src/share/classes/com/sun/tools/javac/code/Types.java

Tue, 09 Sep 2008 10:28:21 -0700

author
jjg
date
Tue, 09 Sep 2008 10:28:21 -0700
changeset 110
91eea580fbe9
parent 104
5e89c4ca637c
child 113
eff38cc97183
permissions
-rw-r--r--

6557752: Original type of an AST should be made available even if it is replaced with an ErrorType
Reviewed-by: mcimadamore

duke@1 1 /*
xdono@54 2 * Copyright 2003-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
duke@1 7 * published by the Free Software Foundation. Sun designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
duke@1 9 * by Sun in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
duke@1 21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@1 22 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@1 23 * have any questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.code;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29
duke@1 30 import com.sun.tools.javac.util.*;
duke@1 31 import com.sun.tools.javac.util.List;
duke@1 32
duke@1 33 import com.sun.tools.javac.jvm.ClassReader;
duke@1 34 import com.sun.tools.javac.comp.Check;
duke@1 35
duke@1 36 import static com.sun.tools.javac.code.Type.*;
duke@1 37 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 38 import static com.sun.tools.javac.code.Symbol.*;
duke@1 39 import static com.sun.tools.javac.code.Flags.*;
duke@1 40 import static com.sun.tools.javac.code.BoundKind.*;
duke@1 41 import static com.sun.tools.javac.util.ListBuffer.lb;
duke@1 42
duke@1 43 /**
duke@1 44 * Utility class containing various operations on types.
duke@1 45 *
duke@1 46 * <p>Unless other names are more illustrative, the following naming
duke@1 47 * conventions should be observed in this file:
duke@1 48 *
duke@1 49 * <dl>
duke@1 50 * <dt>t</dt>
duke@1 51 * <dd>If the first argument to an operation is a type, it should be named t.</dd>
duke@1 52 * <dt>s</dt>
duke@1 53 * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
duke@1 54 * <dt>ts</dt>
duke@1 55 * <dd>If an operations takes a list of types, the first should be named ts.</dd>
duke@1 56 * <dt>ss</dt>
duke@1 57 * <dd>A second list of types should be named ss.</dd>
duke@1 58 * </dl>
duke@1 59 *
duke@1 60 * <p><b>This is NOT part of any API supported by Sun Microsystems.
duke@1 61 * If you write code that depends on this, you do so at your own risk.
duke@1 62 * This code and its internal interfaces are subject to change or
duke@1 63 * deletion without notice.</b>
duke@1 64 */
duke@1 65 public class Types {
duke@1 66 protected static final Context.Key<Types> typesKey =
duke@1 67 new Context.Key<Types>();
duke@1 68
duke@1 69 final Symtab syms;
duke@1 70 final Name.Table names;
duke@1 71 final boolean allowBoxing;
duke@1 72 final ClassReader reader;
duke@1 73 final Source source;
duke@1 74 final Check chk;
duke@1 75 List<Warner> warnStack = List.nil();
duke@1 76 final Name capturedName;
duke@1 77
duke@1 78 // <editor-fold defaultstate="collapsed" desc="Instantiating">
duke@1 79 public static Types instance(Context context) {
duke@1 80 Types instance = context.get(typesKey);
duke@1 81 if (instance == null)
duke@1 82 instance = new Types(context);
duke@1 83 return instance;
duke@1 84 }
duke@1 85
duke@1 86 protected Types(Context context) {
duke@1 87 context.put(typesKey, this);
duke@1 88 syms = Symtab.instance(context);
duke@1 89 names = Name.Table.instance(context);
duke@1 90 allowBoxing = Source.instance(context).allowBoxing();
duke@1 91 reader = ClassReader.instance(context);
duke@1 92 source = Source.instance(context);
duke@1 93 chk = Check.instance(context);
duke@1 94 capturedName = names.fromString("<captured wildcard>");
duke@1 95 }
duke@1 96 // </editor-fold>
duke@1 97
duke@1 98 // <editor-fold defaultstate="collapsed" desc="upperBound">
duke@1 99 /**
duke@1 100 * The "rvalue conversion".<br>
duke@1 101 * The upper bound of most types is the type
duke@1 102 * itself. Wildcards, on the other hand have upper
duke@1 103 * and lower bounds.
duke@1 104 * @param t a type
duke@1 105 * @return the upper bound of the given type
duke@1 106 */
duke@1 107 public Type upperBound(Type t) {
duke@1 108 return upperBound.visit(t);
duke@1 109 }
duke@1 110 // where
duke@1 111 private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
duke@1 112
duke@1 113 @Override
duke@1 114 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 115 if (t.isSuperBound())
duke@1 116 return t.bound == null ? syms.objectType : t.bound.bound;
duke@1 117 else
duke@1 118 return visit(t.type);
duke@1 119 }
duke@1 120
duke@1 121 @Override
duke@1 122 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 123 return visit(t.bound);
duke@1 124 }
duke@1 125 };
duke@1 126 // </editor-fold>
duke@1 127
duke@1 128 // <editor-fold defaultstate="collapsed" desc="lowerBound">
duke@1 129 /**
duke@1 130 * The "lvalue conversion".<br>
duke@1 131 * The lower bound of most types is the type
duke@1 132 * itself. Wildcards, on the other hand have upper
duke@1 133 * and lower bounds.
duke@1 134 * @param t a type
duke@1 135 * @return the lower bound of the given type
duke@1 136 */
duke@1 137 public Type lowerBound(Type t) {
duke@1 138 return lowerBound.visit(t);
duke@1 139 }
duke@1 140 // where
duke@1 141 private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
duke@1 142
duke@1 143 @Override
duke@1 144 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 145 return t.isExtendsBound() ? syms.botType : visit(t.type);
duke@1 146 }
duke@1 147
duke@1 148 @Override
duke@1 149 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 150 return visit(t.getLowerBound());
duke@1 151 }
duke@1 152 };
duke@1 153 // </editor-fold>
duke@1 154
duke@1 155 // <editor-fold defaultstate="collapsed" desc="isUnbounded">
duke@1 156 /**
duke@1 157 * Checks that all the arguments to a class are unbounded
duke@1 158 * wildcards or something else that doesn't make any restrictions
duke@1 159 * on the arguments. If a class isUnbounded, a raw super- or
duke@1 160 * subclass can be cast to it without a warning.
duke@1 161 * @param t a type
duke@1 162 * @return true iff the given type is unbounded or raw
duke@1 163 */
duke@1 164 public boolean isUnbounded(Type t) {
duke@1 165 return isUnbounded.visit(t);
duke@1 166 }
duke@1 167 // where
duke@1 168 private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
duke@1 169
duke@1 170 public Boolean visitType(Type t, Void ignored) {
duke@1 171 return true;
duke@1 172 }
duke@1 173
duke@1 174 @Override
duke@1 175 public Boolean visitClassType(ClassType t, Void ignored) {
duke@1 176 List<Type> parms = t.tsym.type.allparams();
duke@1 177 List<Type> args = t.allparams();
duke@1 178 while (parms.nonEmpty()) {
duke@1 179 WildcardType unb = new WildcardType(syms.objectType,
duke@1 180 BoundKind.UNBOUND,
duke@1 181 syms.boundClass,
duke@1 182 (TypeVar)parms.head);
duke@1 183 if (!containsType(args.head, unb))
duke@1 184 return false;
duke@1 185 parms = parms.tail;
duke@1 186 args = args.tail;
duke@1 187 }
duke@1 188 return true;
duke@1 189 }
duke@1 190 };
duke@1 191 // </editor-fold>
duke@1 192
duke@1 193 // <editor-fold defaultstate="collapsed" desc="asSub">
duke@1 194 /**
duke@1 195 * Return the least specific subtype of t that starts with symbol
duke@1 196 * sym. If none exists, return null. The least specific subtype
duke@1 197 * is determined as follows:
duke@1 198 *
duke@1 199 * <p>If there is exactly one parameterized instance of sym that is a
duke@1 200 * subtype of t, that parameterized instance is returned.<br>
duke@1 201 * Otherwise, if the plain type or raw type `sym' is a subtype of
duke@1 202 * type t, the type `sym' itself is returned. Otherwise, null is
duke@1 203 * returned.
duke@1 204 */
duke@1 205 public Type asSub(Type t, Symbol sym) {
duke@1 206 return asSub.visit(t, sym);
duke@1 207 }
duke@1 208 // where
duke@1 209 private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
duke@1 210
duke@1 211 public Type visitType(Type t, Symbol sym) {
duke@1 212 return null;
duke@1 213 }
duke@1 214
duke@1 215 @Override
duke@1 216 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 217 if (t.tsym == sym)
duke@1 218 return t;
duke@1 219 Type base = asSuper(sym.type, t.tsym);
duke@1 220 if (base == null)
duke@1 221 return null;
duke@1 222 ListBuffer<Type> from = new ListBuffer<Type>();
duke@1 223 ListBuffer<Type> to = new ListBuffer<Type>();
duke@1 224 try {
duke@1 225 adapt(base, t, from, to);
duke@1 226 } catch (AdaptFailure ex) {
duke@1 227 return null;
duke@1 228 }
duke@1 229 Type res = subst(sym.type, from.toList(), to.toList());
duke@1 230 if (!isSubtype(res, t))
duke@1 231 return null;
duke@1 232 ListBuffer<Type> openVars = new ListBuffer<Type>();
duke@1 233 for (List<Type> l = sym.type.allparams();
duke@1 234 l.nonEmpty(); l = l.tail)
duke@1 235 if (res.contains(l.head) && !t.contains(l.head))
duke@1 236 openVars.append(l.head);
duke@1 237 if (openVars.nonEmpty()) {
duke@1 238 if (t.isRaw()) {
duke@1 239 // The subtype of a raw type is raw
duke@1 240 res = erasure(res);
duke@1 241 } else {
duke@1 242 // Unbound type arguments default to ?
duke@1 243 List<Type> opens = openVars.toList();
duke@1 244 ListBuffer<Type> qs = new ListBuffer<Type>();
duke@1 245 for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
duke@1 246 qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
duke@1 247 }
duke@1 248 res = subst(res, opens, qs.toList());
duke@1 249 }
duke@1 250 }
duke@1 251 return res;
duke@1 252 }
duke@1 253
duke@1 254 @Override
duke@1 255 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 256 return t;
duke@1 257 }
duke@1 258 };
duke@1 259 // </editor-fold>
duke@1 260
duke@1 261 // <editor-fold defaultstate="collapsed" desc="isConvertible">
duke@1 262 /**
duke@1 263 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 264 * convertions to s?
duke@1 265 */
duke@1 266 public boolean isConvertible(Type t, Type s, Warner warn) {
duke@1 267 boolean tPrimitive = t.isPrimitive();
duke@1 268 boolean sPrimitive = s.isPrimitive();
duke@1 269 if (tPrimitive == sPrimitive)
duke@1 270 return isSubtypeUnchecked(t, s, warn);
duke@1 271 if (!allowBoxing) return false;
duke@1 272 return tPrimitive
duke@1 273 ? isSubtype(boxedClass(t).type, s)
duke@1 274 : isSubtype(unboxedType(t), s);
duke@1 275 }
duke@1 276
duke@1 277 /**
duke@1 278 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 279 * convertions to s?
duke@1 280 */
duke@1 281 public boolean isConvertible(Type t, Type s) {
duke@1 282 return isConvertible(t, s, Warner.noWarnings);
duke@1 283 }
duke@1 284 // </editor-fold>
duke@1 285
duke@1 286 // <editor-fold defaultstate="collapsed" desc="isSubtype">
duke@1 287 /**
duke@1 288 * Is t an unchecked subtype of s?
duke@1 289 */
duke@1 290 public boolean isSubtypeUnchecked(Type t, Type s) {
duke@1 291 return isSubtypeUnchecked(t, s, Warner.noWarnings);
duke@1 292 }
duke@1 293 /**
duke@1 294 * Is t an unchecked subtype of s?
duke@1 295 */
duke@1 296 public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
duke@1 297 if (t.tag == ARRAY && s.tag == ARRAY) {
duke@1 298 return (((ArrayType)t).elemtype.tag <= lastBaseTag)
duke@1 299 ? isSameType(elemtype(t), elemtype(s))
duke@1 300 : isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
duke@1 301 } else if (isSubtype(t, s)) {
duke@1 302 return true;
mcimadamore@41 303 }
mcimadamore@41 304 else if (t.tag == TYPEVAR) {
mcimadamore@41 305 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
mcimadamore@41 306 }
mcimadamore@93 307 else if (s.tag == UNDETVAR) {
mcimadamore@93 308 UndetVar uv = (UndetVar)s;
mcimadamore@93 309 if (uv.inst != null)
mcimadamore@93 310 return isSubtypeUnchecked(t, uv.inst, warn);
mcimadamore@93 311 }
mcimadamore@41 312 else if (!s.isRaw()) {
duke@1 313 Type t2 = asSuper(t, s.tsym);
duke@1 314 if (t2 != null && t2.isRaw()) {
duke@1 315 if (isReifiable(s))
duke@1 316 warn.silentUnchecked();
duke@1 317 else
duke@1 318 warn.warnUnchecked();
duke@1 319 return true;
duke@1 320 }
duke@1 321 }
duke@1 322 return false;
duke@1 323 }
duke@1 324
duke@1 325 /**
duke@1 326 * Is t a subtype of s?<br>
duke@1 327 * (not defined for Method and ForAll types)
duke@1 328 */
duke@1 329 final public boolean isSubtype(Type t, Type s) {
duke@1 330 return isSubtype(t, s, true);
duke@1 331 }
duke@1 332 final public boolean isSubtypeNoCapture(Type t, Type s) {
duke@1 333 return isSubtype(t, s, false);
duke@1 334 }
duke@1 335 public boolean isSubtype(Type t, Type s, boolean capture) {
duke@1 336 if (t == s)
duke@1 337 return true;
duke@1 338
duke@1 339 if (s.tag >= firstPartialTag)
duke@1 340 return isSuperType(s, t);
duke@1 341
duke@1 342 Type lower = lowerBound(s);
duke@1 343 if (s != lower)
duke@1 344 return isSubtype(capture ? capture(t) : t, lower, false);
duke@1 345
duke@1 346 return isSubtype.visit(capture ? capture(t) : t, s);
duke@1 347 }
duke@1 348 // where
duke@1 349 private TypeRelation isSubtype = new TypeRelation()
duke@1 350 {
duke@1 351 public Boolean visitType(Type t, Type s) {
duke@1 352 switch (t.tag) {
duke@1 353 case BYTE: case CHAR:
duke@1 354 return (t.tag == s.tag ||
duke@1 355 t.tag + 2 <= s.tag && s.tag <= DOUBLE);
duke@1 356 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
duke@1 357 return t.tag <= s.tag && s.tag <= DOUBLE;
duke@1 358 case BOOLEAN: case VOID:
duke@1 359 return t.tag == s.tag;
duke@1 360 case TYPEVAR:
duke@1 361 return isSubtypeNoCapture(t.getUpperBound(), s);
duke@1 362 case BOT:
duke@1 363 return
duke@1 364 s.tag == BOT || s.tag == CLASS ||
duke@1 365 s.tag == ARRAY || s.tag == TYPEVAR;
duke@1 366 case NONE:
duke@1 367 return false;
duke@1 368 default:
duke@1 369 throw new AssertionError("isSubtype " + t.tag);
duke@1 370 }
duke@1 371 }
duke@1 372
duke@1 373 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 374
duke@1 375 private boolean containsTypeRecursive(Type t, Type s) {
duke@1 376 TypePair pair = new TypePair(t, s);
duke@1 377 if (cache.add(pair)) {
duke@1 378 try {
duke@1 379 return containsType(t.getTypeArguments(),
duke@1 380 s.getTypeArguments());
duke@1 381 } finally {
duke@1 382 cache.remove(pair);
duke@1 383 }
duke@1 384 } else {
duke@1 385 return containsType(t.getTypeArguments(),
duke@1 386 rewriteSupers(s).getTypeArguments());
duke@1 387 }
duke@1 388 }
duke@1 389
duke@1 390 private Type rewriteSupers(Type t) {
duke@1 391 if (!t.isParameterized())
duke@1 392 return t;
duke@1 393 ListBuffer<Type> from = lb();
duke@1 394 ListBuffer<Type> to = lb();
duke@1 395 adaptSelf(t, from, to);
duke@1 396 if (from.isEmpty())
duke@1 397 return t;
duke@1 398 ListBuffer<Type> rewrite = lb();
duke@1 399 boolean changed = false;
duke@1 400 for (Type orig : to.toList()) {
duke@1 401 Type s = rewriteSupers(orig);
duke@1 402 if (s.isSuperBound() && !s.isExtendsBound()) {
duke@1 403 s = new WildcardType(syms.objectType,
duke@1 404 BoundKind.UNBOUND,
duke@1 405 syms.boundClass);
duke@1 406 changed = true;
duke@1 407 } else if (s != orig) {
duke@1 408 s = new WildcardType(upperBound(s),
duke@1 409 BoundKind.EXTENDS,
duke@1 410 syms.boundClass);
duke@1 411 changed = true;
duke@1 412 }
duke@1 413 rewrite.append(s);
duke@1 414 }
duke@1 415 if (changed)
duke@1 416 return subst(t.tsym.type, from.toList(), rewrite.toList());
duke@1 417 else
duke@1 418 return t;
duke@1 419 }
duke@1 420
duke@1 421 @Override
duke@1 422 public Boolean visitClassType(ClassType t, Type s) {
duke@1 423 Type sup = asSuper(t, s.tsym);
duke@1 424 return sup != null
duke@1 425 && sup.tsym == s.tsym
duke@1 426 // You're not allowed to write
duke@1 427 // Vector<Object> vec = new Vector<String>();
duke@1 428 // But with wildcards you can write
duke@1 429 // Vector<? extends Object> vec = new Vector<String>();
duke@1 430 // which means that subtype checking must be done
duke@1 431 // here instead of same-type checking (via containsType).
duke@1 432 && (!s.isParameterized() || containsTypeRecursive(s, sup))
duke@1 433 && isSubtypeNoCapture(sup.getEnclosingType(),
duke@1 434 s.getEnclosingType());
duke@1 435 }
duke@1 436
duke@1 437 @Override
duke@1 438 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 439 if (s.tag == ARRAY) {
duke@1 440 if (t.elemtype.tag <= lastBaseTag)
duke@1 441 return isSameType(t.elemtype, elemtype(s));
duke@1 442 else
duke@1 443 return isSubtypeNoCapture(t.elemtype, elemtype(s));
duke@1 444 }
duke@1 445
duke@1 446 if (s.tag == CLASS) {
duke@1 447 Name sname = s.tsym.getQualifiedName();
duke@1 448 return sname == names.java_lang_Object
duke@1 449 || sname == names.java_lang_Cloneable
duke@1 450 || sname == names.java_io_Serializable;
duke@1 451 }
duke@1 452
duke@1 453 return false;
duke@1 454 }
duke@1 455
duke@1 456 @Override
duke@1 457 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 458 //todo: test against origin needed? or replace with substitution?
duke@1 459 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 460 return true;
duke@1 461
duke@1 462 if (t.inst != null)
duke@1 463 return isSubtypeNoCapture(t.inst, s); // TODO: ", warn"?
duke@1 464
duke@1 465 t.hibounds = t.hibounds.prepend(s);
duke@1 466 return true;
duke@1 467 }
duke@1 468
duke@1 469 @Override
duke@1 470 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 471 return true;
duke@1 472 }
duke@1 473 };
duke@1 474
duke@1 475 /**
duke@1 476 * Is t a subtype of every type in given list `ts'?<br>
duke@1 477 * (not defined for Method and ForAll types)<br>
duke@1 478 * Allows unchecked conversions.
duke@1 479 */
duke@1 480 public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
duke@1 481 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 482 if (!isSubtypeUnchecked(t, l.head, warn))
duke@1 483 return false;
duke@1 484 return true;
duke@1 485 }
duke@1 486
duke@1 487 /**
duke@1 488 * Are corresponding elements of ts subtypes of ss? If lists are
duke@1 489 * of different length, return false.
duke@1 490 */
duke@1 491 public boolean isSubtypes(List<Type> ts, List<Type> ss) {
duke@1 492 while (ts.tail != null && ss.tail != null
duke@1 493 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 494 isSubtype(ts.head, ss.head)) {
duke@1 495 ts = ts.tail;
duke@1 496 ss = ss.tail;
duke@1 497 }
duke@1 498 return ts.tail == null && ss.tail == null;
duke@1 499 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 500 }
duke@1 501
duke@1 502 /**
duke@1 503 * Are corresponding elements of ts subtypes of ss, allowing
duke@1 504 * unchecked conversions? If lists are of different length,
duke@1 505 * return false.
duke@1 506 **/
duke@1 507 public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
duke@1 508 while (ts.tail != null && ss.tail != null
duke@1 509 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 510 isSubtypeUnchecked(ts.head, ss.head, warn)) {
duke@1 511 ts = ts.tail;
duke@1 512 ss = ss.tail;
duke@1 513 }
duke@1 514 return ts.tail == null && ss.tail == null;
duke@1 515 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 516 }
duke@1 517 // </editor-fold>
duke@1 518
duke@1 519 // <editor-fold defaultstate="collapsed" desc="isSuperType">
duke@1 520 /**
duke@1 521 * Is t a supertype of s?
duke@1 522 */
duke@1 523 public boolean isSuperType(Type t, Type s) {
duke@1 524 switch (t.tag) {
duke@1 525 case ERROR:
duke@1 526 return true;
duke@1 527 case UNDETVAR: {
duke@1 528 UndetVar undet = (UndetVar)t;
duke@1 529 if (t == s ||
duke@1 530 undet.qtype == s ||
duke@1 531 s.tag == ERROR ||
duke@1 532 s.tag == BOT) return true;
duke@1 533 if (undet.inst != null)
duke@1 534 return isSubtype(s, undet.inst);
duke@1 535 undet.lobounds = undet.lobounds.prepend(s);
duke@1 536 return true;
duke@1 537 }
duke@1 538 default:
duke@1 539 return isSubtype(s, t);
duke@1 540 }
duke@1 541 }
duke@1 542 // </editor-fold>
duke@1 543
duke@1 544 // <editor-fold defaultstate="collapsed" desc="isSameType">
duke@1 545 /**
duke@1 546 * Are corresponding elements of the lists the same type? If
duke@1 547 * lists are of different length, return false.
duke@1 548 */
duke@1 549 public boolean isSameTypes(List<Type> ts, List<Type> ss) {
duke@1 550 while (ts.tail != null && ss.tail != null
duke@1 551 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 552 isSameType(ts.head, ss.head)) {
duke@1 553 ts = ts.tail;
duke@1 554 ss = ss.tail;
duke@1 555 }
duke@1 556 return ts.tail == null && ss.tail == null;
duke@1 557 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 558 }
duke@1 559
duke@1 560 /**
duke@1 561 * Is t the same type as s?
duke@1 562 */
duke@1 563 public boolean isSameType(Type t, Type s) {
duke@1 564 return isSameType.visit(t, s);
duke@1 565 }
duke@1 566 // where
duke@1 567 private TypeRelation isSameType = new TypeRelation() {
duke@1 568
duke@1 569 public Boolean visitType(Type t, Type s) {
duke@1 570 if (t == s)
duke@1 571 return true;
duke@1 572
duke@1 573 if (s.tag >= firstPartialTag)
duke@1 574 return visit(s, t);
duke@1 575
duke@1 576 switch (t.tag) {
duke@1 577 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 578 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
duke@1 579 return t.tag == s.tag;
duke@1 580 case TYPEVAR:
duke@1 581 return s.isSuperBound()
duke@1 582 && !s.isExtendsBound()
duke@1 583 && visit(t, upperBound(s));
duke@1 584 default:
duke@1 585 throw new AssertionError("isSameType " + t.tag);
duke@1 586 }
duke@1 587 }
duke@1 588
duke@1 589 @Override
duke@1 590 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 591 if (s.tag >= firstPartialTag)
duke@1 592 return visit(s, t);
duke@1 593 else
duke@1 594 return false;
duke@1 595 }
duke@1 596
duke@1 597 @Override
duke@1 598 public Boolean visitClassType(ClassType t, Type s) {
duke@1 599 if (t == s)
duke@1 600 return true;
duke@1 601
duke@1 602 if (s.tag >= firstPartialTag)
duke@1 603 return visit(s, t);
duke@1 604
duke@1 605 if (s.isSuperBound() && !s.isExtendsBound())
duke@1 606 return visit(t, upperBound(s)) && visit(t, lowerBound(s));
duke@1 607
duke@1 608 if (t.isCompound() && s.isCompound()) {
duke@1 609 if (!visit(supertype(t), supertype(s)))
duke@1 610 return false;
duke@1 611
duke@1 612 HashSet<SingletonType> set = new HashSet<SingletonType>();
duke@1 613 for (Type x : interfaces(t))
duke@1 614 set.add(new SingletonType(x));
duke@1 615 for (Type x : interfaces(s)) {
duke@1 616 if (!set.remove(new SingletonType(x)))
duke@1 617 return false;
duke@1 618 }
duke@1 619 return (set.size() == 0);
duke@1 620 }
duke@1 621 return t.tsym == s.tsym
duke@1 622 && visit(t.getEnclosingType(), s.getEnclosingType())
duke@1 623 && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
duke@1 624 }
duke@1 625
duke@1 626 @Override
duke@1 627 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 628 if (t == s)
duke@1 629 return true;
duke@1 630
duke@1 631 if (s.tag >= firstPartialTag)
duke@1 632 return visit(s, t);
duke@1 633
duke@1 634 return s.tag == ARRAY
duke@1 635 && containsTypeEquivalent(t.elemtype, elemtype(s));
duke@1 636 }
duke@1 637
duke@1 638 @Override
duke@1 639 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 640 // isSameType for methods does not take thrown
duke@1 641 // exceptions into account!
duke@1 642 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
duke@1 643 }
duke@1 644
duke@1 645 @Override
duke@1 646 public Boolean visitPackageType(PackageType t, Type s) {
duke@1 647 return t == s;
duke@1 648 }
duke@1 649
duke@1 650 @Override
duke@1 651 public Boolean visitForAll(ForAll t, Type s) {
duke@1 652 if (s.tag != FORALL)
duke@1 653 return false;
duke@1 654
duke@1 655 ForAll forAll = (ForAll)s;
duke@1 656 return hasSameBounds(t, forAll)
duke@1 657 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 658 }
duke@1 659
duke@1 660 @Override
duke@1 661 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 662 if (s.tag == WILDCARD)
duke@1 663 // FIXME, this might be leftovers from before capture conversion
duke@1 664 return false;
duke@1 665
duke@1 666 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 667 return true;
duke@1 668
duke@1 669 if (t.inst != null)
duke@1 670 return visit(t.inst, s);
duke@1 671
duke@1 672 t.inst = fromUnknownFun.apply(s);
duke@1 673 for (List<Type> l = t.lobounds; l.nonEmpty(); l = l.tail) {
duke@1 674 if (!isSubtype(l.head, t.inst))
duke@1 675 return false;
duke@1 676 }
duke@1 677 for (List<Type> l = t.hibounds; l.nonEmpty(); l = l.tail) {
duke@1 678 if (!isSubtype(t.inst, l.head))
duke@1 679 return false;
duke@1 680 }
duke@1 681 return true;
duke@1 682 }
duke@1 683
duke@1 684 @Override
duke@1 685 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 686 return true;
duke@1 687 }
duke@1 688 };
duke@1 689 // </editor-fold>
duke@1 690
duke@1 691 // <editor-fold defaultstate="collapsed" desc="fromUnknownFun">
duke@1 692 /**
duke@1 693 * A mapping that turns all unknown types in this type to fresh
duke@1 694 * unknown variables.
duke@1 695 */
duke@1 696 public Mapping fromUnknownFun = new Mapping("fromUnknownFun") {
duke@1 697 public Type apply(Type t) {
duke@1 698 if (t.tag == UNKNOWN) return new UndetVar(t);
duke@1 699 else return t.map(this);
duke@1 700 }
duke@1 701 };
duke@1 702 // </editor-fold>
duke@1 703
duke@1 704 // <editor-fold defaultstate="collapsed" desc="Contains Type">
duke@1 705 public boolean containedBy(Type t, Type s) {
duke@1 706 switch (t.tag) {
duke@1 707 case UNDETVAR:
duke@1 708 if (s.tag == WILDCARD) {
duke@1 709 UndetVar undetvar = (UndetVar)t;
duke@1 710
duke@1 711 // Because of wildcard capture, s must be on the left
duke@1 712 // hand side of an assignment. Furthermore, t is an
duke@1 713 // underconstrained type variable, for example, one
duke@1 714 // that is only used in the return type of a method.
duke@1 715 // If the type variable is truly underconstrained, it
duke@1 716 // cannot have any low bounds:
duke@1 717 assert undetvar.lobounds.isEmpty() : undetvar;
duke@1 718
duke@1 719 undetvar.inst = glb(upperBound(s), undetvar.inst);
duke@1 720 return true;
duke@1 721 } else {
duke@1 722 return isSameType(t, s);
duke@1 723 }
duke@1 724 case ERROR:
duke@1 725 return true;
duke@1 726 default:
duke@1 727 return containsType(s, t);
duke@1 728 }
duke@1 729 }
duke@1 730
duke@1 731 boolean containsType(List<Type> ts, List<Type> ss) {
duke@1 732 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 733 && containsType(ts.head, ss.head)) {
duke@1 734 ts = ts.tail;
duke@1 735 ss = ss.tail;
duke@1 736 }
duke@1 737 return ts.isEmpty() && ss.isEmpty();
duke@1 738 }
duke@1 739
duke@1 740 /**
duke@1 741 * Check if t contains s.
duke@1 742 *
duke@1 743 * <p>T contains S if:
duke@1 744 *
duke@1 745 * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
duke@1 746 *
duke@1 747 * <p>This relation is only used by ClassType.isSubtype(), that
duke@1 748 * is,
duke@1 749 *
duke@1 750 * <p>{@code C<S> <: C<T> if T contains S.}
duke@1 751 *
duke@1 752 * <p>Because of F-bounds, this relation can lead to infinite
duke@1 753 * recursion. Thus we must somehow break that recursion. Notice
duke@1 754 * that containsType() is only called from ClassType.isSubtype().
duke@1 755 * Since the arguments have already been checked against their
duke@1 756 * bounds, we know:
duke@1 757 *
duke@1 758 * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
duke@1 759 *
duke@1 760 * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
duke@1 761 *
duke@1 762 * @param t a type
duke@1 763 * @param s a type
duke@1 764 */
duke@1 765 public boolean containsType(Type t, Type s) {
duke@1 766 return containsType.visit(t, s);
duke@1 767 }
duke@1 768 // where
duke@1 769 private TypeRelation containsType = new TypeRelation() {
duke@1 770
duke@1 771 private Type U(Type t) {
duke@1 772 while (t.tag == WILDCARD) {
duke@1 773 WildcardType w = (WildcardType)t;
duke@1 774 if (w.isSuperBound())
duke@1 775 return w.bound == null ? syms.objectType : w.bound.bound;
duke@1 776 else
duke@1 777 t = w.type;
duke@1 778 }
duke@1 779 return t;
duke@1 780 }
duke@1 781
duke@1 782 private Type L(Type t) {
duke@1 783 while (t.tag == WILDCARD) {
duke@1 784 WildcardType w = (WildcardType)t;
duke@1 785 if (w.isExtendsBound())
duke@1 786 return syms.botType;
duke@1 787 else
duke@1 788 t = w.type;
duke@1 789 }
duke@1 790 return t;
duke@1 791 }
duke@1 792
duke@1 793 public Boolean visitType(Type t, Type s) {
duke@1 794 if (s.tag >= firstPartialTag)
duke@1 795 return containedBy(s, t);
duke@1 796 else
duke@1 797 return isSameType(t, s);
duke@1 798 }
duke@1 799
duke@1 800 void debugContainsType(WildcardType t, Type s) {
duke@1 801 System.err.println();
duke@1 802 System.err.format(" does %s contain %s?%n", t, s);
duke@1 803 System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
duke@1 804 upperBound(s), s, t, U(t),
duke@1 805 t.isSuperBound()
duke@1 806 || isSubtypeNoCapture(upperBound(s), U(t)));
duke@1 807 System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
duke@1 808 L(t), t, s, lowerBound(s),
duke@1 809 t.isExtendsBound()
duke@1 810 || isSubtypeNoCapture(L(t), lowerBound(s)));
duke@1 811 System.err.println();
duke@1 812 }
duke@1 813
duke@1 814 @Override
duke@1 815 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 816 if (s.tag >= firstPartialTag)
duke@1 817 return containedBy(s, t);
duke@1 818 else {
duke@1 819 // debugContainsType(t, s);
duke@1 820 return isSameWildcard(t, s)
duke@1 821 || isCaptureOf(s, t)
duke@1 822 || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
duke@1 823 (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
duke@1 824 }
duke@1 825 }
duke@1 826
duke@1 827 @Override
duke@1 828 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 829 if (s.tag != WILDCARD)
duke@1 830 return isSameType(t, s);
duke@1 831 else
duke@1 832 return false;
duke@1 833 }
duke@1 834
duke@1 835 @Override
duke@1 836 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 837 return true;
duke@1 838 }
duke@1 839 };
duke@1 840
duke@1 841 public boolean isCaptureOf(Type s, WildcardType t) {
mcimadamore@79 842 if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
duke@1 843 return false;
duke@1 844 return isSameWildcard(t, ((CapturedType)s).wildcard);
duke@1 845 }
duke@1 846
duke@1 847 public boolean isSameWildcard(WildcardType t, Type s) {
duke@1 848 if (s.tag != WILDCARD)
duke@1 849 return false;
duke@1 850 WildcardType w = (WildcardType)s;
duke@1 851 return w.kind == t.kind && w.type == t.type;
duke@1 852 }
duke@1 853
duke@1 854 public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
duke@1 855 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 856 && containsTypeEquivalent(ts.head, ss.head)) {
duke@1 857 ts = ts.tail;
duke@1 858 ss = ss.tail;
duke@1 859 }
duke@1 860 return ts.isEmpty() && ss.isEmpty();
duke@1 861 }
duke@1 862 // </editor-fold>
duke@1 863
duke@1 864 // <editor-fold defaultstate="collapsed" desc="isCastable">
duke@1 865 public boolean isCastable(Type t, Type s) {
duke@1 866 return isCastable(t, s, Warner.noWarnings);
duke@1 867 }
duke@1 868
duke@1 869 /**
duke@1 870 * Is t is castable to s?<br>
duke@1 871 * s is assumed to be an erased type.<br>
duke@1 872 * (not defined for Method and ForAll types).
duke@1 873 */
duke@1 874 public boolean isCastable(Type t, Type s, Warner warn) {
duke@1 875 if (t == s)
duke@1 876 return true;
duke@1 877
duke@1 878 if (t.isPrimitive() != s.isPrimitive())
duke@1 879 return allowBoxing && isConvertible(t, s, warn);
duke@1 880
duke@1 881 if (warn != warnStack.head) {
duke@1 882 try {
duke@1 883 warnStack = warnStack.prepend(warn);
duke@1 884 return isCastable.visit(t, s);
duke@1 885 } finally {
duke@1 886 warnStack = warnStack.tail;
duke@1 887 }
duke@1 888 } else {
duke@1 889 return isCastable.visit(t, s);
duke@1 890 }
duke@1 891 }
duke@1 892 // where
duke@1 893 private TypeRelation isCastable = new TypeRelation() {
duke@1 894
duke@1 895 public Boolean visitType(Type t, Type s) {
duke@1 896 if (s.tag == ERROR)
duke@1 897 return true;
duke@1 898
duke@1 899 switch (t.tag) {
duke@1 900 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 901 case DOUBLE:
duke@1 902 return s.tag <= DOUBLE;
duke@1 903 case BOOLEAN:
duke@1 904 return s.tag == BOOLEAN;
duke@1 905 case VOID:
duke@1 906 return false;
duke@1 907 case BOT:
duke@1 908 return isSubtype(t, s);
duke@1 909 default:
duke@1 910 throw new AssertionError();
duke@1 911 }
duke@1 912 }
duke@1 913
duke@1 914 @Override
duke@1 915 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 916 return isCastable(upperBound(t), s, warnStack.head);
duke@1 917 }
duke@1 918
duke@1 919 @Override
duke@1 920 public Boolean visitClassType(ClassType t, Type s) {
duke@1 921 if (s.tag == ERROR || s.tag == BOT)
duke@1 922 return true;
duke@1 923
duke@1 924 if (s.tag == TYPEVAR) {
duke@1 925 if (isCastable(s.getUpperBound(), t, Warner.noWarnings)) {
duke@1 926 warnStack.head.warnUnchecked();
duke@1 927 return true;
duke@1 928 } else {
duke@1 929 return false;
duke@1 930 }
duke@1 931 }
duke@1 932
duke@1 933 if (t.isCompound()) {
duke@1 934 if (!visit(supertype(t), s))
duke@1 935 return false;
duke@1 936 for (Type intf : interfaces(t)) {
duke@1 937 if (!visit(intf, s))
duke@1 938 return false;
duke@1 939 }
duke@1 940 return true;
duke@1 941 }
duke@1 942
duke@1 943 if (s.isCompound()) {
duke@1 944 // call recursively to reuse the above code
duke@1 945 return visitClassType((ClassType)s, t);
duke@1 946 }
duke@1 947
duke@1 948 if (s.tag == CLASS || s.tag == ARRAY) {
duke@1 949 boolean upcast;
duke@1 950 if ((upcast = isSubtype(erasure(t), erasure(s)))
duke@1 951 || isSubtype(erasure(s), erasure(t))) {
duke@1 952 if (!upcast && s.tag == ARRAY) {
duke@1 953 if (!isReifiable(s))
duke@1 954 warnStack.head.warnUnchecked();
duke@1 955 return true;
duke@1 956 } else if (s.isRaw()) {
duke@1 957 return true;
duke@1 958 } else if (t.isRaw()) {
duke@1 959 if (!isUnbounded(s))
duke@1 960 warnStack.head.warnUnchecked();
duke@1 961 return true;
duke@1 962 }
duke@1 963 // Assume |a| <: |b|
duke@1 964 final Type a = upcast ? t : s;
duke@1 965 final Type b = upcast ? s : t;
duke@1 966 final boolean HIGH = true;
duke@1 967 final boolean LOW = false;
duke@1 968 final boolean DONT_REWRITE_TYPEVARS = false;
duke@1 969 Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 970 Type aLow = rewriteQuantifiers(a, LOW, DONT_REWRITE_TYPEVARS);
duke@1 971 Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 972 Type bLow = rewriteQuantifiers(b, LOW, DONT_REWRITE_TYPEVARS);
duke@1 973 Type lowSub = asSub(bLow, aLow.tsym);
duke@1 974 Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 975 if (highSub == null) {
duke@1 976 final boolean REWRITE_TYPEVARS = true;
duke@1 977 aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
duke@1 978 aLow = rewriteQuantifiers(a, LOW, REWRITE_TYPEVARS);
duke@1 979 bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
duke@1 980 bLow = rewriteQuantifiers(b, LOW, REWRITE_TYPEVARS);
duke@1 981 lowSub = asSub(bLow, aLow.tsym);
duke@1 982 highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 983 }
duke@1 984 if (highSub != null) {
duke@1 985 assert a.tsym == highSub.tsym && a.tsym == lowSub.tsym
duke@1 986 : a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym;
duke@1 987 if (!disjointTypes(aHigh.getTypeArguments(), highSub.getTypeArguments())
duke@1 988 && !disjointTypes(aHigh.getTypeArguments(), lowSub.getTypeArguments())
duke@1 989 && !disjointTypes(aLow.getTypeArguments(), highSub.getTypeArguments())
duke@1 990 && !disjointTypes(aLow.getTypeArguments(), lowSub.getTypeArguments())) {
duke@1 991 if (upcast ? giveWarning(a, highSub) || giveWarning(a, lowSub)
duke@1 992 : giveWarning(highSub, a) || giveWarning(lowSub, a))
duke@1 993 warnStack.head.warnUnchecked();
duke@1 994 return true;
duke@1 995 }
duke@1 996 }
duke@1 997 if (isReifiable(s))
duke@1 998 return isSubtypeUnchecked(a, b);
duke@1 999 else
duke@1 1000 return isSubtypeUnchecked(a, b, warnStack.head);
duke@1 1001 }
duke@1 1002
duke@1 1003 // Sidecast
duke@1 1004 if (s.tag == CLASS) {
duke@1 1005 if ((s.tsym.flags() & INTERFACE) != 0) {
duke@1 1006 return ((t.tsym.flags() & FINAL) == 0)
duke@1 1007 ? sideCast(t, s, warnStack.head)
duke@1 1008 : sideCastFinal(t, s, warnStack.head);
duke@1 1009 } else if ((t.tsym.flags() & INTERFACE) != 0) {
duke@1 1010 return ((s.tsym.flags() & FINAL) == 0)
duke@1 1011 ? sideCast(t, s, warnStack.head)
duke@1 1012 : sideCastFinal(t, s, warnStack.head);
duke@1 1013 } else {
duke@1 1014 // unrelated class types
duke@1 1015 return false;
duke@1 1016 }
duke@1 1017 }
duke@1 1018 }
duke@1 1019 return false;
duke@1 1020 }
duke@1 1021
duke@1 1022 @Override
duke@1 1023 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 1024 switch (s.tag) {
duke@1 1025 case ERROR:
duke@1 1026 case BOT:
duke@1 1027 return true;
duke@1 1028 case TYPEVAR:
duke@1 1029 if (isCastable(s, t, Warner.noWarnings)) {
duke@1 1030 warnStack.head.warnUnchecked();
duke@1 1031 return true;
duke@1 1032 } else {
duke@1 1033 return false;
duke@1 1034 }
duke@1 1035 case CLASS:
duke@1 1036 return isSubtype(t, s);
duke@1 1037 case ARRAY:
duke@1 1038 if (elemtype(t).tag <= lastBaseTag) {
duke@1 1039 return elemtype(t).tag == elemtype(s).tag;
duke@1 1040 } else {
duke@1 1041 return visit(elemtype(t), elemtype(s));
duke@1 1042 }
duke@1 1043 default:
duke@1 1044 return false;
duke@1 1045 }
duke@1 1046 }
duke@1 1047
duke@1 1048 @Override
duke@1 1049 public Boolean visitTypeVar(TypeVar t, Type s) {
duke@1 1050 switch (s.tag) {
duke@1 1051 case ERROR:
duke@1 1052 case BOT:
duke@1 1053 return true;
duke@1 1054 case TYPEVAR:
duke@1 1055 if (isSubtype(t, s)) {
duke@1 1056 return true;
duke@1 1057 } else if (isCastable(t.bound, s, Warner.noWarnings)) {
duke@1 1058 warnStack.head.warnUnchecked();
duke@1 1059 return true;
duke@1 1060 } else {
duke@1 1061 return false;
duke@1 1062 }
duke@1 1063 default:
duke@1 1064 return isCastable(t.bound, s, warnStack.head);
duke@1 1065 }
duke@1 1066 }
duke@1 1067
duke@1 1068 @Override
duke@1 1069 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1070 return true;
duke@1 1071 }
duke@1 1072 };
duke@1 1073 // </editor-fold>
duke@1 1074
duke@1 1075 // <editor-fold defaultstate="collapsed" desc="disjointTypes">
duke@1 1076 public boolean disjointTypes(List<Type> ts, List<Type> ss) {
duke@1 1077 while (ts.tail != null && ss.tail != null) {
duke@1 1078 if (disjointType(ts.head, ss.head)) return true;
duke@1 1079 ts = ts.tail;
duke@1 1080 ss = ss.tail;
duke@1 1081 }
duke@1 1082 return false;
duke@1 1083 }
duke@1 1084
duke@1 1085 /**
duke@1 1086 * Two types or wildcards are considered disjoint if it can be
duke@1 1087 * proven that no type can be contained in both. It is
duke@1 1088 * conservative in that it is allowed to say that two types are
duke@1 1089 * not disjoint, even though they actually are.
duke@1 1090 *
duke@1 1091 * The type C<X> is castable to C<Y> exactly if X and Y are not
duke@1 1092 * disjoint.
duke@1 1093 */
duke@1 1094 public boolean disjointType(Type t, Type s) {
duke@1 1095 return disjointType.visit(t, s);
duke@1 1096 }
duke@1 1097 // where
duke@1 1098 private TypeRelation disjointType = new TypeRelation() {
duke@1 1099
duke@1 1100 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 1101
duke@1 1102 public Boolean visitType(Type t, Type s) {
duke@1 1103 if (s.tag == WILDCARD)
duke@1 1104 return visit(s, t);
duke@1 1105 else
duke@1 1106 return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
duke@1 1107 }
duke@1 1108
duke@1 1109 private boolean isCastableRecursive(Type t, Type s) {
duke@1 1110 TypePair pair = new TypePair(t, s);
duke@1 1111 if (cache.add(pair)) {
duke@1 1112 try {
duke@1 1113 return Types.this.isCastable(t, s);
duke@1 1114 } finally {
duke@1 1115 cache.remove(pair);
duke@1 1116 }
duke@1 1117 } else {
duke@1 1118 return true;
duke@1 1119 }
duke@1 1120 }
duke@1 1121
duke@1 1122 private boolean notSoftSubtypeRecursive(Type t, Type s) {
duke@1 1123 TypePair pair = new TypePair(t, s);
duke@1 1124 if (cache.add(pair)) {
duke@1 1125 try {
duke@1 1126 return Types.this.notSoftSubtype(t, s);
duke@1 1127 } finally {
duke@1 1128 cache.remove(pair);
duke@1 1129 }
duke@1 1130 } else {
duke@1 1131 return false;
duke@1 1132 }
duke@1 1133 }
duke@1 1134
duke@1 1135 @Override
duke@1 1136 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 1137 if (t.isUnbound())
duke@1 1138 return false;
duke@1 1139
duke@1 1140 if (s.tag != WILDCARD) {
duke@1 1141 if (t.isExtendsBound())
duke@1 1142 return notSoftSubtypeRecursive(s, t.type);
duke@1 1143 else // isSuperBound()
duke@1 1144 return notSoftSubtypeRecursive(t.type, s);
duke@1 1145 }
duke@1 1146
duke@1 1147 if (s.isUnbound())
duke@1 1148 return false;
duke@1 1149
duke@1 1150 if (t.isExtendsBound()) {
duke@1 1151 if (s.isExtendsBound())
duke@1 1152 return !isCastableRecursive(t.type, upperBound(s));
duke@1 1153 else if (s.isSuperBound())
duke@1 1154 return notSoftSubtypeRecursive(lowerBound(s), t.type);
duke@1 1155 } else if (t.isSuperBound()) {
duke@1 1156 if (s.isExtendsBound())
duke@1 1157 return notSoftSubtypeRecursive(t.type, upperBound(s));
duke@1 1158 }
duke@1 1159 return false;
duke@1 1160 }
duke@1 1161 };
duke@1 1162 // </editor-fold>
duke@1 1163
duke@1 1164 // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
duke@1 1165 /**
duke@1 1166 * Returns the lower bounds of the formals of a method.
duke@1 1167 */
duke@1 1168 public List<Type> lowerBoundArgtypes(Type t) {
duke@1 1169 return map(t.getParameterTypes(), lowerBoundMapping);
duke@1 1170 }
duke@1 1171 private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
duke@1 1172 public Type apply(Type t) {
duke@1 1173 return lowerBound(t);
duke@1 1174 }
duke@1 1175 };
duke@1 1176 // </editor-fold>
duke@1 1177
duke@1 1178 // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
duke@1 1179 /**
duke@1 1180 * This relation answers the question: is impossible that
duke@1 1181 * something of type `t' can be a subtype of `s'? This is
duke@1 1182 * different from the question "is `t' not a subtype of `s'?"
duke@1 1183 * when type variables are involved: Integer is not a subtype of T
duke@1 1184 * where <T extends Number> but it is not true that Integer cannot
duke@1 1185 * possibly be a subtype of T.
duke@1 1186 */
duke@1 1187 public boolean notSoftSubtype(Type t, Type s) {
duke@1 1188 if (t == s) return false;
duke@1 1189 if (t.tag == TYPEVAR) {
duke@1 1190 TypeVar tv = (TypeVar) t;
duke@1 1191 if (s.tag == TYPEVAR)
duke@1 1192 s = s.getUpperBound();
duke@1 1193 return !isCastable(tv.bound,
duke@1 1194 s,
duke@1 1195 Warner.noWarnings);
duke@1 1196 }
duke@1 1197 if (s.tag != WILDCARD)
duke@1 1198 s = upperBound(s);
duke@1 1199 if (s.tag == TYPEVAR)
duke@1 1200 s = s.getUpperBound();
duke@1 1201 return !isSubtype(t, s);
duke@1 1202 }
duke@1 1203 // </editor-fold>
duke@1 1204
duke@1 1205 // <editor-fold defaultstate="collapsed" desc="isReifiable">
duke@1 1206 public boolean isReifiable(Type t) {
duke@1 1207 return isReifiable.visit(t);
duke@1 1208 }
duke@1 1209 // where
duke@1 1210 private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
duke@1 1211
duke@1 1212 public Boolean visitType(Type t, Void ignored) {
duke@1 1213 return true;
duke@1 1214 }
duke@1 1215
duke@1 1216 @Override
duke@1 1217 public Boolean visitClassType(ClassType t, Void ignored) {
duke@1 1218 if (!t.isParameterized())
duke@1 1219 return true;
duke@1 1220
duke@1 1221 for (Type param : t.allparams()) {
duke@1 1222 if (!param.isUnbound())
duke@1 1223 return false;
duke@1 1224 }
duke@1 1225 return true;
duke@1 1226 }
duke@1 1227
duke@1 1228 @Override
duke@1 1229 public Boolean visitArrayType(ArrayType t, Void ignored) {
duke@1 1230 return visit(t.elemtype);
duke@1 1231 }
duke@1 1232
duke@1 1233 @Override
duke@1 1234 public Boolean visitTypeVar(TypeVar t, Void ignored) {
duke@1 1235 return false;
duke@1 1236 }
duke@1 1237 };
duke@1 1238 // </editor-fold>
duke@1 1239
duke@1 1240 // <editor-fold defaultstate="collapsed" desc="Array Utils">
duke@1 1241 public boolean isArray(Type t) {
duke@1 1242 while (t.tag == WILDCARD)
duke@1 1243 t = upperBound(t);
duke@1 1244 return t.tag == ARRAY;
duke@1 1245 }
duke@1 1246
duke@1 1247 /**
duke@1 1248 * The element type of an array.
duke@1 1249 */
duke@1 1250 public Type elemtype(Type t) {
duke@1 1251 switch (t.tag) {
duke@1 1252 case WILDCARD:
duke@1 1253 return elemtype(upperBound(t));
duke@1 1254 case ARRAY:
duke@1 1255 return ((ArrayType)t).elemtype;
duke@1 1256 case FORALL:
duke@1 1257 return elemtype(((ForAll)t).qtype);
duke@1 1258 case ERROR:
duke@1 1259 return t;
duke@1 1260 default:
duke@1 1261 return null;
duke@1 1262 }
duke@1 1263 }
duke@1 1264
duke@1 1265 /**
duke@1 1266 * Mapping to take element type of an arraytype
duke@1 1267 */
duke@1 1268 private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
duke@1 1269 public Type apply(Type t) { return elemtype(t); }
duke@1 1270 };
duke@1 1271
duke@1 1272 /**
duke@1 1273 * The number of dimensions of an array type.
duke@1 1274 */
duke@1 1275 public int dimensions(Type t) {
duke@1 1276 int result = 0;
duke@1 1277 while (t.tag == ARRAY) {
duke@1 1278 result++;
duke@1 1279 t = elemtype(t);
duke@1 1280 }
duke@1 1281 return result;
duke@1 1282 }
duke@1 1283 // </editor-fold>
duke@1 1284
duke@1 1285 // <editor-fold defaultstate="collapsed" desc="asSuper">
duke@1 1286 /**
duke@1 1287 * Return the (most specific) base type of t that starts with the
duke@1 1288 * given symbol. If none exists, return null.
duke@1 1289 *
duke@1 1290 * @param t a type
duke@1 1291 * @param sym a symbol
duke@1 1292 */
duke@1 1293 public Type asSuper(Type t, Symbol sym) {
duke@1 1294 return asSuper.visit(t, sym);
duke@1 1295 }
duke@1 1296 // where
duke@1 1297 private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
duke@1 1298
duke@1 1299 public Type visitType(Type t, Symbol sym) {
duke@1 1300 return null;
duke@1 1301 }
duke@1 1302
duke@1 1303 @Override
duke@1 1304 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1305 if (t.tsym == sym)
duke@1 1306 return t;
duke@1 1307
duke@1 1308 Type st = supertype(t);
mcimadamore@19 1309 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
duke@1 1310 Type x = asSuper(st, sym);
duke@1 1311 if (x != null)
duke@1 1312 return x;
duke@1 1313 }
duke@1 1314 if ((sym.flags() & INTERFACE) != 0) {
duke@1 1315 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 1316 Type x = asSuper(l.head, sym);
duke@1 1317 if (x != null)
duke@1 1318 return x;
duke@1 1319 }
duke@1 1320 }
duke@1 1321 return null;
duke@1 1322 }
duke@1 1323
duke@1 1324 @Override
duke@1 1325 public Type visitArrayType(ArrayType t, Symbol sym) {
duke@1 1326 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1327 }
duke@1 1328
duke@1 1329 @Override
duke@1 1330 public Type visitTypeVar(TypeVar t, Symbol sym) {
mcimadamore@19 1331 if (t.tsym == sym)
mcimadamore@19 1332 return t;
mcimadamore@19 1333 else
mcimadamore@19 1334 return asSuper(t.bound, sym);
duke@1 1335 }
duke@1 1336
duke@1 1337 @Override
duke@1 1338 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1339 return t;
duke@1 1340 }
duke@1 1341 };
duke@1 1342
duke@1 1343 /**
duke@1 1344 * Return the base type of t or any of its outer types that starts
duke@1 1345 * with the given symbol. If none exists, return null.
duke@1 1346 *
duke@1 1347 * @param t a type
duke@1 1348 * @param sym a symbol
duke@1 1349 */
duke@1 1350 public Type asOuterSuper(Type t, Symbol sym) {
duke@1 1351 switch (t.tag) {
duke@1 1352 case CLASS:
duke@1 1353 do {
duke@1 1354 Type s = asSuper(t, sym);
duke@1 1355 if (s != null) return s;
duke@1 1356 t = t.getEnclosingType();
duke@1 1357 } while (t.tag == CLASS);
duke@1 1358 return null;
duke@1 1359 case ARRAY:
duke@1 1360 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1361 case TYPEVAR:
duke@1 1362 return asSuper(t, sym);
duke@1 1363 case ERROR:
duke@1 1364 return t;
duke@1 1365 default:
duke@1 1366 return null;
duke@1 1367 }
duke@1 1368 }
duke@1 1369
duke@1 1370 /**
duke@1 1371 * Return the base type of t or any of its enclosing types that
duke@1 1372 * starts with the given symbol. If none exists, return null.
duke@1 1373 *
duke@1 1374 * @param t a type
duke@1 1375 * @param sym a symbol
duke@1 1376 */
duke@1 1377 public Type asEnclosingSuper(Type t, Symbol sym) {
duke@1 1378 switch (t.tag) {
duke@1 1379 case CLASS:
duke@1 1380 do {
duke@1 1381 Type s = asSuper(t, sym);
duke@1 1382 if (s != null) return s;
duke@1 1383 Type outer = t.getEnclosingType();
duke@1 1384 t = (outer.tag == CLASS) ? outer :
duke@1 1385 (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
duke@1 1386 Type.noType;
duke@1 1387 } while (t.tag == CLASS);
duke@1 1388 return null;
duke@1 1389 case ARRAY:
duke@1 1390 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1391 case TYPEVAR:
duke@1 1392 return asSuper(t, sym);
duke@1 1393 case ERROR:
duke@1 1394 return t;
duke@1 1395 default:
duke@1 1396 return null;
duke@1 1397 }
duke@1 1398 }
duke@1 1399 // </editor-fold>
duke@1 1400
duke@1 1401 // <editor-fold defaultstate="collapsed" desc="memberType">
duke@1 1402 /**
duke@1 1403 * The type of given symbol, seen as a member of t.
duke@1 1404 *
duke@1 1405 * @param t a type
duke@1 1406 * @param sym a symbol
duke@1 1407 */
duke@1 1408 public Type memberType(Type t, Symbol sym) {
duke@1 1409 return (sym.flags() & STATIC) != 0
duke@1 1410 ? sym.type
duke@1 1411 : memberType.visit(t, sym);
duke@1 1412 }
duke@1 1413 // where
duke@1 1414 private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
duke@1 1415
duke@1 1416 public Type visitType(Type t, Symbol sym) {
duke@1 1417 return sym.type;
duke@1 1418 }
duke@1 1419
duke@1 1420 @Override
duke@1 1421 public Type visitWildcardType(WildcardType t, Symbol sym) {
duke@1 1422 return memberType(upperBound(t), sym);
duke@1 1423 }
duke@1 1424
duke@1 1425 @Override
duke@1 1426 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1427 Symbol owner = sym.owner;
duke@1 1428 long flags = sym.flags();
duke@1 1429 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
duke@1 1430 Type base = asOuterSuper(t, owner);
duke@1 1431 if (base != null) {
duke@1 1432 List<Type> ownerParams = owner.type.allparams();
duke@1 1433 List<Type> baseParams = base.allparams();
duke@1 1434 if (ownerParams.nonEmpty()) {
duke@1 1435 if (baseParams.isEmpty()) {
duke@1 1436 // then base is a raw type
duke@1 1437 return erasure(sym.type);
duke@1 1438 } else {
duke@1 1439 return subst(sym.type, ownerParams, baseParams);
duke@1 1440 }
duke@1 1441 }
duke@1 1442 }
duke@1 1443 }
duke@1 1444 return sym.type;
duke@1 1445 }
duke@1 1446
duke@1 1447 @Override
duke@1 1448 public Type visitTypeVar(TypeVar t, Symbol sym) {
duke@1 1449 return memberType(t.bound, sym);
duke@1 1450 }
duke@1 1451
duke@1 1452 @Override
duke@1 1453 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1454 return t;
duke@1 1455 }
duke@1 1456 };
duke@1 1457 // </editor-fold>
duke@1 1458
duke@1 1459 // <editor-fold defaultstate="collapsed" desc="isAssignable">
duke@1 1460 public boolean isAssignable(Type t, Type s) {
duke@1 1461 return isAssignable(t, s, Warner.noWarnings);
duke@1 1462 }
duke@1 1463
duke@1 1464 /**
duke@1 1465 * Is t assignable to s?<br>
duke@1 1466 * Equivalent to subtype except for constant values and raw
duke@1 1467 * types.<br>
duke@1 1468 * (not defined for Method and ForAll types)
duke@1 1469 */
duke@1 1470 public boolean isAssignable(Type t, Type s, Warner warn) {
duke@1 1471 if (t.tag == ERROR)
duke@1 1472 return true;
duke@1 1473 if (t.tag <= INT && t.constValue() != null) {
duke@1 1474 int value = ((Number)t.constValue()).intValue();
duke@1 1475 switch (s.tag) {
duke@1 1476 case BYTE:
duke@1 1477 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
duke@1 1478 return true;
duke@1 1479 break;
duke@1 1480 case CHAR:
duke@1 1481 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
duke@1 1482 return true;
duke@1 1483 break;
duke@1 1484 case SHORT:
duke@1 1485 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
duke@1 1486 return true;
duke@1 1487 break;
duke@1 1488 case INT:
duke@1 1489 return true;
duke@1 1490 case CLASS:
duke@1 1491 switch (unboxedType(s).tag) {
duke@1 1492 case BYTE:
duke@1 1493 case CHAR:
duke@1 1494 case SHORT:
duke@1 1495 return isAssignable(t, unboxedType(s), warn);
duke@1 1496 }
duke@1 1497 break;
duke@1 1498 }
duke@1 1499 }
duke@1 1500 return isConvertible(t, s, warn);
duke@1 1501 }
duke@1 1502 // </editor-fold>
duke@1 1503
duke@1 1504 // <editor-fold defaultstate="collapsed" desc="erasure">
duke@1 1505 /**
duke@1 1506 * The erasure of t {@code |t|} -- the type that results when all
duke@1 1507 * type parameters in t are deleted.
duke@1 1508 */
duke@1 1509 public Type erasure(Type t) {
mcimadamore@30 1510 return erasure(t, false);
mcimadamore@30 1511 }
mcimadamore@30 1512 //where
mcimadamore@30 1513 private Type erasure(Type t, boolean recurse) {
duke@1 1514 if (t.tag <= lastBaseTag)
duke@1 1515 return t; /* fast special case */
duke@1 1516 else
mcimadamore@30 1517 return erasure.visit(t, recurse);
duke@1 1518 }
duke@1 1519 // where
mcimadamore@30 1520 private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
mcimadamore@30 1521 public Type visitType(Type t, Boolean recurse) {
duke@1 1522 if (t.tag <= lastBaseTag)
duke@1 1523 return t; /*fast special case*/
duke@1 1524 else
mcimadamore@30 1525 return t.map(recurse ? erasureRecFun : erasureFun);
duke@1 1526 }
duke@1 1527
duke@1 1528 @Override
mcimadamore@30 1529 public Type visitWildcardType(WildcardType t, Boolean recurse) {
mcimadamore@30 1530 return erasure(upperBound(t), recurse);
duke@1 1531 }
duke@1 1532
duke@1 1533 @Override
mcimadamore@30 1534 public Type visitClassType(ClassType t, Boolean recurse) {
mcimadamore@30 1535 Type erased = t.tsym.erasure(Types.this);
mcimadamore@30 1536 if (recurse) {
mcimadamore@30 1537 erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
mcimadamore@30 1538 }
mcimadamore@30 1539 return erased;
duke@1 1540 }
duke@1 1541
duke@1 1542 @Override
mcimadamore@30 1543 public Type visitTypeVar(TypeVar t, Boolean recurse) {
mcimadamore@30 1544 return erasure(t.bound, recurse);
duke@1 1545 }
duke@1 1546
duke@1 1547 @Override
mcimadamore@30 1548 public Type visitErrorType(ErrorType t, Boolean recurse) {
duke@1 1549 return t;
duke@1 1550 }
duke@1 1551 };
mcimadamore@30 1552
duke@1 1553 private Mapping erasureFun = new Mapping ("erasure") {
duke@1 1554 public Type apply(Type t) { return erasure(t); }
duke@1 1555 };
duke@1 1556
mcimadamore@30 1557 private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
mcimadamore@30 1558 public Type apply(Type t) { return erasureRecursive(t); }
mcimadamore@30 1559 };
mcimadamore@30 1560
duke@1 1561 public List<Type> erasure(List<Type> ts) {
duke@1 1562 return Type.map(ts, erasureFun);
duke@1 1563 }
mcimadamore@30 1564
mcimadamore@30 1565 public Type erasureRecursive(Type t) {
mcimadamore@30 1566 return erasure(t, true);
mcimadamore@30 1567 }
mcimadamore@30 1568
mcimadamore@30 1569 public List<Type> erasureRecursive(List<Type> ts) {
mcimadamore@30 1570 return Type.map(ts, erasureRecFun);
mcimadamore@30 1571 }
duke@1 1572 // </editor-fold>
duke@1 1573
duke@1 1574 // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
duke@1 1575 /**
duke@1 1576 * Make a compound type from non-empty list of types
duke@1 1577 *
duke@1 1578 * @param bounds the types from which the compound type is formed
duke@1 1579 * @param supertype is objectType if all bounds are interfaces,
duke@1 1580 * null otherwise.
duke@1 1581 */
duke@1 1582 public Type makeCompoundType(List<Type> bounds,
duke@1 1583 Type supertype) {
duke@1 1584 ClassSymbol bc =
duke@1 1585 new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
duke@1 1586 Type.moreInfo
duke@1 1587 ? names.fromString(bounds.toString())
duke@1 1588 : names.empty,
duke@1 1589 syms.noSymbol);
duke@1 1590 if (bounds.head.tag == TYPEVAR)
duke@1 1591 // error condition, recover
duke@1 1592 bc.erasure_field = syms.objectType;
duke@1 1593 else
duke@1 1594 bc.erasure_field = erasure(bounds.head);
duke@1 1595 bc.members_field = new Scope(bc);
duke@1 1596 ClassType bt = (ClassType)bc.type;
duke@1 1597 bt.allparams_field = List.nil();
duke@1 1598 if (supertype != null) {
duke@1 1599 bt.supertype_field = supertype;
duke@1 1600 bt.interfaces_field = bounds;
duke@1 1601 } else {
duke@1 1602 bt.supertype_field = bounds.head;
duke@1 1603 bt.interfaces_field = bounds.tail;
duke@1 1604 }
duke@1 1605 assert bt.supertype_field.tsym.completer != null
duke@1 1606 || !bt.supertype_field.isInterface()
duke@1 1607 : bt.supertype_field;
duke@1 1608 return bt;
duke@1 1609 }
duke@1 1610
duke@1 1611 /**
duke@1 1612 * Same as {@link #makeCompoundType(List,Type)}, except that the
duke@1 1613 * second parameter is computed directly. Note that this might
duke@1 1614 * cause a symbol completion. Hence, this version of
duke@1 1615 * makeCompoundType may not be called during a classfile read.
duke@1 1616 */
duke@1 1617 public Type makeCompoundType(List<Type> bounds) {
duke@1 1618 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
duke@1 1619 supertype(bounds.head) : null;
duke@1 1620 return makeCompoundType(bounds, supertype);
duke@1 1621 }
duke@1 1622
duke@1 1623 /**
duke@1 1624 * A convenience wrapper for {@link #makeCompoundType(List)}; the
duke@1 1625 * arguments are converted to a list and passed to the other
duke@1 1626 * method. Note that this might cause a symbol completion.
duke@1 1627 * Hence, this version of makeCompoundType may not be called
duke@1 1628 * during a classfile read.
duke@1 1629 */
duke@1 1630 public Type makeCompoundType(Type bound1, Type bound2) {
duke@1 1631 return makeCompoundType(List.of(bound1, bound2));
duke@1 1632 }
duke@1 1633 // </editor-fold>
duke@1 1634
duke@1 1635 // <editor-fold defaultstate="collapsed" desc="supertype">
duke@1 1636 public Type supertype(Type t) {
duke@1 1637 return supertype.visit(t);
duke@1 1638 }
duke@1 1639 // where
duke@1 1640 private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
duke@1 1641
duke@1 1642 public Type visitType(Type t, Void ignored) {
duke@1 1643 // A note on wildcards: there is no good way to
duke@1 1644 // determine a supertype for a super bounded wildcard.
duke@1 1645 return null;
duke@1 1646 }
duke@1 1647
duke@1 1648 @Override
duke@1 1649 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1650 if (t.supertype_field == null) {
duke@1 1651 Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
duke@1 1652 // An interface has no superclass; its supertype is Object.
duke@1 1653 if (t.isInterface())
duke@1 1654 supertype = ((ClassType)t.tsym.type).supertype_field;
duke@1 1655 if (t.supertype_field == null) {
duke@1 1656 List<Type> actuals = classBound(t).allparams();
duke@1 1657 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1658 if (t.hasErasedSupertypes()) {
mcimadamore@30 1659 t.supertype_field = erasureRecursive(supertype);
mcimadamore@30 1660 } else if (formals.nonEmpty()) {
duke@1 1661 t.supertype_field = subst(supertype, formals, actuals);
duke@1 1662 }
mcimadamore@30 1663 else {
mcimadamore@30 1664 t.supertype_field = supertype;
mcimadamore@30 1665 }
duke@1 1666 }
duke@1 1667 }
duke@1 1668 return t.supertype_field;
duke@1 1669 }
duke@1 1670
duke@1 1671 /**
duke@1 1672 * The supertype is always a class type. If the type
duke@1 1673 * variable's bounds start with a class type, this is also
duke@1 1674 * the supertype. Otherwise, the supertype is
duke@1 1675 * java.lang.Object.
duke@1 1676 */
duke@1 1677 @Override
duke@1 1678 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1679 if (t.bound.tag == TYPEVAR ||
duke@1 1680 (!t.bound.isCompound() && !t.bound.isInterface())) {
duke@1 1681 return t.bound;
duke@1 1682 } else {
duke@1 1683 return supertype(t.bound);
duke@1 1684 }
duke@1 1685 }
duke@1 1686
duke@1 1687 @Override
duke@1 1688 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 1689 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
duke@1 1690 return arraySuperType();
duke@1 1691 else
duke@1 1692 return new ArrayType(supertype(t.elemtype), t.tsym);
duke@1 1693 }
duke@1 1694
duke@1 1695 @Override
duke@1 1696 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1697 return t;
duke@1 1698 }
duke@1 1699 };
duke@1 1700 // </editor-fold>
duke@1 1701
duke@1 1702 // <editor-fold defaultstate="collapsed" desc="interfaces">
duke@1 1703 /**
duke@1 1704 * Return the interfaces implemented by this class.
duke@1 1705 */
duke@1 1706 public List<Type> interfaces(Type t) {
duke@1 1707 return interfaces.visit(t);
duke@1 1708 }
duke@1 1709 // where
duke@1 1710 private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
duke@1 1711
duke@1 1712 public List<Type> visitType(Type t, Void ignored) {
duke@1 1713 return List.nil();
duke@1 1714 }
duke@1 1715
duke@1 1716 @Override
duke@1 1717 public List<Type> visitClassType(ClassType t, Void ignored) {
duke@1 1718 if (t.interfaces_field == null) {
duke@1 1719 List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
duke@1 1720 if (t.interfaces_field == null) {
duke@1 1721 // If t.interfaces_field is null, then t must
duke@1 1722 // be a parameterized type (not to be confused
duke@1 1723 // with a generic type declaration).
duke@1 1724 // Terminology:
duke@1 1725 // Parameterized type: List<String>
duke@1 1726 // Generic type declaration: class List<E> { ... }
duke@1 1727 // So t corresponds to List<String> and
duke@1 1728 // t.tsym.type corresponds to List<E>.
duke@1 1729 // The reason t must be parameterized type is
duke@1 1730 // that completion will happen as a side
duke@1 1731 // effect of calling
duke@1 1732 // ClassSymbol.getInterfaces. Since
duke@1 1733 // t.interfaces_field is null after
duke@1 1734 // completion, we can assume that t is not the
duke@1 1735 // type of a class/interface declaration.
duke@1 1736 assert t != t.tsym.type : t.toString();
duke@1 1737 List<Type> actuals = t.allparams();
duke@1 1738 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1739 if (t.hasErasedSupertypes()) {
mcimadamore@30 1740 t.interfaces_field = erasureRecursive(interfaces);
mcimadamore@30 1741 } else if (formals.nonEmpty()) {
duke@1 1742 t.interfaces_field =
duke@1 1743 upperBounds(subst(interfaces, formals, actuals));
duke@1 1744 }
mcimadamore@30 1745 else {
mcimadamore@30 1746 t.interfaces_field = interfaces;
mcimadamore@30 1747 }
duke@1 1748 }
duke@1 1749 }
duke@1 1750 return t.interfaces_field;
duke@1 1751 }
duke@1 1752
duke@1 1753 @Override
duke@1 1754 public List<Type> visitTypeVar(TypeVar t, Void ignored) {
duke@1 1755 if (t.bound.isCompound())
duke@1 1756 return interfaces(t.bound);
duke@1 1757
duke@1 1758 if (t.bound.isInterface())
duke@1 1759 return List.of(t.bound);
duke@1 1760
duke@1 1761 return List.nil();
duke@1 1762 }
duke@1 1763 };
duke@1 1764 // </editor-fold>
duke@1 1765
duke@1 1766 // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
duke@1 1767 Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
duke@1 1768
duke@1 1769 public boolean isDerivedRaw(Type t) {
duke@1 1770 Boolean result = isDerivedRawCache.get(t);
duke@1 1771 if (result == null) {
duke@1 1772 result = isDerivedRawInternal(t);
duke@1 1773 isDerivedRawCache.put(t, result);
duke@1 1774 }
duke@1 1775 return result;
duke@1 1776 }
duke@1 1777
duke@1 1778 public boolean isDerivedRawInternal(Type t) {
duke@1 1779 if (t.isErroneous())
duke@1 1780 return false;
duke@1 1781 return
duke@1 1782 t.isRaw() ||
duke@1 1783 supertype(t) != null && isDerivedRaw(supertype(t)) ||
duke@1 1784 isDerivedRaw(interfaces(t));
duke@1 1785 }
duke@1 1786
duke@1 1787 public boolean isDerivedRaw(List<Type> ts) {
duke@1 1788 List<Type> l = ts;
duke@1 1789 while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
duke@1 1790 return l.nonEmpty();
duke@1 1791 }
duke@1 1792 // </editor-fold>
duke@1 1793
duke@1 1794 // <editor-fold defaultstate="collapsed" desc="setBounds">
duke@1 1795 /**
duke@1 1796 * Set the bounds field of the given type variable to reflect a
duke@1 1797 * (possibly multiple) list of bounds.
duke@1 1798 * @param t a type variable
duke@1 1799 * @param bounds the bounds, must be nonempty
duke@1 1800 * @param supertype is objectType if all bounds are interfaces,
duke@1 1801 * null otherwise.
duke@1 1802 */
duke@1 1803 public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
duke@1 1804 if (bounds.tail.isEmpty())
duke@1 1805 t.bound = bounds.head;
duke@1 1806 else
duke@1 1807 t.bound = makeCompoundType(bounds, supertype);
duke@1 1808 t.rank_field = -1;
duke@1 1809 }
duke@1 1810
duke@1 1811 /**
duke@1 1812 * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
duke@1 1813 * third parameter is computed directly. Note that this test
duke@1 1814 * might cause a symbol completion. Hence, this version of
duke@1 1815 * setBounds may not be called during a classfile read.
duke@1 1816 */
duke@1 1817 public void setBounds(TypeVar t, List<Type> bounds) {
duke@1 1818 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
duke@1 1819 supertype(bounds.head) : null;
duke@1 1820 setBounds(t, bounds, supertype);
duke@1 1821 t.rank_field = -1;
duke@1 1822 }
duke@1 1823 // </editor-fold>
duke@1 1824
duke@1 1825 // <editor-fold defaultstate="collapsed" desc="getBounds">
duke@1 1826 /**
duke@1 1827 * Return list of bounds of the given type variable.
duke@1 1828 */
duke@1 1829 public List<Type> getBounds(TypeVar t) {
duke@1 1830 if (t.bound.isErroneous() || !t.bound.isCompound())
duke@1 1831 return List.of(t.bound);
duke@1 1832 else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
duke@1 1833 return interfaces(t).prepend(supertype(t));
duke@1 1834 else
duke@1 1835 // No superclass was given in bounds.
duke@1 1836 // In this case, supertype is Object, erasure is first interface.
duke@1 1837 return interfaces(t);
duke@1 1838 }
duke@1 1839 // </editor-fold>
duke@1 1840
duke@1 1841 // <editor-fold defaultstate="collapsed" desc="classBound">
duke@1 1842 /**
duke@1 1843 * If the given type is a (possibly selected) type variable,
duke@1 1844 * return the bounding class of this type, otherwise return the
duke@1 1845 * type itself.
duke@1 1846 */
duke@1 1847 public Type classBound(Type t) {
duke@1 1848 return classBound.visit(t);
duke@1 1849 }
duke@1 1850 // where
duke@1 1851 private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
duke@1 1852
duke@1 1853 public Type visitType(Type t, Void ignored) {
duke@1 1854 return t;
duke@1 1855 }
duke@1 1856
duke@1 1857 @Override
duke@1 1858 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1859 Type outer1 = classBound(t.getEnclosingType());
duke@1 1860 if (outer1 != t.getEnclosingType())
duke@1 1861 return new ClassType(outer1, t.getTypeArguments(), t.tsym);
duke@1 1862 else
duke@1 1863 return t;
duke@1 1864 }
duke@1 1865
duke@1 1866 @Override
duke@1 1867 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1868 return classBound(supertype(t));
duke@1 1869 }
duke@1 1870
duke@1 1871 @Override
duke@1 1872 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1873 return t;
duke@1 1874 }
duke@1 1875 };
duke@1 1876 // </editor-fold>
duke@1 1877
duke@1 1878 // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
duke@1 1879 /**
duke@1 1880 * Returns true iff the first signature is a <em>sub
duke@1 1881 * signature</em> of the other. This is <b>not</b> an equivalence
duke@1 1882 * relation.
duke@1 1883 *
duke@1 1884 * @see "The Java Language Specification, Third Ed. (8.4.2)."
duke@1 1885 * @see #overrideEquivalent(Type t, Type s)
duke@1 1886 * @param t first signature (possibly raw).
duke@1 1887 * @param s second signature (could be subjected to erasure).
duke@1 1888 * @return true if t is a sub signature of s.
duke@1 1889 */
duke@1 1890 public boolean isSubSignature(Type t, Type s) {
duke@1 1891 return hasSameArgs(t, s) || hasSameArgs(t, erasure(s));
duke@1 1892 }
duke@1 1893
duke@1 1894 /**
duke@1 1895 * Returns true iff these signatures are related by <em>override
duke@1 1896 * equivalence</em>. This is the natural extension of
duke@1 1897 * isSubSignature to an equivalence relation.
duke@1 1898 *
duke@1 1899 * @see "The Java Language Specification, Third Ed. (8.4.2)."
duke@1 1900 * @see #isSubSignature(Type t, Type s)
duke@1 1901 * @param t a signature (possible raw, could be subjected to
duke@1 1902 * erasure).
duke@1 1903 * @param s a signature (possible raw, could be subjected to
duke@1 1904 * erasure).
duke@1 1905 * @return true if either argument is a sub signature of the other.
duke@1 1906 */
duke@1 1907 public boolean overrideEquivalent(Type t, Type s) {
duke@1 1908 return hasSameArgs(t, s) ||
duke@1 1909 hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
duke@1 1910 }
duke@1 1911
duke@1 1912 /**
duke@1 1913 * Does t have the same arguments as s? It is assumed that both
duke@1 1914 * types are (possibly polymorphic) method types. Monomorphic
duke@1 1915 * method types "have the same arguments", if their argument lists
duke@1 1916 * are equal. Polymorphic method types "have the same arguments",
duke@1 1917 * if they have the same arguments after renaming all type
duke@1 1918 * variables of one to corresponding type variables in the other,
duke@1 1919 * where correspondence is by position in the type parameter list.
duke@1 1920 */
duke@1 1921 public boolean hasSameArgs(Type t, Type s) {
duke@1 1922 return hasSameArgs.visit(t, s);
duke@1 1923 }
duke@1 1924 // where
duke@1 1925 private TypeRelation hasSameArgs = new TypeRelation() {
duke@1 1926
duke@1 1927 public Boolean visitType(Type t, Type s) {
duke@1 1928 throw new AssertionError();
duke@1 1929 }
duke@1 1930
duke@1 1931 @Override
duke@1 1932 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 1933 return s.tag == METHOD
duke@1 1934 && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
duke@1 1935 }
duke@1 1936
duke@1 1937 @Override
duke@1 1938 public Boolean visitForAll(ForAll t, Type s) {
duke@1 1939 if (s.tag != FORALL)
duke@1 1940 return false;
duke@1 1941
duke@1 1942 ForAll forAll = (ForAll)s;
duke@1 1943 return hasSameBounds(t, forAll)
duke@1 1944 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 1945 }
duke@1 1946
duke@1 1947 @Override
duke@1 1948 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1949 return false;
duke@1 1950 }
duke@1 1951 };
duke@1 1952 // </editor-fold>
duke@1 1953
duke@1 1954 // <editor-fold defaultstate="collapsed" desc="subst">
duke@1 1955 public List<Type> subst(List<Type> ts,
duke@1 1956 List<Type> from,
duke@1 1957 List<Type> to) {
duke@1 1958 return new Subst(from, to).subst(ts);
duke@1 1959 }
duke@1 1960
duke@1 1961 /**
duke@1 1962 * Substitute all occurrences of a type in `from' with the
duke@1 1963 * corresponding type in `to' in 't'. Match lists `from' and `to'
duke@1 1964 * from the right: If lists have different length, discard leading
duke@1 1965 * elements of the longer list.
duke@1 1966 */
duke@1 1967 public Type subst(Type t, List<Type> from, List<Type> to) {
duke@1 1968 return new Subst(from, to).subst(t);
duke@1 1969 }
duke@1 1970
duke@1 1971 private class Subst extends UnaryVisitor<Type> {
duke@1 1972 List<Type> from;
duke@1 1973 List<Type> to;
duke@1 1974
duke@1 1975 public Subst(List<Type> from, List<Type> to) {
duke@1 1976 int fromLength = from.length();
duke@1 1977 int toLength = to.length();
duke@1 1978 while (fromLength > toLength) {
duke@1 1979 fromLength--;
duke@1 1980 from = from.tail;
duke@1 1981 }
duke@1 1982 while (fromLength < toLength) {
duke@1 1983 toLength--;
duke@1 1984 to = to.tail;
duke@1 1985 }
duke@1 1986 this.from = from;
duke@1 1987 this.to = to;
duke@1 1988 }
duke@1 1989
duke@1 1990 Type subst(Type t) {
duke@1 1991 if (from.tail == null)
duke@1 1992 return t;
duke@1 1993 else
duke@1 1994 return visit(t);
duke@1 1995 }
duke@1 1996
duke@1 1997 List<Type> subst(List<Type> ts) {
duke@1 1998 if (from.tail == null)
duke@1 1999 return ts;
duke@1 2000 boolean wild = false;
duke@1 2001 if (ts.nonEmpty() && from.nonEmpty()) {
duke@1 2002 Type head1 = subst(ts.head);
duke@1 2003 List<Type> tail1 = subst(ts.tail);
duke@1 2004 if (head1 != ts.head || tail1 != ts.tail)
duke@1 2005 return tail1.prepend(head1);
duke@1 2006 }
duke@1 2007 return ts;
duke@1 2008 }
duke@1 2009
duke@1 2010 public Type visitType(Type t, Void ignored) {
duke@1 2011 return t;
duke@1 2012 }
duke@1 2013
duke@1 2014 @Override
duke@1 2015 public Type visitMethodType(MethodType t, Void ignored) {
duke@1 2016 List<Type> argtypes = subst(t.argtypes);
duke@1 2017 Type restype = subst(t.restype);
duke@1 2018 List<Type> thrown = subst(t.thrown);
duke@1 2019 if (argtypes == t.argtypes &&
duke@1 2020 restype == t.restype &&
duke@1 2021 thrown == t.thrown)
duke@1 2022 return t;
duke@1 2023 else
duke@1 2024 return new MethodType(argtypes, restype, thrown, t.tsym);
duke@1 2025 }
duke@1 2026
duke@1 2027 @Override
duke@1 2028 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2029 for (List<Type> from = this.from, to = this.to;
duke@1 2030 from.nonEmpty();
duke@1 2031 from = from.tail, to = to.tail) {
duke@1 2032 if (t == from.head) {
duke@1 2033 return to.head.withTypeVar(t);
duke@1 2034 }
duke@1 2035 }
duke@1 2036 return t;
duke@1 2037 }
duke@1 2038
duke@1 2039 @Override
duke@1 2040 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2041 if (!t.isCompound()) {
duke@1 2042 List<Type> typarams = t.getTypeArguments();
duke@1 2043 List<Type> typarams1 = subst(typarams);
duke@1 2044 Type outer = t.getEnclosingType();
duke@1 2045 Type outer1 = subst(outer);
duke@1 2046 if (typarams1 == typarams && outer1 == outer)
duke@1 2047 return t;
duke@1 2048 else
duke@1 2049 return new ClassType(outer1, typarams1, t.tsym);
duke@1 2050 } else {
duke@1 2051 Type st = subst(supertype(t));
duke@1 2052 List<Type> is = upperBounds(subst(interfaces(t)));
duke@1 2053 if (st == supertype(t) && is == interfaces(t))
duke@1 2054 return t;
duke@1 2055 else
duke@1 2056 return makeCompoundType(is.prepend(st));
duke@1 2057 }
duke@1 2058 }
duke@1 2059
duke@1 2060 @Override
duke@1 2061 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 2062 Type bound = t.type;
duke@1 2063 if (t.kind != BoundKind.UNBOUND)
duke@1 2064 bound = subst(bound);
duke@1 2065 if (bound == t.type) {
duke@1 2066 return t;
duke@1 2067 } else {
duke@1 2068 if (t.isExtendsBound() && bound.isExtendsBound())
duke@1 2069 bound = upperBound(bound);
duke@1 2070 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
duke@1 2071 }
duke@1 2072 }
duke@1 2073
duke@1 2074 @Override
duke@1 2075 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 2076 Type elemtype = subst(t.elemtype);
duke@1 2077 if (elemtype == t.elemtype)
duke@1 2078 return t;
duke@1 2079 else
duke@1 2080 return new ArrayType(upperBound(elemtype), t.tsym);
duke@1 2081 }
duke@1 2082
duke@1 2083 @Override
duke@1 2084 public Type visitForAll(ForAll t, Void ignored) {
duke@1 2085 List<Type> tvars1 = substBounds(t.tvars, from, to);
duke@1 2086 Type qtype1 = subst(t.qtype);
duke@1 2087 if (tvars1 == t.tvars && qtype1 == t.qtype) {
duke@1 2088 return t;
duke@1 2089 } else if (tvars1 == t.tvars) {
duke@1 2090 return new ForAll(tvars1, qtype1);
duke@1 2091 } else {
duke@1 2092 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
duke@1 2093 }
duke@1 2094 }
duke@1 2095
duke@1 2096 @Override
duke@1 2097 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2098 return t;
duke@1 2099 }
duke@1 2100 }
duke@1 2101
duke@1 2102 public List<Type> substBounds(List<Type> tvars,
duke@1 2103 List<Type> from,
duke@1 2104 List<Type> to) {
duke@1 2105 if (tvars.isEmpty())
duke@1 2106 return tvars;
duke@1 2107 if (tvars.tail.isEmpty())
duke@1 2108 // fast common case
duke@1 2109 return List.<Type>of(substBound((TypeVar)tvars.head, from, to));
duke@1 2110 ListBuffer<Type> newBoundsBuf = lb();
duke@1 2111 boolean changed = false;
duke@1 2112 // calculate new bounds
duke@1 2113 for (Type t : tvars) {
duke@1 2114 TypeVar tv = (TypeVar) t;
duke@1 2115 Type bound = subst(tv.bound, from, to);
duke@1 2116 if (bound != tv.bound)
duke@1 2117 changed = true;
duke@1 2118 newBoundsBuf.append(bound);
duke@1 2119 }
duke@1 2120 if (!changed)
duke@1 2121 return tvars;
duke@1 2122 ListBuffer<Type> newTvars = lb();
duke@1 2123 // create new type variables without bounds
duke@1 2124 for (Type t : tvars) {
duke@1 2125 newTvars.append(new TypeVar(t.tsym, null, syms.botType));
duke@1 2126 }
duke@1 2127 // the new bounds should use the new type variables in place
duke@1 2128 // of the old
duke@1 2129 List<Type> newBounds = newBoundsBuf.toList();
duke@1 2130 from = tvars;
duke@1 2131 to = newTvars.toList();
duke@1 2132 for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
duke@1 2133 newBounds.head = subst(newBounds.head, from, to);
duke@1 2134 }
duke@1 2135 newBounds = newBoundsBuf.toList();
duke@1 2136 // set the bounds of new type variables to the new bounds
duke@1 2137 for (Type t : newTvars.toList()) {
duke@1 2138 TypeVar tv = (TypeVar) t;
duke@1 2139 tv.bound = newBounds.head;
duke@1 2140 newBounds = newBounds.tail;
duke@1 2141 }
duke@1 2142 return newTvars.toList();
duke@1 2143 }
duke@1 2144
duke@1 2145 public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
duke@1 2146 Type bound1 = subst(t.bound, from, to);
duke@1 2147 if (bound1 == t.bound)
duke@1 2148 return t;
duke@1 2149 else
duke@1 2150 return new TypeVar(t.tsym, bound1, syms.botType);
duke@1 2151 }
duke@1 2152 // </editor-fold>
duke@1 2153
duke@1 2154 // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
duke@1 2155 /**
duke@1 2156 * Does t have the same bounds for quantified variables as s?
duke@1 2157 */
duke@1 2158 boolean hasSameBounds(ForAll t, ForAll s) {
duke@1 2159 List<Type> l1 = t.tvars;
duke@1 2160 List<Type> l2 = s.tvars;
duke@1 2161 while (l1.nonEmpty() && l2.nonEmpty() &&
duke@1 2162 isSameType(l1.head.getUpperBound(),
duke@1 2163 subst(l2.head.getUpperBound(),
duke@1 2164 s.tvars,
duke@1 2165 t.tvars))) {
duke@1 2166 l1 = l1.tail;
duke@1 2167 l2 = l2.tail;
duke@1 2168 }
duke@1 2169 return l1.isEmpty() && l2.isEmpty();
duke@1 2170 }
duke@1 2171 // </editor-fold>
duke@1 2172
duke@1 2173 // <editor-fold defaultstate="collapsed" desc="newInstances">
duke@1 2174 /** Create new vector of type variables from list of variables
duke@1 2175 * changing all recursive bounds from old to new list.
duke@1 2176 */
duke@1 2177 public List<Type> newInstances(List<Type> tvars) {
duke@1 2178 List<Type> tvars1 = Type.map(tvars, newInstanceFun);
duke@1 2179 for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
duke@1 2180 TypeVar tv = (TypeVar) l.head;
duke@1 2181 tv.bound = subst(tv.bound, tvars, tvars1);
duke@1 2182 }
duke@1 2183 return tvars1;
duke@1 2184 }
duke@1 2185 static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
duke@1 2186 public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
duke@1 2187 };
duke@1 2188 // </editor-fold>
duke@1 2189
jjg@110 2190 // <editor-fold defaultstate="collapsed" desc="createErrorType">
jjg@110 2191 public Type createErrorType(Type originalType) {
jjg@110 2192 return new ErrorType(originalType, syms.errSymbol);
jjg@110 2193 }
jjg@110 2194
jjg@110 2195 public Type createErrorType(ClassSymbol c, Type originalType) {
jjg@110 2196 return new ErrorType(c, originalType);
jjg@110 2197 }
jjg@110 2198
jjg@110 2199 public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
jjg@110 2200 return new ErrorType(name, container, originalType);
jjg@110 2201 }
jjg@110 2202 // </editor-fold>
jjg@110 2203
duke@1 2204 // <editor-fold defaultstate="collapsed" desc="rank">
duke@1 2205 /**
duke@1 2206 * The rank of a class is the length of the longest path between
duke@1 2207 * the class and java.lang.Object in the class inheritance
duke@1 2208 * graph. Undefined for all but reference types.
duke@1 2209 */
duke@1 2210 public int rank(Type t) {
duke@1 2211 switch(t.tag) {
duke@1 2212 case CLASS: {
duke@1 2213 ClassType cls = (ClassType)t;
duke@1 2214 if (cls.rank_field < 0) {
duke@1 2215 Name fullname = cls.tsym.getQualifiedName();
duke@1 2216 if (fullname == fullname.table.java_lang_Object)
duke@1 2217 cls.rank_field = 0;
duke@1 2218 else {
duke@1 2219 int r = rank(supertype(cls));
duke@1 2220 for (List<Type> l = interfaces(cls);
duke@1 2221 l.nonEmpty();
duke@1 2222 l = l.tail) {
duke@1 2223 if (rank(l.head) > r)
duke@1 2224 r = rank(l.head);
duke@1 2225 }
duke@1 2226 cls.rank_field = r + 1;
duke@1 2227 }
duke@1 2228 }
duke@1 2229 return cls.rank_field;
duke@1 2230 }
duke@1 2231 case TYPEVAR: {
duke@1 2232 TypeVar tvar = (TypeVar)t;
duke@1 2233 if (tvar.rank_field < 0) {
duke@1 2234 int r = rank(supertype(tvar));
duke@1 2235 for (List<Type> l = interfaces(tvar);
duke@1 2236 l.nonEmpty();
duke@1 2237 l = l.tail) {
duke@1 2238 if (rank(l.head) > r) r = rank(l.head);
duke@1 2239 }
duke@1 2240 tvar.rank_field = r + 1;
duke@1 2241 }
duke@1 2242 return tvar.rank_field;
duke@1 2243 }
duke@1 2244 case ERROR:
duke@1 2245 return 0;
duke@1 2246 default:
duke@1 2247 throw new AssertionError();
duke@1 2248 }
duke@1 2249 }
duke@1 2250 // </editor-fold>
duke@1 2251
duke@1 2252 // <editor-fold defaultstate="collapsed" desc="toString">
duke@1 2253 /**
duke@1 2254 * This toString is slightly more descriptive than the one on Type.
duke@1 2255 */
duke@1 2256 public String toString(Type t) {
duke@1 2257 if (t.tag == FORALL) {
duke@1 2258 ForAll forAll = (ForAll)t;
duke@1 2259 return typaramsString(forAll.tvars) + forAll.qtype;
duke@1 2260 }
duke@1 2261 return "" + t;
duke@1 2262 }
duke@1 2263 // where
duke@1 2264 private String typaramsString(List<Type> tvars) {
duke@1 2265 StringBuffer s = new StringBuffer();
duke@1 2266 s.append('<');
duke@1 2267 boolean first = true;
duke@1 2268 for (Type t : tvars) {
duke@1 2269 if (!first) s.append(", ");
duke@1 2270 first = false;
duke@1 2271 appendTyparamString(((TypeVar)t), s);
duke@1 2272 }
duke@1 2273 s.append('>');
duke@1 2274 return s.toString();
duke@1 2275 }
duke@1 2276 private void appendTyparamString(TypeVar t, StringBuffer buf) {
duke@1 2277 buf.append(t);
duke@1 2278 if (t.bound == null ||
duke@1 2279 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
duke@1 2280 return;
duke@1 2281 buf.append(" extends "); // Java syntax; no need for i18n
duke@1 2282 Type bound = t.bound;
duke@1 2283 if (!bound.isCompound()) {
duke@1 2284 buf.append(bound);
duke@1 2285 } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
duke@1 2286 buf.append(supertype(t));
duke@1 2287 for (Type intf : interfaces(t)) {
duke@1 2288 buf.append('&');
duke@1 2289 buf.append(intf);
duke@1 2290 }
duke@1 2291 } else {
duke@1 2292 // No superclass was given in bounds.
duke@1 2293 // In this case, supertype is Object, erasure is first interface.
duke@1 2294 boolean first = true;
duke@1 2295 for (Type intf : interfaces(t)) {
duke@1 2296 if (!first) buf.append('&');
duke@1 2297 first = false;
duke@1 2298 buf.append(intf);
duke@1 2299 }
duke@1 2300 }
duke@1 2301 }
duke@1 2302 // </editor-fold>
duke@1 2303
duke@1 2304 // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
duke@1 2305 /**
duke@1 2306 * A cache for closures.
duke@1 2307 *
duke@1 2308 * <p>A closure is a list of all the supertypes and interfaces of
duke@1 2309 * a class or interface type, ordered by ClassSymbol.precedes
duke@1 2310 * (that is, subclasses come first, arbitrary but fixed
duke@1 2311 * otherwise).
duke@1 2312 */
duke@1 2313 private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
duke@1 2314
duke@1 2315 /**
duke@1 2316 * Returns the closure of a class or interface type.
duke@1 2317 */
duke@1 2318 public List<Type> closure(Type t) {
duke@1 2319 List<Type> cl = closureCache.get(t);
duke@1 2320 if (cl == null) {
duke@1 2321 Type st = supertype(t);
duke@1 2322 if (!t.isCompound()) {
duke@1 2323 if (st.tag == CLASS) {
duke@1 2324 cl = insert(closure(st), t);
duke@1 2325 } else if (st.tag == TYPEVAR) {
duke@1 2326 cl = closure(st).prepend(t);
duke@1 2327 } else {
duke@1 2328 cl = List.of(t);
duke@1 2329 }
duke@1 2330 } else {
duke@1 2331 cl = closure(supertype(t));
duke@1 2332 }
duke@1 2333 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
duke@1 2334 cl = union(cl, closure(l.head));
duke@1 2335 closureCache.put(t, cl);
duke@1 2336 }
duke@1 2337 return cl;
duke@1 2338 }
duke@1 2339
duke@1 2340 /**
duke@1 2341 * Insert a type in a closure
duke@1 2342 */
duke@1 2343 public List<Type> insert(List<Type> cl, Type t) {
duke@1 2344 if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
duke@1 2345 return cl.prepend(t);
duke@1 2346 } else if (cl.head.tsym.precedes(t.tsym, this)) {
duke@1 2347 return insert(cl.tail, t).prepend(cl.head);
duke@1 2348 } else {
duke@1 2349 return cl;
duke@1 2350 }
duke@1 2351 }
duke@1 2352
duke@1 2353 /**
duke@1 2354 * Form the union of two closures
duke@1 2355 */
duke@1 2356 public List<Type> union(List<Type> cl1, List<Type> cl2) {
duke@1 2357 if (cl1.isEmpty()) {
duke@1 2358 return cl2;
duke@1 2359 } else if (cl2.isEmpty()) {
duke@1 2360 return cl1;
duke@1 2361 } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
duke@1 2362 return union(cl1.tail, cl2).prepend(cl1.head);
duke@1 2363 } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
duke@1 2364 return union(cl1, cl2.tail).prepend(cl2.head);
duke@1 2365 } else {
duke@1 2366 return union(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2367 }
duke@1 2368 }
duke@1 2369
duke@1 2370 /**
duke@1 2371 * Intersect two closures
duke@1 2372 */
duke@1 2373 public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
duke@1 2374 if (cl1 == cl2)
duke@1 2375 return cl1;
duke@1 2376 if (cl1.isEmpty() || cl2.isEmpty())
duke@1 2377 return List.nil();
duke@1 2378 if (cl1.head.tsym.precedes(cl2.head.tsym, this))
duke@1 2379 return intersect(cl1.tail, cl2);
duke@1 2380 if (cl2.head.tsym.precedes(cl1.head.tsym, this))
duke@1 2381 return intersect(cl1, cl2.tail);
duke@1 2382 if (isSameType(cl1.head, cl2.head))
duke@1 2383 return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2384 if (cl1.head.tsym == cl2.head.tsym &&
duke@1 2385 cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
duke@1 2386 if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
duke@1 2387 Type merge = merge(cl1.head,cl2.head);
duke@1 2388 return intersect(cl1.tail, cl2.tail).prepend(merge);
duke@1 2389 }
duke@1 2390 if (cl1.head.isRaw() || cl2.head.isRaw())
duke@1 2391 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
duke@1 2392 }
duke@1 2393 return intersect(cl1.tail, cl2.tail);
duke@1 2394 }
duke@1 2395 // where
duke@1 2396 class TypePair {
duke@1 2397 final Type t1;
duke@1 2398 final Type t2;
duke@1 2399 TypePair(Type t1, Type t2) {
duke@1 2400 this.t1 = t1;
duke@1 2401 this.t2 = t2;
duke@1 2402 }
duke@1 2403 @Override
duke@1 2404 public int hashCode() {
duke@1 2405 return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
duke@1 2406 }
duke@1 2407 @Override
duke@1 2408 public boolean equals(Object obj) {
duke@1 2409 if (!(obj instanceof TypePair))
duke@1 2410 return false;
duke@1 2411 TypePair typePair = (TypePair)obj;
duke@1 2412 return isSameType(t1, typePair.t1)
duke@1 2413 && isSameType(t2, typePair.t2);
duke@1 2414 }
duke@1 2415 }
duke@1 2416 Set<TypePair> mergeCache = new HashSet<TypePair>();
duke@1 2417 private Type merge(Type c1, Type c2) {
duke@1 2418 ClassType class1 = (ClassType) c1;
duke@1 2419 List<Type> act1 = class1.getTypeArguments();
duke@1 2420 ClassType class2 = (ClassType) c2;
duke@1 2421 List<Type> act2 = class2.getTypeArguments();
duke@1 2422 ListBuffer<Type> merged = new ListBuffer<Type>();
duke@1 2423 List<Type> typarams = class1.tsym.type.getTypeArguments();
duke@1 2424
duke@1 2425 while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
duke@1 2426 if (containsType(act1.head, act2.head)) {
duke@1 2427 merged.append(act1.head);
duke@1 2428 } else if (containsType(act2.head, act1.head)) {
duke@1 2429 merged.append(act2.head);
duke@1 2430 } else {
duke@1 2431 TypePair pair = new TypePair(c1, c2);
duke@1 2432 Type m;
duke@1 2433 if (mergeCache.add(pair)) {
duke@1 2434 m = new WildcardType(lub(upperBound(act1.head),
duke@1 2435 upperBound(act2.head)),
duke@1 2436 BoundKind.EXTENDS,
duke@1 2437 syms.boundClass);
duke@1 2438 mergeCache.remove(pair);
duke@1 2439 } else {
duke@1 2440 m = new WildcardType(syms.objectType,
duke@1 2441 BoundKind.UNBOUND,
duke@1 2442 syms.boundClass);
duke@1 2443 }
duke@1 2444 merged.append(m.withTypeVar(typarams.head));
duke@1 2445 }
duke@1 2446 act1 = act1.tail;
duke@1 2447 act2 = act2.tail;
duke@1 2448 typarams = typarams.tail;
duke@1 2449 }
duke@1 2450 assert(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
duke@1 2451 return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
duke@1 2452 }
duke@1 2453
duke@1 2454 /**
duke@1 2455 * Return the minimum type of a closure, a compound type if no
duke@1 2456 * unique minimum exists.
duke@1 2457 */
duke@1 2458 private Type compoundMin(List<Type> cl) {
duke@1 2459 if (cl.isEmpty()) return syms.objectType;
duke@1 2460 List<Type> compound = closureMin(cl);
duke@1 2461 if (compound.isEmpty())
duke@1 2462 return null;
duke@1 2463 else if (compound.tail.isEmpty())
duke@1 2464 return compound.head;
duke@1 2465 else
duke@1 2466 return makeCompoundType(compound);
duke@1 2467 }
duke@1 2468
duke@1 2469 /**
duke@1 2470 * Return the minimum types of a closure, suitable for computing
duke@1 2471 * compoundMin or glb.
duke@1 2472 */
duke@1 2473 private List<Type> closureMin(List<Type> cl) {
duke@1 2474 ListBuffer<Type> classes = lb();
duke@1 2475 ListBuffer<Type> interfaces = lb();
duke@1 2476 while (!cl.isEmpty()) {
duke@1 2477 Type current = cl.head;
duke@1 2478 if (current.isInterface())
duke@1 2479 interfaces.append(current);
duke@1 2480 else
duke@1 2481 classes.append(current);
duke@1 2482 ListBuffer<Type> candidates = lb();
duke@1 2483 for (Type t : cl.tail) {
duke@1 2484 if (!isSubtypeNoCapture(current, t))
duke@1 2485 candidates.append(t);
duke@1 2486 }
duke@1 2487 cl = candidates.toList();
duke@1 2488 }
duke@1 2489 return classes.appendList(interfaces).toList();
duke@1 2490 }
duke@1 2491
duke@1 2492 /**
duke@1 2493 * Return the least upper bound of pair of types. if the lub does
duke@1 2494 * not exist return null.
duke@1 2495 */
duke@1 2496 public Type lub(Type t1, Type t2) {
duke@1 2497 return lub(List.of(t1, t2));
duke@1 2498 }
duke@1 2499
duke@1 2500 /**
duke@1 2501 * Return the least upper bound (lub) of set of types. If the lub
duke@1 2502 * does not exist return the type of null (bottom).
duke@1 2503 */
duke@1 2504 public Type lub(List<Type> ts) {
duke@1 2505 final int ARRAY_BOUND = 1;
duke@1 2506 final int CLASS_BOUND = 2;
duke@1 2507 int boundkind = 0;
duke@1 2508 for (Type t : ts) {
duke@1 2509 switch (t.tag) {
duke@1 2510 case CLASS:
duke@1 2511 boundkind |= CLASS_BOUND;
duke@1 2512 break;
duke@1 2513 case ARRAY:
duke@1 2514 boundkind |= ARRAY_BOUND;
duke@1 2515 break;
duke@1 2516 case TYPEVAR:
duke@1 2517 do {
duke@1 2518 t = t.getUpperBound();
duke@1 2519 } while (t.tag == TYPEVAR);
duke@1 2520 if (t.tag == ARRAY) {
duke@1 2521 boundkind |= ARRAY_BOUND;
duke@1 2522 } else {
duke@1 2523 boundkind |= CLASS_BOUND;
duke@1 2524 }
duke@1 2525 break;
duke@1 2526 default:
duke@1 2527 if (t.isPrimitive())
mcimadamore@5 2528 return syms.errType;
duke@1 2529 }
duke@1 2530 }
duke@1 2531 switch (boundkind) {
duke@1 2532 case 0:
duke@1 2533 return syms.botType;
duke@1 2534
duke@1 2535 case ARRAY_BOUND:
duke@1 2536 // calculate lub(A[], B[])
duke@1 2537 List<Type> elements = Type.map(ts, elemTypeFun);
duke@1 2538 for (Type t : elements) {
duke@1 2539 if (t.isPrimitive()) {
duke@1 2540 // if a primitive type is found, then return
duke@1 2541 // arraySuperType unless all the types are the
duke@1 2542 // same
duke@1 2543 Type first = ts.head;
duke@1 2544 for (Type s : ts.tail) {
duke@1 2545 if (!isSameType(first, s)) {
duke@1 2546 // lub(int[], B[]) is Cloneable & Serializable
duke@1 2547 return arraySuperType();
duke@1 2548 }
duke@1 2549 }
duke@1 2550 // all the array types are the same, return one
duke@1 2551 // lub(int[], int[]) is int[]
duke@1 2552 return first;
duke@1 2553 }
duke@1 2554 }
duke@1 2555 // lub(A[], B[]) is lub(A, B)[]
duke@1 2556 return new ArrayType(lub(elements), syms.arrayClass);
duke@1 2557
duke@1 2558 case CLASS_BOUND:
duke@1 2559 // calculate lub(A, B)
duke@1 2560 while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
duke@1 2561 ts = ts.tail;
duke@1 2562 assert !ts.isEmpty();
duke@1 2563 List<Type> cl = closure(ts.head);
duke@1 2564 for (Type t : ts.tail) {
duke@1 2565 if (t.tag == CLASS || t.tag == TYPEVAR)
duke@1 2566 cl = intersect(cl, closure(t));
duke@1 2567 }
duke@1 2568 return compoundMin(cl);
duke@1 2569
duke@1 2570 default:
duke@1 2571 // calculate lub(A, B[])
duke@1 2572 List<Type> classes = List.of(arraySuperType());
duke@1 2573 for (Type t : ts) {
duke@1 2574 if (t.tag != ARRAY) // Filter out any arrays
duke@1 2575 classes = classes.prepend(t);
duke@1 2576 }
duke@1 2577 // lub(A, B[]) is lub(A, arraySuperType)
duke@1 2578 return lub(classes);
duke@1 2579 }
duke@1 2580 }
duke@1 2581 // where
duke@1 2582 private Type arraySuperType = null;
duke@1 2583 private Type arraySuperType() {
duke@1 2584 // initialized lazily to avoid problems during compiler startup
duke@1 2585 if (arraySuperType == null) {
duke@1 2586 synchronized (this) {
duke@1 2587 if (arraySuperType == null) {
duke@1 2588 // JLS 10.8: all arrays implement Cloneable and Serializable.
duke@1 2589 arraySuperType = makeCompoundType(List.of(syms.serializableType,
duke@1 2590 syms.cloneableType),
duke@1 2591 syms.objectType);
duke@1 2592 }
duke@1 2593 }
duke@1 2594 }
duke@1 2595 return arraySuperType;
duke@1 2596 }
duke@1 2597 // </editor-fold>
duke@1 2598
duke@1 2599 // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
duke@1 2600 public Type glb(Type t, Type s) {
duke@1 2601 if (s == null)
duke@1 2602 return t;
duke@1 2603 else if (isSubtypeNoCapture(t, s))
duke@1 2604 return t;
duke@1 2605 else if (isSubtypeNoCapture(s, t))
duke@1 2606 return s;
duke@1 2607
duke@1 2608 List<Type> closure = union(closure(t), closure(s));
duke@1 2609 List<Type> bounds = closureMin(closure);
duke@1 2610
duke@1 2611 if (bounds.isEmpty()) { // length == 0
duke@1 2612 return syms.objectType;
duke@1 2613 } else if (bounds.tail.isEmpty()) { // length == 1
duke@1 2614 return bounds.head;
duke@1 2615 } else { // length > 1
duke@1 2616 int classCount = 0;
duke@1 2617 for (Type bound : bounds)
duke@1 2618 if (!bound.isInterface())
duke@1 2619 classCount++;
duke@1 2620 if (classCount > 1)
jjg@110 2621 return createErrorType(t);
duke@1 2622 }
duke@1 2623 return makeCompoundType(bounds);
duke@1 2624 }
duke@1 2625 // </editor-fold>
duke@1 2626
duke@1 2627 // <editor-fold defaultstate="collapsed" desc="hashCode">
duke@1 2628 /**
duke@1 2629 * Compute a hash code on a type.
duke@1 2630 */
duke@1 2631 public static int hashCode(Type t) {
duke@1 2632 return hashCode.visit(t);
duke@1 2633 }
duke@1 2634 // where
duke@1 2635 private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
duke@1 2636
duke@1 2637 public Integer visitType(Type t, Void ignored) {
duke@1 2638 return t.tag;
duke@1 2639 }
duke@1 2640
duke@1 2641 @Override
duke@1 2642 public Integer visitClassType(ClassType t, Void ignored) {
duke@1 2643 int result = visit(t.getEnclosingType());
duke@1 2644 result *= 127;
duke@1 2645 result += t.tsym.flatName().hashCode();
duke@1 2646 for (Type s : t.getTypeArguments()) {
duke@1 2647 result *= 127;
duke@1 2648 result += visit(s);
duke@1 2649 }
duke@1 2650 return result;
duke@1 2651 }
duke@1 2652
duke@1 2653 @Override
duke@1 2654 public Integer visitWildcardType(WildcardType t, Void ignored) {
duke@1 2655 int result = t.kind.hashCode();
duke@1 2656 if (t.type != null) {
duke@1 2657 result *= 127;
duke@1 2658 result += visit(t.type);
duke@1 2659 }
duke@1 2660 return result;
duke@1 2661 }
duke@1 2662
duke@1 2663 @Override
duke@1 2664 public Integer visitArrayType(ArrayType t, Void ignored) {
duke@1 2665 return visit(t.elemtype) + 12;
duke@1 2666 }
duke@1 2667
duke@1 2668 @Override
duke@1 2669 public Integer visitTypeVar(TypeVar t, Void ignored) {
duke@1 2670 return System.identityHashCode(t.tsym);
duke@1 2671 }
duke@1 2672
duke@1 2673 @Override
duke@1 2674 public Integer visitUndetVar(UndetVar t, Void ignored) {
duke@1 2675 return System.identityHashCode(t);
duke@1 2676 }
duke@1 2677
duke@1 2678 @Override
duke@1 2679 public Integer visitErrorType(ErrorType t, Void ignored) {
duke@1 2680 return 0;
duke@1 2681 }
duke@1 2682 };
duke@1 2683 // </editor-fold>
duke@1 2684
duke@1 2685 // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
duke@1 2686 /**
duke@1 2687 * Does t have a result that is a subtype of the result type of s,
duke@1 2688 * suitable for covariant returns? It is assumed that both types
duke@1 2689 * are (possibly polymorphic) method types. Monomorphic method
duke@1 2690 * types are handled in the obvious way. Polymorphic method types
duke@1 2691 * require renaming all type variables of one to corresponding
duke@1 2692 * type variables in the other, where correspondence is by
duke@1 2693 * position in the type parameter list. */
duke@1 2694 public boolean resultSubtype(Type t, Type s, Warner warner) {
duke@1 2695 List<Type> tvars = t.getTypeArguments();
duke@1 2696 List<Type> svars = s.getTypeArguments();
duke@1 2697 Type tres = t.getReturnType();
duke@1 2698 Type sres = subst(s.getReturnType(), svars, tvars);
duke@1 2699 return covariantReturnType(tres, sres, warner);
duke@1 2700 }
duke@1 2701
duke@1 2702 /**
duke@1 2703 * Return-Type-Substitutable.
duke@1 2704 * @see <a href="http://java.sun.com/docs/books/jls/">The Java
duke@1 2705 * Language Specification, Third Ed. (8.4.5)</a>
duke@1 2706 */
duke@1 2707 public boolean returnTypeSubstitutable(Type r1, Type r2) {
duke@1 2708 if (hasSameArgs(r1, r2))
duke@1 2709 return resultSubtype(r1, r2, Warner.noWarnings);
duke@1 2710 else
duke@1 2711 return covariantReturnType(r1.getReturnType(),
duke@1 2712 erasure(r2.getReturnType()),
duke@1 2713 Warner.noWarnings);
duke@1 2714 }
duke@1 2715
duke@1 2716 public boolean returnTypeSubstitutable(Type r1,
duke@1 2717 Type r2, Type r2res,
duke@1 2718 Warner warner) {
duke@1 2719 if (isSameType(r1.getReturnType(), r2res))
duke@1 2720 return true;
duke@1 2721 if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
duke@1 2722 return false;
duke@1 2723
duke@1 2724 if (hasSameArgs(r1, r2))
duke@1 2725 return covariantReturnType(r1.getReturnType(), r2res, warner);
duke@1 2726 if (!source.allowCovariantReturns())
duke@1 2727 return false;
duke@1 2728 if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
duke@1 2729 return true;
duke@1 2730 if (!isSubtype(r1.getReturnType(), erasure(r2res)))
duke@1 2731 return false;
duke@1 2732 warner.warnUnchecked();
duke@1 2733 return true;
duke@1 2734 }
duke@1 2735
duke@1 2736 /**
duke@1 2737 * Is t an appropriate return type in an overrider for a
duke@1 2738 * method that returns s?
duke@1 2739 */
duke@1 2740 public boolean covariantReturnType(Type t, Type s, Warner warner) {
duke@1 2741 return
duke@1 2742 isSameType(t, s) ||
duke@1 2743 source.allowCovariantReturns() &&
duke@1 2744 !t.isPrimitive() &&
duke@1 2745 !s.isPrimitive() &&
duke@1 2746 isAssignable(t, s, warner);
duke@1 2747 }
duke@1 2748 // </editor-fold>
duke@1 2749
duke@1 2750 // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
duke@1 2751 /**
duke@1 2752 * Return the class that boxes the given primitive.
duke@1 2753 */
duke@1 2754 public ClassSymbol boxedClass(Type t) {
duke@1 2755 return reader.enterClass(syms.boxedName[t.tag]);
duke@1 2756 }
duke@1 2757
duke@1 2758 /**
duke@1 2759 * Return the primitive type corresponding to a boxed type.
duke@1 2760 */
duke@1 2761 public Type unboxedType(Type t) {
duke@1 2762 if (allowBoxing) {
duke@1 2763 for (int i=0; i<syms.boxedName.length; i++) {
duke@1 2764 Name box = syms.boxedName[i];
duke@1 2765 if (box != null &&
duke@1 2766 asSuper(t, reader.enterClass(box)) != null)
duke@1 2767 return syms.typeOfTag[i];
duke@1 2768 }
duke@1 2769 }
duke@1 2770 return Type.noType;
duke@1 2771 }
duke@1 2772 // </editor-fold>
duke@1 2773
duke@1 2774 // <editor-fold defaultstate="collapsed" desc="Capture conversion">
duke@1 2775 /*
duke@1 2776 * JLS 3rd Ed. 5.1.10 Capture Conversion:
duke@1 2777 *
duke@1 2778 * Let G name a generic type declaration with n formal type
duke@1 2779 * parameters A1 ... An with corresponding bounds U1 ... Un. There
duke@1 2780 * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
duke@1 2781 * where, for 1 <= i <= n:
duke@1 2782 *
duke@1 2783 * + If Ti is a wildcard type argument (4.5.1) of the form ? then
duke@1 2784 * Si is a fresh type variable whose upper bound is
duke@1 2785 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
duke@1 2786 * type.
duke@1 2787 *
duke@1 2788 * + If Ti is a wildcard type argument of the form ? extends Bi,
duke@1 2789 * then Si is a fresh type variable whose upper bound is
duke@1 2790 * glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
duke@1 2791 * the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
duke@1 2792 * a compile-time error if for any two classes (not interfaces)
duke@1 2793 * Vi and Vj,Vi is not a subclass of Vj or vice versa.
duke@1 2794 *
duke@1 2795 * + If Ti is a wildcard type argument of the form ? super Bi,
duke@1 2796 * then Si is a fresh type variable whose upper bound is
duke@1 2797 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
duke@1 2798 *
duke@1 2799 * + Otherwise, Si = Ti.
duke@1 2800 *
duke@1 2801 * Capture conversion on any type other than a parameterized type
duke@1 2802 * (4.5) acts as an identity conversion (5.1.1). Capture
duke@1 2803 * conversions never require a special action at run time and
duke@1 2804 * therefore never throw an exception at run time.
duke@1 2805 *
duke@1 2806 * Capture conversion is not applied recursively.
duke@1 2807 */
duke@1 2808 /**
duke@1 2809 * Capture conversion as specified by JLS 3rd Ed.
duke@1 2810 */
duke@1 2811 public Type capture(Type t) {
duke@1 2812 if (t.tag != CLASS)
duke@1 2813 return t;
duke@1 2814 ClassType cls = (ClassType)t;
duke@1 2815 if (cls.isRaw() || !cls.isParameterized())
duke@1 2816 return cls;
duke@1 2817
duke@1 2818 ClassType G = (ClassType)cls.asElement().asType();
duke@1 2819 List<Type> A = G.getTypeArguments();
duke@1 2820 List<Type> T = cls.getTypeArguments();
duke@1 2821 List<Type> S = freshTypeVariables(T);
duke@1 2822
duke@1 2823 List<Type> currentA = A;
duke@1 2824 List<Type> currentT = T;
duke@1 2825 List<Type> currentS = S;
duke@1 2826 boolean captured = false;
duke@1 2827 while (!currentA.isEmpty() &&
duke@1 2828 !currentT.isEmpty() &&
duke@1 2829 !currentS.isEmpty()) {
duke@1 2830 if (currentS.head != currentT.head) {
duke@1 2831 captured = true;
duke@1 2832 WildcardType Ti = (WildcardType)currentT.head;
duke@1 2833 Type Ui = currentA.head.getUpperBound();
duke@1 2834 CapturedType Si = (CapturedType)currentS.head;
duke@1 2835 if (Ui == null)
duke@1 2836 Ui = syms.objectType;
duke@1 2837 switch (Ti.kind) {
duke@1 2838 case UNBOUND:
duke@1 2839 Si.bound = subst(Ui, A, S);
duke@1 2840 Si.lower = syms.botType;
duke@1 2841 break;
duke@1 2842 case EXTENDS:
duke@1 2843 Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
duke@1 2844 Si.lower = syms.botType;
duke@1 2845 break;
duke@1 2846 case SUPER:
duke@1 2847 Si.bound = subst(Ui, A, S);
duke@1 2848 Si.lower = Ti.getSuperBound();
duke@1 2849 break;
duke@1 2850 }
duke@1 2851 if (Si.bound == Si.lower)
duke@1 2852 currentS.head = Si.bound;
duke@1 2853 }
duke@1 2854 currentA = currentA.tail;
duke@1 2855 currentT = currentT.tail;
duke@1 2856 currentS = currentS.tail;
duke@1 2857 }
duke@1 2858 if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
duke@1 2859 return erasure(t); // some "rare" type involved
duke@1 2860
duke@1 2861 if (captured)
duke@1 2862 return new ClassType(cls.getEnclosingType(), S, cls.tsym);
duke@1 2863 else
duke@1 2864 return t;
duke@1 2865 }
duke@1 2866 // where
duke@1 2867 private List<Type> freshTypeVariables(List<Type> types) {
duke@1 2868 ListBuffer<Type> result = lb();
duke@1 2869 for (Type t : types) {
duke@1 2870 if (t.tag == WILDCARD) {
duke@1 2871 Type bound = ((WildcardType)t).getExtendsBound();
duke@1 2872 if (bound == null)
duke@1 2873 bound = syms.objectType;
duke@1 2874 result.append(new CapturedType(capturedName,
duke@1 2875 syms.noSymbol,
duke@1 2876 bound,
duke@1 2877 syms.botType,
duke@1 2878 (WildcardType)t));
duke@1 2879 } else {
duke@1 2880 result.append(t);
duke@1 2881 }
duke@1 2882 }
duke@1 2883 return result.toList();
duke@1 2884 }
duke@1 2885 // </editor-fold>
duke@1 2886
duke@1 2887 // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
duke@1 2888 private List<Type> upperBounds(List<Type> ss) {
duke@1 2889 if (ss.isEmpty()) return ss;
duke@1 2890 Type head = upperBound(ss.head);
duke@1 2891 List<Type> tail = upperBounds(ss.tail);
duke@1 2892 if (head != ss.head || tail != ss.tail)
duke@1 2893 return tail.prepend(head);
duke@1 2894 else
duke@1 2895 return ss;
duke@1 2896 }
duke@1 2897
duke@1 2898 private boolean sideCast(Type from, Type to, Warner warn) {
duke@1 2899 // We are casting from type $from$ to type $to$, which are
duke@1 2900 // non-final unrelated types. This method
duke@1 2901 // tries to reject a cast by transferring type parameters
duke@1 2902 // from $to$ to $from$ by common superinterfaces.
duke@1 2903 boolean reverse = false;
duke@1 2904 Type target = to;
duke@1 2905 if ((to.tsym.flags() & INTERFACE) == 0) {
duke@1 2906 assert (from.tsym.flags() & INTERFACE) != 0;
duke@1 2907 reverse = true;
duke@1 2908 to = from;
duke@1 2909 from = target;
duke@1 2910 }
duke@1 2911 List<Type> commonSupers = superClosure(to, erasure(from));
duke@1 2912 boolean giveWarning = commonSupers.isEmpty();
duke@1 2913 // The arguments to the supers could be unified here to
duke@1 2914 // get a more accurate analysis
duke@1 2915 while (commonSupers.nonEmpty()) {
duke@1 2916 Type t1 = asSuper(from, commonSupers.head.tsym);
duke@1 2917 Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
duke@1 2918 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 2919 return false;
duke@1 2920 giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
duke@1 2921 commonSupers = commonSupers.tail;
duke@1 2922 }
duke@1 2923 if (giveWarning && !isReifiable(to))
duke@1 2924 warn.warnUnchecked();
duke@1 2925 if (!source.allowCovariantReturns())
duke@1 2926 // reject if there is a common method signature with
duke@1 2927 // incompatible return types.
duke@1 2928 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 2929 return true;
duke@1 2930 }
duke@1 2931
duke@1 2932 private boolean sideCastFinal(Type from, Type to, Warner warn) {
duke@1 2933 // We are casting from type $from$ to type $to$, which are
duke@1 2934 // unrelated types one of which is final and the other of
duke@1 2935 // which is an interface. This method
duke@1 2936 // tries to reject a cast by transferring type parameters
duke@1 2937 // from the final class to the interface.
duke@1 2938 boolean reverse = false;
duke@1 2939 Type target = to;
duke@1 2940 if ((to.tsym.flags() & INTERFACE) == 0) {
duke@1 2941 assert (from.tsym.flags() & INTERFACE) != 0;
duke@1 2942 reverse = true;
duke@1 2943 to = from;
duke@1 2944 from = target;
duke@1 2945 }
duke@1 2946 assert (from.tsym.flags() & FINAL) != 0;
duke@1 2947 Type t1 = asSuper(from, to.tsym);
duke@1 2948 if (t1 == null) return false;
duke@1 2949 Type t2 = to;
duke@1 2950 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 2951 return false;
duke@1 2952 if (!source.allowCovariantReturns())
duke@1 2953 // reject if there is a common method signature with
duke@1 2954 // incompatible return types.
duke@1 2955 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 2956 if (!isReifiable(target) &&
duke@1 2957 (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
duke@1 2958 warn.warnUnchecked();
duke@1 2959 return true;
duke@1 2960 }
duke@1 2961
duke@1 2962 private boolean giveWarning(Type from, Type to) {
duke@1 2963 // To and from are (possibly different) parameterizations
duke@1 2964 // of the same class or interface
duke@1 2965 return to.isParameterized() && !containsType(to.getTypeArguments(), from.getTypeArguments());
duke@1 2966 }
duke@1 2967
duke@1 2968 private List<Type> superClosure(Type t, Type s) {
duke@1 2969 List<Type> cl = List.nil();
duke@1 2970 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 2971 if (isSubtype(s, erasure(l.head))) {
duke@1 2972 cl = insert(cl, l.head);
duke@1 2973 } else {
duke@1 2974 cl = union(cl, superClosure(l.head, s));
duke@1 2975 }
duke@1 2976 }
duke@1 2977 return cl;
duke@1 2978 }
duke@1 2979
duke@1 2980 private boolean containsTypeEquivalent(Type t, Type s) {
duke@1 2981 return
duke@1 2982 isSameType(t, s) || // shortcut
duke@1 2983 containsType(t, s) && containsType(s, t);
duke@1 2984 }
duke@1 2985
duke@1 2986 /**
duke@1 2987 * Adapt a type by computing a substitution which maps a source
duke@1 2988 * type to a target type.
duke@1 2989 *
duke@1 2990 * @param source the source type
duke@1 2991 * @param target the target type
duke@1 2992 * @param from the type variables of the computed substitution
duke@1 2993 * @param to the types of the computed substitution.
duke@1 2994 */
duke@1 2995 public void adapt(Type source,
duke@1 2996 Type target,
duke@1 2997 ListBuffer<Type> from,
duke@1 2998 ListBuffer<Type> to) throws AdaptFailure {
duke@1 2999 Map<Symbol,Type> mapping = new HashMap<Symbol,Type>();
duke@1 3000 adaptRecursive(source, target, from, to, mapping);
duke@1 3001 List<Type> fromList = from.toList();
duke@1 3002 List<Type> toList = to.toList();
duke@1 3003 while (!fromList.isEmpty()) {
duke@1 3004 Type val = mapping.get(fromList.head.tsym);
duke@1 3005 if (toList.head != val)
duke@1 3006 toList.head = val;
duke@1 3007 fromList = fromList.tail;
duke@1 3008 toList = toList.tail;
duke@1 3009 }
duke@1 3010 }
duke@1 3011 // where
duke@1 3012 private void adaptRecursive(Type source,
duke@1 3013 Type target,
duke@1 3014 ListBuffer<Type> from,
duke@1 3015 ListBuffer<Type> to,
duke@1 3016 Map<Symbol,Type> mapping) throws AdaptFailure {
duke@1 3017 if (source.tag == TYPEVAR) {
duke@1 3018 // Check to see if there is
duke@1 3019 // already a mapping for $source$, in which case
duke@1 3020 // the old mapping will be merged with the new
duke@1 3021 Type val = mapping.get(source.tsym);
duke@1 3022 if (val != null) {
duke@1 3023 if (val.isSuperBound() && target.isSuperBound()) {
duke@1 3024 val = isSubtype(lowerBound(val), lowerBound(target))
duke@1 3025 ? target : val;
duke@1 3026 } else if (val.isExtendsBound() && target.isExtendsBound()) {
duke@1 3027 val = isSubtype(upperBound(val), upperBound(target))
duke@1 3028 ? val : target;
duke@1 3029 } else if (!isSameType(val, target)) {
duke@1 3030 throw new AdaptFailure();
duke@1 3031 }
duke@1 3032 } else {
duke@1 3033 val = target;
duke@1 3034 from.append(source);
duke@1 3035 to.append(target);
duke@1 3036 }
duke@1 3037 mapping.put(source.tsym, val);
duke@1 3038 } else if (source.tag == target.tag) {
duke@1 3039 switch (source.tag) {
duke@1 3040 case CLASS:
duke@1 3041 adapt(source.allparams(), target.allparams(),
duke@1 3042 from, to, mapping);
duke@1 3043 break;
duke@1 3044 case ARRAY:
duke@1 3045 adaptRecursive(elemtype(source), elemtype(target),
duke@1 3046 from, to, mapping);
duke@1 3047 break;
duke@1 3048 case WILDCARD:
duke@1 3049 if (source.isExtendsBound()) {
duke@1 3050 adaptRecursive(upperBound(source), upperBound(target),
duke@1 3051 from, to, mapping);
duke@1 3052 } else if (source.isSuperBound()) {
duke@1 3053 adaptRecursive(lowerBound(source), lowerBound(target),
duke@1 3054 from, to, mapping);
duke@1 3055 }
duke@1 3056 break;
duke@1 3057 }
duke@1 3058 }
duke@1 3059 }
duke@1 3060 public static class AdaptFailure extends Exception {
duke@1 3061 static final long serialVersionUID = -7490231548272701566L;
duke@1 3062 }
duke@1 3063
duke@1 3064 /**
duke@1 3065 * Adapt a type by computing a substitution which maps a list of
duke@1 3066 * source types to a list of target types.
duke@1 3067 *
duke@1 3068 * @param source the source type
duke@1 3069 * @param target the target type
duke@1 3070 * @param from the type variables of the computed substitution
duke@1 3071 * @param to the types of the computed substitution.
duke@1 3072 */
duke@1 3073 private void adapt(List<Type> source,
duke@1 3074 List<Type> target,
duke@1 3075 ListBuffer<Type> from,
duke@1 3076 ListBuffer<Type> to,
duke@1 3077 Map<Symbol,Type> mapping) throws AdaptFailure {
duke@1 3078 if (source.length() == target.length()) {
duke@1 3079 while (source.nonEmpty()) {
duke@1 3080 adaptRecursive(source.head, target.head, from, to, mapping);
duke@1 3081 source = source.tail;
duke@1 3082 target = target.tail;
duke@1 3083 }
duke@1 3084 }
duke@1 3085 }
duke@1 3086
duke@1 3087 private void adaptSelf(Type t,
duke@1 3088 ListBuffer<Type> from,
duke@1 3089 ListBuffer<Type> to) {
duke@1 3090 try {
duke@1 3091 //if (t.tsym.type != t)
duke@1 3092 adapt(t.tsym.type, t, from, to);
duke@1 3093 } catch (AdaptFailure ex) {
duke@1 3094 // Adapt should never fail calculating a mapping from
duke@1 3095 // t.tsym.type to t as there can be no merge problem.
duke@1 3096 throw new AssertionError(ex);
duke@1 3097 }
duke@1 3098 }
duke@1 3099
duke@1 3100 /**
duke@1 3101 * Rewrite all type variables (universal quantifiers) in the given
duke@1 3102 * type to wildcards (existential quantifiers). This is used to
duke@1 3103 * determine if a cast is allowed. For example, if high is true
duke@1 3104 * and {@code T <: Number}, then {@code List<T>} is rewritten to
duke@1 3105 * {@code List<? extends Number>}. Since {@code List<Integer> <:
duke@1 3106 * List<? extends Number>} a {@code List<T>} can be cast to {@code
duke@1 3107 * List<Integer>} with a warning.
duke@1 3108 * @param t a type
duke@1 3109 * @param high if true return an upper bound; otherwise a lower
duke@1 3110 * bound
duke@1 3111 * @param rewriteTypeVars only rewrite captured wildcards if false;
duke@1 3112 * otherwise rewrite all type variables
duke@1 3113 * @return the type rewritten with wildcards (existential
duke@1 3114 * quantifiers) only
duke@1 3115 */
duke@1 3116 private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
duke@1 3117 ListBuffer<Type> from = new ListBuffer<Type>();
duke@1 3118 ListBuffer<Type> to = new ListBuffer<Type>();
duke@1 3119 adaptSelf(t, from, to);
duke@1 3120 ListBuffer<Type> rewritten = new ListBuffer<Type>();
duke@1 3121 List<Type> formals = from.toList();
duke@1 3122 boolean changed = false;
duke@1 3123 for (Type arg : to.toList()) {
duke@1 3124 Type bound;
duke@1 3125 if (rewriteTypeVars && arg.tag == TYPEVAR) {
duke@1 3126 TypeVar tv = (TypeVar)arg;
duke@1 3127 bound = high ? tv.bound : syms.botType;
duke@1 3128 } else {
duke@1 3129 bound = high ? upperBound(arg) : lowerBound(arg);
duke@1 3130 }
duke@1 3131 Type newarg = bound;
duke@1 3132 if (arg != bound) {
duke@1 3133 changed = true;
duke@1 3134 newarg = high ? makeExtendsWildcard(bound, (TypeVar)formals.head)
duke@1 3135 : makeSuperWildcard(bound, (TypeVar)formals.head);
duke@1 3136 }
duke@1 3137 rewritten.append(newarg);
duke@1 3138 formals = formals.tail;
duke@1 3139 }
duke@1 3140 if (changed)
duke@1 3141 return subst(t.tsym.type, from.toList(), rewritten.toList());
duke@1 3142 else
duke@1 3143 return t;
duke@1 3144 }
duke@1 3145
duke@1 3146 /**
duke@1 3147 * Create a wildcard with the given upper (extends) bound; create
duke@1 3148 * an unbounded wildcard if bound is Object.
duke@1 3149 *
duke@1 3150 * @param bound the upper bound
duke@1 3151 * @param formal the formal type parameter that will be
duke@1 3152 * substituted by the wildcard
duke@1 3153 */
duke@1 3154 private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
duke@1 3155 if (bound == syms.objectType) {
duke@1 3156 return new WildcardType(syms.objectType,
duke@1 3157 BoundKind.UNBOUND,
duke@1 3158 syms.boundClass,
duke@1 3159 formal);
duke@1 3160 } else {
duke@1 3161 return new WildcardType(bound,
duke@1 3162 BoundKind.EXTENDS,
duke@1 3163 syms.boundClass,
duke@1 3164 formal);
duke@1 3165 }
duke@1 3166 }
duke@1 3167
duke@1 3168 /**
duke@1 3169 * Create a wildcard with the given lower (super) bound; create an
duke@1 3170 * unbounded wildcard if bound is bottom (type of {@code null}).
duke@1 3171 *
duke@1 3172 * @param bound the lower bound
duke@1 3173 * @param formal the formal type parameter that will be
duke@1 3174 * substituted by the wildcard
duke@1 3175 */
duke@1 3176 private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
duke@1 3177 if (bound.tag == BOT) {
duke@1 3178 return new WildcardType(syms.objectType,
duke@1 3179 BoundKind.UNBOUND,
duke@1 3180 syms.boundClass,
duke@1 3181 formal);
duke@1 3182 } else {
duke@1 3183 return new WildcardType(bound,
duke@1 3184 BoundKind.SUPER,
duke@1 3185 syms.boundClass,
duke@1 3186 formal);
duke@1 3187 }
duke@1 3188 }
duke@1 3189
duke@1 3190 /**
duke@1 3191 * A wrapper for a type that allows use in sets.
duke@1 3192 */
duke@1 3193 class SingletonType {
duke@1 3194 final Type t;
duke@1 3195 SingletonType(Type t) {
duke@1 3196 this.t = t;
duke@1 3197 }
duke@1 3198 public int hashCode() {
duke@1 3199 return Types.this.hashCode(t);
duke@1 3200 }
duke@1 3201 public boolean equals(Object obj) {
duke@1 3202 return (obj instanceof SingletonType) &&
duke@1 3203 isSameType(t, ((SingletonType)obj).t);
duke@1 3204 }
duke@1 3205 public String toString() {
duke@1 3206 return t.toString();
duke@1 3207 }
duke@1 3208 }
duke@1 3209 // </editor-fold>
duke@1 3210
duke@1 3211 // <editor-fold defaultstate="collapsed" desc="Visitors">
duke@1 3212 /**
duke@1 3213 * A default visitor for types. All visitor methods except
duke@1 3214 * visitType are implemented by delegating to visitType. Concrete
duke@1 3215 * subclasses must provide an implementation of visitType and can
duke@1 3216 * override other methods as needed.
duke@1 3217 *
duke@1 3218 * @param <R> the return type of the operation implemented by this
duke@1 3219 * visitor; use Void if no return type is needed.
duke@1 3220 * @param <S> the type of the second argument (the first being the
duke@1 3221 * type itself) of the operation implemented by this visitor; use
duke@1 3222 * Void if a second argument is not needed.
duke@1 3223 */
duke@1 3224 public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
duke@1 3225 final public R visit(Type t, S s) { return t.accept(this, s); }
duke@1 3226 public R visitClassType(ClassType t, S s) { return visitType(t, s); }
duke@1 3227 public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
duke@1 3228 public R visitArrayType(ArrayType t, S s) { return visitType(t, s); }
duke@1 3229 public R visitMethodType(MethodType t, S s) { return visitType(t, s); }
duke@1 3230 public R visitPackageType(PackageType t, S s) { return visitType(t, s); }
duke@1 3231 public R visitTypeVar(TypeVar t, S s) { return visitType(t, s); }
duke@1 3232 public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
duke@1 3233 public R visitForAll(ForAll t, S s) { return visitType(t, s); }
duke@1 3234 public R visitUndetVar(UndetVar t, S s) { return visitType(t, s); }
duke@1 3235 public R visitErrorType(ErrorType t, S s) { return visitType(t, s); }
duke@1 3236 }
duke@1 3237
duke@1 3238 /**
duke@1 3239 * A <em>simple</em> visitor for types. This visitor is simple as
duke@1 3240 * captured wildcards, for-all types (generic methods), and
duke@1 3241 * undetermined type variables (part of inference) are hidden.
duke@1 3242 * Captured wildcards are hidden by treating them as type
duke@1 3243 * variables and the rest are hidden by visiting their qtypes.
duke@1 3244 *
duke@1 3245 * @param <R> the return type of the operation implemented by this
duke@1 3246 * visitor; use Void if no return type is needed.
duke@1 3247 * @param <S> the type of the second argument (the first being the
duke@1 3248 * type itself) of the operation implemented by this visitor; use
duke@1 3249 * Void if a second argument is not needed.
duke@1 3250 */
duke@1 3251 public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
duke@1 3252 @Override
duke@1 3253 public R visitCapturedType(CapturedType t, S s) {
duke@1 3254 return visitTypeVar(t, s);
duke@1 3255 }
duke@1 3256 @Override
duke@1 3257 public R visitForAll(ForAll t, S s) {
duke@1 3258 return visit(t.qtype, s);
duke@1 3259 }
duke@1 3260 @Override
duke@1 3261 public R visitUndetVar(UndetVar t, S s) {
duke@1 3262 return visit(t.qtype, s);
duke@1 3263 }
duke@1 3264 }
duke@1 3265
duke@1 3266 /**
duke@1 3267 * A plain relation on types. That is a 2-ary function on the
duke@1 3268 * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
duke@1 3269 * <!-- In plain text: Type x Type -> Boolean -->
duke@1 3270 */
duke@1 3271 public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
duke@1 3272
duke@1 3273 /**
duke@1 3274 * A convenience visitor for implementing operations that only
duke@1 3275 * require one argument (the type itself), that is, unary
duke@1 3276 * operations.
duke@1 3277 *
duke@1 3278 * @param <R> the return type of the operation implemented by this
duke@1 3279 * visitor; use Void if no return type is needed.
duke@1 3280 */
duke@1 3281 public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
duke@1 3282 final public R visit(Type t) { return t.accept(this, null); }
duke@1 3283 }
duke@1 3284
duke@1 3285 /**
duke@1 3286 * A visitor for implementing a mapping from types to types. The
duke@1 3287 * default behavior of this class is to implement the identity
duke@1 3288 * mapping (mapping a type to itself). This can be overridden in
duke@1 3289 * subclasses.
duke@1 3290 *
duke@1 3291 * @param <S> the type of the second argument (the first being the
duke@1 3292 * type itself) of this mapping; use Void if a second argument is
duke@1 3293 * not needed.
duke@1 3294 */
duke@1 3295 public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
duke@1 3296 final public Type visit(Type t) { return t.accept(this, null); }
duke@1 3297 public Type visitType(Type t, S s) { return t; }
duke@1 3298 }
duke@1 3299 // </editor-fold>
duke@1 3300 }

mercurial