src/share/vm/opto/type.cpp

Fri, 24 Jan 2014 09:31:53 +0100

author
roland
date
Fri, 24 Jan 2014 09:31:53 +0100
changeset 6313
de95063c0e34
parent 6214
5231c2210388
child 6375
085b304a1cc5
child 6507
752ba2e5f6d0
permissions
-rw-r--r--

8027422: assert(_gvn.type(obj)->higher_equal(tjp)) failed: cast_up is no longer needed
Summary: type methods shouldn't always operate on speculative part
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "ci/ciTypeFlow.hpp"
    28 #include "classfile/symbolTable.hpp"
    29 #include "classfile/systemDictionary.hpp"
    30 #include "compiler/compileLog.hpp"
    31 #include "libadt/dict.hpp"
    32 #include "memory/gcLocker.hpp"
    33 #include "memory/oopFactory.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "oops/instanceKlass.hpp"
    36 #include "oops/instanceMirrorKlass.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "oops/typeArrayKlass.hpp"
    39 #include "opto/matcher.hpp"
    40 #include "opto/node.hpp"
    41 #include "opto/opcodes.hpp"
    42 #include "opto/type.hpp"
    44 // Portions of code courtesy of Clifford Click
    46 // Optimization - Graph Style
    48 // Dictionary of types shared among compilations.
    49 Dict* Type::_shared_type_dict = NULL;
    51 // Array which maps compiler types to Basic Types
    52 Type::TypeInfo Type::_type_info[Type::lastype] = {
    53   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
    54   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
    55   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
    56   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
    57   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
    58   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
    59   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
    60   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
    61   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
    62   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
    64 #ifndef SPARC
    65   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
    66   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
    67   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
    68   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
    69 #else
    70   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
    71   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
    72   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
    73   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
    74 #endif // IA32 || AMD64
    75   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
    76   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
    77   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
    78   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
    79   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
    80   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
    81   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
    82   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
    83   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
    84   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
    85   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
    86   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
    87   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
    88   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
    89   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
    90   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
    91   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
    92   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
    93 };
    95 // Map ideal registers (machine types) to ideal types
    96 const Type *Type::mreg2type[_last_machine_leaf];
    98 // Map basic types to canonical Type* pointers.
    99 const Type* Type::     _const_basic_type[T_CONFLICT+1];
   101 // Map basic types to constant-zero Types.
   102 const Type* Type::            _zero_type[T_CONFLICT+1];
   104 // Map basic types to array-body alias types.
   105 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
   107 //=============================================================================
   108 // Convenience common pre-built types.
   109 const Type *Type::ABIO;         // State-of-machine only
   110 const Type *Type::BOTTOM;       // All values
   111 const Type *Type::CONTROL;      // Control only
   112 const Type *Type::DOUBLE;       // All doubles
   113 const Type *Type::FLOAT;        // All floats
   114 const Type *Type::HALF;         // Placeholder half of doublewide type
   115 const Type *Type::MEMORY;       // Abstract store only
   116 const Type *Type::RETURN_ADDRESS;
   117 const Type *Type::TOP;          // No values in set
   119 //------------------------------get_const_type---------------------------
   120 const Type* Type::get_const_type(ciType* type) {
   121   if (type == NULL) {
   122     return NULL;
   123   } else if (type->is_primitive_type()) {
   124     return get_const_basic_type(type->basic_type());
   125   } else {
   126     return TypeOopPtr::make_from_klass(type->as_klass());
   127   }
   128 }
   130 //---------------------------array_element_basic_type---------------------------------
   131 // Mapping to the array element's basic type.
   132 BasicType Type::array_element_basic_type() const {
   133   BasicType bt = basic_type();
   134   if (bt == T_INT) {
   135     if (this == TypeInt::INT)   return T_INT;
   136     if (this == TypeInt::CHAR)  return T_CHAR;
   137     if (this == TypeInt::BYTE)  return T_BYTE;
   138     if (this == TypeInt::BOOL)  return T_BOOLEAN;
   139     if (this == TypeInt::SHORT) return T_SHORT;
   140     return T_VOID;
   141   }
   142   return bt;
   143 }
   145 //---------------------------get_typeflow_type---------------------------------
   146 // Import a type produced by ciTypeFlow.
   147 const Type* Type::get_typeflow_type(ciType* type) {
   148   switch (type->basic_type()) {
   150   case ciTypeFlow::StateVector::T_BOTTOM:
   151     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
   152     return Type::BOTTOM;
   154   case ciTypeFlow::StateVector::T_TOP:
   155     assert(type == ciTypeFlow::StateVector::top_type(), "");
   156     return Type::TOP;
   158   case ciTypeFlow::StateVector::T_NULL:
   159     assert(type == ciTypeFlow::StateVector::null_type(), "");
   160     return TypePtr::NULL_PTR;
   162   case ciTypeFlow::StateVector::T_LONG2:
   163     // The ciTypeFlow pass pushes a long, then the half.
   164     // We do the same.
   165     assert(type == ciTypeFlow::StateVector::long2_type(), "");
   166     return TypeInt::TOP;
   168   case ciTypeFlow::StateVector::T_DOUBLE2:
   169     // The ciTypeFlow pass pushes double, then the half.
   170     // Our convention is the same.
   171     assert(type == ciTypeFlow::StateVector::double2_type(), "");
   172     return Type::TOP;
   174   case T_ADDRESS:
   175     assert(type->is_return_address(), "");
   176     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
   178   default:
   179     // make sure we did not mix up the cases:
   180     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
   181     assert(type != ciTypeFlow::StateVector::top_type(), "");
   182     assert(type != ciTypeFlow::StateVector::null_type(), "");
   183     assert(type != ciTypeFlow::StateVector::long2_type(), "");
   184     assert(type != ciTypeFlow::StateVector::double2_type(), "");
   185     assert(!type->is_return_address(), "");
   187     return Type::get_const_type(type);
   188   }
   189 }
   192 //-----------------------make_from_constant------------------------------------
   193 const Type* Type::make_from_constant(ciConstant constant,
   194                                      bool require_constant, bool is_autobox_cache) {
   195   switch (constant.basic_type()) {
   196   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
   197   case T_CHAR:     return TypeInt::make(constant.as_char());
   198   case T_BYTE:     return TypeInt::make(constant.as_byte());
   199   case T_SHORT:    return TypeInt::make(constant.as_short());
   200   case T_INT:      return TypeInt::make(constant.as_int());
   201   case T_LONG:     return TypeLong::make(constant.as_long());
   202   case T_FLOAT:    return TypeF::make(constant.as_float());
   203   case T_DOUBLE:   return TypeD::make(constant.as_double());
   204   case T_ARRAY:
   205   case T_OBJECT:
   206     {
   207       // cases:
   208       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
   209       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
   210       // An oop is not scavengable if it is in the perm gen.
   211       ciObject* oop_constant = constant.as_object();
   212       if (oop_constant->is_null_object()) {
   213         return Type::get_zero_type(T_OBJECT);
   214       } else if (require_constant || oop_constant->should_be_constant()) {
   215         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
   216       }
   217     }
   218   }
   219   // Fall through to failure
   220   return NULL;
   221 }
   224 //------------------------------make-------------------------------------------
   225 // Create a simple Type, with default empty symbol sets.  Then hashcons it
   226 // and look for an existing copy in the type dictionary.
   227 const Type *Type::make( enum TYPES t ) {
   228   return (new Type(t))->hashcons();
   229 }
   231 //------------------------------cmp--------------------------------------------
   232 int Type::cmp( const Type *const t1, const Type *const t2 ) {
   233   if( t1->_base != t2->_base )
   234     return 1;                   // Missed badly
   235   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
   236   return !t1->eq(t2);           // Return ZERO if equal
   237 }
   239 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
   240   if (!include_speculative) {
   241     return remove_speculative();
   242   }
   243   return this;
   244 }
   246 //------------------------------hash-------------------------------------------
   247 int Type::uhash( const Type *const t ) {
   248   return t->hash();
   249 }
   251 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
   253 //--------------------------Initialize_shared----------------------------------
   254 void Type::Initialize_shared(Compile* current) {
   255   // This method does not need to be locked because the first system
   256   // compilations (stub compilations) occur serially.  If they are
   257   // changed to proceed in parallel, then this section will need
   258   // locking.
   260   Arena* save = current->type_arena();
   261   Arena* shared_type_arena = new (mtCompiler)Arena();
   263   current->set_type_arena(shared_type_arena);
   264   _shared_type_dict =
   265     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
   266                                   shared_type_arena, 128 );
   267   current->set_type_dict(_shared_type_dict);
   269   // Make shared pre-built types.
   270   CONTROL = make(Control);      // Control only
   271   TOP     = make(Top);          // No values in set
   272   MEMORY  = make(Memory);       // Abstract store only
   273   ABIO    = make(Abio);         // State-of-machine only
   274   RETURN_ADDRESS=make(Return_Address);
   275   FLOAT   = make(FloatBot);     // All floats
   276   DOUBLE  = make(DoubleBot);    // All doubles
   277   BOTTOM  = make(Bottom);       // Everything
   278   HALF    = make(Half);         // Placeholder half of doublewide type
   280   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
   281   TypeF::ONE  = TypeF::make(1.0); // Float 1
   283   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
   284   TypeD::ONE  = TypeD::make(1.0); // Double 1
   286   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
   287   TypeInt::ZERO    = TypeInt::make( 0);  //  0
   288   TypeInt::ONE     = TypeInt::make( 1);  //  1
   289   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
   290   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
   291   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
   292   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
   293   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
   294   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
   295   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
   296   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
   297   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
   298   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
   299   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
   300   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
   301   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
   302   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
   303   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
   304   // CmpL is overloaded both as the bytecode computation returning
   305   // a trinary (-1,0,+1) integer result AND as an efficient long
   306   // compare returning optimizer ideal-type flags.
   307   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
   308   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
   309   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
   310   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
   311   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
   313   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
   314   TypeLong::ZERO    = TypeLong::make( 0);        //  0
   315   TypeLong::ONE     = TypeLong::make( 1);        //  1
   316   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
   317   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
   318   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
   319   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
   321   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   322   fboth[0] = Type::CONTROL;
   323   fboth[1] = Type::CONTROL;
   324   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
   326   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   327   ffalse[0] = Type::CONTROL;
   328   ffalse[1] = Type::TOP;
   329   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
   331   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   332   fneither[0] = Type::TOP;
   333   fneither[1] = Type::TOP;
   334   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
   336   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   337   ftrue[0] = Type::TOP;
   338   ftrue[1] = Type::CONTROL;
   339   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
   341   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   342   floop[0] = Type::CONTROL;
   343   floop[1] = TypeInt::INT;
   344   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
   346   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
   347   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
   348   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
   350   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
   351   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
   353   const Type **fmembar = TypeTuple::fields(0);
   354   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
   356   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   357   fsc[0] = TypeInt::CC;
   358   fsc[1] = Type::MEMORY;
   359   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
   361   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
   362   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
   363   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
   364   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   365                                            false, 0, oopDesc::mark_offset_in_bytes());
   366   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   367                                            false, 0, oopDesc::klass_offset_in_bytes());
   368   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
   370   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
   372   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
   373   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
   375   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
   377   mreg2type[Op_Node] = Type::BOTTOM;
   378   mreg2type[Op_Set ] = 0;
   379   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
   380   mreg2type[Op_RegI] = TypeInt::INT;
   381   mreg2type[Op_RegP] = TypePtr::BOTTOM;
   382   mreg2type[Op_RegF] = Type::FLOAT;
   383   mreg2type[Op_RegD] = Type::DOUBLE;
   384   mreg2type[Op_RegL] = TypeLong::LONG;
   385   mreg2type[Op_RegFlags] = TypeInt::CC;
   387   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
   389   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   391 #ifdef _LP64
   392   if (UseCompressedOops) {
   393     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
   394     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
   395   } else
   396 #endif
   397   {
   398     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
   399     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   400   }
   401   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
   402   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
   403   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
   404   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
   405   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
   406   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
   407   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
   409   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
   410   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
   411   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
   412   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
   413   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
   414   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
   415   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
   416   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
   417   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
   418   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
   419   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
   420   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
   422   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
   423   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
   425   const Type **fi2c = TypeTuple::fields(2);
   426   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
   427   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
   428   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
   430   const Type **intpair = TypeTuple::fields(2);
   431   intpair[0] = TypeInt::INT;
   432   intpair[1] = TypeInt::INT;
   433   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
   435   const Type **longpair = TypeTuple::fields(2);
   436   longpair[0] = TypeLong::LONG;
   437   longpair[1] = TypeLong::LONG;
   438   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
   440   const Type **intccpair = TypeTuple::fields(2);
   441   intccpair[0] = TypeInt::INT;
   442   intccpair[1] = TypeInt::CC;
   443   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
   445   const Type **longccpair = TypeTuple::fields(2);
   446   longccpair[0] = TypeLong::LONG;
   447   longccpair[1] = TypeInt::CC;
   448   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
   450   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
   451   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
   452   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
   453   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
   454   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
   455   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
   456   _const_basic_type[T_INT]         = TypeInt::INT;
   457   _const_basic_type[T_LONG]        = TypeLong::LONG;
   458   _const_basic_type[T_FLOAT]       = Type::FLOAT;
   459   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
   460   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
   461   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
   462   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
   463   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
   464   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
   466   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
   467   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
   468   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
   469   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
   470   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
   471   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
   472   _zero_type[T_INT]         = TypeInt::ZERO;
   473   _zero_type[T_LONG]        = TypeLong::ZERO;
   474   _zero_type[T_FLOAT]       = TypeF::ZERO;
   475   _zero_type[T_DOUBLE]      = TypeD::ZERO;
   476   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
   477   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
   478   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
   479   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
   481   // get_zero_type() should not happen for T_CONFLICT
   482   _zero_type[T_CONFLICT]= NULL;
   484   // Vector predefined types, it needs initialized _const_basic_type[].
   485   if (Matcher::vector_size_supported(T_BYTE,4)) {
   486     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
   487   }
   488   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   489     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
   490   }
   491   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   492     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
   493   }
   494   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   495     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
   496   }
   497   mreg2type[Op_VecS] = TypeVect::VECTS;
   498   mreg2type[Op_VecD] = TypeVect::VECTD;
   499   mreg2type[Op_VecX] = TypeVect::VECTX;
   500   mreg2type[Op_VecY] = TypeVect::VECTY;
   502   // Restore working type arena.
   503   current->set_type_arena(save);
   504   current->set_type_dict(NULL);
   505 }
   507 //------------------------------Initialize-------------------------------------
   508 void Type::Initialize(Compile* current) {
   509   assert(current->type_arena() != NULL, "must have created type arena");
   511   if (_shared_type_dict == NULL) {
   512     Initialize_shared(current);
   513   }
   515   Arena* type_arena = current->type_arena();
   517   // Create the hash-cons'ing dictionary with top-level storage allocation
   518   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
   519   current->set_type_dict(tdic);
   521   // Transfer the shared types.
   522   DictI i(_shared_type_dict);
   523   for( ; i.test(); ++i ) {
   524     Type* t = (Type*)i._value;
   525     tdic->Insert(t,t);  // New Type, insert into Type table
   526   }
   527 }
   529 //------------------------------hashcons---------------------------------------
   530 // Do the hash-cons trick.  If the Type already exists in the type table,
   531 // delete the current Type and return the existing Type.  Otherwise stick the
   532 // current Type in the Type table.
   533 const Type *Type::hashcons(void) {
   534   debug_only(base());           // Check the assertion in Type::base().
   535   // Look up the Type in the Type dictionary
   536   Dict *tdic = type_dict();
   537   Type* old = (Type*)(tdic->Insert(this, this, false));
   538   if( old ) {                   // Pre-existing Type?
   539     if( old != this )           // Yes, this guy is not the pre-existing?
   540       delete this;              // Yes, Nuke this guy
   541     assert( old->_dual, "" );
   542     return old;                 // Return pre-existing
   543   }
   545   // Every type has a dual (to make my lattice symmetric).
   546   // Since we just discovered a new Type, compute its dual right now.
   547   assert( !_dual, "" );         // No dual yet
   548   _dual = xdual();              // Compute the dual
   549   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
   550     _dual = this;
   551     return this;
   552   }
   553   assert( !_dual->_dual, "" );  // No reverse dual yet
   554   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
   555   // New Type, insert into Type table
   556   tdic->Insert((void*)_dual,(void*)_dual);
   557   ((Type*)_dual)->_dual = this; // Finish up being symmetric
   558 #ifdef ASSERT
   559   Type *dual_dual = (Type*)_dual->xdual();
   560   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
   561   delete dual_dual;
   562 #endif
   563   return this;                  // Return new Type
   564 }
   566 //------------------------------eq---------------------------------------------
   567 // Structural equality check for Type representations
   568 bool Type::eq( const Type * ) const {
   569   return true;                  // Nothing else can go wrong
   570 }
   572 //------------------------------hash-------------------------------------------
   573 // Type-specific hashing function.
   574 int Type::hash(void) const {
   575   return _base;
   576 }
   578 //------------------------------is_finite--------------------------------------
   579 // Has a finite value
   580 bool Type::is_finite() const {
   581   return false;
   582 }
   584 //------------------------------is_nan-----------------------------------------
   585 // Is not a number (NaN)
   586 bool Type::is_nan()    const {
   587   return false;
   588 }
   590 //----------------------interface_vs_oop---------------------------------------
   591 #ifdef ASSERT
   592 bool Type::interface_vs_oop_helper(const Type *t) const {
   593   bool result = false;
   595   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
   596   const TypePtr*    t_ptr =    t->make_ptr();
   597   if( this_ptr == NULL || t_ptr == NULL )
   598     return result;
   600   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
   601   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
   602   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
   603     bool this_interface = this_inst->klass()->is_interface();
   604     bool    t_interface =    t_inst->klass()->is_interface();
   605     result = this_interface ^ t_interface;
   606   }
   608   return result;
   609 }
   611 bool Type::interface_vs_oop(const Type *t) const {
   612   if (interface_vs_oop_helper(t)) {
   613     return true;
   614   }
   615   // Now check the speculative parts as well
   616   const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
   617   const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
   618   if (this_spec != NULL && t_spec != NULL) {
   619     if (this_spec->interface_vs_oop_helper(t_spec)) {
   620       return true;
   621     }
   622     return false;
   623   }
   624   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
   625     return true;
   626   }
   627   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
   628     return true;
   629   }
   630   return false;
   631 }
   633 #endif
   635 //------------------------------meet-------------------------------------------
   636 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
   637 // commutative and the lattice is symmetric.
   638 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
   639   if (isa_narrowoop() && t->isa_narrowoop()) {
   640     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
   641     return result->make_narrowoop();
   642   }
   643   if (isa_narrowklass() && t->isa_narrowklass()) {
   644     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
   645     return result->make_narrowklass();
   646   }
   648   const Type *this_t = maybe_remove_speculative(include_speculative);
   649   t = t->maybe_remove_speculative(include_speculative);
   651   const Type *mt = this_t->xmeet(t);
   652   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
   653   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
   654 #ifdef ASSERT
   655   assert(mt == t->xmeet(this_t), "meet not commutative");
   656   const Type* dual_join = mt->_dual;
   657   const Type *t2t    = dual_join->xmeet(t->_dual);
   658   const Type *t2this = dual_join->xmeet(this_t->_dual);
   660   // Interface meet Oop is Not Symmetric:
   661   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
   662   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
   664   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
   665     tty->print_cr("=== Meet Not Symmetric ===");
   666     tty->print("t   =                   ");              t->dump(); tty->cr();
   667     tty->print("this=                   ");         this_t->dump(); tty->cr();
   668     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
   670     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
   671     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
   672     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
   674     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
   675     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
   677     fatal("meet not symmetric" );
   678   }
   679 #endif
   680   return mt;
   681 }
   683 //------------------------------xmeet------------------------------------------
   684 // Compute the MEET of two types.  It returns a new Type object.
   685 const Type *Type::xmeet( const Type *t ) const {
   686   // Perform a fast test for common case; meeting the same types together.
   687   if( this == t ) return this;  // Meeting same type-rep?
   689   // Meeting TOP with anything?
   690   if( _base == Top ) return t;
   692   // Meeting BOTTOM with anything?
   693   if( _base == Bottom ) return BOTTOM;
   695   // Current "this->_base" is one of: Bad, Multi, Control, Top,
   696   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
   697   switch (t->base()) {  // Switch on original type
   699   // Cut in half the number of cases I must handle.  Only need cases for when
   700   // the given enum "t->type" is less than or equal to the local enum "type".
   701   case FloatCon:
   702   case DoubleCon:
   703   case Int:
   704   case Long:
   705     return t->xmeet(this);
   707   case OopPtr:
   708     return t->xmeet(this);
   710   case InstPtr:
   711     return t->xmeet(this);
   713   case MetadataPtr:
   714   case KlassPtr:
   715     return t->xmeet(this);
   717   case AryPtr:
   718     return t->xmeet(this);
   720   case NarrowOop:
   721     return t->xmeet(this);
   723   case NarrowKlass:
   724     return t->xmeet(this);
   726   case Bad:                     // Type check
   727   default:                      // Bogus type not in lattice
   728     typerr(t);
   729     return Type::BOTTOM;
   731   case Bottom:                  // Ye Olde Default
   732     return t;
   734   case FloatTop:
   735     if( _base == FloatTop ) return this;
   736   case FloatBot:                // Float
   737     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
   738     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
   739     typerr(t);
   740     return Type::BOTTOM;
   742   case DoubleTop:
   743     if( _base == DoubleTop ) return this;
   744   case DoubleBot:               // Double
   745     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
   746     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
   747     typerr(t);
   748     return Type::BOTTOM;
   750   // These next few cases must match exactly or it is a compile-time error.
   751   case Control:                 // Control of code
   752   case Abio:                    // State of world outside of program
   753   case Memory:
   754     if( _base == t->_base )  return this;
   755     typerr(t);
   756     return Type::BOTTOM;
   758   case Top:                     // Top of the lattice
   759     return this;
   760   }
   762   // The type is unchanged
   763   return this;
   764 }
   766 //-----------------------------filter------------------------------------------
   767 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
   768   const Type* ft = join_helper(kills, include_speculative);
   769   if (ft->empty())
   770     return Type::TOP;           // Canonical empty value
   771   return ft;
   772 }
   774 //------------------------------xdual------------------------------------------
   775 // Compute dual right now.
   776 const Type::TYPES Type::dual_type[Type::lastype] = {
   777   Bad,          // Bad
   778   Control,      // Control
   779   Bottom,       // Top
   780   Bad,          // Int - handled in v-call
   781   Bad,          // Long - handled in v-call
   782   Half,         // Half
   783   Bad,          // NarrowOop - handled in v-call
   784   Bad,          // NarrowKlass - handled in v-call
   786   Bad,          // Tuple - handled in v-call
   787   Bad,          // Array - handled in v-call
   788   Bad,          // VectorS - handled in v-call
   789   Bad,          // VectorD - handled in v-call
   790   Bad,          // VectorX - handled in v-call
   791   Bad,          // VectorY - handled in v-call
   793   Bad,          // AnyPtr - handled in v-call
   794   Bad,          // RawPtr - handled in v-call
   795   Bad,          // OopPtr - handled in v-call
   796   Bad,          // InstPtr - handled in v-call
   797   Bad,          // AryPtr - handled in v-call
   799   Bad,          //  MetadataPtr - handled in v-call
   800   Bad,          // KlassPtr - handled in v-call
   802   Bad,          // Function - handled in v-call
   803   Abio,         // Abio
   804   Return_Address,// Return_Address
   805   Memory,       // Memory
   806   FloatBot,     // FloatTop
   807   FloatCon,     // FloatCon
   808   FloatTop,     // FloatBot
   809   DoubleBot,    // DoubleTop
   810   DoubleCon,    // DoubleCon
   811   DoubleTop,    // DoubleBot
   812   Top           // Bottom
   813 };
   815 const Type *Type::xdual() const {
   816   // Note: the base() accessor asserts the sanity of _base.
   817   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
   818   return new Type(_type_info[_base].dual_type);
   819 }
   821 //------------------------------has_memory-------------------------------------
   822 bool Type::has_memory() const {
   823   Type::TYPES tx = base();
   824   if (tx == Memory) return true;
   825   if (tx == Tuple) {
   826     const TypeTuple *t = is_tuple();
   827     for (uint i=0; i < t->cnt(); i++) {
   828       tx = t->field_at(i)->base();
   829       if (tx == Memory)  return true;
   830     }
   831   }
   832   return false;
   833 }
   835 #ifndef PRODUCT
   836 //------------------------------dump2------------------------------------------
   837 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
   838   st->print(_type_info[_base].msg);
   839 }
   841 //------------------------------dump-------------------------------------------
   842 void Type::dump_on(outputStream *st) const {
   843   ResourceMark rm;
   844   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
   845   dump2(d,1, st);
   846   if (is_ptr_to_narrowoop()) {
   847     st->print(" [narrow]");
   848   } else if (is_ptr_to_narrowklass()) {
   849     st->print(" [narrowklass]");
   850   }
   851 }
   852 #endif
   854 //------------------------------singleton--------------------------------------
   855 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   856 // constants (Ldi nodes).  Singletons are integer, float or double constants.
   857 bool Type::singleton(void) const {
   858   return _base == Top || _base == Half;
   859 }
   861 //------------------------------empty------------------------------------------
   862 // TRUE if Type is a type with no values, FALSE otherwise.
   863 bool Type::empty(void) const {
   864   switch (_base) {
   865   case DoubleTop:
   866   case FloatTop:
   867   case Top:
   868     return true;
   870   case Half:
   871   case Abio:
   872   case Return_Address:
   873   case Memory:
   874   case Bottom:
   875   case FloatBot:
   876   case DoubleBot:
   877     return false;  // never a singleton, therefore never empty
   878   }
   880   ShouldNotReachHere();
   881   return false;
   882 }
   884 //------------------------------dump_stats-------------------------------------
   885 // Dump collected statistics to stderr
   886 #ifndef PRODUCT
   887 void Type::dump_stats() {
   888   tty->print("Types made: %d\n", type_dict()->Size());
   889 }
   890 #endif
   892 //------------------------------typerr-----------------------------------------
   893 void Type::typerr( const Type *t ) const {
   894 #ifndef PRODUCT
   895   tty->print("\nError mixing types: ");
   896   dump();
   897   tty->print(" and ");
   898   t->dump();
   899   tty->print("\n");
   900 #endif
   901   ShouldNotReachHere();
   902 }
   905 //=============================================================================
   906 // Convenience common pre-built types.
   907 const TypeF *TypeF::ZERO;       // Floating point zero
   908 const TypeF *TypeF::ONE;        // Floating point one
   910 //------------------------------make-------------------------------------------
   911 // Create a float constant
   912 const TypeF *TypeF::make(float f) {
   913   return (TypeF*)(new TypeF(f))->hashcons();
   914 }
   916 //------------------------------meet-------------------------------------------
   917 // Compute the MEET of two types.  It returns a new Type object.
   918 const Type *TypeF::xmeet( const Type *t ) const {
   919   // Perform a fast test for common case; meeting the same types together.
   920   if( this == t ) return this;  // Meeting same type-rep?
   922   // Current "this->_base" is FloatCon
   923   switch (t->base()) {          // Switch on original type
   924   case AnyPtr:                  // Mixing with oops happens when javac
   925   case RawPtr:                  // reuses local variables
   926   case OopPtr:
   927   case InstPtr:
   928   case AryPtr:
   929   case MetadataPtr:
   930   case KlassPtr:
   931   case NarrowOop:
   932   case NarrowKlass:
   933   case Int:
   934   case Long:
   935   case DoubleTop:
   936   case DoubleCon:
   937   case DoubleBot:
   938   case Bottom:                  // Ye Olde Default
   939     return Type::BOTTOM;
   941   case FloatBot:
   942     return t;
   944   default:                      // All else is a mistake
   945     typerr(t);
   947   case FloatCon:                // Float-constant vs Float-constant?
   948     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
   949                                 // must compare bitwise as positive zero, negative zero and NaN have
   950                                 // all the same representation in C++
   951       return FLOAT;             // Return generic float
   952                                 // Equal constants
   953   case Top:
   954   case FloatTop:
   955     break;                      // Return the float constant
   956   }
   957   return this;                  // Return the float constant
   958 }
   960 //------------------------------xdual------------------------------------------
   961 // Dual: symmetric
   962 const Type *TypeF::xdual() const {
   963   return this;
   964 }
   966 //------------------------------eq---------------------------------------------
   967 // Structural equality check for Type representations
   968 bool TypeF::eq( const Type *t ) const {
   969   if( g_isnan(_f) ||
   970       g_isnan(t->getf()) ) {
   971     // One or both are NANs.  If both are NANs return true, else false.
   972     return (g_isnan(_f) && g_isnan(t->getf()));
   973   }
   974   if (_f == t->getf()) {
   975     // (NaN is impossible at this point, since it is not equal even to itself)
   976     if (_f == 0.0) {
   977       // difference between positive and negative zero
   978       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
   979     }
   980     return true;
   981   }
   982   return false;
   983 }
   985 //------------------------------hash-------------------------------------------
   986 // Type-specific hashing function.
   987 int TypeF::hash(void) const {
   988   return *(int*)(&_f);
   989 }
   991 //------------------------------is_finite--------------------------------------
   992 // Has a finite value
   993 bool TypeF::is_finite() const {
   994   return g_isfinite(getf()) != 0;
   995 }
   997 //------------------------------is_nan-----------------------------------------
   998 // Is not a number (NaN)
   999 bool TypeF::is_nan()    const {
  1000   return g_isnan(getf()) != 0;
  1003 //------------------------------dump2------------------------------------------
  1004 // Dump float constant Type
  1005 #ifndef PRODUCT
  1006 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
  1007   Type::dump2(d,depth, st);
  1008   st->print("%f", _f);
  1010 #endif
  1012 //------------------------------singleton--------------------------------------
  1013 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1014 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1015 // or a single symbol.
  1016 bool TypeF::singleton(void) const {
  1017   return true;                  // Always a singleton
  1020 bool TypeF::empty(void) const {
  1021   return false;                 // always exactly a singleton
  1024 //=============================================================================
  1025 // Convenience common pre-built types.
  1026 const TypeD *TypeD::ZERO;       // Floating point zero
  1027 const TypeD *TypeD::ONE;        // Floating point one
  1029 //------------------------------make-------------------------------------------
  1030 const TypeD *TypeD::make(double d) {
  1031   return (TypeD*)(new TypeD(d))->hashcons();
  1034 //------------------------------meet-------------------------------------------
  1035 // Compute the MEET of two types.  It returns a new Type object.
  1036 const Type *TypeD::xmeet( const Type *t ) const {
  1037   // Perform a fast test for common case; meeting the same types together.
  1038   if( this == t ) return this;  // Meeting same type-rep?
  1040   // Current "this->_base" is DoubleCon
  1041   switch (t->base()) {          // Switch on original type
  1042   case AnyPtr:                  // Mixing with oops happens when javac
  1043   case RawPtr:                  // reuses local variables
  1044   case OopPtr:
  1045   case InstPtr:
  1046   case AryPtr:
  1047   case MetadataPtr:
  1048   case KlassPtr:
  1049   case NarrowOop:
  1050   case NarrowKlass:
  1051   case Int:
  1052   case Long:
  1053   case FloatTop:
  1054   case FloatCon:
  1055   case FloatBot:
  1056   case Bottom:                  // Ye Olde Default
  1057     return Type::BOTTOM;
  1059   case DoubleBot:
  1060     return t;
  1062   default:                      // All else is a mistake
  1063     typerr(t);
  1065   case DoubleCon:               // Double-constant vs Double-constant?
  1066     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
  1067       return DOUBLE;            // Return generic double
  1068   case Top:
  1069   case DoubleTop:
  1070     break;
  1072   return this;                  // Return the double constant
  1075 //------------------------------xdual------------------------------------------
  1076 // Dual: symmetric
  1077 const Type *TypeD::xdual() const {
  1078   return this;
  1081 //------------------------------eq---------------------------------------------
  1082 // Structural equality check for Type representations
  1083 bool TypeD::eq( const Type *t ) const {
  1084   if( g_isnan(_d) ||
  1085       g_isnan(t->getd()) ) {
  1086     // One or both are NANs.  If both are NANs return true, else false.
  1087     return (g_isnan(_d) && g_isnan(t->getd()));
  1089   if (_d == t->getd()) {
  1090     // (NaN is impossible at this point, since it is not equal even to itself)
  1091     if (_d == 0.0) {
  1092       // difference between positive and negative zero
  1093       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
  1095     return true;
  1097   return false;
  1100 //------------------------------hash-------------------------------------------
  1101 // Type-specific hashing function.
  1102 int TypeD::hash(void) const {
  1103   return *(int*)(&_d);
  1106 //------------------------------is_finite--------------------------------------
  1107 // Has a finite value
  1108 bool TypeD::is_finite() const {
  1109   return g_isfinite(getd()) != 0;
  1112 //------------------------------is_nan-----------------------------------------
  1113 // Is not a number (NaN)
  1114 bool TypeD::is_nan()    const {
  1115   return g_isnan(getd()) != 0;
  1118 //------------------------------dump2------------------------------------------
  1119 // Dump double constant Type
  1120 #ifndef PRODUCT
  1121 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
  1122   Type::dump2(d,depth,st);
  1123   st->print("%f", _d);
  1125 #endif
  1127 //------------------------------singleton--------------------------------------
  1128 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1129 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1130 // or a single symbol.
  1131 bool TypeD::singleton(void) const {
  1132   return true;                  // Always a singleton
  1135 bool TypeD::empty(void) const {
  1136   return false;                 // always exactly a singleton
  1139 //=============================================================================
  1140 // Convience common pre-built types.
  1141 const TypeInt *TypeInt::MINUS_1;// -1
  1142 const TypeInt *TypeInt::ZERO;   // 0
  1143 const TypeInt *TypeInt::ONE;    // 1
  1144 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
  1145 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
  1146 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
  1147 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
  1148 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
  1149 const TypeInt *TypeInt::CC_LE;  // [-1,0]
  1150 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
  1151 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
  1152 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
  1153 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
  1154 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
  1155 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
  1156 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
  1157 const TypeInt *TypeInt::INT;    // 32-bit integers
  1158 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
  1160 //------------------------------TypeInt----------------------------------------
  1161 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
  1164 //------------------------------make-------------------------------------------
  1165 const TypeInt *TypeInt::make( jint lo ) {
  1166   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
  1169 static int normalize_int_widen( jint lo, jint hi, int w ) {
  1170   // Certain normalizations keep us sane when comparing types.
  1171   // The 'SMALLINT' covers constants and also CC and its relatives.
  1172   if (lo <= hi) {
  1173     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
  1174     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
  1175   } else {
  1176     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
  1177     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
  1179   return w;
  1182 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
  1183   w = normalize_int_widen(lo, hi, w);
  1184   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
  1187 //------------------------------meet-------------------------------------------
  1188 // Compute the MEET of two types.  It returns a new Type representation object
  1189 // with reference count equal to the number of Types pointing at it.
  1190 // Caller should wrap a Types around it.
  1191 const Type *TypeInt::xmeet( const Type *t ) const {
  1192   // Perform a fast test for common case; meeting the same types together.
  1193   if( this == t ) return this;  // Meeting same type?
  1195   // Currently "this->_base" is a TypeInt
  1196   switch (t->base()) {          // Switch on original type
  1197   case AnyPtr:                  // Mixing with oops happens when javac
  1198   case RawPtr:                  // reuses local variables
  1199   case OopPtr:
  1200   case InstPtr:
  1201   case AryPtr:
  1202   case MetadataPtr:
  1203   case KlassPtr:
  1204   case NarrowOop:
  1205   case NarrowKlass:
  1206   case Long:
  1207   case FloatTop:
  1208   case FloatCon:
  1209   case FloatBot:
  1210   case DoubleTop:
  1211   case DoubleCon:
  1212   case DoubleBot:
  1213   case Bottom:                  // Ye Olde Default
  1214     return Type::BOTTOM;
  1215   default:                      // All else is a mistake
  1216     typerr(t);
  1217   case Top:                     // No change
  1218     return this;
  1219   case Int:                     // Int vs Int?
  1220     break;
  1223   // Expand covered set
  1224   const TypeInt *r = t->is_int();
  1225   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1228 //------------------------------xdual------------------------------------------
  1229 // Dual: reverse hi & lo; flip widen
  1230 const Type *TypeInt::xdual() const {
  1231   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
  1232   return new TypeInt(_hi,_lo,w);
  1235 //------------------------------widen------------------------------------------
  1236 // Only happens for optimistic top-down optimizations.
  1237 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
  1238   // Coming from TOP or such; no widening
  1239   if( old->base() != Int ) return this;
  1240   const TypeInt *ot = old->is_int();
  1242   // If new guy is equal to old guy, no widening
  1243   if( _lo == ot->_lo && _hi == ot->_hi )
  1244     return old;
  1246   // If new guy contains old, then we widened
  1247   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1248     // New contains old
  1249     // If new guy is already wider than old, no widening
  1250     if( _widen > ot->_widen ) return this;
  1251     // If old guy was a constant, do not bother
  1252     if (ot->_lo == ot->_hi)  return this;
  1253     // Now widen new guy.
  1254     // Check for widening too far
  1255     if (_widen == WidenMax) {
  1256       int max = max_jint;
  1257       int min = min_jint;
  1258       if (limit->isa_int()) {
  1259         max = limit->is_int()->_hi;
  1260         min = limit->is_int()->_lo;
  1262       if (min < _lo && _hi < max) {
  1263         // If neither endpoint is extremal yet, push out the endpoint
  1264         // which is closer to its respective limit.
  1265         if (_lo >= 0 ||                 // easy common case
  1266             (juint)(_lo - min) >= (juint)(max - _hi)) {
  1267           // Try to widen to an unsigned range type of 31 bits:
  1268           return make(_lo, max, WidenMax);
  1269         } else {
  1270           return make(min, _hi, WidenMax);
  1273       return TypeInt::INT;
  1275     // Returned widened new guy
  1276     return make(_lo,_hi,_widen+1);
  1279   // If old guy contains new, then we probably widened too far & dropped to
  1280   // bottom.  Return the wider fellow.
  1281   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1282     return old;
  1284   //fatal("Integer value range is not subset");
  1285   //return this;
  1286   return TypeInt::INT;
  1289 //------------------------------narrow---------------------------------------
  1290 // Only happens for pessimistic optimizations.
  1291 const Type *TypeInt::narrow( const Type *old ) const {
  1292   if (_lo >= _hi)  return this;   // already narrow enough
  1293   if (old == NULL)  return this;
  1294   const TypeInt* ot = old->isa_int();
  1295   if (ot == NULL)  return this;
  1296   jint olo = ot->_lo;
  1297   jint ohi = ot->_hi;
  1299   // If new guy is equal to old guy, no narrowing
  1300   if (_lo == olo && _hi == ohi)  return old;
  1302   // If old guy was maximum range, allow the narrowing
  1303   if (olo == min_jint && ohi == max_jint)  return this;
  1305   if (_lo < olo || _hi > ohi)
  1306     return this;                // doesn't narrow; pretty wierd
  1308   // The new type narrows the old type, so look for a "death march".
  1309   // See comments on PhaseTransform::saturate.
  1310   juint nrange = _hi - _lo;
  1311   juint orange = ohi - olo;
  1312   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1313     // Use the new type only if the range shrinks a lot.
  1314     // We do not want the optimizer computing 2^31 point by point.
  1315     return old;
  1318   return this;
  1321 //-----------------------------filter------------------------------------------
  1322 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
  1323   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
  1324   if (ft == NULL || ft->empty())
  1325     return Type::TOP;           // Canonical empty value
  1326   if (ft->_widen < this->_widen) {
  1327     // Do not allow the value of kill->_widen to affect the outcome.
  1328     // The widen bits must be allowed to run freely through the graph.
  1329     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
  1331   return ft;
  1334 //------------------------------eq---------------------------------------------
  1335 // Structural equality check for Type representations
  1336 bool TypeInt::eq( const Type *t ) const {
  1337   const TypeInt *r = t->is_int(); // Handy access
  1338   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
  1341 //------------------------------hash-------------------------------------------
  1342 // Type-specific hashing function.
  1343 int TypeInt::hash(void) const {
  1344   return _lo+_hi+_widen+(int)Type::Int;
  1347 //------------------------------is_finite--------------------------------------
  1348 // Has a finite value
  1349 bool TypeInt::is_finite() const {
  1350   return true;
  1353 //------------------------------dump2------------------------------------------
  1354 // Dump TypeInt
  1355 #ifndef PRODUCT
  1356 static const char* intname(char* buf, jint n) {
  1357   if (n == min_jint)
  1358     return "min";
  1359   else if (n < min_jint + 10000)
  1360     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
  1361   else if (n == max_jint)
  1362     return "max";
  1363   else if (n > max_jint - 10000)
  1364     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
  1365   else
  1366     sprintf(buf, INT32_FORMAT, n);
  1367   return buf;
  1370 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
  1371   char buf[40], buf2[40];
  1372   if (_lo == min_jint && _hi == max_jint)
  1373     st->print("int");
  1374   else if (is_con())
  1375     st->print("int:%s", intname(buf, get_con()));
  1376   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
  1377     st->print("bool");
  1378   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
  1379     st->print("byte");
  1380   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
  1381     st->print("char");
  1382   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
  1383     st->print("short");
  1384   else if (_hi == max_jint)
  1385     st->print("int:>=%s", intname(buf, _lo));
  1386   else if (_lo == min_jint)
  1387     st->print("int:<=%s", intname(buf, _hi));
  1388   else
  1389     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
  1391   if (_widen != 0 && this != TypeInt::INT)
  1392     st->print(":%.*s", _widen, "wwww");
  1394 #endif
  1396 //------------------------------singleton--------------------------------------
  1397 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1398 // constants.
  1399 bool TypeInt::singleton(void) const {
  1400   return _lo >= _hi;
  1403 bool TypeInt::empty(void) const {
  1404   return _lo > _hi;
  1407 //=============================================================================
  1408 // Convenience common pre-built types.
  1409 const TypeLong *TypeLong::MINUS_1;// -1
  1410 const TypeLong *TypeLong::ZERO; // 0
  1411 const TypeLong *TypeLong::ONE;  // 1
  1412 const TypeLong *TypeLong::POS;  // >=0
  1413 const TypeLong *TypeLong::LONG; // 64-bit integers
  1414 const TypeLong *TypeLong::INT;  // 32-bit subrange
  1415 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
  1417 //------------------------------TypeLong---------------------------------------
  1418 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
  1421 //------------------------------make-------------------------------------------
  1422 const TypeLong *TypeLong::make( jlong lo ) {
  1423   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
  1426 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
  1427   // Certain normalizations keep us sane when comparing types.
  1428   // The 'SMALLINT' covers constants.
  1429   if (lo <= hi) {
  1430     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
  1431     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
  1432   } else {
  1433     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
  1434     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
  1436   return w;
  1439 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
  1440   w = normalize_long_widen(lo, hi, w);
  1441   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
  1445 //------------------------------meet-------------------------------------------
  1446 // Compute the MEET of two types.  It returns a new Type representation object
  1447 // with reference count equal to the number of Types pointing at it.
  1448 // Caller should wrap a Types around it.
  1449 const Type *TypeLong::xmeet( const Type *t ) const {
  1450   // Perform a fast test for common case; meeting the same types together.
  1451   if( this == t ) return this;  // Meeting same type?
  1453   // Currently "this->_base" is a TypeLong
  1454   switch (t->base()) {          // Switch on original type
  1455   case AnyPtr:                  // Mixing with oops happens when javac
  1456   case RawPtr:                  // reuses local variables
  1457   case OopPtr:
  1458   case InstPtr:
  1459   case AryPtr:
  1460   case MetadataPtr:
  1461   case KlassPtr:
  1462   case NarrowOop:
  1463   case NarrowKlass:
  1464   case Int:
  1465   case FloatTop:
  1466   case FloatCon:
  1467   case FloatBot:
  1468   case DoubleTop:
  1469   case DoubleCon:
  1470   case DoubleBot:
  1471   case Bottom:                  // Ye Olde Default
  1472     return Type::BOTTOM;
  1473   default:                      // All else is a mistake
  1474     typerr(t);
  1475   case Top:                     // No change
  1476     return this;
  1477   case Long:                    // Long vs Long?
  1478     break;
  1481   // Expand covered set
  1482   const TypeLong *r = t->is_long(); // Turn into a TypeLong
  1483   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1486 //------------------------------xdual------------------------------------------
  1487 // Dual: reverse hi & lo; flip widen
  1488 const Type *TypeLong::xdual() const {
  1489   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
  1490   return new TypeLong(_hi,_lo,w);
  1493 //------------------------------widen------------------------------------------
  1494 // Only happens for optimistic top-down optimizations.
  1495 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
  1496   // Coming from TOP or such; no widening
  1497   if( old->base() != Long ) return this;
  1498   const TypeLong *ot = old->is_long();
  1500   // If new guy is equal to old guy, no widening
  1501   if( _lo == ot->_lo && _hi == ot->_hi )
  1502     return old;
  1504   // If new guy contains old, then we widened
  1505   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1506     // New contains old
  1507     // If new guy is already wider than old, no widening
  1508     if( _widen > ot->_widen ) return this;
  1509     // If old guy was a constant, do not bother
  1510     if (ot->_lo == ot->_hi)  return this;
  1511     // Now widen new guy.
  1512     // Check for widening too far
  1513     if (_widen == WidenMax) {
  1514       jlong max = max_jlong;
  1515       jlong min = min_jlong;
  1516       if (limit->isa_long()) {
  1517         max = limit->is_long()->_hi;
  1518         min = limit->is_long()->_lo;
  1520       if (min < _lo && _hi < max) {
  1521         // If neither endpoint is extremal yet, push out the endpoint
  1522         // which is closer to its respective limit.
  1523         if (_lo >= 0 ||                 // easy common case
  1524             (julong)(_lo - min) >= (julong)(max - _hi)) {
  1525           // Try to widen to an unsigned range type of 32/63 bits:
  1526           if (max >= max_juint && _hi < max_juint)
  1527             return make(_lo, max_juint, WidenMax);
  1528           else
  1529             return make(_lo, max, WidenMax);
  1530         } else {
  1531           return make(min, _hi, WidenMax);
  1534       return TypeLong::LONG;
  1536     // Returned widened new guy
  1537     return make(_lo,_hi,_widen+1);
  1540   // If old guy contains new, then we probably widened too far & dropped to
  1541   // bottom.  Return the wider fellow.
  1542   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1543     return old;
  1545   //  fatal("Long value range is not subset");
  1546   // return this;
  1547   return TypeLong::LONG;
  1550 //------------------------------narrow----------------------------------------
  1551 // Only happens for pessimistic optimizations.
  1552 const Type *TypeLong::narrow( const Type *old ) const {
  1553   if (_lo >= _hi)  return this;   // already narrow enough
  1554   if (old == NULL)  return this;
  1555   const TypeLong* ot = old->isa_long();
  1556   if (ot == NULL)  return this;
  1557   jlong olo = ot->_lo;
  1558   jlong ohi = ot->_hi;
  1560   // If new guy is equal to old guy, no narrowing
  1561   if (_lo == olo && _hi == ohi)  return old;
  1563   // If old guy was maximum range, allow the narrowing
  1564   if (olo == min_jlong && ohi == max_jlong)  return this;
  1566   if (_lo < olo || _hi > ohi)
  1567     return this;                // doesn't narrow; pretty wierd
  1569   // The new type narrows the old type, so look for a "death march".
  1570   // See comments on PhaseTransform::saturate.
  1571   julong nrange = _hi - _lo;
  1572   julong orange = ohi - olo;
  1573   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1574     // Use the new type only if the range shrinks a lot.
  1575     // We do not want the optimizer computing 2^31 point by point.
  1576     return old;
  1579   return this;
  1582 //-----------------------------filter------------------------------------------
  1583 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
  1584   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
  1585   if (ft == NULL || ft->empty())
  1586     return Type::TOP;           // Canonical empty value
  1587   if (ft->_widen < this->_widen) {
  1588     // Do not allow the value of kill->_widen to affect the outcome.
  1589     // The widen bits must be allowed to run freely through the graph.
  1590     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
  1592   return ft;
  1595 //------------------------------eq---------------------------------------------
  1596 // Structural equality check for Type representations
  1597 bool TypeLong::eq( const Type *t ) const {
  1598   const TypeLong *r = t->is_long(); // Handy access
  1599   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
  1602 //------------------------------hash-------------------------------------------
  1603 // Type-specific hashing function.
  1604 int TypeLong::hash(void) const {
  1605   return (int)(_lo+_hi+_widen+(int)Type::Long);
  1608 //------------------------------is_finite--------------------------------------
  1609 // Has a finite value
  1610 bool TypeLong::is_finite() const {
  1611   return true;
  1614 //------------------------------dump2------------------------------------------
  1615 // Dump TypeLong
  1616 #ifndef PRODUCT
  1617 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
  1618   if (n > x) {
  1619     if (n >= x + 10000)  return NULL;
  1620     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
  1621   } else if (n < x) {
  1622     if (n <= x - 10000)  return NULL;
  1623     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
  1624   } else {
  1625     return xname;
  1627   return buf;
  1630 static const char* longname(char* buf, jlong n) {
  1631   const char* str;
  1632   if (n == min_jlong)
  1633     return "min";
  1634   else if (n < min_jlong + 10000)
  1635     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
  1636   else if (n == max_jlong)
  1637     return "max";
  1638   else if (n > max_jlong - 10000)
  1639     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
  1640   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
  1641     return str;
  1642   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
  1643     return str;
  1644   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
  1645     return str;
  1646   else
  1647     sprintf(buf, JLONG_FORMAT, n);
  1648   return buf;
  1651 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
  1652   char buf[80], buf2[80];
  1653   if (_lo == min_jlong && _hi == max_jlong)
  1654     st->print("long");
  1655   else if (is_con())
  1656     st->print("long:%s", longname(buf, get_con()));
  1657   else if (_hi == max_jlong)
  1658     st->print("long:>=%s", longname(buf, _lo));
  1659   else if (_lo == min_jlong)
  1660     st->print("long:<=%s", longname(buf, _hi));
  1661   else
  1662     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
  1664   if (_widen != 0 && this != TypeLong::LONG)
  1665     st->print(":%.*s", _widen, "wwww");
  1667 #endif
  1669 //------------------------------singleton--------------------------------------
  1670 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1671 // constants
  1672 bool TypeLong::singleton(void) const {
  1673   return _lo >= _hi;
  1676 bool TypeLong::empty(void) const {
  1677   return _lo > _hi;
  1680 //=============================================================================
  1681 // Convenience common pre-built types.
  1682 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
  1683 const TypeTuple *TypeTuple::IFFALSE;
  1684 const TypeTuple *TypeTuple::IFTRUE;
  1685 const TypeTuple *TypeTuple::IFNEITHER;
  1686 const TypeTuple *TypeTuple::LOOPBODY;
  1687 const TypeTuple *TypeTuple::MEMBAR;
  1688 const TypeTuple *TypeTuple::STORECONDITIONAL;
  1689 const TypeTuple *TypeTuple::START_I2C;
  1690 const TypeTuple *TypeTuple::INT_PAIR;
  1691 const TypeTuple *TypeTuple::LONG_PAIR;
  1692 const TypeTuple *TypeTuple::INT_CC_PAIR;
  1693 const TypeTuple *TypeTuple::LONG_CC_PAIR;
  1696 //------------------------------make-------------------------------------------
  1697 // Make a TypeTuple from the range of a method signature
  1698 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
  1699   ciType* return_type = sig->return_type();
  1700   uint total_fields = TypeFunc::Parms + return_type->size();
  1701   const Type **field_array = fields(total_fields);
  1702   switch (return_type->basic_type()) {
  1703   case T_LONG:
  1704     field_array[TypeFunc::Parms]   = TypeLong::LONG;
  1705     field_array[TypeFunc::Parms+1] = Type::HALF;
  1706     break;
  1707   case T_DOUBLE:
  1708     field_array[TypeFunc::Parms]   = Type::DOUBLE;
  1709     field_array[TypeFunc::Parms+1] = Type::HALF;
  1710     break;
  1711   case T_OBJECT:
  1712   case T_ARRAY:
  1713   case T_BOOLEAN:
  1714   case T_CHAR:
  1715   case T_FLOAT:
  1716   case T_BYTE:
  1717   case T_SHORT:
  1718   case T_INT:
  1719     field_array[TypeFunc::Parms] = get_const_type(return_type);
  1720     break;
  1721   case T_VOID:
  1722     break;
  1723   default:
  1724     ShouldNotReachHere();
  1726   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1729 // Make a TypeTuple from the domain of a method signature
  1730 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
  1731   uint total_fields = TypeFunc::Parms + sig->size();
  1733   uint pos = TypeFunc::Parms;
  1734   const Type **field_array;
  1735   if (recv != NULL) {
  1736     total_fields++;
  1737     field_array = fields(total_fields);
  1738     // Use get_const_type here because it respects UseUniqueSubclasses:
  1739     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
  1740   } else {
  1741     field_array = fields(total_fields);
  1744   int i = 0;
  1745   while (pos < total_fields) {
  1746     ciType* type = sig->type_at(i);
  1748     switch (type->basic_type()) {
  1749     case T_LONG:
  1750       field_array[pos++] = TypeLong::LONG;
  1751       field_array[pos++] = Type::HALF;
  1752       break;
  1753     case T_DOUBLE:
  1754       field_array[pos++] = Type::DOUBLE;
  1755       field_array[pos++] = Type::HALF;
  1756       break;
  1757     case T_OBJECT:
  1758     case T_ARRAY:
  1759     case T_BOOLEAN:
  1760     case T_CHAR:
  1761     case T_FLOAT:
  1762     case T_BYTE:
  1763     case T_SHORT:
  1764     case T_INT:
  1765       field_array[pos++] = get_const_type(type);
  1766       break;
  1767     default:
  1768       ShouldNotReachHere();
  1770     i++;
  1772   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1775 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
  1776   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
  1779 //------------------------------fields-----------------------------------------
  1780 // Subroutine call type with space allocated for argument types
  1781 const Type **TypeTuple::fields( uint arg_cnt ) {
  1782   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
  1783   flds[TypeFunc::Control  ] = Type::CONTROL;
  1784   flds[TypeFunc::I_O      ] = Type::ABIO;
  1785   flds[TypeFunc::Memory   ] = Type::MEMORY;
  1786   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
  1787   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
  1789   return flds;
  1792 //------------------------------meet-------------------------------------------
  1793 // Compute the MEET of two types.  It returns a new Type object.
  1794 const Type *TypeTuple::xmeet( const Type *t ) const {
  1795   // Perform a fast test for common case; meeting the same types together.
  1796   if( this == t ) return this;  // Meeting same type-rep?
  1798   // Current "this->_base" is Tuple
  1799   switch (t->base()) {          // switch on original type
  1801   case Bottom:                  // Ye Olde Default
  1802     return t;
  1804   default:                      // All else is a mistake
  1805     typerr(t);
  1807   case Tuple: {                 // Meeting 2 signatures?
  1808     const TypeTuple *x = t->is_tuple();
  1809     assert( _cnt == x->_cnt, "" );
  1810     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1811     for( uint i=0; i<_cnt; i++ )
  1812       fields[i] = field_at(i)->xmeet( x->field_at(i) );
  1813     return TypeTuple::make(_cnt,fields);
  1815   case Top:
  1816     break;
  1818   return this;                  // Return the double constant
  1821 //------------------------------xdual------------------------------------------
  1822 // Dual: compute field-by-field dual
  1823 const Type *TypeTuple::xdual() const {
  1824   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1825   for( uint i=0; i<_cnt; i++ )
  1826     fields[i] = _fields[i]->dual();
  1827   return new TypeTuple(_cnt,fields);
  1830 //------------------------------eq---------------------------------------------
  1831 // Structural equality check for Type representations
  1832 bool TypeTuple::eq( const Type *t ) const {
  1833   const TypeTuple *s = (const TypeTuple *)t;
  1834   if (_cnt != s->_cnt)  return false;  // Unequal field counts
  1835   for (uint i = 0; i < _cnt; i++)
  1836     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
  1837       return false;             // Missed
  1838   return true;
  1841 //------------------------------hash-------------------------------------------
  1842 // Type-specific hashing function.
  1843 int TypeTuple::hash(void) const {
  1844   intptr_t sum = _cnt;
  1845   for( uint i=0; i<_cnt; i++ )
  1846     sum += (intptr_t)_fields[i];     // Hash on pointers directly
  1847   return sum;
  1850 //------------------------------dump2------------------------------------------
  1851 // Dump signature Type
  1852 #ifndef PRODUCT
  1853 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
  1854   st->print("{");
  1855   if( !depth || d[this] ) {     // Check for recursive print
  1856     st->print("...}");
  1857     return;
  1859   d.Insert((void*)this, (void*)this);   // Stop recursion
  1860   if( _cnt ) {
  1861     uint i;
  1862     for( i=0; i<_cnt-1; i++ ) {
  1863       st->print("%d:", i);
  1864       _fields[i]->dump2(d, depth-1, st);
  1865       st->print(", ");
  1867     st->print("%d:", i);
  1868     _fields[i]->dump2(d, depth-1, st);
  1870   st->print("}");
  1872 #endif
  1874 //------------------------------singleton--------------------------------------
  1875 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1876 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1877 // or a single symbol.
  1878 bool TypeTuple::singleton(void) const {
  1879   return false;                 // Never a singleton
  1882 bool TypeTuple::empty(void) const {
  1883   for( uint i=0; i<_cnt; i++ ) {
  1884     if (_fields[i]->empty())  return true;
  1886   return false;
  1889 //=============================================================================
  1890 // Convenience common pre-built types.
  1892 inline const TypeInt* normalize_array_size(const TypeInt* size) {
  1893   // Certain normalizations keep us sane when comparing types.
  1894   // We do not want arrayOop variables to differ only by the wideness
  1895   // of their index types.  Pick minimum wideness, since that is the
  1896   // forced wideness of small ranges anyway.
  1897   if (size->_widen != Type::WidenMin)
  1898     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
  1899   else
  1900     return size;
  1903 //------------------------------make-------------------------------------------
  1904 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
  1905   if (UseCompressedOops && elem->isa_oopptr()) {
  1906     elem = elem->make_narrowoop();
  1908   size = normalize_array_size(size);
  1909   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
  1912 //------------------------------meet-------------------------------------------
  1913 // Compute the MEET of two types.  It returns a new Type object.
  1914 const Type *TypeAry::xmeet( const Type *t ) const {
  1915   // Perform a fast test for common case; meeting the same types together.
  1916   if( this == t ) return this;  // Meeting same type-rep?
  1918   // Current "this->_base" is Ary
  1919   switch (t->base()) {          // switch on original type
  1921   case Bottom:                  // Ye Olde Default
  1922     return t;
  1924   default:                      // All else is a mistake
  1925     typerr(t);
  1927   case Array: {                 // Meeting 2 arrays?
  1928     const TypeAry *a = t->is_ary();
  1929     return TypeAry::make(_elem->meet_speculative(a->_elem),
  1930                          _size->xmeet(a->_size)->is_int(),
  1931                          _stable & a->_stable);
  1933   case Top:
  1934     break;
  1936   return this;                  // Return the double constant
  1939 //------------------------------xdual------------------------------------------
  1940 // Dual: compute field-by-field dual
  1941 const Type *TypeAry::xdual() const {
  1942   const TypeInt* size_dual = _size->dual()->is_int();
  1943   size_dual = normalize_array_size(size_dual);
  1944   return new TypeAry(_elem->dual(), size_dual, !_stable);
  1947 //------------------------------eq---------------------------------------------
  1948 // Structural equality check for Type representations
  1949 bool TypeAry::eq( const Type *t ) const {
  1950   const TypeAry *a = (const TypeAry*)t;
  1951   return _elem == a->_elem &&
  1952     _stable == a->_stable &&
  1953     _size == a->_size;
  1956 //------------------------------hash-------------------------------------------
  1957 // Type-specific hashing function.
  1958 int TypeAry::hash(void) const {
  1959   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
  1962 /**
  1963  * Return same type without a speculative part in the element
  1964  */
  1965 const Type* TypeAry::remove_speculative() const {
  1966   return make(_elem->remove_speculative(), _size, _stable);
  1969 //----------------------interface_vs_oop---------------------------------------
  1970 #ifdef ASSERT
  1971 bool TypeAry::interface_vs_oop(const Type *t) const {
  1972   const TypeAry* t_ary = t->is_ary();
  1973   if (t_ary) {
  1974     return _elem->interface_vs_oop(t_ary->_elem);
  1976   return false;
  1978 #endif
  1980 //------------------------------dump2------------------------------------------
  1981 #ifndef PRODUCT
  1982 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
  1983   if (_stable)  st->print("stable:");
  1984   _elem->dump2(d, depth, st);
  1985   st->print("[");
  1986   _size->dump2(d, depth, st);
  1987   st->print("]");
  1989 #endif
  1991 //------------------------------singleton--------------------------------------
  1992 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1993 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1994 // or a single symbol.
  1995 bool TypeAry::singleton(void) const {
  1996   return false;                 // Never a singleton
  1999 bool TypeAry::empty(void) const {
  2000   return _elem->empty() || _size->empty();
  2003 //--------------------------ary_must_be_exact----------------------------------
  2004 bool TypeAry::ary_must_be_exact() const {
  2005   if (!UseExactTypes)       return false;
  2006   // This logic looks at the element type of an array, and returns true
  2007   // if the element type is either a primitive or a final instance class.
  2008   // In such cases, an array built on this ary must have no subclasses.
  2009   if (_elem == BOTTOM)      return false;  // general array not exact
  2010   if (_elem == TOP   )      return false;  // inverted general array not exact
  2011   const TypeOopPtr*  toop = NULL;
  2012   if (UseCompressedOops && _elem->isa_narrowoop()) {
  2013     toop = _elem->make_ptr()->isa_oopptr();
  2014   } else {
  2015     toop = _elem->isa_oopptr();
  2017   if (!toop)                return true;   // a primitive type, like int
  2018   ciKlass* tklass = toop->klass();
  2019   if (tklass == NULL)       return false;  // unloaded class
  2020   if (!tklass->is_loaded()) return false;  // unloaded class
  2021   const TypeInstPtr* tinst;
  2022   if (_elem->isa_narrowoop())
  2023     tinst = _elem->make_ptr()->isa_instptr();
  2024   else
  2025     tinst = _elem->isa_instptr();
  2026   if (tinst)
  2027     return tklass->as_instance_klass()->is_final();
  2028   const TypeAryPtr*  tap;
  2029   if (_elem->isa_narrowoop())
  2030     tap = _elem->make_ptr()->isa_aryptr();
  2031   else
  2032     tap = _elem->isa_aryptr();
  2033   if (tap)
  2034     return tap->ary()->ary_must_be_exact();
  2035   return false;
  2038 //==============================TypeVect=======================================
  2039 // Convenience common pre-built types.
  2040 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
  2041 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
  2042 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
  2043 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
  2045 //------------------------------make-------------------------------------------
  2046 const TypeVect* TypeVect::make(const Type *elem, uint length) {
  2047   BasicType elem_bt = elem->array_element_basic_type();
  2048   assert(is_java_primitive(elem_bt), "only primitive types in vector");
  2049   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
  2050   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
  2051   int size = length * type2aelembytes(elem_bt);
  2052   switch (Matcher::vector_ideal_reg(size)) {
  2053   case Op_VecS:
  2054     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
  2055   case Op_VecD:
  2056   case Op_RegD:
  2057     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
  2058   case Op_VecX:
  2059     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
  2060   case Op_VecY:
  2061     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
  2063  ShouldNotReachHere();
  2064   return NULL;
  2067 //------------------------------meet-------------------------------------------
  2068 // Compute the MEET of two types.  It returns a new Type object.
  2069 const Type *TypeVect::xmeet( const Type *t ) const {
  2070   // Perform a fast test for common case; meeting the same types together.
  2071   if( this == t ) return this;  // Meeting same type-rep?
  2073   // Current "this->_base" is Vector
  2074   switch (t->base()) {          // switch on original type
  2076   case Bottom:                  // Ye Olde Default
  2077     return t;
  2079   default:                      // All else is a mistake
  2080     typerr(t);
  2082   case VectorS:
  2083   case VectorD:
  2084   case VectorX:
  2085   case VectorY: {                // Meeting 2 vectors?
  2086     const TypeVect* v = t->is_vect();
  2087     assert(  base() == v->base(), "");
  2088     assert(length() == v->length(), "");
  2089     assert(element_basic_type() == v->element_basic_type(), "");
  2090     return TypeVect::make(_elem->xmeet(v->_elem), _length);
  2092   case Top:
  2093     break;
  2095   return this;
  2098 //------------------------------xdual------------------------------------------
  2099 // Dual: compute field-by-field dual
  2100 const Type *TypeVect::xdual() const {
  2101   return new TypeVect(base(), _elem->dual(), _length);
  2104 //------------------------------eq---------------------------------------------
  2105 // Structural equality check for Type representations
  2106 bool TypeVect::eq(const Type *t) const {
  2107   const TypeVect *v = t->is_vect();
  2108   return (_elem == v->_elem) && (_length == v->_length);
  2111 //------------------------------hash-------------------------------------------
  2112 // Type-specific hashing function.
  2113 int TypeVect::hash(void) const {
  2114   return (intptr_t)_elem + (intptr_t)_length;
  2117 //------------------------------singleton--------------------------------------
  2118 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2119 // constants (Ldi nodes).  Vector is singleton if all elements are the same
  2120 // constant value (when vector is created with Replicate code).
  2121 bool TypeVect::singleton(void) const {
  2122 // There is no Con node for vectors yet.
  2123 //  return _elem->singleton();
  2124   return false;
  2127 bool TypeVect::empty(void) const {
  2128   return _elem->empty();
  2131 //------------------------------dump2------------------------------------------
  2132 #ifndef PRODUCT
  2133 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
  2134   switch (base()) {
  2135   case VectorS:
  2136     st->print("vectors["); break;
  2137   case VectorD:
  2138     st->print("vectord["); break;
  2139   case VectorX:
  2140     st->print("vectorx["); break;
  2141   case VectorY:
  2142     st->print("vectory["); break;
  2143   default:
  2144     ShouldNotReachHere();
  2146   st->print("%d]:{", _length);
  2147   _elem->dump2(d, depth, st);
  2148   st->print("}");
  2150 #endif
  2153 //=============================================================================
  2154 // Convenience common pre-built types.
  2155 const TypePtr *TypePtr::NULL_PTR;
  2156 const TypePtr *TypePtr::NOTNULL;
  2157 const TypePtr *TypePtr::BOTTOM;
  2159 //------------------------------meet-------------------------------------------
  2160 // Meet over the PTR enum
  2161 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
  2162   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
  2163   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
  2164   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
  2165   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
  2166   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
  2167   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
  2168   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
  2169 };
  2171 //------------------------------make-------------------------------------------
  2172 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
  2173   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
  2176 //------------------------------cast_to_ptr_type-------------------------------
  2177 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
  2178   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
  2179   if( ptr == _ptr ) return this;
  2180   return make(_base, ptr, _offset);
  2183 //------------------------------get_con----------------------------------------
  2184 intptr_t TypePtr::get_con() const {
  2185   assert( _ptr == Null, "" );
  2186   return _offset;
  2189 //------------------------------meet-------------------------------------------
  2190 // Compute the MEET of two types.  It returns a new Type object.
  2191 const Type *TypePtr::xmeet( const Type *t ) const {
  2192   // Perform a fast test for common case; meeting the same types together.
  2193   if( this == t ) return this;  // Meeting same type-rep?
  2195   // Current "this->_base" is AnyPtr
  2196   switch (t->base()) {          // switch on original type
  2197   case Int:                     // Mixing ints & oops happens when javac
  2198   case Long:                    // reuses local variables
  2199   case FloatTop:
  2200   case FloatCon:
  2201   case FloatBot:
  2202   case DoubleTop:
  2203   case DoubleCon:
  2204   case DoubleBot:
  2205   case NarrowOop:
  2206   case NarrowKlass:
  2207   case Bottom:                  // Ye Olde Default
  2208     return Type::BOTTOM;
  2209   case Top:
  2210     return this;
  2212   case AnyPtr: {                // Meeting to AnyPtrs
  2213     const TypePtr *tp = t->is_ptr();
  2214     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
  2216   case RawPtr:                  // For these, flip the call around to cut down
  2217   case OopPtr:
  2218   case InstPtr:                 // on the cases I have to handle.
  2219   case AryPtr:
  2220   case MetadataPtr:
  2221   case KlassPtr:
  2222     return t->xmeet(this);      // Call in reverse direction
  2223   default:                      // All else is a mistake
  2224     typerr(t);
  2227   return this;
  2230 //------------------------------meet_offset------------------------------------
  2231 int TypePtr::meet_offset( int offset ) const {
  2232   // Either is 'TOP' offset?  Return the other offset!
  2233   if( _offset == OffsetTop ) return offset;
  2234   if( offset == OffsetTop ) return _offset;
  2235   // If either is different, return 'BOTTOM' offset
  2236   if( _offset != offset ) return OffsetBot;
  2237   return _offset;
  2240 //------------------------------dual_offset------------------------------------
  2241 int TypePtr::dual_offset( ) const {
  2242   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
  2243   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
  2244   return _offset;               // Map everything else into self
  2247 //------------------------------xdual------------------------------------------
  2248 // Dual: compute field-by-field dual
  2249 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
  2250   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
  2251 };
  2252 const Type *TypePtr::xdual() const {
  2253   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
  2256 //------------------------------xadd_offset------------------------------------
  2257 int TypePtr::xadd_offset( intptr_t offset ) const {
  2258   // Adding to 'TOP' offset?  Return 'TOP'!
  2259   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
  2260   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  2261   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
  2262   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  2263   offset += (intptr_t)_offset;
  2264   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
  2266   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  2267   // It is possible to construct a negative offset during PhaseCCP
  2269   return (int)offset;        // Sum valid offsets
  2272 //------------------------------add_offset-------------------------------------
  2273 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
  2274   return make( AnyPtr, _ptr, xadd_offset(offset) );
  2277 //------------------------------eq---------------------------------------------
  2278 // Structural equality check for Type representations
  2279 bool TypePtr::eq( const Type *t ) const {
  2280   const TypePtr *a = (const TypePtr*)t;
  2281   return _ptr == a->ptr() && _offset == a->offset();
  2284 //------------------------------hash-------------------------------------------
  2285 // Type-specific hashing function.
  2286 int TypePtr::hash(void) const {
  2287   return _ptr + _offset;
  2290 //------------------------------dump2------------------------------------------
  2291 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
  2292   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
  2293 };
  2295 #ifndef PRODUCT
  2296 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2297   if( _ptr == Null ) st->print("NULL");
  2298   else st->print("%s *", ptr_msg[_ptr]);
  2299   if( _offset == OffsetTop ) st->print("+top");
  2300   else if( _offset == OffsetBot ) st->print("+bot");
  2301   else if( _offset ) st->print("+%d", _offset);
  2303 #endif
  2305 //------------------------------singleton--------------------------------------
  2306 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2307 // constants
  2308 bool TypePtr::singleton(void) const {
  2309   // TopPTR, Null, AnyNull, Constant are all singletons
  2310   return (_offset != OffsetBot) && !below_centerline(_ptr);
  2313 bool TypePtr::empty(void) const {
  2314   return (_offset == OffsetTop) || above_centerline(_ptr);
  2317 //=============================================================================
  2318 // Convenience common pre-built types.
  2319 const TypeRawPtr *TypeRawPtr::BOTTOM;
  2320 const TypeRawPtr *TypeRawPtr::NOTNULL;
  2322 //------------------------------make-------------------------------------------
  2323 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
  2324   assert( ptr != Constant, "what is the constant?" );
  2325   assert( ptr != Null, "Use TypePtr for NULL" );
  2326   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
  2329 const TypeRawPtr *TypeRawPtr::make( address bits ) {
  2330   assert( bits, "Use TypePtr for NULL" );
  2331   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
  2334 //------------------------------cast_to_ptr_type-------------------------------
  2335 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
  2336   assert( ptr != Constant, "what is the constant?" );
  2337   assert( ptr != Null, "Use TypePtr for NULL" );
  2338   assert( _bits==0, "Why cast a constant address?");
  2339   if( ptr == _ptr ) return this;
  2340   return make(ptr);
  2343 //------------------------------get_con----------------------------------------
  2344 intptr_t TypeRawPtr::get_con() const {
  2345   assert( _ptr == Null || _ptr == Constant, "" );
  2346   return (intptr_t)_bits;
  2349 //------------------------------meet-------------------------------------------
  2350 // Compute the MEET of two types.  It returns a new Type object.
  2351 const Type *TypeRawPtr::xmeet( const Type *t ) const {
  2352   // Perform a fast test for common case; meeting the same types together.
  2353   if( this == t ) return this;  // Meeting same type-rep?
  2355   // Current "this->_base" is RawPtr
  2356   switch( t->base() ) {         // switch on original type
  2357   case Bottom:                  // Ye Olde Default
  2358     return t;
  2359   case Top:
  2360     return this;
  2361   case AnyPtr:                  // Meeting to AnyPtrs
  2362     break;
  2363   case RawPtr: {                // might be top, bot, any/not or constant
  2364     enum PTR tptr = t->is_ptr()->ptr();
  2365     enum PTR ptr = meet_ptr( tptr );
  2366     if( ptr == Constant ) {     // Cannot be equal constants, so...
  2367       if( tptr == Constant && _ptr != Constant)  return t;
  2368       if( _ptr == Constant && tptr != Constant)  return this;
  2369       ptr = NotNull;            // Fall down in lattice
  2371     return make( ptr );
  2374   case OopPtr:
  2375   case InstPtr:
  2376   case AryPtr:
  2377   case MetadataPtr:
  2378   case KlassPtr:
  2379     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2380   default:                      // All else is a mistake
  2381     typerr(t);
  2384   // Found an AnyPtr type vs self-RawPtr type
  2385   const TypePtr *tp = t->is_ptr();
  2386   switch (tp->ptr()) {
  2387   case TypePtr::TopPTR:  return this;
  2388   case TypePtr::BotPTR:  return t;
  2389   case TypePtr::Null:
  2390     if( _ptr == TypePtr::TopPTR ) return t;
  2391     return TypeRawPtr::BOTTOM;
  2392   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
  2393   case TypePtr::AnyNull:
  2394     if( _ptr == TypePtr::Constant) return this;
  2395     return make( meet_ptr(TypePtr::AnyNull) );
  2396   default: ShouldNotReachHere();
  2398   return this;
  2401 //------------------------------xdual------------------------------------------
  2402 // Dual: compute field-by-field dual
  2403 const Type *TypeRawPtr::xdual() const {
  2404   return new TypeRawPtr( dual_ptr(), _bits );
  2407 //------------------------------add_offset-------------------------------------
  2408 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
  2409   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
  2410   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
  2411   if( offset == 0 ) return this; // No change
  2412   switch (_ptr) {
  2413   case TypePtr::TopPTR:
  2414   case TypePtr::BotPTR:
  2415   case TypePtr::NotNull:
  2416     return this;
  2417   case TypePtr::Null:
  2418   case TypePtr::Constant: {
  2419     address bits = _bits+offset;
  2420     if ( bits == 0 ) return TypePtr::NULL_PTR;
  2421     return make( bits );
  2423   default:  ShouldNotReachHere();
  2425   return NULL;                  // Lint noise
  2428 //------------------------------eq---------------------------------------------
  2429 // Structural equality check for Type representations
  2430 bool TypeRawPtr::eq( const Type *t ) const {
  2431   const TypeRawPtr *a = (const TypeRawPtr*)t;
  2432   return _bits == a->_bits && TypePtr::eq(t);
  2435 //------------------------------hash-------------------------------------------
  2436 // Type-specific hashing function.
  2437 int TypeRawPtr::hash(void) const {
  2438   return (intptr_t)_bits + TypePtr::hash();
  2441 //------------------------------dump2------------------------------------------
  2442 #ifndef PRODUCT
  2443 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2444   if( _ptr == Constant )
  2445     st->print(INTPTR_FORMAT, _bits);
  2446   else
  2447     st->print("rawptr:%s", ptr_msg[_ptr]);
  2449 #endif
  2451 //=============================================================================
  2452 // Convenience common pre-built type.
  2453 const TypeOopPtr *TypeOopPtr::BOTTOM;
  2455 //------------------------------TypeOopPtr-------------------------------------
  2456 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative)
  2457   : TypePtr(t, ptr, offset),
  2458     _const_oop(o), _klass(k),
  2459     _klass_is_exact(xk),
  2460     _is_ptr_to_narrowoop(false),
  2461     _is_ptr_to_narrowklass(false),
  2462     _is_ptr_to_boxed_value(false),
  2463     _instance_id(instance_id),
  2464     _speculative(speculative) {
  2465   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
  2466       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
  2467     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
  2469 #ifdef _LP64
  2470   if (_offset != 0) {
  2471     if (_offset == oopDesc::klass_offset_in_bytes()) {
  2472       _is_ptr_to_narrowklass = UseCompressedClassPointers;
  2473     } else if (klass() == NULL) {
  2474       // Array with unknown body type
  2475       assert(this->isa_aryptr(), "only arrays without klass");
  2476       _is_ptr_to_narrowoop = UseCompressedOops;
  2477     } else if (this->isa_aryptr()) {
  2478       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
  2479                              _offset != arrayOopDesc::length_offset_in_bytes());
  2480     } else if (klass()->is_instance_klass()) {
  2481       ciInstanceKlass* ik = klass()->as_instance_klass();
  2482       ciField* field = NULL;
  2483       if (this->isa_klassptr()) {
  2484         // Perm objects don't use compressed references
  2485       } else if (_offset == OffsetBot || _offset == OffsetTop) {
  2486         // unsafe access
  2487         _is_ptr_to_narrowoop = UseCompressedOops;
  2488       } else { // exclude unsafe ops
  2489         assert(this->isa_instptr(), "must be an instance ptr.");
  2491         if (klass() == ciEnv::current()->Class_klass() &&
  2492             (_offset == java_lang_Class::klass_offset_in_bytes() ||
  2493              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2494           // Special hidden fields from the Class.
  2495           assert(this->isa_instptr(), "must be an instance ptr.");
  2496           _is_ptr_to_narrowoop = false;
  2497         } else if (klass() == ciEnv::current()->Class_klass() &&
  2498                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
  2499           // Static fields
  2500           assert(o != NULL, "must be constant");
  2501           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
  2502           ciField* field = k->get_field_by_offset(_offset, true);
  2503           assert(field != NULL, "missing field");
  2504           BasicType basic_elem_type = field->layout_type();
  2505           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
  2506                                                        basic_elem_type == T_ARRAY);
  2507         } else {
  2508           // Instance fields which contains a compressed oop references.
  2509           field = ik->get_field_by_offset(_offset, false);
  2510           if (field != NULL) {
  2511             BasicType basic_elem_type = field->layout_type();
  2512             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
  2513                                                          basic_elem_type == T_ARRAY);
  2514           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
  2515             // Compile::find_alias_type() cast exactness on all types to verify
  2516             // that it does not affect alias type.
  2517             _is_ptr_to_narrowoop = UseCompressedOops;
  2518           } else {
  2519             // Type for the copy start in LibraryCallKit::inline_native_clone().
  2520             _is_ptr_to_narrowoop = UseCompressedOops;
  2526 #endif
  2529 //------------------------------make-------------------------------------------
  2530 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
  2531                                    int offset, int instance_id, const TypeOopPtr* speculative) {
  2532   assert(ptr != Constant, "no constant generic pointers");
  2533   ciKlass*  k = Compile::current()->env()->Object_klass();
  2534   bool      xk = false;
  2535   ciObject* o = NULL;
  2536   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative))->hashcons();
  2540 //------------------------------cast_to_ptr_type-------------------------------
  2541 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
  2542   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
  2543   if( ptr == _ptr ) return this;
  2544   return make(ptr, _offset, _instance_id, _speculative);
  2547 //-----------------------------cast_to_instance_id----------------------------
  2548 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
  2549   // There are no instances of a general oop.
  2550   // Return self unchanged.
  2551   return this;
  2554 //-----------------------------cast_to_exactness-------------------------------
  2555 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
  2556   // There is no such thing as an exact general oop.
  2557   // Return self unchanged.
  2558   return this;
  2562 //------------------------------as_klass_type----------------------------------
  2563 // Return the klass type corresponding to this instance or array type.
  2564 // It is the type that is loaded from an object of this type.
  2565 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
  2566   ciKlass* k = klass();
  2567   bool    xk = klass_is_exact();
  2568   if (k == NULL)
  2569     return TypeKlassPtr::OBJECT;
  2570   else
  2571     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
  2574 const Type *TypeOopPtr::xmeet(const Type *t) const {
  2575   const Type* res = xmeet_helper(t);
  2576   if (res->isa_oopptr() == NULL) {
  2577     return res;
  2580   const TypeOopPtr* res_oopptr = res->is_oopptr();
  2581   if (res_oopptr->speculative() != NULL) {
  2582     // type->speculative() == NULL means that speculation is no better
  2583     // than type, i.e. type->speculative() == type. So there are 2
  2584     // ways to represent the fact that we have no useful speculative
  2585     // data and we should use a single one to be able to test for
  2586     // equality between types. Check whether type->speculative() ==
  2587     // type and set speculative to NULL if it is the case.
  2588     if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
  2589       return res_oopptr->remove_speculative();
  2593   return res;
  2596 //------------------------------meet-------------------------------------------
  2597 // Compute the MEET of two types.  It returns a new Type object.
  2598 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
  2599   // Perform a fast test for common case; meeting the same types together.
  2600   if( this == t ) return this;  // Meeting same type-rep?
  2602   // Current "this->_base" is OopPtr
  2603   switch (t->base()) {          // switch on original type
  2605   case Int:                     // Mixing ints & oops happens when javac
  2606   case Long:                    // reuses local variables
  2607   case FloatTop:
  2608   case FloatCon:
  2609   case FloatBot:
  2610   case DoubleTop:
  2611   case DoubleCon:
  2612   case DoubleBot:
  2613   case NarrowOop:
  2614   case NarrowKlass:
  2615   case Bottom:                  // Ye Olde Default
  2616     return Type::BOTTOM;
  2617   case Top:
  2618     return this;
  2620   default:                      // All else is a mistake
  2621     typerr(t);
  2623   case RawPtr:
  2624   case MetadataPtr:
  2625   case KlassPtr:
  2626     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2628   case AnyPtr: {
  2629     // Found an AnyPtr type vs self-OopPtr type
  2630     const TypePtr *tp = t->is_ptr();
  2631     int offset = meet_offset(tp->offset());
  2632     PTR ptr = meet_ptr(tp->ptr());
  2633     switch (tp->ptr()) {
  2634     case Null:
  2635       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  2636       // else fall through:
  2637     case TopPTR:
  2638     case AnyNull: {
  2639       int instance_id = meet_instance_id(InstanceTop);
  2640       const TypeOopPtr* speculative = _speculative;
  2641       return make(ptr, offset, instance_id, speculative);
  2643     case BotPTR:
  2644     case NotNull:
  2645       return TypePtr::make(AnyPtr, ptr, offset);
  2646     default: typerr(t);
  2650   case OopPtr: {                 // Meeting to other OopPtrs
  2651     const TypeOopPtr *tp = t->is_oopptr();
  2652     int instance_id = meet_instance_id(tp->instance_id());
  2653     const TypeOopPtr* speculative = xmeet_speculative(tp);
  2654     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative);
  2657   case InstPtr:                  // For these, flip the call around to cut down
  2658   case AryPtr:
  2659     return t->xmeet(this);      // Call in reverse direction
  2661   } // End of switch
  2662   return this;                  // Return the double constant
  2666 //------------------------------xdual------------------------------------------
  2667 // Dual of a pure heap pointer.  No relevant klass or oop information.
  2668 const Type *TypeOopPtr::xdual() const {
  2669   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
  2670   assert(const_oop() == NULL,             "no constants here");
  2671   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative());
  2674 //--------------------------make_from_klass_common-----------------------------
  2675 // Computes the element-type given a klass.
  2676 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
  2677   if (klass->is_instance_klass()) {
  2678     Compile* C = Compile::current();
  2679     Dependencies* deps = C->dependencies();
  2680     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
  2681     // Element is an instance
  2682     bool klass_is_exact = false;
  2683     if (klass->is_loaded()) {
  2684       // Try to set klass_is_exact.
  2685       ciInstanceKlass* ik = klass->as_instance_klass();
  2686       klass_is_exact = ik->is_final();
  2687       if (!klass_is_exact && klass_change
  2688           && deps != NULL && UseUniqueSubclasses) {
  2689         ciInstanceKlass* sub = ik->unique_concrete_subklass();
  2690         if (sub != NULL) {
  2691           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
  2692           klass = ik = sub;
  2693           klass_is_exact = sub->is_final();
  2696       if (!klass_is_exact && try_for_exact
  2697           && deps != NULL && UseExactTypes) {
  2698         if (!ik->is_interface() && !ik->has_subklass()) {
  2699           // Add a dependence; if concrete subclass added we need to recompile
  2700           deps->assert_leaf_type(ik);
  2701           klass_is_exact = true;
  2705     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
  2706   } else if (klass->is_obj_array_klass()) {
  2707     // Element is an object array. Recursively call ourself.
  2708     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
  2709     bool xk = etype->klass_is_exact();
  2710     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2711     // We used to pass NotNull in here, asserting that the sub-arrays
  2712     // are all not-null.  This is not true in generally, as code can
  2713     // slam NULLs down in the subarrays.
  2714     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
  2715     return arr;
  2716   } else if (klass->is_type_array_klass()) {
  2717     // Element is an typeArray
  2718     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
  2719     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2720     // We used to pass NotNull in here, asserting that the array pointer
  2721     // is not-null. That was not true in general.
  2722     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
  2723     return arr;
  2724   } else {
  2725     ShouldNotReachHere();
  2726     return NULL;
  2730 //------------------------------make_from_constant-----------------------------
  2731 // Make a java pointer from an oop constant
  2732 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
  2733                                                  bool require_constant,
  2734                                                  bool is_autobox_cache) {
  2735   assert(!o->is_null_object(), "null object not yet handled here.");
  2736   ciKlass* klass = o->klass();
  2737   if (klass->is_instance_klass()) {
  2738     // Element is an instance
  2739     if (require_constant) {
  2740       if (!o->can_be_constant())  return NULL;
  2741     } else if (!o->should_be_constant()) {
  2742       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
  2744     return TypeInstPtr::make(o);
  2745   } else if (klass->is_obj_array_klass()) {
  2746     // Element is an object array. Recursively call ourself.
  2747     const TypeOopPtr *etype =
  2748       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
  2749     if (is_autobox_cache) {
  2750       // The pointers in the autobox arrays are always non-null.
  2751       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  2753     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2754     // We used to pass NotNull in here, asserting that the sub-arrays
  2755     // are all not-null.  This is not true in generally, as code can
  2756     // slam NULLs down in the subarrays.
  2757     if (require_constant) {
  2758       if (!o->can_be_constant())  return NULL;
  2759     } else if (!o->should_be_constant()) {
  2760       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2762     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, is_autobox_cache);
  2763     return arr;
  2764   } else if (klass->is_type_array_klass()) {
  2765     // Element is an typeArray
  2766     const Type* etype =
  2767       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
  2768     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2769     // We used to pass NotNull in here, asserting that the array pointer
  2770     // is not-null. That was not true in general.
  2771     if (require_constant) {
  2772       if (!o->can_be_constant())  return NULL;
  2773     } else if (!o->should_be_constant()) {
  2774       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2776     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2777     return arr;
  2780   fatal("unhandled object type");
  2781   return NULL;
  2784 //------------------------------get_con----------------------------------------
  2785 intptr_t TypeOopPtr::get_con() const {
  2786   assert( _ptr == Null || _ptr == Constant, "" );
  2787   assert( _offset >= 0, "" );
  2789   if (_offset != 0) {
  2790     // After being ported to the compiler interface, the compiler no longer
  2791     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  2792     // to a handle at compile time.  This handle is embedded in the generated
  2793     // code and dereferenced at the time the nmethod is made.  Until that time,
  2794     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  2795     // have access to the addresses!).  This does not seem to currently happen,
  2796     // but this assertion here is to help prevent its occurence.
  2797     tty->print_cr("Found oop constant with non-zero offset");
  2798     ShouldNotReachHere();
  2801   return (intptr_t)const_oop()->constant_encoding();
  2805 //-----------------------------filter------------------------------------------
  2806 // Do not allow interface-vs.-noninterface joins to collapse to top.
  2807 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
  2809   const Type* ft = join_helper(kills, include_speculative);
  2810   const TypeInstPtr* ftip = ft->isa_instptr();
  2811   const TypeInstPtr* ktip = kills->isa_instptr();
  2813   if (ft->empty()) {
  2814     // Check for evil case of 'this' being a class and 'kills' expecting an
  2815     // interface.  This can happen because the bytecodes do not contain
  2816     // enough type info to distinguish a Java-level interface variable
  2817     // from a Java-level object variable.  If we meet 2 classes which
  2818     // both implement interface I, but their meet is at 'j/l/O' which
  2819     // doesn't implement I, we have no way to tell if the result should
  2820     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
  2821     // into a Phi which "knows" it's an Interface type we'll have to
  2822     // uplift the type.
  2823     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
  2824       return kills;             // Uplift to interface
  2826     return Type::TOP;           // Canonical empty value
  2829   // If we have an interface-typed Phi or cast and we narrow to a class type,
  2830   // the join should report back the class.  However, if we have a J/L/Object
  2831   // class-typed Phi and an interface flows in, it's possible that the meet &
  2832   // join report an interface back out.  This isn't possible but happens
  2833   // because the type system doesn't interact well with interfaces.
  2834   if (ftip != NULL && ktip != NULL &&
  2835       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
  2836       ktip->is_loaded() && !ktip->klass()->is_interface()) {
  2837     // Happens in a CTW of rt.jar, 320-341, no extra flags
  2838     assert(!ftip->klass_is_exact(), "interface could not be exact");
  2839     return ktip->cast_to_ptr_type(ftip->ptr());
  2842   return ft;
  2845 //------------------------------eq---------------------------------------------
  2846 // Structural equality check for Type representations
  2847 bool TypeOopPtr::eq( const Type *t ) const {
  2848   const TypeOopPtr *a = (const TypeOopPtr*)t;
  2849   if (_klass_is_exact != a->_klass_is_exact ||
  2850       _instance_id != a->_instance_id ||
  2851       !eq_speculative(a))  return false;
  2852   ciObject* one = const_oop();
  2853   ciObject* two = a->const_oop();
  2854   if (one == NULL || two == NULL) {
  2855     return (one == two) && TypePtr::eq(t);
  2856   } else {
  2857     return one->equals(two) && TypePtr::eq(t);
  2861 //------------------------------hash-------------------------------------------
  2862 // Type-specific hashing function.
  2863 int TypeOopPtr::hash(void) const {
  2864   return
  2865     (const_oop() ? const_oop()->hash() : 0) +
  2866     _klass_is_exact +
  2867     _instance_id +
  2868     hash_speculative() +
  2869     TypePtr::hash();
  2872 //------------------------------dump2------------------------------------------
  2873 #ifndef PRODUCT
  2874 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2875   st->print("oopptr:%s", ptr_msg[_ptr]);
  2876   if( _klass_is_exact ) st->print(":exact");
  2877   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
  2878   switch( _offset ) {
  2879   case OffsetTop: st->print("+top"); break;
  2880   case OffsetBot: st->print("+any"); break;
  2881   case         0: break;
  2882   default:        st->print("+%d",_offset); break;
  2884   if (_instance_id == InstanceTop)
  2885     st->print(",iid=top");
  2886   else if (_instance_id != InstanceBot)
  2887     st->print(",iid=%d",_instance_id);
  2889   dump_speculative(st);
  2892 /**
  2893  *dump the speculative part of the type
  2894  */
  2895 void TypeOopPtr::dump_speculative(outputStream *st) const {
  2896   if (_speculative != NULL) {
  2897     st->print(" (speculative=");
  2898     _speculative->dump_on(st);
  2899     st->print(")");
  2902 #endif
  2904 //------------------------------singleton--------------------------------------
  2905 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2906 // constants
  2907 bool TypeOopPtr::singleton(void) const {
  2908   // detune optimizer to not generate constant oop + constant offset as a constant!
  2909   // TopPTR, Null, AnyNull, Constant are all singletons
  2910   return (_offset == 0) && !below_centerline(_ptr);
  2913 //------------------------------add_offset-------------------------------------
  2914 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
  2915   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset));
  2918 /**
  2919  * Return same type without a speculative part
  2920  */
  2921 const Type* TypeOopPtr::remove_speculative() const {
  2922   if (_speculative == NULL) {
  2923     return this;
  2925   return make(_ptr, _offset, _instance_id, NULL);
  2928 //------------------------------meet_instance_id--------------------------------
  2929 int TypeOopPtr::meet_instance_id( int instance_id ) const {
  2930   // Either is 'TOP' instance?  Return the other instance!
  2931   if( _instance_id == InstanceTop ) return  instance_id;
  2932   if(  instance_id == InstanceTop ) return _instance_id;
  2933   // If either is different, return 'BOTTOM' instance
  2934   if( _instance_id != instance_id ) return InstanceBot;
  2935   return _instance_id;
  2938 //------------------------------dual_instance_id--------------------------------
  2939 int TypeOopPtr::dual_instance_id( ) const {
  2940   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
  2941   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
  2942   return _instance_id;              // Map everything else into self
  2945 /**
  2946  * meet of the speculative parts of 2 types
  2948  * @param other  type to meet with
  2949  */
  2950 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
  2951   bool this_has_spec = (_speculative != NULL);
  2952   bool other_has_spec = (other->speculative() != NULL);
  2954   if (!this_has_spec && !other_has_spec) {
  2955     return NULL;
  2958   // If we are at a point where control flow meets and one branch has
  2959   // a speculative type and the other has not, we meet the speculative
  2960   // type of one branch with the actual type of the other. If the
  2961   // actual type is exact and the speculative is as well, then the
  2962   // result is a speculative type which is exact and we can continue
  2963   // speculation further.
  2964   const TypeOopPtr* this_spec = _speculative;
  2965   const TypeOopPtr* other_spec = other->speculative();
  2967   if (!this_has_spec) {
  2968     this_spec = this;
  2971   if (!other_has_spec) {
  2972     other_spec = other;
  2975   return this_spec->meet_speculative(other_spec)->is_oopptr();
  2978 /**
  2979  * dual of the speculative part of the type
  2980  */
  2981 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
  2982   if (_speculative == NULL) {
  2983     return NULL;
  2985   return _speculative->dual()->is_oopptr();
  2988 /**
  2989  * add offset to the speculative part of the type
  2991  * @param offset  offset to add
  2992  */
  2993 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
  2994   if (_speculative == NULL) {
  2995     return NULL;
  2997   return _speculative->add_offset(offset)->is_oopptr();
  3000 /**
  3001  * Are the speculative parts of 2 types equal?
  3003  * @param other  type to compare this one to
  3004  */
  3005 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
  3006   if (_speculative == NULL || other->speculative() == NULL) {
  3007     return _speculative == other->speculative();
  3010   if (_speculative->base() != other->speculative()->base()) {
  3011     return false;
  3014   return _speculative->eq(other->speculative());
  3017 /**
  3018  * Hash of the speculative part of the type
  3019  */
  3020 int TypeOopPtr::hash_speculative() const {
  3021   if (_speculative == NULL) {
  3022     return 0;
  3025   return _speculative->hash();
  3029 //=============================================================================
  3030 // Convenience common pre-built types.
  3031 const TypeInstPtr *TypeInstPtr::NOTNULL;
  3032 const TypeInstPtr *TypeInstPtr::BOTTOM;
  3033 const TypeInstPtr *TypeInstPtr::MIRROR;
  3034 const TypeInstPtr *TypeInstPtr::MARK;
  3035 const TypeInstPtr *TypeInstPtr::KLASS;
  3037 //------------------------------TypeInstPtr-------------------------------------
  3038 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative)
  3039   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative), _name(k->name()) {
  3040    assert(k != NULL &&
  3041           (k->is_loaded() || o == NULL),
  3042           "cannot have constants with non-loaded klass");
  3043 };
  3045 //------------------------------make-------------------------------------------
  3046 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
  3047                                      ciKlass* k,
  3048                                      bool xk,
  3049                                      ciObject* o,
  3050                                      int offset,
  3051                                      int instance_id,
  3052                                      const TypeOopPtr* speculative) {
  3053   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
  3054   // Either const_oop() is NULL or else ptr is Constant
  3055   assert( (!o && ptr != Constant) || (o && ptr == Constant),
  3056           "constant pointers must have a value supplied" );
  3057   // Ptr is never Null
  3058   assert( ptr != Null, "NULL pointers are not typed" );
  3060   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3061   if (!UseExactTypes)  xk = false;
  3062   if (ptr == Constant) {
  3063     // Note:  This case includes meta-object constants, such as methods.
  3064     xk = true;
  3065   } else if (k->is_loaded()) {
  3066     ciInstanceKlass* ik = k->as_instance_klass();
  3067     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
  3068     if (xk && ik->is_interface())  xk = false;  // no exact interface
  3071   // Now hash this baby
  3072   TypeInstPtr *result =
  3073     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative))->hashcons();
  3075   return result;
  3078 /**
  3079  *  Create constant type for a constant boxed value
  3080  */
  3081 const Type* TypeInstPtr::get_const_boxed_value() const {
  3082   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
  3083   assert((const_oop() != NULL), "should be called only for constant object");
  3084   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
  3085   BasicType bt = constant.basic_type();
  3086   switch (bt) {
  3087     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
  3088     case T_INT:      return TypeInt::make(constant.as_int());
  3089     case T_CHAR:     return TypeInt::make(constant.as_char());
  3090     case T_BYTE:     return TypeInt::make(constant.as_byte());
  3091     case T_SHORT:    return TypeInt::make(constant.as_short());
  3092     case T_FLOAT:    return TypeF::make(constant.as_float());
  3093     case T_DOUBLE:   return TypeD::make(constant.as_double());
  3094     case T_LONG:     return TypeLong::make(constant.as_long());
  3095     default:         break;
  3097   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
  3098   return NULL;
  3101 //------------------------------cast_to_ptr_type-------------------------------
  3102 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
  3103   if( ptr == _ptr ) return this;
  3104   // Reconstruct _sig info here since not a problem with later lazy
  3105   // construction, _sig will show up on demand.
  3106   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative);
  3110 //-----------------------------cast_to_exactness-------------------------------
  3111 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
  3112   if( klass_is_exact == _klass_is_exact ) return this;
  3113   if (!UseExactTypes)  return this;
  3114   if (!_klass->is_loaded())  return this;
  3115   ciInstanceKlass* ik = _klass->as_instance_klass();
  3116   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
  3117   if( ik->is_interface() )              return this;  // cannot set xk
  3118   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative);
  3121 //-----------------------------cast_to_instance_id----------------------------
  3122 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
  3123   if( instance_id == _instance_id ) return this;
  3124   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative);
  3127 //------------------------------xmeet_unloaded---------------------------------
  3128 // Compute the MEET of two InstPtrs when at least one is unloaded.
  3129 // Assume classes are different since called after check for same name/class-loader
  3130 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
  3131     int off = meet_offset(tinst->offset());
  3132     PTR ptr = meet_ptr(tinst->ptr());
  3133     int instance_id = meet_instance_id(tinst->instance_id());
  3134     const TypeOopPtr* speculative = xmeet_speculative(tinst);
  3136     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
  3137     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
  3138     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3139       //
  3140       // Meet unloaded class with java/lang/Object
  3141       //
  3142       // Meet
  3143       //          |                     Unloaded Class
  3144       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
  3145       //  ===================================================================
  3146       //   TOP    | ..........................Unloaded......................|
  3147       //  AnyNull |  U-AN    |................Unloaded......................|
  3148       // Constant | ... O-NN .................................. |   O-BOT   |
  3149       //  NotNull | ... O-NN .................................. |   O-BOT   |
  3150       //  BOTTOM  | ........................Object-BOTTOM ..................|
  3151       //
  3152       assert(loaded->ptr() != TypePtr::Null, "insanity check");
  3153       //
  3154       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
  3155       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative); }
  3156       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
  3157       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
  3158         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
  3159         else                                      { return TypeInstPtr::NOTNULL; }
  3161       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
  3163       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
  3166     // Both are unloaded, not the same class, not Object
  3167     // Or meet unloaded with a different loaded class, not java/lang/Object
  3168     if( ptr != TypePtr::BotPTR ) {
  3169       return TypeInstPtr::NOTNULL;
  3171     return TypeInstPtr::BOTTOM;
  3175 //------------------------------meet-------------------------------------------
  3176 // Compute the MEET of two types.  It returns a new Type object.
  3177 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
  3178   // Perform a fast test for common case; meeting the same types together.
  3179   if( this == t ) return this;  // Meeting same type-rep?
  3181   // Current "this->_base" is Pointer
  3182   switch (t->base()) {          // switch on original type
  3184   case Int:                     // Mixing ints & oops happens when javac
  3185   case Long:                    // reuses local variables
  3186   case FloatTop:
  3187   case FloatCon:
  3188   case FloatBot:
  3189   case DoubleTop:
  3190   case DoubleCon:
  3191   case DoubleBot:
  3192   case NarrowOop:
  3193   case NarrowKlass:
  3194   case Bottom:                  // Ye Olde Default
  3195     return Type::BOTTOM;
  3196   case Top:
  3197     return this;
  3199   default:                      // All else is a mistake
  3200     typerr(t);
  3202   case MetadataPtr:
  3203   case KlassPtr:
  3204   case RawPtr: return TypePtr::BOTTOM;
  3206   case AryPtr: {                // All arrays inherit from Object class
  3207     const TypeAryPtr *tp = t->is_aryptr();
  3208     int offset = meet_offset(tp->offset());
  3209     PTR ptr = meet_ptr(tp->ptr());
  3210     int instance_id = meet_instance_id(tp->instance_id());
  3211     const TypeOopPtr* speculative = xmeet_speculative(tp);
  3212     switch (ptr) {
  3213     case TopPTR:
  3214     case AnyNull:                // Fall 'down' to dual of object klass
  3215       // For instances when a subclass meets a superclass we fall
  3216       // below the centerline when the superclass is exact. We need to
  3217       // do the same here.
  3218       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
  3219         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative);
  3220       } else {
  3221         // cannot subclass, so the meet has to fall badly below the centerline
  3222         ptr = NotNull;
  3223         instance_id = InstanceBot;
  3224         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative);
  3226     case Constant:
  3227     case NotNull:
  3228     case BotPTR:                // Fall down to object klass
  3229       // LCA is object_klass, but if we subclass from the top we can do better
  3230       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
  3231         // If 'this' (InstPtr) is above the centerline and it is Object class
  3232         // then we can subclass in the Java class hierarchy.
  3233         // For instances when a subclass meets a superclass we fall
  3234         // below the centerline when the superclass is exact. We need
  3235         // to do the same here.
  3236         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
  3237           // that is, tp's array type is a subtype of my klass
  3238           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
  3239                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative);
  3242       // The other case cannot happen, since I cannot be a subtype of an array.
  3243       // The meet falls down to Object class below centerline.
  3244       if( ptr == Constant )
  3245          ptr = NotNull;
  3246       instance_id = InstanceBot;
  3247       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative);
  3248     default: typerr(t);
  3252   case OopPtr: {                // Meeting to OopPtrs
  3253     // Found a OopPtr type vs self-InstPtr type
  3254     const TypeOopPtr *tp = t->is_oopptr();
  3255     int offset = meet_offset(tp->offset());
  3256     PTR ptr = meet_ptr(tp->ptr());
  3257     switch (tp->ptr()) {
  3258     case TopPTR:
  3259     case AnyNull: {
  3260       int instance_id = meet_instance_id(InstanceTop);
  3261       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3262       return make(ptr, klass(), klass_is_exact(),
  3263                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative);
  3265     case NotNull:
  3266     case BotPTR: {
  3267       int instance_id = meet_instance_id(tp->instance_id());
  3268       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3269       return TypeOopPtr::make(ptr, offset, instance_id, speculative);
  3271     default: typerr(t);
  3275   case AnyPtr: {                // Meeting to AnyPtrs
  3276     // Found an AnyPtr type vs self-InstPtr type
  3277     const TypePtr *tp = t->is_ptr();
  3278     int offset = meet_offset(tp->offset());
  3279     PTR ptr = meet_ptr(tp->ptr());
  3280     switch (tp->ptr()) {
  3281     case Null:
  3282       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3283       // else fall through to AnyNull
  3284     case TopPTR:
  3285     case AnyNull: {
  3286       int instance_id = meet_instance_id(InstanceTop);
  3287       const TypeOopPtr* speculative = _speculative;
  3288       return make(ptr, klass(), klass_is_exact(),
  3289                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative);
  3291     case NotNull:
  3292     case BotPTR:
  3293       return TypePtr::make(AnyPtr, ptr, offset);
  3294     default: typerr(t);
  3298   /*
  3299                  A-top         }
  3300                /   |   \       }  Tops
  3301            B-top A-any C-top   }
  3302               | /  |  \ |      }  Any-nulls
  3303            B-any   |   C-any   }
  3304               |    |    |
  3305            B-con A-con C-con   } constants; not comparable across classes
  3306               |    |    |
  3307            B-not   |   C-not   }
  3308               | \  |  / |      }  not-nulls
  3309            B-bot A-not C-bot   }
  3310                \   |   /       }  Bottoms
  3311                  A-bot         }
  3312   */
  3314   case InstPtr: {                // Meeting 2 Oops?
  3315     // Found an InstPtr sub-type vs self-InstPtr type
  3316     const TypeInstPtr *tinst = t->is_instptr();
  3317     int off = meet_offset( tinst->offset() );
  3318     PTR ptr = meet_ptr( tinst->ptr() );
  3319     int instance_id = meet_instance_id(tinst->instance_id());
  3320     const TypeOopPtr* speculative = xmeet_speculative(tinst);
  3322     // Check for easy case; klasses are equal (and perhaps not loaded!)
  3323     // If we have constants, then we created oops so classes are loaded
  3324     // and we can handle the constants further down.  This case handles
  3325     // both-not-loaded or both-loaded classes
  3326     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
  3327       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative);
  3330     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  3331     ciKlass* tinst_klass = tinst->klass();
  3332     ciKlass* this_klass  = this->klass();
  3333     bool tinst_xk = tinst->klass_is_exact();
  3334     bool this_xk  = this->klass_is_exact();
  3335     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
  3336       // One of these classes has not been loaded
  3337       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
  3338 #ifndef PRODUCT
  3339       if( PrintOpto && Verbose ) {
  3340         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
  3341         tty->print("  this == "); this->dump(); tty->cr();
  3342         tty->print(" tinst == "); tinst->dump(); tty->cr();
  3344 #endif
  3345       return unloaded_meet;
  3348     // Handle mixing oops and interfaces first.
  3349     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
  3350                                         tinst_klass == ciEnv::current()->Object_klass())) {
  3351       ciKlass *tmp = tinst_klass; // Swap interface around
  3352       tinst_klass = this_klass;
  3353       this_klass = tmp;
  3354       bool tmp2 = tinst_xk;
  3355       tinst_xk = this_xk;
  3356       this_xk = tmp2;
  3358     if (tinst_klass->is_interface() &&
  3359         !(this_klass->is_interface() ||
  3360           // Treat java/lang/Object as an honorary interface,
  3361           // because we need a bottom for the interface hierarchy.
  3362           this_klass == ciEnv::current()->Object_klass())) {
  3363       // Oop meets interface!
  3365       // See if the oop subtypes (implements) interface.
  3366       ciKlass *k;
  3367       bool xk;
  3368       if( this_klass->is_subtype_of( tinst_klass ) ) {
  3369         // Oop indeed subtypes.  Now keep oop or interface depending
  3370         // on whether we are both above the centerline or either is
  3371         // below the centerline.  If we are on the centerline
  3372         // (e.g., Constant vs. AnyNull interface), use the constant.
  3373         k  = below_centerline(ptr) ? tinst_klass : this_klass;
  3374         // If we are keeping this_klass, keep its exactness too.
  3375         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
  3376       } else {                  // Does not implement, fall to Object
  3377         // Oop does not implement interface, so mixing falls to Object
  3378         // just like the verifier does (if both are above the
  3379         // centerline fall to interface)
  3380         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
  3381         xk = above_centerline(ptr) ? tinst_xk : false;
  3382         // Watch out for Constant vs. AnyNull interface.
  3383         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
  3384         instance_id = InstanceBot;
  3386       ciObject* o = NULL;  // the Constant value, if any
  3387       if (ptr == Constant) {
  3388         // Find out which constant.
  3389         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
  3391       return make(ptr, k, xk, o, off, instance_id, speculative);
  3394     // Either oop vs oop or interface vs interface or interface vs Object
  3396     // !!! Here's how the symmetry requirement breaks down into invariants:
  3397     // If we split one up & one down AND they subtype, take the down man.
  3398     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3399     // If both are up and they subtype, take the subtype class.
  3400     // If both are up and they do NOT subtype, "fall hard".
  3401     // If both are down and they subtype, take the supertype class.
  3402     // If both are down and they do NOT subtype, "fall hard".
  3403     // Constants treated as down.
  3405     // Now, reorder the above list; observe that both-down+subtype is also
  3406     // "fall hard"; "fall hard" becomes the default case:
  3407     // If we split one up & one down AND they subtype, take the down man.
  3408     // If both are up and they subtype, take the subtype class.
  3410     // If both are down and they subtype, "fall hard".
  3411     // If both are down and they do NOT subtype, "fall hard".
  3412     // If both are up and they do NOT subtype, "fall hard".
  3413     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3415     // If a proper subtype is exact, and we return it, we return it exactly.
  3416     // If a proper supertype is exact, there can be no subtyping relationship!
  3417     // If both types are equal to the subtype, exactness is and-ed below the
  3418     // centerline and or-ed above it.  (N.B. Constants are always exact.)
  3420     // Check for subtyping:
  3421     ciKlass *subtype = NULL;
  3422     bool subtype_exact = false;
  3423     if( tinst_klass->equals(this_klass) ) {
  3424       subtype = this_klass;
  3425       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
  3426     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
  3427       subtype = this_klass;     // Pick subtyping class
  3428       subtype_exact = this_xk;
  3429     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
  3430       subtype = tinst_klass;    // Pick subtyping class
  3431       subtype_exact = tinst_xk;
  3434     if( subtype ) {
  3435       if( above_centerline(ptr) ) { // both are up?
  3436         this_klass = tinst_klass = subtype;
  3437         this_xk = tinst_xk = subtype_exact;
  3438       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
  3439         this_klass = tinst_klass; // tinst is down; keep down man
  3440         this_xk = tinst_xk;
  3441       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
  3442         tinst_klass = this_klass; // this is down; keep down man
  3443         tinst_xk = this_xk;
  3444       } else {
  3445         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
  3449     // Check for classes now being equal
  3450     if (tinst_klass->equals(this_klass)) {
  3451       // If the klasses are equal, the constants may still differ.  Fall to
  3452       // NotNull if they do (neither constant is NULL; that is a special case
  3453       // handled elsewhere).
  3454       ciObject* o = NULL;             // Assume not constant when done
  3455       ciObject* this_oop  = const_oop();
  3456       ciObject* tinst_oop = tinst->const_oop();
  3457       if( ptr == Constant ) {
  3458         if (this_oop != NULL && tinst_oop != NULL &&
  3459             this_oop->equals(tinst_oop) )
  3460           o = this_oop;
  3461         else if (above_centerline(this ->_ptr))
  3462           o = tinst_oop;
  3463         else if (above_centerline(tinst ->_ptr))
  3464           o = this_oop;
  3465         else
  3466           ptr = NotNull;
  3468       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative);
  3469     } // Else classes are not equal
  3471     // Since klasses are different, we require a LCA in the Java
  3472     // class hierarchy - which means we have to fall to at least NotNull.
  3473     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  3474       ptr = NotNull;
  3475     instance_id = InstanceBot;
  3477     // Now we find the LCA of Java classes
  3478     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
  3479     return make(ptr, k, false, NULL, off, instance_id, speculative);
  3480   } // End of case InstPtr
  3482   } // End of switch
  3483   return this;                  // Return the double constant
  3487 //------------------------java_mirror_type--------------------------------------
  3488 ciType* TypeInstPtr::java_mirror_type() const {
  3489   // must be a singleton type
  3490   if( const_oop() == NULL )  return NULL;
  3492   // must be of type java.lang.Class
  3493   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
  3495   return const_oop()->as_instance()->java_mirror_type();
  3499 //------------------------------xdual------------------------------------------
  3500 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
  3501 // inheritance mechanism.
  3502 const Type *TypeInstPtr::xdual() const {
  3503   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative());
  3506 //------------------------------eq---------------------------------------------
  3507 // Structural equality check for Type representations
  3508 bool TypeInstPtr::eq( const Type *t ) const {
  3509   const TypeInstPtr *p = t->is_instptr();
  3510   return
  3511     klass()->equals(p->klass()) &&
  3512     TypeOopPtr::eq(p);          // Check sub-type stuff
  3515 //------------------------------hash-------------------------------------------
  3516 // Type-specific hashing function.
  3517 int TypeInstPtr::hash(void) const {
  3518   int hash = klass()->hash() + TypeOopPtr::hash();
  3519   return hash;
  3522 //------------------------------dump2------------------------------------------
  3523 // Dump oop Type
  3524 #ifndef PRODUCT
  3525 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3526   // Print the name of the klass.
  3527   klass()->print_name_on(st);
  3529   switch( _ptr ) {
  3530   case Constant:
  3531     // TO DO: Make CI print the hex address of the underlying oop.
  3532     if (WizardMode || Verbose) {
  3533       const_oop()->print_oop(st);
  3535   case BotPTR:
  3536     if (!WizardMode && !Verbose) {
  3537       if( _klass_is_exact ) st->print(":exact");
  3538       break;
  3540   case TopPTR:
  3541   case AnyNull:
  3542   case NotNull:
  3543     st->print(":%s", ptr_msg[_ptr]);
  3544     if( _klass_is_exact ) st->print(":exact");
  3545     break;
  3548   if( _offset ) {               // Dump offset, if any
  3549     if( _offset == OffsetBot )      st->print("+any");
  3550     else if( _offset == OffsetTop ) st->print("+unknown");
  3551     else st->print("+%d", _offset);
  3554   st->print(" *");
  3555   if (_instance_id == InstanceTop)
  3556     st->print(",iid=top");
  3557   else if (_instance_id != InstanceBot)
  3558     st->print(",iid=%d",_instance_id);
  3560   dump_speculative(st);
  3562 #endif
  3564 //------------------------------add_offset-------------------------------------
  3565 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
  3566   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
  3569 const Type *TypeInstPtr::remove_speculative() const {
  3570   if (_speculative == NULL) {
  3571     return this;
  3573   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL);
  3576 //=============================================================================
  3577 // Convenience common pre-built types.
  3578 const TypeAryPtr *TypeAryPtr::RANGE;
  3579 const TypeAryPtr *TypeAryPtr::OOPS;
  3580 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
  3581 const TypeAryPtr *TypeAryPtr::BYTES;
  3582 const TypeAryPtr *TypeAryPtr::SHORTS;
  3583 const TypeAryPtr *TypeAryPtr::CHARS;
  3584 const TypeAryPtr *TypeAryPtr::INTS;
  3585 const TypeAryPtr *TypeAryPtr::LONGS;
  3586 const TypeAryPtr *TypeAryPtr::FLOATS;
  3587 const TypeAryPtr *TypeAryPtr::DOUBLES;
  3589 //------------------------------make-------------------------------------------
  3590 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative) {
  3591   assert(!(k == NULL && ary->_elem->isa_int()),
  3592          "integral arrays must be pre-equipped with a class");
  3593   if (!xk)  xk = ary->ary_must_be_exact();
  3594   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3595   if (!UseExactTypes)  xk = (ptr == Constant);
  3596   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative))->hashcons();
  3599 //------------------------------make-------------------------------------------
  3600 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, bool is_autobox_cache) {
  3601   assert(!(k == NULL && ary->_elem->isa_int()),
  3602          "integral arrays must be pre-equipped with a class");
  3603   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
  3604   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
  3605   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3606   if (!UseExactTypes)  xk = (ptr == Constant);
  3607   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative))->hashcons();
  3610 //------------------------------cast_to_ptr_type-------------------------------
  3611 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
  3612   if( ptr == _ptr ) return this;
  3613   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative);
  3617 //-----------------------------cast_to_exactness-------------------------------
  3618 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
  3619   if( klass_is_exact == _klass_is_exact ) return this;
  3620   if (!UseExactTypes)  return this;
  3621   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
  3622   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative);
  3625 //-----------------------------cast_to_instance_id----------------------------
  3626 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
  3627   if( instance_id == _instance_id ) return this;
  3628   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative);
  3631 //-----------------------------narrow_size_type-------------------------------
  3632 // Local cache for arrayOopDesc::max_array_length(etype),
  3633 // which is kind of slow (and cached elsewhere by other users).
  3634 static jint max_array_length_cache[T_CONFLICT+1];
  3635 static jint max_array_length(BasicType etype) {
  3636   jint& cache = max_array_length_cache[etype];
  3637   jint res = cache;
  3638   if (res == 0) {
  3639     switch (etype) {
  3640     case T_NARROWOOP:
  3641       etype = T_OBJECT;
  3642       break;
  3643     case T_NARROWKLASS:
  3644     case T_CONFLICT:
  3645     case T_ILLEGAL:
  3646     case T_VOID:
  3647       etype = T_BYTE;           // will produce conservatively high value
  3649     cache = res = arrayOopDesc::max_array_length(etype);
  3651   return res;
  3654 // Narrow the given size type to the index range for the given array base type.
  3655 // Return NULL if the resulting int type becomes empty.
  3656 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
  3657   jint hi = size->_hi;
  3658   jint lo = size->_lo;
  3659   jint min_lo = 0;
  3660   jint max_hi = max_array_length(elem()->basic_type());
  3661   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
  3662   bool chg = false;
  3663   if (lo < min_lo) {
  3664     lo = min_lo;
  3665     if (size->is_con()) {
  3666       hi = lo;
  3668     chg = true;
  3670   if (hi > max_hi) {
  3671     hi = max_hi;
  3672     if (size->is_con()) {
  3673       lo = hi;
  3675     chg = true;
  3677   // Negative length arrays will produce weird intermediate dead fast-path code
  3678   if (lo > hi)
  3679     return TypeInt::ZERO;
  3680   if (!chg)
  3681     return size;
  3682   return TypeInt::make(lo, hi, Type::WidenMin);
  3685 //-------------------------------cast_to_size----------------------------------
  3686 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
  3687   assert(new_size != NULL, "");
  3688   new_size = narrow_size_type(new_size);
  3689   if (new_size == size())  return this;
  3690   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
  3691   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative);
  3695 //------------------------------cast_to_stable---------------------------------
  3696 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
  3697   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
  3698     return this;
  3700   const Type* elem = this->elem();
  3701   const TypePtr* elem_ptr = elem->make_ptr();
  3703   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
  3704     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
  3705     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
  3708   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
  3710   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
  3713 //-----------------------------stable_dimension--------------------------------
  3714 int TypeAryPtr::stable_dimension() const {
  3715   if (!is_stable())  return 0;
  3716   int dim = 1;
  3717   const TypePtr* elem_ptr = elem()->make_ptr();
  3718   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
  3719     dim += elem_ptr->is_aryptr()->stable_dimension();
  3720   return dim;
  3723 //------------------------------eq---------------------------------------------
  3724 // Structural equality check for Type representations
  3725 bool TypeAryPtr::eq( const Type *t ) const {
  3726   const TypeAryPtr *p = t->is_aryptr();
  3727   return
  3728     _ary == p->_ary &&  // Check array
  3729     TypeOopPtr::eq(p);  // Check sub-parts
  3732 //------------------------------hash-------------------------------------------
  3733 // Type-specific hashing function.
  3734 int TypeAryPtr::hash(void) const {
  3735   return (intptr_t)_ary + TypeOopPtr::hash();
  3738 //------------------------------meet-------------------------------------------
  3739 // Compute the MEET of two types.  It returns a new Type object.
  3740 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
  3741   // Perform a fast test for common case; meeting the same types together.
  3742   if( this == t ) return this;  // Meeting same type-rep?
  3743   // Current "this->_base" is Pointer
  3744   switch (t->base()) {          // switch on original type
  3746   // Mixing ints & oops happens when javac reuses local variables
  3747   case Int:
  3748   case Long:
  3749   case FloatTop:
  3750   case FloatCon:
  3751   case FloatBot:
  3752   case DoubleTop:
  3753   case DoubleCon:
  3754   case DoubleBot:
  3755   case NarrowOop:
  3756   case NarrowKlass:
  3757   case Bottom:                  // Ye Olde Default
  3758     return Type::BOTTOM;
  3759   case Top:
  3760     return this;
  3762   default:                      // All else is a mistake
  3763     typerr(t);
  3765   case OopPtr: {                // Meeting to OopPtrs
  3766     // Found a OopPtr type vs self-AryPtr type
  3767     const TypeOopPtr *tp = t->is_oopptr();
  3768     int offset = meet_offset(tp->offset());
  3769     PTR ptr = meet_ptr(tp->ptr());
  3770     switch (tp->ptr()) {
  3771     case TopPTR:
  3772     case AnyNull: {
  3773       int instance_id = meet_instance_id(InstanceTop);
  3774       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3775       return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3776                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
  3778     case BotPTR:
  3779     case NotNull: {
  3780       int instance_id = meet_instance_id(tp->instance_id());
  3781       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3782       return TypeOopPtr::make(ptr, offset, instance_id, speculative);
  3784     default: ShouldNotReachHere();
  3788   case AnyPtr: {                // Meeting two AnyPtrs
  3789     // Found an AnyPtr type vs self-AryPtr type
  3790     const TypePtr *tp = t->is_ptr();
  3791     int offset = meet_offset(tp->offset());
  3792     PTR ptr = meet_ptr(tp->ptr());
  3793     switch (tp->ptr()) {
  3794     case TopPTR:
  3795       return this;
  3796     case BotPTR:
  3797     case NotNull:
  3798       return TypePtr::make(AnyPtr, ptr, offset);
  3799     case Null:
  3800       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3801       // else fall through to AnyNull
  3802     case AnyNull: {
  3803       int instance_id = meet_instance_id(InstanceTop);
  3804       const TypeOopPtr* speculative = _speculative;
  3805       return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3806                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
  3808     default: ShouldNotReachHere();
  3812   case MetadataPtr:
  3813   case KlassPtr:
  3814   case RawPtr: return TypePtr::BOTTOM;
  3816   case AryPtr: {                // Meeting 2 references?
  3817     const TypeAryPtr *tap = t->is_aryptr();
  3818     int off = meet_offset(tap->offset());
  3819     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
  3820     PTR ptr = meet_ptr(tap->ptr());
  3821     int instance_id = meet_instance_id(tap->instance_id());
  3822     const TypeOopPtr* speculative = xmeet_speculative(tap);
  3823     ciKlass* lazy_klass = NULL;
  3824     if (tary->_elem->isa_int()) {
  3825       // Integral array element types have irrelevant lattice relations.
  3826       // It is the klass that determines array layout, not the element type.
  3827       if (_klass == NULL)
  3828         lazy_klass = tap->_klass;
  3829       else if (tap->_klass == NULL || tap->_klass == _klass) {
  3830         lazy_klass = _klass;
  3831       } else {
  3832         // Something like byte[int+] meets char[int+].
  3833         // This must fall to bottom, not (int[-128..65535])[int+].
  3834         instance_id = InstanceBot;
  3835         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
  3837     } else // Non integral arrays.
  3838       // Must fall to bottom if exact klasses in upper lattice
  3839       // are not equal or super klass is exact.
  3840       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
  3841           // meet with top[] and bottom[] are processed further down:
  3842           tap->_klass != NULL  && this->_klass != NULL   &&
  3843           // both are exact and not equal:
  3844           ((tap->_klass_is_exact && this->_klass_is_exact) ||
  3845            // 'tap'  is exact and super or unrelated:
  3846            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
  3847            // 'this' is exact and super or unrelated:
  3848            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
  3849       tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
  3850       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
  3853     bool xk = false;
  3854     switch (tap->ptr()) {
  3855     case AnyNull:
  3856     case TopPTR:
  3857       // Compute new klass on demand, do not use tap->_klass
  3858       if (below_centerline(this->_ptr)) {
  3859         xk = this->_klass_is_exact;
  3860       } else {
  3861         xk = (tap->_klass_is_exact | this->_klass_is_exact);
  3863       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative);
  3864     case Constant: {
  3865       ciObject* o = const_oop();
  3866       if( _ptr == Constant ) {
  3867         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
  3868           xk = (klass() == tap->klass());
  3869           ptr = NotNull;
  3870           o = NULL;
  3871           instance_id = InstanceBot;
  3872         } else {
  3873           xk = true;
  3875       } else if(above_centerline(_ptr)) {
  3876         o = tap->const_oop();
  3877         xk = true;
  3878       } else {
  3879         // Only precise for identical arrays
  3880         xk = this->_klass_is_exact && (klass() == tap->klass());
  3882       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative);
  3884     case NotNull:
  3885     case BotPTR:
  3886       // Compute new klass on demand, do not use tap->_klass
  3887       if (above_centerline(this->_ptr))
  3888             xk = tap->_klass_is_exact;
  3889       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
  3890               (klass() == tap->klass()); // Only precise for identical arrays
  3891       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative);
  3892     default: ShouldNotReachHere();
  3896   // All arrays inherit from Object class
  3897   case InstPtr: {
  3898     const TypeInstPtr *tp = t->is_instptr();
  3899     int offset = meet_offset(tp->offset());
  3900     PTR ptr = meet_ptr(tp->ptr());
  3901     int instance_id = meet_instance_id(tp->instance_id());
  3902     const TypeOopPtr* speculative = xmeet_speculative(tp);
  3903     switch (ptr) {
  3904     case TopPTR:
  3905     case AnyNull:                // Fall 'down' to dual of object klass
  3906       // For instances when a subclass meets a superclass we fall
  3907       // below the centerline when the superclass is exact. We need to
  3908       // do the same here.
  3909       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
  3910         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
  3911       } else {
  3912         // cannot subclass, so the meet has to fall badly below the centerline
  3913         ptr = NotNull;
  3914         instance_id = InstanceBot;
  3915         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative);
  3917     case Constant:
  3918     case NotNull:
  3919     case BotPTR:                // Fall down to object klass
  3920       // LCA is object_klass, but if we subclass from the top we can do better
  3921       if (above_centerline(tp->ptr())) {
  3922         // If 'tp'  is above the centerline and it is Object class
  3923         // then we can subclass in the Java class hierarchy.
  3924         // For instances when a subclass meets a superclass we fall
  3925         // below the centerline when the superclass is exact. We need
  3926         // to do the same here.
  3927         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
  3928           // that is, my array type is a subtype of 'tp' klass
  3929           return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3930                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
  3933       // The other case cannot happen, since t cannot be a subtype of an array.
  3934       // The meet falls down to Object class below centerline.
  3935       if( ptr == Constant )
  3936          ptr = NotNull;
  3937       instance_id = InstanceBot;
  3938       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative);
  3939     default: typerr(t);
  3943   return this;                  // Lint noise
  3946 //------------------------------xdual------------------------------------------
  3947 // Dual: compute field-by-field dual
  3948 const Type *TypeAryPtr::xdual() const {
  3949   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative());
  3952 //----------------------interface_vs_oop---------------------------------------
  3953 #ifdef ASSERT
  3954 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
  3955   const TypeAryPtr* t_aryptr = t->isa_aryptr();
  3956   if (t_aryptr) {
  3957     return _ary->interface_vs_oop(t_aryptr->_ary);
  3959   return false;
  3961 #endif
  3963 //------------------------------dump2------------------------------------------
  3964 #ifndef PRODUCT
  3965 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3966   _ary->dump2(d,depth,st);
  3967   switch( _ptr ) {
  3968   case Constant:
  3969     const_oop()->print(st);
  3970     break;
  3971   case BotPTR:
  3972     if (!WizardMode && !Verbose) {
  3973       if( _klass_is_exact ) st->print(":exact");
  3974       break;
  3976   case TopPTR:
  3977   case AnyNull:
  3978   case NotNull:
  3979     st->print(":%s", ptr_msg[_ptr]);
  3980     if( _klass_is_exact ) st->print(":exact");
  3981     break;
  3984   if( _offset != 0 ) {
  3985     int header_size = objArrayOopDesc::header_size() * wordSize;
  3986     if( _offset == OffsetTop )       st->print("+undefined");
  3987     else if( _offset == OffsetBot )  st->print("+any");
  3988     else if( _offset < header_size ) st->print("+%d", _offset);
  3989     else {
  3990       BasicType basic_elem_type = elem()->basic_type();
  3991       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  3992       int elem_size = type2aelembytes(basic_elem_type);
  3993       st->print("[%d]", (_offset - array_base)/elem_size);
  3996   st->print(" *");
  3997   if (_instance_id == InstanceTop)
  3998     st->print(",iid=top");
  3999   else if (_instance_id != InstanceBot)
  4000     st->print(",iid=%d",_instance_id);
  4002   dump_speculative(st);
  4004 #endif
  4006 bool TypeAryPtr::empty(void) const {
  4007   if (_ary->empty())       return true;
  4008   return TypeOopPtr::empty();
  4011 //------------------------------add_offset-------------------------------------
  4012 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
  4013   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset));
  4016 const Type *TypeAryPtr::remove_speculative() const {
  4017   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL);
  4020 //=============================================================================
  4022 //------------------------------hash-------------------------------------------
  4023 // Type-specific hashing function.
  4024 int TypeNarrowPtr::hash(void) const {
  4025   return _ptrtype->hash() + 7;
  4028 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
  4029   return _ptrtype->singleton();
  4032 bool TypeNarrowPtr::empty(void) const {
  4033   return _ptrtype->empty();
  4036 intptr_t TypeNarrowPtr::get_con() const {
  4037   return _ptrtype->get_con();
  4040 bool TypeNarrowPtr::eq( const Type *t ) const {
  4041   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
  4042   if (tc != NULL) {
  4043     if (_ptrtype->base() != tc->_ptrtype->base()) {
  4044       return false;
  4046     return tc->_ptrtype->eq(_ptrtype);
  4048   return false;
  4051 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
  4052   const TypePtr* odual = _ptrtype->dual()->is_ptr();
  4053   return make_same_narrowptr(odual);
  4057 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
  4058   if (isa_same_narrowptr(kills)) {
  4059     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
  4060     if (ft->empty())
  4061       return Type::TOP;           // Canonical empty value
  4062     if (ft->isa_ptr()) {
  4063       return make_hash_same_narrowptr(ft->isa_ptr());
  4065     return ft;
  4066   } else if (kills->isa_ptr()) {
  4067     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
  4068     if (ft->empty())
  4069       return Type::TOP;           // Canonical empty value
  4070     return ft;
  4071   } else {
  4072     return Type::TOP;
  4076 //------------------------------xmeet------------------------------------------
  4077 // Compute the MEET of two types.  It returns a new Type object.
  4078 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
  4079   // Perform a fast test for common case; meeting the same types together.
  4080   if( this == t ) return this;  // Meeting same type-rep?
  4082   if (t->base() == base()) {
  4083     const Type* result = _ptrtype->xmeet(t->make_ptr());
  4084     if (result->isa_ptr()) {
  4085       return make_hash_same_narrowptr(result->is_ptr());
  4087     return result;
  4090   // Current "this->_base" is NarrowKlass or NarrowOop
  4091   switch (t->base()) {          // switch on original type
  4093   case Int:                     // Mixing ints & oops happens when javac
  4094   case Long:                    // reuses local variables
  4095   case FloatTop:
  4096   case FloatCon:
  4097   case FloatBot:
  4098   case DoubleTop:
  4099   case DoubleCon:
  4100   case DoubleBot:
  4101   case AnyPtr:
  4102   case RawPtr:
  4103   case OopPtr:
  4104   case InstPtr:
  4105   case AryPtr:
  4106   case MetadataPtr:
  4107   case KlassPtr:
  4108   case NarrowOop:
  4109   case NarrowKlass:
  4111   case Bottom:                  // Ye Olde Default
  4112     return Type::BOTTOM;
  4113   case Top:
  4114     return this;
  4116   default:                      // All else is a mistake
  4117     typerr(t);
  4119   } // End of switch
  4121   return this;
  4124 #ifndef PRODUCT
  4125 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  4126   _ptrtype->dump2(d, depth, st);
  4128 #endif
  4130 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
  4131 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
  4134 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
  4135   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
  4139 #ifndef PRODUCT
  4140 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
  4141   st->print("narrowoop: ");
  4142   TypeNarrowPtr::dump2(d, depth, st);
  4144 #endif
  4146 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
  4148 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
  4149   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
  4152 #ifndef PRODUCT
  4153 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
  4154   st->print("narrowklass: ");
  4155   TypeNarrowPtr::dump2(d, depth, st);
  4157 #endif
  4160 //------------------------------eq---------------------------------------------
  4161 // Structural equality check for Type representations
  4162 bool TypeMetadataPtr::eq( const Type *t ) const {
  4163   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
  4164   ciMetadata* one = metadata();
  4165   ciMetadata* two = a->metadata();
  4166   if (one == NULL || two == NULL) {
  4167     return (one == two) && TypePtr::eq(t);
  4168   } else {
  4169     return one->equals(two) && TypePtr::eq(t);
  4173 //------------------------------hash-------------------------------------------
  4174 // Type-specific hashing function.
  4175 int TypeMetadataPtr::hash(void) const {
  4176   return
  4177     (metadata() ? metadata()->hash() : 0) +
  4178     TypePtr::hash();
  4181 //------------------------------singleton--------------------------------------
  4182 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4183 // constants
  4184 bool TypeMetadataPtr::singleton(void) const {
  4185   // detune optimizer to not generate constant metadta + constant offset as a constant!
  4186   // TopPTR, Null, AnyNull, Constant are all singletons
  4187   return (_offset == 0) && !below_centerline(_ptr);
  4190 //------------------------------add_offset-------------------------------------
  4191 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
  4192   return make( _ptr, _metadata, xadd_offset(offset));
  4195 //-----------------------------filter------------------------------------------
  4196 // Do not allow interface-vs.-noninterface joins to collapse to top.
  4197 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
  4198   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
  4199   if (ft == NULL || ft->empty())
  4200     return Type::TOP;           // Canonical empty value
  4201   return ft;
  4204  //------------------------------get_con----------------------------------------
  4205 intptr_t TypeMetadataPtr::get_con() const {
  4206   assert( _ptr == Null || _ptr == Constant, "" );
  4207   assert( _offset >= 0, "" );
  4209   if (_offset != 0) {
  4210     // After being ported to the compiler interface, the compiler no longer
  4211     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  4212     // to a handle at compile time.  This handle is embedded in the generated
  4213     // code and dereferenced at the time the nmethod is made.  Until that time,
  4214     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  4215     // have access to the addresses!).  This does not seem to currently happen,
  4216     // but this assertion here is to help prevent its occurence.
  4217     tty->print_cr("Found oop constant with non-zero offset");
  4218     ShouldNotReachHere();
  4221   return (intptr_t)metadata()->constant_encoding();
  4224 //------------------------------cast_to_ptr_type-------------------------------
  4225 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
  4226   if( ptr == _ptr ) return this;
  4227   return make(ptr, metadata(), _offset);
  4230 //------------------------------meet-------------------------------------------
  4231 // Compute the MEET of two types.  It returns a new Type object.
  4232 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
  4233   // Perform a fast test for common case; meeting the same types together.
  4234   if( this == t ) return this;  // Meeting same type-rep?
  4236   // Current "this->_base" is OopPtr
  4237   switch (t->base()) {          // switch on original type
  4239   case Int:                     // Mixing ints & oops happens when javac
  4240   case Long:                    // reuses local variables
  4241   case FloatTop:
  4242   case FloatCon:
  4243   case FloatBot:
  4244   case DoubleTop:
  4245   case DoubleCon:
  4246   case DoubleBot:
  4247   case NarrowOop:
  4248   case NarrowKlass:
  4249   case Bottom:                  // Ye Olde Default
  4250     return Type::BOTTOM;
  4251   case Top:
  4252     return this;
  4254   default:                      // All else is a mistake
  4255     typerr(t);
  4257   case AnyPtr: {
  4258     // Found an AnyPtr type vs self-OopPtr type
  4259     const TypePtr *tp = t->is_ptr();
  4260     int offset = meet_offset(tp->offset());
  4261     PTR ptr = meet_ptr(tp->ptr());
  4262     switch (tp->ptr()) {
  4263     case Null:
  4264       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  4265       // else fall through:
  4266     case TopPTR:
  4267     case AnyNull: {
  4268       return make(ptr, NULL, offset);
  4270     case BotPTR:
  4271     case NotNull:
  4272       return TypePtr::make(AnyPtr, ptr, offset);
  4273     default: typerr(t);
  4277   case RawPtr:
  4278   case KlassPtr:
  4279   case OopPtr:
  4280   case InstPtr:
  4281   case AryPtr:
  4282     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  4284   case MetadataPtr: {
  4285     const TypeMetadataPtr *tp = t->is_metadataptr();
  4286     int offset = meet_offset(tp->offset());
  4287     PTR tptr = tp->ptr();
  4288     PTR ptr = meet_ptr(tptr);
  4289     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
  4290     if (tptr == TopPTR || _ptr == TopPTR ||
  4291         metadata()->equals(tp->metadata())) {
  4292       return make(ptr, md, offset);
  4294     // metadata is different
  4295     if( ptr == Constant ) {  // Cannot be equal constants, so...
  4296       if( tptr == Constant && _ptr != Constant)  return t;
  4297       if( _ptr == Constant && tptr != Constant)  return this;
  4298       ptr = NotNull;            // Fall down in lattice
  4300     return make(ptr, NULL, offset);
  4301     break;
  4303   } // End of switch
  4304   return this;                  // Return the double constant
  4308 //------------------------------xdual------------------------------------------
  4309 // Dual of a pure metadata pointer.
  4310 const Type *TypeMetadataPtr::xdual() const {
  4311   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
  4314 //------------------------------dump2------------------------------------------
  4315 #ifndef PRODUCT
  4316 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  4317   st->print("metadataptr:%s", ptr_msg[_ptr]);
  4318   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
  4319   switch( _offset ) {
  4320   case OffsetTop: st->print("+top"); break;
  4321   case OffsetBot: st->print("+any"); break;
  4322   case         0: break;
  4323   default:        st->print("+%d",_offset); break;
  4326 #endif
  4329 //=============================================================================
  4330 // Convenience common pre-built type.
  4331 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
  4333 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
  4334   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
  4337 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
  4338   return make(Constant, m, 0);
  4340 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
  4341   return make(Constant, m, 0);
  4344 //------------------------------make-------------------------------------------
  4345 // Create a meta data constant
  4346 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
  4347   assert(m == NULL || !m->is_klass(), "wrong type");
  4348   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
  4352 //=============================================================================
  4353 // Convenience common pre-built types.
  4355 // Not-null object klass or below
  4356 const TypeKlassPtr *TypeKlassPtr::OBJECT;
  4357 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
  4359 //------------------------------TypeKlassPtr-----------------------------------
  4360 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
  4361   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
  4364 //------------------------------make-------------------------------------------
  4365 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
  4366 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
  4367   assert( k != NULL, "Expect a non-NULL klass");
  4368   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
  4369   TypeKlassPtr *r =
  4370     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
  4372   return r;
  4375 //------------------------------eq---------------------------------------------
  4376 // Structural equality check for Type representations
  4377 bool TypeKlassPtr::eq( const Type *t ) const {
  4378   const TypeKlassPtr *p = t->is_klassptr();
  4379   return
  4380     klass()->equals(p->klass()) &&
  4381     TypePtr::eq(p);
  4384 //------------------------------hash-------------------------------------------
  4385 // Type-specific hashing function.
  4386 int TypeKlassPtr::hash(void) const {
  4387   return klass()->hash() + TypePtr::hash();
  4390 //------------------------------singleton--------------------------------------
  4391 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4392 // constants
  4393 bool TypeKlassPtr::singleton(void) const {
  4394   // detune optimizer to not generate constant klass + constant offset as a constant!
  4395   // TopPTR, Null, AnyNull, Constant are all singletons
  4396   return (_offset == 0) && !below_centerline(_ptr);
  4399 // Do not allow interface-vs.-noninterface joins to collapse to top.
  4400 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
  4401   // logic here mirrors the one from TypeOopPtr::filter. See comments
  4402   // there.
  4403   const Type* ft = join_helper(kills, include_speculative);
  4404   const TypeKlassPtr* ftkp = ft->isa_klassptr();
  4405   const TypeKlassPtr* ktkp = kills->isa_klassptr();
  4407   if (ft->empty()) {
  4408     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
  4409       return kills;             // Uplift to interface
  4411     return Type::TOP;           // Canonical empty value
  4414   // Interface klass type could be exact in opposite to interface type,
  4415   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
  4416   if (ftkp != NULL && ktkp != NULL &&
  4417       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
  4418       !ftkp->klass_is_exact() && // Keep exact interface klass
  4419       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
  4420     return ktkp->cast_to_ptr_type(ftkp->ptr());
  4423   return ft;
  4426 //----------------------compute_klass------------------------------------------
  4427 // Compute the defining klass for this class
  4428 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
  4429   // Compute _klass based on element type.
  4430   ciKlass* k_ary = NULL;
  4431   const TypeInstPtr *tinst;
  4432   const TypeAryPtr *tary;
  4433   const Type* el = elem();
  4434   if (el->isa_narrowoop()) {
  4435     el = el->make_ptr();
  4438   // Get element klass
  4439   if ((tinst = el->isa_instptr()) != NULL) {
  4440     // Compute array klass from element klass
  4441     k_ary = ciObjArrayKlass::make(tinst->klass());
  4442   } else if ((tary = el->isa_aryptr()) != NULL) {
  4443     // Compute array klass from element klass
  4444     ciKlass* k_elem = tary->klass();
  4445     // If element type is something like bottom[], k_elem will be null.
  4446     if (k_elem != NULL)
  4447       k_ary = ciObjArrayKlass::make(k_elem);
  4448   } else if ((el->base() == Type::Top) ||
  4449              (el->base() == Type::Bottom)) {
  4450     // element type of Bottom occurs from meet of basic type
  4451     // and object; Top occurs when doing join on Bottom.
  4452     // Leave k_ary at NULL.
  4453   } else {
  4454     // Cannot compute array klass directly from basic type,
  4455     // since subtypes of TypeInt all have basic type T_INT.
  4456 #ifdef ASSERT
  4457     if (verify && el->isa_int()) {
  4458       // Check simple cases when verifying klass.
  4459       BasicType bt = T_ILLEGAL;
  4460       if (el == TypeInt::BYTE) {
  4461         bt = T_BYTE;
  4462       } else if (el == TypeInt::SHORT) {
  4463         bt = T_SHORT;
  4464       } else if (el == TypeInt::CHAR) {
  4465         bt = T_CHAR;
  4466       } else if (el == TypeInt::INT) {
  4467         bt = T_INT;
  4468       } else {
  4469         return _klass; // just return specified klass
  4471       return ciTypeArrayKlass::make(bt);
  4473 #endif
  4474     assert(!el->isa_int(),
  4475            "integral arrays must be pre-equipped with a class");
  4476     // Compute array klass directly from basic type
  4477     k_ary = ciTypeArrayKlass::make(el->basic_type());
  4479   return k_ary;
  4482 //------------------------------klass------------------------------------------
  4483 // Return the defining klass for this class
  4484 ciKlass* TypeAryPtr::klass() const {
  4485   if( _klass ) return _klass;   // Return cached value, if possible
  4487   // Oops, need to compute _klass and cache it
  4488   ciKlass* k_ary = compute_klass();
  4490   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
  4491     // The _klass field acts as a cache of the underlying
  4492     // ciKlass for this array type.  In order to set the field,
  4493     // we need to cast away const-ness.
  4494     //
  4495     // IMPORTANT NOTE: we *never* set the _klass field for the
  4496     // type TypeAryPtr::OOPS.  This Type is shared between all
  4497     // active compilations.  However, the ciKlass which represents
  4498     // this Type is *not* shared between compilations, so caching
  4499     // this value would result in fetching a dangling pointer.
  4500     //
  4501     // Recomputing the underlying ciKlass for each request is
  4502     // a bit less efficient than caching, but calls to
  4503     // TypeAryPtr::OOPS->klass() are not common enough to matter.
  4504     ((TypeAryPtr*)this)->_klass = k_ary;
  4505     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
  4506         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
  4507       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
  4510   return k_ary;
  4514 //------------------------------add_offset-------------------------------------
  4515 // Access internals of klass object
  4516 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
  4517   return make( _ptr, klass(), xadd_offset(offset) );
  4520 //------------------------------cast_to_ptr_type-------------------------------
  4521 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
  4522   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
  4523   if( ptr == _ptr ) return this;
  4524   return make(ptr, _klass, _offset);
  4528 //-----------------------------cast_to_exactness-------------------------------
  4529 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
  4530   if( klass_is_exact == _klass_is_exact ) return this;
  4531   if (!UseExactTypes)  return this;
  4532   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
  4536 //-----------------------------as_instance_type--------------------------------
  4537 // Corresponding type for an instance of the given class.
  4538 // It will be NotNull, and exact if and only if the klass type is exact.
  4539 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
  4540   ciKlass* k = klass();
  4541   bool    xk = klass_is_exact();
  4542   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
  4543   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
  4544   guarantee(toop != NULL, "need type for given klass");
  4545   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  4546   return toop->cast_to_exactness(xk)->is_oopptr();
  4550 //------------------------------xmeet------------------------------------------
  4551 // Compute the MEET of two types, return a new Type object.
  4552 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
  4553   // Perform a fast test for common case; meeting the same types together.
  4554   if( this == t ) return this;  // Meeting same type-rep?
  4556   // Current "this->_base" is Pointer
  4557   switch (t->base()) {          // switch on original type
  4559   case Int:                     // Mixing ints & oops happens when javac
  4560   case Long:                    // reuses local variables
  4561   case FloatTop:
  4562   case FloatCon:
  4563   case FloatBot:
  4564   case DoubleTop:
  4565   case DoubleCon:
  4566   case DoubleBot:
  4567   case NarrowOop:
  4568   case NarrowKlass:
  4569   case Bottom:                  // Ye Olde Default
  4570     return Type::BOTTOM;
  4571   case Top:
  4572     return this;
  4574   default:                      // All else is a mistake
  4575     typerr(t);
  4577   case AnyPtr: {                // Meeting to AnyPtrs
  4578     // Found an AnyPtr type vs self-KlassPtr type
  4579     const TypePtr *tp = t->is_ptr();
  4580     int offset = meet_offset(tp->offset());
  4581     PTR ptr = meet_ptr(tp->ptr());
  4582     switch (tp->ptr()) {
  4583     case TopPTR:
  4584       return this;
  4585     case Null:
  4586       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  4587     case AnyNull:
  4588       return make( ptr, klass(), offset );
  4589     case BotPTR:
  4590     case NotNull:
  4591       return TypePtr::make(AnyPtr, ptr, offset);
  4592     default: typerr(t);
  4596   case RawPtr:
  4597   case MetadataPtr:
  4598   case OopPtr:
  4599   case AryPtr:                  // Meet with AryPtr
  4600   case InstPtr:                 // Meet with InstPtr
  4601     return TypePtr::BOTTOM;
  4603   //
  4604   //             A-top         }
  4605   //           /   |   \       }  Tops
  4606   //       B-top A-any C-top   }
  4607   //          | /  |  \ |      }  Any-nulls
  4608   //       B-any   |   C-any   }
  4609   //          |    |    |
  4610   //       B-con A-con C-con   } constants; not comparable across classes
  4611   //          |    |    |
  4612   //       B-not   |   C-not   }
  4613   //          | \  |  / |      }  not-nulls
  4614   //       B-bot A-not C-bot   }
  4615   //           \   |   /       }  Bottoms
  4616   //             A-bot         }
  4617   //
  4619   case KlassPtr: {  // Meet two KlassPtr types
  4620     const TypeKlassPtr *tkls = t->is_klassptr();
  4621     int  off     = meet_offset(tkls->offset());
  4622     PTR  ptr     = meet_ptr(tkls->ptr());
  4624     // Check for easy case; klasses are equal (and perhaps not loaded!)
  4625     // If we have constants, then we created oops so classes are loaded
  4626     // and we can handle the constants further down.  This case handles
  4627     // not-loaded classes
  4628     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
  4629       return make( ptr, klass(), off );
  4632     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  4633     ciKlass* tkls_klass = tkls->klass();
  4634     ciKlass* this_klass = this->klass();
  4635     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
  4636     assert( this_klass->is_loaded(), "This class should have been loaded.");
  4638     // If 'this' type is above the centerline and is a superclass of the
  4639     // other, we can treat 'this' as having the same type as the other.
  4640     if ((above_centerline(this->ptr())) &&
  4641         tkls_klass->is_subtype_of(this_klass)) {
  4642       this_klass = tkls_klass;
  4644     // If 'tinst' type is above the centerline and is a superclass of the
  4645     // other, we can treat 'tinst' as having the same type as the other.
  4646     if ((above_centerline(tkls->ptr())) &&
  4647         this_klass->is_subtype_of(tkls_klass)) {
  4648       tkls_klass = this_klass;
  4651     // Check for classes now being equal
  4652     if (tkls_klass->equals(this_klass)) {
  4653       // If the klasses are equal, the constants may still differ.  Fall to
  4654       // NotNull if they do (neither constant is NULL; that is a special case
  4655       // handled elsewhere).
  4656       if( ptr == Constant ) {
  4657         if (this->_ptr == Constant && tkls->_ptr == Constant &&
  4658             this->klass()->equals(tkls->klass()));
  4659         else if (above_centerline(this->ptr()));
  4660         else if (above_centerline(tkls->ptr()));
  4661         else
  4662           ptr = NotNull;
  4664       return make( ptr, this_klass, off );
  4665     } // Else classes are not equal
  4667     // Since klasses are different, we require the LCA in the Java
  4668     // class hierarchy - which means we have to fall to at least NotNull.
  4669     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  4670       ptr = NotNull;
  4671     // Now we find the LCA of Java classes
  4672     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
  4673     return   make( ptr, k, off );
  4674   } // End of case KlassPtr
  4676   } // End of switch
  4677   return this;                  // Return the double constant
  4680 //------------------------------xdual------------------------------------------
  4681 // Dual: compute field-by-field dual
  4682 const Type    *TypeKlassPtr::xdual() const {
  4683   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
  4686 //------------------------------get_con----------------------------------------
  4687 intptr_t TypeKlassPtr::get_con() const {
  4688   assert( _ptr == Null || _ptr == Constant, "" );
  4689   assert( _offset >= 0, "" );
  4691   if (_offset != 0) {
  4692     // After being ported to the compiler interface, the compiler no longer
  4693     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  4694     // to a handle at compile time.  This handle is embedded in the generated
  4695     // code and dereferenced at the time the nmethod is made.  Until that time,
  4696     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  4697     // have access to the addresses!).  This does not seem to currently happen,
  4698     // but this assertion here is to help prevent its occurence.
  4699     tty->print_cr("Found oop constant with non-zero offset");
  4700     ShouldNotReachHere();
  4703   return (intptr_t)klass()->constant_encoding();
  4705 //------------------------------dump2------------------------------------------
  4706 // Dump Klass Type
  4707 #ifndef PRODUCT
  4708 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  4709   switch( _ptr ) {
  4710   case Constant:
  4711     st->print("precise ");
  4712   case NotNull:
  4714       const char *name = klass()->name()->as_utf8();
  4715       if( name ) {
  4716         st->print("klass %s: " INTPTR_FORMAT, name, klass());
  4717       } else {
  4718         ShouldNotReachHere();
  4721   case BotPTR:
  4722     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
  4723   case TopPTR:
  4724   case AnyNull:
  4725     st->print(":%s", ptr_msg[_ptr]);
  4726     if( _klass_is_exact ) st->print(":exact");
  4727     break;
  4730   if( _offset ) {               // Dump offset, if any
  4731     if( _offset == OffsetBot )      { st->print("+any"); }
  4732     else if( _offset == OffsetTop ) { st->print("+unknown"); }
  4733     else                            { st->print("+%d", _offset); }
  4736   st->print(" *");
  4738 #endif
  4742 //=============================================================================
  4743 // Convenience common pre-built types.
  4745 //------------------------------make-------------------------------------------
  4746 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
  4747   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
  4750 //------------------------------make-------------------------------------------
  4751 const TypeFunc *TypeFunc::make(ciMethod* method) {
  4752   Compile* C = Compile::current();
  4753   const TypeFunc* tf = C->last_tf(method); // check cache
  4754   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
  4755   const TypeTuple *domain;
  4756   if (method->is_static()) {
  4757     domain = TypeTuple::make_domain(NULL, method->signature());
  4758   } else {
  4759     domain = TypeTuple::make_domain(method->holder(), method->signature());
  4761   const TypeTuple *range  = TypeTuple::make_range(method->signature());
  4762   tf = TypeFunc::make(domain, range);
  4763   C->set_last_tf(method, tf);  // fill cache
  4764   return tf;
  4767 //------------------------------meet-------------------------------------------
  4768 // Compute the MEET of two types.  It returns a new Type object.
  4769 const Type *TypeFunc::xmeet( const Type *t ) const {
  4770   // Perform a fast test for common case; meeting the same types together.
  4771   if( this == t ) return this;  // Meeting same type-rep?
  4773   // Current "this->_base" is Func
  4774   switch (t->base()) {          // switch on original type
  4776   case Bottom:                  // Ye Olde Default
  4777     return t;
  4779   default:                      // All else is a mistake
  4780     typerr(t);
  4782   case Top:
  4783     break;
  4785   return this;                  // Return the double constant
  4788 //------------------------------xdual------------------------------------------
  4789 // Dual: compute field-by-field dual
  4790 const Type *TypeFunc::xdual() const {
  4791   return this;
  4794 //------------------------------eq---------------------------------------------
  4795 // Structural equality check for Type representations
  4796 bool TypeFunc::eq( const Type *t ) const {
  4797   const TypeFunc *a = (const TypeFunc*)t;
  4798   return _domain == a->_domain &&
  4799     _range == a->_range;
  4802 //------------------------------hash-------------------------------------------
  4803 // Type-specific hashing function.
  4804 int TypeFunc::hash(void) const {
  4805   return (intptr_t)_domain + (intptr_t)_range;
  4808 //------------------------------dump2------------------------------------------
  4809 // Dump Function Type
  4810 #ifndef PRODUCT
  4811 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
  4812   if( _range->_cnt <= Parms )
  4813     st->print("void");
  4814   else {
  4815     uint i;
  4816     for (i = Parms; i < _range->_cnt-1; i++) {
  4817       _range->field_at(i)->dump2(d,depth,st);
  4818       st->print("/");
  4820     _range->field_at(i)->dump2(d,depth,st);
  4822   st->print(" ");
  4823   st->print("( ");
  4824   if( !depth || d[this] ) {     // Check for recursive dump
  4825     st->print("...)");
  4826     return;
  4828   d.Insert((void*)this,(void*)this);    // Stop recursion
  4829   if (Parms < _domain->_cnt)
  4830     _domain->field_at(Parms)->dump2(d,depth-1,st);
  4831   for (uint i = Parms+1; i < _domain->_cnt; i++) {
  4832     st->print(", ");
  4833     _domain->field_at(i)->dump2(d,depth-1,st);
  4835   st->print(" )");
  4837 #endif
  4839 //------------------------------singleton--------------------------------------
  4840 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4841 // constants (Ldi nodes).  Singletons are integer, float or double constants
  4842 // or a single symbol.
  4843 bool TypeFunc::singleton(void) const {
  4844   return false;                 // Never a singleton
  4847 bool TypeFunc::empty(void) const {
  4848   return false;                 // Never empty
  4852 BasicType TypeFunc::return_type() const{
  4853   if (range()->cnt() == TypeFunc::Parms) {
  4854     return T_VOID;
  4856   return range()->field_at(TypeFunc::Parms)->basic_type();

mercurial