src/share/classes/com/sun/tools/javac/code/Types.java

Thu, 09 Oct 2008 16:21:04 +0100

author
mcimadamore
date
Thu, 09 Oct 2008 16:21:04 +0100
changeset 138
d766e40e49d6
parent 136
8eafba4f61be
child 157
433ee48257c0
permissions
-rw-r--r--

6586091: javac crashes with StackOverflowError
Summary: Types.adapt should avoid infinite loops by exploiting a local cache
Reviewed-by: jjg

duke@1 1 /*
xdono@54 2 * Copyright 2003-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
duke@1 7 * published by the Free Software Foundation. Sun designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
duke@1 9 * by Sun in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
duke@1 21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@1 22 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@1 23 * have any questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.code;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29
duke@1 30 import com.sun.tools.javac.util.*;
duke@1 31 import com.sun.tools.javac.util.List;
duke@1 32
duke@1 33 import com.sun.tools.javac.jvm.ClassReader;
duke@1 34 import com.sun.tools.javac.comp.Check;
duke@1 35
duke@1 36 import static com.sun.tools.javac.code.Type.*;
duke@1 37 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 38 import static com.sun.tools.javac.code.Symbol.*;
duke@1 39 import static com.sun.tools.javac.code.Flags.*;
duke@1 40 import static com.sun.tools.javac.code.BoundKind.*;
duke@1 41 import static com.sun.tools.javac.util.ListBuffer.lb;
duke@1 42
duke@1 43 /**
duke@1 44 * Utility class containing various operations on types.
duke@1 45 *
duke@1 46 * <p>Unless other names are more illustrative, the following naming
duke@1 47 * conventions should be observed in this file:
duke@1 48 *
duke@1 49 * <dl>
duke@1 50 * <dt>t</dt>
duke@1 51 * <dd>If the first argument to an operation is a type, it should be named t.</dd>
duke@1 52 * <dt>s</dt>
duke@1 53 * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
duke@1 54 * <dt>ts</dt>
duke@1 55 * <dd>If an operations takes a list of types, the first should be named ts.</dd>
duke@1 56 * <dt>ss</dt>
duke@1 57 * <dd>A second list of types should be named ss.</dd>
duke@1 58 * </dl>
duke@1 59 *
duke@1 60 * <p><b>This is NOT part of any API supported by Sun Microsystems.
duke@1 61 * If you write code that depends on this, you do so at your own risk.
duke@1 62 * This code and its internal interfaces are subject to change or
duke@1 63 * deletion without notice.</b>
duke@1 64 */
duke@1 65 public class Types {
duke@1 66 protected static final Context.Key<Types> typesKey =
duke@1 67 new Context.Key<Types>();
duke@1 68
duke@1 69 final Symtab syms;
mcimadamore@136 70 final JavacMessages messages;
jjg@113 71 final Names names;
duke@1 72 final boolean allowBoxing;
duke@1 73 final ClassReader reader;
duke@1 74 final Source source;
duke@1 75 final Check chk;
duke@1 76 List<Warner> warnStack = List.nil();
duke@1 77 final Name capturedName;
duke@1 78
duke@1 79 // <editor-fold defaultstate="collapsed" desc="Instantiating">
duke@1 80 public static Types instance(Context context) {
duke@1 81 Types instance = context.get(typesKey);
duke@1 82 if (instance == null)
duke@1 83 instance = new Types(context);
duke@1 84 return instance;
duke@1 85 }
duke@1 86
duke@1 87 protected Types(Context context) {
duke@1 88 context.put(typesKey, this);
duke@1 89 syms = Symtab.instance(context);
jjg@113 90 names = Names.instance(context);
duke@1 91 allowBoxing = Source.instance(context).allowBoxing();
duke@1 92 reader = ClassReader.instance(context);
duke@1 93 source = Source.instance(context);
duke@1 94 chk = Check.instance(context);
duke@1 95 capturedName = names.fromString("<captured wildcard>");
mcimadamore@136 96 messages = JavacMessages.instance(context);
duke@1 97 }
duke@1 98 // </editor-fold>
duke@1 99
duke@1 100 // <editor-fold defaultstate="collapsed" desc="upperBound">
duke@1 101 /**
duke@1 102 * The "rvalue conversion".<br>
duke@1 103 * The upper bound of most types is the type
duke@1 104 * itself. Wildcards, on the other hand have upper
duke@1 105 * and lower bounds.
duke@1 106 * @param t a type
duke@1 107 * @return the upper bound of the given type
duke@1 108 */
duke@1 109 public Type upperBound(Type t) {
duke@1 110 return upperBound.visit(t);
duke@1 111 }
duke@1 112 // where
duke@1 113 private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
duke@1 114
duke@1 115 @Override
duke@1 116 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 117 if (t.isSuperBound())
duke@1 118 return t.bound == null ? syms.objectType : t.bound.bound;
duke@1 119 else
duke@1 120 return visit(t.type);
duke@1 121 }
duke@1 122
duke@1 123 @Override
duke@1 124 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 125 return visit(t.bound);
duke@1 126 }
duke@1 127 };
duke@1 128 // </editor-fold>
duke@1 129
duke@1 130 // <editor-fold defaultstate="collapsed" desc="lowerBound">
duke@1 131 /**
duke@1 132 * The "lvalue conversion".<br>
duke@1 133 * The lower bound of most types is the type
duke@1 134 * itself. Wildcards, on the other hand have upper
duke@1 135 * and lower bounds.
duke@1 136 * @param t a type
duke@1 137 * @return the lower bound of the given type
duke@1 138 */
duke@1 139 public Type lowerBound(Type t) {
duke@1 140 return lowerBound.visit(t);
duke@1 141 }
duke@1 142 // where
duke@1 143 private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
duke@1 144
duke@1 145 @Override
duke@1 146 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 147 return t.isExtendsBound() ? syms.botType : visit(t.type);
duke@1 148 }
duke@1 149
duke@1 150 @Override
duke@1 151 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 152 return visit(t.getLowerBound());
duke@1 153 }
duke@1 154 };
duke@1 155 // </editor-fold>
duke@1 156
duke@1 157 // <editor-fold defaultstate="collapsed" desc="isUnbounded">
duke@1 158 /**
duke@1 159 * Checks that all the arguments to a class are unbounded
duke@1 160 * wildcards or something else that doesn't make any restrictions
duke@1 161 * on the arguments. If a class isUnbounded, a raw super- or
duke@1 162 * subclass can be cast to it without a warning.
duke@1 163 * @param t a type
duke@1 164 * @return true iff the given type is unbounded or raw
duke@1 165 */
duke@1 166 public boolean isUnbounded(Type t) {
duke@1 167 return isUnbounded.visit(t);
duke@1 168 }
duke@1 169 // where
duke@1 170 private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
duke@1 171
duke@1 172 public Boolean visitType(Type t, Void ignored) {
duke@1 173 return true;
duke@1 174 }
duke@1 175
duke@1 176 @Override
duke@1 177 public Boolean visitClassType(ClassType t, Void ignored) {
duke@1 178 List<Type> parms = t.tsym.type.allparams();
duke@1 179 List<Type> args = t.allparams();
duke@1 180 while (parms.nonEmpty()) {
duke@1 181 WildcardType unb = new WildcardType(syms.objectType,
duke@1 182 BoundKind.UNBOUND,
duke@1 183 syms.boundClass,
duke@1 184 (TypeVar)parms.head);
duke@1 185 if (!containsType(args.head, unb))
duke@1 186 return false;
duke@1 187 parms = parms.tail;
duke@1 188 args = args.tail;
duke@1 189 }
duke@1 190 return true;
duke@1 191 }
duke@1 192 };
duke@1 193 // </editor-fold>
duke@1 194
duke@1 195 // <editor-fold defaultstate="collapsed" desc="asSub">
duke@1 196 /**
duke@1 197 * Return the least specific subtype of t that starts with symbol
duke@1 198 * sym. If none exists, return null. The least specific subtype
duke@1 199 * is determined as follows:
duke@1 200 *
duke@1 201 * <p>If there is exactly one parameterized instance of sym that is a
duke@1 202 * subtype of t, that parameterized instance is returned.<br>
duke@1 203 * Otherwise, if the plain type or raw type `sym' is a subtype of
duke@1 204 * type t, the type `sym' itself is returned. Otherwise, null is
duke@1 205 * returned.
duke@1 206 */
duke@1 207 public Type asSub(Type t, Symbol sym) {
duke@1 208 return asSub.visit(t, sym);
duke@1 209 }
duke@1 210 // where
duke@1 211 private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
duke@1 212
duke@1 213 public Type visitType(Type t, Symbol sym) {
duke@1 214 return null;
duke@1 215 }
duke@1 216
duke@1 217 @Override
duke@1 218 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 219 if (t.tsym == sym)
duke@1 220 return t;
duke@1 221 Type base = asSuper(sym.type, t.tsym);
duke@1 222 if (base == null)
duke@1 223 return null;
duke@1 224 ListBuffer<Type> from = new ListBuffer<Type>();
duke@1 225 ListBuffer<Type> to = new ListBuffer<Type>();
duke@1 226 try {
duke@1 227 adapt(base, t, from, to);
duke@1 228 } catch (AdaptFailure ex) {
duke@1 229 return null;
duke@1 230 }
duke@1 231 Type res = subst(sym.type, from.toList(), to.toList());
duke@1 232 if (!isSubtype(res, t))
duke@1 233 return null;
duke@1 234 ListBuffer<Type> openVars = new ListBuffer<Type>();
duke@1 235 for (List<Type> l = sym.type.allparams();
duke@1 236 l.nonEmpty(); l = l.tail)
duke@1 237 if (res.contains(l.head) && !t.contains(l.head))
duke@1 238 openVars.append(l.head);
duke@1 239 if (openVars.nonEmpty()) {
duke@1 240 if (t.isRaw()) {
duke@1 241 // The subtype of a raw type is raw
duke@1 242 res = erasure(res);
duke@1 243 } else {
duke@1 244 // Unbound type arguments default to ?
duke@1 245 List<Type> opens = openVars.toList();
duke@1 246 ListBuffer<Type> qs = new ListBuffer<Type>();
duke@1 247 for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
duke@1 248 qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
duke@1 249 }
duke@1 250 res = subst(res, opens, qs.toList());
duke@1 251 }
duke@1 252 }
duke@1 253 return res;
duke@1 254 }
duke@1 255
duke@1 256 @Override
duke@1 257 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 258 return t;
duke@1 259 }
duke@1 260 };
duke@1 261 // </editor-fold>
duke@1 262
duke@1 263 // <editor-fold defaultstate="collapsed" desc="isConvertible">
duke@1 264 /**
duke@1 265 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 266 * convertions to s?
duke@1 267 */
duke@1 268 public boolean isConvertible(Type t, Type s, Warner warn) {
duke@1 269 boolean tPrimitive = t.isPrimitive();
duke@1 270 boolean sPrimitive = s.isPrimitive();
duke@1 271 if (tPrimitive == sPrimitive)
duke@1 272 return isSubtypeUnchecked(t, s, warn);
duke@1 273 if (!allowBoxing) return false;
duke@1 274 return tPrimitive
duke@1 275 ? isSubtype(boxedClass(t).type, s)
duke@1 276 : isSubtype(unboxedType(t), s);
duke@1 277 }
duke@1 278
duke@1 279 /**
duke@1 280 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 281 * convertions to s?
duke@1 282 */
duke@1 283 public boolean isConvertible(Type t, Type s) {
duke@1 284 return isConvertible(t, s, Warner.noWarnings);
duke@1 285 }
duke@1 286 // </editor-fold>
duke@1 287
duke@1 288 // <editor-fold defaultstate="collapsed" desc="isSubtype">
duke@1 289 /**
duke@1 290 * Is t an unchecked subtype of s?
duke@1 291 */
duke@1 292 public boolean isSubtypeUnchecked(Type t, Type s) {
duke@1 293 return isSubtypeUnchecked(t, s, Warner.noWarnings);
duke@1 294 }
duke@1 295 /**
duke@1 296 * Is t an unchecked subtype of s?
duke@1 297 */
duke@1 298 public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
duke@1 299 if (t.tag == ARRAY && s.tag == ARRAY) {
duke@1 300 return (((ArrayType)t).elemtype.tag <= lastBaseTag)
duke@1 301 ? isSameType(elemtype(t), elemtype(s))
duke@1 302 : isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
duke@1 303 } else if (isSubtype(t, s)) {
duke@1 304 return true;
mcimadamore@41 305 }
mcimadamore@41 306 else if (t.tag == TYPEVAR) {
mcimadamore@41 307 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
mcimadamore@41 308 }
mcimadamore@93 309 else if (s.tag == UNDETVAR) {
mcimadamore@93 310 UndetVar uv = (UndetVar)s;
mcimadamore@93 311 if (uv.inst != null)
mcimadamore@93 312 return isSubtypeUnchecked(t, uv.inst, warn);
mcimadamore@93 313 }
mcimadamore@41 314 else if (!s.isRaw()) {
duke@1 315 Type t2 = asSuper(t, s.tsym);
duke@1 316 if (t2 != null && t2.isRaw()) {
duke@1 317 if (isReifiable(s))
duke@1 318 warn.silentUnchecked();
duke@1 319 else
duke@1 320 warn.warnUnchecked();
duke@1 321 return true;
duke@1 322 }
duke@1 323 }
duke@1 324 return false;
duke@1 325 }
duke@1 326
duke@1 327 /**
duke@1 328 * Is t a subtype of s?<br>
duke@1 329 * (not defined for Method and ForAll types)
duke@1 330 */
duke@1 331 final public boolean isSubtype(Type t, Type s) {
duke@1 332 return isSubtype(t, s, true);
duke@1 333 }
duke@1 334 final public boolean isSubtypeNoCapture(Type t, Type s) {
duke@1 335 return isSubtype(t, s, false);
duke@1 336 }
duke@1 337 public boolean isSubtype(Type t, Type s, boolean capture) {
duke@1 338 if (t == s)
duke@1 339 return true;
duke@1 340
duke@1 341 if (s.tag >= firstPartialTag)
duke@1 342 return isSuperType(s, t);
duke@1 343
duke@1 344 Type lower = lowerBound(s);
duke@1 345 if (s != lower)
duke@1 346 return isSubtype(capture ? capture(t) : t, lower, false);
duke@1 347
duke@1 348 return isSubtype.visit(capture ? capture(t) : t, s);
duke@1 349 }
duke@1 350 // where
duke@1 351 private TypeRelation isSubtype = new TypeRelation()
duke@1 352 {
duke@1 353 public Boolean visitType(Type t, Type s) {
duke@1 354 switch (t.tag) {
duke@1 355 case BYTE: case CHAR:
duke@1 356 return (t.tag == s.tag ||
duke@1 357 t.tag + 2 <= s.tag && s.tag <= DOUBLE);
duke@1 358 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
duke@1 359 return t.tag <= s.tag && s.tag <= DOUBLE;
duke@1 360 case BOOLEAN: case VOID:
duke@1 361 return t.tag == s.tag;
duke@1 362 case TYPEVAR:
duke@1 363 return isSubtypeNoCapture(t.getUpperBound(), s);
duke@1 364 case BOT:
duke@1 365 return
duke@1 366 s.tag == BOT || s.tag == CLASS ||
duke@1 367 s.tag == ARRAY || s.tag == TYPEVAR;
duke@1 368 case NONE:
duke@1 369 return false;
duke@1 370 default:
duke@1 371 throw new AssertionError("isSubtype " + t.tag);
duke@1 372 }
duke@1 373 }
duke@1 374
duke@1 375 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 376
duke@1 377 private boolean containsTypeRecursive(Type t, Type s) {
duke@1 378 TypePair pair = new TypePair(t, s);
duke@1 379 if (cache.add(pair)) {
duke@1 380 try {
duke@1 381 return containsType(t.getTypeArguments(),
duke@1 382 s.getTypeArguments());
duke@1 383 } finally {
duke@1 384 cache.remove(pair);
duke@1 385 }
duke@1 386 } else {
duke@1 387 return containsType(t.getTypeArguments(),
duke@1 388 rewriteSupers(s).getTypeArguments());
duke@1 389 }
duke@1 390 }
duke@1 391
duke@1 392 private Type rewriteSupers(Type t) {
duke@1 393 if (!t.isParameterized())
duke@1 394 return t;
duke@1 395 ListBuffer<Type> from = lb();
duke@1 396 ListBuffer<Type> to = lb();
duke@1 397 adaptSelf(t, from, to);
duke@1 398 if (from.isEmpty())
duke@1 399 return t;
duke@1 400 ListBuffer<Type> rewrite = lb();
duke@1 401 boolean changed = false;
duke@1 402 for (Type orig : to.toList()) {
duke@1 403 Type s = rewriteSupers(orig);
duke@1 404 if (s.isSuperBound() && !s.isExtendsBound()) {
duke@1 405 s = new WildcardType(syms.objectType,
duke@1 406 BoundKind.UNBOUND,
duke@1 407 syms.boundClass);
duke@1 408 changed = true;
duke@1 409 } else if (s != orig) {
duke@1 410 s = new WildcardType(upperBound(s),
duke@1 411 BoundKind.EXTENDS,
duke@1 412 syms.boundClass);
duke@1 413 changed = true;
duke@1 414 }
duke@1 415 rewrite.append(s);
duke@1 416 }
duke@1 417 if (changed)
duke@1 418 return subst(t.tsym.type, from.toList(), rewrite.toList());
duke@1 419 else
duke@1 420 return t;
duke@1 421 }
duke@1 422
duke@1 423 @Override
duke@1 424 public Boolean visitClassType(ClassType t, Type s) {
duke@1 425 Type sup = asSuper(t, s.tsym);
duke@1 426 return sup != null
duke@1 427 && sup.tsym == s.tsym
duke@1 428 // You're not allowed to write
duke@1 429 // Vector<Object> vec = new Vector<String>();
duke@1 430 // But with wildcards you can write
duke@1 431 // Vector<? extends Object> vec = new Vector<String>();
duke@1 432 // which means that subtype checking must be done
duke@1 433 // here instead of same-type checking (via containsType).
duke@1 434 && (!s.isParameterized() || containsTypeRecursive(s, sup))
duke@1 435 && isSubtypeNoCapture(sup.getEnclosingType(),
duke@1 436 s.getEnclosingType());
duke@1 437 }
duke@1 438
duke@1 439 @Override
duke@1 440 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 441 if (s.tag == ARRAY) {
duke@1 442 if (t.elemtype.tag <= lastBaseTag)
duke@1 443 return isSameType(t.elemtype, elemtype(s));
duke@1 444 else
duke@1 445 return isSubtypeNoCapture(t.elemtype, elemtype(s));
duke@1 446 }
duke@1 447
duke@1 448 if (s.tag == CLASS) {
duke@1 449 Name sname = s.tsym.getQualifiedName();
duke@1 450 return sname == names.java_lang_Object
duke@1 451 || sname == names.java_lang_Cloneable
duke@1 452 || sname == names.java_io_Serializable;
duke@1 453 }
duke@1 454
duke@1 455 return false;
duke@1 456 }
duke@1 457
duke@1 458 @Override
duke@1 459 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 460 //todo: test against origin needed? or replace with substitution?
duke@1 461 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 462 return true;
duke@1 463
duke@1 464 if (t.inst != null)
duke@1 465 return isSubtypeNoCapture(t.inst, s); // TODO: ", warn"?
duke@1 466
duke@1 467 t.hibounds = t.hibounds.prepend(s);
duke@1 468 return true;
duke@1 469 }
duke@1 470
duke@1 471 @Override
duke@1 472 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 473 return true;
duke@1 474 }
duke@1 475 };
duke@1 476
duke@1 477 /**
duke@1 478 * Is t a subtype of every type in given list `ts'?<br>
duke@1 479 * (not defined for Method and ForAll types)<br>
duke@1 480 * Allows unchecked conversions.
duke@1 481 */
duke@1 482 public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
duke@1 483 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 484 if (!isSubtypeUnchecked(t, l.head, warn))
duke@1 485 return false;
duke@1 486 return true;
duke@1 487 }
duke@1 488
duke@1 489 /**
duke@1 490 * Are corresponding elements of ts subtypes of ss? If lists are
duke@1 491 * of different length, return false.
duke@1 492 */
duke@1 493 public boolean isSubtypes(List<Type> ts, List<Type> ss) {
duke@1 494 while (ts.tail != null && ss.tail != null
duke@1 495 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 496 isSubtype(ts.head, ss.head)) {
duke@1 497 ts = ts.tail;
duke@1 498 ss = ss.tail;
duke@1 499 }
duke@1 500 return ts.tail == null && ss.tail == null;
duke@1 501 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 502 }
duke@1 503
duke@1 504 /**
duke@1 505 * Are corresponding elements of ts subtypes of ss, allowing
duke@1 506 * unchecked conversions? If lists are of different length,
duke@1 507 * return false.
duke@1 508 **/
duke@1 509 public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
duke@1 510 while (ts.tail != null && ss.tail != null
duke@1 511 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 512 isSubtypeUnchecked(ts.head, ss.head, warn)) {
duke@1 513 ts = ts.tail;
duke@1 514 ss = ss.tail;
duke@1 515 }
duke@1 516 return ts.tail == null && ss.tail == null;
duke@1 517 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 518 }
duke@1 519 // </editor-fold>
duke@1 520
duke@1 521 // <editor-fold defaultstate="collapsed" desc="isSuperType">
duke@1 522 /**
duke@1 523 * Is t a supertype of s?
duke@1 524 */
duke@1 525 public boolean isSuperType(Type t, Type s) {
duke@1 526 switch (t.tag) {
duke@1 527 case ERROR:
duke@1 528 return true;
duke@1 529 case UNDETVAR: {
duke@1 530 UndetVar undet = (UndetVar)t;
duke@1 531 if (t == s ||
duke@1 532 undet.qtype == s ||
duke@1 533 s.tag == ERROR ||
duke@1 534 s.tag == BOT) return true;
duke@1 535 if (undet.inst != null)
duke@1 536 return isSubtype(s, undet.inst);
duke@1 537 undet.lobounds = undet.lobounds.prepend(s);
duke@1 538 return true;
duke@1 539 }
duke@1 540 default:
duke@1 541 return isSubtype(s, t);
duke@1 542 }
duke@1 543 }
duke@1 544 // </editor-fold>
duke@1 545
duke@1 546 // <editor-fold defaultstate="collapsed" desc="isSameType">
duke@1 547 /**
duke@1 548 * Are corresponding elements of the lists the same type? If
duke@1 549 * lists are of different length, return false.
duke@1 550 */
duke@1 551 public boolean isSameTypes(List<Type> ts, List<Type> ss) {
duke@1 552 while (ts.tail != null && ss.tail != null
duke@1 553 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 554 isSameType(ts.head, ss.head)) {
duke@1 555 ts = ts.tail;
duke@1 556 ss = ss.tail;
duke@1 557 }
duke@1 558 return ts.tail == null && ss.tail == null;
duke@1 559 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 560 }
duke@1 561
duke@1 562 /**
duke@1 563 * Is t the same type as s?
duke@1 564 */
duke@1 565 public boolean isSameType(Type t, Type s) {
duke@1 566 return isSameType.visit(t, s);
duke@1 567 }
duke@1 568 // where
duke@1 569 private TypeRelation isSameType = new TypeRelation() {
duke@1 570
duke@1 571 public Boolean visitType(Type t, Type s) {
duke@1 572 if (t == s)
duke@1 573 return true;
duke@1 574
duke@1 575 if (s.tag >= firstPartialTag)
duke@1 576 return visit(s, t);
duke@1 577
duke@1 578 switch (t.tag) {
duke@1 579 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 580 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
duke@1 581 return t.tag == s.tag;
duke@1 582 case TYPEVAR:
duke@1 583 return s.isSuperBound()
duke@1 584 && !s.isExtendsBound()
duke@1 585 && visit(t, upperBound(s));
duke@1 586 default:
duke@1 587 throw new AssertionError("isSameType " + t.tag);
duke@1 588 }
duke@1 589 }
duke@1 590
duke@1 591 @Override
duke@1 592 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 593 if (s.tag >= firstPartialTag)
duke@1 594 return visit(s, t);
duke@1 595 else
duke@1 596 return false;
duke@1 597 }
duke@1 598
duke@1 599 @Override
duke@1 600 public Boolean visitClassType(ClassType t, Type s) {
duke@1 601 if (t == s)
duke@1 602 return true;
duke@1 603
duke@1 604 if (s.tag >= firstPartialTag)
duke@1 605 return visit(s, t);
duke@1 606
duke@1 607 if (s.isSuperBound() && !s.isExtendsBound())
duke@1 608 return visit(t, upperBound(s)) && visit(t, lowerBound(s));
duke@1 609
duke@1 610 if (t.isCompound() && s.isCompound()) {
duke@1 611 if (!visit(supertype(t), supertype(s)))
duke@1 612 return false;
duke@1 613
duke@1 614 HashSet<SingletonType> set = new HashSet<SingletonType>();
duke@1 615 for (Type x : interfaces(t))
duke@1 616 set.add(new SingletonType(x));
duke@1 617 for (Type x : interfaces(s)) {
duke@1 618 if (!set.remove(new SingletonType(x)))
duke@1 619 return false;
duke@1 620 }
duke@1 621 return (set.size() == 0);
duke@1 622 }
duke@1 623 return t.tsym == s.tsym
duke@1 624 && visit(t.getEnclosingType(), s.getEnclosingType())
duke@1 625 && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
duke@1 626 }
duke@1 627
duke@1 628 @Override
duke@1 629 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 630 if (t == s)
duke@1 631 return true;
duke@1 632
duke@1 633 if (s.tag >= firstPartialTag)
duke@1 634 return visit(s, t);
duke@1 635
duke@1 636 return s.tag == ARRAY
duke@1 637 && containsTypeEquivalent(t.elemtype, elemtype(s));
duke@1 638 }
duke@1 639
duke@1 640 @Override
duke@1 641 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 642 // isSameType for methods does not take thrown
duke@1 643 // exceptions into account!
duke@1 644 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
duke@1 645 }
duke@1 646
duke@1 647 @Override
duke@1 648 public Boolean visitPackageType(PackageType t, Type s) {
duke@1 649 return t == s;
duke@1 650 }
duke@1 651
duke@1 652 @Override
duke@1 653 public Boolean visitForAll(ForAll t, Type s) {
duke@1 654 if (s.tag != FORALL)
duke@1 655 return false;
duke@1 656
duke@1 657 ForAll forAll = (ForAll)s;
duke@1 658 return hasSameBounds(t, forAll)
duke@1 659 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 660 }
duke@1 661
duke@1 662 @Override
duke@1 663 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 664 if (s.tag == WILDCARD)
duke@1 665 // FIXME, this might be leftovers from before capture conversion
duke@1 666 return false;
duke@1 667
duke@1 668 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 669 return true;
duke@1 670
duke@1 671 if (t.inst != null)
duke@1 672 return visit(t.inst, s);
duke@1 673
duke@1 674 t.inst = fromUnknownFun.apply(s);
duke@1 675 for (List<Type> l = t.lobounds; l.nonEmpty(); l = l.tail) {
duke@1 676 if (!isSubtype(l.head, t.inst))
duke@1 677 return false;
duke@1 678 }
duke@1 679 for (List<Type> l = t.hibounds; l.nonEmpty(); l = l.tail) {
duke@1 680 if (!isSubtype(t.inst, l.head))
duke@1 681 return false;
duke@1 682 }
duke@1 683 return true;
duke@1 684 }
duke@1 685
duke@1 686 @Override
duke@1 687 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 688 return true;
duke@1 689 }
duke@1 690 };
duke@1 691 // </editor-fold>
duke@1 692
duke@1 693 // <editor-fold defaultstate="collapsed" desc="fromUnknownFun">
duke@1 694 /**
duke@1 695 * A mapping that turns all unknown types in this type to fresh
duke@1 696 * unknown variables.
duke@1 697 */
duke@1 698 public Mapping fromUnknownFun = new Mapping("fromUnknownFun") {
duke@1 699 public Type apply(Type t) {
duke@1 700 if (t.tag == UNKNOWN) return new UndetVar(t);
duke@1 701 else return t.map(this);
duke@1 702 }
duke@1 703 };
duke@1 704 // </editor-fold>
duke@1 705
duke@1 706 // <editor-fold defaultstate="collapsed" desc="Contains Type">
duke@1 707 public boolean containedBy(Type t, Type s) {
duke@1 708 switch (t.tag) {
duke@1 709 case UNDETVAR:
duke@1 710 if (s.tag == WILDCARD) {
duke@1 711 UndetVar undetvar = (UndetVar)t;
duke@1 712
duke@1 713 // Because of wildcard capture, s must be on the left
duke@1 714 // hand side of an assignment. Furthermore, t is an
duke@1 715 // underconstrained type variable, for example, one
duke@1 716 // that is only used in the return type of a method.
duke@1 717 // If the type variable is truly underconstrained, it
duke@1 718 // cannot have any low bounds:
duke@1 719 assert undetvar.lobounds.isEmpty() : undetvar;
duke@1 720
duke@1 721 undetvar.inst = glb(upperBound(s), undetvar.inst);
duke@1 722 return true;
duke@1 723 } else {
duke@1 724 return isSameType(t, s);
duke@1 725 }
duke@1 726 case ERROR:
duke@1 727 return true;
duke@1 728 default:
duke@1 729 return containsType(s, t);
duke@1 730 }
duke@1 731 }
duke@1 732
duke@1 733 boolean containsType(List<Type> ts, List<Type> ss) {
duke@1 734 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 735 && containsType(ts.head, ss.head)) {
duke@1 736 ts = ts.tail;
duke@1 737 ss = ss.tail;
duke@1 738 }
duke@1 739 return ts.isEmpty() && ss.isEmpty();
duke@1 740 }
duke@1 741
duke@1 742 /**
duke@1 743 * Check if t contains s.
duke@1 744 *
duke@1 745 * <p>T contains S if:
duke@1 746 *
duke@1 747 * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
duke@1 748 *
duke@1 749 * <p>This relation is only used by ClassType.isSubtype(), that
duke@1 750 * is,
duke@1 751 *
duke@1 752 * <p>{@code C<S> <: C<T> if T contains S.}
duke@1 753 *
duke@1 754 * <p>Because of F-bounds, this relation can lead to infinite
duke@1 755 * recursion. Thus we must somehow break that recursion. Notice
duke@1 756 * that containsType() is only called from ClassType.isSubtype().
duke@1 757 * Since the arguments have already been checked against their
duke@1 758 * bounds, we know:
duke@1 759 *
duke@1 760 * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
duke@1 761 *
duke@1 762 * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
duke@1 763 *
duke@1 764 * @param t a type
duke@1 765 * @param s a type
duke@1 766 */
duke@1 767 public boolean containsType(Type t, Type s) {
duke@1 768 return containsType.visit(t, s);
duke@1 769 }
duke@1 770 // where
duke@1 771 private TypeRelation containsType = new TypeRelation() {
duke@1 772
duke@1 773 private Type U(Type t) {
duke@1 774 while (t.tag == WILDCARD) {
duke@1 775 WildcardType w = (WildcardType)t;
duke@1 776 if (w.isSuperBound())
duke@1 777 return w.bound == null ? syms.objectType : w.bound.bound;
duke@1 778 else
duke@1 779 t = w.type;
duke@1 780 }
duke@1 781 return t;
duke@1 782 }
duke@1 783
duke@1 784 private Type L(Type t) {
duke@1 785 while (t.tag == WILDCARD) {
duke@1 786 WildcardType w = (WildcardType)t;
duke@1 787 if (w.isExtendsBound())
duke@1 788 return syms.botType;
duke@1 789 else
duke@1 790 t = w.type;
duke@1 791 }
duke@1 792 return t;
duke@1 793 }
duke@1 794
duke@1 795 public Boolean visitType(Type t, Type s) {
duke@1 796 if (s.tag >= firstPartialTag)
duke@1 797 return containedBy(s, t);
duke@1 798 else
duke@1 799 return isSameType(t, s);
duke@1 800 }
duke@1 801
duke@1 802 void debugContainsType(WildcardType t, Type s) {
duke@1 803 System.err.println();
duke@1 804 System.err.format(" does %s contain %s?%n", t, s);
duke@1 805 System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
duke@1 806 upperBound(s), s, t, U(t),
duke@1 807 t.isSuperBound()
duke@1 808 || isSubtypeNoCapture(upperBound(s), U(t)));
duke@1 809 System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
duke@1 810 L(t), t, s, lowerBound(s),
duke@1 811 t.isExtendsBound()
duke@1 812 || isSubtypeNoCapture(L(t), lowerBound(s)));
duke@1 813 System.err.println();
duke@1 814 }
duke@1 815
duke@1 816 @Override
duke@1 817 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 818 if (s.tag >= firstPartialTag)
duke@1 819 return containedBy(s, t);
duke@1 820 else {
duke@1 821 // debugContainsType(t, s);
duke@1 822 return isSameWildcard(t, s)
duke@1 823 || isCaptureOf(s, t)
duke@1 824 || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
duke@1 825 (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
duke@1 826 }
duke@1 827 }
duke@1 828
duke@1 829 @Override
duke@1 830 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 831 if (s.tag != WILDCARD)
duke@1 832 return isSameType(t, s);
duke@1 833 else
duke@1 834 return false;
duke@1 835 }
duke@1 836
duke@1 837 @Override
duke@1 838 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 839 return true;
duke@1 840 }
duke@1 841 };
duke@1 842
duke@1 843 public boolean isCaptureOf(Type s, WildcardType t) {
mcimadamore@79 844 if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
duke@1 845 return false;
duke@1 846 return isSameWildcard(t, ((CapturedType)s).wildcard);
duke@1 847 }
duke@1 848
duke@1 849 public boolean isSameWildcard(WildcardType t, Type s) {
duke@1 850 if (s.tag != WILDCARD)
duke@1 851 return false;
duke@1 852 WildcardType w = (WildcardType)s;
duke@1 853 return w.kind == t.kind && w.type == t.type;
duke@1 854 }
duke@1 855
duke@1 856 public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
duke@1 857 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 858 && containsTypeEquivalent(ts.head, ss.head)) {
duke@1 859 ts = ts.tail;
duke@1 860 ss = ss.tail;
duke@1 861 }
duke@1 862 return ts.isEmpty() && ss.isEmpty();
duke@1 863 }
duke@1 864 // </editor-fold>
duke@1 865
duke@1 866 // <editor-fold defaultstate="collapsed" desc="isCastable">
duke@1 867 public boolean isCastable(Type t, Type s) {
duke@1 868 return isCastable(t, s, Warner.noWarnings);
duke@1 869 }
duke@1 870
duke@1 871 /**
duke@1 872 * Is t is castable to s?<br>
duke@1 873 * s is assumed to be an erased type.<br>
duke@1 874 * (not defined for Method and ForAll types).
duke@1 875 */
duke@1 876 public boolean isCastable(Type t, Type s, Warner warn) {
duke@1 877 if (t == s)
duke@1 878 return true;
duke@1 879
duke@1 880 if (t.isPrimitive() != s.isPrimitive())
duke@1 881 return allowBoxing && isConvertible(t, s, warn);
duke@1 882
duke@1 883 if (warn != warnStack.head) {
duke@1 884 try {
duke@1 885 warnStack = warnStack.prepend(warn);
duke@1 886 return isCastable.visit(t, s);
duke@1 887 } finally {
duke@1 888 warnStack = warnStack.tail;
duke@1 889 }
duke@1 890 } else {
duke@1 891 return isCastable.visit(t, s);
duke@1 892 }
duke@1 893 }
duke@1 894 // where
duke@1 895 private TypeRelation isCastable = new TypeRelation() {
duke@1 896
duke@1 897 public Boolean visitType(Type t, Type s) {
duke@1 898 if (s.tag == ERROR)
duke@1 899 return true;
duke@1 900
duke@1 901 switch (t.tag) {
duke@1 902 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 903 case DOUBLE:
duke@1 904 return s.tag <= DOUBLE;
duke@1 905 case BOOLEAN:
duke@1 906 return s.tag == BOOLEAN;
duke@1 907 case VOID:
duke@1 908 return false;
duke@1 909 case BOT:
duke@1 910 return isSubtype(t, s);
duke@1 911 default:
duke@1 912 throw new AssertionError();
duke@1 913 }
duke@1 914 }
duke@1 915
duke@1 916 @Override
duke@1 917 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 918 return isCastable(upperBound(t), s, warnStack.head);
duke@1 919 }
duke@1 920
duke@1 921 @Override
duke@1 922 public Boolean visitClassType(ClassType t, Type s) {
duke@1 923 if (s.tag == ERROR || s.tag == BOT)
duke@1 924 return true;
duke@1 925
duke@1 926 if (s.tag == TYPEVAR) {
duke@1 927 if (isCastable(s.getUpperBound(), t, Warner.noWarnings)) {
duke@1 928 warnStack.head.warnUnchecked();
duke@1 929 return true;
duke@1 930 } else {
duke@1 931 return false;
duke@1 932 }
duke@1 933 }
duke@1 934
duke@1 935 if (t.isCompound()) {
duke@1 936 if (!visit(supertype(t), s))
duke@1 937 return false;
duke@1 938 for (Type intf : interfaces(t)) {
duke@1 939 if (!visit(intf, s))
duke@1 940 return false;
duke@1 941 }
duke@1 942 return true;
duke@1 943 }
duke@1 944
duke@1 945 if (s.isCompound()) {
duke@1 946 // call recursively to reuse the above code
duke@1 947 return visitClassType((ClassType)s, t);
duke@1 948 }
duke@1 949
duke@1 950 if (s.tag == CLASS || s.tag == ARRAY) {
duke@1 951 boolean upcast;
duke@1 952 if ((upcast = isSubtype(erasure(t), erasure(s)))
duke@1 953 || isSubtype(erasure(s), erasure(t))) {
duke@1 954 if (!upcast && s.tag == ARRAY) {
duke@1 955 if (!isReifiable(s))
duke@1 956 warnStack.head.warnUnchecked();
duke@1 957 return true;
duke@1 958 } else if (s.isRaw()) {
duke@1 959 return true;
duke@1 960 } else if (t.isRaw()) {
duke@1 961 if (!isUnbounded(s))
duke@1 962 warnStack.head.warnUnchecked();
duke@1 963 return true;
duke@1 964 }
duke@1 965 // Assume |a| <: |b|
duke@1 966 final Type a = upcast ? t : s;
duke@1 967 final Type b = upcast ? s : t;
duke@1 968 final boolean HIGH = true;
duke@1 969 final boolean LOW = false;
duke@1 970 final boolean DONT_REWRITE_TYPEVARS = false;
duke@1 971 Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 972 Type aLow = rewriteQuantifiers(a, LOW, DONT_REWRITE_TYPEVARS);
duke@1 973 Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 974 Type bLow = rewriteQuantifiers(b, LOW, DONT_REWRITE_TYPEVARS);
duke@1 975 Type lowSub = asSub(bLow, aLow.tsym);
duke@1 976 Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 977 if (highSub == null) {
duke@1 978 final boolean REWRITE_TYPEVARS = true;
duke@1 979 aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
duke@1 980 aLow = rewriteQuantifiers(a, LOW, REWRITE_TYPEVARS);
duke@1 981 bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
duke@1 982 bLow = rewriteQuantifiers(b, LOW, REWRITE_TYPEVARS);
duke@1 983 lowSub = asSub(bLow, aLow.tsym);
duke@1 984 highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 985 }
duke@1 986 if (highSub != null) {
duke@1 987 assert a.tsym == highSub.tsym && a.tsym == lowSub.tsym
duke@1 988 : a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym;
duke@1 989 if (!disjointTypes(aHigh.getTypeArguments(), highSub.getTypeArguments())
duke@1 990 && !disjointTypes(aHigh.getTypeArguments(), lowSub.getTypeArguments())
duke@1 991 && !disjointTypes(aLow.getTypeArguments(), highSub.getTypeArguments())
duke@1 992 && !disjointTypes(aLow.getTypeArguments(), lowSub.getTypeArguments())) {
duke@1 993 if (upcast ? giveWarning(a, highSub) || giveWarning(a, lowSub)
duke@1 994 : giveWarning(highSub, a) || giveWarning(lowSub, a))
duke@1 995 warnStack.head.warnUnchecked();
duke@1 996 return true;
duke@1 997 }
duke@1 998 }
duke@1 999 if (isReifiable(s))
duke@1 1000 return isSubtypeUnchecked(a, b);
duke@1 1001 else
duke@1 1002 return isSubtypeUnchecked(a, b, warnStack.head);
duke@1 1003 }
duke@1 1004
duke@1 1005 // Sidecast
duke@1 1006 if (s.tag == CLASS) {
duke@1 1007 if ((s.tsym.flags() & INTERFACE) != 0) {
duke@1 1008 return ((t.tsym.flags() & FINAL) == 0)
duke@1 1009 ? sideCast(t, s, warnStack.head)
duke@1 1010 : sideCastFinal(t, s, warnStack.head);
duke@1 1011 } else if ((t.tsym.flags() & INTERFACE) != 0) {
duke@1 1012 return ((s.tsym.flags() & FINAL) == 0)
duke@1 1013 ? sideCast(t, s, warnStack.head)
duke@1 1014 : sideCastFinal(t, s, warnStack.head);
duke@1 1015 } else {
duke@1 1016 // unrelated class types
duke@1 1017 return false;
duke@1 1018 }
duke@1 1019 }
duke@1 1020 }
duke@1 1021 return false;
duke@1 1022 }
duke@1 1023
duke@1 1024 @Override
duke@1 1025 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 1026 switch (s.tag) {
duke@1 1027 case ERROR:
duke@1 1028 case BOT:
duke@1 1029 return true;
duke@1 1030 case TYPEVAR:
duke@1 1031 if (isCastable(s, t, Warner.noWarnings)) {
duke@1 1032 warnStack.head.warnUnchecked();
duke@1 1033 return true;
duke@1 1034 } else {
duke@1 1035 return false;
duke@1 1036 }
duke@1 1037 case CLASS:
duke@1 1038 return isSubtype(t, s);
duke@1 1039 case ARRAY:
duke@1 1040 if (elemtype(t).tag <= lastBaseTag) {
duke@1 1041 return elemtype(t).tag == elemtype(s).tag;
duke@1 1042 } else {
duke@1 1043 return visit(elemtype(t), elemtype(s));
duke@1 1044 }
duke@1 1045 default:
duke@1 1046 return false;
duke@1 1047 }
duke@1 1048 }
duke@1 1049
duke@1 1050 @Override
duke@1 1051 public Boolean visitTypeVar(TypeVar t, Type s) {
duke@1 1052 switch (s.tag) {
duke@1 1053 case ERROR:
duke@1 1054 case BOT:
duke@1 1055 return true;
duke@1 1056 case TYPEVAR:
duke@1 1057 if (isSubtype(t, s)) {
duke@1 1058 return true;
duke@1 1059 } else if (isCastable(t.bound, s, Warner.noWarnings)) {
duke@1 1060 warnStack.head.warnUnchecked();
duke@1 1061 return true;
duke@1 1062 } else {
duke@1 1063 return false;
duke@1 1064 }
duke@1 1065 default:
duke@1 1066 return isCastable(t.bound, s, warnStack.head);
duke@1 1067 }
duke@1 1068 }
duke@1 1069
duke@1 1070 @Override
duke@1 1071 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1072 return true;
duke@1 1073 }
duke@1 1074 };
duke@1 1075 // </editor-fold>
duke@1 1076
duke@1 1077 // <editor-fold defaultstate="collapsed" desc="disjointTypes">
duke@1 1078 public boolean disjointTypes(List<Type> ts, List<Type> ss) {
duke@1 1079 while (ts.tail != null && ss.tail != null) {
duke@1 1080 if (disjointType(ts.head, ss.head)) return true;
duke@1 1081 ts = ts.tail;
duke@1 1082 ss = ss.tail;
duke@1 1083 }
duke@1 1084 return false;
duke@1 1085 }
duke@1 1086
duke@1 1087 /**
duke@1 1088 * Two types or wildcards are considered disjoint if it can be
duke@1 1089 * proven that no type can be contained in both. It is
duke@1 1090 * conservative in that it is allowed to say that two types are
duke@1 1091 * not disjoint, even though they actually are.
duke@1 1092 *
duke@1 1093 * The type C<X> is castable to C<Y> exactly if X and Y are not
duke@1 1094 * disjoint.
duke@1 1095 */
duke@1 1096 public boolean disjointType(Type t, Type s) {
duke@1 1097 return disjointType.visit(t, s);
duke@1 1098 }
duke@1 1099 // where
duke@1 1100 private TypeRelation disjointType = new TypeRelation() {
duke@1 1101
duke@1 1102 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 1103
duke@1 1104 public Boolean visitType(Type t, Type s) {
duke@1 1105 if (s.tag == WILDCARD)
duke@1 1106 return visit(s, t);
duke@1 1107 else
duke@1 1108 return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
duke@1 1109 }
duke@1 1110
duke@1 1111 private boolean isCastableRecursive(Type t, Type s) {
duke@1 1112 TypePair pair = new TypePair(t, s);
duke@1 1113 if (cache.add(pair)) {
duke@1 1114 try {
duke@1 1115 return Types.this.isCastable(t, s);
duke@1 1116 } finally {
duke@1 1117 cache.remove(pair);
duke@1 1118 }
duke@1 1119 } else {
duke@1 1120 return true;
duke@1 1121 }
duke@1 1122 }
duke@1 1123
duke@1 1124 private boolean notSoftSubtypeRecursive(Type t, Type s) {
duke@1 1125 TypePair pair = new TypePair(t, s);
duke@1 1126 if (cache.add(pair)) {
duke@1 1127 try {
duke@1 1128 return Types.this.notSoftSubtype(t, s);
duke@1 1129 } finally {
duke@1 1130 cache.remove(pair);
duke@1 1131 }
duke@1 1132 } else {
duke@1 1133 return false;
duke@1 1134 }
duke@1 1135 }
duke@1 1136
duke@1 1137 @Override
duke@1 1138 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 1139 if (t.isUnbound())
duke@1 1140 return false;
duke@1 1141
duke@1 1142 if (s.tag != WILDCARD) {
duke@1 1143 if (t.isExtendsBound())
duke@1 1144 return notSoftSubtypeRecursive(s, t.type);
duke@1 1145 else // isSuperBound()
duke@1 1146 return notSoftSubtypeRecursive(t.type, s);
duke@1 1147 }
duke@1 1148
duke@1 1149 if (s.isUnbound())
duke@1 1150 return false;
duke@1 1151
duke@1 1152 if (t.isExtendsBound()) {
duke@1 1153 if (s.isExtendsBound())
duke@1 1154 return !isCastableRecursive(t.type, upperBound(s));
duke@1 1155 else if (s.isSuperBound())
duke@1 1156 return notSoftSubtypeRecursive(lowerBound(s), t.type);
duke@1 1157 } else if (t.isSuperBound()) {
duke@1 1158 if (s.isExtendsBound())
duke@1 1159 return notSoftSubtypeRecursive(t.type, upperBound(s));
duke@1 1160 }
duke@1 1161 return false;
duke@1 1162 }
duke@1 1163 };
duke@1 1164 // </editor-fold>
duke@1 1165
duke@1 1166 // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
duke@1 1167 /**
duke@1 1168 * Returns the lower bounds of the formals of a method.
duke@1 1169 */
duke@1 1170 public List<Type> lowerBoundArgtypes(Type t) {
duke@1 1171 return map(t.getParameterTypes(), lowerBoundMapping);
duke@1 1172 }
duke@1 1173 private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
duke@1 1174 public Type apply(Type t) {
duke@1 1175 return lowerBound(t);
duke@1 1176 }
duke@1 1177 };
duke@1 1178 // </editor-fold>
duke@1 1179
duke@1 1180 // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
duke@1 1181 /**
duke@1 1182 * This relation answers the question: is impossible that
duke@1 1183 * something of type `t' can be a subtype of `s'? This is
duke@1 1184 * different from the question "is `t' not a subtype of `s'?"
duke@1 1185 * when type variables are involved: Integer is not a subtype of T
duke@1 1186 * where <T extends Number> but it is not true that Integer cannot
duke@1 1187 * possibly be a subtype of T.
duke@1 1188 */
duke@1 1189 public boolean notSoftSubtype(Type t, Type s) {
duke@1 1190 if (t == s) return false;
duke@1 1191 if (t.tag == TYPEVAR) {
duke@1 1192 TypeVar tv = (TypeVar) t;
duke@1 1193 if (s.tag == TYPEVAR)
duke@1 1194 s = s.getUpperBound();
duke@1 1195 return !isCastable(tv.bound,
duke@1 1196 s,
duke@1 1197 Warner.noWarnings);
duke@1 1198 }
duke@1 1199 if (s.tag != WILDCARD)
duke@1 1200 s = upperBound(s);
duke@1 1201 if (s.tag == TYPEVAR)
duke@1 1202 s = s.getUpperBound();
duke@1 1203 return !isSubtype(t, s);
duke@1 1204 }
duke@1 1205 // </editor-fold>
duke@1 1206
duke@1 1207 // <editor-fold defaultstate="collapsed" desc="isReifiable">
duke@1 1208 public boolean isReifiable(Type t) {
duke@1 1209 return isReifiable.visit(t);
duke@1 1210 }
duke@1 1211 // where
duke@1 1212 private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
duke@1 1213
duke@1 1214 public Boolean visitType(Type t, Void ignored) {
duke@1 1215 return true;
duke@1 1216 }
duke@1 1217
duke@1 1218 @Override
duke@1 1219 public Boolean visitClassType(ClassType t, Void ignored) {
duke@1 1220 if (!t.isParameterized())
duke@1 1221 return true;
duke@1 1222
duke@1 1223 for (Type param : t.allparams()) {
duke@1 1224 if (!param.isUnbound())
duke@1 1225 return false;
duke@1 1226 }
duke@1 1227 return true;
duke@1 1228 }
duke@1 1229
duke@1 1230 @Override
duke@1 1231 public Boolean visitArrayType(ArrayType t, Void ignored) {
duke@1 1232 return visit(t.elemtype);
duke@1 1233 }
duke@1 1234
duke@1 1235 @Override
duke@1 1236 public Boolean visitTypeVar(TypeVar t, Void ignored) {
duke@1 1237 return false;
duke@1 1238 }
duke@1 1239 };
duke@1 1240 // </editor-fold>
duke@1 1241
duke@1 1242 // <editor-fold defaultstate="collapsed" desc="Array Utils">
duke@1 1243 public boolean isArray(Type t) {
duke@1 1244 while (t.tag == WILDCARD)
duke@1 1245 t = upperBound(t);
duke@1 1246 return t.tag == ARRAY;
duke@1 1247 }
duke@1 1248
duke@1 1249 /**
duke@1 1250 * The element type of an array.
duke@1 1251 */
duke@1 1252 public Type elemtype(Type t) {
duke@1 1253 switch (t.tag) {
duke@1 1254 case WILDCARD:
duke@1 1255 return elemtype(upperBound(t));
duke@1 1256 case ARRAY:
duke@1 1257 return ((ArrayType)t).elemtype;
duke@1 1258 case FORALL:
duke@1 1259 return elemtype(((ForAll)t).qtype);
duke@1 1260 case ERROR:
duke@1 1261 return t;
duke@1 1262 default:
duke@1 1263 return null;
duke@1 1264 }
duke@1 1265 }
duke@1 1266
duke@1 1267 /**
duke@1 1268 * Mapping to take element type of an arraytype
duke@1 1269 */
duke@1 1270 private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
duke@1 1271 public Type apply(Type t) { return elemtype(t); }
duke@1 1272 };
duke@1 1273
duke@1 1274 /**
duke@1 1275 * The number of dimensions of an array type.
duke@1 1276 */
duke@1 1277 public int dimensions(Type t) {
duke@1 1278 int result = 0;
duke@1 1279 while (t.tag == ARRAY) {
duke@1 1280 result++;
duke@1 1281 t = elemtype(t);
duke@1 1282 }
duke@1 1283 return result;
duke@1 1284 }
duke@1 1285 // </editor-fold>
duke@1 1286
duke@1 1287 // <editor-fold defaultstate="collapsed" desc="asSuper">
duke@1 1288 /**
duke@1 1289 * Return the (most specific) base type of t that starts with the
duke@1 1290 * given symbol. If none exists, return null.
duke@1 1291 *
duke@1 1292 * @param t a type
duke@1 1293 * @param sym a symbol
duke@1 1294 */
duke@1 1295 public Type asSuper(Type t, Symbol sym) {
duke@1 1296 return asSuper.visit(t, sym);
duke@1 1297 }
duke@1 1298 // where
duke@1 1299 private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
duke@1 1300
duke@1 1301 public Type visitType(Type t, Symbol sym) {
duke@1 1302 return null;
duke@1 1303 }
duke@1 1304
duke@1 1305 @Override
duke@1 1306 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1307 if (t.tsym == sym)
duke@1 1308 return t;
duke@1 1309
duke@1 1310 Type st = supertype(t);
mcimadamore@19 1311 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
duke@1 1312 Type x = asSuper(st, sym);
duke@1 1313 if (x != null)
duke@1 1314 return x;
duke@1 1315 }
duke@1 1316 if ((sym.flags() & INTERFACE) != 0) {
duke@1 1317 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 1318 Type x = asSuper(l.head, sym);
duke@1 1319 if (x != null)
duke@1 1320 return x;
duke@1 1321 }
duke@1 1322 }
duke@1 1323 return null;
duke@1 1324 }
duke@1 1325
duke@1 1326 @Override
duke@1 1327 public Type visitArrayType(ArrayType t, Symbol sym) {
duke@1 1328 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1329 }
duke@1 1330
duke@1 1331 @Override
duke@1 1332 public Type visitTypeVar(TypeVar t, Symbol sym) {
mcimadamore@19 1333 if (t.tsym == sym)
mcimadamore@19 1334 return t;
mcimadamore@19 1335 else
mcimadamore@19 1336 return asSuper(t.bound, sym);
duke@1 1337 }
duke@1 1338
duke@1 1339 @Override
duke@1 1340 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1341 return t;
duke@1 1342 }
duke@1 1343 };
duke@1 1344
duke@1 1345 /**
duke@1 1346 * Return the base type of t or any of its outer types that starts
duke@1 1347 * with the given symbol. If none exists, return null.
duke@1 1348 *
duke@1 1349 * @param t a type
duke@1 1350 * @param sym a symbol
duke@1 1351 */
duke@1 1352 public Type asOuterSuper(Type t, Symbol sym) {
duke@1 1353 switch (t.tag) {
duke@1 1354 case CLASS:
duke@1 1355 do {
duke@1 1356 Type s = asSuper(t, sym);
duke@1 1357 if (s != null) return s;
duke@1 1358 t = t.getEnclosingType();
duke@1 1359 } while (t.tag == CLASS);
duke@1 1360 return null;
duke@1 1361 case ARRAY:
duke@1 1362 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1363 case TYPEVAR:
duke@1 1364 return asSuper(t, sym);
duke@1 1365 case ERROR:
duke@1 1366 return t;
duke@1 1367 default:
duke@1 1368 return null;
duke@1 1369 }
duke@1 1370 }
duke@1 1371
duke@1 1372 /**
duke@1 1373 * Return the base type of t or any of its enclosing types that
duke@1 1374 * starts with the given symbol. If none exists, return null.
duke@1 1375 *
duke@1 1376 * @param t a type
duke@1 1377 * @param sym a symbol
duke@1 1378 */
duke@1 1379 public Type asEnclosingSuper(Type t, Symbol sym) {
duke@1 1380 switch (t.tag) {
duke@1 1381 case CLASS:
duke@1 1382 do {
duke@1 1383 Type s = asSuper(t, sym);
duke@1 1384 if (s != null) return s;
duke@1 1385 Type outer = t.getEnclosingType();
duke@1 1386 t = (outer.tag == CLASS) ? outer :
duke@1 1387 (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
duke@1 1388 Type.noType;
duke@1 1389 } while (t.tag == CLASS);
duke@1 1390 return null;
duke@1 1391 case ARRAY:
duke@1 1392 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1393 case TYPEVAR:
duke@1 1394 return asSuper(t, sym);
duke@1 1395 case ERROR:
duke@1 1396 return t;
duke@1 1397 default:
duke@1 1398 return null;
duke@1 1399 }
duke@1 1400 }
duke@1 1401 // </editor-fold>
duke@1 1402
duke@1 1403 // <editor-fold defaultstate="collapsed" desc="memberType">
duke@1 1404 /**
duke@1 1405 * The type of given symbol, seen as a member of t.
duke@1 1406 *
duke@1 1407 * @param t a type
duke@1 1408 * @param sym a symbol
duke@1 1409 */
duke@1 1410 public Type memberType(Type t, Symbol sym) {
duke@1 1411 return (sym.flags() & STATIC) != 0
duke@1 1412 ? sym.type
duke@1 1413 : memberType.visit(t, sym);
duke@1 1414 }
duke@1 1415 // where
duke@1 1416 private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
duke@1 1417
duke@1 1418 public Type visitType(Type t, Symbol sym) {
duke@1 1419 return sym.type;
duke@1 1420 }
duke@1 1421
duke@1 1422 @Override
duke@1 1423 public Type visitWildcardType(WildcardType t, Symbol sym) {
duke@1 1424 return memberType(upperBound(t), sym);
duke@1 1425 }
duke@1 1426
duke@1 1427 @Override
duke@1 1428 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1429 Symbol owner = sym.owner;
duke@1 1430 long flags = sym.flags();
duke@1 1431 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
duke@1 1432 Type base = asOuterSuper(t, owner);
mcimadamore@134 1433 //if t is an intersection type T = CT & I1 & I2 ... & In
mcimadamore@134 1434 //its supertypes CT, I1, ... In might contain wildcards
mcimadamore@134 1435 //so we need to go through capture conversion
mcimadamore@134 1436 base = t.isCompound() ? capture(base) : base;
duke@1 1437 if (base != null) {
duke@1 1438 List<Type> ownerParams = owner.type.allparams();
duke@1 1439 List<Type> baseParams = base.allparams();
duke@1 1440 if (ownerParams.nonEmpty()) {
duke@1 1441 if (baseParams.isEmpty()) {
duke@1 1442 // then base is a raw type
duke@1 1443 return erasure(sym.type);
duke@1 1444 } else {
duke@1 1445 return subst(sym.type, ownerParams, baseParams);
duke@1 1446 }
duke@1 1447 }
duke@1 1448 }
duke@1 1449 }
duke@1 1450 return sym.type;
duke@1 1451 }
duke@1 1452
duke@1 1453 @Override
duke@1 1454 public Type visitTypeVar(TypeVar t, Symbol sym) {
duke@1 1455 return memberType(t.bound, sym);
duke@1 1456 }
duke@1 1457
duke@1 1458 @Override
duke@1 1459 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1460 return t;
duke@1 1461 }
duke@1 1462 };
duke@1 1463 // </editor-fold>
duke@1 1464
duke@1 1465 // <editor-fold defaultstate="collapsed" desc="isAssignable">
duke@1 1466 public boolean isAssignable(Type t, Type s) {
duke@1 1467 return isAssignable(t, s, Warner.noWarnings);
duke@1 1468 }
duke@1 1469
duke@1 1470 /**
duke@1 1471 * Is t assignable to s?<br>
duke@1 1472 * Equivalent to subtype except for constant values and raw
duke@1 1473 * types.<br>
duke@1 1474 * (not defined for Method and ForAll types)
duke@1 1475 */
duke@1 1476 public boolean isAssignable(Type t, Type s, Warner warn) {
duke@1 1477 if (t.tag == ERROR)
duke@1 1478 return true;
duke@1 1479 if (t.tag <= INT && t.constValue() != null) {
duke@1 1480 int value = ((Number)t.constValue()).intValue();
duke@1 1481 switch (s.tag) {
duke@1 1482 case BYTE:
duke@1 1483 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
duke@1 1484 return true;
duke@1 1485 break;
duke@1 1486 case CHAR:
duke@1 1487 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
duke@1 1488 return true;
duke@1 1489 break;
duke@1 1490 case SHORT:
duke@1 1491 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
duke@1 1492 return true;
duke@1 1493 break;
duke@1 1494 case INT:
duke@1 1495 return true;
duke@1 1496 case CLASS:
duke@1 1497 switch (unboxedType(s).tag) {
duke@1 1498 case BYTE:
duke@1 1499 case CHAR:
duke@1 1500 case SHORT:
duke@1 1501 return isAssignable(t, unboxedType(s), warn);
duke@1 1502 }
duke@1 1503 break;
duke@1 1504 }
duke@1 1505 }
duke@1 1506 return isConvertible(t, s, warn);
duke@1 1507 }
duke@1 1508 // </editor-fold>
duke@1 1509
duke@1 1510 // <editor-fold defaultstate="collapsed" desc="erasure">
duke@1 1511 /**
duke@1 1512 * The erasure of t {@code |t|} -- the type that results when all
duke@1 1513 * type parameters in t are deleted.
duke@1 1514 */
duke@1 1515 public Type erasure(Type t) {
mcimadamore@30 1516 return erasure(t, false);
mcimadamore@30 1517 }
mcimadamore@30 1518 //where
mcimadamore@30 1519 private Type erasure(Type t, boolean recurse) {
duke@1 1520 if (t.tag <= lastBaseTag)
duke@1 1521 return t; /* fast special case */
duke@1 1522 else
mcimadamore@30 1523 return erasure.visit(t, recurse);
duke@1 1524 }
duke@1 1525 // where
mcimadamore@30 1526 private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
mcimadamore@30 1527 public Type visitType(Type t, Boolean recurse) {
duke@1 1528 if (t.tag <= lastBaseTag)
duke@1 1529 return t; /*fast special case*/
duke@1 1530 else
mcimadamore@30 1531 return t.map(recurse ? erasureRecFun : erasureFun);
duke@1 1532 }
duke@1 1533
duke@1 1534 @Override
mcimadamore@30 1535 public Type visitWildcardType(WildcardType t, Boolean recurse) {
mcimadamore@30 1536 return erasure(upperBound(t), recurse);
duke@1 1537 }
duke@1 1538
duke@1 1539 @Override
mcimadamore@30 1540 public Type visitClassType(ClassType t, Boolean recurse) {
mcimadamore@30 1541 Type erased = t.tsym.erasure(Types.this);
mcimadamore@30 1542 if (recurse) {
mcimadamore@30 1543 erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
mcimadamore@30 1544 }
mcimadamore@30 1545 return erased;
duke@1 1546 }
duke@1 1547
duke@1 1548 @Override
mcimadamore@30 1549 public Type visitTypeVar(TypeVar t, Boolean recurse) {
mcimadamore@30 1550 return erasure(t.bound, recurse);
duke@1 1551 }
duke@1 1552
duke@1 1553 @Override
mcimadamore@30 1554 public Type visitErrorType(ErrorType t, Boolean recurse) {
duke@1 1555 return t;
duke@1 1556 }
duke@1 1557 };
mcimadamore@30 1558
duke@1 1559 private Mapping erasureFun = new Mapping ("erasure") {
duke@1 1560 public Type apply(Type t) { return erasure(t); }
duke@1 1561 };
duke@1 1562
mcimadamore@30 1563 private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
mcimadamore@30 1564 public Type apply(Type t) { return erasureRecursive(t); }
mcimadamore@30 1565 };
mcimadamore@30 1566
duke@1 1567 public List<Type> erasure(List<Type> ts) {
duke@1 1568 return Type.map(ts, erasureFun);
duke@1 1569 }
mcimadamore@30 1570
mcimadamore@30 1571 public Type erasureRecursive(Type t) {
mcimadamore@30 1572 return erasure(t, true);
mcimadamore@30 1573 }
mcimadamore@30 1574
mcimadamore@30 1575 public List<Type> erasureRecursive(List<Type> ts) {
mcimadamore@30 1576 return Type.map(ts, erasureRecFun);
mcimadamore@30 1577 }
duke@1 1578 // </editor-fold>
duke@1 1579
duke@1 1580 // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
duke@1 1581 /**
duke@1 1582 * Make a compound type from non-empty list of types
duke@1 1583 *
duke@1 1584 * @param bounds the types from which the compound type is formed
duke@1 1585 * @param supertype is objectType if all bounds are interfaces,
duke@1 1586 * null otherwise.
duke@1 1587 */
duke@1 1588 public Type makeCompoundType(List<Type> bounds,
duke@1 1589 Type supertype) {
duke@1 1590 ClassSymbol bc =
duke@1 1591 new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
duke@1 1592 Type.moreInfo
duke@1 1593 ? names.fromString(bounds.toString())
duke@1 1594 : names.empty,
duke@1 1595 syms.noSymbol);
duke@1 1596 if (bounds.head.tag == TYPEVAR)
duke@1 1597 // error condition, recover
mcimadamore@121 1598 bc.erasure_field = syms.objectType;
mcimadamore@121 1599 else
mcimadamore@121 1600 bc.erasure_field = erasure(bounds.head);
mcimadamore@121 1601 bc.members_field = new Scope(bc);
duke@1 1602 ClassType bt = (ClassType)bc.type;
duke@1 1603 bt.allparams_field = List.nil();
duke@1 1604 if (supertype != null) {
duke@1 1605 bt.supertype_field = supertype;
duke@1 1606 bt.interfaces_field = bounds;
duke@1 1607 } else {
duke@1 1608 bt.supertype_field = bounds.head;
duke@1 1609 bt.interfaces_field = bounds.tail;
duke@1 1610 }
duke@1 1611 assert bt.supertype_field.tsym.completer != null
duke@1 1612 || !bt.supertype_field.isInterface()
duke@1 1613 : bt.supertype_field;
duke@1 1614 return bt;
duke@1 1615 }
duke@1 1616
duke@1 1617 /**
duke@1 1618 * Same as {@link #makeCompoundType(List,Type)}, except that the
duke@1 1619 * second parameter is computed directly. Note that this might
duke@1 1620 * cause a symbol completion. Hence, this version of
duke@1 1621 * makeCompoundType may not be called during a classfile read.
duke@1 1622 */
duke@1 1623 public Type makeCompoundType(List<Type> bounds) {
duke@1 1624 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
duke@1 1625 supertype(bounds.head) : null;
duke@1 1626 return makeCompoundType(bounds, supertype);
duke@1 1627 }
duke@1 1628
duke@1 1629 /**
duke@1 1630 * A convenience wrapper for {@link #makeCompoundType(List)}; the
duke@1 1631 * arguments are converted to a list and passed to the other
duke@1 1632 * method. Note that this might cause a symbol completion.
duke@1 1633 * Hence, this version of makeCompoundType may not be called
duke@1 1634 * during a classfile read.
duke@1 1635 */
duke@1 1636 public Type makeCompoundType(Type bound1, Type bound2) {
duke@1 1637 return makeCompoundType(List.of(bound1, bound2));
duke@1 1638 }
duke@1 1639 // </editor-fold>
duke@1 1640
duke@1 1641 // <editor-fold defaultstate="collapsed" desc="supertype">
duke@1 1642 public Type supertype(Type t) {
duke@1 1643 return supertype.visit(t);
duke@1 1644 }
duke@1 1645 // where
duke@1 1646 private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
duke@1 1647
duke@1 1648 public Type visitType(Type t, Void ignored) {
duke@1 1649 // A note on wildcards: there is no good way to
duke@1 1650 // determine a supertype for a super bounded wildcard.
duke@1 1651 return null;
duke@1 1652 }
duke@1 1653
duke@1 1654 @Override
duke@1 1655 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1656 if (t.supertype_field == null) {
duke@1 1657 Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
duke@1 1658 // An interface has no superclass; its supertype is Object.
duke@1 1659 if (t.isInterface())
duke@1 1660 supertype = ((ClassType)t.tsym.type).supertype_field;
duke@1 1661 if (t.supertype_field == null) {
duke@1 1662 List<Type> actuals = classBound(t).allparams();
duke@1 1663 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1664 if (t.hasErasedSupertypes()) {
mcimadamore@30 1665 t.supertype_field = erasureRecursive(supertype);
mcimadamore@30 1666 } else if (formals.nonEmpty()) {
duke@1 1667 t.supertype_field = subst(supertype, formals, actuals);
duke@1 1668 }
mcimadamore@30 1669 else {
mcimadamore@30 1670 t.supertype_field = supertype;
mcimadamore@30 1671 }
duke@1 1672 }
duke@1 1673 }
duke@1 1674 return t.supertype_field;
duke@1 1675 }
duke@1 1676
duke@1 1677 /**
duke@1 1678 * The supertype is always a class type. If the type
duke@1 1679 * variable's bounds start with a class type, this is also
duke@1 1680 * the supertype. Otherwise, the supertype is
duke@1 1681 * java.lang.Object.
duke@1 1682 */
duke@1 1683 @Override
duke@1 1684 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1685 if (t.bound.tag == TYPEVAR ||
duke@1 1686 (!t.bound.isCompound() && !t.bound.isInterface())) {
duke@1 1687 return t.bound;
duke@1 1688 } else {
duke@1 1689 return supertype(t.bound);
duke@1 1690 }
duke@1 1691 }
duke@1 1692
duke@1 1693 @Override
duke@1 1694 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 1695 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
duke@1 1696 return arraySuperType();
duke@1 1697 else
duke@1 1698 return new ArrayType(supertype(t.elemtype), t.tsym);
duke@1 1699 }
duke@1 1700
duke@1 1701 @Override
duke@1 1702 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1703 return t;
duke@1 1704 }
duke@1 1705 };
duke@1 1706 // </editor-fold>
duke@1 1707
duke@1 1708 // <editor-fold defaultstate="collapsed" desc="interfaces">
duke@1 1709 /**
duke@1 1710 * Return the interfaces implemented by this class.
duke@1 1711 */
duke@1 1712 public List<Type> interfaces(Type t) {
duke@1 1713 return interfaces.visit(t);
duke@1 1714 }
duke@1 1715 // where
duke@1 1716 private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
duke@1 1717
duke@1 1718 public List<Type> visitType(Type t, Void ignored) {
duke@1 1719 return List.nil();
duke@1 1720 }
duke@1 1721
duke@1 1722 @Override
duke@1 1723 public List<Type> visitClassType(ClassType t, Void ignored) {
duke@1 1724 if (t.interfaces_field == null) {
duke@1 1725 List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
duke@1 1726 if (t.interfaces_field == null) {
duke@1 1727 // If t.interfaces_field is null, then t must
duke@1 1728 // be a parameterized type (not to be confused
duke@1 1729 // with a generic type declaration).
duke@1 1730 // Terminology:
duke@1 1731 // Parameterized type: List<String>
duke@1 1732 // Generic type declaration: class List<E> { ... }
duke@1 1733 // So t corresponds to List<String> and
duke@1 1734 // t.tsym.type corresponds to List<E>.
duke@1 1735 // The reason t must be parameterized type is
duke@1 1736 // that completion will happen as a side
duke@1 1737 // effect of calling
duke@1 1738 // ClassSymbol.getInterfaces. Since
duke@1 1739 // t.interfaces_field is null after
duke@1 1740 // completion, we can assume that t is not the
duke@1 1741 // type of a class/interface declaration.
duke@1 1742 assert t != t.tsym.type : t.toString();
duke@1 1743 List<Type> actuals = t.allparams();
duke@1 1744 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1745 if (t.hasErasedSupertypes()) {
mcimadamore@30 1746 t.interfaces_field = erasureRecursive(interfaces);
mcimadamore@30 1747 } else if (formals.nonEmpty()) {
duke@1 1748 t.interfaces_field =
duke@1 1749 upperBounds(subst(interfaces, formals, actuals));
duke@1 1750 }
mcimadamore@30 1751 else {
mcimadamore@30 1752 t.interfaces_field = interfaces;
mcimadamore@30 1753 }
duke@1 1754 }
duke@1 1755 }
duke@1 1756 return t.interfaces_field;
duke@1 1757 }
duke@1 1758
duke@1 1759 @Override
duke@1 1760 public List<Type> visitTypeVar(TypeVar t, Void ignored) {
duke@1 1761 if (t.bound.isCompound())
duke@1 1762 return interfaces(t.bound);
duke@1 1763
duke@1 1764 if (t.bound.isInterface())
duke@1 1765 return List.of(t.bound);
duke@1 1766
duke@1 1767 return List.nil();
duke@1 1768 }
duke@1 1769 };
duke@1 1770 // </editor-fold>
duke@1 1771
duke@1 1772 // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
duke@1 1773 Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
duke@1 1774
duke@1 1775 public boolean isDerivedRaw(Type t) {
duke@1 1776 Boolean result = isDerivedRawCache.get(t);
duke@1 1777 if (result == null) {
duke@1 1778 result = isDerivedRawInternal(t);
duke@1 1779 isDerivedRawCache.put(t, result);
duke@1 1780 }
duke@1 1781 return result;
duke@1 1782 }
duke@1 1783
duke@1 1784 public boolean isDerivedRawInternal(Type t) {
duke@1 1785 if (t.isErroneous())
duke@1 1786 return false;
duke@1 1787 return
duke@1 1788 t.isRaw() ||
duke@1 1789 supertype(t) != null && isDerivedRaw(supertype(t)) ||
duke@1 1790 isDerivedRaw(interfaces(t));
duke@1 1791 }
duke@1 1792
duke@1 1793 public boolean isDerivedRaw(List<Type> ts) {
duke@1 1794 List<Type> l = ts;
duke@1 1795 while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
duke@1 1796 return l.nonEmpty();
duke@1 1797 }
duke@1 1798 // </editor-fold>
duke@1 1799
duke@1 1800 // <editor-fold defaultstate="collapsed" desc="setBounds">
duke@1 1801 /**
duke@1 1802 * Set the bounds field of the given type variable to reflect a
duke@1 1803 * (possibly multiple) list of bounds.
duke@1 1804 * @param t a type variable
duke@1 1805 * @param bounds the bounds, must be nonempty
duke@1 1806 * @param supertype is objectType if all bounds are interfaces,
duke@1 1807 * null otherwise.
duke@1 1808 */
duke@1 1809 public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
duke@1 1810 if (bounds.tail.isEmpty())
duke@1 1811 t.bound = bounds.head;
duke@1 1812 else
duke@1 1813 t.bound = makeCompoundType(bounds, supertype);
duke@1 1814 t.rank_field = -1;
duke@1 1815 }
duke@1 1816
duke@1 1817 /**
duke@1 1818 * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
duke@1 1819 * third parameter is computed directly. Note that this test
duke@1 1820 * might cause a symbol completion. Hence, this version of
duke@1 1821 * setBounds may not be called during a classfile read.
duke@1 1822 */
duke@1 1823 public void setBounds(TypeVar t, List<Type> bounds) {
duke@1 1824 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
duke@1 1825 supertype(bounds.head) : null;
duke@1 1826 setBounds(t, bounds, supertype);
duke@1 1827 t.rank_field = -1;
duke@1 1828 }
duke@1 1829 // </editor-fold>
duke@1 1830
duke@1 1831 // <editor-fold defaultstate="collapsed" desc="getBounds">
duke@1 1832 /**
duke@1 1833 * Return list of bounds of the given type variable.
duke@1 1834 */
duke@1 1835 public List<Type> getBounds(TypeVar t) {
duke@1 1836 if (t.bound.isErroneous() || !t.bound.isCompound())
duke@1 1837 return List.of(t.bound);
duke@1 1838 else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
duke@1 1839 return interfaces(t).prepend(supertype(t));
duke@1 1840 else
duke@1 1841 // No superclass was given in bounds.
duke@1 1842 // In this case, supertype is Object, erasure is first interface.
duke@1 1843 return interfaces(t);
duke@1 1844 }
duke@1 1845 // </editor-fold>
duke@1 1846
duke@1 1847 // <editor-fold defaultstate="collapsed" desc="classBound">
duke@1 1848 /**
duke@1 1849 * If the given type is a (possibly selected) type variable,
duke@1 1850 * return the bounding class of this type, otherwise return the
duke@1 1851 * type itself.
duke@1 1852 */
duke@1 1853 public Type classBound(Type t) {
duke@1 1854 return classBound.visit(t);
duke@1 1855 }
duke@1 1856 // where
duke@1 1857 private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
duke@1 1858
duke@1 1859 public Type visitType(Type t, Void ignored) {
duke@1 1860 return t;
duke@1 1861 }
duke@1 1862
duke@1 1863 @Override
duke@1 1864 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1865 Type outer1 = classBound(t.getEnclosingType());
duke@1 1866 if (outer1 != t.getEnclosingType())
duke@1 1867 return new ClassType(outer1, t.getTypeArguments(), t.tsym);
duke@1 1868 else
duke@1 1869 return t;
duke@1 1870 }
duke@1 1871
duke@1 1872 @Override
duke@1 1873 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1874 return classBound(supertype(t));
duke@1 1875 }
duke@1 1876
duke@1 1877 @Override
duke@1 1878 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1879 return t;
duke@1 1880 }
duke@1 1881 };
duke@1 1882 // </editor-fold>
duke@1 1883
duke@1 1884 // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
duke@1 1885 /**
duke@1 1886 * Returns true iff the first signature is a <em>sub
duke@1 1887 * signature</em> of the other. This is <b>not</b> an equivalence
duke@1 1888 * relation.
duke@1 1889 *
duke@1 1890 * @see "The Java Language Specification, Third Ed. (8.4.2)."
duke@1 1891 * @see #overrideEquivalent(Type t, Type s)
duke@1 1892 * @param t first signature (possibly raw).
duke@1 1893 * @param s second signature (could be subjected to erasure).
duke@1 1894 * @return true if t is a sub signature of s.
duke@1 1895 */
duke@1 1896 public boolean isSubSignature(Type t, Type s) {
duke@1 1897 return hasSameArgs(t, s) || hasSameArgs(t, erasure(s));
duke@1 1898 }
duke@1 1899
duke@1 1900 /**
duke@1 1901 * Returns true iff these signatures are related by <em>override
duke@1 1902 * equivalence</em>. This is the natural extension of
duke@1 1903 * isSubSignature to an equivalence relation.
duke@1 1904 *
duke@1 1905 * @see "The Java Language Specification, Third Ed. (8.4.2)."
duke@1 1906 * @see #isSubSignature(Type t, Type s)
duke@1 1907 * @param t a signature (possible raw, could be subjected to
duke@1 1908 * erasure).
duke@1 1909 * @param s a signature (possible raw, could be subjected to
duke@1 1910 * erasure).
duke@1 1911 * @return true if either argument is a sub signature of the other.
duke@1 1912 */
duke@1 1913 public boolean overrideEquivalent(Type t, Type s) {
duke@1 1914 return hasSameArgs(t, s) ||
duke@1 1915 hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
duke@1 1916 }
duke@1 1917
duke@1 1918 /**
duke@1 1919 * Does t have the same arguments as s? It is assumed that both
duke@1 1920 * types are (possibly polymorphic) method types. Monomorphic
duke@1 1921 * method types "have the same arguments", if their argument lists
duke@1 1922 * are equal. Polymorphic method types "have the same arguments",
duke@1 1923 * if they have the same arguments after renaming all type
duke@1 1924 * variables of one to corresponding type variables in the other,
duke@1 1925 * where correspondence is by position in the type parameter list.
duke@1 1926 */
duke@1 1927 public boolean hasSameArgs(Type t, Type s) {
duke@1 1928 return hasSameArgs.visit(t, s);
duke@1 1929 }
duke@1 1930 // where
duke@1 1931 private TypeRelation hasSameArgs = new TypeRelation() {
duke@1 1932
duke@1 1933 public Boolean visitType(Type t, Type s) {
duke@1 1934 throw new AssertionError();
duke@1 1935 }
duke@1 1936
duke@1 1937 @Override
duke@1 1938 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 1939 return s.tag == METHOD
duke@1 1940 && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
duke@1 1941 }
duke@1 1942
duke@1 1943 @Override
duke@1 1944 public Boolean visitForAll(ForAll t, Type s) {
duke@1 1945 if (s.tag != FORALL)
duke@1 1946 return false;
duke@1 1947
duke@1 1948 ForAll forAll = (ForAll)s;
duke@1 1949 return hasSameBounds(t, forAll)
duke@1 1950 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 1951 }
duke@1 1952
duke@1 1953 @Override
duke@1 1954 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1955 return false;
duke@1 1956 }
duke@1 1957 };
duke@1 1958 // </editor-fold>
duke@1 1959
duke@1 1960 // <editor-fold defaultstate="collapsed" desc="subst">
duke@1 1961 public List<Type> subst(List<Type> ts,
duke@1 1962 List<Type> from,
duke@1 1963 List<Type> to) {
duke@1 1964 return new Subst(from, to).subst(ts);
duke@1 1965 }
duke@1 1966
duke@1 1967 /**
duke@1 1968 * Substitute all occurrences of a type in `from' with the
duke@1 1969 * corresponding type in `to' in 't'. Match lists `from' and `to'
duke@1 1970 * from the right: If lists have different length, discard leading
duke@1 1971 * elements of the longer list.
duke@1 1972 */
duke@1 1973 public Type subst(Type t, List<Type> from, List<Type> to) {
duke@1 1974 return new Subst(from, to).subst(t);
duke@1 1975 }
duke@1 1976
duke@1 1977 private class Subst extends UnaryVisitor<Type> {
duke@1 1978 List<Type> from;
duke@1 1979 List<Type> to;
duke@1 1980
duke@1 1981 public Subst(List<Type> from, List<Type> to) {
duke@1 1982 int fromLength = from.length();
duke@1 1983 int toLength = to.length();
duke@1 1984 while (fromLength > toLength) {
duke@1 1985 fromLength--;
duke@1 1986 from = from.tail;
duke@1 1987 }
duke@1 1988 while (fromLength < toLength) {
duke@1 1989 toLength--;
duke@1 1990 to = to.tail;
duke@1 1991 }
duke@1 1992 this.from = from;
duke@1 1993 this.to = to;
duke@1 1994 }
duke@1 1995
duke@1 1996 Type subst(Type t) {
duke@1 1997 if (from.tail == null)
duke@1 1998 return t;
duke@1 1999 else
duke@1 2000 return visit(t);
duke@1 2001 }
duke@1 2002
duke@1 2003 List<Type> subst(List<Type> ts) {
duke@1 2004 if (from.tail == null)
duke@1 2005 return ts;
duke@1 2006 boolean wild = false;
duke@1 2007 if (ts.nonEmpty() && from.nonEmpty()) {
duke@1 2008 Type head1 = subst(ts.head);
duke@1 2009 List<Type> tail1 = subst(ts.tail);
duke@1 2010 if (head1 != ts.head || tail1 != ts.tail)
duke@1 2011 return tail1.prepend(head1);
duke@1 2012 }
duke@1 2013 return ts;
duke@1 2014 }
duke@1 2015
duke@1 2016 public Type visitType(Type t, Void ignored) {
duke@1 2017 return t;
duke@1 2018 }
duke@1 2019
duke@1 2020 @Override
duke@1 2021 public Type visitMethodType(MethodType t, Void ignored) {
duke@1 2022 List<Type> argtypes = subst(t.argtypes);
duke@1 2023 Type restype = subst(t.restype);
duke@1 2024 List<Type> thrown = subst(t.thrown);
duke@1 2025 if (argtypes == t.argtypes &&
duke@1 2026 restype == t.restype &&
duke@1 2027 thrown == t.thrown)
duke@1 2028 return t;
duke@1 2029 else
duke@1 2030 return new MethodType(argtypes, restype, thrown, t.tsym);
duke@1 2031 }
duke@1 2032
duke@1 2033 @Override
duke@1 2034 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2035 for (List<Type> from = this.from, to = this.to;
duke@1 2036 from.nonEmpty();
duke@1 2037 from = from.tail, to = to.tail) {
duke@1 2038 if (t == from.head) {
duke@1 2039 return to.head.withTypeVar(t);
duke@1 2040 }
duke@1 2041 }
duke@1 2042 return t;
duke@1 2043 }
duke@1 2044
duke@1 2045 @Override
duke@1 2046 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2047 if (!t.isCompound()) {
duke@1 2048 List<Type> typarams = t.getTypeArguments();
duke@1 2049 List<Type> typarams1 = subst(typarams);
duke@1 2050 Type outer = t.getEnclosingType();
duke@1 2051 Type outer1 = subst(outer);
duke@1 2052 if (typarams1 == typarams && outer1 == outer)
duke@1 2053 return t;
duke@1 2054 else
duke@1 2055 return new ClassType(outer1, typarams1, t.tsym);
duke@1 2056 } else {
duke@1 2057 Type st = subst(supertype(t));
duke@1 2058 List<Type> is = upperBounds(subst(interfaces(t)));
duke@1 2059 if (st == supertype(t) && is == interfaces(t))
duke@1 2060 return t;
duke@1 2061 else
duke@1 2062 return makeCompoundType(is.prepend(st));
duke@1 2063 }
duke@1 2064 }
duke@1 2065
duke@1 2066 @Override
duke@1 2067 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 2068 Type bound = t.type;
duke@1 2069 if (t.kind != BoundKind.UNBOUND)
duke@1 2070 bound = subst(bound);
duke@1 2071 if (bound == t.type) {
duke@1 2072 return t;
duke@1 2073 } else {
duke@1 2074 if (t.isExtendsBound() && bound.isExtendsBound())
duke@1 2075 bound = upperBound(bound);
duke@1 2076 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
duke@1 2077 }
duke@1 2078 }
duke@1 2079
duke@1 2080 @Override
duke@1 2081 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 2082 Type elemtype = subst(t.elemtype);
duke@1 2083 if (elemtype == t.elemtype)
duke@1 2084 return t;
duke@1 2085 else
duke@1 2086 return new ArrayType(upperBound(elemtype), t.tsym);
duke@1 2087 }
duke@1 2088
duke@1 2089 @Override
duke@1 2090 public Type visitForAll(ForAll t, Void ignored) {
duke@1 2091 List<Type> tvars1 = substBounds(t.tvars, from, to);
duke@1 2092 Type qtype1 = subst(t.qtype);
duke@1 2093 if (tvars1 == t.tvars && qtype1 == t.qtype) {
duke@1 2094 return t;
duke@1 2095 } else if (tvars1 == t.tvars) {
duke@1 2096 return new ForAll(tvars1, qtype1);
duke@1 2097 } else {
duke@1 2098 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
duke@1 2099 }
duke@1 2100 }
duke@1 2101
duke@1 2102 @Override
duke@1 2103 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2104 return t;
duke@1 2105 }
duke@1 2106 }
duke@1 2107
duke@1 2108 public List<Type> substBounds(List<Type> tvars,
duke@1 2109 List<Type> from,
duke@1 2110 List<Type> to) {
duke@1 2111 if (tvars.isEmpty())
duke@1 2112 return tvars;
duke@1 2113 if (tvars.tail.isEmpty())
duke@1 2114 // fast common case
duke@1 2115 return List.<Type>of(substBound((TypeVar)tvars.head, from, to));
duke@1 2116 ListBuffer<Type> newBoundsBuf = lb();
duke@1 2117 boolean changed = false;
duke@1 2118 // calculate new bounds
duke@1 2119 for (Type t : tvars) {
duke@1 2120 TypeVar tv = (TypeVar) t;
duke@1 2121 Type bound = subst(tv.bound, from, to);
duke@1 2122 if (bound != tv.bound)
duke@1 2123 changed = true;
duke@1 2124 newBoundsBuf.append(bound);
duke@1 2125 }
duke@1 2126 if (!changed)
duke@1 2127 return tvars;
duke@1 2128 ListBuffer<Type> newTvars = lb();
duke@1 2129 // create new type variables without bounds
duke@1 2130 for (Type t : tvars) {
duke@1 2131 newTvars.append(new TypeVar(t.tsym, null, syms.botType));
duke@1 2132 }
duke@1 2133 // the new bounds should use the new type variables in place
duke@1 2134 // of the old
duke@1 2135 List<Type> newBounds = newBoundsBuf.toList();
duke@1 2136 from = tvars;
duke@1 2137 to = newTvars.toList();
duke@1 2138 for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
duke@1 2139 newBounds.head = subst(newBounds.head, from, to);
duke@1 2140 }
duke@1 2141 newBounds = newBoundsBuf.toList();
duke@1 2142 // set the bounds of new type variables to the new bounds
duke@1 2143 for (Type t : newTvars.toList()) {
duke@1 2144 TypeVar tv = (TypeVar) t;
duke@1 2145 tv.bound = newBounds.head;
duke@1 2146 newBounds = newBounds.tail;
duke@1 2147 }
duke@1 2148 return newTvars.toList();
duke@1 2149 }
duke@1 2150
duke@1 2151 public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
duke@1 2152 Type bound1 = subst(t.bound, from, to);
duke@1 2153 if (bound1 == t.bound)
duke@1 2154 return t;
duke@1 2155 else
duke@1 2156 return new TypeVar(t.tsym, bound1, syms.botType);
duke@1 2157 }
duke@1 2158 // </editor-fold>
duke@1 2159
duke@1 2160 // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
duke@1 2161 /**
duke@1 2162 * Does t have the same bounds for quantified variables as s?
duke@1 2163 */
duke@1 2164 boolean hasSameBounds(ForAll t, ForAll s) {
duke@1 2165 List<Type> l1 = t.tvars;
duke@1 2166 List<Type> l2 = s.tvars;
duke@1 2167 while (l1.nonEmpty() && l2.nonEmpty() &&
duke@1 2168 isSameType(l1.head.getUpperBound(),
duke@1 2169 subst(l2.head.getUpperBound(),
duke@1 2170 s.tvars,
duke@1 2171 t.tvars))) {
duke@1 2172 l1 = l1.tail;
duke@1 2173 l2 = l2.tail;
duke@1 2174 }
duke@1 2175 return l1.isEmpty() && l2.isEmpty();
duke@1 2176 }
duke@1 2177 // </editor-fold>
duke@1 2178
duke@1 2179 // <editor-fold defaultstate="collapsed" desc="newInstances">
duke@1 2180 /** Create new vector of type variables from list of variables
duke@1 2181 * changing all recursive bounds from old to new list.
duke@1 2182 */
duke@1 2183 public List<Type> newInstances(List<Type> tvars) {
duke@1 2184 List<Type> tvars1 = Type.map(tvars, newInstanceFun);
duke@1 2185 for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
duke@1 2186 TypeVar tv = (TypeVar) l.head;
duke@1 2187 tv.bound = subst(tv.bound, tvars, tvars1);
duke@1 2188 }
duke@1 2189 return tvars1;
duke@1 2190 }
duke@1 2191 static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
duke@1 2192 public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
duke@1 2193 };
duke@1 2194 // </editor-fold>
duke@1 2195
jjg@110 2196 // <editor-fold defaultstate="collapsed" desc="createErrorType">
jjg@110 2197 public Type createErrorType(Type originalType) {
jjg@110 2198 return new ErrorType(originalType, syms.errSymbol);
jjg@110 2199 }
jjg@110 2200
jjg@110 2201 public Type createErrorType(ClassSymbol c, Type originalType) {
jjg@110 2202 return new ErrorType(c, originalType);
jjg@110 2203 }
jjg@110 2204
jjg@110 2205 public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
jjg@110 2206 return new ErrorType(name, container, originalType);
jjg@110 2207 }
jjg@110 2208 // </editor-fold>
jjg@110 2209
duke@1 2210 // <editor-fold defaultstate="collapsed" desc="rank">
duke@1 2211 /**
duke@1 2212 * The rank of a class is the length of the longest path between
duke@1 2213 * the class and java.lang.Object in the class inheritance
duke@1 2214 * graph. Undefined for all but reference types.
duke@1 2215 */
duke@1 2216 public int rank(Type t) {
duke@1 2217 switch(t.tag) {
duke@1 2218 case CLASS: {
duke@1 2219 ClassType cls = (ClassType)t;
duke@1 2220 if (cls.rank_field < 0) {
duke@1 2221 Name fullname = cls.tsym.getQualifiedName();
jjg@113 2222 if (fullname == names.java_lang_Object)
duke@1 2223 cls.rank_field = 0;
duke@1 2224 else {
duke@1 2225 int r = rank(supertype(cls));
duke@1 2226 for (List<Type> l = interfaces(cls);
duke@1 2227 l.nonEmpty();
duke@1 2228 l = l.tail) {
duke@1 2229 if (rank(l.head) > r)
duke@1 2230 r = rank(l.head);
duke@1 2231 }
duke@1 2232 cls.rank_field = r + 1;
duke@1 2233 }
duke@1 2234 }
duke@1 2235 return cls.rank_field;
duke@1 2236 }
duke@1 2237 case TYPEVAR: {
duke@1 2238 TypeVar tvar = (TypeVar)t;
duke@1 2239 if (tvar.rank_field < 0) {
duke@1 2240 int r = rank(supertype(tvar));
duke@1 2241 for (List<Type> l = interfaces(tvar);
duke@1 2242 l.nonEmpty();
duke@1 2243 l = l.tail) {
duke@1 2244 if (rank(l.head) > r) r = rank(l.head);
duke@1 2245 }
duke@1 2246 tvar.rank_field = r + 1;
duke@1 2247 }
duke@1 2248 return tvar.rank_field;
duke@1 2249 }
duke@1 2250 case ERROR:
duke@1 2251 return 0;
duke@1 2252 default:
duke@1 2253 throw new AssertionError();
duke@1 2254 }
duke@1 2255 }
duke@1 2256 // </editor-fold>
duke@1 2257
mcimadamore@121 2258 // <editor-fold defaultstate="collapsed" desc="printType">
mcimadamore@121 2259 /**
mcimadamore@121 2260 * Visitor for generating a string representation of a given type
mcimadamore@121 2261 * accordingly to a given locale
mcimadamore@121 2262 */
mcimadamore@121 2263 public String toString(Type t, Locale locale) {
mcimadamore@121 2264 return typePrinter.visit(t, locale);
mcimadamore@121 2265 }
mcimadamore@121 2266 // where
mcimadamore@121 2267 private TypePrinter typePrinter = new TypePrinter();
mcimadamore@121 2268
mcimadamore@121 2269 public class TypePrinter extends DefaultTypeVisitor<String, Locale> {
mcimadamore@121 2270
mcimadamore@121 2271 public String visit(List<Type> ts, Locale locale) {
mcimadamore@121 2272 ListBuffer<String> sbuf = lb();
mcimadamore@121 2273 for (Type t : ts) {
mcimadamore@121 2274 sbuf.append(visit(t, locale));
mcimadamore@121 2275 }
mcimadamore@121 2276 return sbuf.toList().toString();
mcimadamore@121 2277 }
mcimadamore@121 2278
mcimadamore@121 2279 @Override
mcimadamore@121 2280 public String visitCapturedType(CapturedType t, Locale locale) {
mcimadamore@121 2281 return messages.getLocalizedString("compiler.misc.type.captureof",
mcimadamore@121 2282 (t.hashCode() & 0xFFFFFFFFL) % Type.CapturedType.PRIME,
mcimadamore@121 2283 visit(t.wildcard, locale));
mcimadamore@121 2284 }
mcimadamore@121 2285
mcimadamore@121 2286 @Override
mcimadamore@121 2287 public String visitForAll(ForAll t, Locale locale) {
mcimadamore@121 2288 return "<" + visit(t.tvars, locale) + ">" + visit(t.qtype, locale);
mcimadamore@121 2289 }
mcimadamore@121 2290
mcimadamore@121 2291 @Override
mcimadamore@121 2292 public String visitUndetVar(UndetVar t, Locale locale) {
mcimadamore@121 2293 if (t.inst != null) {
mcimadamore@121 2294 return visit(t.inst, locale);
mcimadamore@121 2295 } else {
mcimadamore@121 2296 return visit(t.qtype, locale) + "?";
mcimadamore@121 2297 }
mcimadamore@121 2298 }
mcimadamore@121 2299
mcimadamore@121 2300 @Override
mcimadamore@121 2301 public String visitArrayType(ArrayType t, Locale locale) {
mcimadamore@121 2302 return visit(t.elemtype, locale) + "[]";
mcimadamore@121 2303 }
mcimadamore@121 2304
mcimadamore@121 2305 @Override
mcimadamore@121 2306 public String visitClassType(ClassType t, Locale locale) {
mcimadamore@121 2307 StringBuffer buf = new StringBuffer();
mcimadamore@121 2308 if (t.getEnclosingType().tag == CLASS && t.tsym.owner.kind == Kinds.TYP) {
mcimadamore@121 2309 buf.append(visit(t.getEnclosingType(), locale));
mcimadamore@121 2310 buf.append(".");
mcimadamore@121 2311 buf.append(className(t, false, locale));
mcimadamore@121 2312 } else {
mcimadamore@121 2313 buf.append(className(t, true, locale));
mcimadamore@121 2314 }
mcimadamore@121 2315 if (t.getTypeArguments().nonEmpty()) {
mcimadamore@121 2316 buf.append('<');
mcimadamore@121 2317 buf.append(visit(t.getTypeArguments(), locale));
mcimadamore@121 2318 buf.append(">");
mcimadamore@121 2319 }
mcimadamore@121 2320 return buf.toString();
mcimadamore@121 2321 }
mcimadamore@121 2322
mcimadamore@121 2323 @Override
mcimadamore@121 2324 public String visitMethodType(MethodType t, Locale locale) {
mcimadamore@121 2325 return "(" + printMethodArgs(t.argtypes, false, locale) + ")" + visit(t.restype, locale);
mcimadamore@121 2326 }
mcimadamore@121 2327
mcimadamore@121 2328 @Override
mcimadamore@121 2329 public String visitPackageType(PackageType t, Locale locale) {
mcimadamore@121 2330 return t.tsym.getQualifiedName().toString();
mcimadamore@121 2331 }
mcimadamore@121 2332
mcimadamore@121 2333 @Override
mcimadamore@121 2334 public String visitWildcardType(WildcardType t, Locale locale) {
mcimadamore@121 2335 StringBuffer s = new StringBuffer();
mcimadamore@121 2336 s.append(t.kind);
mcimadamore@121 2337 if (t.kind != UNBOUND) {
mcimadamore@121 2338 s.append(visit(t.type, locale));
mcimadamore@121 2339 }
mcimadamore@121 2340 return s.toString();
mcimadamore@121 2341 }
mcimadamore@121 2342
mcimadamore@121 2343
mcimadamore@121 2344 public String visitType(Type t, Locale locale) {
mcimadamore@121 2345 String s = (t.tsym == null || t.tsym.name == null)
mcimadamore@121 2346 ? messages.getLocalizedString("compiler.misc.type.none")
mcimadamore@121 2347 : t.tsym.name.toString();
mcimadamore@121 2348 return s;
mcimadamore@121 2349 }
mcimadamore@121 2350
mcimadamore@121 2351 protected String className(ClassType t, boolean longform, Locale locale) {
mcimadamore@121 2352 Symbol sym = t.tsym;
mcimadamore@121 2353 if (sym.name.length() == 0 && (sym.flags() & COMPOUND) != 0) {
mcimadamore@121 2354 StringBuffer s = new StringBuffer(visit(supertype(t), locale));
mcimadamore@121 2355 for (List<Type> is = interfaces(t); is.nonEmpty(); is = is.tail) {
mcimadamore@121 2356 s.append("&");
mcimadamore@121 2357 s.append(visit(is.head, locale));
mcimadamore@121 2358 }
mcimadamore@121 2359 return s.toString();
mcimadamore@121 2360 } else if (sym.name.length() == 0) {
mcimadamore@121 2361 String s;
mcimadamore@121 2362 ClassType norm = (ClassType) t.tsym.type;
mcimadamore@121 2363 if (norm == null) {
mcimadamore@121 2364 s = getLocalizedString(locale, "compiler.misc.anonymous.class", (Object) null);
mcimadamore@121 2365 } else if (interfaces(norm).nonEmpty()) {
mcimadamore@121 2366 s = getLocalizedString(locale, "compiler.misc.anonymous.class",
mcimadamore@121 2367 visit(interfaces(norm).head, locale));
mcimadamore@121 2368 } else {
mcimadamore@121 2369 s = getLocalizedString(locale, "compiler.misc.anonymous.class",
mcimadamore@121 2370 visit(supertype(norm), locale));
mcimadamore@121 2371 }
mcimadamore@121 2372 return s;
mcimadamore@121 2373 } else if (longform) {
mcimadamore@121 2374 return sym.getQualifiedName().toString();
mcimadamore@121 2375 } else {
mcimadamore@121 2376 return sym.name.toString();
mcimadamore@121 2377 }
mcimadamore@121 2378 }
mcimadamore@121 2379
mcimadamore@121 2380 protected String printMethodArgs(List<Type> args, boolean varArgs, Locale locale) {
mcimadamore@121 2381 if (!varArgs) {
mcimadamore@121 2382 return visit(args, locale);
mcimadamore@121 2383 } else {
mcimadamore@121 2384 StringBuffer buf = new StringBuffer();
mcimadamore@121 2385 while (args.tail.nonEmpty()) {
mcimadamore@121 2386 buf.append(visit(args.head, locale));
mcimadamore@121 2387 args = args.tail;
mcimadamore@121 2388 buf.append(',');
mcimadamore@121 2389 }
mcimadamore@121 2390 if (args.head.tag == ARRAY) {
mcimadamore@121 2391 buf.append(visit(((ArrayType) args.head).elemtype, locale));
mcimadamore@121 2392 buf.append("...");
mcimadamore@121 2393 } else {
mcimadamore@121 2394 buf.append(visit(args.head, locale));
mcimadamore@121 2395 }
mcimadamore@121 2396 return buf.toString();
mcimadamore@121 2397 }
mcimadamore@121 2398 }
mcimadamore@121 2399
mcimadamore@121 2400 protected String getLocalizedString(Locale locale, String key, Object... args) {
mcimadamore@121 2401 return messages.getLocalizedString(key, args);
mcimadamore@121 2402 }
mcimadamore@121 2403 };
mcimadamore@121 2404 // </editor-fold>
mcimadamore@121 2405
mcimadamore@121 2406 // <editor-fold defaultstate="collapsed" desc="printSymbol">
mcimadamore@121 2407 /**
mcimadamore@121 2408 * Visitor for generating a string representation of a given symbol
mcimadamore@121 2409 * accordingly to a given locale
mcimadamore@121 2410 */
mcimadamore@121 2411 public String toString(Symbol t, Locale locale) {
mcimadamore@121 2412 return symbolPrinter.visit(t, locale);
mcimadamore@121 2413 }
mcimadamore@121 2414 // where
mcimadamore@121 2415 private SymbolPrinter symbolPrinter = new SymbolPrinter();
mcimadamore@121 2416
mcimadamore@121 2417 public class SymbolPrinter extends DefaultSymbolVisitor<String, Locale> {
mcimadamore@121 2418
mcimadamore@121 2419 @Override
mcimadamore@121 2420 public String visitClassSymbol(ClassSymbol sym, Locale locale) {
mcimadamore@121 2421 return sym.name.isEmpty()
mcimadamore@121 2422 ? getLocalizedString(locale, "compiler.misc.anonymous.class", sym.flatname)
mcimadamore@121 2423 : sym.fullname.toString();
mcimadamore@121 2424 }
mcimadamore@121 2425
mcimadamore@121 2426 @Override
mcimadamore@121 2427 public String visitMethodSymbol(MethodSymbol s, Locale locale) {
mcimadamore@121 2428 if ((s.flags() & BLOCK) != 0) {
mcimadamore@121 2429 return s.owner.name.toString();
mcimadamore@121 2430 } else {
mcimadamore@121 2431 String ms = (s.name == names.init)
mcimadamore@121 2432 ? s.owner.name.toString()
mcimadamore@121 2433 : s.name.toString();
mcimadamore@121 2434 if (s.type != null) {
mcimadamore@121 2435 if (s.type.tag == FORALL) {
mcimadamore@121 2436 ms = "<" + typePrinter.visit(s.type.getTypeArguments(), locale) + ">" + ms;
mcimadamore@121 2437 }
mcimadamore@121 2438 ms += "(" + typePrinter.printMethodArgs(
mcimadamore@121 2439 s.type.getParameterTypes(),
mcimadamore@121 2440 (s.flags() & VARARGS) != 0,
mcimadamore@121 2441 locale) + ")";
mcimadamore@121 2442 }
mcimadamore@121 2443 return ms;
mcimadamore@121 2444 }
mcimadamore@121 2445 }
mcimadamore@121 2446
mcimadamore@121 2447 @Override
mcimadamore@121 2448 public String visitOperatorSymbol(OperatorSymbol s, Locale locale) {
mcimadamore@121 2449 return visitMethodSymbol(s, locale);
mcimadamore@121 2450 }
mcimadamore@121 2451
mcimadamore@121 2452 @Override
mcimadamore@121 2453 public String visitPackageSymbol(PackageSymbol s, Locale locale) {
mcimadamore@121 2454 return s.name.isEmpty()
mcimadamore@121 2455 ? getLocalizedString(locale, "compiler.misc.unnamed.package")
mcimadamore@121 2456 : s.fullname.toString();
mcimadamore@121 2457 }
mcimadamore@121 2458
mcimadamore@121 2459 @Override
mcimadamore@121 2460 public String visitSymbol(Symbol s, Locale locale) {
mcimadamore@121 2461 return s.name.toString();
mcimadamore@121 2462 }
mcimadamore@121 2463
mcimadamore@121 2464 public String visit(List<Symbol> ts, Locale locale) {
mcimadamore@121 2465 ListBuffer<String> sbuf = lb();
mcimadamore@121 2466 for (Symbol t : ts) {
mcimadamore@121 2467 sbuf.append(visit(t, locale));
mcimadamore@121 2468 }
mcimadamore@121 2469 return sbuf.toList().toString();
mcimadamore@121 2470 }
mcimadamore@121 2471
mcimadamore@121 2472 protected String getLocalizedString(Locale locale, String key, Object... args) {
mcimadamore@121 2473 return messages.getLocalizedString(key, args);
mcimadamore@121 2474 }
mcimadamore@121 2475 };
mcimadamore@121 2476 // </editor-fold>
mcimadamore@121 2477
duke@1 2478 // <editor-fold defaultstate="collapsed" desc="toString">
duke@1 2479 /**
duke@1 2480 * This toString is slightly more descriptive than the one on Type.
mcimadamore@121 2481 *
mcimadamore@121 2482 * @deprecated Types.toString(Type t, Locale l) provides better support
mcimadamore@121 2483 * for localization
duke@1 2484 */
mcimadamore@121 2485 @Deprecated
duke@1 2486 public String toString(Type t) {
duke@1 2487 if (t.tag == FORALL) {
duke@1 2488 ForAll forAll = (ForAll)t;
duke@1 2489 return typaramsString(forAll.tvars) + forAll.qtype;
duke@1 2490 }
duke@1 2491 return "" + t;
duke@1 2492 }
duke@1 2493 // where
duke@1 2494 private String typaramsString(List<Type> tvars) {
duke@1 2495 StringBuffer s = new StringBuffer();
duke@1 2496 s.append('<');
duke@1 2497 boolean first = true;
duke@1 2498 for (Type t : tvars) {
duke@1 2499 if (!first) s.append(", ");
duke@1 2500 first = false;
duke@1 2501 appendTyparamString(((TypeVar)t), s);
duke@1 2502 }
duke@1 2503 s.append('>');
duke@1 2504 return s.toString();
duke@1 2505 }
duke@1 2506 private void appendTyparamString(TypeVar t, StringBuffer buf) {
duke@1 2507 buf.append(t);
duke@1 2508 if (t.bound == null ||
duke@1 2509 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
duke@1 2510 return;
duke@1 2511 buf.append(" extends "); // Java syntax; no need for i18n
duke@1 2512 Type bound = t.bound;
duke@1 2513 if (!bound.isCompound()) {
duke@1 2514 buf.append(bound);
duke@1 2515 } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
duke@1 2516 buf.append(supertype(t));
duke@1 2517 for (Type intf : interfaces(t)) {
duke@1 2518 buf.append('&');
duke@1 2519 buf.append(intf);
duke@1 2520 }
duke@1 2521 } else {
duke@1 2522 // No superclass was given in bounds.
duke@1 2523 // In this case, supertype is Object, erasure is first interface.
duke@1 2524 boolean first = true;
duke@1 2525 for (Type intf : interfaces(t)) {
duke@1 2526 if (!first) buf.append('&');
duke@1 2527 first = false;
duke@1 2528 buf.append(intf);
duke@1 2529 }
duke@1 2530 }
duke@1 2531 }
duke@1 2532 // </editor-fold>
duke@1 2533
duke@1 2534 // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
duke@1 2535 /**
duke@1 2536 * A cache for closures.
duke@1 2537 *
duke@1 2538 * <p>A closure is a list of all the supertypes and interfaces of
duke@1 2539 * a class or interface type, ordered by ClassSymbol.precedes
duke@1 2540 * (that is, subclasses come first, arbitrary but fixed
duke@1 2541 * otherwise).
duke@1 2542 */
duke@1 2543 private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
duke@1 2544
duke@1 2545 /**
duke@1 2546 * Returns the closure of a class or interface type.
duke@1 2547 */
duke@1 2548 public List<Type> closure(Type t) {
duke@1 2549 List<Type> cl = closureCache.get(t);
duke@1 2550 if (cl == null) {
duke@1 2551 Type st = supertype(t);
duke@1 2552 if (!t.isCompound()) {
duke@1 2553 if (st.tag == CLASS) {
duke@1 2554 cl = insert(closure(st), t);
duke@1 2555 } else if (st.tag == TYPEVAR) {
duke@1 2556 cl = closure(st).prepend(t);
duke@1 2557 } else {
duke@1 2558 cl = List.of(t);
duke@1 2559 }
duke@1 2560 } else {
duke@1 2561 cl = closure(supertype(t));
duke@1 2562 }
duke@1 2563 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
duke@1 2564 cl = union(cl, closure(l.head));
duke@1 2565 closureCache.put(t, cl);
duke@1 2566 }
duke@1 2567 return cl;
duke@1 2568 }
duke@1 2569
duke@1 2570 /**
duke@1 2571 * Insert a type in a closure
duke@1 2572 */
duke@1 2573 public List<Type> insert(List<Type> cl, Type t) {
duke@1 2574 if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
duke@1 2575 return cl.prepend(t);
duke@1 2576 } else if (cl.head.tsym.precedes(t.tsym, this)) {
duke@1 2577 return insert(cl.tail, t).prepend(cl.head);
duke@1 2578 } else {
duke@1 2579 return cl;
duke@1 2580 }
duke@1 2581 }
duke@1 2582
duke@1 2583 /**
duke@1 2584 * Form the union of two closures
duke@1 2585 */
duke@1 2586 public List<Type> union(List<Type> cl1, List<Type> cl2) {
duke@1 2587 if (cl1.isEmpty()) {
duke@1 2588 return cl2;
duke@1 2589 } else if (cl2.isEmpty()) {
duke@1 2590 return cl1;
duke@1 2591 } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
duke@1 2592 return union(cl1.tail, cl2).prepend(cl1.head);
duke@1 2593 } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
duke@1 2594 return union(cl1, cl2.tail).prepend(cl2.head);
duke@1 2595 } else {
duke@1 2596 return union(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2597 }
duke@1 2598 }
duke@1 2599
duke@1 2600 /**
duke@1 2601 * Intersect two closures
duke@1 2602 */
duke@1 2603 public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
duke@1 2604 if (cl1 == cl2)
duke@1 2605 return cl1;
duke@1 2606 if (cl1.isEmpty() || cl2.isEmpty())
duke@1 2607 return List.nil();
duke@1 2608 if (cl1.head.tsym.precedes(cl2.head.tsym, this))
duke@1 2609 return intersect(cl1.tail, cl2);
duke@1 2610 if (cl2.head.tsym.precedes(cl1.head.tsym, this))
duke@1 2611 return intersect(cl1, cl2.tail);
duke@1 2612 if (isSameType(cl1.head, cl2.head))
duke@1 2613 return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2614 if (cl1.head.tsym == cl2.head.tsym &&
duke@1 2615 cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
duke@1 2616 if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
duke@1 2617 Type merge = merge(cl1.head,cl2.head);
duke@1 2618 return intersect(cl1.tail, cl2.tail).prepend(merge);
duke@1 2619 }
duke@1 2620 if (cl1.head.isRaw() || cl2.head.isRaw())
duke@1 2621 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
duke@1 2622 }
duke@1 2623 return intersect(cl1.tail, cl2.tail);
duke@1 2624 }
duke@1 2625 // where
duke@1 2626 class TypePair {
duke@1 2627 final Type t1;
duke@1 2628 final Type t2;
duke@1 2629 TypePair(Type t1, Type t2) {
duke@1 2630 this.t1 = t1;
duke@1 2631 this.t2 = t2;
duke@1 2632 }
duke@1 2633 @Override
duke@1 2634 public int hashCode() {
duke@1 2635 return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
duke@1 2636 }
duke@1 2637 @Override
duke@1 2638 public boolean equals(Object obj) {
duke@1 2639 if (!(obj instanceof TypePair))
duke@1 2640 return false;
duke@1 2641 TypePair typePair = (TypePair)obj;
duke@1 2642 return isSameType(t1, typePair.t1)
duke@1 2643 && isSameType(t2, typePair.t2);
duke@1 2644 }
duke@1 2645 }
duke@1 2646 Set<TypePair> mergeCache = new HashSet<TypePair>();
duke@1 2647 private Type merge(Type c1, Type c2) {
duke@1 2648 ClassType class1 = (ClassType) c1;
duke@1 2649 List<Type> act1 = class1.getTypeArguments();
duke@1 2650 ClassType class2 = (ClassType) c2;
duke@1 2651 List<Type> act2 = class2.getTypeArguments();
duke@1 2652 ListBuffer<Type> merged = new ListBuffer<Type>();
duke@1 2653 List<Type> typarams = class1.tsym.type.getTypeArguments();
duke@1 2654
duke@1 2655 while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
duke@1 2656 if (containsType(act1.head, act2.head)) {
duke@1 2657 merged.append(act1.head);
duke@1 2658 } else if (containsType(act2.head, act1.head)) {
duke@1 2659 merged.append(act2.head);
duke@1 2660 } else {
duke@1 2661 TypePair pair = new TypePair(c1, c2);
duke@1 2662 Type m;
duke@1 2663 if (mergeCache.add(pair)) {
duke@1 2664 m = new WildcardType(lub(upperBound(act1.head),
duke@1 2665 upperBound(act2.head)),
duke@1 2666 BoundKind.EXTENDS,
duke@1 2667 syms.boundClass);
duke@1 2668 mergeCache.remove(pair);
duke@1 2669 } else {
duke@1 2670 m = new WildcardType(syms.objectType,
duke@1 2671 BoundKind.UNBOUND,
duke@1 2672 syms.boundClass);
duke@1 2673 }
duke@1 2674 merged.append(m.withTypeVar(typarams.head));
duke@1 2675 }
duke@1 2676 act1 = act1.tail;
duke@1 2677 act2 = act2.tail;
duke@1 2678 typarams = typarams.tail;
duke@1 2679 }
duke@1 2680 assert(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
duke@1 2681 return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
duke@1 2682 }
duke@1 2683
duke@1 2684 /**
duke@1 2685 * Return the minimum type of a closure, a compound type if no
duke@1 2686 * unique minimum exists.
duke@1 2687 */
duke@1 2688 private Type compoundMin(List<Type> cl) {
duke@1 2689 if (cl.isEmpty()) return syms.objectType;
duke@1 2690 List<Type> compound = closureMin(cl);
duke@1 2691 if (compound.isEmpty())
duke@1 2692 return null;
duke@1 2693 else if (compound.tail.isEmpty())
duke@1 2694 return compound.head;
duke@1 2695 else
duke@1 2696 return makeCompoundType(compound);
duke@1 2697 }
duke@1 2698
duke@1 2699 /**
duke@1 2700 * Return the minimum types of a closure, suitable for computing
duke@1 2701 * compoundMin or glb.
duke@1 2702 */
duke@1 2703 private List<Type> closureMin(List<Type> cl) {
duke@1 2704 ListBuffer<Type> classes = lb();
duke@1 2705 ListBuffer<Type> interfaces = lb();
duke@1 2706 while (!cl.isEmpty()) {
duke@1 2707 Type current = cl.head;
duke@1 2708 if (current.isInterface())
duke@1 2709 interfaces.append(current);
duke@1 2710 else
duke@1 2711 classes.append(current);
duke@1 2712 ListBuffer<Type> candidates = lb();
duke@1 2713 for (Type t : cl.tail) {
duke@1 2714 if (!isSubtypeNoCapture(current, t))
duke@1 2715 candidates.append(t);
duke@1 2716 }
duke@1 2717 cl = candidates.toList();
duke@1 2718 }
duke@1 2719 return classes.appendList(interfaces).toList();
duke@1 2720 }
duke@1 2721
duke@1 2722 /**
duke@1 2723 * Return the least upper bound of pair of types. if the lub does
duke@1 2724 * not exist return null.
duke@1 2725 */
duke@1 2726 public Type lub(Type t1, Type t2) {
duke@1 2727 return lub(List.of(t1, t2));
duke@1 2728 }
duke@1 2729
duke@1 2730 /**
duke@1 2731 * Return the least upper bound (lub) of set of types. If the lub
duke@1 2732 * does not exist return the type of null (bottom).
duke@1 2733 */
duke@1 2734 public Type lub(List<Type> ts) {
duke@1 2735 final int ARRAY_BOUND = 1;
duke@1 2736 final int CLASS_BOUND = 2;
duke@1 2737 int boundkind = 0;
duke@1 2738 for (Type t : ts) {
duke@1 2739 switch (t.tag) {
duke@1 2740 case CLASS:
duke@1 2741 boundkind |= CLASS_BOUND;
duke@1 2742 break;
duke@1 2743 case ARRAY:
duke@1 2744 boundkind |= ARRAY_BOUND;
duke@1 2745 break;
duke@1 2746 case TYPEVAR:
duke@1 2747 do {
duke@1 2748 t = t.getUpperBound();
duke@1 2749 } while (t.tag == TYPEVAR);
duke@1 2750 if (t.tag == ARRAY) {
duke@1 2751 boundkind |= ARRAY_BOUND;
duke@1 2752 } else {
duke@1 2753 boundkind |= CLASS_BOUND;
duke@1 2754 }
duke@1 2755 break;
duke@1 2756 default:
duke@1 2757 if (t.isPrimitive())
mcimadamore@5 2758 return syms.errType;
duke@1 2759 }
duke@1 2760 }
duke@1 2761 switch (boundkind) {
duke@1 2762 case 0:
duke@1 2763 return syms.botType;
duke@1 2764
duke@1 2765 case ARRAY_BOUND:
duke@1 2766 // calculate lub(A[], B[])
duke@1 2767 List<Type> elements = Type.map(ts, elemTypeFun);
duke@1 2768 for (Type t : elements) {
duke@1 2769 if (t.isPrimitive()) {
duke@1 2770 // if a primitive type is found, then return
duke@1 2771 // arraySuperType unless all the types are the
duke@1 2772 // same
duke@1 2773 Type first = ts.head;
duke@1 2774 for (Type s : ts.tail) {
duke@1 2775 if (!isSameType(first, s)) {
duke@1 2776 // lub(int[], B[]) is Cloneable & Serializable
duke@1 2777 return arraySuperType();
duke@1 2778 }
duke@1 2779 }
duke@1 2780 // all the array types are the same, return one
duke@1 2781 // lub(int[], int[]) is int[]
duke@1 2782 return first;
duke@1 2783 }
duke@1 2784 }
duke@1 2785 // lub(A[], B[]) is lub(A, B)[]
duke@1 2786 return new ArrayType(lub(elements), syms.arrayClass);
duke@1 2787
duke@1 2788 case CLASS_BOUND:
duke@1 2789 // calculate lub(A, B)
duke@1 2790 while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
duke@1 2791 ts = ts.tail;
duke@1 2792 assert !ts.isEmpty();
duke@1 2793 List<Type> cl = closure(ts.head);
duke@1 2794 for (Type t : ts.tail) {
duke@1 2795 if (t.tag == CLASS || t.tag == TYPEVAR)
duke@1 2796 cl = intersect(cl, closure(t));
duke@1 2797 }
duke@1 2798 return compoundMin(cl);
duke@1 2799
duke@1 2800 default:
duke@1 2801 // calculate lub(A, B[])
duke@1 2802 List<Type> classes = List.of(arraySuperType());
duke@1 2803 for (Type t : ts) {
duke@1 2804 if (t.tag != ARRAY) // Filter out any arrays
duke@1 2805 classes = classes.prepend(t);
duke@1 2806 }
duke@1 2807 // lub(A, B[]) is lub(A, arraySuperType)
duke@1 2808 return lub(classes);
duke@1 2809 }
duke@1 2810 }
duke@1 2811 // where
duke@1 2812 private Type arraySuperType = null;
duke@1 2813 private Type arraySuperType() {
duke@1 2814 // initialized lazily to avoid problems during compiler startup
duke@1 2815 if (arraySuperType == null) {
duke@1 2816 synchronized (this) {
duke@1 2817 if (arraySuperType == null) {
duke@1 2818 // JLS 10.8: all arrays implement Cloneable and Serializable.
duke@1 2819 arraySuperType = makeCompoundType(List.of(syms.serializableType,
duke@1 2820 syms.cloneableType),
duke@1 2821 syms.objectType);
duke@1 2822 }
duke@1 2823 }
duke@1 2824 }
duke@1 2825 return arraySuperType;
duke@1 2826 }
duke@1 2827 // </editor-fold>
duke@1 2828
duke@1 2829 // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
duke@1 2830 public Type glb(Type t, Type s) {
duke@1 2831 if (s == null)
duke@1 2832 return t;
duke@1 2833 else if (isSubtypeNoCapture(t, s))
duke@1 2834 return t;
duke@1 2835 else if (isSubtypeNoCapture(s, t))
duke@1 2836 return s;
duke@1 2837
duke@1 2838 List<Type> closure = union(closure(t), closure(s));
duke@1 2839 List<Type> bounds = closureMin(closure);
duke@1 2840
duke@1 2841 if (bounds.isEmpty()) { // length == 0
duke@1 2842 return syms.objectType;
duke@1 2843 } else if (bounds.tail.isEmpty()) { // length == 1
duke@1 2844 return bounds.head;
duke@1 2845 } else { // length > 1
duke@1 2846 int classCount = 0;
duke@1 2847 for (Type bound : bounds)
duke@1 2848 if (!bound.isInterface())
duke@1 2849 classCount++;
duke@1 2850 if (classCount > 1)
jjg@110 2851 return createErrorType(t);
duke@1 2852 }
duke@1 2853 return makeCompoundType(bounds);
duke@1 2854 }
duke@1 2855 // </editor-fold>
duke@1 2856
duke@1 2857 // <editor-fold defaultstate="collapsed" desc="hashCode">
duke@1 2858 /**
duke@1 2859 * Compute a hash code on a type.
duke@1 2860 */
duke@1 2861 public static int hashCode(Type t) {
duke@1 2862 return hashCode.visit(t);
duke@1 2863 }
duke@1 2864 // where
duke@1 2865 private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
duke@1 2866
duke@1 2867 public Integer visitType(Type t, Void ignored) {
duke@1 2868 return t.tag;
duke@1 2869 }
duke@1 2870
duke@1 2871 @Override
duke@1 2872 public Integer visitClassType(ClassType t, Void ignored) {
duke@1 2873 int result = visit(t.getEnclosingType());
duke@1 2874 result *= 127;
duke@1 2875 result += t.tsym.flatName().hashCode();
duke@1 2876 for (Type s : t.getTypeArguments()) {
duke@1 2877 result *= 127;
duke@1 2878 result += visit(s);
duke@1 2879 }
duke@1 2880 return result;
duke@1 2881 }
duke@1 2882
duke@1 2883 @Override
duke@1 2884 public Integer visitWildcardType(WildcardType t, Void ignored) {
duke@1 2885 int result = t.kind.hashCode();
duke@1 2886 if (t.type != null) {
duke@1 2887 result *= 127;
duke@1 2888 result += visit(t.type);
duke@1 2889 }
duke@1 2890 return result;
duke@1 2891 }
duke@1 2892
duke@1 2893 @Override
duke@1 2894 public Integer visitArrayType(ArrayType t, Void ignored) {
duke@1 2895 return visit(t.elemtype) + 12;
duke@1 2896 }
duke@1 2897
duke@1 2898 @Override
duke@1 2899 public Integer visitTypeVar(TypeVar t, Void ignored) {
duke@1 2900 return System.identityHashCode(t.tsym);
duke@1 2901 }
duke@1 2902
duke@1 2903 @Override
duke@1 2904 public Integer visitUndetVar(UndetVar t, Void ignored) {
duke@1 2905 return System.identityHashCode(t);
duke@1 2906 }
duke@1 2907
duke@1 2908 @Override
duke@1 2909 public Integer visitErrorType(ErrorType t, Void ignored) {
duke@1 2910 return 0;
duke@1 2911 }
duke@1 2912 };
duke@1 2913 // </editor-fold>
duke@1 2914
duke@1 2915 // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
duke@1 2916 /**
duke@1 2917 * Does t have a result that is a subtype of the result type of s,
duke@1 2918 * suitable for covariant returns? It is assumed that both types
duke@1 2919 * are (possibly polymorphic) method types. Monomorphic method
duke@1 2920 * types are handled in the obvious way. Polymorphic method types
duke@1 2921 * require renaming all type variables of one to corresponding
duke@1 2922 * type variables in the other, where correspondence is by
duke@1 2923 * position in the type parameter list. */
duke@1 2924 public boolean resultSubtype(Type t, Type s, Warner warner) {
duke@1 2925 List<Type> tvars = t.getTypeArguments();
duke@1 2926 List<Type> svars = s.getTypeArguments();
duke@1 2927 Type tres = t.getReturnType();
duke@1 2928 Type sres = subst(s.getReturnType(), svars, tvars);
duke@1 2929 return covariantReturnType(tres, sres, warner);
duke@1 2930 }
duke@1 2931
duke@1 2932 /**
duke@1 2933 * Return-Type-Substitutable.
duke@1 2934 * @see <a href="http://java.sun.com/docs/books/jls/">The Java
duke@1 2935 * Language Specification, Third Ed. (8.4.5)</a>
duke@1 2936 */
duke@1 2937 public boolean returnTypeSubstitutable(Type r1, Type r2) {
duke@1 2938 if (hasSameArgs(r1, r2))
duke@1 2939 return resultSubtype(r1, r2, Warner.noWarnings);
duke@1 2940 else
duke@1 2941 return covariantReturnType(r1.getReturnType(),
duke@1 2942 erasure(r2.getReturnType()),
duke@1 2943 Warner.noWarnings);
duke@1 2944 }
duke@1 2945
duke@1 2946 public boolean returnTypeSubstitutable(Type r1,
duke@1 2947 Type r2, Type r2res,
duke@1 2948 Warner warner) {
duke@1 2949 if (isSameType(r1.getReturnType(), r2res))
duke@1 2950 return true;
duke@1 2951 if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
duke@1 2952 return false;
duke@1 2953
duke@1 2954 if (hasSameArgs(r1, r2))
duke@1 2955 return covariantReturnType(r1.getReturnType(), r2res, warner);
duke@1 2956 if (!source.allowCovariantReturns())
duke@1 2957 return false;
duke@1 2958 if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
duke@1 2959 return true;
duke@1 2960 if (!isSubtype(r1.getReturnType(), erasure(r2res)))
duke@1 2961 return false;
duke@1 2962 warner.warnUnchecked();
duke@1 2963 return true;
duke@1 2964 }
duke@1 2965
duke@1 2966 /**
duke@1 2967 * Is t an appropriate return type in an overrider for a
duke@1 2968 * method that returns s?
duke@1 2969 */
duke@1 2970 public boolean covariantReturnType(Type t, Type s, Warner warner) {
duke@1 2971 return
duke@1 2972 isSameType(t, s) ||
duke@1 2973 source.allowCovariantReturns() &&
duke@1 2974 !t.isPrimitive() &&
duke@1 2975 !s.isPrimitive() &&
duke@1 2976 isAssignable(t, s, warner);
duke@1 2977 }
duke@1 2978 // </editor-fold>
duke@1 2979
duke@1 2980 // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
duke@1 2981 /**
duke@1 2982 * Return the class that boxes the given primitive.
duke@1 2983 */
duke@1 2984 public ClassSymbol boxedClass(Type t) {
duke@1 2985 return reader.enterClass(syms.boxedName[t.tag]);
duke@1 2986 }
duke@1 2987
duke@1 2988 /**
duke@1 2989 * Return the primitive type corresponding to a boxed type.
duke@1 2990 */
duke@1 2991 public Type unboxedType(Type t) {
duke@1 2992 if (allowBoxing) {
duke@1 2993 for (int i=0; i<syms.boxedName.length; i++) {
duke@1 2994 Name box = syms.boxedName[i];
duke@1 2995 if (box != null &&
duke@1 2996 asSuper(t, reader.enterClass(box)) != null)
duke@1 2997 return syms.typeOfTag[i];
duke@1 2998 }
duke@1 2999 }
duke@1 3000 return Type.noType;
duke@1 3001 }
duke@1 3002 // </editor-fold>
duke@1 3003
duke@1 3004 // <editor-fold defaultstate="collapsed" desc="Capture conversion">
duke@1 3005 /*
duke@1 3006 * JLS 3rd Ed. 5.1.10 Capture Conversion:
duke@1 3007 *
duke@1 3008 * Let G name a generic type declaration with n formal type
duke@1 3009 * parameters A1 ... An with corresponding bounds U1 ... Un. There
duke@1 3010 * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
duke@1 3011 * where, for 1 <= i <= n:
duke@1 3012 *
duke@1 3013 * + If Ti is a wildcard type argument (4.5.1) of the form ? then
duke@1 3014 * Si is a fresh type variable whose upper bound is
duke@1 3015 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
duke@1 3016 * type.
duke@1 3017 *
duke@1 3018 * + If Ti is a wildcard type argument of the form ? extends Bi,
duke@1 3019 * then Si is a fresh type variable whose upper bound is
duke@1 3020 * glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
duke@1 3021 * the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
duke@1 3022 * a compile-time error if for any two classes (not interfaces)
duke@1 3023 * Vi and Vj,Vi is not a subclass of Vj or vice versa.
duke@1 3024 *
duke@1 3025 * + If Ti is a wildcard type argument of the form ? super Bi,
duke@1 3026 * then Si is a fresh type variable whose upper bound is
duke@1 3027 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
duke@1 3028 *
duke@1 3029 * + Otherwise, Si = Ti.
duke@1 3030 *
duke@1 3031 * Capture conversion on any type other than a parameterized type
duke@1 3032 * (4.5) acts as an identity conversion (5.1.1). Capture
duke@1 3033 * conversions never require a special action at run time and
duke@1 3034 * therefore never throw an exception at run time.
duke@1 3035 *
duke@1 3036 * Capture conversion is not applied recursively.
duke@1 3037 */
duke@1 3038 /**
duke@1 3039 * Capture conversion as specified by JLS 3rd Ed.
duke@1 3040 */
duke@1 3041 public Type capture(Type t) {
duke@1 3042 if (t.tag != CLASS)
duke@1 3043 return t;
duke@1 3044 ClassType cls = (ClassType)t;
duke@1 3045 if (cls.isRaw() || !cls.isParameterized())
duke@1 3046 return cls;
duke@1 3047
duke@1 3048 ClassType G = (ClassType)cls.asElement().asType();
duke@1 3049 List<Type> A = G.getTypeArguments();
duke@1 3050 List<Type> T = cls.getTypeArguments();
duke@1 3051 List<Type> S = freshTypeVariables(T);
duke@1 3052
duke@1 3053 List<Type> currentA = A;
duke@1 3054 List<Type> currentT = T;
duke@1 3055 List<Type> currentS = S;
duke@1 3056 boolean captured = false;
duke@1 3057 while (!currentA.isEmpty() &&
duke@1 3058 !currentT.isEmpty() &&
duke@1 3059 !currentS.isEmpty()) {
duke@1 3060 if (currentS.head != currentT.head) {
duke@1 3061 captured = true;
duke@1 3062 WildcardType Ti = (WildcardType)currentT.head;
duke@1 3063 Type Ui = currentA.head.getUpperBound();
duke@1 3064 CapturedType Si = (CapturedType)currentS.head;
duke@1 3065 if (Ui == null)
duke@1 3066 Ui = syms.objectType;
duke@1 3067 switch (Ti.kind) {
duke@1 3068 case UNBOUND:
duke@1 3069 Si.bound = subst(Ui, A, S);
duke@1 3070 Si.lower = syms.botType;
duke@1 3071 break;
duke@1 3072 case EXTENDS:
duke@1 3073 Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
duke@1 3074 Si.lower = syms.botType;
duke@1 3075 break;
duke@1 3076 case SUPER:
duke@1 3077 Si.bound = subst(Ui, A, S);
duke@1 3078 Si.lower = Ti.getSuperBound();
duke@1 3079 break;
duke@1 3080 }
duke@1 3081 if (Si.bound == Si.lower)
duke@1 3082 currentS.head = Si.bound;
duke@1 3083 }
duke@1 3084 currentA = currentA.tail;
duke@1 3085 currentT = currentT.tail;
duke@1 3086 currentS = currentS.tail;
duke@1 3087 }
duke@1 3088 if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
duke@1 3089 return erasure(t); // some "rare" type involved
duke@1 3090
duke@1 3091 if (captured)
duke@1 3092 return new ClassType(cls.getEnclosingType(), S, cls.tsym);
duke@1 3093 else
duke@1 3094 return t;
duke@1 3095 }
duke@1 3096 // where
duke@1 3097 private List<Type> freshTypeVariables(List<Type> types) {
duke@1 3098 ListBuffer<Type> result = lb();
duke@1 3099 for (Type t : types) {
duke@1 3100 if (t.tag == WILDCARD) {
duke@1 3101 Type bound = ((WildcardType)t).getExtendsBound();
duke@1 3102 if (bound == null)
duke@1 3103 bound = syms.objectType;
duke@1 3104 result.append(new CapturedType(capturedName,
duke@1 3105 syms.noSymbol,
duke@1 3106 bound,
duke@1 3107 syms.botType,
duke@1 3108 (WildcardType)t));
duke@1 3109 } else {
duke@1 3110 result.append(t);
duke@1 3111 }
duke@1 3112 }
duke@1 3113 return result.toList();
duke@1 3114 }
duke@1 3115 // </editor-fold>
duke@1 3116
duke@1 3117 // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
duke@1 3118 private List<Type> upperBounds(List<Type> ss) {
duke@1 3119 if (ss.isEmpty()) return ss;
duke@1 3120 Type head = upperBound(ss.head);
duke@1 3121 List<Type> tail = upperBounds(ss.tail);
duke@1 3122 if (head != ss.head || tail != ss.tail)
duke@1 3123 return tail.prepend(head);
duke@1 3124 else
duke@1 3125 return ss;
duke@1 3126 }
duke@1 3127
duke@1 3128 private boolean sideCast(Type from, Type to, Warner warn) {
duke@1 3129 // We are casting from type $from$ to type $to$, which are
duke@1 3130 // non-final unrelated types. This method
duke@1 3131 // tries to reject a cast by transferring type parameters
duke@1 3132 // from $to$ to $from$ by common superinterfaces.
duke@1 3133 boolean reverse = false;
duke@1 3134 Type target = to;
duke@1 3135 if ((to.tsym.flags() & INTERFACE) == 0) {
duke@1 3136 assert (from.tsym.flags() & INTERFACE) != 0;
duke@1 3137 reverse = true;
duke@1 3138 to = from;
duke@1 3139 from = target;
duke@1 3140 }
duke@1 3141 List<Type> commonSupers = superClosure(to, erasure(from));
duke@1 3142 boolean giveWarning = commonSupers.isEmpty();
duke@1 3143 // The arguments to the supers could be unified here to
duke@1 3144 // get a more accurate analysis
duke@1 3145 while (commonSupers.nonEmpty()) {
duke@1 3146 Type t1 = asSuper(from, commonSupers.head.tsym);
duke@1 3147 Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
duke@1 3148 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3149 return false;
duke@1 3150 giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
duke@1 3151 commonSupers = commonSupers.tail;
duke@1 3152 }
duke@1 3153 if (giveWarning && !isReifiable(to))
duke@1 3154 warn.warnUnchecked();
duke@1 3155 if (!source.allowCovariantReturns())
duke@1 3156 // reject if there is a common method signature with
duke@1 3157 // incompatible return types.
duke@1 3158 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3159 return true;
duke@1 3160 }
duke@1 3161
duke@1 3162 private boolean sideCastFinal(Type from, Type to, Warner warn) {
duke@1 3163 // We are casting from type $from$ to type $to$, which are
duke@1 3164 // unrelated types one of which is final and the other of
duke@1 3165 // which is an interface. This method
duke@1 3166 // tries to reject a cast by transferring type parameters
duke@1 3167 // from the final class to the interface.
duke@1 3168 boolean reverse = false;
duke@1 3169 Type target = to;
duke@1 3170 if ((to.tsym.flags() & INTERFACE) == 0) {
duke@1 3171 assert (from.tsym.flags() & INTERFACE) != 0;
duke@1 3172 reverse = true;
duke@1 3173 to = from;
duke@1 3174 from = target;
duke@1 3175 }
duke@1 3176 assert (from.tsym.flags() & FINAL) != 0;
duke@1 3177 Type t1 = asSuper(from, to.tsym);
duke@1 3178 if (t1 == null) return false;
duke@1 3179 Type t2 = to;
duke@1 3180 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3181 return false;
duke@1 3182 if (!source.allowCovariantReturns())
duke@1 3183 // reject if there is a common method signature with
duke@1 3184 // incompatible return types.
duke@1 3185 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3186 if (!isReifiable(target) &&
duke@1 3187 (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
duke@1 3188 warn.warnUnchecked();
duke@1 3189 return true;
duke@1 3190 }
duke@1 3191
duke@1 3192 private boolean giveWarning(Type from, Type to) {
duke@1 3193 // To and from are (possibly different) parameterizations
duke@1 3194 // of the same class or interface
duke@1 3195 return to.isParameterized() && !containsType(to.getTypeArguments(), from.getTypeArguments());
duke@1 3196 }
duke@1 3197
duke@1 3198 private List<Type> superClosure(Type t, Type s) {
duke@1 3199 List<Type> cl = List.nil();
duke@1 3200 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 3201 if (isSubtype(s, erasure(l.head))) {
duke@1 3202 cl = insert(cl, l.head);
duke@1 3203 } else {
duke@1 3204 cl = union(cl, superClosure(l.head, s));
duke@1 3205 }
duke@1 3206 }
duke@1 3207 return cl;
duke@1 3208 }
duke@1 3209
duke@1 3210 private boolean containsTypeEquivalent(Type t, Type s) {
duke@1 3211 return
duke@1 3212 isSameType(t, s) || // shortcut
duke@1 3213 containsType(t, s) && containsType(s, t);
duke@1 3214 }
duke@1 3215
mcimadamore@138 3216 // <editor-fold defaultstate="collapsed" desc="adapt">
duke@1 3217 /**
duke@1 3218 * Adapt a type by computing a substitution which maps a source
duke@1 3219 * type to a target type.
duke@1 3220 *
duke@1 3221 * @param source the source type
duke@1 3222 * @param target the target type
duke@1 3223 * @param from the type variables of the computed substitution
duke@1 3224 * @param to the types of the computed substitution.
duke@1 3225 */
duke@1 3226 public void adapt(Type source,
duke@1 3227 Type target,
duke@1 3228 ListBuffer<Type> from,
duke@1 3229 ListBuffer<Type> to) throws AdaptFailure {
mcimadamore@138 3230 new Adapter(from, to).adapt(source, target);
mcimadamore@138 3231 }
mcimadamore@138 3232
mcimadamore@138 3233 class Adapter extends SimpleVisitor<Void, Type> {
mcimadamore@138 3234
mcimadamore@138 3235 ListBuffer<Type> from;
mcimadamore@138 3236 ListBuffer<Type> to;
mcimadamore@138 3237 Map<Symbol,Type> mapping;
mcimadamore@138 3238
mcimadamore@138 3239 Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
mcimadamore@138 3240 this.from = from;
mcimadamore@138 3241 this.to = to;
mcimadamore@138 3242 mapping = new HashMap<Symbol,Type>();
duke@1 3243 }
mcimadamore@138 3244
mcimadamore@138 3245 public void adapt(Type source, Type target) throws AdaptFailure {
mcimadamore@138 3246 visit(source, target);
mcimadamore@138 3247 List<Type> fromList = from.toList();
mcimadamore@138 3248 List<Type> toList = to.toList();
mcimadamore@138 3249 while (!fromList.isEmpty()) {
mcimadamore@138 3250 Type val = mapping.get(fromList.head.tsym);
mcimadamore@138 3251 if (toList.head != val)
mcimadamore@138 3252 toList.head = val;
mcimadamore@138 3253 fromList = fromList.tail;
mcimadamore@138 3254 toList = toList.tail;
mcimadamore@138 3255 }
mcimadamore@138 3256 }
mcimadamore@138 3257
mcimadamore@138 3258 @Override
mcimadamore@138 3259 public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
mcimadamore@138 3260 if (target.tag == CLASS)
mcimadamore@138 3261 adaptRecursive(source.allparams(), target.allparams());
mcimadamore@138 3262 return null;
mcimadamore@138 3263 }
mcimadamore@138 3264
mcimadamore@138 3265 @Override
mcimadamore@138 3266 public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
mcimadamore@138 3267 if (target.tag == ARRAY)
mcimadamore@138 3268 adaptRecursive(elemtype(source), elemtype(target));
mcimadamore@138 3269 return null;
mcimadamore@138 3270 }
mcimadamore@138 3271
mcimadamore@138 3272 @Override
mcimadamore@138 3273 public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
mcimadamore@138 3274 if (source.isExtendsBound())
mcimadamore@138 3275 adaptRecursive(upperBound(source), upperBound(target));
mcimadamore@138 3276 else if (source.isSuperBound())
mcimadamore@138 3277 adaptRecursive(lowerBound(source), lowerBound(target));
mcimadamore@138 3278 return null;
mcimadamore@138 3279 }
mcimadamore@138 3280
mcimadamore@138 3281 @Override
mcimadamore@138 3282 public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
mcimadamore@138 3283 // Check to see if there is
mcimadamore@138 3284 // already a mapping for $source$, in which case
mcimadamore@138 3285 // the old mapping will be merged with the new
mcimadamore@138 3286 Type val = mapping.get(source.tsym);
mcimadamore@138 3287 if (val != null) {
mcimadamore@138 3288 if (val.isSuperBound() && target.isSuperBound()) {
mcimadamore@138 3289 val = isSubtype(lowerBound(val), lowerBound(target))
mcimadamore@138 3290 ? target : val;
mcimadamore@138 3291 } else if (val.isExtendsBound() && target.isExtendsBound()) {
mcimadamore@138 3292 val = isSubtype(upperBound(val), upperBound(target))
mcimadamore@138 3293 ? val : target;
mcimadamore@138 3294 } else if (!isSameType(val, target)) {
mcimadamore@138 3295 throw new AdaptFailure();
duke@1 3296 }
mcimadamore@138 3297 } else {
mcimadamore@138 3298 val = target;
mcimadamore@138 3299 from.append(source);
mcimadamore@138 3300 to.append(target);
mcimadamore@138 3301 }
mcimadamore@138 3302 mapping.put(source.tsym, val);
mcimadamore@138 3303 return null;
mcimadamore@138 3304 }
mcimadamore@138 3305
mcimadamore@138 3306 @Override
mcimadamore@138 3307 public Void visitType(Type source, Type target) {
mcimadamore@138 3308 return null;
mcimadamore@138 3309 }
mcimadamore@138 3310
mcimadamore@138 3311 private Set<TypePair> cache = new HashSet<TypePair>();
mcimadamore@138 3312
mcimadamore@138 3313 private void adaptRecursive(Type source, Type target) {
mcimadamore@138 3314 TypePair pair = new TypePair(source, target);
mcimadamore@138 3315 if (cache.add(pair)) {
mcimadamore@138 3316 try {
mcimadamore@138 3317 visit(source, target);
mcimadamore@138 3318 } finally {
mcimadamore@138 3319 cache.remove(pair);
duke@1 3320 }
duke@1 3321 }
duke@1 3322 }
mcimadamore@138 3323
mcimadamore@138 3324 private void adaptRecursive(List<Type> source, List<Type> target) {
mcimadamore@138 3325 if (source.length() == target.length()) {
mcimadamore@138 3326 while (source.nonEmpty()) {
mcimadamore@138 3327 adaptRecursive(source.head, target.head);
mcimadamore@138 3328 source = source.tail;
mcimadamore@138 3329 target = target.tail;
mcimadamore@138 3330 }
duke@1 3331 }
duke@1 3332 }
duke@1 3333 }
duke@1 3334
mcimadamore@138 3335 public static class AdaptFailure extends RuntimeException {
mcimadamore@138 3336 static final long serialVersionUID = -7490231548272701566L;
mcimadamore@138 3337 }
mcimadamore@138 3338
duke@1 3339 private void adaptSelf(Type t,
duke@1 3340 ListBuffer<Type> from,
duke@1 3341 ListBuffer<Type> to) {
duke@1 3342 try {
duke@1 3343 //if (t.tsym.type != t)
duke@1 3344 adapt(t.tsym.type, t, from, to);
duke@1 3345 } catch (AdaptFailure ex) {
duke@1 3346 // Adapt should never fail calculating a mapping from
duke@1 3347 // t.tsym.type to t as there can be no merge problem.
duke@1 3348 throw new AssertionError(ex);
duke@1 3349 }
duke@1 3350 }
mcimadamore@138 3351 // </editor-fold>
duke@1 3352
duke@1 3353 /**
duke@1 3354 * Rewrite all type variables (universal quantifiers) in the given
duke@1 3355 * type to wildcards (existential quantifiers). This is used to
duke@1 3356 * determine if a cast is allowed. For example, if high is true
duke@1 3357 * and {@code T <: Number}, then {@code List<T>} is rewritten to
duke@1 3358 * {@code List<? extends Number>}. Since {@code List<Integer> <:
duke@1 3359 * List<? extends Number>} a {@code List<T>} can be cast to {@code
duke@1 3360 * List<Integer>} with a warning.
duke@1 3361 * @param t a type
duke@1 3362 * @param high if true return an upper bound; otherwise a lower
duke@1 3363 * bound
duke@1 3364 * @param rewriteTypeVars only rewrite captured wildcards if false;
duke@1 3365 * otherwise rewrite all type variables
duke@1 3366 * @return the type rewritten with wildcards (existential
duke@1 3367 * quantifiers) only
duke@1 3368 */
duke@1 3369 private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
duke@1 3370 ListBuffer<Type> from = new ListBuffer<Type>();
duke@1 3371 ListBuffer<Type> to = new ListBuffer<Type>();
duke@1 3372 adaptSelf(t, from, to);
duke@1 3373 ListBuffer<Type> rewritten = new ListBuffer<Type>();
duke@1 3374 List<Type> formals = from.toList();
duke@1 3375 boolean changed = false;
duke@1 3376 for (Type arg : to.toList()) {
duke@1 3377 Type bound;
duke@1 3378 if (rewriteTypeVars && arg.tag == TYPEVAR) {
duke@1 3379 TypeVar tv = (TypeVar)arg;
duke@1 3380 bound = high ? tv.bound : syms.botType;
duke@1 3381 } else {
duke@1 3382 bound = high ? upperBound(arg) : lowerBound(arg);
duke@1 3383 }
duke@1 3384 Type newarg = bound;
duke@1 3385 if (arg != bound) {
duke@1 3386 changed = true;
duke@1 3387 newarg = high ? makeExtendsWildcard(bound, (TypeVar)formals.head)
duke@1 3388 : makeSuperWildcard(bound, (TypeVar)formals.head);
duke@1 3389 }
duke@1 3390 rewritten.append(newarg);
duke@1 3391 formals = formals.tail;
duke@1 3392 }
duke@1 3393 if (changed)
duke@1 3394 return subst(t.tsym.type, from.toList(), rewritten.toList());
duke@1 3395 else
duke@1 3396 return t;
duke@1 3397 }
duke@1 3398
duke@1 3399 /**
duke@1 3400 * Create a wildcard with the given upper (extends) bound; create
duke@1 3401 * an unbounded wildcard if bound is Object.
duke@1 3402 *
duke@1 3403 * @param bound the upper bound
duke@1 3404 * @param formal the formal type parameter that will be
duke@1 3405 * substituted by the wildcard
duke@1 3406 */
duke@1 3407 private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
duke@1 3408 if (bound == syms.objectType) {
duke@1 3409 return new WildcardType(syms.objectType,
duke@1 3410 BoundKind.UNBOUND,
duke@1 3411 syms.boundClass,
duke@1 3412 formal);
duke@1 3413 } else {
duke@1 3414 return new WildcardType(bound,
duke@1 3415 BoundKind.EXTENDS,
duke@1 3416 syms.boundClass,
duke@1 3417 formal);
duke@1 3418 }
duke@1 3419 }
duke@1 3420
duke@1 3421 /**
duke@1 3422 * Create a wildcard with the given lower (super) bound; create an
duke@1 3423 * unbounded wildcard if bound is bottom (type of {@code null}).
duke@1 3424 *
duke@1 3425 * @param bound the lower bound
duke@1 3426 * @param formal the formal type parameter that will be
duke@1 3427 * substituted by the wildcard
duke@1 3428 */
duke@1 3429 private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
duke@1 3430 if (bound.tag == BOT) {
duke@1 3431 return new WildcardType(syms.objectType,
duke@1 3432 BoundKind.UNBOUND,
duke@1 3433 syms.boundClass,
duke@1 3434 formal);
duke@1 3435 } else {
duke@1 3436 return new WildcardType(bound,
duke@1 3437 BoundKind.SUPER,
duke@1 3438 syms.boundClass,
duke@1 3439 formal);
duke@1 3440 }
duke@1 3441 }
duke@1 3442
duke@1 3443 /**
duke@1 3444 * A wrapper for a type that allows use in sets.
duke@1 3445 */
duke@1 3446 class SingletonType {
duke@1 3447 final Type t;
duke@1 3448 SingletonType(Type t) {
duke@1 3449 this.t = t;
duke@1 3450 }
duke@1 3451 public int hashCode() {
duke@1 3452 return Types.this.hashCode(t);
duke@1 3453 }
duke@1 3454 public boolean equals(Object obj) {
duke@1 3455 return (obj instanceof SingletonType) &&
duke@1 3456 isSameType(t, ((SingletonType)obj).t);
duke@1 3457 }
duke@1 3458 public String toString() {
duke@1 3459 return t.toString();
duke@1 3460 }
duke@1 3461 }
duke@1 3462 // </editor-fold>
duke@1 3463
duke@1 3464 // <editor-fold defaultstate="collapsed" desc="Visitors">
duke@1 3465 /**
duke@1 3466 * A default visitor for types. All visitor methods except
duke@1 3467 * visitType are implemented by delegating to visitType. Concrete
duke@1 3468 * subclasses must provide an implementation of visitType and can
duke@1 3469 * override other methods as needed.
duke@1 3470 *
duke@1 3471 * @param <R> the return type of the operation implemented by this
duke@1 3472 * visitor; use Void if no return type is needed.
duke@1 3473 * @param <S> the type of the second argument (the first being the
duke@1 3474 * type itself) of the operation implemented by this visitor; use
duke@1 3475 * Void if a second argument is not needed.
duke@1 3476 */
duke@1 3477 public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
duke@1 3478 final public R visit(Type t, S s) { return t.accept(this, s); }
duke@1 3479 public R visitClassType(ClassType t, S s) { return visitType(t, s); }
duke@1 3480 public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
duke@1 3481 public R visitArrayType(ArrayType t, S s) { return visitType(t, s); }
duke@1 3482 public R visitMethodType(MethodType t, S s) { return visitType(t, s); }
duke@1 3483 public R visitPackageType(PackageType t, S s) { return visitType(t, s); }
duke@1 3484 public R visitTypeVar(TypeVar t, S s) { return visitType(t, s); }
duke@1 3485 public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
duke@1 3486 public R visitForAll(ForAll t, S s) { return visitType(t, s); }
duke@1 3487 public R visitUndetVar(UndetVar t, S s) { return visitType(t, s); }
duke@1 3488 public R visitErrorType(ErrorType t, S s) { return visitType(t, s); }
duke@1 3489 }
duke@1 3490
duke@1 3491 /**
mcimadamore@121 3492 * A default visitor for symbols. All visitor methods except
mcimadamore@121 3493 * visitSymbol are implemented by delegating to visitSymbol. Concrete
mcimadamore@121 3494 * subclasses must provide an implementation of visitSymbol and can
mcimadamore@121 3495 * override other methods as needed.
mcimadamore@121 3496 *
mcimadamore@121 3497 * @param <R> the return type of the operation implemented by this
mcimadamore@121 3498 * visitor; use Void if no return type is needed.
mcimadamore@121 3499 * @param <S> the type of the second argument (the first being the
mcimadamore@121 3500 * symbol itself) of the operation implemented by this visitor; use
mcimadamore@121 3501 * Void if a second argument is not needed.
mcimadamore@121 3502 */
mcimadamore@121 3503 public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
mcimadamore@121 3504 final public R visit(Symbol s, S arg) { return s.accept(this, arg); }
mcimadamore@121 3505 public R visitClassSymbol(ClassSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3506 public R visitMethodSymbol(MethodSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3507 public R visitOperatorSymbol(OperatorSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3508 public R visitPackageSymbol(PackageSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3509 public R visitTypeSymbol(TypeSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3510 public R visitVarSymbol(VarSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3511 }
mcimadamore@121 3512
mcimadamore@121 3513 /**
duke@1 3514 * A <em>simple</em> visitor for types. This visitor is simple as
duke@1 3515 * captured wildcards, for-all types (generic methods), and
duke@1 3516 * undetermined type variables (part of inference) are hidden.
duke@1 3517 * Captured wildcards are hidden by treating them as type
duke@1 3518 * variables and the rest are hidden by visiting their qtypes.
duke@1 3519 *
duke@1 3520 * @param <R> the return type of the operation implemented by this
duke@1 3521 * visitor; use Void if no return type is needed.
duke@1 3522 * @param <S> the type of the second argument (the first being the
duke@1 3523 * type itself) of the operation implemented by this visitor; use
duke@1 3524 * Void if a second argument is not needed.
duke@1 3525 */
duke@1 3526 public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
duke@1 3527 @Override
duke@1 3528 public R visitCapturedType(CapturedType t, S s) {
duke@1 3529 return visitTypeVar(t, s);
duke@1 3530 }
duke@1 3531 @Override
duke@1 3532 public R visitForAll(ForAll t, S s) {
duke@1 3533 return visit(t.qtype, s);
duke@1 3534 }
duke@1 3535 @Override
duke@1 3536 public R visitUndetVar(UndetVar t, S s) {
duke@1 3537 return visit(t.qtype, s);
duke@1 3538 }
duke@1 3539 }
duke@1 3540
duke@1 3541 /**
duke@1 3542 * A plain relation on types. That is a 2-ary function on the
duke@1 3543 * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
duke@1 3544 * <!-- In plain text: Type x Type -> Boolean -->
duke@1 3545 */
duke@1 3546 public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
duke@1 3547
duke@1 3548 /**
duke@1 3549 * A convenience visitor for implementing operations that only
duke@1 3550 * require one argument (the type itself), that is, unary
duke@1 3551 * operations.
duke@1 3552 *
duke@1 3553 * @param <R> the return type of the operation implemented by this
duke@1 3554 * visitor; use Void if no return type is needed.
duke@1 3555 */
duke@1 3556 public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
duke@1 3557 final public R visit(Type t) { return t.accept(this, null); }
duke@1 3558 }
duke@1 3559
duke@1 3560 /**
duke@1 3561 * A visitor for implementing a mapping from types to types. The
duke@1 3562 * default behavior of this class is to implement the identity
duke@1 3563 * mapping (mapping a type to itself). This can be overridden in
duke@1 3564 * subclasses.
duke@1 3565 *
duke@1 3566 * @param <S> the type of the second argument (the first being the
duke@1 3567 * type itself) of this mapping; use Void if a second argument is
duke@1 3568 * not needed.
duke@1 3569 */
duke@1 3570 public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
duke@1 3571 final public Type visit(Type t) { return t.accept(this, null); }
duke@1 3572 public Type visitType(Type t, S s) { return t; }
duke@1 3573 }
duke@1 3574 // </editor-fold>
duke@1 3575 }

mercurial