src/share/classes/com/sun/tools/javac/code/Types.java

Sun, 04 Nov 2012 10:59:42 +0000

author
mcimadamore
date
Sun, 04 Nov 2012 10:59:42 +0000
changeset 1393
d7d932236fee
parent 1374
c002fdee76fd
child 1415
01c9d4161882
permissions
-rw-r--r--

7192246: Add type-checking support for default methods
Summary: Add type-checking support for default methods as per Featherweight-Defender document
Reviewed-by: jjg, dlsmith

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.code;
    28 import java.lang.ref.SoftReference;
    29 import java.util.*;
    31 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
    32 import com.sun.tools.javac.code.Lint.LintCategory;
    33 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
    34 import com.sun.tools.javac.comp.Check;
    35 import com.sun.tools.javac.jvm.ClassReader;
    36 import com.sun.tools.javac.util.*;
    37 import com.sun.tools.javac.util.List;
    38 import static com.sun.tools.javac.code.BoundKind.*;
    39 import static com.sun.tools.javac.code.Flags.*;
    40 import static com.sun.tools.javac.code.Scope.*;
    41 import static com.sun.tools.javac.code.Symbol.*;
    42 import static com.sun.tools.javac.code.Type.*;
    43 import static com.sun.tools.javac.code.TypeTag.*;
    44 import static com.sun.tools.javac.util.ListBuffer.lb;
    46 /**
    47  * Utility class containing various operations on types.
    48  *
    49  * <p>Unless other names are more illustrative, the following naming
    50  * conventions should be observed in this file:
    51  *
    52  * <dl>
    53  * <dt>t</dt>
    54  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
    55  * <dt>s</dt>
    56  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
    57  * <dt>ts</dt>
    58  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
    59  * <dt>ss</dt>
    60  * <dd>A second list of types should be named ss.</dd>
    61  * </dl>
    62  *
    63  * <p><b>This is NOT part of any supported API.
    64  * If you write code that depends on this, you do so at your own risk.
    65  * This code and its internal interfaces are subject to change or
    66  * deletion without notice.</b>
    67  */
    68 public class Types {
    69     protected static final Context.Key<Types> typesKey =
    70         new Context.Key<Types>();
    72     final Symtab syms;
    73     final JavacMessages messages;
    74     final Names names;
    75     final boolean allowBoxing;
    76     final boolean allowCovariantReturns;
    77     final boolean allowObjectToPrimitiveCast;
    78     final boolean allowDefaultMethods;
    79     final ClassReader reader;
    80     final Check chk;
    81     JCDiagnostic.Factory diags;
    82     List<Warner> warnStack = List.nil();
    83     final Name capturedName;
    84     private final FunctionDescriptorLookupError functionDescriptorLookupError;
    86     // <editor-fold defaultstate="collapsed" desc="Instantiating">
    87     public static Types instance(Context context) {
    88         Types instance = context.get(typesKey);
    89         if (instance == null)
    90             instance = new Types(context);
    91         return instance;
    92     }
    94     protected Types(Context context) {
    95         context.put(typesKey, this);
    96         syms = Symtab.instance(context);
    97         names = Names.instance(context);
    98         Source source = Source.instance(context);
    99         allowBoxing = source.allowBoxing();
   100         allowCovariantReturns = source.allowCovariantReturns();
   101         allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
   102         allowDefaultMethods = source.allowDefaultMethods();
   103         reader = ClassReader.instance(context);
   104         chk = Check.instance(context);
   105         capturedName = names.fromString("<captured wildcard>");
   106         messages = JavacMessages.instance(context);
   107         diags = JCDiagnostic.Factory.instance(context);
   108         functionDescriptorLookupError = new FunctionDescriptorLookupError();
   109     }
   110     // </editor-fold>
   112     // <editor-fold defaultstate="collapsed" desc="upperBound">
   113     /**
   114      * The "rvalue conversion".<br>
   115      * The upper bound of most types is the type
   116      * itself.  Wildcards, on the other hand have upper
   117      * and lower bounds.
   118      * @param t a type
   119      * @return the upper bound of the given type
   120      */
   121     public Type upperBound(Type t) {
   122         return upperBound.visit(t);
   123     }
   124     // where
   125         private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
   127             @Override
   128             public Type visitWildcardType(WildcardType t, Void ignored) {
   129                 if (t.isSuperBound())
   130                     return t.bound == null ? syms.objectType : t.bound.bound;
   131                 else
   132                     return visit(t.type);
   133             }
   135             @Override
   136             public Type visitCapturedType(CapturedType t, Void ignored) {
   137                 return visit(t.bound);
   138             }
   139         };
   140     // </editor-fold>
   142     // <editor-fold defaultstate="collapsed" desc="lowerBound">
   143     /**
   144      * The "lvalue conversion".<br>
   145      * The lower bound of most types is the type
   146      * itself.  Wildcards, on the other hand have upper
   147      * and lower bounds.
   148      * @param t a type
   149      * @return the lower bound of the given type
   150      */
   151     public Type lowerBound(Type t) {
   152         return lowerBound.visit(t);
   153     }
   154     // where
   155         private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
   157             @Override
   158             public Type visitWildcardType(WildcardType t, Void ignored) {
   159                 return t.isExtendsBound() ? syms.botType : visit(t.type);
   160             }
   162             @Override
   163             public Type visitCapturedType(CapturedType t, Void ignored) {
   164                 return visit(t.getLowerBound());
   165             }
   166         };
   167     // </editor-fold>
   169     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
   170     /**
   171      * Checks that all the arguments to a class are unbounded
   172      * wildcards or something else that doesn't make any restrictions
   173      * on the arguments. If a class isUnbounded, a raw super- or
   174      * subclass can be cast to it without a warning.
   175      * @param t a type
   176      * @return true iff the given type is unbounded or raw
   177      */
   178     public boolean isUnbounded(Type t) {
   179         return isUnbounded.visit(t);
   180     }
   181     // where
   182         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
   184             public Boolean visitType(Type t, Void ignored) {
   185                 return true;
   186             }
   188             @Override
   189             public Boolean visitClassType(ClassType t, Void ignored) {
   190                 List<Type> parms = t.tsym.type.allparams();
   191                 List<Type> args = t.allparams();
   192                 while (parms.nonEmpty()) {
   193                     WildcardType unb = new WildcardType(syms.objectType,
   194                                                         BoundKind.UNBOUND,
   195                                                         syms.boundClass,
   196                                                         (TypeVar)parms.head);
   197                     if (!containsType(args.head, unb))
   198                         return false;
   199                     parms = parms.tail;
   200                     args = args.tail;
   201                 }
   202                 return true;
   203             }
   204         };
   205     // </editor-fold>
   207     // <editor-fold defaultstate="collapsed" desc="asSub">
   208     /**
   209      * Return the least specific subtype of t that starts with symbol
   210      * sym.  If none exists, return null.  The least specific subtype
   211      * is determined as follows:
   212      *
   213      * <p>If there is exactly one parameterized instance of sym that is a
   214      * subtype of t, that parameterized instance is returned.<br>
   215      * Otherwise, if the plain type or raw type `sym' is a subtype of
   216      * type t, the type `sym' itself is returned.  Otherwise, null is
   217      * returned.
   218      */
   219     public Type asSub(Type t, Symbol sym) {
   220         return asSub.visit(t, sym);
   221     }
   222     // where
   223         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
   225             public Type visitType(Type t, Symbol sym) {
   226                 return null;
   227             }
   229             @Override
   230             public Type visitClassType(ClassType t, Symbol sym) {
   231                 if (t.tsym == sym)
   232                     return t;
   233                 Type base = asSuper(sym.type, t.tsym);
   234                 if (base == null)
   235                     return null;
   236                 ListBuffer<Type> from = new ListBuffer<Type>();
   237                 ListBuffer<Type> to = new ListBuffer<Type>();
   238                 try {
   239                     adapt(base, t, from, to);
   240                 } catch (AdaptFailure ex) {
   241                     return null;
   242                 }
   243                 Type res = subst(sym.type, from.toList(), to.toList());
   244                 if (!isSubtype(res, t))
   245                     return null;
   246                 ListBuffer<Type> openVars = new ListBuffer<Type>();
   247                 for (List<Type> l = sym.type.allparams();
   248                      l.nonEmpty(); l = l.tail)
   249                     if (res.contains(l.head) && !t.contains(l.head))
   250                         openVars.append(l.head);
   251                 if (openVars.nonEmpty()) {
   252                     if (t.isRaw()) {
   253                         // The subtype of a raw type is raw
   254                         res = erasure(res);
   255                     } else {
   256                         // Unbound type arguments default to ?
   257                         List<Type> opens = openVars.toList();
   258                         ListBuffer<Type> qs = new ListBuffer<Type>();
   259                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
   260                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
   261                         }
   262                         res = subst(res, opens, qs.toList());
   263                     }
   264                 }
   265                 return res;
   266             }
   268             @Override
   269             public Type visitErrorType(ErrorType t, Symbol sym) {
   270                 return t;
   271             }
   272         };
   273     // </editor-fold>
   275     // <editor-fold defaultstate="collapsed" desc="isConvertible">
   276     /**
   277      * Is t a subtype of or convertible via boxing/unboxing
   278      * conversion to s?
   279      */
   280     public boolean isConvertible(Type t, Type s, Warner warn) {
   281         if (t.tag == ERROR)
   282             return true;
   283         boolean tPrimitive = t.isPrimitive();
   284         boolean sPrimitive = s.isPrimitive();
   285         if (tPrimitive == sPrimitive) {
   286             return isSubtypeUnchecked(t, s, warn);
   287         }
   288         if (!allowBoxing) return false;
   289         return tPrimitive
   290             ? isSubtype(boxedClass(t).type, s)
   291             : isSubtype(unboxedType(t), s);
   292     }
   294     /**
   295      * Is t a subtype of or convertiable via boxing/unboxing
   296      * convertions to s?
   297      */
   298     public boolean isConvertible(Type t, Type s) {
   299         return isConvertible(t, s, Warner.noWarnings);
   300     }
   301     // </editor-fold>
   303     // <editor-fold defaultstate="collapsed" desc="findSam">
   305     /**
   306      * Exception used to report a function descriptor lookup failure. The exception
   307      * wraps a diagnostic that can be used to generate more details error
   308      * messages.
   309      */
   310     public static class FunctionDescriptorLookupError extends RuntimeException {
   311         private static final long serialVersionUID = 0;
   313         JCDiagnostic diagnostic;
   315         FunctionDescriptorLookupError() {
   316             this.diagnostic = null;
   317         }
   319         FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
   320             this.diagnostic = diag;
   321             return this;
   322         }
   324         public JCDiagnostic getDiagnostic() {
   325             return diagnostic;
   326         }
   327     }
   329     /**
   330      * A cache that keeps track of function descriptors associated with given
   331      * functional interfaces.
   332      */
   333     class DescriptorCache {
   335         private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<TypeSymbol, Entry>();
   337         class FunctionDescriptor {
   338             Symbol descSym;
   340             FunctionDescriptor(Symbol descSym) {
   341                 this.descSym = descSym;
   342             }
   344             public Symbol getSymbol() {
   345                 return descSym;
   346             }
   348             public Type getType(Type origin) {
   349                 return memberType(origin, descSym);
   350             }
   351         }
   353         class Entry {
   354             final FunctionDescriptor cachedDescRes;
   355             final int prevMark;
   357             public Entry(FunctionDescriptor cachedDescRes,
   358                     int prevMark) {
   359                 this.cachedDescRes = cachedDescRes;
   360                 this.prevMark = prevMark;
   361             }
   363             boolean matches(int mark) {
   364                 return  this.prevMark == mark;
   365             }
   366         }
   368         FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
   369             Entry e = _map.get(origin);
   370             CompoundScope members = membersClosure(origin.type, false);
   371             if (e == null ||
   372                     !e.matches(members.getMark())) {
   373                 FunctionDescriptor descRes = findDescriptorInternal(origin, members);
   374                 _map.put(origin, new Entry(descRes, members.getMark()));
   375                 return descRes;
   376             }
   377             else {
   378                 return e.cachedDescRes;
   379             }
   380         }
   382         /**
   383          * Scope filter used to skip methods that should be ignored during
   384          * function interface conversion (such as methods overridden by
   385          * j.l.Object)
   386          */
   387         class DescriptorFilter implements Filter<Symbol> {
   389             TypeSymbol origin;
   391             DescriptorFilter(TypeSymbol origin) {
   392                 this.origin = origin;
   393             }
   395             @Override
   396             public boolean accepts(Symbol sym) {
   397                     return sym.kind == Kinds.MTH &&
   398                             (sym.flags() & ABSTRACT) != 0 &&
   399                             !overridesObjectMethod(origin, sym) &&
   400                             notOverridden(sym);
   401             }
   403             private boolean notOverridden(Symbol msym) {
   404                 Symbol impl = ((MethodSymbol)msym).implementation(origin, Types.this, false);
   405                 return impl == null || (impl.flags() & ABSTRACT) != 0;
   406             }
   407         };
   409         /**
   410          * Compute the function descriptor associated with a given functional interface
   411          */
   412         public FunctionDescriptor findDescriptorInternal(TypeSymbol origin, CompoundScope membersCache) throws FunctionDescriptorLookupError {
   413             if (!origin.isInterface()) {
   414                 //t must be an interface
   415                 throw failure("not.a.functional.intf");
   416             }
   418             final ListBuffer<Symbol> abstracts = ListBuffer.lb();
   419             for (Symbol sym : membersCache.getElements(new DescriptorFilter(origin))) {
   420                 Type mtype = memberType(origin.type, sym);
   421                 if (abstracts.isEmpty() ||
   422                         (sym.name == abstracts.first().name &&
   423                         overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
   424                     abstracts.append(sym);
   425                 } else {
   426                     //the target method(s) should be the only abstract members of t
   427                     throw failure("not.a.functional.intf.1",
   428                             diags.fragment("incompatible.abstracts", Kinds.kindName(origin), origin));
   429                 }
   430             }
   431             if (abstracts.isEmpty()) {
   432                 //t must define a suitable non-generic method
   433                 throw failure("not.a.functional.intf.1",
   434                             diags.fragment("no.abstracts", Kinds.kindName(origin), origin));
   435             } else if (abstracts.size() == 1) {
   436                 if (abstracts.first().type.tag == FORALL) {
   437                     throw failure("invalid.generic.desc.in.functional.intf",
   438                             abstracts.first(),
   439                             Kinds.kindName(origin),
   440                             origin);
   441                 } else {
   442                     return new FunctionDescriptor(abstracts.first());
   443                 }
   444             } else { // size > 1
   445                 for (Symbol msym : abstracts) {
   446                     if (msym.type.tag == FORALL) {
   447                         throw failure("invalid.generic.desc.in.functional.intf",
   448                                 abstracts.first(),
   449                                 Kinds.kindName(origin),
   450                                 origin);
   451                     }
   452                 }
   453                 FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
   454                 if (descRes == null) {
   455                     //we can get here if the functional interface is ill-formed
   456                     ListBuffer<JCDiagnostic> descriptors = ListBuffer.lb();
   457                     for (Symbol desc : abstracts) {
   458                         String key = desc.type.getThrownTypes().nonEmpty() ?
   459                                 "descriptor.throws" : "descriptor";
   460                         descriptors.append(diags.fragment(key, desc.name,
   461                                 desc.type.getParameterTypes(),
   462                                 desc.type.getReturnType(),
   463                                 desc.type.getThrownTypes()));
   464                     }
   465                     JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
   466                             new JCDiagnostic.MultilineDiagnostic(diags.fragment("incompatible.descs.in.functional.intf",
   467                             Kinds.kindName(origin), origin), descriptors.toList());
   468                     throw failure(incompatibleDescriptors);
   469                 }
   470                 return descRes;
   471             }
   472         }
   474         /**
   475          * Compute a synthetic type for the target descriptor given a list
   476          * of override-equivalent methods in the functional interface type.
   477          * The resulting method type is a method type that is override-equivalent
   478          * and return-type substitutable with each method in the original list.
   479          */
   480         private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
   481             //pick argument types - simply take the signature that is a
   482             //subsignature of all other signatures in the list (as per JLS 8.4.2)
   483             List<Symbol> mostSpecific = List.nil();
   484             outer: for (Symbol msym1 : methodSyms) {
   485                 Type mt1 = memberType(origin.type, msym1);
   486                 for (Symbol msym2 : methodSyms) {
   487                     Type mt2 = memberType(origin.type, msym2);
   488                     if (!isSubSignature(mt1, mt2)) {
   489                         continue outer;
   490                     }
   491                 }
   492                 mostSpecific = mostSpecific.prepend(msym1);
   493             }
   494             if (mostSpecific.isEmpty()) {
   495                 return null;
   496             }
   499             //pick return types - this is done in two phases: (i) first, the most
   500             //specific return type is chosen using strict subtyping; if this fails,
   501             //a second attempt is made using return type substitutability (see JLS 8.4.5)
   502             boolean phase2 = false;
   503             Symbol bestSoFar = null;
   504             while (bestSoFar == null) {
   505                 outer: for (Symbol msym1 : mostSpecific) {
   506                     Type mt1 = memberType(origin.type, msym1);
   507                     for (Symbol msym2 : methodSyms) {
   508                         Type mt2 = memberType(origin.type, msym2);
   509                         if (phase2 ?
   510                                 !returnTypeSubstitutable(mt1, mt2) :
   511                                 !isSubtypeInternal(mt1.getReturnType(), mt2.getReturnType())) {
   512                             continue outer;
   513                         }
   514                     }
   515                     bestSoFar = msym1;
   516                 }
   517                 if (phase2) {
   518                     break;
   519                 } else {
   520                     phase2 = true;
   521                 }
   522             }
   523             if (bestSoFar == null) return null;
   525             //merge thrown types - form the intersection of all the thrown types in
   526             //all the signatures in the list
   527             List<Type> thrown = null;
   528             for (Symbol msym1 : methodSyms) {
   529                 Type mt1 = memberType(origin.type, msym1);
   530                 thrown = (thrown == null) ?
   531                     mt1.getThrownTypes() :
   532                     chk.intersect(mt1.getThrownTypes(), thrown);
   533             }
   535             final List<Type> thrown1 = thrown;
   536             return new FunctionDescriptor(bestSoFar) {
   537                 @Override
   538                 public Type getType(Type origin) {
   539                     Type mt = memberType(origin, getSymbol());
   540                     return new MethodType(mt.getParameterTypes(), mt.getReturnType(), thrown1, syms.methodClass);
   541                 }
   542             };
   543         }
   545         boolean isSubtypeInternal(Type s, Type t) {
   546             return (s.isPrimitive() && t.isPrimitive()) ?
   547                     isSameType(t, s) :
   548                     isSubtype(s, t);
   549         }
   551         FunctionDescriptorLookupError failure(String msg, Object... args) {
   552             return failure(diags.fragment(msg, args));
   553         }
   555         FunctionDescriptorLookupError failure(JCDiagnostic diag) {
   556             return functionDescriptorLookupError.setMessage(diag);
   557         }
   558     }
   560     private DescriptorCache descCache = new DescriptorCache();
   562     /**
   563      * Find the method descriptor associated to this class symbol - if the
   564      * symbol 'origin' is not a functional interface, an exception is thrown.
   565      */
   566     public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
   567         return descCache.get(origin).getSymbol();
   568     }
   570     /**
   571      * Find the type of the method descriptor associated to this class symbol -
   572      * if the symbol 'origin' is not a functional interface, an exception is thrown.
   573      */
   574     public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
   575         return descCache.get(origin.tsym).getType(origin);
   576     }
   578     /**
   579      * Is given type a functional interface?
   580      */
   581     public boolean isFunctionalInterface(TypeSymbol tsym) {
   582         try {
   583             findDescriptorSymbol(tsym);
   584             return true;
   585         } catch (FunctionDescriptorLookupError ex) {
   586             return false;
   587         }
   588     }
   589     // </editor-fold>
   591     // <editor-fold defaultstate="collapsed" desc="isSubtype">
   592     /**
   593      * Is t an unchecked subtype of s?
   594      */
   595     public boolean isSubtypeUnchecked(Type t, Type s) {
   596         return isSubtypeUnchecked(t, s, Warner.noWarnings);
   597     }
   598     /**
   599      * Is t an unchecked subtype of s?
   600      */
   601     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
   602         boolean result = isSubtypeUncheckedInternal(t, s, warn);
   603         if (result) {
   604             checkUnsafeVarargsConversion(t, s, warn);
   605         }
   606         return result;
   607     }
   608     //where
   609         private boolean isSubtypeUncheckedInternal(Type t, Type s, Warner warn) {
   610             if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
   611                 if (((ArrayType)t).elemtype.isPrimitive()) {
   612                     return isSameType(elemtype(t), elemtype(s));
   613                 } else {
   614                     return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
   615                 }
   616             } else if (isSubtype(t, s)) {
   617                 return true;
   618             }
   619             else if (t.tag == TYPEVAR) {
   620                 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
   621             }
   622             else if (!s.isRaw()) {
   623                 Type t2 = asSuper(t, s.tsym);
   624                 if (t2 != null && t2.isRaw()) {
   625                     if (isReifiable(s))
   626                         warn.silentWarn(LintCategory.UNCHECKED);
   627                     else
   628                         warn.warn(LintCategory.UNCHECKED);
   629                     return true;
   630                 }
   631             }
   632             return false;
   633         }
   635         private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
   636             if (t.tag != ARRAY || isReifiable(t)) return;
   637             ArrayType from = (ArrayType)t;
   638             boolean shouldWarn = false;
   639             switch (s.tag) {
   640                 case ARRAY:
   641                     ArrayType to = (ArrayType)s;
   642                     shouldWarn = from.isVarargs() &&
   643                             !to.isVarargs() &&
   644                             !isReifiable(from);
   645                     break;
   646                 case CLASS:
   647                     shouldWarn = from.isVarargs();
   648                     break;
   649             }
   650             if (shouldWarn) {
   651                 warn.warn(LintCategory.VARARGS);
   652             }
   653         }
   655     /**
   656      * Is t a subtype of s?<br>
   657      * (not defined for Method and ForAll types)
   658      */
   659     final public boolean isSubtype(Type t, Type s) {
   660         return isSubtype(t, s, true);
   661     }
   662     final public boolean isSubtypeNoCapture(Type t, Type s) {
   663         return isSubtype(t, s, false);
   664     }
   665     public boolean isSubtype(Type t, Type s, boolean capture) {
   666         if (t == s)
   667             return true;
   669         if (s.isPartial())
   670             return isSuperType(s, t);
   672         if (s.isCompound()) {
   673             for (Type s2 : interfaces(s).prepend(supertype(s))) {
   674                 if (!isSubtype(t, s2, capture))
   675                     return false;
   676             }
   677             return true;
   678         }
   680         Type lower = lowerBound(s);
   681         if (s != lower)
   682             return isSubtype(capture ? capture(t) : t, lower, false);
   684         return isSubtype.visit(capture ? capture(t) : t, s);
   685     }
   686     // where
   687         private TypeRelation isSubtype = new TypeRelation()
   688         {
   689             public Boolean visitType(Type t, Type s) {
   690                 switch (t.tag) {
   691                  case BYTE:
   692                      return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
   693                  case CHAR:
   694                      return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
   695                  case SHORT: case INT: case LONG:
   696                  case FLOAT: case DOUBLE:
   697                      return t.getTag().isSubRangeOf(s.getTag());
   698                  case BOOLEAN: case VOID:
   699                      return t.hasTag(s.getTag());
   700                  case TYPEVAR:
   701                      return isSubtypeNoCapture(t.getUpperBound(), s);
   702                  case BOT:
   703                      return
   704                          s.hasTag(BOT) || s.hasTag(CLASS) ||
   705                          s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
   706                  case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
   707                  case NONE:
   708                      return false;
   709                  default:
   710                      throw new AssertionError("isSubtype " + t.tag);
   711                  }
   712             }
   714             private Set<TypePair> cache = new HashSet<TypePair>();
   716             private boolean containsTypeRecursive(Type t, Type s) {
   717                 TypePair pair = new TypePair(t, s);
   718                 if (cache.add(pair)) {
   719                     try {
   720                         return containsType(t.getTypeArguments(),
   721                                             s.getTypeArguments());
   722                     } finally {
   723                         cache.remove(pair);
   724                     }
   725                 } else {
   726                     return containsType(t.getTypeArguments(),
   727                                         rewriteSupers(s).getTypeArguments());
   728                 }
   729             }
   731             private Type rewriteSupers(Type t) {
   732                 if (!t.isParameterized())
   733                     return t;
   734                 ListBuffer<Type> from = lb();
   735                 ListBuffer<Type> to = lb();
   736                 adaptSelf(t, from, to);
   737                 if (from.isEmpty())
   738                     return t;
   739                 ListBuffer<Type> rewrite = lb();
   740                 boolean changed = false;
   741                 for (Type orig : to.toList()) {
   742                     Type s = rewriteSupers(orig);
   743                     if (s.isSuperBound() && !s.isExtendsBound()) {
   744                         s = new WildcardType(syms.objectType,
   745                                              BoundKind.UNBOUND,
   746                                              syms.boundClass);
   747                         changed = true;
   748                     } else if (s != orig) {
   749                         s = new WildcardType(upperBound(s),
   750                                              BoundKind.EXTENDS,
   751                                              syms.boundClass);
   752                         changed = true;
   753                     }
   754                     rewrite.append(s);
   755                 }
   756                 if (changed)
   757                     return subst(t.tsym.type, from.toList(), rewrite.toList());
   758                 else
   759                     return t;
   760             }
   762             @Override
   763             public Boolean visitClassType(ClassType t, Type s) {
   764                 Type sup = asSuper(t, s.tsym);
   765                 return sup != null
   766                     && sup.tsym == s.tsym
   767                     // You're not allowed to write
   768                     //     Vector<Object> vec = new Vector<String>();
   769                     // But with wildcards you can write
   770                     //     Vector<? extends Object> vec = new Vector<String>();
   771                     // which means that subtype checking must be done
   772                     // here instead of same-type checking (via containsType).
   773                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
   774                     && isSubtypeNoCapture(sup.getEnclosingType(),
   775                                           s.getEnclosingType());
   776             }
   778             @Override
   779             public Boolean visitArrayType(ArrayType t, Type s) {
   780                 if (s.tag == ARRAY) {
   781                     if (t.elemtype.isPrimitive())
   782                         return isSameType(t.elemtype, elemtype(s));
   783                     else
   784                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
   785                 }
   787                 if (s.tag == CLASS) {
   788                     Name sname = s.tsym.getQualifiedName();
   789                     return sname == names.java_lang_Object
   790                         || sname == names.java_lang_Cloneable
   791                         || sname == names.java_io_Serializable;
   792                 }
   794                 return false;
   795             }
   797             @Override
   798             public Boolean visitUndetVar(UndetVar t, Type s) {
   799                 //todo: test against origin needed? or replace with substitution?
   800                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN) {
   801                     return true;
   802                 } else if (s.tag == BOT) {
   803                     //if 's' is 'null' there's no instantiated type U for which
   804                     //U <: s (but 'null' itself, which is not a valid type)
   805                     return false;
   806                 }
   808                 t.addBound(InferenceBound.UPPER, s, Types.this);
   809                 return true;
   810             }
   812             @Override
   813             public Boolean visitErrorType(ErrorType t, Type s) {
   814                 return true;
   815             }
   816         };
   818     /**
   819      * Is t a subtype of every type in given list `ts'?<br>
   820      * (not defined for Method and ForAll types)<br>
   821      * Allows unchecked conversions.
   822      */
   823     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
   824         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   825             if (!isSubtypeUnchecked(t, l.head, warn))
   826                 return false;
   827         return true;
   828     }
   830     /**
   831      * Are corresponding elements of ts subtypes of ss?  If lists are
   832      * of different length, return false.
   833      */
   834     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
   835         while (ts.tail != null && ss.tail != null
   836                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   837                isSubtype(ts.head, ss.head)) {
   838             ts = ts.tail;
   839             ss = ss.tail;
   840         }
   841         return ts.tail == null && ss.tail == null;
   842         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   843     }
   845     /**
   846      * Are corresponding elements of ts subtypes of ss, allowing
   847      * unchecked conversions?  If lists are of different length,
   848      * return false.
   849      **/
   850     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
   851         while (ts.tail != null && ss.tail != null
   852                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   853                isSubtypeUnchecked(ts.head, ss.head, warn)) {
   854             ts = ts.tail;
   855             ss = ss.tail;
   856         }
   857         return ts.tail == null && ss.tail == null;
   858         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   859     }
   860     // </editor-fold>
   862     // <editor-fold defaultstate="collapsed" desc="isSuperType">
   863     /**
   864      * Is t a supertype of s?
   865      */
   866     public boolean isSuperType(Type t, Type s) {
   867         switch (t.tag) {
   868         case ERROR:
   869             return true;
   870         case UNDETVAR: {
   871             UndetVar undet = (UndetVar)t;
   872             if (t == s ||
   873                 undet.qtype == s ||
   874                 s.tag == ERROR ||
   875                 s.tag == BOT) return true;
   876             undet.addBound(InferenceBound.LOWER, s, this);
   877             return true;
   878         }
   879         default:
   880             return isSubtype(s, t);
   881         }
   882     }
   883     // </editor-fold>
   885     // <editor-fold defaultstate="collapsed" desc="isSameType">
   886     /**
   887      * Are corresponding elements of the lists the same type?  If
   888      * lists are of different length, return false.
   889      */
   890     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
   891         while (ts.tail != null && ss.tail != null
   892                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   893                isSameType(ts.head, ss.head)) {
   894             ts = ts.tail;
   895             ss = ss.tail;
   896         }
   897         return ts.tail == null && ss.tail == null;
   898         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   899     }
   901     /**
   902      * Is t the same type as s?
   903      */
   904     public boolean isSameType(Type t, Type s) {
   905         return isSameType.visit(t, s);
   906     }
   907     // where
   908         private TypeRelation isSameType = new TypeRelation() {
   910             public Boolean visitType(Type t, Type s) {
   911                 if (t == s)
   912                     return true;
   914                 if (s.isPartial())
   915                     return visit(s, t);
   917                 switch (t.tag) {
   918                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
   919                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
   920                     return t.tag == s.tag;
   921                 case TYPEVAR: {
   922                     if (s.tag == TYPEVAR) {
   923                         //type-substitution does not preserve type-var types
   924                         //check that type var symbols and bounds are indeed the same
   925                         return t.tsym == s.tsym &&
   926                                 visit(t.getUpperBound(), s.getUpperBound());
   927                     }
   928                     else {
   929                         //special case for s == ? super X, where upper(s) = u
   930                         //check that u == t, where u has been set by Type.withTypeVar
   931                         return s.isSuperBound() &&
   932                                 !s.isExtendsBound() &&
   933                                 visit(t, upperBound(s));
   934                     }
   935                 }
   936                 default:
   937                     throw new AssertionError("isSameType " + t.tag);
   938                 }
   939             }
   941             @Override
   942             public Boolean visitWildcardType(WildcardType t, Type s) {
   943                 if (s.isPartial())
   944                     return visit(s, t);
   945                 else
   946                     return false;
   947             }
   949             @Override
   950             public Boolean visitClassType(ClassType t, Type s) {
   951                 if (t == s)
   952                     return true;
   954                 if (s.isPartial())
   955                     return visit(s, t);
   957                 if (s.isSuperBound() && !s.isExtendsBound())
   958                     return visit(t, upperBound(s)) && visit(t, lowerBound(s));
   960                 if (t.isCompound() && s.isCompound()) {
   961                     if (!visit(supertype(t), supertype(s)))
   962                         return false;
   964                     HashSet<SingletonType> set = new HashSet<SingletonType>();
   965                     for (Type x : interfaces(t))
   966                         set.add(new SingletonType(x));
   967                     for (Type x : interfaces(s)) {
   968                         if (!set.remove(new SingletonType(x)))
   969                             return false;
   970                     }
   971                     return (set.isEmpty());
   972                 }
   973                 return t.tsym == s.tsym
   974                     && visit(t.getEnclosingType(), s.getEnclosingType())
   975                     && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
   976             }
   978             @Override
   979             public Boolean visitArrayType(ArrayType t, Type s) {
   980                 if (t == s)
   981                     return true;
   983                 if (s.isPartial())
   984                     return visit(s, t);
   986                 return s.hasTag(ARRAY)
   987                     && containsTypeEquivalent(t.elemtype, elemtype(s));
   988             }
   990             @Override
   991             public Boolean visitMethodType(MethodType t, Type s) {
   992                 // isSameType for methods does not take thrown
   993                 // exceptions into account!
   994                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
   995             }
   997             @Override
   998             public Boolean visitPackageType(PackageType t, Type s) {
   999                 return t == s;
  1002             @Override
  1003             public Boolean visitForAll(ForAll t, Type s) {
  1004                 if (s.tag != FORALL)
  1005                     return false;
  1007                 ForAll forAll = (ForAll)s;
  1008                 return hasSameBounds(t, forAll)
  1009                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  1012             @Override
  1013             public Boolean visitUndetVar(UndetVar t, Type s) {
  1014                 if (s.tag == WILDCARD)
  1015                     // FIXME, this might be leftovers from before capture conversion
  1016                     return false;
  1018                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
  1019                     return true;
  1021                 t.addBound(InferenceBound.EQ, s, Types.this);
  1023                 return true;
  1026             @Override
  1027             public Boolean visitErrorType(ErrorType t, Type s) {
  1028                 return true;
  1030         };
  1031     // </editor-fold>
  1033     // <editor-fold defaultstate="collapsed" desc="Contains Type">
  1034     public boolean containedBy(Type t, Type s) {
  1035         switch (t.tag) {
  1036         case UNDETVAR:
  1037             if (s.tag == WILDCARD) {
  1038                 UndetVar undetvar = (UndetVar)t;
  1039                 WildcardType wt = (WildcardType)s;
  1040                 switch(wt.kind) {
  1041                     case UNBOUND: //similar to ? extends Object
  1042                     case EXTENDS: {
  1043                         Type bound = upperBound(s);
  1044                         undetvar.addBound(InferenceBound.UPPER, bound, this);
  1045                         break;
  1047                     case SUPER: {
  1048                         Type bound = lowerBound(s);
  1049                         undetvar.addBound(InferenceBound.LOWER, bound, this);
  1050                         break;
  1053                 return true;
  1054             } else {
  1055                 return isSameType(t, s);
  1057         case ERROR:
  1058             return true;
  1059         default:
  1060             return containsType(s, t);
  1064     boolean containsType(List<Type> ts, List<Type> ss) {
  1065         while (ts.nonEmpty() && ss.nonEmpty()
  1066                && containsType(ts.head, ss.head)) {
  1067             ts = ts.tail;
  1068             ss = ss.tail;
  1070         return ts.isEmpty() && ss.isEmpty();
  1073     /**
  1074      * Check if t contains s.
  1076      * <p>T contains S if:
  1078      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
  1080      * <p>This relation is only used by ClassType.isSubtype(), that
  1081      * is,
  1083      * <p>{@code C<S> <: C<T> if T contains S.}
  1085      * <p>Because of F-bounds, this relation can lead to infinite
  1086      * recursion.  Thus we must somehow break that recursion.  Notice
  1087      * that containsType() is only called from ClassType.isSubtype().
  1088      * Since the arguments have already been checked against their
  1089      * bounds, we know:
  1091      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
  1093      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
  1095      * @param t a type
  1096      * @param s a type
  1097      */
  1098     public boolean containsType(Type t, Type s) {
  1099         return containsType.visit(t, s);
  1101     // where
  1102         private TypeRelation containsType = new TypeRelation() {
  1104             private Type U(Type t) {
  1105                 while (t.tag == WILDCARD) {
  1106                     WildcardType w = (WildcardType)t;
  1107                     if (w.isSuperBound())
  1108                         return w.bound == null ? syms.objectType : w.bound.bound;
  1109                     else
  1110                         t = w.type;
  1112                 return t;
  1115             private Type L(Type t) {
  1116                 while (t.tag == WILDCARD) {
  1117                     WildcardType w = (WildcardType)t;
  1118                     if (w.isExtendsBound())
  1119                         return syms.botType;
  1120                     else
  1121                         t = w.type;
  1123                 return t;
  1126             public Boolean visitType(Type t, Type s) {
  1127                 if (s.isPartial())
  1128                     return containedBy(s, t);
  1129                 else
  1130                     return isSameType(t, s);
  1133 //            void debugContainsType(WildcardType t, Type s) {
  1134 //                System.err.println();
  1135 //                System.err.format(" does %s contain %s?%n", t, s);
  1136 //                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
  1137 //                                  upperBound(s), s, t, U(t),
  1138 //                                  t.isSuperBound()
  1139 //                                  || isSubtypeNoCapture(upperBound(s), U(t)));
  1140 //                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
  1141 //                                  L(t), t, s, lowerBound(s),
  1142 //                                  t.isExtendsBound()
  1143 //                                  || isSubtypeNoCapture(L(t), lowerBound(s)));
  1144 //                System.err.println();
  1145 //            }
  1147             @Override
  1148             public Boolean visitWildcardType(WildcardType t, Type s) {
  1149                 if (s.isPartial())
  1150                     return containedBy(s, t);
  1151                 else {
  1152 //                    debugContainsType(t, s);
  1153                     return isSameWildcard(t, s)
  1154                         || isCaptureOf(s, t)
  1155                         || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
  1156                             (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
  1160             @Override
  1161             public Boolean visitUndetVar(UndetVar t, Type s) {
  1162                 if (s.tag != WILDCARD)
  1163                     return isSameType(t, s);
  1164                 else
  1165                     return false;
  1168             @Override
  1169             public Boolean visitErrorType(ErrorType t, Type s) {
  1170                 return true;
  1172         };
  1174     public boolean isCaptureOf(Type s, WildcardType t) {
  1175         if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
  1176             return false;
  1177         return isSameWildcard(t, ((CapturedType)s).wildcard);
  1180     public boolean isSameWildcard(WildcardType t, Type s) {
  1181         if (s.tag != WILDCARD)
  1182             return false;
  1183         WildcardType w = (WildcardType)s;
  1184         return w.kind == t.kind && w.type == t.type;
  1187     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
  1188         while (ts.nonEmpty() && ss.nonEmpty()
  1189                && containsTypeEquivalent(ts.head, ss.head)) {
  1190             ts = ts.tail;
  1191             ss = ss.tail;
  1193         return ts.isEmpty() && ss.isEmpty();
  1195     // </editor-fold>
  1197     // <editor-fold defaultstate="collapsed" desc="isCastable">
  1198     public boolean isCastable(Type t, Type s) {
  1199         return isCastable(t, s, Warner.noWarnings);
  1202     /**
  1203      * Is t is castable to s?<br>
  1204      * s is assumed to be an erased type.<br>
  1205      * (not defined for Method and ForAll types).
  1206      */
  1207     public boolean isCastable(Type t, Type s, Warner warn) {
  1208         if (t == s)
  1209             return true;
  1211         if (t.isPrimitive() != s.isPrimitive())
  1212             return allowBoxing && (
  1213                     isConvertible(t, s, warn)
  1214                     || (allowObjectToPrimitiveCast &&
  1215                         s.isPrimitive() &&
  1216                         isSubtype(boxedClass(s).type, t)));
  1217         if (warn != warnStack.head) {
  1218             try {
  1219                 warnStack = warnStack.prepend(warn);
  1220                 checkUnsafeVarargsConversion(t, s, warn);
  1221                 return isCastable.visit(t,s);
  1222             } finally {
  1223                 warnStack = warnStack.tail;
  1225         } else {
  1226             return isCastable.visit(t,s);
  1229     // where
  1230         private TypeRelation isCastable = new TypeRelation() {
  1232             public Boolean visitType(Type t, Type s) {
  1233                 if (s.tag == ERROR)
  1234                     return true;
  1236                 switch (t.tag) {
  1237                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
  1238                 case DOUBLE:
  1239                     return s.isNumeric();
  1240                 case BOOLEAN:
  1241                     return s.tag == BOOLEAN;
  1242                 case VOID:
  1243                     return false;
  1244                 case BOT:
  1245                     return isSubtype(t, s);
  1246                 default:
  1247                     throw new AssertionError();
  1251             @Override
  1252             public Boolean visitWildcardType(WildcardType t, Type s) {
  1253                 return isCastable(upperBound(t), s, warnStack.head);
  1256             @Override
  1257             public Boolean visitClassType(ClassType t, Type s) {
  1258                 if (s.tag == ERROR || s.tag == BOT)
  1259                     return true;
  1261                 if (s.tag == TYPEVAR) {
  1262                     if (isCastable(t, s.getUpperBound(), Warner.noWarnings)) {
  1263                         warnStack.head.warn(LintCategory.UNCHECKED);
  1264                         return true;
  1265                     } else {
  1266                         return false;
  1270                 if (t.isCompound()) {
  1271                     Warner oldWarner = warnStack.head;
  1272                     warnStack.head = Warner.noWarnings;
  1273                     if (!visit(supertype(t), s))
  1274                         return false;
  1275                     for (Type intf : interfaces(t)) {
  1276                         if (!visit(intf, s))
  1277                             return false;
  1279                     if (warnStack.head.hasLint(LintCategory.UNCHECKED))
  1280                         oldWarner.warn(LintCategory.UNCHECKED);
  1281                     return true;
  1284                 if (s.isCompound()) {
  1285                     // call recursively to reuse the above code
  1286                     return visitClassType((ClassType)s, t);
  1289                 if (s.tag == CLASS || s.tag == ARRAY) {
  1290                     boolean upcast;
  1291                     if ((upcast = isSubtype(erasure(t), erasure(s)))
  1292                         || isSubtype(erasure(s), erasure(t))) {
  1293                         if (!upcast && s.tag == ARRAY) {
  1294                             if (!isReifiable(s))
  1295                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1296                             return true;
  1297                         } else if (s.isRaw()) {
  1298                             return true;
  1299                         } else if (t.isRaw()) {
  1300                             if (!isUnbounded(s))
  1301                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1302                             return true;
  1304                         // Assume |a| <: |b|
  1305                         final Type a = upcast ? t : s;
  1306                         final Type b = upcast ? s : t;
  1307                         final boolean HIGH = true;
  1308                         final boolean LOW = false;
  1309                         final boolean DONT_REWRITE_TYPEVARS = false;
  1310                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
  1311                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
  1312                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
  1313                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
  1314                         Type lowSub = asSub(bLow, aLow.tsym);
  1315                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1316                         if (highSub == null) {
  1317                             final boolean REWRITE_TYPEVARS = true;
  1318                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
  1319                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
  1320                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
  1321                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
  1322                             lowSub = asSub(bLow, aLow.tsym);
  1323                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1325                         if (highSub != null) {
  1326                             if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
  1327                                 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
  1329                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
  1330                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
  1331                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
  1332                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
  1333                                 if (upcast ? giveWarning(a, b) :
  1334                                     giveWarning(b, a))
  1335                                     warnStack.head.warn(LintCategory.UNCHECKED);
  1336                                 return true;
  1339                         if (isReifiable(s))
  1340                             return isSubtypeUnchecked(a, b);
  1341                         else
  1342                             return isSubtypeUnchecked(a, b, warnStack.head);
  1345                     // Sidecast
  1346                     if (s.tag == CLASS) {
  1347                         if ((s.tsym.flags() & INTERFACE) != 0) {
  1348                             return ((t.tsym.flags() & FINAL) == 0)
  1349                                 ? sideCast(t, s, warnStack.head)
  1350                                 : sideCastFinal(t, s, warnStack.head);
  1351                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
  1352                             return ((s.tsym.flags() & FINAL) == 0)
  1353                                 ? sideCast(t, s, warnStack.head)
  1354                                 : sideCastFinal(t, s, warnStack.head);
  1355                         } else {
  1356                             // unrelated class types
  1357                             return false;
  1361                 return false;
  1364             @Override
  1365             public Boolean visitArrayType(ArrayType t, Type s) {
  1366                 switch (s.tag) {
  1367                 case ERROR:
  1368                 case BOT:
  1369                     return true;
  1370                 case TYPEVAR:
  1371                     if (isCastable(s, t, Warner.noWarnings)) {
  1372                         warnStack.head.warn(LintCategory.UNCHECKED);
  1373                         return true;
  1374                     } else {
  1375                         return false;
  1377                 case CLASS:
  1378                     return isSubtype(t, s);
  1379                 case ARRAY:
  1380                     if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
  1381                         return elemtype(t).tag == elemtype(s).tag;
  1382                     } else {
  1383                         return visit(elemtype(t), elemtype(s));
  1385                 default:
  1386                     return false;
  1390             @Override
  1391             public Boolean visitTypeVar(TypeVar t, Type s) {
  1392                 switch (s.tag) {
  1393                 case ERROR:
  1394                 case BOT:
  1395                     return true;
  1396                 case TYPEVAR:
  1397                     if (isSubtype(t, s)) {
  1398                         return true;
  1399                     } else if (isCastable(t.bound, s, Warner.noWarnings)) {
  1400                         warnStack.head.warn(LintCategory.UNCHECKED);
  1401                         return true;
  1402                     } else {
  1403                         return false;
  1405                 default:
  1406                     return isCastable(t.bound, s, warnStack.head);
  1410             @Override
  1411             public Boolean visitErrorType(ErrorType t, Type s) {
  1412                 return true;
  1414         };
  1415     // </editor-fold>
  1417     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
  1418     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
  1419         while (ts.tail != null && ss.tail != null) {
  1420             if (disjointType(ts.head, ss.head)) return true;
  1421             ts = ts.tail;
  1422             ss = ss.tail;
  1424         return false;
  1427     /**
  1428      * Two types or wildcards are considered disjoint if it can be
  1429      * proven that no type can be contained in both. It is
  1430      * conservative in that it is allowed to say that two types are
  1431      * not disjoint, even though they actually are.
  1433      * The type {@code C<X>} is castable to {@code C<Y>} exactly if
  1434      * {@code X} and {@code Y} are not disjoint.
  1435      */
  1436     public boolean disjointType(Type t, Type s) {
  1437         return disjointType.visit(t, s);
  1439     // where
  1440         private TypeRelation disjointType = new TypeRelation() {
  1442             private Set<TypePair> cache = new HashSet<TypePair>();
  1444             public Boolean visitType(Type t, Type s) {
  1445                 if (s.tag == WILDCARD)
  1446                     return visit(s, t);
  1447                 else
  1448                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
  1451             private boolean isCastableRecursive(Type t, Type s) {
  1452                 TypePair pair = new TypePair(t, s);
  1453                 if (cache.add(pair)) {
  1454                     try {
  1455                         return Types.this.isCastable(t, s);
  1456                     } finally {
  1457                         cache.remove(pair);
  1459                 } else {
  1460                     return true;
  1464             private boolean notSoftSubtypeRecursive(Type t, Type s) {
  1465                 TypePair pair = new TypePair(t, s);
  1466                 if (cache.add(pair)) {
  1467                     try {
  1468                         return Types.this.notSoftSubtype(t, s);
  1469                     } finally {
  1470                         cache.remove(pair);
  1472                 } else {
  1473                     return false;
  1477             @Override
  1478             public Boolean visitWildcardType(WildcardType t, Type s) {
  1479                 if (t.isUnbound())
  1480                     return false;
  1482                 if (s.tag != WILDCARD) {
  1483                     if (t.isExtendsBound())
  1484                         return notSoftSubtypeRecursive(s, t.type);
  1485                     else // isSuperBound()
  1486                         return notSoftSubtypeRecursive(t.type, s);
  1489                 if (s.isUnbound())
  1490                     return false;
  1492                 if (t.isExtendsBound()) {
  1493                     if (s.isExtendsBound())
  1494                         return !isCastableRecursive(t.type, upperBound(s));
  1495                     else if (s.isSuperBound())
  1496                         return notSoftSubtypeRecursive(lowerBound(s), t.type);
  1497                 } else if (t.isSuperBound()) {
  1498                     if (s.isExtendsBound())
  1499                         return notSoftSubtypeRecursive(t.type, upperBound(s));
  1501                 return false;
  1503         };
  1504     // </editor-fold>
  1506     // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
  1507     /**
  1508      * Returns the lower bounds of the formals of a method.
  1509      */
  1510     public List<Type> lowerBoundArgtypes(Type t) {
  1511         return lowerBounds(t.getParameterTypes());
  1513     public List<Type> lowerBounds(List<Type> ts) {
  1514         return map(ts, lowerBoundMapping);
  1516     private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
  1517             public Type apply(Type t) {
  1518                 return lowerBound(t);
  1520         };
  1521     // </editor-fold>
  1523     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
  1524     /**
  1525      * This relation answers the question: is impossible that
  1526      * something of type `t' can be a subtype of `s'? This is
  1527      * different from the question "is `t' not a subtype of `s'?"
  1528      * when type variables are involved: Integer is not a subtype of T
  1529      * where {@code <T extends Number>} but it is not true that Integer cannot
  1530      * possibly be a subtype of T.
  1531      */
  1532     public boolean notSoftSubtype(Type t, Type s) {
  1533         if (t == s) return false;
  1534         if (t.tag == TYPEVAR) {
  1535             TypeVar tv = (TypeVar) t;
  1536             return !isCastable(tv.bound,
  1537                                relaxBound(s),
  1538                                Warner.noWarnings);
  1540         if (s.tag != WILDCARD)
  1541             s = upperBound(s);
  1543         return !isSubtype(t, relaxBound(s));
  1546     private Type relaxBound(Type t) {
  1547         if (t.tag == TYPEVAR) {
  1548             while (t.tag == TYPEVAR)
  1549                 t = t.getUpperBound();
  1550             t = rewriteQuantifiers(t, true, true);
  1552         return t;
  1554     // </editor-fold>
  1556     // <editor-fold defaultstate="collapsed" desc="isReifiable">
  1557     public boolean isReifiable(Type t) {
  1558         return isReifiable.visit(t);
  1560     // where
  1561         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
  1563             public Boolean visitType(Type t, Void ignored) {
  1564                 return true;
  1567             @Override
  1568             public Boolean visitClassType(ClassType t, Void ignored) {
  1569                 if (t.isCompound())
  1570                     return false;
  1571                 else {
  1572                     if (!t.isParameterized())
  1573                         return true;
  1575                     for (Type param : t.allparams()) {
  1576                         if (!param.isUnbound())
  1577                             return false;
  1579                     return true;
  1583             @Override
  1584             public Boolean visitArrayType(ArrayType t, Void ignored) {
  1585                 return visit(t.elemtype);
  1588             @Override
  1589             public Boolean visitTypeVar(TypeVar t, Void ignored) {
  1590                 return false;
  1592         };
  1593     // </editor-fold>
  1595     // <editor-fold defaultstate="collapsed" desc="Array Utils">
  1596     public boolean isArray(Type t) {
  1597         while (t.tag == WILDCARD)
  1598             t = upperBound(t);
  1599         return t.tag == ARRAY;
  1602     /**
  1603      * The element type of an array.
  1604      */
  1605     public Type elemtype(Type t) {
  1606         switch (t.tag) {
  1607         case WILDCARD:
  1608             return elemtype(upperBound(t));
  1609         case ARRAY:
  1610             return ((ArrayType)t).elemtype;
  1611         case FORALL:
  1612             return elemtype(((ForAll)t).qtype);
  1613         case ERROR:
  1614             return t;
  1615         default:
  1616             return null;
  1620     public Type elemtypeOrType(Type t) {
  1621         Type elemtype = elemtype(t);
  1622         return elemtype != null ?
  1623             elemtype :
  1624             t;
  1627     /**
  1628      * Mapping to take element type of an arraytype
  1629      */
  1630     private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
  1631         public Type apply(Type t) { return elemtype(t); }
  1632     };
  1634     /**
  1635      * The number of dimensions of an array type.
  1636      */
  1637     public int dimensions(Type t) {
  1638         int result = 0;
  1639         while (t.tag == ARRAY) {
  1640             result++;
  1641             t = elemtype(t);
  1643         return result;
  1646     /**
  1647      * Returns an ArrayType with the component type t
  1649      * @param t The component type of the ArrayType
  1650      * @return the ArrayType for the given component
  1651      */
  1652     public ArrayType makeArrayType(Type t) {
  1653         if (t.tag == VOID ||
  1654             t.tag == PACKAGE) {
  1655             Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
  1657         return new ArrayType(t, syms.arrayClass);
  1659     // </editor-fold>
  1661     // <editor-fold defaultstate="collapsed" desc="asSuper">
  1662     /**
  1663      * Return the (most specific) base type of t that starts with the
  1664      * given symbol.  If none exists, return null.
  1666      * @param t a type
  1667      * @param sym a symbol
  1668      */
  1669     public Type asSuper(Type t, Symbol sym) {
  1670         return asSuper.visit(t, sym);
  1672     // where
  1673         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
  1675             public Type visitType(Type t, Symbol sym) {
  1676                 return null;
  1679             @Override
  1680             public Type visitClassType(ClassType t, Symbol sym) {
  1681                 if (t.tsym == sym)
  1682                     return t;
  1684                 Type st = supertype(t);
  1685                 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
  1686                     Type x = asSuper(st, sym);
  1687                     if (x != null)
  1688                         return x;
  1690                 if ((sym.flags() & INTERFACE) != 0) {
  1691                     for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  1692                         Type x = asSuper(l.head, sym);
  1693                         if (x != null)
  1694                             return x;
  1697                 return null;
  1700             @Override
  1701             public Type visitArrayType(ArrayType t, Symbol sym) {
  1702                 return isSubtype(t, sym.type) ? sym.type : null;
  1705             @Override
  1706             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1707                 if (t.tsym == sym)
  1708                     return t;
  1709                 else
  1710                     return asSuper(t.bound, sym);
  1713             @Override
  1714             public Type visitErrorType(ErrorType t, Symbol sym) {
  1715                 return t;
  1717         };
  1719     /**
  1720      * Return the base type of t or any of its outer types that starts
  1721      * with the given symbol.  If none exists, return null.
  1723      * @param t a type
  1724      * @param sym a symbol
  1725      */
  1726     public Type asOuterSuper(Type t, Symbol sym) {
  1727         switch (t.tag) {
  1728         case CLASS:
  1729             do {
  1730                 Type s = asSuper(t, sym);
  1731                 if (s != null) return s;
  1732                 t = t.getEnclosingType();
  1733             } while (t.tag == CLASS);
  1734             return null;
  1735         case ARRAY:
  1736             return isSubtype(t, sym.type) ? sym.type : null;
  1737         case TYPEVAR:
  1738             return asSuper(t, sym);
  1739         case ERROR:
  1740             return t;
  1741         default:
  1742             return null;
  1746     /**
  1747      * Return the base type of t or any of its enclosing types that
  1748      * starts with the given symbol.  If none exists, return null.
  1750      * @param t a type
  1751      * @param sym a symbol
  1752      */
  1753     public Type asEnclosingSuper(Type t, Symbol sym) {
  1754         switch (t.tag) {
  1755         case CLASS:
  1756             do {
  1757                 Type s = asSuper(t, sym);
  1758                 if (s != null) return s;
  1759                 Type outer = t.getEnclosingType();
  1760                 t = (outer.tag == CLASS) ? outer :
  1761                     (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
  1762                     Type.noType;
  1763             } while (t.tag == CLASS);
  1764             return null;
  1765         case ARRAY:
  1766             return isSubtype(t, sym.type) ? sym.type : null;
  1767         case TYPEVAR:
  1768             return asSuper(t, sym);
  1769         case ERROR:
  1770             return t;
  1771         default:
  1772             return null;
  1775     // </editor-fold>
  1777     // <editor-fold defaultstate="collapsed" desc="memberType">
  1778     /**
  1779      * The type of given symbol, seen as a member of t.
  1781      * @param t a type
  1782      * @param sym a symbol
  1783      */
  1784     public Type memberType(Type t, Symbol sym) {
  1785         return (sym.flags() & STATIC) != 0
  1786             ? sym.type
  1787             : memberType.visit(t, sym);
  1789     // where
  1790         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
  1792             public Type visitType(Type t, Symbol sym) {
  1793                 return sym.type;
  1796             @Override
  1797             public Type visitWildcardType(WildcardType t, Symbol sym) {
  1798                 return memberType(upperBound(t), sym);
  1801             @Override
  1802             public Type visitClassType(ClassType t, Symbol sym) {
  1803                 Symbol owner = sym.owner;
  1804                 long flags = sym.flags();
  1805                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
  1806                     Type base = asOuterSuper(t, owner);
  1807                     //if t is an intersection type T = CT & I1 & I2 ... & In
  1808                     //its supertypes CT, I1, ... In might contain wildcards
  1809                     //so we need to go through capture conversion
  1810                     base = t.isCompound() ? capture(base) : base;
  1811                     if (base != null) {
  1812                         List<Type> ownerParams = owner.type.allparams();
  1813                         List<Type> baseParams = base.allparams();
  1814                         if (ownerParams.nonEmpty()) {
  1815                             if (baseParams.isEmpty()) {
  1816                                 // then base is a raw type
  1817                                 return erasure(sym.type);
  1818                             } else {
  1819                                 return subst(sym.type, ownerParams, baseParams);
  1824                 return sym.type;
  1827             @Override
  1828             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1829                 return memberType(t.bound, sym);
  1832             @Override
  1833             public Type visitErrorType(ErrorType t, Symbol sym) {
  1834                 return t;
  1836         };
  1837     // </editor-fold>
  1839     // <editor-fold defaultstate="collapsed" desc="isAssignable">
  1840     public boolean isAssignable(Type t, Type s) {
  1841         return isAssignable(t, s, Warner.noWarnings);
  1844     /**
  1845      * Is t assignable to s?<br>
  1846      * Equivalent to subtype except for constant values and raw
  1847      * types.<br>
  1848      * (not defined for Method and ForAll types)
  1849      */
  1850     public boolean isAssignable(Type t, Type s, Warner warn) {
  1851         if (t.tag == ERROR)
  1852             return true;
  1853         if (t.tag.isSubRangeOf(INT) && t.constValue() != null) {
  1854             int value = ((Number)t.constValue()).intValue();
  1855             switch (s.tag) {
  1856             case BYTE:
  1857                 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
  1858                     return true;
  1859                 break;
  1860             case CHAR:
  1861                 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
  1862                     return true;
  1863                 break;
  1864             case SHORT:
  1865                 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
  1866                     return true;
  1867                 break;
  1868             case INT:
  1869                 return true;
  1870             case CLASS:
  1871                 switch (unboxedType(s).tag) {
  1872                 case BYTE:
  1873                 case CHAR:
  1874                 case SHORT:
  1875                     return isAssignable(t, unboxedType(s), warn);
  1877                 break;
  1880         return isConvertible(t, s, warn);
  1882     // </editor-fold>
  1884     // <editor-fold defaultstate="collapsed" desc="erasure">
  1885     /**
  1886      * The erasure of t {@code |t|} -- the type that results when all
  1887      * type parameters in t are deleted.
  1888      */
  1889     public Type erasure(Type t) {
  1890         return eraseNotNeeded(t)? t : erasure(t, false);
  1892     //where
  1893     private boolean eraseNotNeeded(Type t) {
  1894         // We don't want to erase primitive types and String type as that
  1895         // operation is idempotent. Also, erasing these could result in loss
  1896         // of information such as constant values attached to such types.
  1897         return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
  1900     private Type erasure(Type t, boolean recurse) {
  1901         if (t.isPrimitive())
  1902             return t; /* fast special case */
  1903         else
  1904             return erasure.visit(t, recurse);
  1906     // where
  1907         private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
  1908             public Type visitType(Type t, Boolean recurse) {
  1909                 if (t.isPrimitive())
  1910                     return t; /*fast special case*/
  1911                 else
  1912                     return t.map(recurse ? erasureRecFun : erasureFun);
  1915             @Override
  1916             public Type visitWildcardType(WildcardType t, Boolean recurse) {
  1917                 return erasure(upperBound(t), recurse);
  1920             @Override
  1921             public Type visitClassType(ClassType t, Boolean recurse) {
  1922                 Type erased = t.tsym.erasure(Types.this);
  1923                 if (recurse) {
  1924                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
  1926                 return erased;
  1929             @Override
  1930             public Type visitTypeVar(TypeVar t, Boolean recurse) {
  1931                 return erasure(t.bound, recurse);
  1934             @Override
  1935             public Type visitErrorType(ErrorType t, Boolean recurse) {
  1936                 return t;
  1938         };
  1940     private Mapping erasureFun = new Mapping ("erasure") {
  1941             public Type apply(Type t) { return erasure(t); }
  1942         };
  1944     private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
  1945         public Type apply(Type t) { return erasureRecursive(t); }
  1946     };
  1948     public List<Type> erasure(List<Type> ts) {
  1949         return Type.map(ts, erasureFun);
  1952     public Type erasureRecursive(Type t) {
  1953         return erasure(t, true);
  1956     public List<Type> erasureRecursive(List<Type> ts) {
  1957         return Type.map(ts, erasureRecFun);
  1959     // </editor-fold>
  1961     // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
  1962     /**
  1963      * Make a compound type from non-empty list of types
  1965      * @param bounds            the types from which the compound type is formed
  1966      * @param supertype         is objectType if all bounds are interfaces,
  1967      *                          null otherwise.
  1968      */
  1969     public Type makeCompoundType(List<Type> bounds,
  1970                                  Type supertype) {
  1971         ClassSymbol bc =
  1972             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
  1973                             Type.moreInfo
  1974                                 ? names.fromString(bounds.toString())
  1975                                 : names.empty,
  1976                             syms.noSymbol);
  1977         if (bounds.head.tag == TYPEVAR)
  1978             // error condition, recover
  1979                 bc.erasure_field = syms.objectType;
  1980             else
  1981                 bc.erasure_field = erasure(bounds.head);
  1982             bc.members_field = new Scope(bc);
  1983         ClassType bt = (ClassType)bc.type;
  1984         bt.allparams_field = List.nil();
  1985         if (supertype != null) {
  1986             bt.supertype_field = supertype;
  1987             bt.interfaces_field = bounds;
  1988         } else {
  1989             bt.supertype_field = bounds.head;
  1990             bt.interfaces_field = bounds.tail;
  1992         Assert.check(bt.supertype_field.tsym.completer != null
  1993                 || !bt.supertype_field.isInterface(),
  1994             bt.supertype_field);
  1995         return bt;
  1998     /**
  1999      * Same as {@link #makeCompoundType(List,Type)}, except that the
  2000      * second parameter is computed directly. Note that this might
  2001      * cause a symbol completion.  Hence, this version of
  2002      * makeCompoundType may not be called during a classfile read.
  2003      */
  2004     public Type makeCompoundType(List<Type> bounds) {
  2005         Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
  2006             supertype(bounds.head) : null;
  2007         return makeCompoundType(bounds, supertype);
  2010     /**
  2011      * A convenience wrapper for {@link #makeCompoundType(List)}; the
  2012      * arguments are converted to a list and passed to the other
  2013      * method.  Note that this might cause a symbol completion.
  2014      * Hence, this version of makeCompoundType may not be called
  2015      * during a classfile read.
  2016      */
  2017     public Type makeCompoundType(Type bound1, Type bound2) {
  2018         return makeCompoundType(List.of(bound1, bound2));
  2020     // </editor-fold>
  2022     // <editor-fold defaultstate="collapsed" desc="supertype">
  2023     public Type supertype(Type t) {
  2024         return supertype.visit(t);
  2026     // where
  2027         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
  2029             public Type visitType(Type t, Void ignored) {
  2030                 // A note on wildcards: there is no good way to
  2031                 // determine a supertype for a super bounded wildcard.
  2032                 return null;
  2035             @Override
  2036             public Type visitClassType(ClassType t, Void ignored) {
  2037                 if (t.supertype_field == null) {
  2038                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
  2039                     // An interface has no superclass; its supertype is Object.
  2040                     if (t.isInterface())
  2041                         supertype = ((ClassType)t.tsym.type).supertype_field;
  2042                     if (t.supertype_field == null) {
  2043                         List<Type> actuals = classBound(t).allparams();
  2044                         List<Type> formals = t.tsym.type.allparams();
  2045                         if (t.hasErasedSupertypes()) {
  2046                             t.supertype_field = erasureRecursive(supertype);
  2047                         } else if (formals.nonEmpty()) {
  2048                             t.supertype_field = subst(supertype, formals, actuals);
  2050                         else {
  2051                             t.supertype_field = supertype;
  2055                 return t.supertype_field;
  2058             /**
  2059              * The supertype is always a class type. If the type
  2060              * variable's bounds start with a class type, this is also
  2061              * the supertype.  Otherwise, the supertype is
  2062              * java.lang.Object.
  2063              */
  2064             @Override
  2065             public Type visitTypeVar(TypeVar t, Void ignored) {
  2066                 if (t.bound.tag == TYPEVAR ||
  2067                     (!t.bound.isCompound() && !t.bound.isInterface())) {
  2068                     return t.bound;
  2069                 } else {
  2070                     return supertype(t.bound);
  2074             @Override
  2075             public Type visitArrayType(ArrayType t, Void ignored) {
  2076                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
  2077                     return arraySuperType();
  2078                 else
  2079                     return new ArrayType(supertype(t.elemtype), t.tsym);
  2082             @Override
  2083             public Type visitErrorType(ErrorType t, Void ignored) {
  2084                 return t;
  2086         };
  2087     // </editor-fold>
  2089     // <editor-fold defaultstate="collapsed" desc="interfaces">
  2090     /**
  2091      * Return the interfaces implemented by this class.
  2092      */
  2093     public List<Type> interfaces(Type t) {
  2094         return interfaces.visit(t);
  2096     // where
  2097         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
  2099             public List<Type> visitType(Type t, Void ignored) {
  2100                 return List.nil();
  2103             @Override
  2104             public List<Type> visitClassType(ClassType t, Void ignored) {
  2105                 if (t.interfaces_field == null) {
  2106                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
  2107                     if (t.interfaces_field == null) {
  2108                         // If t.interfaces_field is null, then t must
  2109                         // be a parameterized type (not to be confused
  2110                         // with a generic type declaration).
  2111                         // Terminology:
  2112                         //    Parameterized type: List<String>
  2113                         //    Generic type declaration: class List<E> { ... }
  2114                         // So t corresponds to List<String> and
  2115                         // t.tsym.type corresponds to List<E>.
  2116                         // The reason t must be parameterized type is
  2117                         // that completion will happen as a side
  2118                         // effect of calling
  2119                         // ClassSymbol.getInterfaces.  Since
  2120                         // t.interfaces_field is null after
  2121                         // completion, we can assume that t is not the
  2122                         // type of a class/interface declaration.
  2123                         Assert.check(t != t.tsym.type, t);
  2124                         List<Type> actuals = t.allparams();
  2125                         List<Type> formals = t.tsym.type.allparams();
  2126                         if (t.hasErasedSupertypes()) {
  2127                             t.interfaces_field = erasureRecursive(interfaces);
  2128                         } else if (formals.nonEmpty()) {
  2129                             t.interfaces_field =
  2130                                 upperBounds(subst(interfaces, formals, actuals));
  2132                         else {
  2133                             t.interfaces_field = interfaces;
  2137                 return t.interfaces_field;
  2140             @Override
  2141             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
  2142                 if (t.bound.isCompound())
  2143                     return interfaces(t.bound);
  2145                 if (t.bound.isInterface())
  2146                     return List.of(t.bound);
  2148                 return List.nil();
  2150         };
  2152     public boolean isDirectSuperInterface(Type t, TypeSymbol tsym) {
  2153         for (Type t2 : interfaces(tsym.type)) {
  2154             if (isSameType(t, t2)) return true;
  2156         return false;
  2158     // </editor-fold>
  2160     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
  2161     Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
  2163     public boolean isDerivedRaw(Type t) {
  2164         Boolean result = isDerivedRawCache.get(t);
  2165         if (result == null) {
  2166             result = isDerivedRawInternal(t);
  2167             isDerivedRawCache.put(t, result);
  2169         return result;
  2172     public boolean isDerivedRawInternal(Type t) {
  2173         if (t.isErroneous())
  2174             return false;
  2175         return
  2176             t.isRaw() ||
  2177             supertype(t) != null && isDerivedRaw(supertype(t)) ||
  2178             isDerivedRaw(interfaces(t));
  2181     public boolean isDerivedRaw(List<Type> ts) {
  2182         List<Type> l = ts;
  2183         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
  2184         return l.nonEmpty();
  2186     // </editor-fold>
  2188     // <editor-fold defaultstate="collapsed" desc="setBounds">
  2189     /**
  2190      * Set the bounds field of the given type variable to reflect a
  2191      * (possibly multiple) list of bounds.
  2192      * @param t                 a type variable
  2193      * @param bounds            the bounds, must be nonempty
  2194      * @param supertype         is objectType if all bounds are interfaces,
  2195      *                          null otherwise.
  2196      */
  2197     public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
  2198         if (bounds.tail.isEmpty())
  2199             t.bound = bounds.head;
  2200         else
  2201             t.bound = makeCompoundType(bounds, supertype);
  2202         t.rank_field = -1;
  2205     /**
  2206      * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
  2207      * third parameter is computed directly, as follows: if all
  2208      * all bounds are interface types, the computed supertype is Object,
  2209      * otherwise the supertype is simply left null (in this case, the supertype
  2210      * is assumed to be the head of the bound list passed as second argument).
  2211      * Note that this check might cause a symbol completion. Hence, this version of
  2212      * setBounds may not be called during a classfile read.
  2213      */
  2214     public void setBounds(TypeVar t, List<Type> bounds) {
  2215         Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
  2216             syms.objectType : null;
  2217         setBounds(t, bounds, supertype);
  2218         t.rank_field = -1;
  2220     // </editor-fold>
  2222     // <editor-fold defaultstate="collapsed" desc="getBounds">
  2223     /**
  2224      * Return list of bounds of the given type variable.
  2225      */
  2226     public List<Type> getBounds(TypeVar t) {
  2227         if (t.bound.isErroneous() || !t.bound.isCompound())
  2228             return List.of(t.bound);
  2229         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
  2230             return interfaces(t).prepend(supertype(t));
  2231         else
  2232             // No superclass was given in bounds.
  2233             // In this case, supertype is Object, erasure is first interface.
  2234             return interfaces(t);
  2236     // </editor-fold>
  2238     // <editor-fold defaultstate="collapsed" desc="classBound">
  2239     /**
  2240      * If the given type is a (possibly selected) type variable,
  2241      * return the bounding class of this type, otherwise return the
  2242      * type itself.
  2243      */
  2244     public Type classBound(Type t) {
  2245         return classBound.visit(t);
  2247     // where
  2248         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
  2250             public Type visitType(Type t, Void ignored) {
  2251                 return t;
  2254             @Override
  2255             public Type visitClassType(ClassType t, Void ignored) {
  2256                 Type outer1 = classBound(t.getEnclosingType());
  2257                 if (outer1 != t.getEnclosingType())
  2258                     return new ClassType(outer1, t.getTypeArguments(), t.tsym);
  2259                 else
  2260                     return t;
  2263             @Override
  2264             public Type visitTypeVar(TypeVar t, Void ignored) {
  2265                 return classBound(supertype(t));
  2268             @Override
  2269             public Type visitErrorType(ErrorType t, Void ignored) {
  2270                 return t;
  2272         };
  2273     // </editor-fold>
  2275     // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
  2276     /**
  2277      * Returns true iff the first signature is a <em>sub
  2278      * signature</em> of the other.  This is <b>not</b> an equivalence
  2279      * relation.
  2281      * @jls section 8.4.2.
  2282      * @see #overrideEquivalent(Type t, Type s)
  2283      * @param t first signature (possibly raw).
  2284      * @param s second signature (could be subjected to erasure).
  2285      * @return true if t is a sub signature of s.
  2286      */
  2287     public boolean isSubSignature(Type t, Type s) {
  2288         return isSubSignature(t, s, true);
  2291     public boolean isSubSignature(Type t, Type s, boolean strict) {
  2292         return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
  2295     /**
  2296      * Returns true iff these signatures are related by <em>override
  2297      * equivalence</em>.  This is the natural extension of
  2298      * isSubSignature to an equivalence relation.
  2300      * @jls section 8.4.2.
  2301      * @see #isSubSignature(Type t, Type s)
  2302      * @param t a signature (possible raw, could be subjected to
  2303      * erasure).
  2304      * @param s a signature (possible raw, could be subjected to
  2305      * erasure).
  2306      * @return true if either argument is a sub signature of the other.
  2307      */
  2308     public boolean overrideEquivalent(Type t, Type s) {
  2309         return hasSameArgs(t, s) ||
  2310             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
  2313     public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
  2314         for (Scope.Entry e = syms.objectType.tsym.members().lookup(msym.name) ; e.scope != null ; e = e.next()) {
  2315             if (msym.overrides(e.sym, origin, Types.this, true)) {
  2316                 return true;
  2319         return false;
  2322     public boolean overridesObjectMethod(Symbol msym) {
  2323         return ((MethodSymbol)msym).implementation(syms.objectType.tsym, this, true) != null;
  2326     // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
  2327     class ImplementationCache {
  2329         private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
  2330                 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
  2332         class Entry {
  2333             final MethodSymbol cachedImpl;
  2334             final Filter<Symbol> implFilter;
  2335             final boolean checkResult;
  2336             final int prevMark;
  2338             public Entry(MethodSymbol cachedImpl,
  2339                     Filter<Symbol> scopeFilter,
  2340                     boolean checkResult,
  2341                     int prevMark) {
  2342                 this.cachedImpl = cachedImpl;
  2343                 this.implFilter = scopeFilter;
  2344                 this.checkResult = checkResult;
  2345                 this.prevMark = prevMark;
  2348             boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
  2349                 return this.implFilter == scopeFilter &&
  2350                         this.checkResult == checkResult &&
  2351                         this.prevMark == mark;
  2355         MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2356             SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
  2357             Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
  2358             if (cache == null) {
  2359                 cache = new HashMap<TypeSymbol, Entry>();
  2360                 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
  2362             Entry e = cache.get(origin);
  2363             CompoundScope members = membersClosure(origin.type, true);
  2364             if (e == null ||
  2365                     !e.matches(implFilter, checkResult, members.getMark())) {
  2366                 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
  2367                 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
  2368                 return impl;
  2370             else {
  2371                 return e.cachedImpl;
  2375         private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2376             for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
  2377                 while (t.tag == TYPEVAR)
  2378                     t = t.getUpperBound();
  2379                 TypeSymbol c = t.tsym;
  2380                 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
  2381                      e.scope != null;
  2382                      e = e.next(implFilter)) {
  2383                     if (e.sym != null &&
  2384                              e.sym.overrides(ms, origin, Types.this, checkResult))
  2385                         return (MethodSymbol)e.sym;
  2388             return null;
  2392     private ImplementationCache implCache = new ImplementationCache();
  2394     public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2395         return implCache.get(ms, origin, checkResult, implFilter);
  2397     // </editor-fold>
  2399     // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
  2400     class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
  2402         private WeakHashMap<TypeSymbol, Entry> _map =
  2403                 new WeakHashMap<TypeSymbol, Entry>();
  2405         class Entry {
  2406             final boolean skipInterfaces;
  2407             final CompoundScope compoundScope;
  2409             public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
  2410                 this.skipInterfaces = skipInterfaces;
  2411                 this.compoundScope = compoundScope;
  2414             boolean matches(boolean skipInterfaces) {
  2415                 return this.skipInterfaces == skipInterfaces;
  2419         List<TypeSymbol> seenTypes = List.nil();
  2421         /** members closure visitor methods **/
  2423         public CompoundScope visitType(Type t, Boolean skipInterface) {
  2424             return null;
  2427         @Override
  2428         public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
  2429             if (seenTypes.contains(t.tsym)) {
  2430                 //this is possible when an interface is implemented in multiple
  2431                 //superclasses, or when a classs hierarchy is circular - in such
  2432                 //cases we don't need to recurse (empty scope is returned)
  2433                 return new CompoundScope(t.tsym);
  2435             try {
  2436                 seenTypes = seenTypes.prepend(t.tsym);
  2437                 ClassSymbol csym = (ClassSymbol)t.tsym;
  2438                 Entry e = _map.get(csym);
  2439                 if (e == null || !e.matches(skipInterface)) {
  2440                     CompoundScope membersClosure = new CompoundScope(csym);
  2441                     if (!skipInterface) {
  2442                         for (Type i : interfaces(t)) {
  2443                             membersClosure.addSubScope(visit(i, skipInterface));
  2446                     membersClosure.addSubScope(visit(supertype(t), skipInterface));
  2447                     membersClosure.addSubScope(csym.members());
  2448                     e = new Entry(skipInterface, membersClosure);
  2449                     _map.put(csym, e);
  2451                 return e.compoundScope;
  2453             finally {
  2454                 seenTypes = seenTypes.tail;
  2458         @Override
  2459         public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
  2460             return visit(t.getUpperBound(), skipInterface);
  2464     private MembersClosureCache membersCache = new MembersClosureCache();
  2466     public CompoundScope membersClosure(Type site, boolean skipInterface) {
  2467         return membersCache.visit(site, skipInterface);
  2469     // </editor-fold>
  2472     //where
  2473     public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
  2474         return interfaceCandidates(site, ms, false);
  2477     public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms, boolean intfOnly) {
  2478         Filter<Symbol> filter = new MethodFilter(ms, site, intfOnly);
  2479         List<MethodSymbol> candidates = List.nil();
  2480         for (Symbol s : membersClosure(site, false).getElements(filter)) {
  2481             if (!site.tsym.isInterface() && !s.owner.isInterface()) {
  2482                 return List.of((MethodSymbol)s);
  2483             } else if (!candidates.contains(s)) {
  2484                 candidates = candidates.prepend((MethodSymbol)s);
  2487         return prune(candidates, ownerComparator);
  2490     public List<MethodSymbol> prune(List<MethodSymbol> methods, Comparator<MethodSymbol> cmp) {
  2491         ListBuffer<MethodSymbol> methodsMin = ListBuffer.lb();
  2492         for (MethodSymbol m1 : methods) {
  2493             boolean isMin_m1 = true;
  2494             for (MethodSymbol m2 : methods) {
  2495                 if (m1 == m2) continue;
  2496                 if (cmp.compare(m2, m1) < 0) {
  2497                     isMin_m1 = false;
  2498                     break;
  2501             if (isMin_m1)
  2502                 methodsMin.append(m1);
  2504         return methodsMin.toList();
  2507     Comparator<MethodSymbol> ownerComparator = new Comparator<MethodSymbol>() {
  2508         public int compare(MethodSymbol s1, MethodSymbol s2) {
  2509             return s1.owner.isSubClass(s2.owner, Types.this) ? -1 : 1;
  2511     };
  2512     // where
  2513             private class MethodFilter implements Filter<Symbol> {
  2515                 Symbol msym;
  2516                 Type site;
  2517                 boolean intfOnly;
  2519                 MethodFilter(Symbol msym, Type site, boolean intfOnly) {
  2520                     this.msym = msym;
  2521                     this.site = site;
  2522                     this.intfOnly = intfOnly;
  2525                 public boolean accepts(Symbol s) {
  2526                     return s.kind == Kinds.MTH &&
  2527                             (!intfOnly || s.owner.isInterface()) &&
  2528                             s.name == msym.name &&
  2529                             s.isInheritedIn(site.tsym, Types.this) &&
  2530                             overrideEquivalent(memberType(site, s), memberType(site, msym));
  2532             };
  2533     // </editor-fold>
  2535     /**
  2536      * Does t have the same arguments as s?  It is assumed that both
  2537      * types are (possibly polymorphic) method types.  Monomorphic
  2538      * method types "have the same arguments", if their argument lists
  2539      * are equal.  Polymorphic method types "have the same arguments",
  2540      * if they have the same arguments after renaming all type
  2541      * variables of one to corresponding type variables in the other,
  2542      * where correspondence is by position in the type parameter list.
  2543      */
  2544     public boolean hasSameArgs(Type t, Type s) {
  2545         return hasSameArgs(t, s, true);
  2548     public boolean hasSameArgs(Type t, Type s, boolean strict) {
  2549         return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
  2552     private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
  2553         return hasSameArgs.visit(t, s);
  2555     // where
  2556         private class HasSameArgs extends TypeRelation {
  2558             boolean strict;
  2560             public HasSameArgs(boolean strict) {
  2561                 this.strict = strict;
  2564             public Boolean visitType(Type t, Type s) {
  2565                 throw new AssertionError();
  2568             @Override
  2569             public Boolean visitMethodType(MethodType t, Type s) {
  2570                 return s.tag == METHOD
  2571                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
  2574             @Override
  2575             public Boolean visitForAll(ForAll t, Type s) {
  2576                 if (s.tag != FORALL)
  2577                     return strict ? false : visitMethodType(t.asMethodType(), s);
  2579                 ForAll forAll = (ForAll)s;
  2580                 return hasSameBounds(t, forAll)
  2581                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  2584             @Override
  2585             public Boolean visitErrorType(ErrorType t, Type s) {
  2586                 return false;
  2588         };
  2590         TypeRelation hasSameArgs_strict = new HasSameArgs(true);
  2591         TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
  2593     // </editor-fold>
  2595     // <editor-fold defaultstate="collapsed" desc="subst">
  2596     public List<Type> subst(List<Type> ts,
  2597                             List<Type> from,
  2598                             List<Type> to) {
  2599         return new Subst(from, to).subst(ts);
  2602     /**
  2603      * Substitute all occurrences of a type in `from' with the
  2604      * corresponding type in `to' in 't'. Match lists `from' and `to'
  2605      * from the right: If lists have different length, discard leading
  2606      * elements of the longer list.
  2607      */
  2608     public Type subst(Type t, List<Type> from, List<Type> to) {
  2609         return new Subst(from, to).subst(t);
  2612     private class Subst extends UnaryVisitor<Type> {
  2613         List<Type> from;
  2614         List<Type> to;
  2616         public Subst(List<Type> from, List<Type> to) {
  2617             int fromLength = from.length();
  2618             int toLength = to.length();
  2619             while (fromLength > toLength) {
  2620                 fromLength--;
  2621                 from = from.tail;
  2623             while (fromLength < toLength) {
  2624                 toLength--;
  2625                 to = to.tail;
  2627             this.from = from;
  2628             this.to = to;
  2631         Type subst(Type t) {
  2632             if (from.tail == null)
  2633                 return t;
  2634             else
  2635                 return visit(t);
  2638         List<Type> subst(List<Type> ts) {
  2639             if (from.tail == null)
  2640                 return ts;
  2641             boolean wild = false;
  2642             if (ts.nonEmpty() && from.nonEmpty()) {
  2643                 Type head1 = subst(ts.head);
  2644                 List<Type> tail1 = subst(ts.tail);
  2645                 if (head1 != ts.head || tail1 != ts.tail)
  2646                     return tail1.prepend(head1);
  2648             return ts;
  2651         public Type visitType(Type t, Void ignored) {
  2652             return t;
  2655         @Override
  2656         public Type visitMethodType(MethodType t, Void ignored) {
  2657             List<Type> argtypes = subst(t.argtypes);
  2658             Type restype = subst(t.restype);
  2659             List<Type> thrown = subst(t.thrown);
  2660             if (argtypes == t.argtypes &&
  2661                 restype == t.restype &&
  2662                 thrown == t.thrown)
  2663                 return t;
  2664             else
  2665                 return new MethodType(argtypes, restype, thrown, t.tsym);
  2668         @Override
  2669         public Type visitTypeVar(TypeVar t, Void ignored) {
  2670             for (List<Type> from = this.from, to = this.to;
  2671                  from.nonEmpty();
  2672                  from = from.tail, to = to.tail) {
  2673                 if (t == from.head) {
  2674                     return to.head.withTypeVar(t);
  2677             return t;
  2680         @Override
  2681         public Type visitClassType(ClassType t, Void ignored) {
  2682             if (!t.isCompound()) {
  2683                 List<Type> typarams = t.getTypeArguments();
  2684                 List<Type> typarams1 = subst(typarams);
  2685                 Type outer = t.getEnclosingType();
  2686                 Type outer1 = subst(outer);
  2687                 if (typarams1 == typarams && outer1 == outer)
  2688                     return t;
  2689                 else
  2690                     return new ClassType(outer1, typarams1, t.tsym);
  2691             } else {
  2692                 Type st = subst(supertype(t));
  2693                 List<Type> is = upperBounds(subst(interfaces(t)));
  2694                 if (st == supertype(t) && is == interfaces(t))
  2695                     return t;
  2696                 else
  2697                     return makeCompoundType(is.prepend(st));
  2701         @Override
  2702         public Type visitWildcardType(WildcardType t, Void ignored) {
  2703             Type bound = t.type;
  2704             if (t.kind != BoundKind.UNBOUND)
  2705                 bound = subst(bound);
  2706             if (bound == t.type) {
  2707                 return t;
  2708             } else {
  2709                 if (t.isExtendsBound() && bound.isExtendsBound())
  2710                     bound = upperBound(bound);
  2711                 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
  2715         @Override
  2716         public Type visitArrayType(ArrayType t, Void ignored) {
  2717             Type elemtype = subst(t.elemtype);
  2718             if (elemtype == t.elemtype)
  2719                 return t;
  2720             else
  2721                 return new ArrayType(upperBound(elemtype), t.tsym);
  2724         @Override
  2725         public Type visitForAll(ForAll t, Void ignored) {
  2726             if (Type.containsAny(to, t.tvars)) {
  2727                 //perform alpha-renaming of free-variables in 't'
  2728                 //if 'to' types contain variables that are free in 't'
  2729                 List<Type> freevars = newInstances(t.tvars);
  2730                 t = new ForAll(freevars,
  2731                         Types.this.subst(t.qtype, t.tvars, freevars));
  2733             List<Type> tvars1 = substBounds(t.tvars, from, to);
  2734             Type qtype1 = subst(t.qtype);
  2735             if (tvars1 == t.tvars && qtype1 == t.qtype) {
  2736                 return t;
  2737             } else if (tvars1 == t.tvars) {
  2738                 return new ForAll(tvars1, qtype1);
  2739             } else {
  2740                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
  2744         @Override
  2745         public Type visitErrorType(ErrorType t, Void ignored) {
  2746             return t;
  2750     public List<Type> substBounds(List<Type> tvars,
  2751                                   List<Type> from,
  2752                                   List<Type> to) {
  2753         if (tvars.isEmpty())
  2754             return tvars;
  2755         ListBuffer<Type> newBoundsBuf = lb();
  2756         boolean changed = false;
  2757         // calculate new bounds
  2758         for (Type t : tvars) {
  2759             TypeVar tv = (TypeVar) t;
  2760             Type bound = subst(tv.bound, from, to);
  2761             if (bound != tv.bound)
  2762                 changed = true;
  2763             newBoundsBuf.append(bound);
  2765         if (!changed)
  2766             return tvars;
  2767         ListBuffer<Type> newTvars = lb();
  2768         // create new type variables without bounds
  2769         for (Type t : tvars) {
  2770             newTvars.append(new TypeVar(t.tsym, null, syms.botType));
  2772         // the new bounds should use the new type variables in place
  2773         // of the old
  2774         List<Type> newBounds = newBoundsBuf.toList();
  2775         from = tvars;
  2776         to = newTvars.toList();
  2777         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
  2778             newBounds.head = subst(newBounds.head, from, to);
  2780         newBounds = newBoundsBuf.toList();
  2781         // set the bounds of new type variables to the new bounds
  2782         for (Type t : newTvars.toList()) {
  2783             TypeVar tv = (TypeVar) t;
  2784             tv.bound = newBounds.head;
  2785             newBounds = newBounds.tail;
  2787         return newTvars.toList();
  2790     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
  2791         Type bound1 = subst(t.bound, from, to);
  2792         if (bound1 == t.bound)
  2793             return t;
  2794         else {
  2795             // create new type variable without bounds
  2796             TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
  2797             // the new bound should use the new type variable in place
  2798             // of the old
  2799             tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
  2800             return tv;
  2803     // </editor-fold>
  2805     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
  2806     /**
  2807      * Does t have the same bounds for quantified variables as s?
  2808      */
  2809     boolean hasSameBounds(ForAll t, ForAll s) {
  2810         List<Type> l1 = t.tvars;
  2811         List<Type> l2 = s.tvars;
  2812         while (l1.nonEmpty() && l2.nonEmpty() &&
  2813                isSameType(l1.head.getUpperBound(),
  2814                           subst(l2.head.getUpperBound(),
  2815                                 s.tvars,
  2816                                 t.tvars))) {
  2817             l1 = l1.tail;
  2818             l2 = l2.tail;
  2820         return l1.isEmpty() && l2.isEmpty();
  2822     // </editor-fold>
  2824     // <editor-fold defaultstate="collapsed" desc="newInstances">
  2825     /** Create new vector of type variables from list of variables
  2826      *  changing all recursive bounds from old to new list.
  2827      */
  2828     public List<Type> newInstances(List<Type> tvars) {
  2829         List<Type> tvars1 = Type.map(tvars, newInstanceFun);
  2830         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
  2831             TypeVar tv = (TypeVar) l.head;
  2832             tv.bound = subst(tv.bound, tvars, tvars1);
  2834         return tvars1;
  2836     static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
  2837             public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
  2838         };
  2839     // </editor-fold>
  2841     public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
  2842         return original.accept(methodWithParameters, newParams);
  2844     // where
  2845         private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
  2846             public Type visitType(Type t, List<Type> newParams) {
  2847                 throw new IllegalArgumentException("Not a method type: " + t);
  2849             public Type visitMethodType(MethodType t, List<Type> newParams) {
  2850                 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
  2852             public Type visitForAll(ForAll t, List<Type> newParams) {
  2853                 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
  2855         };
  2857     public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
  2858         return original.accept(methodWithThrown, newThrown);
  2860     // where
  2861         private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
  2862             public Type visitType(Type t, List<Type> newThrown) {
  2863                 throw new IllegalArgumentException("Not a method type: " + t);
  2865             public Type visitMethodType(MethodType t, List<Type> newThrown) {
  2866                 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
  2868             public Type visitForAll(ForAll t, List<Type> newThrown) {
  2869                 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
  2871         };
  2873     public Type createMethodTypeWithReturn(Type original, Type newReturn) {
  2874         return original.accept(methodWithReturn, newReturn);
  2876     // where
  2877         private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
  2878             public Type visitType(Type t, Type newReturn) {
  2879                 throw new IllegalArgumentException("Not a method type: " + t);
  2881             public Type visitMethodType(MethodType t, Type newReturn) {
  2882                 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
  2884             public Type visitForAll(ForAll t, Type newReturn) {
  2885                 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
  2887         };
  2889     // <editor-fold defaultstate="collapsed" desc="createErrorType">
  2890     public Type createErrorType(Type originalType) {
  2891         return new ErrorType(originalType, syms.errSymbol);
  2894     public Type createErrorType(ClassSymbol c, Type originalType) {
  2895         return new ErrorType(c, originalType);
  2898     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
  2899         return new ErrorType(name, container, originalType);
  2901     // </editor-fold>
  2903     // <editor-fold defaultstate="collapsed" desc="rank">
  2904     /**
  2905      * The rank of a class is the length of the longest path between
  2906      * the class and java.lang.Object in the class inheritance
  2907      * graph. Undefined for all but reference types.
  2908      */
  2909     public int rank(Type t) {
  2910         switch(t.tag) {
  2911         case CLASS: {
  2912             ClassType cls = (ClassType)t;
  2913             if (cls.rank_field < 0) {
  2914                 Name fullname = cls.tsym.getQualifiedName();
  2915                 if (fullname == names.java_lang_Object)
  2916                     cls.rank_field = 0;
  2917                 else {
  2918                     int r = rank(supertype(cls));
  2919                     for (List<Type> l = interfaces(cls);
  2920                          l.nonEmpty();
  2921                          l = l.tail) {
  2922                         if (rank(l.head) > r)
  2923                             r = rank(l.head);
  2925                     cls.rank_field = r + 1;
  2928             return cls.rank_field;
  2930         case TYPEVAR: {
  2931             TypeVar tvar = (TypeVar)t;
  2932             if (tvar.rank_field < 0) {
  2933                 int r = rank(supertype(tvar));
  2934                 for (List<Type> l = interfaces(tvar);
  2935                      l.nonEmpty();
  2936                      l = l.tail) {
  2937                     if (rank(l.head) > r) r = rank(l.head);
  2939                 tvar.rank_field = r + 1;
  2941             return tvar.rank_field;
  2943         case ERROR:
  2944             return 0;
  2945         default:
  2946             throw new AssertionError();
  2949     // </editor-fold>
  2951     /**
  2952      * Helper method for generating a string representation of a given type
  2953      * accordingly to a given locale
  2954      */
  2955     public String toString(Type t, Locale locale) {
  2956         return Printer.createStandardPrinter(messages).visit(t, locale);
  2959     /**
  2960      * Helper method for generating a string representation of a given type
  2961      * accordingly to a given locale
  2962      */
  2963     public String toString(Symbol t, Locale locale) {
  2964         return Printer.createStandardPrinter(messages).visit(t, locale);
  2967     // <editor-fold defaultstate="collapsed" desc="toString">
  2968     /**
  2969      * This toString is slightly more descriptive than the one on Type.
  2971      * @deprecated Types.toString(Type t, Locale l) provides better support
  2972      * for localization
  2973      */
  2974     @Deprecated
  2975     public String toString(Type t) {
  2976         if (t.tag == FORALL) {
  2977             ForAll forAll = (ForAll)t;
  2978             return typaramsString(forAll.tvars) + forAll.qtype;
  2980         return "" + t;
  2982     // where
  2983         private String typaramsString(List<Type> tvars) {
  2984             StringBuilder s = new StringBuilder();
  2985             s.append('<');
  2986             boolean first = true;
  2987             for (Type t : tvars) {
  2988                 if (!first) s.append(", ");
  2989                 first = false;
  2990                 appendTyparamString(((TypeVar)t), s);
  2992             s.append('>');
  2993             return s.toString();
  2995         private void appendTyparamString(TypeVar t, StringBuilder buf) {
  2996             buf.append(t);
  2997             if (t.bound == null ||
  2998                 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
  2999                 return;
  3000             buf.append(" extends "); // Java syntax; no need for i18n
  3001             Type bound = t.bound;
  3002             if (!bound.isCompound()) {
  3003                 buf.append(bound);
  3004             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
  3005                 buf.append(supertype(t));
  3006                 for (Type intf : interfaces(t)) {
  3007                     buf.append('&');
  3008                     buf.append(intf);
  3010             } else {
  3011                 // No superclass was given in bounds.
  3012                 // In this case, supertype is Object, erasure is first interface.
  3013                 boolean first = true;
  3014                 for (Type intf : interfaces(t)) {
  3015                     if (!first) buf.append('&');
  3016                     first = false;
  3017                     buf.append(intf);
  3021     // </editor-fold>
  3023     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
  3024     /**
  3025      * A cache for closures.
  3027      * <p>A closure is a list of all the supertypes and interfaces of
  3028      * a class or interface type, ordered by ClassSymbol.precedes
  3029      * (that is, subclasses come first, arbitrary but fixed
  3030      * otherwise).
  3031      */
  3032     private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
  3034     /**
  3035      * Returns the closure of a class or interface type.
  3036      */
  3037     public List<Type> closure(Type t) {
  3038         List<Type> cl = closureCache.get(t);
  3039         if (cl == null) {
  3040             Type st = supertype(t);
  3041             if (!t.isCompound()) {
  3042                 if (st.tag == CLASS) {
  3043                     cl = insert(closure(st), t);
  3044                 } else if (st.tag == TYPEVAR) {
  3045                     cl = closure(st).prepend(t);
  3046                 } else {
  3047                     cl = List.of(t);
  3049             } else {
  3050                 cl = closure(supertype(t));
  3052             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
  3053                 cl = union(cl, closure(l.head));
  3054             closureCache.put(t, cl);
  3056         return cl;
  3059     /**
  3060      * Insert a type in a closure
  3061      */
  3062     public List<Type> insert(List<Type> cl, Type t) {
  3063         if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
  3064             return cl.prepend(t);
  3065         } else if (cl.head.tsym.precedes(t.tsym, this)) {
  3066             return insert(cl.tail, t).prepend(cl.head);
  3067         } else {
  3068             return cl;
  3072     /**
  3073      * Form the union of two closures
  3074      */
  3075     public List<Type> union(List<Type> cl1, List<Type> cl2) {
  3076         if (cl1.isEmpty()) {
  3077             return cl2;
  3078         } else if (cl2.isEmpty()) {
  3079             return cl1;
  3080         } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
  3081             return union(cl1.tail, cl2).prepend(cl1.head);
  3082         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
  3083             return union(cl1, cl2.tail).prepend(cl2.head);
  3084         } else {
  3085             return union(cl1.tail, cl2.tail).prepend(cl1.head);
  3089     /**
  3090      * Intersect two closures
  3091      */
  3092     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
  3093         if (cl1 == cl2)
  3094             return cl1;
  3095         if (cl1.isEmpty() || cl2.isEmpty())
  3096             return List.nil();
  3097         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
  3098             return intersect(cl1.tail, cl2);
  3099         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
  3100             return intersect(cl1, cl2.tail);
  3101         if (isSameType(cl1.head, cl2.head))
  3102             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
  3103         if (cl1.head.tsym == cl2.head.tsym &&
  3104             cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
  3105             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
  3106                 Type merge = merge(cl1.head,cl2.head);
  3107                 return intersect(cl1.tail, cl2.tail).prepend(merge);
  3109             if (cl1.head.isRaw() || cl2.head.isRaw())
  3110                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
  3112         return intersect(cl1.tail, cl2.tail);
  3114     // where
  3115         class TypePair {
  3116             final Type t1;
  3117             final Type t2;
  3118             TypePair(Type t1, Type t2) {
  3119                 this.t1 = t1;
  3120                 this.t2 = t2;
  3122             @Override
  3123             public int hashCode() {
  3124                 return 127 * Types.hashCode(t1) + Types.hashCode(t2);
  3126             @Override
  3127             public boolean equals(Object obj) {
  3128                 if (!(obj instanceof TypePair))
  3129                     return false;
  3130                 TypePair typePair = (TypePair)obj;
  3131                 return isSameType(t1, typePair.t1)
  3132                     && isSameType(t2, typePair.t2);
  3135         Set<TypePair> mergeCache = new HashSet<TypePair>();
  3136         private Type merge(Type c1, Type c2) {
  3137             ClassType class1 = (ClassType) c1;
  3138             List<Type> act1 = class1.getTypeArguments();
  3139             ClassType class2 = (ClassType) c2;
  3140             List<Type> act2 = class2.getTypeArguments();
  3141             ListBuffer<Type> merged = new ListBuffer<Type>();
  3142             List<Type> typarams = class1.tsym.type.getTypeArguments();
  3144             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
  3145                 if (containsType(act1.head, act2.head)) {
  3146                     merged.append(act1.head);
  3147                 } else if (containsType(act2.head, act1.head)) {
  3148                     merged.append(act2.head);
  3149                 } else {
  3150                     TypePair pair = new TypePair(c1, c2);
  3151                     Type m;
  3152                     if (mergeCache.add(pair)) {
  3153                         m = new WildcardType(lub(upperBound(act1.head),
  3154                                                  upperBound(act2.head)),
  3155                                              BoundKind.EXTENDS,
  3156                                              syms.boundClass);
  3157                         mergeCache.remove(pair);
  3158                     } else {
  3159                         m = new WildcardType(syms.objectType,
  3160                                              BoundKind.UNBOUND,
  3161                                              syms.boundClass);
  3163                     merged.append(m.withTypeVar(typarams.head));
  3165                 act1 = act1.tail;
  3166                 act2 = act2.tail;
  3167                 typarams = typarams.tail;
  3169             Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
  3170             return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
  3173     /**
  3174      * Return the minimum type of a closure, a compound type if no
  3175      * unique minimum exists.
  3176      */
  3177     private Type compoundMin(List<Type> cl) {
  3178         if (cl.isEmpty()) return syms.objectType;
  3179         List<Type> compound = closureMin(cl);
  3180         if (compound.isEmpty())
  3181             return null;
  3182         else if (compound.tail.isEmpty())
  3183             return compound.head;
  3184         else
  3185             return makeCompoundType(compound);
  3188     /**
  3189      * Return the minimum types of a closure, suitable for computing
  3190      * compoundMin or glb.
  3191      */
  3192     private List<Type> closureMin(List<Type> cl) {
  3193         ListBuffer<Type> classes = lb();
  3194         ListBuffer<Type> interfaces = lb();
  3195         while (!cl.isEmpty()) {
  3196             Type current = cl.head;
  3197             if (current.isInterface())
  3198                 interfaces.append(current);
  3199             else
  3200                 classes.append(current);
  3201             ListBuffer<Type> candidates = lb();
  3202             for (Type t : cl.tail) {
  3203                 if (!isSubtypeNoCapture(current, t))
  3204                     candidates.append(t);
  3206             cl = candidates.toList();
  3208         return classes.appendList(interfaces).toList();
  3211     /**
  3212      * Return the least upper bound of pair of types.  if the lub does
  3213      * not exist return null.
  3214      */
  3215     public Type lub(Type t1, Type t2) {
  3216         return lub(List.of(t1, t2));
  3219     /**
  3220      * Return the least upper bound (lub) of set of types.  If the lub
  3221      * does not exist return the type of null (bottom).
  3222      */
  3223     public Type lub(List<Type> ts) {
  3224         final int ARRAY_BOUND = 1;
  3225         final int CLASS_BOUND = 2;
  3226         int boundkind = 0;
  3227         for (Type t : ts) {
  3228             switch (t.tag) {
  3229             case CLASS:
  3230                 boundkind |= CLASS_BOUND;
  3231                 break;
  3232             case ARRAY:
  3233                 boundkind |= ARRAY_BOUND;
  3234                 break;
  3235             case  TYPEVAR:
  3236                 do {
  3237                     t = t.getUpperBound();
  3238                 } while (t.tag == TYPEVAR);
  3239                 if (t.tag == ARRAY) {
  3240                     boundkind |= ARRAY_BOUND;
  3241                 } else {
  3242                     boundkind |= CLASS_BOUND;
  3244                 break;
  3245             default:
  3246                 if (t.isPrimitive())
  3247                     return syms.errType;
  3250         switch (boundkind) {
  3251         case 0:
  3252             return syms.botType;
  3254         case ARRAY_BOUND:
  3255             // calculate lub(A[], B[])
  3256             List<Type> elements = Type.map(ts, elemTypeFun);
  3257             for (Type t : elements) {
  3258                 if (t.isPrimitive()) {
  3259                     // if a primitive type is found, then return
  3260                     // arraySuperType unless all the types are the
  3261                     // same
  3262                     Type first = ts.head;
  3263                     for (Type s : ts.tail) {
  3264                         if (!isSameType(first, s)) {
  3265                              // lub(int[], B[]) is Cloneable & Serializable
  3266                             return arraySuperType();
  3269                     // all the array types are the same, return one
  3270                     // lub(int[], int[]) is int[]
  3271                     return first;
  3274             // lub(A[], B[]) is lub(A, B)[]
  3275             return new ArrayType(lub(elements), syms.arrayClass);
  3277         case CLASS_BOUND:
  3278             // calculate lub(A, B)
  3279             while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
  3280                 ts = ts.tail;
  3281             Assert.check(!ts.isEmpty());
  3282             //step 1 - compute erased candidate set (EC)
  3283             List<Type> cl = erasedSupertypes(ts.head);
  3284             for (Type t : ts.tail) {
  3285                 if (t.tag == CLASS || t.tag == TYPEVAR)
  3286                     cl = intersect(cl, erasedSupertypes(t));
  3288             //step 2 - compute minimal erased candidate set (MEC)
  3289             List<Type> mec = closureMin(cl);
  3290             //step 3 - for each element G in MEC, compute lci(Inv(G))
  3291             List<Type> candidates = List.nil();
  3292             for (Type erasedSupertype : mec) {
  3293                 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
  3294                 for (Type t : ts) {
  3295                     lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
  3297                 candidates = candidates.appendList(lci);
  3299             //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
  3300             //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
  3301             return compoundMin(candidates);
  3303         default:
  3304             // calculate lub(A, B[])
  3305             List<Type> classes = List.of(arraySuperType());
  3306             for (Type t : ts) {
  3307                 if (t.tag != ARRAY) // Filter out any arrays
  3308                     classes = classes.prepend(t);
  3310             // lub(A, B[]) is lub(A, arraySuperType)
  3311             return lub(classes);
  3314     // where
  3315         List<Type> erasedSupertypes(Type t) {
  3316             ListBuffer<Type> buf = lb();
  3317             for (Type sup : closure(t)) {
  3318                 if (sup.tag == TYPEVAR) {
  3319                     buf.append(sup);
  3320                 } else {
  3321                     buf.append(erasure(sup));
  3324             return buf.toList();
  3327         private Type arraySuperType = null;
  3328         private Type arraySuperType() {
  3329             // initialized lazily to avoid problems during compiler startup
  3330             if (arraySuperType == null) {
  3331                 synchronized (this) {
  3332                     if (arraySuperType == null) {
  3333                         // JLS 10.8: all arrays implement Cloneable and Serializable.
  3334                         arraySuperType = makeCompoundType(List.of(syms.serializableType,
  3335                                                                   syms.cloneableType),
  3336                                                           syms.objectType);
  3340             return arraySuperType;
  3342     // </editor-fold>
  3344     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
  3345     public Type glb(List<Type> ts) {
  3346         Type t1 = ts.head;
  3347         for (Type t2 : ts.tail) {
  3348             if (t1.isErroneous())
  3349                 return t1;
  3350             t1 = glb(t1, t2);
  3352         return t1;
  3354     //where
  3355     public Type glb(Type t, Type s) {
  3356         if (s == null)
  3357             return t;
  3358         else if (t.isPrimitive() || s.isPrimitive())
  3359             return syms.errType;
  3360         else if (isSubtypeNoCapture(t, s))
  3361             return t;
  3362         else if (isSubtypeNoCapture(s, t))
  3363             return s;
  3365         List<Type> closure = union(closure(t), closure(s));
  3366         List<Type> bounds = closureMin(closure);
  3368         if (bounds.isEmpty()) {             // length == 0
  3369             return syms.objectType;
  3370         } else if (bounds.tail.isEmpty()) { // length == 1
  3371             return bounds.head;
  3372         } else {                            // length > 1
  3373             int classCount = 0;
  3374             for (Type bound : bounds)
  3375                 if (!bound.isInterface())
  3376                     classCount++;
  3377             if (classCount > 1)
  3378                 return createErrorType(t);
  3380         return makeCompoundType(bounds);
  3382     // </editor-fold>
  3384     // <editor-fold defaultstate="collapsed" desc="hashCode">
  3385     /**
  3386      * Compute a hash code on a type.
  3387      */
  3388     public static int hashCode(Type t) {
  3389         return hashCode.visit(t);
  3391     // where
  3392         private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
  3394             public Integer visitType(Type t, Void ignored) {
  3395                 return t.tag.ordinal();
  3398             @Override
  3399             public Integer visitClassType(ClassType t, Void ignored) {
  3400                 int result = visit(t.getEnclosingType());
  3401                 result *= 127;
  3402                 result += t.tsym.flatName().hashCode();
  3403                 for (Type s : t.getTypeArguments()) {
  3404                     result *= 127;
  3405                     result += visit(s);
  3407                 return result;
  3410             @Override
  3411             public Integer visitWildcardType(WildcardType t, Void ignored) {
  3412                 int result = t.kind.hashCode();
  3413                 if (t.type != null) {
  3414                     result *= 127;
  3415                     result += visit(t.type);
  3417                 return result;
  3420             @Override
  3421             public Integer visitArrayType(ArrayType t, Void ignored) {
  3422                 return visit(t.elemtype) + 12;
  3425             @Override
  3426             public Integer visitTypeVar(TypeVar t, Void ignored) {
  3427                 return System.identityHashCode(t.tsym);
  3430             @Override
  3431             public Integer visitUndetVar(UndetVar t, Void ignored) {
  3432                 return System.identityHashCode(t);
  3435             @Override
  3436             public Integer visitErrorType(ErrorType t, Void ignored) {
  3437                 return 0;
  3439         };
  3440     // </editor-fold>
  3442     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
  3443     /**
  3444      * Does t have a result that is a subtype of the result type of s,
  3445      * suitable for covariant returns?  It is assumed that both types
  3446      * are (possibly polymorphic) method types.  Monomorphic method
  3447      * types are handled in the obvious way.  Polymorphic method types
  3448      * require renaming all type variables of one to corresponding
  3449      * type variables in the other, where correspondence is by
  3450      * position in the type parameter list. */
  3451     public boolean resultSubtype(Type t, Type s, Warner warner) {
  3452         List<Type> tvars = t.getTypeArguments();
  3453         List<Type> svars = s.getTypeArguments();
  3454         Type tres = t.getReturnType();
  3455         Type sres = subst(s.getReturnType(), svars, tvars);
  3456         return covariantReturnType(tres, sres, warner);
  3459     /**
  3460      * Return-Type-Substitutable.
  3461      * @jls section 8.4.5
  3462      */
  3463     public boolean returnTypeSubstitutable(Type r1, Type r2) {
  3464         if (hasSameArgs(r1, r2))
  3465             return resultSubtype(r1, r2, Warner.noWarnings);
  3466         else
  3467             return covariantReturnType(r1.getReturnType(),
  3468                                        erasure(r2.getReturnType()),
  3469                                        Warner.noWarnings);
  3472     public boolean returnTypeSubstitutable(Type r1,
  3473                                            Type r2, Type r2res,
  3474                                            Warner warner) {
  3475         if (isSameType(r1.getReturnType(), r2res))
  3476             return true;
  3477         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
  3478             return false;
  3480         if (hasSameArgs(r1, r2))
  3481             return covariantReturnType(r1.getReturnType(), r2res, warner);
  3482         if (!allowCovariantReturns)
  3483             return false;
  3484         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
  3485             return true;
  3486         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
  3487             return false;
  3488         warner.warn(LintCategory.UNCHECKED);
  3489         return true;
  3492     /**
  3493      * Is t an appropriate return type in an overrider for a
  3494      * method that returns s?
  3495      */
  3496     public boolean covariantReturnType(Type t, Type s, Warner warner) {
  3497         return
  3498             isSameType(t, s) ||
  3499             allowCovariantReturns &&
  3500             !t.isPrimitive() &&
  3501             !s.isPrimitive() &&
  3502             isAssignable(t, s, warner);
  3504     // </editor-fold>
  3506     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
  3507     /**
  3508      * Return the class that boxes the given primitive.
  3509      */
  3510     public ClassSymbol boxedClass(Type t) {
  3511         return reader.enterClass(syms.boxedName[t.tag.ordinal()]);
  3514     /**
  3515      * Return the boxed type if 't' is primitive, otherwise return 't' itself.
  3516      */
  3517     public Type boxedTypeOrType(Type t) {
  3518         return t.isPrimitive() ?
  3519             boxedClass(t).type :
  3520             t;
  3523     /**
  3524      * Return the primitive type corresponding to a boxed type.
  3525      */
  3526     public Type unboxedType(Type t) {
  3527         if (allowBoxing) {
  3528             for (int i=0; i<syms.boxedName.length; i++) {
  3529                 Name box = syms.boxedName[i];
  3530                 if (box != null &&
  3531                     asSuper(t, reader.enterClass(box)) != null)
  3532                     return syms.typeOfTag[i];
  3535         return Type.noType;
  3538     /**
  3539      * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
  3540      */
  3541     public Type unboxedTypeOrType(Type t) {
  3542         Type unboxedType = unboxedType(t);
  3543         return unboxedType.tag == NONE ? t : unboxedType;
  3545     // </editor-fold>
  3547     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
  3548     /*
  3549      * JLS 5.1.10 Capture Conversion:
  3551      * Let G name a generic type declaration with n formal type
  3552      * parameters A1 ... An with corresponding bounds U1 ... Un. There
  3553      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
  3554      * where, for 1 <= i <= n:
  3556      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
  3557      *   Si is a fresh type variable whose upper bound is
  3558      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
  3559      *   type.
  3561      * + If Ti is a wildcard type argument of the form ? extends Bi,
  3562      *   then Si is a fresh type variable whose upper bound is
  3563      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
  3564      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
  3565      *   a compile-time error if for any two classes (not interfaces)
  3566      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
  3568      * + If Ti is a wildcard type argument of the form ? super Bi,
  3569      *   then Si is a fresh type variable whose upper bound is
  3570      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
  3572      * + Otherwise, Si = Ti.
  3574      * Capture conversion on any type other than a parameterized type
  3575      * (4.5) acts as an identity conversion (5.1.1). Capture
  3576      * conversions never require a special action at run time and
  3577      * therefore never throw an exception at run time.
  3579      * Capture conversion is not applied recursively.
  3580      */
  3581     /**
  3582      * Capture conversion as specified by the JLS.
  3583      */
  3585     public List<Type> capture(List<Type> ts) {
  3586         List<Type> buf = List.nil();
  3587         for (Type t : ts) {
  3588             buf = buf.prepend(capture(t));
  3590         return buf.reverse();
  3592     public Type capture(Type t) {
  3593         if (t.tag != CLASS)
  3594             return t;
  3595         if (t.getEnclosingType() != Type.noType) {
  3596             Type capturedEncl = capture(t.getEnclosingType());
  3597             if (capturedEncl != t.getEnclosingType()) {
  3598                 Type type1 = memberType(capturedEncl, t.tsym);
  3599                 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
  3602         ClassType cls = (ClassType)t;
  3603         if (cls.isRaw() || !cls.isParameterized())
  3604             return cls;
  3606         ClassType G = (ClassType)cls.asElement().asType();
  3607         List<Type> A = G.getTypeArguments();
  3608         List<Type> T = cls.getTypeArguments();
  3609         List<Type> S = freshTypeVariables(T);
  3611         List<Type> currentA = A;
  3612         List<Type> currentT = T;
  3613         List<Type> currentS = S;
  3614         boolean captured = false;
  3615         while (!currentA.isEmpty() &&
  3616                !currentT.isEmpty() &&
  3617                !currentS.isEmpty()) {
  3618             if (currentS.head != currentT.head) {
  3619                 captured = true;
  3620                 WildcardType Ti = (WildcardType)currentT.head;
  3621                 Type Ui = currentA.head.getUpperBound();
  3622                 CapturedType Si = (CapturedType)currentS.head;
  3623                 if (Ui == null)
  3624                     Ui = syms.objectType;
  3625                 switch (Ti.kind) {
  3626                 case UNBOUND:
  3627                     Si.bound = subst(Ui, A, S);
  3628                     Si.lower = syms.botType;
  3629                     break;
  3630                 case EXTENDS:
  3631                     Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
  3632                     Si.lower = syms.botType;
  3633                     break;
  3634                 case SUPER:
  3635                     Si.bound = subst(Ui, A, S);
  3636                     Si.lower = Ti.getSuperBound();
  3637                     break;
  3639                 if (Si.bound == Si.lower)
  3640                     currentS.head = Si.bound;
  3642             currentA = currentA.tail;
  3643             currentT = currentT.tail;
  3644             currentS = currentS.tail;
  3646         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
  3647             return erasure(t); // some "rare" type involved
  3649         if (captured)
  3650             return new ClassType(cls.getEnclosingType(), S, cls.tsym);
  3651         else
  3652             return t;
  3654     // where
  3655         public List<Type> freshTypeVariables(List<Type> types) {
  3656             ListBuffer<Type> result = lb();
  3657             for (Type t : types) {
  3658                 if (t.tag == WILDCARD) {
  3659                     Type bound = ((WildcardType)t).getExtendsBound();
  3660                     if (bound == null)
  3661                         bound = syms.objectType;
  3662                     result.append(new CapturedType(capturedName,
  3663                                                    syms.noSymbol,
  3664                                                    bound,
  3665                                                    syms.botType,
  3666                                                    (WildcardType)t));
  3667                 } else {
  3668                     result.append(t);
  3671             return result.toList();
  3673     // </editor-fold>
  3675     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
  3676     private List<Type> upperBounds(List<Type> ss) {
  3677         if (ss.isEmpty()) return ss;
  3678         Type head = upperBound(ss.head);
  3679         List<Type> tail = upperBounds(ss.tail);
  3680         if (head != ss.head || tail != ss.tail)
  3681             return tail.prepend(head);
  3682         else
  3683             return ss;
  3686     private boolean sideCast(Type from, Type to, Warner warn) {
  3687         // We are casting from type $from$ to type $to$, which are
  3688         // non-final unrelated types.  This method
  3689         // tries to reject a cast by transferring type parameters
  3690         // from $to$ to $from$ by common superinterfaces.
  3691         boolean reverse = false;
  3692         Type target = to;
  3693         if ((to.tsym.flags() & INTERFACE) == 0) {
  3694             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3695             reverse = true;
  3696             to = from;
  3697             from = target;
  3699         List<Type> commonSupers = superClosure(to, erasure(from));
  3700         boolean giveWarning = commonSupers.isEmpty();
  3701         // The arguments to the supers could be unified here to
  3702         // get a more accurate analysis
  3703         while (commonSupers.nonEmpty()) {
  3704             Type t1 = asSuper(from, commonSupers.head.tsym);
  3705             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
  3706             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3707                 return false;
  3708             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
  3709             commonSupers = commonSupers.tail;
  3711         if (giveWarning && !isReifiable(reverse ? from : to))
  3712             warn.warn(LintCategory.UNCHECKED);
  3713         if (!allowCovariantReturns)
  3714             // reject if there is a common method signature with
  3715             // incompatible return types.
  3716             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3717         return true;
  3720     private boolean sideCastFinal(Type from, Type to, Warner warn) {
  3721         // We are casting from type $from$ to type $to$, which are
  3722         // unrelated types one of which is final and the other of
  3723         // which is an interface.  This method
  3724         // tries to reject a cast by transferring type parameters
  3725         // from the final class to the interface.
  3726         boolean reverse = false;
  3727         Type target = to;
  3728         if ((to.tsym.flags() & INTERFACE) == 0) {
  3729             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3730             reverse = true;
  3731             to = from;
  3732             from = target;
  3734         Assert.check((from.tsym.flags() & FINAL) != 0);
  3735         Type t1 = asSuper(from, to.tsym);
  3736         if (t1 == null) return false;
  3737         Type t2 = to;
  3738         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3739             return false;
  3740         if (!allowCovariantReturns)
  3741             // reject if there is a common method signature with
  3742             // incompatible return types.
  3743             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3744         if (!isReifiable(target) &&
  3745             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
  3746             warn.warn(LintCategory.UNCHECKED);
  3747         return true;
  3750     private boolean giveWarning(Type from, Type to) {
  3751         Type subFrom = asSub(from, to.tsym);
  3752         return to.isParameterized() &&
  3753                 (!(isUnbounded(to) ||
  3754                 isSubtype(from, to) ||
  3755                 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
  3758     private List<Type> superClosure(Type t, Type s) {
  3759         List<Type> cl = List.nil();
  3760         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  3761             if (isSubtype(s, erasure(l.head))) {
  3762                 cl = insert(cl, l.head);
  3763             } else {
  3764                 cl = union(cl, superClosure(l.head, s));
  3767         return cl;
  3770     private boolean containsTypeEquivalent(Type t, Type s) {
  3771         return
  3772             isSameType(t, s) || // shortcut
  3773             containsType(t, s) && containsType(s, t);
  3776     // <editor-fold defaultstate="collapsed" desc="adapt">
  3777     /**
  3778      * Adapt a type by computing a substitution which maps a source
  3779      * type to a target type.
  3781      * @param source    the source type
  3782      * @param target    the target type
  3783      * @param from      the type variables of the computed substitution
  3784      * @param to        the types of the computed substitution.
  3785      */
  3786     public void adapt(Type source,
  3787                        Type target,
  3788                        ListBuffer<Type> from,
  3789                        ListBuffer<Type> to) throws AdaptFailure {
  3790         new Adapter(from, to).adapt(source, target);
  3793     class Adapter extends SimpleVisitor<Void, Type> {
  3795         ListBuffer<Type> from;
  3796         ListBuffer<Type> to;
  3797         Map<Symbol,Type> mapping;
  3799         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
  3800             this.from = from;
  3801             this.to = to;
  3802             mapping = new HashMap<Symbol,Type>();
  3805         public void adapt(Type source, Type target) throws AdaptFailure {
  3806             visit(source, target);
  3807             List<Type> fromList = from.toList();
  3808             List<Type> toList = to.toList();
  3809             while (!fromList.isEmpty()) {
  3810                 Type val = mapping.get(fromList.head.tsym);
  3811                 if (toList.head != val)
  3812                     toList.head = val;
  3813                 fromList = fromList.tail;
  3814                 toList = toList.tail;
  3818         @Override
  3819         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
  3820             if (target.tag == CLASS)
  3821                 adaptRecursive(source.allparams(), target.allparams());
  3822             return null;
  3825         @Override
  3826         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
  3827             if (target.tag == ARRAY)
  3828                 adaptRecursive(elemtype(source), elemtype(target));
  3829             return null;
  3832         @Override
  3833         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
  3834             if (source.isExtendsBound())
  3835                 adaptRecursive(upperBound(source), upperBound(target));
  3836             else if (source.isSuperBound())
  3837                 adaptRecursive(lowerBound(source), lowerBound(target));
  3838             return null;
  3841         @Override
  3842         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
  3843             // Check to see if there is
  3844             // already a mapping for $source$, in which case
  3845             // the old mapping will be merged with the new
  3846             Type val = mapping.get(source.tsym);
  3847             if (val != null) {
  3848                 if (val.isSuperBound() && target.isSuperBound()) {
  3849                     val = isSubtype(lowerBound(val), lowerBound(target))
  3850                         ? target : val;
  3851                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
  3852                     val = isSubtype(upperBound(val), upperBound(target))
  3853                         ? val : target;
  3854                 } else if (!isSameType(val, target)) {
  3855                     throw new AdaptFailure();
  3857             } else {
  3858                 val = target;
  3859                 from.append(source);
  3860                 to.append(target);
  3862             mapping.put(source.tsym, val);
  3863             return null;
  3866         @Override
  3867         public Void visitType(Type source, Type target) {
  3868             return null;
  3871         private Set<TypePair> cache = new HashSet<TypePair>();
  3873         private void adaptRecursive(Type source, Type target) {
  3874             TypePair pair = new TypePair(source, target);
  3875             if (cache.add(pair)) {
  3876                 try {
  3877                     visit(source, target);
  3878                 } finally {
  3879                     cache.remove(pair);
  3884         private void adaptRecursive(List<Type> source, List<Type> target) {
  3885             if (source.length() == target.length()) {
  3886                 while (source.nonEmpty()) {
  3887                     adaptRecursive(source.head, target.head);
  3888                     source = source.tail;
  3889                     target = target.tail;
  3895     public static class AdaptFailure extends RuntimeException {
  3896         static final long serialVersionUID = -7490231548272701566L;
  3899     private void adaptSelf(Type t,
  3900                            ListBuffer<Type> from,
  3901                            ListBuffer<Type> to) {
  3902         try {
  3903             //if (t.tsym.type != t)
  3904                 adapt(t.tsym.type, t, from, to);
  3905         } catch (AdaptFailure ex) {
  3906             // Adapt should never fail calculating a mapping from
  3907             // t.tsym.type to t as there can be no merge problem.
  3908             throw new AssertionError(ex);
  3911     // </editor-fold>
  3913     /**
  3914      * Rewrite all type variables (universal quantifiers) in the given
  3915      * type to wildcards (existential quantifiers).  This is used to
  3916      * determine if a cast is allowed.  For example, if high is true
  3917      * and {@code T <: Number}, then {@code List<T>} is rewritten to
  3918      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
  3919      * List<? extends Number>} a {@code List<T>} can be cast to {@code
  3920      * List<Integer>} with a warning.
  3921      * @param t a type
  3922      * @param high if true return an upper bound; otherwise a lower
  3923      * bound
  3924      * @param rewriteTypeVars only rewrite captured wildcards if false;
  3925      * otherwise rewrite all type variables
  3926      * @return the type rewritten with wildcards (existential
  3927      * quantifiers) only
  3928      */
  3929     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
  3930         return new Rewriter(high, rewriteTypeVars).visit(t);
  3933     class Rewriter extends UnaryVisitor<Type> {
  3935         boolean high;
  3936         boolean rewriteTypeVars;
  3938         Rewriter(boolean high, boolean rewriteTypeVars) {
  3939             this.high = high;
  3940             this.rewriteTypeVars = rewriteTypeVars;
  3943         @Override
  3944         public Type visitClassType(ClassType t, Void s) {
  3945             ListBuffer<Type> rewritten = new ListBuffer<Type>();
  3946             boolean changed = false;
  3947             for (Type arg : t.allparams()) {
  3948                 Type bound = visit(arg);
  3949                 if (arg != bound) {
  3950                     changed = true;
  3952                 rewritten.append(bound);
  3954             if (changed)
  3955                 return subst(t.tsym.type,
  3956                         t.tsym.type.allparams(),
  3957                         rewritten.toList());
  3958             else
  3959                 return t;
  3962         public Type visitType(Type t, Void s) {
  3963             return high ? upperBound(t) : lowerBound(t);
  3966         @Override
  3967         public Type visitCapturedType(CapturedType t, Void s) {
  3968             Type w_bound = t.wildcard.type;
  3969             Type bound = w_bound.contains(t) ?
  3970                         erasure(w_bound) :
  3971                         visit(w_bound);
  3972             return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
  3975         @Override
  3976         public Type visitTypeVar(TypeVar t, Void s) {
  3977             if (rewriteTypeVars) {
  3978                 Type bound = t.bound.contains(t) ?
  3979                         erasure(t.bound) :
  3980                         visit(t.bound);
  3981                 return rewriteAsWildcardType(bound, t, EXTENDS);
  3982             } else {
  3983                 return t;
  3987         @Override
  3988         public Type visitWildcardType(WildcardType t, Void s) {
  3989             Type bound2 = visit(t.type);
  3990             return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
  3993         private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
  3994             switch (bk) {
  3995                case EXTENDS: return high ?
  3996                        makeExtendsWildcard(B(bound), formal) :
  3997                        makeExtendsWildcard(syms.objectType, formal);
  3998                case SUPER: return high ?
  3999                        makeSuperWildcard(syms.botType, formal) :
  4000                        makeSuperWildcard(B(bound), formal);
  4001                case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
  4002                default:
  4003                    Assert.error("Invalid bound kind " + bk);
  4004                    return null;
  4008         Type B(Type t) {
  4009             while (t.tag == WILDCARD) {
  4010                 WildcardType w = (WildcardType)t;
  4011                 t = high ?
  4012                     w.getExtendsBound() :
  4013                     w.getSuperBound();
  4014                 if (t == null) {
  4015                     t = high ? syms.objectType : syms.botType;
  4018             return t;
  4023     /**
  4024      * Create a wildcard with the given upper (extends) bound; create
  4025      * an unbounded wildcard if bound is Object.
  4027      * @param bound the upper bound
  4028      * @param formal the formal type parameter that will be
  4029      * substituted by the wildcard
  4030      */
  4031     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
  4032         if (bound == syms.objectType) {
  4033             return new WildcardType(syms.objectType,
  4034                                     BoundKind.UNBOUND,
  4035                                     syms.boundClass,
  4036                                     formal);
  4037         } else {
  4038             return new WildcardType(bound,
  4039                                     BoundKind.EXTENDS,
  4040                                     syms.boundClass,
  4041                                     formal);
  4045     /**
  4046      * Create a wildcard with the given lower (super) bound; create an
  4047      * unbounded wildcard if bound is bottom (type of {@code null}).
  4049      * @param bound the lower bound
  4050      * @param formal the formal type parameter that will be
  4051      * substituted by the wildcard
  4052      */
  4053     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
  4054         if (bound.tag == BOT) {
  4055             return new WildcardType(syms.objectType,
  4056                                     BoundKind.UNBOUND,
  4057                                     syms.boundClass,
  4058                                     formal);
  4059         } else {
  4060             return new WildcardType(bound,
  4061                                     BoundKind.SUPER,
  4062                                     syms.boundClass,
  4063                                     formal);
  4067     /**
  4068      * A wrapper for a type that allows use in sets.
  4069      */
  4070     class SingletonType {
  4071         final Type t;
  4072         SingletonType(Type t) {
  4073             this.t = t;
  4075         public int hashCode() {
  4076             return Types.hashCode(t);
  4078         public boolean equals(Object obj) {
  4079             return (obj instanceof SingletonType) &&
  4080                 isSameType(t, ((SingletonType)obj).t);
  4082         public String toString() {
  4083             return t.toString();
  4086     // </editor-fold>
  4088     // <editor-fold defaultstate="collapsed" desc="Visitors">
  4089     /**
  4090      * A default visitor for types.  All visitor methods except
  4091      * visitType are implemented by delegating to visitType.  Concrete
  4092      * subclasses must provide an implementation of visitType and can
  4093      * override other methods as needed.
  4095      * @param <R> the return type of the operation implemented by this
  4096      * visitor; use Void if no return type is needed.
  4097      * @param <S> the type of the second argument (the first being the
  4098      * type itself) of the operation implemented by this visitor; use
  4099      * Void if a second argument is not needed.
  4100      */
  4101     public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
  4102         final public R visit(Type t, S s)               { return t.accept(this, s); }
  4103         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
  4104         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
  4105         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
  4106         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
  4107         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
  4108         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
  4109         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
  4110         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
  4111         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
  4112         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
  4115     /**
  4116      * A default visitor for symbols.  All visitor methods except
  4117      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
  4118      * subclasses must provide an implementation of visitSymbol and can
  4119      * override other methods as needed.
  4121      * @param <R> the return type of the operation implemented by this
  4122      * visitor; use Void if no return type is needed.
  4123      * @param <S> the type of the second argument (the first being the
  4124      * symbol itself) of the operation implemented by this visitor; use
  4125      * Void if a second argument is not needed.
  4126      */
  4127     public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
  4128         final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
  4129         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
  4130         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
  4131         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
  4132         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
  4133         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
  4134         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
  4137     /**
  4138      * A <em>simple</em> visitor for types.  This visitor is simple as
  4139      * captured wildcards, for-all types (generic methods), and
  4140      * undetermined type variables (part of inference) are hidden.
  4141      * Captured wildcards are hidden by treating them as type
  4142      * variables and the rest are hidden by visiting their qtypes.
  4144      * @param <R> the return type of the operation implemented by this
  4145      * visitor; use Void if no return type is needed.
  4146      * @param <S> the type of the second argument (the first being the
  4147      * type itself) of the operation implemented by this visitor; use
  4148      * Void if a second argument is not needed.
  4149      */
  4150     public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
  4151         @Override
  4152         public R visitCapturedType(CapturedType t, S s) {
  4153             return visitTypeVar(t, s);
  4155         @Override
  4156         public R visitForAll(ForAll t, S s) {
  4157             return visit(t.qtype, s);
  4159         @Override
  4160         public R visitUndetVar(UndetVar t, S s) {
  4161             return visit(t.qtype, s);
  4165     /**
  4166      * A plain relation on types.  That is a 2-ary function on the
  4167      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
  4168      * <!-- In plain text: Type x Type -> Boolean -->
  4169      */
  4170     public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
  4172     /**
  4173      * A convenience visitor for implementing operations that only
  4174      * require one argument (the type itself), that is, unary
  4175      * operations.
  4177      * @param <R> the return type of the operation implemented by this
  4178      * visitor; use Void if no return type is needed.
  4179      */
  4180     public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
  4181         final public R visit(Type t) { return t.accept(this, null); }
  4184     /**
  4185      * A visitor for implementing a mapping from types to types.  The
  4186      * default behavior of this class is to implement the identity
  4187      * mapping (mapping a type to itself).  This can be overridden in
  4188      * subclasses.
  4190      * @param <S> the type of the second argument (the first being the
  4191      * type itself) of this mapping; use Void if a second argument is
  4192      * not needed.
  4193      */
  4194     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
  4195         final public Type visit(Type t) { return t.accept(this, null); }
  4196         public Type visitType(Type t, S s) { return t; }
  4198     // </editor-fold>
  4201     // <editor-fold defaultstate="collapsed" desc="Annotation support">
  4203     public RetentionPolicy getRetention(Attribute.Compound a) {
  4204         return getRetention(a.type.tsym);
  4207     public RetentionPolicy getRetention(Symbol sym) {
  4208         RetentionPolicy vis = RetentionPolicy.CLASS; // the default
  4209         Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
  4210         if (c != null) {
  4211             Attribute value = c.member(names.value);
  4212             if (value != null && value instanceof Attribute.Enum) {
  4213                 Name levelName = ((Attribute.Enum)value).value.name;
  4214                 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
  4215                 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
  4216                 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
  4217                 else ;// /* fail soft */ throw new AssertionError(levelName);
  4220         return vis;
  4222     // </editor-fold>

mercurial