src/share/vm/opto/type.cpp

Thu, 20 Feb 2014 11:05:12 +0100

author
goetz
date
Thu, 20 Feb 2014 11:05:12 +0100
changeset 6510
7c462558a08a
parent 6507
752ba2e5f6d0
child 6518
62c54fcc0a35
permissions
-rw-r--r--

8035394: PPC64: Make usage of intrinsic dsqrt depend on processor recognition.
Reviewed-by: kvn

duke@435 1 /*
hseigel@4465 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
coleenp@4037 26 #include "ci/ciMethodData.hpp"
stefank@2314 27 #include "ci/ciTypeFlow.hpp"
stefank@2314 28 #include "classfile/symbolTable.hpp"
stefank@2314 29 #include "classfile/systemDictionary.hpp"
stefank@2314 30 #include "compiler/compileLog.hpp"
stefank@2314 31 #include "libadt/dict.hpp"
stefank@2314 32 #include "memory/gcLocker.hpp"
stefank@2314 33 #include "memory/oopFactory.hpp"
stefank@2314 34 #include "memory/resourceArea.hpp"
stefank@2314 35 #include "oops/instanceKlass.hpp"
never@2658 36 #include "oops/instanceMirrorKlass.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "oops/typeArrayKlass.hpp"
stefank@2314 39 #include "opto/matcher.hpp"
stefank@2314 40 #include "opto/node.hpp"
stefank@2314 41 #include "opto/opcodes.hpp"
stefank@2314 42 #include "opto/type.hpp"
stefank@2314 43
duke@435 44 // Portions of code courtesy of Clifford Click
duke@435 45
duke@435 46 // Optimization - Graph Style
duke@435 47
duke@435 48 // Dictionary of types shared among compilations.
duke@435 49 Dict* Type::_shared_type_dict = NULL;
duke@435 50
duke@435 51 // Array which maps compiler types to Basic Types
coleenp@4037 52 Type::TypeInfo Type::_type_info[Type::lastype] = {
coleenp@4037 53 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
coleenp@4037 54 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
coleenp@4037 55 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
coleenp@4037 56 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
coleenp@4037 57 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
coleenp@4037 58 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
coleenp@4037 59 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
roland@4159 60 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass
coleenp@4037 61 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
coleenp@4037 62 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
coleenp@4037 63
goetz@6487 64 #ifdef SPARC
goetz@6487 65 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
goetz@6487 66 { Bad, T_ILLEGAL, "vectord:", false, Op_RegD, relocInfo::none }, // VectorD
goetz@6487 67 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
goetz@6487 68 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
goetz@6487 69 #elif defined(PPC64)
goetz@6487 70 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
goetz@6487 71 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD
goetz@6487 72 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
goetz@6487 73 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
goetz@6487 74 #else // all other
coleenp@4037 75 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS
coleenp@4037 76 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
coleenp@4037 77 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
coleenp@4037 78 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY
goetz@6487 79 #endif
coleenp@4037 80 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr
coleenp@4037 81 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr
coleenp@4037 82 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr
coleenp@4037 83 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr
coleenp@4037 84 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr
coleenp@4037 85 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr
coleenp@4037 86 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr
coleenp@4037 87 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function
coleenp@4037 88 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio
coleenp@4037 89 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address
coleenp@4037 90 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory
coleenp@4037 91 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop
coleenp@4037 92 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon
coleenp@4037 93 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot
coleenp@4037 94 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop
coleenp@4037 95 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon
coleenp@4037 96 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot
coleenp@4037 97 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom
duke@435 98 };
duke@435 99
duke@435 100 // Map ideal registers (machine types) to ideal types
duke@435 101 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 102
duke@435 103 // Map basic types to canonical Type* pointers.
duke@435 104 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 105
duke@435 106 // Map basic types to constant-zero Types.
duke@435 107 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 108
duke@435 109 // Map basic types to array-body alias types.
duke@435 110 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 111
duke@435 112 //=============================================================================
duke@435 113 // Convenience common pre-built types.
duke@435 114 const Type *Type::ABIO; // State-of-machine only
duke@435 115 const Type *Type::BOTTOM; // All values
duke@435 116 const Type *Type::CONTROL; // Control only
duke@435 117 const Type *Type::DOUBLE; // All doubles
duke@435 118 const Type *Type::FLOAT; // All floats
duke@435 119 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 120 const Type *Type::MEMORY; // Abstract store only
duke@435 121 const Type *Type::RETURN_ADDRESS;
duke@435 122 const Type *Type::TOP; // No values in set
duke@435 123
duke@435 124 //------------------------------get_const_type---------------------------
duke@435 125 const Type* Type::get_const_type(ciType* type) {
duke@435 126 if (type == NULL) {
duke@435 127 return NULL;
duke@435 128 } else if (type->is_primitive_type()) {
duke@435 129 return get_const_basic_type(type->basic_type());
duke@435 130 } else {
duke@435 131 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 132 }
duke@435 133 }
duke@435 134
duke@435 135 //---------------------------array_element_basic_type---------------------------------
duke@435 136 // Mapping to the array element's basic type.
duke@435 137 BasicType Type::array_element_basic_type() const {
duke@435 138 BasicType bt = basic_type();
duke@435 139 if (bt == T_INT) {
duke@435 140 if (this == TypeInt::INT) return T_INT;
duke@435 141 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 142 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 143 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 144 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 145 return T_VOID;
duke@435 146 }
duke@435 147 return bt;
duke@435 148 }
duke@435 149
duke@435 150 //---------------------------get_typeflow_type---------------------------------
duke@435 151 // Import a type produced by ciTypeFlow.
duke@435 152 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 153 switch (type->basic_type()) {
duke@435 154
duke@435 155 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 156 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 157 return Type::BOTTOM;
duke@435 158
duke@435 159 case ciTypeFlow::StateVector::T_TOP:
duke@435 160 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 161 return Type::TOP;
duke@435 162
duke@435 163 case ciTypeFlow::StateVector::T_NULL:
duke@435 164 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 165 return TypePtr::NULL_PTR;
duke@435 166
duke@435 167 case ciTypeFlow::StateVector::T_LONG2:
duke@435 168 // The ciTypeFlow pass pushes a long, then the half.
duke@435 169 // We do the same.
duke@435 170 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 171 return TypeInt::TOP;
duke@435 172
duke@435 173 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 174 // The ciTypeFlow pass pushes double, then the half.
duke@435 175 // Our convention is the same.
duke@435 176 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 177 return Type::TOP;
duke@435 178
duke@435 179 case T_ADDRESS:
duke@435 180 assert(type->is_return_address(), "");
duke@435 181 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 182
duke@435 183 default:
duke@435 184 // make sure we did not mix up the cases:
duke@435 185 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 186 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 187 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 188 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 189 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 190 assert(!type->is_return_address(), "");
duke@435 191
duke@435 192 return Type::get_const_type(type);
duke@435 193 }
duke@435 194 }
duke@435 195
duke@435 196
vlivanov@5658 197 //-----------------------make_from_constant------------------------------------
vlivanov@5658 198 const Type* Type::make_from_constant(ciConstant constant,
vlivanov@5658 199 bool require_constant, bool is_autobox_cache) {
vlivanov@5658 200 switch (constant.basic_type()) {
vlivanov@5658 201 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
vlivanov@5658 202 case T_CHAR: return TypeInt::make(constant.as_char());
vlivanov@5658 203 case T_BYTE: return TypeInt::make(constant.as_byte());
vlivanov@5658 204 case T_SHORT: return TypeInt::make(constant.as_short());
vlivanov@5658 205 case T_INT: return TypeInt::make(constant.as_int());
vlivanov@5658 206 case T_LONG: return TypeLong::make(constant.as_long());
vlivanov@5658 207 case T_FLOAT: return TypeF::make(constant.as_float());
vlivanov@5658 208 case T_DOUBLE: return TypeD::make(constant.as_double());
vlivanov@5658 209 case T_ARRAY:
vlivanov@5658 210 case T_OBJECT:
vlivanov@5658 211 {
vlivanov@5658 212 // cases:
vlivanov@5658 213 // can_be_constant = (oop not scavengable || ScavengeRootsInCode != 0)
vlivanov@5658 214 // should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
vlivanov@5658 215 // An oop is not scavengable if it is in the perm gen.
vlivanov@5658 216 ciObject* oop_constant = constant.as_object();
vlivanov@5658 217 if (oop_constant->is_null_object()) {
vlivanov@5658 218 return Type::get_zero_type(T_OBJECT);
vlivanov@5658 219 } else if (require_constant || oop_constant->should_be_constant()) {
vlivanov@5658 220 return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
vlivanov@5658 221 }
vlivanov@5658 222 }
vlivanov@5658 223 }
vlivanov@5658 224 // Fall through to failure
vlivanov@5658 225 return NULL;
vlivanov@5658 226 }
vlivanov@5658 227
vlivanov@5658 228
duke@435 229 //------------------------------make-------------------------------------------
duke@435 230 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 231 // and look for an existing copy in the type dictionary.
duke@435 232 const Type *Type::make( enum TYPES t ) {
duke@435 233 return (new Type(t))->hashcons();
duke@435 234 }
kvn@658 235
duke@435 236 //------------------------------cmp--------------------------------------------
duke@435 237 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 238 if( t1->_base != t2->_base )
duke@435 239 return 1; // Missed badly
duke@435 240 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 241 return !t1->eq(t2); // Return ZERO if equal
duke@435 242 }
duke@435 243
roland@6313 244 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
roland@6313 245 if (!include_speculative) {
roland@6313 246 return remove_speculative();
roland@6313 247 }
roland@6313 248 return this;
roland@6313 249 }
roland@6313 250
duke@435 251 //------------------------------hash-------------------------------------------
duke@435 252 int Type::uhash( const Type *const t ) {
duke@435 253 return t->hash();
duke@435 254 }
duke@435 255
kvn@1975 256 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
kvn@1975 257
duke@435 258 //--------------------------Initialize_shared----------------------------------
duke@435 259 void Type::Initialize_shared(Compile* current) {
duke@435 260 // This method does not need to be locked because the first system
duke@435 261 // compilations (stub compilations) occur serially. If they are
duke@435 262 // changed to proceed in parallel, then this section will need
duke@435 263 // locking.
duke@435 264
duke@435 265 Arena* save = current->type_arena();
zgu@3900 266 Arena* shared_type_arena = new (mtCompiler)Arena();
duke@435 267
duke@435 268 current->set_type_arena(shared_type_arena);
duke@435 269 _shared_type_dict =
duke@435 270 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 271 shared_type_arena, 128 );
duke@435 272 current->set_type_dict(_shared_type_dict);
duke@435 273
duke@435 274 // Make shared pre-built types.
duke@435 275 CONTROL = make(Control); // Control only
duke@435 276 TOP = make(Top); // No values in set
duke@435 277 MEMORY = make(Memory); // Abstract store only
duke@435 278 ABIO = make(Abio); // State-of-machine only
duke@435 279 RETURN_ADDRESS=make(Return_Address);
duke@435 280 FLOAT = make(FloatBot); // All floats
duke@435 281 DOUBLE = make(DoubleBot); // All doubles
duke@435 282 BOTTOM = make(Bottom); // Everything
duke@435 283 HALF = make(Half); // Placeholder half of doublewide type
duke@435 284
duke@435 285 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 286 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 287
duke@435 288 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 289 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 290
duke@435 291 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 292 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 293 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 294 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 295 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 296 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 297 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 298 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 299 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 300 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 301 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
twisti@1059 302 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
duke@435 303 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 304 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 305 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 306 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 307 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 308 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
duke@435 309 // CmpL is overloaded both as the bytecode computation returning
duke@435 310 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 311 // compare returning optimizer ideal-type flags.
duke@435 312 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 313 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 314 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 315 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
kvn@1975 316 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 317
duke@435 318 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 319 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 320 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 321 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 322 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 323 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 324 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
duke@435 325
duke@435 326 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 327 fboth[0] = Type::CONTROL;
duke@435 328 fboth[1] = Type::CONTROL;
duke@435 329 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 330
duke@435 331 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 332 ffalse[0] = Type::CONTROL;
duke@435 333 ffalse[1] = Type::TOP;
duke@435 334 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 335
duke@435 336 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 337 fneither[0] = Type::TOP;
duke@435 338 fneither[1] = Type::TOP;
duke@435 339 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 340
duke@435 341 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 342 ftrue[0] = Type::TOP;
duke@435 343 ftrue[1] = Type::CONTROL;
duke@435 344 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 345
duke@435 346 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 347 floop[0] = Type::CONTROL;
duke@435 348 floop[1] = TypeInt::INT;
duke@435 349 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 350
duke@435 351 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 352 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 353 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 354
duke@435 355 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 356 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 357
duke@435 358 const Type **fmembar = TypeTuple::fields(0);
duke@435 359 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 360
duke@435 361 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 362 fsc[0] = TypeInt::CC;
duke@435 363 fsc[1] = Type::MEMORY;
duke@435 364 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 365
duke@435 366 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 367 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 368 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 369 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 370 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 371 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 372 false, 0, oopDesc::klass_offset_in_bytes());
roland@5991 373 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
duke@435 374
coleenp@4037 375 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
coleenp@4037 376
coleenp@548 377 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 378 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 379
roland@4159 380 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
roland@4159 381
coleenp@548 382 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 383 mreg2type[Op_Set ] = 0;
coleenp@548 384 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 385 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 386 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 387 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 388 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 389 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 390 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 391
kvn@2116 392 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
kvn@598 393
kvn@598 394 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 395
kvn@598 396 #ifdef _LP64
kvn@598 397 if (UseCompressedOops) {
coleenp@4037 398 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
kvn@598 399 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 400 } else
kvn@598 401 #endif
kvn@598 402 {
kvn@598 403 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 404 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 405 }
duke@435 406 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 407 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 408 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 409 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 410 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 411 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 412 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 413
kvn@598 414 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 415 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 416 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 417 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 418 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 419 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 420 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 421 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 422 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 423 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 424 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 425 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 426
duke@435 427 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 428 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 429
duke@435 430 const Type **fi2c = TypeTuple::fields(2);
coleenp@4037 431 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
duke@435 432 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 433 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 434
duke@435 435 const Type **intpair = TypeTuple::fields(2);
duke@435 436 intpair[0] = TypeInt::INT;
duke@435 437 intpair[1] = TypeInt::INT;
duke@435 438 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 439
duke@435 440 const Type **longpair = TypeTuple::fields(2);
duke@435 441 longpair[0] = TypeLong::LONG;
duke@435 442 longpair[1] = TypeLong::LONG;
duke@435 443 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 444
rbackman@5791 445 const Type **intccpair = TypeTuple::fields(2);
rbackman@5791 446 intccpair[0] = TypeInt::INT;
rbackman@5791 447 intccpair[1] = TypeInt::CC;
rbackman@5791 448 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
rbackman@5791 449
rbackman@5997 450 const Type **longccpair = TypeTuple::fields(2);
rbackman@5997 451 longccpair[0] = TypeLong::LONG;
rbackman@5997 452 longccpair[1] = TypeInt::CC;
rbackman@5997 453 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
rbackman@5997 454
roland@4159 455 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
roland@4159 456 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
roland@4159 457 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
roland@4159 458 _const_basic_type[T_CHAR] = TypeInt::CHAR;
roland@4159 459 _const_basic_type[T_BYTE] = TypeInt::BYTE;
roland@4159 460 _const_basic_type[T_SHORT] = TypeInt::SHORT;
roland@4159 461 _const_basic_type[T_INT] = TypeInt::INT;
roland@4159 462 _const_basic_type[T_LONG] = TypeLong::LONG;
roland@4159 463 _const_basic_type[T_FLOAT] = Type::FLOAT;
roland@4159 464 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
roland@4159 465 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
roland@4159 466 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
roland@4159 467 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
roland@4159 468 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
roland@4159 469 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not?
roland@4159 470
roland@4159 471 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
roland@4159 472 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
roland@4159 473 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
roland@4159 474 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
roland@4159 475 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
roland@4159 476 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
roland@4159 477 _zero_type[T_INT] = TypeInt::ZERO;
roland@4159 478 _zero_type[T_LONG] = TypeLong::ZERO;
roland@4159 479 _zero_type[T_FLOAT] = TypeF::ZERO;
roland@4159 480 _zero_type[T_DOUBLE] = TypeD::ZERO;
roland@4159 481 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
roland@4159 482 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
roland@4159 483 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
roland@4159 484 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 485
duke@435 486 // get_zero_type() should not happen for T_CONFLICT
duke@435 487 _zero_type[T_CONFLICT]= NULL;
duke@435 488
kvn@3882 489 // Vector predefined types, it needs initialized _const_basic_type[].
kvn@3882 490 if (Matcher::vector_size_supported(T_BYTE,4)) {
kvn@3882 491 TypeVect::VECTS = TypeVect::make(T_BYTE,4);
kvn@3882 492 }
kvn@3882 493 if (Matcher::vector_size_supported(T_FLOAT,2)) {
kvn@3882 494 TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
kvn@3882 495 }
kvn@3882 496 if (Matcher::vector_size_supported(T_FLOAT,4)) {
kvn@3882 497 TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
kvn@3882 498 }
kvn@3882 499 if (Matcher::vector_size_supported(T_FLOAT,8)) {
kvn@3882 500 TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
kvn@3882 501 }
kvn@3882 502 mreg2type[Op_VecS] = TypeVect::VECTS;
kvn@3882 503 mreg2type[Op_VecD] = TypeVect::VECTD;
kvn@3882 504 mreg2type[Op_VecX] = TypeVect::VECTX;
kvn@3882 505 mreg2type[Op_VecY] = TypeVect::VECTY;
kvn@3882 506
duke@435 507 // Restore working type arena.
duke@435 508 current->set_type_arena(save);
duke@435 509 current->set_type_dict(NULL);
duke@435 510 }
duke@435 511
duke@435 512 //------------------------------Initialize-------------------------------------
duke@435 513 void Type::Initialize(Compile* current) {
duke@435 514 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 515
duke@435 516 if (_shared_type_dict == NULL) {
duke@435 517 Initialize_shared(current);
duke@435 518 }
duke@435 519
duke@435 520 Arena* type_arena = current->type_arena();
duke@435 521
duke@435 522 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 523 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 524 current->set_type_dict(tdic);
duke@435 525
duke@435 526 // Transfer the shared types.
duke@435 527 DictI i(_shared_type_dict);
duke@435 528 for( ; i.test(); ++i ) {
duke@435 529 Type* t = (Type*)i._value;
duke@435 530 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 531 }
duke@435 532 }
duke@435 533
duke@435 534 //------------------------------hashcons---------------------------------------
duke@435 535 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 536 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 537 // current Type in the Type table.
duke@435 538 const Type *Type::hashcons(void) {
duke@435 539 debug_only(base()); // Check the assertion in Type::base().
duke@435 540 // Look up the Type in the Type dictionary
duke@435 541 Dict *tdic = type_dict();
duke@435 542 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 543 if( old ) { // Pre-existing Type?
duke@435 544 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 545 delete this; // Yes, Nuke this guy
duke@435 546 assert( old->_dual, "" );
duke@435 547 return old; // Return pre-existing
duke@435 548 }
duke@435 549
duke@435 550 // Every type has a dual (to make my lattice symmetric).
duke@435 551 // Since we just discovered a new Type, compute its dual right now.
duke@435 552 assert( !_dual, "" ); // No dual yet
duke@435 553 _dual = xdual(); // Compute the dual
duke@435 554 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 555 _dual = this;
duke@435 556 return this;
duke@435 557 }
duke@435 558 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 559 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 560 // New Type, insert into Type table
duke@435 561 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 562 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 563 #ifdef ASSERT
duke@435 564 Type *dual_dual = (Type*)_dual->xdual();
duke@435 565 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 566 delete dual_dual;
duke@435 567 #endif
duke@435 568 return this; // Return new Type
duke@435 569 }
duke@435 570
duke@435 571 //------------------------------eq---------------------------------------------
duke@435 572 // Structural equality check for Type representations
duke@435 573 bool Type::eq( const Type * ) const {
duke@435 574 return true; // Nothing else can go wrong
duke@435 575 }
duke@435 576
duke@435 577 //------------------------------hash-------------------------------------------
duke@435 578 // Type-specific hashing function.
duke@435 579 int Type::hash(void) const {
duke@435 580 return _base;
duke@435 581 }
duke@435 582
duke@435 583 //------------------------------is_finite--------------------------------------
duke@435 584 // Has a finite value
duke@435 585 bool Type::is_finite() const {
duke@435 586 return false;
duke@435 587 }
duke@435 588
duke@435 589 //------------------------------is_nan-----------------------------------------
duke@435 590 // Is not a number (NaN)
duke@435 591 bool Type::is_nan() const {
duke@435 592 return false;
duke@435 593 }
duke@435 594
kvn@1255 595 //----------------------interface_vs_oop---------------------------------------
kvn@1255 596 #ifdef ASSERT
roland@5991 597 bool Type::interface_vs_oop_helper(const Type *t) const {
kvn@1255 598 bool result = false;
kvn@1255 599
kvn@1427 600 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
kvn@1427 601 const TypePtr* t_ptr = t->make_ptr();
kvn@1427 602 if( this_ptr == NULL || t_ptr == NULL )
kvn@1427 603 return result;
kvn@1427 604
kvn@1427 605 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
kvn@1427 606 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
kvn@1255 607 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
kvn@1255 608 bool this_interface = this_inst->klass()->is_interface();
kvn@1255 609 bool t_interface = t_inst->klass()->is_interface();
kvn@1255 610 result = this_interface ^ t_interface;
kvn@1255 611 }
kvn@1255 612
kvn@1255 613 return result;
kvn@1255 614 }
roland@5991 615
roland@5991 616 bool Type::interface_vs_oop(const Type *t) const {
roland@5991 617 if (interface_vs_oop_helper(t)) {
roland@5991 618 return true;
roland@5991 619 }
roland@5991 620 // Now check the speculative parts as well
roland@5991 621 const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
roland@5991 622 const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
roland@5991 623 if (this_spec != NULL && t_spec != NULL) {
roland@5991 624 if (this_spec->interface_vs_oop_helper(t_spec)) {
roland@5991 625 return true;
roland@5991 626 }
roland@5991 627 return false;
roland@5991 628 }
roland@5991 629 if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
roland@5991 630 return true;
roland@5991 631 }
roland@5991 632 if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
roland@5991 633 return true;
roland@5991 634 }
roland@5991 635 return false;
roland@5991 636 }
roland@5991 637
kvn@1255 638 #endif
kvn@1255 639
duke@435 640 //------------------------------meet-------------------------------------------
duke@435 641 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 642 // commutative and the lattice is symmetric.
roland@6313 643 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
coleenp@548 644 if (isa_narrowoop() && t->isa_narrowoop()) {
roland@6313 645 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
kvn@656 646 return result->make_narrowoop();
coleenp@548 647 }
roland@4159 648 if (isa_narrowklass() && t->isa_narrowklass()) {
roland@6313 649 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
roland@4159 650 return result->make_narrowklass();
roland@4159 651 }
coleenp@548 652
roland@6313 653 const Type *this_t = maybe_remove_speculative(include_speculative);
roland@6313 654 t = t->maybe_remove_speculative(include_speculative);
roland@6313 655
roland@6313 656 const Type *mt = this_t->xmeet(t);
coleenp@548 657 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
roland@4159 658 if (isa_narrowklass() || t->isa_narrowklass()) return mt;
duke@435 659 #ifdef ASSERT
roland@6313 660 assert(mt == t->xmeet(this_t), "meet not commutative");
duke@435 661 const Type* dual_join = mt->_dual;
duke@435 662 const Type *t2t = dual_join->xmeet(t->_dual);
roland@6313 663 const Type *t2this = dual_join->xmeet(this_t->_dual);
duke@435 664
duke@435 665 // Interface meet Oop is Not Symmetric:
duke@435 666 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 667 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
kvn@1255 668
roland@6313 669 if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
duke@435 670 tty->print_cr("=== Meet Not Symmetric ===");
roland@6313 671 tty->print("t = "); t->dump(); tty->cr();
roland@6313 672 tty->print("this= "); this_t->dump(); tty->cr();
roland@6313 673 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
roland@6313 674
roland@6313 675 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
roland@6313 676 tty->print("this_dual= "); this_t->_dual->dump(); tty->cr();
roland@6313 677 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
roland@6313 678
roland@6313 679 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
roland@6313 680 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 681
duke@435 682 fatal("meet not symmetric" );
duke@435 683 }
duke@435 684 #endif
duke@435 685 return mt;
duke@435 686 }
duke@435 687
duke@435 688 //------------------------------xmeet------------------------------------------
duke@435 689 // Compute the MEET of two types. It returns a new Type object.
duke@435 690 const Type *Type::xmeet( const Type *t ) const {
duke@435 691 // Perform a fast test for common case; meeting the same types together.
duke@435 692 if( this == t ) return this; // Meeting same type-rep?
duke@435 693
duke@435 694 // Meeting TOP with anything?
duke@435 695 if( _base == Top ) return t;
duke@435 696
duke@435 697 // Meeting BOTTOM with anything?
duke@435 698 if( _base == Bottom ) return BOTTOM;
duke@435 699
duke@435 700 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 701 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 702 switch (t->base()) { // Switch on original type
duke@435 703
duke@435 704 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 705 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 706 case FloatCon:
duke@435 707 case DoubleCon:
duke@435 708 case Int:
duke@435 709 case Long:
duke@435 710 return t->xmeet(this);
duke@435 711
duke@435 712 case OopPtr:
duke@435 713 return t->xmeet(this);
duke@435 714
duke@435 715 case InstPtr:
duke@435 716 return t->xmeet(this);
duke@435 717
coleenp@4037 718 case MetadataPtr:
duke@435 719 case KlassPtr:
duke@435 720 return t->xmeet(this);
duke@435 721
duke@435 722 case AryPtr:
duke@435 723 return t->xmeet(this);
duke@435 724
coleenp@548 725 case NarrowOop:
coleenp@548 726 return t->xmeet(this);
coleenp@548 727
roland@4159 728 case NarrowKlass:
roland@4159 729 return t->xmeet(this);
roland@4159 730
duke@435 731 case Bad: // Type check
duke@435 732 default: // Bogus type not in lattice
duke@435 733 typerr(t);
duke@435 734 return Type::BOTTOM;
duke@435 735
duke@435 736 case Bottom: // Ye Olde Default
duke@435 737 return t;
duke@435 738
duke@435 739 case FloatTop:
duke@435 740 if( _base == FloatTop ) return this;
duke@435 741 case FloatBot: // Float
duke@435 742 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 743 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 744 typerr(t);
duke@435 745 return Type::BOTTOM;
duke@435 746
duke@435 747 case DoubleTop:
duke@435 748 if( _base == DoubleTop ) return this;
duke@435 749 case DoubleBot: // Double
duke@435 750 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 751 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 752 typerr(t);
duke@435 753 return Type::BOTTOM;
duke@435 754
duke@435 755 // These next few cases must match exactly or it is a compile-time error.
duke@435 756 case Control: // Control of code
duke@435 757 case Abio: // State of world outside of program
duke@435 758 case Memory:
duke@435 759 if( _base == t->_base ) return this;
duke@435 760 typerr(t);
duke@435 761 return Type::BOTTOM;
duke@435 762
duke@435 763 case Top: // Top of the lattice
duke@435 764 return this;
duke@435 765 }
duke@435 766
duke@435 767 // The type is unchanged
duke@435 768 return this;
duke@435 769 }
duke@435 770
duke@435 771 //-----------------------------filter------------------------------------------
roland@6313 772 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 773 const Type* ft = join_helper(kills, include_speculative);
duke@435 774 if (ft->empty())
duke@435 775 return Type::TOP; // Canonical empty value
duke@435 776 return ft;
duke@435 777 }
duke@435 778
duke@435 779 //------------------------------xdual------------------------------------------
duke@435 780 // Compute dual right now.
duke@435 781 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 782 Bad, // Bad
duke@435 783 Control, // Control
duke@435 784 Bottom, // Top
duke@435 785 Bad, // Int - handled in v-call
duke@435 786 Bad, // Long - handled in v-call
duke@435 787 Half, // Half
coleenp@548 788 Bad, // NarrowOop - handled in v-call
roland@4159 789 Bad, // NarrowKlass - handled in v-call
duke@435 790
duke@435 791 Bad, // Tuple - handled in v-call
duke@435 792 Bad, // Array - handled in v-call
kvn@3882 793 Bad, // VectorS - handled in v-call
kvn@3882 794 Bad, // VectorD - handled in v-call
kvn@3882 795 Bad, // VectorX - handled in v-call
kvn@3882 796 Bad, // VectorY - handled in v-call
duke@435 797
duke@435 798 Bad, // AnyPtr - handled in v-call
duke@435 799 Bad, // RawPtr - handled in v-call
duke@435 800 Bad, // OopPtr - handled in v-call
duke@435 801 Bad, // InstPtr - handled in v-call
duke@435 802 Bad, // AryPtr - handled in v-call
coleenp@4037 803
coleenp@4037 804 Bad, // MetadataPtr - handled in v-call
duke@435 805 Bad, // KlassPtr - handled in v-call
duke@435 806
duke@435 807 Bad, // Function - handled in v-call
duke@435 808 Abio, // Abio
duke@435 809 Return_Address,// Return_Address
duke@435 810 Memory, // Memory
duke@435 811 FloatBot, // FloatTop
duke@435 812 FloatCon, // FloatCon
duke@435 813 FloatTop, // FloatBot
duke@435 814 DoubleBot, // DoubleTop
duke@435 815 DoubleCon, // DoubleCon
duke@435 816 DoubleTop, // DoubleBot
duke@435 817 Top // Bottom
duke@435 818 };
duke@435 819
duke@435 820 const Type *Type::xdual() const {
duke@435 821 // Note: the base() accessor asserts the sanity of _base.
coleenp@4037 822 assert(_type_info[base()].dual_type != Bad, "implement with v-call");
coleenp@4037 823 return new Type(_type_info[_base].dual_type);
duke@435 824 }
duke@435 825
duke@435 826 //------------------------------has_memory-------------------------------------
duke@435 827 bool Type::has_memory() const {
duke@435 828 Type::TYPES tx = base();
duke@435 829 if (tx == Memory) return true;
duke@435 830 if (tx == Tuple) {
duke@435 831 const TypeTuple *t = is_tuple();
duke@435 832 for (uint i=0; i < t->cnt(); i++) {
duke@435 833 tx = t->field_at(i)->base();
duke@435 834 if (tx == Memory) return true;
duke@435 835 }
duke@435 836 }
duke@435 837 return false;
duke@435 838 }
duke@435 839
duke@435 840 #ifndef PRODUCT
duke@435 841 //------------------------------dump2------------------------------------------
duke@435 842 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
coleenp@4037 843 st->print(_type_info[_base].msg);
duke@435 844 }
duke@435 845
duke@435 846 //------------------------------dump-------------------------------------------
duke@435 847 void Type::dump_on(outputStream *st) const {
duke@435 848 ResourceMark rm;
duke@435 849 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 850 dump2(d,1, st);
kvn@598 851 if (is_ptr_to_narrowoop()) {
coleenp@548 852 st->print(" [narrow]");
roland@4159 853 } else if (is_ptr_to_narrowklass()) {
roland@4159 854 st->print(" [narrowklass]");
coleenp@548 855 }
duke@435 856 }
duke@435 857 #endif
duke@435 858
duke@435 859 //------------------------------singleton--------------------------------------
duke@435 860 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 861 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 862 bool Type::singleton(void) const {
duke@435 863 return _base == Top || _base == Half;
duke@435 864 }
duke@435 865
duke@435 866 //------------------------------empty------------------------------------------
duke@435 867 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 868 bool Type::empty(void) const {
duke@435 869 switch (_base) {
duke@435 870 case DoubleTop:
duke@435 871 case FloatTop:
duke@435 872 case Top:
duke@435 873 return true;
duke@435 874
duke@435 875 case Half:
duke@435 876 case Abio:
duke@435 877 case Return_Address:
duke@435 878 case Memory:
duke@435 879 case Bottom:
duke@435 880 case FloatBot:
duke@435 881 case DoubleBot:
duke@435 882 return false; // never a singleton, therefore never empty
duke@435 883 }
duke@435 884
duke@435 885 ShouldNotReachHere();
duke@435 886 return false;
duke@435 887 }
duke@435 888
duke@435 889 //------------------------------dump_stats-------------------------------------
duke@435 890 // Dump collected statistics to stderr
duke@435 891 #ifndef PRODUCT
duke@435 892 void Type::dump_stats() {
duke@435 893 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 894 }
duke@435 895 #endif
duke@435 896
duke@435 897 //------------------------------typerr-----------------------------------------
duke@435 898 void Type::typerr( const Type *t ) const {
duke@435 899 #ifndef PRODUCT
duke@435 900 tty->print("\nError mixing types: ");
duke@435 901 dump();
duke@435 902 tty->print(" and ");
duke@435 903 t->dump();
duke@435 904 tty->print("\n");
duke@435 905 #endif
duke@435 906 ShouldNotReachHere();
duke@435 907 }
duke@435 908
duke@435 909
duke@435 910 //=============================================================================
duke@435 911 // Convenience common pre-built types.
duke@435 912 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 913 const TypeF *TypeF::ONE; // Floating point one
duke@435 914
duke@435 915 //------------------------------make-------------------------------------------
duke@435 916 // Create a float constant
duke@435 917 const TypeF *TypeF::make(float f) {
duke@435 918 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 919 }
duke@435 920
duke@435 921 //------------------------------meet-------------------------------------------
duke@435 922 // Compute the MEET of two types. It returns a new Type object.
duke@435 923 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 924 // Perform a fast test for common case; meeting the same types together.
duke@435 925 if( this == t ) return this; // Meeting same type-rep?
duke@435 926
duke@435 927 // Current "this->_base" is FloatCon
duke@435 928 switch (t->base()) { // Switch on original type
duke@435 929 case AnyPtr: // Mixing with oops happens when javac
duke@435 930 case RawPtr: // reuses local variables
duke@435 931 case OopPtr:
duke@435 932 case InstPtr:
coleenp@4037 933 case AryPtr:
coleenp@4037 934 case MetadataPtr:
duke@435 935 case KlassPtr:
kvn@728 936 case NarrowOop:
roland@4159 937 case NarrowKlass:
duke@435 938 case Int:
duke@435 939 case Long:
duke@435 940 case DoubleTop:
duke@435 941 case DoubleCon:
duke@435 942 case DoubleBot:
duke@435 943 case Bottom: // Ye Olde Default
duke@435 944 return Type::BOTTOM;
duke@435 945
duke@435 946 case FloatBot:
duke@435 947 return t;
duke@435 948
duke@435 949 default: // All else is a mistake
duke@435 950 typerr(t);
duke@435 951
duke@435 952 case FloatCon: // Float-constant vs Float-constant?
duke@435 953 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 954 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 955 // all the same representation in C++
duke@435 956 return FLOAT; // Return generic float
duke@435 957 // Equal constants
duke@435 958 case Top:
duke@435 959 case FloatTop:
duke@435 960 break; // Return the float constant
duke@435 961 }
duke@435 962 return this; // Return the float constant
duke@435 963 }
duke@435 964
duke@435 965 //------------------------------xdual------------------------------------------
duke@435 966 // Dual: symmetric
duke@435 967 const Type *TypeF::xdual() const {
duke@435 968 return this;
duke@435 969 }
duke@435 970
duke@435 971 //------------------------------eq---------------------------------------------
duke@435 972 // Structural equality check for Type representations
duke@435 973 bool TypeF::eq( const Type *t ) const {
duke@435 974 if( g_isnan(_f) ||
duke@435 975 g_isnan(t->getf()) ) {
duke@435 976 // One or both are NANs. If both are NANs return true, else false.
duke@435 977 return (g_isnan(_f) && g_isnan(t->getf()));
duke@435 978 }
duke@435 979 if (_f == t->getf()) {
duke@435 980 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 981 if (_f == 0.0) {
duke@435 982 // difference between positive and negative zero
duke@435 983 if (jint_cast(_f) != jint_cast(t->getf())) return false;
duke@435 984 }
duke@435 985 return true;
duke@435 986 }
duke@435 987 return false;
duke@435 988 }
duke@435 989
duke@435 990 //------------------------------hash-------------------------------------------
duke@435 991 // Type-specific hashing function.
duke@435 992 int TypeF::hash(void) const {
duke@435 993 return *(int*)(&_f);
duke@435 994 }
duke@435 995
duke@435 996 //------------------------------is_finite--------------------------------------
duke@435 997 // Has a finite value
duke@435 998 bool TypeF::is_finite() const {
duke@435 999 return g_isfinite(getf()) != 0;
duke@435 1000 }
duke@435 1001
duke@435 1002 //------------------------------is_nan-----------------------------------------
duke@435 1003 // Is not a number (NaN)
duke@435 1004 bool TypeF::is_nan() const {
duke@435 1005 return g_isnan(getf()) != 0;
duke@435 1006 }
duke@435 1007
duke@435 1008 //------------------------------dump2------------------------------------------
duke@435 1009 // Dump float constant Type
duke@435 1010 #ifndef PRODUCT
duke@435 1011 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1012 Type::dump2(d,depth, st);
duke@435 1013 st->print("%f", _f);
duke@435 1014 }
duke@435 1015 #endif
duke@435 1016
duke@435 1017 //------------------------------singleton--------------------------------------
duke@435 1018 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1019 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1020 // or a single symbol.
duke@435 1021 bool TypeF::singleton(void) const {
duke@435 1022 return true; // Always a singleton
duke@435 1023 }
duke@435 1024
duke@435 1025 bool TypeF::empty(void) const {
duke@435 1026 return false; // always exactly a singleton
duke@435 1027 }
duke@435 1028
duke@435 1029 //=============================================================================
duke@435 1030 // Convenience common pre-built types.
duke@435 1031 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 1032 const TypeD *TypeD::ONE; // Floating point one
duke@435 1033
duke@435 1034 //------------------------------make-------------------------------------------
duke@435 1035 const TypeD *TypeD::make(double d) {
duke@435 1036 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 1037 }
duke@435 1038
duke@435 1039 //------------------------------meet-------------------------------------------
duke@435 1040 // Compute the MEET of two types. It returns a new Type object.
duke@435 1041 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 1042 // Perform a fast test for common case; meeting the same types together.
duke@435 1043 if( this == t ) return this; // Meeting same type-rep?
duke@435 1044
duke@435 1045 // Current "this->_base" is DoubleCon
duke@435 1046 switch (t->base()) { // Switch on original type
duke@435 1047 case AnyPtr: // Mixing with oops happens when javac
duke@435 1048 case RawPtr: // reuses local variables
duke@435 1049 case OopPtr:
duke@435 1050 case InstPtr:
coleenp@4037 1051 case AryPtr:
coleenp@4037 1052 case MetadataPtr:
duke@435 1053 case KlassPtr:
never@618 1054 case NarrowOop:
roland@4159 1055 case NarrowKlass:
duke@435 1056 case Int:
duke@435 1057 case Long:
duke@435 1058 case FloatTop:
duke@435 1059 case FloatCon:
duke@435 1060 case FloatBot:
duke@435 1061 case Bottom: // Ye Olde Default
duke@435 1062 return Type::BOTTOM;
duke@435 1063
duke@435 1064 case DoubleBot:
duke@435 1065 return t;
duke@435 1066
duke@435 1067 default: // All else is a mistake
duke@435 1068 typerr(t);
duke@435 1069
duke@435 1070 case DoubleCon: // Double-constant vs Double-constant?
duke@435 1071 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 1072 return DOUBLE; // Return generic double
duke@435 1073 case Top:
duke@435 1074 case DoubleTop:
duke@435 1075 break;
duke@435 1076 }
duke@435 1077 return this; // Return the double constant
duke@435 1078 }
duke@435 1079
duke@435 1080 //------------------------------xdual------------------------------------------
duke@435 1081 // Dual: symmetric
duke@435 1082 const Type *TypeD::xdual() const {
duke@435 1083 return this;
duke@435 1084 }
duke@435 1085
duke@435 1086 //------------------------------eq---------------------------------------------
duke@435 1087 // Structural equality check for Type representations
duke@435 1088 bool TypeD::eq( const Type *t ) const {
duke@435 1089 if( g_isnan(_d) ||
duke@435 1090 g_isnan(t->getd()) ) {
duke@435 1091 // One or both are NANs. If both are NANs return true, else false.
duke@435 1092 return (g_isnan(_d) && g_isnan(t->getd()));
duke@435 1093 }
duke@435 1094 if (_d == t->getd()) {
duke@435 1095 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 1096 if (_d == 0.0) {
duke@435 1097 // difference between positive and negative zero
duke@435 1098 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
duke@435 1099 }
duke@435 1100 return true;
duke@435 1101 }
duke@435 1102 return false;
duke@435 1103 }
duke@435 1104
duke@435 1105 //------------------------------hash-------------------------------------------
duke@435 1106 // Type-specific hashing function.
duke@435 1107 int TypeD::hash(void) const {
duke@435 1108 return *(int*)(&_d);
duke@435 1109 }
duke@435 1110
duke@435 1111 //------------------------------is_finite--------------------------------------
duke@435 1112 // Has a finite value
duke@435 1113 bool TypeD::is_finite() const {
duke@435 1114 return g_isfinite(getd()) != 0;
duke@435 1115 }
duke@435 1116
duke@435 1117 //------------------------------is_nan-----------------------------------------
duke@435 1118 // Is not a number (NaN)
duke@435 1119 bool TypeD::is_nan() const {
duke@435 1120 return g_isnan(getd()) != 0;
duke@435 1121 }
duke@435 1122
duke@435 1123 //------------------------------dump2------------------------------------------
duke@435 1124 // Dump double constant Type
duke@435 1125 #ifndef PRODUCT
duke@435 1126 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1127 Type::dump2(d,depth,st);
duke@435 1128 st->print("%f", _d);
duke@435 1129 }
duke@435 1130 #endif
duke@435 1131
duke@435 1132 //------------------------------singleton--------------------------------------
duke@435 1133 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1134 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1135 // or a single symbol.
duke@435 1136 bool TypeD::singleton(void) const {
duke@435 1137 return true; // Always a singleton
duke@435 1138 }
duke@435 1139
duke@435 1140 bool TypeD::empty(void) const {
duke@435 1141 return false; // always exactly a singleton
duke@435 1142 }
duke@435 1143
duke@435 1144 //=============================================================================
duke@435 1145 // Convience common pre-built types.
duke@435 1146 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1147 const TypeInt *TypeInt::ZERO; // 0
duke@435 1148 const TypeInt *TypeInt::ONE; // 1
duke@435 1149 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1150 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1151 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1152 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1153 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1154 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1155 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1156 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
twisti@1059 1157 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
duke@435 1158 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1159 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1160 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1161 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1162 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1163 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 1164
duke@435 1165 //------------------------------TypeInt----------------------------------------
duke@435 1166 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1167 }
duke@435 1168
duke@435 1169 //------------------------------make-------------------------------------------
duke@435 1170 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1171 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1172 }
duke@435 1173
kvn@1975 1174 static int normalize_int_widen( jint lo, jint hi, int w ) {
duke@435 1175 // Certain normalizations keep us sane when comparing types.
duke@435 1176 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1177 if (lo <= hi) {
kvn@1975 1178 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1179 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
kvn@1975 1180 } else {
kvn@1975 1181 if ((juint)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1182 if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
duke@435 1183 }
kvn@1975 1184 return w;
kvn@1975 1185 }
kvn@1975 1186
kvn@1975 1187 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
kvn@1975 1188 w = normalize_int_widen(lo, hi, w);
duke@435 1189 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1190 }
duke@435 1191
duke@435 1192 //------------------------------meet-------------------------------------------
duke@435 1193 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1194 // with reference count equal to the number of Types pointing at it.
duke@435 1195 // Caller should wrap a Types around it.
duke@435 1196 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1197 // Perform a fast test for common case; meeting the same types together.
duke@435 1198 if( this == t ) return this; // Meeting same type?
duke@435 1199
duke@435 1200 // Currently "this->_base" is a TypeInt
duke@435 1201 switch (t->base()) { // Switch on original type
duke@435 1202 case AnyPtr: // Mixing with oops happens when javac
duke@435 1203 case RawPtr: // reuses local variables
duke@435 1204 case OopPtr:
duke@435 1205 case InstPtr:
coleenp@4037 1206 case AryPtr:
coleenp@4037 1207 case MetadataPtr:
duke@435 1208 case KlassPtr:
never@618 1209 case NarrowOop:
roland@4159 1210 case NarrowKlass:
duke@435 1211 case Long:
duke@435 1212 case FloatTop:
duke@435 1213 case FloatCon:
duke@435 1214 case FloatBot:
duke@435 1215 case DoubleTop:
duke@435 1216 case DoubleCon:
duke@435 1217 case DoubleBot:
duke@435 1218 case Bottom: // Ye Olde Default
duke@435 1219 return Type::BOTTOM;
duke@435 1220 default: // All else is a mistake
duke@435 1221 typerr(t);
duke@435 1222 case Top: // No change
duke@435 1223 return this;
duke@435 1224 case Int: // Int vs Int?
duke@435 1225 break;
duke@435 1226 }
duke@435 1227
duke@435 1228 // Expand covered set
duke@435 1229 const TypeInt *r = t->is_int();
kvn@1975 1230 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1231 }
duke@435 1232
duke@435 1233 //------------------------------xdual------------------------------------------
duke@435 1234 // Dual: reverse hi & lo; flip widen
duke@435 1235 const Type *TypeInt::xdual() const {
kvn@1975 1236 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1237 return new TypeInt(_hi,_lo,w);
duke@435 1238 }
duke@435 1239
duke@435 1240 //------------------------------widen------------------------------------------
duke@435 1241 // Only happens for optimistic top-down optimizations.
never@1444 1242 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
duke@435 1243 // Coming from TOP or such; no widening
duke@435 1244 if( old->base() != Int ) return this;
duke@435 1245 const TypeInt *ot = old->is_int();
duke@435 1246
duke@435 1247 // If new guy is equal to old guy, no widening
duke@435 1248 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1249 return old;
duke@435 1250
duke@435 1251 // If new guy contains old, then we widened
duke@435 1252 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1253 // New contains old
duke@435 1254 // If new guy is already wider than old, no widening
duke@435 1255 if( _widen > ot->_widen ) return this;
duke@435 1256 // If old guy was a constant, do not bother
duke@435 1257 if (ot->_lo == ot->_hi) return this;
duke@435 1258 // Now widen new guy.
duke@435 1259 // Check for widening too far
duke@435 1260 if (_widen == WidenMax) {
never@1444 1261 int max = max_jint;
never@1444 1262 int min = min_jint;
never@1444 1263 if (limit->isa_int()) {
never@1444 1264 max = limit->is_int()->_hi;
never@1444 1265 min = limit->is_int()->_lo;
never@1444 1266 }
never@1444 1267 if (min < _lo && _hi < max) {
duke@435 1268 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1269 // which is closer to its respective limit.
duke@435 1270 if (_lo >= 0 || // easy common case
never@1444 1271 (juint)(_lo - min) >= (juint)(max - _hi)) {
duke@435 1272 // Try to widen to an unsigned range type of 31 bits:
never@1444 1273 return make(_lo, max, WidenMax);
duke@435 1274 } else {
never@1444 1275 return make(min, _hi, WidenMax);
duke@435 1276 }
duke@435 1277 }
duke@435 1278 return TypeInt::INT;
duke@435 1279 }
duke@435 1280 // Returned widened new guy
duke@435 1281 return make(_lo,_hi,_widen+1);
duke@435 1282 }
duke@435 1283
duke@435 1284 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1285 // bottom. Return the wider fellow.
duke@435 1286 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1287 return old;
duke@435 1288
duke@435 1289 //fatal("Integer value range is not subset");
duke@435 1290 //return this;
duke@435 1291 return TypeInt::INT;
duke@435 1292 }
duke@435 1293
duke@435 1294 //------------------------------narrow---------------------------------------
duke@435 1295 // Only happens for pessimistic optimizations.
duke@435 1296 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1297 if (_lo >= _hi) return this; // already narrow enough
duke@435 1298 if (old == NULL) return this;
duke@435 1299 const TypeInt* ot = old->isa_int();
duke@435 1300 if (ot == NULL) return this;
duke@435 1301 jint olo = ot->_lo;
duke@435 1302 jint ohi = ot->_hi;
duke@435 1303
duke@435 1304 // If new guy is equal to old guy, no narrowing
duke@435 1305 if (_lo == olo && _hi == ohi) return old;
duke@435 1306
duke@435 1307 // If old guy was maximum range, allow the narrowing
duke@435 1308 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1309
duke@435 1310 if (_lo < olo || _hi > ohi)
duke@435 1311 return this; // doesn't narrow; pretty wierd
duke@435 1312
duke@435 1313 // The new type narrows the old type, so look for a "death march".
duke@435 1314 // See comments on PhaseTransform::saturate.
duke@435 1315 juint nrange = _hi - _lo;
duke@435 1316 juint orange = ohi - olo;
duke@435 1317 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1318 // Use the new type only if the range shrinks a lot.
duke@435 1319 // We do not want the optimizer computing 2^31 point by point.
duke@435 1320 return old;
duke@435 1321 }
duke@435 1322
duke@435 1323 return this;
duke@435 1324 }
duke@435 1325
duke@435 1326 //-----------------------------filter------------------------------------------
roland@6313 1327 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 1328 const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
kvn@1975 1329 if (ft == NULL || ft->empty())
duke@435 1330 return Type::TOP; // Canonical empty value
duke@435 1331 if (ft->_widen < this->_widen) {
duke@435 1332 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1333 // The widen bits must be allowed to run freely through the graph.
duke@435 1334 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1335 }
duke@435 1336 return ft;
duke@435 1337 }
duke@435 1338
duke@435 1339 //------------------------------eq---------------------------------------------
duke@435 1340 // Structural equality check for Type representations
duke@435 1341 bool TypeInt::eq( const Type *t ) const {
duke@435 1342 const TypeInt *r = t->is_int(); // Handy access
duke@435 1343 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1344 }
duke@435 1345
duke@435 1346 //------------------------------hash-------------------------------------------
duke@435 1347 // Type-specific hashing function.
duke@435 1348 int TypeInt::hash(void) const {
duke@435 1349 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1350 }
duke@435 1351
duke@435 1352 //------------------------------is_finite--------------------------------------
duke@435 1353 // Has a finite value
duke@435 1354 bool TypeInt::is_finite() const {
duke@435 1355 return true;
duke@435 1356 }
duke@435 1357
duke@435 1358 //------------------------------dump2------------------------------------------
duke@435 1359 // Dump TypeInt
duke@435 1360 #ifndef PRODUCT
duke@435 1361 static const char* intname(char* buf, jint n) {
duke@435 1362 if (n == min_jint)
duke@435 1363 return "min";
duke@435 1364 else if (n < min_jint + 10000)
duke@435 1365 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1366 else if (n == max_jint)
duke@435 1367 return "max";
duke@435 1368 else if (n > max_jint - 10000)
duke@435 1369 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1370 else
duke@435 1371 sprintf(buf, INT32_FORMAT, n);
duke@435 1372 return buf;
duke@435 1373 }
duke@435 1374
duke@435 1375 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1376 char buf[40], buf2[40];
duke@435 1377 if (_lo == min_jint && _hi == max_jint)
duke@435 1378 st->print("int");
duke@435 1379 else if (is_con())
duke@435 1380 st->print("int:%s", intname(buf, get_con()));
duke@435 1381 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1382 st->print("bool");
duke@435 1383 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1384 st->print("byte");
duke@435 1385 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1386 st->print("char");
duke@435 1387 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1388 st->print("short");
duke@435 1389 else if (_hi == max_jint)
duke@435 1390 st->print("int:>=%s", intname(buf, _lo));
duke@435 1391 else if (_lo == min_jint)
duke@435 1392 st->print("int:<=%s", intname(buf, _hi));
duke@435 1393 else
duke@435 1394 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1395
duke@435 1396 if (_widen != 0 && this != TypeInt::INT)
duke@435 1397 st->print(":%.*s", _widen, "wwww");
duke@435 1398 }
duke@435 1399 #endif
duke@435 1400
duke@435 1401 //------------------------------singleton--------------------------------------
duke@435 1402 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1403 // constants.
duke@435 1404 bool TypeInt::singleton(void) const {
duke@435 1405 return _lo >= _hi;
duke@435 1406 }
duke@435 1407
duke@435 1408 bool TypeInt::empty(void) const {
duke@435 1409 return _lo > _hi;
duke@435 1410 }
duke@435 1411
duke@435 1412 //=============================================================================
duke@435 1413 // Convenience common pre-built types.
duke@435 1414 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1415 const TypeLong *TypeLong::ZERO; // 0
duke@435 1416 const TypeLong *TypeLong::ONE; // 1
duke@435 1417 const TypeLong *TypeLong::POS; // >=0
duke@435 1418 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1419 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1420 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
duke@435 1421
duke@435 1422 //------------------------------TypeLong---------------------------------------
duke@435 1423 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1424 }
duke@435 1425
duke@435 1426 //------------------------------make-------------------------------------------
duke@435 1427 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1428 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1429 }
duke@435 1430
kvn@1975 1431 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
kvn@1975 1432 // Certain normalizations keep us sane when comparing types.
kvn@1975 1433 // The 'SMALLINT' covers constants.
kvn@1975 1434 if (lo <= hi) {
kvn@1975 1435 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1436 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
kvn@1975 1437 } else {
kvn@1975 1438 if ((julong)(lo - hi) <= SMALLINT) w = Type::WidenMin;
kvn@1975 1439 if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
kvn@1975 1440 }
kvn@1975 1441 return w;
kvn@1975 1442 }
kvn@1975 1443
duke@435 1444 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
kvn@1975 1445 w = normalize_long_widen(lo, hi, w);
duke@435 1446 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1447 }
duke@435 1448
duke@435 1449
duke@435 1450 //------------------------------meet-------------------------------------------
duke@435 1451 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1452 // with reference count equal to the number of Types pointing at it.
duke@435 1453 // Caller should wrap a Types around it.
duke@435 1454 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1455 // Perform a fast test for common case; meeting the same types together.
duke@435 1456 if( this == t ) return this; // Meeting same type?
duke@435 1457
duke@435 1458 // Currently "this->_base" is a TypeLong
duke@435 1459 switch (t->base()) { // Switch on original type
duke@435 1460 case AnyPtr: // Mixing with oops happens when javac
duke@435 1461 case RawPtr: // reuses local variables
duke@435 1462 case OopPtr:
duke@435 1463 case InstPtr:
coleenp@4037 1464 case AryPtr:
coleenp@4037 1465 case MetadataPtr:
duke@435 1466 case KlassPtr:
never@618 1467 case NarrowOop:
roland@4159 1468 case NarrowKlass:
duke@435 1469 case Int:
duke@435 1470 case FloatTop:
duke@435 1471 case FloatCon:
duke@435 1472 case FloatBot:
duke@435 1473 case DoubleTop:
duke@435 1474 case DoubleCon:
duke@435 1475 case DoubleBot:
duke@435 1476 case Bottom: // Ye Olde Default
duke@435 1477 return Type::BOTTOM;
duke@435 1478 default: // All else is a mistake
duke@435 1479 typerr(t);
duke@435 1480 case Top: // No change
duke@435 1481 return this;
duke@435 1482 case Long: // Long vs Long?
duke@435 1483 break;
duke@435 1484 }
duke@435 1485
duke@435 1486 // Expand covered set
duke@435 1487 const TypeLong *r = t->is_long(); // Turn into a TypeLong
kvn@1975 1488 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
duke@435 1489 }
duke@435 1490
duke@435 1491 //------------------------------xdual------------------------------------------
duke@435 1492 // Dual: reverse hi & lo; flip widen
duke@435 1493 const Type *TypeLong::xdual() const {
kvn@1975 1494 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
kvn@1975 1495 return new TypeLong(_hi,_lo,w);
duke@435 1496 }
duke@435 1497
duke@435 1498 //------------------------------widen------------------------------------------
duke@435 1499 // Only happens for optimistic top-down optimizations.
never@1444 1500 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
duke@435 1501 // Coming from TOP or such; no widening
duke@435 1502 if( old->base() != Long ) return this;
duke@435 1503 const TypeLong *ot = old->is_long();
duke@435 1504
duke@435 1505 // If new guy is equal to old guy, no widening
duke@435 1506 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1507 return old;
duke@435 1508
duke@435 1509 // If new guy contains old, then we widened
duke@435 1510 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1511 // New contains old
duke@435 1512 // If new guy is already wider than old, no widening
duke@435 1513 if( _widen > ot->_widen ) return this;
duke@435 1514 // If old guy was a constant, do not bother
duke@435 1515 if (ot->_lo == ot->_hi) return this;
duke@435 1516 // Now widen new guy.
duke@435 1517 // Check for widening too far
duke@435 1518 if (_widen == WidenMax) {
never@1444 1519 jlong max = max_jlong;
never@1444 1520 jlong min = min_jlong;
never@1444 1521 if (limit->isa_long()) {
never@1444 1522 max = limit->is_long()->_hi;
never@1444 1523 min = limit->is_long()->_lo;
never@1444 1524 }
never@1444 1525 if (min < _lo && _hi < max) {
duke@435 1526 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1527 // which is closer to its respective limit.
duke@435 1528 if (_lo >= 0 || // easy common case
never@1444 1529 (julong)(_lo - min) >= (julong)(max - _hi)) {
duke@435 1530 // Try to widen to an unsigned range type of 32/63 bits:
never@1444 1531 if (max >= max_juint && _hi < max_juint)
duke@435 1532 return make(_lo, max_juint, WidenMax);
duke@435 1533 else
never@1444 1534 return make(_lo, max, WidenMax);
duke@435 1535 } else {
never@1444 1536 return make(min, _hi, WidenMax);
duke@435 1537 }
duke@435 1538 }
duke@435 1539 return TypeLong::LONG;
duke@435 1540 }
duke@435 1541 // Returned widened new guy
duke@435 1542 return make(_lo,_hi,_widen+1);
duke@435 1543 }
duke@435 1544
duke@435 1545 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1546 // bottom. Return the wider fellow.
duke@435 1547 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1548 return old;
duke@435 1549
duke@435 1550 // fatal("Long value range is not subset");
duke@435 1551 // return this;
duke@435 1552 return TypeLong::LONG;
duke@435 1553 }
duke@435 1554
duke@435 1555 //------------------------------narrow----------------------------------------
duke@435 1556 // Only happens for pessimistic optimizations.
duke@435 1557 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1558 if (_lo >= _hi) return this; // already narrow enough
duke@435 1559 if (old == NULL) return this;
duke@435 1560 const TypeLong* ot = old->isa_long();
duke@435 1561 if (ot == NULL) return this;
duke@435 1562 jlong olo = ot->_lo;
duke@435 1563 jlong ohi = ot->_hi;
duke@435 1564
duke@435 1565 // If new guy is equal to old guy, no narrowing
duke@435 1566 if (_lo == olo && _hi == ohi) return old;
duke@435 1567
duke@435 1568 // If old guy was maximum range, allow the narrowing
duke@435 1569 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1570
duke@435 1571 if (_lo < olo || _hi > ohi)
duke@435 1572 return this; // doesn't narrow; pretty wierd
duke@435 1573
duke@435 1574 // The new type narrows the old type, so look for a "death march".
duke@435 1575 // See comments on PhaseTransform::saturate.
duke@435 1576 julong nrange = _hi - _lo;
duke@435 1577 julong orange = ohi - olo;
duke@435 1578 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1579 // Use the new type only if the range shrinks a lot.
duke@435 1580 // We do not want the optimizer computing 2^31 point by point.
duke@435 1581 return old;
duke@435 1582 }
duke@435 1583
duke@435 1584 return this;
duke@435 1585 }
duke@435 1586
duke@435 1587 //-----------------------------filter------------------------------------------
roland@6313 1588 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 1589 const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
kvn@1975 1590 if (ft == NULL || ft->empty())
duke@435 1591 return Type::TOP; // Canonical empty value
duke@435 1592 if (ft->_widen < this->_widen) {
duke@435 1593 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1594 // The widen bits must be allowed to run freely through the graph.
duke@435 1595 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1596 }
duke@435 1597 return ft;
duke@435 1598 }
duke@435 1599
duke@435 1600 //------------------------------eq---------------------------------------------
duke@435 1601 // Structural equality check for Type representations
duke@435 1602 bool TypeLong::eq( const Type *t ) const {
duke@435 1603 const TypeLong *r = t->is_long(); // Handy access
duke@435 1604 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1605 }
duke@435 1606
duke@435 1607 //------------------------------hash-------------------------------------------
duke@435 1608 // Type-specific hashing function.
duke@435 1609 int TypeLong::hash(void) const {
duke@435 1610 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1611 }
duke@435 1612
duke@435 1613 //------------------------------is_finite--------------------------------------
duke@435 1614 // Has a finite value
duke@435 1615 bool TypeLong::is_finite() const {
duke@435 1616 return true;
duke@435 1617 }
duke@435 1618
duke@435 1619 //------------------------------dump2------------------------------------------
duke@435 1620 // Dump TypeLong
duke@435 1621 #ifndef PRODUCT
duke@435 1622 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1623 if (n > x) {
duke@435 1624 if (n >= x + 10000) return NULL;
hseigel@4465 1625 sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
duke@435 1626 } else if (n < x) {
duke@435 1627 if (n <= x - 10000) return NULL;
hseigel@4465 1628 sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
duke@435 1629 } else {
duke@435 1630 return xname;
duke@435 1631 }
duke@435 1632 return buf;
duke@435 1633 }
duke@435 1634
duke@435 1635 static const char* longname(char* buf, jlong n) {
duke@435 1636 const char* str;
duke@435 1637 if (n == min_jlong)
duke@435 1638 return "min";
duke@435 1639 else if (n < min_jlong + 10000)
hseigel@4465 1640 sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
duke@435 1641 else if (n == max_jlong)
duke@435 1642 return "max";
duke@435 1643 else if (n > max_jlong - 10000)
hseigel@4465 1644 sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
duke@435 1645 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1646 return str;
duke@435 1647 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1648 return str;
duke@435 1649 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1650 return str;
duke@435 1651 else
hseigel@4465 1652 sprintf(buf, JLONG_FORMAT, n);
duke@435 1653 return buf;
duke@435 1654 }
duke@435 1655
duke@435 1656 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1657 char buf[80], buf2[80];
duke@435 1658 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1659 st->print("long");
duke@435 1660 else if (is_con())
duke@435 1661 st->print("long:%s", longname(buf, get_con()));
duke@435 1662 else if (_hi == max_jlong)
duke@435 1663 st->print("long:>=%s", longname(buf, _lo));
duke@435 1664 else if (_lo == min_jlong)
duke@435 1665 st->print("long:<=%s", longname(buf, _hi));
duke@435 1666 else
duke@435 1667 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1668
duke@435 1669 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1670 st->print(":%.*s", _widen, "wwww");
duke@435 1671 }
duke@435 1672 #endif
duke@435 1673
duke@435 1674 //------------------------------singleton--------------------------------------
duke@435 1675 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1676 // constants
duke@435 1677 bool TypeLong::singleton(void) const {
duke@435 1678 return _lo >= _hi;
duke@435 1679 }
duke@435 1680
duke@435 1681 bool TypeLong::empty(void) const {
duke@435 1682 return _lo > _hi;
duke@435 1683 }
duke@435 1684
duke@435 1685 //=============================================================================
duke@435 1686 // Convenience common pre-built types.
duke@435 1687 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1688 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1689 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1690 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1691 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1692 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1693 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1694 const TypeTuple *TypeTuple::START_I2C;
duke@435 1695 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1696 const TypeTuple *TypeTuple::LONG_PAIR;
rbackman@5791 1697 const TypeTuple *TypeTuple::INT_CC_PAIR;
rbackman@5997 1698 const TypeTuple *TypeTuple::LONG_CC_PAIR;
duke@435 1699
duke@435 1700
duke@435 1701 //------------------------------make-------------------------------------------
duke@435 1702 // Make a TypeTuple from the range of a method signature
duke@435 1703 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1704 ciType* return_type = sig->return_type();
duke@435 1705 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1706 const Type **field_array = fields(total_fields);
duke@435 1707 switch (return_type->basic_type()) {
duke@435 1708 case T_LONG:
duke@435 1709 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1710 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1711 break;
duke@435 1712 case T_DOUBLE:
duke@435 1713 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1714 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1715 break;
duke@435 1716 case T_OBJECT:
duke@435 1717 case T_ARRAY:
duke@435 1718 case T_BOOLEAN:
duke@435 1719 case T_CHAR:
duke@435 1720 case T_FLOAT:
duke@435 1721 case T_BYTE:
duke@435 1722 case T_SHORT:
duke@435 1723 case T_INT:
duke@435 1724 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1725 break;
duke@435 1726 case T_VOID:
duke@435 1727 break;
duke@435 1728 default:
duke@435 1729 ShouldNotReachHere();
duke@435 1730 }
duke@435 1731 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1732 }
duke@435 1733
duke@435 1734 // Make a TypeTuple from the domain of a method signature
duke@435 1735 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1736 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1737
duke@435 1738 uint pos = TypeFunc::Parms;
duke@435 1739 const Type **field_array;
duke@435 1740 if (recv != NULL) {
duke@435 1741 total_fields++;
duke@435 1742 field_array = fields(total_fields);
duke@435 1743 // Use get_const_type here because it respects UseUniqueSubclasses:
roland@6313 1744 field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
duke@435 1745 } else {
duke@435 1746 field_array = fields(total_fields);
duke@435 1747 }
duke@435 1748
duke@435 1749 int i = 0;
duke@435 1750 while (pos < total_fields) {
duke@435 1751 ciType* type = sig->type_at(i);
duke@435 1752
duke@435 1753 switch (type->basic_type()) {
duke@435 1754 case T_LONG:
duke@435 1755 field_array[pos++] = TypeLong::LONG;
duke@435 1756 field_array[pos++] = Type::HALF;
duke@435 1757 break;
duke@435 1758 case T_DOUBLE:
duke@435 1759 field_array[pos++] = Type::DOUBLE;
duke@435 1760 field_array[pos++] = Type::HALF;
duke@435 1761 break;
duke@435 1762 case T_OBJECT:
duke@435 1763 case T_ARRAY:
duke@435 1764 case T_BOOLEAN:
duke@435 1765 case T_CHAR:
duke@435 1766 case T_FLOAT:
duke@435 1767 case T_BYTE:
duke@435 1768 case T_SHORT:
duke@435 1769 case T_INT:
duke@435 1770 field_array[pos++] = get_const_type(type);
duke@435 1771 break;
duke@435 1772 default:
duke@435 1773 ShouldNotReachHere();
duke@435 1774 }
duke@435 1775 i++;
duke@435 1776 }
duke@435 1777 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1778 }
duke@435 1779
duke@435 1780 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1781 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1782 }
duke@435 1783
duke@435 1784 //------------------------------fields-----------------------------------------
duke@435 1785 // Subroutine call type with space allocated for argument types
duke@435 1786 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1787 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1788 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1789 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1790 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1791 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1792 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1793
duke@435 1794 return flds;
duke@435 1795 }
duke@435 1796
duke@435 1797 //------------------------------meet-------------------------------------------
duke@435 1798 // Compute the MEET of two types. It returns a new Type object.
duke@435 1799 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1800 // Perform a fast test for common case; meeting the same types together.
duke@435 1801 if( this == t ) return this; // Meeting same type-rep?
duke@435 1802
duke@435 1803 // Current "this->_base" is Tuple
duke@435 1804 switch (t->base()) { // switch on original type
duke@435 1805
duke@435 1806 case Bottom: // Ye Olde Default
duke@435 1807 return t;
duke@435 1808
duke@435 1809 default: // All else is a mistake
duke@435 1810 typerr(t);
duke@435 1811
duke@435 1812 case Tuple: { // Meeting 2 signatures?
duke@435 1813 const TypeTuple *x = t->is_tuple();
duke@435 1814 assert( _cnt == x->_cnt, "" );
duke@435 1815 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1816 for( uint i=0; i<_cnt; i++ )
duke@435 1817 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1818 return TypeTuple::make(_cnt,fields);
duke@435 1819 }
duke@435 1820 case Top:
duke@435 1821 break;
duke@435 1822 }
duke@435 1823 return this; // Return the double constant
duke@435 1824 }
duke@435 1825
duke@435 1826 //------------------------------xdual------------------------------------------
duke@435 1827 // Dual: compute field-by-field dual
duke@435 1828 const Type *TypeTuple::xdual() const {
duke@435 1829 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1830 for( uint i=0; i<_cnt; i++ )
duke@435 1831 fields[i] = _fields[i]->dual();
duke@435 1832 return new TypeTuple(_cnt,fields);
duke@435 1833 }
duke@435 1834
duke@435 1835 //------------------------------eq---------------------------------------------
duke@435 1836 // Structural equality check for Type representations
duke@435 1837 bool TypeTuple::eq( const Type *t ) const {
duke@435 1838 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1839 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1840 for (uint i = 0; i < _cnt; i++)
duke@435 1841 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1842 return false; // Missed
duke@435 1843 return true;
duke@435 1844 }
duke@435 1845
duke@435 1846 //------------------------------hash-------------------------------------------
duke@435 1847 // Type-specific hashing function.
duke@435 1848 int TypeTuple::hash(void) const {
duke@435 1849 intptr_t sum = _cnt;
duke@435 1850 for( uint i=0; i<_cnt; i++ )
duke@435 1851 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1852 return sum;
duke@435 1853 }
duke@435 1854
duke@435 1855 //------------------------------dump2------------------------------------------
duke@435 1856 // Dump signature Type
duke@435 1857 #ifndef PRODUCT
duke@435 1858 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1859 st->print("{");
duke@435 1860 if( !depth || d[this] ) { // Check for recursive print
duke@435 1861 st->print("...}");
duke@435 1862 return;
duke@435 1863 }
duke@435 1864 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1865 if( _cnt ) {
duke@435 1866 uint i;
duke@435 1867 for( i=0; i<_cnt-1; i++ ) {
duke@435 1868 st->print("%d:", i);
duke@435 1869 _fields[i]->dump2(d, depth-1, st);
duke@435 1870 st->print(", ");
duke@435 1871 }
duke@435 1872 st->print("%d:", i);
duke@435 1873 _fields[i]->dump2(d, depth-1, st);
duke@435 1874 }
duke@435 1875 st->print("}");
duke@435 1876 }
duke@435 1877 #endif
duke@435 1878
duke@435 1879 //------------------------------singleton--------------------------------------
duke@435 1880 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1881 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1882 // or a single symbol.
duke@435 1883 bool TypeTuple::singleton(void) const {
duke@435 1884 return false; // Never a singleton
duke@435 1885 }
duke@435 1886
duke@435 1887 bool TypeTuple::empty(void) const {
duke@435 1888 for( uint i=0; i<_cnt; i++ ) {
duke@435 1889 if (_fields[i]->empty()) return true;
duke@435 1890 }
duke@435 1891 return false;
duke@435 1892 }
duke@435 1893
duke@435 1894 //=============================================================================
duke@435 1895 // Convenience common pre-built types.
duke@435 1896
duke@435 1897 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1898 // Certain normalizations keep us sane when comparing types.
duke@435 1899 // We do not want arrayOop variables to differ only by the wideness
duke@435 1900 // of their index types. Pick minimum wideness, since that is the
duke@435 1901 // forced wideness of small ranges anyway.
duke@435 1902 if (size->_widen != Type::WidenMin)
duke@435 1903 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1904 else
duke@435 1905 return size;
duke@435 1906 }
duke@435 1907
duke@435 1908 //------------------------------make-------------------------------------------
vlivanov@5658 1909 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
coleenp@548 1910 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1911 elem = elem->make_narrowoop();
coleenp@548 1912 }
duke@435 1913 size = normalize_array_size(size);
vlivanov@5658 1914 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
duke@435 1915 }
duke@435 1916
duke@435 1917 //------------------------------meet-------------------------------------------
duke@435 1918 // Compute the MEET of two types. It returns a new Type object.
duke@435 1919 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1920 // Perform a fast test for common case; meeting the same types together.
duke@435 1921 if( this == t ) return this; // Meeting same type-rep?
duke@435 1922
duke@435 1923 // Current "this->_base" is Ary
duke@435 1924 switch (t->base()) { // switch on original type
duke@435 1925
duke@435 1926 case Bottom: // Ye Olde Default
duke@435 1927 return t;
duke@435 1928
duke@435 1929 default: // All else is a mistake
duke@435 1930 typerr(t);
duke@435 1931
duke@435 1932 case Array: { // Meeting 2 arrays?
duke@435 1933 const TypeAry *a = t->is_ary();
roland@6313 1934 return TypeAry::make(_elem->meet_speculative(a->_elem),
vlivanov@5658 1935 _size->xmeet(a->_size)->is_int(),
vlivanov@5658 1936 _stable & a->_stable);
duke@435 1937 }
duke@435 1938 case Top:
duke@435 1939 break;
duke@435 1940 }
duke@435 1941 return this; // Return the double constant
duke@435 1942 }
duke@435 1943
duke@435 1944 //------------------------------xdual------------------------------------------
duke@435 1945 // Dual: compute field-by-field dual
duke@435 1946 const Type *TypeAry::xdual() const {
duke@435 1947 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1948 size_dual = normalize_array_size(size_dual);
vlivanov@5658 1949 return new TypeAry(_elem->dual(), size_dual, !_stable);
duke@435 1950 }
duke@435 1951
duke@435 1952 //------------------------------eq---------------------------------------------
duke@435 1953 // Structural equality check for Type representations
duke@435 1954 bool TypeAry::eq( const Type *t ) const {
duke@435 1955 const TypeAry *a = (const TypeAry*)t;
duke@435 1956 return _elem == a->_elem &&
vlivanov@5658 1957 _stable == a->_stable &&
duke@435 1958 _size == a->_size;
duke@435 1959 }
duke@435 1960
duke@435 1961 //------------------------------hash-------------------------------------------
duke@435 1962 // Type-specific hashing function.
duke@435 1963 int TypeAry::hash(void) const {
vlivanov@5658 1964 return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
duke@435 1965 }
duke@435 1966
roland@6313 1967 /**
roland@6313 1968 * Return same type without a speculative part in the element
roland@6313 1969 */
roland@6313 1970 const Type* TypeAry::remove_speculative() const {
roland@6313 1971 return make(_elem->remove_speculative(), _size, _stable);
roland@6313 1972 }
roland@6313 1973
kvn@1255 1974 //----------------------interface_vs_oop---------------------------------------
kvn@1255 1975 #ifdef ASSERT
kvn@1255 1976 bool TypeAry::interface_vs_oop(const Type *t) const {
kvn@1255 1977 const TypeAry* t_ary = t->is_ary();
kvn@1255 1978 if (t_ary) {
kvn@1255 1979 return _elem->interface_vs_oop(t_ary->_elem);
kvn@1255 1980 }
kvn@1255 1981 return false;
kvn@1255 1982 }
kvn@1255 1983 #endif
kvn@1255 1984
duke@435 1985 //------------------------------dump2------------------------------------------
duke@435 1986 #ifndef PRODUCT
duke@435 1987 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
vlivanov@5658 1988 if (_stable) st->print("stable:");
duke@435 1989 _elem->dump2(d, depth, st);
duke@435 1990 st->print("[");
duke@435 1991 _size->dump2(d, depth, st);
duke@435 1992 st->print("]");
duke@435 1993 }
duke@435 1994 #endif
duke@435 1995
duke@435 1996 //------------------------------singleton--------------------------------------
duke@435 1997 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1998 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1999 // or a single symbol.
duke@435 2000 bool TypeAry::singleton(void) const {
duke@435 2001 return false; // Never a singleton
duke@435 2002 }
duke@435 2003
duke@435 2004 bool TypeAry::empty(void) const {
duke@435 2005 return _elem->empty() || _size->empty();
duke@435 2006 }
duke@435 2007
duke@435 2008 //--------------------------ary_must_be_exact----------------------------------
duke@435 2009 bool TypeAry::ary_must_be_exact() const {
duke@435 2010 if (!UseExactTypes) return false;
duke@435 2011 // This logic looks at the element type of an array, and returns true
duke@435 2012 // if the element type is either a primitive or a final instance class.
duke@435 2013 // In such cases, an array built on this ary must have no subclasses.
duke@435 2014 if (_elem == BOTTOM) return false; // general array not exact
duke@435 2015 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 2016 const TypeOopPtr* toop = NULL;
kvn@656 2017 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 2018 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 2019 } else {
coleenp@548 2020 toop = _elem->isa_oopptr();
coleenp@548 2021 }
duke@435 2022 if (!toop) return true; // a primitive type, like int
duke@435 2023 ciKlass* tklass = toop->klass();
duke@435 2024 if (tklass == NULL) return false; // unloaded class
duke@435 2025 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 2026 const TypeInstPtr* tinst;
coleenp@548 2027 if (_elem->isa_narrowoop())
kvn@656 2028 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 2029 else
coleenp@548 2030 tinst = _elem->isa_instptr();
kvn@656 2031 if (tinst)
kvn@656 2032 return tklass->as_instance_klass()->is_final();
coleenp@548 2033 const TypeAryPtr* tap;
coleenp@548 2034 if (_elem->isa_narrowoop())
kvn@656 2035 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 2036 else
coleenp@548 2037 tap = _elem->isa_aryptr();
kvn@656 2038 if (tap)
kvn@656 2039 return tap->ary()->ary_must_be_exact();
duke@435 2040 return false;
duke@435 2041 }
duke@435 2042
kvn@3882 2043 //==============================TypeVect=======================================
kvn@3882 2044 // Convenience common pre-built types.
kvn@3882 2045 const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors
kvn@3882 2046 const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors
kvn@3882 2047 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
kvn@3882 2048 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
kvn@3882 2049
kvn@3882 2050 //------------------------------make-------------------------------------------
kvn@3882 2051 const TypeVect* TypeVect::make(const Type *elem, uint length) {
kvn@3882 2052 BasicType elem_bt = elem->array_element_basic_type();
kvn@3882 2053 assert(is_java_primitive(elem_bt), "only primitive types in vector");
kvn@3882 2054 assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
kvn@3882 2055 assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
kvn@3882 2056 int size = length * type2aelembytes(elem_bt);
kvn@3882 2057 switch (Matcher::vector_ideal_reg(size)) {
kvn@3882 2058 case Op_VecS:
kvn@3882 2059 return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
goetz@6487 2060 case Op_RegL:
kvn@3882 2061 case Op_VecD:
kvn@3882 2062 case Op_RegD:
kvn@3882 2063 return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
kvn@3882 2064 case Op_VecX:
kvn@3882 2065 return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
kvn@3882 2066 case Op_VecY:
kvn@3882 2067 return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
kvn@3882 2068 }
kvn@3882 2069 ShouldNotReachHere();
kvn@3882 2070 return NULL;
kvn@3882 2071 }
kvn@3882 2072
kvn@3882 2073 //------------------------------meet-------------------------------------------
kvn@3882 2074 // Compute the MEET of two types. It returns a new Type object.
kvn@3882 2075 const Type *TypeVect::xmeet( const Type *t ) const {
kvn@3882 2076 // Perform a fast test for common case; meeting the same types together.
kvn@3882 2077 if( this == t ) return this; // Meeting same type-rep?
kvn@3882 2078
kvn@3882 2079 // Current "this->_base" is Vector
kvn@3882 2080 switch (t->base()) { // switch on original type
kvn@3882 2081
kvn@3882 2082 case Bottom: // Ye Olde Default
kvn@3882 2083 return t;
kvn@3882 2084
kvn@3882 2085 default: // All else is a mistake
kvn@3882 2086 typerr(t);
kvn@3882 2087
kvn@3882 2088 case VectorS:
kvn@3882 2089 case VectorD:
kvn@3882 2090 case VectorX:
kvn@3882 2091 case VectorY: { // Meeting 2 vectors?
kvn@3882 2092 const TypeVect* v = t->is_vect();
kvn@3882 2093 assert( base() == v->base(), "");
kvn@3882 2094 assert(length() == v->length(), "");
kvn@3882 2095 assert(element_basic_type() == v->element_basic_type(), "");
kvn@3882 2096 return TypeVect::make(_elem->xmeet(v->_elem), _length);
kvn@3882 2097 }
kvn@3882 2098 case Top:
kvn@3882 2099 break;
kvn@3882 2100 }
kvn@3882 2101 return this;
kvn@3882 2102 }
kvn@3882 2103
kvn@3882 2104 //------------------------------xdual------------------------------------------
kvn@3882 2105 // Dual: compute field-by-field dual
kvn@3882 2106 const Type *TypeVect::xdual() const {
kvn@3882 2107 return new TypeVect(base(), _elem->dual(), _length);
kvn@3882 2108 }
kvn@3882 2109
kvn@3882 2110 //------------------------------eq---------------------------------------------
kvn@3882 2111 // Structural equality check for Type representations
kvn@3882 2112 bool TypeVect::eq(const Type *t) const {
kvn@3882 2113 const TypeVect *v = t->is_vect();
kvn@3882 2114 return (_elem == v->_elem) && (_length == v->_length);
kvn@3882 2115 }
kvn@3882 2116
kvn@3882 2117 //------------------------------hash-------------------------------------------
kvn@3882 2118 // Type-specific hashing function.
kvn@3882 2119 int TypeVect::hash(void) const {
kvn@3882 2120 return (intptr_t)_elem + (intptr_t)_length;
kvn@3882 2121 }
kvn@3882 2122
kvn@3882 2123 //------------------------------singleton--------------------------------------
kvn@3882 2124 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
kvn@3882 2125 // constants (Ldi nodes). Vector is singleton if all elements are the same
kvn@3882 2126 // constant value (when vector is created with Replicate code).
kvn@3882 2127 bool TypeVect::singleton(void) const {
kvn@3882 2128 // There is no Con node for vectors yet.
kvn@3882 2129 // return _elem->singleton();
kvn@3882 2130 return false;
kvn@3882 2131 }
kvn@3882 2132
kvn@3882 2133 bool TypeVect::empty(void) const {
kvn@3882 2134 return _elem->empty();
kvn@3882 2135 }
kvn@3882 2136
kvn@3882 2137 //------------------------------dump2------------------------------------------
kvn@3882 2138 #ifndef PRODUCT
kvn@3882 2139 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
kvn@3882 2140 switch (base()) {
kvn@3882 2141 case VectorS:
kvn@3882 2142 st->print("vectors["); break;
kvn@3882 2143 case VectorD:
kvn@3882 2144 st->print("vectord["); break;
kvn@3882 2145 case VectorX:
kvn@3882 2146 st->print("vectorx["); break;
kvn@3882 2147 case VectorY:
kvn@3882 2148 st->print("vectory["); break;
kvn@3882 2149 default:
kvn@3882 2150 ShouldNotReachHere();
kvn@3882 2151 }
kvn@3882 2152 st->print("%d]:{", _length);
kvn@3882 2153 _elem->dump2(d, depth, st);
kvn@3882 2154 st->print("}");
kvn@3882 2155 }
kvn@3882 2156 #endif
kvn@3882 2157
kvn@3882 2158
duke@435 2159 //=============================================================================
duke@435 2160 // Convenience common pre-built types.
duke@435 2161 const TypePtr *TypePtr::NULL_PTR;
duke@435 2162 const TypePtr *TypePtr::NOTNULL;
duke@435 2163 const TypePtr *TypePtr::BOTTOM;
duke@435 2164
duke@435 2165 //------------------------------meet-------------------------------------------
duke@435 2166 // Meet over the PTR enum
duke@435 2167 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 2168 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 2169 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 2170 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2171 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 2172 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 2173 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 2174 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 2175 };
duke@435 2176
duke@435 2177 //------------------------------make-------------------------------------------
duke@435 2178 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 2179 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 2180 }
duke@435 2181
duke@435 2182 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2183 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2184 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 2185 if( ptr == _ptr ) return this;
duke@435 2186 return make(_base, ptr, _offset);
duke@435 2187 }
duke@435 2188
duke@435 2189 //------------------------------get_con----------------------------------------
duke@435 2190 intptr_t TypePtr::get_con() const {
duke@435 2191 assert( _ptr == Null, "" );
duke@435 2192 return _offset;
duke@435 2193 }
duke@435 2194
duke@435 2195 //------------------------------meet-------------------------------------------
duke@435 2196 // Compute the MEET of two types. It returns a new Type object.
duke@435 2197 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 2198 // Perform a fast test for common case; meeting the same types together.
duke@435 2199 if( this == t ) return this; // Meeting same type-rep?
duke@435 2200
duke@435 2201 // Current "this->_base" is AnyPtr
duke@435 2202 switch (t->base()) { // switch on original type
duke@435 2203 case Int: // Mixing ints & oops happens when javac
duke@435 2204 case Long: // reuses local variables
duke@435 2205 case FloatTop:
duke@435 2206 case FloatCon:
duke@435 2207 case FloatBot:
duke@435 2208 case DoubleTop:
duke@435 2209 case DoubleCon:
duke@435 2210 case DoubleBot:
coleenp@548 2211 case NarrowOop:
roland@4159 2212 case NarrowKlass:
duke@435 2213 case Bottom: // Ye Olde Default
duke@435 2214 return Type::BOTTOM;
duke@435 2215 case Top:
duke@435 2216 return this;
duke@435 2217
duke@435 2218 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2219 const TypePtr *tp = t->is_ptr();
duke@435 2220 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 2221 }
duke@435 2222 case RawPtr: // For these, flip the call around to cut down
duke@435 2223 case OopPtr:
duke@435 2224 case InstPtr: // on the cases I have to handle.
coleenp@4037 2225 case AryPtr:
coleenp@4037 2226 case MetadataPtr:
duke@435 2227 case KlassPtr:
duke@435 2228 return t->xmeet(this); // Call in reverse direction
duke@435 2229 default: // All else is a mistake
duke@435 2230 typerr(t);
duke@435 2231
duke@435 2232 }
duke@435 2233 return this;
duke@435 2234 }
duke@435 2235
duke@435 2236 //------------------------------meet_offset------------------------------------
duke@435 2237 int TypePtr::meet_offset( int offset ) const {
duke@435 2238 // Either is 'TOP' offset? Return the other offset!
duke@435 2239 if( _offset == OffsetTop ) return offset;
duke@435 2240 if( offset == OffsetTop ) return _offset;
duke@435 2241 // If either is different, return 'BOTTOM' offset
duke@435 2242 if( _offset != offset ) return OffsetBot;
duke@435 2243 return _offset;
duke@435 2244 }
duke@435 2245
duke@435 2246 //------------------------------dual_offset------------------------------------
duke@435 2247 int TypePtr::dual_offset( ) const {
duke@435 2248 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 2249 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 2250 return _offset; // Map everything else into self
duke@435 2251 }
duke@435 2252
duke@435 2253 //------------------------------xdual------------------------------------------
duke@435 2254 // Dual: compute field-by-field dual
duke@435 2255 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 2256 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 2257 };
duke@435 2258 const Type *TypePtr::xdual() const {
duke@435 2259 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 2260 }
duke@435 2261
kvn@741 2262 //------------------------------xadd_offset------------------------------------
kvn@741 2263 int TypePtr::xadd_offset( intptr_t offset ) const {
kvn@741 2264 // Adding to 'TOP' offset? Return 'TOP'!
kvn@741 2265 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
kvn@741 2266 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
kvn@741 2267 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
kvn@741 2268 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
kvn@741 2269 offset += (intptr_t)_offset;
kvn@741 2270 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
kvn@741 2271
kvn@741 2272 // assert( _offset >= 0 && _offset+offset >= 0, "" );
kvn@741 2273 // It is possible to construct a negative offset during PhaseCCP
kvn@741 2274
kvn@741 2275 return (int)offset; // Sum valid offsets
kvn@741 2276 }
kvn@741 2277
duke@435 2278 //------------------------------add_offset-------------------------------------
kvn@741 2279 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
kvn@741 2280 return make( AnyPtr, _ptr, xadd_offset(offset) );
duke@435 2281 }
duke@435 2282
duke@435 2283 //------------------------------eq---------------------------------------------
duke@435 2284 // Structural equality check for Type representations
duke@435 2285 bool TypePtr::eq( const Type *t ) const {
duke@435 2286 const TypePtr *a = (const TypePtr*)t;
duke@435 2287 return _ptr == a->ptr() && _offset == a->offset();
duke@435 2288 }
duke@435 2289
duke@435 2290 //------------------------------hash-------------------------------------------
duke@435 2291 // Type-specific hashing function.
duke@435 2292 int TypePtr::hash(void) const {
duke@435 2293 return _ptr + _offset;
duke@435 2294 }
duke@435 2295
duke@435 2296 //------------------------------dump2------------------------------------------
duke@435 2297 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 2298 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 2299 };
duke@435 2300
duke@435 2301 #ifndef PRODUCT
duke@435 2302 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2303 if( _ptr == Null ) st->print("NULL");
duke@435 2304 else st->print("%s *", ptr_msg[_ptr]);
duke@435 2305 if( _offset == OffsetTop ) st->print("+top");
duke@435 2306 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 2307 else if( _offset ) st->print("+%d", _offset);
duke@435 2308 }
duke@435 2309 #endif
duke@435 2310
duke@435 2311 //------------------------------singleton--------------------------------------
duke@435 2312 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2313 // constants
duke@435 2314 bool TypePtr::singleton(void) const {
duke@435 2315 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2316 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2317 }
duke@435 2318
duke@435 2319 bool TypePtr::empty(void) const {
duke@435 2320 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2321 }
duke@435 2322
duke@435 2323 //=============================================================================
duke@435 2324 // Convenience common pre-built types.
duke@435 2325 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2326 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2327
duke@435 2328 //------------------------------make-------------------------------------------
duke@435 2329 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2330 assert( ptr != Constant, "what is the constant?" );
duke@435 2331 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2332 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2333 }
duke@435 2334
duke@435 2335 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2336 assert( bits, "Use TypePtr for NULL" );
duke@435 2337 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2338 }
duke@435 2339
duke@435 2340 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2341 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2342 assert( ptr != Constant, "what is the constant?" );
duke@435 2343 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2344 assert( _bits==0, "Why cast a constant address?");
duke@435 2345 if( ptr == _ptr ) return this;
duke@435 2346 return make(ptr);
duke@435 2347 }
duke@435 2348
duke@435 2349 //------------------------------get_con----------------------------------------
duke@435 2350 intptr_t TypeRawPtr::get_con() const {
duke@435 2351 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2352 return (intptr_t)_bits;
duke@435 2353 }
duke@435 2354
duke@435 2355 //------------------------------meet-------------------------------------------
duke@435 2356 // Compute the MEET of two types. It returns a new Type object.
duke@435 2357 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2358 // Perform a fast test for common case; meeting the same types together.
duke@435 2359 if( this == t ) return this; // Meeting same type-rep?
duke@435 2360
duke@435 2361 // Current "this->_base" is RawPtr
duke@435 2362 switch( t->base() ) { // switch on original type
duke@435 2363 case Bottom: // Ye Olde Default
duke@435 2364 return t;
duke@435 2365 case Top:
duke@435 2366 return this;
duke@435 2367 case AnyPtr: // Meeting to AnyPtrs
duke@435 2368 break;
duke@435 2369 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2370 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2371 enum PTR ptr = meet_ptr( tptr );
duke@435 2372 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2373 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2374 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2375 ptr = NotNull; // Fall down in lattice
duke@435 2376 }
duke@435 2377 return make( ptr );
duke@435 2378 }
duke@435 2379
duke@435 2380 case OopPtr:
duke@435 2381 case InstPtr:
coleenp@4037 2382 case AryPtr:
coleenp@4037 2383 case MetadataPtr:
duke@435 2384 case KlassPtr:
duke@435 2385 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2386 default: // All else is a mistake
duke@435 2387 typerr(t);
duke@435 2388 }
duke@435 2389
duke@435 2390 // Found an AnyPtr type vs self-RawPtr type
duke@435 2391 const TypePtr *tp = t->is_ptr();
duke@435 2392 switch (tp->ptr()) {
duke@435 2393 case TypePtr::TopPTR: return this;
duke@435 2394 case TypePtr::BotPTR: return t;
duke@435 2395 case TypePtr::Null:
duke@435 2396 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2397 return TypeRawPtr::BOTTOM;
duke@435 2398 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2399 case TypePtr::AnyNull:
duke@435 2400 if( _ptr == TypePtr::Constant) return this;
duke@435 2401 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2402 default: ShouldNotReachHere();
duke@435 2403 }
duke@435 2404 return this;
duke@435 2405 }
duke@435 2406
duke@435 2407 //------------------------------xdual------------------------------------------
duke@435 2408 // Dual: compute field-by-field dual
duke@435 2409 const Type *TypeRawPtr::xdual() const {
duke@435 2410 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2411 }
duke@435 2412
duke@435 2413 //------------------------------add_offset-------------------------------------
kvn@741 2414 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
duke@435 2415 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2416 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2417 if( offset == 0 ) return this; // No change
duke@435 2418 switch (_ptr) {
duke@435 2419 case TypePtr::TopPTR:
duke@435 2420 case TypePtr::BotPTR:
duke@435 2421 case TypePtr::NotNull:
duke@435 2422 return this;
duke@435 2423 case TypePtr::Null:
kvn@2435 2424 case TypePtr::Constant: {
kvn@2435 2425 address bits = _bits+offset;
kvn@2435 2426 if ( bits == 0 ) return TypePtr::NULL_PTR;
kvn@2435 2427 return make( bits );
kvn@2435 2428 }
duke@435 2429 default: ShouldNotReachHere();
duke@435 2430 }
duke@435 2431 return NULL; // Lint noise
duke@435 2432 }
duke@435 2433
duke@435 2434 //------------------------------eq---------------------------------------------
duke@435 2435 // Structural equality check for Type representations
duke@435 2436 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2437 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2438 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2439 }
duke@435 2440
duke@435 2441 //------------------------------hash-------------------------------------------
duke@435 2442 // Type-specific hashing function.
duke@435 2443 int TypeRawPtr::hash(void) const {
duke@435 2444 return (intptr_t)_bits + TypePtr::hash();
duke@435 2445 }
duke@435 2446
duke@435 2447 //------------------------------dump2------------------------------------------
duke@435 2448 #ifndef PRODUCT
duke@435 2449 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2450 if( _ptr == Constant )
duke@435 2451 st->print(INTPTR_FORMAT, _bits);
duke@435 2452 else
duke@435 2453 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2454 }
duke@435 2455 #endif
duke@435 2456
duke@435 2457 //=============================================================================
duke@435 2458 // Convenience common pre-built type.
duke@435 2459 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2460
kvn@598 2461 //------------------------------TypeOopPtr-------------------------------------
roland@5991 2462 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative)
kvn@598 2463 : TypePtr(t, ptr, offset),
kvn@598 2464 _const_oop(o), _klass(k),
kvn@598 2465 _klass_is_exact(xk),
kvn@598 2466 _is_ptr_to_narrowoop(false),
roland@4159 2467 _is_ptr_to_narrowklass(false),
kvn@5110 2468 _is_ptr_to_boxed_value(false),
roland@5991 2469 _instance_id(instance_id),
roland@5991 2470 _speculative(speculative) {
kvn@5110 2471 if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
kvn@5110 2472 (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
kvn@5110 2473 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
kvn@5110 2474 }
kvn@598 2475 #ifdef _LP64
roland@4159 2476 if (_offset != 0) {
coleenp@4037 2477 if (_offset == oopDesc::klass_offset_in_bytes()) {
ehelin@5694 2478 _is_ptr_to_narrowklass = UseCompressedClassPointers;
coleenp@4037 2479 } else if (klass() == NULL) {
coleenp@4037 2480 // Array with unknown body type
kvn@598 2481 assert(this->isa_aryptr(), "only arrays without klass");
roland@4159 2482 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2483 } else if (this->isa_aryptr()) {
roland@4159 2484 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
kvn@598 2485 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2486 } else if (klass()->is_instance_klass()) {
kvn@598 2487 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2488 ciField* field = NULL;
kvn@598 2489 if (this->isa_klassptr()) {
never@2658 2490 // Perm objects don't use compressed references
kvn@598 2491 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2492 // unsafe access
roland@4159 2493 _is_ptr_to_narrowoop = UseCompressedOops;
kvn@598 2494 } else { // exclude unsafe ops
kvn@598 2495 assert(this->isa_instptr(), "must be an instance ptr.");
never@2658 2496
never@2658 2497 if (klass() == ciEnv::current()->Class_klass() &&
never@2658 2498 (_offset == java_lang_Class::klass_offset_in_bytes() ||
never@2658 2499 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
never@2658 2500 // Special hidden fields from the Class.
never@2658 2501 assert(this->isa_instptr(), "must be an instance ptr.");
coleenp@4037 2502 _is_ptr_to_narrowoop = false;
never@2658 2503 } else if (klass() == ciEnv::current()->Class_klass() &&
coleenp@4047 2504 _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
never@2658 2505 // Static fields
never@2658 2506 assert(o != NULL, "must be constant");
never@2658 2507 ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 2508 ciField* field = k->get_field_by_offset(_offset, true);
never@2658 2509 assert(field != NULL, "missing field");
kvn@598 2510 BasicType basic_elem_type = field->layout_type();
roland@4159 2511 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2512 basic_elem_type == T_ARRAY);
kvn@598 2513 } else {
never@2658 2514 // Instance fields which contains a compressed oop references.
never@2658 2515 field = ik->get_field_by_offset(_offset, false);
never@2658 2516 if (field != NULL) {
never@2658 2517 BasicType basic_elem_type = field->layout_type();
roland@4159 2518 _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
roland@4159 2519 basic_elem_type == T_ARRAY);
never@2658 2520 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
never@2658 2521 // Compile::find_alias_type() cast exactness on all types to verify
never@2658 2522 // that it does not affect alias type.
roland@4159 2523 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2524 } else {
never@2658 2525 // Type for the copy start in LibraryCallKit::inline_native_clone().
roland@4159 2526 _is_ptr_to_narrowoop = UseCompressedOops;
never@2658 2527 }
kvn@598 2528 }
kvn@598 2529 }
kvn@598 2530 }
kvn@598 2531 }
kvn@598 2532 #endif
kvn@598 2533 }
kvn@598 2534
duke@435 2535 //------------------------------make-------------------------------------------
duke@435 2536 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
roland@5991 2537 int offset, int instance_id, const TypeOopPtr* speculative) {
duke@435 2538 assert(ptr != Constant, "no constant generic pointers");
coleenp@4037 2539 ciKlass* k = Compile::current()->env()->Object_klass();
duke@435 2540 bool xk = false;
duke@435 2541 ciObject* o = NULL;
roland@5991 2542 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative))->hashcons();
duke@435 2543 }
duke@435 2544
duke@435 2545
duke@435 2546 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2547 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2548 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2549 if( ptr == _ptr ) return this;
roland@5991 2550 return make(ptr, _offset, _instance_id, _speculative);
duke@435 2551 }
duke@435 2552
kvn@682 2553 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2554 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2555 // There are no instances of a general oop.
duke@435 2556 // Return self unchanged.
duke@435 2557 return this;
duke@435 2558 }
duke@435 2559
duke@435 2560 //-----------------------------cast_to_exactness-------------------------------
duke@435 2561 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2562 // There is no such thing as an exact general oop.
duke@435 2563 // Return self unchanged.
duke@435 2564 return this;
duke@435 2565 }
duke@435 2566
duke@435 2567
duke@435 2568 //------------------------------as_klass_type----------------------------------
duke@435 2569 // Return the klass type corresponding to this instance or array type.
duke@435 2570 // It is the type that is loaded from an object of this type.
duke@435 2571 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2572 ciKlass* k = klass();
duke@435 2573 bool xk = klass_is_exact();
coleenp@4037 2574 if (k == NULL)
duke@435 2575 return TypeKlassPtr::OBJECT;
duke@435 2576 else
duke@435 2577 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2578 }
duke@435 2579
roland@5991 2580 const Type *TypeOopPtr::xmeet(const Type *t) const {
roland@5991 2581 const Type* res = xmeet_helper(t);
roland@5991 2582 if (res->isa_oopptr() == NULL) {
roland@5991 2583 return res;
roland@5991 2584 }
roland@5991 2585
roland@6313 2586 const TypeOopPtr* res_oopptr = res->is_oopptr();
roland@6313 2587 if (res_oopptr->speculative() != NULL) {
roland@5991 2588 // type->speculative() == NULL means that speculation is no better
roland@5991 2589 // than type, i.e. type->speculative() == type. So there are 2
roland@5991 2590 // ways to represent the fact that we have no useful speculative
roland@5991 2591 // data and we should use a single one to be able to test for
roland@5991 2592 // equality between types. Check whether type->speculative() ==
roland@5991 2593 // type and set speculative to NULL if it is the case.
roland@5991 2594 if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
roland@5991 2595 return res_oopptr->remove_speculative();
roland@5991 2596 }
roland@5991 2597 }
roland@5991 2598
roland@5991 2599 return res;
roland@5991 2600 }
duke@435 2601
duke@435 2602 //------------------------------meet-------------------------------------------
duke@435 2603 // Compute the MEET of two types. It returns a new Type object.
roland@5991 2604 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
duke@435 2605 // Perform a fast test for common case; meeting the same types together.
duke@435 2606 if( this == t ) return this; // Meeting same type-rep?
duke@435 2607
duke@435 2608 // Current "this->_base" is OopPtr
duke@435 2609 switch (t->base()) { // switch on original type
duke@435 2610
duke@435 2611 case Int: // Mixing ints & oops happens when javac
duke@435 2612 case Long: // reuses local variables
duke@435 2613 case FloatTop:
duke@435 2614 case FloatCon:
duke@435 2615 case FloatBot:
duke@435 2616 case DoubleTop:
duke@435 2617 case DoubleCon:
duke@435 2618 case DoubleBot:
kvn@728 2619 case NarrowOop:
roland@4159 2620 case NarrowKlass:
duke@435 2621 case Bottom: // Ye Olde Default
duke@435 2622 return Type::BOTTOM;
duke@435 2623 case Top:
duke@435 2624 return this;
duke@435 2625
duke@435 2626 default: // All else is a mistake
duke@435 2627 typerr(t);
duke@435 2628
duke@435 2629 case RawPtr:
coleenp@4037 2630 case MetadataPtr:
coleenp@4037 2631 case KlassPtr:
duke@435 2632 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2633
duke@435 2634 case AnyPtr: {
duke@435 2635 // Found an AnyPtr type vs self-OopPtr type
duke@435 2636 const TypePtr *tp = t->is_ptr();
duke@435 2637 int offset = meet_offset(tp->offset());
duke@435 2638 PTR ptr = meet_ptr(tp->ptr());
duke@435 2639 switch (tp->ptr()) {
duke@435 2640 case Null:
duke@435 2641 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2642 // else fall through:
duke@435 2643 case TopPTR:
kvn@1427 2644 case AnyNull: {
kvn@1427 2645 int instance_id = meet_instance_id(InstanceTop);
roland@5991 2646 const TypeOopPtr* speculative = _speculative;
roland@5991 2647 return make(ptr, offset, instance_id, speculative);
kvn@1427 2648 }
duke@435 2649 case BotPTR:
duke@435 2650 case NotNull:
duke@435 2651 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2652 default: typerr(t);
duke@435 2653 }
duke@435 2654 }
duke@435 2655
duke@435 2656 case OopPtr: { // Meeting to other OopPtrs
duke@435 2657 const TypeOopPtr *tp = t->is_oopptr();
kvn@1393 2658 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 2659 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@5991 2660 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative);
duke@435 2661 }
duke@435 2662
duke@435 2663 case InstPtr: // For these, flip the call around to cut down
duke@435 2664 case AryPtr:
duke@435 2665 return t->xmeet(this); // Call in reverse direction
duke@435 2666
duke@435 2667 } // End of switch
duke@435 2668 return this; // Return the double constant
duke@435 2669 }
duke@435 2670
duke@435 2671
duke@435 2672 //------------------------------xdual------------------------------------------
duke@435 2673 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2674 const Type *TypeOopPtr::xdual() const {
coleenp@4037 2675 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
duke@435 2676 assert(const_oop() == NULL, "no constants here");
roland@5991 2677 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative());
duke@435 2678 }
duke@435 2679
duke@435 2680 //--------------------------make_from_klass_common-----------------------------
duke@435 2681 // Computes the element-type given a klass.
duke@435 2682 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2683 if (klass->is_instance_klass()) {
duke@435 2684 Compile* C = Compile::current();
duke@435 2685 Dependencies* deps = C->dependencies();
duke@435 2686 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2687 // Element is an instance
duke@435 2688 bool klass_is_exact = false;
duke@435 2689 if (klass->is_loaded()) {
duke@435 2690 // Try to set klass_is_exact.
duke@435 2691 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2692 klass_is_exact = ik->is_final();
duke@435 2693 if (!klass_is_exact && klass_change
duke@435 2694 && deps != NULL && UseUniqueSubclasses) {
duke@435 2695 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2696 if (sub != NULL) {
duke@435 2697 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2698 klass = ik = sub;
duke@435 2699 klass_is_exact = sub->is_final();
duke@435 2700 }
duke@435 2701 }
duke@435 2702 if (!klass_is_exact && try_for_exact
duke@435 2703 && deps != NULL && UseExactTypes) {
duke@435 2704 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2705 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2706 deps->assert_leaf_type(ik);
duke@435 2707 klass_is_exact = true;
duke@435 2708 }
duke@435 2709 }
duke@435 2710 }
duke@435 2711 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2712 } else if (klass->is_obj_array_klass()) {
duke@435 2713 // Element is an object array. Recursively call ourself.
duke@435 2714 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2715 bool xk = etype->klass_is_exact();
duke@435 2716 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2717 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2718 // are all not-null. This is not true in generally, as code can
duke@435 2719 // slam NULLs down in the subarrays.
duke@435 2720 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2721 return arr;
duke@435 2722 } else if (klass->is_type_array_klass()) {
duke@435 2723 // Element is an typeArray
duke@435 2724 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2725 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2726 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2727 // is not-null. That was not true in general.
duke@435 2728 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2729 return arr;
duke@435 2730 } else {
duke@435 2731 ShouldNotReachHere();
duke@435 2732 return NULL;
duke@435 2733 }
duke@435 2734 }
duke@435 2735
duke@435 2736 //------------------------------make_from_constant-----------------------------
duke@435 2737 // Make a java pointer from an oop constant
kvn@5110 2738 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
kvn@5110 2739 bool require_constant,
kvn@5110 2740 bool is_autobox_cache) {
kvn@5110 2741 assert(!o->is_null_object(), "null object not yet handled here.");
kvn@5110 2742 ciKlass* klass = o->klass();
kvn@5110 2743 if (klass->is_instance_klass()) {
kvn@5110 2744 // Element is an instance
kvn@5110 2745 if (require_constant) {
kvn@5110 2746 if (!o->can_be_constant()) return NULL;
kvn@5110 2747 } else if (!o->should_be_constant()) {
kvn@5110 2748 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
kvn@5110 2749 }
kvn@5110 2750 return TypeInstPtr::make(o);
kvn@5110 2751 } else if (klass->is_obj_array_klass()) {
kvn@5110 2752 // Element is an object array. Recursively call ourself.
kvn@5110 2753 const TypeOopPtr *etype =
coleenp@4037 2754 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
kvn@5110 2755 if (is_autobox_cache) {
kvn@5110 2756 // The pointers in the autobox arrays are always non-null.
kvn@5110 2757 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
kvn@5110 2758 }
kvn@5110 2759 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
kvn@5110 2760 // We used to pass NotNull in here, asserting that the sub-arrays
kvn@5110 2761 // are all not-null. This is not true in generally, as code can
kvn@5110 2762 // slam NULLs down in the subarrays.
kvn@5110 2763 if (require_constant) {
kvn@5110 2764 if (!o->can_be_constant()) return NULL;
kvn@5110 2765 } else if (!o->should_be_constant()) {
kvn@5110 2766 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
kvn@5110 2767 }
roland@5991 2768 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, is_autobox_cache);
coleenp@4037 2769 return arr;
kvn@5110 2770 } else if (klass->is_type_array_klass()) {
kvn@5110 2771 // Element is an typeArray
coleenp@4037 2772 const Type* etype =
coleenp@4037 2773 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
kvn@5110 2774 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
kvn@5110 2775 // We used to pass NotNull in here, asserting that the array pointer
kvn@5110 2776 // is not-null. That was not true in general.
kvn@5110 2777 if (require_constant) {
kvn@5110 2778 if (!o->can_be_constant()) return NULL;
kvn@5110 2779 } else if (!o->should_be_constant()) {
kvn@5110 2780 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
kvn@5110 2781 }
coleenp@4037 2782 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
coleenp@4037 2783 return arr;
duke@435 2784 }
duke@435 2785
twisti@3885 2786 fatal("unhandled object type");
duke@435 2787 return NULL;
duke@435 2788 }
duke@435 2789
duke@435 2790 //------------------------------get_con----------------------------------------
duke@435 2791 intptr_t TypeOopPtr::get_con() const {
duke@435 2792 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2793 assert( _offset >= 0, "" );
duke@435 2794
duke@435 2795 if (_offset != 0) {
duke@435 2796 // After being ported to the compiler interface, the compiler no longer
duke@435 2797 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2798 // to a handle at compile time. This handle is embedded in the generated
duke@435 2799 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2800 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2801 // have access to the addresses!). This does not seem to currently happen,
twisti@1040 2802 // but this assertion here is to help prevent its occurence.
duke@435 2803 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2804 ShouldNotReachHere();
duke@435 2805 }
duke@435 2806
jrose@1424 2807 return (intptr_t)const_oop()->constant_encoding();
duke@435 2808 }
duke@435 2809
duke@435 2810
duke@435 2811 //-----------------------------filter------------------------------------------
duke@435 2812 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 2813 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 2814
roland@6313 2815 const Type* ft = join_helper(kills, include_speculative);
duke@435 2816 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2817 const TypeInstPtr* ktip = kills->isa_instptr();
duke@435 2818
duke@435 2819 if (ft->empty()) {
duke@435 2820 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2821 // interface. This can happen because the bytecodes do not contain
duke@435 2822 // enough type info to distinguish a Java-level interface variable
duke@435 2823 // from a Java-level object variable. If we meet 2 classes which
duke@435 2824 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2825 // doesn't implement I, we have no way to tell if the result should
duke@435 2826 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2827 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2828 // uplift the type.
duke@435 2829 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
duke@435 2830 return kills; // Uplift to interface
duke@435 2831
duke@435 2832 return Type::TOP; // Canonical empty value
duke@435 2833 }
duke@435 2834
duke@435 2835 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2836 // the join should report back the class. However, if we have a J/L/Object
duke@435 2837 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2838 // join report an interface back out. This isn't possible but happens
duke@435 2839 // because the type system doesn't interact well with interfaces.
duke@435 2840 if (ftip != NULL && ktip != NULL &&
duke@435 2841 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2842 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2843 // Happens in a CTW of rt.jar, 320-341, no extra flags
kvn@1770 2844 assert(!ftip->klass_is_exact(), "interface could not be exact");
duke@435 2845 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2846 }
duke@435 2847
duke@435 2848 return ft;
duke@435 2849 }
duke@435 2850
duke@435 2851 //------------------------------eq---------------------------------------------
duke@435 2852 // Structural equality check for Type representations
duke@435 2853 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2854 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2855 if (_klass_is_exact != a->_klass_is_exact ||
roland@5991 2856 _instance_id != a->_instance_id ||
roland@5991 2857 !eq_speculative(a)) return false;
duke@435 2858 ciObject* one = const_oop();
duke@435 2859 ciObject* two = a->const_oop();
duke@435 2860 if (one == NULL || two == NULL) {
duke@435 2861 return (one == two) && TypePtr::eq(t);
duke@435 2862 } else {
duke@435 2863 return one->equals(two) && TypePtr::eq(t);
duke@435 2864 }
duke@435 2865 }
duke@435 2866
duke@435 2867 //------------------------------hash-------------------------------------------
duke@435 2868 // Type-specific hashing function.
duke@435 2869 int TypeOopPtr::hash(void) const {
duke@435 2870 return
duke@435 2871 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2872 _klass_is_exact +
duke@435 2873 _instance_id +
roland@5991 2874 hash_speculative() +
duke@435 2875 TypePtr::hash();
duke@435 2876 }
duke@435 2877
duke@435 2878 //------------------------------dump2------------------------------------------
duke@435 2879 #ifndef PRODUCT
duke@435 2880 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2881 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2882 if( _klass_is_exact ) st->print(":exact");
duke@435 2883 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2884 switch( _offset ) {
duke@435 2885 case OffsetTop: st->print("+top"); break;
duke@435 2886 case OffsetBot: st->print("+any"); break;
duke@435 2887 case 0: break;
duke@435 2888 default: st->print("+%d",_offset); break;
duke@435 2889 }
kvn@658 2890 if (_instance_id == InstanceTop)
kvn@658 2891 st->print(",iid=top");
kvn@658 2892 else if (_instance_id != InstanceBot)
duke@435 2893 st->print(",iid=%d",_instance_id);
roland@5991 2894
roland@5991 2895 dump_speculative(st);
roland@5991 2896 }
roland@5991 2897
roland@5991 2898 /**
roland@5991 2899 *dump the speculative part of the type
roland@5991 2900 */
roland@5991 2901 void TypeOopPtr::dump_speculative(outputStream *st) const {
roland@5991 2902 if (_speculative != NULL) {
roland@5991 2903 st->print(" (speculative=");
roland@5991 2904 _speculative->dump_on(st);
roland@5991 2905 st->print(")");
roland@5991 2906 }
duke@435 2907 }
duke@435 2908 #endif
duke@435 2909
duke@435 2910 //------------------------------singleton--------------------------------------
duke@435 2911 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2912 // constants
duke@435 2913 bool TypeOopPtr::singleton(void) const {
duke@435 2914 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2915 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2916 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2917 }
duke@435 2918
duke@435 2919 //------------------------------add_offset-------------------------------------
roland@5991 2920 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
roland@5991 2921 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset));
roland@5991 2922 }
roland@5991 2923
roland@5991 2924 /**
roland@5991 2925 * Return same type without a speculative part
roland@5991 2926 */
roland@6313 2927 const Type* TypeOopPtr::remove_speculative() const {
roland@6313 2928 if (_speculative == NULL) {
roland@6313 2929 return this;
roland@6313 2930 }
roland@5991 2931 return make(_ptr, _offset, _instance_id, NULL);
duke@435 2932 }
duke@435 2933
kvn@658 2934 //------------------------------meet_instance_id--------------------------------
kvn@658 2935 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 2936 // Either is 'TOP' instance? Return the other instance!
kvn@658 2937 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 2938 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 2939 // If either is different, return 'BOTTOM' instance
kvn@658 2940 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 2941 return _instance_id;
duke@435 2942 }
duke@435 2943
kvn@658 2944 //------------------------------dual_instance_id--------------------------------
kvn@658 2945 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 2946 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 2947 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 2948 return _instance_id; // Map everything else into self
kvn@658 2949 }
kvn@658 2950
roland@5991 2951 /**
roland@5991 2952 * meet of the speculative parts of 2 types
roland@5991 2953 *
roland@5991 2954 * @param other type to meet with
roland@5991 2955 */
roland@6313 2956 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
roland@5991 2957 bool this_has_spec = (_speculative != NULL);
roland@5991 2958 bool other_has_spec = (other->speculative() != NULL);
roland@5991 2959
roland@5991 2960 if (!this_has_spec && !other_has_spec) {
roland@5991 2961 return NULL;
roland@5991 2962 }
roland@5991 2963
roland@5991 2964 // If we are at a point where control flow meets and one branch has
roland@5991 2965 // a speculative type and the other has not, we meet the speculative
roland@5991 2966 // type of one branch with the actual type of the other. If the
roland@5991 2967 // actual type is exact and the speculative is as well, then the
roland@5991 2968 // result is a speculative type which is exact and we can continue
roland@5991 2969 // speculation further.
roland@5991 2970 const TypeOopPtr* this_spec = _speculative;
roland@5991 2971 const TypeOopPtr* other_spec = other->speculative();
roland@5991 2972
roland@5991 2973 if (!this_has_spec) {
roland@5991 2974 this_spec = this;
roland@5991 2975 }
roland@5991 2976
roland@5991 2977 if (!other_has_spec) {
roland@5991 2978 other_spec = other;
roland@5991 2979 }
roland@5991 2980
roland@6313 2981 return this_spec->meet_speculative(other_spec)->is_oopptr();
roland@5991 2982 }
roland@5991 2983
roland@5991 2984 /**
roland@5991 2985 * dual of the speculative part of the type
roland@5991 2986 */
roland@5991 2987 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
roland@5991 2988 if (_speculative == NULL) {
roland@5991 2989 return NULL;
roland@5991 2990 }
roland@5991 2991 return _speculative->dual()->is_oopptr();
roland@5991 2992 }
roland@5991 2993
roland@5991 2994 /**
roland@5991 2995 * add offset to the speculative part of the type
roland@5991 2996 *
roland@5991 2997 * @param offset offset to add
roland@5991 2998 */
roland@5991 2999 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
roland@5991 3000 if (_speculative == NULL) {
roland@5991 3001 return NULL;
roland@5991 3002 }
roland@5991 3003 return _speculative->add_offset(offset)->is_oopptr();
roland@5991 3004 }
roland@5991 3005
roland@5991 3006 /**
roland@5991 3007 * Are the speculative parts of 2 types equal?
roland@5991 3008 *
roland@5991 3009 * @param other type to compare this one to
roland@5991 3010 */
roland@5991 3011 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
roland@5991 3012 if (_speculative == NULL || other->speculative() == NULL) {
roland@5991 3013 return _speculative == other->speculative();
roland@5991 3014 }
roland@5991 3015
roland@5991 3016 if (_speculative->base() != other->speculative()->base()) {
roland@5991 3017 return false;
roland@5991 3018 }
roland@5991 3019
roland@5991 3020 return _speculative->eq(other->speculative());
roland@5991 3021 }
roland@5991 3022
roland@5991 3023 /**
roland@5991 3024 * Hash of the speculative part of the type
roland@5991 3025 */
roland@5991 3026 int TypeOopPtr::hash_speculative() const {
roland@5991 3027 if (_speculative == NULL) {
roland@5991 3028 return 0;
roland@5991 3029 }
roland@5991 3030
roland@5991 3031 return _speculative->hash();
roland@5991 3032 }
roland@5991 3033
kvn@658 3034
duke@435 3035 //=============================================================================
duke@435 3036 // Convenience common pre-built types.
duke@435 3037 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 3038 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 3039 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 3040 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 3041 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 3042
duke@435 3043 //------------------------------TypeInstPtr-------------------------------------
roland@5991 3044 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative)
roland@5991 3045 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative), _name(k->name()) {
duke@435 3046 assert(k != NULL &&
duke@435 3047 (k->is_loaded() || o == NULL),
duke@435 3048 "cannot have constants with non-loaded klass");
duke@435 3049 };
duke@435 3050
duke@435 3051 //------------------------------make-------------------------------------------
duke@435 3052 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 3053 ciKlass* k,
duke@435 3054 bool xk,
duke@435 3055 ciObject* o,
duke@435 3056 int offset,
roland@5991 3057 int instance_id,
roland@5991 3058 const TypeOopPtr* speculative) {
coleenp@4037 3059 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
duke@435 3060 // Either const_oop() is NULL or else ptr is Constant
duke@435 3061 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 3062 "constant pointers must have a value supplied" );
duke@435 3063 // Ptr is never Null
duke@435 3064 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 3065
kvn@682 3066 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3067 if (!UseExactTypes) xk = false;
duke@435 3068 if (ptr == Constant) {
duke@435 3069 // Note: This case includes meta-object constants, such as methods.
duke@435 3070 xk = true;
duke@435 3071 } else if (k->is_loaded()) {
duke@435 3072 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 3073 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 3074 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 3075 }
duke@435 3076
duke@435 3077 // Now hash this baby
duke@435 3078 TypeInstPtr *result =
roland@5991 3079 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative))->hashcons();
duke@435 3080
duke@435 3081 return result;
duke@435 3082 }
duke@435 3083
kvn@5110 3084 /**
kvn@5110 3085 * Create constant type for a constant boxed value
kvn@5110 3086 */
kvn@5110 3087 const Type* TypeInstPtr::get_const_boxed_value() const {
kvn@5110 3088 assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
kvn@5110 3089 assert((const_oop() != NULL), "should be called only for constant object");
kvn@5110 3090 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
kvn@5110 3091 BasicType bt = constant.basic_type();
kvn@5110 3092 switch (bt) {
kvn@5110 3093 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
kvn@5110 3094 case T_INT: return TypeInt::make(constant.as_int());
kvn@5110 3095 case T_CHAR: return TypeInt::make(constant.as_char());
kvn@5110 3096 case T_BYTE: return TypeInt::make(constant.as_byte());
kvn@5110 3097 case T_SHORT: return TypeInt::make(constant.as_short());
kvn@5110 3098 case T_FLOAT: return TypeF::make(constant.as_float());
kvn@5110 3099 case T_DOUBLE: return TypeD::make(constant.as_double());
kvn@5110 3100 case T_LONG: return TypeLong::make(constant.as_long());
kvn@5110 3101 default: break;
kvn@5110 3102 }
kvn@5110 3103 fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
kvn@5110 3104 return NULL;
kvn@5110 3105 }
duke@435 3106
duke@435 3107 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3108 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3109 if( ptr == _ptr ) return this;
duke@435 3110 // Reconstruct _sig info here since not a problem with later lazy
duke@435 3111 // construction, _sig will show up on demand.
roland@5991 3112 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative);
duke@435 3113 }
duke@435 3114
duke@435 3115
duke@435 3116 //-----------------------------cast_to_exactness-------------------------------
duke@435 3117 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3118 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3119 if (!UseExactTypes) return this;
duke@435 3120 if (!_klass->is_loaded()) return this;
duke@435 3121 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 3122 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 3123 if( ik->is_interface() ) return this; // cannot set xk
roland@5991 3124 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative);
duke@435 3125 }
duke@435 3126
kvn@682 3127 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3128 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3129 if( instance_id == _instance_id ) return this;
roland@5991 3130 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative);
duke@435 3131 }
duke@435 3132
duke@435 3133 //------------------------------xmeet_unloaded---------------------------------
duke@435 3134 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 3135 // Assume classes are different since called after check for same name/class-loader
duke@435 3136 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 3137 int off = meet_offset(tinst->offset());
duke@435 3138 PTR ptr = meet_ptr(tinst->ptr());
kvn@1427 3139 int instance_id = meet_instance_id(tinst->instance_id());
roland@6313 3140 const TypeOopPtr* speculative = xmeet_speculative(tinst);
duke@435 3141
duke@435 3142 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 3143 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 3144 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3145 //
duke@435 3146 // Meet unloaded class with java/lang/Object
duke@435 3147 //
duke@435 3148 // Meet
duke@435 3149 // | Unloaded Class
duke@435 3150 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 3151 // ===================================================================
duke@435 3152 // TOP | ..........................Unloaded......................|
duke@435 3153 // AnyNull | U-AN |................Unloaded......................|
duke@435 3154 // Constant | ... O-NN .................................. | O-BOT |
duke@435 3155 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 3156 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 3157 //
duke@435 3158 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 3159 //
duke@435 3160 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
roland@5991 3161 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative); }
duke@435 3162 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 3163 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 3164 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 3165 else { return TypeInstPtr::NOTNULL; }
duke@435 3166 }
duke@435 3167 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 3168
duke@435 3169 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 3170 }
duke@435 3171
duke@435 3172 // Both are unloaded, not the same class, not Object
duke@435 3173 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 3174 if( ptr != TypePtr::BotPTR ) {
duke@435 3175 return TypeInstPtr::NOTNULL;
duke@435 3176 }
duke@435 3177 return TypeInstPtr::BOTTOM;
duke@435 3178 }
duke@435 3179
duke@435 3180
duke@435 3181 //------------------------------meet-------------------------------------------
duke@435 3182 // Compute the MEET of two types. It returns a new Type object.
roland@5991 3183 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
duke@435 3184 // Perform a fast test for common case; meeting the same types together.
duke@435 3185 if( this == t ) return this; // Meeting same type-rep?
duke@435 3186
duke@435 3187 // Current "this->_base" is Pointer
duke@435 3188 switch (t->base()) { // switch on original type
duke@435 3189
duke@435 3190 case Int: // Mixing ints & oops happens when javac
duke@435 3191 case Long: // reuses local variables
duke@435 3192 case FloatTop:
duke@435 3193 case FloatCon:
duke@435 3194 case FloatBot:
duke@435 3195 case DoubleTop:
duke@435 3196 case DoubleCon:
duke@435 3197 case DoubleBot:
coleenp@548 3198 case NarrowOop:
roland@4159 3199 case NarrowKlass:
duke@435 3200 case Bottom: // Ye Olde Default
duke@435 3201 return Type::BOTTOM;
duke@435 3202 case Top:
duke@435 3203 return this;
duke@435 3204
duke@435 3205 default: // All else is a mistake
duke@435 3206 typerr(t);
duke@435 3207
coleenp@4037 3208 case MetadataPtr:
coleenp@4037 3209 case KlassPtr:
duke@435 3210 case RawPtr: return TypePtr::BOTTOM;
duke@435 3211
duke@435 3212 case AryPtr: { // All arrays inherit from Object class
duke@435 3213 const TypeAryPtr *tp = t->is_aryptr();
duke@435 3214 int offset = meet_offset(tp->offset());
duke@435 3215 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3216 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3217 const TypeOopPtr* speculative = xmeet_speculative(tp);
duke@435 3218 switch (ptr) {
duke@435 3219 case TopPTR:
duke@435 3220 case AnyNull: // Fall 'down' to dual of object klass
roland@5991 3221 // For instances when a subclass meets a superclass we fall
roland@5991 3222 // below the centerline when the superclass is exact. We need to
roland@5991 3223 // do the same here.
roland@5991 3224 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
roland@5991 3225 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative);
duke@435 3226 } else {
duke@435 3227 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3228 ptr = NotNull;
kvn@658 3229 instance_id = InstanceBot;
roland@5991 3230 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative);
duke@435 3231 }
duke@435 3232 case Constant:
duke@435 3233 case NotNull:
duke@435 3234 case BotPTR: // Fall down to object klass
duke@435 3235 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3236 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 3237 // If 'this' (InstPtr) is above the centerline and it is Object class
twisti@1040 3238 // then we can subclass in the Java class hierarchy.
roland@5991 3239 // For instances when a subclass meets a superclass we fall
roland@5991 3240 // below the centerline when the superclass is exact. We need
roland@5991 3241 // to do the same here.
roland@5991 3242 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
duke@435 3243 // that is, tp's array type is a subtype of my klass
kvn@1714 3244 return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
roland@5991 3245 tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative);
duke@435 3246 }
duke@435 3247 }
duke@435 3248 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 3249 // The meet falls down to Object class below centerline.
duke@435 3250 if( ptr == Constant )
duke@435 3251 ptr = NotNull;
kvn@658 3252 instance_id = InstanceBot;
roland@5991 3253 return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative);
duke@435 3254 default: typerr(t);
duke@435 3255 }
duke@435 3256 }
duke@435 3257
duke@435 3258 case OopPtr: { // Meeting to OopPtrs
duke@435 3259 // Found a OopPtr type vs self-InstPtr type
kvn@1393 3260 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3261 int offset = meet_offset(tp->offset());
duke@435 3262 PTR ptr = meet_ptr(tp->ptr());
duke@435 3263 switch (tp->ptr()) {
duke@435 3264 case TopPTR:
kvn@658 3265 case AnyNull: {
kvn@658 3266 int instance_id = meet_instance_id(InstanceTop);
roland@6313 3267 const TypeOopPtr* speculative = xmeet_speculative(tp);
duke@435 3268 return make(ptr, klass(), klass_is_exact(),
roland@5991 3269 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative);
kvn@658 3270 }
duke@435 3271 case NotNull:
kvn@1393 3272 case BotPTR: {
kvn@1393 3273 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3274 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@5991 3275 return TypeOopPtr::make(ptr, offset, instance_id, speculative);
kvn@1393 3276 }
duke@435 3277 default: typerr(t);
duke@435 3278 }
duke@435 3279 }
duke@435 3280
duke@435 3281 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3282 // Found an AnyPtr type vs self-InstPtr type
duke@435 3283 const TypePtr *tp = t->is_ptr();
duke@435 3284 int offset = meet_offset(tp->offset());
duke@435 3285 PTR ptr = meet_ptr(tp->ptr());
duke@435 3286 switch (tp->ptr()) {
duke@435 3287 case Null:
roland@5991 3288 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3289 // else fall through to AnyNull
duke@435 3290 case TopPTR:
kvn@658 3291 case AnyNull: {
kvn@658 3292 int instance_id = meet_instance_id(InstanceTop);
roland@5991 3293 const TypeOopPtr* speculative = _speculative;
roland@5991 3294 return make(ptr, klass(), klass_is_exact(),
roland@5991 3295 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative);
kvn@658 3296 }
duke@435 3297 case NotNull:
duke@435 3298 case BotPTR:
roland@5991 3299 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3300 default: typerr(t);
duke@435 3301 }
duke@435 3302 }
duke@435 3303
duke@435 3304 /*
duke@435 3305 A-top }
duke@435 3306 / | \ } Tops
duke@435 3307 B-top A-any C-top }
duke@435 3308 | / | \ | } Any-nulls
duke@435 3309 B-any | C-any }
duke@435 3310 | | |
duke@435 3311 B-con A-con C-con } constants; not comparable across classes
duke@435 3312 | | |
duke@435 3313 B-not | C-not }
duke@435 3314 | \ | / | } not-nulls
duke@435 3315 B-bot A-not C-bot }
duke@435 3316 \ | / } Bottoms
duke@435 3317 A-bot }
duke@435 3318 */
duke@435 3319
duke@435 3320 case InstPtr: { // Meeting 2 Oops?
duke@435 3321 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 3322 const TypeInstPtr *tinst = t->is_instptr();
duke@435 3323 int off = meet_offset( tinst->offset() );
duke@435 3324 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 3325 int instance_id = meet_instance_id(tinst->instance_id());
roland@6313 3326 const TypeOopPtr* speculative = xmeet_speculative(tinst);
duke@435 3327
duke@435 3328 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3329 // If we have constants, then we created oops so classes are loaded
duke@435 3330 // and we can handle the constants further down. This case handles
duke@435 3331 // both-not-loaded or both-loaded classes
duke@435 3332 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
roland@5991 3333 return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative);
duke@435 3334 }
duke@435 3335
duke@435 3336 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3337 ciKlass* tinst_klass = tinst->klass();
duke@435 3338 ciKlass* this_klass = this->klass();
duke@435 3339 bool tinst_xk = tinst->klass_is_exact();
duke@435 3340 bool this_xk = this->klass_is_exact();
duke@435 3341 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 3342 // One of these classes has not been loaded
duke@435 3343 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 3344 #ifndef PRODUCT
duke@435 3345 if( PrintOpto && Verbose ) {
duke@435 3346 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 3347 tty->print(" this == "); this->dump(); tty->cr();
duke@435 3348 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 3349 }
duke@435 3350 #endif
duke@435 3351 return unloaded_meet;
duke@435 3352 }
duke@435 3353
duke@435 3354 // Handle mixing oops and interfaces first.
roland@5991 3355 if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
roland@5991 3356 tinst_klass == ciEnv::current()->Object_klass())) {
duke@435 3357 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 3358 tinst_klass = this_klass;
duke@435 3359 this_klass = tmp;
duke@435 3360 bool tmp2 = tinst_xk;
duke@435 3361 tinst_xk = this_xk;
duke@435 3362 this_xk = tmp2;
duke@435 3363 }
duke@435 3364 if (tinst_klass->is_interface() &&
duke@435 3365 !(this_klass->is_interface() ||
duke@435 3366 // Treat java/lang/Object as an honorary interface,
duke@435 3367 // because we need a bottom for the interface hierarchy.
duke@435 3368 this_klass == ciEnv::current()->Object_klass())) {
duke@435 3369 // Oop meets interface!
duke@435 3370
duke@435 3371 // See if the oop subtypes (implements) interface.
duke@435 3372 ciKlass *k;
duke@435 3373 bool xk;
duke@435 3374 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3375 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 3376 // on whether we are both above the centerline or either is
duke@435 3377 // below the centerline. If we are on the centerline
duke@435 3378 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 3379 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 3380 // If we are keeping this_klass, keep its exactness too.
duke@435 3381 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 3382 } else { // Does not implement, fall to Object
duke@435 3383 // Oop does not implement interface, so mixing falls to Object
duke@435 3384 // just like the verifier does (if both are above the
duke@435 3385 // centerline fall to interface)
duke@435 3386 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 3387 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 3388 // Watch out for Constant vs. AnyNull interface.
duke@435 3389 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 3390 instance_id = InstanceBot;
duke@435 3391 }
duke@435 3392 ciObject* o = NULL; // the Constant value, if any
duke@435 3393 if (ptr == Constant) {
duke@435 3394 // Find out which constant.
duke@435 3395 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 3396 }
roland@5991 3397 return make(ptr, k, xk, o, off, instance_id, speculative);
duke@435 3398 }
duke@435 3399
duke@435 3400 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 3401
duke@435 3402 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 3403 // If we split one up & one down AND they subtype, take the down man.
duke@435 3404 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3405 // If both are up and they subtype, take the subtype class.
duke@435 3406 // If both are up and they do NOT subtype, "fall hard".
duke@435 3407 // If both are down and they subtype, take the supertype class.
duke@435 3408 // If both are down and they do NOT subtype, "fall hard".
duke@435 3409 // Constants treated as down.
duke@435 3410
duke@435 3411 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 3412 // "fall hard"; "fall hard" becomes the default case:
duke@435 3413 // If we split one up & one down AND they subtype, take the down man.
duke@435 3414 // If both are up and they subtype, take the subtype class.
duke@435 3415
duke@435 3416 // If both are down and they subtype, "fall hard".
duke@435 3417 // If both are down and they do NOT subtype, "fall hard".
duke@435 3418 // If both are up and they do NOT subtype, "fall hard".
duke@435 3419 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 3420
duke@435 3421 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 3422 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 3423 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 3424 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 3425
duke@435 3426 // Check for subtyping:
duke@435 3427 ciKlass *subtype = NULL;
duke@435 3428 bool subtype_exact = false;
duke@435 3429 if( tinst_klass->equals(this_klass) ) {
duke@435 3430 subtype = this_klass;
duke@435 3431 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 3432 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 3433 subtype = this_klass; // Pick subtyping class
duke@435 3434 subtype_exact = this_xk;
duke@435 3435 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 3436 subtype = tinst_klass; // Pick subtyping class
duke@435 3437 subtype_exact = tinst_xk;
duke@435 3438 }
duke@435 3439
duke@435 3440 if( subtype ) {
duke@435 3441 if( above_centerline(ptr) ) { // both are up?
duke@435 3442 this_klass = tinst_klass = subtype;
duke@435 3443 this_xk = tinst_xk = subtype_exact;
duke@435 3444 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 3445 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 3446 this_xk = tinst_xk;
duke@435 3447 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 3448 tinst_klass = this_klass; // this is down; keep down man
duke@435 3449 tinst_xk = this_xk;
duke@435 3450 } else {
duke@435 3451 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 3452 }
duke@435 3453 }
duke@435 3454
duke@435 3455 // Check for classes now being equal
duke@435 3456 if (tinst_klass->equals(this_klass)) {
duke@435 3457 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3458 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3459 // handled elsewhere).
duke@435 3460 ciObject* o = NULL; // Assume not constant when done
duke@435 3461 ciObject* this_oop = const_oop();
duke@435 3462 ciObject* tinst_oop = tinst->const_oop();
duke@435 3463 if( ptr == Constant ) {
duke@435 3464 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 3465 this_oop->equals(tinst_oop) )
duke@435 3466 o = this_oop;
duke@435 3467 else if (above_centerline(this ->_ptr))
duke@435 3468 o = tinst_oop;
duke@435 3469 else if (above_centerline(tinst ->_ptr))
duke@435 3470 o = this_oop;
duke@435 3471 else
duke@435 3472 ptr = NotNull;
duke@435 3473 }
roland@5991 3474 return make(ptr, this_klass, this_xk, o, off, instance_id, speculative);
duke@435 3475 } // Else classes are not equal
duke@435 3476
duke@435 3477 // Since klasses are different, we require a LCA in the Java
duke@435 3478 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3479 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3480 ptr = NotNull;
kvn@682 3481 instance_id = InstanceBot;
duke@435 3482
duke@435 3483 // Now we find the LCA of Java classes
duke@435 3484 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
roland@5991 3485 return make(ptr, k, false, NULL, off, instance_id, speculative);
duke@435 3486 } // End of case InstPtr
duke@435 3487
duke@435 3488 } // End of switch
duke@435 3489 return this; // Return the double constant
duke@435 3490 }
duke@435 3491
duke@435 3492
duke@435 3493 //------------------------java_mirror_type--------------------------------------
duke@435 3494 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3495 // must be a singleton type
duke@435 3496 if( const_oop() == NULL ) return NULL;
duke@435 3497
duke@435 3498 // must be of type java.lang.Class
duke@435 3499 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3500
duke@435 3501 return const_oop()->as_instance()->java_mirror_type();
duke@435 3502 }
duke@435 3503
duke@435 3504
duke@435 3505 //------------------------------xdual------------------------------------------
duke@435 3506 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
twisti@1040 3507 // inheritance mechanism.
duke@435 3508 const Type *TypeInstPtr::xdual() const {
roland@5991 3509 return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative());
duke@435 3510 }
duke@435 3511
duke@435 3512 //------------------------------eq---------------------------------------------
duke@435 3513 // Structural equality check for Type representations
duke@435 3514 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3515 const TypeInstPtr *p = t->is_instptr();
duke@435 3516 return
duke@435 3517 klass()->equals(p->klass()) &&
duke@435 3518 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3519 }
duke@435 3520
duke@435 3521 //------------------------------hash-------------------------------------------
duke@435 3522 // Type-specific hashing function.
duke@435 3523 int TypeInstPtr::hash(void) const {
duke@435 3524 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 3525 return hash;
duke@435 3526 }
duke@435 3527
duke@435 3528 //------------------------------dump2------------------------------------------
duke@435 3529 // Dump oop Type
duke@435 3530 #ifndef PRODUCT
duke@435 3531 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3532 // Print the name of the klass.
duke@435 3533 klass()->print_name_on(st);
duke@435 3534
duke@435 3535 switch( _ptr ) {
duke@435 3536 case Constant:
duke@435 3537 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3538 if (WizardMode || Verbose) {
duke@435 3539 const_oop()->print_oop(st);
duke@435 3540 }
duke@435 3541 case BotPTR:
duke@435 3542 if (!WizardMode && !Verbose) {
duke@435 3543 if( _klass_is_exact ) st->print(":exact");
duke@435 3544 break;
duke@435 3545 }
duke@435 3546 case TopPTR:
duke@435 3547 case AnyNull:
duke@435 3548 case NotNull:
duke@435 3549 st->print(":%s", ptr_msg[_ptr]);
duke@435 3550 if( _klass_is_exact ) st->print(":exact");
duke@435 3551 break;
duke@435 3552 }
duke@435 3553
duke@435 3554 if( _offset ) { // Dump offset, if any
duke@435 3555 if( _offset == OffsetBot ) st->print("+any");
duke@435 3556 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3557 else st->print("+%d", _offset);
duke@435 3558 }
duke@435 3559
duke@435 3560 st->print(" *");
kvn@658 3561 if (_instance_id == InstanceTop)
kvn@658 3562 st->print(",iid=top");
kvn@658 3563 else if (_instance_id != InstanceBot)
duke@435 3564 st->print(",iid=%d",_instance_id);
roland@5991 3565
roland@5991 3566 dump_speculative(st);
duke@435 3567 }
duke@435 3568 #endif
duke@435 3569
duke@435 3570 //------------------------------add_offset-------------------------------------
roland@5991 3571 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
roland@5991 3572 return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
roland@5991 3573 }
roland@5991 3574
roland@6313 3575 const Type *TypeInstPtr::remove_speculative() const {
roland@6313 3576 if (_speculative == NULL) {
roland@6313 3577 return this;
roland@6313 3578 }
roland@5991 3579 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL);
duke@435 3580 }
duke@435 3581
duke@435 3582 //=============================================================================
duke@435 3583 // Convenience common pre-built types.
duke@435 3584 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3585 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3586 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3587 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3588 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3589 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3590 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3591 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3592 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3593 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3594
duke@435 3595 //------------------------------make-------------------------------------------
roland@5991 3596 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative) {
duke@435 3597 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3598 "integral arrays must be pre-equipped with a class");
duke@435 3599 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3600 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3601 if (!UseExactTypes) xk = (ptr == Constant);
roland@5991 3602 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative))->hashcons();
duke@435 3603 }
duke@435 3604
duke@435 3605 //------------------------------make-------------------------------------------
roland@5991 3606 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, bool is_autobox_cache) {
duke@435 3607 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3608 "integral arrays must be pre-equipped with a class");
duke@435 3609 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3610 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3611 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3612 if (!UseExactTypes) xk = (ptr == Constant);
roland@5991 3613 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative))->hashcons();
duke@435 3614 }
duke@435 3615
duke@435 3616 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3617 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3618 if( ptr == _ptr ) return this;
roland@5991 3619 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative);
duke@435 3620 }
duke@435 3621
duke@435 3622
duke@435 3623 //-----------------------------cast_to_exactness-------------------------------
duke@435 3624 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3625 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3626 if (!UseExactTypes) return this;
duke@435 3627 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
roland@5991 3628 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative);
duke@435 3629 }
duke@435 3630
kvn@682 3631 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3632 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3633 if( instance_id == _instance_id ) return this;
roland@5991 3634 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative);
duke@435 3635 }
duke@435 3636
duke@435 3637 //-----------------------------narrow_size_type-------------------------------
duke@435 3638 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3639 // which is kind of slow (and cached elsewhere by other users).
duke@435 3640 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3641 static jint max_array_length(BasicType etype) {
duke@435 3642 jint& cache = max_array_length_cache[etype];
duke@435 3643 jint res = cache;
duke@435 3644 if (res == 0) {
duke@435 3645 switch (etype) {
coleenp@548 3646 case T_NARROWOOP:
coleenp@548 3647 etype = T_OBJECT;
coleenp@548 3648 break;
roland@4159 3649 case T_NARROWKLASS:
duke@435 3650 case T_CONFLICT:
duke@435 3651 case T_ILLEGAL:
duke@435 3652 case T_VOID:
duke@435 3653 etype = T_BYTE; // will produce conservatively high value
duke@435 3654 }
duke@435 3655 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3656 }
duke@435 3657 return res;
duke@435 3658 }
duke@435 3659
duke@435 3660 // Narrow the given size type to the index range for the given array base type.
duke@435 3661 // Return NULL if the resulting int type becomes empty.
rasbold@801 3662 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
duke@435 3663 jint hi = size->_hi;
duke@435 3664 jint lo = size->_lo;
duke@435 3665 jint min_lo = 0;
rasbold@801 3666 jint max_hi = max_array_length(elem()->basic_type());
duke@435 3667 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3668 bool chg = false;
kvn@5110 3669 if (lo < min_lo) {
kvn@5110 3670 lo = min_lo;
kvn@5110 3671 if (size->is_con()) {
kvn@5110 3672 hi = lo;
kvn@5110 3673 }
kvn@5110 3674 chg = true;
kvn@5110 3675 }
kvn@5110 3676 if (hi > max_hi) {
kvn@5110 3677 hi = max_hi;
kvn@5110 3678 if (size->is_con()) {
kvn@5110 3679 lo = hi;
kvn@5110 3680 }
kvn@5110 3681 chg = true;
kvn@5110 3682 }
twisti@1040 3683 // Negative length arrays will produce weird intermediate dead fast-path code
duke@435 3684 if (lo > hi)
rasbold@801 3685 return TypeInt::ZERO;
duke@435 3686 if (!chg)
duke@435 3687 return size;
duke@435 3688 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3689 }
duke@435 3690
duke@435 3691 //-------------------------------cast_to_size----------------------------------
duke@435 3692 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3693 assert(new_size != NULL, "");
rasbold@801 3694 new_size = narrow_size_type(new_size);
duke@435 3695 if (new_size == size()) return this;
vlivanov@5658 3696 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
roland@5991 3697 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative);
duke@435 3698 }
duke@435 3699
duke@435 3700
vlivanov@5658 3701 //------------------------------cast_to_stable---------------------------------
vlivanov@5658 3702 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
vlivanov@5658 3703 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
vlivanov@5658 3704 return this;
vlivanov@5658 3705
vlivanov@5658 3706 const Type* elem = this->elem();
vlivanov@5658 3707 const TypePtr* elem_ptr = elem->make_ptr();
vlivanov@5658 3708
vlivanov@5658 3709 if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
vlivanov@5658 3710 // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
vlivanov@5658 3711 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
vlivanov@5658 3712 }
vlivanov@5658 3713
vlivanov@5658 3714 const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
vlivanov@5658 3715
vlivanov@5658 3716 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
vlivanov@5658 3717 }
vlivanov@5658 3718
vlivanov@5658 3719 //-----------------------------stable_dimension--------------------------------
vlivanov@5658 3720 int TypeAryPtr::stable_dimension() const {
vlivanov@5658 3721 if (!is_stable()) return 0;
vlivanov@5658 3722 int dim = 1;
vlivanov@5658 3723 const TypePtr* elem_ptr = elem()->make_ptr();
vlivanov@5658 3724 if (elem_ptr != NULL && elem_ptr->isa_aryptr())
vlivanov@5658 3725 dim += elem_ptr->is_aryptr()->stable_dimension();
vlivanov@5658 3726 return dim;
vlivanov@5658 3727 }
vlivanov@5658 3728
duke@435 3729 //------------------------------eq---------------------------------------------
duke@435 3730 // Structural equality check for Type representations
duke@435 3731 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3732 const TypeAryPtr *p = t->is_aryptr();
duke@435 3733 return
duke@435 3734 _ary == p->_ary && // Check array
duke@435 3735 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3736 }
duke@435 3737
duke@435 3738 //------------------------------hash-------------------------------------------
duke@435 3739 // Type-specific hashing function.
duke@435 3740 int TypeAryPtr::hash(void) const {
duke@435 3741 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3742 }
duke@435 3743
duke@435 3744 //------------------------------meet-------------------------------------------
duke@435 3745 // Compute the MEET of two types. It returns a new Type object.
roland@5991 3746 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
duke@435 3747 // Perform a fast test for common case; meeting the same types together.
duke@435 3748 if( this == t ) return this; // Meeting same type-rep?
duke@435 3749 // Current "this->_base" is Pointer
duke@435 3750 switch (t->base()) { // switch on original type
duke@435 3751
duke@435 3752 // Mixing ints & oops happens when javac reuses local variables
duke@435 3753 case Int:
duke@435 3754 case Long:
duke@435 3755 case FloatTop:
duke@435 3756 case FloatCon:
duke@435 3757 case FloatBot:
duke@435 3758 case DoubleTop:
duke@435 3759 case DoubleCon:
duke@435 3760 case DoubleBot:
coleenp@548 3761 case NarrowOop:
roland@4159 3762 case NarrowKlass:
duke@435 3763 case Bottom: // Ye Olde Default
duke@435 3764 return Type::BOTTOM;
duke@435 3765 case Top:
duke@435 3766 return this;
duke@435 3767
duke@435 3768 default: // All else is a mistake
duke@435 3769 typerr(t);
duke@435 3770
duke@435 3771 case OopPtr: { // Meeting to OopPtrs
duke@435 3772 // Found a OopPtr type vs self-AryPtr type
kvn@1393 3773 const TypeOopPtr *tp = t->is_oopptr();
duke@435 3774 int offset = meet_offset(tp->offset());
duke@435 3775 PTR ptr = meet_ptr(tp->ptr());
duke@435 3776 switch (tp->ptr()) {
duke@435 3777 case TopPTR:
kvn@658 3778 case AnyNull: {
kvn@658 3779 int instance_id = meet_instance_id(InstanceTop);
roland@6313 3780 const TypeOopPtr* speculative = xmeet_speculative(tp);
kvn@658 3781 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@5991 3782 _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
kvn@658 3783 }
duke@435 3784 case BotPTR:
kvn@1393 3785 case NotNull: {
kvn@1393 3786 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3787 const TypeOopPtr* speculative = xmeet_speculative(tp);
roland@5991 3788 return TypeOopPtr::make(ptr, offset, instance_id, speculative);
kvn@1393 3789 }
duke@435 3790 default: ShouldNotReachHere();
duke@435 3791 }
duke@435 3792 }
duke@435 3793
duke@435 3794 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3795 // Found an AnyPtr type vs self-AryPtr type
duke@435 3796 const TypePtr *tp = t->is_ptr();
duke@435 3797 int offset = meet_offset(tp->offset());
duke@435 3798 PTR ptr = meet_ptr(tp->ptr());
duke@435 3799 switch (tp->ptr()) {
duke@435 3800 case TopPTR:
duke@435 3801 return this;
duke@435 3802 case BotPTR:
duke@435 3803 case NotNull:
duke@435 3804 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3805 case Null:
duke@435 3806 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3807 // else fall through to AnyNull
kvn@658 3808 case AnyNull: {
kvn@658 3809 int instance_id = meet_instance_id(InstanceTop);
roland@5991 3810 const TypeOopPtr* speculative = _speculative;
roland@5991 3811 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@5991 3812 _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
kvn@658 3813 }
duke@435 3814 default: ShouldNotReachHere();
duke@435 3815 }
duke@435 3816 }
duke@435 3817
coleenp@4037 3818 case MetadataPtr:
coleenp@4037 3819 case KlassPtr:
duke@435 3820 case RawPtr: return TypePtr::BOTTOM;
duke@435 3821
duke@435 3822 case AryPtr: { // Meeting 2 references?
duke@435 3823 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3824 int off = meet_offset(tap->offset());
roland@6313 3825 const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
duke@435 3826 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3827 int instance_id = meet_instance_id(tap->instance_id());
roland@6313 3828 const TypeOopPtr* speculative = xmeet_speculative(tap);
duke@435 3829 ciKlass* lazy_klass = NULL;
duke@435 3830 if (tary->_elem->isa_int()) {
duke@435 3831 // Integral array element types have irrelevant lattice relations.
duke@435 3832 // It is the klass that determines array layout, not the element type.
duke@435 3833 if (_klass == NULL)
duke@435 3834 lazy_klass = tap->_klass;
duke@435 3835 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3836 lazy_klass = _klass;
duke@435 3837 } else {
duke@435 3838 // Something like byte[int+] meets char[int+].
duke@435 3839 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3840 instance_id = InstanceBot;
vlivanov@5658 3841 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
duke@435 3842 }
kvn@2633 3843 } else // Non integral arrays.
roland@6214 3844 // Must fall to bottom if exact klasses in upper lattice
roland@6214 3845 // are not equal or super klass is exact.
roland@6214 3846 if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
roland@6214 3847 // meet with top[] and bottom[] are processed further down:
roland@6214 3848 tap->_klass != NULL && this->_klass != NULL &&
roland@6214 3849 // both are exact and not equal:
roland@6214 3850 ((tap->_klass_is_exact && this->_klass_is_exact) ||
roland@6214 3851 // 'tap' is exact and super or unrelated:
roland@6214 3852 (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
roland@6214 3853 // 'this' is exact and super or unrelated:
roland@6214 3854 (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
vlivanov@5658 3855 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
roland@5991 3856 return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
duke@435 3857 }
kvn@2633 3858
kvn@2120 3859 bool xk = false;
duke@435 3860 switch (tap->ptr()) {
duke@435 3861 case AnyNull:
duke@435 3862 case TopPTR:
duke@435 3863 // Compute new klass on demand, do not use tap->_klass
roland@5991 3864 if (below_centerline(this->_ptr)) {
roland@5991 3865 xk = this->_klass_is_exact;
roland@5991 3866 } else {
roland@5991 3867 xk = (tap->_klass_is_exact | this->_klass_is_exact);
roland@5991 3868 }
roland@5991 3869 return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative);
duke@435 3870 case Constant: {
duke@435 3871 ciObject* o = const_oop();
duke@435 3872 if( _ptr == Constant ) {
duke@435 3873 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
jrose@1424 3874 xk = (klass() == tap->klass());
duke@435 3875 ptr = NotNull;
duke@435 3876 o = NULL;
kvn@682 3877 instance_id = InstanceBot;
jrose@1424 3878 } else {
jrose@1424 3879 xk = true;
duke@435 3880 }
roland@5991 3881 } else if(above_centerline(_ptr)) {
duke@435 3882 o = tap->const_oop();
jrose@1424 3883 xk = true;
jrose@1424 3884 } else {
kvn@2120 3885 // Only precise for identical arrays
kvn@2120 3886 xk = this->_klass_is_exact && (klass() == tap->klass());
duke@435 3887 }
roland@5991 3888 return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative);
duke@435 3889 }
duke@435 3890 case NotNull:
duke@435 3891 case BotPTR:
duke@435 3892 // Compute new klass on demand, do not use tap->_klass
duke@435 3893 if (above_centerline(this->_ptr))
duke@435 3894 xk = tap->_klass_is_exact;
duke@435 3895 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 3896 (klass() == tap->klass()); // Only precise for identical arrays
roland@5991 3897 return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative);
duke@435 3898 default: ShouldNotReachHere();
duke@435 3899 }
duke@435 3900 }
duke@435 3901
duke@435 3902 // All arrays inherit from Object class
duke@435 3903 case InstPtr: {
duke@435 3904 const TypeInstPtr *tp = t->is_instptr();
duke@435 3905 int offset = meet_offset(tp->offset());
duke@435 3906 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3907 int instance_id = meet_instance_id(tp->instance_id());
roland@6313 3908 const TypeOopPtr* speculative = xmeet_speculative(tp);
duke@435 3909 switch (ptr) {
duke@435 3910 case TopPTR:
duke@435 3911 case AnyNull: // Fall 'down' to dual of object klass
roland@5991 3912 // For instances when a subclass meets a superclass we fall
roland@5991 3913 // below the centerline when the superclass is exact. We need to
roland@5991 3914 // do the same here.
roland@5991 3915 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
roland@5991 3916 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
duke@435 3917 } else {
duke@435 3918 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3919 ptr = NotNull;
kvn@658 3920 instance_id = InstanceBot;
roland@5991 3921 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative);
duke@435 3922 }
duke@435 3923 case Constant:
duke@435 3924 case NotNull:
duke@435 3925 case BotPTR: // Fall down to object klass
duke@435 3926 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3927 if (above_centerline(tp->ptr())) {
duke@435 3928 // If 'tp' is above the centerline and it is Object class
twisti@1040 3929 // then we can subclass in the Java class hierarchy.
roland@5991 3930 // For instances when a subclass meets a superclass we fall
roland@5991 3931 // below the centerline when the superclass is exact. We need
roland@5991 3932 // to do the same here.
roland@5991 3933 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
duke@435 3934 // that is, my array type is a subtype of 'tp' klass
roland@5991 3935 return make(ptr, (ptr == Constant ? const_oop() : NULL),
roland@5991 3936 _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
duke@435 3937 }
duke@435 3938 }
duke@435 3939 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 3940 // The meet falls down to Object class below centerline.
duke@435 3941 if( ptr == Constant )
duke@435 3942 ptr = NotNull;
kvn@658 3943 instance_id = InstanceBot;
roland@5991 3944 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative);
duke@435 3945 default: typerr(t);
duke@435 3946 }
duke@435 3947 }
duke@435 3948 }
duke@435 3949 return this; // Lint noise
duke@435 3950 }
duke@435 3951
duke@435 3952 //------------------------------xdual------------------------------------------
duke@435 3953 // Dual: compute field-by-field dual
duke@435 3954 const Type *TypeAryPtr::xdual() const {
roland@5991 3955 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative());
duke@435 3956 }
duke@435 3957
kvn@1255 3958 //----------------------interface_vs_oop---------------------------------------
kvn@1255 3959 #ifdef ASSERT
kvn@1255 3960 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
kvn@1255 3961 const TypeAryPtr* t_aryptr = t->isa_aryptr();
kvn@1255 3962 if (t_aryptr) {
kvn@1255 3963 return _ary->interface_vs_oop(t_aryptr->_ary);
kvn@1255 3964 }
kvn@1255 3965 return false;
kvn@1255 3966 }
kvn@1255 3967 #endif
kvn@1255 3968
duke@435 3969 //------------------------------dump2------------------------------------------
duke@435 3970 #ifndef PRODUCT
duke@435 3971 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3972 _ary->dump2(d,depth,st);
duke@435 3973 switch( _ptr ) {
duke@435 3974 case Constant:
duke@435 3975 const_oop()->print(st);
duke@435 3976 break;
duke@435 3977 case BotPTR:
duke@435 3978 if (!WizardMode && !Verbose) {
duke@435 3979 if( _klass_is_exact ) st->print(":exact");
duke@435 3980 break;
duke@435 3981 }
duke@435 3982 case TopPTR:
duke@435 3983 case AnyNull:
duke@435 3984 case NotNull:
duke@435 3985 st->print(":%s", ptr_msg[_ptr]);
duke@435 3986 if( _klass_is_exact ) st->print(":exact");
duke@435 3987 break;
duke@435 3988 }
duke@435 3989
kvn@499 3990 if( _offset != 0 ) {
kvn@499 3991 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 3992 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 3993 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 3994 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 3995 else {
kvn@499 3996 BasicType basic_elem_type = elem()->basic_type();
kvn@499 3997 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 3998 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 3999 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 4000 }
kvn@499 4001 }
kvn@499 4002 st->print(" *");
kvn@658 4003 if (_instance_id == InstanceTop)
kvn@658 4004 st->print(",iid=top");
kvn@658 4005 else if (_instance_id != InstanceBot)
duke@435 4006 st->print(",iid=%d",_instance_id);
roland@5991 4007
roland@5991 4008 dump_speculative(st);
duke@435 4009 }
duke@435 4010 #endif
duke@435 4011
duke@435 4012 bool TypeAryPtr::empty(void) const {
duke@435 4013 if (_ary->empty()) return true;
duke@435 4014 return TypeOopPtr::empty();
duke@435 4015 }
duke@435 4016
duke@435 4017 //------------------------------add_offset-------------------------------------
roland@5991 4018 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
roland@5991 4019 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset));
roland@5991 4020 }
roland@5991 4021
roland@6313 4022 const Type *TypeAryPtr::remove_speculative() const {
roland@6313 4023 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL);
roland@5991 4024 }
duke@435 4025
duke@435 4026 //=============================================================================
coleenp@548 4027
coleenp@548 4028 //------------------------------hash-------------------------------------------
coleenp@548 4029 // Type-specific hashing function.
roland@4159 4030 int TypeNarrowPtr::hash(void) const {
never@1262 4031 return _ptrtype->hash() + 7;
coleenp@548 4032 }
coleenp@548 4033
roland@4159 4034 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton
roland@4159 4035 return _ptrtype->singleton();
roland@4159 4036 }
roland@4159 4037
roland@4159 4038 bool TypeNarrowPtr::empty(void) const {
roland@4159 4039 return _ptrtype->empty();
roland@4159 4040 }
roland@4159 4041
roland@4159 4042 intptr_t TypeNarrowPtr::get_con() const {
roland@4159 4043 return _ptrtype->get_con();
roland@4159 4044 }
roland@4159 4045
roland@4159 4046 bool TypeNarrowPtr::eq( const Type *t ) const {
roland@4159 4047 const TypeNarrowPtr* tc = isa_same_narrowptr(t);
coleenp@548 4048 if (tc != NULL) {
never@1262 4049 if (_ptrtype->base() != tc->_ptrtype->base()) {
coleenp@548 4050 return false;
coleenp@548 4051 }
never@1262 4052 return tc->_ptrtype->eq(_ptrtype);
coleenp@548 4053 }
coleenp@548 4054 return false;
coleenp@548 4055 }
coleenp@548 4056
roland@4159 4057 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now.
roland@4159 4058 const TypePtr* odual = _ptrtype->dual()->is_ptr();
roland@4159 4059 return make_same_narrowptr(odual);
roland@4159 4060 }
roland@4159 4061
roland@4159 4062
roland@6313 4063 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@4159 4064 if (isa_same_narrowptr(kills)) {
roland@6313 4065 const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
roland@4159 4066 if (ft->empty())
roland@4159 4067 return Type::TOP; // Canonical empty value
roland@4159 4068 if (ft->isa_ptr()) {
roland@4159 4069 return make_hash_same_narrowptr(ft->isa_ptr());
roland@4159 4070 }
roland@4159 4071 return ft;
roland@4159 4072 } else if (kills->isa_ptr()) {
roland@6313 4073 const Type* ft = _ptrtype->join_helper(kills, include_speculative);
roland@4159 4074 if (ft->empty())
roland@4159 4075 return Type::TOP; // Canonical empty value
roland@4159 4076 return ft;
roland@4159 4077 } else {
roland@4159 4078 return Type::TOP;
roland@4159 4079 }
coleenp@548 4080 }
coleenp@548 4081
kvn@728 4082 //------------------------------xmeet------------------------------------------
coleenp@548 4083 // Compute the MEET of two types. It returns a new Type object.
roland@4159 4084 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
coleenp@548 4085 // Perform a fast test for common case; meeting the same types together.
coleenp@548 4086 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 4087
roland@4159 4088 if (t->base() == base()) {
roland@4159 4089 const Type* result = _ptrtype->xmeet(t->make_ptr());
roland@4159 4090 if (result->isa_ptr()) {
roland@4159 4091 return make_hash_same_narrowptr(result->is_ptr());
roland@4159 4092 }
roland@4159 4093 return result;
roland@4159 4094 }
roland@4159 4095
roland@4159 4096 // Current "this->_base" is NarrowKlass or NarrowOop
coleenp@548 4097 switch (t->base()) { // switch on original type
coleenp@548 4098
coleenp@548 4099 case Int: // Mixing ints & oops happens when javac
coleenp@548 4100 case Long: // reuses local variables
coleenp@548 4101 case FloatTop:
coleenp@548 4102 case FloatCon:
coleenp@548 4103 case FloatBot:
coleenp@548 4104 case DoubleTop:
coleenp@548 4105 case DoubleCon:
coleenp@548 4106 case DoubleBot:
kvn@728 4107 case AnyPtr:
kvn@728 4108 case RawPtr:
kvn@728 4109 case OopPtr:
kvn@728 4110 case InstPtr:
coleenp@4037 4111 case AryPtr:
coleenp@4037 4112 case MetadataPtr:
kvn@728 4113 case KlassPtr:
roland@4159 4114 case NarrowOop:
roland@4159 4115 case NarrowKlass:
kvn@728 4116
coleenp@548 4117 case Bottom: // Ye Olde Default
coleenp@548 4118 return Type::BOTTOM;
coleenp@548 4119 case Top:
coleenp@548 4120 return this;
coleenp@548 4121
coleenp@548 4122 default: // All else is a mistake
coleenp@548 4123 typerr(t);
coleenp@548 4124
coleenp@548 4125 } // End of switch
kvn@728 4126
kvn@728 4127 return this;
coleenp@548 4128 }
coleenp@548 4129
roland@4159 4130 #ifndef PRODUCT
roland@4159 4131 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 4132 _ptrtype->dump2(d, depth, st);
roland@4159 4133 }
roland@4159 4134 #endif
roland@4159 4135
roland@4159 4136 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
roland@4159 4137 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
roland@4159 4138
roland@4159 4139
roland@4159 4140 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
roland@4159 4141 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
roland@4159 4142 }
roland@4159 4143
coleenp@548 4144
coleenp@548 4145 #ifndef PRODUCT
coleenp@548 4146 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
never@852 4147 st->print("narrowoop: ");
roland@4159 4148 TypeNarrowPtr::dump2(d, depth, st);
coleenp@548 4149 }
coleenp@548 4150 #endif
coleenp@548 4151
roland@4159 4152 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
roland@4159 4153
roland@4159 4154 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
roland@4159 4155 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
roland@4159 4156 }
roland@4159 4157
roland@4159 4158 #ifndef PRODUCT
roland@4159 4159 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
roland@4159 4160 st->print("narrowklass: ");
roland@4159 4161 TypeNarrowPtr::dump2(d, depth, st);
roland@4159 4162 }
roland@4159 4163 #endif
coleenp@548 4164
coleenp@4037 4165
coleenp@4037 4166 //------------------------------eq---------------------------------------------
coleenp@4037 4167 // Structural equality check for Type representations
coleenp@4037 4168 bool TypeMetadataPtr::eq( const Type *t ) const {
coleenp@4037 4169 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
coleenp@4037 4170 ciMetadata* one = metadata();
coleenp@4037 4171 ciMetadata* two = a->metadata();
coleenp@4037 4172 if (one == NULL || two == NULL) {
coleenp@4037 4173 return (one == two) && TypePtr::eq(t);
coleenp@4037 4174 } else {
coleenp@4037 4175 return one->equals(two) && TypePtr::eq(t);
coleenp@4037 4176 }
coleenp@4037 4177 }
coleenp@4037 4178
coleenp@4037 4179 //------------------------------hash-------------------------------------------
coleenp@4037 4180 // Type-specific hashing function.
coleenp@4037 4181 int TypeMetadataPtr::hash(void) const {
coleenp@4037 4182 return
coleenp@4037 4183 (metadata() ? metadata()->hash() : 0) +
coleenp@4037 4184 TypePtr::hash();
coleenp@4037 4185 }
coleenp@4037 4186
coleenp@4037 4187 //------------------------------singleton--------------------------------------
coleenp@4037 4188 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 4189 // constants
coleenp@4037 4190 bool TypeMetadataPtr::singleton(void) const {
coleenp@4037 4191 // detune optimizer to not generate constant metadta + constant offset as a constant!
coleenp@4037 4192 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 4193 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 4194 }
coleenp@4037 4195
coleenp@4037 4196 //------------------------------add_offset-------------------------------------
coleenp@4037 4197 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
coleenp@4037 4198 return make( _ptr, _metadata, xadd_offset(offset));
coleenp@4037 4199 }
coleenp@4037 4200
coleenp@4037 4201 //-----------------------------filter------------------------------------------
coleenp@4037 4202 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 4203 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@6313 4204 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
coleenp@4037 4205 if (ft == NULL || ft->empty())
coleenp@4037 4206 return Type::TOP; // Canonical empty value
coleenp@4037 4207 return ft;
coleenp@4037 4208 }
coleenp@4037 4209
coleenp@4037 4210 //------------------------------get_con----------------------------------------
coleenp@4037 4211 intptr_t TypeMetadataPtr::get_con() const {
coleenp@4037 4212 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4213 assert( _offset >= 0, "" );
coleenp@4037 4214
coleenp@4037 4215 if (_offset != 0) {
coleenp@4037 4216 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4217 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4218 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4219 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4220 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4221 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4222 // but this assertion here is to help prevent its occurence.
coleenp@4037 4223 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4224 ShouldNotReachHere();
coleenp@4037 4225 }
coleenp@4037 4226
coleenp@4037 4227 return (intptr_t)metadata()->constant_encoding();
coleenp@4037 4228 }
coleenp@4037 4229
coleenp@4037 4230 //------------------------------cast_to_ptr_type-------------------------------
coleenp@4037 4231 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
coleenp@4037 4232 if( ptr == _ptr ) return this;
coleenp@4037 4233 return make(ptr, metadata(), _offset);
coleenp@4037 4234 }
coleenp@4037 4235
coleenp@4037 4236 //------------------------------meet-------------------------------------------
coleenp@4037 4237 // Compute the MEET of two types. It returns a new Type object.
coleenp@4037 4238 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
coleenp@4037 4239 // Perform a fast test for common case; meeting the same types together.
coleenp@4037 4240 if( this == t ) return this; // Meeting same type-rep?
coleenp@4037 4241
coleenp@4037 4242 // Current "this->_base" is OopPtr
coleenp@4037 4243 switch (t->base()) { // switch on original type
coleenp@4037 4244
coleenp@4037 4245 case Int: // Mixing ints & oops happens when javac
coleenp@4037 4246 case Long: // reuses local variables
coleenp@4037 4247 case FloatTop:
coleenp@4037 4248 case FloatCon:
coleenp@4037 4249 case FloatBot:
coleenp@4037 4250 case DoubleTop:
coleenp@4037 4251 case DoubleCon:
coleenp@4037 4252 case DoubleBot:
coleenp@4037 4253 case NarrowOop:
roland@4159 4254 case NarrowKlass:
coleenp@4037 4255 case Bottom: // Ye Olde Default
coleenp@4037 4256 return Type::BOTTOM;
coleenp@4037 4257 case Top:
coleenp@4037 4258 return this;
coleenp@4037 4259
coleenp@4037 4260 default: // All else is a mistake
coleenp@4037 4261 typerr(t);
coleenp@4037 4262
coleenp@4037 4263 case AnyPtr: {
coleenp@4037 4264 // Found an AnyPtr type vs self-OopPtr type
coleenp@4037 4265 const TypePtr *tp = t->is_ptr();
coleenp@4037 4266 int offset = meet_offset(tp->offset());
coleenp@4037 4267 PTR ptr = meet_ptr(tp->ptr());
coleenp@4037 4268 switch (tp->ptr()) {
coleenp@4037 4269 case Null:
coleenp@4037 4270 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 4271 // else fall through:
coleenp@4037 4272 case TopPTR:
coleenp@4037 4273 case AnyNull: {
coleenp@4037 4274 return make(ptr, NULL, offset);
coleenp@4037 4275 }
coleenp@4037 4276 case BotPTR:
coleenp@4037 4277 case NotNull:
coleenp@4037 4278 return TypePtr::make(AnyPtr, ptr, offset);
coleenp@4037 4279 default: typerr(t);
coleenp@4037 4280 }
coleenp@4037 4281 }
coleenp@4037 4282
coleenp@4037 4283 case RawPtr:
coleenp@4037 4284 case KlassPtr:
coleenp@4037 4285 case OopPtr:
coleenp@4037 4286 case InstPtr:
coleenp@4037 4287 case AryPtr:
coleenp@4037 4288 return TypePtr::BOTTOM; // Oop meet raw is not well defined
coleenp@4037 4289
roland@4040 4290 case MetadataPtr: {
roland@4040 4291 const TypeMetadataPtr *tp = t->is_metadataptr();
roland@4040 4292 int offset = meet_offset(tp->offset());
roland@4040 4293 PTR tptr = tp->ptr();
roland@4040 4294 PTR ptr = meet_ptr(tptr);
roland@4040 4295 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
roland@4040 4296 if (tptr == TopPTR || _ptr == TopPTR ||
roland@4040 4297 metadata()->equals(tp->metadata())) {
roland@4040 4298 return make(ptr, md, offset);
roland@4040 4299 }
roland@4040 4300 // metadata is different
roland@4040 4301 if( ptr == Constant ) { // Cannot be equal constants, so...
roland@4040 4302 if( tptr == Constant && _ptr != Constant) return t;
roland@4040 4303 if( _ptr == Constant && tptr != Constant) return this;
roland@4040 4304 ptr = NotNull; // Fall down in lattice
roland@4040 4305 }
roland@4040 4306 return make(ptr, NULL, offset);
coleenp@4037 4307 break;
roland@4040 4308 }
coleenp@4037 4309 } // End of switch
coleenp@4037 4310 return this; // Return the double constant
coleenp@4037 4311 }
coleenp@4037 4312
coleenp@4037 4313
coleenp@4037 4314 //------------------------------xdual------------------------------------------
coleenp@4037 4315 // Dual of a pure metadata pointer.
coleenp@4037 4316 const Type *TypeMetadataPtr::xdual() const {
coleenp@4037 4317 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
coleenp@4037 4318 }
coleenp@4037 4319
coleenp@4037 4320 //------------------------------dump2------------------------------------------
coleenp@4037 4321 #ifndef PRODUCT
coleenp@4037 4322 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
coleenp@4037 4323 st->print("metadataptr:%s", ptr_msg[_ptr]);
coleenp@4037 4324 if( metadata() ) st->print(INTPTR_FORMAT, metadata());
coleenp@4037 4325 switch( _offset ) {
coleenp@4037 4326 case OffsetTop: st->print("+top"); break;
coleenp@4037 4327 case OffsetBot: st->print("+any"); break;
coleenp@4037 4328 case 0: break;
coleenp@4037 4329 default: st->print("+%d",_offset); break;
coleenp@4037 4330 }
coleenp@4037 4331 }
coleenp@4037 4332 #endif
coleenp@4037 4333
coleenp@4037 4334
coleenp@4037 4335 //=============================================================================
coleenp@4037 4336 // Convenience common pre-built type.
coleenp@4037 4337 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
coleenp@4037 4338
coleenp@4037 4339 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
coleenp@4037 4340 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
coleenp@4037 4341 }
coleenp@4037 4342
coleenp@4037 4343 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
coleenp@4037 4344 return make(Constant, m, 0);
coleenp@4037 4345 }
coleenp@4037 4346 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
coleenp@4037 4347 return make(Constant, m, 0);
coleenp@4037 4348 }
coleenp@4037 4349
coleenp@4037 4350 //------------------------------make-------------------------------------------
coleenp@4037 4351 // Create a meta data constant
coleenp@4037 4352 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
coleenp@4037 4353 assert(m == NULL || !m->is_klass(), "wrong type");
coleenp@4037 4354 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
coleenp@4037 4355 }
coleenp@4037 4356
coleenp@4037 4357
coleenp@548 4358 //=============================================================================
duke@435 4359 // Convenience common pre-built types.
duke@435 4360
duke@435 4361 // Not-null object klass or below
duke@435 4362 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 4363 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 4364
coleenp@4037 4365 //------------------------------TypeKlassPtr-----------------------------------
duke@435 4366 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
coleenp@4037 4367 : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
duke@435 4368 }
duke@435 4369
duke@435 4370 //------------------------------make-------------------------------------------
duke@435 4371 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 4372 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 4373 assert( k != NULL, "Expect a non-NULL klass");
coleenp@4037 4374 assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
duke@435 4375 TypeKlassPtr *r =
duke@435 4376 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 4377
duke@435 4378 return r;
duke@435 4379 }
duke@435 4380
duke@435 4381 //------------------------------eq---------------------------------------------
duke@435 4382 // Structural equality check for Type representations
duke@435 4383 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 4384 const TypeKlassPtr *p = t->is_klassptr();
duke@435 4385 return
duke@435 4386 klass()->equals(p->klass()) &&
coleenp@4037 4387 TypePtr::eq(p);
duke@435 4388 }
duke@435 4389
duke@435 4390 //------------------------------hash-------------------------------------------
duke@435 4391 // Type-specific hashing function.
duke@435 4392 int TypeKlassPtr::hash(void) const {
coleenp@4037 4393 return klass()->hash() + TypePtr::hash();
coleenp@4037 4394 }
coleenp@4037 4395
coleenp@4037 4396 //------------------------------singleton--------------------------------------
coleenp@4037 4397 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
coleenp@4037 4398 // constants
coleenp@4037 4399 bool TypeKlassPtr::singleton(void) const {
coleenp@4037 4400 // detune optimizer to not generate constant klass + constant offset as a constant!
coleenp@4037 4401 // TopPTR, Null, AnyNull, Constant are all singletons
coleenp@4037 4402 return (_offset == 0) && !below_centerline(_ptr);
coleenp@4037 4403 }
duke@435 4404
roland@6043 4405 // Do not allow interface-vs.-noninterface joins to collapse to top.
roland@6313 4406 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
roland@6043 4407 // logic here mirrors the one from TypeOopPtr::filter. See comments
roland@6043 4408 // there.
roland@6313 4409 const Type* ft = join_helper(kills, include_speculative);
roland@6043 4410 const TypeKlassPtr* ftkp = ft->isa_klassptr();
roland@6043 4411 const TypeKlassPtr* ktkp = kills->isa_klassptr();
roland@6043 4412
roland@6043 4413 if (ft->empty()) {
roland@6043 4414 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
roland@6043 4415 return kills; // Uplift to interface
roland@6043 4416
roland@6043 4417 return Type::TOP; // Canonical empty value
roland@6043 4418 }
roland@6043 4419
roland@6043 4420 // Interface klass type could be exact in opposite to interface type,
roland@6043 4421 // return it here instead of incorrect Constant ptr J/L/Object (6894807).
roland@6043 4422 if (ftkp != NULL && ktkp != NULL &&
roland@6043 4423 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
roland@6043 4424 !ftkp->klass_is_exact() && // Keep exact interface klass
roland@6043 4425 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
roland@6043 4426 return ktkp->cast_to_ptr_type(ftkp->ptr());
roland@6043 4427 }
roland@6043 4428
roland@6043 4429 return ft;
roland@6043 4430 }
roland@6043 4431
kvn@2116 4432 //----------------------compute_klass------------------------------------------
kvn@2116 4433 // Compute the defining klass for this class
kvn@2116 4434 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
kvn@2116 4435 // Compute _klass based on element type.
duke@435 4436 ciKlass* k_ary = NULL;
duke@435 4437 const TypeInstPtr *tinst;
duke@435 4438 const TypeAryPtr *tary;
coleenp@548 4439 const Type* el = elem();
coleenp@548 4440 if (el->isa_narrowoop()) {
kvn@656 4441 el = el->make_ptr();
coleenp@548 4442 }
coleenp@548 4443
duke@435 4444 // Get element klass
coleenp@548 4445 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 4446 // Compute array klass from element klass
duke@435 4447 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 4448 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 4449 // Compute array klass from element klass
duke@435 4450 ciKlass* k_elem = tary->klass();
duke@435 4451 // If element type is something like bottom[], k_elem will be null.
duke@435 4452 if (k_elem != NULL)
duke@435 4453 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 4454 } else if ((el->base() == Type::Top) ||
coleenp@548 4455 (el->base() == Type::Bottom)) {
duke@435 4456 // element type of Bottom occurs from meet of basic type
duke@435 4457 // and object; Top occurs when doing join on Bottom.
duke@435 4458 // Leave k_ary at NULL.
duke@435 4459 } else {
duke@435 4460 // Cannot compute array klass directly from basic type,
duke@435 4461 // since subtypes of TypeInt all have basic type T_INT.
kvn@2116 4462 #ifdef ASSERT
kvn@2116 4463 if (verify && el->isa_int()) {
kvn@2116 4464 // Check simple cases when verifying klass.
kvn@2116 4465 BasicType bt = T_ILLEGAL;
kvn@2116 4466 if (el == TypeInt::BYTE) {
kvn@2116 4467 bt = T_BYTE;
kvn@2116 4468 } else if (el == TypeInt::SHORT) {
kvn@2116 4469 bt = T_SHORT;
kvn@2116 4470 } else if (el == TypeInt::CHAR) {
kvn@2116 4471 bt = T_CHAR;
kvn@2116 4472 } else if (el == TypeInt::INT) {
kvn@2116 4473 bt = T_INT;
kvn@2116 4474 } else {
kvn@2116 4475 return _klass; // just return specified klass
kvn@2116 4476 }
kvn@2116 4477 return ciTypeArrayKlass::make(bt);
kvn@2116 4478 }
kvn@2116 4479 #endif
coleenp@548 4480 assert(!el->isa_int(),
duke@435 4481 "integral arrays must be pre-equipped with a class");
duke@435 4482 // Compute array klass directly from basic type
coleenp@548 4483 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 4484 }
kvn@2116 4485 return k_ary;
kvn@2116 4486 }
kvn@2116 4487
kvn@2116 4488 //------------------------------klass------------------------------------------
kvn@2116 4489 // Return the defining klass for this class
kvn@2116 4490 ciKlass* TypeAryPtr::klass() const {
kvn@2116 4491 if( _klass ) return _klass; // Return cached value, if possible
kvn@2116 4492
kvn@2116 4493 // Oops, need to compute _klass and cache it
kvn@2116 4494 ciKlass* k_ary = compute_klass();
duke@435 4495
kvn@2636 4496 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
duke@435 4497 // The _klass field acts as a cache of the underlying
duke@435 4498 // ciKlass for this array type. In order to set the field,
duke@435 4499 // we need to cast away const-ness.
duke@435 4500 //
duke@435 4501 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 4502 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 4503 // active compilations. However, the ciKlass which represents
duke@435 4504 // this Type is *not* shared between compilations, so caching
duke@435 4505 // this value would result in fetching a dangling pointer.
duke@435 4506 //
duke@435 4507 // Recomputing the underlying ciKlass for each request is
duke@435 4508 // a bit less efficient than caching, but calls to
duke@435 4509 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 4510 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 4511 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 4512 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 4513 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 4514 }
kvn@598 4515 }
duke@435 4516 return k_ary;
duke@435 4517 }
duke@435 4518
duke@435 4519
duke@435 4520 //------------------------------add_offset-------------------------------------
duke@435 4521 // Access internals of klass object
kvn@741 4522 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
duke@435 4523 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 4524 }
duke@435 4525
duke@435 4526 //------------------------------cast_to_ptr_type-------------------------------
duke@435 4527 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
kvn@992 4528 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
duke@435 4529 if( ptr == _ptr ) return this;
duke@435 4530 return make(ptr, _klass, _offset);
duke@435 4531 }
duke@435 4532
duke@435 4533
duke@435 4534 //-----------------------------cast_to_exactness-------------------------------
duke@435 4535 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 4536 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 4537 if (!UseExactTypes) return this;
duke@435 4538 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 4539 }
duke@435 4540
duke@435 4541
duke@435 4542 //-----------------------------as_instance_type--------------------------------
duke@435 4543 // Corresponding type for an instance of the given class.
duke@435 4544 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 4545 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 4546 ciKlass* k = klass();
duke@435 4547 bool xk = klass_is_exact();
duke@435 4548 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 4549 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
morris@4760 4550 guarantee(toop != NULL, "need type for given klass");
duke@435 4551 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 4552 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 4553 }
duke@435 4554
duke@435 4555
duke@435 4556 //------------------------------xmeet------------------------------------------
duke@435 4557 // Compute the MEET of two types, return a new Type object.
duke@435 4558 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 4559 // Perform a fast test for common case; meeting the same types together.
duke@435 4560 if( this == t ) return this; // Meeting same type-rep?
duke@435 4561
duke@435 4562 // Current "this->_base" is Pointer
duke@435 4563 switch (t->base()) { // switch on original type
duke@435 4564
duke@435 4565 case Int: // Mixing ints & oops happens when javac
duke@435 4566 case Long: // reuses local variables
duke@435 4567 case FloatTop:
duke@435 4568 case FloatCon:
duke@435 4569 case FloatBot:
duke@435 4570 case DoubleTop:
duke@435 4571 case DoubleCon:
duke@435 4572 case DoubleBot:
kvn@728 4573 case NarrowOop:
roland@4159 4574 case NarrowKlass:
duke@435 4575 case Bottom: // Ye Olde Default
duke@435 4576 return Type::BOTTOM;
duke@435 4577 case Top:
duke@435 4578 return this;
duke@435 4579
duke@435 4580 default: // All else is a mistake
duke@435 4581 typerr(t);
duke@435 4582
duke@435 4583 case AnyPtr: { // Meeting to AnyPtrs
duke@435 4584 // Found an AnyPtr type vs self-KlassPtr type
duke@435 4585 const TypePtr *tp = t->is_ptr();
duke@435 4586 int offset = meet_offset(tp->offset());
duke@435 4587 PTR ptr = meet_ptr(tp->ptr());
duke@435 4588 switch (tp->ptr()) {
duke@435 4589 case TopPTR:
duke@435 4590 return this;
duke@435 4591 case Null:
duke@435 4592 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 4593 case AnyNull:
duke@435 4594 return make( ptr, klass(), offset );
duke@435 4595 case BotPTR:
duke@435 4596 case NotNull:
duke@435 4597 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 4598 default: typerr(t);
duke@435 4599 }
duke@435 4600 }
duke@435 4601
coleenp@4037 4602 case RawPtr:
coleenp@4037 4603 case MetadataPtr:
coleenp@4037 4604 case OopPtr:
duke@435 4605 case AryPtr: // Meet with AryPtr
duke@435 4606 case InstPtr: // Meet with InstPtr
coleenp@4037 4607 return TypePtr::BOTTOM;
duke@435 4608
duke@435 4609 //
duke@435 4610 // A-top }
duke@435 4611 // / | \ } Tops
duke@435 4612 // B-top A-any C-top }
duke@435 4613 // | / | \ | } Any-nulls
duke@435 4614 // B-any | C-any }
duke@435 4615 // | | |
duke@435 4616 // B-con A-con C-con } constants; not comparable across classes
duke@435 4617 // | | |
duke@435 4618 // B-not | C-not }
duke@435 4619 // | \ | / | } not-nulls
duke@435 4620 // B-bot A-not C-bot }
duke@435 4621 // \ | / } Bottoms
duke@435 4622 // A-bot }
duke@435 4623 //
duke@435 4624
duke@435 4625 case KlassPtr: { // Meet two KlassPtr types
duke@435 4626 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 4627 int off = meet_offset(tkls->offset());
duke@435 4628 PTR ptr = meet_ptr(tkls->ptr());
duke@435 4629
duke@435 4630 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 4631 // If we have constants, then we created oops so classes are loaded
duke@435 4632 // and we can handle the constants further down. This case handles
duke@435 4633 // not-loaded classes
duke@435 4634 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 4635 return make( ptr, klass(), off );
duke@435 4636 }
duke@435 4637
duke@435 4638 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 4639 ciKlass* tkls_klass = tkls->klass();
duke@435 4640 ciKlass* this_klass = this->klass();
duke@435 4641 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 4642 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 4643
duke@435 4644 // If 'this' type is above the centerline and is a superclass of the
duke@435 4645 // other, we can treat 'this' as having the same type as the other.
duke@435 4646 if ((above_centerline(this->ptr())) &&
duke@435 4647 tkls_klass->is_subtype_of(this_klass)) {
duke@435 4648 this_klass = tkls_klass;
duke@435 4649 }
duke@435 4650 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 4651 // other, we can treat 'tinst' as having the same type as the other.
duke@435 4652 if ((above_centerline(tkls->ptr())) &&
duke@435 4653 this_klass->is_subtype_of(tkls_klass)) {
duke@435 4654 tkls_klass = this_klass;
duke@435 4655 }
duke@435 4656
duke@435 4657 // Check for classes now being equal
duke@435 4658 if (tkls_klass->equals(this_klass)) {
duke@435 4659 // If the klasses are equal, the constants may still differ. Fall to
duke@435 4660 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 4661 // handled elsewhere).
duke@435 4662 if( ptr == Constant ) {
coleenp@4037 4663 if (this->_ptr == Constant && tkls->_ptr == Constant &&
coleenp@4037 4664 this->klass()->equals(tkls->klass()));
coleenp@4037 4665 else if (above_centerline(this->ptr()));
coleenp@4037 4666 else if (above_centerline(tkls->ptr()));
duke@435 4667 else
duke@435 4668 ptr = NotNull;
duke@435 4669 }
duke@435 4670 return make( ptr, this_klass, off );
duke@435 4671 } // Else classes are not equal
duke@435 4672
duke@435 4673 // Since klasses are different, we require the LCA in the Java
duke@435 4674 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 4675 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 4676 ptr = NotNull;
duke@435 4677 // Now we find the LCA of Java classes
duke@435 4678 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 4679 return make( ptr, k, off );
duke@435 4680 } // End of case KlassPtr
duke@435 4681
duke@435 4682 } // End of switch
duke@435 4683 return this; // Return the double constant
duke@435 4684 }
duke@435 4685
duke@435 4686 //------------------------------xdual------------------------------------------
duke@435 4687 // Dual: compute field-by-field dual
duke@435 4688 const Type *TypeKlassPtr::xdual() const {
duke@435 4689 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 4690 }
duke@435 4691
coleenp@4037 4692 //------------------------------get_con----------------------------------------
coleenp@4037 4693 intptr_t TypeKlassPtr::get_con() const {
coleenp@4037 4694 assert( _ptr == Null || _ptr == Constant, "" );
coleenp@4037 4695 assert( _offset >= 0, "" );
coleenp@4037 4696
coleenp@4037 4697 if (_offset != 0) {
coleenp@4037 4698 // After being ported to the compiler interface, the compiler no longer
coleenp@4037 4699 // directly manipulates the addresses of oops. Rather, it only has a pointer
coleenp@4037 4700 // to a handle at compile time. This handle is embedded in the generated
coleenp@4037 4701 // code and dereferenced at the time the nmethod is made. Until that time,
coleenp@4037 4702 // it is not reasonable to do arithmetic with the addresses of oops (we don't
coleenp@4037 4703 // have access to the addresses!). This does not seem to currently happen,
coleenp@4037 4704 // but this assertion here is to help prevent its occurence.
coleenp@4037 4705 tty->print_cr("Found oop constant with non-zero offset");
coleenp@4037 4706 ShouldNotReachHere();
coleenp@4037 4707 }
coleenp@4037 4708
coleenp@4037 4709 return (intptr_t)klass()->constant_encoding();
coleenp@4037 4710 }
duke@435 4711 //------------------------------dump2------------------------------------------
duke@435 4712 // Dump Klass Type
duke@435 4713 #ifndef PRODUCT
duke@435 4714 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 4715 switch( _ptr ) {
duke@435 4716 case Constant:
duke@435 4717 st->print("precise ");
duke@435 4718 case NotNull:
duke@435 4719 {
duke@435 4720 const char *name = klass()->name()->as_utf8();
duke@435 4721 if( name ) {
duke@435 4722 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 4723 } else {
duke@435 4724 ShouldNotReachHere();
duke@435 4725 }
duke@435 4726 }
duke@435 4727 case BotPTR:
duke@435 4728 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 4729 case TopPTR:
duke@435 4730 case AnyNull:
duke@435 4731 st->print(":%s", ptr_msg[_ptr]);
duke@435 4732 if( _klass_is_exact ) st->print(":exact");
duke@435 4733 break;
duke@435 4734 }
duke@435 4735
duke@435 4736 if( _offset ) { // Dump offset, if any
duke@435 4737 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 4738 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 4739 else { st->print("+%d", _offset); }
duke@435 4740 }
duke@435 4741
duke@435 4742 st->print(" *");
duke@435 4743 }
duke@435 4744 #endif
duke@435 4745
duke@435 4746
duke@435 4747
duke@435 4748 //=============================================================================
duke@435 4749 // Convenience common pre-built types.
duke@435 4750
duke@435 4751 //------------------------------make-------------------------------------------
duke@435 4752 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 4753 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 4754 }
duke@435 4755
duke@435 4756 //------------------------------make-------------------------------------------
duke@435 4757 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 4758 Compile* C = Compile::current();
duke@435 4759 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 4760 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 4761 const TypeTuple *domain;
twisti@1572 4762 if (method->is_static()) {
duke@435 4763 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 4764 } else {
duke@435 4765 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 4766 }
duke@435 4767 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 4768 tf = TypeFunc::make(domain, range);
duke@435 4769 C->set_last_tf(method, tf); // fill cache
duke@435 4770 return tf;
duke@435 4771 }
duke@435 4772
duke@435 4773 //------------------------------meet-------------------------------------------
duke@435 4774 // Compute the MEET of two types. It returns a new Type object.
duke@435 4775 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 4776 // Perform a fast test for common case; meeting the same types together.
duke@435 4777 if( this == t ) return this; // Meeting same type-rep?
duke@435 4778
duke@435 4779 // Current "this->_base" is Func
duke@435 4780 switch (t->base()) { // switch on original type
duke@435 4781
duke@435 4782 case Bottom: // Ye Olde Default
duke@435 4783 return t;
duke@435 4784
duke@435 4785 default: // All else is a mistake
duke@435 4786 typerr(t);
duke@435 4787
duke@435 4788 case Top:
duke@435 4789 break;
duke@435 4790 }
duke@435 4791 return this; // Return the double constant
duke@435 4792 }
duke@435 4793
duke@435 4794 //------------------------------xdual------------------------------------------
duke@435 4795 // Dual: compute field-by-field dual
duke@435 4796 const Type *TypeFunc::xdual() const {
duke@435 4797 return this;
duke@435 4798 }
duke@435 4799
duke@435 4800 //------------------------------eq---------------------------------------------
duke@435 4801 // Structural equality check for Type representations
duke@435 4802 bool TypeFunc::eq( const Type *t ) const {
duke@435 4803 const TypeFunc *a = (const TypeFunc*)t;
duke@435 4804 return _domain == a->_domain &&
duke@435 4805 _range == a->_range;
duke@435 4806 }
duke@435 4807
duke@435 4808 //------------------------------hash-------------------------------------------
duke@435 4809 // Type-specific hashing function.
duke@435 4810 int TypeFunc::hash(void) const {
duke@435 4811 return (intptr_t)_domain + (intptr_t)_range;
duke@435 4812 }
duke@435 4813
duke@435 4814 //------------------------------dump2------------------------------------------
duke@435 4815 // Dump Function Type
duke@435 4816 #ifndef PRODUCT
duke@435 4817 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 4818 if( _range->_cnt <= Parms )
duke@435 4819 st->print("void");
duke@435 4820 else {
duke@435 4821 uint i;
duke@435 4822 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 4823 _range->field_at(i)->dump2(d,depth,st);
duke@435 4824 st->print("/");
duke@435 4825 }
duke@435 4826 _range->field_at(i)->dump2(d,depth,st);
duke@435 4827 }
duke@435 4828 st->print(" ");
duke@435 4829 st->print("( ");
duke@435 4830 if( !depth || d[this] ) { // Check for recursive dump
duke@435 4831 st->print("...)");
duke@435 4832 return;
duke@435 4833 }
duke@435 4834 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 4835 if (Parms < _domain->_cnt)
duke@435 4836 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 4837 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 4838 st->print(", ");
duke@435 4839 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 4840 }
duke@435 4841 st->print(" )");
duke@435 4842 }
duke@435 4843 #endif
duke@435 4844
duke@435 4845 //------------------------------singleton--------------------------------------
duke@435 4846 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 4847 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 4848 // or a single symbol.
duke@435 4849 bool TypeFunc::singleton(void) const {
duke@435 4850 return false; // Never a singleton
duke@435 4851 }
duke@435 4852
duke@435 4853 bool TypeFunc::empty(void) const {
duke@435 4854 return false; // Never empty
duke@435 4855 }
duke@435 4856
duke@435 4857
duke@435 4858 BasicType TypeFunc::return_type() const{
duke@435 4859 if (range()->cnt() == TypeFunc::Parms) {
duke@435 4860 return T_VOID;
duke@435 4861 }
duke@435 4862 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 4863 }

mercurial