src/share/classes/com/sun/tools/javac/code/Types.java

Fri, 31 Aug 2012 10:37:46 +0100

author
jfranck
date
Fri, 31 Aug 2012 10:37:46 +0100
changeset 1313
873ddd9f4900
parent 1307
464f52f59f7d
child 1338
ad2ca2a4ab5e
permissions
-rw-r--r--

7151010: Add compiler support for repeating annotations
Reviewed-by: jjg, mcimadamore

duke@1 1 /*
mcimadamore@1177 2 * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.code;
duke@1 27
mcimadamore@341 28 import java.lang.ref.SoftReference;
duke@1 29 import java.util.*;
duke@1 30
duke@1 31 import com.sun.tools.javac.util.*;
duke@1 32 import com.sun.tools.javac.util.List;
duke@1 33
duke@1 34 import com.sun.tools.javac.jvm.ClassReader;
jjg@657 35 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
mcimadamore@795 36 import com.sun.tools.javac.code.Lint.LintCategory;
duke@1 37 import com.sun.tools.javac.comp.Check;
duke@1 38
mcimadamore@858 39 import static com.sun.tools.javac.code.Scope.*;
duke@1 40 import static com.sun.tools.javac.code.Type.*;
duke@1 41 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 42 import static com.sun.tools.javac.code.Symbol.*;
duke@1 43 import static com.sun.tools.javac.code.Flags.*;
duke@1 44 import static com.sun.tools.javac.code.BoundKind.*;
duke@1 45 import static com.sun.tools.javac.util.ListBuffer.lb;
duke@1 46
duke@1 47 /**
duke@1 48 * Utility class containing various operations on types.
duke@1 49 *
duke@1 50 * <p>Unless other names are more illustrative, the following naming
duke@1 51 * conventions should be observed in this file:
duke@1 52 *
duke@1 53 * <dl>
duke@1 54 * <dt>t</dt>
duke@1 55 * <dd>If the first argument to an operation is a type, it should be named t.</dd>
duke@1 56 * <dt>s</dt>
duke@1 57 * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
duke@1 58 * <dt>ts</dt>
duke@1 59 * <dd>If an operations takes a list of types, the first should be named ts.</dd>
duke@1 60 * <dt>ss</dt>
duke@1 61 * <dd>A second list of types should be named ss.</dd>
duke@1 62 * </dl>
duke@1 63 *
jjg@581 64 * <p><b>This is NOT part of any supported API.
duke@1 65 * If you write code that depends on this, you do so at your own risk.
duke@1 66 * This code and its internal interfaces are subject to change or
duke@1 67 * deletion without notice.</b>
duke@1 68 */
duke@1 69 public class Types {
duke@1 70 protected static final Context.Key<Types> typesKey =
duke@1 71 new Context.Key<Types>();
duke@1 72
duke@1 73 final Symtab syms;
mcimadamore@136 74 final JavacMessages messages;
jjg@113 75 final Names names;
duke@1 76 final boolean allowBoxing;
jjg@984 77 final boolean allowCovariantReturns;
jjg@984 78 final boolean allowObjectToPrimitiveCast;
duke@1 79 final ClassReader reader;
duke@1 80 final Check chk;
duke@1 81 List<Warner> warnStack = List.nil();
duke@1 82 final Name capturedName;
duke@1 83
duke@1 84 // <editor-fold defaultstate="collapsed" desc="Instantiating">
duke@1 85 public static Types instance(Context context) {
duke@1 86 Types instance = context.get(typesKey);
duke@1 87 if (instance == null)
duke@1 88 instance = new Types(context);
duke@1 89 return instance;
duke@1 90 }
duke@1 91
duke@1 92 protected Types(Context context) {
duke@1 93 context.put(typesKey, this);
duke@1 94 syms = Symtab.instance(context);
jjg@113 95 names = Names.instance(context);
jjg@984 96 Source source = Source.instance(context);
jjg@984 97 allowBoxing = source.allowBoxing();
jjg@984 98 allowCovariantReturns = source.allowCovariantReturns();
jjg@984 99 allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
duke@1 100 reader = ClassReader.instance(context);
duke@1 101 chk = Check.instance(context);
duke@1 102 capturedName = names.fromString("<captured wildcard>");
mcimadamore@136 103 messages = JavacMessages.instance(context);
duke@1 104 }
duke@1 105 // </editor-fold>
duke@1 106
duke@1 107 // <editor-fold defaultstate="collapsed" desc="upperBound">
duke@1 108 /**
duke@1 109 * The "rvalue conversion".<br>
duke@1 110 * The upper bound of most types is the type
duke@1 111 * itself. Wildcards, on the other hand have upper
duke@1 112 * and lower bounds.
duke@1 113 * @param t a type
duke@1 114 * @return the upper bound of the given type
duke@1 115 */
duke@1 116 public Type upperBound(Type t) {
duke@1 117 return upperBound.visit(t);
duke@1 118 }
duke@1 119 // where
duke@1 120 private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
duke@1 121
duke@1 122 @Override
duke@1 123 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 124 if (t.isSuperBound())
duke@1 125 return t.bound == null ? syms.objectType : t.bound.bound;
duke@1 126 else
duke@1 127 return visit(t.type);
duke@1 128 }
duke@1 129
duke@1 130 @Override
duke@1 131 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 132 return visit(t.bound);
duke@1 133 }
duke@1 134 };
duke@1 135 // </editor-fold>
duke@1 136
duke@1 137 // <editor-fold defaultstate="collapsed" desc="lowerBound">
duke@1 138 /**
duke@1 139 * The "lvalue conversion".<br>
duke@1 140 * The lower bound of most types is the type
duke@1 141 * itself. Wildcards, on the other hand have upper
duke@1 142 * and lower bounds.
duke@1 143 * @param t a type
duke@1 144 * @return the lower bound of the given type
duke@1 145 */
duke@1 146 public Type lowerBound(Type t) {
duke@1 147 return lowerBound.visit(t);
duke@1 148 }
duke@1 149 // where
duke@1 150 private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
duke@1 151
duke@1 152 @Override
duke@1 153 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 154 return t.isExtendsBound() ? syms.botType : visit(t.type);
duke@1 155 }
duke@1 156
duke@1 157 @Override
duke@1 158 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 159 return visit(t.getLowerBound());
duke@1 160 }
duke@1 161 };
duke@1 162 // </editor-fold>
duke@1 163
duke@1 164 // <editor-fold defaultstate="collapsed" desc="isUnbounded">
duke@1 165 /**
duke@1 166 * Checks that all the arguments to a class are unbounded
duke@1 167 * wildcards or something else that doesn't make any restrictions
duke@1 168 * on the arguments. If a class isUnbounded, a raw super- or
duke@1 169 * subclass can be cast to it without a warning.
duke@1 170 * @param t a type
duke@1 171 * @return true iff the given type is unbounded or raw
duke@1 172 */
duke@1 173 public boolean isUnbounded(Type t) {
duke@1 174 return isUnbounded.visit(t);
duke@1 175 }
duke@1 176 // where
duke@1 177 private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
duke@1 178
duke@1 179 public Boolean visitType(Type t, Void ignored) {
duke@1 180 return true;
duke@1 181 }
duke@1 182
duke@1 183 @Override
duke@1 184 public Boolean visitClassType(ClassType t, Void ignored) {
duke@1 185 List<Type> parms = t.tsym.type.allparams();
duke@1 186 List<Type> args = t.allparams();
duke@1 187 while (parms.nonEmpty()) {
duke@1 188 WildcardType unb = new WildcardType(syms.objectType,
duke@1 189 BoundKind.UNBOUND,
duke@1 190 syms.boundClass,
duke@1 191 (TypeVar)parms.head);
duke@1 192 if (!containsType(args.head, unb))
duke@1 193 return false;
duke@1 194 parms = parms.tail;
duke@1 195 args = args.tail;
duke@1 196 }
duke@1 197 return true;
duke@1 198 }
duke@1 199 };
duke@1 200 // </editor-fold>
duke@1 201
duke@1 202 // <editor-fold defaultstate="collapsed" desc="asSub">
duke@1 203 /**
duke@1 204 * Return the least specific subtype of t that starts with symbol
duke@1 205 * sym. If none exists, return null. The least specific subtype
duke@1 206 * is determined as follows:
duke@1 207 *
duke@1 208 * <p>If there is exactly one parameterized instance of sym that is a
duke@1 209 * subtype of t, that parameterized instance is returned.<br>
duke@1 210 * Otherwise, if the plain type or raw type `sym' is a subtype of
duke@1 211 * type t, the type `sym' itself is returned. Otherwise, null is
duke@1 212 * returned.
duke@1 213 */
duke@1 214 public Type asSub(Type t, Symbol sym) {
duke@1 215 return asSub.visit(t, sym);
duke@1 216 }
duke@1 217 // where
duke@1 218 private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
duke@1 219
duke@1 220 public Type visitType(Type t, Symbol sym) {
duke@1 221 return null;
duke@1 222 }
duke@1 223
duke@1 224 @Override
duke@1 225 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 226 if (t.tsym == sym)
duke@1 227 return t;
duke@1 228 Type base = asSuper(sym.type, t.tsym);
duke@1 229 if (base == null)
duke@1 230 return null;
duke@1 231 ListBuffer<Type> from = new ListBuffer<Type>();
duke@1 232 ListBuffer<Type> to = new ListBuffer<Type>();
duke@1 233 try {
duke@1 234 adapt(base, t, from, to);
duke@1 235 } catch (AdaptFailure ex) {
duke@1 236 return null;
duke@1 237 }
duke@1 238 Type res = subst(sym.type, from.toList(), to.toList());
duke@1 239 if (!isSubtype(res, t))
duke@1 240 return null;
duke@1 241 ListBuffer<Type> openVars = new ListBuffer<Type>();
duke@1 242 for (List<Type> l = sym.type.allparams();
duke@1 243 l.nonEmpty(); l = l.tail)
duke@1 244 if (res.contains(l.head) && !t.contains(l.head))
duke@1 245 openVars.append(l.head);
duke@1 246 if (openVars.nonEmpty()) {
duke@1 247 if (t.isRaw()) {
duke@1 248 // The subtype of a raw type is raw
duke@1 249 res = erasure(res);
duke@1 250 } else {
duke@1 251 // Unbound type arguments default to ?
duke@1 252 List<Type> opens = openVars.toList();
duke@1 253 ListBuffer<Type> qs = new ListBuffer<Type>();
duke@1 254 for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
duke@1 255 qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
duke@1 256 }
duke@1 257 res = subst(res, opens, qs.toList());
duke@1 258 }
duke@1 259 }
duke@1 260 return res;
duke@1 261 }
duke@1 262
duke@1 263 @Override
duke@1 264 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 265 return t;
duke@1 266 }
duke@1 267 };
duke@1 268 // </editor-fold>
duke@1 269
duke@1 270 // <editor-fold defaultstate="collapsed" desc="isConvertible">
duke@1 271 /**
mcimadamore@1071 272 * Is t a subtype of or convertible via boxing/unboxing
mcimadamore@1071 273 * conversion to s?
duke@1 274 */
duke@1 275 public boolean isConvertible(Type t, Type s, Warner warn) {
mcimadamore@1071 276 if (t.tag == ERROR)
mcimadamore@1071 277 return true;
duke@1 278 boolean tPrimitive = t.isPrimitive();
duke@1 279 boolean sPrimitive = s.isPrimitive();
mcimadamore@795 280 if (tPrimitive == sPrimitive) {
duke@1 281 return isSubtypeUnchecked(t, s, warn);
mcimadamore@795 282 }
duke@1 283 if (!allowBoxing) return false;
duke@1 284 return tPrimitive
duke@1 285 ? isSubtype(boxedClass(t).type, s)
duke@1 286 : isSubtype(unboxedType(t), s);
duke@1 287 }
duke@1 288
duke@1 289 /**
duke@1 290 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 291 * convertions to s?
duke@1 292 */
duke@1 293 public boolean isConvertible(Type t, Type s) {
duke@1 294 return isConvertible(t, s, Warner.noWarnings);
duke@1 295 }
duke@1 296 // </editor-fold>
duke@1 297
duke@1 298 // <editor-fold defaultstate="collapsed" desc="isSubtype">
duke@1 299 /**
duke@1 300 * Is t an unchecked subtype of s?
duke@1 301 */
duke@1 302 public boolean isSubtypeUnchecked(Type t, Type s) {
duke@1 303 return isSubtypeUnchecked(t, s, Warner.noWarnings);
duke@1 304 }
duke@1 305 /**
duke@1 306 * Is t an unchecked subtype of s?
duke@1 307 */
duke@1 308 public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
mcimadamore@1108 309 boolean result = isSubtypeUncheckedInternal(t, s, warn);
mcimadamore@1108 310 if (result) {
mcimadamore@1108 311 checkUnsafeVarargsConversion(t, s, warn);
mcimadamore@1108 312 }
mcimadamore@1108 313 return result;
mcimadamore@1108 314 }
mcimadamore@1108 315 //where
mcimadamore@1108 316 private boolean isSubtypeUncheckedInternal(Type t, Type s, Warner warn) {
mcimadamore@1108 317 if (t.tag == ARRAY && s.tag == ARRAY) {
mcimadamore@1108 318 if (((ArrayType)t).elemtype.tag <= lastBaseTag) {
mcimadamore@1108 319 return isSameType(elemtype(t), elemtype(s));
mcimadamore@1108 320 } else {
mcimadamore@1108 321 return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
mcimadamore@795 322 }
mcimadamore@1108 323 } else if (isSubtype(t, s)) {
duke@1 324 return true;
duke@1 325 }
mcimadamore@1108 326 else if (t.tag == TYPEVAR) {
mcimadamore@1108 327 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
mcimadamore@1108 328 }
mcimadamore@1108 329 else if (!s.isRaw()) {
mcimadamore@1108 330 Type t2 = asSuper(t, s.tsym);
mcimadamore@1108 331 if (t2 != null && t2.isRaw()) {
mcimadamore@1108 332 if (isReifiable(s))
mcimadamore@1108 333 warn.silentWarn(LintCategory.UNCHECKED);
mcimadamore@1108 334 else
mcimadamore@1108 335 warn.warn(LintCategory.UNCHECKED);
mcimadamore@1108 336 return true;
mcimadamore@1108 337 }
mcimadamore@1108 338 }
mcimadamore@1108 339 return false;
duke@1 340 }
mcimadamore@1108 341
mcimadamore@1108 342 private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
mcimadamore@1108 343 if (t.tag != ARRAY || isReifiable(t)) return;
mcimadamore@1108 344 ArrayType from = (ArrayType)t;
mcimadamore@1108 345 boolean shouldWarn = false;
mcimadamore@1108 346 switch (s.tag) {
mcimadamore@1108 347 case ARRAY:
mcimadamore@1108 348 ArrayType to = (ArrayType)s;
mcimadamore@1108 349 shouldWarn = from.isVarargs() &&
mcimadamore@1108 350 !to.isVarargs() &&
mcimadamore@1108 351 !isReifiable(from);
mcimadamore@1108 352 break;
mcimadamore@1108 353 case CLASS:
mcimadamore@1108 354 shouldWarn = from.isVarargs();
mcimadamore@1108 355 break;
mcimadamore@1108 356 }
mcimadamore@1108 357 if (shouldWarn) {
mcimadamore@1108 358 warn.warn(LintCategory.VARARGS);
mcimadamore@1108 359 }
mcimadamore@1108 360 }
duke@1 361
duke@1 362 /**
duke@1 363 * Is t a subtype of s?<br>
duke@1 364 * (not defined for Method and ForAll types)
duke@1 365 */
duke@1 366 final public boolean isSubtype(Type t, Type s) {
duke@1 367 return isSubtype(t, s, true);
duke@1 368 }
duke@1 369 final public boolean isSubtypeNoCapture(Type t, Type s) {
duke@1 370 return isSubtype(t, s, false);
duke@1 371 }
duke@1 372 public boolean isSubtype(Type t, Type s, boolean capture) {
duke@1 373 if (t == s)
duke@1 374 return true;
duke@1 375
duke@1 376 if (s.tag >= firstPartialTag)
duke@1 377 return isSuperType(s, t);
duke@1 378
mcimadamore@299 379 if (s.isCompound()) {
mcimadamore@299 380 for (Type s2 : interfaces(s).prepend(supertype(s))) {
mcimadamore@299 381 if (!isSubtype(t, s2, capture))
mcimadamore@299 382 return false;
mcimadamore@299 383 }
mcimadamore@299 384 return true;
mcimadamore@299 385 }
mcimadamore@299 386
duke@1 387 Type lower = lowerBound(s);
duke@1 388 if (s != lower)
duke@1 389 return isSubtype(capture ? capture(t) : t, lower, false);
duke@1 390
duke@1 391 return isSubtype.visit(capture ? capture(t) : t, s);
duke@1 392 }
duke@1 393 // where
duke@1 394 private TypeRelation isSubtype = new TypeRelation()
duke@1 395 {
duke@1 396 public Boolean visitType(Type t, Type s) {
duke@1 397 switch (t.tag) {
duke@1 398 case BYTE: case CHAR:
duke@1 399 return (t.tag == s.tag ||
duke@1 400 t.tag + 2 <= s.tag && s.tag <= DOUBLE);
duke@1 401 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
duke@1 402 return t.tag <= s.tag && s.tag <= DOUBLE;
duke@1 403 case BOOLEAN: case VOID:
duke@1 404 return t.tag == s.tag;
duke@1 405 case TYPEVAR:
duke@1 406 return isSubtypeNoCapture(t.getUpperBound(), s);
duke@1 407 case BOT:
duke@1 408 return
duke@1 409 s.tag == BOT || s.tag == CLASS ||
duke@1 410 s.tag == ARRAY || s.tag == TYPEVAR;
mcimadamore@991 411 case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
duke@1 412 case NONE:
duke@1 413 return false;
duke@1 414 default:
duke@1 415 throw new AssertionError("isSubtype " + t.tag);
duke@1 416 }
duke@1 417 }
duke@1 418
duke@1 419 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 420
duke@1 421 private boolean containsTypeRecursive(Type t, Type s) {
duke@1 422 TypePair pair = new TypePair(t, s);
duke@1 423 if (cache.add(pair)) {
duke@1 424 try {
duke@1 425 return containsType(t.getTypeArguments(),
duke@1 426 s.getTypeArguments());
duke@1 427 } finally {
duke@1 428 cache.remove(pair);
duke@1 429 }
duke@1 430 } else {
duke@1 431 return containsType(t.getTypeArguments(),
duke@1 432 rewriteSupers(s).getTypeArguments());
duke@1 433 }
duke@1 434 }
duke@1 435
duke@1 436 private Type rewriteSupers(Type t) {
duke@1 437 if (!t.isParameterized())
duke@1 438 return t;
duke@1 439 ListBuffer<Type> from = lb();
duke@1 440 ListBuffer<Type> to = lb();
duke@1 441 adaptSelf(t, from, to);
duke@1 442 if (from.isEmpty())
duke@1 443 return t;
duke@1 444 ListBuffer<Type> rewrite = lb();
duke@1 445 boolean changed = false;
duke@1 446 for (Type orig : to.toList()) {
duke@1 447 Type s = rewriteSupers(orig);
duke@1 448 if (s.isSuperBound() && !s.isExtendsBound()) {
duke@1 449 s = new WildcardType(syms.objectType,
duke@1 450 BoundKind.UNBOUND,
duke@1 451 syms.boundClass);
duke@1 452 changed = true;
duke@1 453 } else if (s != orig) {
duke@1 454 s = new WildcardType(upperBound(s),
duke@1 455 BoundKind.EXTENDS,
duke@1 456 syms.boundClass);
duke@1 457 changed = true;
duke@1 458 }
duke@1 459 rewrite.append(s);
duke@1 460 }
duke@1 461 if (changed)
duke@1 462 return subst(t.tsym.type, from.toList(), rewrite.toList());
duke@1 463 else
duke@1 464 return t;
duke@1 465 }
duke@1 466
duke@1 467 @Override
duke@1 468 public Boolean visitClassType(ClassType t, Type s) {
duke@1 469 Type sup = asSuper(t, s.tsym);
duke@1 470 return sup != null
duke@1 471 && sup.tsym == s.tsym
duke@1 472 // You're not allowed to write
duke@1 473 // Vector<Object> vec = new Vector<String>();
duke@1 474 // But with wildcards you can write
duke@1 475 // Vector<? extends Object> vec = new Vector<String>();
duke@1 476 // which means that subtype checking must be done
duke@1 477 // here instead of same-type checking (via containsType).
duke@1 478 && (!s.isParameterized() || containsTypeRecursive(s, sup))
duke@1 479 && isSubtypeNoCapture(sup.getEnclosingType(),
duke@1 480 s.getEnclosingType());
duke@1 481 }
duke@1 482
duke@1 483 @Override
duke@1 484 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 485 if (s.tag == ARRAY) {
duke@1 486 if (t.elemtype.tag <= lastBaseTag)
duke@1 487 return isSameType(t.elemtype, elemtype(s));
duke@1 488 else
duke@1 489 return isSubtypeNoCapture(t.elemtype, elemtype(s));
duke@1 490 }
duke@1 491
duke@1 492 if (s.tag == CLASS) {
duke@1 493 Name sname = s.tsym.getQualifiedName();
duke@1 494 return sname == names.java_lang_Object
duke@1 495 || sname == names.java_lang_Cloneable
duke@1 496 || sname == names.java_io_Serializable;
duke@1 497 }
duke@1 498
duke@1 499 return false;
duke@1 500 }
duke@1 501
duke@1 502 @Override
duke@1 503 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 504 //todo: test against origin needed? or replace with substitution?
mcimadamore@1093 505 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN) {
duke@1 506 return true;
mcimadamore@1093 507 } else if (s.tag == BOT) {
mcimadamore@1093 508 //if 's' is 'null' there's no instantiated type U for which
mcimadamore@1093 509 //U <: s (but 'null' itself, which is not a valid type)
mcimadamore@1093 510 return false;
mcimadamore@1093 511 }
duke@1 512
duke@1 513 t.hibounds = t.hibounds.prepend(s);
duke@1 514 return true;
duke@1 515 }
duke@1 516
duke@1 517 @Override
duke@1 518 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 519 return true;
duke@1 520 }
duke@1 521 };
duke@1 522
duke@1 523 /**
duke@1 524 * Is t a subtype of every type in given list `ts'?<br>
duke@1 525 * (not defined for Method and ForAll types)<br>
duke@1 526 * Allows unchecked conversions.
duke@1 527 */
duke@1 528 public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
duke@1 529 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 530 if (!isSubtypeUnchecked(t, l.head, warn))
duke@1 531 return false;
duke@1 532 return true;
duke@1 533 }
duke@1 534
duke@1 535 /**
duke@1 536 * Are corresponding elements of ts subtypes of ss? If lists are
duke@1 537 * of different length, return false.
duke@1 538 */
duke@1 539 public boolean isSubtypes(List<Type> ts, List<Type> ss) {
duke@1 540 while (ts.tail != null && ss.tail != null
duke@1 541 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 542 isSubtype(ts.head, ss.head)) {
duke@1 543 ts = ts.tail;
duke@1 544 ss = ss.tail;
duke@1 545 }
duke@1 546 return ts.tail == null && ss.tail == null;
duke@1 547 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 548 }
duke@1 549
duke@1 550 /**
duke@1 551 * Are corresponding elements of ts subtypes of ss, allowing
duke@1 552 * unchecked conversions? If lists are of different length,
duke@1 553 * return false.
duke@1 554 **/
duke@1 555 public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
duke@1 556 while (ts.tail != null && ss.tail != null
duke@1 557 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 558 isSubtypeUnchecked(ts.head, ss.head, warn)) {
duke@1 559 ts = ts.tail;
duke@1 560 ss = ss.tail;
duke@1 561 }
duke@1 562 return ts.tail == null && ss.tail == null;
duke@1 563 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 564 }
duke@1 565 // </editor-fold>
duke@1 566
duke@1 567 // <editor-fold defaultstate="collapsed" desc="isSuperType">
duke@1 568 /**
duke@1 569 * Is t a supertype of s?
duke@1 570 */
duke@1 571 public boolean isSuperType(Type t, Type s) {
duke@1 572 switch (t.tag) {
duke@1 573 case ERROR:
duke@1 574 return true;
duke@1 575 case UNDETVAR: {
duke@1 576 UndetVar undet = (UndetVar)t;
duke@1 577 if (t == s ||
duke@1 578 undet.qtype == s ||
duke@1 579 s.tag == ERROR ||
duke@1 580 s.tag == BOT) return true;
duke@1 581 undet.lobounds = undet.lobounds.prepend(s);
duke@1 582 return true;
duke@1 583 }
duke@1 584 default:
duke@1 585 return isSubtype(s, t);
duke@1 586 }
duke@1 587 }
duke@1 588 // </editor-fold>
duke@1 589
duke@1 590 // <editor-fold defaultstate="collapsed" desc="isSameType">
duke@1 591 /**
duke@1 592 * Are corresponding elements of the lists the same type? If
duke@1 593 * lists are of different length, return false.
duke@1 594 */
duke@1 595 public boolean isSameTypes(List<Type> ts, List<Type> ss) {
duke@1 596 while (ts.tail != null && ss.tail != null
duke@1 597 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 598 isSameType(ts.head, ss.head)) {
duke@1 599 ts = ts.tail;
duke@1 600 ss = ss.tail;
duke@1 601 }
duke@1 602 return ts.tail == null && ss.tail == null;
duke@1 603 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 604 }
duke@1 605
duke@1 606 /**
duke@1 607 * Is t the same type as s?
duke@1 608 */
duke@1 609 public boolean isSameType(Type t, Type s) {
duke@1 610 return isSameType.visit(t, s);
duke@1 611 }
duke@1 612 // where
duke@1 613 private TypeRelation isSameType = new TypeRelation() {
duke@1 614
duke@1 615 public Boolean visitType(Type t, Type s) {
duke@1 616 if (t == s)
duke@1 617 return true;
duke@1 618
duke@1 619 if (s.tag >= firstPartialTag)
duke@1 620 return visit(s, t);
duke@1 621
duke@1 622 switch (t.tag) {
duke@1 623 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 624 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
duke@1 625 return t.tag == s.tag;
mcimadamore@561 626 case TYPEVAR: {
mcimadamore@561 627 if (s.tag == TYPEVAR) {
mcimadamore@561 628 //type-substitution does not preserve type-var types
mcimadamore@561 629 //check that type var symbols and bounds are indeed the same
mcimadamore@561 630 return t.tsym == s.tsym &&
mcimadamore@561 631 visit(t.getUpperBound(), s.getUpperBound());
mcimadamore@561 632 }
mcimadamore@561 633 else {
mcimadamore@561 634 //special case for s == ? super X, where upper(s) = u
mcimadamore@561 635 //check that u == t, where u has been set by Type.withTypeVar
mcimadamore@561 636 return s.isSuperBound() &&
mcimadamore@561 637 !s.isExtendsBound() &&
mcimadamore@561 638 visit(t, upperBound(s));
mcimadamore@561 639 }
mcimadamore@561 640 }
duke@1 641 default:
duke@1 642 throw new AssertionError("isSameType " + t.tag);
duke@1 643 }
duke@1 644 }
duke@1 645
duke@1 646 @Override
duke@1 647 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 648 if (s.tag >= firstPartialTag)
duke@1 649 return visit(s, t);
duke@1 650 else
duke@1 651 return false;
duke@1 652 }
duke@1 653
duke@1 654 @Override
duke@1 655 public Boolean visitClassType(ClassType t, Type s) {
duke@1 656 if (t == s)
duke@1 657 return true;
duke@1 658
duke@1 659 if (s.tag >= firstPartialTag)
duke@1 660 return visit(s, t);
duke@1 661
duke@1 662 if (s.isSuperBound() && !s.isExtendsBound())
duke@1 663 return visit(t, upperBound(s)) && visit(t, lowerBound(s));
duke@1 664
duke@1 665 if (t.isCompound() && s.isCompound()) {
duke@1 666 if (!visit(supertype(t), supertype(s)))
duke@1 667 return false;
duke@1 668
duke@1 669 HashSet<SingletonType> set = new HashSet<SingletonType>();
duke@1 670 for (Type x : interfaces(t))
duke@1 671 set.add(new SingletonType(x));
duke@1 672 for (Type x : interfaces(s)) {
duke@1 673 if (!set.remove(new SingletonType(x)))
duke@1 674 return false;
duke@1 675 }
jjg@789 676 return (set.isEmpty());
duke@1 677 }
duke@1 678 return t.tsym == s.tsym
duke@1 679 && visit(t.getEnclosingType(), s.getEnclosingType())
duke@1 680 && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
duke@1 681 }
duke@1 682
duke@1 683 @Override
duke@1 684 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 685 if (t == s)
duke@1 686 return true;
duke@1 687
duke@1 688 if (s.tag >= firstPartialTag)
duke@1 689 return visit(s, t);
duke@1 690
duke@1 691 return s.tag == ARRAY
duke@1 692 && containsTypeEquivalent(t.elemtype, elemtype(s));
duke@1 693 }
duke@1 694
duke@1 695 @Override
duke@1 696 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 697 // isSameType for methods does not take thrown
duke@1 698 // exceptions into account!
duke@1 699 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
duke@1 700 }
duke@1 701
duke@1 702 @Override
duke@1 703 public Boolean visitPackageType(PackageType t, Type s) {
duke@1 704 return t == s;
duke@1 705 }
duke@1 706
duke@1 707 @Override
duke@1 708 public Boolean visitForAll(ForAll t, Type s) {
duke@1 709 if (s.tag != FORALL)
duke@1 710 return false;
duke@1 711
duke@1 712 ForAll forAll = (ForAll)s;
duke@1 713 return hasSameBounds(t, forAll)
duke@1 714 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 715 }
duke@1 716
duke@1 717 @Override
duke@1 718 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 719 if (s.tag == WILDCARD)
duke@1 720 // FIXME, this might be leftovers from before capture conversion
duke@1 721 return false;
duke@1 722
duke@1 723 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 724 return true;
duke@1 725
mcimadamore@1251 726 t.eq = t.eq.prepend(s);
mcimadamore@1251 727
duke@1 728 return true;
duke@1 729 }
duke@1 730
duke@1 731 @Override
duke@1 732 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 733 return true;
duke@1 734 }
duke@1 735 };
duke@1 736 // </editor-fold>
duke@1 737
duke@1 738 // <editor-fold defaultstate="collapsed" desc="fromUnknownFun">
duke@1 739 /**
duke@1 740 * A mapping that turns all unknown types in this type to fresh
duke@1 741 * unknown variables.
duke@1 742 */
duke@1 743 public Mapping fromUnknownFun = new Mapping("fromUnknownFun") {
duke@1 744 public Type apply(Type t) {
duke@1 745 if (t.tag == UNKNOWN) return new UndetVar(t);
duke@1 746 else return t.map(this);
duke@1 747 }
duke@1 748 };
duke@1 749 // </editor-fold>
duke@1 750
duke@1 751 // <editor-fold defaultstate="collapsed" desc="Contains Type">
duke@1 752 public boolean containedBy(Type t, Type s) {
duke@1 753 switch (t.tag) {
duke@1 754 case UNDETVAR:
duke@1 755 if (s.tag == WILDCARD) {
duke@1 756 UndetVar undetvar = (UndetVar)t;
mcimadamore@210 757 WildcardType wt = (WildcardType)s;
mcimadamore@210 758 switch(wt.kind) {
mcimadamore@210 759 case UNBOUND: //similar to ? extends Object
mcimadamore@210 760 case EXTENDS: {
mcimadamore@210 761 Type bound = upperBound(s);
mcimadamore@210 762 undetvar.hibounds = undetvar.hibounds.prepend(bound);
mcimadamore@210 763 break;
mcimadamore@210 764 }
mcimadamore@210 765 case SUPER: {
mcimadamore@210 766 Type bound = lowerBound(s);
mcimadamore@210 767 undetvar.lobounds = undetvar.lobounds.prepend(bound);
mcimadamore@210 768 break;
mcimadamore@210 769 }
mcimadamore@162 770 }
duke@1 771 return true;
duke@1 772 } else {
duke@1 773 return isSameType(t, s);
duke@1 774 }
duke@1 775 case ERROR:
duke@1 776 return true;
duke@1 777 default:
duke@1 778 return containsType(s, t);
duke@1 779 }
duke@1 780 }
duke@1 781
duke@1 782 boolean containsType(List<Type> ts, List<Type> ss) {
duke@1 783 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 784 && containsType(ts.head, ss.head)) {
duke@1 785 ts = ts.tail;
duke@1 786 ss = ss.tail;
duke@1 787 }
duke@1 788 return ts.isEmpty() && ss.isEmpty();
duke@1 789 }
duke@1 790
duke@1 791 /**
duke@1 792 * Check if t contains s.
duke@1 793 *
duke@1 794 * <p>T contains S if:
duke@1 795 *
duke@1 796 * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
duke@1 797 *
duke@1 798 * <p>This relation is only used by ClassType.isSubtype(), that
duke@1 799 * is,
duke@1 800 *
duke@1 801 * <p>{@code C<S> <: C<T> if T contains S.}
duke@1 802 *
duke@1 803 * <p>Because of F-bounds, this relation can lead to infinite
duke@1 804 * recursion. Thus we must somehow break that recursion. Notice
duke@1 805 * that containsType() is only called from ClassType.isSubtype().
duke@1 806 * Since the arguments have already been checked against their
duke@1 807 * bounds, we know:
duke@1 808 *
duke@1 809 * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
duke@1 810 *
duke@1 811 * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
duke@1 812 *
duke@1 813 * @param t a type
duke@1 814 * @param s a type
duke@1 815 */
duke@1 816 public boolean containsType(Type t, Type s) {
duke@1 817 return containsType.visit(t, s);
duke@1 818 }
duke@1 819 // where
duke@1 820 private TypeRelation containsType = new TypeRelation() {
duke@1 821
duke@1 822 private Type U(Type t) {
duke@1 823 while (t.tag == WILDCARD) {
duke@1 824 WildcardType w = (WildcardType)t;
duke@1 825 if (w.isSuperBound())
duke@1 826 return w.bound == null ? syms.objectType : w.bound.bound;
duke@1 827 else
duke@1 828 t = w.type;
duke@1 829 }
duke@1 830 return t;
duke@1 831 }
duke@1 832
duke@1 833 private Type L(Type t) {
duke@1 834 while (t.tag == WILDCARD) {
duke@1 835 WildcardType w = (WildcardType)t;
duke@1 836 if (w.isExtendsBound())
duke@1 837 return syms.botType;
duke@1 838 else
duke@1 839 t = w.type;
duke@1 840 }
duke@1 841 return t;
duke@1 842 }
duke@1 843
duke@1 844 public Boolean visitType(Type t, Type s) {
duke@1 845 if (s.tag >= firstPartialTag)
duke@1 846 return containedBy(s, t);
duke@1 847 else
duke@1 848 return isSameType(t, s);
duke@1 849 }
duke@1 850
jjg@789 851 // void debugContainsType(WildcardType t, Type s) {
jjg@789 852 // System.err.println();
jjg@789 853 // System.err.format(" does %s contain %s?%n", t, s);
jjg@789 854 // System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
jjg@789 855 // upperBound(s), s, t, U(t),
jjg@789 856 // t.isSuperBound()
jjg@789 857 // || isSubtypeNoCapture(upperBound(s), U(t)));
jjg@789 858 // System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
jjg@789 859 // L(t), t, s, lowerBound(s),
jjg@789 860 // t.isExtendsBound()
jjg@789 861 // || isSubtypeNoCapture(L(t), lowerBound(s)));
jjg@789 862 // System.err.println();
jjg@789 863 // }
duke@1 864
duke@1 865 @Override
duke@1 866 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 867 if (s.tag >= firstPartialTag)
duke@1 868 return containedBy(s, t);
duke@1 869 else {
jjg@789 870 // debugContainsType(t, s);
duke@1 871 return isSameWildcard(t, s)
duke@1 872 || isCaptureOf(s, t)
duke@1 873 || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
duke@1 874 (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
duke@1 875 }
duke@1 876 }
duke@1 877
duke@1 878 @Override
duke@1 879 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 880 if (s.tag != WILDCARD)
duke@1 881 return isSameType(t, s);
duke@1 882 else
duke@1 883 return false;
duke@1 884 }
duke@1 885
duke@1 886 @Override
duke@1 887 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 888 return true;
duke@1 889 }
duke@1 890 };
duke@1 891
duke@1 892 public boolean isCaptureOf(Type s, WildcardType t) {
mcimadamore@79 893 if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
duke@1 894 return false;
duke@1 895 return isSameWildcard(t, ((CapturedType)s).wildcard);
duke@1 896 }
duke@1 897
duke@1 898 public boolean isSameWildcard(WildcardType t, Type s) {
duke@1 899 if (s.tag != WILDCARD)
duke@1 900 return false;
duke@1 901 WildcardType w = (WildcardType)s;
duke@1 902 return w.kind == t.kind && w.type == t.type;
duke@1 903 }
duke@1 904
duke@1 905 public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
duke@1 906 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 907 && containsTypeEquivalent(ts.head, ss.head)) {
duke@1 908 ts = ts.tail;
duke@1 909 ss = ss.tail;
duke@1 910 }
duke@1 911 return ts.isEmpty() && ss.isEmpty();
duke@1 912 }
duke@1 913 // </editor-fold>
duke@1 914
duke@1 915 // <editor-fold defaultstate="collapsed" desc="isCastable">
duke@1 916 public boolean isCastable(Type t, Type s) {
duke@1 917 return isCastable(t, s, Warner.noWarnings);
duke@1 918 }
duke@1 919
duke@1 920 /**
duke@1 921 * Is t is castable to s?<br>
duke@1 922 * s is assumed to be an erased type.<br>
duke@1 923 * (not defined for Method and ForAll types).
duke@1 924 */
duke@1 925 public boolean isCastable(Type t, Type s, Warner warn) {
duke@1 926 if (t == s)
duke@1 927 return true;
duke@1 928
duke@1 929 if (t.isPrimitive() != s.isPrimitive())
jjg@984 930 return allowBoxing && (
jjg@984 931 isConvertible(t, s, warn)
mcimadamore@1007 932 || (allowObjectToPrimitiveCast &&
mcimadamore@1007 933 s.isPrimitive() &&
mcimadamore@1007 934 isSubtype(boxedClass(s).type, t)));
duke@1 935 if (warn != warnStack.head) {
duke@1 936 try {
duke@1 937 warnStack = warnStack.prepend(warn);
mcimadamore@795 938 checkUnsafeVarargsConversion(t, s, warn);
mcimadamore@185 939 return isCastable.visit(t,s);
duke@1 940 } finally {
duke@1 941 warnStack = warnStack.tail;
duke@1 942 }
duke@1 943 } else {
mcimadamore@185 944 return isCastable.visit(t,s);
duke@1 945 }
duke@1 946 }
duke@1 947 // where
duke@1 948 private TypeRelation isCastable = new TypeRelation() {
duke@1 949
duke@1 950 public Boolean visitType(Type t, Type s) {
duke@1 951 if (s.tag == ERROR)
duke@1 952 return true;
duke@1 953
duke@1 954 switch (t.tag) {
duke@1 955 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 956 case DOUBLE:
duke@1 957 return s.tag <= DOUBLE;
duke@1 958 case BOOLEAN:
duke@1 959 return s.tag == BOOLEAN;
duke@1 960 case VOID:
duke@1 961 return false;
duke@1 962 case BOT:
duke@1 963 return isSubtype(t, s);
duke@1 964 default:
duke@1 965 throw new AssertionError();
duke@1 966 }
duke@1 967 }
duke@1 968
duke@1 969 @Override
duke@1 970 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 971 return isCastable(upperBound(t), s, warnStack.head);
duke@1 972 }
duke@1 973
duke@1 974 @Override
duke@1 975 public Boolean visitClassType(ClassType t, Type s) {
duke@1 976 if (s.tag == ERROR || s.tag == BOT)
duke@1 977 return true;
duke@1 978
duke@1 979 if (s.tag == TYPEVAR) {
mcimadamore@640 980 if (isCastable(t, s.getUpperBound(), Warner.noWarnings)) {
mcimadamore@795 981 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 982 return true;
duke@1 983 } else {
duke@1 984 return false;
duke@1 985 }
duke@1 986 }
duke@1 987
duke@1 988 if (t.isCompound()) {
mcimadamore@211 989 Warner oldWarner = warnStack.head;
mcimadamore@211 990 warnStack.head = Warner.noWarnings;
duke@1 991 if (!visit(supertype(t), s))
duke@1 992 return false;
duke@1 993 for (Type intf : interfaces(t)) {
duke@1 994 if (!visit(intf, s))
duke@1 995 return false;
duke@1 996 }
mcimadamore@795 997 if (warnStack.head.hasLint(LintCategory.UNCHECKED))
mcimadamore@795 998 oldWarner.warn(LintCategory.UNCHECKED);
duke@1 999 return true;
duke@1 1000 }
duke@1 1001
duke@1 1002 if (s.isCompound()) {
duke@1 1003 // call recursively to reuse the above code
duke@1 1004 return visitClassType((ClassType)s, t);
duke@1 1005 }
duke@1 1006
duke@1 1007 if (s.tag == CLASS || s.tag == ARRAY) {
duke@1 1008 boolean upcast;
duke@1 1009 if ((upcast = isSubtype(erasure(t), erasure(s)))
duke@1 1010 || isSubtype(erasure(s), erasure(t))) {
duke@1 1011 if (!upcast && s.tag == ARRAY) {
duke@1 1012 if (!isReifiable(s))
mcimadamore@795 1013 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1014 return true;
duke@1 1015 } else if (s.isRaw()) {
duke@1 1016 return true;
duke@1 1017 } else if (t.isRaw()) {
duke@1 1018 if (!isUnbounded(s))
mcimadamore@795 1019 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1020 return true;
duke@1 1021 }
duke@1 1022 // Assume |a| <: |b|
duke@1 1023 final Type a = upcast ? t : s;
duke@1 1024 final Type b = upcast ? s : t;
duke@1 1025 final boolean HIGH = true;
duke@1 1026 final boolean LOW = false;
duke@1 1027 final boolean DONT_REWRITE_TYPEVARS = false;
duke@1 1028 Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1029 Type aLow = rewriteQuantifiers(a, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1030 Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1031 Type bLow = rewriteQuantifiers(b, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1032 Type lowSub = asSub(bLow, aLow.tsym);
duke@1 1033 Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1034 if (highSub == null) {
duke@1 1035 final boolean REWRITE_TYPEVARS = true;
duke@1 1036 aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
duke@1 1037 aLow = rewriteQuantifiers(a, LOW, REWRITE_TYPEVARS);
duke@1 1038 bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
duke@1 1039 bLow = rewriteQuantifiers(b, LOW, REWRITE_TYPEVARS);
duke@1 1040 lowSub = asSub(bLow, aLow.tsym);
duke@1 1041 highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1042 }
duke@1 1043 if (highSub != null) {
jjg@816 1044 if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
jjg@816 1045 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
jjg@816 1046 }
mcimadamore@185 1047 if (!disjointTypes(aHigh.allparams(), highSub.allparams())
mcimadamore@185 1048 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
mcimadamore@185 1049 && !disjointTypes(aLow.allparams(), highSub.allparams())
mcimadamore@185 1050 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
mcimadamore@779 1051 if (upcast ? giveWarning(a, b) :
mcimadamore@235 1052 giveWarning(b, a))
mcimadamore@795 1053 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1054 return true;
duke@1 1055 }
duke@1 1056 }
duke@1 1057 if (isReifiable(s))
duke@1 1058 return isSubtypeUnchecked(a, b);
duke@1 1059 else
duke@1 1060 return isSubtypeUnchecked(a, b, warnStack.head);
duke@1 1061 }
duke@1 1062
duke@1 1063 // Sidecast
duke@1 1064 if (s.tag == CLASS) {
duke@1 1065 if ((s.tsym.flags() & INTERFACE) != 0) {
duke@1 1066 return ((t.tsym.flags() & FINAL) == 0)
duke@1 1067 ? sideCast(t, s, warnStack.head)
duke@1 1068 : sideCastFinal(t, s, warnStack.head);
duke@1 1069 } else if ((t.tsym.flags() & INTERFACE) != 0) {
duke@1 1070 return ((s.tsym.flags() & FINAL) == 0)
duke@1 1071 ? sideCast(t, s, warnStack.head)
duke@1 1072 : sideCastFinal(t, s, warnStack.head);
duke@1 1073 } else {
duke@1 1074 // unrelated class types
duke@1 1075 return false;
duke@1 1076 }
duke@1 1077 }
duke@1 1078 }
duke@1 1079 return false;
duke@1 1080 }
duke@1 1081
duke@1 1082 @Override
duke@1 1083 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 1084 switch (s.tag) {
duke@1 1085 case ERROR:
duke@1 1086 case BOT:
duke@1 1087 return true;
duke@1 1088 case TYPEVAR:
duke@1 1089 if (isCastable(s, t, Warner.noWarnings)) {
mcimadamore@795 1090 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1091 return true;
duke@1 1092 } else {
duke@1 1093 return false;
duke@1 1094 }
duke@1 1095 case CLASS:
duke@1 1096 return isSubtype(t, s);
duke@1 1097 case ARRAY:
mcimadamore@786 1098 if (elemtype(t).tag <= lastBaseTag ||
mcimadamore@786 1099 elemtype(s).tag <= lastBaseTag) {
duke@1 1100 return elemtype(t).tag == elemtype(s).tag;
duke@1 1101 } else {
duke@1 1102 return visit(elemtype(t), elemtype(s));
duke@1 1103 }
duke@1 1104 default:
duke@1 1105 return false;
duke@1 1106 }
duke@1 1107 }
duke@1 1108
duke@1 1109 @Override
duke@1 1110 public Boolean visitTypeVar(TypeVar t, Type s) {
duke@1 1111 switch (s.tag) {
duke@1 1112 case ERROR:
duke@1 1113 case BOT:
duke@1 1114 return true;
duke@1 1115 case TYPEVAR:
duke@1 1116 if (isSubtype(t, s)) {
duke@1 1117 return true;
duke@1 1118 } else if (isCastable(t.bound, s, Warner.noWarnings)) {
mcimadamore@795 1119 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1120 return true;
duke@1 1121 } else {
duke@1 1122 return false;
duke@1 1123 }
duke@1 1124 default:
duke@1 1125 return isCastable(t.bound, s, warnStack.head);
duke@1 1126 }
duke@1 1127 }
duke@1 1128
duke@1 1129 @Override
duke@1 1130 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1131 return true;
duke@1 1132 }
duke@1 1133 };
duke@1 1134 // </editor-fold>
duke@1 1135
duke@1 1136 // <editor-fold defaultstate="collapsed" desc="disjointTypes">
duke@1 1137 public boolean disjointTypes(List<Type> ts, List<Type> ss) {
duke@1 1138 while (ts.tail != null && ss.tail != null) {
duke@1 1139 if (disjointType(ts.head, ss.head)) return true;
duke@1 1140 ts = ts.tail;
duke@1 1141 ss = ss.tail;
duke@1 1142 }
duke@1 1143 return false;
duke@1 1144 }
duke@1 1145
duke@1 1146 /**
duke@1 1147 * Two types or wildcards are considered disjoint if it can be
duke@1 1148 * proven that no type can be contained in both. It is
duke@1 1149 * conservative in that it is allowed to say that two types are
duke@1 1150 * not disjoint, even though they actually are.
duke@1 1151 *
duke@1 1152 * The type C<X> is castable to C<Y> exactly if X and Y are not
duke@1 1153 * disjoint.
duke@1 1154 */
duke@1 1155 public boolean disjointType(Type t, Type s) {
duke@1 1156 return disjointType.visit(t, s);
duke@1 1157 }
duke@1 1158 // where
duke@1 1159 private TypeRelation disjointType = new TypeRelation() {
duke@1 1160
duke@1 1161 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 1162
duke@1 1163 public Boolean visitType(Type t, Type s) {
duke@1 1164 if (s.tag == WILDCARD)
duke@1 1165 return visit(s, t);
duke@1 1166 else
duke@1 1167 return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
duke@1 1168 }
duke@1 1169
duke@1 1170 private boolean isCastableRecursive(Type t, Type s) {
duke@1 1171 TypePair pair = new TypePair(t, s);
duke@1 1172 if (cache.add(pair)) {
duke@1 1173 try {
duke@1 1174 return Types.this.isCastable(t, s);
duke@1 1175 } finally {
duke@1 1176 cache.remove(pair);
duke@1 1177 }
duke@1 1178 } else {
duke@1 1179 return true;
duke@1 1180 }
duke@1 1181 }
duke@1 1182
duke@1 1183 private boolean notSoftSubtypeRecursive(Type t, Type s) {
duke@1 1184 TypePair pair = new TypePair(t, s);
duke@1 1185 if (cache.add(pair)) {
duke@1 1186 try {
duke@1 1187 return Types.this.notSoftSubtype(t, s);
duke@1 1188 } finally {
duke@1 1189 cache.remove(pair);
duke@1 1190 }
duke@1 1191 } else {
duke@1 1192 return false;
duke@1 1193 }
duke@1 1194 }
duke@1 1195
duke@1 1196 @Override
duke@1 1197 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 1198 if (t.isUnbound())
duke@1 1199 return false;
duke@1 1200
duke@1 1201 if (s.tag != WILDCARD) {
duke@1 1202 if (t.isExtendsBound())
duke@1 1203 return notSoftSubtypeRecursive(s, t.type);
duke@1 1204 else // isSuperBound()
duke@1 1205 return notSoftSubtypeRecursive(t.type, s);
duke@1 1206 }
duke@1 1207
duke@1 1208 if (s.isUnbound())
duke@1 1209 return false;
duke@1 1210
duke@1 1211 if (t.isExtendsBound()) {
duke@1 1212 if (s.isExtendsBound())
duke@1 1213 return !isCastableRecursive(t.type, upperBound(s));
duke@1 1214 else if (s.isSuperBound())
duke@1 1215 return notSoftSubtypeRecursive(lowerBound(s), t.type);
duke@1 1216 } else if (t.isSuperBound()) {
duke@1 1217 if (s.isExtendsBound())
duke@1 1218 return notSoftSubtypeRecursive(t.type, upperBound(s));
duke@1 1219 }
duke@1 1220 return false;
duke@1 1221 }
duke@1 1222 };
duke@1 1223 // </editor-fold>
duke@1 1224
duke@1 1225 // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
duke@1 1226 /**
duke@1 1227 * Returns the lower bounds of the formals of a method.
duke@1 1228 */
duke@1 1229 public List<Type> lowerBoundArgtypes(Type t) {
duke@1 1230 return map(t.getParameterTypes(), lowerBoundMapping);
duke@1 1231 }
duke@1 1232 private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
duke@1 1233 public Type apply(Type t) {
duke@1 1234 return lowerBound(t);
duke@1 1235 }
duke@1 1236 };
duke@1 1237 // </editor-fold>
duke@1 1238
duke@1 1239 // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
duke@1 1240 /**
duke@1 1241 * This relation answers the question: is impossible that
duke@1 1242 * something of type `t' can be a subtype of `s'? This is
duke@1 1243 * different from the question "is `t' not a subtype of `s'?"
duke@1 1244 * when type variables are involved: Integer is not a subtype of T
duke@1 1245 * where <T extends Number> but it is not true that Integer cannot
duke@1 1246 * possibly be a subtype of T.
duke@1 1247 */
duke@1 1248 public boolean notSoftSubtype(Type t, Type s) {
duke@1 1249 if (t == s) return false;
duke@1 1250 if (t.tag == TYPEVAR) {
duke@1 1251 TypeVar tv = (TypeVar) t;
duke@1 1252 return !isCastable(tv.bound,
mcimadamore@640 1253 relaxBound(s),
duke@1 1254 Warner.noWarnings);
duke@1 1255 }
duke@1 1256 if (s.tag != WILDCARD)
duke@1 1257 s = upperBound(s);
mcimadamore@640 1258
mcimadamore@640 1259 return !isSubtype(t, relaxBound(s));
mcimadamore@640 1260 }
mcimadamore@640 1261
mcimadamore@640 1262 private Type relaxBound(Type t) {
mcimadamore@640 1263 if (t.tag == TYPEVAR) {
mcimadamore@640 1264 while (t.tag == TYPEVAR)
mcimadamore@640 1265 t = t.getUpperBound();
mcimadamore@640 1266 t = rewriteQuantifiers(t, true, true);
mcimadamore@640 1267 }
mcimadamore@640 1268 return t;
duke@1 1269 }
duke@1 1270 // </editor-fold>
duke@1 1271
duke@1 1272 // <editor-fold defaultstate="collapsed" desc="isReifiable">
duke@1 1273 public boolean isReifiable(Type t) {
duke@1 1274 return isReifiable.visit(t);
duke@1 1275 }
duke@1 1276 // where
duke@1 1277 private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
duke@1 1278
duke@1 1279 public Boolean visitType(Type t, Void ignored) {
duke@1 1280 return true;
duke@1 1281 }
duke@1 1282
duke@1 1283 @Override
duke@1 1284 public Boolean visitClassType(ClassType t, Void ignored) {
mcimadamore@356 1285 if (t.isCompound())
mcimadamore@356 1286 return false;
mcimadamore@356 1287 else {
mcimadamore@356 1288 if (!t.isParameterized())
mcimadamore@356 1289 return true;
mcimadamore@356 1290
mcimadamore@356 1291 for (Type param : t.allparams()) {
mcimadamore@356 1292 if (!param.isUnbound())
mcimadamore@356 1293 return false;
mcimadamore@356 1294 }
duke@1 1295 return true;
duke@1 1296 }
duke@1 1297 }
duke@1 1298
duke@1 1299 @Override
duke@1 1300 public Boolean visitArrayType(ArrayType t, Void ignored) {
duke@1 1301 return visit(t.elemtype);
duke@1 1302 }
duke@1 1303
duke@1 1304 @Override
duke@1 1305 public Boolean visitTypeVar(TypeVar t, Void ignored) {
duke@1 1306 return false;
duke@1 1307 }
duke@1 1308 };
duke@1 1309 // </editor-fold>
duke@1 1310
duke@1 1311 // <editor-fold defaultstate="collapsed" desc="Array Utils">
duke@1 1312 public boolean isArray(Type t) {
duke@1 1313 while (t.tag == WILDCARD)
duke@1 1314 t = upperBound(t);
duke@1 1315 return t.tag == ARRAY;
duke@1 1316 }
duke@1 1317
duke@1 1318 /**
duke@1 1319 * The element type of an array.
duke@1 1320 */
duke@1 1321 public Type elemtype(Type t) {
duke@1 1322 switch (t.tag) {
duke@1 1323 case WILDCARD:
duke@1 1324 return elemtype(upperBound(t));
duke@1 1325 case ARRAY:
duke@1 1326 return ((ArrayType)t).elemtype;
duke@1 1327 case FORALL:
duke@1 1328 return elemtype(((ForAll)t).qtype);
duke@1 1329 case ERROR:
duke@1 1330 return t;
duke@1 1331 default:
duke@1 1332 return null;
duke@1 1333 }
duke@1 1334 }
duke@1 1335
mcimadamore@787 1336 public Type elemtypeOrType(Type t) {
mcimadamore@787 1337 Type elemtype = elemtype(t);
mcimadamore@787 1338 return elemtype != null ?
mcimadamore@787 1339 elemtype :
mcimadamore@787 1340 t;
mcimadamore@787 1341 }
mcimadamore@787 1342
duke@1 1343 /**
duke@1 1344 * Mapping to take element type of an arraytype
duke@1 1345 */
duke@1 1346 private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
duke@1 1347 public Type apply(Type t) { return elemtype(t); }
duke@1 1348 };
duke@1 1349
duke@1 1350 /**
duke@1 1351 * The number of dimensions of an array type.
duke@1 1352 */
duke@1 1353 public int dimensions(Type t) {
duke@1 1354 int result = 0;
duke@1 1355 while (t.tag == ARRAY) {
duke@1 1356 result++;
duke@1 1357 t = elemtype(t);
duke@1 1358 }
duke@1 1359 return result;
duke@1 1360 }
jfranck@1313 1361
jfranck@1313 1362 /**
jfranck@1313 1363 * Returns an ArrayType with the component type t
jfranck@1313 1364 *
jfranck@1313 1365 * @param t The component type of the ArrayType
jfranck@1313 1366 * @return the ArrayType for the given component
jfranck@1313 1367 */
jfranck@1313 1368 public ArrayType makeArrayType(Type t) {
jfranck@1313 1369 if (t.tag == VOID ||
jfranck@1313 1370 t.tag >= PACKAGE) {
jfranck@1313 1371 Assert.error("Type t must not be a a VOID or PACKAGE type, " + t.toString());
jfranck@1313 1372 }
jfranck@1313 1373 return new ArrayType(t, syms.arrayClass);
jfranck@1313 1374 }
duke@1 1375 // </editor-fold>
duke@1 1376
duke@1 1377 // <editor-fold defaultstate="collapsed" desc="asSuper">
duke@1 1378 /**
duke@1 1379 * Return the (most specific) base type of t that starts with the
duke@1 1380 * given symbol. If none exists, return null.
duke@1 1381 *
duke@1 1382 * @param t a type
duke@1 1383 * @param sym a symbol
duke@1 1384 */
duke@1 1385 public Type asSuper(Type t, Symbol sym) {
duke@1 1386 return asSuper.visit(t, sym);
duke@1 1387 }
duke@1 1388 // where
duke@1 1389 private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
duke@1 1390
duke@1 1391 public Type visitType(Type t, Symbol sym) {
duke@1 1392 return null;
duke@1 1393 }
duke@1 1394
duke@1 1395 @Override
duke@1 1396 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1397 if (t.tsym == sym)
duke@1 1398 return t;
duke@1 1399
duke@1 1400 Type st = supertype(t);
mcimadamore@19 1401 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
duke@1 1402 Type x = asSuper(st, sym);
duke@1 1403 if (x != null)
duke@1 1404 return x;
duke@1 1405 }
duke@1 1406 if ((sym.flags() & INTERFACE) != 0) {
duke@1 1407 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 1408 Type x = asSuper(l.head, sym);
duke@1 1409 if (x != null)
duke@1 1410 return x;
duke@1 1411 }
duke@1 1412 }
duke@1 1413 return null;
duke@1 1414 }
duke@1 1415
duke@1 1416 @Override
duke@1 1417 public Type visitArrayType(ArrayType t, Symbol sym) {
duke@1 1418 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1419 }
duke@1 1420
duke@1 1421 @Override
duke@1 1422 public Type visitTypeVar(TypeVar t, Symbol sym) {
mcimadamore@19 1423 if (t.tsym == sym)
mcimadamore@19 1424 return t;
mcimadamore@19 1425 else
mcimadamore@19 1426 return asSuper(t.bound, sym);
duke@1 1427 }
duke@1 1428
duke@1 1429 @Override
duke@1 1430 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1431 return t;
duke@1 1432 }
duke@1 1433 };
duke@1 1434
duke@1 1435 /**
duke@1 1436 * Return the base type of t or any of its outer types that starts
duke@1 1437 * with the given symbol. If none exists, return null.
duke@1 1438 *
duke@1 1439 * @param t a type
duke@1 1440 * @param sym a symbol
duke@1 1441 */
duke@1 1442 public Type asOuterSuper(Type t, Symbol sym) {
duke@1 1443 switch (t.tag) {
duke@1 1444 case CLASS:
duke@1 1445 do {
duke@1 1446 Type s = asSuper(t, sym);
duke@1 1447 if (s != null) return s;
duke@1 1448 t = t.getEnclosingType();
duke@1 1449 } while (t.tag == CLASS);
duke@1 1450 return null;
duke@1 1451 case ARRAY:
duke@1 1452 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1453 case TYPEVAR:
duke@1 1454 return asSuper(t, sym);
duke@1 1455 case ERROR:
duke@1 1456 return t;
duke@1 1457 default:
duke@1 1458 return null;
duke@1 1459 }
duke@1 1460 }
duke@1 1461
duke@1 1462 /**
duke@1 1463 * Return the base type of t or any of its enclosing types that
duke@1 1464 * starts with the given symbol. If none exists, return null.
duke@1 1465 *
duke@1 1466 * @param t a type
duke@1 1467 * @param sym a symbol
duke@1 1468 */
duke@1 1469 public Type asEnclosingSuper(Type t, Symbol sym) {
duke@1 1470 switch (t.tag) {
duke@1 1471 case CLASS:
duke@1 1472 do {
duke@1 1473 Type s = asSuper(t, sym);
duke@1 1474 if (s != null) return s;
duke@1 1475 Type outer = t.getEnclosingType();
duke@1 1476 t = (outer.tag == CLASS) ? outer :
duke@1 1477 (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
duke@1 1478 Type.noType;
duke@1 1479 } while (t.tag == CLASS);
duke@1 1480 return null;
duke@1 1481 case ARRAY:
duke@1 1482 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1483 case TYPEVAR:
duke@1 1484 return asSuper(t, sym);
duke@1 1485 case ERROR:
duke@1 1486 return t;
duke@1 1487 default:
duke@1 1488 return null;
duke@1 1489 }
duke@1 1490 }
duke@1 1491 // </editor-fold>
duke@1 1492
duke@1 1493 // <editor-fold defaultstate="collapsed" desc="memberType">
duke@1 1494 /**
duke@1 1495 * The type of given symbol, seen as a member of t.
duke@1 1496 *
duke@1 1497 * @param t a type
duke@1 1498 * @param sym a symbol
duke@1 1499 */
duke@1 1500 public Type memberType(Type t, Symbol sym) {
duke@1 1501 return (sym.flags() & STATIC) != 0
duke@1 1502 ? sym.type
duke@1 1503 : memberType.visit(t, sym);
mcimadamore@341 1504 }
duke@1 1505 // where
duke@1 1506 private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
duke@1 1507
duke@1 1508 public Type visitType(Type t, Symbol sym) {
duke@1 1509 return sym.type;
duke@1 1510 }
duke@1 1511
duke@1 1512 @Override
duke@1 1513 public Type visitWildcardType(WildcardType t, Symbol sym) {
duke@1 1514 return memberType(upperBound(t), sym);
duke@1 1515 }
duke@1 1516
duke@1 1517 @Override
duke@1 1518 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1519 Symbol owner = sym.owner;
duke@1 1520 long flags = sym.flags();
duke@1 1521 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
duke@1 1522 Type base = asOuterSuper(t, owner);
mcimadamore@134 1523 //if t is an intersection type T = CT & I1 & I2 ... & In
mcimadamore@134 1524 //its supertypes CT, I1, ... In might contain wildcards
mcimadamore@134 1525 //so we need to go through capture conversion
mcimadamore@134 1526 base = t.isCompound() ? capture(base) : base;
duke@1 1527 if (base != null) {
duke@1 1528 List<Type> ownerParams = owner.type.allparams();
duke@1 1529 List<Type> baseParams = base.allparams();
duke@1 1530 if (ownerParams.nonEmpty()) {
duke@1 1531 if (baseParams.isEmpty()) {
duke@1 1532 // then base is a raw type
duke@1 1533 return erasure(sym.type);
duke@1 1534 } else {
duke@1 1535 return subst(sym.type, ownerParams, baseParams);
duke@1 1536 }
duke@1 1537 }
duke@1 1538 }
duke@1 1539 }
duke@1 1540 return sym.type;
duke@1 1541 }
duke@1 1542
duke@1 1543 @Override
duke@1 1544 public Type visitTypeVar(TypeVar t, Symbol sym) {
duke@1 1545 return memberType(t.bound, sym);
duke@1 1546 }
duke@1 1547
duke@1 1548 @Override
duke@1 1549 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1550 return t;
duke@1 1551 }
duke@1 1552 };
duke@1 1553 // </editor-fold>
duke@1 1554
duke@1 1555 // <editor-fold defaultstate="collapsed" desc="isAssignable">
duke@1 1556 public boolean isAssignable(Type t, Type s) {
duke@1 1557 return isAssignable(t, s, Warner.noWarnings);
duke@1 1558 }
duke@1 1559
duke@1 1560 /**
duke@1 1561 * Is t assignable to s?<br>
duke@1 1562 * Equivalent to subtype except for constant values and raw
duke@1 1563 * types.<br>
duke@1 1564 * (not defined for Method and ForAll types)
duke@1 1565 */
duke@1 1566 public boolean isAssignable(Type t, Type s, Warner warn) {
duke@1 1567 if (t.tag == ERROR)
duke@1 1568 return true;
duke@1 1569 if (t.tag <= INT && t.constValue() != null) {
duke@1 1570 int value = ((Number)t.constValue()).intValue();
duke@1 1571 switch (s.tag) {
duke@1 1572 case BYTE:
duke@1 1573 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
duke@1 1574 return true;
duke@1 1575 break;
duke@1 1576 case CHAR:
duke@1 1577 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
duke@1 1578 return true;
duke@1 1579 break;
duke@1 1580 case SHORT:
duke@1 1581 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
duke@1 1582 return true;
duke@1 1583 break;
duke@1 1584 case INT:
duke@1 1585 return true;
duke@1 1586 case CLASS:
duke@1 1587 switch (unboxedType(s).tag) {
duke@1 1588 case BYTE:
duke@1 1589 case CHAR:
duke@1 1590 case SHORT:
duke@1 1591 return isAssignable(t, unboxedType(s), warn);
duke@1 1592 }
duke@1 1593 break;
duke@1 1594 }
duke@1 1595 }
duke@1 1596 return isConvertible(t, s, warn);
duke@1 1597 }
duke@1 1598 // </editor-fold>
duke@1 1599
duke@1 1600 // <editor-fold defaultstate="collapsed" desc="erasure">
duke@1 1601 /**
duke@1 1602 * The erasure of t {@code |t|} -- the type that results when all
duke@1 1603 * type parameters in t are deleted.
duke@1 1604 */
duke@1 1605 public Type erasure(Type t) {
sundar@1307 1606 return eraseNotNeeded(t)? t : erasure(t, false);
mcimadamore@30 1607 }
mcimadamore@30 1608 //where
sundar@1307 1609 private boolean eraseNotNeeded(Type t) {
sundar@1307 1610 // We don't want to erase primitive types and String type as that
sundar@1307 1611 // operation is idempotent. Also, erasing these could result in loss
sundar@1307 1612 // of information such as constant values attached to such types.
sundar@1307 1613 return (t.tag <= lastBaseTag) || (syms.stringType.tsym == t.tsym);
sundar@1307 1614 }
sundar@1307 1615
mcimadamore@30 1616 private Type erasure(Type t, boolean recurse) {
duke@1 1617 if (t.tag <= lastBaseTag)
duke@1 1618 return t; /* fast special case */
duke@1 1619 else
mcimadamore@30 1620 return erasure.visit(t, recurse);
mcimadamore@341 1621 }
duke@1 1622 // where
mcimadamore@30 1623 private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
mcimadamore@30 1624 public Type visitType(Type t, Boolean recurse) {
duke@1 1625 if (t.tag <= lastBaseTag)
duke@1 1626 return t; /*fast special case*/
duke@1 1627 else
mcimadamore@30 1628 return t.map(recurse ? erasureRecFun : erasureFun);
duke@1 1629 }
duke@1 1630
duke@1 1631 @Override
mcimadamore@30 1632 public Type visitWildcardType(WildcardType t, Boolean recurse) {
mcimadamore@30 1633 return erasure(upperBound(t), recurse);
duke@1 1634 }
duke@1 1635
duke@1 1636 @Override
mcimadamore@30 1637 public Type visitClassType(ClassType t, Boolean recurse) {
mcimadamore@30 1638 Type erased = t.tsym.erasure(Types.this);
mcimadamore@30 1639 if (recurse) {
mcimadamore@30 1640 erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
mcimadamore@30 1641 }
mcimadamore@30 1642 return erased;
duke@1 1643 }
duke@1 1644
duke@1 1645 @Override
mcimadamore@30 1646 public Type visitTypeVar(TypeVar t, Boolean recurse) {
mcimadamore@30 1647 return erasure(t.bound, recurse);
duke@1 1648 }
duke@1 1649
duke@1 1650 @Override
mcimadamore@30 1651 public Type visitErrorType(ErrorType t, Boolean recurse) {
duke@1 1652 return t;
duke@1 1653 }
duke@1 1654 };
mcimadamore@30 1655
duke@1 1656 private Mapping erasureFun = new Mapping ("erasure") {
duke@1 1657 public Type apply(Type t) { return erasure(t); }
duke@1 1658 };
duke@1 1659
mcimadamore@30 1660 private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
mcimadamore@30 1661 public Type apply(Type t) { return erasureRecursive(t); }
mcimadamore@30 1662 };
mcimadamore@30 1663
duke@1 1664 public List<Type> erasure(List<Type> ts) {
duke@1 1665 return Type.map(ts, erasureFun);
duke@1 1666 }
mcimadamore@30 1667
mcimadamore@30 1668 public Type erasureRecursive(Type t) {
mcimadamore@30 1669 return erasure(t, true);
mcimadamore@30 1670 }
mcimadamore@30 1671
mcimadamore@30 1672 public List<Type> erasureRecursive(List<Type> ts) {
mcimadamore@30 1673 return Type.map(ts, erasureRecFun);
mcimadamore@30 1674 }
duke@1 1675 // </editor-fold>
duke@1 1676
duke@1 1677 // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
duke@1 1678 /**
duke@1 1679 * Make a compound type from non-empty list of types
duke@1 1680 *
duke@1 1681 * @param bounds the types from which the compound type is formed
duke@1 1682 * @param supertype is objectType if all bounds are interfaces,
duke@1 1683 * null otherwise.
duke@1 1684 */
duke@1 1685 public Type makeCompoundType(List<Type> bounds,
duke@1 1686 Type supertype) {
duke@1 1687 ClassSymbol bc =
duke@1 1688 new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
duke@1 1689 Type.moreInfo
duke@1 1690 ? names.fromString(bounds.toString())
duke@1 1691 : names.empty,
duke@1 1692 syms.noSymbol);
duke@1 1693 if (bounds.head.tag == TYPEVAR)
duke@1 1694 // error condition, recover
mcimadamore@121 1695 bc.erasure_field = syms.objectType;
mcimadamore@121 1696 else
mcimadamore@121 1697 bc.erasure_field = erasure(bounds.head);
mcimadamore@121 1698 bc.members_field = new Scope(bc);
duke@1 1699 ClassType bt = (ClassType)bc.type;
duke@1 1700 bt.allparams_field = List.nil();
duke@1 1701 if (supertype != null) {
duke@1 1702 bt.supertype_field = supertype;
duke@1 1703 bt.interfaces_field = bounds;
duke@1 1704 } else {
duke@1 1705 bt.supertype_field = bounds.head;
duke@1 1706 bt.interfaces_field = bounds.tail;
duke@1 1707 }
jjg@816 1708 Assert.check(bt.supertype_field.tsym.completer != null
jjg@816 1709 || !bt.supertype_field.isInterface(),
jjg@816 1710 bt.supertype_field);
duke@1 1711 return bt;
duke@1 1712 }
duke@1 1713
duke@1 1714 /**
duke@1 1715 * Same as {@link #makeCompoundType(List,Type)}, except that the
duke@1 1716 * second parameter is computed directly. Note that this might
duke@1 1717 * cause a symbol completion. Hence, this version of
duke@1 1718 * makeCompoundType may not be called during a classfile read.
duke@1 1719 */
duke@1 1720 public Type makeCompoundType(List<Type> bounds) {
duke@1 1721 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
duke@1 1722 supertype(bounds.head) : null;
duke@1 1723 return makeCompoundType(bounds, supertype);
duke@1 1724 }
duke@1 1725
duke@1 1726 /**
duke@1 1727 * A convenience wrapper for {@link #makeCompoundType(List)}; the
duke@1 1728 * arguments are converted to a list and passed to the other
duke@1 1729 * method. Note that this might cause a symbol completion.
duke@1 1730 * Hence, this version of makeCompoundType may not be called
duke@1 1731 * during a classfile read.
duke@1 1732 */
duke@1 1733 public Type makeCompoundType(Type bound1, Type bound2) {
duke@1 1734 return makeCompoundType(List.of(bound1, bound2));
duke@1 1735 }
duke@1 1736 // </editor-fold>
duke@1 1737
duke@1 1738 // <editor-fold defaultstate="collapsed" desc="supertype">
duke@1 1739 public Type supertype(Type t) {
duke@1 1740 return supertype.visit(t);
duke@1 1741 }
duke@1 1742 // where
duke@1 1743 private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
duke@1 1744
duke@1 1745 public Type visitType(Type t, Void ignored) {
duke@1 1746 // A note on wildcards: there is no good way to
duke@1 1747 // determine a supertype for a super bounded wildcard.
duke@1 1748 return null;
duke@1 1749 }
duke@1 1750
duke@1 1751 @Override
duke@1 1752 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1753 if (t.supertype_field == null) {
duke@1 1754 Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
duke@1 1755 // An interface has no superclass; its supertype is Object.
duke@1 1756 if (t.isInterface())
duke@1 1757 supertype = ((ClassType)t.tsym.type).supertype_field;
duke@1 1758 if (t.supertype_field == null) {
duke@1 1759 List<Type> actuals = classBound(t).allparams();
duke@1 1760 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1761 if (t.hasErasedSupertypes()) {
mcimadamore@30 1762 t.supertype_field = erasureRecursive(supertype);
mcimadamore@30 1763 } else if (formals.nonEmpty()) {
duke@1 1764 t.supertype_field = subst(supertype, formals, actuals);
duke@1 1765 }
mcimadamore@30 1766 else {
mcimadamore@30 1767 t.supertype_field = supertype;
mcimadamore@30 1768 }
duke@1 1769 }
duke@1 1770 }
duke@1 1771 return t.supertype_field;
duke@1 1772 }
duke@1 1773
duke@1 1774 /**
duke@1 1775 * The supertype is always a class type. If the type
duke@1 1776 * variable's bounds start with a class type, this is also
duke@1 1777 * the supertype. Otherwise, the supertype is
duke@1 1778 * java.lang.Object.
duke@1 1779 */
duke@1 1780 @Override
duke@1 1781 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1782 if (t.bound.tag == TYPEVAR ||
duke@1 1783 (!t.bound.isCompound() && !t.bound.isInterface())) {
duke@1 1784 return t.bound;
duke@1 1785 } else {
duke@1 1786 return supertype(t.bound);
duke@1 1787 }
duke@1 1788 }
duke@1 1789
duke@1 1790 @Override
duke@1 1791 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 1792 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
duke@1 1793 return arraySuperType();
duke@1 1794 else
duke@1 1795 return new ArrayType(supertype(t.elemtype), t.tsym);
duke@1 1796 }
duke@1 1797
duke@1 1798 @Override
duke@1 1799 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1800 return t;
duke@1 1801 }
duke@1 1802 };
duke@1 1803 // </editor-fold>
duke@1 1804
duke@1 1805 // <editor-fold defaultstate="collapsed" desc="interfaces">
duke@1 1806 /**
duke@1 1807 * Return the interfaces implemented by this class.
duke@1 1808 */
duke@1 1809 public List<Type> interfaces(Type t) {
duke@1 1810 return interfaces.visit(t);
duke@1 1811 }
duke@1 1812 // where
duke@1 1813 private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
duke@1 1814
duke@1 1815 public List<Type> visitType(Type t, Void ignored) {
duke@1 1816 return List.nil();
duke@1 1817 }
duke@1 1818
duke@1 1819 @Override
duke@1 1820 public List<Type> visitClassType(ClassType t, Void ignored) {
duke@1 1821 if (t.interfaces_field == null) {
duke@1 1822 List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
duke@1 1823 if (t.interfaces_field == null) {
duke@1 1824 // If t.interfaces_field is null, then t must
duke@1 1825 // be a parameterized type (not to be confused
duke@1 1826 // with a generic type declaration).
duke@1 1827 // Terminology:
duke@1 1828 // Parameterized type: List<String>
duke@1 1829 // Generic type declaration: class List<E> { ... }
duke@1 1830 // So t corresponds to List<String> and
duke@1 1831 // t.tsym.type corresponds to List<E>.
duke@1 1832 // The reason t must be parameterized type is
duke@1 1833 // that completion will happen as a side
duke@1 1834 // effect of calling
duke@1 1835 // ClassSymbol.getInterfaces. Since
duke@1 1836 // t.interfaces_field is null after
duke@1 1837 // completion, we can assume that t is not the
duke@1 1838 // type of a class/interface declaration.
jjg@816 1839 Assert.check(t != t.tsym.type, t);
duke@1 1840 List<Type> actuals = t.allparams();
duke@1 1841 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1842 if (t.hasErasedSupertypes()) {
mcimadamore@30 1843 t.interfaces_field = erasureRecursive(interfaces);
mcimadamore@30 1844 } else if (formals.nonEmpty()) {
duke@1 1845 t.interfaces_field =
duke@1 1846 upperBounds(subst(interfaces, formals, actuals));
duke@1 1847 }
mcimadamore@30 1848 else {
mcimadamore@30 1849 t.interfaces_field = interfaces;
mcimadamore@30 1850 }
duke@1 1851 }
duke@1 1852 }
duke@1 1853 return t.interfaces_field;
duke@1 1854 }
duke@1 1855
duke@1 1856 @Override
duke@1 1857 public List<Type> visitTypeVar(TypeVar t, Void ignored) {
duke@1 1858 if (t.bound.isCompound())
duke@1 1859 return interfaces(t.bound);
duke@1 1860
duke@1 1861 if (t.bound.isInterface())
duke@1 1862 return List.of(t.bound);
duke@1 1863
duke@1 1864 return List.nil();
duke@1 1865 }
duke@1 1866 };
duke@1 1867 // </editor-fold>
duke@1 1868
duke@1 1869 // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
duke@1 1870 Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
duke@1 1871
duke@1 1872 public boolean isDerivedRaw(Type t) {
duke@1 1873 Boolean result = isDerivedRawCache.get(t);
duke@1 1874 if (result == null) {
duke@1 1875 result = isDerivedRawInternal(t);
duke@1 1876 isDerivedRawCache.put(t, result);
duke@1 1877 }
duke@1 1878 return result;
duke@1 1879 }
duke@1 1880
duke@1 1881 public boolean isDerivedRawInternal(Type t) {
duke@1 1882 if (t.isErroneous())
duke@1 1883 return false;
duke@1 1884 return
duke@1 1885 t.isRaw() ||
duke@1 1886 supertype(t) != null && isDerivedRaw(supertype(t)) ||
duke@1 1887 isDerivedRaw(interfaces(t));
duke@1 1888 }
duke@1 1889
duke@1 1890 public boolean isDerivedRaw(List<Type> ts) {
duke@1 1891 List<Type> l = ts;
duke@1 1892 while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
duke@1 1893 return l.nonEmpty();
duke@1 1894 }
duke@1 1895 // </editor-fold>
duke@1 1896
duke@1 1897 // <editor-fold defaultstate="collapsed" desc="setBounds">
duke@1 1898 /**
duke@1 1899 * Set the bounds field of the given type variable to reflect a
duke@1 1900 * (possibly multiple) list of bounds.
duke@1 1901 * @param t a type variable
duke@1 1902 * @param bounds the bounds, must be nonempty
duke@1 1903 * @param supertype is objectType if all bounds are interfaces,
duke@1 1904 * null otherwise.
duke@1 1905 */
duke@1 1906 public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
duke@1 1907 if (bounds.tail.isEmpty())
duke@1 1908 t.bound = bounds.head;
duke@1 1909 else
duke@1 1910 t.bound = makeCompoundType(bounds, supertype);
duke@1 1911 t.rank_field = -1;
duke@1 1912 }
duke@1 1913
duke@1 1914 /**
duke@1 1915 * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
mcimadamore@563 1916 * third parameter is computed directly, as follows: if all
mcimadamore@563 1917 * all bounds are interface types, the computed supertype is Object,
mcimadamore@563 1918 * otherwise the supertype is simply left null (in this case, the supertype
mcimadamore@563 1919 * is assumed to be the head of the bound list passed as second argument).
mcimadamore@563 1920 * Note that this check might cause a symbol completion. Hence, this version of
duke@1 1921 * setBounds may not be called during a classfile read.
duke@1 1922 */
duke@1 1923 public void setBounds(TypeVar t, List<Type> bounds) {
duke@1 1924 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
mcimadamore@563 1925 syms.objectType : null;
duke@1 1926 setBounds(t, bounds, supertype);
duke@1 1927 t.rank_field = -1;
duke@1 1928 }
duke@1 1929 // </editor-fold>
duke@1 1930
duke@1 1931 // <editor-fold defaultstate="collapsed" desc="getBounds">
duke@1 1932 /**
duke@1 1933 * Return list of bounds of the given type variable.
duke@1 1934 */
duke@1 1935 public List<Type> getBounds(TypeVar t) {
duke@1 1936 if (t.bound.isErroneous() || !t.bound.isCompound())
duke@1 1937 return List.of(t.bound);
duke@1 1938 else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
duke@1 1939 return interfaces(t).prepend(supertype(t));
duke@1 1940 else
duke@1 1941 // No superclass was given in bounds.
duke@1 1942 // In this case, supertype is Object, erasure is first interface.
duke@1 1943 return interfaces(t);
duke@1 1944 }
duke@1 1945 // </editor-fold>
duke@1 1946
duke@1 1947 // <editor-fold defaultstate="collapsed" desc="classBound">
duke@1 1948 /**
duke@1 1949 * If the given type is a (possibly selected) type variable,
duke@1 1950 * return the bounding class of this type, otherwise return the
duke@1 1951 * type itself.
duke@1 1952 */
duke@1 1953 public Type classBound(Type t) {
duke@1 1954 return classBound.visit(t);
duke@1 1955 }
duke@1 1956 // where
duke@1 1957 private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
duke@1 1958
duke@1 1959 public Type visitType(Type t, Void ignored) {
duke@1 1960 return t;
duke@1 1961 }
duke@1 1962
duke@1 1963 @Override
duke@1 1964 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1965 Type outer1 = classBound(t.getEnclosingType());
duke@1 1966 if (outer1 != t.getEnclosingType())
duke@1 1967 return new ClassType(outer1, t.getTypeArguments(), t.tsym);
duke@1 1968 else
duke@1 1969 return t;
duke@1 1970 }
duke@1 1971
duke@1 1972 @Override
duke@1 1973 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1974 return classBound(supertype(t));
duke@1 1975 }
duke@1 1976
duke@1 1977 @Override
duke@1 1978 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1979 return t;
duke@1 1980 }
duke@1 1981 };
duke@1 1982 // </editor-fold>
duke@1 1983
duke@1 1984 // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
duke@1 1985 /**
duke@1 1986 * Returns true iff the first signature is a <em>sub
duke@1 1987 * signature</em> of the other. This is <b>not</b> an equivalence
duke@1 1988 * relation.
duke@1 1989 *
jjh@972 1990 * @jls section 8.4.2.
duke@1 1991 * @see #overrideEquivalent(Type t, Type s)
duke@1 1992 * @param t first signature (possibly raw).
duke@1 1993 * @param s second signature (could be subjected to erasure).
duke@1 1994 * @return true if t is a sub signature of s.
duke@1 1995 */
duke@1 1996 public boolean isSubSignature(Type t, Type s) {
mcimadamore@907 1997 return isSubSignature(t, s, true);
mcimadamore@907 1998 }
mcimadamore@907 1999
mcimadamore@907 2000 public boolean isSubSignature(Type t, Type s, boolean strict) {
mcimadamore@907 2001 return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
duke@1 2002 }
duke@1 2003
duke@1 2004 /**
duke@1 2005 * Returns true iff these signatures are related by <em>override
duke@1 2006 * equivalence</em>. This is the natural extension of
duke@1 2007 * isSubSignature to an equivalence relation.
duke@1 2008 *
jjh@972 2009 * @jls section 8.4.2.
duke@1 2010 * @see #isSubSignature(Type t, Type s)
duke@1 2011 * @param t a signature (possible raw, could be subjected to
duke@1 2012 * erasure).
duke@1 2013 * @param s a signature (possible raw, could be subjected to
duke@1 2014 * erasure).
duke@1 2015 * @return true if either argument is a sub signature of the other.
duke@1 2016 */
duke@1 2017 public boolean overrideEquivalent(Type t, Type s) {
duke@1 2018 return hasSameArgs(t, s) ||
duke@1 2019 hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
duke@1 2020 }
duke@1 2021
mcimadamore@673 2022 // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
mcimadamore@673 2023 class ImplementationCache {
mcimadamore@673 2024
mcimadamore@673 2025 private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
mcimadamore@673 2026 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
mcimadamore@673 2027
mcimadamore@673 2028 class Entry {
mcimadamore@673 2029 final MethodSymbol cachedImpl;
mcimadamore@673 2030 final Filter<Symbol> implFilter;
mcimadamore@673 2031 final boolean checkResult;
mcimadamore@877 2032 final int prevMark;
mcimadamore@673 2033
mcimadamore@673 2034 public Entry(MethodSymbol cachedImpl,
mcimadamore@673 2035 Filter<Symbol> scopeFilter,
mcimadamore@877 2036 boolean checkResult,
mcimadamore@877 2037 int prevMark) {
mcimadamore@673 2038 this.cachedImpl = cachedImpl;
mcimadamore@673 2039 this.implFilter = scopeFilter;
mcimadamore@673 2040 this.checkResult = checkResult;
mcimadamore@877 2041 this.prevMark = prevMark;
mcimadamore@673 2042 }
mcimadamore@673 2043
mcimadamore@877 2044 boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
mcimadamore@673 2045 return this.implFilter == scopeFilter &&
mcimadamore@877 2046 this.checkResult == checkResult &&
mcimadamore@877 2047 this.prevMark == mark;
mcimadamore@673 2048 }
mcimadamore@341 2049 }
mcimadamore@673 2050
mcimadamore@858 2051 MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@673 2052 SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
mcimadamore@673 2053 Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
mcimadamore@673 2054 if (cache == null) {
mcimadamore@673 2055 cache = new HashMap<TypeSymbol, Entry>();
mcimadamore@673 2056 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
mcimadamore@673 2057 }
mcimadamore@673 2058 Entry e = cache.get(origin);
mcimadamore@1015 2059 CompoundScope members = membersClosure(origin.type, true);
mcimadamore@673 2060 if (e == null ||
mcimadamore@877 2061 !e.matches(implFilter, checkResult, members.getMark())) {
mcimadamore@877 2062 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
mcimadamore@877 2063 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
mcimadamore@673 2064 return impl;
mcimadamore@673 2065 }
mcimadamore@673 2066 else {
mcimadamore@673 2067 return e.cachedImpl;
mcimadamore@673 2068 }
mcimadamore@673 2069 }
mcimadamore@673 2070
mcimadamore@877 2071 private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@877 2072 for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
mcimadamore@341 2073 while (t.tag == TYPEVAR)
mcimadamore@341 2074 t = t.getUpperBound();
mcimadamore@341 2075 TypeSymbol c = t.tsym;
mcimadamore@673 2076 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
mcimadamore@341 2077 e.scope != null;
mcimadamore@780 2078 e = e.next(implFilter)) {
mcimadamore@673 2079 if (e.sym != null &&
mcimadamore@877 2080 e.sym.overrides(ms, origin, Types.this, checkResult))
mcimadamore@673 2081 return (MethodSymbol)e.sym;
mcimadamore@341 2082 }
mcimadamore@341 2083 }
mcimadamore@673 2084 return null;
mcimadamore@341 2085 }
mcimadamore@341 2086 }
mcimadamore@341 2087
mcimadamore@673 2088 private ImplementationCache implCache = new ImplementationCache();
mcimadamore@673 2089
mcimadamore@858 2090 public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@858 2091 return implCache.get(ms, origin, checkResult, implFilter);
mcimadamore@673 2092 }
mcimadamore@673 2093 // </editor-fold>
mcimadamore@673 2094
mcimadamore@858 2095 // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
mcimadamore@1015 2096 class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
mcimadamore@1015 2097
mcimadamore@1015 2098 private WeakHashMap<TypeSymbol, Entry> _map =
mcimadamore@1015 2099 new WeakHashMap<TypeSymbol, Entry>();
mcimadamore@1015 2100
mcimadamore@1015 2101 class Entry {
mcimadamore@1015 2102 final boolean skipInterfaces;
mcimadamore@1015 2103 final CompoundScope compoundScope;
mcimadamore@1015 2104
mcimadamore@1015 2105 public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
mcimadamore@1015 2106 this.skipInterfaces = skipInterfaces;
mcimadamore@1015 2107 this.compoundScope = compoundScope;
mcimadamore@1015 2108 }
mcimadamore@1015 2109
mcimadamore@1015 2110 boolean matches(boolean skipInterfaces) {
mcimadamore@1015 2111 return this.skipInterfaces == skipInterfaces;
mcimadamore@1015 2112 }
mcimadamore@1015 2113 }
mcimadamore@1015 2114
mcimadamore@1072 2115 List<TypeSymbol> seenTypes = List.nil();
mcimadamore@1072 2116
mcimadamore@1015 2117 /** members closure visitor methods **/
mcimadamore@1015 2118
mcimadamore@1015 2119 public CompoundScope visitType(Type t, Boolean skipInterface) {
mcimadamore@858 2120 return null;
mcimadamore@858 2121 }
mcimadamore@858 2122
mcimadamore@858 2123 @Override
mcimadamore@1015 2124 public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
mcimadamore@1072 2125 if (seenTypes.contains(t.tsym)) {
mcimadamore@1072 2126 //this is possible when an interface is implemented in multiple
mcimadamore@1072 2127 //superclasses, or when a classs hierarchy is circular - in such
mcimadamore@1072 2128 //cases we don't need to recurse (empty scope is returned)
mcimadamore@1072 2129 return new CompoundScope(t.tsym);
mcimadamore@1072 2130 }
mcimadamore@1072 2131 try {
mcimadamore@1072 2132 seenTypes = seenTypes.prepend(t.tsym);
mcimadamore@1072 2133 ClassSymbol csym = (ClassSymbol)t.tsym;
mcimadamore@1072 2134 Entry e = _map.get(csym);
mcimadamore@1072 2135 if (e == null || !e.matches(skipInterface)) {
mcimadamore@1072 2136 CompoundScope membersClosure = new CompoundScope(csym);
mcimadamore@1072 2137 if (!skipInterface) {
mcimadamore@1072 2138 for (Type i : interfaces(t)) {
mcimadamore@1072 2139 membersClosure.addSubScope(visit(i, skipInterface));
mcimadamore@1072 2140 }
mcimadamore@1015 2141 }
mcimadamore@1072 2142 membersClosure.addSubScope(visit(supertype(t), skipInterface));
mcimadamore@1072 2143 membersClosure.addSubScope(csym.members());
mcimadamore@1072 2144 e = new Entry(skipInterface, membersClosure);
mcimadamore@1072 2145 _map.put(csym, e);
mcimadamore@858 2146 }
mcimadamore@1072 2147 return e.compoundScope;
mcimadamore@858 2148 }
mcimadamore@1072 2149 finally {
mcimadamore@1072 2150 seenTypes = seenTypes.tail;
mcimadamore@1072 2151 }
mcimadamore@858 2152 }
mcimadamore@858 2153
mcimadamore@858 2154 @Override
mcimadamore@1015 2155 public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
mcimadamore@1015 2156 return visit(t.getUpperBound(), skipInterface);
mcimadamore@858 2157 }
mcimadamore@1015 2158 }
mcimadamore@1015 2159
mcimadamore@1015 2160 private MembersClosureCache membersCache = new MembersClosureCache();
mcimadamore@1015 2161
mcimadamore@1015 2162 public CompoundScope membersClosure(Type site, boolean skipInterface) {
mcimadamore@1015 2163 return membersCache.visit(site, skipInterface);
mcimadamore@1015 2164 }
mcimadamore@858 2165 // </editor-fold>
mcimadamore@858 2166
duke@1 2167 /**
duke@1 2168 * Does t have the same arguments as s? It is assumed that both
duke@1 2169 * types are (possibly polymorphic) method types. Monomorphic
duke@1 2170 * method types "have the same arguments", if their argument lists
duke@1 2171 * are equal. Polymorphic method types "have the same arguments",
duke@1 2172 * if they have the same arguments after renaming all type
duke@1 2173 * variables of one to corresponding type variables in the other,
duke@1 2174 * where correspondence is by position in the type parameter list.
duke@1 2175 */
duke@1 2176 public boolean hasSameArgs(Type t, Type s) {
mcimadamore@907 2177 return hasSameArgs(t, s, true);
mcimadamore@907 2178 }
mcimadamore@907 2179
mcimadamore@907 2180 public boolean hasSameArgs(Type t, Type s, boolean strict) {
mcimadamore@907 2181 return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
mcimadamore@907 2182 }
mcimadamore@907 2183
mcimadamore@907 2184 private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
duke@1 2185 return hasSameArgs.visit(t, s);
duke@1 2186 }
duke@1 2187 // where
mcimadamore@907 2188 private class HasSameArgs extends TypeRelation {
mcimadamore@907 2189
mcimadamore@907 2190 boolean strict;
mcimadamore@907 2191
mcimadamore@907 2192 public HasSameArgs(boolean strict) {
mcimadamore@907 2193 this.strict = strict;
mcimadamore@907 2194 }
duke@1 2195
duke@1 2196 public Boolean visitType(Type t, Type s) {
duke@1 2197 throw new AssertionError();
duke@1 2198 }
duke@1 2199
duke@1 2200 @Override
duke@1 2201 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 2202 return s.tag == METHOD
duke@1 2203 && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
duke@1 2204 }
duke@1 2205
duke@1 2206 @Override
duke@1 2207 public Boolean visitForAll(ForAll t, Type s) {
duke@1 2208 if (s.tag != FORALL)
mcimadamore@907 2209 return strict ? false : visitMethodType(t.asMethodType(), s);
duke@1 2210
duke@1 2211 ForAll forAll = (ForAll)s;
duke@1 2212 return hasSameBounds(t, forAll)
duke@1 2213 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 2214 }
duke@1 2215
duke@1 2216 @Override
duke@1 2217 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 2218 return false;
duke@1 2219 }
duke@1 2220 };
mcimadamore@907 2221
mcimadamore@907 2222 TypeRelation hasSameArgs_strict = new HasSameArgs(true);
mcimadamore@907 2223 TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
mcimadamore@907 2224
duke@1 2225 // </editor-fold>
duke@1 2226
duke@1 2227 // <editor-fold defaultstate="collapsed" desc="subst">
duke@1 2228 public List<Type> subst(List<Type> ts,
duke@1 2229 List<Type> from,
duke@1 2230 List<Type> to) {
duke@1 2231 return new Subst(from, to).subst(ts);
duke@1 2232 }
duke@1 2233
duke@1 2234 /**
duke@1 2235 * Substitute all occurrences of a type in `from' with the
duke@1 2236 * corresponding type in `to' in 't'. Match lists `from' and `to'
duke@1 2237 * from the right: If lists have different length, discard leading
duke@1 2238 * elements of the longer list.
duke@1 2239 */
duke@1 2240 public Type subst(Type t, List<Type> from, List<Type> to) {
duke@1 2241 return new Subst(from, to).subst(t);
duke@1 2242 }
duke@1 2243
duke@1 2244 private class Subst extends UnaryVisitor<Type> {
duke@1 2245 List<Type> from;
duke@1 2246 List<Type> to;
duke@1 2247
duke@1 2248 public Subst(List<Type> from, List<Type> to) {
duke@1 2249 int fromLength = from.length();
duke@1 2250 int toLength = to.length();
duke@1 2251 while (fromLength > toLength) {
duke@1 2252 fromLength--;
duke@1 2253 from = from.tail;
duke@1 2254 }
duke@1 2255 while (fromLength < toLength) {
duke@1 2256 toLength--;
duke@1 2257 to = to.tail;
duke@1 2258 }
duke@1 2259 this.from = from;
duke@1 2260 this.to = to;
duke@1 2261 }
duke@1 2262
duke@1 2263 Type subst(Type t) {
duke@1 2264 if (from.tail == null)
duke@1 2265 return t;
duke@1 2266 else
duke@1 2267 return visit(t);
mcimadamore@238 2268 }
duke@1 2269
duke@1 2270 List<Type> subst(List<Type> ts) {
duke@1 2271 if (from.tail == null)
duke@1 2272 return ts;
duke@1 2273 boolean wild = false;
duke@1 2274 if (ts.nonEmpty() && from.nonEmpty()) {
duke@1 2275 Type head1 = subst(ts.head);
duke@1 2276 List<Type> tail1 = subst(ts.tail);
duke@1 2277 if (head1 != ts.head || tail1 != ts.tail)
duke@1 2278 return tail1.prepend(head1);
duke@1 2279 }
duke@1 2280 return ts;
duke@1 2281 }
duke@1 2282
duke@1 2283 public Type visitType(Type t, Void ignored) {
duke@1 2284 return t;
duke@1 2285 }
duke@1 2286
duke@1 2287 @Override
duke@1 2288 public Type visitMethodType(MethodType t, Void ignored) {
duke@1 2289 List<Type> argtypes = subst(t.argtypes);
duke@1 2290 Type restype = subst(t.restype);
duke@1 2291 List<Type> thrown = subst(t.thrown);
duke@1 2292 if (argtypes == t.argtypes &&
duke@1 2293 restype == t.restype &&
duke@1 2294 thrown == t.thrown)
duke@1 2295 return t;
duke@1 2296 else
duke@1 2297 return new MethodType(argtypes, restype, thrown, t.tsym);
duke@1 2298 }
duke@1 2299
duke@1 2300 @Override
duke@1 2301 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2302 for (List<Type> from = this.from, to = this.to;
duke@1 2303 from.nonEmpty();
duke@1 2304 from = from.tail, to = to.tail) {
duke@1 2305 if (t == from.head) {
duke@1 2306 return to.head.withTypeVar(t);
duke@1 2307 }
duke@1 2308 }
duke@1 2309 return t;
duke@1 2310 }
duke@1 2311
duke@1 2312 @Override
duke@1 2313 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2314 if (!t.isCompound()) {
duke@1 2315 List<Type> typarams = t.getTypeArguments();
duke@1 2316 List<Type> typarams1 = subst(typarams);
duke@1 2317 Type outer = t.getEnclosingType();
duke@1 2318 Type outer1 = subst(outer);
duke@1 2319 if (typarams1 == typarams && outer1 == outer)
duke@1 2320 return t;
duke@1 2321 else
duke@1 2322 return new ClassType(outer1, typarams1, t.tsym);
duke@1 2323 } else {
duke@1 2324 Type st = subst(supertype(t));
duke@1 2325 List<Type> is = upperBounds(subst(interfaces(t)));
duke@1 2326 if (st == supertype(t) && is == interfaces(t))
duke@1 2327 return t;
duke@1 2328 else
duke@1 2329 return makeCompoundType(is.prepend(st));
duke@1 2330 }
duke@1 2331 }
duke@1 2332
duke@1 2333 @Override
duke@1 2334 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 2335 Type bound = t.type;
duke@1 2336 if (t.kind != BoundKind.UNBOUND)
duke@1 2337 bound = subst(bound);
duke@1 2338 if (bound == t.type) {
duke@1 2339 return t;
duke@1 2340 } else {
duke@1 2341 if (t.isExtendsBound() && bound.isExtendsBound())
duke@1 2342 bound = upperBound(bound);
duke@1 2343 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
duke@1 2344 }
duke@1 2345 }
duke@1 2346
duke@1 2347 @Override
duke@1 2348 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 2349 Type elemtype = subst(t.elemtype);
duke@1 2350 if (elemtype == t.elemtype)
duke@1 2351 return t;
duke@1 2352 else
mcimadamore@996 2353 return new ArrayType(upperBound(elemtype), t.tsym);
duke@1 2354 }
duke@1 2355
duke@1 2356 @Override
duke@1 2357 public Type visitForAll(ForAll t, Void ignored) {
mcimadamore@846 2358 if (Type.containsAny(to, t.tvars)) {
mcimadamore@846 2359 //perform alpha-renaming of free-variables in 't'
mcimadamore@846 2360 //if 'to' types contain variables that are free in 't'
mcimadamore@846 2361 List<Type> freevars = newInstances(t.tvars);
mcimadamore@846 2362 t = new ForAll(freevars,
mcimadamore@846 2363 Types.this.subst(t.qtype, t.tvars, freevars));
mcimadamore@846 2364 }
duke@1 2365 List<Type> tvars1 = substBounds(t.tvars, from, to);
duke@1 2366 Type qtype1 = subst(t.qtype);
duke@1 2367 if (tvars1 == t.tvars && qtype1 == t.qtype) {
duke@1 2368 return t;
duke@1 2369 } else if (tvars1 == t.tvars) {
duke@1 2370 return new ForAll(tvars1, qtype1);
duke@1 2371 } else {
duke@1 2372 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
duke@1 2373 }
duke@1 2374 }
duke@1 2375
duke@1 2376 @Override
duke@1 2377 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2378 return t;
duke@1 2379 }
duke@1 2380 }
duke@1 2381
duke@1 2382 public List<Type> substBounds(List<Type> tvars,
duke@1 2383 List<Type> from,
duke@1 2384 List<Type> to) {
duke@1 2385 if (tvars.isEmpty())
duke@1 2386 return tvars;
duke@1 2387 ListBuffer<Type> newBoundsBuf = lb();
duke@1 2388 boolean changed = false;
duke@1 2389 // calculate new bounds
duke@1 2390 for (Type t : tvars) {
duke@1 2391 TypeVar tv = (TypeVar) t;
duke@1 2392 Type bound = subst(tv.bound, from, to);
duke@1 2393 if (bound != tv.bound)
duke@1 2394 changed = true;
duke@1 2395 newBoundsBuf.append(bound);
duke@1 2396 }
duke@1 2397 if (!changed)
duke@1 2398 return tvars;
duke@1 2399 ListBuffer<Type> newTvars = lb();
duke@1 2400 // create new type variables without bounds
duke@1 2401 for (Type t : tvars) {
duke@1 2402 newTvars.append(new TypeVar(t.tsym, null, syms.botType));
duke@1 2403 }
duke@1 2404 // the new bounds should use the new type variables in place
duke@1 2405 // of the old
duke@1 2406 List<Type> newBounds = newBoundsBuf.toList();
duke@1 2407 from = tvars;
duke@1 2408 to = newTvars.toList();
duke@1 2409 for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
duke@1 2410 newBounds.head = subst(newBounds.head, from, to);
duke@1 2411 }
duke@1 2412 newBounds = newBoundsBuf.toList();
duke@1 2413 // set the bounds of new type variables to the new bounds
duke@1 2414 for (Type t : newTvars.toList()) {
duke@1 2415 TypeVar tv = (TypeVar) t;
duke@1 2416 tv.bound = newBounds.head;
duke@1 2417 newBounds = newBounds.tail;
duke@1 2418 }
duke@1 2419 return newTvars.toList();
duke@1 2420 }
duke@1 2421
duke@1 2422 public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
duke@1 2423 Type bound1 = subst(t.bound, from, to);
duke@1 2424 if (bound1 == t.bound)
duke@1 2425 return t;
mcimadamore@212 2426 else {
mcimadamore@212 2427 // create new type variable without bounds
mcimadamore@212 2428 TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
mcimadamore@212 2429 // the new bound should use the new type variable in place
mcimadamore@212 2430 // of the old
mcimadamore@212 2431 tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
mcimadamore@212 2432 return tv;
mcimadamore@212 2433 }
duke@1 2434 }
duke@1 2435 // </editor-fold>
duke@1 2436
duke@1 2437 // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
duke@1 2438 /**
duke@1 2439 * Does t have the same bounds for quantified variables as s?
duke@1 2440 */
duke@1 2441 boolean hasSameBounds(ForAll t, ForAll s) {
duke@1 2442 List<Type> l1 = t.tvars;
duke@1 2443 List<Type> l2 = s.tvars;
duke@1 2444 while (l1.nonEmpty() && l2.nonEmpty() &&
duke@1 2445 isSameType(l1.head.getUpperBound(),
duke@1 2446 subst(l2.head.getUpperBound(),
duke@1 2447 s.tvars,
duke@1 2448 t.tvars))) {
duke@1 2449 l1 = l1.tail;
duke@1 2450 l2 = l2.tail;
duke@1 2451 }
duke@1 2452 return l1.isEmpty() && l2.isEmpty();
duke@1 2453 }
duke@1 2454 // </editor-fold>
duke@1 2455
duke@1 2456 // <editor-fold defaultstate="collapsed" desc="newInstances">
duke@1 2457 /** Create new vector of type variables from list of variables
duke@1 2458 * changing all recursive bounds from old to new list.
duke@1 2459 */
duke@1 2460 public List<Type> newInstances(List<Type> tvars) {
duke@1 2461 List<Type> tvars1 = Type.map(tvars, newInstanceFun);
duke@1 2462 for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
duke@1 2463 TypeVar tv = (TypeVar) l.head;
duke@1 2464 tv.bound = subst(tv.bound, tvars, tvars1);
duke@1 2465 }
duke@1 2466 return tvars1;
duke@1 2467 }
duke@1 2468 static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
duke@1 2469 public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
duke@1 2470 };
duke@1 2471 // </editor-fold>
duke@1 2472
dlsmith@880 2473 public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
dlsmith@880 2474 return original.accept(methodWithParameters, newParams);
dlsmith@880 2475 }
dlsmith@880 2476 // where
dlsmith@880 2477 private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
dlsmith@880 2478 public Type visitType(Type t, List<Type> newParams) {
dlsmith@880 2479 throw new IllegalArgumentException("Not a method type: " + t);
dlsmith@880 2480 }
dlsmith@880 2481 public Type visitMethodType(MethodType t, List<Type> newParams) {
dlsmith@880 2482 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
dlsmith@880 2483 }
dlsmith@880 2484 public Type visitForAll(ForAll t, List<Type> newParams) {
dlsmith@880 2485 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
dlsmith@880 2486 }
dlsmith@880 2487 };
dlsmith@880 2488
dlsmith@880 2489 public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
dlsmith@880 2490 return original.accept(methodWithThrown, newThrown);
dlsmith@880 2491 }
dlsmith@880 2492 // where
dlsmith@880 2493 private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
dlsmith@880 2494 public Type visitType(Type t, List<Type> newThrown) {
dlsmith@880 2495 throw new IllegalArgumentException("Not a method type: " + t);
dlsmith@880 2496 }
dlsmith@880 2497 public Type visitMethodType(MethodType t, List<Type> newThrown) {
dlsmith@880 2498 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
dlsmith@880 2499 }
dlsmith@880 2500 public Type visitForAll(ForAll t, List<Type> newThrown) {
dlsmith@880 2501 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
dlsmith@880 2502 }
dlsmith@880 2503 };
dlsmith@880 2504
mcimadamore@950 2505 public Type createMethodTypeWithReturn(Type original, Type newReturn) {
mcimadamore@950 2506 return original.accept(methodWithReturn, newReturn);
mcimadamore@950 2507 }
mcimadamore@950 2508 // where
mcimadamore@950 2509 private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
mcimadamore@950 2510 public Type visitType(Type t, Type newReturn) {
mcimadamore@950 2511 throw new IllegalArgumentException("Not a method type: " + t);
mcimadamore@950 2512 }
mcimadamore@950 2513 public Type visitMethodType(MethodType t, Type newReturn) {
mcimadamore@950 2514 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
mcimadamore@950 2515 }
mcimadamore@950 2516 public Type visitForAll(ForAll t, Type newReturn) {
mcimadamore@950 2517 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
mcimadamore@950 2518 }
mcimadamore@950 2519 };
mcimadamore@950 2520
jjg@110 2521 // <editor-fold defaultstate="collapsed" desc="createErrorType">
jjg@110 2522 public Type createErrorType(Type originalType) {
jjg@110 2523 return new ErrorType(originalType, syms.errSymbol);
jjg@110 2524 }
jjg@110 2525
jjg@110 2526 public Type createErrorType(ClassSymbol c, Type originalType) {
jjg@110 2527 return new ErrorType(c, originalType);
jjg@110 2528 }
jjg@110 2529
jjg@110 2530 public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
jjg@110 2531 return new ErrorType(name, container, originalType);
jjg@110 2532 }
jjg@110 2533 // </editor-fold>
jjg@110 2534
duke@1 2535 // <editor-fold defaultstate="collapsed" desc="rank">
duke@1 2536 /**
duke@1 2537 * The rank of a class is the length of the longest path between
duke@1 2538 * the class and java.lang.Object in the class inheritance
duke@1 2539 * graph. Undefined for all but reference types.
duke@1 2540 */
duke@1 2541 public int rank(Type t) {
duke@1 2542 switch(t.tag) {
duke@1 2543 case CLASS: {
duke@1 2544 ClassType cls = (ClassType)t;
duke@1 2545 if (cls.rank_field < 0) {
duke@1 2546 Name fullname = cls.tsym.getQualifiedName();
jjg@113 2547 if (fullname == names.java_lang_Object)
duke@1 2548 cls.rank_field = 0;
duke@1 2549 else {
duke@1 2550 int r = rank(supertype(cls));
duke@1 2551 for (List<Type> l = interfaces(cls);
duke@1 2552 l.nonEmpty();
duke@1 2553 l = l.tail) {
duke@1 2554 if (rank(l.head) > r)
duke@1 2555 r = rank(l.head);
duke@1 2556 }
duke@1 2557 cls.rank_field = r + 1;
duke@1 2558 }
duke@1 2559 }
duke@1 2560 return cls.rank_field;
duke@1 2561 }
duke@1 2562 case TYPEVAR: {
duke@1 2563 TypeVar tvar = (TypeVar)t;
duke@1 2564 if (tvar.rank_field < 0) {
duke@1 2565 int r = rank(supertype(tvar));
duke@1 2566 for (List<Type> l = interfaces(tvar);
duke@1 2567 l.nonEmpty();
duke@1 2568 l = l.tail) {
duke@1 2569 if (rank(l.head) > r) r = rank(l.head);
duke@1 2570 }
duke@1 2571 tvar.rank_field = r + 1;
duke@1 2572 }
duke@1 2573 return tvar.rank_field;
duke@1 2574 }
duke@1 2575 case ERROR:
duke@1 2576 return 0;
duke@1 2577 default:
duke@1 2578 throw new AssertionError();
duke@1 2579 }
duke@1 2580 }
duke@1 2581 // </editor-fold>
duke@1 2582
mcimadamore@121 2583 /**
mcimadamore@238 2584 * Helper method for generating a string representation of a given type
mcimadamore@121 2585 * accordingly to a given locale
mcimadamore@121 2586 */
mcimadamore@121 2587 public String toString(Type t, Locale locale) {
mcimadamore@238 2588 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2589 }
mcimadamore@121 2590
mcimadamore@121 2591 /**
mcimadamore@238 2592 * Helper method for generating a string representation of a given type
mcimadamore@121 2593 * accordingly to a given locale
mcimadamore@121 2594 */
mcimadamore@121 2595 public String toString(Symbol t, Locale locale) {
mcimadamore@238 2596 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2597 }
mcimadamore@121 2598
duke@1 2599 // <editor-fold defaultstate="collapsed" desc="toString">
duke@1 2600 /**
duke@1 2601 * This toString is slightly more descriptive than the one on Type.
mcimadamore@121 2602 *
mcimadamore@121 2603 * @deprecated Types.toString(Type t, Locale l) provides better support
mcimadamore@121 2604 * for localization
duke@1 2605 */
mcimadamore@121 2606 @Deprecated
duke@1 2607 public String toString(Type t) {
duke@1 2608 if (t.tag == FORALL) {
duke@1 2609 ForAll forAll = (ForAll)t;
duke@1 2610 return typaramsString(forAll.tvars) + forAll.qtype;
duke@1 2611 }
duke@1 2612 return "" + t;
duke@1 2613 }
duke@1 2614 // where
duke@1 2615 private String typaramsString(List<Type> tvars) {
jjg@904 2616 StringBuilder s = new StringBuilder();
duke@1 2617 s.append('<');
duke@1 2618 boolean first = true;
duke@1 2619 for (Type t : tvars) {
duke@1 2620 if (!first) s.append(", ");
duke@1 2621 first = false;
duke@1 2622 appendTyparamString(((TypeVar)t), s);
duke@1 2623 }
duke@1 2624 s.append('>');
duke@1 2625 return s.toString();
duke@1 2626 }
jjg@904 2627 private void appendTyparamString(TypeVar t, StringBuilder buf) {
duke@1 2628 buf.append(t);
duke@1 2629 if (t.bound == null ||
duke@1 2630 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
duke@1 2631 return;
duke@1 2632 buf.append(" extends "); // Java syntax; no need for i18n
duke@1 2633 Type bound = t.bound;
duke@1 2634 if (!bound.isCompound()) {
duke@1 2635 buf.append(bound);
duke@1 2636 } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
duke@1 2637 buf.append(supertype(t));
duke@1 2638 for (Type intf : interfaces(t)) {
duke@1 2639 buf.append('&');
duke@1 2640 buf.append(intf);
duke@1 2641 }
duke@1 2642 } else {
duke@1 2643 // No superclass was given in bounds.
duke@1 2644 // In this case, supertype is Object, erasure is first interface.
duke@1 2645 boolean first = true;
duke@1 2646 for (Type intf : interfaces(t)) {
duke@1 2647 if (!first) buf.append('&');
duke@1 2648 first = false;
duke@1 2649 buf.append(intf);
duke@1 2650 }
duke@1 2651 }
duke@1 2652 }
duke@1 2653 // </editor-fold>
duke@1 2654
duke@1 2655 // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
duke@1 2656 /**
duke@1 2657 * A cache for closures.
duke@1 2658 *
duke@1 2659 * <p>A closure is a list of all the supertypes and interfaces of
duke@1 2660 * a class or interface type, ordered by ClassSymbol.precedes
duke@1 2661 * (that is, subclasses come first, arbitrary but fixed
duke@1 2662 * otherwise).
duke@1 2663 */
duke@1 2664 private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
duke@1 2665
duke@1 2666 /**
duke@1 2667 * Returns the closure of a class or interface type.
duke@1 2668 */
duke@1 2669 public List<Type> closure(Type t) {
duke@1 2670 List<Type> cl = closureCache.get(t);
duke@1 2671 if (cl == null) {
duke@1 2672 Type st = supertype(t);
duke@1 2673 if (!t.isCompound()) {
duke@1 2674 if (st.tag == CLASS) {
duke@1 2675 cl = insert(closure(st), t);
duke@1 2676 } else if (st.tag == TYPEVAR) {
duke@1 2677 cl = closure(st).prepend(t);
duke@1 2678 } else {
duke@1 2679 cl = List.of(t);
duke@1 2680 }
duke@1 2681 } else {
duke@1 2682 cl = closure(supertype(t));
duke@1 2683 }
duke@1 2684 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
duke@1 2685 cl = union(cl, closure(l.head));
duke@1 2686 closureCache.put(t, cl);
duke@1 2687 }
duke@1 2688 return cl;
duke@1 2689 }
duke@1 2690
duke@1 2691 /**
duke@1 2692 * Insert a type in a closure
duke@1 2693 */
duke@1 2694 public List<Type> insert(List<Type> cl, Type t) {
duke@1 2695 if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
duke@1 2696 return cl.prepend(t);
duke@1 2697 } else if (cl.head.tsym.precedes(t.tsym, this)) {
duke@1 2698 return insert(cl.tail, t).prepend(cl.head);
duke@1 2699 } else {
duke@1 2700 return cl;
duke@1 2701 }
duke@1 2702 }
duke@1 2703
duke@1 2704 /**
duke@1 2705 * Form the union of two closures
duke@1 2706 */
duke@1 2707 public List<Type> union(List<Type> cl1, List<Type> cl2) {
duke@1 2708 if (cl1.isEmpty()) {
duke@1 2709 return cl2;
duke@1 2710 } else if (cl2.isEmpty()) {
duke@1 2711 return cl1;
duke@1 2712 } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
duke@1 2713 return union(cl1.tail, cl2).prepend(cl1.head);
duke@1 2714 } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
duke@1 2715 return union(cl1, cl2.tail).prepend(cl2.head);
duke@1 2716 } else {
duke@1 2717 return union(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2718 }
duke@1 2719 }
duke@1 2720
duke@1 2721 /**
duke@1 2722 * Intersect two closures
duke@1 2723 */
duke@1 2724 public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
duke@1 2725 if (cl1 == cl2)
duke@1 2726 return cl1;
duke@1 2727 if (cl1.isEmpty() || cl2.isEmpty())
duke@1 2728 return List.nil();
duke@1 2729 if (cl1.head.tsym.precedes(cl2.head.tsym, this))
duke@1 2730 return intersect(cl1.tail, cl2);
duke@1 2731 if (cl2.head.tsym.precedes(cl1.head.tsym, this))
duke@1 2732 return intersect(cl1, cl2.tail);
duke@1 2733 if (isSameType(cl1.head, cl2.head))
duke@1 2734 return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2735 if (cl1.head.tsym == cl2.head.tsym &&
duke@1 2736 cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
duke@1 2737 if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
duke@1 2738 Type merge = merge(cl1.head,cl2.head);
duke@1 2739 return intersect(cl1.tail, cl2.tail).prepend(merge);
duke@1 2740 }
duke@1 2741 if (cl1.head.isRaw() || cl2.head.isRaw())
duke@1 2742 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
duke@1 2743 }
duke@1 2744 return intersect(cl1.tail, cl2.tail);
duke@1 2745 }
duke@1 2746 // where
duke@1 2747 class TypePair {
duke@1 2748 final Type t1;
duke@1 2749 final Type t2;
duke@1 2750 TypePair(Type t1, Type t2) {
duke@1 2751 this.t1 = t1;
duke@1 2752 this.t2 = t2;
duke@1 2753 }
duke@1 2754 @Override
duke@1 2755 public int hashCode() {
jjg@507 2756 return 127 * Types.hashCode(t1) + Types.hashCode(t2);
duke@1 2757 }
duke@1 2758 @Override
duke@1 2759 public boolean equals(Object obj) {
duke@1 2760 if (!(obj instanceof TypePair))
duke@1 2761 return false;
duke@1 2762 TypePair typePair = (TypePair)obj;
duke@1 2763 return isSameType(t1, typePair.t1)
duke@1 2764 && isSameType(t2, typePair.t2);
duke@1 2765 }
duke@1 2766 }
duke@1 2767 Set<TypePair> mergeCache = new HashSet<TypePair>();
duke@1 2768 private Type merge(Type c1, Type c2) {
duke@1 2769 ClassType class1 = (ClassType) c1;
duke@1 2770 List<Type> act1 = class1.getTypeArguments();
duke@1 2771 ClassType class2 = (ClassType) c2;
duke@1 2772 List<Type> act2 = class2.getTypeArguments();
duke@1 2773 ListBuffer<Type> merged = new ListBuffer<Type>();
duke@1 2774 List<Type> typarams = class1.tsym.type.getTypeArguments();
duke@1 2775
duke@1 2776 while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
duke@1 2777 if (containsType(act1.head, act2.head)) {
duke@1 2778 merged.append(act1.head);
duke@1 2779 } else if (containsType(act2.head, act1.head)) {
duke@1 2780 merged.append(act2.head);
duke@1 2781 } else {
duke@1 2782 TypePair pair = new TypePair(c1, c2);
duke@1 2783 Type m;
duke@1 2784 if (mergeCache.add(pair)) {
duke@1 2785 m = new WildcardType(lub(upperBound(act1.head),
duke@1 2786 upperBound(act2.head)),
duke@1 2787 BoundKind.EXTENDS,
duke@1 2788 syms.boundClass);
duke@1 2789 mergeCache.remove(pair);
duke@1 2790 } else {
duke@1 2791 m = new WildcardType(syms.objectType,
duke@1 2792 BoundKind.UNBOUND,
duke@1 2793 syms.boundClass);
duke@1 2794 }
duke@1 2795 merged.append(m.withTypeVar(typarams.head));
duke@1 2796 }
duke@1 2797 act1 = act1.tail;
duke@1 2798 act2 = act2.tail;
duke@1 2799 typarams = typarams.tail;
duke@1 2800 }
jjg@816 2801 Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
duke@1 2802 return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
duke@1 2803 }
duke@1 2804
duke@1 2805 /**
duke@1 2806 * Return the minimum type of a closure, a compound type if no
duke@1 2807 * unique minimum exists.
duke@1 2808 */
duke@1 2809 private Type compoundMin(List<Type> cl) {
duke@1 2810 if (cl.isEmpty()) return syms.objectType;
duke@1 2811 List<Type> compound = closureMin(cl);
duke@1 2812 if (compound.isEmpty())
duke@1 2813 return null;
duke@1 2814 else if (compound.tail.isEmpty())
duke@1 2815 return compound.head;
duke@1 2816 else
duke@1 2817 return makeCompoundType(compound);
duke@1 2818 }
duke@1 2819
duke@1 2820 /**
duke@1 2821 * Return the minimum types of a closure, suitable for computing
duke@1 2822 * compoundMin or glb.
duke@1 2823 */
duke@1 2824 private List<Type> closureMin(List<Type> cl) {
duke@1 2825 ListBuffer<Type> classes = lb();
duke@1 2826 ListBuffer<Type> interfaces = lb();
duke@1 2827 while (!cl.isEmpty()) {
duke@1 2828 Type current = cl.head;
duke@1 2829 if (current.isInterface())
duke@1 2830 interfaces.append(current);
duke@1 2831 else
duke@1 2832 classes.append(current);
duke@1 2833 ListBuffer<Type> candidates = lb();
duke@1 2834 for (Type t : cl.tail) {
duke@1 2835 if (!isSubtypeNoCapture(current, t))
duke@1 2836 candidates.append(t);
duke@1 2837 }
duke@1 2838 cl = candidates.toList();
duke@1 2839 }
duke@1 2840 return classes.appendList(interfaces).toList();
duke@1 2841 }
duke@1 2842
duke@1 2843 /**
duke@1 2844 * Return the least upper bound of pair of types. if the lub does
duke@1 2845 * not exist return null.
duke@1 2846 */
duke@1 2847 public Type lub(Type t1, Type t2) {
duke@1 2848 return lub(List.of(t1, t2));
duke@1 2849 }
duke@1 2850
duke@1 2851 /**
duke@1 2852 * Return the least upper bound (lub) of set of types. If the lub
duke@1 2853 * does not exist return the type of null (bottom).
duke@1 2854 */
duke@1 2855 public Type lub(List<Type> ts) {
duke@1 2856 final int ARRAY_BOUND = 1;
duke@1 2857 final int CLASS_BOUND = 2;
duke@1 2858 int boundkind = 0;
duke@1 2859 for (Type t : ts) {
duke@1 2860 switch (t.tag) {
duke@1 2861 case CLASS:
duke@1 2862 boundkind |= CLASS_BOUND;
duke@1 2863 break;
duke@1 2864 case ARRAY:
duke@1 2865 boundkind |= ARRAY_BOUND;
duke@1 2866 break;
duke@1 2867 case TYPEVAR:
duke@1 2868 do {
duke@1 2869 t = t.getUpperBound();
duke@1 2870 } while (t.tag == TYPEVAR);
duke@1 2871 if (t.tag == ARRAY) {
duke@1 2872 boundkind |= ARRAY_BOUND;
duke@1 2873 } else {
duke@1 2874 boundkind |= CLASS_BOUND;
duke@1 2875 }
duke@1 2876 break;
duke@1 2877 default:
duke@1 2878 if (t.isPrimitive())
mcimadamore@5 2879 return syms.errType;
duke@1 2880 }
duke@1 2881 }
duke@1 2882 switch (boundkind) {
duke@1 2883 case 0:
duke@1 2884 return syms.botType;
duke@1 2885
duke@1 2886 case ARRAY_BOUND:
duke@1 2887 // calculate lub(A[], B[])
duke@1 2888 List<Type> elements = Type.map(ts, elemTypeFun);
duke@1 2889 for (Type t : elements) {
duke@1 2890 if (t.isPrimitive()) {
duke@1 2891 // if a primitive type is found, then return
duke@1 2892 // arraySuperType unless all the types are the
duke@1 2893 // same
duke@1 2894 Type first = ts.head;
duke@1 2895 for (Type s : ts.tail) {
duke@1 2896 if (!isSameType(first, s)) {
duke@1 2897 // lub(int[], B[]) is Cloneable & Serializable
duke@1 2898 return arraySuperType();
duke@1 2899 }
duke@1 2900 }
duke@1 2901 // all the array types are the same, return one
duke@1 2902 // lub(int[], int[]) is int[]
duke@1 2903 return first;
duke@1 2904 }
duke@1 2905 }
duke@1 2906 // lub(A[], B[]) is lub(A, B)[]
duke@1 2907 return new ArrayType(lub(elements), syms.arrayClass);
duke@1 2908
duke@1 2909 case CLASS_BOUND:
duke@1 2910 // calculate lub(A, B)
duke@1 2911 while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
duke@1 2912 ts = ts.tail;
jjg@816 2913 Assert.check(!ts.isEmpty());
mcimadamore@896 2914 //step 1 - compute erased candidate set (EC)
mcimadamore@896 2915 List<Type> cl = erasedSupertypes(ts.head);
duke@1 2916 for (Type t : ts.tail) {
duke@1 2917 if (t.tag == CLASS || t.tag == TYPEVAR)
mcimadamore@896 2918 cl = intersect(cl, erasedSupertypes(t));
duke@1 2919 }
mcimadamore@896 2920 //step 2 - compute minimal erased candidate set (MEC)
mcimadamore@896 2921 List<Type> mec = closureMin(cl);
mcimadamore@896 2922 //step 3 - for each element G in MEC, compute lci(Inv(G))
mcimadamore@896 2923 List<Type> candidates = List.nil();
mcimadamore@896 2924 for (Type erasedSupertype : mec) {
mcimadamore@896 2925 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
mcimadamore@896 2926 for (Type t : ts) {
mcimadamore@896 2927 lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
mcimadamore@896 2928 }
mcimadamore@896 2929 candidates = candidates.appendList(lci);
mcimadamore@896 2930 }
mcimadamore@896 2931 //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
mcimadamore@896 2932 //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
mcimadamore@896 2933 return compoundMin(candidates);
duke@1 2934
duke@1 2935 default:
duke@1 2936 // calculate lub(A, B[])
duke@1 2937 List<Type> classes = List.of(arraySuperType());
duke@1 2938 for (Type t : ts) {
duke@1 2939 if (t.tag != ARRAY) // Filter out any arrays
duke@1 2940 classes = classes.prepend(t);
duke@1 2941 }
duke@1 2942 // lub(A, B[]) is lub(A, arraySuperType)
duke@1 2943 return lub(classes);
duke@1 2944 }
duke@1 2945 }
duke@1 2946 // where
mcimadamore@896 2947 List<Type> erasedSupertypes(Type t) {
mcimadamore@896 2948 ListBuffer<Type> buf = lb();
mcimadamore@896 2949 for (Type sup : closure(t)) {
mcimadamore@896 2950 if (sup.tag == TYPEVAR) {
mcimadamore@896 2951 buf.append(sup);
mcimadamore@896 2952 } else {
mcimadamore@896 2953 buf.append(erasure(sup));
mcimadamore@896 2954 }
mcimadamore@896 2955 }
mcimadamore@896 2956 return buf.toList();
mcimadamore@896 2957 }
mcimadamore@896 2958
duke@1 2959 private Type arraySuperType = null;
duke@1 2960 private Type arraySuperType() {
duke@1 2961 // initialized lazily to avoid problems during compiler startup
duke@1 2962 if (arraySuperType == null) {
duke@1 2963 synchronized (this) {
duke@1 2964 if (arraySuperType == null) {
duke@1 2965 // JLS 10.8: all arrays implement Cloneable and Serializable.
duke@1 2966 arraySuperType = makeCompoundType(List.of(syms.serializableType,
duke@1 2967 syms.cloneableType),
duke@1 2968 syms.objectType);
duke@1 2969 }
duke@1 2970 }
duke@1 2971 }
duke@1 2972 return arraySuperType;
duke@1 2973 }
duke@1 2974 // </editor-fold>
duke@1 2975
duke@1 2976 // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
mcimadamore@210 2977 public Type glb(List<Type> ts) {
mcimadamore@210 2978 Type t1 = ts.head;
mcimadamore@210 2979 for (Type t2 : ts.tail) {
mcimadamore@210 2980 if (t1.isErroneous())
mcimadamore@210 2981 return t1;
mcimadamore@210 2982 t1 = glb(t1, t2);
mcimadamore@210 2983 }
mcimadamore@210 2984 return t1;
mcimadamore@210 2985 }
mcimadamore@210 2986 //where
duke@1 2987 public Type glb(Type t, Type s) {
duke@1 2988 if (s == null)
duke@1 2989 return t;
mcimadamore@753 2990 else if (t.isPrimitive() || s.isPrimitive())
mcimadamore@753 2991 return syms.errType;
duke@1 2992 else if (isSubtypeNoCapture(t, s))
duke@1 2993 return t;
duke@1 2994 else if (isSubtypeNoCapture(s, t))
duke@1 2995 return s;
duke@1 2996
duke@1 2997 List<Type> closure = union(closure(t), closure(s));
duke@1 2998 List<Type> bounds = closureMin(closure);
duke@1 2999
duke@1 3000 if (bounds.isEmpty()) { // length == 0
duke@1 3001 return syms.objectType;
duke@1 3002 } else if (bounds.tail.isEmpty()) { // length == 1
duke@1 3003 return bounds.head;
duke@1 3004 } else { // length > 1
duke@1 3005 int classCount = 0;
duke@1 3006 for (Type bound : bounds)
duke@1 3007 if (!bound.isInterface())
duke@1 3008 classCount++;
duke@1 3009 if (classCount > 1)
jjg@110 3010 return createErrorType(t);
duke@1 3011 }
duke@1 3012 return makeCompoundType(bounds);
duke@1 3013 }
duke@1 3014 // </editor-fold>
duke@1 3015
duke@1 3016 // <editor-fold defaultstate="collapsed" desc="hashCode">
duke@1 3017 /**
duke@1 3018 * Compute a hash code on a type.
duke@1 3019 */
duke@1 3020 public static int hashCode(Type t) {
duke@1 3021 return hashCode.visit(t);
duke@1 3022 }
duke@1 3023 // where
duke@1 3024 private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
duke@1 3025
duke@1 3026 public Integer visitType(Type t, Void ignored) {
duke@1 3027 return t.tag;
duke@1 3028 }
duke@1 3029
duke@1 3030 @Override
duke@1 3031 public Integer visitClassType(ClassType t, Void ignored) {
duke@1 3032 int result = visit(t.getEnclosingType());
duke@1 3033 result *= 127;
duke@1 3034 result += t.tsym.flatName().hashCode();
duke@1 3035 for (Type s : t.getTypeArguments()) {
duke@1 3036 result *= 127;
duke@1 3037 result += visit(s);
duke@1 3038 }
duke@1 3039 return result;
duke@1 3040 }
duke@1 3041
duke@1 3042 @Override
duke@1 3043 public Integer visitWildcardType(WildcardType t, Void ignored) {
duke@1 3044 int result = t.kind.hashCode();
duke@1 3045 if (t.type != null) {
duke@1 3046 result *= 127;
duke@1 3047 result += visit(t.type);
duke@1 3048 }
duke@1 3049 return result;
duke@1 3050 }
duke@1 3051
duke@1 3052 @Override
duke@1 3053 public Integer visitArrayType(ArrayType t, Void ignored) {
duke@1 3054 return visit(t.elemtype) + 12;
duke@1 3055 }
duke@1 3056
duke@1 3057 @Override
duke@1 3058 public Integer visitTypeVar(TypeVar t, Void ignored) {
duke@1 3059 return System.identityHashCode(t.tsym);
duke@1 3060 }
duke@1 3061
duke@1 3062 @Override
duke@1 3063 public Integer visitUndetVar(UndetVar t, Void ignored) {
duke@1 3064 return System.identityHashCode(t);
duke@1 3065 }
duke@1 3066
duke@1 3067 @Override
duke@1 3068 public Integer visitErrorType(ErrorType t, Void ignored) {
duke@1 3069 return 0;
duke@1 3070 }
duke@1 3071 };
duke@1 3072 // </editor-fold>
duke@1 3073
duke@1 3074 // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
duke@1 3075 /**
duke@1 3076 * Does t have a result that is a subtype of the result type of s,
duke@1 3077 * suitable for covariant returns? It is assumed that both types
duke@1 3078 * are (possibly polymorphic) method types. Monomorphic method
duke@1 3079 * types are handled in the obvious way. Polymorphic method types
duke@1 3080 * require renaming all type variables of one to corresponding
duke@1 3081 * type variables in the other, where correspondence is by
duke@1 3082 * position in the type parameter list. */
duke@1 3083 public boolean resultSubtype(Type t, Type s, Warner warner) {
duke@1 3084 List<Type> tvars = t.getTypeArguments();
duke@1 3085 List<Type> svars = s.getTypeArguments();
duke@1 3086 Type tres = t.getReturnType();
duke@1 3087 Type sres = subst(s.getReturnType(), svars, tvars);
duke@1 3088 return covariantReturnType(tres, sres, warner);
duke@1 3089 }
duke@1 3090
duke@1 3091 /**
duke@1 3092 * Return-Type-Substitutable.
jjh@972 3093 * @jls section 8.4.5
duke@1 3094 */
duke@1 3095 public boolean returnTypeSubstitutable(Type r1, Type r2) {
duke@1 3096 if (hasSameArgs(r1, r2))
tbell@202 3097 return resultSubtype(r1, r2, Warner.noWarnings);
duke@1 3098 else
duke@1 3099 return covariantReturnType(r1.getReturnType(),
tbell@202 3100 erasure(r2.getReturnType()),
tbell@202 3101 Warner.noWarnings);
tbell@202 3102 }
tbell@202 3103
tbell@202 3104 public boolean returnTypeSubstitutable(Type r1,
tbell@202 3105 Type r2, Type r2res,
tbell@202 3106 Warner warner) {
tbell@202 3107 if (isSameType(r1.getReturnType(), r2res))
tbell@202 3108 return true;
tbell@202 3109 if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
tbell@202 3110 return false;
tbell@202 3111
tbell@202 3112 if (hasSameArgs(r1, r2))
tbell@202 3113 return covariantReturnType(r1.getReturnType(), r2res, warner);
jjg@984 3114 if (!allowCovariantReturns)
tbell@202 3115 return false;
tbell@202 3116 if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
tbell@202 3117 return true;
tbell@202 3118 if (!isSubtype(r1.getReturnType(), erasure(r2res)))
tbell@202 3119 return false;
mcimadamore@795 3120 warner.warn(LintCategory.UNCHECKED);
tbell@202 3121 return true;
duke@1 3122 }
duke@1 3123
duke@1 3124 /**
duke@1 3125 * Is t an appropriate return type in an overrider for a
duke@1 3126 * method that returns s?
duke@1 3127 */
duke@1 3128 public boolean covariantReturnType(Type t, Type s, Warner warner) {
tbell@202 3129 return
tbell@202 3130 isSameType(t, s) ||
jjg@984 3131 allowCovariantReturns &&
duke@1 3132 !t.isPrimitive() &&
tbell@202 3133 !s.isPrimitive() &&
tbell@202 3134 isAssignable(t, s, warner);
duke@1 3135 }
duke@1 3136 // </editor-fold>
duke@1 3137
duke@1 3138 // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
duke@1 3139 /**
duke@1 3140 * Return the class that boxes the given primitive.
duke@1 3141 */
duke@1 3142 public ClassSymbol boxedClass(Type t) {
duke@1 3143 return reader.enterClass(syms.boxedName[t.tag]);
duke@1 3144 }
duke@1 3145
duke@1 3146 /**
mcimadamore@753 3147 * Return the boxed type if 't' is primitive, otherwise return 't' itself.
mcimadamore@753 3148 */
mcimadamore@753 3149 public Type boxedTypeOrType(Type t) {
mcimadamore@753 3150 return t.isPrimitive() ?
mcimadamore@753 3151 boxedClass(t).type :
mcimadamore@753 3152 t;
mcimadamore@753 3153 }
mcimadamore@753 3154
mcimadamore@753 3155 /**
duke@1 3156 * Return the primitive type corresponding to a boxed type.
duke@1 3157 */
duke@1 3158 public Type unboxedType(Type t) {
duke@1 3159 if (allowBoxing) {
duke@1 3160 for (int i=0; i<syms.boxedName.length; i++) {
duke@1 3161 Name box = syms.boxedName[i];
duke@1 3162 if (box != null &&
duke@1 3163 asSuper(t, reader.enterClass(box)) != null)
duke@1 3164 return syms.typeOfTag[i];
duke@1 3165 }
duke@1 3166 }
duke@1 3167 return Type.noType;
duke@1 3168 }
duke@1 3169 // </editor-fold>
duke@1 3170
duke@1 3171 // <editor-fold defaultstate="collapsed" desc="Capture conversion">
duke@1 3172 /*
jjh@972 3173 * JLS 5.1.10 Capture Conversion:
duke@1 3174 *
duke@1 3175 * Let G name a generic type declaration with n formal type
duke@1 3176 * parameters A1 ... An with corresponding bounds U1 ... Un. There
duke@1 3177 * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
duke@1 3178 * where, for 1 <= i <= n:
duke@1 3179 *
duke@1 3180 * + If Ti is a wildcard type argument (4.5.1) of the form ? then
duke@1 3181 * Si is a fresh type variable whose upper bound is
duke@1 3182 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
duke@1 3183 * type.
duke@1 3184 *
duke@1 3185 * + If Ti is a wildcard type argument of the form ? extends Bi,
duke@1 3186 * then Si is a fresh type variable whose upper bound is
duke@1 3187 * glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
duke@1 3188 * the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
duke@1 3189 * a compile-time error if for any two classes (not interfaces)
duke@1 3190 * Vi and Vj,Vi is not a subclass of Vj or vice versa.
duke@1 3191 *
duke@1 3192 * + If Ti is a wildcard type argument of the form ? super Bi,
duke@1 3193 * then Si is a fresh type variable whose upper bound is
duke@1 3194 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
duke@1 3195 *
duke@1 3196 * + Otherwise, Si = Ti.
duke@1 3197 *
duke@1 3198 * Capture conversion on any type other than a parameterized type
duke@1 3199 * (4.5) acts as an identity conversion (5.1.1). Capture
duke@1 3200 * conversions never require a special action at run time and
duke@1 3201 * therefore never throw an exception at run time.
duke@1 3202 *
duke@1 3203 * Capture conversion is not applied recursively.
duke@1 3204 */
duke@1 3205 /**
jjh@972 3206 * Capture conversion as specified by the JLS.
duke@1 3207 */
mcimadamore@299 3208
mcimadamore@299 3209 public List<Type> capture(List<Type> ts) {
mcimadamore@299 3210 List<Type> buf = List.nil();
mcimadamore@299 3211 for (Type t : ts) {
mcimadamore@299 3212 buf = buf.prepend(capture(t));
mcimadamore@299 3213 }
mcimadamore@299 3214 return buf.reverse();
mcimadamore@299 3215 }
duke@1 3216 public Type capture(Type t) {
duke@1 3217 if (t.tag != CLASS)
duke@1 3218 return t;
mcimadamore@637 3219 if (t.getEnclosingType() != Type.noType) {
mcimadamore@637 3220 Type capturedEncl = capture(t.getEnclosingType());
mcimadamore@637 3221 if (capturedEncl != t.getEnclosingType()) {
mcimadamore@637 3222 Type type1 = memberType(capturedEncl, t.tsym);
mcimadamore@637 3223 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
mcimadamore@637 3224 }
mcimadamore@637 3225 }
duke@1 3226 ClassType cls = (ClassType)t;
duke@1 3227 if (cls.isRaw() || !cls.isParameterized())
duke@1 3228 return cls;
duke@1 3229
duke@1 3230 ClassType G = (ClassType)cls.asElement().asType();
duke@1 3231 List<Type> A = G.getTypeArguments();
duke@1 3232 List<Type> T = cls.getTypeArguments();
duke@1 3233 List<Type> S = freshTypeVariables(T);
duke@1 3234
duke@1 3235 List<Type> currentA = A;
duke@1 3236 List<Type> currentT = T;
duke@1 3237 List<Type> currentS = S;
duke@1 3238 boolean captured = false;
duke@1 3239 while (!currentA.isEmpty() &&
duke@1 3240 !currentT.isEmpty() &&
duke@1 3241 !currentS.isEmpty()) {
duke@1 3242 if (currentS.head != currentT.head) {
duke@1 3243 captured = true;
duke@1 3244 WildcardType Ti = (WildcardType)currentT.head;
duke@1 3245 Type Ui = currentA.head.getUpperBound();
duke@1 3246 CapturedType Si = (CapturedType)currentS.head;
duke@1 3247 if (Ui == null)
duke@1 3248 Ui = syms.objectType;
duke@1 3249 switch (Ti.kind) {
duke@1 3250 case UNBOUND:
duke@1 3251 Si.bound = subst(Ui, A, S);
duke@1 3252 Si.lower = syms.botType;
duke@1 3253 break;
duke@1 3254 case EXTENDS:
duke@1 3255 Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
duke@1 3256 Si.lower = syms.botType;
duke@1 3257 break;
duke@1 3258 case SUPER:
duke@1 3259 Si.bound = subst(Ui, A, S);
duke@1 3260 Si.lower = Ti.getSuperBound();
duke@1 3261 break;
duke@1 3262 }
duke@1 3263 if (Si.bound == Si.lower)
duke@1 3264 currentS.head = Si.bound;
duke@1 3265 }
duke@1 3266 currentA = currentA.tail;
duke@1 3267 currentT = currentT.tail;
duke@1 3268 currentS = currentS.tail;
duke@1 3269 }
duke@1 3270 if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
duke@1 3271 return erasure(t); // some "rare" type involved
duke@1 3272
duke@1 3273 if (captured)
duke@1 3274 return new ClassType(cls.getEnclosingType(), S, cls.tsym);
duke@1 3275 else
duke@1 3276 return t;
duke@1 3277 }
duke@1 3278 // where
mcimadamore@238 3279 public List<Type> freshTypeVariables(List<Type> types) {
duke@1 3280 ListBuffer<Type> result = lb();
duke@1 3281 for (Type t : types) {
duke@1 3282 if (t.tag == WILDCARD) {
duke@1 3283 Type bound = ((WildcardType)t).getExtendsBound();
duke@1 3284 if (bound == null)
duke@1 3285 bound = syms.objectType;
duke@1 3286 result.append(new CapturedType(capturedName,
duke@1 3287 syms.noSymbol,
duke@1 3288 bound,
duke@1 3289 syms.botType,
duke@1 3290 (WildcardType)t));
duke@1 3291 } else {
duke@1 3292 result.append(t);
duke@1 3293 }
duke@1 3294 }
duke@1 3295 return result.toList();
duke@1 3296 }
duke@1 3297 // </editor-fold>
duke@1 3298
duke@1 3299 // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
duke@1 3300 private List<Type> upperBounds(List<Type> ss) {
duke@1 3301 if (ss.isEmpty()) return ss;
duke@1 3302 Type head = upperBound(ss.head);
duke@1 3303 List<Type> tail = upperBounds(ss.tail);
duke@1 3304 if (head != ss.head || tail != ss.tail)
duke@1 3305 return tail.prepend(head);
duke@1 3306 else
duke@1 3307 return ss;
duke@1 3308 }
duke@1 3309
duke@1 3310 private boolean sideCast(Type from, Type to, Warner warn) {
duke@1 3311 // We are casting from type $from$ to type $to$, which are
duke@1 3312 // non-final unrelated types. This method
duke@1 3313 // tries to reject a cast by transferring type parameters
duke@1 3314 // from $to$ to $from$ by common superinterfaces.
duke@1 3315 boolean reverse = false;
duke@1 3316 Type target = to;
duke@1 3317 if ((to.tsym.flags() & INTERFACE) == 0) {
jjg@816 3318 Assert.check((from.tsym.flags() & INTERFACE) != 0);
duke@1 3319 reverse = true;
duke@1 3320 to = from;
duke@1 3321 from = target;
duke@1 3322 }
duke@1 3323 List<Type> commonSupers = superClosure(to, erasure(from));
duke@1 3324 boolean giveWarning = commonSupers.isEmpty();
duke@1 3325 // The arguments to the supers could be unified here to
duke@1 3326 // get a more accurate analysis
duke@1 3327 while (commonSupers.nonEmpty()) {
duke@1 3328 Type t1 = asSuper(from, commonSupers.head.tsym);
duke@1 3329 Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
duke@1 3330 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3331 return false;
duke@1 3332 giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
duke@1 3333 commonSupers = commonSupers.tail;
duke@1 3334 }
mcimadamore@187 3335 if (giveWarning && !isReifiable(reverse ? from : to))
mcimadamore@795 3336 warn.warn(LintCategory.UNCHECKED);
jjg@984 3337 if (!allowCovariantReturns)
duke@1 3338 // reject if there is a common method signature with
duke@1 3339 // incompatible return types.
duke@1 3340 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3341 return true;
duke@1 3342 }
duke@1 3343
duke@1 3344 private boolean sideCastFinal(Type from, Type to, Warner warn) {
duke@1 3345 // We are casting from type $from$ to type $to$, which are
duke@1 3346 // unrelated types one of which is final and the other of
duke@1 3347 // which is an interface. This method
duke@1 3348 // tries to reject a cast by transferring type parameters
duke@1 3349 // from the final class to the interface.
duke@1 3350 boolean reverse = false;
duke@1 3351 Type target = to;
duke@1 3352 if ((to.tsym.flags() & INTERFACE) == 0) {
jjg@816 3353 Assert.check((from.tsym.flags() & INTERFACE) != 0);
duke@1 3354 reverse = true;
duke@1 3355 to = from;
duke@1 3356 from = target;
duke@1 3357 }
jjg@816 3358 Assert.check((from.tsym.flags() & FINAL) != 0);
duke@1 3359 Type t1 = asSuper(from, to.tsym);
duke@1 3360 if (t1 == null) return false;
duke@1 3361 Type t2 = to;
duke@1 3362 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3363 return false;
jjg@984 3364 if (!allowCovariantReturns)
duke@1 3365 // reject if there is a common method signature with
duke@1 3366 // incompatible return types.
duke@1 3367 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3368 if (!isReifiable(target) &&
duke@1 3369 (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
mcimadamore@795 3370 warn.warn(LintCategory.UNCHECKED);
duke@1 3371 return true;
duke@1 3372 }
duke@1 3373
duke@1 3374 private boolean giveWarning(Type from, Type to) {
mcimadamore@235 3375 Type subFrom = asSub(from, to.tsym);
mcimadamore@235 3376 return to.isParameterized() &&
mcimadamore@235 3377 (!(isUnbounded(to) ||
mcimadamore@235 3378 isSubtype(from, to) ||
mcimadamore@736 3379 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
duke@1 3380 }
duke@1 3381
duke@1 3382 private List<Type> superClosure(Type t, Type s) {
duke@1 3383 List<Type> cl = List.nil();
duke@1 3384 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 3385 if (isSubtype(s, erasure(l.head))) {
duke@1 3386 cl = insert(cl, l.head);
duke@1 3387 } else {
duke@1 3388 cl = union(cl, superClosure(l.head, s));
duke@1 3389 }
duke@1 3390 }
duke@1 3391 return cl;
duke@1 3392 }
duke@1 3393
duke@1 3394 private boolean containsTypeEquivalent(Type t, Type s) {
duke@1 3395 return
duke@1 3396 isSameType(t, s) || // shortcut
duke@1 3397 containsType(t, s) && containsType(s, t);
duke@1 3398 }
duke@1 3399
mcimadamore@138 3400 // <editor-fold defaultstate="collapsed" desc="adapt">
duke@1 3401 /**
duke@1 3402 * Adapt a type by computing a substitution which maps a source
duke@1 3403 * type to a target type.
duke@1 3404 *
duke@1 3405 * @param source the source type
duke@1 3406 * @param target the target type
duke@1 3407 * @param from the type variables of the computed substitution
duke@1 3408 * @param to the types of the computed substitution.
duke@1 3409 */
duke@1 3410 public void adapt(Type source,
duke@1 3411 Type target,
duke@1 3412 ListBuffer<Type> from,
duke@1 3413 ListBuffer<Type> to) throws AdaptFailure {
mcimadamore@138 3414 new Adapter(from, to).adapt(source, target);
mcimadamore@138 3415 }
mcimadamore@138 3416
mcimadamore@138 3417 class Adapter extends SimpleVisitor<Void, Type> {
mcimadamore@138 3418
mcimadamore@138 3419 ListBuffer<Type> from;
mcimadamore@138 3420 ListBuffer<Type> to;
mcimadamore@138 3421 Map<Symbol,Type> mapping;
mcimadamore@138 3422
mcimadamore@138 3423 Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
mcimadamore@138 3424 this.from = from;
mcimadamore@138 3425 this.to = to;
mcimadamore@138 3426 mapping = new HashMap<Symbol,Type>();
duke@1 3427 }
mcimadamore@138 3428
mcimadamore@138 3429 public void adapt(Type source, Type target) throws AdaptFailure {
mcimadamore@138 3430 visit(source, target);
mcimadamore@138 3431 List<Type> fromList = from.toList();
mcimadamore@138 3432 List<Type> toList = to.toList();
mcimadamore@138 3433 while (!fromList.isEmpty()) {
mcimadamore@138 3434 Type val = mapping.get(fromList.head.tsym);
mcimadamore@138 3435 if (toList.head != val)
mcimadamore@138 3436 toList.head = val;
mcimadamore@138 3437 fromList = fromList.tail;
mcimadamore@138 3438 toList = toList.tail;
mcimadamore@138 3439 }
mcimadamore@138 3440 }
mcimadamore@138 3441
mcimadamore@138 3442 @Override
mcimadamore@138 3443 public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
mcimadamore@138 3444 if (target.tag == CLASS)
mcimadamore@138 3445 adaptRecursive(source.allparams(), target.allparams());
mcimadamore@138 3446 return null;
mcimadamore@138 3447 }
mcimadamore@138 3448
mcimadamore@138 3449 @Override
mcimadamore@138 3450 public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
mcimadamore@138 3451 if (target.tag == ARRAY)
mcimadamore@138 3452 adaptRecursive(elemtype(source), elemtype(target));
mcimadamore@138 3453 return null;
mcimadamore@138 3454 }
mcimadamore@138 3455
mcimadamore@138 3456 @Override
mcimadamore@138 3457 public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
mcimadamore@138 3458 if (source.isExtendsBound())
mcimadamore@138 3459 adaptRecursive(upperBound(source), upperBound(target));
mcimadamore@138 3460 else if (source.isSuperBound())
mcimadamore@138 3461 adaptRecursive(lowerBound(source), lowerBound(target));
mcimadamore@138 3462 return null;
mcimadamore@138 3463 }
mcimadamore@138 3464
mcimadamore@138 3465 @Override
mcimadamore@138 3466 public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
mcimadamore@138 3467 // Check to see if there is
mcimadamore@138 3468 // already a mapping for $source$, in which case
mcimadamore@138 3469 // the old mapping will be merged with the new
mcimadamore@138 3470 Type val = mapping.get(source.tsym);
mcimadamore@138 3471 if (val != null) {
mcimadamore@138 3472 if (val.isSuperBound() && target.isSuperBound()) {
mcimadamore@138 3473 val = isSubtype(lowerBound(val), lowerBound(target))
mcimadamore@138 3474 ? target : val;
mcimadamore@138 3475 } else if (val.isExtendsBound() && target.isExtendsBound()) {
mcimadamore@138 3476 val = isSubtype(upperBound(val), upperBound(target))
mcimadamore@138 3477 ? val : target;
mcimadamore@138 3478 } else if (!isSameType(val, target)) {
mcimadamore@138 3479 throw new AdaptFailure();
duke@1 3480 }
mcimadamore@138 3481 } else {
mcimadamore@138 3482 val = target;
mcimadamore@138 3483 from.append(source);
mcimadamore@138 3484 to.append(target);
mcimadamore@138 3485 }
mcimadamore@138 3486 mapping.put(source.tsym, val);
mcimadamore@138 3487 return null;
mcimadamore@138 3488 }
mcimadamore@138 3489
mcimadamore@138 3490 @Override
mcimadamore@138 3491 public Void visitType(Type source, Type target) {
mcimadamore@138 3492 return null;
mcimadamore@138 3493 }
mcimadamore@138 3494
mcimadamore@138 3495 private Set<TypePair> cache = new HashSet<TypePair>();
mcimadamore@138 3496
mcimadamore@138 3497 private void adaptRecursive(Type source, Type target) {
mcimadamore@138 3498 TypePair pair = new TypePair(source, target);
mcimadamore@138 3499 if (cache.add(pair)) {
mcimadamore@138 3500 try {
mcimadamore@138 3501 visit(source, target);
mcimadamore@138 3502 } finally {
mcimadamore@138 3503 cache.remove(pair);
duke@1 3504 }
duke@1 3505 }
duke@1 3506 }
mcimadamore@138 3507
mcimadamore@138 3508 private void adaptRecursive(List<Type> source, List<Type> target) {
mcimadamore@138 3509 if (source.length() == target.length()) {
mcimadamore@138 3510 while (source.nonEmpty()) {
mcimadamore@138 3511 adaptRecursive(source.head, target.head);
mcimadamore@138 3512 source = source.tail;
mcimadamore@138 3513 target = target.tail;
mcimadamore@138 3514 }
duke@1 3515 }
duke@1 3516 }
duke@1 3517 }
duke@1 3518
mcimadamore@138 3519 public static class AdaptFailure extends RuntimeException {
mcimadamore@138 3520 static final long serialVersionUID = -7490231548272701566L;
mcimadamore@138 3521 }
mcimadamore@138 3522
duke@1 3523 private void adaptSelf(Type t,
duke@1 3524 ListBuffer<Type> from,
duke@1 3525 ListBuffer<Type> to) {
duke@1 3526 try {
duke@1 3527 //if (t.tsym.type != t)
duke@1 3528 adapt(t.tsym.type, t, from, to);
duke@1 3529 } catch (AdaptFailure ex) {
duke@1 3530 // Adapt should never fail calculating a mapping from
duke@1 3531 // t.tsym.type to t as there can be no merge problem.
duke@1 3532 throw new AssertionError(ex);
duke@1 3533 }
duke@1 3534 }
mcimadamore@138 3535 // </editor-fold>
duke@1 3536
duke@1 3537 /**
duke@1 3538 * Rewrite all type variables (universal quantifiers) in the given
duke@1 3539 * type to wildcards (existential quantifiers). This is used to
duke@1 3540 * determine if a cast is allowed. For example, if high is true
duke@1 3541 * and {@code T <: Number}, then {@code List<T>} is rewritten to
duke@1 3542 * {@code List<? extends Number>}. Since {@code List<Integer> <:
duke@1 3543 * List<? extends Number>} a {@code List<T>} can be cast to {@code
duke@1 3544 * List<Integer>} with a warning.
duke@1 3545 * @param t a type
duke@1 3546 * @param high if true return an upper bound; otherwise a lower
duke@1 3547 * bound
duke@1 3548 * @param rewriteTypeVars only rewrite captured wildcards if false;
duke@1 3549 * otherwise rewrite all type variables
duke@1 3550 * @return the type rewritten with wildcards (existential
duke@1 3551 * quantifiers) only
duke@1 3552 */
duke@1 3553 private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
mcimadamore@640 3554 return new Rewriter(high, rewriteTypeVars).visit(t);
mcimadamore@157 3555 }
mcimadamore@157 3556
mcimadamore@157 3557 class Rewriter extends UnaryVisitor<Type> {
mcimadamore@157 3558
mcimadamore@157 3559 boolean high;
mcimadamore@157 3560 boolean rewriteTypeVars;
mcimadamore@157 3561
mcimadamore@157 3562 Rewriter(boolean high, boolean rewriteTypeVars) {
mcimadamore@157 3563 this.high = high;
mcimadamore@157 3564 this.rewriteTypeVars = rewriteTypeVars;
mcimadamore@157 3565 }
mcimadamore@157 3566
mcimadamore@640 3567 @Override
mcimadamore@640 3568 public Type visitClassType(ClassType t, Void s) {
mcimadamore@157 3569 ListBuffer<Type> rewritten = new ListBuffer<Type>();
mcimadamore@157 3570 boolean changed = false;
mcimadamore@640 3571 for (Type arg : t.allparams()) {
mcimadamore@157 3572 Type bound = visit(arg);
mcimadamore@157 3573 if (arg != bound) {
mcimadamore@157 3574 changed = true;
mcimadamore@157 3575 }
mcimadamore@157 3576 rewritten.append(bound);
duke@1 3577 }
mcimadamore@157 3578 if (changed)
mcimadamore@640 3579 return subst(t.tsym.type,
mcimadamore@640 3580 t.tsym.type.allparams(),
mcimadamore@640 3581 rewritten.toList());
mcimadamore@157 3582 else
mcimadamore@157 3583 return t;
duke@1 3584 }
mcimadamore@157 3585
mcimadamore@157 3586 public Type visitType(Type t, Void s) {
mcimadamore@157 3587 return high ? upperBound(t) : lowerBound(t);
mcimadamore@157 3588 }
mcimadamore@157 3589
mcimadamore@157 3590 @Override
mcimadamore@157 3591 public Type visitCapturedType(CapturedType t, Void s) {
mcimadamore@1177 3592 Type w_bound = t.wildcard.type;
mcimadamore@1177 3593 Type bound = w_bound.contains(t) ?
mcimadamore@1177 3594 erasure(w_bound) :
mcimadamore@1177 3595 visit(w_bound);
mcimadamore@1177 3596 return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
mcimadamore@157 3597 }
mcimadamore@157 3598
mcimadamore@157 3599 @Override
mcimadamore@157 3600 public Type visitTypeVar(TypeVar t, Void s) {
mcimadamore@640 3601 if (rewriteTypeVars) {
mcimadamore@1177 3602 Type bound = t.bound.contains(t) ?
mcimadamore@779 3603 erasure(t.bound) :
mcimadamore@1177 3604 visit(t.bound);
mcimadamore@1177 3605 return rewriteAsWildcardType(bound, t, EXTENDS);
mcimadamore@1177 3606 } else {
mcimadamore@1177 3607 return t;
mcimadamore@640 3608 }
mcimadamore@157 3609 }
mcimadamore@157 3610
mcimadamore@157 3611 @Override
mcimadamore@157 3612 public Type visitWildcardType(WildcardType t, Void s) {
mcimadamore@1177 3613 Type bound2 = visit(t.type);
mcimadamore@1177 3614 return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
mcimadamore@640 3615 }
mcimadamore@640 3616
mcimadamore@1177 3617 private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
mcimadamore@1177 3618 switch (bk) {
mcimadamore@1177 3619 case EXTENDS: return high ?
mcimadamore@1177 3620 makeExtendsWildcard(B(bound), formal) :
mcimadamore@1177 3621 makeExtendsWildcard(syms.objectType, formal);
mcimadamore@1177 3622 case SUPER: return high ?
mcimadamore@1177 3623 makeSuperWildcard(syms.botType, formal) :
mcimadamore@1177 3624 makeSuperWildcard(B(bound), formal);
mcimadamore@1177 3625 case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
mcimadamore@1177 3626 default:
mcimadamore@1177 3627 Assert.error("Invalid bound kind " + bk);
mcimadamore@1177 3628 return null;
mcimadamore@1177 3629 }
mcimadamore@640 3630 }
mcimadamore@640 3631
mcimadamore@640 3632 Type B(Type t) {
mcimadamore@640 3633 while (t.tag == WILDCARD) {
mcimadamore@640 3634 WildcardType w = (WildcardType)t;
mcimadamore@640 3635 t = high ?
mcimadamore@640 3636 w.getExtendsBound() :
mcimadamore@640 3637 w.getSuperBound();
mcimadamore@640 3638 if (t == null) {
mcimadamore@640 3639 t = high ? syms.objectType : syms.botType;
mcimadamore@640 3640 }
mcimadamore@640 3641 }
mcimadamore@640 3642 return t;
mcimadamore@157 3643 }
duke@1 3644 }
duke@1 3645
mcimadamore@640 3646
duke@1 3647 /**
duke@1 3648 * Create a wildcard with the given upper (extends) bound; create
duke@1 3649 * an unbounded wildcard if bound is Object.
duke@1 3650 *
duke@1 3651 * @param bound the upper bound
duke@1 3652 * @param formal the formal type parameter that will be
duke@1 3653 * substituted by the wildcard
duke@1 3654 */
duke@1 3655 private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
duke@1 3656 if (bound == syms.objectType) {
duke@1 3657 return new WildcardType(syms.objectType,
duke@1 3658 BoundKind.UNBOUND,
duke@1 3659 syms.boundClass,
duke@1 3660 formal);
duke@1 3661 } else {
duke@1 3662 return new WildcardType(bound,
duke@1 3663 BoundKind.EXTENDS,
duke@1 3664 syms.boundClass,
duke@1 3665 formal);
duke@1 3666 }
duke@1 3667 }
duke@1 3668
duke@1 3669 /**
duke@1 3670 * Create a wildcard with the given lower (super) bound; create an
duke@1 3671 * unbounded wildcard if bound is bottom (type of {@code null}).
duke@1 3672 *
duke@1 3673 * @param bound the lower bound
duke@1 3674 * @param formal the formal type parameter that will be
duke@1 3675 * substituted by the wildcard
duke@1 3676 */
duke@1 3677 private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
duke@1 3678 if (bound.tag == BOT) {
duke@1 3679 return new WildcardType(syms.objectType,
duke@1 3680 BoundKind.UNBOUND,
duke@1 3681 syms.boundClass,
duke@1 3682 formal);
duke@1 3683 } else {
duke@1 3684 return new WildcardType(bound,
duke@1 3685 BoundKind.SUPER,
duke@1 3686 syms.boundClass,
duke@1 3687 formal);
duke@1 3688 }
duke@1 3689 }
duke@1 3690
duke@1 3691 /**
duke@1 3692 * A wrapper for a type that allows use in sets.
duke@1 3693 */
duke@1 3694 class SingletonType {
duke@1 3695 final Type t;
duke@1 3696 SingletonType(Type t) {
duke@1 3697 this.t = t;
duke@1 3698 }
duke@1 3699 public int hashCode() {
jjg@507 3700 return Types.hashCode(t);
duke@1 3701 }
duke@1 3702 public boolean equals(Object obj) {
duke@1 3703 return (obj instanceof SingletonType) &&
duke@1 3704 isSameType(t, ((SingletonType)obj).t);
duke@1 3705 }
duke@1 3706 public String toString() {
duke@1 3707 return t.toString();
duke@1 3708 }
duke@1 3709 }
duke@1 3710 // </editor-fold>
duke@1 3711
duke@1 3712 // <editor-fold defaultstate="collapsed" desc="Visitors">
duke@1 3713 /**
duke@1 3714 * A default visitor for types. All visitor methods except
duke@1 3715 * visitType are implemented by delegating to visitType. Concrete
duke@1 3716 * subclasses must provide an implementation of visitType and can
duke@1 3717 * override other methods as needed.
duke@1 3718 *
duke@1 3719 * @param <R> the return type of the operation implemented by this
duke@1 3720 * visitor; use Void if no return type is needed.
duke@1 3721 * @param <S> the type of the second argument (the first being the
duke@1 3722 * type itself) of the operation implemented by this visitor; use
duke@1 3723 * Void if a second argument is not needed.
duke@1 3724 */
duke@1 3725 public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
duke@1 3726 final public R visit(Type t, S s) { return t.accept(this, s); }
duke@1 3727 public R visitClassType(ClassType t, S s) { return visitType(t, s); }
duke@1 3728 public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
duke@1 3729 public R visitArrayType(ArrayType t, S s) { return visitType(t, s); }
duke@1 3730 public R visitMethodType(MethodType t, S s) { return visitType(t, s); }
duke@1 3731 public R visitPackageType(PackageType t, S s) { return visitType(t, s); }
duke@1 3732 public R visitTypeVar(TypeVar t, S s) { return visitType(t, s); }
duke@1 3733 public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
duke@1 3734 public R visitForAll(ForAll t, S s) { return visitType(t, s); }
duke@1 3735 public R visitUndetVar(UndetVar t, S s) { return visitType(t, s); }
duke@1 3736 public R visitErrorType(ErrorType t, S s) { return visitType(t, s); }
duke@1 3737 }
duke@1 3738
duke@1 3739 /**
mcimadamore@121 3740 * A default visitor for symbols. All visitor methods except
mcimadamore@121 3741 * visitSymbol are implemented by delegating to visitSymbol. Concrete
mcimadamore@121 3742 * subclasses must provide an implementation of visitSymbol and can
mcimadamore@121 3743 * override other methods as needed.
mcimadamore@121 3744 *
mcimadamore@121 3745 * @param <R> the return type of the operation implemented by this
mcimadamore@121 3746 * visitor; use Void if no return type is needed.
mcimadamore@121 3747 * @param <S> the type of the second argument (the first being the
mcimadamore@121 3748 * symbol itself) of the operation implemented by this visitor; use
mcimadamore@121 3749 * Void if a second argument is not needed.
mcimadamore@121 3750 */
mcimadamore@121 3751 public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
mcimadamore@121 3752 final public R visit(Symbol s, S arg) { return s.accept(this, arg); }
mcimadamore@121 3753 public R visitClassSymbol(ClassSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3754 public R visitMethodSymbol(MethodSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3755 public R visitOperatorSymbol(OperatorSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3756 public R visitPackageSymbol(PackageSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3757 public R visitTypeSymbol(TypeSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3758 public R visitVarSymbol(VarSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3759 }
mcimadamore@121 3760
mcimadamore@121 3761 /**
duke@1 3762 * A <em>simple</em> visitor for types. This visitor is simple as
duke@1 3763 * captured wildcards, for-all types (generic methods), and
duke@1 3764 * undetermined type variables (part of inference) are hidden.
duke@1 3765 * Captured wildcards are hidden by treating them as type
duke@1 3766 * variables and the rest are hidden by visiting their qtypes.
duke@1 3767 *
duke@1 3768 * @param <R> the return type of the operation implemented by this
duke@1 3769 * visitor; use Void if no return type is needed.
duke@1 3770 * @param <S> the type of the second argument (the first being the
duke@1 3771 * type itself) of the operation implemented by this visitor; use
duke@1 3772 * Void if a second argument is not needed.
duke@1 3773 */
duke@1 3774 public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
duke@1 3775 @Override
duke@1 3776 public R visitCapturedType(CapturedType t, S s) {
duke@1 3777 return visitTypeVar(t, s);
duke@1 3778 }
duke@1 3779 @Override
duke@1 3780 public R visitForAll(ForAll t, S s) {
duke@1 3781 return visit(t.qtype, s);
duke@1 3782 }
duke@1 3783 @Override
duke@1 3784 public R visitUndetVar(UndetVar t, S s) {
duke@1 3785 return visit(t.qtype, s);
duke@1 3786 }
duke@1 3787 }
duke@1 3788
duke@1 3789 /**
duke@1 3790 * A plain relation on types. That is a 2-ary function on the
duke@1 3791 * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
duke@1 3792 * <!-- In plain text: Type x Type -> Boolean -->
duke@1 3793 */
duke@1 3794 public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
duke@1 3795
duke@1 3796 /**
duke@1 3797 * A convenience visitor for implementing operations that only
duke@1 3798 * require one argument (the type itself), that is, unary
duke@1 3799 * operations.
duke@1 3800 *
duke@1 3801 * @param <R> the return type of the operation implemented by this
duke@1 3802 * visitor; use Void if no return type is needed.
duke@1 3803 */
duke@1 3804 public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
duke@1 3805 final public R visit(Type t) { return t.accept(this, null); }
duke@1 3806 }
duke@1 3807
duke@1 3808 /**
duke@1 3809 * A visitor for implementing a mapping from types to types. The
duke@1 3810 * default behavior of this class is to implement the identity
duke@1 3811 * mapping (mapping a type to itself). This can be overridden in
duke@1 3812 * subclasses.
duke@1 3813 *
duke@1 3814 * @param <S> the type of the second argument (the first being the
duke@1 3815 * type itself) of this mapping; use Void if a second argument is
duke@1 3816 * not needed.
duke@1 3817 */
duke@1 3818 public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
duke@1 3819 final public Type visit(Type t) { return t.accept(this, null); }
duke@1 3820 public Type visitType(Type t, S s) { return t; }
duke@1 3821 }
duke@1 3822 // </editor-fold>
jjg@657 3823
jjg@657 3824
jjg@657 3825 // <editor-fold defaultstate="collapsed" desc="Annotation support">
jjg@657 3826
jjg@657 3827 public RetentionPolicy getRetention(Attribute.Compound a) {
jfranck@1313 3828 return getRetention(a.type.tsym);
jfranck@1313 3829 }
jfranck@1313 3830
jfranck@1313 3831 public RetentionPolicy getRetention(Symbol sym) {
jjg@657 3832 RetentionPolicy vis = RetentionPolicy.CLASS; // the default
jfranck@1313 3833 Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
jjg@657 3834 if (c != null) {
jjg@657 3835 Attribute value = c.member(names.value);
jjg@657 3836 if (value != null && value instanceof Attribute.Enum) {
jjg@657 3837 Name levelName = ((Attribute.Enum)value).value.name;
jjg@657 3838 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
jjg@657 3839 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
jjg@657 3840 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
jjg@657 3841 else ;// /* fail soft */ throw new AssertionError(levelName);
jjg@657 3842 }
jjg@657 3843 }
jjg@657 3844 return vis;
jjg@657 3845 }
jjg@657 3846 // </editor-fold>
duke@1 3847 }

mercurial