src/share/classes/com/sun/tools/javac/code/Types.java

Sun, 04 Nov 2012 10:59:42 +0000

author
mcimadamore
date
Sun, 04 Nov 2012 10:59:42 +0000
changeset 1393
d7d932236fee
parent 1374
c002fdee76fd
child 1415
01c9d4161882
permissions
-rw-r--r--

7192246: Add type-checking support for default methods
Summary: Add type-checking support for default methods as per Featherweight-Defender document
Reviewed-by: jjg, dlsmith

duke@1 1 /*
mcimadamore@1177 2 * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.code;
duke@1 27
mcimadamore@341 28 import java.lang.ref.SoftReference;
duke@1 29 import java.util.*;
duke@1 30
jjg@657 31 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
mcimadamore@795 32 import com.sun.tools.javac.code.Lint.LintCategory;
mcimadamore@1338 33 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
duke@1 34 import com.sun.tools.javac.comp.Check;
jjg@1357 35 import com.sun.tools.javac.jvm.ClassReader;
jjg@1357 36 import com.sun.tools.javac.util.*;
jjg@1357 37 import com.sun.tools.javac.util.List;
jjg@1357 38 import static com.sun.tools.javac.code.BoundKind.*;
jjg@1357 39 import static com.sun.tools.javac.code.Flags.*;
mcimadamore@858 40 import static com.sun.tools.javac.code.Scope.*;
jjg@1357 41 import static com.sun.tools.javac.code.Symbol.*;
duke@1 42 import static com.sun.tools.javac.code.Type.*;
jjg@1374 43 import static com.sun.tools.javac.code.TypeTag.*;
duke@1 44 import static com.sun.tools.javac.util.ListBuffer.lb;
duke@1 45
duke@1 46 /**
duke@1 47 * Utility class containing various operations on types.
duke@1 48 *
duke@1 49 * <p>Unless other names are more illustrative, the following naming
duke@1 50 * conventions should be observed in this file:
duke@1 51 *
duke@1 52 * <dl>
duke@1 53 * <dt>t</dt>
duke@1 54 * <dd>If the first argument to an operation is a type, it should be named t.</dd>
duke@1 55 * <dt>s</dt>
duke@1 56 * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
duke@1 57 * <dt>ts</dt>
duke@1 58 * <dd>If an operations takes a list of types, the first should be named ts.</dd>
duke@1 59 * <dt>ss</dt>
duke@1 60 * <dd>A second list of types should be named ss.</dd>
duke@1 61 * </dl>
duke@1 62 *
jjg@581 63 * <p><b>This is NOT part of any supported API.
duke@1 64 * If you write code that depends on this, you do so at your own risk.
duke@1 65 * This code and its internal interfaces are subject to change or
duke@1 66 * deletion without notice.</b>
duke@1 67 */
duke@1 68 public class Types {
duke@1 69 protected static final Context.Key<Types> typesKey =
duke@1 70 new Context.Key<Types>();
duke@1 71
duke@1 72 final Symtab syms;
mcimadamore@136 73 final JavacMessages messages;
jjg@113 74 final Names names;
duke@1 75 final boolean allowBoxing;
jjg@984 76 final boolean allowCovariantReturns;
jjg@984 77 final boolean allowObjectToPrimitiveCast;
mcimadamore@1393 78 final boolean allowDefaultMethods;
duke@1 79 final ClassReader reader;
duke@1 80 final Check chk;
mcimadamore@1348 81 JCDiagnostic.Factory diags;
duke@1 82 List<Warner> warnStack = List.nil();
duke@1 83 final Name capturedName;
mcimadamore@1348 84 private final FunctionDescriptorLookupError functionDescriptorLookupError;
duke@1 85
duke@1 86 // <editor-fold defaultstate="collapsed" desc="Instantiating">
duke@1 87 public static Types instance(Context context) {
duke@1 88 Types instance = context.get(typesKey);
duke@1 89 if (instance == null)
duke@1 90 instance = new Types(context);
duke@1 91 return instance;
duke@1 92 }
duke@1 93
duke@1 94 protected Types(Context context) {
duke@1 95 context.put(typesKey, this);
duke@1 96 syms = Symtab.instance(context);
jjg@113 97 names = Names.instance(context);
jjg@984 98 Source source = Source.instance(context);
jjg@984 99 allowBoxing = source.allowBoxing();
jjg@984 100 allowCovariantReturns = source.allowCovariantReturns();
jjg@984 101 allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
mcimadamore@1393 102 allowDefaultMethods = source.allowDefaultMethods();
duke@1 103 reader = ClassReader.instance(context);
duke@1 104 chk = Check.instance(context);
duke@1 105 capturedName = names.fromString("<captured wildcard>");
mcimadamore@136 106 messages = JavacMessages.instance(context);
mcimadamore@1348 107 diags = JCDiagnostic.Factory.instance(context);
mcimadamore@1348 108 functionDescriptorLookupError = new FunctionDescriptorLookupError();
duke@1 109 }
duke@1 110 // </editor-fold>
duke@1 111
duke@1 112 // <editor-fold defaultstate="collapsed" desc="upperBound">
duke@1 113 /**
duke@1 114 * The "rvalue conversion".<br>
duke@1 115 * The upper bound of most types is the type
duke@1 116 * itself. Wildcards, on the other hand have upper
duke@1 117 * and lower bounds.
duke@1 118 * @param t a type
duke@1 119 * @return the upper bound of the given type
duke@1 120 */
duke@1 121 public Type upperBound(Type t) {
duke@1 122 return upperBound.visit(t);
duke@1 123 }
duke@1 124 // where
duke@1 125 private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
duke@1 126
duke@1 127 @Override
duke@1 128 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 129 if (t.isSuperBound())
duke@1 130 return t.bound == null ? syms.objectType : t.bound.bound;
duke@1 131 else
duke@1 132 return visit(t.type);
duke@1 133 }
duke@1 134
duke@1 135 @Override
duke@1 136 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 137 return visit(t.bound);
duke@1 138 }
duke@1 139 };
duke@1 140 // </editor-fold>
duke@1 141
duke@1 142 // <editor-fold defaultstate="collapsed" desc="lowerBound">
duke@1 143 /**
duke@1 144 * The "lvalue conversion".<br>
duke@1 145 * The lower bound of most types is the type
duke@1 146 * itself. Wildcards, on the other hand have upper
duke@1 147 * and lower bounds.
duke@1 148 * @param t a type
duke@1 149 * @return the lower bound of the given type
duke@1 150 */
duke@1 151 public Type lowerBound(Type t) {
duke@1 152 return lowerBound.visit(t);
duke@1 153 }
duke@1 154 // where
duke@1 155 private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
duke@1 156
duke@1 157 @Override
duke@1 158 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 159 return t.isExtendsBound() ? syms.botType : visit(t.type);
duke@1 160 }
duke@1 161
duke@1 162 @Override
duke@1 163 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 164 return visit(t.getLowerBound());
duke@1 165 }
duke@1 166 };
duke@1 167 // </editor-fold>
duke@1 168
duke@1 169 // <editor-fold defaultstate="collapsed" desc="isUnbounded">
duke@1 170 /**
duke@1 171 * Checks that all the arguments to a class are unbounded
duke@1 172 * wildcards or something else that doesn't make any restrictions
duke@1 173 * on the arguments. If a class isUnbounded, a raw super- or
duke@1 174 * subclass can be cast to it without a warning.
duke@1 175 * @param t a type
duke@1 176 * @return true iff the given type is unbounded or raw
duke@1 177 */
duke@1 178 public boolean isUnbounded(Type t) {
duke@1 179 return isUnbounded.visit(t);
duke@1 180 }
duke@1 181 // where
duke@1 182 private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
duke@1 183
duke@1 184 public Boolean visitType(Type t, Void ignored) {
duke@1 185 return true;
duke@1 186 }
duke@1 187
duke@1 188 @Override
duke@1 189 public Boolean visitClassType(ClassType t, Void ignored) {
duke@1 190 List<Type> parms = t.tsym.type.allparams();
duke@1 191 List<Type> args = t.allparams();
duke@1 192 while (parms.nonEmpty()) {
duke@1 193 WildcardType unb = new WildcardType(syms.objectType,
duke@1 194 BoundKind.UNBOUND,
duke@1 195 syms.boundClass,
duke@1 196 (TypeVar)parms.head);
duke@1 197 if (!containsType(args.head, unb))
duke@1 198 return false;
duke@1 199 parms = parms.tail;
duke@1 200 args = args.tail;
duke@1 201 }
duke@1 202 return true;
duke@1 203 }
duke@1 204 };
duke@1 205 // </editor-fold>
duke@1 206
duke@1 207 // <editor-fold defaultstate="collapsed" desc="asSub">
duke@1 208 /**
duke@1 209 * Return the least specific subtype of t that starts with symbol
duke@1 210 * sym. If none exists, return null. The least specific subtype
duke@1 211 * is determined as follows:
duke@1 212 *
duke@1 213 * <p>If there is exactly one parameterized instance of sym that is a
duke@1 214 * subtype of t, that parameterized instance is returned.<br>
duke@1 215 * Otherwise, if the plain type or raw type `sym' is a subtype of
duke@1 216 * type t, the type `sym' itself is returned. Otherwise, null is
duke@1 217 * returned.
duke@1 218 */
duke@1 219 public Type asSub(Type t, Symbol sym) {
duke@1 220 return asSub.visit(t, sym);
duke@1 221 }
duke@1 222 // where
duke@1 223 private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
duke@1 224
duke@1 225 public Type visitType(Type t, Symbol sym) {
duke@1 226 return null;
duke@1 227 }
duke@1 228
duke@1 229 @Override
duke@1 230 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 231 if (t.tsym == sym)
duke@1 232 return t;
duke@1 233 Type base = asSuper(sym.type, t.tsym);
duke@1 234 if (base == null)
duke@1 235 return null;
duke@1 236 ListBuffer<Type> from = new ListBuffer<Type>();
duke@1 237 ListBuffer<Type> to = new ListBuffer<Type>();
duke@1 238 try {
duke@1 239 adapt(base, t, from, to);
duke@1 240 } catch (AdaptFailure ex) {
duke@1 241 return null;
duke@1 242 }
duke@1 243 Type res = subst(sym.type, from.toList(), to.toList());
duke@1 244 if (!isSubtype(res, t))
duke@1 245 return null;
duke@1 246 ListBuffer<Type> openVars = new ListBuffer<Type>();
duke@1 247 for (List<Type> l = sym.type.allparams();
duke@1 248 l.nonEmpty(); l = l.tail)
duke@1 249 if (res.contains(l.head) && !t.contains(l.head))
duke@1 250 openVars.append(l.head);
duke@1 251 if (openVars.nonEmpty()) {
duke@1 252 if (t.isRaw()) {
duke@1 253 // The subtype of a raw type is raw
duke@1 254 res = erasure(res);
duke@1 255 } else {
duke@1 256 // Unbound type arguments default to ?
duke@1 257 List<Type> opens = openVars.toList();
duke@1 258 ListBuffer<Type> qs = new ListBuffer<Type>();
duke@1 259 for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
duke@1 260 qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
duke@1 261 }
duke@1 262 res = subst(res, opens, qs.toList());
duke@1 263 }
duke@1 264 }
duke@1 265 return res;
duke@1 266 }
duke@1 267
duke@1 268 @Override
duke@1 269 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 270 return t;
duke@1 271 }
duke@1 272 };
duke@1 273 // </editor-fold>
duke@1 274
duke@1 275 // <editor-fold defaultstate="collapsed" desc="isConvertible">
duke@1 276 /**
mcimadamore@1071 277 * Is t a subtype of or convertible via boxing/unboxing
mcimadamore@1071 278 * conversion to s?
duke@1 279 */
duke@1 280 public boolean isConvertible(Type t, Type s, Warner warn) {
mcimadamore@1071 281 if (t.tag == ERROR)
mcimadamore@1071 282 return true;
duke@1 283 boolean tPrimitive = t.isPrimitive();
duke@1 284 boolean sPrimitive = s.isPrimitive();
mcimadamore@795 285 if (tPrimitive == sPrimitive) {
duke@1 286 return isSubtypeUnchecked(t, s, warn);
mcimadamore@795 287 }
duke@1 288 if (!allowBoxing) return false;
duke@1 289 return tPrimitive
duke@1 290 ? isSubtype(boxedClass(t).type, s)
duke@1 291 : isSubtype(unboxedType(t), s);
duke@1 292 }
duke@1 293
duke@1 294 /**
duke@1 295 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 296 * convertions to s?
duke@1 297 */
duke@1 298 public boolean isConvertible(Type t, Type s) {
duke@1 299 return isConvertible(t, s, Warner.noWarnings);
duke@1 300 }
duke@1 301 // </editor-fold>
duke@1 302
mcimadamore@1348 303 // <editor-fold defaultstate="collapsed" desc="findSam">
mcimadamore@1348 304
mcimadamore@1348 305 /**
mcimadamore@1348 306 * Exception used to report a function descriptor lookup failure. The exception
mcimadamore@1348 307 * wraps a diagnostic that can be used to generate more details error
mcimadamore@1348 308 * messages.
mcimadamore@1348 309 */
mcimadamore@1348 310 public static class FunctionDescriptorLookupError extends RuntimeException {
mcimadamore@1348 311 private static final long serialVersionUID = 0;
mcimadamore@1348 312
mcimadamore@1348 313 JCDiagnostic diagnostic;
mcimadamore@1348 314
mcimadamore@1348 315 FunctionDescriptorLookupError() {
mcimadamore@1348 316 this.diagnostic = null;
mcimadamore@1348 317 }
mcimadamore@1348 318
mcimadamore@1348 319 FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
mcimadamore@1348 320 this.diagnostic = diag;
mcimadamore@1348 321 return this;
mcimadamore@1348 322 }
mcimadamore@1348 323
mcimadamore@1348 324 public JCDiagnostic getDiagnostic() {
mcimadamore@1348 325 return diagnostic;
mcimadamore@1348 326 }
mcimadamore@1348 327 }
mcimadamore@1348 328
mcimadamore@1348 329 /**
mcimadamore@1348 330 * A cache that keeps track of function descriptors associated with given
mcimadamore@1348 331 * functional interfaces.
mcimadamore@1348 332 */
mcimadamore@1348 333 class DescriptorCache {
mcimadamore@1348 334
mcimadamore@1348 335 private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<TypeSymbol, Entry>();
mcimadamore@1348 336
mcimadamore@1348 337 class FunctionDescriptor {
mcimadamore@1348 338 Symbol descSym;
mcimadamore@1348 339
mcimadamore@1348 340 FunctionDescriptor(Symbol descSym) {
mcimadamore@1348 341 this.descSym = descSym;
mcimadamore@1348 342 }
mcimadamore@1348 343
mcimadamore@1348 344 public Symbol getSymbol() {
mcimadamore@1348 345 return descSym;
mcimadamore@1348 346 }
mcimadamore@1348 347
mcimadamore@1348 348 public Type getType(Type origin) {
mcimadamore@1348 349 return memberType(origin, descSym);
mcimadamore@1348 350 }
mcimadamore@1348 351 }
mcimadamore@1348 352
mcimadamore@1348 353 class Entry {
mcimadamore@1348 354 final FunctionDescriptor cachedDescRes;
mcimadamore@1348 355 final int prevMark;
mcimadamore@1348 356
mcimadamore@1348 357 public Entry(FunctionDescriptor cachedDescRes,
mcimadamore@1348 358 int prevMark) {
mcimadamore@1348 359 this.cachedDescRes = cachedDescRes;
mcimadamore@1348 360 this.prevMark = prevMark;
mcimadamore@1348 361 }
mcimadamore@1348 362
mcimadamore@1348 363 boolean matches(int mark) {
mcimadamore@1348 364 return this.prevMark == mark;
mcimadamore@1348 365 }
mcimadamore@1348 366 }
mcimadamore@1348 367
mcimadamore@1348 368 FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
mcimadamore@1348 369 Entry e = _map.get(origin);
mcimadamore@1348 370 CompoundScope members = membersClosure(origin.type, false);
mcimadamore@1348 371 if (e == null ||
mcimadamore@1348 372 !e.matches(members.getMark())) {
mcimadamore@1348 373 FunctionDescriptor descRes = findDescriptorInternal(origin, members);
mcimadamore@1348 374 _map.put(origin, new Entry(descRes, members.getMark()));
mcimadamore@1348 375 return descRes;
mcimadamore@1348 376 }
mcimadamore@1348 377 else {
mcimadamore@1348 378 return e.cachedDescRes;
mcimadamore@1348 379 }
mcimadamore@1348 380 }
mcimadamore@1348 381
mcimadamore@1348 382 /**
mcimadamore@1348 383 * Scope filter used to skip methods that should be ignored during
mcimadamore@1348 384 * function interface conversion (such as methods overridden by
mcimadamore@1348 385 * j.l.Object)
mcimadamore@1348 386 */
mcimadamore@1348 387 class DescriptorFilter implements Filter<Symbol> {
mcimadamore@1348 388
mcimadamore@1348 389 TypeSymbol origin;
mcimadamore@1348 390
mcimadamore@1348 391 DescriptorFilter(TypeSymbol origin) {
mcimadamore@1348 392 this.origin = origin;
mcimadamore@1348 393 }
mcimadamore@1348 394
mcimadamore@1348 395 @Override
mcimadamore@1348 396 public boolean accepts(Symbol sym) {
mcimadamore@1348 397 return sym.kind == Kinds.MTH &&
mcimadamore@1348 398 (sym.flags() & ABSTRACT) != 0 &&
mcimadamore@1348 399 !overridesObjectMethod(origin, sym) &&
mcimadamore@1348 400 notOverridden(sym);
mcimadamore@1348 401 }
mcimadamore@1348 402
mcimadamore@1348 403 private boolean notOverridden(Symbol msym) {
mcimadamore@1348 404 Symbol impl = ((MethodSymbol)msym).implementation(origin, Types.this, false);
mcimadamore@1348 405 return impl == null || (impl.flags() & ABSTRACT) != 0;
mcimadamore@1348 406 }
mcimadamore@1348 407 };
mcimadamore@1348 408
mcimadamore@1348 409 /**
mcimadamore@1348 410 * Compute the function descriptor associated with a given functional interface
mcimadamore@1348 411 */
mcimadamore@1348 412 public FunctionDescriptor findDescriptorInternal(TypeSymbol origin, CompoundScope membersCache) throws FunctionDescriptorLookupError {
mcimadamore@1348 413 if (!origin.isInterface()) {
mcimadamore@1348 414 //t must be an interface
mcimadamore@1348 415 throw failure("not.a.functional.intf");
mcimadamore@1348 416 }
mcimadamore@1348 417
mcimadamore@1348 418 final ListBuffer<Symbol> abstracts = ListBuffer.lb();
mcimadamore@1348 419 for (Symbol sym : membersCache.getElements(new DescriptorFilter(origin))) {
mcimadamore@1348 420 Type mtype = memberType(origin.type, sym);
mcimadamore@1348 421 if (abstracts.isEmpty() ||
mcimadamore@1348 422 (sym.name == abstracts.first().name &&
mcimadamore@1348 423 overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
mcimadamore@1348 424 abstracts.append(sym);
mcimadamore@1348 425 } else {
mcimadamore@1348 426 //the target method(s) should be the only abstract members of t
mcimadamore@1348 427 throw failure("not.a.functional.intf.1",
mcimadamore@1348 428 diags.fragment("incompatible.abstracts", Kinds.kindName(origin), origin));
mcimadamore@1348 429 }
mcimadamore@1348 430 }
mcimadamore@1348 431 if (abstracts.isEmpty()) {
mcimadamore@1348 432 //t must define a suitable non-generic method
mcimadamore@1348 433 throw failure("not.a.functional.intf.1",
mcimadamore@1348 434 diags.fragment("no.abstracts", Kinds.kindName(origin), origin));
mcimadamore@1348 435 } else if (abstracts.size() == 1) {
mcimadamore@1348 436 if (abstracts.first().type.tag == FORALL) {
mcimadamore@1348 437 throw failure("invalid.generic.desc.in.functional.intf",
mcimadamore@1348 438 abstracts.first(),
mcimadamore@1348 439 Kinds.kindName(origin),
mcimadamore@1348 440 origin);
mcimadamore@1348 441 } else {
mcimadamore@1348 442 return new FunctionDescriptor(abstracts.first());
mcimadamore@1348 443 }
mcimadamore@1348 444 } else { // size > 1
mcimadamore@1348 445 for (Symbol msym : abstracts) {
mcimadamore@1348 446 if (msym.type.tag == FORALL) {
mcimadamore@1348 447 throw failure("invalid.generic.desc.in.functional.intf",
mcimadamore@1348 448 abstracts.first(),
mcimadamore@1348 449 Kinds.kindName(origin),
mcimadamore@1348 450 origin);
mcimadamore@1348 451 }
mcimadamore@1348 452 }
mcimadamore@1348 453 FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
mcimadamore@1348 454 if (descRes == null) {
mcimadamore@1348 455 //we can get here if the functional interface is ill-formed
mcimadamore@1348 456 ListBuffer<JCDiagnostic> descriptors = ListBuffer.lb();
mcimadamore@1348 457 for (Symbol desc : abstracts) {
mcimadamore@1348 458 String key = desc.type.getThrownTypes().nonEmpty() ?
mcimadamore@1348 459 "descriptor.throws" : "descriptor";
mcimadamore@1348 460 descriptors.append(diags.fragment(key, desc.name,
mcimadamore@1348 461 desc.type.getParameterTypes(),
mcimadamore@1348 462 desc.type.getReturnType(),
mcimadamore@1348 463 desc.type.getThrownTypes()));
mcimadamore@1348 464 }
mcimadamore@1348 465 JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
mcimadamore@1348 466 new JCDiagnostic.MultilineDiagnostic(diags.fragment("incompatible.descs.in.functional.intf",
mcimadamore@1348 467 Kinds.kindName(origin), origin), descriptors.toList());
mcimadamore@1348 468 throw failure(incompatibleDescriptors);
mcimadamore@1348 469 }
mcimadamore@1348 470 return descRes;
mcimadamore@1348 471 }
mcimadamore@1348 472 }
mcimadamore@1348 473
mcimadamore@1348 474 /**
mcimadamore@1348 475 * Compute a synthetic type for the target descriptor given a list
mcimadamore@1348 476 * of override-equivalent methods in the functional interface type.
mcimadamore@1348 477 * The resulting method type is a method type that is override-equivalent
mcimadamore@1348 478 * and return-type substitutable with each method in the original list.
mcimadamore@1348 479 */
mcimadamore@1348 480 private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
mcimadamore@1348 481 //pick argument types - simply take the signature that is a
mcimadamore@1348 482 //subsignature of all other signatures in the list (as per JLS 8.4.2)
mcimadamore@1348 483 List<Symbol> mostSpecific = List.nil();
mcimadamore@1348 484 outer: for (Symbol msym1 : methodSyms) {
mcimadamore@1348 485 Type mt1 = memberType(origin.type, msym1);
mcimadamore@1348 486 for (Symbol msym2 : methodSyms) {
mcimadamore@1348 487 Type mt2 = memberType(origin.type, msym2);
mcimadamore@1348 488 if (!isSubSignature(mt1, mt2)) {
mcimadamore@1348 489 continue outer;
mcimadamore@1348 490 }
mcimadamore@1348 491 }
mcimadamore@1348 492 mostSpecific = mostSpecific.prepend(msym1);
mcimadamore@1348 493 }
mcimadamore@1348 494 if (mostSpecific.isEmpty()) {
mcimadamore@1348 495 return null;
mcimadamore@1348 496 }
mcimadamore@1348 497
mcimadamore@1348 498
mcimadamore@1348 499 //pick return types - this is done in two phases: (i) first, the most
mcimadamore@1348 500 //specific return type is chosen using strict subtyping; if this fails,
mcimadamore@1348 501 //a second attempt is made using return type substitutability (see JLS 8.4.5)
mcimadamore@1348 502 boolean phase2 = false;
mcimadamore@1348 503 Symbol bestSoFar = null;
mcimadamore@1348 504 while (bestSoFar == null) {
mcimadamore@1348 505 outer: for (Symbol msym1 : mostSpecific) {
mcimadamore@1348 506 Type mt1 = memberType(origin.type, msym1);
mcimadamore@1348 507 for (Symbol msym2 : methodSyms) {
mcimadamore@1348 508 Type mt2 = memberType(origin.type, msym2);
mcimadamore@1348 509 if (phase2 ?
mcimadamore@1348 510 !returnTypeSubstitutable(mt1, mt2) :
mcimadamore@1348 511 !isSubtypeInternal(mt1.getReturnType(), mt2.getReturnType())) {
mcimadamore@1348 512 continue outer;
mcimadamore@1348 513 }
mcimadamore@1348 514 }
mcimadamore@1348 515 bestSoFar = msym1;
mcimadamore@1348 516 }
mcimadamore@1348 517 if (phase2) {
mcimadamore@1348 518 break;
mcimadamore@1348 519 } else {
mcimadamore@1348 520 phase2 = true;
mcimadamore@1348 521 }
mcimadamore@1348 522 }
mcimadamore@1348 523 if (bestSoFar == null) return null;
mcimadamore@1348 524
mcimadamore@1348 525 //merge thrown types - form the intersection of all the thrown types in
mcimadamore@1348 526 //all the signatures in the list
mcimadamore@1348 527 List<Type> thrown = null;
mcimadamore@1348 528 for (Symbol msym1 : methodSyms) {
mcimadamore@1348 529 Type mt1 = memberType(origin.type, msym1);
mcimadamore@1348 530 thrown = (thrown == null) ?
mcimadamore@1348 531 mt1.getThrownTypes() :
mcimadamore@1348 532 chk.intersect(mt1.getThrownTypes(), thrown);
mcimadamore@1348 533 }
mcimadamore@1348 534
mcimadamore@1348 535 final List<Type> thrown1 = thrown;
mcimadamore@1348 536 return new FunctionDescriptor(bestSoFar) {
mcimadamore@1348 537 @Override
mcimadamore@1348 538 public Type getType(Type origin) {
mcimadamore@1348 539 Type mt = memberType(origin, getSymbol());
mcimadamore@1348 540 return new MethodType(mt.getParameterTypes(), mt.getReturnType(), thrown1, syms.methodClass);
mcimadamore@1348 541 }
mcimadamore@1348 542 };
mcimadamore@1348 543 }
mcimadamore@1348 544
mcimadamore@1348 545 boolean isSubtypeInternal(Type s, Type t) {
mcimadamore@1348 546 return (s.isPrimitive() && t.isPrimitive()) ?
mcimadamore@1348 547 isSameType(t, s) :
mcimadamore@1348 548 isSubtype(s, t);
mcimadamore@1348 549 }
mcimadamore@1348 550
mcimadamore@1348 551 FunctionDescriptorLookupError failure(String msg, Object... args) {
mcimadamore@1348 552 return failure(diags.fragment(msg, args));
mcimadamore@1348 553 }
mcimadamore@1348 554
mcimadamore@1348 555 FunctionDescriptorLookupError failure(JCDiagnostic diag) {
mcimadamore@1348 556 return functionDescriptorLookupError.setMessage(diag);
mcimadamore@1348 557 }
mcimadamore@1348 558 }
mcimadamore@1348 559
mcimadamore@1348 560 private DescriptorCache descCache = new DescriptorCache();
mcimadamore@1348 561
mcimadamore@1348 562 /**
mcimadamore@1348 563 * Find the method descriptor associated to this class symbol - if the
mcimadamore@1348 564 * symbol 'origin' is not a functional interface, an exception is thrown.
mcimadamore@1348 565 */
mcimadamore@1348 566 public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
mcimadamore@1348 567 return descCache.get(origin).getSymbol();
mcimadamore@1348 568 }
mcimadamore@1348 569
mcimadamore@1348 570 /**
mcimadamore@1348 571 * Find the type of the method descriptor associated to this class symbol -
mcimadamore@1348 572 * if the symbol 'origin' is not a functional interface, an exception is thrown.
mcimadamore@1348 573 */
mcimadamore@1348 574 public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
mcimadamore@1348 575 return descCache.get(origin.tsym).getType(origin);
mcimadamore@1348 576 }
mcimadamore@1348 577
mcimadamore@1348 578 /**
mcimadamore@1348 579 * Is given type a functional interface?
mcimadamore@1348 580 */
mcimadamore@1348 581 public boolean isFunctionalInterface(TypeSymbol tsym) {
mcimadamore@1348 582 try {
mcimadamore@1348 583 findDescriptorSymbol(tsym);
mcimadamore@1348 584 return true;
mcimadamore@1348 585 } catch (FunctionDescriptorLookupError ex) {
mcimadamore@1348 586 return false;
mcimadamore@1348 587 }
mcimadamore@1348 588 }
mcimadamore@1348 589 // </editor-fold>
mcimadamore@1348 590
duke@1 591 // <editor-fold defaultstate="collapsed" desc="isSubtype">
duke@1 592 /**
duke@1 593 * Is t an unchecked subtype of s?
duke@1 594 */
duke@1 595 public boolean isSubtypeUnchecked(Type t, Type s) {
duke@1 596 return isSubtypeUnchecked(t, s, Warner.noWarnings);
duke@1 597 }
duke@1 598 /**
duke@1 599 * Is t an unchecked subtype of s?
duke@1 600 */
duke@1 601 public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
mcimadamore@1108 602 boolean result = isSubtypeUncheckedInternal(t, s, warn);
mcimadamore@1108 603 if (result) {
mcimadamore@1108 604 checkUnsafeVarargsConversion(t, s, warn);
mcimadamore@1108 605 }
mcimadamore@1108 606 return result;
mcimadamore@1108 607 }
mcimadamore@1108 608 //where
mcimadamore@1108 609 private boolean isSubtypeUncheckedInternal(Type t, Type s, Warner warn) {
jjg@1374 610 if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
jjg@1374 611 if (((ArrayType)t).elemtype.isPrimitive()) {
mcimadamore@1108 612 return isSameType(elemtype(t), elemtype(s));
mcimadamore@1108 613 } else {
mcimadamore@1108 614 return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
mcimadamore@795 615 }
mcimadamore@1108 616 } else if (isSubtype(t, s)) {
duke@1 617 return true;
duke@1 618 }
mcimadamore@1108 619 else if (t.tag == TYPEVAR) {
mcimadamore@1108 620 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
mcimadamore@1108 621 }
mcimadamore@1108 622 else if (!s.isRaw()) {
mcimadamore@1108 623 Type t2 = asSuper(t, s.tsym);
mcimadamore@1108 624 if (t2 != null && t2.isRaw()) {
mcimadamore@1108 625 if (isReifiable(s))
mcimadamore@1108 626 warn.silentWarn(LintCategory.UNCHECKED);
mcimadamore@1108 627 else
mcimadamore@1108 628 warn.warn(LintCategory.UNCHECKED);
mcimadamore@1108 629 return true;
mcimadamore@1108 630 }
mcimadamore@1108 631 }
mcimadamore@1108 632 return false;
duke@1 633 }
mcimadamore@1108 634
mcimadamore@1108 635 private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
mcimadamore@1108 636 if (t.tag != ARRAY || isReifiable(t)) return;
mcimadamore@1108 637 ArrayType from = (ArrayType)t;
mcimadamore@1108 638 boolean shouldWarn = false;
mcimadamore@1108 639 switch (s.tag) {
mcimadamore@1108 640 case ARRAY:
mcimadamore@1108 641 ArrayType to = (ArrayType)s;
mcimadamore@1108 642 shouldWarn = from.isVarargs() &&
mcimadamore@1108 643 !to.isVarargs() &&
mcimadamore@1108 644 !isReifiable(from);
mcimadamore@1108 645 break;
mcimadamore@1108 646 case CLASS:
mcimadamore@1108 647 shouldWarn = from.isVarargs();
mcimadamore@1108 648 break;
mcimadamore@1108 649 }
mcimadamore@1108 650 if (shouldWarn) {
mcimadamore@1108 651 warn.warn(LintCategory.VARARGS);
mcimadamore@1108 652 }
mcimadamore@1108 653 }
duke@1 654
duke@1 655 /**
duke@1 656 * Is t a subtype of s?<br>
duke@1 657 * (not defined for Method and ForAll types)
duke@1 658 */
duke@1 659 final public boolean isSubtype(Type t, Type s) {
duke@1 660 return isSubtype(t, s, true);
duke@1 661 }
duke@1 662 final public boolean isSubtypeNoCapture(Type t, Type s) {
duke@1 663 return isSubtype(t, s, false);
duke@1 664 }
duke@1 665 public boolean isSubtype(Type t, Type s, boolean capture) {
duke@1 666 if (t == s)
duke@1 667 return true;
duke@1 668
jjg@1374 669 if (s.isPartial())
duke@1 670 return isSuperType(s, t);
duke@1 671
mcimadamore@299 672 if (s.isCompound()) {
mcimadamore@299 673 for (Type s2 : interfaces(s).prepend(supertype(s))) {
mcimadamore@299 674 if (!isSubtype(t, s2, capture))
mcimadamore@299 675 return false;
mcimadamore@299 676 }
mcimadamore@299 677 return true;
mcimadamore@299 678 }
mcimadamore@299 679
duke@1 680 Type lower = lowerBound(s);
duke@1 681 if (s != lower)
duke@1 682 return isSubtype(capture ? capture(t) : t, lower, false);
duke@1 683
duke@1 684 return isSubtype.visit(capture ? capture(t) : t, s);
duke@1 685 }
duke@1 686 // where
duke@1 687 private TypeRelation isSubtype = new TypeRelation()
duke@1 688 {
duke@1 689 public Boolean visitType(Type t, Type s) {
duke@1 690 switch (t.tag) {
jjg@1374 691 case BYTE:
jjg@1374 692 return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
jjg@1374 693 case CHAR:
jjg@1374 694 return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
jjg@1374 695 case SHORT: case INT: case LONG:
jjg@1374 696 case FLOAT: case DOUBLE:
jjg@1374 697 return t.getTag().isSubRangeOf(s.getTag());
jjg@1374 698 case BOOLEAN: case VOID:
jjg@1374 699 return t.hasTag(s.getTag());
jjg@1374 700 case TYPEVAR:
jjg@1374 701 return isSubtypeNoCapture(t.getUpperBound(), s);
jjg@1374 702 case BOT:
jjg@1374 703 return
jjg@1374 704 s.hasTag(BOT) || s.hasTag(CLASS) ||
jjg@1374 705 s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
jjg@1374 706 case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
jjg@1374 707 case NONE:
jjg@1374 708 return false;
jjg@1374 709 default:
jjg@1374 710 throw new AssertionError("isSubtype " + t.tag);
jjg@1374 711 }
duke@1 712 }
duke@1 713
duke@1 714 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 715
duke@1 716 private boolean containsTypeRecursive(Type t, Type s) {
duke@1 717 TypePair pair = new TypePair(t, s);
duke@1 718 if (cache.add(pair)) {
duke@1 719 try {
duke@1 720 return containsType(t.getTypeArguments(),
duke@1 721 s.getTypeArguments());
duke@1 722 } finally {
duke@1 723 cache.remove(pair);
duke@1 724 }
duke@1 725 } else {
duke@1 726 return containsType(t.getTypeArguments(),
duke@1 727 rewriteSupers(s).getTypeArguments());
duke@1 728 }
duke@1 729 }
duke@1 730
duke@1 731 private Type rewriteSupers(Type t) {
duke@1 732 if (!t.isParameterized())
duke@1 733 return t;
duke@1 734 ListBuffer<Type> from = lb();
duke@1 735 ListBuffer<Type> to = lb();
duke@1 736 adaptSelf(t, from, to);
duke@1 737 if (from.isEmpty())
duke@1 738 return t;
duke@1 739 ListBuffer<Type> rewrite = lb();
duke@1 740 boolean changed = false;
duke@1 741 for (Type orig : to.toList()) {
duke@1 742 Type s = rewriteSupers(orig);
duke@1 743 if (s.isSuperBound() && !s.isExtendsBound()) {
duke@1 744 s = new WildcardType(syms.objectType,
duke@1 745 BoundKind.UNBOUND,
duke@1 746 syms.boundClass);
duke@1 747 changed = true;
duke@1 748 } else if (s != orig) {
duke@1 749 s = new WildcardType(upperBound(s),
duke@1 750 BoundKind.EXTENDS,
duke@1 751 syms.boundClass);
duke@1 752 changed = true;
duke@1 753 }
duke@1 754 rewrite.append(s);
duke@1 755 }
duke@1 756 if (changed)
duke@1 757 return subst(t.tsym.type, from.toList(), rewrite.toList());
duke@1 758 else
duke@1 759 return t;
duke@1 760 }
duke@1 761
duke@1 762 @Override
duke@1 763 public Boolean visitClassType(ClassType t, Type s) {
duke@1 764 Type sup = asSuper(t, s.tsym);
duke@1 765 return sup != null
duke@1 766 && sup.tsym == s.tsym
duke@1 767 // You're not allowed to write
duke@1 768 // Vector<Object> vec = new Vector<String>();
duke@1 769 // But with wildcards you can write
duke@1 770 // Vector<? extends Object> vec = new Vector<String>();
duke@1 771 // which means that subtype checking must be done
duke@1 772 // here instead of same-type checking (via containsType).
duke@1 773 && (!s.isParameterized() || containsTypeRecursive(s, sup))
duke@1 774 && isSubtypeNoCapture(sup.getEnclosingType(),
duke@1 775 s.getEnclosingType());
duke@1 776 }
duke@1 777
duke@1 778 @Override
duke@1 779 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 780 if (s.tag == ARRAY) {
jjg@1374 781 if (t.elemtype.isPrimitive())
duke@1 782 return isSameType(t.elemtype, elemtype(s));
duke@1 783 else
duke@1 784 return isSubtypeNoCapture(t.elemtype, elemtype(s));
duke@1 785 }
duke@1 786
duke@1 787 if (s.tag == CLASS) {
duke@1 788 Name sname = s.tsym.getQualifiedName();
duke@1 789 return sname == names.java_lang_Object
duke@1 790 || sname == names.java_lang_Cloneable
duke@1 791 || sname == names.java_io_Serializable;
duke@1 792 }
duke@1 793
duke@1 794 return false;
duke@1 795 }
duke@1 796
duke@1 797 @Override
duke@1 798 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 799 //todo: test against origin needed? or replace with substitution?
mcimadamore@1093 800 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN) {
duke@1 801 return true;
mcimadamore@1093 802 } else if (s.tag == BOT) {
mcimadamore@1093 803 //if 's' is 'null' there's no instantiated type U for which
mcimadamore@1093 804 //U <: s (but 'null' itself, which is not a valid type)
mcimadamore@1093 805 return false;
mcimadamore@1093 806 }
duke@1 807
mcimadamore@1338 808 t.addBound(InferenceBound.UPPER, s, Types.this);
duke@1 809 return true;
duke@1 810 }
duke@1 811
duke@1 812 @Override
duke@1 813 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 814 return true;
duke@1 815 }
duke@1 816 };
duke@1 817
duke@1 818 /**
duke@1 819 * Is t a subtype of every type in given list `ts'?<br>
duke@1 820 * (not defined for Method and ForAll types)<br>
duke@1 821 * Allows unchecked conversions.
duke@1 822 */
duke@1 823 public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
duke@1 824 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 825 if (!isSubtypeUnchecked(t, l.head, warn))
duke@1 826 return false;
duke@1 827 return true;
duke@1 828 }
duke@1 829
duke@1 830 /**
duke@1 831 * Are corresponding elements of ts subtypes of ss? If lists are
duke@1 832 * of different length, return false.
duke@1 833 */
duke@1 834 public boolean isSubtypes(List<Type> ts, List<Type> ss) {
duke@1 835 while (ts.tail != null && ss.tail != null
duke@1 836 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 837 isSubtype(ts.head, ss.head)) {
duke@1 838 ts = ts.tail;
duke@1 839 ss = ss.tail;
duke@1 840 }
duke@1 841 return ts.tail == null && ss.tail == null;
duke@1 842 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 843 }
duke@1 844
duke@1 845 /**
duke@1 846 * Are corresponding elements of ts subtypes of ss, allowing
duke@1 847 * unchecked conversions? If lists are of different length,
duke@1 848 * return false.
duke@1 849 **/
duke@1 850 public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
duke@1 851 while (ts.tail != null && ss.tail != null
duke@1 852 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 853 isSubtypeUnchecked(ts.head, ss.head, warn)) {
duke@1 854 ts = ts.tail;
duke@1 855 ss = ss.tail;
duke@1 856 }
duke@1 857 return ts.tail == null && ss.tail == null;
duke@1 858 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 859 }
duke@1 860 // </editor-fold>
duke@1 861
duke@1 862 // <editor-fold defaultstate="collapsed" desc="isSuperType">
duke@1 863 /**
duke@1 864 * Is t a supertype of s?
duke@1 865 */
duke@1 866 public boolean isSuperType(Type t, Type s) {
duke@1 867 switch (t.tag) {
duke@1 868 case ERROR:
duke@1 869 return true;
duke@1 870 case UNDETVAR: {
duke@1 871 UndetVar undet = (UndetVar)t;
duke@1 872 if (t == s ||
duke@1 873 undet.qtype == s ||
duke@1 874 s.tag == ERROR ||
duke@1 875 s.tag == BOT) return true;
mcimadamore@1338 876 undet.addBound(InferenceBound.LOWER, s, this);
duke@1 877 return true;
duke@1 878 }
duke@1 879 default:
duke@1 880 return isSubtype(s, t);
duke@1 881 }
duke@1 882 }
duke@1 883 // </editor-fold>
duke@1 884
duke@1 885 // <editor-fold defaultstate="collapsed" desc="isSameType">
duke@1 886 /**
duke@1 887 * Are corresponding elements of the lists the same type? If
duke@1 888 * lists are of different length, return false.
duke@1 889 */
duke@1 890 public boolean isSameTypes(List<Type> ts, List<Type> ss) {
duke@1 891 while (ts.tail != null && ss.tail != null
duke@1 892 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 893 isSameType(ts.head, ss.head)) {
duke@1 894 ts = ts.tail;
duke@1 895 ss = ss.tail;
duke@1 896 }
duke@1 897 return ts.tail == null && ss.tail == null;
duke@1 898 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 899 }
duke@1 900
duke@1 901 /**
duke@1 902 * Is t the same type as s?
duke@1 903 */
duke@1 904 public boolean isSameType(Type t, Type s) {
duke@1 905 return isSameType.visit(t, s);
duke@1 906 }
duke@1 907 // where
duke@1 908 private TypeRelation isSameType = new TypeRelation() {
duke@1 909
duke@1 910 public Boolean visitType(Type t, Type s) {
duke@1 911 if (t == s)
duke@1 912 return true;
duke@1 913
jjg@1374 914 if (s.isPartial())
duke@1 915 return visit(s, t);
duke@1 916
duke@1 917 switch (t.tag) {
duke@1 918 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 919 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
duke@1 920 return t.tag == s.tag;
mcimadamore@561 921 case TYPEVAR: {
mcimadamore@561 922 if (s.tag == TYPEVAR) {
mcimadamore@561 923 //type-substitution does not preserve type-var types
mcimadamore@561 924 //check that type var symbols and bounds are indeed the same
mcimadamore@561 925 return t.tsym == s.tsym &&
mcimadamore@561 926 visit(t.getUpperBound(), s.getUpperBound());
mcimadamore@561 927 }
mcimadamore@561 928 else {
mcimadamore@561 929 //special case for s == ? super X, where upper(s) = u
mcimadamore@561 930 //check that u == t, where u has been set by Type.withTypeVar
mcimadamore@561 931 return s.isSuperBound() &&
mcimadamore@561 932 !s.isExtendsBound() &&
mcimadamore@561 933 visit(t, upperBound(s));
mcimadamore@561 934 }
mcimadamore@561 935 }
duke@1 936 default:
duke@1 937 throw new AssertionError("isSameType " + t.tag);
duke@1 938 }
duke@1 939 }
duke@1 940
duke@1 941 @Override
duke@1 942 public Boolean visitWildcardType(WildcardType t, Type s) {
jjg@1374 943 if (s.isPartial())
duke@1 944 return visit(s, t);
duke@1 945 else
duke@1 946 return false;
duke@1 947 }
duke@1 948
duke@1 949 @Override
duke@1 950 public Boolean visitClassType(ClassType t, Type s) {
duke@1 951 if (t == s)
duke@1 952 return true;
duke@1 953
jjg@1374 954 if (s.isPartial())
duke@1 955 return visit(s, t);
duke@1 956
duke@1 957 if (s.isSuperBound() && !s.isExtendsBound())
duke@1 958 return visit(t, upperBound(s)) && visit(t, lowerBound(s));
duke@1 959
duke@1 960 if (t.isCompound() && s.isCompound()) {
duke@1 961 if (!visit(supertype(t), supertype(s)))
duke@1 962 return false;
duke@1 963
duke@1 964 HashSet<SingletonType> set = new HashSet<SingletonType>();
duke@1 965 for (Type x : interfaces(t))
duke@1 966 set.add(new SingletonType(x));
duke@1 967 for (Type x : interfaces(s)) {
duke@1 968 if (!set.remove(new SingletonType(x)))
duke@1 969 return false;
duke@1 970 }
jjg@789 971 return (set.isEmpty());
duke@1 972 }
duke@1 973 return t.tsym == s.tsym
duke@1 974 && visit(t.getEnclosingType(), s.getEnclosingType())
duke@1 975 && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
duke@1 976 }
duke@1 977
duke@1 978 @Override
duke@1 979 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 980 if (t == s)
duke@1 981 return true;
duke@1 982
jjg@1374 983 if (s.isPartial())
duke@1 984 return visit(s, t);
duke@1 985
jjg@1374 986 return s.hasTag(ARRAY)
duke@1 987 && containsTypeEquivalent(t.elemtype, elemtype(s));
duke@1 988 }
duke@1 989
duke@1 990 @Override
duke@1 991 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 992 // isSameType for methods does not take thrown
duke@1 993 // exceptions into account!
duke@1 994 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
duke@1 995 }
duke@1 996
duke@1 997 @Override
duke@1 998 public Boolean visitPackageType(PackageType t, Type s) {
duke@1 999 return t == s;
duke@1 1000 }
duke@1 1001
duke@1 1002 @Override
duke@1 1003 public Boolean visitForAll(ForAll t, Type s) {
duke@1 1004 if (s.tag != FORALL)
duke@1 1005 return false;
duke@1 1006
duke@1 1007 ForAll forAll = (ForAll)s;
duke@1 1008 return hasSameBounds(t, forAll)
duke@1 1009 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 1010 }
duke@1 1011
duke@1 1012 @Override
duke@1 1013 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 1014 if (s.tag == WILDCARD)
duke@1 1015 // FIXME, this might be leftovers from before capture conversion
duke@1 1016 return false;
duke@1 1017
duke@1 1018 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 1019 return true;
duke@1 1020
mcimadamore@1338 1021 t.addBound(InferenceBound.EQ, s, Types.this);
mcimadamore@1251 1022
duke@1 1023 return true;
duke@1 1024 }
duke@1 1025
duke@1 1026 @Override
duke@1 1027 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1028 return true;
duke@1 1029 }
duke@1 1030 };
duke@1 1031 // </editor-fold>
duke@1 1032
duke@1 1033 // <editor-fold defaultstate="collapsed" desc="Contains Type">
duke@1 1034 public boolean containedBy(Type t, Type s) {
duke@1 1035 switch (t.tag) {
duke@1 1036 case UNDETVAR:
duke@1 1037 if (s.tag == WILDCARD) {
duke@1 1038 UndetVar undetvar = (UndetVar)t;
mcimadamore@210 1039 WildcardType wt = (WildcardType)s;
mcimadamore@210 1040 switch(wt.kind) {
mcimadamore@210 1041 case UNBOUND: //similar to ? extends Object
mcimadamore@210 1042 case EXTENDS: {
mcimadamore@210 1043 Type bound = upperBound(s);
mcimadamore@1338 1044 undetvar.addBound(InferenceBound.UPPER, bound, this);
mcimadamore@210 1045 break;
mcimadamore@210 1046 }
mcimadamore@210 1047 case SUPER: {
mcimadamore@210 1048 Type bound = lowerBound(s);
mcimadamore@1338 1049 undetvar.addBound(InferenceBound.LOWER, bound, this);
mcimadamore@210 1050 break;
mcimadamore@210 1051 }
mcimadamore@162 1052 }
duke@1 1053 return true;
duke@1 1054 } else {
duke@1 1055 return isSameType(t, s);
duke@1 1056 }
duke@1 1057 case ERROR:
duke@1 1058 return true;
duke@1 1059 default:
duke@1 1060 return containsType(s, t);
duke@1 1061 }
duke@1 1062 }
duke@1 1063
duke@1 1064 boolean containsType(List<Type> ts, List<Type> ss) {
duke@1 1065 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 1066 && containsType(ts.head, ss.head)) {
duke@1 1067 ts = ts.tail;
duke@1 1068 ss = ss.tail;
duke@1 1069 }
duke@1 1070 return ts.isEmpty() && ss.isEmpty();
duke@1 1071 }
duke@1 1072
duke@1 1073 /**
duke@1 1074 * Check if t contains s.
duke@1 1075 *
duke@1 1076 * <p>T contains S if:
duke@1 1077 *
duke@1 1078 * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
duke@1 1079 *
duke@1 1080 * <p>This relation is only used by ClassType.isSubtype(), that
duke@1 1081 * is,
duke@1 1082 *
duke@1 1083 * <p>{@code C<S> <: C<T> if T contains S.}
duke@1 1084 *
duke@1 1085 * <p>Because of F-bounds, this relation can lead to infinite
duke@1 1086 * recursion. Thus we must somehow break that recursion. Notice
duke@1 1087 * that containsType() is only called from ClassType.isSubtype().
duke@1 1088 * Since the arguments have already been checked against their
duke@1 1089 * bounds, we know:
duke@1 1090 *
duke@1 1091 * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
duke@1 1092 *
duke@1 1093 * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
duke@1 1094 *
duke@1 1095 * @param t a type
duke@1 1096 * @param s a type
duke@1 1097 */
duke@1 1098 public boolean containsType(Type t, Type s) {
duke@1 1099 return containsType.visit(t, s);
duke@1 1100 }
duke@1 1101 // where
duke@1 1102 private TypeRelation containsType = new TypeRelation() {
duke@1 1103
duke@1 1104 private Type U(Type t) {
duke@1 1105 while (t.tag == WILDCARD) {
duke@1 1106 WildcardType w = (WildcardType)t;
duke@1 1107 if (w.isSuperBound())
duke@1 1108 return w.bound == null ? syms.objectType : w.bound.bound;
duke@1 1109 else
duke@1 1110 t = w.type;
duke@1 1111 }
duke@1 1112 return t;
duke@1 1113 }
duke@1 1114
duke@1 1115 private Type L(Type t) {
duke@1 1116 while (t.tag == WILDCARD) {
duke@1 1117 WildcardType w = (WildcardType)t;
duke@1 1118 if (w.isExtendsBound())
duke@1 1119 return syms.botType;
duke@1 1120 else
duke@1 1121 t = w.type;
duke@1 1122 }
duke@1 1123 return t;
duke@1 1124 }
duke@1 1125
duke@1 1126 public Boolean visitType(Type t, Type s) {
jjg@1374 1127 if (s.isPartial())
duke@1 1128 return containedBy(s, t);
duke@1 1129 else
duke@1 1130 return isSameType(t, s);
duke@1 1131 }
duke@1 1132
jjg@789 1133 // void debugContainsType(WildcardType t, Type s) {
jjg@789 1134 // System.err.println();
jjg@789 1135 // System.err.format(" does %s contain %s?%n", t, s);
jjg@789 1136 // System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
jjg@789 1137 // upperBound(s), s, t, U(t),
jjg@789 1138 // t.isSuperBound()
jjg@789 1139 // || isSubtypeNoCapture(upperBound(s), U(t)));
jjg@789 1140 // System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
jjg@789 1141 // L(t), t, s, lowerBound(s),
jjg@789 1142 // t.isExtendsBound()
jjg@789 1143 // || isSubtypeNoCapture(L(t), lowerBound(s)));
jjg@789 1144 // System.err.println();
jjg@789 1145 // }
duke@1 1146
duke@1 1147 @Override
duke@1 1148 public Boolean visitWildcardType(WildcardType t, Type s) {
jjg@1374 1149 if (s.isPartial())
duke@1 1150 return containedBy(s, t);
duke@1 1151 else {
jjg@789 1152 // debugContainsType(t, s);
duke@1 1153 return isSameWildcard(t, s)
duke@1 1154 || isCaptureOf(s, t)
duke@1 1155 || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
duke@1 1156 (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
duke@1 1157 }
duke@1 1158 }
duke@1 1159
duke@1 1160 @Override
duke@1 1161 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 1162 if (s.tag != WILDCARD)
duke@1 1163 return isSameType(t, s);
duke@1 1164 else
duke@1 1165 return false;
duke@1 1166 }
duke@1 1167
duke@1 1168 @Override
duke@1 1169 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1170 return true;
duke@1 1171 }
duke@1 1172 };
duke@1 1173
duke@1 1174 public boolean isCaptureOf(Type s, WildcardType t) {
mcimadamore@79 1175 if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
duke@1 1176 return false;
duke@1 1177 return isSameWildcard(t, ((CapturedType)s).wildcard);
duke@1 1178 }
duke@1 1179
duke@1 1180 public boolean isSameWildcard(WildcardType t, Type s) {
duke@1 1181 if (s.tag != WILDCARD)
duke@1 1182 return false;
duke@1 1183 WildcardType w = (WildcardType)s;
duke@1 1184 return w.kind == t.kind && w.type == t.type;
duke@1 1185 }
duke@1 1186
duke@1 1187 public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
duke@1 1188 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 1189 && containsTypeEquivalent(ts.head, ss.head)) {
duke@1 1190 ts = ts.tail;
duke@1 1191 ss = ss.tail;
duke@1 1192 }
duke@1 1193 return ts.isEmpty() && ss.isEmpty();
duke@1 1194 }
duke@1 1195 // </editor-fold>
duke@1 1196
duke@1 1197 // <editor-fold defaultstate="collapsed" desc="isCastable">
duke@1 1198 public boolean isCastable(Type t, Type s) {
duke@1 1199 return isCastable(t, s, Warner.noWarnings);
duke@1 1200 }
duke@1 1201
duke@1 1202 /**
duke@1 1203 * Is t is castable to s?<br>
duke@1 1204 * s is assumed to be an erased type.<br>
duke@1 1205 * (not defined for Method and ForAll types).
duke@1 1206 */
duke@1 1207 public boolean isCastable(Type t, Type s, Warner warn) {
duke@1 1208 if (t == s)
duke@1 1209 return true;
duke@1 1210
duke@1 1211 if (t.isPrimitive() != s.isPrimitive())
jjg@984 1212 return allowBoxing && (
jjg@984 1213 isConvertible(t, s, warn)
mcimadamore@1007 1214 || (allowObjectToPrimitiveCast &&
mcimadamore@1007 1215 s.isPrimitive() &&
mcimadamore@1007 1216 isSubtype(boxedClass(s).type, t)));
duke@1 1217 if (warn != warnStack.head) {
duke@1 1218 try {
duke@1 1219 warnStack = warnStack.prepend(warn);
mcimadamore@795 1220 checkUnsafeVarargsConversion(t, s, warn);
mcimadamore@185 1221 return isCastable.visit(t,s);
duke@1 1222 } finally {
duke@1 1223 warnStack = warnStack.tail;
duke@1 1224 }
duke@1 1225 } else {
mcimadamore@185 1226 return isCastable.visit(t,s);
duke@1 1227 }
duke@1 1228 }
duke@1 1229 // where
duke@1 1230 private TypeRelation isCastable = new TypeRelation() {
duke@1 1231
duke@1 1232 public Boolean visitType(Type t, Type s) {
duke@1 1233 if (s.tag == ERROR)
duke@1 1234 return true;
duke@1 1235
duke@1 1236 switch (t.tag) {
duke@1 1237 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 1238 case DOUBLE:
jjg@1374 1239 return s.isNumeric();
duke@1 1240 case BOOLEAN:
duke@1 1241 return s.tag == BOOLEAN;
duke@1 1242 case VOID:
duke@1 1243 return false;
duke@1 1244 case BOT:
duke@1 1245 return isSubtype(t, s);
duke@1 1246 default:
duke@1 1247 throw new AssertionError();
duke@1 1248 }
duke@1 1249 }
duke@1 1250
duke@1 1251 @Override
duke@1 1252 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 1253 return isCastable(upperBound(t), s, warnStack.head);
duke@1 1254 }
duke@1 1255
duke@1 1256 @Override
duke@1 1257 public Boolean visitClassType(ClassType t, Type s) {
duke@1 1258 if (s.tag == ERROR || s.tag == BOT)
duke@1 1259 return true;
duke@1 1260
duke@1 1261 if (s.tag == TYPEVAR) {
mcimadamore@640 1262 if (isCastable(t, s.getUpperBound(), Warner.noWarnings)) {
mcimadamore@795 1263 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1264 return true;
duke@1 1265 } else {
duke@1 1266 return false;
duke@1 1267 }
duke@1 1268 }
duke@1 1269
duke@1 1270 if (t.isCompound()) {
mcimadamore@211 1271 Warner oldWarner = warnStack.head;
mcimadamore@211 1272 warnStack.head = Warner.noWarnings;
duke@1 1273 if (!visit(supertype(t), s))
duke@1 1274 return false;
duke@1 1275 for (Type intf : interfaces(t)) {
duke@1 1276 if (!visit(intf, s))
duke@1 1277 return false;
duke@1 1278 }
mcimadamore@795 1279 if (warnStack.head.hasLint(LintCategory.UNCHECKED))
mcimadamore@795 1280 oldWarner.warn(LintCategory.UNCHECKED);
duke@1 1281 return true;
duke@1 1282 }
duke@1 1283
duke@1 1284 if (s.isCompound()) {
duke@1 1285 // call recursively to reuse the above code
duke@1 1286 return visitClassType((ClassType)s, t);
duke@1 1287 }
duke@1 1288
duke@1 1289 if (s.tag == CLASS || s.tag == ARRAY) {
duke@1 1290 boolean upcast;
duke@1 1291 if ((upcast = isSubtype(erasure(t), erasure(s)))
duke@1 1292 || isSubtype(erasure(s), erasure(t))) {
duke@1 1293 if (!upcast && s.tag == ARRAY) {
duke@1 1294 if (!isReifiable(s))
mcimadamore@795 1295 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1296 return true;
duke@1 1297 } else if (s.isRaw()) {
duke@1 1298 return true;
duke@1 1299 } else if (t.isRaw()) {
duke@1 1300 if (!isUnbounded(s))
mcimadamore@795 1301 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1302 return true;
duke@1 1303 }
duke@1 1304 // Assume |a| <: |b|
duke@1 1305 final Type a = upcast ? t : s;
duke@1 1306 final Type b = upcast ? s : t;
duke@1 1307 final boolean HIGH = true;
duke@1 1308 final boolean LOW = false;
duke@1 1309 final boolean DONT_REWRITE_TYPEVARS = false;
duke@1 1310 Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1311 Type aLow = rewriteQuantifiers(a, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1312 Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1313 Type bLow = rewriteQuantifiers(b, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1314 Type lowSub = asSub(bLow, aLow.tsym);
duke@1 1315 Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1316 if (highSub == null) {
duke@1 1317 final boolean REWRITE_TYPEVARS = true;
duke@1 1318 aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
duke@1 1319 aLow = rewriteQuantifiers(a, LOW, REWRITE_TYPEVARS);
duke@1 1320 bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
duke@1 1321 bLow = rewriteQuantifiers(b, LOW, REWRITE_TYPEVARS);
duke@1 1322 lowSub = asSub(bLow, aLow.tsym);
duke@1 1323 highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1324 }
duke@1 1325 if (highSub != null) {
jjg@816 1326 if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
jjg@816 1327 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
jjg@816 1328 }
mcimadamore@185 1329 if (!disjointTypes(aHigh.allparams(), highSub.allparams())
mcimadamore@185 1330 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
mcimadamore@185 1331 && !disjointTypes(aLow.allparams(), highSub.allparams())
mcimadamore@185 1332 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
mcimadamore@779 1333 if (upcast ? giveWarning(a, b) :
mcimadamore@235 1334 giveWarning(b, a))
mcimadamore@795 1335 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1336 return true;
duke@1 1337 }
duke@1 1338 }
duke@1 1339 if (isReifiable(s))
duke@1 1340 return isSubtypeUnchecked(a, b);
duke@1 1341 else
duke@1 1342 return isSubtypeUnchecked(a, b, warnStack.head);
duke@1 1343 }
duke@1 1344
duke@1 1345 // Sidecast
duke@1 1346 if (s.tag == CLASS) {
duke@1 1347 if ((s.tsym.flags() & INTERFACE) != 0) {
duke@1 1348 return ((t.tsym.flags() & FINAL) == 0)
duke@1 1349 ? sideCast(t, s, warnStack.head)
duke@1 1350 : sideCastFinal(t, s, warnStack.head);
duke@1 1351 } else if ((t.tsym.flags() & INTERFACE) != 0) {
duke@1 1352 return ((s.tsym.flags() & FINAL) == 0)
duke@1 1353 ? sideCast(t, s, warnStack.head)
duke@1 1354 : sideCastFinal(t, s, warnStack.head);
duke@1 1355 } else {
duke@1 1356 // unrelated class types
duke@1 1357 return false;
duke@1 1358 }
duke@1 1359 }
duke@1 1360 }
duke@1 1361 return false;
duke@1 1362 }
duke@1 1363
duke@1 1364 @Override
duke@1 1365 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 1366 switch (s.tag) {
duke@1 1367 case ERROR:
duke@1 1368 case BOT:
duke@1 1369 return true;
duke@1 1370 case TYPEVAR:
duke@1 1371 if (isCastable(s, t, Warner.noWarnings)) {
mcimadamore@795 1372 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1373 return true;
duke@1 1374 } else {
duke@1 1375 return false;
duke@1 1376 }
duke@1 1377 case CLASS:
duke@1 1378 return isSubtype(t, s);
duke@1 1379 case ARRAY:
jjg@1374 1380 if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
duke@1 1381 return elemtype(t).tag == elemtype(s).tag;
duke@1 1382 } else {
duke@1 1383 return visit(elemtype(t), elemtype(s));
duke@1 1384 }
duke@1 1385 default:
duke@1 1386 return false;
duke@1 1387 }
duke@1 1388 }
duke@1 1389
duke@1 1390 @Override
duke@1 1391 public Boolean visitTypeVar(TypeVar t, Type s) {
duke@1 1392 switch (s.tag) {
duke@1 1393 case ERROR:
duke@1 1394 case BOT:
duke@1 1395 return true;
duke@1 1396 case TYPEVAR:
duke@1 1397 if (isSubtype(t, s)) {
duke@1 1398 return true;
duke@1 1399 } else if (isCastable(t.bound, s, Warner.noWarnings)) {
mcimadamore@795 1400 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1401 return true;
duke@1 1402 } else {
duke@1 1403 return false;
duke@1 1404 }
duke@1 1405 default:
duke@1 1406 return isCastable(t.bound, s, warnStack.head);
duke@1 1407 }
duke@1 1408 }
duke@1 1409
duke@1 1410 @Override
duke@1 1411 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1412 return true;
duke@1 1413 }
duke@1 1414 };
duke@1 1415 // </editor-fold>
duke@1 1416
duke@1 1417 // <editor-fold defaultstate="collapsed" desc="disjointTypes">
duke@1 1418 public boolean disjointTypes(List<Type> ts, List<Type> ss) {
duke@1 1419 while (ts.tail != null && ss.tail != null) {
duke@1 1420 if (disjointType(ts.head, ss.head)) return true;
duke@1 1421 ts = ts.tail;
duke@1 1422 ss = ss.tail;
duke@1 1423 }
duke@1 1424 return false;
duke@1 1425 }
duke@1 1426
duke@1 1427 /**
duke@1 1428 * Two types or wildcards are considered disjoint if it can be
duke@1 1429 * proven that no type can be contained in both. It is
duke@1 1430 * conservative in that it is allowed to say that two types are
duke@1 1431 * not disjoint, even though they actually are.
duke@1 1432 *
jjg@1358 1433 * The type {@code C<X>} is castable to {@code C<Y>} exactly if
jjg@1358 1434 * {@code X} and {@code Y} are not disjoint.
duke@1 1435 */
duke@1 1436 public boolean disjointType(Type t, Type s) {
duke@1 1437 return disjointType.visit(t, s);
duke@1 1438 }
duke@1 1439 // where
duke@1 1440 private TypeRelation disjointType = new TypeRelation() {
duke@1 1441
duke@1 1442 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 1443
duke@1 1444 public Boolean visitType(Type t, Type s) {
duke@1 1445 if (s.tag == WILDCARD)
duke@1 1446 return visit(s, t);
duke@1 1447 else
duke@1 1448 return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
duke@1 1449 }
duke@1 1450
duke@1 1451 private boolean isCastableRecursive(Type t, Type s) {
duke@1 1452 TypePair pair = new TypePair(t, s);
duke@1 1453 if (cache.add(pair)) {
duke@1 1454 try {
duke@1 1455 return Types.this.isCastable(t, s);
duke@1 1456 } finally {
duke@1 1457 cache.remove(pair);
duke@1 1458 }
duke@1 1459 } else {
duke@1 1460 return true;
duke@1 1461 }
duke@1 1462 }
duke@1 1463
duke@1 1464 private boolean notSoftSubtypeRecursive(Type t, Type s) {
duke@1 1465 TypePair pair = new TypePair(t, s);
duke@1 1466 if (cache.add(pair)) {
duke@1 1467 try {
duke@1 1468 return Types.this.notSoftSubtype(t, s);
duke@1 1469 } finally {
duke@1 1470 cache.remove(pair);
duke@1 1471 }
duke@1 1472 } else {
duke@1 1473 return false;
duke@1 1474 }
duke@1 1475 }
duke@1 1476
duke@1 1477 @Override
duke@1 1478 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 1479 if (t.isUnbound())
duke@1 1480 return false;
duke@1 1481
duke@1 1482 if (s.tag != WILDCARD) {
duke@1 1483 if (t.isExtendsBound())
duke@1 1484 return notSoftSubtypeRecursive(s, t.type);
duke@1 1485 else // isSuperBound()
duke@1 1486 return notSoftSubtypeRecursive(t.type, s);
duke@1 1487 }
duke@1 1488
duke@1 1489 if (s.isUnbound())
duke@1 1490 return false;
duke@1 1491
duke@1 1492 if (t.isExtendsBound()) {
duke@1 1493 if (s.isExtendsBound())
duke@1 1494 return !isCastableRecursive(t.type, upperBound(s));
duke@1 1495 else if (s.isSuperBound())
duke@1 1496 return notSoftSubtypeRecursive(lowerBound(s), t.type);
duke@1 1497 } else if (t.isSuperBound()) {
duke@1 1498 if (s.isExtendsBound())
duke@1 1499 return notSoftSubtypeRecursive(t.type, upperBound(s));
duke@1 1500 }
duke@1 1501 return false;
duke@1 1502 }
duke@1 1503 };
duke@1 1504 // </editor-fold>
duke@1 1505
duke@1 1506 // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
duke@1 1507 /**
duke@1 1508 * Returns the lower bounds of the formals of a method.
duke@1 1509 */
duke@1 1510 public List<Type> lowerBoundArgtypes(Type t) {
mcimadamore@1348 1511 return lowerBounds(t.getParameterTypes());
mcimadamore@1348 1512 }
mcimadamore@1348 1513 public List<Type> lowerBounds(List<Type> ts) {
mcimadamore@1348 1514 return map(ts, lowerBoundMapping);
duke@1 1515 }
duke@1 1516 private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
duke@1 1517 public Type apply(Type t) {
duke@1 1518 return lowerBound(t);
duke@1 1519 }
duke@1 1520 };
duke@1 1521 // </editor-fold>
duke@1 1522
duke@1 1523 // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
duke@1 1524 /**
duke@1 1525 * This relation answers the question: is impossible that
duke@1 1526 * something of type `t' can be a subtype of `s'? This is
duke@1 1527 * different from the question "is `t' not a subtype of `s'?"
duke@1 1528 * when type variables are involved: Integer is not a subtype of T
jjg@1358 1529 * where {@code <T extends Number>} but it is not true that Integer cannot
duke@1 1530 * possibly be a subtype of T.
duke@1 1531 */
duke@1 1532 public boolean notSoftSubtype(Type t, Type s) {
duke@1 1533 if (t == s) return false;
duke@1 1534 if (t.tag == TYPEVAR) {
duke@1 1535 TypeVar tv = (TypeVar) t;
duke@1 1536 return !isCastable(tv.bound,
mcimadamore@640 1537 relaxBound(s),
duke@1 1538 Warner.noWarnings);
duke@1 1539 }
duke@1 1540 if (s.tag != WILDCARD)
duke@1 1541 s = upperBound(s);
mcimadamore@640 1542
mcimadamore@640 1543 return !isSubtype(t, relaxBound(s));
mcimadamore@640 1544 }
mcimadamore@640 1545
mcimadamore@640 1546 private Type relaxBound(Type t) {
mcimadamore@640 1547 if (t.tag == TYPEVAR) {
mcimadamore@640 1548 while (t.tag == TYPEVAR)
mcimadamore@640 1549 t = t.getUpperBound();
mcimadamore@640 1550 t = rewriteQuantifiers(t, true, true);
mcimadamore@640 1551 }
mcimadamore@640 1552 return t;
duke@1 1553 }
duke@1 1554 // </editor-fold>
duke@1 1555
duke@1 1556 // <editor-fold defaultstate="collapsed" desc="isReifiable">
duke@1 1557 public boolean isReifiable(Type t) {
duke@1 1558 return isReifiable.visit(t);
duke@1 1559 }
duke@1 1560 // where
duke@1 1561 private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
duke@1 1562
duke@1 1563 public Boolean visitType(Type t, Void ignored) {
duke@1 1564 return true;
duke@1 1565 }
duke@1 1566
duke@1 1567 @Override
duke@1 1568 public Boolean visitClassType(ClassType t, Void ignored) {
mcimadamore@356 1569 if (t.isCompound())
mcimadamore@356 1570 return false;
mcimadamore@356 1571 else {
mcimadamore@356 1572 if (!t.isParameterized())
mcimadamore@356 1573 return true;
mcimadamore@356 1574
mcimadamore@356 1575 for (Type param : t.allparams()) {
mcimadamore@356 1576 if (!param.isUnbound())
mcimadamore@356 1577 return false;
mcimadamore@356 1578 }
duke@1 1579 return true;
duke@1 1580 }
duke@1 1581 }
duke@1 1582
duke@1 1583 @Override
duke@1 1584 public Boolean visitArrayType(ArrayType t, Void ignored) {
duke@1 1585 return visit(t.elemtype);
duke@1 1586 }
duke@1 1587
duke@1 1588 @Override
duke@1 1589 public Boolean visitTypeVar(TypeVar t, Void ignored) {
duke@1 1590 return false;
duke@1 1591 }
duke@1 1592 };
duke@1 1593 // </editor-fold>
duke@1 1594
duke@1 1595 // <editor-fold defaultstate="collapsed" desc="Array Utils">
duke@1 1596 public boolean isArray(Type t) {
duke@1 1597 while (t.tag == WILDCARD)
duke@1 1598 t = upperBound(t);
duke@1 1599 return t.tag == ARRAY;
duke@1 1600 }
duke@1 1601
duke@1 1602 /**
duke@1 1603 * The element type of an array.
duke@1 1604 */
duke@1 1605 public Type elemtype(Type t) {
duke@1 1606 switch (t.tag) {
duke@1 1607 case WILDCARD:
duke@1 1608 return elemtype(upperBound(t));
duke@1 1609 case ARRAY:
duke@1 1610 return ((ArrayType)t).elemtype;
duke@1 1611 case FORALL:
duke@1 1612 return elemtype(((ForAll)t).qtype);
duke@1 1613 case ERROR:
duke@1 1614 return t;
duke@1 1615 default:
duke@1 1616 return null;
duke@1 1617 }
duke@1 1618 }
duke@1 1619
mcimadamore@787 1620 public Type elemtypeOrType(Type t) {
mcimadamore@787 1621 Type elemtype = elemtype(t);
mcimadamore@787 1622 return elemtype != null ?
mcimadamore@787 1623 elemtype :
mcimadamore@787 1624 t;
mcimadamore@787 1625 }
mcimadamore@787 1626
duke@1 1627 /**
duke@1 1628 * Mapping to take element type of an arraytype
duke@1 1629 */
duke@1 1630 private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
duke@1 1631 public Type apply(Type t) { return elemtype(t); }
duke@1 1632 };
duke@1 1633
duke@1 1634 /**
duke@1 1635 * The number of dimensions of an array type.
duke@1 1636 */
duke@1 1637 public int dimensions(Type t) {
duke@1 1638 int result = 0;
duke@1 1639 while (t.tag == ARRAY) {
duke@1 1640 result++;
duke@1 1641 t = elemtype(t);
duke@1 1642 }
duke@1 1643 return result;
duke@1 1644 }
jfranck@1313 1645
jfranck@1313 1646 /**
jfranck@1313 1647 * Returns an ArrayType with the component type t
jfranck@1313 1648 *
jfranck@1313 1649 * @param t The component type of the ArrayType
jfranck@1313 1650 * @return the ArrayType for the given component
jfranck@1313 1651 */
jfranck@1313 1652 public ArrayType makeArrayType(Type t) {
jfranck@1313 1653 if (t.tag == VOID ||
jjg@1374 1654 t.tag == PACKAGE) {
jjg@1374 1655 Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
jfranck@1313 1656 }
jfranck@1313 1657 return new ArrayType(t, syms.arrayClass);
jfranck@1313 1658 }
duke@1 1659 // </editor-fold>
duke@1 1660
duke@1 1661 // <editor-fold defaultstate="collapsed" desc="asSuper">
duke@1 1662 /**
duke@1 1663 * Return the (most specific) base type of t that starts with the
duke@1 1664 * given symbol. If none exists, return null.
duke@1 1665 *
duke@1 1666 * @param t a type
duke@1 1667 * @param sym a symbol
duke@1 1668 */
duke@1 1669 public Type asSuper(Type t, Symbol sym) {
duke@1 1670 return asSuper.visit(t, sym);
duke@1 1671 }
duke@1 1672 // where
duke@1 1673 private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
duke@1 1674
duke@1 1675 public Type visitType(Type t, Symbol sym) {
duke@1 1676 return null;
duke@1 1677 }
duke@1 1678
duke@1 1679 @Override
duke@1 1680 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1681 if (t.tsym == sym)
duke@1 1682 return t;
duke@1 1683
duke@1 1684 Type st = supertype(t);
mcimadamore@19 1685 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
duke@1 1686 Type x = asSuper(st, sym);
duke@1 1687 if (x != null)
duke@1 1688 return x;
duke@1 1689 }
duke@1 1690 if ((sym.flags() & INTERFACE) != 0) {
duke@1 1691 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 1692 Type x = asSuper(l.head, sym);
duke@1 1693 if (x != null)
duke@1 1694 return x;
duke@1 1695 }
duke@1 1696 }
duke@1 1697 return null;
duke@1 1698 }
duke@1 1699
duke@1 1700 @Override
duke@1 1701 public Type visitArrayType(ArrayType t, Symbol sym) {
duke@1 1702 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1703 }
duke@1 1704
duke@1 1705 @Override
duke@1 1706 public Type visitTypeVar(TypeVar t, Symbol sym) {
mcimadamore@19 1707 if (t.tsym == sym)
mcimadamore@19 1708 return t;
mcimadamore@19 1709 else
mcimadamore@19 1710 return asSuper(t.bound, sym);
duke@1 1711 }
duke@1 1712
duke@1 1713 @Override
duke@1 1714 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1715 return t;
duke@1 1716 }
duke@1 1717 };
duke@1 1718
duke@1 1719 /**
duke@1 1720 * Return the base type of t or any of its outer types that starts
duke@1 1721 * with the given symbol. If none exists, return null.
duke@1 1722 *
duke@1 1723 * @param t a type
duke@1 1724 * @param sym a symbol
duke@1 1725 */
duke@1 1726 public Type asOuterSuper(Type t, Symbol sym) {
duke@1 1727 switch (t.tag) {
duke@1 1728 case CLASS:
duke@1 1729 do {
duke@1 1730 Type s = asSuper(t, sym);
duke@1 1731 if (s != null) return s;
duke@1 1732 t = t.getEnclosingType();
duke@1 1733 } while (t.tag == CLASS);
duke@1 1734 return null;
duke@1 1735 case ARRAY:
duke@1 1736 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1737 case TYPEVAR:
duke@1 1738 return asSuper(t, sym);
duke@1 1739 case ERROR:
duke@1 1740 return t;
duke@1 1741 default:
duke@1 1742 return null;
duke@1 1743 }
duke@1 1744 }
duke@1 1745
duke@1 1746 /**
duke@1 1747 * Return the base type of t or any of its enclosing types that
duke@1 1748 * starts with the given symbol. If none exists, return null.
duke@1 1749 *
duke@1 1750 * @param t a type
duke@1 1751 * @param sym a symbol
duke@1 1752 */
duke@1 1753 public Type asEnclosingSuper(Type t, Symbol sym) {
duke@1 1754 switch (t.tag) {
duke@1 1755 case CLASS:
duke@1 1756 do {
duke@1 1757 Type s = asSuper(t, sym);
duke@1 1758 if (s != null) return s;
duke@1 1759 Type outer = t.getEnclosingType();
duke@1 1760 t = (outer.tag == CLASS) ? outer :
duke@1 1761 (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
duke@1 1762 Type.noType;
duke@1 1763 } while (t.tag == CLASS);
duke@1 1764 return null;
duke@1 1765 case ARRAY:
duke@1 1766 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1767 case TYPEVAR:
duke@1 1768 return asSuper(t, sym);
duke@1 1769 case ERROR:
duke@1 1770 return t;
duke@1 1771 default:
duke@1 1772 return null;
duke@1 1773 }
duke@1 1774 }
duke@1 1775 // </editor-fold>
duke@1 1776
duke@1 1777 // <editor-fold defaultstate="collapsed" desc="memberType">
duke@1 1778 /**
duke@1 1779 * The type of given symbol, seen as a member of t.
duke@1 1780 *
duke@1 1781 * @param t a type
duke@1 1782 * @param sym a symbol
duke@1 1783 */
duke@1 1784 public Type memberType(Type t, Symbol sym) {
duke@1 1785 return (sym.flags() & STATIC) != 0
duke@1 1786 ? sym.type
duke@1 1787 : memberType.visit(t, sym);
mcimadamore@341 1788 }
duke@1 1789 // where
duke@1 1790 private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
duke@1 1791
duke@1 1792 public Type visitType(Type t, Symbol sym) {
duke@1 1793 return sym.type;
duke@1 1794 }
duke@1 1795
duke@1 1796 @Override
duke@1 1797 public Type visitWildcardType(WildcardType t, Symbol sym) {
duke@1 1798 return memberType(upperBound(t), sym);
duke@1 1799 }
duke@1 1800
duke@1 1801 @Override
duke@1 1802 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1803 Symbol owner = sym.owner;
duke@1 1804 long flags = sym.flags();
duke@1 1805 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
duke@1 1806 Type base = asOuterSuper(t, owner);
mcimadamore@134 1807 //if t is an intersection type T = CT & I1 & I2 ... & In
mcimadamore@134 1808 //its supertypes CT, I1, ... In might contain wildcards
mcimadamore@134 1809 //so we need to go through capture conversion
mcimadamore@134 1810 base = t.isCompound() ? capture(base) : base;
duke@1 1811 if (base != null) {
duke@1 1812 List<Type> ownerParams = owner.type.allparams();
duke@1 1813 List<Type> baseParams = base.allparams();
duke@1 1814 if (ownerParams.nonEmpty()) {
duke@1 1815 if (baseParams.isEmpty()) {
duke@1 1816 // then base is a raw type
duke@1 1817 return erasure(sym.type);
duke@1 1818 } else {
duke@1 1819 return subst(sym.type, ownerParams, baseParams);
duke@1 1820 }
duke@1 1821 }
duke@1 1822 }
duke@1 1823 }
duke@1 1824 return sym.type;
duke@1 1825 }
duke@1 1826
duke@1 1827 @Override
duke@1 1828 public Type visitTypeVar(TypeVar t, Symbol sym) {
duke@1 1829 return memberType(t.bound, sym);
duke@1 1830 }
duke@1 1831
duke@1 1832 @Override
duke@1 1833 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1834 return t;
duke@1 1835 }
duke@1 1836 };
duke@1 1837 // </editor-fold>
duke@1 1838
duke@1 1839 // <editor-fold defaultstate="collapsed" desc="isAssignable">
duke@1 1840 public boolean isAssignable(Type t, Type s) {
duke@1 1841 return isAssignable(t, s, Warner.noWarnings);
duke@1 1842 }
duke@1 1843
duke@1 1844 /**
duke@1 1845 * Is t assignable to s?<br>
duke@1 1846 * Equivalent to subtype except for constant values and raw
duke@1 1847 * types.<br>
duke@1 1848 * (not defined for Method and ForAll types)
duke@1 1849 */
duke@1 1850 public boolean isAssignable(Type t, Type s, Warner warn) {
duke@1 1851 if (t.tag == ERROR)
duke@1 1852 return true;
jjg@1374 1853 if (t.tag.isSubRangeOf(INT) && t.constValue() != null) {
duke@1 1854 int value = ((Number)t.constValue()).intValue();
duke@1 1855 switch (s.tag) {
duke@1 1856 case BYTE:
duke@1 1857 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
duke@1 1858 return true;
duke@1 1859 break;
duke@1 1860 case CHAR:
duke@1 1861 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
duke@1 1862 return true;
duke@1 1863 break;
duke@1 1864 case SHORT:
duke@1 1865 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
duke@1 1866 return true;
duke@1 1867 break;
duke@1 1868 case INT:
duke@1 1869 return true;
duke@1 1870 case CLASS:
duke@1 1871 switch (unboxedType(s).tag) {
duke@1 1872 case BYTE:
duke@1 1873 case CHAR:
duke@1 1874 case SHORT:
duke@1 1875 return isAssignable(t, unboxedType(s), warn);
duke@1 1876 }
duke@1 1877 break;
duke@1 1878 }
duke@1 1879 }
duke@1 1880 return isConvertible(t, s, warn);
duke@1 1881 }
duke@1 1882 // </editor-fold>
duke@1 1883
duke@1 1884 // <editor-fold defaultstate="collapsed" desc="erasure">
duke@1 1885 /**
duke@1 1886 * The erasure of t {@code |t|} -- the type that results when all
duke@1 1887 * type parameters in t are deleted.
duke@1 1888 */
duke@1 1889 public Type erasure(Type t) {
sundar@1307 1890 return eraseNotNeeded(t)? t : erasure(t, false);
mcimadamore@30 1891 }
mcimadamore@30 1892 //where
sundar@1307 1893 private boolean eraseNotNeeded(Type t) {
sundar@1307 1894 // We don't want to erase primitive types and String type as that
sundar@1307 1895 // operation is idempotent. Also, erasing these could result in loss
sundar@1307 1896 // of information such as constant values attached to such types.
jjg@1374 1897 return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
sundar@1307 1898 }
sundar@1307 1899
mcimadamore@30 1900 private Type erasure(Type t, boolean recurse) {
jjg@1374 1901 if (t.isPrimitive())
duke@1 1902 return t; /* fast special case */
duke@1 1903 else
mcimadamore@30 1904 return erasure.visit(t, recurse);
mcimadamore@341 1905 }
duke@1 1906 // where
mcimadamore@30 1907 private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
mcimadamore@30 1908 public Type visitType(Type t, Boolean recurse) {
jjg@1374 1909 if (t.isPrimitive())
duke@1 1910 return t; /*fast special case*/
duke@1 1911 else
mcimadamore@30 1912 return t.map(recurse ? erasureRecFun : erasureFun);
duke@1 1913 }
duke@1 1914
duke@1 1915 @Override
mcimadamore@30 1916 public Type visitWildcardType(WildcardType t, Boolean recurse) {
mcimadamore@30 1917 return erasure(upperBound(t), recurse);
duke@1 1918 }
duke@1 1919
duke@1 1920 @Override
mcimadamore@30 1921 public Type visitClassType(ClassType t, Boolean recurse) {
mcimadamore@30 1922 Type erased = t.tsym.erasure(Types.this);
mcimadamore@30 1923 if (recurse) {
mcimadamore@30 1924 erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
mcimadamore@30 1925 }
mcimadamore@30 1926 return erased;
duke@1 1927 }
duke@1 1928
duke@1 1929 @Override
mcimadamore@30 1930 public Type visitTypeVar(TypeVar t, Boolean recurse) {
mcimadamore@30 1931 return erasure(t.bound, recurse);
duke@1 1932 }
duke@1 1933
duke@1 1934 @Override
mcimadamore@30 1935 public Type visitErrorType(ErrorType t, Boolean recurse) {
duke@1 1936 return t;
duke@1 1937 }
duke@1 1938 };
mcimadamore@30 1939
duke@1 1940 private Mapping erasureFun = new Mapping ("erasure") {
duke@1 1941 public Type apply(Type t) { return erasure(t); }
duke@1 1942 };
duke@1 1943
mcimadamore@30 1944 private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
mcimadamore@30 1945 public Type apply(Type t) { return erasureRecursive(t); }
mcimadamore@30 1946 };
mcimadamore@30 1947
duke@1 1948 public List<Type> erasure(List<Type> ts) {
duke@1 1949 return Type.map(ts, erasureFun);
duke@1 1950 }
mcimadamore@30 1951
mcimadamore@30 1952 public Type erasureRecursive(Type t) {
mcimadamore@30 1953 return erasure(t, true);
mcimadamore@30 1954 }
mcimadamore@30 1955
mcimadamore@30 1956 public List<Type> erasureRecursive(List<Type> ts) {
mcimadamore@30 1957 return Type.map(ts, erasureRecFun);
mcimadamore@30 1958 }
duke@1 1959 // </editor-fold>
duke@1 1960
duke@1 1961 // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
duke@1 1962 /**
duke@1 1963 * Make a compound type from non-empty list of types
duke@1 1964 *
duke@1 1965 * @param bounds the types from which the compound type is formed
duke@1 1966 * @param supertype is objectType if all bounds are interfaces,
duke@1 1967 * null otherwise.
duke@1 1968 */
duke@1 1969 public Type makeCompoundType(List<Type> bounds,
duke@1 1970 Type supertype) {
duke@1 1971 ClassSymbol bc =
duke@1 1972 new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
duke@1 1973 Type.moreInfo
duke@1 1974 ? names.fromString(bounds.toString())
duke@1 1975 : names.empty,
duke@1 1976 syms.noSymbol);
duke@1 1977 if (bounds.head.tag == TYPEVAR)
duke@1 1978 // error condition, recover
mcimadamore@121 1979 bc.erasure_field = syms.objectType;
mcimadamore@121 1980 else
mcimadamore@121 1981 bc.erasure_field = erasure(bounds.head);
mcimadamore@121 1982 bc.members_field = new Scope(bc);
duke@1 1983 ClassType bt = (ClassType)bc.type;
duke@1 1984 bt.allparams_field = List.nil();
duke@1 1985 if (supertype != null) {
duke@1 1986 bt.supertype_field = supertype;
duke@1 1987 bt.interfaces_field = bounds;
duke@1 1988 } else {
duke@1 1989 bt.supertype_field = bounds.head;
duke@1 1990 bt.interfaces_field = bounds.tail;
duke@1 1991 }
jjg@816 1992 Assert.check(bt.supertype_field.tsym.completer != null
jjg@816 1993 || !bt.supertype_field.isInterface(),
jjg@816 1994 bt.supertype_field);
duke@1 1995 return bt;
duke@1 1996 }
duke@1 1997
duke@1 1998 /**
duke@1 1999 * Same as {@link #makeCompoundType(List,Type)}, except that the
duke@1 2000 * second parameter is computed directly. Note that this might
duke@1 2001 * cause a symbol completion. Hence, this version of
duke@1 2002 * makeCompoundType may not be called during a classfile read.
duke@1 2003 */
duke@1 2004 public Type makeCompoundType(List<Type> bounds) {
duke@1 2005 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
duke@1 2006 supertype(bounds.head) : null;
duke@1 2007 return makeCompoundType(bounds, supertype);
duke@1 2008 }
duke@1 2009
duke@1 2010 /**
duke@1 2011 * A convenience wrapper for {@link #makeCompoundType(List)}; the
duke@1 2012 * arguments are converted to a list and passed to the other
duke@1 2013 * method. Note that this might cause a symbol completion.
duke@1 2014 * Hence, this version of makeCompoundType may not be called
duke@1 2015 * during a classfile read.
duke@1 2016 */
duke@1 2017 public Type makeCompoundType(Type bound1, Type bound2) {
duke@1 2018 return makeCompoundType(List.of(bound1, bound2));
duke@1 2019 }
duke@1 2020 // </editor-fold>
duke@1 2021
duke@1 2022 // <editor-fold defaultstate="collapsed" desc="supertype">
duke@1 2023 public Type supertype(Type t) {
duke@1 2024 return supertype.visit(t);
duke@1 2025 }
duke@1 2026 // where
duke@1 2027 private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
duke@1 2028
duke@1 2029 public Type visitType(Type t, Void ignored) {
duke@1 2030 // A note on wildcards: there is no good way to
duke@1 2031 // determine a supertype for a super bounded wildcard.
duke@1 2032 return null;
duke@1 2033 }
duke@1 2034
duke@1 2035 @Override
duke@1 2036 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2037 if (t.supertype_field == null) {
duke@1 2038 Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
duke@1 2039 // An interface has no superclass; its supertype is Object.
duke@1 2040 if (t.isInterface())
duke@1 2041 supertype = ((ClassType)t.tsym.type).supertype_field;
duke@1 2042 if (t.supertype_field == null) {
duke@1 2043 List<Type> actuals = classBound(t).allparams();
duke@1 2044 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 2045 if (t.hasErasedSupertypes()) {
mcimadamore@30 2046 t.supertype_field = erasureRecursive(supertype);
mcimadamore@30 2047 } else if (formals.nonEmpty()) {
duke@1 2048 t.supertype_field = subst(supertype, formals, actuals);
duke@1 2049 }
mcimadamore@30 2050 else {
mcimadamore@30 2051 t.supertype_field = supertype;
mcimadamore@30 2052 }
duke@1 2053 }
duke@1 2054 }
duke@1 2055 return t.supertype_field;
duke@1 2056 }
duke@1 2057
duke@1 2058 /**
duke@1 2059 * The supertype is always a class type. If the type
duke@1 2060 * variable's bounds start with a class type, this is also
duke@1 2061 * the supertype. Otherwise, the supertype is
duke@1 2062 * java.lang.Object.
duke@1 2063 */
duke@1 2064 @Override
duke@1 2065 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2066 if (t.bound.tag == TYPEVAR ||
duke@1 2067 (!t.bound.isCompound() && !t.bound.isInterface())) {
duke@1 2068 return t.bound;
duke@1 2069 } else {
duke@1 2070 return supertype(t.bound);
duke@1 2071 }
duke@1 2072 }
duke@1 2073
duke@1 2074 @Override
duke@1 2075 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 2076 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
duke@1 2077 return arraySuperType();
duke@1 2078 else
duke@1 2079 return new ArrayType(supertype(t.elemtype), t.tsym);
duke@1 2080 }
duke@1 2081
duke@1 2082 @Override
duke@1 2083 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2084 return t;
duke@1 2085 }
duke@1 2086 };
duke@1 2087 // </editor-fold>
duke@1 2088
duke@1 2089 // <editor-fold defaultstate="collapsed" desc="interfaces">
duke@1 2090 /**
duke@1 2091 * Return the interfaces implemented by this class.
duke@1 2092 */
duke@1 2093 public List<Type> interfaces(Type t) {
duke@1 2094 return interfaces.visit(t);
duke@1 2095 }
duke@1 2096 // where
duke@1 2097 private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
duke@1 2098
duke@1 2099 public List<Type> visitType(Type t, Void ignored) {
duke@1 2100 return List.nil();
duke@1 2101 }
duke@1 2102
duke@1 2103 @Override
duke@1 2104 public List<Type> visitClassType(ClassType t, Void ignored) {
duke@1 2105 if (t.interfaces_field == null) {
duke@1 2106 List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
duke@1 2107 if (t.interfaces_field == null) {
duke@1 2108 // If t.interfaces_field is null, then t must
duke@1 2109 // be a parameterized type (not to be confused
duke@1 2110 // with a generic type declaration).
duke@1 2111 // Terminology:
duke@1 2112 // Parameterized type: List<String>
duke@1 2113 // Generic type declaration: class List<E> { ... }
duke@1 2114 // So t corresponds to List<String> and
duke@1 2115 // t.tsym.type corresponds to List<E>.
duke@1 2116 // The reason t must be parameterized type is
duke@1 2117 // that completion will happen as a side
duke@1 2118 // effect of calling
duke@1 2119 // ClassSymbol.getInterfaces. Since
duke@1 2120 // t.interfaces_field is null after
duke@1 2121 // completion, we can assume that t is not the
duke@1 2122 // type of a class/interface declaration.
jjg@816 2123 Assert.check(t != t.tsym.type, t);
duke@1 2124 List<Type> actuals = t.allparams();
duke@1 2125 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 2126 if (t.hasErasedSupertypes()) {
mcimadamore@30 2127 t.interfaces_field = erasureRecursive(interfaces);
mcimadamore@30 2128 } else if (formals.nonEmpty()) {
duke@1 2129 t.interfaces_field =
duke@1 2130 upperBounds(subst(interfaces, formals, actuals));
duke@1 2131 }
mcimadamore@30 2132 else {
mcimadamore@30 2133 t.interfaces_field = interfaces;
mcimadamore@30 2134 }
duke@1 2135 }
duke@1 2136 }
duke@1 2137 return t.interfaces_field;
duke@1 2138 }
duke@1 2139
duke@1 2140 @Override
duke@1 2141 public List<Type> visitTypeVar(TypeVar t, Void ignored) {
duke@1 2142 if (t.bound.isCompound())
duke@1 2143 return interfaces(t.bound);
duke@1 2144
duke@1 2145 if (t.bound.isInterface())
duke@1 2146 return List.of(t.bound);
duke@1 2147
duke@1 2148 return List.nil();
duke@1 2149 }
duke@1 2150 };
mcimadamore@1393 2151
mcimadamore@1393 2152 public boolean isDirectSuperInterface(Type t, TypeSymbol tsym) {
mcimadamore@1393 2153 for (Type t2 : interfaces(tsym.type)) {
mcimadamore@1393 2154 if (isSameType(t, t2)) return true;
mcimadamore@1393 2155 }
mcimadamore@1393 2156 return false;
mcimadamore@1393 2157 }
duke@1 2158 // </editor-fold>
duke@1 2159
duke@1 2160 // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
duke@1 2161 Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
duke@1 2162
duke@1 2163 public boolean isDerivedRaw(Type t) {
duke@1 2164 Boolean result = isDerivedRawCache.get(t);
duke@1 2165 if (result == null) {
duke@1 2166 result = isDerivedRawInternal(t);
duke@1 2167 isDerivedRawCache.put(t, result);
duke@1 2168 }
duke@1 2169 return result;
duke@1 2170 }
duke@1 2171
duke@1 2172 public boolean isDerivedRawInternal(Type t) {
duke@1 2173 if (t.isErroneous())
duke@1 2174 return false;
duke@1 2175 return
duke@1 2176 t.isRaw() ||
duke@1 2177 supertype(t) != null && isDerivedRaw(supertype(t)) ||
duke@1 2178 isDerivedRaw(interfaces(t));
duke@1 2179 }
duke@1 2180
duke@1 2181 public boolean isDerivedRaw(List<Type> ts) {
duke@1 2182 List<Type> l = ts;
duke@1 2183 while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
duke@1 2184 return l.nonEmpty();
duke@1 2185 }
duke@1 2186 // </editor-fold>
duke@1 2187
duke@1 2188 // <editor-fold defaultstate="collapsed" desc="setBounds">
duke@1 2189 /**
duke@1 2190 * Set the bounds field of the given type variable to reflect a
duke@1 2191 * (possibly multiple) list of bounds.
duke@1 2192 * @param t a type variable
duke@1 2193 * @param bounds the bounds, must be nonempty
duke@1 2194 * @param supertype is objectType if all bounds are interfaces,
duke@1 2195 * null otherwise.
duke@1 2196 */
duke@1 2197 public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
duke@1 2198 if (bounds.tail.isEmpty())
duke@1 2199 t.bound = bounds.head;
duke@1 2200 else
duke@1 2201 t.bound = makeCompoundType(bounds, supertype);
duke@1 2202 t.rank_field = -1;
duke@1 2203 }
duke@1 2204
duke@1 2205 /**
duke@1 2206 * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
mcimadamore@563 2207 * third parameter is computed directly, as follows: if all
mcimadamore@563 2208 * all bounds are interface types, the computed supertype is Object,
mcimadamore@563 2209 * otherwise the supertype is simply left null (in this case, the supertype
mcimadamore@563 2210 * is assumed to be the head of the bound list passed as second argument).
mcimadamore@563 2211 * Note that this check might cause a symbol completion. Hence, this version of
duke@1 2212 * setBounds may not be called during a classfile read.
duke@1 2213 */
duke@1 2214 public void setBounds(TypeVar t, List<Type> bounds) {
duke@1 2215 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
mcimadamore@563 2216 syms.objectType : null;
duke@1 2217 setBounds(t, bounds, supertype);
duke@1 2218 t.rank_field = -1;
duke@1 2219 }
duke@1 2220 // </editor-fold>
duke@1 2221
duke@1 2222 // <editor-fold defaultstate="collapsed" desc="getBounds">
duke@1 2223 /**
duke@1 2224 * Return list of bounds of the given type variable.
duke@1 2225 */
duke@1 2226 public List<Type> getBounds(TypeVar t) {
duke@1 2227 if (t.bound.isErroneous() || !t.bound.isCompound())
duke@1 2228 return List.of(t.bound);
duke@1 2229 else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
duke@1 2230 return interfaces(t).prepend(supertype(t));
duke@1 2231 else
duke@1 2232 // No superclass was given in bounds.
duke@1 2233 // In this case, supertype is Object, erasure is first interface.
duke@1 2234 return interfaces(t);
duke@1 2235 }
duke@1 2236 // </editor-fold>
duke@1 2237
duke@1 2238 // <editor-fold defaultstate="collapsed" desc="classBound">
duke@1 2239 /**
duke@1 2240 * If the given type is a (possibly selected) type variable,
duke@1 2241 * return the bounding class of this type, otherwise return the
duke@1 2242 * type itself.
duke@1 2243 */
duke@1 2244 public Type classBound(Type t) {
duke@1 2245 return classBound.visit(t);
duke@1 2246 }
duke@1 2247 // where
duke@1 2248 private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
duke@1 2249
duke@1 2250 public Type visitType(Type t, Void ignored) {
duke@1 2251 return t;
duke@1 2252 }
duke@1 2253
duke@1 2254 @Override
duke@1 2255 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2256 Type outer1 = classBound(t.getEnclosingType());
duke@1 2257 if (outer1 != t.getEnclosingType())
duke@1 2258 return new ClassType(outer1, t.getTypeArguments(), t.tsym);
duke@1 2259 else
duke@1 2260 return t;
duke@1 2261 }
duke@1 2262
duke@1 2263 @Override
duke@1 2264 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2265 return classBound(supertype(t));
duke@1 2266 }
duke@1 2267
duke@1 2268 @Override
duke@1 2269 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2270 return t;
duke@1 2271 }
duke@1 2272 };
duke@1 2273 // </editor-fold>
duke@1 2274
duke@1 2275 // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
duke@1 2276 /**
duke@1 2277 * Returns true iff the first signature is a <em>sub
duke@1 2278 * signature</em> of the other. This is <b>not</b> an equivalence
duke@1 2279 * relation.
duke@1 2280 *
jjh@972 2281 * @jls section 8.4.2.
duke@1 2282 * @see #overrideEquivalent(Type t, Type s)
duke@1 2283 * @param t first signature (possibly raw).
duke@1 2284 * @param s second signature (could be subjected to erasure).
duke@1 2285 * @return true if t is a sub signature of s.
duke@1 2286 */
duke@1 2287 public boolean isSubSignature(Type t, Type s) {
mcimadamore@907 2288 return isSubSignature(t, s, true);
mcimadamore@907 2289 }
mcimadamore@907 2290
mcimadamore@907 2291 public boolean isSubSignature(Type t, Type s, boolean strict) {
mcimadamore@907 2292 return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
duke@1 2293 }
duke@1 2294
duke@1 2295 /**
duke@1 2296 * Returns true iff these signatures are related by <em>override
duke@1 2297 * equivalence</em>. This is the natural extension of
duke@1 2298 * isSubSignature to an equivalence relation.
duke@1 2299 *
jjh@972 2300 * @jls section 8.4.2.
duke@1 2301 * @see #isSubSignature(Type t, Type s)
duke@1 2302 * @param t a signature (possible raw, could be subjected to
duke@1 2303 * erasure).
duke@1 2304 * @param s a signature (possible raw, could be subjected to
duke@1 2305 * erasure).
duke@1 2306 * @return true if either argument is a sub signature of the other.
duke@1 2307 */
duke@1 2308 public boolean overrideEquivalent(Type t, Type s) {
duke@1 2309 return hasSameArgs(t, s) ||
duke@1 2310 hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
duke@1 2311 }
duke@1 2312
mcimadamore@1348 2313 public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
mcimadamore@1348 2314 for (Scope.Entry e = syms.objectType.tsym.members().lookup(msym.name) ; e.scope != null ; e = e.next()) {
mcimadamore@1348 2315 if (msym.overrides(e.sym, origin, Types.this, true)) {
mcimadamore@1348 2316 return true;
mcimadamore@1348 2317 }
mcimadamore@1348 2318 }
mcimadamore@1348 2319 return false;
mcimadamore@1348 2320 }
mcimadamore@1348 2321
mcimadamore@1393 2322 public boolean overridesObjectMethod(Symbol msym) {
mcimadamore@1393 2323 return ((MethodSymbol)msym).implementation(syms.objectType.tsym, this, true) != null;
mcimadamore@1393 2324 }
mcimadamore@1393 2325
mcimadamore@673 2326 // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
mcimadamore@673 2327 class ImplementationCache {
mcimadamore@673 2328
mcimadamore@673 2329 private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
mcimadamore@673 2330 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
mcimadamore@673 2331
mcimadamore@673 2332 class Entry {
mcimadamore@673 2333 final MethodSymbol cachedImpl;
mcimadamore@673 2334 final Filter<Symbol> implFilter;
mcimadamore@673 2335 final boolean checkResult;
mcimadamore@877 2336 final int prevMark;
mcimadamore@673 2337
mcimadamore@673 2338 public Entry(MethodSymbol cachedImpl,
mcimadamore@673 2339 Filter<Symbol> scopeFilter,
mcimadamore@877 2340 boolean checkResult,
mcimadamore@877 2341 int prevMark) {
mcimadamore@673 2342 this.cachedImpl = cachedImpl;
mcimadamore@673 2343 this.implFilter = scopeFilter;
mcimadamore@673 2344 this.checkResult = checkResult;
mcimadamore@877 2345 this.prevMark = prevMark;
mcimadamore@673 2346 }
mcimadamore@673 2347
mcimadamore@877 2348 boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
mcimadamore@673 2349 return this.implFilter == scopeFilter &&
mcimadamore@877 2350 this.checkResult == checkResult &&
mcimadamore@877 2351 this.prevMark == mark;
mcimadamore@673 2352 }
mcimadamore@341 2353 }
mcimadamore@673 2354
mcimadamore@858 2355 MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@673 2356 SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
mcimadamore@673 2357 Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
mcimadamore@673 2358 if (cache == null) {
mcimadamore@673 2359 cache = new HashMap<TypeSymbol, Entry>();
mcimadamore@673 2360 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
mcimadamore@673 2361 }
mcimadamore@673 2362 Entry e = cache.get(origin);
mcimadamore@1015 2363 CompoundScope members = membersClosure(origin.type, true);
mcimadamore@673 2364 if (e == null ||
mcimadamore@877 2365 !e.matches(implFilter, checkResult, members.getMark())) {
mcimadamore@877 2366 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
mcimadamore@877 2367 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
mcimadamore@673 2368 return impl;
mcimadamore@673 2369 }
mcimadamore@673 2370 else {
mcimadamore@673 2371 return e.cachedImpl;
mcimadamore@673 2372 }
mcimadamore@673 2373 }
mcimadamore@673 2374
mcimadamore@877 2375 private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@877 2376 for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
mcimadamore@341 2377 while (t.tag == TYPEVAR)
mcimadamore@341 2378 t = t.getUpperBound();
mcimadamore@341 2379 TypeSymbol c = t.tsym;
mcimadamore@673 2380 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
mcimadamore@341 2381 e.scope != null;
mcimadamore@780 2382 e = e.next(implFilter)) {
mcimadamore@673 2383 if (e.sym != null &&
mcimadamore@877 2384 e.sym.overrides(ms, origin, Types.this, checkResult))
mcimadamore@673 2385 return (MethodSymbol)e.sym;
mcimadamore@341 2386 }
mcimadamore@341 2387 }
mcimadamore@673 2388 return null;
mcimadamore@341 2389 }
mcimadamore@341 2390 }
mcimadamore@341 2391
mcimadamore@673 2392 private ImplementationCache implCache = new ImplementationCache();
mcimadamore@673 2393
mcimadamore@858 2394 public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@858 2395 return implCache.get(ms, origin, checkResult, implFilter);
mcimadamore@673 2396 }
mcimadamore@673 2397 // </editor-fold>
mcimadamore@673 2398
mcimadamore@858 2399 // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
mcimadamore@1015 2400 class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
mcimadamore@1015 2401
mcimadamore@1015 2402 private WeakHashMap<TypeSymbol, Entry> _map =
mcimadamore@1015 2403 new WeakHashMap<TypeSymbol, Entry>();
mcimadamore@1015 2404
mcimadamore@1015 2405 class Entry {
mcimadamore@1015 2406 final boolean skipInterfaces;
mcimadamore@1015 2407 final CompoundScope compoundScope;
mcimadamore@1015 2408
mcimadamore@1015 2409 public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
mcimadamore@1015 2410 this.skipInterfaces = skipInterfaces;
mcimadamore@1015 2411 this.compoundScope = compoundScope;
mcimadamore@1015 2412 }
mcimadamore@1015 2413
mcimadamore@1015 2414 boolean matches(boolean skipInterfaces) {
mcimadamore@1015 2415 return this.skipInterfaces == skipInterfaces;
mcimadamore@1015 2416 }
mcimadamore@1015 2417 }
mcimadamore@1015 2418
mcimadamore@1072 2419 List<TypeSymbol> seenTypes = List.nil();
mcimadamore@1072 2420
mcimadamore@1015 2421 /** members closure visitor methods **/
mcimadamore@1015 2422
mcimadamore@1015 2423 public CompoundScope visitType(Type t, Boolean skipInterface) {
mcimadamore@858 2424 return null;
mcimadamore@858 2425 }
mcimadamore@858 2426
mcimadamore@858 2427 @Override
mcimadamore@1015 2428 public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
mcimadamore@1072 2429 if (seenTypes.contains(t.tsym)) {
mcimadamore@1072 2430 //this is possible when an interface is implemented in multiple
mcimadamore@1072 2431 //superclasses, or when a classs hierarchy is circular - in such
mcimadamore@1072 2432 //cases we don't need to recurse (empty scope is returned)
mcimadamore@1072 2433 return new CompoundScope(t.tsym);
mcimadamore@1072 2434 }
mcimadamore@1072 2435 try {
mcimadamore@1072 2436 seenTypes = seenTypes.prepend(t.tsym);
mcimadamore@1072 2437 ClassSymbol csym = (ClassSymbol)t.tsym;
mcimadamore@1072 2438 Entry e = _map.get(csym);
mcimadamore@1072 2439 if (e == null || !e.matches(skipInterface)) {
mcimadamore@1072 2440 CompoundScope membersClosure = new CompoundScope(csym);
mcimadamore@1072 2441 if (!skipInterface) {
mcimadamore@1072 2442 for (Type i : interfaces(t)) {
mcimadamore@1072 2443 membersClosure.addSubScope(visit(i, skipInterface));
mcimadamore@1072 2444 }
mcimadamore@1015 2445 }
mcimadamore@1072 2446 membersClosure.addSubScope(visit(supertype(t), skipInterface));
mcimadamore@1072 2447 membersClosure.addSubScope(csym.members());
mcimadamore@1072 2448 e = new Entry(skipInterface, membersClosure);
mcimadamore@1072 2449 _map.put(csym, e);
mcimadamore@858 2450 }
mcimadamore@1072 2451 return e.compoundScope;
mcimadamore@858 2452 }
mcimadamore@1072 2453 finally {
mcimadamore@1072 2454 seenTypes = seenTypes.tail;
mcimadamore@1072 2455 }
mcimadamore@858 2456 }
mcimadamore@858 2457
mcimadamore@858 2458 @Override
mcimadamore@1015 2459 public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
mcimadamore@1015 2460 return visit(t.getUpperBound(), skipInterface);
mcimadamore@858 2461 }
mcimadamore@1015 2462 }
mcimadamore@1015 2463
mcimadamore@1015 2464 private MembersClosureCache membersCache = new MembersClosureCache();
mcimadamore@1015 2465
mcimadamore@1015 2466 public CompoundScope membersClosure(Type site, boolean skipInterface) {
mcimadamore@1015 2467 return membersCache.visit(site, skipInterface);
mcimadamore@1015 2468 }
mcimadamore@858 2469 // </editor-fold>
mcimadamore@858 2470
mcimadamore@1393 2471
mcimadamore@1393 2472 //where
mcimadamore@1393 2473 public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
mcimadamore@1393 2474 return interfaceCandidates(site, ms, false);
mcimadamore@1393 2475 }
mcimadamore@1393 2476
mcimadamore@1393 2477 public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms, boolean intfOnly) {
mcimadamore@1393 2478 Filter<Symbol> filter = new MethodFilter(ms, site, intfOnly);
mcimadamore@1393 2479 List<MethodSymbol> candidates = List.nil();
mcimadamore@1393 2480 for (Symbol s : membersClosure(site, false).getElements(filter)) {
mcimadamore@1393 2481 if (!site.tsym.isInterface() && !s.owner.isInterface()) {
mcimadamore@1393 2482 return List.of((MethodSymbol)s);
mcimadamore@1393 2483 } else if (!candidates.contains(s)) {
mcimadamore@1393 2484 candidates = candidates.prepend((MethodSymbol)s);
mcimadamore@1393 2485 }
mcimadamore@1393 2486 }
mcimadamore@1393 2487 return prune(candidates, ownerComparator);
mcimadamore@1393 2488 }
mcimadamore@1393 2489
mcimadamore@1393 2490 public List<MethodSymbol> prune(List<MethodSymbol> methods, Comparator<MethodSymbol> cmp) {
mcimadamore@1393 2491 ListBuffer<MethodSymbol> methodsMin = ListBuffer.lb();
mcimadamore@1393 2492 for (MethodSymbol m1 : methods) {
mcimadamore@1393 2493 boolean isMin_m1 = true;
mcimadamore@1393 2494 for (MethodSymbol m2 : methods) {
mcimadamore@1393 2495 if (m1 == m2) continue;
mcimadamore@1393 2496 if (cmp.compare(m2, m1) < 0) {
mcimadamore@1393 2497 isMin_m1 = false;
mcimadamore@1393 2498 break;
mcimadamore@1393 2499 }
mcimadamore@1393 2500 }
mcimadamore@1393 2501 if (isMin_m1)
mcimadamore@1393 2502 methodsMin.append(m1);
mcimadamore@1393 2503 }
mcimadamore@1393 2504 return methodsMin.toList();
mcimadamore@1393 2505 }
mcimadamore@1393 2506
mcimadamore@1393 2507 Comparator<MethodSymbol> ownerComparator = new Comparator<MethodSymbol>() {
mcimadamore@1393 2508 public int compare(MethodSymbol s1, MethodSymbol s2) {
mcimadamore@1393 2509 return s1.owner.isSubClass(s2.owner, Types.this) ? -1 : 1;
mcimadamore@1393 2510 }
mcimadamore@1393 2511 };
mcimadamore@1393 2512 // where
mcimadamore@1393 2513 private class MethodFilter implements Filter<Symbol> {
mcimadamore@1393 2514
mcimadamore@1393 2515 Symbol msym;
mcimadamore@1393 2516 Type site;
mcimadamore@1393 2517 boolean intfOnly;
mcimadamore@1393 2518
mcimadamore@1393 2519 MethodFilter(Symbol msym, Type site, boolean intfOnly) {
mcimadamore@1393 2520 this.msym = msym;
mcimadamore@1393 2521 this.site = site;
mcimadamore@1393 2522 this.intfOnly = intfOnly;
mcimadamore@1393 2523 }
mcimadamore@1393 2524
mcimadamore@1393 2525 public boolean accepts(Symbol s) {
mcimadamore@1393 2526 return s.kind == Kinds.MTH &&
mcimadamore@1393 2527 (!intfOnly || s.owner.isInterface()) &&
mcimadamore@1393 2528 s.name == msym.name &&
mcimadamore@1393 2529 s.isInheritedIn(site.tsym, Types.this) &&
mcimadamore@1393 2530 overrideEquivalent(memberType(site, s), memberType(site, msym));
mcimadamore@1393 2531 }
mcimadamore@1393 2532 };
mcimadamore@1393 2533 // </editor-fold>
mcimadamore@1393 2534
duke@1 2535 /**
duke@1 2536 * Does t have the same arguments as s? It is assumed that both
duke@1 2537 * types are (possibly polymorphic) method types. Monomorphic
duke@1 2538 * method types "have the same arguments", if their argument lists
duke@1 2539 * are equal. Polymorphic method types "have the same arguments",
duke@1 2540 * if they have the same arguments after renaming all type
duke@1 2541 * variables of one to corresponding type variables in the other,
duke@1 2542 * where correspondence is by position in the type parameter list.
duke@1 2543 */
duke@1 2544 public boolean hasSameArgs(Type t, Type s) {
mcimadamore@907 2545 return hasSameArgs(t, s, true);
mcimadamore@907 2546 }
mcimadamore@907 2547
mcimadamore@907 2548 public boolean hasSameArgs(Type t, Type s, boolean strict) {
mcimadamore@907 2549 return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
mcimadamore@907 2550 }
mcimadamore@907 2551
mcimadamore@907 2552 private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
duke@1 2553 return hasSameArgs.visit(t, s);
duke@1 2554 }
duke@1 2555 // where
mcimadamore@907 2556 private class HasSameArgs extends TypeRelation {
mcimadamore@907 2557
mcimadamore@907 2558 boolean strict;
mcimadamore@907 2559
mcimadamore@907 2560 public HasSameArgs(boolean strict) {
mcimadamore@907 2561 this.strict = strict;
mcimadamore@907 2562 }
duke@1 2563
duke@1 2564 public Boolean visitType(Type t, Type s) {
duke@1 2565 throw new AssertionError();
duke@1 2566 }
duke@1 2567
duke@1 2568 @Override
duke@1 2569 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 2570 return s.tag == METHOD
duke@1 2571 && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
duke@1 2572 }
duke@1 2573
duke@1 2574 @Override
duke@1 2575 public Boolean visitForAll(ForAll t, Type s) {
duke@1 2576 if (s.tag != FORALL)
mcimadamore@907 2577 return strict ? false : visitMethodType(t.asMethodType(), s);
duke@1 2578
duke@1 2579 ForAll forAll = (ForAll)s;
duke@1 2580 return hasSameBounds(t, forAll)
duke@1 2581 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 2582 }
duke@1 2583
duke@1 2584 @Override
duke@1 2585 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 2586 return false;
duke@1 2587 }
duke@1 2588 };
mcimadamore@907 2589
mcimadamore@907 2590 TypeRelation hasSameArgs_strict = new HasSameArgs(true);
mcimadamore@907 2591 TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
mcimadamore@907 2592
duke@1 2593 // </editor-fold>
duke@1 2594
duke@1 2595 // <editor-fold defaultstate="collapsed" desc="subst">
duke@1 2596 public List<Type> subst(List<Type> ts,
duke@1 2597 List<Type> from,
duke@1 2598 List<Type> to) {
duke@1 2599 return new Subst(from, to).subst(ts);
duke@1 2600 }
duke@1 2601
duke@1 2602 /**
duke@1 2603 * Substitute all occurrences of a type in `from' with the
duke@1 2604 * corresponding type in `to' in 't'. Match lists `from' and `to'
duke@1 2605 * from the right: If lists have different length, discard leading
duke@1 2606 * elements of the longer list.
duke@1 2607 */
duke@1 2608 public Type subst(Type t, List<Type> from, List<Type> to) {
duke@1 2609 return new Subst(from, to).subst(t);
duke@1 2610 }
duke@1 2611
duke@1 2612 private class Subst extends UnaryVisitor<Type> {
duke@1 2613 List<Type> from;
duke@1 2614 List<Type> to;
duke@1 2615
duke@1 2616 public Subst(List<Type> from, List<Type> to) {
duke@1 2617 int fromLength = from.length();
duke@1 2618 int toLength = to.length();
duke@1 2619 while (fromLength > toLength) {
duke@1 2620 fromLength--;
duke@1 2621 from = from.tail;
duke@1 2622 }
duke@1 2623 while (fromLength < toLength) {
duke@1 2624 toLength--;
duke@1 2625 to = to.tail;
duke@1 2626 }
duke@1 2627 this.from = from;
duke@1 2628 this.to = to;
duke@1 2629 }
duke@1 2630
duke@1 2631 Type subst(Type t) {
duke@1 2632 if (from.tail == null)
duke@1 2633 return t;
duke@1 2634 else
duke@1 2635 return visit(t);
mcimadamore@238 2636 }
duke@1 2637
duke@1 2638 List<Type> subst(List<Type> ts) {
duke@1 2639 if (from.tail == null)
duke@1 2640 return ts;
duke@1 2641 boolean wild = false;
duke@1 2642 if (ts.nonEmpty() && from.nonEmpty()) {
duke@1 2643 Type head1 = subst(ts.head);
duke@1 2644 List<Type> tail1 = subst(ts.tail);
duke@1 2645 if (head1 != ts.head || tail1 != ts.tail)
duke@1 2646 return tail1.prepend(head1);
duke@1 2647 }
duke@1 2648 return ts;
duke@1 2649 }
duke@1 2650
duke@1 2651 public Type visitType(Type t, Void ignored) {
duke@1 2652 return t;
duke@1 2653 }
duke@1 2654
duke@1 2655 @Override
duke@1 2656 public Type visitMethodType(MethodType t, Void ignored) {
duke@1 2657 List<Type> argtypes = subst(t.argtypes);
duke@1 2658 Type restype = subst(t.restype);
duke@1 2659 List<Type> thrown = subst(t.thrown);
duke@1 2660 if (argtypes == t.argtypes &&
duke@1 2661 restype == t.restype &&
duke@1 2662 thrown == t.thrown)
duke@1 2663 return t;
duke@1 2664 else
duke@1 2665 return new MethodType(argtypes, restype, thrown, t.tsym);
duke@1 2666 }
duke@1 2667
duke@1 2668 @Override
duke@1 2669 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2670 for (List<Type> from = this.from, to = this.to;
duke@1 2671 from.nonEmpty();
duke@1 2672 from = from.tail, to = to.tail) {
duke@1 2673 if (t == from.head) {
duke@1 2674 return to.head.withTypeVar(t);
duke@1 2675 }
duke@1 2676 }
duke@1 2677 return t;
duke@1 2678 }
duke@1 2679
duke@1 2680 @Override
duke@1 2681 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2682 if (!t.isCompound()) {
duke@1 2683 List<Type> typarams = t.getTypeArguments();
duke@1 2684 List<Type> typarams1 = subst(typarams);
duke@1 2685 Type outer = t.getEnclosingType();
duke@1 2686 Type outer1 = subst(outer);
duke@1 2687 if (typarams1 == typarams && outer1 == outer)
duke@1 2688 return t;
duke@1 2689 else
duke@1 2690 return new ClassType(outer1, typarams1, t.tsym);
duke@1 2691 } else {
duke@1 2692 Type st = subst(supertype(t));
duke@1 2693 List<Type> is = upperBounds(subst(interfaces(t)));
duke@1 2694 if (st == supertype(t) && is == interfaces(t))
duke@1 2695 return t;
duke@1 2696 else
duke@1 2697 return makeCompoundType(is.prepend(st));
duke@1 2698 }
duke@1 2699 }
duke@1 2700
duke@1 2701 @Override
duke@1 2702 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 2703 Type bound = t.type;
duke@1 2704 if (t.kind != BoundKind.UNBOUND)
duke@1 2705 bound = subst(bound);
duke@1 2706 if (bound == t.type) {
duke@1 2707 return t;
duke@1 2708 } else {
duke@1 2709 if (t.isExtendsBound() && bound.isExtendsBound())
duke@1 2710 bound = upperBound(bound);
duke@1 2711 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
duke@1 2712 }
duke@1 2713 }
duke@1 2714
duke@1 2715 @Override
duke@1 2716 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 2717 Type elemtype = subst(t.elemtype);
duke@1 2718 if (elemtype == t.elemtype)
duke@1 2719 return t;
duke@1 2720 else
mcimadamore@996 2721 return new ArrayType(upperBound(elemtype), t.tsym);
duke@1 2722 }
duke@1 2723
duke@1 2724 @Override
duke@1 2725 public Type visitForAll(ForAll t, Void ignored) {
mcimadamore@846 2726 if (Type.containsAny(to, t.tvars)) {
mcimadamore@846 2727 //perform alpha-renaming of free-variables in 't'
mcimadamore@846 2728 //if 'to' types contain variables that are free in 't'
mcimadamore@846 2729 List<Type> freevars = newInstances(t.tvars);
mcimadamore@846 2730 t = new ForAll(freevars,
mcimadamore@846 2731 Types.this.subst(t.qtype, t.tvars, freevars));
mcimadamore@846 2732 }
duke@1 2733 List<Type> tvars1 = substBounds(t.tvars, from, to);
duke@1 2734 Type qtype1 = subst(t.qtype);
duke@1 2735 if (tvars1 == t.tvars && qtype1 == t.qtype) {
duke@1 2736 return t;
duke@1 2737 } else if (tvars1 == t.tvars) {
duke@1 2738 return new ForAll(tvars1, qtype1);
duke@1 2739 } else {
duke@1 2740 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
duke@1 2741 }
duke@1 2742 }
duke@1 2743
duke@1 2744 @Override
duke@1 2745 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2746 return t;
duke@1 2747 }
duke@1 2748 }
duke@1 2749
duke@1 2750 public List<Type> substBounds(List<Type> tvars,
duke@1 2751 List<Type> from,
duke@1 2752 List<Type> to) {
duke@1 2753 if (tvars.isEmpty())
duke@1 2754 return tvars;
duke@1 2755 ListBuffer<Type> newBoundsBuf = lb();
duke@1 2756 boolean changed = false;
duke@1 2757 // calculate new bounds
duke@1 2758 for (Type t : tvars) {
duke@1 2759 TypeVar tv = (TypeVar) t;
duke@1 2760 Type bound = subst(tv.bound, from, to);
duke@1 2761 if (bound != tv.bound)
duke@1 2762 changed = true;
duke@1 2763 newBoundsBuf.append(bound);
duke@1 2764 }
duke@1 2765 if (!changed)
duke@1 2766 return tvars;
duke@1 2767 ListBuffer<Type> newTvars = lb();
duke@1 2768 // create new type variables without bounds
duke@1 2769 for (Type t : tvars) {
duke@1 2770 newTvars.append(new TypeVar(t.tsym, null, syms.botType));
duke@1 2771 }
duke@1 2772 // the new bounds should use the new type variables in place
duke@1 2773 // of the old
duke@1 2774 List<Type> newBounds = newBoundsBuf.toList();
duke@1 2775 from = tvars;
duke@1 2776 to = newTvars.toList();
duke@1 2777 for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
duke@1 2778 newBounds.head = subst(newBounds.head, from, to);
duke@1 2779 }
duke@1 2780 newBounds = newBoundsBuf.toList();
duke@1 2781 // set the bounds of new type variables to the new bounds
duke@1 2782 for (Type t : newTvars.toList()) {
duke@1 2783 TypeVar tv = (TypeVar) t;
duke@1 2784 tv.bound = newBounds.head;
duke@1 2785 newBounds = newBounds.tail;
duke@1 2786 }
duke@1 2787 return newTvars.toList();
duke@1 2788 }
duke@1 2789
duke@1 2790 public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
duke@1 2791 Type bound1 = subst(t.bound, from, to);
duke@1 2792 if (bound1 == t.bound)
duke@1 2793 return t;
mcimadamore@212 2794 else {
mcimadamore@212 2795 // create new type variable without bounds
mcimadamore@212 2796 TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
mcimadamore@212 2797 // the new bound should use the new type variable in place
mcimadamore@212 2798 // of the old
mcimadamore@212 2799 tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
mcimadamore@212 2800 return tv;
mcimadamore@212 2801 }
duke@1 2802 }
duke@1 2803 // </editor-fold>
duke@1 2804
duke@1 2805 // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
duke@1 2806 /**
duke@1 2807 * Does t have the same bounds for quantified variables as s?
duke@1 2808 */
duke@1 2809 boolean hasSameBounds(ForAll t, ForAll s) {
duke@1 2810 List<Type> l1 = t.tvars;
duke@1 2811 List<Type> l2 = s.tvars;
duke@1 2812 while (l1.nonEmpty() && l2.nonEmpty() &&
duke@1 2813 isSameType(l1.head.getUpperBound(),
duke@1 2814 subst(l2.head.getUpperBound(),
duke@1 2815 s.tvars,
duke@1 2816 t.tvars))) {
duke@1 2817 l1 = l1.tail;
duke@1 2818 l2 = l2.tail;
duke@1 2819 }
duke@1 2820 return l1.isEmpty() && l2.isEmpty();
duke@1 2821 }
duke@1 2822 // </editor-fold>
duke@1 2823
duke@1 2824 // <editor-fold defaultstate="collapsed" desc="newInstances">
duke@1 2825 /** Create new vector of type variables from list of variables
duke@1 2826 * changing all recursive bounds from old to new list.
duke@1 2827 */
duke@1 2828 public List<Type> newInstances(List<Type> tvars) {
duke@1 2829 List<Type> tvars1 = Type.map(tvars, newInstanceFun);
duke@1 2830 for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
duke@1 2831 TypeVar tv = (TypeVar) l.head;
duke@1 2832 tv.bound = subst(tv.bound, tvars, tvars1);
duke@1 2833 }
duke@1 2834 return tvars1;
duke@1 2835 }
duke@1 2836 static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
duke@1 2837 public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
duke@1 2838 };
duke@1 2839 // </editor-fold>
duke@1 2840
dlsmith@880 2841 public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
dlsmith@880 2842 return original.accept(methodWithParameters, newParams);
dlsmith@880 2843 }
dlsmith@880 2844 // where
dlsmith@880 2845 private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
dlsmith@880 2846 public Type visitType(Type t, List<Type> newParams) {
dlsmith@880 2847 throw new IllegalArgumentException("Not a method type: " + t);
dlsmith@880 2848 }
dlsmith@880 2849 public Type visitMethodType(MethodType t, List<Type> newParams) {
dlsmith@880 2850 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
dlsmith@880 2851 }
dlsmith@880 2852 public Type visitForAll(ForAll t, List<Type> newParams) {
dlsmith@880 2853 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
dlsmith@880 2854 }
dlsmith@880 2855 };
dlsmith@880 2856
dlsmith@880 2857 public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
dlsmith@880 2858 return original.accept(methodWithThrown, newThrown);
dlsmith@880 2859 }
dlsmith@880 2860 // where
dlsmith@880 2861 private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
dlsmith@880 2862 public Type visitType(Type t, List<Type> newThrown) {
dlsmith@880 2863 throw new IllegalArgumentException("Not a method type: " + t);
dlsmith@880 2864 }
dlsmith@880 2865 public Type visitMethodType(MethodType t, List<Type> newThrown) {
dlsmith@880 2866 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
dlsmith@880 2867 }
dlsmith@880 2868 public Type visitForAll(ForAll t, List<Type> newThrown) {
dlsmith@880 2869 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
dlsmith@880 2870 }
dlsmith@880 2871 };
dlsmith@880 2872
mcimadamore@950 2873 public Type createMethodTypeWithReturn(Type original, Type newReturn) {
mcimadamore@950 2874 return original.accept(methodWithReturn, newReturn);
mcimadamore@950 2875 }
mcimadamore@950 2876 // where
mcimadamore@950 2877 private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
mcimadamore@950 2878 public Type visitType(Type t, Type newReturn) {
mcimadamore@950 2879 throw new IllegalArgumentException("Not a method type: " + t);
mcimadamore@950 2880 }
mcimadamore@950 2881 public Type visitMethodType(MethodType t, Type newReturn) {
mcimadamore@950 2882 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
mcimadamore@950 2883 }
mcimadamore@950 2884 public Type visitForAll(ForAll t, Type newReturn) {
mcimadamore@950 2885 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
mcimadamore@950 2886 }
mcimadamore@950 2887 };
mcimadamore@950 2888
jjg@110 2889 // <editor-fold defaultstate="collapsed" desc="createErrorType">
jjg@110 2890 public Type createErrorType(Type originalType) {
jjg@110 2891 return new ErrorType(originalType, syms.errSymbol);
jjg@110 2892 }
jjg@110 2893
jjg@110 2894 public Type createErrorType(ClassSymbol c, Type originalType) {
jjg@110 2895 return new ErrorType(c, originalType);
jjg@110 2896 }
jjg@110 2897
jjg@110 2898 public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
jjg@110 2899 return new ErrorType(name, container, originalType);
jjg@110 2900 }
jjg@110 2901 // </editor-fold>
jjg@110 2902
duke@1 2903 // <editor-fold defaultstate="collapsed" desc="rank">
duke@1 2904 /**
duke@1 2905 * The rank of a class is the length of the longest path between
duke@1 2906 * the class and java.lang.Object in the class inheritance
duke@1 2907 * graph. Undefined for all but reference types.
duke@1 2908 */
duke@1 2909 public int rank(Type t) {
duke@1 2910 switch(t.tag) {
duke@1 2911 case CLASS: {
duke@1 2912 ClassType cls = (ClassType)t;
duke@1 2913 if (cls.rank_field < 0) {
duke@1 2914 Name fullname = cls.tsym.getQualifiedName();
jjg@113 2915 if (fullname == names.java_lang_Object)
duke@1 2916 cls.rank_field = 0;
duke@1 2917 else {
duke@1 2918 int r = rank(supertype(cls));
duke@1 2919 for (List<Type> l = interfaces(cls);
duke@1 2920 l.nonEmpty();
duke@1 2921 l = l.tail) {
duke@1 2922 if (rank(l.head) > r)
duke@1 2923 r = rank(l.head);
duke@1 2924 }
duke@1 2925 cls.rank_field = r + 1;
duke@1 2926 }
duke@1 2927 }
duke@1 2928 return cls.rank_field;
duke@1 2929 }
duke@1 2930 case TYPEVAR: {
duke@1 2931 TypeVar tvar = (TypeVar)t;
duke@1 2932 if (tvar.rank_field < 0) {
duke@1 2933 int r = rank(supertype(tvar));
duke@1 2934 for (List<Type> l = interfaces(tvar);
duke@1 2935 l.nonEmpty();
duke@1 2936 l = l.tail) {
duke@1 2937 if (rank(l.head) > r) r = rank(l.head);
duke@1 2938 }
duke@1 2939 tvar.rank_field = r + 1;
duke@1 2940 }
duke@1 2941 return tvar.rank_field;
duke@1 2942 }
duke@1 2943 case ERROR:
duke@1 2944 return 0;
duke@1 2945 default:
duke@1 2946 throw new AssertionError();
duke@1 2947 }
duke@1 2948 }
duke@1 2949 // </editor-fold>
duke@1 2950
mcimadamore@121 2951 /**
mcimadamore@238 2952 * Helper method for generating a string representation of a given type
mcimadamore@121 2953 * accordingly to a given locale
mcimadamore@121 2954 */
mcimadamore@121 2955 public String toString(Type t, Locale locale) {
mcimadamore@238 2956 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2957 }
mcimadamore@121 2958
mcimadamore@121 2959 /**
mcimadamore@238 2960 * Helper method for generating a string representation of a given type
mcimadamore@121 2961 * accordingly to a given locale
mcimadamore@121 2962 */
mcimadamore@121 2963 public String toString(Symbol t, Locale locale) {
mcimadamore@238 2964 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2965 }
mcimadamore@121 2966
duke@1 2967 // <editor-fold defaultstate="collapsed" desc="toString">
duke@1 2968 /**
duke@1 2969 * This toString is slightly more descriptive than the one on Type.
mcimadamore@121 2970 *
mcimadamore@121 2971 * @deprecated Types.toString(Type t, Locale l) provides better support
mcimadamore@121 2972 * for localization
duke@1 2973 */
mcimadamore@121 2974 @Deprecated
duke@1 2975 public String toString(Type t) {
duke@1 2976 if (t.tag == FORALL) {
duke@1 2977 ForAll forAll = (ForAll)t;
duke@1 2978 return typaramsString(forAll.tvars) + forAll.qtype;
duke@1 2979 }
duke@1 2980 return "" + t;
duke@1 2981 }
duke@1 2982 // where
duke@1 2983 private String typaramsString(List<Type> tvars) {
jjg@904 2984 StringBuilder s = new StringBuilder();
duke@1 2985 s.append('<');
duke@1 2986 boolean first = true;
duke@1 2987 for (Type t : tvars) {
duke@1 2988 if (!first) s.append(", ");
duke@1 2989 first = false;
duke@1 2990 appendTyparamString(((TypeVar)t), s);
duke@1 2991 }
duke@1 2992 s.append('>');
duke@1 2993 return s.toString();
duke@1 2994 }
jjg@904 2995 private void appendTyparamString(TypeVar t, StringBuilder buf) {
duke@1 2996 buf.append(t);
duke@1 2997 if (t.bound == null ||
duke@1 2998 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
duke@1 2999 return;
duke@1 3000 buf.append(" extends "); // Java syntax; no need for i18n
duke@1 3001 Type bound = t.bound;
duke@1 3002 if (!bound.isCompound()) {
duke@1 3003 buf.append(bound);
duke@1 3004 } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
duke@1 3005 buf.append(supertype(t));
duke@1 3006 for (Type intf : interfaces(t)) {
duke@1 3007 buf.append('&');
duke@1 3008 buf.append(intf);
duke@1 3009 }
duke@1 3010 } else {
duke@1 3011 // No superclass was given in bounds.
duke@1 3012 // In this case, supertype is Object, erasure is first interface.
duke@1 3013 boolean first = true;
duke@1 3014 for (Type intf : interfaces(t)) {
duke@1 3015 if (!first) buf.append('&');
duke@1 3016 first = false;
duke@1 3017 buf.append(intf);
duke@1 3018 }
duke@1 3019 }
duke@1 3020 }
duke@1 3021 // </editor-fold>
duke@1 3022
duke@1 3023 // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
duke@1 3024 /**
duke@1 3025 * A cache for closures.
duke@1 3026 *
duke@1 3027 * <p>A closure is a list of all the supertypes and interfaces of
duke@1 3028 * a class or interface type, ordered by ClassSymbol.precedes
duke@1 3029 * (that is, subclasses come first, arbitrary but fixed
duke@1 3030 * otherwise).
duke@1 3031 */
duke@1 3032 private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
duke@1 3033
duke@1 3034 /**
duke@1 3035 * Returns the closure of a class or interface type.
duke@1 3036 */
duke@1 3037 public List<Type> closure(Type t) {
duke@1 3038 List<Type> cl = closureCache.get(t);
duke@1 3039 if (cl == null) {
duke@1 3040 Type st = supertype(t);
duke@1 3041 if (!t.isCompound()) {
duke@1 3042 if (st.tag == CLASS) {
duke@1 3043 cl = insert(closure(st), t);
duke@1 3044 } else if (st.tag == TYPEVAR) {
duke@1 3045 cl = closure(st).prepend(t);
duke@1 3046 } else {
duke@1 3047 cl = List.of(t);
duke@1 3048 }
duke@1 3049 } else {
duke@1 3050 cl = closure(supertype(t));
duke@1 3051 }
duke@1 3052 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
duke@1 3053 cl = union(cl, closure(l.head));
duke@1 3054 closureCache.put(t, cl);
duke@1 3055 }
duke@1 3056 return cl;
duke@1 3057 }
duke@1 3058
duke@1 3059 /**
duke@1 3060 * Insert a type in a closure
duke@1 3061 */
duke@1 3062 public List<Type> insert(List<Type> cl, Type t) {
duke@1 3063 if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
duke@1 3064 return cl.prepend(t);
duke@1 3065 } else if (cl.head.tsym.precedes(t.tsym, this)) {
duke@1 3066 return insert(cl.tail, t).prepend(cl.head);
duke@1 3067 } else {
duke@1 3068 return cl;
duke@1 3069 }
duke@1 3070 }
duke@1 3071
duke@1 3072 /**
duke@1 3073 * Form the union of two closures
duke@1 3074 */
duke@1 3075 public List<Type> union(List<Type> cl1, List<Type> cl2) {
duke@1 3076 if (cl1.isEmpty()) {
duke@1 3077 return cl2;
duke@1 3078 } else if (cl2.isEmpty()) {
duke@1 3079 return cl1;
duke@1 3080 } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
duke@1 3081 return union(cl1.tail, cl2).prepend(cl1.head);
duke@1 3082 } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
duke@1 3083 return union(cl1, cl2.tail).prepend(cl2.head);
duke@1 3084 } else {
duke@1 3085 return union(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 3086 }
duke@1 3087 }
duke@1 3088
duke@1 3089 /**
duke@1 3090 * Intersect two closures
duke@1 3091 */
duke@1 3092 public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
duke@1 3093 if (cl1 == cl2)
duke@1 3094 return cl1;
duke@1 3095 if (cl1.isEmpty() || cl2.isEmpty())
duke@1 3096 return List.nil();
duke@1 3097 if (cl1.head.tsym.precedes(cl2.head.tsym, this))
duke@1 3098 return intersect(cl1.tail, cl2);
duke@1 3099 if (cl2.head.tsym.precedes(cl1.head.tsym, this))
duke@1 3100 return intersect(cl1, cl2.tail);
duke@1 3101 if (isSameType(cl1.head, cl2.head))
duke@1 3102 return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 3103 if (cl1.head.tsym == cl2.head.tsym &&
duke@1 3104 cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
duke@1 3105 if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
duke@1 3106 Type merge = merge(cl1.head,cl2.head);
duke@1 3107 return intersect(cl1.tail, cl2.tail).prepend(merge);
duke@1 3108 }
duke@1 3109 if (cl1.head.isRaw() || cl2.head.isRaw())
duke@1 3110 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
duke@1 3111 }
duke@1 3112 return intersect(cl1.tail, cl2.tail);
duke@1 3113 }
duke@1 3114 // where
duke@1 3115 class TypePair {
duke@1 3116 final Type t1;
duke@1 3117 final Type t2;
duke@1 3118 TypePair(Type t1, Type t2) {
duke@1 3119 this.t1 = t1;
duke@1 3120 this.t2 = t2;
duke@1 3121 }
duke@1 3122 @Override
duke@1 3123 public int hashCode() {
jjg@507 3124 return 127 * Types.hashCode(t1) + Types.hashCode(t2);
duke@1 3125 }
duke@1 3126 @Override
duke@1 3127 public boolean equals(Object obj) {
duke@1 3128 if (!(obj instanceof TypePair))
duke@1 3129 return false;
duke@1 3130 TypePair typePair = (TypePair)obj;
duke@1 3131 return isSameType(t1, typePair.t1)
duke@1 3132 && isSameType(t2, typePair.t2);
duke@1 3133 }
duke@1 3134 }
duke@1 3135 Set<TypePair> mergeCache = new HashSet<TypePair>();
duke@1 3136 private Type merge(Type c1, Type c2) {
duke@1 3137 ClassType class1 = (ClassType) c1;
duke@1 3138 List<Type> act1 = class1.getTypeArguments();
duke@1 3139 ClassType class2 = (ClassType) c2;
duke@1 3140 List<Type> act2 = class2.getTypeArguments();
duke@1 3141 ListBuffer<Type> merged = new ListBuffer<Type>();
duke@1 3142 List<Type> typarams = class1.tsym.type.getTypeArguments();
duke@1 3143
duke@1 3144 while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
duke@1 3145 if (containsType(act1.head, act2.head)) {
duke@1 3146 merged.append(act1.head);
duke@1 3147 } else if (containsType(act2.head, act1.head)) {
duke@1 3148 merged.append(act2.head);
duke@1 3149 } else {
duke@1 3150 TypePair pair = new TypePair(c1, c2);
duke@1 3151 Type m;
duke@1 3152 if (mergeCache.add(pair)) {
duke@1 3153 m = new WildcardType(lub(upperBound(act1.head),
duke@1 3154 upperBound(act2.head)),
duke@1 3155 BoundKind.EXTENDS,
duke@1 3156 syms.boundClass);
duke@1 3157 mergeCache.remove(pair);
duke@1 3158 } else {
duke@1 3159 m = new WildcardType(syms.objectType,
duke@1 3160 BoundKind.UNBOUND,
duke@1 3161 syms.boundClass);
duke@1 3162 }
duke@1 3163 merged.append(m.withTypeVar(typarams.head));
duke@1 3164 }
duke@1 3165 act1 = act1.tail;
duke@1 3166 act2 = act2.tail;
duke@1 3167 typarams = typarams.tail;
duke@1 3168 }
jjg@816 3169 Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
duke@1 3170 return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
duke@1 3171 }
duke@1 3172
duke@1 3173 /**
duke@1 3174 * Return the minimum type of a closure, a compound type if no
duke@1 3175 * unique minimum exists.
duke@1 3176 */
duke@1 3177 private Type compoundMin(List<Type> cl) {
duke@1 3178 if (cl.isEmpty()) return syms.objectType;
duke@1 3179 List<Type> compound = closureMin(cl);
duke@1 3180 if (compound.isEmpty())
duke@1 3181 return null;
duke@1 3182 else if (compound.tail.isEmpty())
duke@1 3183 return compound.head;
duke@1 3184 else
duke@1 3185 return makeCompoundType(compound);
duke@1 3186 }
duke@1 3187
duke@1 3188 /**
duke@1 3189 * Return the minimum types of a closure, suitable for computing
duke@1 3190 * compoundMin or glb.
duke@1 3191 */
duke@1 3192 private List<Type> closureMin(List<Type> cl) {
duke@1 3193 ListBuffer<Type> classes = lb();
duke@1 3194 ListBuffer<Type> interfaces = lb();
duke@1 3195 while (!cl.isEmpty()) {
duke@1 3196 Type current = cl.head;
duke@1 3197 if (current.isInterface())
duke@1 3198 interfaces.append(current);
duke@1 3199 else
duke@1 3200 classes.append(current);
duke@1 3201 ListBuffer<Type> candidates = lb();
duke@1 3202 for (Type t : cl.tail) {
duke@1 3203 if (!isSubtypeNoCapture(current, t))
duke@1 3204 candidates.append(t);
duke@1 3205 }
duke@1 3206 cl = candidates.toList();
duke@1 3207 }
duke@1 3208 return classes.appendList(interfaces).toList();
duke@1 3209 }
duke@1 3210
duke@1 3211 /**
duke@1 3212 * Return the least upper bound of pair of types. if the lub does
duke@1 3213 * not exist return null.
duke@1 3214 */
duke@1 3215 public Type lub(Type t1, Type t2) {
duke@1 3216 return lub(List.of(t1, t2));
duke@1 3217 }
duke@1 3218
duke@1 3219 /**
duke@1 3220 * Return the least upper bound (lub) of set of types. If the lub
duke@1 3221 * does not exist return the type of null (bottom).
duke@1 3222 */
duke@1 3223 public Type lub(List<Type> ts) {
duke@1 3224 final int ARRAY_BOUND = 1;
duke@1 3225 final int CLASS_BOUND = 2;
duke@1 3226 int boundkind = 0;
duke@1 3227 for (Type t : ts) {
duke@1 3228 switch (t.tag) {
duke@1 3229 case CLASS:
duke@1 3230 boundkind |= CLASS_BOUND;
duke@1 3231 break;
duke@1 3232 case ARRAY:
duke@1 3233 boundkind |= ARRAY_BOUND;
duke@1 3234 break;
duke@1 3235 case TYPEVAR:
duke@1 3236 do {
duke@1 3237 t = t.getUpperBound();
duke@1 3238 } while (t.tag == TYPEVAR);
duke@1 3239 if (t.tag == ARRAY) {
duke@1 3240 boundkind |= ARRAY_BOUND;
duke@1 3241 } else {
duke@1 3242 boundkind |= CLASS_BOUND;
duke@1 3243 }
duke@1 3244 break;
duke@1 3245 default:
duke@1 3246 if (t.isPrimitive())
mcimadamore@5 3247 return syms.errType;
duke@1 3248 }
duke@1 3249 }
duke@1 3250 switch (boundkind) {
duke@1 3251 case 0:
duke@1 3252 return syms.botType;
duke@1 3253
duke@1 3254 case ARRAY_BOUND:
duke@1 3255 // calculate lub(A[], B[])
duke@1 3256 List<Type> elements = Type.map(ts, elemTypeFun);
duke@1 3257 for (Type t : elements) {
duke@1 3258 if (t.isPrimitive()) {
duke@1 3259 // if a primitive type is found, then return
duke@1 3260 // arraySuperType unless all the types are the
duke@1 3261 // same
duke@1 3262 Type first = ts.head;
duke@1 3263 for (Type s : ts.tail) {
duke@1 3264 if (!isSameType(first, s)) {
duke@1 3265 // lub(int[], B[]) is Cloneable & Serializable
duke@1 3266 return arraySuperType();
duke@1 3267 }
duke@1 3268 }
duke@1 3269 // all the array types are the same, return one
duke@1 3270 // lub(int[], int[]) is int[]
duke@1 3271 return first;
duke@1 3272 }
duke@1 3273 }
duke@1 3274 // lub(A[], B[]) is lub(A, B)[]
duke@1 3275 return new ArrayType(lub(elements), syms.arrayClass);
duke@1 3276
duke@1 3277 case CLASS_BOUND:
duke@1 3278 // calculate lub(A, B)
duke@1 3279 while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
duke@1 3280 ts = ts.tail;
jjg@816 3281 Assert.check(!ts.isEmpty());
mcimadamore@896 3282 //step 1 - compute erased candidate set (EC)
mcimadamore@896 3283 List<Type> cl = erasedSupertypes(ts.head);
duke@1 3284 for (Type t : ts.tail) {
duke@1 3285 if (t.tag == CLASS || t.tag == TYPEVAR)
mcimadamore@896 3286 cl = intersect(cl, erasedSupertypes(t));
duke@1 3287 }
mcimadamore@896 3288 //step 2 - compute minimal erased candidate set (MEC)
mcimadamore@896 3289 List<Type> mec = closureMin(cl);
mcimadamore@896 3290 //step 3 - for each element G in MEC, compute lci(Inv(G))
mcimadamore@896 3291 List<Type> candidates = List.nil();
mcimadamore@896 3292 for (Type erasedSupertype : mec) {
mcimadamore@896 3293 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
mcimadamore@896 3294 for (Type t : ts) {
mcimadamore@896 3295 lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
mcimadamore@896 3296 }
mcimadamore@896 3297 candidates = candidates.appendList(lci);
mcimadamore@896 3298 }
mcimadamore@896 3299 //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
mcimadamore@896 3300 //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
mcimadamore@896 3301 return compoundMin(candidates);
duke@1 3302
duke@1 3303 default:
duke@1 3304 // calculate lub(A, B[])
duke@1 3305 List<Type> classes = List.of(arraySuperType());
duke@1 3306 for (Type t : ts) {
duke@1 3307 if (t.tag != ARRAY) // Filter out any arrays
duke@1 3308 classes = classes.prepend(t);
duke@1 3309 }
duke@1 3310 // lub(A, B[]) is lub(A, arraySuperType)
duke@1 3311 return lub(classes);
duke@1 3312 }
duke@1 3313 }
duke@1 3314 // where
mcimadamore@896 3315 List<Type> erasedSupertypes(Type t) {
mcimadamore@896 3316 ListBuffer<Type> buf = lb();
mcimadamore@896 3317 for (Type sup : closure(t)) {
mcimadamore@896 3318 if (sup.tag == TYPEVAR) {
mcimadamore@896 3319 buf.append(sup);
mcimadamore@896 3320 } else {
mcimadamore@896 3321 buf.append(erasure(sup));
mcimadamore@896 3322 }
mcimadamore@896 3323 }
mcimadamore@896 3324 return buf.toList();
mcimadamore@896 3325 }
mcimadamore@896 3326
duke@1 3327 private Type arraySuperType = null;
duke@1 3328 private Type arraySuperType() {
duke@1 3329 // initialized lazily to avoid problems during compiler startup
duke@1 3330 if (arraySuperType == null) {
duke@1 3331 synchronized (this) {
duke@1 3332 if (arraySuperType == null) {
duke@1 3333 // JLS 10.8: all arrays implement Cloneable and Serializable.
duke@1 3334 arraySuperType = makeCompoundType(List.of(syms.serializableType,
duke@1 3335 syms.cloneableType),
duke@1 3336 syms.objectType);
duke@1 3337 }
duke@1 3338 }
duke@1 3339 }
duke@1 3340 return arraySuperType;
duke@1 3341 }
duke@1 3342 // </editor-fold>
duke@1 3343
duke@1 3344 // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
mcimadamore@210 3345 public Type glb(List<Type> ts) {
mcimadamore@210 3346 Type t1 = ts.head;
mcimadamore@210 3347 for (Type t2 : ts.tail) {
mcimadamore@210 3348 if (t1.isErroneous())
mcimadamore@210 3349 return t1;
mcimadamore@210 3350 t1 = glb(t1, t2);
mcimadamore@210 3351 }
mcimadamore@210 3352 return t1;
mcimadamore@210 3353 }
mcimadamore@210 3354 //where
duke@1 3355 public Type glb(Type t, Type s) {
duke@1 3356 if (s == null)
duke@1 3357 return t;
mcimadamore@753 3358 else if (t.isPrimitive() || s.isPrimitive())
mcimadamore@753 3359 return syms.errType;
duke@1 3360 else if (isSubtypeNoCapture(t, s))
duke@1 3361 return t;
duke@1 3362 else if (isSubtypeNoCapture(s, t))
duke@1 3363 return s;
duke@1 3364
duke@1 3365 List<Type> closure = union(closure(t), closure(s));
duke@1 3366 List<Type> bounds = closureMin(closure);
duke@1 3367
duke@1 3368 if (bounds.isEmpty()) { // length == 0
duke@1 3369 return syms.objectType;
duke@1 3370 } else if (bounds.tail.isEmpty()) { // length == 1
duke@1 3371 return bounds.head;
duke@1 3372 } else { // length > 1
duke@1 3373 int classCount = 0;
duke@1 3374 for (Type bound : bounds)
duke@1 3375 if (!bound.isInterface())
duke@1 3376 classCount++;
duke@1 3377 if (classCount > 1)
jjg@110 3378 return createErrorType(t);
duke@1 3379 }
duke@1 3380 return makeCompoundType(bounds);
duke@1 3381 }
duke@1 3382 // </editor-fold>
duke@1 3383
duke@1 3384 // <editor-fold defaultstate="collapsed" desc="hashCode">
duke@1 3385 /**
duke@1 3386 * Compute a hash code on a type.
duke@1 3387 */
duke@1 3388 public static int hashCode(Type t) {
duke@1 3389 return hashCode.visit(t);
duke@1 3390 }
duke@1 3391 // where
duke@1 3392 private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
duke@1 3393
duke@1 3394 public Integer visitType(Type t, Void ignored) {
jjg@1374 3395 return t.tag.ordinal();
duke@1 3396 }
duke@1 3397
duke@1 3398 @Override
duke@1 3399 public Integer visitClassType(ClassType t, Void ignored) {
duke@1 3400 int result = visit(t.getEnclosingType());
duke@1 3401 result *= 127;
duke@1 3402 result += t.tsym.flatName().hashCode();
duke@1 3403 for (Type s : t.getTypeArguments()) {
duke@1 3404 result *= 127;
duke@1 3405 result += visit(s);
duke@1 3406 }
duke@1 3407 return result;
duke@1 3408 }
duke@1 3409
duke@1 3410 @Override
duke@1 3411 public Integer visitWildcardType(WildcardType t, Void ignored) {
duke@1 3412 int result = t.kind.hashCode();
duke@1 3413 if (t.type != null) {
duke@1 3414 result *= 127;
duke@1 3415 result += visit(t.type);
duke@1 3416 }
duke@1 3417 return result;
duke@1 3418 }
duke@1 3419
duke@1 3420 @Override
duke@1 3421 public Integer visitArrayType(ArrayType t, Void ignored) {
duke@1 3422 return visit(t.elemtype) + 12;
duke@1 3423 }
duke@1 3424
duke@1 3425 @Override
duke@1 3426 public Integer visitTypeVar(TypeVar t, Void ignored) {
duke@1 3427 return System.identityHashCode(t.tsym);
duke@1 3428 }
duke@1 3429
duke@1 3430 @Override
duke@1 3431 public Integer visitUndetVar(UndetVar t, Void ignored) {
duke@1 3432 return System.identityHashCode(t);
duke@1 3433 }
duke@1 3434
duke@1 3435 @Override
duke@1 3436 public Integer visitErrorType(ErrorType t, Void ignored) {
duke@1 3437 return 0;
duke@1 3438 }
duke@1 3439 };
duke@1 3440 // </editor-fold>
duke@1 3441
duke@1 3442 // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
duke@1 3443 /**
duke@1 3444 * Does t have a result that is a subtype of the result type of s,
duke@1 3445 * suitable for covariant returns? It is assumed that both types
duke@1 3446 * are (possibly polymorphic) method types. Monomorphic method
duke@1 3447 * types are handled in the obvious way. Polymorphic method types
duke@1 3448 * require renaming all type variables of one to corresponding
duke@1 3449 * type variables in the other, where correspondence is by
duke@1 3450 * position in the type parameter list. */
duke@1 3451 public boolean resultSubtype(Type t, Type s, Warner warner) {
duke@1 3452 List<Type> tvars = t.getTypeArguments();
duke@1 3453 List<Type> svars = s.getTypeArguments();
duke@1 3454 Type tres = t.getReturnType();
duke@1 3455 Type sres = subst(s.getReturnType(), svars, tvars);
duke@1 3456 return covariantReturnType(tres, sres, warner);
duke@1 3457 }
duke@1 3458
duke@1 3459 /**
duke@1 3460 * Return-Type-Substitutable.
jjh@972 3461 * @jls section 8.4.5
duke@1 3462 */
duke@1 3463 public boolean returnTypeSubstitutable(Type r1, Type r2) {
duke@1 3464 if (hasSameArgs(r1, r2))
tbell@202 3465 return resultSubtype(r1, r2, Warner.noWarnings);
duke@1 3466 else
duke@1 3467 return covariantReturnType(r1.getReturnType(),
tbell@202 3468 erasure(r2.getReturnType()),
tbell@202 3469 Warner.noWarnings);
tbell@202 3470 }
tbell@202 3471
tbell@202 3472 public boolean returnTypeSubstitutable(Type r1,
tbell@202 3473 Type r2, Type r2res,
tbell@202 3474 Warner warner) {
tbell@202 3475 if (isSameType(r1.getReturnType(), r2res))
tbell@202 3476 return true;
tbell@202 3477 if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
tbell@202 3478 return false;
tbell@202 3479
tbell@202 3480 if (hasSameArgs(r1, r2))
tbell@202 3481 return covariantReturnType(r1.getReturnType(), r2res, warner);
jjg@984 3482 if (!allowCovariantReturns)
tbell@202 3483 return false;
tbell@202 3484 if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
tbell@202 3485 return true;
tbell@202 3486 if (!isSubtype(r1.getReturnType(), erasure(r2res)))
tbell@202 3487 return false;
mcimadamore@795 3488 warner.warn(LintCategory.UNCHECKED);
tbell@202 3489 return true;
duke@1 3490 }
duke@1 3491
duke@1 3492 /**
duke@1 3493 * Is t an appropriate return type in an overrider for a
duke@1 3494 * method that returns s?
duke@1 3495 */
duke@1 3496 public boolean covariantReturnType(Type t, Type s, Warner warner) {
tbell@202 3497 return
tbell@202 3498 isSameType(t, s) ||
jjg@984 3499 allowCovariantReturns &&
duke@1 3500 !t.isPrimitive() &&
tbell@202 3501 !s.isPrimitive() &&
tbell@202 3502 isAssignable(t, s, warner);
duke@1 3503 }
duke@1 3504 // </editor-fold>
duke@1 3505
duke@1 3506 // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
duke@1 3507 /**
duke@1 3508 * Return the class that boxes the given primitive.
duke@1 3509 */
duke@1 3510 public ClassSymbol boxedClass(Type t) {
jjg@1374 3511 return reader.enterClass(syms.boxedName[t.tag.ordinal()]);
duke@1 3512 }
duke@1 3513
duke@1 3514 /**
mcimadamore@753 3515 * Return the boxed type if 't' is primitive, otherwise return 't' itself.
mcimadamore@753 3516 */
mcimadamore@753 3517 public Type boxedTypeOrType(Type t) {
mcimadamore@753 3518 return t.isPrimitive() ?
mcimadamore@753 3519 boxedClass(t).type :
mcimadamore@753 3520 t;
mcimadamore@753 3521 }
mcimadamore@753 3522
mcimadamore@753 3523 /**
duke@1 3524 * Return the primitive type corresponding to a boxed type.
duke@1 3525 */
duke@1 3526 public Type unboxedType(Type t) {
duke@1 3527 if (allowBoxing) {
duke@1 3528 for (int i=0; i<syms.boxedName.length; i++) {
duke@1 3529 Name box = syms.boxedName[i];
duke@1 3530 if (box != null &&
duke@1 3531 asSuper(t, reader.enterClass(box)) != null)
duke@1 3532 return syms.typeOfTag[i];
duke@1 3533 }
duke@1 3534 }
duke@1 3535 return Type.noType;
duke@1 3536 }
mcimadamore@1347 3537
mcimadamore@1347 3538 /**
mcimadamore@1347 3539 * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
mcimadamore@1347 3540 */
mcimadamore@1347 3541 public Type unboxedTypeOrType(Type t) {
mcimadamore@1347 3542 Type unboxedType = unboxedType(t);
mcimadamore@1347 3543 return unboxedType.tag == NONE ? t : unboxedType;
mcimadamore@1347 3544 }
duke@1 3545 // </editor-fold>
duke@1 3546
duke@1 3547 // <editor-fold defaultstate="collapsed" desc="Capture conversion">
duke@1 3548 /*
jjh@972 3549 * JLS 5.1.10 Capture Conversion:
duke@1 3550 *
duke@1 3551 * Let G name a generic type declaration with n formal type
duke@1 3552 * parameters A1 ... An with corresponding bounds U1 ... Un. There
duke@1 3553 * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
duke@1 3554 * where, for 1 <= i <= n:
duke@1 3555 *
duke@1 3556 * + If Ti is a wildcard type argument (4.5.1) of the form ? then
duke@1 3557 * Si is a fresh type variable whose upper bound is
duke@1 3558 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
duke@1 3559 * type.
duke@1 3560 *
duke@1 3561 * + If Ti is a wildcard type argument of the form ? extends Bi,
duke@1 3562 * then Si is a fresh type variable whose upper bound is
duke@1 3563 * glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
duke@1 3564 * the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
duke@1 3565 * a compile-time error if for any two classes (not interfaces)
duke@1 3566 * Vi and Vj,Vi is not a subclass of Vj or vice versa.
duke@1 3567 *
duke@1 3568 * + If Ti is a wildcard type argument of the form ? super Bi,
duke@1 3569 * then Si is a fresh type variable whose upper bound is
duke@1 3570 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
duke@1 3571 *
duke@1 3572 * + Otherwise, Si = Ti.
duke@1 3573 *
duke@1 3574 * Capture conversion on any type other than a parameterized type
duke@1 3575 * (4.5) acts as an identity conversion (5.1.1). Capture
duke@1 3576 * conversions never require a special action at run time and
duke@1 3577 * therefore never throw an exception at run time.
duke@1 3578 *
duke@1 3579 * Capture conversion is not applied recursively.
duke@1 3580 */
duke@1 3581 /**
jjh@972 3582 * Capture conversion as specified by the JLS.
duke@1 3583 */
mcimadamore@299 3584
mcimadamore@299 3585 public List<Type> capture(List<Type> ts) {
mcimadamore@299 3586 List<Type> buf = List.nil();
mcimadamore@299 3587 for (Type t : ts) {
mcimadamore@299 3588 buf = buf.prepend(capture(t));
mcimadamore@299 3589 }
mcimadamore@299 3590 return buf.reverse();
mcimadamore@299 3591 }
duke@1 3592 public Type capture(Type t) {
duke@1 3593 if (t.tag != CLASS)
duke@1 3594 return t;
mcimadamore@637 3595 if (t.getEnclosingType() != Type.noType) {
mcimadamore@637 3596 Type capturedEncl = capture(t.getEnclosingType());
mcimadamore@637 3597 if (capturedEncl != t.getEnclosingType()) {
mcimadamore@637 3598 Type type1 = memberType(capturedEncl, t.tsym);
mcimadamore@637 3599 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
mcimadamore@637 3600 }
mcimadamore@637 3601 }
duke@1 3602 ClassType cls = (ClassType)t;
duke@1 3603 if (cls.isRaw() || !cls.isParameterized())
duke@1 3604 return cls;
duke@1 3605
duke@1 3606 ClassType G = (ClassType)cls.asElement().asType();
duke@1 3607 List<Type> A = G.getTypeArguments();
duke@1 3608 List<Type> T = cls.getTypeArguments();
duke@1 3609 List<Type> S = freshTypeVariables(T);
duke@1 3610
duke@1 3611 List<Type> currentA = A;
duke@1 3612 List<Type> currentT = T;
duke@1 3613 List<Type> currentS = S;
duke@1 3614 boolean captured = false;
duke@1 3615 while (!currentA.isEmpty() &&
duke@1 3616 !currentT.isEmpty() &&
duke@1 3617 !currentS.isEmpty()) {
duke@1 3618 if (currentS.head != currentT.head) {
duke@1 3619 captured = true;
duke@1 3620 WildcardType Ti = (WildcardType)currentT.head;
duke@1 3621 Type Ui = currentA.head.getUpperBound();
duke@1 3622 CapturedType Si = (CapturedType)currentS.head;
duke@1 3623 if (Ui == null)
duke@1 3624 Ui = syms.objectType;
duke@1 3625 switch (Ti.kind) {
duke@1 3626 case UNBOUND:
duke@1 3627 Si.bound = subst(Ui, A, S);
duke@1 3628 Si.lower = syms.botType;
duke@1 3629 break;
duke@1 3630 case EXTENDS:
duke@1 3631 Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
duke@1 3632 Si.lower = syms.botType;
duke@1 3633 break;
duke@1 3634 case SUPER:
duke@1 3635 Si.bound = subst(Ui, A, S);
duke@1 3636 Si.lower = Ti.getSuperBound();
duke@1 3637 break;
duke@1 3638 }
duke@1 3639 if (Si.bound == Si.lower)
duke@1 3640 currentS.head = Si.bound;
duke@1 3641 }
duke@1 3642 currentA = currentA.tail;
duke@1 3643 currentT = currentT.tail;
duke@1 3644 currentS = currentS.tail;
duke@1 3645 }
duke@1 3646 if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
duke@1 3647 return erasure(t); // some "rare" type involved
duke@1 3648
duke@1 3649 if (captured)
duke@1 3650 return new ClassType(cls.getEnclosingType(), S, cls.tsym);
duke@1 3651 else
duke@1 3652 return t;
duke@1 3653 }
duke@1 3654 // where
mcimadamore@238 3655 public List<Type> freshTypeVariables(List<Type> types) {
duke@1 3656 ListBuffer<Type> result = lb();
duke@1 3657 for (Type t : types) {
duke@1 3658 if (t.tag == WILDCARD) {
duke@1 3659 Type bound = ((WildcardType)t).getExtendsBound();
duke@1 3660 if (bound == null)
duke@1 3661 bound = syms.objectType;
duke@1 3662 result.append(new CapturedType(capturedName,
duke@1 3663 syms.noSymbol,
duke@1 3664 bound,
duke@1 3665 syms.botType,
duke@1 3666 (WildcardType)t));
duke@1 3667 } else {
duke@1 3668 result.append(t);
duke@1 3669 }
duke@1 3670 }
duke@1 3671 return result.toList();
duke@1 3672 }
duke@1 3673 // </editor-fold>
duke@1 3674
duke@1 3675 // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
duke@1 3676 private List<Type> upperBounds(List<Type> ss) {
duke@1 3677 if (ss.isEmpty()) return ss;
duke@1 3678 Type head = upperBound(ss.head);
duke@1 3679 List<Type> tail = upperBounds(ss.tail);
duke@1 3680 if (head != ss.head || tail != ss.tail)
duke@1 3681 return tail.prepend(head);
duke@1 3682 else
duke@1 3683 return ss;
duke@1 3684 }
duke@1 3685
duke@1 3686 private boolean sideCast(Type from, Type to, Warner warn) {
duke@1 3687 // We are casting from type $from$ to type $to$, which are
duke@1 3688 // non-final unrelated types. This method
duke@1 3689 // tries to reject a cast by transferring type parameters
duke@1 3690 // from $to$ to $from$ by common superinterfaces.
duke@1 3691 boolean reverse = false;
duke@1 3692 Type target = to;
duke@1 3693 if ((to.tsym.flags() & INTERFACE) == 0) {
jjg@816 3694 Assert.check((from.tsym.flags() & INTERFACE) != 0);
duke@1 3695 reverse = true;
duke@1 3696 to = from;
duke@1 3697 from = target;
duke@1 3698 }
duke@1 3699 List<Type> commonSupers = superClosure(to, erasure(from));
duke@1 3700 boolean giveWarning = commonSupers.isEmpty();
duke@1 3701 // The arguments to the supers could be unified here to
duke@1 3702 // get a more accurate analysis
duke@1 3703 while (commonSupers.nonEmpty()) {
duke@1 3704 Type t1 = asSuper(from, commonSupers.head.tsym);
duke@1 3705 Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
duke@1 3706 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3707 return false;
duke@1 3708 giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
duke@1 3709 commonSupers = commonSupers.tail;
duke@1 3710 }
mcimadamore@187 3711 if (giveWarning && !isReifiable(reverse ? from : to))
mcimadamore@795 3712 warn.warn(LintCategory.UNCHECKED);
jjg@984 3713 if (!allowCovariantReturns)
duke@1 3714 // reject if there is a common method signature with
duke@1 3715 // incompatible return types.
duke@1 3716 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3717 return true;
duke@1 3718 }
duke@1 3719
duke@1 3720 private boolean sideCastFinal(Type from, Type to, Warner warn) {
duke@1 3721 // We are casting from type $from$ to type $to$, which are
duke@1 3722 // unrelated types one of which is final and the other of
duke@1 3723 // which is an interface. This method
duke@1 3724 // tries to reject a cast by transferring type parameters
duke@1 3725 // from the final class to the interface.
duke@1 3726 boolean reverse = false;
duke@1 3727 Type target = to;
duke@1 3728 if ((to.tsym.flags() & INTERFACE) == 0) {
jjg@816 3729 Assert.check((from.tsym.flags() & INTERFACE) != 0);
duke@1 3730 reverse = true;
duke@1 3731 to = from;
duke@1 3732 from = target;
duke@1 3733 }
jjg@816 3734 Assert.check((from.tsym.flags() & FINAL) != 0);
duke@1 3735 Type t1 = asSuper(from, to.tsym);
duke@1 3736 if (t1 == null) return false;
duke@1 3737 Type t2 = to;
duke@1 3738 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3739 return false;
jjg@984 3740 if (!allowCovariantReturns)
duke@1 3741 // reject if there is a common method signature with
duke@1 3742 // incompatible return types.
duke@1 3743 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3744 if (!isReifiable(target) &&
duke@1 3745 (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
mcimadamore@795 3746 warn.warn(LintCategory.UNCHECKED);
duke@1 3747 return true;
duke@1 3748 }
duke@1 3749
duke@1 3750 private boolean giveWarning(Type from, Type to) {
mcimadamore@235 3751 Type subFrom = asSub(from, to.tsym);
mcimadamore@235 3752 return to.isParameterized() &&
mcimadamore@235 3753 (!(isUnbounded(to) ||
mcimadamore@235 3754 isSubtype(from, to) ||
mcimadamore@736 3755 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
duke@1 3756 }
duke@1 3757
duke@1 3758 private List<Type> superClosure(Type t, Type s) {
duke@1 3759 List<Type> cl = List.nil();
duke@1 3760 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 3761 if (isSubtype(s, erasure(l.head))) {
duke@1 3762 cl = insert(cl, l.head);
duke@1 3763 } else {
duke@1 3764 cl = union(cl, superClosure(l.head, s));
duke@1 3765 }
duke@1 3766 }
duke@1 3767 return cl;
duke@1 3768 }
duke@1 3769
duke@1 3770 private boolean containsTypeEquivalent(Type t, Type s) {
duke@1 3771 return
duke@1 3772 isSameType(t, s) || // shortcut
duke@1 3773 containsType(t, s) && containsType(s, t);
duke@1 3774 }
duke@1 3775
mcimadamore@138 3776 // <editor-fold defaultstate="collapsed" desc="adapt">
duke@1 3777 /**
duke@1 3778 * Adapt a type by computing a substitution which maps a source
duke@1 3779 * type to a target type.
duke@1 3780 *
duke@1 3781 * @param source the source type
duke@1 3782 * @param target the target type
duke@1 3783 * @param from the type variables of the computed substitution
duke@1 3784 * @param to the types of the computed substitution.
duke@1 3785 */
duke@1 3786 public void adapt(Type source,
duke@1 3787 Type target,
duke@1 3788 ListBuffer<Type> from,
duke@1 3789 ListBuffer<Type> to) throws AdaptFailure {
mcimadamore@138 3790 new Adapter(from, to).adapt(source, target);
mcimadamore@138 3791 }
mcimadamore@138 3792
mcimadamore@138 3793 class Adapter extends SimpleVisitor<Void, Type> {
mcimadamore@138 3794
mcimadamore@138 3795 ListBuffer<Type> from;
mcimadamore@138 3796 ListBuffer<Type> to;
mcimadamore@138 3797 Map<Symbol,Type> mapping;
mcimadamore@138 3798
mcimadamore@138 3799 Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
mcimadamore@138 3800 this.from = from;
mcimadamore@138 3801 this.to = to;
mcimadamore@138 3802 mapping = new HashMap<Symbol,Type>();
duke@1 3803 }
mcimadamore@138 3804
mcimadamore@138 3805 public void adapt(Type source, Type target) throws AdaptFailure {
mcimadamore@138 3806 visit(source, target);
mcimadamore@138 3807 List<Type> fromList = from.toList();
mcimadamore@138 3808 List<Type> toList = to.toList();
mcimadamore@138 3809 while (!fromList.isEmpty()) {
mcimadamore@138 3810 Type val = mapping.get(fromList.head.tsym);
mcimadamore@138 3811 if (toList.head != val)
mcimadamore@138 3812 toList.head = val;
mcimadamore@138 3813 fromList = fromList.tail;
mcimadamore@138 3814 toList = toList.tail;
mcimadamore@138 3815 }
mcimadamore@138 3816 }
mcimadamore@138 3817
mcimadamore@138 3818 @Override
mcimadamore@138 3819 public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
mcimadamore@138 3820 if (target.tag == CLASS)
mcimadamore@138 3821 adaptRecursive(source.allparams(), target.allparams());
mcimadamore@138 3822 return null;
mcimadamore@138 3823 }
mcimadamore@138 3824
mcimadamore@138 3825 @Override
mcimadamore@138 3826 public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
mcimadamore@138 3827 if (target.tag == ARRAY)
mcimadamore@138 3828 adaptRecursive(elemtype(source), elemtype(target));
mcimadamore@138 3829 return null;
mcimadamore@138 3830 }
mcimadamore@138 3831
mcimadamore@138 3832 @Override
mcimadamore@138 3833 public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
mcimadamore@138 3834 if (source.isExtendsBound())
mcimadamore@138 3835 adaptRecursive(upperBound(source), upperBound(target));
mcimadamore@138 3836 else if (source.isSuperBound())
mcimadamore@138 3837 adaptRecursive(lowerBound(source), lowerBound(target));
mcimadamore@138 3838 return null;
mcimadamore@138 3839 }
mcimadamore@138 3840
mcimadamore@138 3841 @Override
mcimadamore@138 3842 public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
mcimadamore@138 3843 // Check to see if there is
mcimadamore@138 3844 // already a mapping for $source$, in which case
mcimadamore@138 3845 // the old mapping will be merged with the new
mcimadamore@138 3846 Type val = mapping.get(source.tsym);
mcimadamore@138 3847 if (val != null) {
mcimadamore@138 3848 if (val.isSuperBound() && target.isSuperBound()) {
mcimadamore@138 3849 val = isSubtype(lowerBound(val), lowerBound(target))
mcimadamore@138 3850 ? target : val;
mcimadamore@138 3851 } else if (val.isExtendsBound() && target.isExtendsBound()) {
mcimadamore@138 3852 val = isSubtype(upperBound(val), upperBound(target))
mcimadamore@138 3853 ? val : target;
mcimadamore@138 3854 } else if (!isSameType(val, target)) {
mcimadamore@138 3855 throw new AdaptFailure();
duke@1 3856 }
mcimadamore@138 3857 } else {
mcimadamore@138 3858 val = target;
mcimadamore@138 3859 from.append(source);
mcimadamore@138 3860 to.append(target);
mcimadamore@138 3861 }
mcimadamore@138 3862 mapping.put(source.tsym, val);
mcimadamore@138 3863 return null;
mcimadamore@138 3864 }
mcimadamore@138 3865
mcimadamore@138 3866 @Override
mcimadamore@138 3867 public Void visitType(Type source, Type target) {
mcimadamore@138 3868 return null;
mcimadamore@138 3869 }
mcimadamore@138 3870
mcimadamore@138 3871 private Set<TypePair> cache = new HashSet<TypePair>();
mcimadamore@138 3872
mcimadamore@138 3873 private void adaptRecursive(Type source, Type target) {
mcimadamore@138 3874 TypePair pair = new TypePair(source, target);
mcimadamore@138 3875 if (cache.add(pair)) {
mcimadamore@138 3876 try {
mcimadamore@138 3877 visit(source, target);
mcimadamore@138 3878 } finally {
mcimadamore@138 3879 cache.remove(pair);
duke@1 3880 }
duke@1 3881 }
duke@1 3882 }
mcimadamore@138 3883
mcimadamore@138 3884 private void adaptRecursive(List<Type> source, List<Type> target) {
mcimadamore@138 3885 if (source.length() == target.length()) {
mcimadamore@138 3886 while (source.nonEmpty()) {
mcimadamore@138 3887 adaptRecursive(source.head, target.head);
mcimadamore@138 3888 source = source.tail;
mcimadamore@138 3889 target = target.tail;
mcimadamore@138 3890 }
duke@1 3891 }
duke@1 3892 }
duke@1 3893 }
duke@1 3894
mcimadamore@138 3895 public static class AdaptFailure extends RuntimeException {
mcimadamore@138 3896 static final long serialVersionUID = -7490231548272701566L;
mcimadamore@138 3897 }
mcimadamore@138 3898
duke@1 3899 private void adaptSelf(Type t,
duke@1 3900 ListBuffer<Type> from,
duke@1 3901 ListBuffer<Type> to) {
duke@1 3902 try {
duke@1 3903 //if (t.tsym.type != t)
duke@1 3904 adapt(t.tsym.type, t, from, to);
duke@1 3905 } catch (AdaptFailure ex) {
duke@1 3906 // Adapt should never fail calculating a mapping from
duke@1 3907 // t.tsym.type to t as there can be no merge problem.
duke@1 3908 throw new AssertionError(ex);
duke@1 3909 }
duke@1 3910 }
mcimadamore@138 3911 // </editor-fold>
duke@1 3912
duke@1 3913 /**
duke@1 3914 * Rewrite all type variables (universal quantifiers) in the given
duke@1 3915 * type to wildcards (existential quantifiers). This is used to
duke@1 3916 * determine if a cast is allowed. For example, if high is true
duke@1 3917 * and {@code T <: Number}, then {@code List<T>} is rewritten to
duke@1 3918 * {@code List<? extends Number>}. Since {@code List<Integer> <:
duke@1 3919 * List<? extends Number>} a {@code List<T>} can be cast to {@code
duke@1 3920 * List<Integer>} with a warning.
duke@1 3921 * @param t a type
duke@1 3922 * @param high if true return an upper bound; otherwise a lower
duke@1 3923 * bound
duke@1 3924 * @param rewriteTypeVars only rewrite captured wildcards if false;
duke@1 3925 * otherwise rewrite all type variables
duke@1 3926 * @return the type rewritten with wildcards (existential
duke@1 3927 * quantifiers) only
duke@1 3928 */
duke@1 3929 private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
mcimadamore@640 3930 return new Rewriter(high, rewriteTypeVars).visit(t);
mcimadamore@157 3931 }
mcimadamore@157 3932
mcimadamore@157 3933 class Rewriter extends UnaryVisitor<Type> {
mcimadamore@157 3934
mcimadamore@157 3935 boolean high;
mcimadamore@157 3936 boolean rewriteTypeVars;
mcimadamore@157 3937
mcimadamore@157 3938 Rewriter(boolean high, boolean rewriteTypeVars) {
mcimadamore@157 3939 this.high = high;
mcimadamore@157 3940 this.rewriteTypeVars = rewriteTypeVars;
mcimadamore@157 3941 }
mcimadamore@157 3942
mcimadamore@640 3943 @Override
mcimadamore@640 3944 public Type visitClassType(ClassType t, Void s) {
mcimadamore@157 3945 ListBuffer<Type> rewritten = new ListBuffer<Type>();
mcimadamore@157 3946 boolean changed = false;
mcimadamore@640 3947 for (Type arg : t.allparams()) {
mcimadamore@157 3948 Type bound = visit(arg);
mcimadamore@157 3949 if (arg != bound) {
mcimadamore@157 3950 changed = true;
mcimadamore@157 3951 }
mcimadamore@157 3952 rewritten.append(bound);
duke@1 3953 }
mcimadamore@157 3954 if (changed)
mcimadamore@640 3955 return subst(t.tsym.type,
mcimadamore@640 3956 t.tsym.type.allparams(),
mcimadamore@640 3957 rewritten.toList());
mcimadamore@157 3958 else
mcimadamore@157 3959 return t;
duke@1 3960 }
mcimadamore@157 3961
mcimadamore@157 3962 public Type visitType(Type t, Void s) {
mcimadamore@157 3963 return high ? upperBound(t) : lowerBound(t);
mcimadamore@157 3964 }
mcimadamore@157 3965
mcimadamore@157 3966 @Override
mcimadamore@157 3967 public Type visitCapturedType(CapturedType t, Void s) {
mcimadamore@1177 3968 Type w_bound = t.wildcard.type;
mcimadamore@1177 3969 Type bound = w_bound.contains(t) ?
mcimadamore@1177 3970 erasure(w_bound) :
mcimadamore@1177 3971 visit(w_bound);
mcimadamore@1177 3972 return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
mcimadamore@157 3973 }
mcimadamore@157 3974
mcimadamore@157 3975 @Override
mcimadamore@157 3976 public Type visitTypeVar(TypeVar t, Void s) {
mcimadamore@640 3977 if (rewriteTypeVars) {
mcimadamore@1177 3978 Type bound = t.bound.contains(t) ?
mcimadamore@779 3979 erasure(t.bound) :
mcimadamore@1177 3980 visit(t.bound);
mcimadamore@1177 3981 return rewriteAsWildcardType(bound, t, EXTENDS);
mcimadamore@1177 3982 } else {
mcimadamore@1177 3983 return t;
mcimadamore@640 3984 }
mcimadamore@157 3985 }
mcimadamore@157 3986
mcimadamore@157 3987 @Override
mcimadamore@157 3988 public Type visitWildcardType(WildcardType t, Void s) {
mcimadamore@1177 3989 Type bound2 = visit(t.type);
mcimadamore@1177 3990 return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
mcimadamore@640 3991 }
mcimadamore@640 3992
mcimadamore@1177 3993 private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
mcimadamore@1177 3994 switch (bk) {
mcimadamore@1177 3995 case EXTENDS: return high ?
mcimadamore@1177 3996 makeExtendsWildcard(B(bound), formal) :
mcimadamore@1177 3997 makeExtendsWildcard(syms.objectType, formal);
mcimadamore@1177 3998 case SUPER: return high ?
mcimadamore@1177 3999 makeSuperWildcard(syms.botType, formal) :
mcimadamore@1177 4000 makeSuperWildcard(B(bound), formal);
mcimadamore@1177 4001 case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
mcimadamore@1177 4002 default:
mcimadamore@1177 4003 Assert.error("Invalid bound kind " + bk);
mcimadamore@1177 4004 return null;
mcimadamore@1177 4005 }
mcimadamore@640 4006 }
mcimadamore@640 4007
mcimadamore@640 4008 Type B(Type t) {
mcimadamore@640 4009 while (t.tag == WILDCARD) {
mcimadamore@640 4010 WildcardType w = (WildcardType)t;
mcimadamore@640 4011 t = high ?
mcimadamore@640 4012 w.getExtendsBound() :
mcimadamore@640 4013 w.getSuperBound();
mcimadamore@640 4014 if (t == null) {
mcimadamore@640 4015 t = high ? syms.objectType : syms.botType;
mcimadamore@640 4016 }
mcimadamore@640 4017 }
mcimadamore@640 4018 return t;
mcimadamore@157 4019 }
duke@1 4020 }
duke@1 4021
mcimadamore@640 4022
duke@1 4023 /**
duke@1 4024 * Create a wildcard with the given upper (extends) bound; create
duke@1 4025 * an unbounded wildcard if bound is Object.
duke@1 4026 *
duke@1 4027 * @param bound the upper bound
duke@1 4028 * @param formal the formal type parameter that will be
duke@1 4029 * substituted by the wildcard
duke@1 4030 */
duke@1 4031 private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
duke@1 4032 if (bound == syms.objectType) {
duke@1 4033 return new WildcardType(syms.objectType,
duke@1 4034 BoundKind.UNBOUND,
duke@1 4035 syms.boundClass,
duke@1 4036 formal);
duke@1 4037 } else {
duke@1 4038 return new WildcardType(bound,
duke@1 4039 BoundKind.EXTENDS,
duke@1 4040 syms.boundClass,
duke@1 4041 formal);
duke@1 4042 }
duke@1 4043 }
duke@1 4044
duke@1 4045 /**
duke@1 4046 * Create a wildcard with the given lower (super) bound; create an
duke@1 4047 * unbounded wildcard if bound is bottom (type of {@code null}).
duke@1 4048 *
duke@1 4049 * @param bound the lower bound
duke@1 4050 * @param formal the formal type parameter that will be
duke@1 4051 * substituted by the wildcard
duke@1 4052 */
duke@1 4053 private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
duke@1 4054 if (bound.tag == BOT) {
duke@1 4055 return new WildcardType(syms.objectType,
duke@1 4056 BoundKind.UNBOUND,
duke@1 4057 syms.boundClass,
duke@1 4058 formal);
duke@1 4059 } else {
duke@1 4060 return new WildcardType(bound,
duke@1 4061 BoundKind.SUPER,
duke@1 4062 syms.boundClass,
duke@1 4063 formal);
duke@1 4064 }
duke@1 4065 }
duke@1 4066
duke@1 4067 /**
duke@1 4068 * A wrapper for a type that allows use in sets.
duke@1 4069 */
duke@1 4070 class SingletonType {
duke@1 4071 final Type t;
duke@1 4072 SingletonType(Type t) {
duke@1 4073 this.t = t;
duke@1 4074 }
duke@1 4075 public int hashCode() {
jjg@507 4076 return Types.hashCode(t);
duke@1 4077 }
duke@1 4078 public boolean equals(Object obj) {
duke@1 4079 return (obj instanceof SingletonType) &&
duke@1 4080 isSameType(t, ((SingletonType)obj).t);
duke@1 4081 }
duke@1 4082 public String toString() {
duke@1 4083 return t.toString();
duke@1 4084 }
duke@1 4085 }
duke@1 4086 // </editor-fold>
duke@1 4087
duke@1 4088 // <editor-fold defaultstate="collapsed" desc="Visitors">
duke@1 4089 /**
duke@1 4090 * A default visitor for types. All visitor methods except
duke@1 4091 * visitType are implemented by delegating to visitType. Concrete
duke@1 4092 * subclasses must provide an implementation of visitType and can
duke@1 4093 * override other methods as needed.
duke@1 4094 *
duke@1 4095 * @param <R> the return type of the operation implemented by this
duke@1 4096 * visitor; use Void if no return type is needed.
duke@1 4097 * @param <S> the type of the second argument (the first being the
duke@1 4098 * type itself) of the operation implemented by this visitor; use
duke@1 4099 * Void if a second argument is not needed.
duke@1 4100 */
duke@1 4101 public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
duke@1 4102 final public R visit(Type t, S s) { return t.accept(this, s); }
duke@1 4103 public R visitClassType(ClassType t, S s) { return visitType(t, s); }
duke@1 4104 public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
duke@1 4105 public R visitArrayType(ArrayType t, S s) { return visitType(t, s); }
duke@1 4106 public R visitMethodType(MethodType t, S s) { return visitType(t, s); }
duke@1 4107 public R visitPackageType(PackageType t, S s) { return visitType(t, s); }
duke@1 4108 public R visitTypeVar(TypeVar t, S s) { return visitType(t, s); }
duke@1 4109 public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
duke@1 4110 public R visitForAll(ForAll t, S s) { return visitType(t, s); }
duke@1 4111 public R visitUndetVar(UndetVar t, S s) { return visitType(t, s); }
duke@1 4112 public R visitErrorType(ErrorType t, S s) { return visitType(t, s); }
duke@1 4113 }
duke@1 4114
duke@1 4115 /**
mcimadamore@121 4116 * A default visitor for symbols. All visitor methods except
mcimadamore@121 4117 * visitSymbol are implemented by delegating to visitSymbol. Concrete
mcimadamore@121 4118 * subclasses must provide an implementation of visitSymbol and can
mcimadamore@121 4119 * override other methods as needed.
mcimadamore@121 4120 *
mcimadamore@121 4121 * @param <R> the return type of the operation implemented by this
mcimadamore@121 4122 * visitor; use Void if no return type is needed.
mcimadamore@121 4123 * @param <S> the type of the second argument (the first being the
mcimadamore@121 4124 * symbol itself) of the operation implemented by this visitor; use
mcimadamore@121 4125 * Void if a second argument is not needed.
mcimadamore@121 4126 */
mcimadamore@121 4127 public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
mcimadamore@121 4128 final public R visit(Symbol s, S arg) { return s.accept(this, arg); }
mcimadamore@121 4129 public R visitClassSymbol(ClassSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 4130 public R visitMethodSymbol(MethodSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 4131 public R visitOperatorSymbol(OperatorSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 4132 public R visitPackageSymbol(PackageSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 4133 public R visitTypeSymbol(TypeSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 4134 public R visitVarSymbol(VarSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 4135 }
mcimadamore@121 4136
mcimadamore@121 4137 /**
duke@1 4138 * A <em>simple</em> visitor for types. This visitor is simple as
duke@1 4139 * captured wildcards, for-all types (generic methods), and
duke@1 4140 * undetermined type variables (part of inference) are hidden.
duke@1 4141 * Captured wildcards are hidden by treating them as type
duke@1 4142 * variables and the rest are hidden by visiting their qtypes.
duke@1 4143 *
duke@1 4144 * @param <R> the return type of the operation implemented by this
duke@1 4145 * visitor; use Void if no return type is needed.
duke@1 4146 * @param <S> the type of the second argument (the first being the
duke@1 4147 * type itself) of the operation implemented by this visitor; use
duke@1 4148 * Void if a second argument is not needed.
duke@1 4149 */
duke@1 4150 public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
duke@1 4151 @Override
duke@1 4152 public R visitCapturedType(CapturedType t, S s) {
duke@1 4153 return visitTypeVar(t, s);
duke@1 4154 }
duke@1 4155 @Override
duke@1 4156 public R visitForAll(ForAll t, S s) {
duke@1 4157 return visit(t.qtype, s);
duke@1 4158 }
duke@1 4159 @Override
duke@1 4160 public R visitUndetVar(UndetVar t, S s) {
duke@1 4161 return visit(t.qtype, s);
duke@1 4162 }
duke@1 4163 }
duke@1 4164
duke@1 4165 /**
duke@1 4166 * A plain relation on types. That is a 2-ary function on the
duke@1 4167 * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
duke@1 4168 * <!-- In plain text: Type x Type -> Boolean -->
duke@1 4169 */
duke@1 4170 public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
duke@1 4171
duke@1 4172 /**
duke@1 4173 * A convenience visitor for implementing operations that only
duke@1 4174 * require one argument (the type itself), that is, unary
duke@1 4175 * operations.
duke@1 4176 *
duke@1 4177 * @param <R> the return type of the operation implemented by this
duke@1 4178 * visitor; use Void if no return type is needed.
duke@1 4179 */
duke@1 4180 public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
duke@1 4181 final public R visit(Type t) { return t.accept(this, null); }
duke@1 4182 }
duke@1 4183
duke@1 4184 /**
duke@1 4185 * A visitor for implementing a mapping from types to types. The
duke@1 4186 * default behavior of this class is to implement the identity
duke@1 4187 * mapping (mapping a type to itself). This can be overridden in
duke@1 4188 * subclasses.
duke@1 4189 *
duke@1 4190 * @param <S> the type of the second argument (the first being the
duke@1 4191 * type itself) of this mapping; use Void if a second argument is
duke@1 4192 * not needed.
duke@1 4193 */
duke@1 4194 public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
duke@1 4195 final public Type visit(Type t) { return t.accept(this, null); }
duke@1 4196 public Type visitType(Type t, S s) { return t; }
duke@1 4197 }
duke@1 4198 // </editor-fold>
jjg@657 4199
jjg@657 4200
jjg@657 4201 // <editor-fold defaultstate="collapsed" desc="Annotation support">
jjg@657 4202
jjg@657 4203 public RetentionPolicy getRetention(Attribute.Compound a) {
jfranck@1313 4204 return getRetention(a.type.tsym);
jfranck@1313 4205 }
jfranck@1313 4206
jfranck@1313 4207 public RetentionPolicy getRetention(Symbol sym) {
jjg@657 4208 RetentionPolicy vis = RetentionPolicy.CLASS; // the default
jfranck@1313 4209 Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
jjg@657 4210 if (c != null) {
jjg@657 4211 Attribute value = c.member(names.value);
jjg@657 4212 if (value != null && value instanceof Attribute.Enum) {
jjg@657 4213 Name levelName = ((Attribute.Enum)value).value.name;
jjg@657 4214 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
jjg@657 4215 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
jjg@657 4216 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
jjg@657 4217 else ;// /* fail soft */ throw new AssertionError(levelName);
jjg@657 4218 }
jjg@657 4219 }
jjg@657 4220 return vis;
jjg@657 4221 }
jjg@657 4222 // </editor-fold>
duke@1 4223 }

mercurial