   return k_ary;
  4599 //------------------------------klass------------------------------------------
  4600 // Return the defining klass for this class
  4601 ciKlass* TypeAryPtr::klass() const {
  4602   if( _klass ) return _klass;   // Return cached value, if possible
  4604   // Oops, need to compute _klass and cache it
  4605   ciKlass* k_ary = compute_klass();
  4607   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
  4608     // The _klass field acts as a cache of the underlying
  4609     // ciKlass for this array type.  In order to set the field,
  4610     // we need to cast away const-ness.
  4611     //
  4612     // IMPORTANT NOTE: we *never* set the _klass field for the
  4613     // type TypeAryPtr::OOPS.  This Type is shared between all
  4614     // active compilations.  However, the ciKlass which represents
  4615     // this Type is *not* shared between compilations, so caching
  4616     // this value would result in fetching a dangling pointer.
  4617     //
  4618     // Recomputing the underlying ciKlass for each request is
  4619     // a bit less efficient than caching, but calls to
  4620     // TypeAryPtr::OOPS->klass() are not common enough to matter.
  4621     ((TypeAryPtr*)this)->_klass = k_ary;
  4622     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
  4623         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
  4624       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
  4627   return k_ary;
  4631 //------------------------------add_offset-------------------------------------
  4632 // Access internals of klass object
  4633 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
  4634   return make( _ptr, klass(), xadd_offset(offset) );
  4637 //------------------------------cast_to_ptr_type-------------------------------
  4638 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
  4639   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
  4640   if( ptr == _ptr ) return this;
  4641   return make(ptr, _klass, _offset);
  4645 //-----------------------------cast_to_exactness-------------------------------
  4646 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
  4647   if( klass_is_exact == _klass_is_exact ) return this;
  4648   if (!UseExactTypes)  return this;
  4649   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
  4653 //-----------------------------as_instance_type--------------------------------
  4654 // Corresponding type for an instance of the given class.
  4655 // It will be NotNull, and exact if and only if the klass type is exact.
  4656 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
  4657   ciKlass* k = klass();
  4658   bool    xk = klass_is_exact();
  4659   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
  4660   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
  4661   guarantee(toop != NULL, "need type for given klass");
  4662   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  4663   return toop->cast_to_exactness(xk)->is_oopptr();
  4667 //------------------------------xmeet------------------------------------------
  4668 // Compute the MEET of two types, return a new Type object.
  4669 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
  4670   // Perform a fast test for common case; meeting the same types together.
  4671   if( this == t ) return this;  // Meeting same type-rep?
  4673   // Current "this->_base" is Pointer
  4674   switch (t->base()) {          // switch on original type
  4676   case Int:                     // Mixing ints & oops happens when javac
  4677   case Long:                    // reuses local variables
  4678   case FloatTop:
  4679   case FloatCon:
  4680   case FloatBot:
  4681   case DoubleTop:
  4682   case DoubleCon:
  4683   case DoubleBot:
  4684   case NarrowOop:
  4685   case NarrowKlass:
  4686   case Bottom:                  // Ye Olde Default
  4687     return Type::BOTTOM;
  4688   case Top:
  4689     return this;
  4691   default:                      // All else is a mistake
  4692     typerr(t);
  4694   case AnyPtr: {                // Meeting to AnyPtrs
  4695     // Found an AnyPtr type vs self-KlassPtr type
  4696     const TypePtr *tp = t->is_ptr();
  4697     int offset = meet_offset(tp->offset());
  4698     PTR ptr = meet_ptr(tp->ptr());
  4699     switch (tp->ptr()) {
  4700     case TopPTR:
  4701       return this;
  4702     case Null:
  4703       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  4704     case AnyNull:
  4705       return make( ptr, klass(), offset );
  4706     case BotPTR:
  4707     case NotNull:
  4708       return TypePtr::make(AnyPtr, ptr, offset);
  4709     default: typerr(t);
  4713   case RawPtr:
  4714   case MetadataPtr:
  4715   case OopPtr:
  4716   case AryPtr:                  // Meet with AryPtr
  4717   case InstPtr:                 // Meet with InstPtr
  4718     return TypePtr::BOTTOM;
  4720   //
  4721   //             A-top         }
  4722   //           /   |   \       }  Tops
  4723   //       B-top A-any C-top   }
  4724   //          | /  |  \ |      }  Any-nulls
  4725   //       B-any   |   C-any   }
  4726   //          |    |    |
  4727   //       B-con A-con C-con   } constants; not comparable across classes
  4728   //          |    |    |
  4729   //       B-not   |   C-not   }
  4730   //          | \  |  / |      }  not-nulls
  4731   //       B-bot A-not C-bot   }
  4732   //           \   |   /       }  Bottoms
  4733   //             A-bot         }
  4734   //
  4736   case KlassPtr: {  // Meet two KlassPtr types
  4737     const TypeKlassPtr *tkls = t->is_klassptr();
  4738     int  off     = meet_offset(tkls->offset());
  4739     PTR  ptr     = meet_ptr(tkls->ptr());
  4741     // Check for easy case; klasses are equal (and perhaps not loaded!)
  4742     // If we have constants, then we created oops so classes are loaded
  4743     // and we can handle the constants further down.  This case handles
  4744     // not-loaded classes
  4745     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
  4746       return make( ptr, klass(), off );
  4749     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  4750     ciKlass* tkls_klass = tkls->klass();
  4751     ciKlass* this_klass = this->klass();
  4752     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
  4753     assert( this_klass->is_loaded(), "This class should have been loaded.");
  4755     // If 'this' type is above the centerline and is a superclass of the
  4756     // other, we can treat 'this' as having the same type as the other.
  4757     if ((above_centerline(this->ptr())) &&
  4758         tkls_klass->is_subtype_of(this_klass)) {
  4759       this_klass = tkls_klass;
  4761     // If 'tinst' type is above the centerline and is a superclass of the
  4762     // other, we can treat 'tinst' as having the same type as the other.
  4763     if ((above_centerline(tkls->ptr())) &&
  4764         this_klass->is_subtype_of(tkls_klass)) {
  4765       tkls_klass = this_klass;
  4768     // Check for classes now being equal
  4769     if (tkls_klass->equals(this_klass)) {
  4770       // If the klasses are equal, the constants may still differ.  Fall to
  4771       // NotNull if they do (neither constant is NULL; that is a special case
  4772       // handled elsewhere).
  4773       if( ptr == Constant ) {
  4774         if (this->_ptr == Constant && tkls->_ptr == Constant &&
  4775             this->klass()->equals(tkls->klass()));
  4776         else if (above_centerline(this->ptr()));
  4777         else if (above_centerline(tkls->ptr()));
  4778         else
  4779           ptr = NotNull;
  4781       return make( ptr, this_klass, off );
  4782     } // Else classes are not equal
  4784     // Since klasses are different, we require the LCA in the Java
  4785     // class hierarchy - which means we have to fall to at least NotNull.
  4786     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  4787       ptr = NotNull;
  4788     // Now we find the LCA of Java classes
  4789     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
  4790     return   make( ptr, k, off );
  4791   } // End of case KlassPtr
  4793   } // End of switch
  4794   return this;                  // Return the double constant
  4797 //------------------------------xdual------------------------------------------
  4798 // Dual: compute field-by-field dual
  4799 const Type    *TypeKlassPtr::xdual() const {
  4800   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
  4803 //------------------------------get_con----------------------------------------
  4804 intptr_t TypeKlassPtr::get_con() const {
  4805   assert( _ptr == Null || _ptr == Constant, "" );
  4806   assert( _offset >= 0, "" );
  4808   if (_offset != 0) {
  4809     // After being ported to the compiler interface, the compiler no longer
  4810     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  4811     // to a handle at compile time.  This handle is embedded in the generated
  4812     // code and dereferenced at the time the nmethod is made.  Until that time,
  4813     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  4814     // have access to the addresses!).  This does not seem to currently happen,
  4815     // but this assertion here is to help prevent its occurence.
  4816     tty->print_cr("Found oop constant with non-zero offset");
  4817     ShouldNotReachHere();
  4820   return (intptr_t)klass()->constant_encoding();
  4822 //------------------------------dump2------------------------------------------
  4823 // Dump Klass Type
  4824 #ifndef PRODUCT
  4825 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  4826   switch( _ptr ) {
  4827   case Constant:
  4828     st->print("precise ");
  4829   case NotNull:
  4831       const char *name = klass()->name()->as_utf8();
  4832       if( name ) {
  4833         st->print("klass %s: " INTPTR_FORMAT, name, klass());
  4834       } else {
  4835         ShouldNotReachHere();
  4838   case BotPTR:
  4839     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
  4840   case TopPTR:
  4841   case AnyNull:
  4842     st->print(":%s", ptr_msg[_ptr]);
  4843     if( _klass_is_exact ) st->print(":exact");
  4844     break;
  4847   if( _offset ) {               // Dump offset, if any
  4848     if( _offset == OffsetBot )      { st->print("+any"); }
  4849     else if( _offset == OffsetTop ) { st->print("+unknown"); }
  4850     else                            { st->print("+%d", _offset); }
  4853   st->print(" *");
  4855 #endif
  4859 //=============================================================================
  4860 // Convenience common pre-built types.
  4862 //------------------------------make-------------------------------------------
  4863 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
  4864   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
  4867 //------------------------------make-------------------------------------------
  4868 const TypeFunc *TypeFunc::make(ciMethod* method) {
  4869   Compile* C = Compile::current();
  4870   const TypeFunc* tf = C->last_tf(method); // check cache
  4871   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
  4872   const TypeTuple *domain;
  4873   if (method->is_static()) {
  4874     domain = TypeTuple::make_domain(NULL, method->signature());
  4875   } else {
  4876     domain = TypeTuple::make_domain(method->holder(), method->signature());
  4878   const TypeTuple *range  = TypeTuple::make_range(method->signature());
  4879   tf = TypeFunc::make(domain, range);
  4880   C->set_last_tf(method, tf);  // fill cache
  4881   return tf;
  4884 //------------------------------meet-------------------------------------------
  4885 // Compute the MEET of two types.  It returns a new Type object.
  4886 const Type *TypeFunc::xmeet( const Type *t ) const {
  4887   // Perform a fast test for common case; meeting the same types together.
  4888   if( this == t ) return this;  // Meeting same type-rep?
  4890   // Current "this->_base" is Func
  4891   switch (t->base()) {          // switch on original type
  4893   case Bottom:                  // Ye Olde Default
  4894     return t;
  4896   default:                      // All else is a mistake
  4897     typerr(t);
  4899   case Top:
  4900     break;
  4902   return this;                  // Return the double constant
  4905 //------------------------------xdual------------------------------------------
  4906 // Dual: compute field-by-field dual
  4907 const Type *TypeFunc::xdual() const {
  4908   return this;
  4911 //------------------------------eq---------------------------------------------
  4912 // Structural equality check for Type representations
  4913 bool TypeFunc::eq( const Type *t ) const {
  4914   const TypeFunc *a = (const TypeFunc*)t;
  4915   return _domain == a->_domain &&
  4916     _range == a->_range;
  4919 //------------------------------hash-------------------------------------------
  4920 // Type-specific hashing function.
  4921 int TypeFunc::hash(void) const {
  4922   return (intptr_t)_domain + (intptr_t)_range;
  4925 //------------------------------dump2------------------------------------------
  4926 // Dump Function Type
  4927 #ifndef PRODUCT
  4928 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
  4929   if( _range->_cnt <= Parms )
  4930     st->print("void");
  4931   else {
  4932     uint i;
  4933     for (i = Parms; i < _range->_cnt-1; i++) {
  4934       _range->field_at(i)->dump2(d,depth,st);
  4935       st->print("/");
  4937     _range->field_at(i)->dump2(d,depth,st);
  4939   st->print(" ");
  4940   st->print("( ");
  4941   if( !depth || d[this] ) {     // Check for recursive dump
  4942     st->print("...)");
  4943     return;
  4945   d.Insert((void*)this,(void*)this);    // Stop recursion
  4946   if (Parms < _domain->_cnt)
  4947     _domain->field_at(Parms)->dump2(d,depth-1,st);
  4948   for (uint i = Parms+1; i < _domain->_cnt; i++) {
  4949     st->print(", ");
  4950     _domain->field_at(i)->dump2(d,depth-1,st);
  4952   st->print(" )");
  4954 #endif
  4956 //------------------------------singleton--------------------------------------
  4957 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4958 // constants (Ldi nodes).  Singletons are integer, float or double constants
  4959 // or a single symbol.
  4960 bool TypeFunc::singleton(void) const {
  4961   return false;                 // Never a singleton
  4964 bool TypeFunc::empty(void) const {
  4965   return false;                 // Never empty
  4969 BasicType TypeFunc::return_type() const{
  4970   if (range()->cnt() == TypeFunc::Parms) {
  4971     return T_VOID;
  4973   return range()->field_at(TypeFunc::Parms)->basic_type();

mercurial