src/share/classes/com/sun/tools/javac/code/Types.java

Thu, 09 Dec 2010 15:50:10 +0000

author
mcimadamore
date
Thu, 09 Dec 2010 15:50:10 +0000
changeset 779
5ef88773462b
parent 753
2536dedd897e
child 780
1d625fbe6c22
permissions
-rw-r--r--

7005095: Cast: compile reject sensible cast from final class to interface
Summary: a previous fix to cast conversion has made the compiler too strict w.r.t. final cast
Reviewed-by: jjg

duke@1 1 /*
ohair@554 2 * Copyright (c) 2003, 2009, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.code;
duke@1 27
mcimadamore@341 28 import java.lang.ref.SoftReference;
duke@1 29 import java.util.*;
duke@1 30
duke@1 31 import com.sun.tools.javac.util.*;
duke@1 32 import com.sun.tools.javac.util.List;
duke@1 33
duke@1 34 import com.sun.tools.javac.jvm.ClassReader;
jjg@657 35 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
duke@1 36 import com.sun.tools.javac.comp.Check;
duke@1 37
duke@1 38 import static com.sun.tools.javac.code.Type.*;
duke@1 39 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 40 import static com.sun.tools.javac.code.Symbol.*;
duke@1 41 import static com.sun.tools.javac.code.Flags.*;
duke@1 42 import static com.sun.tools.javac.code.BoundKind.*;
duke@1 43 import static com.sun.tools.javac.util.ListBuffer.lb;
duke@1 44
duke@1 45 /**
duke@1 46 * Utility class containing various operations on types.
duke@1 47 *
duke@1 48 * <p>Unless other names are more illustrative, the following naming
duke@1 49 * conventions should be observed in this file:
duke@1 50 *
duke@1 51 * <dl>
duke@1 52 * <dt>t</dt>
duke@1 53 * <dd>If the first argument to an operation is a type, it should be named t.</dd>
duke@1 54 * <dt>s</dt>
duke@1 55 * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
duke@1 56 * <dt>ts</dt>
duke@1 57 * <dd>If an operations takes a list of types, the first should be named ts.</dd>
duke@1 58 * <dt>ss</dt>
duke@1 59 * <dd>A second list of types should be named ss.</dd>
duke@1 60 * </dl>
duke@1 61 *
jjg@581 62 * <p><b>This is NOT part of any supported API.
duke@1 63 * If you write code that depends on this, you do so at your own risk.
duke@1 64 * This code and its internal interfaces are subject to change or
duke@1 65 * deletion without notice.</b>
duke@1 66 */
duke@1 67 public class Types {
duke@1 68 protected static final Context.Key<Types> typesKey =
duke@1 69 new Context.Key<Types>();
duke@1 70
duke@1 71 final Symtab syms;
mcimadamore@688 72 final Scope.ScopeCounter scopeCounter;
mcimadamore@136 73 final JavacMessages messages;
jjg@113 74 final Names names;
duke@1 75 final boolean allowBoxing;
duke@1 76 final ClassReader reader;
duke@1 77 final Source source;
duke@1 78 final Check chk;
duke@1 79 List<Warner> warnStack = List.nil();
duke@1 80 final Name capturedName;
duke@1 81
duke@1 82 // <editor-fold defaultstate="collapsed" desc="Instantiating">
duke@1 83 public static Types instance(Context context) {
duke@1 84 Types instance = context.get(typesKey);
duke@1 85 if (instance == null)
duke@1 86 instance = new Types(context);
duke@1 87 return instance;
duke@1 88 }
duke@1 89
duke@1 90 protected Types(Context context) {
duke@1 91 context.put(typesKey, this);
duke@1 92 syms = Symtab.instance(context);
mcimadamore@688 93 scopeCounter = Scope.ScopeCounter.instance(context);
jjg@113 94 names = Names.instance(context);
duke@1 95 allowBoxing = Source.instance(context).allowBoxing();
duke@1 96 reader = ClassReader.instance(context);
duke@1 97 source = Source.instance(context);
duke@1 98 chk = Check.instance(context);
duke@1 99 capturedName = names.fromString("<captured wildcard>");
mcimadamore@136 100 messages = JavacMessages.instance(context);
duke@1 101 }
duke@1 102 // </editor-fold>
duke@1 103
duke@1 104 // <editor-fold defaultstate="collapsed" desc="upperBound">
duke@1 105 /**
duke@1 106 * The "rvalue conversion".<br>
duke@1 107 * The upper bound of most types is the type
duke@1 108 * itself. Wildcards, on the other hand have upper
duke@1 109 * and lower bounds.
duke@1 110 * @param t a type
duke@1 111 * @return the upper bound of the given type
duke@1 112 */
duke@1 113 public Type upperBound(Type t) {
duke@1 114 return upperBound.visit(t);
duke@1 115 }
duke@1 116 // where
duke@1 117 private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
duke@1 118
duke@1 119 @Override
duke@1 120 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 121 if (t.isSuperBound())
duke@1 122 return t.bound == null ? syms.objectType : t.bound.bound;
duke@1 123 else
duke@1 124 return visit(t.type);
duke@1 125 }
duke@1 126
duke@1 127 @Override
duke@1 128 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 129 return visit(t.bound);
duke@1 130 }
duke@1 131 };
duke@1 132 // </editor-fold>
duke@1 133
duke@1 134 // <editor-fold defaultstate="collapsed" desc="lowerBound">
duke@1 135 /**
duke@1 136 * The "lvalue conversion".<br>
duke@1 137 * The lower bound of most types is the type
duke@1 138 * itself. Wildcards, on the other hand have upper
duke@1 139 * and lower bounds.
duke@1 140 * @param t a type
duke@1 141 * @return the lower bound of the given type
duke@1 142 */
duke@1 143 public Type lowerBound(Type t) {
duke@1 144 return lowerBound.visit(t);
duke@1 145 }
duke@1 146 // where
duke@1 147 private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
duke@1 148
duke@1 149 @Override
duke@1 150 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 151 return t.isExtendsBound() ? syms.botType : visit(t.type);
duke@1 152 }
duke@1 153
duke@1 154 @Override
duke@1 155 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 156 return visit(t.getLowerBound());
duke@1 157 }
duke@1 158 };
duke@1 159 // </editor-fold>
duke@1 160
duke@1 161 // <editor-fold defaultstate="collapsed" desc="isUnbounded">
duke@1 162 /**
duke@1 163 * Checks that all the arguments to a class are unbounded
duke@1 164 * wildcards or something else that doesn't make any restrictions
duke@1 165 * on the arguments. If a class isUnbounded, a raw super- or
duke@1 166 * subclass can be cast to it without a warning.
duke@1 167 * @param t a type
duke@1 168 * @return true iff the given type is unbounded or raw
duke@1 169 */
duke@1 170 public boolean isUnbounded(Type t) {
duke@1 171 return isUnbounded.visit(t);
duke@1 172 }
duke@1 173 // where
duke@1 174 private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
duke@1 175
duke@1 176 public Boolean visitType(Type t, Void ignored) {
duke@1 177 return true;
duke@1 178 }
duke@1 179
duke@1 180 @Override
duke@1 181 public Boolean visitClassType(ClassType t, Void ignored) {
duke@1 182 List<Type> parms = t.tsym.type.allparams();
duke@1 183 List<Type> args = t.allparams();
duke@1 184 while (parms.nonEmpty()) {
duke@1 185 WildcardType unb = new WildcardType(syms.objectType,
duke@1 186 BoundKind.UNBOUND,
duke@1 187 syms.boundClass,
duke@1 188 (TypeVar)parms.head);
duke@1 189 if (!containsType(args.head, unb))
duke@1 190 return false;
duke@1 191 parms = parms.tail;
duke@1 192 args = args.tail;
duke@1 193 }
duke@1 194 return true;
duke@1 195 }
duke@1 196 };
duke@1 197 // </editor-fold>
duke@1 198
duke@1 199 // <editor-fold defaultstate="collapsed" desc="asSub">
duke@1 200 /**
duke@1 201 * Return the least specific subtype of t that starts with symbol
duke@1 202 * sym. If none exists, return null. The least specific subtype
duke@1 203 * is determined as follows:
duke@1 204 *
duke@1 205 * <p>If there is exactly one parameterized instance of sym that is a
duke@1 206 * subtype of t, that parameterized instance is returned.<br>
duke@1 207 * Otherwise, if the plain type or raw type `sym' is a subtype of
duke@1 208 * type t, the type `sym' itself is returned. Otherwise, null is
duke@1 209 * returned.
duke@1 210 */
duke@1 211 public Type asSub(Type t, Symbol sym) {
duke@1 212 return asSub.visit(t, sym);
duke@1 213 }
duke@1 214 // where
duke@1 215 private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
duke@1 216
duke@1 217 public Type visitType(Type t, Symbol sym) {
duke@1 218 return null;
duke@1 219 }
duke@1 220
duke@1 221 @Override
duke@1 222 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 223 if (t.tsym == sym)
duke@1 224 return t;
duke@1 225 Type base = asSuper(sym.type, t.tsym);
duke@1 226 if (base == null)
duke@1 227 return null;
duke@1 228 ListBuffer<Type> from = new ListBuffer<Type>();
duke@1 229 ListBuffer<Type> to = new ListBuffer<Type>();
duke@1 230 try {
duke@1 231 adapt(base, t, from, to);
duke@1 232 } catch (AdaptFailure ex) {
duke@1 233 return null;
duke@1 234 }
duke@1 235 Type res = subst(sym.type, from.toList(), to.toList());
duke@1 236 if (!isSubtype(res, t))
duke@1 237 return null;
duke@1 238 ListBuffer<Type> openVars = new ListBuffer<Type>();
duke@1 239 for (List<Type> l = sym.type.allparams();
duke@1 240 l.nonEmpty(); l = l.tail)
duke@1 241 if (res.contains(l.head) && !t.contains(l.head))
duke@1 242 openVars.append(l.head);
duke@1 243 if (openVars.nonEmpty()) {
duke@1 244 if (t.isRaw()) {
duke@1 245 // The subtype of a raw type is raw
duke@1 246 res = erasure(res);
duke@1 247 } else {
duke@1 248 // Unbound type arguments default to ?
duke@1 249 List<Type> opens = openVars.toList();
duke@1 250 ListBuffer<Type> qs = new ListBuffer<Type>();
duke@1 251 for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
duke@1 252 qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
duke@1 253 }
duke@1 254 res = subst(res, opens, qs.toList());
duke@1 255 }
duke@1 256 }
duke@1 257 return res;
duke@1 258 }
duke@1 259
duke@1 260 @Override
duke@1 261 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 262 return t;
duke@1 263 }
duke@1 264 };
duke@1 265 // </editor-fold>
duke@1 266
duke@1 267 // <editor-fold defaultstate="collapsed" desc="isConvertible">
duke@1 268 /**
duke@1 269 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 270 * convertions to s?
duke@1 271 */
duke@1 272 public boolean isConvertible(Type t, Type s, Warner warn) {
duke@1 273 boolean tPrimitive = t.isPrimitive();
duke@1 274 boolean sPrimitive = s.isPrimitive();
duke@1 275 if (tPrimitive == sPrimitive)
duke@1 276 return isSubtypeUnchecked(t, s, warn);
duke@1 277 if (!allowBoxing) return false;
duke@1 278 return tPrimitive
duke@1 279 ? isSubtype(boxedClass(t).type, s)
duke@1 280 : isSubtype(unboxedType(t), s);
duke@1 281 }
duke@1 282
duke@1 283 /**
duke@1 284 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 285 * convertions to s?
duke@1 286 */
duke@1 287 public boolean isConvertible(Type t, Type s) {
duke@1 288 return isConvertible(t, s, Warner.noWarnings);
duke@1 289 }
duke@1 290 // </editor-fold>
duke@1 291
duke@1 292 // <editor-fold defaultstate="collapsed" desc="isSubtype">
duke@1 293 /**
duke@1 294 * Is t an unchecked subtype of s?
duke@1 295 */
duke@1 296 public boolean isSubtypeUnchecked(Type t, Type s) {
duke@1 297 return isSubtypeUnchecked(t, s, Warner.noWarnings);
duke@1 298 }
duke@1 299 /**
duke@1 300 * Is t an unchecked subtype of s?
duke@1 301 */
duke@1 302 public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
duke@1 303 if (t.tag == ARRAY && s.tag == ARRAY) {
duke@1 304 return (((ArrayType)t).elemtype.tag <= lastBaseTag)
duke@1 305 ? isSameType(elemtype(t), elemtype(s))
duke@1 306 : isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
duke@1 307 } else if (isSubtype(t, s)) {
duke@1 308 return true;
mcimadamore@41 309 }
mcimadamore@41 310 else if (t.tag == TYPEVAR) {
mcimadamore@41 311 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
mcimadamore@41 312 }
mcimadamore@93 313 else if (s.tag == UNDETVAR) {
mcimadamore@93 314 UndetVar uv = (UndetVar)s;
mcimadamore@93 315 if (uv.inst != null)
mcimadamore@93 316 return isSubtypeUnchecked(t, uv.inst, warn);
mcimadamore@93 317 }
mcimadamore@41 318 else if (!s.isRaw()) {
duke@1 319 Type t2 = asSuper(t, s.tsym);
duke@1 320 if (t2 != null && t2.isRaw()) {
duke@1 321 if (isReifiable(s))
duke@1 322 warn.silentUnchecked();
duke@1 323 else
duke@1 324 warn.warnUnchecked();
duke@1 325 return true;
duke@1 326 }
duke@1 327 }
duke@1 328 return false;
duke@1 329 }
duke@1 330
duke@1 331 /**
duke@1 332 * Is t a subtype of s?<br>
duke@1 333 * (not defined for Method and ForAll types)
duke@1 334 */
duke@1 335 final public boolean isSubtype(Type t, Type s) {
duke@1 336 return isSubtype(t, s, true);
duke@1 337 }
duke@1 338 final public boolean isSubtypeNoCapture(Type t, Type s) {
duke@1 339 return isSubtype(t, s, false);
duke@1 340 }
duke@1 341 public boolean isSubtype(Type t, Type s, boolean capture) {
duke@1 342 if (t == s)
duke@1 343 return true;
duke@1 344
duke@1 345 if (s.tag >= firstPartialTag)
duke@1 346 return isSuperType(s, t);
duke@1 347
mcimadamore@299 348 if (s.isCompound()) {
mcimadamore@299 349 for (Type s2 : interfaces(s).prepend(supertype(s))) {
mcimadamore@299 350 if (!isSubtype(t, s2, capture))
mcimadamore@299 351 return false;
mcimadamore@299 352 }
mcimadamore@299 353 return true;
mcimadamore@299 354 }
mcimadamore@299 355
duke@1 356 Type lower = lowerBound(s);
duke@1 357 if (s != lower)
duke@1 358 return isSubtype(capture ? capture(t) : t, lower, false);
duke@1 359
duke@1 360 return isSubtype.visit(capture ? capture(t) : t, s);
duke@1 361 }
duke@1 362 // where
duke@1 363 private TypeRelation isSubtype = new TypeRelation()
duke@1 364 {
duke@1 365 public Boolean visitType(Type t, Type s) {
duke@1 366 switch (t.tag) {
duke@1 367 case BYTE: case CHAR:
duke@1 368 return (t.tag == s.tag ||
duke@1 369 t.tag + 2 <= s.tag && s.tag <= DOUBLE);
duke@1 370 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
duke@1 371 return t.tag <= s.tag && s.tag <= DOUBLE;
duke@1 372 case BOOLEAN: case VOID:
duke@1 373 return t.tag == s.tag;
duke@1 374 case TYPEVAR:
duke@1 375 return isSubtypeNoCapture(t.getUpperBound(), s);
duke@1 376 case BOT:
duke@1 377 return
duke@1 378 s.tag == BOT || s.tag == CLASS ||
duke@1 379 s.tag == ARRAY || s.tag == TYPEVAR;
duke@1 380 case NONE:
duke@1 381 return false;
duke@1 382 default:
duke@1 383 throw new AssertionError("isSubtype " + t.tag);
duke@1 384 }
duke@1 385 }
duke@1 386
duke@1 387 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 388
duke@1 389 private boolean containsTypeRecursive(Type t, Type s) {
duke@1 390 TypePair pair = new TypePair(t, s);
duke@1 391 if (cache.add(pair)) {
duke@1 392 try {
duke@1 393 return containsType(t.getTypeArguments(),
duke@1 394 s.getTypeArguments());
duke@1 395 } finally {
duke@1 396 cache.remove(pair);
duke@1 397 }
duke@1 398 } else {
duke@1 399 return containsType(t.getTypeArguments(),
duke@1 400 rewriteSupers(s).getTypeArguments());
duke@1 401 }
duke@1 402 }
duke@1 403
duke@1 404 private Type rewriteSupers(Type t) {
duke@1 405 if (!t.isParameterized())
duke@1 406 return t;
duke@1 407 ListBuffer<Type> from = lb();
duke@1 408 ListBuffer<Type> to = lb();
duke@1 409 adaptSelf(t, from, to);
duke@1 410 if (from.isEmpty())
duke@1 411 return t;
duke@1 412 ListBuffer<Type> rewrite = lb();
duke@1 413 boolean changed = false;
duke@1 414 for (Type orig : to.toList()) {
duke@1 415 Type s = rewriteSupers(orig);
duke@1 416 if (s.isSuperBound() && !s.isExtendsBound()) {
duke@1 417 s = new WildcardType(syms.objectType,
duke@1 418 BoundKind.UNBOUND,
duke@1 419 syms.boundClass);
duke@1 420 changed = true;
duke@1 421 } else if (s != orig) {
duke@1 422 s = new WildcardType(upperBound(s),
duke@1 423 BoundKind.EXTENDS,
duke@1 424 syms.boundClass);
duke@1 425 changed = true;
duke@1 426 }
duke@1 427 rewrite.append(s);
duke@1 428 }
duke@1 429 if (changed)
duke@1 430 return subst(t.tsym.type, from.toList(), rewrite.toList());
duke@1 431 else
duke@1 432 return t;
duke@1 433 }
duke@1 434
duke@1 435 @Override
duke@1 436 public Boolean visitClassType(ClassType t, Type s) {
duke@1 437 Type sup = asSuper(t, s.tsym);
duke@1 438 return sup != null
duke@1 439 && sup.tsym == s.tsym
duke@1 440 // You're not allowed to write
duke@1 441 // Vector<Object> vec = new Vector<String>();
duke@1 442 // But with wildcards you can write
duke@1 443 // Vector<? extends Object> vec = new Vector<String>();
duke@1 444 // which means that subtype checking must be done
duke@1 445 // here instead of same-type checking (via containsType).
duke@1 446 && (!s.isParameterized() || containsTypeRecursive(s, sup))
duke@1 447 && isSubtypeNoCapture(sup.getEnclosingType(),
duke@1 448 s.getEnclosingType());
duke@1 449 }
duke@1 450
duke@1 451 @Override
duke@1 452 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 453 if (s.tag == ARRAY) {
duke@1 454 if (t.elemtype.tag <= lastBaseTag)
duke@1 455 return isSameType(t.elemtype, elemtype(s));
duke@1 456 else
duke@1 457 return isSubtypeNoCapture(t.elemtype, elemtype(s));
duke@1 458 }
duke@1 459
duke@1 460 if (s.tag == CLASS) {
duke@1 461 Name sname = s.tsym.getQualifiedName();
duke@1 462 return sname == names.java_lang_Object
duke@1 463 || sname == names.java_lang_Cloneable
duke@1 464 || sname == names.java_io_Serializable;
duke@1 465 }
duke@1 466
duke@1 467 return false;
duke@1 468 }
duke@1 469
duke@1 470 @Override
duke@1 471 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 472 //todo: test against origin needed? or replace with substitution?
duke@1 473 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 474 return true;
duke@1 475
duke@1 476 if (t.inst != null)
duke@1 477 return isSubtypeNoCapture(t.inst, s); // TODO: ", warn"?
duke@1 478
duke@1 479 t.hibounds = t.hibounds.prepend(s);
duke@1 480 return true;
duke@1 481 }
duke@1 482
duke@1 483 @Override
duke@1 484 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 485 return true;
duke@1 486 }
duke@1 487 };
duke@1 488
duke@1 489 /**
duke@1 490 * Is t a subtype of every type in given list `ts'?<br>
duke@1 491 * (not defined for Method and ForAll types)<br>
duke@1 492 * Allows unchecked conversions.
duke@1 493 */
duke@1 494 public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
duke@1 495 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 496 if (!isSubtypeUnchecked(t, l.head, warn))
duke@1 497 return false;
duke@1 498 return true;
duke@1 499 }
duke@1 500
duke@1 501 /**
duke@1 502 * Are corresponding elements of ts subtypes of ss? If lists are
duke@1 503 * of different length, return false.
duke@1 504 */
duke@1 505 public boolean isSubtypes(List<Type> ts, List<Type> ss) {
duke@1 506 while (ts.tail != null && ss.tail != null
duke@1 507 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 508 isSubtype(ts.head, ss.head)) {
duke@1 509 ts = ts.tail;
duke@1 510 ss = ss.tail;
duke@1 511 }
duke@1 512 return ts.tail == null && ss.tail == null;
duke@1 513 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 514 }
duke@1 515
duke@1 516 /**
duke@1 517 * Are corresponding elements of ts subtypes of ss, allowing
duke@1 518 * unchecked conversions? If lists are of different length,
duke@1 519 * return false.
duke@1 520 **/
duke@1 521 public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
duke@1 522 while (ts.tail != null && ss.tail != null
duke@1 523 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 524 isSubtypeUnchecked(ts.head, ss.head, warn)) {
duke@1 525 ts = ts.tail;
duke@1 526 ss = ss.tail;
duke@1 527 }
duke@1 528 return ts.tail == null && ss.tail == null;
duke@1 529 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 530 }
duke@1 531 // </editor-fold>
duke@1 532
duke@1 533 // <editor-fold defaultstate="collapsed" desc="isSuperType">
duke@1 534 /**
duke@1 535 * Is t a supertype of s?
duke@1 536 */
duke@1 537 public boolean isSuperType(Type t, Type s) {
duke@1 538 switch (t.tag) {
duke@1 539 case ERROR:
duke@1 540 return true;
duke@1 541 case UNDETVAR: {
duke@1 542 UndetVar undet = (UndetVar)t;
duke@1 543 if (t == s ||
duke@1 544 undet.qtype == s ||
duke@1 545 s.tag == ERROR ||
duke@1 546 s.tag == BOT) return true;
duke@1 547 if (undet.inst != null)
duke@1 548 return isSubtype(s, undet.inst);
duke@1 549 undet.lobounds = undet.lobounds.prepend(s);
duke@1 550 return true;
duke@1 551 }
duke@1 552 default:
duke@1 553 return isSubtype(s, t);
duke@1 554 }
duke@1 555 }
duke@1 556 // </editor-fold>
duke@1 557
duke@1 558 // <editor-fold defaultstate="collapsed" desc="isSameType">
duke@1 559 /**
duke@1 560 * Are corresponding elements of the lists the same type? If
duke@1 561 * lists are of different length, return false.
duke@1 562 */
duke@1 563 public boolean isSameTypes(List<Type> ts, List<Type> ss) {
duke@1 564 while (ts.tail != null && ss.tail != null
duke@1 565 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 566 isSameType(ts.head, ss.head)) {
duke@1 567 ts = ts.tail;
duke@1 568 ss = ss.tail;
duke@1 569 }
duke@1 570 return ts.tail == null && ss.tail == null;
duke@1 571 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 572 }
duke@1 573
duke@1 574 /**
duke@1 575 * Is t the same type as s?
duke@1 576 */
duke@1 577 public boolean isSameType(Type t, Type s) {
duke@1 578 return isSameType.visit(t, s);
duke@1 579 }
duke@1 580 // where
duke@1 581 private TypeRelation isSameType = new TypeRelation() {
duke@1 582
duke@1 583 public Boolean visitType(Type t, Type s) {
duke@1 584 if (t == s)
duke@1 585 return true;
duke@1 586
duke@1 587 if (s.tag >= firstPartialTag)
duke@1 588 return visit(s, t);
duke@1 589
duke@1 590 switch (t.tag) {
duke@1 591 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 592 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
duke@1 593 return t.tag == s.tag;
mcimadamore@561 594 case TYPEVAR: {
mcimadamore@561 595 if (s.tag == TYPEVAR) {
mcimadamore@561 596 //type-substitution does not preserve type-var types
mcimadamore@561 597 //check that type var symbols and bounds are indeed the same
mcimadamore@561 598 return t.tsym == s.tsym &&
mcimadamore@561 599 visit(t.getUpperBound(), s.getUpperBound());
mcimadamore@561 600 }
mcimadamore@561 601 else {
mcimadamore@561 602 //special case for s == ? super X, where upper(s) = u
mcimadamore@561 603 //check that u == t, where u has been set by Type.withTypeVar
mcimadamore@561 604 return s.isSuperBound() &&
mcimadamore@561 605 !s.isExtendsBound() &&
mcimadamore@561 606 visit(t, upperBound(s));
mcimadamore@561 607 }
mcimadamore@561 608 }
duke@1 609 default:
duke@1 610 throw new AssertionError("isSameType " + t.tag);
duke@1 611 }
duke@1 612 }
duke@1 613
duke@1 614 @Override
duke@1 615 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 616 if (s.tag >= firstPartialTag)
duke@1 617 return visit(s, t);
duke@1 618 else
duke@1 619 return false;
duke@1 620 }
duke@1 621
duke@1 622 @Override
duke@1 623 public Boolean visitClassType(ClassType t, Type s) {
duke@1 624 if (t == s)
duke@1 625 return true;
duke@1 626
duke@1 627 if (s.tag >= firstPartialTag)
duke@1 628 return visit(s, t);
duke@1 629
duke@1 630 if (s.isSuperBound() && !s.isExtendsBound())
duke@1 631 return visit(t, upperBound(s)) && visit(t, lowerBound(s));
duke@1 632
duke@1 633 if (t.isCompound() && s.isCompound()) {
duke@1 634 if (!visit(supertype(t), supertype(s)))
duke@1 635 return false;
duke@1 636
duke@1 637 HashSet<SingletonType> set = new HashSet<SingletonType>();
duke@1 638 for (Type x : interfaces(t))
duke@1 639 set.add(new SingletonType(x));
duke@1 640 for (Type x : interfaces(s)) {
duke@1 641 if (!set.remove(new SingletonType(x)))
duke@1 642 return false;
duke@1 643 }
duke@1 644 return (set.size() == 0);
duke@1 645 }
duke@1 646 return t.tsym == s.tsym
duke@1 647 && visit(t.getEnclosingType(), s.getEnclosingType())
duke@1 648 && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
duke@1 649 }
duke@1 650
duke@1 651 @Override
duke@1 652 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 653 if (t == s)
duke@1 654 return true;
duke@1 655
duke@1 656 if (s.tag >= firstPartialTag)
duke@1 657 return visit(s, t);
duke@1 658
duke@1 659 return s.tag == ARRAY
duke@1 660 && containsTypeEquivalent(t.elemtype, elemtype(s));
duke@1 661 }
duke@1 662
duke@1 663 @Override
duke@1 664 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 665 // isSameType for methods does not take thrown
duke@1 666 // exceptions into account!
duke@1 667 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
duke@1 668 }
duke@1 669
duke@1 670 @Override
duke@1 671 public Boolean visitPackageType(PackageType t, Type s) {
duke@1 672 return t == s;
duke@1 673 }
duke@1 674
duke@1 675 @Override
duke@1 676 public Boolean visitForAll(ForAll t, Type s) {
duke@1 677 if (s.tag != FORALL)
duke@1 678 return false;
duke@1 679
duke@1 680 ForAll forAll = (ForAll)s;
duke@1 681 return hasSameBounds(t, forAll)
duke@1 682 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 683 }
duke@1 684
duke@1 685 @Override
duke@1 686 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 687 if (s.tag == WILDCARD)
duke@1 688 // FIXME, this might be leftovers from before capture conversion
duke@1 689 return false;
duke@1 690
duke@1 691 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 692 return true;
duke@1 693
duke@1 694 if (t.inst != null)
duke@1 695 return visit(t.inst, s);
duke@1 696
duke@1 697 t.inst = fromUnknownFun.apply(s);
duke@1 698 for (List<Type> l = t.lobounds; l.nonEmpty(); l = l.tail) {
duke@1 699 if (!isSubtype(l.head, t.inst))
duke@1 700 return false;
duke@1 701 }
duke@1 702 for (List<Type> l = t.hibounds; l.nonEmpty(); l = l.tail) {
duke@1 703 if (!isSubtype(t.inst, l.head))
duke@1 704 return false;
duke@1 705 }
duke@1 706 return true;
duke@1 707 }
duke@1 708
duke@1 709 @Override
duke@1 710 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 711 return true;
duke@1 712 }
duke@1 713 };
duke@1 714 // </editor-fold>
duke@1 715
duke@1 716 // <editor-fold defaultstate="collapsed" desc="fromUnknownFun">
duke@1 717 /**
duke@1 718 * A mapping that turns all unknown types in this type to fresh
duke@1 719 * unknown variables.
duke@1 720 */
duke@1 721 public Mapping fromUnknownFun = new Mapping("fromUnknownFun") {
duke@1 722 public Type apply(Type t) {
duke@1 723 if (t.tag == UNKNOWN) return new UndetVar(t);
duke@1 724 else return t.map(this);
duke@1 725 }
duke@1 726 };
duke@1 727 // </editor-fold>
duke@1 728
duke@1 729 // <editor-fold defaultstate="collapsed" desc="Contains Type">
duke@1 730 public boolean containedBy(Type t, Type s) {
duke@1 731 switch (t.tag) {
duke@1 732 case UNDETVAR:
duke@1 733 if (s.tag == WILDCARD) {
duke@1 734 UndetVar undetvar = (UndetVar)t;
mcimadamore@210 735 WildcardType wt = (WildcardType)s;
mcimadamore@210 736 switch(wt.kind) {
mcimadamore@210 737 case UNBOUND: //similar to ? extends Object
mcimadamore@210 738 case EXTENDS: {
mcimadamore@210 739 Type bound = upperBound(s);
mcimadamore@210 740 // We should check the new upper bound against any of the
mcimadamore@210 741 // undetvar's lower bounds.
mcimadamore@210 742 for (Type t2 : undetvar.lobounds) {
mcimadamore@210 743 if (!isSubtype(t2, bound))
mcimadamore@210 744 return false;
mcimadamore@210 745 }
mcimadamore@210 746 undetvar.hibounds = undetvar.hibounds.prepend(bound);
mcimadamore@210 747 break;
mcimadamore@210 748 }
mcimadamore@210 749 case SUPER: {
mcimadamore@210 750 Type bound = lowerBound(s);
mcimadamore@210 751 // We should check the new lower bound against any of the
mcimadamore@210 752 // undetvar's lower bounds.
mcimadamore@210 753 for (Type t2 : undetvar.hibounds) {
mcimadamore@210 754 if (!isSubtype(bound, t2))
mcimadamore@210 755 return false;
mcimadamore@210 756 }
mcimadamore@210 757 undetvar.lobounds = undetvar.lobounds.prepend(bound);
mcimadamore@210 758 break;
mcimadamore@210 759 }
mcimadamore@162 760 }
duke@1 761 return true;
duke@1 762 } else {
duke@1 763 return isSameType(t, s);
duke@1 764 }
duke@1 765 case ERROR:
duke@1 766 return true;
duke@1 767 default:
duke@1 768 return containsType(s, t);
duke@1 769 }
duke@1 770 }
duke@1 771
duke@1 772 boolean containsType(List<Type> ts, List<Type> ss) {
duke@1 773 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 774 && containsType(ts.head, ss.head)) {
duke@1 775 ts = ts.tail;
duke@1 776 ss = ss.tail;
duke@1 777 }
duke@1 778 return ts.isEmpty() && ss.isEmpty();
duke@1 779 }
duke@1 780
duke@1 781 /**
duke@1 782 * Check if t contains s.
duke@1 783 *
duke@1 784 * <p>T contains S if:
duke@1 785 *
duke@1 786 * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
duke@1 787 *
duke@1 788 * <p>This relation is only used by ClassType.isSubtype(), that
duke@1 789 * is,
duke@1 790 *
duke@1 791 * <p>{@code C<S> <: C<T> if T contains S.}
duke@1 792 *
duke@1 793 * <p>Because of F-bounds, this relation can lead to infinite
duke@1 794 * recursion. Thus we must somehow break that recursion. Notice
duke@1 795 * that containsType() is only called from ClassType.isSubtype().
duke@1 796 * Since the arguments have already been checked against their
duke@1 797 * bounds, we know:
duke@1 798 *
duke@1 799 * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
duke@1 800 *
duke@1 801 * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
duke@1 802 *
duke@1 803 * @param t a type
duke@1 804 * @param s a type
duke@1 805 */
duke@1 806 public boolean containsType(Type t, Type s) {
duke@1 807 return containsType.visit(t, s);
duke@1 808 }
duke@1 809 // where
duke@1 810 private TypeRelation containsType = new TypeRelation() {
duke@1 811
duke@1 812 private Type U(Type t) {
duke@1 813 while (t.tag == WILDCARD) {
duke@1 814 WildcardType w = (WildcardType)t;
duke@1 815 if (w.isSuperBound())
duke@1 816 return w.bound == null ? syms.objectType : w.bound.bound;
duke@1 817 else
duke@1 818 t = w.type;
duke@1 819 }
duke@1 820 return t;
duke@1 821 }
duke@1 822
duke@1 823 private Type L(Type t) {
duke@1 824 while (t.tag == WILDCARD) {
duke@1 825 WildcardType w = (WildcardType)t;
duke@1 826 if (w.isExtendsBound())
duke@1 827 return syms.botType;
duke@1 828 else
duke@1 829 t = w.type;
duke@1 830 }
duke@1 831 return t;
duke@1 832 }
duke@1 833
duke@1 834 public Boolean visitType(Type t, Type s) {
duke@1 835 if (s.tag >= firstPartialTag)
duke@1 836 return containedBy(s, t);
duke@1 837 else
duke@1 838 return isSameType(t, s);
duke@1 839 }
duke@1 840
duke@1 841 void debugContainsType(WildcardType t, Type s) {
duke@1 842 System.err.println();
duke@1 843 System.err.format(" does %s contain %s?%n", t, s);
duke@1 844 System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
duke@1 845 upperBound(s), s, t, U(t),
duke@1 846 t.isSuperBound()
duke@1 847 || isSubtypeNoCapture(upperBound(s), U(t)));
duke@1 848 System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
duke@1 849 L(t), t, s, lowerBound(s),
duke@1 850 t.isExtendsBound()
duke@1 851 || isSubtypeNoCapture(L(t), lowerBound(s)));
duke@1 852 System.err.println();
duke@1 853 }
duke@1 854
duke@1 855 @Override
duke@1 856 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 857 if (s.tag >= firstPartialTag)
duke@1 858 return containedBy(s, t);
duke@1 859 else {
duke@1 860 // debugContainsType(t, s);
duke@1 861 return isSameWildcard(t, s)
duke@1 862 || isCaptureOf(s, t)
duke@1 863 || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
duke@1 864 (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
duke@1 865 }
duke@1 866 }
duke@1 867
duke@1 868 @Override
duke@1 869 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 870 if (s.tag != WILDCARD)
duke@1 871 return isSameType(t, s);
duke@1 872 else
duke@1 873 return false;
duke@1 874 }
duke@1 875
duke@1 876 @Override
duke@1 877 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 878 return true;
duke@1 879 }
duke@1 880 };
duke@1 881
duke@1 882 public boolean isCaptureOf(Type s, WildcardType t) {
mcimadamore@79 883 if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
duke@1 884 return false;
duke@1 885 return isSameWildcard(t, ((CapturedType)s).wildcard);
duke@1 886 }
duke@1 887
duke@1 888 public boolean isSameWildcard(WildcardType t, Type s) {
duke@1 889 if (s.tag != WILDCARD)
duke@1 890 return false;
duke@1 891 WildcardType w = (WildcardType)s;
duke@1 892 return w.kind == t.kind && w.type == t.type;
duke@1 893 }
duke@1 894
duke@1 895 public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
duke@1 896 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 897 && containsTypeEquivalent(ts.head, ss.head)) {
duke@1 898 ts = ts.tail;
duke@1 899 ss = ss.tail;
duke@1 900 }
duke@1 901 return ts.isEmpty() && ss.isEmpty();
duke@1 902 }
duke@1 903 // </editor-fold>
duke@1 904
duke@1 905 // <editor-fold defaultstate="collapsed" desc="isCastable">
duke@1 906 public boolean isCastable(Type t, Type s) {
duke@1 907 return isCastable(t, s, Warner.noWarnings);
duke@1 908 }
duke@1 909
duke@1 910 /**
duke@1 911 * Is t is castable to s?<br>
duke@1 912 * s is assumed to be an erased type.<br>
duke@1 913 * (not defined for Method and ForAll types).
duke@1 914 */
duke@1 915 public boolean isCastable(Type t, Type s, Warner warn) {
duke@1 916 if (t == s)
duke@1 917 return true;
duke@1 918
duke@1 919 if (t.isPrimitive() != s.isPrimitive())
jrose@665 920 return allowBoxing && (isConvertible(t, s, warn) || isConvertible(s, t, warn));
duke@1 921
duke@1 922 if (warn != warnStack.head) {
duke@1 923 try {
duke@1 924 warnStack = warnStack.prepend(warn);
mcimadamore@185 925 return isCastable.visit(t,s);
duke@1 926 } finally {
duke@1 927 warnStack = warnStack.tail;
duke@1 928 }
duke@1 929 } else {
mcimadamore@185 930 return isCastable.visit(t,s);
duke@1 931 }
duke@1 932 }
duke@1 933 // where
duke@1 934 private TypeRelation isCastable = new TypeRelation() {
duke@1 935
duke@1 936 public Boolean visitType(Type t, Type s) {
duke@1 937 if (s.tag == ERROR)
duke@1 938 return true;
duke@1 939
duke@1 940 switch (t.tag) {
duke@1 941 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 942 case DOUBLE:
duke@1 943 return s.tag <= DOUBLE;
duke@1 944 case BOOLEAN:
duke@1 945 return s.tag == BOOLEAN;
duke@1 946 case VOID:
duke@1 947 return false;
duke@1 948 case BOT:
duke@1 949 return isSubtype(t, s);
duke@1 950 default:
duke@1 951 throw new AssertionError();
duke@1 952 }
duke@1 953 }
duke@1 954
duke@1 955 @Override
duke@1 956 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 957 return isCastable(upperBound(t), s, warnStack.head);
duke@1 958 }
duke@1 959
duke@1 960 @Override
duke@1 961 public Boolean visitClassType(ClassType t, Type s) {
duke@1 962 if (s.tag == ERROR || s.tag == BOT)
duke@1 963 return true;
duke@1 964
duke@1 965 if (s.tag == TYPEVAR) {
mcimadamore@640 966 if (isCastable(t, s.getUpperBound(), Warner.noWarnings)) {
duke@1 967 warnStack.head.warnUnchecked();
duke@1 968 return true;
duke@1 969 } else {
duke@1 970 return false;
duke@1 971 }
duke@1 972 }
duke@1 973
duke@1 974 if (t.isCompound()) {
mcimadamore@211 975 Warner oldWarner = warnStack.head;
mcimadamore@211 976 warnStack.head = Warner.noWarnings;
duke@1 977 if (!visit(supertype(t), s))
duke@1 978 return false;
duke@1 979 for (Type intf : interfaces(t)) {
duke@1 980 if (!visit(intf, s))
duke@1 981 return false;
duke@1 982 }
mcimadamore@211 983 if (warnStack.head.unchecked == true)
mcimadamore@211 984 oldWarner.warnUnchecked();
duke@1 985 return true;
duke@1 986 }
duke@1 987
duke@1 988 if (s.isCompound()) {
duke@1 989 // call recursively to reuse the above code
duke@1 990 return visitClassType((ClassType)s, t);
duke@1 991 }
duke@1 992
duke@1 993 if (s.tag == CLASS || s.tag == ARRAY) {
duke@1 994 boolean upcast;
duke@1 995 if ((upcast = isSubtype(erasure(t), erasure(s)))
duke@1 996 || isSubtype(erasure(s), erasure(t))) {
duke@1 997 if (!upcast && s.tag == ARRAY) {
duke@1 998 if (!isReifiable(s))
duke@1 999 warnStack.head.warnUnchecked();
duke@1 1000 return true;
duke@1 1001 } else if (s.isRaw()) {
duke@1 1002 return true;
duke@1 1003 } else if (t.isRaw()) {
duke@1 1004 if (!isUnbounded(s))
duke@1 1005 warnStack.head.warnUnchecked();
duke@1 1006 return true;
duke@1 1007 }
duke@1 1008 // Assume |a| <: |b|
duke@1 1009 final Type a = upcast ? t : s;
duke@1 1010 final Type b = upcast ? s : t;
duke@1 1011 final boolean HIGH = true;
duke@1 1012 final boolean LOW = false;
duke@1 1013 final boolean DONT_REWRITE_TYPEVARS = false;
duke@1 1014 Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1015 Type aLow = rewriteQuantifiers(a, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1016 Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1017 Type bLow = rewriteQuantifiers(b, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1018 Type lowSub = asSub(bLow, aLow.tsym);
duke@1 1019 Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1020 if (highSub == null) {
duke@1 1021 final boolean REWRITE_TYPEVARS = true;
duke@1 1022 aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
duke@1 1023 aLow = rewriteQuantifiers(a, LOW, REWRITE_TYPEVARS);
duke@1 1024 bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
duke@1 1025 bLow = rewriteQuantifiers(b, LOW, REWRITE_TYPEVARS);
duke@1 1026 lowSub = asSub(bLow, aLow.tsym);
duke@1 1027 highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1028 }
duke@1 1029 if (highSub != null) {
duke@1 1030 assert a.tsym == highSub.tsym && a.tsym == lowSub.tsym
duke@1 1031 : a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym;
mcimadamore@185 1032 if (!disjointTypes(aHigh.allparams(), highSub.allparams())
mcimadamore@185 1033 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
mcimadamore@185 1034 && !disjointTypes(aLow.allparams(), highSub.allparams())
mcimadamore@185 1035 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
mcimadamore@779 1036 if (upcast ? giveWarning(a, b) :
mcimadamore@235 1037 giveWarning(b, a))
duke@1 1038 warnStack.head.warnUnchecked();
duke@1 1039 return true;
duke@1 1040 }
duke@1 1041 }
duke@1 1042 if (isReifiable(s))
duke@1 1043 return isSubtypeUnchecked(a, b);
duke@1 1044 else
duke@1 1045 return isSubtypeUnchecked(a, b, warnStack.head);
duke@1 1046 }
duke@1 1047
duke@1 1048 // Sidecast
duke@1 1049 if (s.tag == CLASS) {
duke@1 1050 if ((s.tsym.flags() & INTERFACE) != 0) {
duke@1 1051 return ((t.tsym.flags() & FINAL) == 0)
duke@1 1052 ? sideCast(t, s, warnStack.head)
duke@1 1053 : sideCastFinal(t, s, warnStack.head);
duke@1 1054 } else if ((t.tsym.flags() & INTERFACE) != 0) {
duke@1 1055 return ((s.tsym.flags() & FINAL) == 0)
duke@1 1056 ? sideCast(t, s, warnStack.head)
duke@1 1057 : sideCastFinal(t, s, warnStack.head);
duke@1 1058 } else {
duke@1 1059 // unrelated class types
duke@1 1060 return false;
duke@1 1061 }
duke@1 1062 }
duke@1 1063 }
duke@1 1064 return false;
duke@1 1065 }
duke@1 1066
duke@1 1067 @Override
duke@1 1068 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 1069 switch (s.tag) {
duke@1 1070 case ERROR:
duke@1 1071 case BOT:
duke@1 1072 return true;
duke@1 1073 case TYPEVAR:
duke@1 1074 if (isCastable(s, t, Warner.noWarnings)) {
duke@1 1075 warnStack.head.warnUnchecked();
duke@1 1076 return true;
duke@1 1077 } else {
duke@1 1078 return false;
duke@1 1079 }
duke@1 1080 case CLASS:
duke@1 1081 return isSubtype(t, s);
duke@1 1082 case ARRAY:
duke@1 1083 if (elemtype(t).tag <= lastBaseTag) {
duke@1 1084 return elemtype(t).tag == elemtype(s).tag;
duke@1 1085 } else {
duke@1 1086 return visit(elemtype(t), elemtype(s));
duke@1 1087 }
duke@1 1088 default:
duke@1 1089 return false;
duke@1 1090 }
duke@1 1091 }
duke@1 1092
duke@1 1093 @Override
duke@1 1094 public Boolean visitTypeVar(TypeVar t, Type s) {
duke@1 1095 switch (s.tag) {
duke@1 1096 case ERROR:
duke@1 1097 case BOT:
duke@1 1098 return true;
duke@1 1099 case TYPEVAR:
duke@1 1100 if (isSubtype(t, s)) {
duke@1 1101 return true;
duke@1 1102 } else if (isCastable(t.bound, s, Warner.noWarnings)) {
duke@1 1103 warnStack.head.warnUnchecked();
duke@1 1104 return true;
duke@1 1105 } else {
duke@1 1106 return false;
duke@1 1107 }
duke@1 1108 default:
duke@1 1109 return isCastable(t.bound, s, warnStack.head);
duke@1 1110 }
duke@1 1111 }
duke@1 1112
duke@1 1113 @Override
duke@1 1114 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1115 return true;
duke@1 1116 }
duke@1 1117 };
duke@1 1118 // </editor-fold>
duke@1 1119
duke@1 1120 // <editor-fold defaultstate="collapsed" desc="disjointTypes">
duke@1 1121 public boolean disjointTypes(List<Type> ts, List<Type> ss) {
duke@1 1122 while (ts.tail != null && ss.tail != null) {
duke@1 1123 if (disjointType(ts.head, ss.head)) return true;
duke@1 1124 ts = ts.tail;
duke@1 1125 ss = ss.tail;
duke@1 1126 }
duke@1 1127 return false;
duke@1 1128 }
duke@1 1129
duke@1 1130 /**
duke@1 1131 * Two types or wildcards are considered disjoint if it can be
duke@1 1132 * proven that no type can be contained in both. It is
duke@1 1133 * conservative in that it is allowed to say that two types are
duke@1 1134 * not disjoint, even though they actually are.
duke@1 1135 *
duke@1 1136 * The type C<X> is castable to C<Y> exactly if X and Y are not
duke@1 1137 * disjoint.
duke@1 1138 */
duke@1 1139 public boolean disjointType(Type t, Type s) {
duke@1 1140 return disjointType.visit(t, s);
duke@1 1141 }
duke@1 1142 // where
duke@1 1143 private TypeRelation disjointType = new TypeRelation() {
duke@1 1144
duke@1 1145 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 1146
duke@1 1147 public Boolean visitType(Type t, Type s) {
duke@1 1148 if (s.tag == WILDCARD)
duke@1 1149 return visit(s, t);
duke@1 1150 else
duke@1 1151 return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
duke@1 1152 }
duke@1 1153
duke@1 1154 private boolean isCastableRecursive(Type t, Type s) {
duke@1 1155 TypePair pair = new TypePair(t, s);
duke@1 1156 if (cache.add(pair)) {
duke@1 1157 try {
duke@1 1158 return Types.this.isCastable(t, s);
duke@1 1159 } finally {
duke@1 1160 cache.remove(pair);
duke@1 1161 }
duke@1 1162 } else {
duke@1 1163 return true;
duke@1 1164 }
duke@1 1165 }
duke@1 1166
duke@1 1167 private boolean notSoftSubtypeRecursive(Type t, Type s) {
duke@1 1168 TypePair pair = new TypePair(t, s);
duke@1 1169 if (cache.add(pair)) {
duke@1 1170 try {
duke@1 1171 return Types.this.notSoftSubtype(t, s);
duke@1 1172 } finally {
duke@1 1173 cache.remove(pair);
duke@1 1174 }
duke@1 1175 } else {
duke@1 1176 return false;
duke@1 1177 }
duke@1 1178 }
duke@1 1179
duke@1 1180 @Override
duke@1 1181 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 1182 if (t.isUnbound())
duke@1 1183 return false;
duke@1 1184
duke@1 1185 if (s.tag != WILDCARD) {
duke@1 1186 if (t.isExtendsBound())
duke@1 1187 return notSoftSubtypeRecursive(s, t.type);
duke@1 1188 else // isSuperBound()
duke@1 1189 return notSoftSubtypeRecursive(t.type, s);
duke@1 1190 }
duke@1 1191
duke@1 1192 if (s.isUnbound())
duke@1 1193 return false;
duke@1 1194
duke@1 1195 if (t.isExtendsBound()) {
duke@1 1196 if (s.isExtendsBound())
duke@1 1197 return !isCastableRecursive(t.type, upperBound(s));
duke@1 1198 else if (s.isSuperBound())
duke@1 1199 return notSoftSubtypeRecursive(lowerBound(s), t.type);
duke@1 1200 } else if (t.isSuperBound()) {
duke@1 1201 if (s.isExtendsBound())
duke@1 1202 return notSoftSubtypeRecursive(t.type, upperBound(s));
duke@1 1203 }
duke@1 1204 return false;
duke@1 1205 }
duke@1 1206 };
duke@1 1207 // </editor-fold>
duke@1 1208
duke@1 1209 // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
duke@1 1210 /**
duke@1 1211 * Returns the lower bounds of the formals of a method.
duke@1 1212 */
duke@1 1213 public List<Type> lowerBoundArgtypes(Type t) {
duke@1 1214 return map(t.getParameterTypes(), lowerBoundMapping);
duke@1 1215 }
duke@1 1216 private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
duke@1 1217 public Type apply(Type t) {
duke@1 1218 return lowerBound(t);
duke@1 1219 }
duke@1 1220 };
duke@1 1221 // </editor-fold>
duke@1 1222
duke@1 1223 // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
duke@1 1224 /**
duke@1 1225 * This relation answers the question: is impossible that
duke@1 1226 * something of type `t' can be a subtype of `s'? This is
duke@1 1227 * different from the question "is `t' not a subtype of `s'?"
duke@1 1228 * when type variables are involved: Integer is not a subtype of T
duke@1 1229 * where <T extends Number> but it is not true that Integer cannot
duke@1 1230 * possibly be a subtype of T.
duke@1 1231 */
duke@1 1232 public boolean notSoftSubtype(Type t, Type s) {
duke@1 1233 if (t == s) return false;
duke@1 1234 if (t.tag == TYPEVAR) {
duke@1 1235 TypeVar tv = (TypeVar) t;
duke@1 1236 return !isCastable(tv.bound,
mcimadamore@640 1237 relaxBound(s),
duke@1 1238 Warner.noWarnings);
duke@1 1239 }
duke@1 1240 if (s.tag != WILDCARD)
duke@1 1241 s = upperBound(s);
mcimadamore@640 1242
mcimadamore@640 1243 return !isSubtype(t, relaxBound(s));
mcimadamore@640 1244 }
mcimadamore@640 1245
mcimadamore@640 1246 private Type relaxBound(Type t) {
mcimadamore@640 1247 if (t.tag == TYPEVAR) {
mcimadamore@640 1248 while (t.tag == TYPEVAR)
mcimadamore@640 1249 t = t.getUpperBound();
mcimadamore@640 1250 t = rewriteQuantifiers(t, true, true);
mcimadamore@640 1251 }
mcimadamore@640 1252 return t;
duke@1 1253 }
duke@1 1254 // </editor-fold>
duke@1 1255
duke@1 1256 // <editor-fold defaultstate="collapsed" desc="isReifiable">
duke@1 1257 public boolean isReifiable(Type t) {
duke@1 1258 return isReifiable.visit(t);
duke@1 1259 }
duke@1 1260 // where
duke@1 1261 private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
duke@1 1262
duke@1 1263 public Boolean visitType(Type t, Void ignored) {
duke@1 1264 return true;
duke@1 1265 }
duke@1 1266
duke@1 1267 @Override
duke@1 1268 public Boolean visitClassType(ClassType t, Void ignored) {
mcimadamore@356 1269 if (t.isCompound())
mcimadamore@356 1270 return false;
mcimadamore@356 1271 else {
mcimadamore@356 1272 if (!t.isParameterized())
mcimadamore@356 1273 return true;
mcimadamore@356 1274
mcimadamore@356 1275 for (Type param : t.allparams()) {
mcimadamore@356 1276 if (!param.isUnbound())
mcimadamore@356 1277 return false;
mcimadamore@356 1278 }
duke@1 1279 return true;
duke@1 1280 }
duke@1 1281 }
duke@1 1282
duke@1 1283 @Override
duke@1 1284 public Boolean visitArrayType(ArrayType t, Void ignored) {
duke@1 1285 return visit(t.elemtype);
duke@1 1286 }
duke@1 1287
duke@1 1288 @Override
duke@1 1289 public Boolean visitTypeVar(TypeVar t, Void ignored) {
duke@1 1290 return false;
duke@1 1291 }
duke@1 1292 };
duke@1 1293 // </editor-fold>
duke@1 1294
duke@1 1295 // <editor-fold defaultstate="collapsed" desc="Array Utils">
duke@1 1296 public boolean isArray(Type t) {
duke@1 1297 while (t.tag == WILDCARD)
duke@1 1298 t = upperBound(t);
duke@1 1299 return t.tag == ARRAY;
duke@1 1300 }
duke@1 1301
duke@1 1302 /**
duke@1 1303 * The element type of an array.
duke@1 1304 */
duke@1 1305 public Type elemtype(Type t) {
duke@1 1306 switch (t.tag) {
duke@1 1307 case WILDCARD:
duke@1 1308 return elemtype(upperBound(t));
duke@1 1309 case ARRAY:
duke@1 1310 return ((ArrayType)t).elemtype;
duke@1 1311 case FORALL:
duke@1 1312 return elemtype(((ForAll)t).qtype);
duke@1 1313 case ERROR:
duke@1 1314 return t;
duke@1 1315 default:
duke@1 1316 return null;
duke@1 1317 }
duke@1 1318 }
duke@1 1319
duke@1 1320 /**
duke@1 1321 * Mapping to take element type of an arraytype
duke@1 1322 */
duke@1 1323 private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
duke@1 1324 public Type apply(Type t) { return elemtype(t); }
duke@1 1325 };
duke@1 1326
duke@1 1327 /**
duke@1 1328 * The number of dimensions of an array type.
duke@1 1329 */
duke@1 1330 public int dimensions(Type t) {
duke@1 1331 int result = 0;
duke@1 1332 while (t.tag == ARRAY) {
duke@1 1333 result++;
duke@1 1334 t = elemtype(t);
duke@1 1335 }
duke@1 1336 return result;
duke@1 1337 }
duke@1 1338 // </editor-fold>
duke@1 1339
duke@1 1340 // <editor-fold defaultstate="collapsed" desc="asSuper">
duke@1 1341 /**
duke@1 1342 * Return the (most specific) base type of t that starts with the
duke@1 1343 * given symbol. If none exists, return null.
duke@1 1344 *
duke@1 1345 * @param t a type
duke@1 1346 * @param sym a symbol
duke@1 1347 */
duke@1 1348 public Type asSuper(Type t, Symbol sym) {
duke@1 1349 return asSuper.visit(t, sym);
duke@1 1350 }
duke@1 1351 // where
duke@1 1352 private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
duke@1 1353
duke@1 1354 public Type visitType(Type t, Symbol sym) {
duke@1 1355 return null;
duke@1 1356 }
duke@1 1357
duke@1 1358 @Override
duke@1 1359 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1360 if (t.tsym == sym)
duke@1 1361 return t;
duke@1 1362
duke@1 1363 Type st = supertype(t);
mcimadamore@19 1364 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
duke@1 1365 Type x = asSuper(st, sym);
duke@1 1366 if (x != null)
duke@1 1367 return x;
duke@1 1368 }
duke@1 1369 if ((sym.flags() & INTERFACE) != 0) {
duke@1 1370 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 1371 Type x = asSuper(l.head, sym);
duke@1 1372 if (x != null)
duke@1 1373 return x;
duke@1 1374 }
duke@1 1375 }
duke@1 1376 return null;
duke@1 1377 }
duke@1 1378
duke@1 1379 @Override
duke@1 1380 public Type visitArrayType(ArrayType t, Symbol sym) {
duke@1 1381 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1382 }
duke@1 1383
duke@1 1384 @Override
duke@1 1385 public Type visitTypeVar(TypeVar t, Symbol sym) {
mcimadamore@19 1386 if (t.tsym == sym)
mcimadamore@19 1387 return t;
mcimadamore@19 1388 else
mcimadamore@19 1389 return asSuper(t.bound, sym);
duke@1 1390 }
duke@1 1391
duke@1 1392 @Override
duke@1 1393 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1394 return t;
duke@1 1395 }
duke@1 1396 };
duke@1 1397
duke@1 1398 /**
duke@1 1399 * Return the base type of t or any of its outer types that starts
duke@1 1400 * with the given symbol. If none exists, return null.
duke@1 1401 *
duke@1 1402 * @param t a type
duke@1 1403 * @param sym a symbol
duke@1 1404 */
duke@1 1405 public Type asOuterSuper(Type t, Symbol sym) {
duke@1 1406 switch (t.tag) {
duke@1 1407 case CLASS:
duke@1 1408 do {
duke@1 1409 Type s = asSuper(t, sym);
duke@1 1410 if (s != null) return s;
duke@1 1411 t = t.getEnclosingType();
duke@1 1412 } while (t.tag == CLASS);
duke@1 1413 return null;
duke@1 1414 case ARRAY:
duke@1 1415 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1416 case TYPEVAR:
duke@1 1417 return asSuper(t, sym);
duke@1 1418 case ERROR:
duke@1 1419 return t;
duke@1 1420 default:
duke@1 1421 return null;
duke@1 1422 }
duke@1 1423 }
duke@1 1424
duke@1 1425 /**
duke@1 1426 * Return the base type of t or any of its enclosing types that
duke@1 1427 * starts with the given symbol. If none exists, return null.
duke@1 1428 *
duke@1 1429 * @param t a type
duke@1 1430 * @param sym a symbol
duke@1 1431 */
duke@1 1432 public Type asEnclosingSuper(Type t, Symbol sym) {
duke@1 1433 switch (t.tag) {
duke@1 1434 case CLASS:
duke@1 1435 do {
duke@1 1436 Type s = asSuper(t, sym);
duke@1 1437 if (s != null) return s;
duke@1 1438 Type outer = t.getEnclosingType();
duke@1 1439 t = (outer.tag == CLASS) ? outer :
duke@1 1440 (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
duke@1 1441 Type.noType;
duke@1 1442 } while (t.tag == CLASS);
duke@1 1443 return null;
duke@1 1444 case ARRAY:
duke@1 1445 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1446 case TYPEVAR:
duke@1 1447 return asSuper(t, sym);
duke@1 1448 case ERROR:
duke@1 1449 return t;
duke@1 1450 default:
duke@1 1451 return null;
duke@1 1452 }
duke@1 1453 }
duke@1 1454 // </editor-fold>
duke@1 1455
duke@1 1456 // <editor-fold defaultstate="collapsed" desc="memberType">
duke@1 1457 /**
duke@1 1458 * The type of given symbol, seen as a member of t.
duke@1 1459 *
duke@1 1460 * @param t a type
duke@1 1461 * @param sym a symbol
duke@1 1462 */
duke@1 1463 public Type memberType(Type t, Symbol sym) {
duke@1 1464 return (sym.flags() & STATIC) != 0
duke@1 1465 ? sym.type
duke@1 1466 : memberType.visit(t, sym);
mcimadamore@341 1467 }
duke@1 1468 // where
duke@1 1469 private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
duke@1 1470
duke@1 1471 public Type visitType(Type t, Symbol sym) {
duke@1 1472 return sym.type;
duke@1 1473 }
duke@1 1474
duke@1 1475 @Override
duke@1 1476 public Type visitWildcardType(WildcardType t, Symbol sym) {
duke@1 1477 return memberType(upperBound(t), sym);
duke@1 1478 }
duke@1 1479
duke@1 1480 @Override
duke@1 1481 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1482 Symbol owner = sym.owner;
duke@1 1483 long flags = sym.flags();
duke@1 1484 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
duke@1 1485 Type base = asOuterSuper(t, owner);
mcimadamore@134 1486 //if t is an intersection type T = CT & I1 & I2 ... & In
mcimadamore@134 1487 //its supertypes CT, I1, ... In might contain wildcards
mcimadamore@134 1488 //so we need to go through capture conversion
mcimadamore@134 1489 base = t.isCompound() ? capture(base) : base;
duke@1 1490 if (base != null) {
duke@1 1491 List<Type> ownerParams = owner.type.allparams();
duke@1 1492 List<Type> baseParams = base.allparams();
duke@1 1493 if (ownerParams.nonEmpty()) {
duke@1 1494 if (baseParams.isEmpty()) {
duke@1 1495 // then base is a raw type
duke@1 1496 return erasure(sym.type);
duke@1 1497 } else {
duke@1 1498 return subst(sym.type, ownerParams, baseParams);
duke@1 1499 }
duke@1 1500 }
duke@1 1501 }
duke@1 1502 }
duke@1 1503 return sym.type;
duke@1 1504 }
duke@1 1505
duke@1 1506 @Override
duke@1 1507 public Type visitTypeVar(TypeVar t, Symbol sym) {
duke@1 1508 return memberType(t.bound, sym);
duke@1 1509 }
duke@1 1510
duke@1 1511 @Override
duke@1 1512 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1513 return t;
duke@1 1514 }
duke@1 1515 };
duke@1 1516 // </editor-fold>
duke@1 1517
duke@1 1518 // <editor-fold defaultstate="collapsed" desc="isAssignable">
duke@1 1519 public boolean isAssignable(Type t, Type s) {
duke@1 1520 return isAssignable(t, s, Warner.noWarnings);
duke@1 1521 }
duke@1 1522
duke@1 1523 /**
duke@1 1524 * Is t assignable to s?<br>
duke@1 1525 * Equivalent to subtype except for constant values and raw
duke@1 1526 * types.<br>
duke@1 1527 * (not defined for Method and ForAll types)
duke@1 1528 */
duke@1 1529 public boolean isAssignable(Type t, Type s, Warner warn) {
duke@1 1530 if (t.tag == ERROR)
duke@1 1531 return true;
duke@1 1532 if (t.tag <= INT && t.constValue() != null) {
duke@1 1533 int value = ((Number)t.constValue()).intValue();
duke@1 1534 switch (s.tag) {
duke@1 1535 case BYTE:
duke@1 1536 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
duke@1 1537 return true;
duke@1 1538 break;
duke@1 1539 case CHAR:
duke@1 1540 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
duke@1 1541 return true;
duke@1 1542 break;
duke@1 1543 case SHORT:
duke@1 1544 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
duke@1 1545 return true;
duke@1 1546 break;
duke@1 1547 case INT:
duke@1 1548 return true;
duke@1 1549 case CLASS:
duke@1 1550 switch (unboxedType(s).tag) {
duke@1 1551 case BYTE:
duke@1 1552 case CHAR:
duke@1 1553 case SHORT:
duke@1 1554 return isAssignable(t, unboxedType(s), warn);
duke@1 1555 }
duke@1 1556 break;
duke@1 1557 }
duke@1 1558 }
duke@1 1559 return isConvertible(t, s, warn);
duke@1 1560 }
duke@1 1561 // </editor-fold>
duke@1 1562
duke@1 1563 // <editor-fold defaultstate="collapsed" desc="erasure">
duke@1 1564 /**
duke@1 1565 * The erasure of t {@code |t|} -- the type that results when all
duke@1 1566 * type parameters in t are deleted.
duke@1 1567 */
duke@1 1568 public Type erasure(Type t) {
mcimadamore@30 1569 return erasure(t, false);
mcimadamore@30 1570 }
mcimadamore@30 1571 //where
mcimadamore@30 1572 private Type erasure(Type t, boolean recurse) {
duke@1 1573 if (t.tag <= lastBaseTag)
duke@1 1574 return t; /* fast special case */
duke@1 1575 else
mcimadamore@30 1576 return erasure.visit(t, recurse);
mcimadamore@341 1577 }
duke@1 1578 // where
mcimadamore@30 1579 private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
mcimadamore@30 1580 public Type visitType(Type t, Boolean recurse) {
duke@1 1581 if (t.tag <= lastBaseTag)
duke@1 1582 return t; /*fast special case*/
duke@1 1583 else
mcimadamore@30 1584 return t.map(recurse ? erasureRecFun : erasureFun);
duke@1 1585 }
duke@1 1586
duke@1 1587 @Override
mcimadamore@30 1588 public Type visitWildcardType(WildcardType t, Boolean recurse) {
mcimadamore@30 1589 return erasure(upperBound(t), recurse);
duke@1 1590 }
duke@1 1591
duke@1 1592 @Override
mcimadamore@30 1593 public Type visitClassType(ClassType t, Boolean recurse) {
mcimadamore@30 1594 Type erased = t.tsym.erasure(Types.this);
mcimadamore@30 1595 if (recurse) {
mcimadamore@30 1596 erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
mcimadamore@30 1597 }
mcimadamore@30 1598 return erased;
duke@1 1599 }
duke@1 1600
duke@1 1601 @Override
mcimadamore@30 1602 public Type visitTypeVar(TypeVar t, Boolean recurse) {
mcimadamore@30 1603 return erasure(t.bound, recurse);
duke@1 1604 }
duke@1 1605
duke@1 1606 @Override
mcimadamore@30 1607 public Type visitErrorType(ErrorType t, Boolean recurse) {
duke@1 1608 return t;
duke@1 1609 }
duke@1 1610 };
mcimadamore@30 1611
duke@1 1612 private Mapping erasureFun = new Mapping ("erasure") {
duke@1 1613 public Type apply(Type t) { return erasure(t); }
duke@1 1614 };
duke@1 1615
mcimadamore@30 1616 private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
mcimadamore@30 1617 public Type apply(Type t) { return erasureRecursive(t); }
mcimadamore@30 1618 };
mcimadamore@30 1619
duke@1 1620 public List<Type> erasure(List<Type> ts) {
duke@1 1621 return Type.map(ts, erasureFun);
duke@1 1622 }
mcimadamore@30 1623
mcimadamore@30 1624 public Type erasureRecursive(Type t) {
mcimadamore@30 1625 return erasure(t, true);
mcimadamore@30 1626 }
mcimadamore@30 1627
mcimadamore@30 1628 public List<Type> erasureRecursive(List<Type> ts) {
mcimadamore@30 1629 return Type.map(ts, erasureRecFun);
mcimadamore@30 1630 }
duke@1 1631 // </editor-fold>
duke@1 1632
duke@1 1633 // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
duke@1 1634 /**
duke@1 1635 * Make a compound type from non-empty list of types
duke@1 1636 *
duke@1 1637 * @param bounds the types from which the compound type is formed
duke@1 1638 * @param supertype is objectType if all bounds are interfaces,
duke@1 1639 * null otherwise.
duke@1 1640 */
duke@1 1641 public Type makeCompoundType(List<Type> bounds,
duke@1 1642 Type supertype) {
duke@1 1643 ClassSymbol bc =
duke@1 1644 new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
duke@1 1645 Type.moreInfo
duke@1 1646 ? names.fromString(bounds.toString())
duke@1 1647 : names.empty,
duke@1 1648 syms.noSymbol);
duke@1 1649 if (bounds.head.tag == TYPEVAR)
duke@1 1650 // error condition, recover
mcimadamore@121 1651 bc.erasure_field = syms.objectType;
mcimadamore@121 1652 else
mcimadamore@121 1653 bc.erasure_field = erasure(bounds.head);
mcimadamore@121 1654 bc.members_field = new Scope(bc);
duke@1 1655 ClassType bt = (ClassType)bc.type;
duke@1 1656 bt.allparams_field = List.nil();
duke@1 1657 if (supertype != null) {
duke@1 1658 bt.supertype_field = supertype;
duke@1 1659 bt.interfaces_field = bounds;
duke@1 1660 } else {
duke@1 1661 bt.supertype_field = bounds.head;
duke@1 1662 bt.interfaces_field = bounds.tail;
duke@1 1663 }
duke@1 1664 assert bt.supertype_field.tsym.completer != null
duke@1 1665 || !bt.supertype_field.isInterface()
duke@1 1666 : bt.supertype_field;
duke@1 1667 return bt;
duke@1 1668 }
duke@1 1669
duke@1 1670 /**
duke@1 1671 * Same as {@link #makeCompoundType(List,Type)}, except that the
duke@1 1672 * second parameter is computed directly. Note that this might
duke@1 1673 * cause a symbol completion. Hence, this version of
duke@1 1674 * makeCompoundType may not be called during a classfile read.
duke@1 1675 */
duke@1 1676 public Type makeCompoundType(List<Type> bounds) {
duke@1 1677 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
duke@1 1678 supertype(bounds.head) : null;
duke@1 1679 return makeCompoundType(bounds, supertype);
duke@1 1680 }
duke@1 1681
duke@1 1682 /**
duke@1 1683 * A convenience wrapper for {@link #makeCompoundType(List)}; the
duke@1 1684 * arguments are converted to a list and passed to the other
duke@1 1685 * method. Note that this might cause a symbol completion.
duke@1 1686 * Hence, this version of makeCompoundType may not be called
duke@1 1687 * during a classfile read.
duke@1 1688 */
duke@1 1689 public Type makeCompoundType(Type bound1, Type bound2) {
duke@1 1690 return makeCompoundType(List.of(bound1, bound2));
duke@1 1691 }
duke@1 1692 // </editor-fold>
duke@1 1693
duke@1 1694 // <editor-fold defaultstate="collapsed" desc="supertype">
duke@1 1695 public Type supertype(Type t) {
duke@1 1696 return supertype.visit(t);
duke@1 1697 }
duke@1 1698 // where
duke@1 1699 private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
duke@1 1700
duke@1 1701 public Type visitType(Type t, Void ignored) {
duke@1 1702 // A note on wildcards: there is no good way to
duke@1 1703 // determine a supertype for a super bounded wildcard.
duke@1 1704 return null;
duke@1 1705 }
duke@1 1706
duke@1 1707 @Override
duke@1 1708 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1709 if (t.supertype_field == null) {
duke@1 1710 Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
duke@1 1711 // An interface has no superclass; its supertype is Object.
duke@1 1712 if (t.isInterface())
duke@1 1713 supertype = ((ClassType)t.tsym.type).supertype_field;
duke@1 1714 if (t.supertype_field == null) {
duke@1 1715 List<Type> actuals = classBound(t).allparams();
duke@1 1716 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1717 if (t.hasErasedSupertypes()) {
mcimadamore@30 1718 t.supertype_field = erasureRecursive(supertype);
mcimadamore@30 1719 } else if (formals.nonEmpty()) {
duke@1 1720 t.supertype_field = subst(supertype, formals, actuals);
duke@1 1721 }
mcimadamore@30 1722 else {
mcimadamore@30 1723 t.supertype_field = supertype;
mcimadamore@30 1724 }
duke@1 1725 }
duke@1 1726 }
duke@1 1727 return t.supertype_field;
duke@1 1728 }
duke@1 1729
duke@1 1730 /**
duke@1 1731 * The supertype is always a class type. If the type
duke@1 1732 * variable's bounds start with a class type, this is also
duke@1 1733 * the supertype. Otherwise, the supertype is
duke@1 1734 * java.lang.Object.
duke@1 1735 */
duke@1 1736 @Override
duke@1 1737 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1738 if (t.bound.tag == TYPEVAR ||
duke@1 1739 (!t.bound.isCompound() && !t.bound.isInterface())) {
duke@1 1740 return t.bound;
duke@1 1741 } else {
duke@1 1742 return supertype(t.bound);
duke@1 1743 }
duke@1 1744 }
duke@1 1745
duke@1 1746 @Override
duke@1 1747 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 1748 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
duke@1 1749 return arraySuperType();
duke@1 1750 else
duke@1 1751 return new ArrayType(supertype(t.elemtype), t.tsym);
duke@1 1752 }
duke@1 1753
duke@1 1754 @Override
duke@1 1755 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1756 return t;
duke@1 1757 }
duke@1 1758 };
duke@1 1759 // </editor-fold>
duke@1 1760
duke@1 1761 // <editor-fold defaultstate="collapsed" desc="interfaces">
duke@1 1762 /**
duke@1 1763 * Return the interfaces implemented by this class.
duke@1 1764 */
duke@1 1765 public List<Type> interfaces(Type t) {
duke@1 1766 return interfaces.visit(t);
duke@1 1767 }
duke@1 1768 // where
duke@1 1769 private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
duke@1 1770
duke@1 1771 public List<Type> visitType(Type t, Void ignored) {
duke@1 1772 return List.nil();
duke@1 1773 }
duke@1 1774
duke@1 1775 @Override
duke@1 1776 public List<Type> visitClassType(ClassType t, Void ignored) {
duke@1 1777 if (t.interfaces_field == null) {
duke@1 1778 List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
duke@1 1779 if (t.interfaces_field == null) {
duke@1 1780 // If t.interfaces_field is null, then t must
duke@1 1781 // be a parameterized type (not to be confused
duke@1 1782 // with a generic type declaration).
duke@1 1783 // Terminology:
duke@1 1784 // Parameterized type: List<String>
duke@1 1785 // Generic type declaration: class List<E> { ... }
duke@1 1786 // So t corresponds to List<String> and
duke@1 1787 // t.tsym.type corresponds to List<E>.
duke@1 1788 // The reason t must be parameterized type is
duke@1 1789 // that completion will happen as a side
duke@1 1790 // effect of calling
duke@1 1791 // ClassSymbol.getInterfaces. Since
duke@1 1792 // t.interfaces_field is null after
duke@1 1793 // completion, we can assume that t is not the
duke@1 1794 // type of a class/interface declaration.
duke@1 1795 assert t != t.tsym.type : t.toString();
duke@1 1796 List<Type> actuals = t.allparams();
duke@1 1797 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1798 if (t.hasErasedSupertypes()) {
mcimadamore@30 1799 t.interfaces_field = erasureRecursive(interfaces);
mcimadamore@30 1800 } else if (formals.nonEmpty()) {
duke@1 1801 t.interfaces_field =
duke@1 1802 upperBounds(subst(interfaces, formals, actuals));
duke@1 1803 }
mcimadamore@30 1804 else {
mcimadamore@30 1805 t.interfaces_field = interfaces;
mcimadamore@30 1806 }
duke@1 1807 }
duke@1 1808 }
duke@1 1809 return t.interfaces_field;
duke@1 1810 }
duke@1 1811
duke@1 1812 @Override
duke@1 1813 public List<Type> visitTypeVar(TypeVar t, Void ignored) {
duke@1 1814 if (t.bound.isCompound())
duke@1 1815 return interfaces(t.bound);
duke@1 1816
duke@1 1817 if (t.bound.isInterface())
duke@1 1818 return List.of(t.bound);
duke@1 1819
duke@1 1820 return List.nil();
duke@1 1821 }
duke@1 1822 };
duke@1 1823 // </editor-fold>
duke@1 1824
duke@1 1825 // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
duke@1 1826 Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
duke@1 1827
duke@1 1828 public boolean isDerivedRaw(Type t) {
duke@1 1829 Boolean result = isDerivedRawCache.get(t);
duke@1 1830 if (result == null) {
duke@1 1831 result = isDerivedRawInternal(t);
duke@1 1832 isDerivedRawCache.put(t, result);
duke@1 1833 }
duke@1 1834 return result;
duke@1 1835 }
duke@1 1836
duke@1 1837 public boolean isDerivedRawInternal(Type t) {
duke@1 1838 if (t.isErroneous())
duke@1 1839 return false;
duke@1 1840 return
duke@1 1841 t.isRaw() ||
duke@1 1842 supertype(t) != null && isDerivedRaw(supertype(t)) ||
duke@1 1843 isDerivedRaw(interfaces(t));
duke@1 1844 }
duke@1 1845
duke@1 1846 public boolean isDerivedRaw(List<Type> ts) {
duke@1 1847 List<Type> l = ts;
duke@1 1848 while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
duke@1 1849 return l.nonEmpty();
duke@1 1850 }
duke@1 1851 // </editor-fold>
duke@1 1852
duke@1 1853 // <editor-fold defaultstate="collapsed" desc="setBounds">
duke@1 1854 /**
duke@1 1855 * Set the bounds field of the given type variable to reflect a
duke@1 1856 * (possibly multiple) list of bounds.
duke@1 1857 * @param t a type variable
duke@1 1858 * @param bounds the bounds, must be nonempty
duke@1 1859 * @param supertype is objectType if all bounds are interfaces,
duke@1 1860 * null otherwise.
duke@1 1861 */
duke@1 1862 public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
duke@1 1863 if (bounds.tail.isEmpty())
duke@1 1864 t.bound = bounds.head;
duke@1 1865 else
duke@1 1866 t.bound = makeCompoundType(bounds, supertype);
duke@1 1867 t.rank_field = -1;
duke@1 1868 }
duke@1 1869
duke@1 1870 /**
duke@1 1871 * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
mcimadamore@563 1872 * third parameter is computed directly, as follows: if all
mcimadamore@563 1873 * all bounds are interface types, the computed supertype is Object,
mcimadamore@563 1874 * otherwise the supertype is simply left null (in this case, the supertype
mcimadamore@563 1875 * is assumed to be the head of the bound list passed as second argument).
mcimadamore@563 1876 * Note that this check might cause a symbol completion. Hence, this version of
duke@1 1877 * setBounds may not be called during a classfile read.
duke@1 1878 */
duke@1 1879 public void setBounds(TypeVar t, List<Type> bounds) {
duke@1 1880 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
mcimadamore@563 1881 syms.objectType : null;
duke@1 1882 setBounds(t, bounds, supertype);
duke@1 1883 t.rank_field = -1;
duke@1 1884 }
duke@1 1885 // </editor-fold>
duke@1 1886
duke@1 1887 // <editor-fold defaultstate="collapsed" desc="getBounds">
duke@1 1888 /**
duke@1 1889 * Return list of bounds of the given type variable.
duke@1 1890 */
duke@1 1891 public List<Type> getBounds(TypeVar t) {
duke@1 1892 if (t.bound.isErroneous() || !t.bound.isCompound())
duke@1 1893 return List.of(t.bound);
duke@1 1894 else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
duke@1 1895 return interfaces(t).prepend(supertype(t));
duke@1 1896 else
duke@1 1897 // No superclass was given in bounds.
duke@1 1898 // In this case, supertype is Object, erasure is first interface.
duke@1 1899 return interfaces(t);
duke@1 1900 }
duke@1 1901 // </editor-fold>
duke@1 1902
duke@1 1903 // <editor-fold defaultstate="collapsed" desc="classBound">
duke@1 1904 /**
duke@1 1905 * If the given type is a (possibly selected) type variable,
duke@1 1906 * return the bounding class of this type, otherwise return the
duke@1 1907 * type itself.
duke@1 1908 */
duke@1 1909 public Type classBound(Type t) {
duke@1 1910 return classBound.visit(t);
duke@1 1911 }
duke@1 1912 // where
duke@1 1913 private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
duke@1 1914
duke@1 1915 public Type visitType(Type t, Void ignored) {
duke@1 1916 return t;
duke@1 1917 }
duke@1 1918
duke@1 1919 @Override
duke@1 1920 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1921 Type outer1 = classBound(t.getEnclosingType());
duke@1 1922 if (outer1 != t.getEnclosingType())
duke@1 1923 return new ClassType(outer1, t.getTypeArguments(), t.tsym);
duke@1 1924 else
duke@1 1925 return t;
duke@1 1926 }
duke@1 1927
duke@1 1928 @Override
duke@1 1929 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1930 return classBound(supertype(t));
duke@1 1931 }
duke@1 1932
duke@1 1933 @Override
duke@1 1934 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1935 return t;
duke@1 1936 }
duke@1 1937 };
duke@1 1938 // </editor-fold>
duke@1 1939
duke@1 1940 // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
duke@1 1941 /**
duke@1 1942 * Returns true iff the first signature is a <em>sub
duke@1 1943 * signature</em> of the other. This is <b>not</b> an equivalence
duke@1 1944 * relation.
duke@1 1945 *
duke@1 1946 * @see "The Java Language Specification, Third Ed. (8.4.2)."
duke@1 1947 * @see #overrideEquivalent(Type t, Type s)
duke@1 1948 * @param t first signature (possibly raw).
duke@1 1949 * @param s second signature (could be subjected to erasure).
duke@1 1950 * @return true if t is a sub signature of s.
duke@1 1951 */
duke@1 1952 public boolean isSubSignature(Type t, Type s) {
duke@1 1953 return hasSameArgs(t, s) || hasSameArgs(t, erasure(s));
duke@1 1954 }
duke@1 1955
duke@1 1956 /**
duke@1 1957 * Returns true iff these signatures are related by <em>override
duke@1 1958 * equivalence</em>. This is the natural extension of
duke@1 1959 * isSubSignature to an equivalence relation.
duke@1 1960 *
duke@1 1961 * @see "The Java Language Specification, Third Ed. (8.4.2)."
duke@1 1962 * @see #isSubSignature(Type t, Type s)
duke@1 1963 * @param t a signature (possible raw, could be subjected to
duke@1 1964 * erasure).
duke@1 1965 * @param s a signature (possible raw, could be subjected to
duke@1 1966 * erasure).
duke@1 1967 * @return true if either argument is a sub signature of the other.
duke@1 1968 */
duke@1 1969 public boolean overrideEquivalent(Type t, Type s) {
duke@1 1970 return hasSameArgs(t, s) ||
duke@1 1971 hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
duke@1 1972 }
duke@1 1973
mcimadamore@673 1974 // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
mcimadamore@673 1975 class ImplementationCache {
mcimadamore@673 1976
mcimadamore@673 1977 private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
mcimadamore@673 1978 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
mcimadamore@673 1979
mcimadamore@673 1980 class Entry {
mcimadamore@673 1981 final MethodSymbol cachedImpl;
mcimadamore@673 1982 final Filter<Symbol> implFilter;
mcimadamore@673 1983 final boolean checkResult;
mcimadamore@688 1984 final Scope.ScopeCounter scopeCounter;
mcimadamore@673 1985
mcimadamore@673 1986 public Entry(MethodSymbol cachedImpl,
mcimadamore@673 1987 Filter<Symbol> scopeFilter,
mcimadamore@688 1988 boolean checkResult,
mcimadamore@688 1989 Scope.ScopeCounter scopeCounter) {
mcimadamore@673 1990 this.cachedImpl = cachedImpl;
mcimadamore@673 1991 this.implFilter = scopeFilter;
mcimadamore@673 1992 this.checkResult = checkResult;
mcimadamore@688 1993 this.scopeCounter = scopeCounter;
mcimadamore@673 1994 }
mcimadamore@673 1995
mcimadamore@688 1996 boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, Scope.ScopeCounter scopeCounter) {
mcimadamore@673 1997 return this.implFilter == scopeFilter &&
mcimadamore@688 1998 this.checkResult == checkResult &&
mcimadamore@688 1999 this.scopeCounter.val() >= scopeCounter.val();
mcimadamore@673 2000 }
mcimadamore@341 2001 }
mcimadamore@673 2002
mcimadamore@688 2003 MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter, Scope.ScopeCounter scopeCounter) {
mcimadamore@673 2004 SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
mcimadamore@673 2005 Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
mcimadamore@673 2006 if (cache == null) {
mcimadamore@673 2007 cache = new HashMap<TypeSymbol, Entry>();
mcimadamore@673 2008 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
mcimadamore@673 2009 }
mcimadamore@673 2010 Entry e = cache.get(origin);
mcimadamore@673 2011 if (e == null ||
mcimadamore@688 2012 !e.matches(implFilter, checkResult, scopeCounter)) {
mcimadamore@673 2013 MethodSymbol impl = implementationInternal(ms, origin, Types.this, checkResult, implFilter);
mcimadamore@688 2014 cache.put(origin, new Entry(impl, implFilter, checkResult, scopeCounter));
mcimadamore@673 2015 return impl;
mcimadamore@673 2016 }
mcimadamore@673 2017 else {
mcimadamore@673 2018 return e.cachedImpl;
mcimadamore@673 2019 }
mcimadamore@673 2020 }
mcimadamore@673 2021
mcimadamore@673 2022 private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, Types types, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@341 2023 for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = types.supertype(t)) {
mcimadamore@341 2024 while (t.tag == TYPEVAR)
mcimadamore@341 2025 t = t.getUpperBound();
mcimadamore@341 2026 TypeSymbol c = t.tsym;
mcimadamore@673 2027 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
mcimadamore@341 2028 e.scope != null;
mcimadamore@341 2029 e = e.next()) {
mcimadamore@673 2030 if (e.sym != null &&
mcimadamore@673 2031 e.sym.overrides(ms, origin, types, checkResult))
mcimadamore@673 2032 return (MethodSymbol)e.sym;
mcimadamore@341 2033 }
mcimadamore@341 2034 }
mcimadamore@673 2035 return null;
mcimadamore@341 2036 }
mcimadamore@341 2037 }
mcimadamore@341 2038
mcimadamore@673 2039 private ImplementationCache implCache = new ImplementationCache();
mcimadamore@673 2040
mcimadamore@673 2041 public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, Types types, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@688 2042 return implCache.get(ms, origin, checkResult, implFilter, scopeCounter);
mcimadamore@673 2043 }
mcimadamore@673 2044 // </editor-fold>
mcimadamore@673 2045
duke@1 2046 /**
duke@1 2047 * Does t have the same arguments as s? It is assumed that both
duke@1 2048 * types are (possibly polymorphic) method types. Monomorphic
duke@1 2049 * method types "have the same arguments", if their argument lists
duke@1 2050 * are equal. Polymorphic method types "have the same arguments",
duke@1 2051 * if they have the same arguments after renaming all type
duke@1 2052 * variables of one to corresponding type variables in the other,
duke@1 2053 * where correspondence is by position in the type parameter list.
duke@1 2054 */
duke@1 2055 public boolean hasSameArgs(Type t, Type s) {
duke@1 2056 return hasSameArgs.visit(t, s);
duke@1 2057 }
duke@1 2058 // where
duke@1 2059 private TypeRelation hasSameArgs = new TypeRelation() {
duke@1 2060
duke@1 2061 public Boolean visitType(Type t, Type s) {
duke@1 2062 throw new AssertionError();
duke@1 2063 }
duke@1 2064
duke@1 2065 @Override
duke@1 2066 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 2067 return s.tag == METHOD
duke@1 2068 && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
duke@1 2069 }
duke@1 2070
duke@1 2071 @Override
duke@1 2072 public Boolean visitForAll(ForAll t, Type s) {
duke@1 2073 if (s.tag != FORALL)
duke@1 2074 return false;
duke@1 2075
duke@1 2076 ForAll forAll = (ForAll)s;
duke@1 2077 return hasSameBounds(t, forAll)
duke@1 2078 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 2079 }
duke@1 2080
duke@1 2081 @Override
duke@1 2082 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 2083 return false;
duke@1 2084 }
duke@1 2085 };
duke@1 2086 // </editor-fold>
duke@1 2087
duke@1 2088 // <editor-fold defaultstate="collapsed" desc="subst">
duke@1 2089 public List<Type> subst(List<Type> ts,
duke@1 2090 List<Type> from,
duke@1 2091 List<Type> to) {
duke@1 2092 return new Subst(from, to).subst(ts);
duke@1 2093 }
duke@1 2094
duke@1 2095 /**
duke@1 2096 * Substitute all occurrences of a type in `from' with the
duke@1 2097 * corresponding type in `to' in 't'. Match lists `from' and `to'
duke@1 2098 * from the right: If lists have different length, discard leading
duke@1 2099 * elements of the longer list.
duke@1 2100 */
duke@1 2101 public Type subst(Type t, List<Type> from, List<Type> to) {
duke@1 2102 return new Subst(from, to).subst(t);
duke@1 2103 }
duke@1 2104
duke@1 2105 private class Subst extends UnaryVisitor<Type> {
duke@1 2106 List<Type> from;
duke@1 2107 List<Type> to;
duke@1 2108
duke@1 2109 public Subst(List<Type> from, List<Type> to) {
duke@1 2110 int fromLength = from.length();
duke@1 2111 int toLength = to.length();
duke@1 2112 while (fromLength > toLength) {
duke@1 2113 fromLength--;
duke@1 2114 from = from.tail;
duke@1 2115 }
duke@1 2116 while (fromLength < toLength) {
duke@1 2117 toLength--;
duke@1 2118 to = to.tail;
duke@1 2119 }
duke@1 2120 this.from = from;
duke@1 2121 this.to = to;
duke@1 2122 }
duke@1 2123
duke@1 2124 Type subst(Type t) {
duke@1 2125 if (from.tail == null)
duke@1 2126 return t;
duke@1 2127 else
duke@1 2128 return visit(t);
mcimadamore@238 2129 }
duke@1 2130
duke@1 2131 List<Type> subst(List<Type> ts) {
duke@1 2132 if (from.tail == null)
duke@1 2133 return ts;
duke@1 2134 boolean wild = false;
duke@1 2135 if (ts.nonEmpty() && from.nonEmpty()) {
duke@1 2136 Type head1 = subst(ts.head);
duke@1 2137 List<Type> tail1 = subst(ts.tail);
duke@1 2138 if (head1 != ts.head || tail1 != ts.tail)
duke@1 2139 return tail1.prepend(head1);
duke@1 2140 }
duke@1 2141 return ts;
duke@1 2142 }
duke@1 2143
duke@1 2144 public Type visitType(Type t, Void ignored) {
duke@1 2145 return t;
duke@1 2146 }
duke@1 2147
duke@1 2148 @Override
duke@1 2149 public Type visitMethodType(MethodType t, Void ignored) {
duke@1 2150 List<Type> argtypes = subst(t.argtypes);
duke@1 2151 Type restype = subst(t.restype);
duke@1 2152 List<Type> thrown = subst(t.thrown);
duke@1 2153 if (argtypes == t.argtypes &&
duke@1 2154 restype == t.restype &&
duke@1 2155 thrown == t.thrown)
duke@1 2156 return t;
duke@1 2157 else
duke@1 2158 return new MethodType(argtypes, restype, thrown, t.tsym);
duke@1 2159 }
duke@1 2160
duke@1 2161 @Override
duke@1 2162 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2163 for (List<Type> from = this.from, to = this.to;
duke@1 2164 from.nonEmpty();
duke@1 2165 from = from.tail, to = to.tail) {
duke@1 2166 if (t == from.head) {
duke@1 2167 return to.head.withTypeVar(t);
duke@1 2168 }
duke@1 2169 }
duke@1 2170 return t;
duke@1 2171 }
duke@1 2172
duke@1 2173 @Override
duke@1 2174 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2175 if (!t.isCompound()) {
duke@1 2176 List<Type> typarams = t.getTypeArguments();
duke@1 2177 List<Type> typarams1 = subst(typarams);
duke@1 2178 Type outer = t.getEnclosingType();
duke@1 2179 Type outer1 = subst(outer);
duke@1 2180 if (typarams1 == typarams && outer1 == outer)
duke@1 2181 return t;
duke@1 2182 else
duke@1 2183 return new ClassType(outer1, typarams1, t.tsym);
duke@1 2184 } else {
duke@1 2185 Type st = subst(supertype(t));
duke@1 2186 List<Type> is = upperBounds(subst(interfaces(t)));
duke@1 2187 if (st == supertype(t) && is == interfaces(t))
duke@1 2188 return t;
duke@1 2189 else
duke@1 2190 return makeCompoundType(is.prepend(st));
duke@1 2191 }
duke@1 2192 }
duke@1 2193
duke@1 2194 @Override
duke@1 2195 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 2196 Type bound = t.type;
duke@1 2197 if (t.kind != BoundKind.UNBOUND)
duke@1 2198 bound = subst(bound);
duke@1 2199 if (bound == t.type) {
duke@1 2200 return t;
duke@1 2201 } else {
duke@1 2202 if (t.isExtendsBound() && bound.isExtendsBound())
duke@1 2203 bound = upperBound(bound);
duke@1 2204 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
duke@1 2205 }
duke@1 2206 }
duke@1 2207
duke@1 2208 @Override
duke@1 2209 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 2210 Type elemtype = subst(t.elemtype);
duke@1 2211 if (elemtype == t.elemtype)
duke@1 2212 return t;
duke@1 2213 else
duke@1 2214 return new ArrayType(upperBound(elemtype), t.tsym);
duke@1 2215 }
duke@1 2216
duke@1 2217 @Override
duke@1 2218 public Type visitForAll(ForAll t, Void ignored) {
duke@1 2219 List<Type> tvars1 = substBounds(t.tvars, from, to);
duke@1 2220 Type qtype1 = subst(t.qtype);
duke@1 2221 if (tvars1 == t.tvars && qtype1 == t.qtype) {
duke@1 2222 return t;
duke@1 2223 } else if (tvars1 == t.tvars) {
duke@1 2224 return new ForAll(tvars1, qtype1);
duke@1 2225 } else {
duke@1 2226 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
duke@1 2227 }
duke@1 2228 }
duke@1 2229
duke@1 2230 @Override
duke@1 2231 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2232 return t;
duke@1 2233 }
duke@1 2234 }
duke@1 2235
duke@1 2236 public List<Type> substBounds(List<Type> tvars,
duke@1 2237 List<Type> from,
duke@1 2238 List<Type> to) {
duke@1 2239 if (tvars.isEmpty())
duke@1 2240 return tvars;
duke@1 2241 ListBuffer<Type> newBoundsBuf = lb();
duke@1 2242 boolean changed = false;
duke@1 2243 // calculate new bounds
duke@1 2244 for (Type t : tvars) {
duke@1 2245 TypeVar tv = (TypeVar) t;
duke@1 2246 Type bound = subst(tv.bound, from, to);
duke@1 2247 if (bound != tv.bound)
duke@1 2248 changed = true;
duke@1 2249 newBoundsBuf.append(bound);
duke@1 2250 }
duke@1 2251 if (!changed)
duke@1 2252 return tvars;
duke@1 2253 ListBuffer<Type> newTvars = lb();
duke@1 2254 // create new type variables without bounds
duke@1 2255 for (Type t : tvars) {
duke@1 2256 newTvars.append(new TypeVar(t.tsym, null, syms.botType));
duke@1 2257 }
duke@1 2258 // the new bounds should use the new type variables in place
duke@1 2259 // of the old
duke@1 2260 List<Type> newBounds = newBoundsBuf.toList();
duke@1 2261 from = tvars;
duke@1 2262 to = newTvars.toList();
duke@1 2263 for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
duke@1 2264 newBounds.head = subst(newBounds.head, from, to);
duke@1 2265 }
duke@1 2266 newBounds = newBoundsBuf.toList();
duke@1 2267 // set the bounds of new type variables to the new bounds
duke@1 2268 for (Type t : newTvars.toList()) {
duke@1 2269 TypeVar tv = (TypeVar) t;
duke@1 2270 tv.bound = newBounds.head;
duke@1 2271 newBounds = newBounds.tail;
duke@1 2272 }
duke@1 2273 return newTvars.toList();
duke@1 2274 }
duke@1 2275
duke@1 2276 public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
duke@1 2277 Type bound1 = subst(t.bound, from, to);
duke@1 2278 if (bound1 == t.bound)
duke@1 2279 return t;
mcimadamore@212 2280 else {
mcimadamore@212 2281 // create new type variable without bounds
mcimadamore@212 2282 TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
mcimadamore@212 2283 // the new bound should use the new type variable in place
mcimadamore@212 2284 // of the old
mcimadamore@212 2285 tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
mcimadamore@212 2286 return tv;
mcimadamore@212 2287 }
duke@1 2288 }
duke@1 2289 // </editor-fold>
duke@1 2290
duke@1 2291 // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
duke@1 2292 /**
duke@1 2293 * Does t have the same bounds for quantified variables as s?
duke@1 2294 */
duke@1 2295 boolean hasSameBounds(ForAll t, ForAll s) {
duke@1 2296 List<Type> l1 = t.tvars;
duke@1 2297 List<Type> l2 = s.tvars;
duke@1 2298 while (l1.nonEmpty() && l2.nonEmpty() &&
duke@1 2299 isSameType(l1.head.getUpperBound(),
duke@1 2300 subst(l2.head.getUpperBound(),
duke@1 2301 s.tvars,
duke@1 2302 t.tvars))) {
duke@1 2303 l1 = l1.tail;
duke@1 2304 l2 = l2.tail;
duke@1 2305 }
duke@1 2306 return l1.isEmpty() && l2.isEmpty();
duke@1 2307 }
duke@1 2308 // </editor-fold>
duke@1 2309
duke@1 2310 // <editor-fold defaultstate="collapsed" desc="newInstances">
duke@1 2311 /** Create new vector of type variables from list of variables
duke@1 2312 * changing all recursive bounds from old to new list.
duke@1 2313 */
duke@1 2314 public List<Type> newInstances(List<Type> tvars) {
duke@1 2315 List<Type> tvars1 = Type.map(tvars, newInstanceFun);
duke@1 2316 for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
duke@1 2317 TypeVar tv = (TypeVar) l.head;
duke@1 2318 tv.bound = subst(tv.bound, tvars, tvars1);
duke@1 2319 }
duke@1 2320 return tvars1;
duke@1 2321 }
duke@1 2322 static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
duke@1 2323 public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
duke@1 2324 };
duke@1 2325 // </editor-fold>
duke@1 2326
jjg@110 2327 // <editor-fold defaultstate="collapsed" desc="createErrorType">
jjg@110 2328 public Type createErrorType(Type originalType) {
jjg@110 2329 return new ErrorType(originalType, syms.errSymbol);
jjg@110 2330 }
jjg@110 2331
jjg@110 2332 public Type createErrorType(ClassSymbol c, Type originalType) {
jjg@110 2333 return new ErrorType(c, originalType);
jjg@110 2334 }
jjg@110 2335
jjg@110 2336 public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
jjg@110 2337 return new ErrorType(name, container, originalType);
jjg@110 2338 }
jjg@110 2339 // </editor-fold>
jjg@110 2340
duke@1 2341 // <editor-fold defaultstate="collapsed" desc="rank">
duke@1 2342 /**
duke@1 2343 * The rank of a class is the length of the longest path between
duke@1 2344 * the class and java.lang.Object in the class inheritance
duke@1 2345 * graph. Undefined for all but reference types.
duke@1 2346 */
duke@1 2347 public int rank(Type t) {
duke@1 2348 switch(t.tag) {
duke@1 2349 case CLASS: {
duke@1 2350 ClassType cls = (ClassType)t;
duke@1 2351 if (cls.rank_field < 0) {
duke@1 2352 Name fullname = cls.tsym.getQualifiedName();
jjg@113 2353 if (fullname == names.java_lang_Object)
duke@1 2354 cls.rank_field = 0;
duke@1 2355 else {
duke@1 2356 int r = rank(supertype(cls));
duke@1 2357 for (List<Type> l = interfaces(cls);
duke@1 2358 l.nonEmpty();
duke@1 2359 l = l.tail) {
duke@1 2360 if (rank(l.head) > r)
duke@1 2361 r = rank(l.head);
duke@1 2362 }
duke@1 2363 cls.rank_field = r + 1;
duke@1 2364 }
duke@1 2365 }
duke@1 2366 return cls.rank_field;
duke@1 2367 }
duke@1 2368 case TYPEVAR: {
duke@1 2369 TypeVar tvar = (TypeVar)t;
duke@1 2370 if (tvar.rank_field < 0) {
duke@1 2371 int r = rank(supertype(tvar));
duke@1 2372 for (List<Type> l = interfaces(tvar);
duke@1 2373 l.nonEmpty();
duke@1 2374 l = l.tail) {
duke@1 2375 if (rank(l.head) > r) r = rank(l.head);
duke@1 2376 }
duke@1 2377 tvar.rank_field = r + 1;
duke@1 2378 }
duke@1 2379 return tvar.rank_field;
duke@1 2380 }
duke@1 2381 case ERROR:
duke@1 2382 return 0;
duke@1 2383 default:
duke@1 2384 throw new AssertionError();
duke@1 2385 }
duke@1 2386 }
duke@1 2387 // </editor-fold>
duke@1 2388
mcimadamore@121 2389 /**
mcimadamore@238 2390 * Helper method for generating a string representation of a given type
mcimadamore@121 2391 * accordingly to a given locale
mcimadamore@121 2392 */
mcimadamore@121 2393 public String toString(Type t, Locale locale) {
mcimadamore@238 2394 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2395 }
mcimadamore@121 2396
mcimadamore@121 2397 /**
mcimadamore@238 2398 * Helper method for generating a string representation of a given type
mcimadamore@121 2399 * accordingly to a given locale
mcimadamore@121 2400 */
mcimadamore@121 2401 public String toString(Symbol t, Locale locale) {
mcimadamore@238 2402 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2403 }
mcimadamore@121 2404
duke@1 2405 // <editor-fold defaultstate="collapsed" desc="toString">
duke@1 2406 /**
duke@1 2407 * This toString is slightly more descriptive than the one on Type.
mcimadamore@121 2408 *
mcimadamore@121 2409 * @deprecated Types.toString(Type t, Locale l) provides better support
mcimadamore@121 2410 * for localization
duke@1 2411 */
mcimadamore@121 2412 @Deprecated
duke@1 2413 public String toString(Type t) {
duke@1 2414 if (t.tag == FORALL) {
duke@1 2415 ForAll forAll = (ForAll)t;
duke@1 2416 return typaramsString(forAll.tvars) + forAll.qtype;
duke@1 2417 }
duke@1 2418 return "" + t;
duke@1 2419 }
duke@1 2420 // where
duke@1 2421 private String typaramsString(List<Type> tvars) {
duke@1 2422 StringBuffer s = new StringBuffer();
duke@1 2423 s.append('<');
duke@1 2424 boolean first = true;
duke@1 2425 for (Type t : tvars) {
duke@1 2426 if (!first) s.append(", ");
duke@1 2427 first = false;
duke@1 2428 appendTyparamString(((TypeVar)t), s);
duke@1 2429 }
duke@1 2430 s.append('>');
duke@1 2431 return s.toString();
duke@1 2432 }
duke@1 2433 private void appendTyparamString(TypeVar t, StringBuffer buf) {
duke@1 2434 buf.append(t);
duke@1 2435 if (t.bound == null ||
duke@1 2436 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
duke@1 2437 return;
duke@1 2438 buf.append(" extends "); // Java syntax; no need for i18n
duke@1 2439 Type bound = t.bound;
duke@1 2440 if (!bound.isCompound()) {
duke@1 2441 buf.append(bound);
duke@1 2442 } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
duke@1 2443 buf.append(supertype(t));
duke@1 2444 for (Type intf : interfaces(t)) {
duke@1 2445 buf.append('&');
duke@1 2446 buf.append(intf);
duke@1 2447 }
duke@1 2448 } else {
duke@1 2449 // No superclass was given in bounds.
duke@1 2450 // In this case, supertype is Object, erasure is first interface.
duke@1 2451 boolean first = true;
duke@1 2452 for (Type intf : interfaces(t)) {
duke@1 2453 if (!first) buf.append('&');
duke@1 2454 first = false;
duke@1 2455 buf.append(intf);
duke@1 2456 }
duke@1 2457 }
duke@1 2458 }
duke@1 2459 // </editor-fold>
duke@1 2460
duke@1 2461 // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
duke@1 2462 /**
duke@1 2463 * A cache for closures.
duke@1 2464 *
duke@1 2465 * <p>A closure is a list of all the supertypes and interfaces of
duke@1 2466 * a class or interface type, ordered by ClassSymbol.precedes
duke@1 2467 * (that is, subclasses come first, arbitrary but fixed
duke@1 2468 * otherwise).
duke@1 2469 */
duke@1 2470 private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
duke@1 2471
duke@1 2472 /**
duke@1 2473 * Returns the closure of a class or interface type.
duke@1 2474 */
duke@1 2475 public List<Type> closure(Type t) {
duke@1 2476 List<Type> cl = closureCache.get(t);
duke@1 2477 if (cl == null) {
duke@1 2478 Type st = supertype(t);
duke@1 2479 if (!t.isCompound()) {
duke@1 2480 if (st.tag == CLASS) {
duke@1 2481 cl = insert(closure(st), t);
duke@1 2482 } else if (st.tag == TYPEVAR) {
duke@1 2483 cl = closure(st).prepend(t);
duke@1 2484 } else {
duke@1 2485 cl = List.of(t);
duke@1 2486 }
duke@1 2487 } else {
duke@1 2488 cl = closure(supertype(t));
duke@1 2489 }
duke@1 2490 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
duke@1 2491 cl = union(cl, closure(l.head));
duke@1 2492 closureCache.put(t, cl);
duke@1 2493 }
duke@1 2494 return cl;
duke@1 2495 }
duke@1 2496
duke@1 2497 /**
duke@1 2498 * Insert a type in a closure
duke@1 2499 */
duke@1 2500 public List<Type> insert(List<Type> cl, Type t) {
duke@1 2501 if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
duke@1 2502 return cl.prepend(t);
duke@1 2503 } else if (cl.head.tsym.precedes(t.tsym, this)) {
duke@1 2504 return insert(cl.tail, t).prepend(cl.head);
duke@1 2505 } else {
duke@1 2506 return cl;
duke@1 2507 }
duke@1 2508 }
duke@1 2509
duke@1 2510 /**
duke@1 2511 * Form the union of two closures
duke@1 2512 */
duke@1 2513 public List<Type> union(List<Type> cl1, List<Type> cl2) {
duke@1 2514 if (cl1.isEmpty()) {
duke@1 2515 return cl2;
duke@1 2516 } else if (cl2.isEmpty()) {
duke@1 2517 return cl1;
duke@1 2518 } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
duke@1 2519 return union(cl1.tail, cl2).prepend(cl1.head);
duke@1 2520 } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
duke@1 2521 return union(cl1, cl2.tail).prepend(cl2.head);
duke@1 2522 } else {
duke@1 2523 return union(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2524 }
duke@1 2525 }
duke@1 2526
duke@1 2527 /**
duke@1 2528 * Intersect two closures
duke@1 2529 */
duke@1 2530 public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
duke@1 2531 if (cl1 == cl2)
duke@1 2532 return cl1;
duke@1 2533 if (cl1.isEmpty() || cl2.isEmpty())
duke@1 2534 return List.nil();
duke@1 2535 if (cl1.head.tsym.precedes(cl2.head.tsym, this))
duke@1 2536 return intersect(cl1.tail, cl2);
duke@1 2537 if (cl2.head.tsym.precedes(cl1.head.tsym, this))
duke@1 2538 return intersect(cl1, cl2.tail);
duke@1 2539 if (isSameType(cl1.head, cl2.head))
duke@1 2540 return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2541 if (cl1.head.tsym == cl2.head.tsym &&
duke@1 2542 cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
duke@1 2543 if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
duke@1 2544 Type merge = merge(cl1.head,cl2.head);
duke@1 2545 return intersect(cl1.tail, cl2.tail).prepend(merge);
duke@1 2546 }
duke@1 2547 if (cl1.head.isRaw() || cl2.head.isRaw())
duke@1 2548 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
duke@1 2549 }
duke@1 2550 return intersect(cl1.tail, cl2.tail);
duke@1 2551 }
duke@1 2552 // where
duke@1 2553 class TypePair {
duke@1 2554 final Type t1;
duke@1 2555 final Type t2;
duke@1 2556 TypePair(Type t1, Type t2) {
duke@1 2557 this.t1 = t1;
duke@1 2558 this.t2 = t2;
duke@1 2559 }
duke@1 2560 @Override
duke@1 2561 public int hashCode() {
jjg@507 2562 return 127 * Types.hashCode(t1) + Types.hashCode(t2);
duke@1 2563 }
duke@1 2564 @Override
duke@1 2565 public boolean equals(Object obj) {
duke@1 2566 if (!(obj instanceof TypePair))
duke@1 2567 return false;
duke@1 2568 TypePair typePair = (TypePair)obj;
duke@1 2569 return isSameType(t1, typePair.t1)
duke@1 2570 && isSameType(t2, typePair.t2);
duke@1 2571 }
duke@1 2572 }
duke@1 2573 Set<TypePair> mergeCache = new HashSet<TypePair>();
duke@1 2574 private Type merge(Type c1, Type c2) {
duke@1 2575 ClassType class1 = (ClassType) c1;
duke@1 2576 List<Type> act1 = class1.getTypeArguments();
duke@1 2577 ClassType class2 = (ClassType) c2;
duke@1 2578 List<Type> act2 = class2.getTypeArguments();
duke@1 2579 ListBuffer<Type> merged = new ListBuffer<Type>();
duke@1 2580 List<Type> typarams = class1.tsym.type.getTypeArguments();
duke@1 2581
duke@1 2582 while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
duke@1 2583 if (containsType(act1.head, act2.head)) {
duke@1 2584 merged.append(act1.head);
duke@1 2585 } else if (containsType(act2.head, act1.head)) {
duke@1 2586 merged.append(act2.head);
duke@1 2587 } else {
duke@1 2588 TypePair pair = new TypePair(c1, c2);
duke@1 2589 Type m;
duke@1 2590 if (mergeCache.add(pair)) {
duke@1 2591 m = new WildcardType(lub(upperBound(act1.head),
duke@1 2592 upperBound(act2.head)),
duke@1 2593 BoundKind.EXTENDS,
duke@1 2594 syms.boundClass);
duke@1 2595 mergeCache.remove(pair);
duke@1 2596 } else {
duke@1 2597 m = new WildcardType(syms.objectType,
duke@1 2598 BoundKind.UNBOUND,
duke@1 2599 syms.boundClass);
duke@1 2600 }
duke@1 2601 merged.append(m.withTypeVar(typarams.head));
duke@1 2602 }
duke@1 2603 act1 = act1.tail;
duke@1 2604 act2 = act2.tail;
duke@1 2605 typarams = typarams.tail;
duke@1 2606 }
duke@1 2607 assert(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
duke@1 2608 return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
duke@1 2609 }
duke@1 2610
duke@1 2611 /**
duke@1 2612 * Return the minimum type of a closure, a compound type if no
duke@1 2613 * unique minimum exists.
duke@1 2614 */
duke@1 2615 private Type compoundMin(List<Type> cl) {
duke@1 2616 if (cl.isEmpty()) return syms.objectType;
duke@1 2617 List<Type> compound = closureMin(cl);
duke@1 2618 if (compound.isEmpty())
duke@1 2619 return null;
duke@1 2620 else if (compound.tail.isEmpty())
duke@1 2621 return compound.head;
duke@1 2622 else
duke@1 2623 return makeCompoundType(compound);
duke@1 2624 }
duke@1 2625
duke@1 2626 /**
duke@1 2627 * Return the minimum types of a closure, suitable for computing
duke@1 2628 * compoundMin or glb.
duke@1 2629 */
duke@1 2630 private List<Type> closureMin(List<Type> cl) {
duke@1 2631 ListBuffer<Type> classes = lb();
duke@1 2632 ListBuffer<Type> interfaces = lb();
duke@1 2633 while (!cl.isEmpty()) {
duke@1 2634 Type current = cl.head;
duke@1 2635 if (current.isInterface())
duke@1 2636 interfaces.append(current);
duke@1 2637 else
duke@1 2638 classes.append(current);
duke@1 2639 ListBuffer<Type> candidates = lb();
duke@1 2640 for (Type t : cl.tail) {
duke@1 2641 if (!isSubtypeNoCapture(current, t))
duke@1 2642 candidates.append(t);
duke@1 2643 }
duke@1 2644 cl = candidates.toList();
duke@1 2645 }
duke@1 2646 return classes.appendList(interfaces).toList();
duke@1 2647 }
duke@1 2648
duke@1 2649 /**
duke@1 2650 * Return the least upper bound of pair of types. if the lub does
duke@1 2651 * not exist return null.
duke@1 2652 */
duke@1 2653 public Type lub(Type t1, Type t2) {
duke@1 2654 return lub(List.of(t1, t2));
duke@1 2655 }
duke@1 2656
duke@1 2657 /**
duke@1 2658 * Return the least upper bound (lub) of set of types. If the lub
duke@1 2659 * does not exist return the type of null (bottom).
duke@1 2660 */
duke@1 2661 public Type lub(List<Type> ts) {
duke@1 2662 final int ARRAY_BOUND = 1;
duke@1 2663 final int CLASS_BOUND = 2;
duke@1 2664 int boundkind = 0;
duke@1 2665 for (Type t : ts) {
duke@1 2666 switch (t.tag) {
duke@1 2667 case CLASS:
duke@1 2668 boundkind |= CLASS_BOUND;
duke@1 2669 break;
duke@1 2670 case ARRAY:
duke@1 2671 boundkind |= ARRAY_BOUND;
duke@1 2672 break;
duke@1 2673 case TYPEVAR:
duke@1 2674 do {
duke@1 2675 t = t.getUpperBound();
duke@1 2676 } while (t.tag == TYPEVAR);
duke@1 2677 if (t.tag == ARRAY) {
duke@1 2678 boundkind |= ARRAY_BOUND;
duke@1 2679 } else {
duke@1 2680 boundkind |= CLASS_BOUND;
duke@1 2681 }
duke@1 2682 break;
duke@1 2683 default:
duke@1 2684 if (t.isPrimitive())
mcimadamore@5 2685 return syms.errType;
duke@1 2686 }
duke@1 2687 }
duke@1 2688 switch (boundkind) {
duke@1 2689 case 0:
duke@1 2690 return syms.botType;
duke@1 2691
duke@1 2692 case ARRAY_BOUND:
duke@1 2693 // calculate lub(A[], B[])
duke@1 2694 List<Type> elements = Type.map(ts, elemTypeFun);
duke@1 2695 for (Type t : elements) {
duke@1 2696 if (t.isPrimitive()) {
duke@1 2697 // if a primitive type is found, then return
duke@1 2698 // arraySuperType unless all the types are the
duke@1 2699 // same
duke@1 2700 Type first = ts.head;
duke@1 2701 for (Type s : ts.tail) {
duke@1 2702 if (!isSameType(first, s)) {
duke@1 2703 // lub(int[], B[]) is Cloneable & Serializable
duke@1 2704 return arraySuperType();
duke@1 2705 }
duke@1 2706 }
duke@1 2707 // all the array types are the same, return one
duke@1 2708 // lub(int[], int[]) is int[]
duke@1 2709 return first;
duke@1 2710 }
duke@1 2711 }
duke@1 2712 // lub(A[], B[]) is lub(A, B)[]
duke@1 2713 return new ArrayType(lub(elements), syms.arrayClass);
duke@1 2714
duke@1 2715 case CLASS_BOUND:
duke@1 2716 // calculate lub(A, B)
duke@1 2717 while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
duke@1 2718 ts = ts.tail;
duke@1 2719 assert !ts.isEmpty();
duke@1 2720 List<Type> cl = closure(ts.head);
duke@1 2721 for (Type t : ts.tail) {
duke@1 2722 if (t.tag == CLASS || t.tag == TYPEVAR)
duke@1 2723 cl = intersect(cl, closure(t));
duke@1 2724 }
duke@1 2725 return compoundMin(cl);
duke@1 2726
duke@1 2727 default:
duke@1 2728 // calculate lub(A, B[])
duke@1 2729 List<Type> classes = List.of(arraySuperType());
duke@1 2730 for (Type t : ts) {
duke@1 2731 if (t.tag != ARRAY) // Filter out any arrays
duke@1 2732 classes = classes.prepend(t);
duke@1 2733 }
duke@1 2734 // lub(A, B[]) is lub(A, arraySuperType)
duke@1 2735 return lub(classes);
duke@1 2736 }
duke@1 2737 }
duke@1 2738 // where
duke@1 2739 private Type arraySuperType = null;
duke@1 2740 private Type arraySuperType() {
duke@1 2741 // initialized lazily to avoid problems during compiler startup
duke@1 2742 if (arraySuperType == null) {
duke@1 2743 synchronized (this) {
duke@1 2744 if (arraySuperType == null) {
duke@1 2745 // JLS 10.8: all arrays implement Cloneable and Serializable.
duke@1 2746 arraySuperType = makeCompoundType(List.of(syms.serializableType,
duke@1 2747 syms.cloneableType),
duke@1 2748 syms.objectType);
duke@1 2749 }
duke@1 2750 }
duke@1 2751 }
duke@1 2752 return arraySuperType;
duke@1 2753 }
duke@1 2754 // </editor-fold>
duke@1 2755
duke@1 2756 // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
mcimadamore@210 2757 public Type glb(List<Type> ts) {
mcimadamore@210 2758 Type t1 = ts.head;
mcimadamore@210 2759 for (Type t2 : ts.tail) {
mcimadamore@210 2760 if (t1.isErroneous())
mcimadamore@210 2761 return t1;
mcimadamore@210 2762 t1 = glb(t1, t2);
mcimadamore@210 2763 }
mcimadamore@210 2764 return t1;
mcimadamore@210 2765 }
mcimadamore@210 2766 //where
duke@1 2767 public Type glb(Type t, Type s) {
duke@1 2768 if (s == null)
duke@1 2769 return t;
mcimadamore@753 2770 else if (t.isPrimitive() || s.isPrimitive())
mcimadamore@753 2771 return syms.errType;
duke@1 2772 else if (isSubtypeNoCapture(t, s))
duke@1 2773 return t;
duke@1 2774 else if (isSubtypeNoCapture(s, t))
duke@1 2775 return s;
duke@1 2776
duke@1 2777 List<Type> closure = union(closure(t), closure(s));
duke@1 2778 List<Type> bounds = closureMin(closure);
duke@1 2779
duke@1 2780 if (bounds.isEmpty()) { // length == 0
duke@1 2781 return syms.objectType;
duke@1 2782 } else if (bounds.tail.isEmpty()) { // length == 1
duke@1 2783 return bounds.head;
duke@1 2784 } else { // length > 1
duke@1 2785 int classCount = 0;
duke@1 2786 for (Type bound : bounds)
duke@1 2787 if (!bound.isInterface())
duke@1 2788 classCount++;
duke@1 2789 if (classCount > 1)
jjg@110 2790 return createErrorType(t);
duke@1 2791 }
duke@1 2792 return makeCompoundType(bounds);
duke@1 2793 }
duke@1 2794 // </editor-fold>
duke@1 2795
duke@1 2796 // <editor-fold defaultstate="collapsed" desc="hashCode">
duke@1 2797 /**
duke@1 2798 * Compute a hash code on a type.
duke@1 2799 */
duke@1 2800 public static int hashCode(Type t) {
duke@1 2801 return hashCode.visit(t);
duke@1 2802 }
duke@1 2803 // where
duke@1 2804 private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
duke@1 2805
duke@1 2806 public Integer visitType(Type t, Void ignored) {
duke@1 2807 return t.tag;
duke@1 2808 }
duke@1 2809
duke@1 2810 @Override
duke@1 2811 public Integer visitClassType(ClassType t, Void ignored) {
duke@1 2812 int result = visit(t.getEnclosingType());
duke@1 2813 result *= 127;
duke@1 2814 result += t.tsym.flatName().hashCode();
duke@1 2815 for (Type s : t.getTypeArguments()) {
duke@1 2816 result *= 127;
duke@1 2817 result += visit(s);
duke@1 2818 }
duke@1 2819 return result;
duke@1 2820 }
duke@1 2821
duke@1 2822 @Override
duke@1 2823 public Integer visitWildcardType(WildcardType t, Void ignored) {
duke@1 2824 int result = t.kind.hashCode();
duke@1 2825 if (t.type != null) {
duke@1 2826 result *= 127;
duke@1 2827 result += visit(t.type);
duke@1 2828 }
duke@1 2829 return result;
duke@1 2830 }
duke@1 2831
duke@1 2832 @Override
duke@1 2833 public Integer visitArrayType(ArrayType t, Void ignored) {
duke@1 2834 return visit(t.elemtype) + 12;
duke@1 2835 }
duke@1 2836
duke@1 2837 @Override
duke@1 2838 public Integer visitTypeVar(TypeVar t, Void ignored) {
duke@1 2839 return System.identityHashCode(t.tsym);
duke@1 2840 }
duke@1 2841
duke@1 2842 @Override
duke@1 2843 public Integer visitUndetVar(UndetVar t, Void ignored) {
duke@1 2844 return System.identityHashCode(t);
duke@1 2845 }
duke@1 2846
duke@1 2847 @Override
duke@1 2848 public Integer visitErrorType(ErrorType t, Void ignored) {
duke@1 2849 return 0;
duke@1 2850 }
duke@1 2851 };
duke@1 2852 // </editor-fold>
duke@1 2853
duke@1 2854 // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
duke@1 2855 /**
duke@1 2856 * Does t have a result that is a subtype of the result type of s,
duke@1 2857 * suitable for covariant returns? It is assumed that both types
duke@1 2858 * are (possibly polymorphic) method types. Monomorphic method
duke@1 2859 * types are handled in the obvious way. Polymorphic method types
duke@1 2860 * require renaming all type variables of one to corresponding
duke@1 2861 * type variables in the other, where correspondence is by
duke@1 2862 * position in the type parameter list. */
duke@1 2863 public boolean resultSubtype(Type t, Type s, Warner warner) {
duke@1 2864 List<Type> tvars = t.getTypeArguments();
duke@1 2865 List<Type> svars = s.getTypeArguments();
duke@1 2866 Type tres = t.getReturnType();
duke@1 2867 Type sres = subst(s.getReturnType(), svars, tvars);
duke@1 2868 return covariantReturnType(tres, sres, warner);
duke@1 2869 }
duke@1 2870
duke@1 2871 /**
duke@1 2872 * Return-Type-Substitutable.
duke@1 2873 * @see <a href="http://java.sun.com/docs/books/jls/">The Java
duke@1 2874 * Language Specification, Third Ed. (8.4.5)</a>
duke@1 2875 */
duke@1 2876 public boolean returnTypeSubstitutable(Type r1, Type r2) {
duke@1 2877 if (hasSameArgs(r1, r2))
tbell@202 2878 return resultSubtype(r1, r2, Warner.noWarnings);
duke@1 2879 else
duke@1 2880 return covariantReturnType(r1.getReturnType(),
tbell@202 2881 erasure(r2.getReturnType()),
tbell@202 2882 Warner.noWarnings);
tbell@202 2883 }
tbell@202 2884
tbell@202 2885 public boolean returnTypeSubstitutable(Type r1,
tbell@202 2886 Type r2, Type r2res,
tbell@202 2887 Warner warner) {
tbell@202 2888 if (isSameType(r1.getReturnType(), r2res))
tbell@202 2889 return true;
tbell@202 2890 if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
tbell@202 2891 return false;
tbell@202 2892
tbell@202 2893 if (hasSameArgs(r1, r2))
tbell@202 2894 return covariantReturnType(r1.getReturnType(), r2res, warner);
tbell@202 2895 if (!source.allowCovariantReturns())
tbell@202 2896 return false;
tbell@202 2897 if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
tbell@202 2898 return true;
tbell@202 2899 if (!isSubtype(r1.getReturnType(), erasure(r2res)))
tbell@202 2900 return false;
tbell@202 2901 warner.warnUnchecked();
tbell@202 2902 return true;
duke@1 2903 }
duke@1 2904
duke@1 2905 /**
duke@1 2906 * Is t an appropriate return type in an overrider for a
duke@1 2907 * method that returns s?
duke@1 2908 */
duke@1 2909 public boolean covariantReturnType(Type t, Type s, Warner warner) {
tbell@202 2910 return
tbell@202 2911 isSameType(t, s) ||
tbell@202 2912 source.allowCovariantReturns() &&
duke@1 2913 !t.isPrimitive() &&
tbell@202 2914 !s.isPrimitive() &&
tbell@202 2915 isAssignable(t, s, warner);
duke@1 2916 }
duke@1 2917 // </editor-fold>
duke@1 2918
duke@1 2919 // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
duke@1 2920 /**
duke@1 2921 * Return the class that boxes the given primitive.
duke@1 2922 */
duke@1 2923 public ClassSymbol boxedClass(Type t) {
duke@1 2924 return reader.enterClass(syms.boxedName[t.tag]);
duke@1 2925 }
duke@1 2926
duke@1 2927 /**
mcimadamore@753 2928 * Return the boxed type if 't' is primitive, otherwise return 't' itself.
mcimadamore@753 2929 */
mcimadamore@753 2930 public Type boxedTypeOrType(Type t) {
mcimadamore@753 2931 return t.isPrimitive() ?
mcimadamore@753 2932 boxedClass(t).type :
mcimadamore@753 2933 t;
mcimadamore@753 2934 }
mcimadamore@753 2935
mcimadamore@753 2936 /**
duke@1 2937 * Return the primitive type corresponding to a boxed type.
duke@1 2938 */
duke@1 2939 public Type unboxedType(Type t) {
duke@1 2940 if (allowBoxing) {
duke@1 2941 for (int i=0; i<syms.boxedName.length; i++) {
duke@1 2942 Name box = syms.boxedName[i];
duke@1 2943 if (box != null &&
duke@1 2944 asSuper(t, reader.enterClass(box)) != null)
duke@1 2945 return syms.typeOfTag[i];
duke@1 2946 }
duke@1 2947 }
duke@1 2948 return Type.noType;
duke@1 2949 }
duke@1 2950 // </editor-fold>
duke@1 2951
duke@1 2952 // <editor-fold defaultstate="collapsed" desc="Capture conversion">
duke@1 2953 /*
duke@1 2954 * JLS 3rd Ed. 5.1.10 Capture Conversion:
duke@1 2955 *
duke@1 2956 * Let G name a generic type declaration with n formal type
duke@1 2957 * parameters A1 ... An with corresponding bounds U1 ... Un. There
duke@1 2958 * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
duke@1 2959 * where, for 1 <= i <= n:
duke@1 2960 *
duke@1 2961 * + If Ti is a wildcard type argument (4.5.1) of the form ? then
duke@1 2962 * Si is a fresh type variable whose upper bound is
duke@1 2963 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
duke@1 2964 * type.
duke@1 2965 *
duke@1 2966 * + If Ti is a wildcard type argument of the form ? extends Bi,
duke@1 2967 * then Si is a fresh type variable whose upper bound is
duke@1 2968 * glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
duke@1 2969 * the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
duke@1 2970 * a compile-time error if for any two classes (not interfaces)
duke@1 2971 * Vi and Vj,Vi is not a subclass of Vj or vice versa.
duke@1 2972 *
duke@1 2973 * + If Ti is a wildcard type argument of the form ? super Bi,
duke@1 2974 * then Si is a fresh type variable whose upper bound is
duke@1 2975 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
duke@1 2976 *
duke@1 2977 * + Otherwise, Si = Ti.
duke@1 2978 *
duke@1 2979 * Capture conversion on any type other than a parameterized type
duke@1 2980 * (4.5) acts as an identity conversion (5.1.1). Capture
duke@1 2981 * conversions never require a special action at run time and
duke@1 2982 * therefore never throw an exception at run time.
duke@1 2983 *
duke@1 2984 * Capture conversion is not applied recursively.
duke@1 2985 */
duke@1 2986 /**
duke@1 2987 * Capture conversion as specified by JLS 3rd Ed.
duke@1 2988 */
mcimadamore@299 2989
mcimadamore@299 2990 public List<Type> capture(List<Type> ts) {
mcimadamore@299 2991 List<Type> buf = List.nil();
mcimadamore@299 2992 for (Type t : ts) {
mcimadamore@299 2993 buf = buf.prepend(capture(t));
mcimadamore@299 2994 }
mcimadamore@299 2995 return buf.reverse();
mcimadamore@299 2996 }
duke@1 2997 public Type capture(Type t) {
duke@1 2998 if (t.tag != CLASS)
duke@1 2999 return t;
mcimadamore@637 3000 if (t.getEnclosingType() != Type.noType) {
mcimadamore@637 3001 Type capturedEncl = capture(t.getEnclosingType());
mcimadamore@637 3002 if (capturedEncl != t.getEnclosingType()) {
mcimadamore@637 3003 Type type1 = memberType(capturedEncl, t.tsym);
mcimadamore@637 3004 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
mcimadamore@637 3005 }
mcimadamore@637 3006 }
duke@1 3007 ClassType cls = (ClassType)t;
duke@1 3008 if (cls.isRaw() || !cls.isParameterized())
duke@1 3009 return cls;
duke@1 3010
duke@1 3011 ClassType G = (ClassType)cls.asElement().asType();
duke@1 3012 List<Type> A = G.getTypeArguments();
duke@1 3013 List<Type> T = cls.getTypeArguments();
duke@1 3014 List<Type> S = freshTypeVariables(T);
duke@1 3015
duke@1 3016 List<Type> currentA = A;
duke@1 3017 List<Type> currentT = T;
duke@1 3018 List<Type> currentS = S;
duke@1 3019 boolean captured = false;
duke@1 3020 while (!currentA.isEmpty() &&
duke@1 3021 !currentT.isEmpty() &&
duke@1 3022 !currentS.isEmpty()) {
duke@1 3023 if (currentS.head != currentT.head) {
duke@1 3024 captured = true;
duke@1 3025 WildcardType Ti = (WildcardType)currentT.head;
duke@1 3026 Type Ui = currentA.head.getUpperBound();
duke@1 3027 CapturedType Si = (CapturedType)currentS.head;
duke@1 3028 if (Ui == null)
duke@1 3029 Ui = syms.objectType;
duke@1 3030 switch (Ti.kind) {
duke@1 3031 case UNBOUND:
duke@1 3032 Si.bound = subst(Ui, A, S);
duke@1 3033 Si.lower = syms.botType;
duke@1 3034 break;
duke@1 3035 case EXTENDS:
duke@1 3036 Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
duke@1 3037 Si.lower = syms.botType;
duke@1 3038 break;
duke@1 3039 case SUPER:
duke@1 3040 Si.bound = subst(Ui, A, S);
duke@1 3041 Si.lower = Ti.getSuperBound();
duke@1 3042 break;
duke@1 3043 }
duke@1 3044 if (Si.bound == Si.lower)
duke@1 3045 currentS.head = Si.bound;
duke@1 3046 }
duke@1 3047 currentA = currentA.tail;
duke@1 3048 currentT = currentT.tail;
duke@1 3049 currentS = currentS.tail;
duke@1 3050 }
duke@1 3051 if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
duke@1 3052 return erasure(t); // some "rare" type involved
duke@1 3053
duke@1 3054 if (captured)
duke@1 3055 return new ClassType(cls.getEnclosingType(), S, cls.tsym);
duke@1 3056 else
duke@1 3057 return t;
duke@1 3058 }
duke@1 3059 // where
mcimadamore@238 3060 public List<Type> freshTypeVariables(List<Type> types) {
duke@1 3061 ListBuffer<Type> result = lb();
duke@1 3062 for (Type t : types) {
duke@1 3063 if (t.tag == WILDCARD) {
duke@1 3064 Type bound = ((WildcardType)t).getExtendsBound();
duke@1 3065 if (bound == null)
duke@1 3066 bound = syms.objectType;
duke@1 3067 result.append(new CapturedType(capturedName,
duke@1 3068 syms.noSymbol,
duke@1 3069 bound,
duke@1 3070 syms.botType,
duke@1 3071 (WildcardType)t));
duke@1 3072 } else {
duke@1 3073 result.append(t);
duke@1 3074 }
duke@1 3075 }
duke@1 3076 return result.toList();
duke@1 3077 }
duke@1 3078 // </editor-fold>
duke@1 3079
duke@1 3080 // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
duke@1 3081 private List<Type> upperBounds(List<Type> ss) {
duke@1 3082 if (ss.isEmpty()) return ss;
duke@1 3083 Type head = upperBound(ss.head);
duke@1 3084 List<Type> tail = upperBounds(ss.tail);
duke@1 3085 if (head != ss.head || tail != ss.tail)
duke@1 3086 return tail.prepend(head);
duke@1 3087 else
duke@1 3088 return ss;
duke@1 3089 }
duke@1 3090
duke@1 3091 private boolean sideCast(Type from, Type to, Warner warn) {
duke@1 3092 // We are casting from type $from$ to type $to$, which are
duke@1 3093 // non-final unrelated types. This method
duke@1 3094 // tries to reject a cast by transferring type parameters
duke@1 3095 // from $to$ to $from$ by common superinterfaces.
duke@1 3096 boolean reverse = false;
duke@1 3097 Type target = to;
duke@1 3098 if ((to.tsym.flags() & INTERFACE) == 0) {
duke@1 3099 assert (from.tsym.flags() & INTERFACE) != 0;
duke@1 3100 reverse = true;
duke@1 3101 to = from;
duke@1 3102 from = target;
duke@1 3103 }
duke@1 3104 List<Type> commonSupers = superClosure(to, erasure(from));
duke@1 3105 boolean giveWarning = commonSupers.isEmpty();
duke@1 3106 // The arguments to the supers could be unified here to
duke@1 3107 // get a more accurate analysis
duke@1 3108 while (commonSupers.nonEmpty()) {
duke@1 3109 Type t1 = asSuper(from, commonSupers.head.tsym);
duke@1 3110 Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
duke@1 3111 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3112 return false;
duke@1 3113 giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
duke@1 3114 commonSupers = commonSupers.tail;
duke@1 3115 }
mcimadamore@187 3116 if (giveWarning && !isReifiable(reverse ? from : to))
duke@1 3117 warn.warnUnchecked();
duke@1 3118 if (!source.allowCovariantReturns())
duke@1 3119 // reject if there is a common method signature with
duke@1 3120 // incompatible return types.
duke@1 3121 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3122 return true;
duke@1 3123 }
duke@1 3124
duke@1 3125 private boolean sideCastFinal(Type from, Type to, Warner warn) {
duke@1 3126 // We are casting from type $from$ to type $to$, which are
duke@1 3127 // unrelated types one of which is final and the other of
duke@1 3128 // which is an interface. This method
duke@1 3129 // tries to reject a cast by transferring type parameters
duke@1 3130 // from the final class to the interface.
duke@1 3131 boolean reverse = false;
duke@1 3132 Type target = to;
duke@1 3133 if ((to.tsym.flags() & INTERFACE) == 0) {
duke@1 3134 assert (from.tsym.flags() & INTERFACE) != 0;
duke@1 3135 reverse = true;
duke@1 3136 to = from;
duke@1 3137 from = target;
duke@1 3138 }
duke@1 3139 assert (from.tsym.flags() & FINAL) != 0;
duke@1 3140 Type t1 = asSuper(from, to.tsym);
duke@1 3141 if (t1 == null) return false;
duke@1 3142 Type t2 = to;
duke@1 3143 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3144 return false;
duke@1 3145 if (!source.allowCovariantReturns())
duke@1 3146 // reject if there is a common method signature with
duke@1 3147 // incompatible return types.
duke@1 3148 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3149 if (!isReifiable(target) &&
duke@1 3150 (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
duke@1 3151 warn.warnUnchecked();
duke@1 3152 return true;
duke@1 3153 }
duke@1 3154
duke@1 3155 private boolean giveWarning(Type from, Type to) {
mcimadamore@235 3156 Type subFrom = asSub(from, to.tsym);
mcimadamore@235 3157 return to.isParameterized() &&
mcimadamore@235 3158 (!(isUnbounded(to) ||
mcimadamore@235 3159 isSubtype(from, to) ||
mcimadamore@736 3160 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
duke@1 3161 }
duke@1 3162
duke@1 3163 private List<Type> superClosure(Type t, Type s) {
duke@1 3164 List<Type> cl = List.nil();
duke@1 3165 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 3166 if (isSubtype(s, erasure(l.head))) {
duke@1 3167 cl = insert(cl, l.head);
duke@1 3168 } else {
duke@1 3169 cl = union(cl, superClosure(l.head, s));
duke@1 3170 }
duke@1 3171 }
duke@1 3172 return cl;
duke@1 3173 }
duke@1 3174
duke@1 3175 private boolean containsTypeEquivalent(Type t, Type s) {
duke@1 3176 return
duke@1 3177 isSameType(t, s) || // shortcut
duke@1 3178 containsType(t, s) && containsType(s, t);
duke@1 3179 }
duke@1 3180
mcimadamore@138 3181 // <editor-fold defaultstate="collapsed" desc="adapt">
duke@1 3182 /**
duke@1 3183 * Adapt a type by computing a substitution which maps a source
duke@1 3184 * type to a target type.
duke@1 3185 *
duke@1 3186 * @param source the source type
duke@1 3187 * @param target the target type
duke@1 3188 * @param from the type variables of the computed substitution
duke@1 3189 * @param to the types of the computed substitution.
duke@1 3190 */
duke@1 3191 public void adapt(Type source,
duke@1 3192 Type target,
duke@1 3193 ListBuffer<Type> from,
duke@1 3194 ListBuffer<Type> to) throws AdaptFailure {
mcimadamore@138 3195 new Adapter(from, to).adapt(source, target);
mcimadamore@138 3196 }
mcimadamore@138 3197
mcimadamore@138 3198 class Adapter extends SimpleVisitor<Void, Type> {
mcimadamore@138 3199
mcimadamore@138 3200 ListBuffer<Type> from;
mcimadamore@138 3201 ListBuffer<Type> to;
mcimadamore@138 3202 Map<Symbol,Type> mapping;
mcimadamore@138 3203
mcimadamore@138 3204 Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
mcimadamore@138 3205 this.from = from;
mcimadamore@138 3206 this.to = to;
mcimadamore@138 3207 mapping = new HashMap<Symbol,Type>();
duke@1 3208 }
mcimadamore@138 3209
mcimadamore@138 3210 public void adapt(Type source, Type target) throws AdaptFailure {
mcimadamore@138 3211 visit(source, target);
mcimadamore@138 3212 List<Type> fromList = from.toList();
mcimadamore@138 3213 List<Type> toList = to.toList();
mcimadamore@138 3214 while (!fromList.isEmpty()) {
mcimadamore@138 3215 Type val = mapping.get(fromList.head.tsym);
mcimadamore@138 3216 if (toList.head != val)
mcimadamore@138 3217 toList.head = val;
mcimadamore@138 3218 fromList = fromList.tail;
mcimadamore@138 3219 toList = toList.tail;
mcimadamore@138 3220 }
mcimadamore@138 3221 }
mcimadamore@138 3222
mcimadamore@138 3223 @Override
mcimadamore@138 3224 public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
mcimadamore@138 3225 if (target.tag == CLASS)
mcimadamore@138 3226 adaptRecursive(source.allparams(), target.allparams());
mcimadamore@138 3227 return null;
mcimadamore@138 3228 }
mcimadamore@138 3229
mcimadamore@138 3230 @Override
mcimadamore@138 3231 public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
mcimadamore@138 3232 if (target.tag == ARRAY)
mcimadamore@138 3233 adaptRecursive(elemtype(source), elemtype(target));
mcimadamore@138 3234 return null;
mcimadamore@138 3235 }
mcimadamore@138 3236
mcimadamore@138 3237 @Override
mcimadamore@138 3238 public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
mcimadamore@138 3239 if (source.isExtendsBound())
mcimadamore@138 3240 adaptRecursive(upperBound(source), upperBound(target));
mcimadamore@138 3241 else if (source.isSuperBound())
mcimadamore@138 3242 adaptRecursive(lowerBound(source), lowerBound(target));
mcimadamore@138 3243 return null;
mcimadamore@138 3244 }
mcimadamore@138 3245
mcimadamore@138 3246 @Override
mcimadamore@138 3247 public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
mcimadamore@138 3248 // Check to see if there is
mcimadamore@138 3249 // already a mapping for $source$, in which case
mcimadamore@138 3250 // the old mapping will be merged with the new
mcimadamore@138 3251 Type val = mapping.get(source.tsym);
mcimadamore@138 3252 if (val != null) {
mcimadamore@138 3253 if (val.isSuperBound() && target.isSuperBound()) {
mcimadamore@138 3254 val = isSubtype(lowerBound(val), lowerBound(target))
mcimadamore@138 3255 ? target : val;
mcimadamore@138 3256 } else if (val.isExtendsBound() && target.isExtendsBound()) {
mcimadamore@138 3257 val = isSubtype(upperBound(val), upperBound(target))
mcimadamore@138 3258 ? val : target;
mcimadamore@138 3259 } else if (!isSameType(val, target)) {
mcimadamore@138 3260 throw new AdaptFailure();
duke@1 3261 }
mcimadamore@138 3262 } else {
mcimadamore@138 3263 val = target;
mcimadamore@138 3264 from.append(source);
mcimadamore@138 3265 to.append(target);
mcimadamore@138 3266 }
mcimadamore@138 3267 mapping.put(source.tsym, val);
mcimadamore@138 3268 return null;
mcimadamore@138 3269 }
mcimadamore@138 3270
mcimadamore@138 3271 @Override
mcimadamore@138 3272 public Void visitType(Type source, Type target) {
mcimadamore@138 3273 return null;
mcimadamore@138 3274 }
mcimadamore@138 3275
mcimadamore@138 3276 private Set<TypePair> cache = new HashSet<TypePair>();
mcimadamore@138 3277
mcimadamore@138 3278 private void adaptRecursive(Type source, Type target) {
mcimadamore@138 3279 TypePair pair = new TypePair(source, target);
mcimadamore@138 3280 if (cache.add(pair)) {
mcimadamore@138 3281 try {
mcimadamore@138 3282 visit(source, target);
mcimadamore@138 3283 } finally {
mcimadamore@138 3284 cache.remove(pair);
duke@1 3285 }
duke@1 3286 }
duke@1 3287 }
mcimadamore@138 3288
mcimadamore@138 3289 private void adaptRecursive(List<Type> source, List<Type> target) {
mcimadamore@138 3290 if (source.length() == target.length()) {
mcimadamore@138 3291 while (source.nonEmpty()) {
mcimadamore@138 3292 adaptRecursive(source.head, target.head);
mcimadamore@138 3293 source = source.tail;
mcimadamore@138 3294 target = target.tail;
mcimadamore@138 3295 }
duke@1 3296 }
duke@1 3297 }
duke@1 3298 }
duke@1 3299
mcimadamore@138 3300 public static class AdaptFailure extends RuntimeException {
mcimadamore@138 3301 static final long serialVersionUID = -7490231548272701566L;
mcimadamore@138 3302 }
mcimadamore@138 3303
duke@1 3304 private void adaptSelf(Type t,
duke@1 3305 ListBuffer<Type> from,
duke@1 3306 ListBuffer<Type> to) {
duke@1 3307 try {
duke@1 3308 //if (t.tsym.type != t)
duke@1 3309 adapt(t.tsym.type, t, from, to);
duke@1 3310 } catch (AdaptFailure ex) {
duke@1 3311 // Adapt should never fail calculating a mapping from
duke@1 3312 // t.tsym.type to t as there can be no merge problem.
duke@1 3313 throw new AssertionError(ex);
duke@1 3314 }
duke@1 3315 }
mcimadamore@138 3316 // </editor-fold>
duke@1 3317
duke@1 3318 /**
duke@1 3319 * Rewrite all type variables (universal quantifiers) in the given
duke@1 3320 * type to wildcards (existential quantifiers). This is used to
duke@1 3321 * determine if a cast is allowed. For example, if high is true
duke@1 3322 * and {@code T <: Number}, then {@code List<T>} is rewritten to
duke@1 3323 * {@code List<? extends Number>}. Since {@code List<Integer> <:
duke@1 3324 * List<? extends Number>} a {@code List<T>} can be cast to {@code
duke@1 3325 * List<Integer>} with a warning.
duke@1 3326 * @param t a type
duke@1 3327 * @param high if true return an upper bound; otherwise a lower
duke@1 3328 * bound
duke@1 3329 * @param rewriteTypeVars only rewrite captured wildcards if false;
duke@1 3330 * otherwise rewrite all type variables
duke@1 3331 * @return the type rewritten with wildcards (existential
duke@1 3332 * quantifiers) only
duke@1 3333 */
duke@1 3334 private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
mcimadamore@640 3335 return new Rewriter(high, rewriteTypeVars).visit(t);
mcimadamore@157 3336 }
mcimadamore@157 3337
mcimadamore@157 3338 class Rewriter extends UnaryVisitor<Type> {
mcimadamore@157 3339
mcimadamore@157 3340 boolean high;
mcimadamore@157 3341 boolean rewriteTypeVars;
mcimadamore@157 3342
mcimadamore@157 3343 Rewriter(boolean high, boolean rewriteTypeVars) {
mcimadamore@157 3344 this.high = high;
mcimadamore@157 3345 this.rewriteTypeVars = rewriteTypeVars;
mcimadamore@157 3346 }
mcimadamore@157 3347
mcimadamore@640 3348 @Override
mcimadamore@640 3349 public Type visitClassType(ClassType t, Void s) {
mcimadamore@157 3350 ListBuffer<Type> rewritten = new ListBuffer<Type>();
mcimadamore@157 3351 boolean changed = false;
mcimadamore@640 3352 for (Type arg : t.allparams()) {
mcimadamore@157 3353 Type bound = visit(arg);
mcimadamore@157 3354 if (arg != bound) {
mcimadamore@157 3355 changed = true;
mcimadamore@157 3356 }
mcimadamore@157 3357 rewritten.append(bound);
duke@1 3358 }
mcimadamore@157 3359 if (changed)
mcimadamore@640 3360 return subst(t.tsym.type,
mcimadamore@640 3361 t.tsym.type.allparams(),
mcimadamore@640 3362 rewritten.toList());
mcimadamore@157 3363 else
mcimadamore@157 3364 return t;
duke@1 3365 }
mcimadamore@157 3366
mcimadamore@157 3367 public Type visitType(Type t, Void s) {
mcimadamore@157 3368 return high ? upperBound(t) : lowerBound(t);
mcimadamore@157 3369 }
mcimadamore@157 3370
mcimadamore@157 3371 @Override
mcimadamore@157 3372 public Type visitCapturedType(CapturedType t, Void s) {
mcimadamore@640 3373 Type bound = visitWildcardType(t.wildcard, null);
mcimadamore@640 3374 return (bound.contains(t)) ?
mcimadamore@779 3375 erasure(bound) :
mcimadamore@779 3376 bound;
mcimadamore@157 3377 }
mcimadamore@157 3378
mcimadamore@157 3379 @Override
mcimadamore@157 3380 public Type visitTypeVar(TypeVar t, Void s) {
mcimadamore@640 3381 if (rewriteTypeVars) {
mcimadamore@640 3382 Type bound = high ?
mcimadamore@640 3383 (t.bound.contains(t) ?
mcimadamore@779 3384 erasure(t.bound) :
mcimadamore@640 3385 visit(t.bound)) :
mcimadamore@640 3386 syms.botType;
mcimadamore@640 3387 return rewriteAsWildcardType(bound, t);
mcimadamore@640 3388 }
mcimadamore@157 3389 else
mcimadamore@157 3390 return t;
mcimadamore@157 3391 }
mcimadamore@157 3392
mcimadamore@157 3393 @Override
mcimadamore@157 3394 public Type visitWildcardType(WildcardType t, Void s) {
mcimadamore@157 3395 Type bound = high ? t.getExtendsBound() :
mcimadamore@157 3396 t.getSuperBound();
mcimadamore@157 3397 if (bound == null)
mcimadamore@640 3398 bound = high ? syms.objectType : syms.botType;
mcimadamore@640 3399 return rewriteAsWildcardType(visit(bound), t.bound);
mcimadamore@640 3400 }
mcimadamore@640 3401
mcimadamore@640 3402 private Type rewriteAsWildcardType(Type bound, TypeVar formal) {
mcimadamore@640 3403 return high ?
mcimadamore@640 3404 makeExtendsWildcard(B(bound), formal) :
mcimadamore@640 3405 makeSuperWildcard(B(bound), formal);
mcimadamore@640 3406 }
mcimadamore@640 3407
mcimadamore@640 3408 Type B(Type t) {
mcimadamore@640 3409 while (t.tag == WILDCARD) {
mcimadamore@640 3410 WildcardType w = (WildcardType)t;
mcimadamore@640 3411 t = high ?
mcimadamore@640 3412 w.getExtendsBound() :
mcimadamore@640 3413 w.getSuperBound();
mcimadamore@640 3414 if (t == null) {
mcimadamore@640 3415 t = high ? syms.objectType : syms.botType;
mcimadamore@640 3416 }
mcimadamore@640 3417 }
mcimadamore@640 3418 return t;
mcimadamore@157 3419 }
duke@1 3420 }
duke@1 3421
mcimadamore@640 3422
duke@1 3423 /**
duke@1 3424 * Create a wildcard with the given upper (extends) bound; create
duke@1 3425 * an unbounded wildcard if bound is Object.
duke@1 3426 *
duke@1 3427 * @param bound the upper bound
duke@1 3428 * @param formal the formal type parameter that will be
duke@1 3429 * substituted by the wildcard
duke@1 3430 */
duke@1 3431 private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
duke@1 3432 if (bound == syms.objectType) {
duke@1 3433 return new WildcardType(syms.objectType,
duke@1 3434 BoundKind.UNBOUND,
duke@1 3435 syms.boundClass,
duke@1 3436 formal);
duke@1 3437 } else {
duke@1 3438 return new WildcardType(bound,
duke@1 3439 BoundKind.EXTENDS,
duke@1 3440 syms.boundClass,
duke@1 3441 formal);
duke@1 3442 }
duke@1 3443 }
duke@1 3444
duke@1 3445 /**
duke@1 3446 * Create a wildcard with the given lower (super) bound; create an
duke@1 3447 * unbounded wildcard if bound is bottom (type of {@code null}).
duke@1 3448 *
duke@1 3449 * @param bound the lower bound
duke@1 3450 * @param formal the formal type parameter that will be
duke@1 3451 * substituted by the wildcard
duke@1 3452 */
duke@1 3453 private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
duke@1 3454 if (bound.tag == BOT) {
duke@1 3455 return new WildcardType(syms.objectType,
duke@1 3456 BoundKind.UNBOUND,
duke@1 3457 syms.boundClass,
duke@1 3458 formal);
duke@1 3459 } else {
duke@1 3460 return new WildcardType(bound,
duke@1 3461 BoundKind.SUPER,
duke@1 3462 syms.boundClass,
duke@1 3463 formal);
duke@1 3464 }
duke@1 3465 }
duke@1 3466
duke@1 3467 /**
duke@1 3468 * A wrapper for a type that allows use in sets.
duke@1 3469 */
duke@1 3470 class SingletonType {
duke@1 3471 final Type t;
duke@1 3472 SingletonType(Type t) {
duke@1 3473 this.t = t;
duke@1 3474 }
duke@1 3475 public int hashCode() {
jjg@507 3476 return Types.hashCode(t);
duke@1 3477 }
duke@1 3478 public boolean equals(Object obj) {
duke@1 3479 return (obj instanceof SingletonType) &&
duke@1 3480 isSameType(t, ((SingletonType)obj).t);
duke@1 3481 }
duke@1 3482 public String toString() {
duke@1 3483 return t.toString();
duke@1 3484 }
duke@1 3485 }
duke@1 3486 // </editor-fold>
duke@1 3487
duke@1 3488 // <editor-fold defaultstate="collapsed" desc="Visitors">
duke@1 3489 /**
duke@1 3490 * A default visitor for types. All visitor methods except
duke@1 3491 * visitType are implemented by delegating to visitType. Concrete
duke@1 3492 * subclasses must provide an implementation of visitType and can
duke@1 3493 * override other methods as needed.
duke@1 3494 *
duke@1 3495 * @param <R> the return type of the operation implemented by this
duke@1 3496 * visitor; use Void if no return type is needed.
duke@1 3497 * @param <S> the type of the second argument (the first being the
duke@1 3498 * type itself) of the operation implemented by this visitor; use
duke@1 3499 * Void if a second argument is not needed.
duke@1 3500 */
duke@1 3501 public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
duke@1 3502 final public R visit(Type t, S s) { return t.accept(this, s); }
duke@1 3503 public R visitClassType(ClassType t, S s) { return visitType(t, s); }
duke@1 3504 public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
duke@1 3505 public R visitArrayType(ArrayType t, S s) { return visitType(t, s); }
duke@1 3506 public R visitMethodType(MethodType t, S s) { return visitType(t, s); }
duke@1 3507 public R visitPackageType(PackageType t, S s) { return visitType(t, s); }
duke@1 3508 public R visitTypeVar(TypeVar t, S s) { return visitType(t, s); }
duke@1 3509 public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
duke@1 3510 public R visitForAll(ForAll t, S s) { return visitType(t, s); }
duke@1 3511 public R visitUndetVar(UndetVar t, S s) { return visitType(t, s); }
duke@1 3512 public R visitErrorType(ErrorType t, S s) { return visitType(t, s); }
duke@1 3513 }
duke@1 3514
duke@1 3515 /**
mcimadamore@121 3516 * A default visitor for symbols. All visitor methods except
mcimadamore@121 3517 * visitSymbol are implemented by delegating to visitSymbol. Concrete
mcimadamore@121 3518 * subclasses must provide an implementation of visitSymbol and can
mcimadamore@121 3519 * override other methods as needed.
mcimadamore@121 3520 *
mcimadamore@121 3521 * @param <R> the return type of the operation implemented by this
mcimadamore@121 3522 * visitor; use Void if no return type is needed.
mcimadamore@121 3523 * @param <S> the type of the second argument (the first being the
mcimadamore@121 3524 * symbol itself) of the operation implemented by this visitor; use
mcimadamore@121 3525 * Void if a second argument is not needed.
mcimadamore@121 3526 */
mcimadamore@121 3527 public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
mcimadamore@121 3528 final public R visit(Symbol s, S arg) { return s.accept(this, arg); }
mcimadamore@121 3529 public R visitClassSymbol(ClassSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3530 public R visitMethodSymbol(MethodSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3531 public R visitOperatorSymbol(OperatorSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3532 public R visitPackageSymbol(PackageSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3533 public R visitTypeSymbol(TypeSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3534 public R visitVarSymbol(VarSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3535 }
mcimadamore@121 3536
mcimadamore@121 3537 /**
duke@1 3538 * A <em>simple</em> visitor for types. This visitor is simple as
duke@1 3539 * captured wildcards, for-all types (generic methods), and
duke@1 3540 * undetermined type variables (part of inference) are hidden.
duke@1 3541 * Captured wildcards are hidden by treating them as type
duke@1 3542 * variables and the rest are hidden by visiting their qtypes.
duke@1 3543 *
duke@1 3544 * @param <R> the return type of the operation implemented by this
duke@1 3545 * visitor; use Void if no return type is needed.
duke@1 3546 * @param <S> the type of the second argument (the first being the
duke@1 3547 * type itself) of the operation implemented by this visitor; use
duke@1 3548 * Void if a second argument is not needed.
duke@1 3549 */
duke@1 3550 public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
duke@1 3551 @Override
duke@1 3552 public R visitCapturedType(CapturedType t, S s) {
duke@1 3553 return visitTypeVar(t, s);
duke@1 3554 }
duke@1 3555 @Override
duke@1 3556 public R visitForAll(ForAll t, S s) {
duke@1 3557 return visit(t.qtype, s);
duke@1 3558 }
duke@1 3559 @Override
duke@1 3560 public R visitUndetVar(UndetVar t, S s) {
duke@1 3561 return visit(t.qtype, s);
duke@1 3562 }
duke@1 3563 }
duke@1 3564
duke@1 3565 /**
duke@1 3566 * A plain relation on types. That is a 2-ary function on the
duke@1 3567 * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
duke@1 3568 * <!-- In plain text: Type x Type -> Boolean -->
duke@1 3569 */
duke@1 3570 public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
duke@1 3571
duke@1 3572 /**
duke@1 3573 * A convenience visitor for implementing operations that only
duke@1 3574 * require one argument (the type itself), that is, unary
duke@1 3575 * operations.
duke@1 3576 *
duke@1 3577 * @param <R> the return type of the operation implemented by this
duke@1 3578 * visitor; use Void if no return type is needed.
duke@1 3579 */
duke@1 3580 public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
duke@1 3581 final public R visit(Type t) { return t.accept(this, null); }
duke@1 3582 }
duke@1 3583
duke@1 3584 /**
duke@1 3585 * A visitor for implementing a mapping from types to types. The
duke@1 3586 * default behavior of this class is to implement the identity
duke@1 3587 * mapping (mapping a type to itself). This can be overridden in
duke@1 3588 * subclasses.
duke@1 3589 *
duke@1 3590 * @param <S> the type of the second argument (the first being the
duke@1 3591 * type itself) of this mapping; use Void if a second argument is
duke@1 3592 * not needed.
duke@1 3593 */
duke@1 3594 public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
duke@1 3595 final public Type visit(Type t) { return t.accept(this, null); }
duke@1 3596 public Type visitType(Type t, S s) { return t; }
duke@1 3597 }
duke@1 3598 // </editor-fold>
jjg@657 3599
jjg@657 3600
jjg@657 3601 // <editor-fold defaultstate="collapsed" desc="Annotation support">
jjg@657 3602
jjg@657 3603 public RetentionPolicy getRetention(Attribute.Compound a) {
jjg@657 3604 RetentionPolicy vis = RetentionPolicy.CLASS; // the default
jjg@657 3605 Attribute.Compound c = a.type.tsym.attribute(syms.retentionType.tsym);
jjg@657 3606 if (c != null) {
jjg@657 3607 Attribute value = c.member(names.value);
jjg@657 3608 if (value != null && value instanceof Attribute.Enum) {
jjg@657 3609 Name levelName = ((Attribute.Enum)value).value.name;
jjg@657 3610 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
jjg@657 3611 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
jjg@657 3612 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
jjg@657 3613 else ;// /* fail soft */ throw new AssertionError(levelName);
jjg@657 3614 }
jjg@657 3615 }
jjg@657 3616 return vis;
jjg@657 3617 }
jjg@657 3618 // </editor-fold>
duke@1 3619 }

mercurial