src/share/vm/opto/type.cpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 2658
c7f3d0b4570f
child 3901
24b9c7f4cae6
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

duke@435 1 /*
kvn@2435 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "ci/ciTypeFlow.hpp"
stefank@2314 27 #include "classfile/symbolTable.hpp"
stefank@2314 28 #include "classfile/systemDictionary.hpp"
stefank@2314 29 #include "compiler/compileLog.hpp"
stefank@2314 30 #include "libadt/dict.hpp"
stefank@2314 31 #include "memory/gcLocker.hpp"
stefank@2314 32 #include "memory/oopFactory.hpp"
stefank@2314 33 #include "memory/resourceArea.hpp"
stefank@2314 34 #include "oops/instanceKlass.hpp"
never@2658 35 #include "oops/instanceMirrorKlass.hpp"
stefank@2314 36 #include "oops/klassKlass.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "oops/typeArrayKlass.hpp"
stefank@2314 39 #include "opto/matcher.hpp"
stefank@2314 40 #include "opto/node.hpp"
stefank@2314 41 #include "opto/opcodes.hpp"
stefank@2314 42 #include "opto/type.hpp"
stefank@2314 43
duke@435 44 // Portions of code courtesy of Clifford Click
duke@435 45
duke@435 46 // Optimization - Graph Style
duke@435 47
duke@435 48 // Dictionary of types shared among compilations.
duke@435 49 Dict* Type::_shared_type_dict = NULL;
duke@435 50
duke@435 51 // Array which maps compiler types to Basic Types
duke@435 52 const BasicType Type::_basic_type[Type::lastype] = {
duke@435 53 T_ILLEGAL, // Bad
duke@435 54 T_ILLEGAL, // Control
duke@435 55 T_VOID, // Top
duke@435 56 T_INT, // Int
duke@435 57 T_LONG, // Long
duke@435 58 T_VOID, // Half
coleenp@548 59 T_NARROWOOP, // NarrowOop
duke@435 60
duke@435 61 T_ILLEGAL, // Tuple
duke@435 62 T_ARRAY, // Array
duke@435 63
duke@435 64 T_ADDRESS, // AnyPtr // shows up in factory methods for NULL_PTR
duke@435 65 T_ADDRESS, // RawPtr
duke@435 66 T_OBJECT, // OopPtr
duke@435 67 T_OBJECT, // InstPtr
duke@435 68 T_OBJECT, // AryPtr
duke@435 69 T_OBJECT, // KlassPtr
duke@435 70
duke@435 71 T_OBJECT, // Function
duke@435 72 T_ILLEGAL, // Abio
duke@435 73 T_ADDRESS, // Return_Address
duke@435 74 T_ILLEGAL, // Memory
duke@435 75 T_FLOAT, // FloatTop
duke@435 76 T_FLOAT, // FloatCon
duke@435 77 T_FLOAT, // FloatBot
duke@435 78 T_DOUBLE, // DoubleTop
duke@435 79 T_DOUBLE, // DoubleCon
duke@435 80 T_DOUBLE, // DoubleBot
duke@435 81 T_ILLEGAL, // Bottom
duke@435 82 };
duke@435 83
duke@435 84 // Map ideal registers (machine types) to ideal types
duke@435 85 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 86
duke@435 87 // Map basic types to canonical Type* pointers.
duke@435 88 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 89
duke@435 90 // Map basic types to constant-zero Types.
duke@435 91 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 92
duke@435 93 // Map basic types to array-body alias types.
duke@435 94 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 95
duke@435 96 //=============================================================================
duke@435 97 // Convenience common pre-built types.
duke@435 98 const Type *Type::ABIO; // State-of-machine only
duke@435 99 const Type *Type::BOTTOM; // All values
duke@435 100 const Type *Type::CONTROL; // Control only
duke@435 101 const Type *Type::DOUBLE; // All doubles
duke@435 102 const Type *Type::FLOAT; // All floats
duke@435 103 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 104 const Type *Type::MEMORY; // Abstract store only
duke@435 105 const Type *Type::RETURN_ADDRESS;
duke@435 106 const Type *Type::TOP; // No values in set
duke@435 107
duke@435 108 //------------------------------get_const_type---------------------------
duke@435 109 const Type* Type::get_const_type(ciType* type) {
duke@435 110 if (type == NULL) {
duke@435 111 return NULL;
duke@435 112 } else if (type->is_primitive_type()) {
duke@435 113 return get_const_basic_type(type->basic_type());
duke@435 114 } else {
duke@435 115 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 116 }
duke@435 117 }
duke@435 118
duke@435 119 //---------------------------array_element_basic_type---------------------------------
duke@435 120 // Mapping to the array element's basic type.
duke@435 121 BasicType Type::array_element_basic_type() const {
duke@435 122 BasicType bt = basic_type();
duke@435 123 if (bt == T_INT) {
duke@435 124 if (this == TypeInt::INT) return T_INT;
duke@435 125 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 126 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 127 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 128 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 129 return T_VOID;
duke@435 130 }
duke@435 131 return bt;
duke@435 132 }
duke@435 133
duke@435 134 //---------------------------get_typeflow_type---------------------------------
duke@435 135 // Import a type produced by ciTypeFlow.
duke@435 136 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 137 switch (type->basic_type()) {
duke@435 138
duke@435 139 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 140 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 141 return Type::BOTTOM;
duke@435 142
duke@435 143 case ciTypeFlow::StateVector::T_TOP:
duke@435 144 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 145 return Type::TOP;
duke@435 146
duke@435 147 case ciTypeFlow::StateVector::T_NULL:
duke@435 148 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 149 return TypePtr::NULL_PTR;
duke@435 150
duke@435 151 case ciTypeFlow::StateVector::T_LONG2:
duke@435 152 // The ciTypeFlow pass pushes a long, then the half.
duke@435 153 // We do the same.
duke@435 154 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 155 return TypeInt::TOP;
duke@435 156
duke@435 157 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 158 // The ciTypeFlow pass pushes double, then the half.
duke@435 159 // Our convention is the same.
duke@435 160 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 161 return Type::TOP;
duke@435 162
duke@435 163 case T_ADDRESS:
duke@435 164 assert(type->is_return_address(), "");
duke@435 165 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 166
duke@435 167 default:
duke@435 168 // make sure we did not mix up the cases:
duke@435 169 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 170 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 171 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 172 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 173 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 174 assert(!type->is_return_address(), "");
duke@435 175
duke@435 176 return Type::get_const_type(type);
duke@435 177 }
duke@435 178 }
duke@435 179
duke@435 180
duke@435 181 //------------------------------make-------------------------------------------
duke@435 182 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 183 // and look for an existing copy in the type dictionary.
duke@435 184 const Type *Type::make( enum TYPES t ) {
duke@435 185 return (new Type(t))->hashcons();
duke@435 186 }
kvn@658 187
duke@435 188 //------------------------------cmp--------------------------------------------
duke@435 189 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 190 if( t1->_base != t2->_base )
duke@435 191 return 1; // Missed badly
duke@435 192 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 193 return !t1->eq(t2); // Return ZERO if equal
duke@435 194 }
duke@435 195
duke@435 196 //------------------------------hash-------------------------------------------
duke@435 197 int Type::uhash( const Type *const t ) {
duke@435 198 return t->hash();
duke@435 199 }
duke@435 200
kvn@1975 201 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
kvn@1975 202
duke@435 203 //--------------------------Initialize_shared----------------------------------
duke@435 204 void Type::Initialize_shared(Compile* current) {
duke@435 205 // This method does not need to be locked because the first system
duke@435 206 // compilations (stub compilations) occur serially. If they are
duke@435 207 // changed to proceed in parallel, then this section will need
duke@435 208 // locking.
duke@435 209
duke@435 210 Arena* save = current->type_arena();
zgu@3900 211 Arena* shared_type_arena = new (mtCompiler)Arena();
duke@435 212
duke@435 213 current->set_type_arena(shared_type_arena);
duke@435 214 _shared_type_dict =
duke@435 215 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 216 shared_type_arena, 128 );
duke@435 217 current->set_type_dict(_shared_type_dict);
duke@435 218
duke@435 219 // Make shared pre-built types.
duke@435 220 CONTROL = make(Control); // Control only
duke@435 221 TOP = make(Top); // No values in set
duke@435 222 MEMORY = make(Memory); // Abstract store only
duke@435 223 ABIO = make(Abio); // State-of-machine only
duke@435 224 RETURN_ADDRESS=make(Return_Address);
duke@435 225 FLOAT = make(FloatBot); // All floats
duke@435 226 DOUBLE = make(DoubleBot); // All doubles
duke@435 227 BOTTOM = make(Bottom); // Everything
duke@435 228 HALF = make(Half); // Placeholder half of doublewide type
duke@435 229
duke@435 230 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 231 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 232
duke@435 233 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 234 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 235
duke@435 236 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 237 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 238 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 239 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 240 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 241 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 242 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 243 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 244 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 245 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 246 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
twisti@1059 247 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
duke@435 248 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 249 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 250 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 251 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 252 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 253 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
duke@435 254 // CmpL is overloaded both as the bytecode computation returning
duke@435 255 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 256 // compare returning optimizer ideal-type flags.
duke@435 257 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 258 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 259 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 260 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
kvn@1975 261 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 262
duke@435 263 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 264 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 265 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 266 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 267 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 268 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 269 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
duke@435 270
duke@435 271 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 272 fboth[0] = Type::CONTROL;
duke@435 273 fboth[1] = Type::CONTROL;
duke@435 274 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 275
duke@435 276 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 277 ffalse[0] = Type::CONTROL;
duke@435 278 ffalse[1] = Type::TOP;
duke@435 279 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 280
duke@435 281 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 282 fneither[0] = Type::TOP;
duke@435 283 fneither[1] = Type::TOP;
duke@435 284 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 285
duke@435 286 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 287 ftrue[0] = Type::TOP;
duke@435 288 ftrue[1] = Type::CONTROL;
duke@435 289 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 290
duke@435 291 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 292 floop[0] = Type::CONTROL;
duke@435 293 floop[1] = TypeInt::INT;
duke@435 294 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 295
duke@435 296 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 297 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 298 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 299
duke@435 300 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 301 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 302
duke@435 303 const Type **fmembar = TypeTuple::fields(0);
duke@435 304 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 305
duke@435 306 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 307 fsc[0] = TypeInt::CC;
duke@435 308 fsc[1] = Type::MEMORY;
duke@435 309 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 310
duke@435 311 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 312 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 313 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 314 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 315 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 316 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 317 false, 0, oopDesc::klass_offset_in_bytes());
kvn@1427 318 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
duke@435 319
coleenp@548 320 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 321 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 322
coleenp@548 323 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 324 mreg2type[Op_Set ] = 0;
coleenp@548 325 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 326 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 327 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 328 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 329 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 330 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 331 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 332
kvn@2116 333 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
kvn@598 334
kvn@598 335 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 336
kvn@598 337 #ifdef _LP64
kvn@598 338 if (UseCompressedOops) {
kvn@598 339 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 340 } else
kvn@598 341 #endif
kvn@598 342 {
kvn@598 343 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 344 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 345 }
duke@435 346 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 347 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 348 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 349 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 350 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 351 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 352 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 353
kvn@598 354 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 355 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 356 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 357 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 358 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 359 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 360 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 361 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 362 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 363 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 364 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 365 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 366
duke@435 367 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 368 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 369
duke@435 370 const Type **fi2c = TypeTuple::fields(2);
duke@435 371 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
duke@435 372 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 373 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 374
duke@435 375 const Type **intpair = TypeTuple::fields(2);
duke@435 376 intpair[0] = TypeInt::INT;
duke@435 377 intpair[1] = TypeInt::INT;
duke@435 378 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 379
duke@435 380 const Type **longpair = TypeTuple::fields(2);
duke@435 381 longpair[0] = TypeLong::LONG;
duke@435 382 longpair[1] = TypeLong::LONG;
duke@435 383 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 384
coleenp@548 385 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
duke@435 386 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
duke@435 387 _const_basic_type[T_CHAR] = TypeInt::CHAR;
duke@435 388 _const_basic_type[T_BYTE] = TypeInt::BYTE;
duke@435 389 _const_basic_type[T_SHORT] = TypeInt::SHORT;
duke@435 390 _const_basic_type[T_INT] = TypeInt::INT;
duke@435 391 _const_basic_type[T_LONG] = TypeLong::LONG;
duke@435 392 _const_basic_type[T_FLOAT] = Type::FLOAT;
duke@435 393 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
duke@435 394 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
duke@435 395 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
duke@435 396 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
duke@435 397 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
duke@435 398 _const_basic_type[T_CONFLICT]= Type::BOTTOM; // why not?
duke@435 399
coleenp@548 400 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
duke@435 401 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
duke@435 402 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
duke@435 403 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
duke@435 404 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
duke@435 405 _zero_type[T_INT] = TypeInt::ZERO;
duke@435 406 _zero_type[T_LONG] = TypeLong::ZERO;
duke@435 407 _zero_type[T_FLOAT] = TypeF::ZERO;
duke@435 408 _zero_type[T_DOUBLE] = TypeD::ZERO;
duke@435 409 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
duke@435 410 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
duke@435 411 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
duke@435 412 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 413
duke@435 414 // get_zero_type() should not happen for T_CONFLICT
duke@435 415 _zero_type[T_CONFLICT]= NULL;
duke@435 416
duke@435 417 // Restore working type arena.
duke@435 418 current->set_type_arena(save);
duke@435 419 current->set_type_dict(NULL);
duke@435 420 }
duke@435 421
duke@435 422 //------------------------------Initialize-------------------------------------
duke@435 423 void Type::Initialize(Compile* current) {
duke@435 424 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 425
duke@435 426 if (_shared_type_dict == NULL) {
duke@435 427 Initialize_shared(current);
duke@435 428 }
duke@435 429
duke@435 430 Arena* type_arena = current->type_arena();
duke@435 431
duke@435 432 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 433 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 434 current->set_type_dict(tdic);
duke@435 435
duke@435 436 // Transfer the shared types.
duke@435 437 DictI i(_shared_type_dict);
duke@435 438 for( ; i.test(); ++i ) {
duke@435 439 Type* t = (Type*)i._value;
duke@435 440 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 441 }
coleenp@548 442
coleenp@548 443 #ifdef ASSERT
coleenp@548 444 verify_lastype();
coleenp@548 445 #endif
duke@435 446 }
duke@435 447
duke@435 448 //------------------------------hashcons---------------------------------------
duke@435 449 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 450 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 451 // current Type in the Type table.
duke@435 452 const Type *Type::hashcons(void) {
duke@435 453 debug_only(base()); // Check the assertion in Type::base().
duke@435 454 // Look up the Type in the Type dictionary
duke@435 455 Dict *tdic = type_dict();
duke@435 456 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 457 if( old ) { // Pre-existing Type?
duke@435 458 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 459 delete this; // Yes, Nuke this guy
duke@435 460 assert( old->_dual, "" );
duke@435 461 return old; // Return pre-existing
duke@435 462 }
duke@435 463
duke@435 464 // Every type has a dual (to make my lattice symmetric).
duke@435 465 // Since we just discovered a new Type, compute its dual right now.
duke@435 466 assert( !_dual, "" ); // No dual yet
duke@435 467 _dual = xdual(); // Compute the dual
duke@435 468 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 469 _dual = this;
duke@435 470 return this;
duke@435 471 }
duke@435 472 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 473 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 474 // New Type, insert into Type table
duke@435 475 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 476 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 477 #ifdef ASSERT
duke@435 478 Type *dual_dual = (Type*)_dual->xdual();
duke@435 479 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 480 delete dual_dual;
duke@435 481 #endif
duke@435 482 return this; // Return new Type
duke@435 483 }
duke@435 484
duke@435 485 //------------------------------eq---------------------------------------------
duke@435 486 // Structural equality check for Type representations
duke@435 487 bool Type::eq( const Type * ) const {
duke@435 488 return true; // Nothing else can go wrong
duke@435 489 }
duke@435 490
duke@435 491 //------------------------------hash-------------------------------------------
duke@435 492 // Type-specific hashing function.
duke@435 493 int Type::hash(void) const {
duke@435 494 return _base;
duke@435 495 }
duke@435 496
duke@435 497 //------------------------------is_finite--------------------------------------
duke@435 498 // Has a finite value
duke@435 499 bool Type::is_finite() const {
duke@435 500 return false;
duke@435 501 }
duke@435 502
duke@435 503 //------------------------------is_nan-----------------------------------------
duke@435 504 // Is not a number (NaN)
duke@435 505 bool Type::is_nan() const {
duke@435 506 return false;
duke@435 507 }
duke@435 508
kvn@1255 509 //----------------------interface_vs_oop---------------------------------------
kvn@1255 510 #ifdef ASSERT
kvn@1255 511 bool Type::interface_vs_oop(const Type *t) const {
kvn@1255 512 bool result = false;
kvn@1255 513
kvn@1427 514 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
kvn@1427 515 const TypePtr* t_ptr = t->make_ptr();
kvn@1427 516 if( this_ptr == NULL || t_ptr == NULL )
kvn@1427 517 return result;
kvn@1427 518
kvn@1427 519 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
kvn@1427 520 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
kvn@1255 521 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
kvn@1255 522 bool this_interface = this_inst->klass()->is_interface();
kvn@1255 523 bool t_interface = t_inst->klass()->is_interface();
kvn@1255 524 result = this_interface ^ t_interface;
kvn@1255 525 }
kvn@1255 526
kvn@1255 527 return result;
kvn@1255 528 }
kvn@1255 529 #endif
kvn@1255 530
duke@435 531 //------------------------------meet-------------------------------------------
duke@435 532 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 533 // commutative and the lattice is symmetric.
duke@435 534 const Type *Type::meet( const Type *t ) const {
coleenp@548 535 if (isa_narrowoop() && t->isa_narrowoop()) {
kvn@656 536 const Type* result = make_ptr()->meet(t->make_ptr());
kvn@656 537 return result->make_narrowoop();
coleenp@548 538 }
coleenp@548 539
duke@435 540 const Type *mt = xmeet(t);
coleenp@548 541 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
duke@435 542 #ifdef ASSERT
duke@435 543 assert( mt == t->xmeet(this), "meet not commutative" );
duke@435 544 const Type* dual_join = mt->_dual;
duke@435 545 const Type *t2t = dual_join->xmeet(t->_dual);
duke@435 546 const Type *t2this = dual_join->xmeet( _dual);
duke@435 547
duke@435 548 // Interface meet Oop is Not Symmetric:
duke@435 549 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 550 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
kvn@1255 551
kvn@1255 552 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
duke@435 553 tty->print_cr("=== Meet Not Symmetric ===");
duke@435 554 tty->print("t = "); t->dump(); tty->cr();
duke@435 555 tty->print("this= "); dump(); tty->cr();
duke@435 556 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
duke@435 557
duke@435 558 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
duke@435 559 tty->print("this_dual= "); _dual->dump(); tty->cr();
duke@435 560 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
duke@435 561
duke@435 562 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
duke@435 563 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 564
duke@435 565 fatal("meet not symmetric" );
duke@435 566 }
duke@435 567 #endif
duke@435 568 return mt;
duke@435 569 }
duke@435 570
duke@435 571 //------------------------------xmeet------------------------------------------
duke@435 572 // Compute the MEET of two types. It returns a new Type object.
duke@435 573 const Type *Type::xmeet( const Type *t ) const {
duke@435 574 // Perform a fast test for common case; meeting the same types together.
duke@435 575 if( this == t ) return this; // Meeting same type-rep?
duke@435 576
duke@435 577 // Meeting TOP with anything?
duke@435 578 if( _base == Top ) return t;
duke@435 579
duke@435 580 // Meeting BOTTOM with anything?
duke@435 581 if( _base == Bottom ) return BOTTOM;
duke@435 582
duke@435 583 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 584 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 585 switch (t->base()) { // Switch on original type
duke@435 586
duke@435 587 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 588 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 589 case FloatCon:
duke@435 590 case DoubleCon:
duke@435 591 case Int:
duke@435 592 case Long:
duke@435 593 return t->xmeet(this);
duke@435 594
duke@435 595 case OopPtr:
duke@435 596 return t->xmeet(this);
duke@435 597
duke@435 598 case InstPtr:
duke@435 599 return t->xmeet(this);
duke@435 600
duke@435 601 case KlassPtr:
duke@435 602 return t->xmeet(this);
duke@435 603
duke@435 604 case AryPtr:
duke@435 605 return t->xmeet(this);
duke@435 606
coleenp@548 607 case NarrowOop:
coleenp@548 608 return t->xmeet(this);
coleenp@548 609
duke@435 610 case Bad: // Type check
duke@435 611 default: // Bogus type not in lattice
duke@435 612 typerr(t);
duke@435 613 return Type::BOTTOM;
duke@435 614
duke@435 615 case Bottom: // Ye Olde Default
duke@435 616 return t;
duke@435 617
duke@435 618 case FloatTop:
duke@435 619 if( _base == FloatTop ) return this;
duke@435 620 case FloatBot: // Float
duke@435 621 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 622 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 623 typerr(t);
duke@435 624 return Type::BOTTOM;
duke@435 625
duke@435 626 case DoubleTop:
duke@435 627 if( _base == DoubleTop ) return this;
duke@435 628 case DoubleBot: // Double
duke@435 629 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 630 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 631 typerr(t);
duke@435 632 return Type::BOTTOM;
duke@435 633
duke@435 634 // These next few cases must match exactly or it is a compile-time error.
duke@435 635 case Control: // Control of code
duke@435 636 case Abio: // State of world outside of program
duke@435 637 case Memory:
duke@435 638 if( _base == t->_base ) return this;
duke@435 639 typerr(t);
duke@435 640 return Type::BOTTOM;
duke@435 641
duke@435 642 case Top: // Top of the lattice
duke@435 643 return this;
duke@435 644 }
duke@435 645
duke@435 646 // The type is unchanged
duke@435 647 return this;
duke@435 648 }
duke@435 649
duke@435 650 //-----------------------------filter------------------------------------------
duke@435 651 const Type *Type::filter( const Type *kills ) const {
duke@435 652 const Type* ft = join(kills);
duke@435 653 if (ft->empty())
duke@435 654 return Type::TOP; // Canonical empty value
duke@435 655 return ft;
duke@435 656 }
duke@435 657
duke@435 658 //------------------------------xdual------------------------------------------
duke@435 659 // Compute dual right now.
duke@435 660 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 661 Bad, // Bad
duke@435 662 Control, // Control
duke@435 663 Bottom, // Top
duke@435 664 Bad, // Int - handled in v-call
duke@435 665 Bad, // Long - handled in v-call
duke@435 666 Half, // Half
coleenp@548 667 Bad, // NarrowOop - handled in v-call
duke@435 668
duke@435 669 Bad, // Tuple - handled in v-call
duke@435 670 Bad, // Array - handled in v-call
duke@435 671
duke@435 672 Bad, // AnyPtr - handled in v-call
duke@435 673 Bad, // RawPtr - handled in v-call
duke@435 674 Bad, // OopPtr - handled in v-call
duke@435 675 Bad, // InstPtr - handled in v-call
duke@435 676 Bad, // AryPtr - handled in v-call
duke@435 677 Bad, // KlassPtr - handled in v-call
duke@435 678
duke@435 679 Bad, // Function - handled in v-call
duke@435 680 Abio, // Abio
duke@435 681 Return_Address,// Return_Address
duke@435 682 Memory, // Memory
duke@435 683 FloatBot, // FloatTop
duke@435 684 FloatCon, // FloatCon
duke@435 685 FloatTop, // FloatBot
duke@435 686 DoubleBot, // DoubleTop
duke@435 687 DoubleCon, // DoubleCon
duke@435 688 DoubleTop, // DoubleBot
duke@435 689 Top // Bottom
duke@435 690 };
duke@435 691
duke@435 692 const Type *Type::xdual() const {
duke@435 693 // Note: the base() accessor asserts the sanity of _base.
duke@435 694 assert(dual_type[base()] != Bad, "implement with v-call");
duke@435 695 return new Type(dual_type[_base]);
duke@435 696 }
duke@435 697
duke@435 698 //------------------------------has_memory-------------------------------------
duke@435 699 bool Type::has_memory() const {
duke@435 700 Type::TYPES tx = base();
duke@435 701 if (tx == Memory) return true;
duke@435 702 if (tx == Tuple) {
duke@435 703 const TypeTuple *t = is_tuple();
duke@435 704 for (uint i=0; i < t->cnt(); i++) {
duke@435 705 tx = t->field_at(i)->base();
duke@435 706 if (tx == Memory) return true;
duke@435 707 }
duke@435 708 }
duke@435 709 return false;
duke@435 710 }
duke@435 711
duke@435 712 #ifndef PRODUCT
duke@435 713 //------------------------------dump2------------------------------------------
duke@435 714 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 715 st->print(msg[_base]);
duke@435 716 }
duke@435 717
duke@435 718 //------------------------------dump-------------------------------------------
duke@435 719 void Type::dump_on(outputStream *st) const {
duke@435 720 ResourceMark rm;
duke@435 721 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 722 dump2(d,1, st);
kvn@598 723 if (is_ptr_to_narrowoop()) {
coleenp@548 724 st->print(" [narrow]");
coleenp@548 725 }
duke@435 726 }
duke@435 727
duke@435 728 //------------------------------data-------------------------------------------
duke@435 729 const char * const Type::msg[Type::lastype] = {
coleenp@548 730 "bad","control","top","int:","long:","half", "narrowoop:",
duke@435 731 "tuple:", "aryptr",
duke@435 732 "anyptr:", "rawptr:", "java:", "inst:", "ary:", "klass:",
duke@435 733 "func", "abIO", "return_address", "memory",
duke@435 734 "float_top", "ftcon:", "float",
duke@435 735 "double_top", "dblcon:", "double",
duke@435 736 "bottom"
duke@435 737 };
duke@435 738 #endif
duke@435 739
duke@435 740 //------------------------------singleton--------------------------------------
duke@435 741 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 742 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 743 bool Type::singleton(void) const {
duke@435 744 return _base == Top || _base == Half;
duke@435 745 }
duke@435 746
duke@435 747 //------------------------------empty------------------------------------------
duke@435 748 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 749 bool Type::empty(void) const {
duke@435 750 switch (_base) {
duke@435 751 case DoubleTop:
duke@435 752 case FloatTop:
duke@435 753 case Top:
duke@435 754 return true;
duke@435 755
duke@435 756 case Half:
duke@435 757 case Abio:
duke@435 758 case Return_Address:
duke@435 759 case Memory:
duke@435 760 case Bottom:
duke@435 761 case FloatBot:
duke@435 762 case DoubleBot:
duke@435 763 return false; // never a singleton, therefore never empty
duke@435 764 }
duke@435 765
duke@435 766 ShouldNotReachHere();
duke@435 767 return false;
duke@435 768 }
duke@435 769
duke@435 770 //------------------------------dump_stats-------------------------------------
duke@435 771 // Dump collected statistics to stderr
duke@435 772 #ifndef PRODUCT
duke@435 773 void Type::dump_stats() {
duke@435 774 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 775 }
duke@435 776 #endif
duke@435 777
duke@435 778 //------------------------------typerr-----------------------------------------
duke@435 779 void Type::typerr( const Type *t ) const {
duke@435 780 #ifndef PRODUCT
duke@435 781 tty->print("\nError mixing types: ");
duke@435 782 dump();
duke@435 783 tty->print(" and ");
duke@435 784 t->dump();
duke@435 785 tty->print("\n");
duke@435 786 #endif
duke@435 787 ShouldNotReachHere();
duke@435 788 }
duke@435 789
duke@435 790 //------------------------------isa_oop_ptr------------------------------------
duke@435 791 // Return true if type is an oop pointer type. False for raw pointers.
duke@435 792 static char isa_oop_ptr_tbl[Type::lastype] = {
coleenp@548 793 0,0,0,0,0,0,0/*narrowoop*/,0/*tuple*/, 0/*ary*/,
duke@435 794 0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
duke@435 795 0/*func*/,0,0/*return_address*/,0,
duke@435 796 /*floats*/0,0,0, /*doubles*/0,0,0,
duke@435 797 0
duke@435 798 };
duke@435 799 bool Type::isa_oop_ptr() const {
duke@435 800 return isa_oop_ptr_tbl[_base] != 0;
duke@435 801 }
duke@435 802
duke@435 803 //------------------------------dump_stats-------------------------------------
duke@435 804 // // Check that arrays match type enum
duke@435 805 #ifndef PRODUCT
duke@435 806 void Type::verify_lastype() {
duke@435 807 // Check that arrays match enumeration
duke@435 808 assert( Type::dual_type [Type::lastype - 1] == Type::Top, "did not update array");
duke@435 809 assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
duke@435 810 // assert( PhiNode::tbl [Type::lastype - 1] == NULL, "did not update array");
duke@435 811 assert( Matcher::base2reg[Type::lastype - 1] == 0, "did not update array");
duke@435 812 assert( isa_oop_ptr_tbl [Type::lastype - 1] == (char)0, "did not update array");
duke@435 813 }
duke@435 814 #endif
duke@435 815
duke@435 816 //=============================================================================
duke@435 817 // Convenience common pre-built types.
duke@435 818 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 819 const TypeF *TypeF::ONE; // Floating point one
duke@435 820
duke@435 821 //------------------------------make-------------------------------------------
duke@435 822 // Create a float constant
duke@435 823 const TypeF *TypeF::make(float f) {
duke@435 824 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 825 }
duke@435 826
duke@435 827 //------------------------------meet-------------------------------------------
duke@435 828 // Compute the MEET of two types. It returns a new Type object.
duke@435 829 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 830 // Perform a fast test for common case; meeting the same types together.
duke@435 831 if( this == t ) return this; // Meeting same type-rep?
duke@435 832
duke@435 833 // Current "this->_base" is FloatCon
duke@435 834 switch (t->base()) { // Switch on original type
duke@435 835 case AnyPtr: // Mixing with oops happens when javac
duke@435 836 case RawPtr: // reuses local variables
duke@435 837 case OopPtr:
duke@435 838 case InstPtr:
duke@435 839 case KlassPtr:
duke@435 840 case AryPtr:
kvn@728 841 case NarrowOop:
duke@435 842 case Int:
duke@435 843 case Long:
duke@435 844 case DoubleTop:
duke@435 845 case DoubleCon:
duke@435 846 case DoubleBot:
duke@435 847 case Bottom: // Ye Olde Default
duke@435 848 return Type::BOTTOM;
duke@435 849
duke@435 850 case FloatBot:
duke@435 851 return t;
duke@435 852
duke@435 853 default: // All else is a mistake
duke@435 854 typerr(t);
duke@435 855
duke@435 856 case FloatCon: // Float-constant vs Float-constant?
duke@435 857 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 858 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 859 // all the same representation in C++
duke@435 860 return FLOAT; // Return generic float
duke@435 861 // Equal constants
duke@435 862 case Top:
duke@435 863 case FloatTop:
duke@435 864 break; // Return the float constant
duke@435 865 }
duke@435 866 return this; // Return the float constant
duke@435 867 }
duke@435 868
duke@435 869 //------------------------------xdual------------------------------------------
duke@435 870 // Dual: symmetric
duke@435 871 const Type *TypeF::xdual() const {
duke@435 872 return this;
duke@435 873 }
duke@435 874
duke@435 875 //------------------------------eq---------------------------------------------
duke@435 876 // Structural equality check for Type representations
duke@435 877 bool TypeF::eq( const Type *t ) const {
duke@435 878 if( g_isnan(_f) ||
duke@435 879 g_isnan(t->getf()) ) {
duke@435 880 // One or both are NANs. If both are NANs return true, else false.
duke@435 881 return (g_isnan(_f) && g_isnan(t->getf()));
duke@435 882 }
duke@435 883 if (_f == t->getf()) {
duke@435 884 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 885 if (_f == 0.0) {
duke@435 886 // difference between positive and negative zero
duke@435 887 if (jint_cast(_f) != jint_cast(t->getf())) return false;
duke@435 888 }
duke@435 889 return true;
duke@435 890 }
duke@435 891 return false;
duke@435 892 }
duke@435 893
duke@435 894 //------------------------------hash-------------------------------------------
duke@435 895 // Type-specific hashing function.
duke@435 896 int TypeF::hash(void) const {
duke@435 897 return *(int*)(&_f);
duke@435 898 }
duke@435 899
duke@435 900 //------------------------------is_finite--------------------------------------
duke@435 901 // Has a finite value
duke@435 902 bool TypeF::is_finite() const {
duke@435 903 return g_isfinite(getf()) != 0;
duke@435 904 }
duke@435 905
duke@435 906 //------------------------------is_nan-----------------------------------------
duke@435 907 // Is not a number (NaN)
duke@435 908 bool TypeF::is_nan() const {
duke@435 909 return g_isnan(getf()) != 0;
duke@435 910 }
duke@435 911
duke@435 912 //------------------------------dump2------------------------------------------
duke@435 913 // Dump float constant Type
duke@435 914 #ifndef PRODUCT
duke@435 915 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 916 Type::dump2(d,depth, st);
duke@435 917 st->print("%f", _f);
duke@435 918 }
duke@435 919 #endif
duke@435 920
duke@435 921 //------------------------------singleton--------------------------------------
duke@435 922 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 923 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 924 // or a single symbol.
duke@435 925 bool TypeF::singleton(void) const {
duke@435 926 return true; // Always a singleton
duke@435 927 }
duke@435 928
duke@435 929 bool TypeF::empty(void) const {
duke@435 930 return false; // always exactly a singleton
duke@435 931 }
duke@435 932
duke@435 933 //=============================================================================
duke@435 934 // Convenience common pre-built types.
duke@435 935 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 936 const TypeD *TypeD::ONE; // Floating point one
duke@435 937
duke@435 938 //------------------------------make-------------------------------------------
duke@435 939 const TypeD *TypeD::make(double d) {
duke@435 940 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 941 }
duke@435 942
duke@435 943 //------------------------------meet-------------------------------------------
duke@435 944 // Compute the MEET of two types. It returns a new Type object.
duke@435 945 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 946 // Perform a fast test for common case; meeting the same types together.
duke@435 947 if( this == t ) return this; // Meeting same type-rep?
duke@435 948
duke@435 949 // Current "this->_base" is DoubleCon
duke@435 950 switch (t->base()) { // Switch on original type
duke@435 951 case AnyPtr: // Mixing with oops happens when javac
duke@435 952 case RawPtr: // reuses local variables
duke@435 953 case OopPtr:
duke@435 954 case InstPtr:
duke@435 955 case KlassPtr:
duke@435 956 case AryPtr:
never@618 957 case NarrowOop:
duke@435 958 case Int:
duke@435 959 case Long:
duke@435 960 case FloatTop:
duke@435 961 case FloatCon:
duke@435 962 case FloatBot:
duke@435 963 case Bottom: // Ye Olde Default
duke@435 964 return Type::BOTTOM;
duke@435 965
duke@435 966 case DoubleBot:
duke@435 967 return t;
duke@435 968
duke@435 969 default: // All else is a mistake
duke@435 970 typerr(t);
duke@435 971
duke@435 972 case DoubleCon: // Double-constant vs Double-constant?
duke@435 973 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 974 return DOUBLE; // Return generic double
duke@435 975 case Top:
duke@435 976 case DoubleTop:
duke@435 977 break;
duke@435 978 }
duke@435 979 return this; // Return the double constant
duke@435 980 }
duke@435 981
duke@435 982 //------------------------------xdual------------------------------------------
duke@435 983 // Dual: symmetric
duke@435 984 const Type *TypeD::xdual() const {
duke@435 985 return this;
duke@435 986 }
duke@435 987
duke@435 988 //------------------------------eq---------------------------------------------
duke@435 989 // Structural equality check for Type representations
duke@435 990 bool TypeD::eq( const Type *t ) const {
duke@435 991 if( g_isnan(_d) ||
duke@435 992 g_isnan(t->getd()) ) {
duke@435 993 // One or both are NANs. If both are NANs return true, else false.
duke@435 994 return (g_isnan(_d) && g_isnan(t->getd()));
duke@435 995 }
duke@435 996 if (_d == t->getd()) {
duke@435 997 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 998 if (_d == 0.0) {
duke@435 999 // difference between positive and negative zero
duke@435 1000 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
duke@435 1001 }
duke@435 1002 return true;
duke@435 1003 }
duke@435 1004 return false;
duke@435 1005 }
duke@435 1006
duke@435 1007 //------------------------------hash-------------------------------------------
duke@435 1008 // Type-specific hashing function.
duke@435 1009 int TypeD::hash(void) const {
duke@435 1010 return *(int*)(&_d);
duke@435 1011 }
duke@435 1012
duke@435 1013 //------------------------------is_finite--------------------------------------
duke@435 1014 // Has a finite value
duke@435 1015 bool TypeD::is_finite() const {
duke@435 1016 return g_isfinite(getd()) != 0;
duke@435 1017 }
duke@435 1018
duke@435 1019 //------------------------------is_nan-----------------------------------------
duke@435 1020 // Is not a number (NaN)
duke@435 1021 bool TypeD::is_nan() const {
duke@435 1022 return g_isnan(getd()) != 0;
duke@435 1023 }
duke@435 1024
duke@435 1025 //------------------------------dump2------------------------------------------
duke@435 1026 // Dump double constant Type
duke@435 1027 #ifndef PRODUCT
duke@435 1028 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1029 Type::dump2(d,depth,st);
duke@435 1030 st->print("%f", _d);
duke@435 1031 }
duke@435 1032 #endif
duke@435 1033
duke@435 1034 //------------------------------singleton--------------------------------------
duke@435 1035 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1036 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1037 // or a single symbol.
duke@435 1038 bool TypeD::singleton(void) const {
duke@435 1039 return true; // Always a singleton
duke@435 1040 }
duke@435 1041
duke@435 1042 bool TypeD::empty(void) const {
duke@435 1043 return false; // always exactly a singleton
duke@435 1044 }
duke@435 1045
duke@435 1046 //=============================================================================
duke@435 1047 // Convience common pre-built types.
duke@435 1048 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1049 const TypeInt *TypeInt::ZERO; // 0
duke@435 1050 const TypeInt *TypeInt::ONE; // 1
duke@435 1051 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1052 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1053 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1054 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1055 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1056 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1057 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1058 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
twisti@1059 1059 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
duke@435 1060 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1061 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1062 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1063 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1064 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1065 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 1066
duke@435 1067 //------------------------------TypeInt----------------------------------------
duke@435 1068 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1069 }
duke@435 1070
duke@435 1071 //------------------------------make-------------------------------------------
duke@435 1072 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1073 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1074 }
duke@435 1075
kvn@1975 1076 static int normalize_int_widen( jint lo, jint hi, int w ) {
duke@435 1077 // Certain normalizations keep us sane when comparing types.
duke@435 1078 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1079 if (lo <= hi) {
kvn@1975 1080 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1081 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
kvn@1975 1082 } else {
kvn@1975 1083 if ((juint)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1084 if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
duke@435 1085 }
kvn@1975 1086 return w;
kvn@1975 1087 }
kvn@1975 1088
kvn@1975 1089 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
kvn@1975 1090 w = normalize_int_widen(lo, hi, w);
duke@435 1091 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1092 }
duke@435 1093
duke@435 1094 //------------------------------meet-------------------------------------------
duke@435 1095 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1096 // with reference count equal to the number of Types pointing at it.
duke@435 1097 // Caller should wrap a Types around it.
duke@435 1098 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1099 // Perform a fast test for common case; meeting the same types together.
duke@435 1100 if( this == t ) return this; // Meeting same type?
duke@435 1101
duke@435 1102 // Currently "this->_base" is a TypeInt
duke@435 1103 switch (t->base()) { // Switch on original type
duke@435 1104 case AnyPtr: // Mixing with oops happens when javac
duke@435 1105 case RawPtr: // reuses local variables
duke@435 1106 case OopPtr:
duke@435 1107 case InstPtr:
duke@435 1108 case KlassPtr:
duke@435 1109 case AryPtr:
never@618 1110 case NarrowOop:
duke@435 1111 case Long:
duke@435 1112 case FloatTop:
duke@435 1113 case FloatCon:
duke@435 1114 case FloatBot:
duke@435 1115 case DoubleTop:
duke@435 1116 case DoubleCon:
duke@435 1117 case DoubleBot:
duke@435 1118 case Bottom: // Ye Olde Default
duke@435 1119 return Type::BOTTOM;
duke@435 1120 default: // All else is a mistake
duke@435 1121 typerr(t);
duke@435 1122 case Top: // No change
duke@435 1123 return this;
duke@435 1124 case Int: // Int vs Int?
duke@435 1125 break;
duke@435 1126 }
duke@435 1127
duke@435 1128 // Expand covered set
duke@435 1129 const TypeInt *r = t->is_int();
kvn@1975 1130 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1131 }
duke@435 1132
duke@435 1133 //------------------------------xdual------------------------------------------
duke@435 1134 // Dual: reverse hi & lo; flip widen
duke@435 1135 const Type *TypeInt::xdual() const {
kvn@1975 1136 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1137 return new TypeInt(_hi,_lo,w);
duke@435 1138 }
duke@435 1139
duke@435 1140 //------------------------------widen------------------------------------------
duke@435 1141 // Only happens for optimistic top-down optimizations.
never@1444 1142 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
duke@435 1143 // Coming from TOP or such; no widening
duke@435 1144 if( old->base() != Int ) return this;
duke@435 1145 const TypeInt *ot = old->is_int();
duke@435 1146
duke@435 1147 // If new guy is equal to old guy, no widening
duke@435 1148 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1149 return old;
duke@435 1150
duke@435 1151 // If new guy contains old, then we widened
duke@435 1152 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1153 // New contains old
duke@435 1154 // If new guy is already wider than old, no widening
duke@435 1155 if( _widen > ot->_widen ) return this;
duke@435 1156 // If old guy was a constant, do not bother
duke@435 1157 if (ot->_lo == ot->_hi) return this;
duke@435 1158 // Now widen new guy.
duke@435 1159 // Check for widening too far
duke@435 1160 if (_widen == WidenMax) {
never@1444 1161 int max = max_jint;
never@1444 1162 int min = min_jint;
never@1444 1163 if (limit->isa_int()) {
never@1444 1164 max = limit->is_int()->_hi;
never@1444 1165 min = limit->is_int()->_lo;
never@1444 1166 }
never@1444 1167 if (min < _lo && _hi < max) {
duke@435 1168 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1169 // which is closer to its respective limit.
duke@435 1170 if (_lo >= 0 || // easy common case
never@1444 1171 (juint)(_lo - min) >= (juint)(max - _hi)) {
duke@435 1172 // Try to widen to an unsigned range type of 31 bits:
never@1444 1173 return make(_lo, max, WidenMax);
duke@435 1174 } else {
never@1444 1175 return make(min, _hi, WidenMax);
duke@435 1176 }
duke@435 1177 }
duke@435 1178 return TypeInt::INT;
duke@435 1179 }
duke@435 1180 // Returned widened new guy
duke@435 1181 return make(_lo,_hi,_widen+1);
duke@435 1182 }
duke@435 1183
duke@435 1184 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1185 // bottom. Return the wider fellow.
duke@435 1186 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1187 return old;
duke@435 1188
duke@435 1189 //fatal("Integer value range is not subset");
duke@435 1190 //return this;
duke@435 1191 return TypeInt::INT;
duke@435 1192 }
duke@435 1193
duke@435 1194 //------------------------------narrow---------------------------------------
duke@435 1195 // Only happens for pessimistic optimizations.
duke@435 1196 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1197 if (_lo >= _hi) return this; // already narrow enough
duke@435 1198 if (old == NULL) return this;
duke@435 1199 const TypeInt* ot = old->isa_int();
duke@435 1200 if (ot == NULL) return this;
duke@435 1201 jint olo = ot->_lo;
duke@435 1202 jint ohi = ot->_hi;
duke@435 1203
duke@435 1204 // If new guy is equal to old guy, no narrowing
duke@435 1205 if (_lo == olo && _hi == ohi) return old;
duke@435 1206
duke@435 1207 // If old guy was maximum range, allow the narrowing
duke@435 1208 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1209
duke@435 1210 if (_lo < olo || _hi > ohi)
duke@435 1211 return this; // doesn't narrow; pretty wierd
duke@435 1212
duke@435 1213 // The new type narrows the old type, so look for a "death march".
duke@435 1214 // See comments on PhaseTransform::saturate.
duke@435 1215 juint nrange = _hi - _lo;
duke@435 1216 juint orange = ohi - olo;
duke@435 1217 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1218 // Use the new type only if the range shrinks a lot.
duke@435 1219 // We do not want the optimizer computing 2^31 point by point.
duke@435 1220 return old;
duke@435 1221 }
duke@435 1222
duke@435 1223 return this;
duke@435 1224 }
duke@435 1225
duke@435 1226 //-----------------------------filter------------------------------------------
duke@435 1227 const Type *TypeInt::filter( const Type *kills ) const {
duke@435 1228 const TypeInt* ft = join(kills)->isa_int();
kvn@1975 1229 if (ft == NULL || ft->empty())
duke@435 1230 return Type::TOP; // Canonical empty value
duke@435 1231 if (ft->_widen < this->_widen) {
duke@435 1232 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1233 // The widen bits must be allowed to run freely through the graph.
duke@435 1234 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1235 }
duke@435 1236 return ft;
duke@435 1237 }
duke@435 1238
duke@435 1239 //------------------------------eq---------------------------------------------
duke@435 1240 // Structural equality check for Type representations
duke@435 1241 bool TypeInt::eq( const Type *t ) const {
duke@435 1242 const TypeInt *r = t->is_int(); // Handy access
duke@435 1243 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1244 }
duke@435 1245
duke@435 1246 //------------------------------hash-------------------------------------------
duke@435 1247 // Type-specific hashing function.
duke@435 1248 int TypeInt::hash(void) const {
duke@435 1249 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1250 }
duke@435 1251
duke@435 1252 //------------------------------is_finite--------------------------------------
duke@435 1253 // Has a finite value
duke@435 1254 bool TypeInt::is_finite() const {
duke@435 1255 return true;
duke@435 1256 }
duke@435 1257
duke@435 1258 //------------------------------dump2------------------------------------------
duke@435 1259 // Dump TypeInt
duke@435 1260 #ifndef PRODUCT
duke@435 1261 static const char* intname(char* buf, jint n) {
duke@435 1262 if (n == min_jint)
duke@435 1263 return "min";
duke@435 1264 else if (n < min_jint + 10000)
duke@435 1265 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1266 else if (n == max_jint)
duke@435 1267 return "max";
duke@435 1268 else if (n > max_jint - 10000)
duke@435 1269 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1270 else
duke@435 1271 sprintf(buf, INT32_FORMAT, n);
duke@435 1272 return buf;
duke@435 1273 }
duke@435 1274
duke@435 1275 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1276 char buf[40], buf2[40];
duke@435 1277 if (_lo == min_jint && _hi == max_jint)
duke@435 1278 st->print("int");
duke@435 1279 else if (is_con())
duke@435 1280 st->print("int:%s", intname(buf, get_con()));
duke@435 1281 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1282 st->print("bool");
duke@435 1283 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1284 st->print("byte");
duke@435 1285 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1286 st->print("char");
duke@435 1287 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1288 st->print("short");
duke@435 1289 else if (_hi == max_jint)
duke@435 1290 st->print("int:>=%s", intname(buf, _lo));
duke@435 1291 else if (_lo == min_jint)
duke@435 1292 st->print("int:<=%s", intname(buf, _hi));
duke@435 1293 else
duke@435 1294 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1295
duke@435 1296 if (_widen != 0 && this != TypeInt::INT)
duke@435 1297 st->print(":%.*s", _widen, "wwww");
duke@435 1298 }
duke@435 1299 #endif
duke@435 1300
duke@435 1301 //------------------------------singleton--------------------------------------
duke@435 1302 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1303 // constants.
duke@435 1304 bool TypeInt::singleton(void) const {
duke@435 1305 return _lo >= _hi;
duke@435 1306 }
duke@435 1307
duke@435 1308 bool TypeInt::empty(void) const {
duke@435 1309 return _lo > _hi;
duke@435 1310 }
duke@435 1311
duke@435 1312 //=============================================================================
duke@435 1313 // Convenience common pre-built types.
duke@435 1314 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1315 const TypeLong *TypeLong::ZERO; // 0
duke@435 1316 const TypeLong *TypeLong::ONE; // 1
duke@435 1317 const TypeLong *TypeLong::POS; // >=0
duke@435 1318 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1319 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1320 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
duke@435 1321
duke@435 1322 //------------------------------TypeLong---------------------------------------
duke@435 1323 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1324 }
duke@435 1325
duke@435 1326 //------------------------------make-------------------------------------------
duke@435 1327 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1328 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1329 }
duke@435 1330
kvn@1975 1331 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
kvn@1975 1332 // Certain normalizations keep us sane when comparing types.
kvn@1975 1333 // The 'SMALLINT' covers constants.
kvn@1975 1334 if (lo <= hi) {
kvn@1975 1335 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1336 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
kvn@1975 1337 } else {
kvn@1975 1338 if ((julong)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1339 if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
kvn@1975 1340 }
kvn@1975 1341 return w;
kvn@1975 1342 }
kvn@1975 1343
duke@435 1344 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
kvn@1975 1345 w = normalize_long_widen(lo, hi, w);
duke@435 1346 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1347 }
duke@435 1348
duke@435 1349
duke@435 1350 //------------------------------meet-------------------------------------------
duke@435 1351 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1352 // with reference count equal to the number of Types pointing at it.
duke@435 1353 // Caller should wrap a Types around it.
duke@435 1354 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1355 // Perform a fast test for common case; meeting the same types together.
duke@435 1356 if( this == t ) return this; // Meeting same type?
duke@435 1357
duke@435 1358 // Currently "this->_base" is a TypeLong
duke@435 1359 switch (t->base()) { // Switch on original type
duke@435 1360 case AnyPtr: // Mixing with oops happens when javac
duke@435 1361 case RawPtr: // reuses local variables
duke@435 1362 case OopPtr:
duke@435 1363 case InstPtr:
duke@435 1364 case KlassPtr:
duke@435 1365 case AryPtr:
never@618 1366 case NarrowOop:
duke@435 1367 case Int:
duke@435 1368 case FloatTop:
duke@435 1369 case FloatCon:
duke@435 1370 case FloatBot:
duke@435 1371 case DoubleTop:
duke@435 1372 case DoubleCon:
duke@435 1373 case DoubleBot:
duke@435 1374 case Bottom: // Ye Olde Default
duke@435 1375 return Type::BOTTOM;
duke@435 1376 default: // All else is a mistake
duke@435 1377 typerr(t);
duke@435 1378 case Top: // No change
duke@435 1379 return this;
duke@435 1380 case Long: // Long vs Long?
duke@435 1381 break;
duke@435 1382 }
duke@435 1383
duke@435 1384 // Expand covered set
duke@435 1385 const TypeLong *r = t->is_long(); // Turn into a TypeLong
kvn@1975 1386 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1387 }
duke@435 1388
duke@435 1389 //------------------------------xdual------------------------------------------
duke@435 1390 // Dual: reverse hi & lo; flip widen
duke@435 1391 const Type *TypeLong::xdual() const {
kvn@1975 1392 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1393 return new TypeLong(_hi,_lo,w);
duke@435 1394 }
duke@435 1395
duke@435 1396 //------------------------------widen------------------------------------------
duke@435 1397 // Only happens for optimistic top-down optimizations.
never@1444 1398 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
duke@435 1399 // Coming from TOP or such; no widening
duke@435 1400 if( old->base() != Long ) return this;
duke@435 1401 const TypeLong *ot = old->is_long();
duke@435 1402
duke@435 1403 // If new guy is equal to old guy, no widening
duke@435 1404 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1405 return old;
duke@435 1406
duke@435 1407 // If new guy contains old, then we widened
duke@435 1408 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1409 // New contains old
duke@435 1410 // If new guy is already wider than old, no widening
duke@435 1411 if( _widen > ot->_widen ) return this;
duke@435 1412 // If old guy was a constant, do not bother
duke@435 1413 if (ot->_lo == ot->_hi) return this;
duke@435 1414 // Now widen new guy.
duke@435 1415 // Check for widening too far
duke@435 1416 if (_widen == WidenMax) {
never@1444 1417 jlong max = max_jlong;
never@1444 1418 jlong min = min_jlong;
never@1444 1419 if (limit->isa_long()) {
never@1444 1420 max = limit->is_long()->_hi;
never@1444 1421 min = limit->is_long()->_lo;
never@1444 1422 }
never@1444 1423 if (min < _lo && _hi < max) {
duke@435 1424 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1425 // which is closer to its respective limit.
duke@435 1426 if (_lo >= 0 || // easy common case
never@1444 1427 (julong)(_lo - min) >= (julong)(max - _hi)) {
duke@435 1428 // Try to widen to an unsigned range type of 32/63 bits:
never@1444 1429 if (max >= max_juint && _hi < max_juint)
duke@435 1430 return make(_lo, max_juint, WidenMax);
duke@435 1431 else
never@1444 1432 return make(_lo, max, WidenMax);
duke@435 1433 } else {
never@1444 1434 return make(min, _hi, WidenMax);
duke@435 1435 }
duke@435 1436 }
duke@435 1437 return TypeLong::LONG;
duke@435 1438 }
duke@435 1439 // Returned widened new guy
duke@435 1440 return make(_lo,_hi,_widen+1);
duke@435 1441 }
duke@435 1442
duke@435 1443 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1444 // bottom. Return the wider fellow.
duke@435 1445 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1446 return old;
duke@435 1447
duke@435 1448 // fatal("Long value range is not subset");
duke@435 1449 // return this;
duke@435 1450 return TypeLong::LONG;
duke@435 1451 }
duke@435 1452
duke@435 1453 //------------------------------narrow----------------------------------------
duke@435 1454 // Only happens for pessimistic optimizations.
duke@435 1455 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1456 if (_lo >= _hi) return this; // already narrow enough
duke@435 1457 if (old == NULL) return this;
duke@435 1458 const TypeLong* ot = old->isa_long();
duke@435 1459 if (ot == NULL) return this;
duke@435 1460 jlong olo = ot->_lo;
duke@435 1461 jlong ohi = ot->_hi;
duke@435 1462
duke@435 1463 // If new guy is equal to old guy, no narrowing
duke@435 1464 if (_lo == olo && _hi == ohi) return old;
duke@435 1465
duke@435 1466 // If old guy was maximum range, allow the narrowing
duke@435 1467 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1468
duke@435 1469 if (_lo < olo || _hi > ohi)
duke@435 1470 return this; // doesn't narrow; pretty wierd
duke@435 1471
duke@435 1472 // The new type narrows the old type, so look for a "death march".
duke@435 1473 // See comments on PhaseTransform::saturate.
duke@435 1474 julong nrange = _hi - _lo;
duke@435 1475 julong orange = ohi - olo;
duke@435 1476 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1477 // Use the new type only if the range shrinks a lot.
duke@435 1478 // We do not want the optimizer computing 2^31 point by point.
duke@435 1479 return old;
duke@435 1480 }
duke@435 1481
duke@435 1482 return this;
duke@435 1483 }
duke@435 1484
duke@435 1485 //-----------------------------filter------------------------------------------
duke@435 1486 const Type *TypeLong::filter( const Type *kills ) const {
duke@435 1487 const TypeLong* ft = join(kills)->isa_long();
kvn@1975 1488 if (ft == NULL || ft->empty())
duke@435 1489 return Type::TOP; // Canonical empty value
duke@435 1490 if (ft->_widen < this->_widen) {
duke@435 1491 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1492 // The widen bits must be allowed to run freely through the graph.
duke@435 1493 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1494 }
duke@435 1495 return ft;
duke@435 1496 }
duke@435 1497
duke@435 1498 //------------------------------eq---------------------------------------------
duke@435 1499 // Structural equality check for Type representations
duke@435 1500 bool TypeLong::eq( const Type *t ) const {
duke@435 1501 const TypeLong *r = t->is_long(); // Handy access
duke@435 1502 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1503 }
duke@435 1504
duke@435 1505 //------------------------------hash-------------------------------------------
duke@435 1506 // Type-specific hashing function.
duke@435 1507 int TypeLong::hash(void) const {
duke@435 1508 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1509 }
duke@435 1510
duke@435 1511 //------------------------------is_finite--------------------------------------
duke@435 1512 // Has a finite value
duke@435 1513 bool TypeLong::is_finite() const {
duke@435 1514 return true;
duke@435 1515 }
duke@435 1516
duke@435 1517 //------------------------------dump2------------------------------------------
duke@435 1518 // Dump TypeLong
duke@435 1519 #ifndef PRODUCT
duke@435 1520 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1521 if (n > x) {
duke@435 1522 if (n >= x + 10000) return NULL;
duke@435 1523 sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
duke@435 1524 } else if (n < x) {
duke@435 1525 if (n <= x - 10000) return NULL;
duke@435 1526 sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
duke@435 1527 } else {
duke@435 1528 return xname;
duke@435 1529 }
duke@435 1530 return buf;
duke@435 1531 }
duke@435 1532
duke@435 1533 static const char* longname(char* buf, jlong n) {
duke@435 1534 const char* str;
duke@435 1535 if (n == min_jlong)
duke@435 1536 return "min";
duke@435 1537 else if (n < min_jlong + 10000)
duke@435 1538 sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
duke@435 1539 else if (n == max_jlong)
duke@435 1540 return "max";
duke@435 1541 else if (n > max_jlong - 10000)
duke@435 1542 sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
duke@435 1543 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1544 return str;
duke@435 1545 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1546 return str;
duke@435 1547 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1548 return str;
duke@435 1549 else
duke@435 1550 sprintf(buf, INT64_FORMAT, n);
duke@435 1551 return buf;
duke@435 1552 }
duke@435 1553
duke@435 1554 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1555 char buf[80], buf2[80];
duke@435 1556 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1557 st->print("long");
duke@435 1558 else if (is_con())
duke@435 1559 st->print("long:%s", longname(buf, get_con()));
duke@435 1560 else if (_hi == max_jlong)
duke@435 1561 st->print("long:>=%s", longname(buf, _lo));
duke@435 1562 else if (_lo == min_jlong)
duke@435 1563 st->print("long:<=%s", longname(buf, _hi));
duke@435 1564 else
duke@435 1565 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1566
duke@435 1567 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1568 st->print(":%.*s", _widen, "wwww");
duke@435 1569 }
duke@435 1570 #endif
duke@435 1571
duke@435 1572 //------------------------------singleton--------------------------------------
duke@435 1573 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1574 // constants
duke@435 1575 bool TypeLong::singleton(void) const {
duke@435 1576 return _lo >= _hi;
duke@435 1577 }
duke@435 1578
duke@435 1579 bool TypeLong::empty(void) const {
duke@435 1580 return _lo > _hi;
duke@435 1581 }
duke@435 1582
duke@435 1583 //=============================================================================
duke@435 1584 // Convenience common pre-built types.
duke@435 1585 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1586 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1587 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1588 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1589 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1590 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1591 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1592 const TypeTuple *TypeTuple::START_I2C;
duke@435 1593 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1594 const TypeTuple *TypeTuple::LONG_PAIR;
duke@435 1595
duke@435 1596
duke@435 1597 //------------------------------make-------------------------------------------
duke@435 1598 // Make a TypeTuple from the range of a method signature
duke@435 1599 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1600 ciType* return_type = sig->return_type();
duke@435 1601 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1602 const Type **field_array = fields(total_fields);
duke@435 1603 switch (return_type->basic_type()) {
duke@435 1604 case T_LONG:
duke@435 1605 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1606 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1607 break;
duke@435 1608 case T_DOUBLE:
duke@435 1609 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1610 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1611 break;
duke@435 1612 case T_OBJECT:
duke@435 1613 case T_ARRAY:
duke@435 1614 case T_BOOLEAN:
duke@435 1615 case T_CHAR:
duke@435 1616 case T_FLOAT:
duke@435 1617 case T_BYTE:
duke@435 1618 case T_SHORT:
duke@435 1619 case T_INT:
duke@435 1620 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1621 break;
duke@435 1622 case T_VOID:
duke@435 1623 break;
duke@435 1624 default:
duke@435 1625 ShouldNotReachHere();
duke@435 1626 }
duke@435 1627 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1628 }
duke@435 1629
duke@435 1630 // Make a TypeTuple from the domain of a method signature
duke@435 1631 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1632 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1633
duke@435 1634 uint pos = TypeFunc::Parms;
duke@435 1635 const Type **field_array;
duke@435 1636 if (recv != NULL) {
duke@435 1637 total_fields++;
duke@435 1638 field_array = fields(total_fields);
duke@435 1639 // Use get_const_type here because it respects UseUniqueSubclasses:
duke@435 1640 field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
duke@435 1641 } else {
duke@435 1642 field_array = fields(total_fields);
duke@435 1643 }
duke@435 1644
duke@435 1645 int i = 0;
duke@435 1646 while (pos < total_fields) {
duke@435 1647 ciType* type = sig->type_at(i);
duke@435 1648
duke@435 1649 switch (type->basic_type()) {
duke@435 1650 case T_LONG:
duke@435 1651 field_array[pos++] = TypeLong::LONG;
duke@435 1652 field_array[pos++] = Type::HALF;
duke@435 1653 break;
duke@435 1654 case T_DOUBLE:
duke@435 1655 field_array[pos++] = Type::DOUBLE;
duke@435 1656 field_array[pos++] = Type::HALF;
duke@435 1657 break;
duke@435 1658 case T_OBJECT:
duke@435 1659 case T_ARRAY:
duke@435 1660 case T_BOOLEAN:
duke@435 1661 case T_CHAR:
duke@435 1662 case T_FLOAT:
duke@435 1663 case T_BYTE:
duke@435 1664 case T_SHORT:
duke@435 1665 case T_INT:
duke@435 1666 field_array[pos++] = get_const_type(type);
duke@435 1667 break;
duke@435 1668 default:
duke@435 1669 ShouldNotReachHere();
duke@435 1670 }
duke@435 1671 i++;
duke@435 1672 }
duke@435 1673 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1674 }
duke@435 1675
duke@435 1676 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1677 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1678 }
duke@435 1679
duke@435 1680 //------------------------------fields-----------------------------------------
duke@435 1681 // Subroutine call type with space allocated for argument types
duke@435 1682 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1683 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1684 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1685 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1686 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1687 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1688 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1689
duke@435 1690 return flds;
duke@435 1691 }
duke@435 1692
duke@435 1693 //------------------------------meet-------------------------------------------
duke@435 1694 // Compute the MEET of two types. It returns a new Type object.
duke@435 1695 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1696 // Perform a fast test for common case; meeting the same types together.
duke@435 1697 if( this == t ) return this; // Meeting same type-rep?
duke@435 1698
duke@435 1699 // Current "this->_base" is Tuple
duke@435 1700 switch (t->base()) { // switch on original type
duke@435 1701
duke@435 1702 case Bottom: // Ye Olde Default
duke@435 1703 return t;
duke@435 1704
duke@435 1705 default: // All else is a mistake
duke@435 1706 typerr(t);
duke@435 1707
duke@435 1708 case Tuple: { // Meeting 2 signatures?
duke@435 1709 const TypeTuple *x = t->is_tuple();
duke@435 1710 assert( _cnt == x->_cnt, "" );
duke@435 1711 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1712 for( uint i=0; i<_cnt; i++ )
duke@435 1713 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1714 return TypeTuple::make(_cnt,fields);
duke@435 1715 }
duke@435 1716 case Top:
duke@435 1717 break;
duke@435 1718 }
duke@435 1719 return this; // Return the double constant
duke@435 1720 }
duke@435 1721
duke@435 1722 //------------------------------xdual------------------------------------------
duke@435 1723 // Dual: compute field-by-field dual
duke@435 1724 const Type *TypeTuple::xdual() const {
duke@435 1725 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1726 for( uint i=0; i<_cnt; i++ )
duke@435 1727 fields[i] = _fields[i]->dual();
duke@435 1728 return new TypeTuple(_cnt,fields);
duke@435 1729 }
duke@435 1730
duke@435 1731 //------------------------------eq---------------------------------------------
duke@435 1732 // Structural equality check for Type representations
duke@435 1733 bool TypeTuple::eq( const Type *t ) const {
duke@435 1734 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1735 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1736 for (uint i = 0; i < _cnt; i++)
duke@435 1737 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1738 return false; // Missed
duke@435 1739 return true;
duke@435 1740 }
duke@435 1741
duke@435 1742 //------------------------------hash-------------------------------------------
duke@435 1743 // Type-specific hashing function.
duke@435 1744 int TypeTuple::hash(void) const {
duke@435 1745 intptr_t sum = _cnt;
duke@435 1746 for( uint i=0; i<_cnt; i++ )
duke@435 1747 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1748 return sum;
duke@435 1749 }
duke@435 1750
duke@435 1751 //------------------------------dump2------------------------------------------
duke@435 1752 // Dump signature Type
duke@435 1753 #ifndef PRODUCT
duke@435 1754 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1755 st->print("{");
duke@435 1756 if( !depth || d[this] ) { // Check for recursive print
duke@435 1757 st->print("...}");
duke@435 1758 return;
duke@435 1759 }
duke@435 1760 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1761 if( _cnt ) {
duke@435 1762 uint i;
duke@435 1763 for( i=0; i<_cnt-1; i++ ) {
duke@435 1764 st->print("%d:", i);
duke@435 1765 _fields[i]->dump2(d, depth-1, st);
duke@435 1766 st->print(", ");
duke@435 1767 }
duke@435 1768 st->print("%d:", i);
duke@435 1769 _fields[i]->dump2(d, depth-1, st);
duke@435 1770 }
duke@435 1771 st->print("}");
duke@435 1772 }
duke@435 1773 #endif
duke@435 1774
duke@435 1775 //------------------------------singleton--------------------------------------
duke@435 1776 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1777 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1778 // or a single symbol.
duke@435 1779 bool TypeTuple::singleton(void) const {
duke@435 1780 return false; // Never a singleton
duke@435 1781 }
duke@435 1782
duke@435 1783 bool TypeTuple::empty(void) const {
duke@435 1784 for( uint i=0; i<_cnt; i++ ) {
duke@435 1785 if (_fields[i]->empty()) return true;
duke@435 1786 }
duke@435 1787 return false;
duke@435 1788 }
duke@435 1789
duke@435 1790 //=============================================================================
duke@435 1791 // Convenience common pre-built types.
duke@435 1792
duke@435 1793 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1794 // Certain normalizations keep us sane when comparing types.
duke@435 1795 // We do not want arrayOop variables to differ only by the wideness
duke@435 1796 // of their index types. Pick minimum wideness, since that is the
duke@435 1797 // forced wideness of small ranges anyway.
duke@435 1798 if (size->_widen != Type::WidenMin)
duke@435 1799 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1800 else
duke@435 1801 return size;
duke@435 1802 }
duke@435 1803
duke@435 1804 //------------------------------make-------------------------------------------
duke@435 1805 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
coleenp@548 1806 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1807 elem = elem->make_narrowoop();
coleenp@548 1808 }
duke@435 1809 size = normalize_array_size(size);
duke@435 1810 return (TypeAry*)(new TypeAry(elem,size))->hashcons();
duke@435 1811 }
duke@435 1812
duke@435 1813 //------------------------------meet-------------------------------------------
duke@435 1814 // Compute the MEET of two types. It returns a new Type object.
duke@435 1815 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1816 // Perform a fast test for common case; meeting the same types together.
duke@435 1817 if( this == t ) return this; // Meeting same type-rep?
duke@435 1818
duke@435 1819 // Current "this->_base" is Ary
duke@435 1820 switch (t->base()) { // switch on original type
duke@435 1821
duke@435 1822 case Bottom: // Ye Olde Default
duke@435 1823 return t;
duke@435 1824
duke@435 1825 default: // All else is a mistake
duke@435 1826 typerr(t);
duke@435 1827
duke@435 1828 case Array: { // Meeting 2 arrays?
duke@435 1829 const TypeAry *a = t->is_ary();
duke@435 1830 return TypeAry::make(_elem->meet(a->_elem),
duke@435 1831 _size->xmeet(a->_size)->is_int());
duke@435 1832 }
duke@435 1833 case Top:
duke@435 1834 break;
duke@435 1835 }
duke@435 1836 return this; // Return the double constant
duke@435 1837 }
duke@435 1838
duke@435 1839 //------------------------------xdual------------------------------------------
duke@435 1840 // Dual: compute field-by-field dual
duke@435 1841 const Type *TypeAry::xdual() const {
duke@435 1842 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1843 size_dual = normalize_array_size(size_dual);
duke@435 1844 return new TypeAry( _elem->dual(), size_dual);
duke@435 1845 }
duke@435 1846
duke@435 1847 //------------------------------eq---------------------------------------------
duke@435 1848 // Structural equality check for Type representations
duke@435 1849 bool TypeAry::eq( const Type *t ) const {
duke@435 1850 const TypeAry *a = (const TypeAry*)t;
duke@435 1851 return _elem == a->_elem &&
duke@435 1852 _size == a->_size;
duke@435 1853 }
duke@435 1854
duke@435 1855 //------------------------------hash-------------------------------------------
duke@435 1856 // Type-specific hashing function.
duke@435 1857 int TypeAry::hash(void) const {
duke@435 1858 return (intptr_t)_elem + (intptr_t)_size;
duke@435 1859 }
duke@435 1860
kvn@1255 1861 //----------------------interface_vs_oop---------------------------------------
kvn@1255 1862 #ifdef ASSERT
kvn@1255 1863 bool TypeAry::interface_vs_oop(const Type *t) const {
kvn@1255 1864 const TypeAry* t_ary = t->is_ary();
kvn@1255 1865 if (t_ary) {
kvn@1255 1866 return _elem->interface_vs_oop(t_ary->_elem);
kvn@1255 1867 }
kvn@1255 1868 return false;
kvn@1255 1869 }
kvn@1255 1870 #endif
kvn@1255 1871
duke@435 1872 //------------------------------dump2------------------------------------------
duke@435 1873 #ifndef PRODUCT
duke@435 1874 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1875 _elem->dump2(d, depth, st);
duke@435 1876 st->print("[");
duke@435 1877 _size->dump2(d, depth, st);
duke@435 1878 st->print("]");
duke@435 1879 }
duke@435 1880 #endif
duke@435 1881
duke@435 1882 //------------------------------singleton--------------------------------------
duke@435 1883 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1884 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1885 // or a single symbol.
duke@435 1886 bool TypeAry::singleton(void) const {
duke@435 1887 return false; // Never a singleton
duke@435 1888 }
duke@435 1889
duke@435 1890 bool TypeAry::empty(void) const {
duke@435 1891 return _elem->empty() || _size->empty();
duke@435 1892 }
duke@435 1893
duke@435 1894 //--------------------------ary_must_be_exact----------------------------------
duke@435 1895 bool TypeAry::ary_must_be_exact() const {
duke@435 1896 if (!UseExactTypes) return false;
duke@435 1897 // This logic looks at the element type of an array, and returns true
duke@435 1898 // if the element type is either a primitive or a final instance class.
duke@435 1899 // In such cases, an array built on this ary must have no subclasses.
duke@435 1900 if (_elem == BOTTOM) return false; // general array not exact
duke@435 1901 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 1902 const TypeOopPtr* toop = NULL;
kvn@656 1903 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 1904 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 1905 } else {
coleenp@548 1906 toop = _elem->isa_oopptr();
coleenp@548 1907 }
duke@435 1908 if (!toop) return true; // a primitive type, like int
duke@435 1909 ciKlass* tklass = toop->klass();
duke@435 1910 if (tklass == NULL) return false; // unloaded class
duke@435 1911 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 1912 const TypeInstPtr* tinst;
coleenp@548 1913 if (_elem->isa_narrowoop())
kvn@656 1914 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 1915 else
coleenp@548 1916 tinst = _elem->isa_instptr();
kvn@656 1917 if (tinst)
kvn@656 1918 return tklass->as_instance_klass()->is_final();
coleenp@548 1919 const TypeAryPtr* tap;
coleenp@548 1920 if (_elem->isa_narrowoop())
kvn@656 1921 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 1922 else
coleenp@548 1923 tap = _elem->isa_aryptr();
kvn@656 1924 if (tap)
kvn@656 1925 return tap->ary()->ary_must_be_exact();
duke@435 1926 return false;
duke@435 1927 }
duke@435 1928
duke@435 1929 //=============================================================================
duke@435 1930 // Convenience common pre-built types.
duke@435 1931 const TypePtr *TypePtr::NULL_PTR;
duke@435 1932 const TypePtr *TypePtr::NOTNULL;
duke@435 1933 const TypePtr *TypePtr::BOTTOM;
duke@435 1934
duke@435 1935 //------------------------------meet-------------------------------------------
duke@435 1936 // Meet over the PTR enum
duke@435 1937 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 1938 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 1939 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 1940 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 1941 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 1942 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 1943 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 1944 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 1945 };
duke@435 1946
duke@435 1947 //------------------------------make-------------------------------------------
duke@435 1948 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 1949 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 1950 }
duke@435 1951
duke@435 1952 //------------------------------cast_to_ptr_type-------------------------------
duke@435 1953 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 1954 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 1955 if( ptr == _ptr ) return this;
duke@435 1956 return make(_base, ptr, _offset);
duke@435 1957 }
duke@435 1958
duke@435 1959 //------------------------------get_con----------------------------------------
duke@435 1960 intptr_t TypePtr::get_con() const {
duke@435 1961 assert( _ptr == Null, "" );
duke@435 1962 return _offset;
duke@435 1963 }
duke@435 1964
duke@435 1965 //------------------------------meet-------------------------------------------
duke@435 1966 // Compute the MEET of two types. It returns a new Type object.
duke@435 1967 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 1968 // Perform a fast test for common case; meeting the same types together.
duke@435 1969 if( this == t ) return this; // Meeting same type-rep?
duke@435 1970
duke@435 1971 // Current "this->_base" is AnyPtr
duke@435 1972 switch (t->base()) { // switch on original type
duke@435 1973 case Int: // Mixing ints & oops happens when javac
duke@435 1974 case Long: // reuses local variables
duke@435 1975 case FloatTop:
duke@435 1976 case FloatCon:
duke@435 1977 case FloatBot:
duke@435 1978 case DoubleTop:
duke@435 1979 case DoubleCon:
duke@435 1980 case DoubleBot:
coleenp@548 1981 case NarrowOop:
duke@435 1982 case Bottom: // Ye Olde Default
duke@435 1983 return Type::BOTTOM;
duke@435 1984 case Top:
duke@435 1985 return this;
duke@435 1986
duke@435 1987 case AnyPtr: { // Meeting to AnyPtrs
duke@435 1988 const TypePtr *tp = t->is_ptr();
duke@435 1989 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 1990 }
duke@435 1991 case RawPtr: // For these, flip the call around to cut down
duke@435 1992 case OopPtr:
duke@435 1993 case InstPtr: // on the cases I have to handle.
duke@435 1994 case KlassPtr:
duke@435 1995 case AryPtr:
duke@435 1996 return t->xmeet(this); // Call in reverse direction
duke@435 1997 default: // All else is a mistake
duke@435 1998 typerr(t);
duke@435 1999
duke@435 2000 }
duke@435 2001 return this;
duke@435 2002 }
duke@435 2003
duke@435 2004 //------------------------------meet_offset------------------------------------
duke@435 2005 int TypePtr::meet_offset( int offset ) const {
duke@435 2006 // Either is 'TOP' offset? Return the other offset!
duke@435 2007 if( _offset == OffsetTop ) return offset;
duke@435 2008 if( offset == OffsetTop ) return _offset;
duke@435 2009 // If either is different, return 'BOTTOM' offset
duke@435 2010 if( _offset != offset ) return OffsetBot;
duke@435 2011 return _offset;
duke@435 2012 }
duke@435 2013
duke@435 2014 //------------------------------dual_offset------------------------------------
duke@435 2015 int TypePtr::dual_offset( ) const {
duke@435 2016 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 2017 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 2018 return _offset; // Map everything else into self
duke@435 2019 }
duke@435 2020
duke@435 2021 //------------------------------xdual------------------------------------------
duke@435 2022 // Dual: compute field-by-field dual
duke@435 2023 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 2024 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 2025 };
duke@435 2026 const Type *TypePtr::xdual() const {
duke@435 2027 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 2028 }
duke@435 2029
kvn@741 2030 //------------------------------xadd_offset------------------------------------
kvn@741 2031 int TypePtr::xadd_offset( intptr_t offset ) const {
kvn@741 2032 // Adding to 'TOP' offset? Return 'TOP'!
kvn@741 2033 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
kvn@741 2034 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
kvn@741 2035 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
kvn@741 2036 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
kvn@741 2037 offset += (intptr_t)_offset;
kvn@741 2038 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
kvn@741 2039
kvn@741 2040 // assert( _offset >= 0 && _offset+offset >= 0, "" );
kvn@741 2041 // It is possible to construct a negative offset during PhaseCCP
kvn@741 2042
kvn@741 2043 return (int)offset; // Sum valid offsets
kvn@741 2044 }
kvn@741 2045
duke@435 2046 //------------------------------add_offset-------------------------------------
kvn@741 2047 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
kvn@741 2048 return make( AnyPtr, _ptr, xadd_offset(offset) );
duke@435 2049 }
duke@435 2050
duke@435 2051 //------------------------------eq---------------------------------------------
duke@435 2052 // Structural equality check for Type representations
duke@435 2053 bool TypePtr::eq( const Type *t ) const {
duke@435 2054 const TypePtr *a = (const TypePtr*)t;
duke@435 2055 return _ptr == a->ptr() && _offset == a->offset();
duke@435 2056 }
duke@435 2057
duke@435 2058 //------------------------------hash-------------------------------------------
duke@435 2059 // Type-specific hashing function.
duke@435 2060 int TypePtr::hash(void) const {
duke@435 2061 return _ptr + _offset;
duke@435 2062 }
duke@435 2063
duke@435 2064 //------------------------------dump2------------------------------------------
duke@435 2065 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 2066 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 2067 };
duke@435 2068
duke@435 2069 #ifndef PRODUCT
duke@435 2070 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2071 if( _ptr == Null ) st->print("NULL");
duke@435 2072 else st->print("%s *", ptr_msg[_ptr]);
duke@435 2073 if( _offset == OffsetTop ) st->print("+top");
duke@435 2074 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 2075 else if( _offset ) st->print("+%d", _offset);
duke@435 2076 }
duke@435 2077 #endif
duke@435 2078
duke@435 2079 //------------------------------singleton--------------------------------------
duke@435 2080 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2081 // constants
duke@435 2082 bool TypePtr::singleton(void) const {
duke@435 2083 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2084 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2085 }
duke@435 2086
duke@435 2087 bool TypePtr::empty(void) const {
duke@435 2088 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2089 }
duke@435 2090
duke@435 2091 //=============================================================================
duke@435 2092 // Convenience common pre-built types.
duke@435 2093 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2094 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2095
duke@435 2096 //------------------------------make-------------------------------------------
duke@435 2097 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2098 assert( ptr != Constant, "what is the constant?" );
duke@435 2099 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2100 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2101 }
duke@435 2102
duke@435 2103 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2104 assert( bits, "Use TypePtr for NULL" );
duke@435 2105 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2106 }
duke@435 2107
duke@435 2108 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2109 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2110 assert( ptr != Constant, "what is the constant?" );
duke@435 2111 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2112 assert( _bits==0, "Why cast a constant address?");
duke@435 2113 if( ptr == _ptr ) return this;
duke@435 2114 return make(ptr);
duke@435 2115 }
duke@435 2116
duke@435 2117 //------------------------------get_con----------------------------------------
duke@435 2118 intptr_t TypeRawPtr::get_con() const {
duke@435 2119 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2120 return (intptr_t)_bits;
duke@435 2121 }
duke@435 2122
duke@435 2123 //------------------------------meet-------------------------------------------
duke@435 2124 // Compute the MEET of two types. It returns a new Type object.
duke@435 2125 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2126 // Perform a fast test for common case; meeting the same types together.
duke@435 2127 if( this == t ) return this; // Meeting same type-rep?
duke@435 2128
duke@435 2129 // Current "this->_base" is RawPtr
duke@435 2130 switch( t->base() ) { // switch on original type
duke@435 2131 case Bottom: // Ye Olde Default
duke@435 2132 return t;
duke@435 2133 case Top:
duke@435 2134 return this;
duke@435 2135 case AnyPtr: // Meeting to AnyPtrs
duke@435 2136 break;
duke@435 2137 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2138 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2139 enum PTR ptr = meet_ptr( tptr );
duke@435 2140 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2141 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2142 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2143 ptr = NotNull; // Fall down in lattice
duke@435 2144 }
duke@435 2145 return make( ptr );
duke@435 2146 }
duke@435 2147
duke@435 2148 case OopPtr:
duke@435 2149 case InstPtr:
duke@435 2150 case KlassPtr:
duke@435 2151 case AryPtr:
duke@435 2152 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2153 default: // All else is a mistake
duke@435 2154 typerr(t);
duke@435 2155 }
duke@435 2156
duke@435 2157 // Found an AnyPtr type vs self-RawPtr type
duke@435 2158 const TypePtr *tp = t->is_ptr();
duke@435 2159 switch (tp->ptr()) {
duke@435 2160 case TypePtr::TopPTR: return this;
duke@435 2161 case TypePtr::BotPTR: return t;
duke@435 2162 case TypePtr::Null:
duke@435 2163 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2164 return TypeRawPtr::BOTTOM;
duke@435 2165 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2166 case TypePtr::AnyNull:
duke@435 2167 if( _ptr == TypePtr::Constant) return this;
duke@435 2168 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2169 default: ShouldNotReachHere();
duke@435 2170 }
duke@435 2171 return this;
duke@435 2172 }
duke@435 2173
duke@435 2174 //------------------------------xdual------------------------------------------
duke@435 2175 // Dual: compute field-by-field dual
duke@435 2176 const Type *TypeRawPtr::xdual() const {
duke@435 2177 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2178 }
duke@435 2179
duke@435 2180 //------------------------------add_offset-------------------------------------
kvn@741 2181 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
duke@435 2182 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2183 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2184 if( offset == 0 ) return this; // No change
duke@435 2185 switch (_ptr) {
duke@435 2186 case TypePtr::TopPTR:
duke@435 2187 case TypePtr::BotPTR:
duke@435 2188 case TypePtr::NotNull:
duke@435 2189 return this;
duke@435 2190 case TypePtr::Null:
kvn@2435 2191 case TypePtr::Constant: {
kvn@2435 2192 address bits = _bits+offset;
kvn@2435 2193 if ( bits == 0 ) return TypePtr::NULL_PTR;
kvn@2435 2194 return make( bits );
kvn@2435 2195 }
duke@435 2196 default: ShouldNotReachHere();
duke@435 2197 }
duke@435 2198 return NULL; // Lint noise
duke@435 2199 }
duke@435 2200
duke@435 2201 //------------------------------eq---------------------------------------------
duke@435 2202 // Structural equality check for Type representations
duke@435 2203 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2204 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2205 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2206 }
duke@435 2207
duke@435 2208 //------------------------------hash-------------------------------------------
duke@435 2209 // Type-specific hashing function.
duke@435 2210 int TypeRawPtr::hash(void) const {
duke@435 2211 return (intptr_t)_bits + TypePtr::hash();
duke@435 2212 }
duke@435 2213
duke@435 2214 //------------------------------dump2------------------------------------------
duke@435 2215 #ifndef PRODUCT
duke@435 2216 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2217 if( _ptr == Constant )
duke@435 2218 st->print(INTPTR_FORMAT, _bits);
duke@435 2219 else
duke@435 2220 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2221 }
duke@435 2222 #endif
duke@435 2223
duke@435 2224 //=============================================================================
duke@435 2225 // Convenience common pre-built type.
duke@435 2226 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2227
kvn@598 2228 //------------------------------TypeOopPtr-------------------------------------
kvn@598 2229 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
kvn@598 2230 : TypePtr(t, ptr, offset),
kvn@598 2231 _const_oop(o), _klass(k),
kvn@598 2232 _klass_is_exact(xk),
kvn@598 2233 _is_ptr_to_narrowoop(false),
kvn@598 2234 _instance_id(instance_id) {
kvn@598 2235 #ifdef _LP64
kvn@598 2236 if (UseCompressedOops && _offset != 0) {
kvn@598 2237 if (klass() == NULL) {
kvn@598 2238 assert(this->isa_aryptr(), "only arrays without klass");
kvn@598 2239 _is_ptr_to_narrowoop = true;
kvn@598 2240 } else if (_offset == oopDesc::klass_offset_in_bytes()) {
kvn@598 2241 _is_ptr_to_narrowoop = true;
kvn@598 2242 } else if (this->isa_aryptr()) {
kvn@598 2243 _is_ptr_to_narrowoop = (klass()->is_obj_array_klass() &&
kvn@598 2244 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2245 } else if (klass()->is_instance_klass()) {
kvn@598 2246 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2247 ciField* field = NULL;
kvn@598 2248 if (this->isa_klassptr()) {
never@2658 2249 // Perm objects don't use compressed references
kvn@598 2250 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2251 // unsafe access
kvn@598 2252 _is_ptr_to_narrowoop = true;
kvn@598 2253 } else { // exclude unsafe ops
kvn@598 2254 assert(this->isa_instptr(), "must be an instance ptr.");
never@2658 2255
never@2658 2256 if (klass() == ciEnv::current()->Class_klass() &&
never@2658 2257 (_offset == java_lang_Class::klass_offset_in_bytes() ||
never@2658 2258 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
never@2658 2259 // Special hidden fields from the Class.
never@2658 2260 assert(this->isa_instptr(), "must be an instance ptr.");
never@2658 2261 _is_ptr_to_narrowoop = true;
never@2658 2262 } else if (klass() == ciEnv::current()->Class_klass() &&
never@2658 2263 _offset >= instanceMirrorKlass::offset_of_static_fields()) {
never@2658 2264 // Static fields
never@2658 2265 assert(o != NULL, "must be constant");
never@2658 2266 ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 2267 ciField* field = k->get_field_by_offset(_offset, true);
never@2658 2268 assert(field != NULL, "missing field");
kvn@598 2269 BasicType basic_elem_type = field->layout_type();
kvn@598 2270 _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
kvn@598 2271 basic_elem_type == T_ARRAY);
kvn@598 2272 } else {
never@2658 2273 // Instance fields which contains a compressed oop references.
never@2658 2274 field = ik->get_field_by_offset(_offset, false);
never@2658 2275 if (field != NULL) {
never@2658 2276 BasicType basic_elem_type = field->layout_type();
never@2658 2277 _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
never@2658 2278 basic_elem_type == T_ARRAY);
never@2658 2279 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
never@2658 2280 // Compile::find_alias_type() cast exactness on all types to verify
never@2658 2281 // that it does not affect alias type.
never@2658 2282 _is_ptr_to_narrowoop = true;
never@2658 2283 } else {
never@2658 2284 // Type for the copy start in LibraryCallKit::inline_native_clone().
never@2658 2285 assert(!klass_is_exact(), "only non-exact klass");
never@2658 2286 _is_ptr_to_narrowoop = true;
never@2658 2287 }
kvn@598 2288 }
kvn@598 2289 }
kvn@598 2290 }
kvn@598 2291 }
kvn@598 2292 #endif
kvn@598 2293 }
kvn@598 2294
duke@435 2295 //------------------------------make-------------------------------------------
duke@435 2296 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
kvn@1393 2297 int offset, int instance_id) {
duke@435 2298 assert(ptr != Constant, "no constant generic pointers");
duke@435 2299 ciKlass* k = ciKlassKlass::make();
duke@435 2300 bool xk = false;
duke@435 2301 ciObject* o = NULL;
kvn@1393 2302 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
duke@435 2303 }
duke@435 2304
duke@435 2305
duke@435 2306 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2307 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2308 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2309 if( ptr == _ptr ) return this;
kvn@1427 2310 return make(ptr, _offset, _instance_id);
duke@435 2311 }
duke@435 2312
kvn@682 2313 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2314 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2315 // There are no instances of a general oop.
duke@435 2316 // Return self unchanged.
duke@435 2317 return this;
duke@435 2318 }
duke@435 2319
duke@435 2320 //-----------------------------cast_to_exactness-------------------------------
duke@435 2321 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2322 // There is no such thing as an exact general oop.
duke@435 2323 // Return self unchanged.
duke@435 2324 return this;
duke@435 2325 }
duke@435 2326
duke@435 2327
duke@435 2328 //------------------------------as_klass_type----------------------------------
duke@435 2329 // Return the klass type corresponding to this instance or array type.
duke@435 2330 // It is the type that is loaded from an object of this type.
duke@435 2331 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2332 ciKlass* k = klass();
duke@435 2333 bool xk = klass_is_exact();
duke@435 2334 if (k == NULL || !k->is_java_klass())
duke@435 2335 return TypeKlassPtr::OBJECT;
duke@435 2336 else
duke@435 2337 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2338 }
duke@435 2339
duke@435 2340
duke@435 2341 //------------------------------meet-------------------------------------------
duke@435 2342 // Compute the MEET of two types. It returns a new Type object.
duke@435 2343 const Type *TypeOopPtr::xmeet( const Type *t ) const {
duke@435 2344 // Perform a fast test for common case; meeting the same types together.
duke@435 2345 if( this == t ) return this; // Meeting same type-rep?
duke@435 2346
duke@435 2347 // Current "this->_base" is OopPtr
duke@435 2348 switch (t->base()) { // switch on original type
duke@435 2349
duke@435 2350 case Int: // Mixing ints & oops happens when javac
duke@435 2351 case Long: // reuses local variables
duke@435 2352 case FloatTop:
duke@435 2353 case FloatCon:
duke@435 2354 case FloatBot:
duke@435 2355 case DoubleTop:
duke@435 2356 case DoubleCon:
duke@435 2357 case DoubleBot:
kvn@728 2358 case NarrowOop:
duke@435 2359 case Bottom: // Ye Olde Default
duke@435 2360 return Type::BOTTOM;
duke@435 2361 case Top:
duke@435 2362 return this;
duke@435 2363
duke@435 2364 default: // All else is a mistake
duke@435 2365 typerr(t);
duke@435 2366
duke@435 2367 case RawPtr:
duke@435 2368 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2369
duke@435 2370 case AnyPtr: {
duke@435 2371 // Found an AnyPtr type vs self-OopPtr type
duke@435 2372 const TypePtr *tp = t->is_ptr();
duke@435 2373 int offset = meet_offset(tp->offset());
duke@435 2374 PTR ptr = meet_ptr(tp->ptr());
duke@435 2375 switch (tp->ptr()) {
duke@435 2376 case Null:
duke@435 2377 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2378 // else fall through:
duke@435 2379 case TopPTR:
kvn@1427 2380 case AnyNull: {
kvn@1427 2381 int instance_id = meet_instance_id(InstanceTop);
kvn@1427 2382 return make(ptr, offset, instance_id);
kvn@1427 2383 }
duke@435 2384 case BotPTR:
duke@435 2385 case NotNull:
duke@435 2386 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2387 default: typerr(t);
duke@435 2388 }
duke@435 2389 }
duke@435 2390
duke@435 2391 case OopPtr: { // Meeting to other OopPtrs
duke@435 2392 const TypeOopPtr *tp = t->is_oopptr();
kvn@1393 2393 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 2394 return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
duke@435 2395 }
duke@435 2396
duke@435 2397 case InstPtr: // For these, flip the call around to cut down
duke@435 2398 case KlassPtr: // on the cases I have to handle.
duke@435 2399 case AryPtr:
duke@435 2400 return t->xmeet(this); // Call in reverse direction
duke@435 2401
duke@435 2402 } // End of switch
duke@435 2403 return this; // Return the double constant
duke@435 2404 }
duke@435 2405
duke@435 2406
duke@435 2407 //------------------------------xdual------------------------------------------
duke@435 2408 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2409 const Type *TypeOopPtr::xdual() const {
duke@435 2410 assert(klass() == ciKlassKlass::make(), "no klasses here");
duke@435 2411 assert(const_oop() == NULL, "no constants here");
kvn@658 2412 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 2413 }
duke@435 2414
duke@435 2415 //--------------------------make_from_klass_common-----------------------------
duke@435 2416 // Computes the element-type given a klass.
duke@435 2417 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2418 assert(klass->is_java_klass(), "must be java language klass");
duke@435 2419 if (klass->is_instance_klass()) {
duke@435 2420 Compile* C = Compile::current();
duke@435 2421 Dependencies* deps = C->dependencies();
duke@435 2422 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2423 // Element is an instance
duke@435 2424 bool klass_is_exact = false;
duke@435 2425 if (klass->is_loaded()) {
duke@435 2426 // Try to set klass_is_exact.
duke@435 2427 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2428 klass_is_exact = ik->is_final();
duke@435 2429 if (!klass_is_exact && klass_change
duke@435 2430 && deps != NULL && UseUniqueSubclasses) {
duke@435 2431 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2432 if (sub != NULL) {
duke@435 2433 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2434 klass = ik = sub;
duke@435 2435 klass_is_exact = sub->is_final();
duke@435 2436 }
duke@435 2437 }
duke@435 2438 if (!klass_is_exact && try_for_exact
duke@435 2439 && deps != NULL && UseExactTypes) {
duke@435 2440 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2441 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2442 deps->assert_leaf_type(ik);
duke@435 2443 klass_is_exact = true;
duke@435 2444 }
duke@435 2445 }
duke@435 2446 }
duke@435 2447 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2448 } else if (klass->is_obj_array_klass()) {
duke@435 2449 // Element is an object array. Recursively call ourself.
duke@435 2450 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2451 bool xk = etype->klass_is_exact();
duke@435 2452 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2453 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2454 // are all not-null. This is not true in generally, as code can
duke@435 2455 // slam NULLs down in the subarrays.
duke@435 2456 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2457 return arr;
duke@435 2458 } else if (klass->is_type_array_klass()) {
duke@435 2459 // Element is an typeArray
duke@435 2460 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2461 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2462 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2463 // is not-null. That was not true in general.
duke@435 2464 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2465 return arr;
duke@435 2466 } else {
duke@435 2467 ShouldNotReachHere();
duke@435 2468 return NULL;
duke@435 2469 }
duke@435 2470 }
duke@435 2471
duke@435 2472 //------------------------------make_from_constant-----------------------------
duke@435 2473 // Make a java pointer from an oop constant
jrose@1424 2474 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
twisti@1572 2475 if (o->is_method_data() || o->is_method() || o->is_cpcache()) {
duke@435 2476 // Treat much like a typeArray of bytes, like below, but fake the type...
duke@435 2477 const Type* etype = (Type*)get_const_basic_type(T_BYTE);
duke@435 2478 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2479 ciKlass *klass = ciTypeArrayKlass::make((BasicType) T_BYTE);
jrose@1424 2480 assert(o->can_be_constant(), "method data oops should be tenured");
duke@435 2481 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2482 return arr;
duke@435 2483 } else {
duke@435 2484 assert(o->is_java_object(), "must be java language object");
duke@435 2485 assert(!o->is_null_object(), "null object not yet handled here.");
duke@435 2486 ciKlass *klass = o->klass();
duke@435 2487 if (klass->is_instance_klass()) {
duke@435 2488 // Element is an instance
jrose@1424 2489 if (require_constant) {
jrose@1424 2490 if (!o->can_be_constant()) return NULL;
jrose@1424 2491 } else if (!o->should_be_constant()) {
duke@435 2492 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
duke@435 2493 }
duke@435 2494 return TypeInstPtr::make(o);
duke@435 2495 } else if (klass->is_obj_array_klass()) {
duke@435 2496 // Element is an object array. Recursively call ourself.
duke@435 2497 const Type *etype =
duke@435 2498 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
duke@435 2499 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2500 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2501 // are all not-null. This is not true in generally, as code can
duke@435 2502 // slam NULLs down in the subarrays.
jrose@1424 2503 if (require_constant) {
jrose@1424 2504 if (!o->can_be_constant()) return NULL;
jrose@1424 2505 } else if (!o->should_be_constant()) {
duke@435 2506 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2507 }
duke@435 2508 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2509 return arr;
duke@435 2510 } else if (klass->is_type_array_klass()) {
duke@435 2511 // Element is an typeArray
duke@435 2512 const Type* etype =
duke@435 2513 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2514 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2515 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2516 // is not-null. That was not true in general.
jrose@1424 2517 if (require_constant) {
jrose@1424 2518 if (!o->can_be_constant()) return NULL;
jrose@1424 2519 } else if (!o->should_be_constant()) {
duke@435 2520 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2521 }
duke@435 2522 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2523 return arr;
duke@435 2524 }
duke@435 2525 }
duke@435 2526
duke@435 2527 ShouldNotReachHere();
duke@435 2528 return NULL;
duke@435 2529 }
duke@435 2530
duke@435 2531 //------------------------------get_con----------------------------------------
duke@435 2532 intptr_t TypeOopPtr::get_con() const {
duke@435 2533 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2534 assert( _offset >= 0, "" );
duke@435 2535
duke@435 2536 if (_offset != 0) {
duke@435 2537 // After being ported to the compiler interface, the compiler no longer
duke@435 2538 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2539 // to a handle at compile time. This handle is embedded in the generated
duke@435 2540 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2541 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2542 // have access to the addresses!). This does not seem to currently happen,
twisti@1040 2543 // but this assertion here is to help prevent its occurence.
duke@435 2544 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2545 ShouldNotReachHere();
duke@435 2546 }
duke@435 2547
jrose@1424 2548 return (intptr_t)const_oop()->constant_encoding();
duke@435 2549 }
duke@435 2550
duke@435 2551
duke@435 2552 //-----------------------------filter------------------------------------------
duke@435 2553 // Do not allow interface-vs.-noninterface joins to collapse to top.
duke@435 2554 const Type *TypeOopPtr::filter( const Type *kills ) const {
duke@435 2555
duke@435 2556 const Type* ft = join(kills);
duke@435 2557 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2558 const TypeInstPtr* ktip = kills->isa_instptr();
never@990 2559 const TypeKlassPtr* ftkp = ft->isa_klassptr();
never@990 2560 const TypeKlassPtr* ktkp = kills->isa_klassptr();
duke@435 2561
duke@435 2562 if (ft->empty()) {
duke@435 2563 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2564 // interface. This can happen because the bytecodes do not contain
duke@435 2565 // enough type info to distinguish a Java-level interface variable
duke@435 2566 // from a Java-level object variable. If we meet 2 classes which
duke@435 2567 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2568 // doesn't implement I, we have no way to tell if the result should
duke@435 2569 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2570 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2571 // uplift the type.
duke@435 2572 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
duke@435 2573 return kills; // Uplift to interface
never@990 2574 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
never@990 2575 return kills; // Uplift to interface
duke@435 2576
duke@435 2577 return Type::TOP; // Canonical empty value
duke@435 2578 }
duke@435 2579
duke@435 2580 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2581 // the join should report back the class. However, if we have a J/L/Object
duke@435 2582 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2583 // join report an interface back out. This isn't possible but happens
duke@435 2584 // because the type system doesn't interact well with interfaces.
duke@435 2585 if (ftip != NULL && ktip != NULL &&
duke@435 2586 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2587 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2588 // Happens in a CTW of rt.jar, 320-341, no extra flags
kvn@1770 2589 assert(!ftip->klass_is_exact(), "interface could not be exact");
duke@435 2590 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2591 }
kvn@1770 2592 // Interface klass type could be exact in opposite to interface type,
kvn@1770 2593 // return it here instead of incorrect Constant ptr J/L/Object (6894807).
never@990 2594 if (ftkp != NULL && ktkp != NULL &&
never@990 2595 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
kvn@1770 2596 !ftkp->klass_is_exact() && // Keep exact interface klass
never@990 2597 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
never@990 2598 return ktkp->cast_to_ptr_type(ftkp->ptr());
never@990 2599 }
duke@435 2600
duke@435 2601 return ft;
duke@435 2602 }
duke@435 2603
duke@435 2604 //------------------------------eq---------------------------------------------
duke@435 2605 // Structural equality check for Type representations
duke@435 2606 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2607 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2608 if (_klass_is_exact != a->_klass_is_exact ||
duke@435 2609 _instance_id != a->_instance_id) return false;
duke@435 2610 ciObject* one = const_oop();
duke@435 2611 ciObject* two = a->const_oop();
duke@435 2612 if (one == NULL || two == NULL) {
duke@435 2613 return (one == two) && TypePtr::eq(t);
duke@435 2614 } else {
duke@435 2615 return one->equals(two) && TypePtr::eq(t);
duke@435 2616 }
duke@435 2617 }
duke@435 2618
duke@435 2619 //------------------------------hash-------------------------------------------
duke@435 2620 // Type-specific hashing function.
duke@435 2621 int TypeOopPtr::hash(void) const {
duke@435 2622 return
duke@435 2623 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2624 _klass_is_exact +
duke@435 2625 _instance_id +
duke@435 2626 TypePtr::hash();
duke@435 2627 }
duke@435 2628
duke@435 2629 //------------------------------dump2------------------------------------------
duke@435 2630 #ifndef PRODUCT
duke@435 2631 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2632 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2633 if( _klass_is_exact ) st->print(":exact");
duke@435 2634 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2635 switch( _offset ) {
duke@435 2636 case OffsetTop: st->print("+top"); break;
duke@435 2637 case OffsetBot: st->print("+any"); break;
duke@435 2638 case 0: break;
duke@435 2639 default: st->print("+%d",_offset); break;
duke@435 2640 }
kvn@658 2641 if (_instance_id == InstanceTop)
kvn@658 2642 st->print(",iid=top");
kvn@658 2643 else if (_instance_id != InstanceBot)
duke@435 2644 st->print(",iid=%d",_instance_id);
duke@435 2645 }
duke@435 2646 #endif
duke@435 2647
duke@435 2648 //------------------------------singleton--------------------------------------
duke@435 2649 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2650 // constants
duke@435 2651 bool TypeOopPtr::singleton(void) const {
duke@435 2652 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2653 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2654 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2655 }
duke@435 2656
duke@435 2657 //------------------------------add_offset-------------------------------------
kvn@741 2658 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
kvn@1427 2659 return make( _ptr, xadd_offset(offset), _instance_id);
duke@435 2660 }
duke@435 2661
kvn@658 2662 //------------------------------meet_instance_id--------------------------------
kvn@658 2663 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 2664 // Either is 'TOP' instance? Return the other instance!
kvn@658 2665 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 2666 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 2667 // If either is different, return 'BOTTOM' instance
kvn@658 2668 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 2669 return _instance_id;
duke@435 2670 }
duke@435 2671
kvn@658 2672 //------------------------------dual_instance_id--------------------------------
kvn@658 2673 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 2674 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 2675 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 2676 return _instance_id; // Map everything else into self
kvn@658 2677 }
kvn@658 2678
kvn@658 2679
duke@435 2680 //=============================================================================
duke@435 2681 // Convenience common pre-built types.
duke@435 2682 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 2683 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 2684 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 2685 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 2686 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 2687
duke@435 2688 //------------------------------TypeInstPtr-------------------------------------
duke@435 2689 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
duke@435 2690 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
duke@435 2691 assert(k != NULL &&
duke@435 2692 (k->is_loaded() || o == NULL),
duke@435 2693 "cannot have constants with non-loaded klass");
duke@435 2694 };
duke@435 2695
duke@435 2696 //------------------------------make-------------------------------------------
duke@435 2697 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 2698 ciKlass* k,
duke@435 2699 bool xk,
duke@435 2700 ciObject* o,
duke@435 2701 int offset,
duke@435 2702 int instance_id) {
duke@435 2703 assert( !k->is_loaded() || k->is_instance_klass() ||
duke@435 2704 k->is_method_klass(), "Must be for instance or method");
duke@435 2705 // Either const_oop() is NULL or else ptr is Constant
duke@435 2706 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 2707 "constant pointers must have a value supplied" );
duke@435 2708 // Ptr is never Null
duke@435 2709 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 2710
kvn@682 2711 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 2712 if (!UseExactTypes) xk = false;
duke@435 2713 if (ptr == Constant) {
duke@435 2714 // Note: This case includes meta-object constants, such as methods.
duke@435 2715 xk = true;
duke@435 2716 } else if (k->is_loaded()) {
duke@435 2717 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 2718 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 2719 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 2720 }
duke@435 2721
duke@435 2722 // Now hash this baby
duke@435 2723 TypeInstPtr *result =
duke@435 2724 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
duke@435 2725
duke@435 2726 return result;
duke@435 2727 }
duke@435 2728
duke@435 2729
duke@435 2730 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2731 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2732 if( ptr == _ptr ) return this;
duke@435 2733 // Reconstruct _sig info here since not a problem with later lazy
duke@435 2734 // construction, _sig will show up on demand.
kvn@658 2735 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
duke@435 2736 }
duke@435 2737
duke@435 2738
duke@435 2739 //-----------------------------cast_to_exactness-------------------------------
duke@435 2740 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2741 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 2742 if (!UseExactTypes) return this;
duke@435 2743 if (!_klass->is_loaded()) return this;
duke@435 2744 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 2745 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 2746 if( ik->is_interface() ) return this; // cannot set xk
duke@435 2747 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
duke@435 2748 }
duke@435 2749
kvn@682 2750 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2751 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 2752 if( instance_id == _instance_id ) return this;
kvn@682 2753 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
duke@435 2754 }
duke@435 2755
duke@435 2756 //------------------------------xmeet_unloaded---------------------------------
duke@435 2757 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 2758 // Assume classes are different since called after check for same name/class-loader
duke@435 2759 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 2760 int off = meet_offset(tinst->offset());
duke@435 2761 PTR ptr = meet_ptr(tinst->ptr());
kvn@1427 2762 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 2763
duke@435 2764 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 2765 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 2766 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 2767 //
duke@435 2768 // Meet unloaded class with java/lang/Object
duke@435 2769 //
duke@435 2770 // Meet
duke@435 2771 // | Unloaded Class
duke@435 2772 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 2773 // ===================================================================
duke@435 2774 // TOP | ..........................Unloaded......................|
duke@435 2775 // AnyNull | U-AN |................Unloaded......................|
duke@435 2776 // Constant | ... O-NN .................................. | O-BOT |
duke@435 2777 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 2778 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 2779 //
duke@435 2780 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 2781 //
duke@435 2782 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
kvn@1427 2783 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
duke@435 2784 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2785 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 2786 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2787 else { return TypeInstPtr::NOTNULL; }
duke@435 2788 }
duke@435 2789 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 2790
duke@435 2791 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 2792 }
duke@435 2793
duke@435 2794 // Both are unloaded, not the same class, not Object
duke@435 2795 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 2796 if( ptr != TypePtr::BotPTR ) {
duke@435 2797 return TypeInstPtr::NOTNULL;
duke@435 2798 }
duke@435 2799 return TypeInstPtr::BOTTOM;
duke@435 2800 }
duke@435 2801
duke@435 2802
duke@435 2803 //------------------------------meet-------------------------------------------
duke@435 2804 // Compute the MEET of two types. It returns a new Type object.
duke@435 2805 const Type *TypeInstPtr::xmeet( const Type *t ) const {
duke@435 2806 // Perform a fast test for common case; meeting the same types together.
duke@435 2807 if( this == t ) return this; // Meeting same type-rep?
duke@435 2808
duke@435 2809 // Current "this->_base" is Pointer
duke@435 2810 switch (t->base()) { // switch on original type
duke@435 2811
duke@435 2812 case Int: // Mixing ints & oops happens when javac
duke@435 2813 case Long: // reuses local variables
duke@435 2814 case FloatTop:
duke@435 2815 case FloatCon:
duke@435 2816 case FloatBot:
duke@435 2817 case DoubleTop:
duke@435 2818 case DoubleCon:
duke@435 2819 case DoubleBot:
coleenp@548 2820 case NarrowOop:
duke@435 2821 case Bottom: // Ye Olde Default
duke@435 2822 return Type::BOTTOM;
duke@435 2823 case Top:
duke@435 2824 return this;
duke@435 2825
duke@435 2826 default: // All else is a mistake
duke@435 2827 typerr(t);
duke@435 2828
duke@435 2829 case RawPtr: return TypePtr::BOTTOM;
duke@435 2830
duke@435 2831 case AryPtr: { // All arrays inherit from Object class
duke@435 2832 const TypeAryPtr *tp = t->is_aryptr();
duke@435 2833 int offset = meet_offset(tp->offset());
duke@435 2834 PTR ptr = meet_ptr(tp->ptr());
kvn@658 2835 int instance_id = meet_instance_id(tp->instance_id());
duke@435 2836 switch (ptr) {
duke@435 2837 case TopPTR:
duke@435 2838 case AnyNull: // Fall 'down' to dual of object klass
duke@435 2839 if (klass()->equals(ciEnv::current()->Object_klass())) {
kvn@658 2840 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2841 } else {
duke@435 2842 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 2843 ptr = NotNull;
kvn@658 2844 instance_id = InstanceBot;
kvn@658 2845 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
duke@435 2846 }
duke@435 2847 case Constant:
duke@435 2848 case NotNull:
duke@435 2849 case BotPTR: // Fall down to object klass
duke@435 2850 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 2851 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 2852 // If 'this' (InstPtr) is above the centerline and it is Object class
twisti@1040 2853 // then we can subclass in the Java class hierarchy.
duke@435 2854 if (klass()->equals(ciEnv::current()->Object_klass())) {
duke@435 2855 // that is, tp's array type is a subtype of my klass
kvn@1714 2856 return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
kvn@1714 2857 tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2858 }
duke@435 2859 }
duke@435 2860 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 2861 // The meet falls down to Object class below centerline.
duke@435 2862 if( ptr == Constant )
duke@435 2863 ptr = NotNull;
kvn@658 2864 instance_id = InstanceBot;
kvn@658 2865 return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
duke@435 2866 default: typerr(t);
duke@435 2867 }
duke@435 2868 }
duke@435 2869
duke@435 2870 case OopPtr: { // Meeting to OopPtrs
duke@435 2871 // Found a OopPtr type vs self-InstPtr type
kvn@1393 2872 const TypeOopPtr *tp = t->is_oopptr();
duke@435 2873 int offset = meet_offset(tp->offset());
duke@435 2874 PTR ptr = meet_ptr(tp->ptr());
duke@435 2875 switch (tp->ptr()) {
duke@435 2876 case TopPTR:
kvn@658 2877 case AnyNull: {
kvn@658 2878 int instance_id = meet_instance_id(InstanceTop);
duke@435 2879 return make(ptr, klass(), klass_is_exact(),
kvn@658 2880 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 2881 }
duke@435 2882 case NotNull:
kvn@1393 2883 case BotPTR: {
kvn@1393 2884 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 2885 return TypeOopPtr::make(ptr, offset, instance_id);
kvn@1393 2886 }
duke@435 2887 default: typerr(t);
duke@435 2888 }
duke@435 2889 }
duke@435 2890
duke@435 2891 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2892 // Found an AnyPtr type vs self-InstPtr type
duke@435 2893 const TypePtr *tp = t->is_ptr();
duke@435 2894 int offset = meet_offset(tp->offset());
duke@435 2895 PTR ptr = meet_ptr(tp->ptr());
duke@435 2896 switch (tp->ptr()) {
duke@435 2897 case Null:
duke@435 2898 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
kvn@658 2899 // else fall through to AnyNull
duke@435 2900 case TopPTR:
kvn@658 2901 case AnyNull: {
kvn@658 2902 int instance_id = meet_instance_id(InstanceTop);
duke@435 2903 return make( ptr, klass(), klass_is_exact(),
kvn@658 2904 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 2905 }
duke@435 2906 case NotNull:
duke@435 2907 case BotPTR:
duke@435 2908 return TypePtr::make( AnyPtr, ptr, offset );
duke@435 2909 default: typerr(t);
duke@435 2910 }
duke@435 2911 }
duke@435 2912
duke@435 2913 /*
duke@435 2914 A-top }
duke@435 2915 / | \ } Tops
duke@435 2916 B-top A-any C-top }
duke@435 2917 | / | \ | } Any-nulls
duke@435 2918 B-any | C-any }
duke@435 2919 | | |
duke@435 2920 B-con A-con C-con } constants; not comparable across classes
duke@435 2921 | | |
duke@435 2922 B-not | C-not }
duke@435 2923 | \ | / | } not-nulls
duke@435 2924 B-bot A-not C-bot }
duke@435 2925 \ | / } Bottoms
duke@435 2926 A-bot }
duke@435 2927 */
duke@435 2928
duke@435 2929 case InstPtr: { // Meeting 2 Oops?
duke@435 2930 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 2931 const TypeInstPtr *tinst = t->is_instptr();
duke@435 2932 int off = meet_offset( tinst->offset() );
duke@435 2933 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 2934 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 2935
duke@435 2936 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 2937 // If we have constants, then we created oops so classes are loaded
duke@435 2938 // and we can handle the constants further down. This case handles
duke@435 2939 // both-not-loaded or both-loaded classes
duke@435 2940 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
duke@435 2941 return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
duke@435 2942 }
duke@435 2943
duke@435 2944 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 2945 ciKlass* tinst_klass = tinst->klass();
duke@435 2946 ciKlass* this_klass = this->klass();
duke@435 2947 bool tinst_xk = tinst->klass_is_exact();
duke@435 2948 bool this_xk = this->klass_is_exact();
duke@435 2949 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 2950 // One of these classes has not been loaded
duke@435 2951 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 2952 #ifndef PRODUCT
duke@435 2953 if( PrintOpto && Verbose ) {
duke@435 2954 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 2955 tty->print(" this == "); this->dump(); tty->cr();
duke@435 2956 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 2957 }
duke@435 2958 #endif
duke@435 2959 return unloaded_meet;
duke@435 2960 }
duke@435 2961
duke@435 2962 // Handle mixing oops and interfaces first.
duke@435 2963 if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
duke@435 2964 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 2965 tinst_klass = this_klass;
duke@435 2966 this_klass = tmp;
duke@435 2967 bool tmp2 = tinst_xk;
duke@435 2968 tinst_xk = this_xk;
duke@435 2969 this_xk = tmp2;
duke@435 2970 }
duke@435 2971 if (tinst_klass->is_interface() &&
duke@435 2972 !(this_klass->is_interface() ||
duke@435 2973 // Treat java/lang/Object as an honorary interface,
duke@435 2974 // because we need a bottom for the interface hierarchy.
duke@435 2975 this_klass == ciEnv::current()->Object_klass())) {
duke@435 2976 // Oop meets interface!
duke@435 2977
duke@435 2978 // See if the oop subtypes (implements) interface.
duke@435 2979 ciKlass *k;
duke@435 2980 bool xk;
duke@435 2981 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 2982 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 2983 // on whether we are both above the centerline or either is
duke@435 2984 // below the centerline. If we are on the centerline
duke@435 2985 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 2986 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 2987 // If we are keeping this_klass, keep its exactness too.
duke@435 2988 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 2989 } else { // Does not implement, fall to Object
duke@435 2990 // Oop does not implement interface, so mixing falls to Object
duke@435 2991 // just like the verifier does (if both are above the
duke@435 2992 // centerline fall to interface)
duke@435 2993 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 2994 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 2995 // Watch out for Constant vs. AnyNull interface.
duke@435 2996 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 2997 instance_id = InstanceBot;
duke@435 2998 }
duke@435 2999 ciObject* o = NULL; // the Constant value, if any
duke@435 3000 if (ptr == Constant) {
duke@435 3001 // Find out which constant.
duke@435 3002 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 3003 }
kvn@658 3004 return make( ptr, k, xk, o, off, instance_id );
duke@435 3005 }
duke@435 3006
duke@435 3007 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 3008
duke@435 3009 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 3010 // If we split one up & one down AND they subtype, take the down man.
duke@435 3011 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3012 // If both are up and they subtype, take the subtype class.
duke@435 3013 // If both are up and they do NOT subtype, "fall hard".
duke@435 3014 // If both are down and they subtype, take the supertype class.
duke@435 3015 // If both are down and they do NOT subtype, "fall hard".
duke@435 3016 // Constants treated as down.
duke@435 3017
duke@435 3018 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 3019 // "fall hard"; "fall hard" becomes the default case:
duke@435 3020 // If we split one up & one down AND they subtype, take the down man.
duke@435 3021 // If both are up and they subtype, take the subtype class.
duke@435 3022
duke@435 3023 // If both are down and they subtype, "fall hard".
duke@435 3024 // If both are down and they do NOT subtype, "fall hard".
duke@435 3025 // If both are up and they do NOT subtype, "fall hard".
duke@435 3026 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3027
duke@435 3028 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 3029 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 3030 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 3031 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 3032
duke@435 3033 // Check for subtyping:
duke@435 3034 ciKlass *subtype = NULL;
duke@435 3035 bool subtype_exact = false;
duke@435 3036 if( tinst_klass->equals(this_klass) ) {
duke@435 3037 subtype = this_klass;
duke@435 3038 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 3039 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3040 subtype = this_klass; // Pick subtyping class
duke@435 3041 subtype_exact = this_xk;
duke@435 3042 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 3043 subtype = tinst_klass; // Pick subtyping class
duke@435 3044 subtype_exact = tinst_xk;
duke@435 3045 }
duke@435 3046
duke@435 3047 if( subtype ) {
duke@435 3048 if( above_centerline(ptr) ) { // both are up?
duke@435 3049 this_klass = tinst_klass = subtype;
duke@435 3050 this_xk = tinst_xk = subtype_exact;
duke@435 3051 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 3052 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 3053 this_xk = tinst_xk;
duke@435 3054 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 3055 tinst_klass = this_klass; // this is down; keep down man
duke@435 3056 tinst_xk = this_xk;
duke@435 3057 } else {
duke@435 3058 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 3059 }
duke@435 3060 }
duke@435 3061
duke@435 3062 // Check for classes now being equal
duke@435 3063 if (tinst_klass->equals(this_klass)) {
duke@435 3064 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3065 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3066 // handled elsewhere).
duke@435 3067 ciObject* o = NULL; // Assume not constant when done
duke@435 3068 ciObject* this_oop = const_oop();
duke@435 3069 ciObject* tinst_oop = tinst->const_oop();
duke@435 3070 if( ptr == Constant ) {
duke@435 3071 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 3072 this_oop->equals(tinst_oop) )
duke@435 3073 o = this_oop;
duke@435 3074 else if (above_centerline(this ->_ptr))
duke@435 3075 o = tinst_oop;
duke@435 3076 else if (above_centerline(tinst ->_ptr))
duke@435 3077 o = this_oop;
duke@435 3078 else
duke@435 3079 ptr = NotNull;
duke@435 3080 }
duke@435 3081 return make( ptr, this_klass, this_xk, o, off, instance_id );
duke@435 3082 } // Else classes are not equal
duke@435 3083
duke@435 3084 // Since klasses are different, we require a LCA in the Java
duke@435 3085 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3086 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3087 ptr = NotNull;
kvn@682 3088 instance_id = InstanceBot;
duke@435 3089
duke@435 3090 // Now we find the LCA of Java classes
duke@435 3091 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
kvn@658 3092 return make( ptr, k, false, NULL, off, instance_id );
duke@435 3093 } // End of case InstPtr
duke@435 3094
duke@435 3095 case KlassPtr:
duke@435 3096 return TypeInstPtr::BOTTOM;
duke@435 3097
duke@435 3098 } // End of switch
duke@435 3099 return this; // Return the double constant
duke@435 3100 }
duke@435 3101
duke@435 3102
duke@435 3103 //------------------------java_mirror_type--------------------------------------
duke@435 3104 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3105 // must be a singleton type
duke@435 3106 if( const_oop() == NULL ) return NULL;
duke@435 3107
duke@435 3108 // must be of type java.lang.Class
duke@435 3109 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3110
duke@435 3111 return const_oop()->as_instance()->java_mirror_type();
duke@435 3112 }
duke@435 3113
duke@435 3114
duke@435 3115 //------------------------------xdual------------------------------------------
duke@435 3116 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
twisti@1040 3117 // inheritance mechanism.
duke@435 3118 const Type *TypeInstPtr::xdual() const {
kvn@658 3119 return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 3120 }
duke@435 3121
duke@435 3122 //------------------------------eq---------------------------------------------
duke@435 3123 // Structural equality check for Type representations
duke@435 3124 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3125 const TypeInstPtr *p = t->is_instptr();
duke@435 3126 return
duke@435 3127 klass()->equals(p->klass()) &&
duke@435 3128 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3129 }
duke@435 3130
duke@435 3131 //------------------------------hash-------------------------------------------
duke@435 3132 // Type-specific hashing function.
duke@435 3133 int TypeInstPtr::hash(void) const {
duke@435 3134 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 3135 return hash;
duke@435 3136 }
duke@435 3137
duke@435 3138 //------------------------------dump2------------------------------------------
duke@435 3139 // Dump oop Type
duke@435 3140 #ifndef PRODUCT
duke@435 3141 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3142 // Print the name of the klass.
duke@435 3143 klass()->print_name_on(st);
duke@435 3144
duke@435 3145 switch( _ptr ) {
duke@435 3146 case Constant:
duke@435 3147 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3148 if (WizardMode || Verbose) {
duke@435 3149 const_oop()->print_oop(st);
duke@435 3150 }
duke@435 3151 case BotPTR:
duke@435 3152 if (!WizardMode && !Verbose) {
duke@435 3153 if( _klass_is_exact ) st->print(":exact");
duke@435 3154 break;
duke@435 3155 }
duke@435 3156 case TopPTR:
duke@435 3157 case AnyNull:
duke@435 3158 case NotNull:
duke@435 3159 st->print(":%s", ptr_msg[_ptr]);
duke@435 3160 if( _klass_is_exact ) st->print(":exact");
duke@435 3161 break;
duke@435 3162 }
duke@435 3163
duke@435 3164 if( _offset ) { // Dump offset, if any
duke@435 3165 if( _offset == OffsetBot ) st->print("+any");
duke@435 3166 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3167 else st->print("+%d", _offset);
duke@435 3168 }
duke@435 3169
duke@435 3170 st->print(" *");
kvn@658 3171 if (_instance_id == InstanceTop)
kvn@658 3172 st->print(",iid=top");
kvn@658 3173 else if (_instance_id != InstanceBot)
duke@435 3174 st->print(",iid=%d",_instance_id);
duke@435 3175 }
duke@435 3176 #endif
duke@435 3177
duke@435 3178 //------------------------------add_offset-------------------------------------
kvn@741 3179 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
duke@435 3180 return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
duke@435 3181 }
duke@435 3182
duke@435 3183 //=============================================================================
duke@435 3184 // Convenience common pre-built types.
duke@435 3185 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3186 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3187 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3188 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3189 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3190 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3191 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3192 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3193 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3194 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3195
duke@435 3196 //------------------------------make-------------------------------------------
duke@435 3197 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3198 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3199 "integral arrays must be pre-equipped with a class");
duke@435 3200 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3201 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3202 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3203 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3204 }
duke@435 3205
duke@435 3206 //------------------------------make-------------------------------------------
duke@435 3207 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3208 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3209 "integral arrays must be pre-equipped with a class");
duke@435 3210 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3211 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3212 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3213 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3214 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3215 }
duke@435 3216
duke@435 3217 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3218 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3219 if( ptr == _ptr ) return this;
kvn@658 3220 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3221 }
duke@435 3222
duke@435 3223
duke@435 3224 //-----------------------------cast_to_exactness-------------------------------
duke@435 3225 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3226 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3227 if (!UseExactTypes) return this;
duke@435 3228 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
duke@435 3229 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
duke@435 3230 }
duke@435 3231
kvn@682 3232 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3233 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3234 if( instance_id == _instance_id ) return this;
kvn@682 3235 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
duke@435 3236 }
duke@435 3237
duke@435 3238 //-----------------------------narrow_size_type-------------------------------
duke@435 3239 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3240 // which is kind of slow (and cached elsewhere by other users).
duke@435 3241 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3242 static jint max_array_length(BasicType etype) {
duke@435 3243 jint& cache = max_array_length_cache[etype];
duke@435 3244 jint res = cache;
duke@435 3245 if (res == 0) {
duke@435 3246 switch (etype) {
coleenp@548 3247 case T_NARROWOOP:
coleenp@548 3248 etype = T_OBJECT;
coleenp@548 3249 break;
duke@435 3250 case T_CONFLICT:
duke@435 3251 case T_ILLEGAL:
duke@435 3252 case T_VOID:
duke@435 3253 etype = T_BYTE; // will produce conservatively high value
duke@435 3254 }
duke@435 3255 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3256 }
duke@435 3257 return res;
duke@435 3258 }
duke@435 3259
duke@435 3260 // Narrow the given size type to the index range for the given array base type.
duke@435 3261 // Return NULL if the resulting int type becomes empty.
rasbold@801 3262 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
duke@435 3263 jint hi = size->_hi;
duke@435 3264 jint lo = size->_lo;
duke@435 3265 jint min_lo = 0;
rasbold@801 3266 jint max_hi = max_array_length(elem()->basic_type());
duke@435 3267 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3268 bool chg = false;
duke@435 3269 if (lo < min_lo) { lo = min_lo; chg = true; }
duke@435 3270 if (hi > max_hi) { hi = max_hi; chg = true; }
twisti@1040 3271 // Negative length arrays will produce weird intermediate dead fast-path code
duke@435 3272 if (lo > hi)
rasbold@801 3273 return TypeInt::ZERO;
duke@435 3274 if (!chg)
duke@435 3275 return size;
duke@435 3276 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3277 }
duke@435 3278
duke@435 3279 //-------------------------------cast_to_size----------------------------------
duke@435 3280 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3281 assert(new_size != NULL, "");
rasbold@801 3282 new_size = narrow_size_type(new_size);
duke@435 3283 if (new_size == size()) return this;
duke@435 3284 const TypeAry* new_ary = TypeAry::make(elem(), new_size);
kvn@658 3285 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3286 }
duke@435 3287
duke@435 3288
duke@435 3289 //------------------------------eq---------------------------------------------
duke@435 3290 // Structural equality check for Type representations
duke@435 3291 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3292 const TypeAryPtr *p = t->is_aryptr();
duke@435 3293 return
duke@435 3294 _ary == p->_ary && // Check array
duke@435 3295 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3296 }
duke@435 3297
duke@435 3298 //------------------------------hash-------------------------------------------
duke@435 3299 // Type-specific hashing function.
duke@435 3300 int TypeAryPtr::hash(void) const {
duke@435 3301 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3302 }
duke@435 3303
duke@435 3304 //------------------------------meet-------------------------------------------
duke@435 3305 // Compute the MEET of two types. It returns a new Type object.
duke@435 3306 const Type *TypeAryPtr::xmeet( const Type *t ) const {
duke@435 3307 // Perform a fast test for common case; meeting the same types together.
duke@435 3308 if( this == t ) return this; // Meeting same type-rep?
duke@435 3309 // Current "this->_base" is Pointer
duke@435 3310 switch (t->base()) { // switch on original type
duke@435 3311
duke@435 3312 // Mixing ints & oops happens when javac reuses local variables
duke@435 3313 case Int:
duke@435 3314 case Long:
duke@435 3315 case FloatTop:
duke@435 3316 case FloatCon:
duke@435 3317 case FloatBot:
duke@435 3318 case DoubleTop:
duke@435 3319 case DoubleCon:
duke@435 3320 case DoubleBot:
coleenp@548 3321 case NarrowOop:
duke@435 3322 case Bottom: // Ye Olde Default
duke@435 3323 return Type::BOTTOM;
duke@435 3324 case Top:
duke@435 3325 return this;
duke@435 3326
duke@435 3327 default: // All else is a mistake
duke@435 3328 typerr(t);
duke@435 3329
duke@435 3330 case OopPtr: { // Meeting to OopPtrs
duke@435 3331 // Found a OopPtr type vs self-AryPtr type
kvn@1393 3332 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3333 int offset = meet_offset(tp->offset());
duke@435 3334 PTR ptr = meet_ptr(tp->ptr());
duke@435 3335 switch (tp->ptr()) {
duke@435 3336 case TopPTR:
kvn@658 3337 case AnyNull: {
kvn@658 3338 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3339 return make(ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3340 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3341 }
duke@435 3342 case BotPTR:
kvn@1393 3343 case NotNull: {
kvn@1393 3344 int instance_id = meet_instance_id(tp->instance_id());
kvn@1393 3345 return TypeOopPtr::make(ptr, offset, instance_id);
kvn@1393 3346 }
duke@435 3347 default: ShouldNotReachHere();
duke@435 3348 }
duke@435 3349 }
duke@435 3350
duke@435 3351 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3352 // Found an AnyPtr type vs self-AryPtr type
duke@435 3353 const TypePtr *tp = t->is_ptr();
duke@435 3354 int offset = meet_offset(tp->offset());
duke@435 3355 PTR ptr = meet_ptr(tp->ptr());
duke@435 3356 switch (tp->ptr()) {
duke@435 3357 case TopPTR:
duke@435 3358 return this;
duke@435 3359 case BotPTR:
duke@435 3360 case NotNull:
duke@435 3361 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3362 case Null:
duke@435 3363 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3364 // else fall through to AnyNull
kvn@658 3365 case AnyNull: {
kvn@658 3366 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3367 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3368 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3369 }
duke@435 3370 default: ShouldNotReachHere();
duke@435 3371 }
duke@435 3372 }
duke@435 3373
duke@435 3374 case RawPtr: return TypePtr::BOTTOM;
duke@435 3375
duke@435 3376 case AryPtr: { // Meeting 2 references?
duke@435 3377 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3378 int off = meet_offset(tap->offset());
duke@435 3379 const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
duke@435 3380 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3381 int instance_id = meet_instance_id(tap->instance_id());
duke@435 3382 ciKlass* lazy_klass = NULL;
duke@435 3383 if (tary->_elem->isa_int()) {
duke@435 3384 // Integral array element types have irrelevant lattice relations.
duke@435 3385 // It is the klass that determines array layout, not the element type.
duke@435 3386 if (_klass == NULL)
duke@435 3387 lazy_klass = tap->_klass;
duke@435 3388 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3389 lazy_klass = _klass;
duke@435 3390 } else {
duke@435 3391 // Something like byte[int+] meets char[int+].
duke@435 3392 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3393 instance_id = InstanceBot;
duke@435 3394 tary = TypeAry::make(Type::BOTTOM, tary->_size);
duke@435 3395 }
kvn@2633 3396 } else // Non integral arrays.
kvn@2633 3397 // Must fall to bottom if exact klasses in upper lattice
kvn@2633 3398 // are not equal or super klass is exact.
kvn@2633 3399 if ( above_centerline(ptr) && klass() != tap->klass() &&
kvn@2633 3400 // meet with top[] and bottom[] are processed further down:
kvn@2633 3401 tap ->_klass != NULL && this->_klass != NULL &&
kvn@2633 3402 // both are exact and not equal:
kvn@2633 3403 ((tap ->_klass_is_exact && this->_klass_is_exact) ||
kvn@2633 3404 // 'tap' is exact and super or unrelated:
kvn@2633 3405 (tap ->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
kvn@2633 3406 // 'this' is exact and super or unrelated:
kvn@2633 3407 (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
kvn@2633 3408 tary = TypeAry::make(Type::BOTTOM, tary->_size);
kvn@2633 3409 return make( NotNull, NULL, tary, lazy_klass, false, off, InstanceBot );
duke@435 3410 }
kvn@2633 3411
kvn@2120 3412 bool xk = false;
duke@435 3413 switch (tap->ptr()) {
duke@435 3414 case AnyNull:
duke@435 3415 case TopPTR:
duke@435 3416 // Compute new klass on demand, do not use tap->_klass
duke@435 3417 xk = (tap->_klass_is_exact | this->_klass_is_exact);
kvn@658 3418 return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
duke@435 3419 case Constant: {
duke@435 3420 ciObject* o = const_oop();
duke@435 3421 if( _ptr == Constant ) {
duke@435 3422 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
jrose@1424 3423 xk = (klass() == tap->klass());
duke@435 3424 ptr = NotNull;
duke@435 3425 o = NULL;
kvn@682 3426 instance_id = InstanceBot;
jrose@1424 3427 } else {
jrose@1424 3428 xk = true;
duke@435 3429 }
duke@435 3430 } else if( above_centerline(_ptr) ) {
duke@435 3431 o = tap->const_oop();
jrose@1424 3432 xk = true;
jrose@1424 3433 } else {
kvn@2120 3434 // Only precise for identical arrays
kvn@2120 3435 xk = this->_klass_is_exact && (klass() == tap->klass());
duke@435 3436 }
kvn@2120 3437 return TypeAryPtr::make( ptr, o, tary, lazy_klass, xk, off, instance_id );
duke@435 3438 }
duke@435 3439 case NotNull:
duke@435 3440 case BotPTR:
duke@435 3441 // Compute new klass on demand, do not use tap->_klass
duke@435 3442 if (above_centerline(this->_ptr))
duke@435 3443 xk = tap->_klass_is_exact;
duke@435 3444 else if (above_centerline(tap->_ptr))
duke@435 3445 xk = this->_klass_is_exact;
duke@435 3446 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 3447 (klass() == tap->klass()); // Only precise for identical arrays
kvn@658 3448 return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
duke@435 3449 default: ShouldNotReachHere();
duke@435 3450 }
duke@435 3451 }
duke@435 3452
duke@435 3453 // All arrays inherit from Object class
duke@435 3454 case InstPtr: {
duke@435 3455 const TypeInstPtr *tp = t->is_instptr();
duke@435 3456 int offset = meet_offset(tp->offset());
duke@435 3457 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3458 int instance_id = meet_instance_id(tp->instance_id());
duke@435 3459 switch (ptr) {
duke@435 3460 case TopPTR:
duke@435 3461 case AnyNull: // Fall 'down' to dual of object klass
duke@435 3462 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
kvn@658 3463 return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3464 } else {
duke@435 3465 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3466 ptr = NotNull;
kvn@658 3467 instance_id = InstanceBot;
kvn@658 3468 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3469 }
duke@435 3470 case Constant:
duke@435 3471 case NotNull:
duke@435 3472 case BotPTR: // Fall down to object klass
duke@435 3473 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3474 if (above_centerline(tp->ptr())) {
duke@435 3475 // If 'tp' is above the centerline and it is Object class
twisti@1040 3476 // then we can subclass in the Java class hierarchy.
duke@435 3477 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3478 // that is, my array type is a subtype of 'tp' klass
kvn@1714 3479 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@1714 3480 _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3481 }
duke@435 3482 }
duke@435 3483 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 3484 // The meet falls down to Object class below centerline.
duke@435 3485 if( ptr == Constant )
duke@435 3486 ptr = NotNull;
kvn@658 3487 instance_id = InstanceBot;
kvn@658 3488 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3489 default: typerr(t);
duke@435 3490 }
duke@435 3491 }
duke@435 3492
duke@435 3493 case KlassPtr:
duke@435 3494 return TypeInstPtr::BOTTOM;
duke@435 3495
duke@435 3496 }
duke@435 3497 return this; // Lint noise
duke@435 3498 }
duke@435 3499
duke@435 3500 //------------------------------xdual------------------------------------------
duke@435 3501 // Dual: compute field-by-field dual
duke@435 3502 const Type *TypeAryPtr::xdual() const {
kvn@658 3503 return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
duke@435 3504 }
duke@435 3505
kvn@1255 3506 //----------------------interface_vs_oop---------------------------------------
kvn@1255 3507 #ifdef ASSERT
kvn@1255 3508 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
kvn@1255 3509 const TypeAryPtr* t_aryptr = t->isa_aryptr();
kvn@1255 3510 if (t_aryptr) {
kvn@1255 3511 return _ary->interface_vs_oop(t_aryptr->_ary);
kvn@1255 3512 }
kvn@1255 3513 return false;
kvn@1255 3514 }
kvn@1255 3515 #endif
kvn@1255 3516
duke@435 3517 //------------------------------dump2------------------------------------------
duke@435 3518 #ifndef PRODUCT
duke@435 3519 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3520 _ary->dump2(d,depth,st);
duke@435 3521 switch( _ptr ) {
duke@435 3522 case Constant:
duke@435 3523 const_oop()->print(st);
duke@435 3524 break;
duke@435 3525 case BotPTR:
duke@435 3526 if (!WizardMode && !Verbose) {
duke@435 3527 if( _klass_is_exact ) st->print(":exact");
duke@435 3528 break;
duke@435 3529 }
duke@435 3530 case TopPTR:
duke@435 3531 case AnyNull:
duke@435 3532 case NotNull:
duke@435 3533 st->print(":%s", ptr_msg[_ptr]);
duke@435 3534 if( _klass_is_exact ) st->print(":exact");
duke@435 3535 break;
duke@435 3536 }
duke@435 3537
kvn@499 3538 if( _offset != 0 ) {
kvn@499 3539 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 3540 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 3541 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 3542 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 3543 else {
kvn@499 3544 BasicType basic_elem_type = elem()->basic_type();
kvn@499 3545 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 3546 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 3547 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 3548 }
kvn@499 3549 }
kvn@499 3550 st->print(" *");
kvn@658 3551 if (_instance_id == InstanceTop)
kvn@658 3552 st->print(",iid=top");
kvn@658 3553 else if (_instance_id != InstanceBot)
duke@435 3554 st->print(",iid=%d",_instance_id);
duke@435 3555 }
duke@435 3556 #endif
duke@435 3557
duke@435 3558 bool TypeAryPtr::empty(void) const {
duke@435 3559 if (_ary->empty()) return true;
duke@435 3560 return TypeOopPtr::empty();
duke@435 3561 }
duke@435 3562
duke@435 3563 //------------------------------add_offset-------------------------------------
kvn@741 3564 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
duke@435 3565 return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
duke@435 3566 }
duke@435 3567
duke@435 3568
duke@435 3569 //=============================================================================
coleenp@548 3570 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
coleenp@548 3571 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
coleenp@548 3572
coleenp@548 3573
coleenp@548 3574 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
coleenp@548 3575 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
coleenp@548 3576 }
coleenp@548 3577
coleenp@548 3578 //------------------------------hash-------------------------------------------
coleenp@548 3579 // Type-specific hashing function.
coleenp@548 3580 int TypeNarrowOop::hash(void) const {
never@1262 3581 return _ptrtype->hash() + 7;
coleenp@548 3582 }
coleenp@548 3583
coleenp@548 3584
coleenp@548 3585 bool TypeNarrowOop::eq( const Type *t ) const {
coleenp@548 3586 const TypeNarrowOop* tc = t->isa_narrowoop();
coleenp@548 3587 if (tc != NULL) {
never@1262 3588 if (_ptrtype->base() != tc->_ptrtype->base()) {
coleenp@548 3589 return false;
coleenp@548 3590 }
never@1262 3591 return tc->_ptrtype->eq(_ptrtype);
coleenp@548 3592 }
coleenp@548 3593 return false;
coleenp@548 3594 }
coleenp@548 3595
coleenp@548 3596 bool TypeNarrowOop::singleton(void) const { // TRUE if type is a singleton
never@1262 3597 return _ptrtype->singleton();
coleenp@548 3598 }
coleenp@548 3599
coleenp@548 3600 bool TypeNarrowOop::empty(void) const {
never@1262 3601 return _ptrtype->empty();
coleenp@548 3602 }
coleenp@548 3603
kvn@728 3604 //------------------------------xmeet------------------------------------------
coleenp@548 3605 // Compute the MEET of two types. It returns a new Type object.
coleenp@548 3606 const Type *TypeNarrowOop::xmeet( const Type *t ) const {
coleenp@548 3607 // Perform a fast test for common case; meeting the same types together.
coleenp@548 3608 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 3609
coleenp@548 3610
coleenp@548 3611 // Current "this->_base" is OopPtr
coleenp@548 3612 switch (t->base()) { // switch on original type
coleenp@548 3613
coleenp@548 3614 case Int: // Mixing ints & oops happens when javac
coleenp@548 3615 case Long: // reuses local variables
coleenp@548 3616 case FloatTop:
coleenp@548 3617 case FloatCon:
coleenp@548 3618 case FloatBot:
coleenp@548 3619 case DoubleTop:
coleenp@548 3620 case DoubleCon:
coleenp@548 3621 case DoubleBot:
kvn@728 3622 case AnyPtr:
kvn@728 3623 case RawPtr:
kvn@728 3624 case OopPtr:
kvn@728 3625 case InstPtr:
kvn@728 3626 case KlassPtr:
kvn@728 3627 case AryPtr:
kvn@728 3628
coleenp@548 3629 case Bottom: // Ye Olde Default
coleenp@548 3630 return Type::BOTTOM;
coleenp@548 3631 case Top:
coleenp@548 3632 return this;
coleenp@548 3633
coleenp@548 3634 case NarrowOop: {
never@1262 3635 const Type* result = _ptrtype->xmeet(t->make_ptr());
coleenp@548 3636 if (result->isa_ptr()) {
coleenp@548 3637 return TypeNarrowOop::make(result->is_ptr());
coleenp@548 3638 }
coleenp@548 3639 return result;
coleenp@548 3640 }
coleenp@548 3641
coleenp@548 3642 default: // All else is a mistake
coleenp@548 3643 typerr(t);
coleenp@548 3644
coleenp@548 3645 } // End of switch
kvn@728 3646
kvn@728 3647 return this;
coleenp@548 3648 }
coleenp@548 3649
coleenp@548 3650 const Type *TypeNarrowOop::xdual() const { // Compute dual right now.
never@1262 3651 const TypePtr* odual = _ptrtype->dual()->is_ptr();
coleenp@548 3652 return new TypeNarrowOop(odual);
coleenp@548 3653 }
coleenp@548 3654
coleenp@548 3655 const Type *TypeNarrowOop::filter( const Type *kills ) const {
coleenp@548 3656 if (kills->isa_narrowoop()) {
never@1262 3657 const Type* ft =_ptrtype->filter(kills->is_narrowoop()->_ptrtype);
coleenp@548 3658 if (ft->empty())
coleenp@548 3659 return Type::TOP; // Canonical empty value
coleenp@548 3660 if (ft->isa_ptr()) {
coleenp@548 3661 return make(ft->isa_ptr());
coleenp@548 3662 }
coleenp@548 3663 return ft;
coleenp@548 3664 } else if (kills->isa_ptr()) {
never@1262 3665 const Type* ft = _ptrtype->join(kills);
coleenp@548 3666 if (ft->empty())
coleenp@548 3667 return Type::TOP; // Canonical empty value
coleenp@548 3668 return ft;
coleenp@548 3669 } else {
coleenp@548 3670 return Type::TOP;
coleenp@548 3671 }
coleenp@548 3672 }
coleenp@548 3673
coleenp@548 3674
coleenp@548 3675 intptr_t TypeNarrowOop::get_con() const {
never@1262 3676 return _ptrtype->get_con();
coleenp@548 3677 }
coleenp@548 3678
coleenp@548 3679 #ifndef PRODUCT
coleenp@548 3680 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
never@852 3681 st->print("narrowoop: ");
never@1262 3682 _ptrtype->dump2(d, depth, st);
coleenp@548 3683 }
coleenp@548 3684 #endif
coleenp@548 3685
coleenp@548 3686
coleenp@548 3687 //=============================================================================
duke@435 3688 // Convenience common pre-built types.
duke@435 3689
duke@435 3690 // Not-null object klass or below
duke@435 3691 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 3692 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 3693
duke@435 3694 //------------------------------TypeKlasPtr------------------------------------
duke@435 3695 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
duke@435 3696 : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
duke@435 3697 }
duke@435 3698
duke@435 3699 //------------------------------make-------------------------------------------
duke@435 3700 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 3701 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 3702 assert( k != NULL, "Expect a non-NULL klass");
duke@435 3703 assert(k->is_instance_klass() || k->is_array_klass() ||
duke@435 3704 k->is_method_klass(), "Incorrect type of klass oop");
duke@435 3705 TypeKlassPtr *r =
duke@435 3706 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 3707
duke@435 3708 return r;
duke@435 3709 }
duke@435 3710
duke@435 3711 //------------------------------eq---------------------------------------------
duke@435 3712 // Structural equality check for Type representations
duke@435 3713 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 3714 const TypeKlassPtr *p = t->is_klassptr();
duke@435 3715 return
duke@435 3716 klass()->equals(p->klass()) &&
duke@435 3717 TypeOopPtr::eq(p);
duke@435 3718 }
duke@435 3719
duke@435 3720 //------------------------------hash-------------------------------------------
duke@435 3721 // Type-specific hashing function.
duke@435 3722 int TypeKlassPtr::hash(void) const {
duke@435 3723 return klass()->hash() + TypeOopPtr::hash();
duke@435 3724 }
duke@435 3725
duke@435 3726
kvn@2116 3727 //----------------------compute_klass------------------------------------------
kvn@2116 3728 // Compute the defining klass for this class
kvn@2116 3729 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
kvn@2116 3730 // Compute _klass based on element type.
duke@435 3731 ciKlass* k_ary = NULL;
duke@435 3732 const TypeInstPtr *tinst;
duke@435 3733 const TypeAryPtr *tary;
coleenp@548 3734 const Type* el = elem();
coleenp@548 3735 if (el->isa_narrowoop()) {
kvn@656 3736 el = el->make_ptr();
coleenp@548 3737 }
coleenp@548 3738
duke@435 3739 // Get element klass
coleenp@548 3740 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 3741 // Compute array klass from element klass
duke@435 3742 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 3743 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 3744 // Compute array klass from element klass
duke@435 3745 ciKlass* k_elem = tary->klass();
duke@435 3746 // If element type is something like bottom[], k_elem will be null.
duke@435 3747 if (k_elem != NULL)
duke@435 3748 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 3749 } else if ((el->base() == Type::Top) ||
coleenp@548 3750 (el->base() == Type::Bottom)) {
duke@435 3751 // element type of Bottom occurs from meet of basic type
duke@435 3752 // and object; Top occurs when doing join on Bottom.
duke@435 3753 // Leave k_ary at NULL.
duke@435 3754 } else {
duke@435 3755 // Cannot compute array klass directly from basic type,
duke@435 3756 // since subtypes of TypeInt all have basic type T_INT.
kvn@2116 3757 #ifdef ASSERT
kvn@2116 3758 if (verify && el->isa_int()) {
kvn@2116 3759 // Check simple cases when verifying klass.
kvn@2116 3760 BasicType bt = T_ILLEGAL;
kvn@2116 3761 if (el == TypeInt::BYTE) {
kvn@2116 3762 bt = T_BYTE;
kvn@2116 3763 } else if (el == TypeInt::SHORT) {
kvn@2116 3764 bt = T_SHORT;
kvn@2116 3765 } else if (el == TypeInt::CHAR) {
kvn@2116 3766 bt = T_CHAR;
kvn@2116 3767 } else if (el == TypeInt::INT) {
kvn@2116 3768 bt = T_INT;
kvn@2116 3769 } else {
kvn@2116 3770 return _klass; // just return specified klass
kvn@2116 3771 }
kvn@2116 3772 return ciTypeArrayKlass::make(bt);
kvn@2116 3773 }
kvn@2116 3774 #endif
coleenp@548 3775 assert(!el->isa_int(),
duke@435 3776 "integral arrays must be pre-equipped with a class");
duke@435 3777 // Compute array klass directly from basic type
coleenp@548 3778 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 3779 }
kvn@2116 3780 return k_ary;
kvn@2116 3781 }
kvn@2116 3782
kvn@2116 3783 //------------------------------klass------------------------------------------
kvn@2116 3784 // Return the defining klass for this class
kvn@2116 3785 ciKlass* TypeAryPtr::klass() const {
kvn@2116 3786 if( _klass ) return _klass; // Return cached value, if possible
kvn@2116 3787
kvn@2116 3788 // Oops, need to compute _klass and cache it
kvn@2116 3789 ciKlass* k_ary = compute_klass();
duke@435 3790
kvn@2636 3791 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
duke@435 3792 // The _klass field acts as a cache of the underlying
duke@435 3793 // ciKlass for this array type. In order to set the field,
duke@435 3794 // we need to cast away const-ness.
duke@435 3795 //
duke@435 3796 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 3797 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 3798 // active compilations. However, the ciKlass which represents
duke@435 3799 // this Type is *not* shared between compilations, so caching
duke@435 3800 // this value would result in fetching a dangling pointer.
duke@435 3801 //
duke@435 3802 // Recomputing the underlying ciKlass for each request is
duke@435 3803 // a bit less efficient than caching, but calls to
duke@435 3804 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 3805 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 3806 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 3807 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 3808 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 3809 }
kvn@598 3810 }
duke@435 3811 return k_ary;
duke@435 3812 }
duke@435 3813
duke@435 3814
duke@435 3815 //------------------------------add_offset-------------------------------------
duke@435 3816 // Access internals of klass object
kvn@741 3817 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
duke@435 3818 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 3819 }
duke@435 3820
duke@435 3821 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3822 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
kvn@992 3823 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
duke@435 3824 if( ptr == _ptr ) return this;
duke@435 3825 return make(ptr, _klass, _offset);
duke@435 3826 }
duke@435 3827
duke@435 3828
duke@435 3829 //-----------------------------cast_to_exactness-------------------------------
duke@435 3830 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3831 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3832 if (!UseExactTypes) return this;
duke@435 3833 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 3834 }
duke@435 3835
duke@435 3836
duke@435 3837 //-----------------------------as_instance_type--------------------------------
duke@435 3838 // Corresponding type for an instance of the given class.
duke@435 3839 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 3840 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 3841 ciKlass* k = klass();
duke@435 3842 bool xk = klass_is_exact();
duke@435 3843 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 3844 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
duke@435 3845 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 3846 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 3847 }
duke@435 3848
duke@435 3849
duke@435 3850 //------------------------------xmeet------------------------------------------
duke@435 3851 // Compute the MEET of two types, return a new Type object.
duke@435 3852 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 3853 // Perform a fast test for common case; meeting the same types together.
duke@435 3854 if( this == t ) return this; // Meeting same type-rep?
duke@435 3855
duke@435 3856 // Current "this->_base" is Pointer
duke@435 3857 switch (t->base()) { // switch on original type
duke@435 3858
duke@435 3859 case Int: // Mixing ints & oops happens when javac
duke@435 3860 case Long: // reuses local variables
duke@435 3861 case FloatTop:
duke@435 3862 case FloatCon:
duke@435 3863 case FloatBot:
duke@435 3864 case DoubleTop:
duke@435 3865 case DoubleCon:
duke@435 3866 case DoubleBot:
kvn@728 3867 case NarrowOop:
duke@435 3868 case Bottom: // Ye Olde Default
duke@435 3869 return Type::BOTTOM;
duke@435 3870 case Top:
duke@435 3871 return this;
duke@435 3872
duke@435 3873 default: // All else is a mistake
duke@435 3874 typerr(t);
duke@435 3875
duke@435 3876 case RawPtr: return TypePtr::BOTTOM;
duke@435 3877
duke@435 3878 case OopPtr: { // Meeting to OopPtrs
duke@435 3879 // Found a OopPtr type vs self-KlassPtr type
duke@435 3880 const TypePtr *tp = t->is_oopptr();
duke@435 3881 int offset = meet_offset(tp->offset());
duke@435 3882 PTR ptr = meet_ptr(tp->ptr());
duke@435 3883 switch (tp->ptr()) {
duke@435 3884 case TopPTR:
duke@435 3885 case AnyNull:
duke@435 3886 return make(ptr, klass(), offset);
duke@435 3887 case BotPTR:
duke@435 3888 case NotNull:
duke@435 3889 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3890 default: typerr(t);
duke@435 3891 }
duke@435 3892 }
duke@435 3893
duke@435 3894 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3895 // Found an AnyPtr type vs self-KlassPtr type
duke@435 3896 const TypePtr *tp = t->is_ptr();
duke@435 3897 int offset = meet_offset(tp->offset());
duke@435 3898 PTR ptr = meet_ptr(tp->ptr());
duke@435 3899 switch (tp->ptr()) {
duke@435 3900 case TopPTR:
duke@435 3901 return this;
duke@435 3902 case Null:
duke@435 3903 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 3904 case AnyNull:
duke@435 3905 return make( ptr, klass(), offset );
duke@435 3906 case BotPTR:
duke@435 3907 case NotNull:
duke@435 3908 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3909 default: typerr(t);
duke@435 3910 }
duke@435 3911 }
duke@435 3912
duke@435 3913 case AryPtr: // Meet with AryPtr
duke@435 3914 case InstPtr: // Meet with InstPtr
duke@435 3915 return TypeInstPtr::BOTTOM;
duke@435 3916
duke@435 3917 //
duke@435 3918 // A-top }
duke@435 3919 // / | \ } Tops
duke@435 3920 // B-top A-any C-top }
duke@435 3921 // | / | \ | } Any-nulls
duke@435 3922 // B-any | C-any }
duke@435 3923 // | | |
duke@435 3924 // B-con A-con C-con } constants; not comparable across classes
duke@435 3925 // | | |
duke@435 3926 // B-not | C-not }
duke@435 3927 // | \ | / | } not-nulls
duke@435 3928 // B-bot A-not C-bot }
duke@435 3929 // \ | / } Bottoms
duke@435 3930 // A-bot }
duke@435 3931 //
duke@435 3932
duke@435 3933 case KlassPtr: { // Meet two KlassPtr types
duke@435 3934 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 3935 int off = meet_offset(tkls->offset());
duke@435 3936 PTR ptr = meet_ptr(tkls->ptr());
duke@435 3937
duke@435 3938 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3939 // If we have constants, then we created oops so classes are loaded
duke@435 3940 // and we can handle the constants further down. This case handles
duke@435 3941 // not-loaded classes
duke@435 3942 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 3943 return make( ptr, klass(), off );
duke@435 3944 }
duke@435 3945
duke@435 3946 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3947 ciKlass* tkls_klass = tkls->klass();
duke@435 3948 ciKlass* this_klass = this->klass();
duke@435 3949 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 3950 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 3951
duke@435 3952 // If 'this' type is above the centerline and is a superclass of the
duke@435 3953 // other, we can treat 'this' as having the same type as the other.
duke@435 3954 if ((above_centerline(this->ptr())) &&
duke@435 3955 tkls_klass->is_subtype_of(this_klass)) {
duke@435 3956 this_klass = tkls_klass;
duke@435 3957 }
duke@435 3958 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 3959 // other, we can treat 'tinst' as having the same type as the other.
duke@435 3960 if ((above_centerline(tkls->ptr())) &&
duke@435 3961 this_klass->is_subtype_of(tkls_klass)) {
duke@435 3962 tkls_klass = this_klass;
duke@435 3963 }
duke@435 3964
duke@435 3965 // Check for classes now being equal
duke@435 3966 if (tkls_klass->equals(this_klass)) {
duke@435 3967 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3968 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3969 // handled elsewhere).
duke@435 3970 ciObject* o = NULL; // Assume not constant when done
duke@435 3971 ciObject* this_oop = const_oop();
duke@435 3972 ciObject* tkls_oop = tkls->const_oop();
duke@435 3973 if( ptr == Constant ) {
duke@435 3974 if (this_oop != NULL && tkls_oop != NULL &&
duke@435 3975 this_oop->equals(tkls_oop) )
duke@435 3976 o = this_oop;
duke@435 3977 else if (above_centerline(this->ptr()))
duke@435 3978 o = tkls_oop;
duke@435 3979 else if (above_centerline(tkls->ptr()))
duke@435 3980 o = this_oop;
duke@435 3981 else
duke@435 3982 ptr = NotNull;
duke@435 3983 }
duke@435 3984 return make( ptr, this_klass, off );
duke@435 3985 } // Else classes are not equal
duke@435 3986
duke@435 3987 // Since klasses are different, we require the LCA in the Java
duke@435 3988 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3989 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3990 ptr = NotNull;
duke@435 3991 // Now we find the LCA of Java classes
duke@435 3992 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 3993 return make( ptr, k, off );
duke@435 3994 } // End of case KlassPtr
duke@435 3995
duke@435 3996 } // End of switch
duke@435 3997 return this; // Return the double constant
duke@435 3998 }
duke@435 3999
duke@435 4000 //------------------------------xdual------------------------------------------
duke@435 4001 // Dual: compute field-by-field dual
duke@435 4002 const Type *TypeKlassPtr::xdual() const {
duke@435 4003 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 4004 }
duke@435 4005
duke@435 4006 //------------------------------dump2------------------------------------------
duke@435 4007 // Dump Klass Type
duke@435 4008 #ifndef PRODUCT
duke@435 4009 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 4010 switch( _ptr ) {
duke@435 4011 case Constant:
duke@435 4012 st->print("precise ");
duke@435 4013 case NotNull:
duke@435 4014 {
duke@435 4015 const char *name = klass()->name()->as_utf8();
duke@435 4016 if( name ) {
duke@435 4017 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 4018 } else {
duke@435 4019 ShouldNotReachHere();
duke@435 4020 }
duke@435 4021 }
duke@435 4022 case BotPTR:
duke@435 4023 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 4024 case TopPTR:
duke@435 4025 case AnyNull:
duke@435 4026 st->print(":%s", ptr_msg[_ptr]);
duke@435 4027 if( _klass_is_exact ) st->print(":exact");
duke@435 4028 break;
duke@435 4029 }
duke@435 4030
duke@435 4031 if( _offset ) { // Dump offset, if any
duke@435 4032 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 4033 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 4034 else { st->print("+%d", _offset); }
duke@435 4035 }
duke@435 4036
duke@435 4037 st->print(" *");
duke@435 4038 }
duke@435 4039 #endif
duke@435 4040
duke@435 4041
duke@435 4042
duke@435 4043 //=============================================================================
duke@435 4044 // Convenience common pre-built types.
duke@435 4045
duke@435 4046 //------------------------------make-------------------------------------------
duke@435 4047 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 4048 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 4049 }
duke@435 4050
duke@435 4051 //------------------------------make-------------------------------------------
duke@435 4052 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 4053 Compile* C = Compile::current();
duke@435 4054 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 4055 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 4056 const TypeTuple *domain;
twisti@1572 4057 if (method->is_static()) {
duke@435 4058 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 4059 } else {
duke@435 4060 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 4061 }
duke@435 4062 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 4063 tf = TypeFunc::make(domain, range);
duke@435 4064 C->set_last_tf(method, tf); // fill cache
duke@435 4065 return tf;
duke@435 4066 }
duke@435 4067
duke@435 4068 //------------------------------meet-------------------------------------------
duke@435 4069 // Compute the MEET of two types. It returns a new Type object.
duke@435 4070 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 4071 // Perform a fast test for common case; meeting the same types together.
duke@435 4072 if( this == t ) return this; // Meeting same type-rep?
duke@435 4073
duke@435 4074 // Current "this->_base" is Func
duke@435 4075 switch (t->base()) { // switch on original type
duke@435 4076
duke@435 4077 case Bottom: // Ye Olde Default
duke@435 4078 return t;
duke@435 4079
duke@435 4080 default: // All else is a mistake
duke@435 4081 typerr(t);
duke@435 4082
duke@435 4083 case Top:
duke@435 4084 break;
duke@435 4085 }
duke@435 4086 return this; // Return the double constant
duke@435 4087 }
duke@435 4088
duke@435 4089 //------------------------------xdual------------------------------------------
duke@435 4090 // Dual: compute field-by-field dual
duke@435 4091 const Type *TypeFunc::xdual() const {
duke@435 4092 return this;
duke@435 4093 }
duke@435 4094
duke@435 4095 //------------------------------eq---------------------------------------------
duke@435 4096 // Structural equality check for Type representations
duke@435 4097 bool TypeFunc::eq( const Type *t ) const {
duke@435 4098 const TypeFunc *a = (const TypeFunc*)t;
duke@435 4099 return _domain == a->_domain &&
duke@435 4100 _range == a->_range;
duke@435 4101 }
duke@435 4102
duke@435 4103 //------------------------------hash-------------------------------------------
duke@435 4104 // Type-specific hashing function.
duke@435 4105 int TypeFunc::hash(void) const {
duke@435 4106 return (intptr_t)_domain + (intptr_t)_range;
duke@435 4107 }
duke@435 4108
duke@435 4109 //------------------------------dump2------------------------------------------
duke@435 4110 // Dump Function Type
duke@435 4111 #ifndef PRODUCT
duke@435 4112 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4113 if( _range->_cnt <= Parms )
duke@435 4114 st->print("void");
duke@435 4115 else {
duke@435 4116 uint i;
duke@435 4117 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 4118 _range->field_at(i)->dump2(d,depth,st);
duke@435 4119 st->print("/");
duke@435 4120 }
duke@435 4121 _range->field_at(i)->dump2(d,depth,st);
duke@435 4122 }
duke@435 4123 st->print(" ");
duke@435 4124 st->print("( ");
duke@435 4125 if( !depth || d[this] ) { // Check for recursive dump
duke@435 4126 st->print("...)");
duke@435 4127 return;
duke@435 4128 }
duke@435 4129 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 4130 if (Parms < _domain->_cnt)
duke@435 4131 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 4132 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 4133 st->print(", ");
duke@435 4134 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 4135 }
duke@435 4136 st->print(" )");
duke@435 4137 }
duke@435 4138
duke@435 4139 //------------------------------print_flattened--------------------------------
duke@435 4140 // Print a 'flattened' signature
duke@435 4141 static const char * const flat_type_msg[Type::lastype] = {
coleenp@548 4142 "bad","control","top","int","long","_", "narrowoop",
duke@435 4143 "tuple:", "array:",
duke@435 4144 "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
duke@435 4145 "func", "abIO", "return_address", "mem",
duke@435 4146 "float_top", "ftcon:", "flt",
duke@435 4147 "double_top", "dblcon:", "dbl",
duke@435 4148 "bottom"
duke@435 4149 };
duke@435 4150
duke@435 4151 void TypeFunc::print_flattened() const {
duke@435 4152 if( _range->_cnt <= Parms )
duke@435 4153 tty->print("void");
duke@435 4154 else {
duke@435 4155 uint i;
duke@435 4156 for (i = Parms; i < _range->_cnt-1; i++)
duke@435 4157 tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
duke@435 4158 tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
duke@435 4159 }
duke@435 4160 tty->print(" ( ");
duke@435 4161 if (Parms < _domain->_cnt)
duke@435 4162 tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
duke@435 4163 for (uint i = Parms+1; i < _domain->_cnt; i++)
duke@435 4164 tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
duke@435 4165 tty->print(" )");
duke@435 4166 }
duke@435 4167 #endif
duke@435 4168
duke@435 4169 //------------------------------singleton--------------------------------------
duke@435 4170 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 4171 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 4172 // or a single symbol.
duke@435 4173 bool TypeFunc::singleton(void) const {
duke@435 4174 return false; // Never a singleton
duke@435 4175 }
duke@435 4176
duke@435 4177 bool TypeFunc::empty(void) const {
duke@435 4178 return false; // Never empty
duke@435 4179 }
duke@435 4180
duke@435 4181
duke@435 4182 BasicType TypeFunc::return_type() const{
duke@435 4183 if (range()->cnt() == TypeFunc::Parms) {
duke@435 4184 return T_VOID;
duke@435 4185 }
duke@435 4186 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 4187 }

mercurial