src/share/classes/com/sun/tools/javac/code/Types.java

Mon, 25 Apr 2011 15:56:09 -0700

author
jjg
date
Mon, 25 Apr 2011 15:56:09 -0700
changeset 984
4c5f13798b8d
parent 972
694ff82ca68e
child 991
1092b67b3cad
permissions
-rw-r--r--

7038363: cast from object to primitive should be for source >= 1.7
Reviewed-by: mcimadamore

duke@1 1 /*
jjg@816 2 * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.code;
duke@1 27
mcimadamore@341 28 import java.lang.ref.SoftReference;
duke@1 29 import java.util.*;
duke@1 30
duke@1 31 import com.sun.tools.javac.util.*;
duke@1 32 import com.sun.tools.javac.util.List;
duke@1 33
duke@1 34 import com.sun.tools.javac.jvm.ClassReader;
jjg@657 35 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
mcimadamore@795 36 import com.sun.tools.javac.code.Lint.LintCategory;
duke@1 37 import com.sun.tools.javac.comp.Check;
duke@1 38
mcimadamore@858 39 import static com.sun.tools.javac.code.Scope.*;
duke@1 40 import static com.sun.tools.javac.code.Type.*;
duke@1 41 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 42 import static com.sun.tools.javac.code.Symbol.*;
duke@1 43 import static com.sun.tools.javac.code.Flags.*;
duke@1 44 import static com.sun.tools.javac.code.BoundKind.*;
duke@1 45 import static com.sun.tools.javac.util.ListBuffer.lb;
duke@1 46
duke@1 47 /**
duke@1 48 * Utility class containing various operations on types.
duke@1 49 *
duke@1 50 * <p>Unless other names are more illustrative, the following naming
duke@1 51 * conventions should be observed in this file:
duke@1 52 *
duke@1 53 * <dl>
duke@1 54 * <dt>t</dt>
duke@1 55 * <dd>If the first argument to an operation is a type, it should be named t.</dd>
duke@1 56 * <dt>s</dt>
duke@1 57 * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
duke@1 58 * <dt>ts</dt>
duke@1 59 * <dd>If an operations takes a list of types, the first should be named ts.</dd>
duke@1 60 * <dt>ss</dt>
duke@1 61 * <dd>A second list of types should be named ss.</dd>
duke@1 62 * </dl>
duke@1 63 *
jjg@581 64 * <p><b>This is NOT part of any supported API.
duke@1 65 * If you write code that depends on this, you do so at your own risk.
duke@1 66 * This code and its internal interfaces are subject to change or
duke@1 67 * deletion without notice.</b>
duke@1 68 */
duke@1 69 public class Types {
duke@1 70 protected static final Context.Key<Types> typesKey =
duke@1 71 new Context.Key<Types>();
duke@1 72
duke@1 73 final Symtab syms;
mcimadamore@136 74 final JavacMessages messages;
jjg@113 75 final Names names;
duke@1 76 final boolean allowBoxing;
jjg@984 77 final boolean allowCovariantReturns;
jjg@984 78 final boolean allowObjectToPrimitiveCast;
duke@1 79 final ClassReader reader;
duke@1 80 final Check chk;
duke@1 81 List<Warner> warnStack = List.nil();
duke@1 82 final Name capturedName;
duke@1 83
duke@1 84 // <editor-fold defaultstate="collapsed" desc="Instantiating">
duke@1 85 public static Types instance(Context context) {
duke@1 86 Types instance = context.get(typesKey);
duke@1 87 if (instance == null)
duke@1 88 instance = new Types(context);
duke@1 89 return instance;
duke@1 90 }
duke@1 91
duke@1 92 protected Types(Context context) {
duke@1 93 context.put(typesKey, this);
duke@1 94 syms = Symtab.instance(context);
jjg@113 95 names = Names.instance(context);
jjg@984 96 Source source = Source.instance(context);
jjg@984 97 allowBoxing = source.allowBoxing();
jjg@984 98 allowCovariantReturns = source.allowCovariantReturns();
jjg@984 99 allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
duke@1 100 reader = ClassReader.instance(context);
duke@1 101 chk = Check.instance(context);
duke@1 102 capturedName = names.fromString("<captured wildcard>");
mcimadamore@136 103 messages = JavacMessages.instance(context);
duke@1 104 }
duke@1 105 // </editor-fold>
duke@1 106
duke@1 107 // <editor-fold defaultstate="collapsed" desc="upperBound">
duke@1 108 /**
duke@1 109 * The "rvalue conversion".<br>
duke@1 110 * The upper bound of most types is the type
duke@1 111 * itself. Wildcards, on the other hand have upper
duke@1 112 * and lower bounds.
duke@1 113 * @param t a type
duke@1 114 * @return the upper bound of the given type
duke@1 115 */
duke@1 116 public Type upperBound(Type t) {
duke@1 117 return upperBound.visit(t);
duke@1 118 }
duke@1 119 // where
duke@1 120 private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
duke@1 121
duke@1 122 @Override
duke@1 123 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 124 if (t.isSuperBound())
duke@1 125 return t.bound == null ? syms.objectType : t.bound.bound;
duke@1 126 else
duke@1 127 return visit(t.type);
duke@1 128 }
duke@1 129
duke@1 130 @Override
duke@1 131 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 132 return visit(t.bound);
duke@1 133 }
duke@1 134 };
duke@1 135 // </editor-fold>
duke@1 136
duke@1 137 // <editor-fold defaultstate="collapsed" desc="lowerBound">
duke@1 138 /**
duke@1 139 * The "lvalue conversion".<br>
duke@1 140 * The lower bound of most types is the type
duke@1 141 * itself. Wildcards, on the other hand have upper
duke@1 142 * and lower bounds.
duke@1 143 * @param t a type
duke@1 144 * @return the lower bound of the given type
duke@1 145 */
duke@1 146 public Type lowerBound(Type t) {
duke@1 147 return lowerBound.visit(t);
duke@1 148 }
duke@1 149 // where
duke@1 150 private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
duke@1 151
duke@1 152 @Override
duke@1 153 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 154 return t.isExtendsBound() ? syms.botType : visit(t.type);
duke@1 155 }
duke@1 156
duke@1 157 @Override
duke@1 158 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 159 return visit(t.getLowerBound());
duke@1 160 }
duke@1 161 };
duke@1 162 // </editor-fold>
duke@1 163
duke@1 164 // <editor-fold defaultstate="collapsed" desc="isUnbounded">
duke@1 165 /**
duke@1 166 * Checks that all the arguments to a class are unbounded
duke@1 167 * wildcards or something else that doesn't make any restrictions
duke@1 168 * on the arguments. If a class isUnbounded, a raw super- or
duke@1 169 * subclass can be cast to it without a warning.
duke@1 170 * @param t a type
duke@1 171 * @return true iff the given type is unbounded or raw
duke@1 172 */
duke@1 173 public boolean isUnbounded(Type t) {
duke@1 174 return isUnbounded.visit(t);
duke@1 175 }
duke@1 176 // where
duke@1 177 private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
duke@1 178
duke@1 179 public Boolean visitType(Type t, Void ignored) {
duke@1 180 return true;
duke@1 181 }
duke@1 182
duke@1 183 @Override
duke@1 184 public Boolean visitClassType(ClassType t, Void ignored) {
duke@1 185 List<Type> parms = t.tsym.type.allparams();
duke@1 186 List<Type> args = t.allparams();
duke@1 187 while (parms.nonEmpty()) {
duke@1 188 WildcardType unb = new WildcardType(syms.objectType,
duke@1 189 BoundKind.UNBOUND,
duke@1 190 syms.boundClass,
duke@1 191 (TypeVar)parms.head);
duke@1 192 if (!containsType(args.head, unb))
duke@1 193 return false;
duke@1 194 parms = parms.tail;
duke@1 195 args = args.tail;
duke@1 196 }
duke@1 197 return true;
duke@1 198 }
duke@1 199 };
duke@1 200 // </editor-fold>
duke@1 201
duke@1 202 // <editor-fold defaultstate="collapsed" desc="asSub">
duke@1 203 /**
duke@1 204 * Return the least specific subtype of t that starts with symbol
duke@1 205 * sym. If none exists, return null. The least specific subtype
duke@1 206 * is determined as follows:
duke@1 207 *
duke@1 208 * <p>If there is exactly one parameterized instance of sym that is a
duke@1 209 * subtype of t, that parameterized instance is returned.<br>
duke@1 210 * Otherwise, if the plain type or raw type `sym' is a subtype of
duke@1 211 * type t, the type `sym' itself is returned. Otherwise, null is
duke@1 212 * returned.
duke@1 213 */
duke@1 214 public Type asSub(Type t, Symbol sym) {
duke@1 215 return asSub.visit(t, sym);
duke@1 216 }
duke@1 217 // where
duke@1 218 private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
duke@1 219
duke@1 220 public Type visitType(Type t, Symbol sym) {
duke@1 221 return null;
duke@1 222 }
duke@1 223
duke@1 224 @Override
duke@1 225 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 226 if (t.tsym == sym)
duke@1 227 return t;
duke@1 228 Type base = asSuper(sym.type, t.tsym);
duke@1 229 if (base == null)
duke@1 230 return null;
duke@1 231 ListBuffer<Type> from = new ListBuffer<Type>();
duke@1 232 ListBuffer<Type> to = new ListBuffer<Type>();
duke@1 233 try {
duke@1 234 adapt(base, t, from, to);
duke@1 235 } catch (AdaptFailure ex) {
duke@1 236 return null;
duke@1 237 }
duke@1 238 Type res = subst(sym.type, from.toList(), to.toList());
duke@1 239 if (!isSubtype(res, t))
duke@1 240 return null;
duke@1 241 ListBuffer<Type> openVars = new ListBuffer<Type>();
duke@1 242 for (List<Type> l = sym.type.allparams();
duke@1 243 l.nonEmpty(); l = l.tail)
duke@1 244 if (res.contains(l.head) && !t.contains(l.head))
duke@1 245 openVars.append(l.head);
duke@1 246 if (openVars.nonEmpty()) {
duke@1 247 if (t.isRaw()) {
duke@1 248 // The subtype of a raw type is raw
duke@1 249 res = erasure(res);
duke@1 250 } else {
duke@1 251 // Unbound type arguments default to ?
duke@1 252 List<Type> opens = openVars.toList();
duke@1 253 ListBuffer<Type> qs = new ListBuffer<Type>();
duke@1 254 for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
duke@1 255 qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
duke@1 256 }
duke@1 257 res = subst(res, opens, qs.toList());
duke@1 258 }
duke@1 259 }
duke@1 260 return res;
duke@1 261 }
duke@1 262
duke@1 263 @Override
duke@1 264 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 265 return t;
duke@1 266 }
duke@1 267 };
duke@1 268 // </editor-fold>
duke@1 269
duke@1 270 // <editor-fold defaultstate="collapsed" desc="isConvertible">
duke@1 271 /**
duke@1 272 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 273 * convertions to s?
duke@1 274 */
duke@1 275 public boolean isConvertible(Type t, Type s, Warner warn) {
duke@1 276 boolean tPrimitive = t.isPrimitive();
duke@1 277 boolean sPrimitive = s.isPrimitive();
mcimadamore@795 278 if (tPrimitive == sPrimitive) {
mcimadamore@795 279 checkUnsafeVarargsConversion(t, s, warn);
duke@1 280 return isSubtypeUnchecked(t, s, warn);
mcimadamore@795 281 }
duke@1 282 if (!allowBoxing) return false;
duke@1 283 return tPrimitive
duke@1 284 ? isSubtype(boxedClass(t).type, s)
duke@1 285 : isSubtype(unboxedType(t), s);
duke@1 286 }
mcimadamore@795 287 //where
mcimadamore@795 288 private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
mcimadamore@795 289 if (t.tag != ARRAY || isReifiable(t)) return;
mcimadamore@795 290 ArrayType from = (ArrayType)t;
mcimadamore@795 291 boolean shouldWarn = false;
mcimadamore@795 292 switch (s.tag) {
mcimadamore@795 293 case ARRAY:
mcimadamore@795 294 ArrayType to = (ArrayType)s;
mcimadamore@795 295 shouldWarn = from.isVarargs() &&
mcimadamore@795 296 !to.isVarargs() &&
mcimadamore@795 297 !isReifiable(from);
mcimadamore@795 298 break;
mcimadamore@795 299 case CLASS:
mcimadamore@795 300 shouldWarn = from.isVarargs() &&
mcimadamore@795 301 isSubtype(from, s);
mcimadamore@795 302 break;
mcimadamore@795 303 }
mcimadamore@795 304 if (shouldWarn) {
mcimadamore@795 305 warn.warn(LintCategory.VARARGS);
mcimadamore@795 306 }
mcimadamore@795 307 }
duke@1 308
duke@1 309 /**
duke@1 310 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 311 * convertions to s?
duke@1 312 */
duke@1 313 public boolean isConvertible(Type t, Type s) {
duke@1 314 return isConvertible(t, s, Warner.noWarnings);
duke@1 315 }
duke@1 316 // </editor-fold>
duke@1 317
duke@1 318 // <editor-fold defaultstate="collapsed" desc="isSubtype">
duke@1 319 /**
duke@1 320 * Is t an unchecked subtype of s?
duke@1 321 */
duke@1 322 public boolean isSubtypeUnchecked(Type t, Type s) {
duke@1 323 return isSubtypeUnchecked(t, s, Warner.noWarnings);
duke@1 324 }
duke@1 325 /**
duke@1 326 * Is t an unchecked subtype of s?
duke@1 327 */
duke@1 328 public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
duke@1 329 if (t.tag == ARRAY && s.tag == ARRAY) {
mcimadamore@795 330 if (((ArrayType)t).elemtype.tag <= lastBaseTag) {
mcimadamore@795 331 return isSameType(elemtype(t), elemtype(s));
mcimadamore@795 332 } else {
mcimadamore@795 333 ArrayType from = (ArrayType)t;
mcimadamore@795 334 ArrayType to = (ArrayType)s;
mcimadamore@795 335 if (from.isVarargs() &&
mcimadamore@795 336 !to.isVarargs() &&
mcimadamore@795 337 !isReifiable(from)) {
mcimadamore@795 338 warn.warn(LintCategory.VARARGS);
mcimadamore@795 339 }
mcimadamore@795 340 return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
mcimadamore@795 341 }
duke@1 342 } else if (isSubtype(t, s)) {
duke@1 343 return true;
mcimadamore@41 344 }
mcimadamore@41 345 else if (t.tag == TYPEVAR) {
mcimadamore@41 346 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
mcimadamore@41 347 }
mcimadamore@93 348 else if (s.tag == UNDETVAR) {
mcimadamore@93 349 UndetVar uv = (UndetVar)s;
mcimadamore@93 350 if (uv.inst != null)
mcimadamore@93 351 return isSubtypeUnchecked(t, uv.inst, warn);
mcimadamore@93 352 }
mcimadamore@41 353 else if (!s.isRaw()) {
duke@1 354 Type t2 = asSuper(t, s.tsym);
duke@1 355 if (t2 != null && t2.isRaw()) {
duke@1 356 if (isReifiable(s))
mcimadamore@795 357 warn.silentWarn(LintCategory.UNCHECKED);
duke@1 358 else
mcimadamore@795 359 warn.warn(LintCategory.UNCHECKED);
duke@1 360 return true;
duke@1 361 }
duke@1 362 }
duke@1 363 return false;
duke@1 364 }
duke@1 365
duke@1 366 /**
duke@1 367 * Is t a subtype of s?<br>
duke@1 368 * (not defined for Method and ForAll types)
duke@1 369 */
duke@1 370 final public boolean isSubtype(Type t, Type s) {
duke@1 371 return isSubtype(t, s, true);
duke@1 372 }
duke@1 373 final public boolean isSubtypeNoCapture(Type t, Type s) {
duke@1 374 return isSubtype(t, s, false);
duke@1 375 }
duke@1 376 public boolean isSubtype(Type t, Type s, boolean capture) {
duke@1 377 if (t == s)
duke@1 378 return true;
duke@1 379
duke@1 380 if (s.tag >= firstPartialTag)
duke@1 381 return isSuperType(s, t);
duke@1 382
mcimadamore@299 383 if (s.isCompound()) {
mcimadamore@299 384 for (Type s2 : interfaces(s).prepend(supertype(s))) {
mcimadamore@299 385 if (!isSubtype(t, s2, capture))
mcimadamore@299 386 return false;
mcimadamore@299 387 }
mcimadamore@299 388 return true;
mcimadamore@299 389 }
mcimadamore@299 390
duke@1 391 Type lower = lowerBound(s);
duke@1 392 if (s != lower)
duke@1 393 return isSubtype(capture ? capture(t) : t, lower, false);
duke@1 394
duke@1 395 return isSubtype.visit(capture ? capture(t) : t, s);
duke@1 396 }
duke@1 397 // where
duke@1 398 private TypeRelation isSubtype = new TypeRelation()
duke@1 399 {
duke@1 400 public Boolean visitType(Type t, Type s) {
duke@1 401 switch (t.tag) {
duke@1 402 case BYTE: case CHAR:
duke@1 403 return (t.tag == s.tag ||
duke@1 404 t.tag + 2 <= s.tag && s.tag <= DOUBLE);
duke@1 405 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
duke@1 406 return t.tag <= s.tag && s.tag <= DOUBLE;
duke@1 407 case BOOLEAN: case VOID:
duke@1 408 return t.tag == s.tag;
duke@1 409 case TYPEVAR:
duke@1 410 return isSubtypeNoCapture(t.getUpperBound(), s);
duke@1 411 case BOT:
duke@1 412 return
duke@1 413 s.tag == BOT || s.tag == CLASS ||
duke@1 414 s.tag == ARRAY || s.tag == TYPEVAR;
duke@1 415 case NONE:
duke@1 416 return false;
duke@1 417 default:
duke@1 418 throw new AssertionError("isSubtype " + t.tag);
duke@1 419 }
duke@1 420 }
duke@1 421
duke@1 422 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 423
duke@1 424 private boolean containsTypeRecursive(Type t, Type s) {
duke@1 425 TypePair pair = new TypePair(t, s);
duke@1 426 if (cache.add(pair)) {
duke@1 427 try {
duke@1 428 return containsType(t.getTypeArguments(),
duke@1 429 s.getTypeArguments());
duke@1 430 } finally {
duke@1 431 cache.remove(pair);
duke@1 432 }
duke@1 433 } else {
duke@1 434 return containsType(t.getTypeArguments(),
duke@1 435 rewriteSupers(s).getTypeArguments());
duke@1 436 }
duke@1 437 }
duke@1 438
duke@1 439 private Type rewriteSupers(Type t) {
duke@1 440 if (!t.isParameterized())
duke@1 441 return t;
duke@1 442 ListBuffer<Type> from = lb();
duke@1 443 ListBuffer<Type> to = lb();
duke@1 444 adaptSelf(t, from, to);
duke@1 445 if (from.isEmpty())
duke@1 446 return t;
duke@1 447 ListBuffer<Type> rewrite = lb();
duke@1 448 boolean changed = false;
duke@1 449 for (Type orig : to.toList()) {
duke@1 450 Type s = rewriteSupers(orig);
duke@1 451 if (s.isSuperBound() && !s.isExtendsBound()) {
duke@1 452 s = new WildcardType(syms.objectType,
duke@1 453 BoundKind.UNBOUND,
duke@1 454 syms.boundClass);
duke@1 455 changed = true;
duke@1 456 } else if (s != orig) {
duke@1 457 s = new WildcardType(upperBound(s),
duke@1 458 BoundKind.EXTENDS,
duke@1 459 syms.boundClass);
duke@1 460 changed = true;
duke@1 461 }
duke@1 462 rewrite.append(s);
duke@1 463 }
duke@1 464 if (changed)
duke@1 465 return subst(t.tsym.type, from.toList(), rewrite.toList());
duke@1 466 else
duke@1 467 return t;
duke@1 468 }
duke@1 469
duke@1 470 @Override
duke@1 471 public Boolean visitClassType(ClassType t, Type s) {
duke@1 472 Type sup = asSuper(t, s.tsym);
duke@1 473 return sup != null
duke@1 474 && sup.tsym == s.tsym
duke@1 475 // You're not allowed to write
duke@1 476 // Vector<Object> vec = new Vector<String>();
duke@1 477 // But with wildcards you can write
duke@1 478 // Vector<? extends Object> vec = new Vector<String>();
duke@1 479 // which means that subtype checking must be done
duke@1 480 // here instead of same-type checking (via containsType).
duke@1 481 && (!s.isParameterized() || containsTypeRecursive(s, sup))
duke@1 482 && isSubtypeNoCapture(sup.getEnclosingType(),
duke@1 483 s.getEnclosingType());
duke@1 484 }
duke@1 485
duke@1 486 @Override
duke@1 487 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 488 if (s.tag == ARRAY) {
duke@1 489 if (t.elemtype.tag <= lastBaseTag)
duke@1 490 return isSameType(t.elemtype, elemtype(s));
duke@1 491 else
duke@1 492 return isSubtypeNoCapture(t.elemtype, elemtype(s));
duke@1 493 }
duke@1 494
duke@1 495 if (s.tag == CLASS) {
duke@1 496 Name sname = s.tsym.getQualifiedName();
duke@1 497 return sname == names.java_lang_Object
duke@1 498 || sname == names.java_lang_Cloneable
duke@1 499 || sname == names.java_io_Serializable;
duke@1 500 }
duke@1 501
duke@1 502 return false;
duke@1 503 }
duke@1 504
duke@1 505 @Override
duke@1 506 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 507 //todo: test against origin needed? or replace with substitution?
duke@1 508 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 509 return true;
duke@1 510
duke@1 511 if (t.inst != null)
duke@1 512 return isSubtypeNoCapture(t.inst, s); // TODO: ", warn"?
duke@1 513
duke@1 514 t.hibounds = t.hibounds.prepend(s);
duke@1 515 return true;
duke@1 516 }
duke@1 517
duke@1 518 @Override
duke@1 519 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 520 return true;
duke@1 521 }
duke@1 522 };
duke@1 523
duke@1 524 /**
duke@1 525 * Is t a subtype of every type in given list `ts'?<br>
duke@1 526 * (not defined for Method and ForAll types)<br>
duke@1 527 * Allows unchecked conversions.
duke@1 528 */
duke@1 529 public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
duke@1 530 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 531 if (!isSubtypeUnchecked(t, l.head, warn))
duke@1 532 return false;
duke@1 533 return true;
duke@1 534 }
duke@1 535
duke@1 536 /**
duke@1 537 * Are corresponding elements of ts subtypes of ss? If lists are
duke@1 538 * of different length, return false.
duke@1 539 */
duke@1 540 public boolean isSubtypes(List<Type> ts, List<Type> ss) {
duke@1 541 while (ts.tail != null && ss.tail != null
duke@1 542 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 543 isSubtype(ts.head, ss.head)) {
duke@1 544 ts = ts.tail;
duke@1 545 ss = ss.tail;
duke@1 546 }
duke@1 547 return ts.tail == null && ss.tail == null;
duke@1 548 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 549 }
duke@1 550
duke@1 551 /**
duke@1 552 * Are corresponding elements of ts subtypes of ss, allowing
duke@1 553 * unchecked conversions? If lists are of different length,
duke@1 554 * return false.
duke@1 555 **/
duke@1 556 public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
duke@1 557 while (ts.tail != null && ss.tail != null
duke@1 558 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 559 isSubtypeUnchecked(ts.head, ss.head, warn)) {
duke@1 560 ts = ts.tail;
duke@1 561 ss = ss.tail;
duke@1 562 }
duke@1 563 return ts.tail == null && ss.tail == null;
duke@1 564 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 565 }
duke@1 566 // </editor-fold>
duke@1 567
duke@1 568 // <editor-fold defaultstate="collapsed" desc="isSuperType">
duke@1 569 /**
duke@1 570 * Is t a supertype of s?
duke@1 571 */
duke@1 572 public boolean isSuperType(Type t, Type s) {
duke@1 573 switch (t.tag) {
duke@1 574 case ERROR:
duke@1 575 return true;
duke@1 576 case UNDETVAR: {
duke@1 577 UndetVar undet = (UndetVar)t;
duke@1 578 if (t == s ||
duke@1 579 undet.qtype == s ||
duke@1 580 s.tag == ERROR ||
duke@1 581 s.tag == BOT) return true;
duke@1 582 if (undet.inst != null)
duke@1 583 return isSubtype(s, undet.inst);
duke@1 584 undet.lobounds = undet.lobounds.prepend(s);
duke@1 585 return true;
duke@1 586 }
duke@1 587 default:
duke@1 588 return isSubtype(s, t);
duke@1 589 }
duke@1 590 }
duke@1 591 // </editor-fold>
duke@1 592
duke@1 593 // <editor-fold defaultstate="collapsed" desc="isSameType">
duke@1 594 /**
duke@1 595 * Are corresponding elements of the lists the same type? If
duke@1 596 * lists are of different length, return false.
duke@1 597 */
duke@1 598 public boolean isSameTypes(List<Type> ts, List<Type> ss) {
duke@1 599 while (ts.tail != null && ss.tail != null
duke@1 600 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 601 isSameType(ts.head, ss.head)) {
duke@1 602 ts = ts.tail;
duke@1 603 ss = ss.tail;
duke@1 604 }
duke@1 605 return ts.tail == null && ss.tail == null;
duke@1 606 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 607 }
duke@1 608
duke@1 609 /**
duke@1 610 * Is t the same type as s?
duke@1 611 */
duke@1 612 public boolean isSameType(Type t, Type s) {
duke@1 613 return isSameType.visit(t, s);
duke@1 614 }
duke@1 615 // where
duke@1 616 private TypeRelation isSameType = new TypeRelation() {
duke@1 617
duke@1 618 public Boolean visitType(Type t, Type s) {
duke@1 619 if (t == s)
duke@1 620 return true;
duke@1 621
duke@1 622 if (s.tag >= firstPartialTag)
duke@1 623 return visit(s, t);
duke@1 624
duke@1 625 switch (t.tag) {
duke@1 626 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 627 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
duke@1 628 return t.tag == s.tag;
mcimadamore@561 629 case TYPEVAR: {
mcimadamore@561 630 if (s.tag == TYPEVAR) {
mcimadamore@561 631 //type-substitution does not preserve type-var types
mcimadamore@561 632 //check that type var symbols and bounds are indeed the same
mcimadamore@561 633 return t.tsym == s.tsym &&
mcimadamore@561 634 visit(t.getUpperBound(), s.getUpperBound());
mcimadamore@561 635 }
mcimadamore@561 636 else {
mcimadamore@561 637 //special case for s == ? super X, where upper(s) = u
mcimadamore@561 638 //check that u == t, where u has been set by Type.withTypeVar
mcimadamore@561 639 return s.isSuperBound() &&
mcimadamore@561 640 !s.isExtendsBound() &&
mcimadamore@561 641 visit(t, upperBound(s));
mcimadamore@561 642 }
mcimadamore@561 643 }
duke@1 644 default:
duke@1 645 throw new AssertionError("isSameType " + t.tag);
duke@1 646 }
duke@1 647 }
duke@1 648
duke@1 649 @Override
duke@1 650 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 651 if (s.tag >= firstPartialTag)
duke@1 652 return visit(s, t);
duke@1 653 else
duke@1 654 return false;
duke@1 655 }
duke@1 656
duke@1 657 @Override
duke@1 658 public Boolean visitClassType(ClassType t, Type s) {
duke@1 659 if (t == s)
duke@1 660 return true;
duke@1 661
duke@1 662 if (s.tag >= firstPartialTag)
duke@1 663 return visit(s, t);
duke@1 664
duke@1 665 if (s.isSuperBound() && !s.isExtendsBound())
duke@1 666 return visit(t, upperBound(s)) && visit(t, lowerBound(s));
duke@1 667
duke@1 668 if (t.isCompound() && s.isCompound()) {
duke@1 669 if (!visit(supertype(t), supertype(s)))
duke@1 670 return false;
duke@1 671
duke@1 672 HashSet<SingletonType> set = new HashSet<SingletonType>();
duke@1 673 for (Type x : interfaces(t))
duke@1 674 set.add(new SingletonType(x));
duke@1 675 for (Type x : interfaces(s)) {
duke@1 676 if (!set.remove(new SingletonType(x)))
duke@1 677 return false;
duke@1 678 }
jjg@789 679 return (set.isEmpty());
duke@1 680 }
duke@1 681 return t.tsym == s.tsym
duke@1 682 && visit(t.getEnclosingType(), s.getEnclosingType())
duke@1 683 && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
duke@1 684 }
duke@1 685
duke@1 686 @Override
duke@1 687 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 688 if (t == s)
duke@1 689 return true;
duke@1 690
duke@1 691 if (s.tag >= firstPartialTag)
duke@1 692 return visit(s, t);
duke@1 693
duke@1 694 return s.tag == ARRAY
duke@1 695 && containsTypeEquivalent(t.elemtype, elemtype(s));
duke@1 696 }
duke@1 697
duke@1 698 @Override
duke@1 699 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 700 // isSameType for methods does not take thrown
duke@1 701 // exceptions into account!
duke@1 702 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
duke@1 703 }
duke@1 704
duke@1 705 @Override
duke@1 706 public Boolean visitPackageType(PackageType t, Type s) {
duke@1 707 return t == s;
duke@1 708 }
duke@1 709
duke@1 710 @Override
duke@1 711 public Boolean visitForAll(ForAll t, Type s) {
duke@1 712 if (s.tag != FORALL)
duke@1 713 return false;
duke@1 714
duke@1 715 ForAll forAll = (ForAll)s;
duke@1 716 return hasSameBounds(t, forAll)
duke@1 717 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 718 }
duke@1 719
duke@1 720 @Override
duke@1 721 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 722 if (s.tag == WILDCARD)
duke@1 723 // FIXME, this might be leftovers from before capture conversion
duke@1 724 return false;
duke@1 725
duke@1 726 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 727 return true;
duke@1 728
duke@1 729 if (t.inst != null)
duke@1 730 return visit(t.inst, s);
duke@1 731
duke@1 732 t.inst = fromUnknownFun.apply(s);
duke@1 733 for (List<Type> l = t.lobounds; l.nonEmpty(); l = l.tail) {
duke@1 734 if (!isSubtype(l.head, t.inst))
duke@1 735 return false;
duke@1 736 }
duke@1 737 for (List<Type> l = t.hibounds; l.nonEmpty(); l = l.tail) {
duke@1 738 if (!isSubtype(t.inst, l.head))
duke@1 739 return false;
duke@1 740 }
duke@1 741 return true;
duke@1 742 }
duke@1 743
duke@1 744 @Override
duke@1 745 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 746 return true;
duke@1 747 }
duke@1 748 };
duke@1 749 // </editor-fold>
duke@1 750
duke@1 751 // <editor-fold defaultstate="collapsed" desc="fromUnknownFun">
duke@1 752 /**
duke@1 753 * A mapping that turns all unknown types in this type to fresh
duke@1 754 * unknown variables.
duke@1 755 */
duke@1 756 public Mapping fromUnknownFun = new Mapping("fromUnknownFun") {
duke@1 757 public Type apply(Type t) {
duke@1 758 if (t.tag == UNKNOWN) return new UndetVar(t);
duke@1 759 else return t.map(this);
duke@1 760 }
duke@1 761 };
duke@1 762 // </editor-fold>
duke@1 763
duke@1 764 // <editor-fold defaultstate="collapsed" desc="Contains Type">
duke@1 765 public boolean containedBy(Type t, Type s) {
duke@1 766 switch (t.tag) {
duke@1 767 case UNDETVAR:
duke@1 768 if (s.tag == WILDCARD) {
duke@1 769 UndetVar undetvar = (UndetVar)t;
mcimadamore@210 770 WildcardType wt = (WildcardType)s;
mcimadamore@210 771 switch(wt.kind) {
mcimadamore@210 772 case UNBOUND: //similar to ? extends Object
mcimadamore@210 773 case EXTENDS: {
mcimadamore@210 774 Type bound = upperBound(s);
mcimadamore@210 775 // We should check the new upper bound against any of the
mcimadamore@210 776 // undetvar's lower bounds.
mcimadamore@210 777 for (Type t2 : undetvar.lobounds) {
mcimadamore@210 778 if (!isSubtype(t2, bound))
mcimadamore@210 779 return false;
mcimadamore@210 780 }
mcimadamore@210 781 undetvar.hibounds = undetvar.hibounds.prepend(bound);
mcimadamore@210 782 break;
mcimadamore@210 783 }
mcimadamore@210 784 case SUPER: {
mcimadamore@210 785 Type bound = lowerBound(s);
mcimadamore@210 786 // We should check the new lower bound against any of the
mcimadamore@210 787 // undetvar's lower bounds.
mcimadamore@210 788 for (Type t2 : undetvar.hibounds) {
mcimadamore@210 789 if (!isSubtype(bound, t2))
mcimadamore@210 790 return false;
mcimadamore@210 791 }
mcimadamore@210 792 undetvar.lobounds = undetvar.lobounds.prepend(bound);
mcimadamore@210 793 break;
mcimadamore@210 794 }
mcimadamore@162 795 }
duke@1 796 return true;
duke@1 797 } else {
duke@1 798 return isSameType(t, s);
duke@1 799 }
duke@1 800 case ERROR:
duke@1 801 return true;
duke@1 802 default:
duke@1 803 return containsType(s, t);
duke@1 804 }
duke@1 805 }
duke@1 806
duke@1 807 boolean containsType(List<Type> ts, List<Type> ss) {
duke@1 808 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 809 && containsType(ts.head, ss.head)) {
duke@1 810 ts = ts.tail;
duke@1 811 ss = ss.tail;
duke@1 812 }
duke@1 813 return ts.isEmpty() && ss.isEmpty();
duke@1 814 }
duke@1 815
duke@1 816 /**
duke@1 817 * Check if t contains s.
duke@1 818 *
duke@1 819 * <p>T contains S if:
duke@1 820 *
duke@1 821 * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
duke@1 822 *
duke@1 823 * <p>This relation is only used by ClassType.isSubtype(), that
duke@1 824 * is,
duke@1 825 *
duke@1 826 * <p>{@code C<S> <: C<T> if T contains S.}
duke@1 827 *
duke@1 828 * <p>Because of F-bounds, this relation can lead to infinite
duke@1 829 * recursion. Thus we must somehow break that recursion. Notice
duke@1 830 * that containsType() is only called from ClassType.isSubtype().
duke@1 831 * Since the arguments have already been checked against their
duke@1 832 * bounds, we know:
duke@1 833 *
duke@1 834 * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
duke@1 835 *
duke@1 836 * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
duke@1 837 *
duke@1 838 * @param t a type
duke@1 839 * @param s a type
duke@1 840 */
duke@1 841 public boolean containsType(Type t, Type s) {
duke@1 842 return containsType.visit(t, s);
duke@1 843 }
duke@1 844 // where
duke@1 845 private TypeRelation containsType = new TypeRelation() {
duke@1 846
duke@1 847 private Type U(Type t) {
duke@1 848 while (t.tag == WILDCARD) {
duke@1 849 WildcardType w = (WildcardType)t;
duke@1 850 if (w.isSuperBound())
duke@1 851 return w.bound == null ? syms.objectType : w.bound.bound;
duke@1 852 else
duke@1 853 t = w.type;
duke@1 854 }
duke@1 855 return t;
duke@1 856 }
duke@1 857
duke@1 858 private Type L(Type t) {
duke@1 859 while (t.tag == WILDCARD) {
duke@1 860 WildcardType w = (WildcardType)t;
duke@1 861 if (w.isExtendsBound())
duke@1 862 return syms.botType;
duke@1 863 else
duke@1 864 t = w.type;
duke@1 865 }
duke@1 866 return t;
duke@1 867 }
duke@1 868
duke@1 869 public Boolean visitType(Type t, Type s) {
duke@1 870 if (s.tag >= firstPartialTag)
duke@1 871 return containedBy(s, t);
duke@1 872 else
duke@1 873 return isSameType(t, s);
duke@1 874 }
duke@1 875
jjg@789 876 // void debugContainsType(WildcardType t, Type s) {
jjg@789 877 // System.err.println();
jjg@789 878 // System.err.format(" does %s contain %s?%n", t, s);
jjg@789 879 // System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
jjg@789 880 // upperBound(s), s, t, U(t),
jjg@789 881 // t.isSuperBound()
jjg@789 882 // || isSubtypeNoCapture(upperBound(s), U(t)));
jjg@789 883 // System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
jjg@789 884 // L(t), t, s, lowerBound(s),
jjg@789 885 // t.isExtendsBound()
jjg@789 886 // || isSubtypeNoCapture(L(t), lowerBound(s)));
jjg@789 887 // System.err.println();
jjg@789 888 // }
duke@1 889
duke@1 890 @Override
duke@1 891 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 892 if (s.tag >= firstPartialTag)
duke@1 893 return containedBy(s, t);
duke@1 894 else {
jjg@789 895 // debugContainsType(t, s);
duke@1 896 return isSameWildcard(t, s)
duke@1 897 || isCaptureOf(s, t)
duke@1 898 || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
duke@1 899 (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
duke@1 900 }
duke@1 901 }
duke@1 902
duke@1 903 @Override
duke@1 904 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 905 if (s.tag != WILDCARD)
duke@1 906 return isSameType(t, s);
duke@1 907 else
duke@1 908 return false;
duke@1 909 }
duke@1 910
duke@1 911 @Override
duke@1 912 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 913 return true;
duke@1 914 }
duke@1 915 };
duke@1 916
duke@1 917 public boolean isCaptureOf(Type s, WildcardType t) {
mcimadamore@79 918 if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
duke@1 919 return false;
duke@1 920 return isSameWildcard(t, ((CapturedType)s).wildcard);
duke@1 921 }
duke@1 922
duke@1 923 public boolean isSameWildcard(WildcardType t, Type s) {
duke@1 924 if (s.tag != WILDCARD)
duke@1 925 return false;
duke@1 926 WildcardType w = (WildcardType)s;
duke@1 927 return w.kind == t.kind && w.type == t.type;
duke@1 928 }
duke@1 929
duke@1 930 public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
duke@1 931 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 932 && containsTypeEquivalent(ts.head, ss.head)) {
duke@1 933 ts = ts.tail;
duke@1 934 ss = ss.tail;
duke@1 935 }
duke@1 936 return ts.isEmpty() && ss.isEmpty();
duke@1 937 }
duke@1 938 // </editor-fold>
duke@1 939
duke@1 940 // <editor-fold defaultstate="collapsed" desc="isCastable">
duke@1 941 public boolean isCastable(Type t, Type s) {
duke@1 942 return isCastable(t, s, Warner.noWarnings);
duke@1 943 }
duke@1 944
duke@1 945 /**
duke@1 946 * Is t is castable to s?<br>
duke@1 947 * s is assumed to be an erased type.<br>
duke@1 948 * (not defined for Method and ForAll types).
duke@1 949 */
duke@1 950 public boolean isCastable(Type t, Type s, Warner warn) {
duke@1 951 if (t == s)
duke@1 952 return true;
duke@1 953
duke@1 954 if (t.isPrimitive() != s.isPrimitive())
jjg@984 955 return allowBoxing && (
jjg@984 956 isConvertible(t, s, warn)
jjg@984 957 || (allowObjectToPrimitiveCast && isConvertible(s, t, warn)));
duke@1 958 if (warn != warnStack.head) {
duke@1 959 try {
duke@1 960 warnStack = warnStack.prepend(warn);
mcimadamore@795 961 checkUnsafeVarargsConversion(t, s, warn);
mcimadamore@185 962 return isCastable.visit(t,s);
duke@1 963 } finally {
duke@1 964 warnStack = warnStack.tail;
duke@1 965 }
duke@1 966 } else {
mcimadamore@185 967 return isCastable.visit(t,s);
duke@1 968 }
duke@1 969 }
duke@1 970 // where
duke@1 971 private TypeRelation isCastable = new TypeRelation() {
duke@1 972
duke@1 973 public Boolean visitType(Type t, Type s) {
duke@1 974 if (s.tag == ERROR)
duke@1 975 return true;
duke@1 976
duke@1 977 switch (t.tag) {
duke@1 978 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 979 case DOUBLE:
duke@1 980 return s.tag <= DOUBLE;
duke@1 981 case BOOLEAN:
duke@1 982 return s.tag == BOOLEAN;
duke@1 983 case VOID:
duke@1 984 return false;
duke@1 985 case BOT:
duke@1 986 return isSubtype(t, s);
duke@1 987 default:
duke@1 988 throw new AssertionError();
duke@1 989 }
duke@1 990 }
duke@1 991
duke@1 992 @Override
duke@1 993 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 994 return isCastable(upperBound(t), s, warnStack.head);
duke@1 995 }
duke@1 996
duke@1 997 @Override
duke@1 998 public Boolean visitClassType(ClassType t, Type s) {
duke@1 999 if (s.tag == ERROR || s.tag == BOT)
duke@1 1000 return true;
duke@1 1001
duke@1 1002 if (s.tag == TYPEVAR) {
mcimadamore@640 1003 if (isCastable(t, s.getUpperBound(), Warner.noWarnings)) {
mcimadamore@795 1004 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1005 return true;
duke@1 1006 } else {
duke@1 1007 return false;
duke@1 1008 }
duke@1 1009 }
duke@1 1010
duke@1 1011 if (t.isCompound()) {
mcimadamore@211 1012 Warner oldWarner = warnStack.head;
mcimadamore@211 1013 warnStack.head = Warner.noWarnings;
duke@1 1014 if (!visit(supertype(t), s))
duke@1 1015 return false;
duke@1 1016 for (Type intf : interfaces(t)) {
duke@1 1017 if (!visit(intf, s))
duke@1 1018 return false;
duke@1 1019 }
mcimadamore@795 1020 if (warnStack.head.hasLint(LintCategory.UNCHECKED))
mcimadamore@795 1021 oldWarner.warn(LintCategory.UNCHECKED);
duke@1 1022 return true;
duke@1 1023 }
duke@1 1024
duke@1 1025 if (s.isCompound()) {
duke@1 1026 // call recursively to reuse the above code
duke@1 1027 return visitClassType((ClassType)s, t);
duke@1 1028 }
duke@1 1029
duke@1 1030 if (s.tag == CLASS || s.tag == ARRAY) {
duke@1 1031 boolean upcast;
duke@1 1032 if ((upcast = isSubtype(erasure(t), erasure(s)))
duke@1 1033 || isSubtype(erasure(s), erasure(t))) {
duke@1 1034 if (!upcast && s.tag == ARRAY) {
duke@1 1035 if (!isReifiable(s))
mcimadamore@795 1036 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1037 return true;
duke@1 1038 } else if (s.isRaw()) {
duke@1 1039 return true;
duke@1 1040 } else if (t.isRaw()) {
duke@1 1041 if (!isUnbounded(s))
mcimadamore@795 1042 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1043 return true;
duke@1 1044 }
duke@1 1045 // Assume |a| <: |b|
duke@1 1046 final Type a = upcast ? t : s;
duke@1 1047 final Type b = upcast ? s : t;
duke@1 1048 final boolean HIGH = true;
duke@1 1049 final boolean LOW = false;
duke@1 1050 final boolean DONT_REWRITE_TYPEVARS = false;
duke@1 1051 Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1052 Type aLow = rewriteQuantifiers(a, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1053 Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1054 Type bLow = rewriteQuantifiers(b, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1055 Type lowSub = asSub(bLow, aLow.tsym);
duke@1 1056 Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1057 if (highSub == null) {
duke@1 1058 final boolean REWRITE_TYPEVARS = true;
duke@1 1059 aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
duke@1 1060 aLow = rewriteQuantifiers(a, LOW, REWRITE_TYPEVARS);
duke@1 1061 bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
duke@1 1062 bLow = rewriteQuantifiers(b, LOW, REWRITE_TYPEVARS);
duke@1 1063 lowSub = asSub(bLow, aLow.tsym);
duke@1 1064 highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1065 }
duke@1 1066 if (highSub != null) {
jjg@816 1067 if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
jjg@816 1068 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
jjg@816 1069 }
mcimadamore@185 1070 if (!disjointTypes(aHigh.allparams(), highSub.allparams())
mcimadamore@185 1071 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
mcimadamore@185 1072 && !disjointTypes(aLow.allparams(), highSub.allparams())
mcimadamore@185 1073 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
mcimadamore@779 1074 if (upcast ? giveWarning(a, b) :
mcimadamore@235 1075 giveWarning(b, a))
mcimadamore@795 1076 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1077 return true;
duke@1 1078 }
duke@1 1079 }
duke@1 1080 if (isReifiable(s))
duke@1 1081 return isSubtypeUnchecked(a, b);
duke@1 1082 else
duke@1 1083 return isSubtypeUnchecked(a, b, warnStack.head);
duke@1 1084 }
duke@1 1085
duke@1 1086 // Sidecast
duke@1 1087 if (s.tag == CLASS) {
duke@1 1088 if ((s.tsym.flags() & INTERFACE) != 0) {
duke@1 1089 return ((t.tsym.flags() & FINAL) == 0)
duke@1 1090 ? sideCast(t, s, warnStack.head)
duke@1 1091 : sideCastFinal(t, s, warnStack.head);
duke@1 1092 } else if ((t.tsym.flags() & INTERFACE) != 0) {
duke@1 1093 return ((s.tsym.flags() & FINAL) == 0)
duke@1 1094 ? sideCast(t, s, warnStack.head)
duke@1 1095 : sideCastFinal(t, s, warnStack.head);
duke@1 1096 } else {
duke@1 1097 // unrelated class types
duke@1 1098 return false;
duke@1 1099 }
duke@1 1100 }
duke@1 1101 }
duke@1 1102 return false;
duke@1 1103 }
duke@1 1104
duke@1 1105 @Override
duke@1 1106 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 1107 switch (s.tag) {
duke@1 1108 case ERROR:
duke@1 1109 case BOT:
duke@1 1110 return true;
duke@1 1111 case TYPEVAR:
duke@1 1112 if (isCastable(s, t, Warner.noWarnings)) {
mcimadamore@795 1113 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1114 return true;
duke@1 1115 } else {
duke@1 1116 return false;
duke@1 1117 }
duke@1 1118 case CLASS:
duke@1 1119 return isSubtype(t, s);
duke@1 1120 case ARRAY:
mcimadamore@786 1121 if (elemtype(t).tag <= lastBaseTag ||
mcimadamore@786 1122 elemtype(s).tag <= lastBaseTag) {
duke@1 1123 return elemtype(t).tag == elemtype(s).tag;
duke@1 1124 } else {
duke@1 1125 return visit(elemtype(t), elemtype(s));
duke@1 1126 }
duke@1 1127 default:
duke@1 1128 return false;
duke@1 1129 }
duke@1 1130 }
duke@1 1131
duke@1 1132 @Override
duke@1 1133 public Boolean visitTypeVar(TypeVar t, Type s) {
duke@1 1134 switch (s.tag) {
duke@1 1135 case ERROR:
duke@1 1136 case BOT:
duke@1 1137 return true;
duke@1 1138 case TYPEVAR:
duke@1 1139 if (isSubtype(t, s)) {
duke@1 1140 return true;
duke@1 1141 } else if (isCastable(t.bound, s, Warner.noWarnings)) {
mcimadamore@795 1142 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1143 return true;
duke@1 1144 } else {
duke@1 1145 return false;
duke@1 1146 }
duke@1 1147 default:
duke@1 1148 return isCastable(t.bound, s, warnStack.head);
duke@1 1149 }
duke@1 1150 }
duke@1 1151
duke@1 1152 @Override
duke@1 1153 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1154 return true;
duke@1 1155 }
duke@1 1156 };
duke@1 1157 // </editor-fold>
duke@1 1158
duke@1 1159 // <editor-fold defaultstate="collapsed" desc="disjointTypes">
duke@1 1160 public boolean disjointTypes(List<Type> ts, List<Type> ss) {
duke@1 1161 while (ts.tail != null && ss.tail != null) {
duke@1 1162 if (disjointType(ts.head, ss.head)) return true;
duke@1 1163 ts = ts.tail;
duke@1 1164 ss = ss.tail;
duke@1 1165 }
duke@1 1166 return false;
duke@1 1167 }
duke@1 1168
duke@1 1169 /**
duke@1 1170 * Two types or wildcards are considered disjoint if it can be
duke@1 1171 * proven that no type can be contained in both. It is
duke@1 1172 * conservative in that it is allowed to say that two types are
duke@1 1173 * not disjoint, even though they actually are.
duke@1 1174 *
duke@1 1175 * The type C<X> is castable to C<Y> exactly if X and Y are not
duke@1 1176 * disjoint.
duke@1 1177 */
duke@1 1178 public boolean disjointType(Type t, Type s) {
duke@1 1179 return disjointType.visit(t, s);
duke@1 1180 }
duke@1 1181 // where
duke@1 1182 private TypeRelation disjointType = new TypeRelation() {
duke@1 1183
duke@1 1184 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 1185
duke@1 1186 public Boolean visitType(Type t, Type s) {
duke@1 1187 if (s.tag == WILDCARD)
duke@1 1188 return visit(s, t);
duke@1 1189 else
duke@1 1190 return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
duke@1 1191 }
duke@1 1192
duke@1 1193 private boolean isCastableRecursive(Type t, Type s) {
duke@1 1194 TypePair pair = new TypePair(t, s);
duke@1 1195 if (cache.add(pair)) {
duke@1 1196 try {
duke@1 1197 return Types.this.isCastable(t, s);
duke@1 1198 } finally {
duke@1 1199 cache.remove(pair);
duke@1 1200 }
duke@1 1201 } else {
duke@1 1202 return true;
duke@1 1203 }
duke@1 1204 }
duke@1 1205
duke@1 1206 private boolean notSoftSubtypeRecursive(Type t, Type s) {
duke@1 1207 TypePair pair = new TypePair(t, s);
duke@1 1208 if (cache.add(pair)) {
duke@1 1209 try {
duke@1 1210 return Types.this.notSoftSubtype(t, s);
duke@1 1211 } finally {
duke@1 1212 cache.remove(pair);
duke@1 1213 }
duke@1 1214 } else {
duke@1 1215 return false;
duke@1 1216 }
duke@1 1217 }
duke@1 1218
duke@1 1219 @Override
duke@1 1220 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 1221 if (t.isUnbound())
duke@1 1222 return false;
duke@1 1223
duke@1 1224 if (s.tag != WILDCARD) {
duke@1 1225 if (t.isExtendsBound())
duke@1 1226 return notSoftSubtypeRecursive(s, t.type);
duke@1 1227 else // isSuperBound()
duke@1 1228 return notSoftSubtypeRecursive(t.type, s);
duke@1 1229 }
duke@1 1230
duke@1 1231 if (s.isUnbound())
duke@1 1232 return false;
duke@1 1233
duke@1 1234 if (t.isExtendsBound()) {
duke@1 1235 if (s.isExtendsBound())
duke@1 1236 return !isCastableRecursive(t.type, upperBound(s));
duke@1 1237 else if (s.isSuperBound())
duke@1 1238 return notSoftSubtypeRecursive(lowerBound(s), t.type);
duke@1 1239 } else if (t.isSuperBound()) {
duke@1 1240 if (s.isExtendsBound())
duke@1 1241 return notSoftSubtypeRecursive(t.type, upperBound(s));
duke@1 1242 }
duke@1 1243 return false;
duke@1 1244 }
duke@1 1245 };
duke@1 1246 // </editor-fold>
duke@1 1247
duke@1 1248 // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
duke@1 1249 /**
duke@1 1250 * Returns the lower bounds of the formals of a method.
duke@1 1251 */
duke@1 1252 public List<Type> lowerBoundArgtypes(Type t) {
duke@1 1253 return map(t.getParameterTypes(), lowerBoundMapping);
duke@1 1254 }
duke@1 1255 private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
duke@1 1256 public Type apply(Type t) {
duke@1 1257 return lowerBound(t);
duke@1 1258 }
duke@1 1259 };
duke@1 1260 // </editor-fold>
duke@1 1261
duke@1 1262 // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
duke@1 1263 /**
duke@1 1264 * This relation answers the question: is impossible that
duke@1 1265 * something of type `t' can be a subtype of `s'? This is
duke@1 1266 * different from the question "is `t' not a subtype of `s'?"
duke@1 1267 * when type variables are involved: Integer is not a subtype of T
duke@1 1268 * where <T extends Number> but it is not true that Integer cannot
duke@1 1269 * possibly be a subtype of T.
duke@1 1270 */
duke@1 1271 public boolean notSoftSubtype(Type t, Type s) {
duke@1 1272 if (t == s) return false;
duke@1 1273 if (t.tag == TYPEVAR) {
duke@1 1274 TypeVar tv = (TypeVar) t;
duke@1 1275 return !isCastable(tv.bound,
mcimadamore@640 1276 relaxBound(s),
duke@1 1277 Warner.noWarnings);
duke@1 1278 }
duke@1 1279 if (s.tag != WILDCARD)
duke@1 1280 s = upperBound(s);
mcimadamore@640 1281
mcimadamore@640 1282 return !isSubtype(t, relaxBound(s));
mcimadamore@640 1283 }
mcimadamore@640 1284
mcimadamore@640 1285 private Type relaxBound(Type t) {
mcimadamore@640 1286 if (t.tag == TYPEVAR) {
mcimadamore@640 1287 while (t.tag == TYPEVAR)
mcimadamore@640 1288 t = t.getUpperBound();
mcimadamore@640 1289 t = rewriteQuantifiers(t, true, true);
mcimadamore@640 1290 }
mcimadamore@640 1291 return t;
duke@1 1292 }
duke@1 1293 // </editor-fold>
duke@1 1294
duke@1 1295 // <editor-fold defaultstate="collapsed" desc="isReifiable">
duke@1 1296 public boolean isReifiable(Type t) {
duke@1 1297 return isReifiable.visit(t);
duke@1 1298 }
duke@1 1299 // where
duke@1 1300 private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
duke@1 1301
duke@1 1302 public Boolean visitType(Type t, Void ignored) {
duke@1 1303 return true;
duke@1 1304 }
duke@1 1305
duke@1 1306 @Override
duke@1 1307 public Boolean visitClassType(ClassType t, Void ignored) {
mcimadamore@356 1308 if (t.isCompound())
mcimadamore@356 1309 return false;
mcimadamore@356 1310 else {
mcimadamore@356 1311 if (!t.isParameterized())
mcimadamore@356 1312 return true;
mcimadamore@356 1313
mcimadamore@356 1314 for (Type param : t.allparams()) {
mcimadamore@356 1315 if (!param.isUnbound())
mcimadamore@356 1316 return false;
mcimadamore@356 1317 }
duke@1 1318 return true;
duke@1 1319 }
duke@1 1320 }
duke@1 1321
duke@1 1322 @Override
duke@1 1323 public Boolean visitArrayType(ArrayType t, Void ignored) {
duke@1 1324 return visit(t.elemtype);
duke@1 1325 }
duke@1 1326
duke@1 1327 @Override
duke@1 1328 public Boolean visitTypeVar(TypeVar t, Void ignored) {
duke@1 1329 return false;
duke@1 1330 }
duke@1 1331 };
duke@1 1332 // </editor-fold>
duke@1 1333
duke@1 1334 // <editor-fold defaultstate="collapsed" desc="Array Utils">
duke@1 1335 public boolean isArray(Type t) {
duke@1 1336 while (t.tag == WILDCARD)
duke@1 1337 t = upperBound(t);
duke@1 1338 return t.tag == ARRAY;
duke@1 1339 }
duke@1 1340
duke@1 1341 /**
duke@1 1342 * The element type of an array.
duke@1 1343 */
duke@1 1344 public Type elemtype(Type t) {
duke@1 1345 switch (t.tag) {
duke@1 1346 case WILDCARD:
duke@1 1347 return elemtype(upperBound(t));
duke@1 1348 case ARRAY:
duke@1 1349 return ((ArrayType)t).elemtype;
duke@1 1350 case FORALL:
duke@1 1351 return elemtype(((ForAll)t).qtype);
duke@1 1352 case ERROR:
duke@1 1353 return t;
duke@1 1354 default:
duke@1 1355 return null;
duke@1 1356 }
duke@1 1357 }
duke@1 1358
mcimadamore@787 1359 public Type elemtypeOrType(Type t) {
mcimadamore@787 1360 Type elemtype = elemtype(t);
mcimadamore@787 1361 return elemtype != null ?
mcimadamore@787 1362 elemtype :
mcimadamore@787 1363 t;
mcimadamore@787 1364 }
mcimadamore@787 1365
duke@1 1366 /**
duke@1 1367 * Mapping to take element type of an arraytype
duke@1 1368 */
duke@1 1369 private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
duke@1 1370 public Type apply(Type t) { return elemtype(t); }
duke@1 1371 };
duke@1 1372
duke@1 1373 /**
duke@1 1374 * The number of dimensions of an array type.
duke@1 1375 */
duke@1 1376 public int dimensions(Type t) {
duke@1 1377 int result = 0;
duke@1 1378 while (t.tag == ARRAY) {
duke@1 1379 result++;
duke@1 1380 t = elemtype(t);
duke@1 1381 }
duke@1 1382 return result;
duke@1 1383 }
duke@1 1384 // </editor-fold>
duke@1 1385
duke@1 1386 // <editor-fold defaultstate="collapsed" desc="asSuper">
duke@1 1387 /**
duke@1 1388 * Return the (most specific) base type of t that starts with the
duke@1 1389 * given symbol. If none exists, return null.
duke@1 1390 *
duke@1 1391 * @param t a type
duke@1 1392 * @param sym a symbol
duke@1 1393 */
duke@1 1394 public Type asSuper(Type t, Symbol sym) {
duke@1 1395 return asSuper.visit(t, sym);
duke@1 1396 }
duke@1 1397 // where
duke@1 1398 private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
duke@1 1399
duke@1 1400 public Type visitType(Type t, Symbol sym) {
duke@1 1401 return null;
duke@1 1402 }
duke@1 1403
duke@1 1404 @Override
duke@1 1405 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1406 if (t.tsym == sym)
duke@1 1407 return t;
duke@1 1408
duke@1 1409 Type st = supertype(t);
mcimadamore@19 1410 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
duke@1 1411 Type x = asSuper(st, sym);
duke@1 1412 if (x != null)
duke@1 1413 return x;
duke@1 1414 }
duke@1 1415 if ((sym.flags() & INTERFACE) != 0) {
duke@1 1416 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 1417 Type x = asSuper(l.head, sym);
duke@1 1418 if (x != null)
duke@1 1419 return x;
duke@1 1420 }
duke@1 1421 }
duke@1 1422 return null;
duke@1 1423 }
duke@1 1424
duke@1 1425 @Override
duke@1 1426 public Type visitArrayType(ArrayType t, Symbol sym) {
duke@1 1427 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1428 }
duke@1 1429
duke@1 1430 @Override
duke@1 1431 public Type visitTypeVar(TypeVar t, Symbol sym) {
mcimadamore@19 1432 if (t.tsym == sym)
mcimadamore@19 1433 return t;
mcimadamore@19 1434 else
mcimadamore@19 1435 return asSuper(t.bound, sym);
duke@1 1436 }
duke@1 1437
duke@1 1438 @Override
duke@1 1439 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1440 return t;
duke@1 1441 }
duke@1 1442 };
duke@1 1443
duke@1 1444 /**
duke@1 1445 * Return the base type of t or any of its outer types that starts
duke@1 1446 * with the given symbol. If none exists, return null.
duke@1 1447 *
duke@1 1448 * @param t a type
duke@1 1449 * @param sym a symbol
duke@1 1450 */
duke@1 1451 public Type asOuterSuper(Type t, Symbol sym) {
duke@1 1452 switch (t.tag) {
duke@1 1453 case CLASS:
duke@1 1454 do {
duke@1 1455 Type s = asSuper(t, sym);
duke@1 1456 if (s != null) return s;
duke@1 1457 t = t.getEnclosingType();
duke@1 1458 } while (t.tag == CLASS);
duke@1 1459 return null;
duke@1 1460 case ARRAY:
duke@1 1461 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1462 case TYPEVAR:
duke@1 1463 return asSuper(t, sym);
duke@1 1464 case ERROR:
duke@1 1465 return t;
duke@1 1466 default:
duke@1 1467 return null;
duke@1 1468 }
duke@1 1469 }
duke@1 1470
duke@1 1471 /**
duke@1 1472 * Return the base type of t or any of its enclosing types that
duke@1 1473 * starts with the given symbol. If none exists, return null.
duke@1 1474 *
duke@1 1475 * @param t a type
duke@1 1476 * @param sym a symbol
duke@1 1477 */
duke@1 1478 public Type asEnclosingSuper(Type t, Symbol sym) {
duke@1 1479 switch (t.tag) {
duke@1 1480 case CLASS:
duke@1 1481 do {
duke@1 1482 Type s = asSuper(t, sym);
duke@1 1483 if (s != null) return s;
duke@1 1484 Type outer = t.getEnclosingType();
duke@1 1485 t = (outer.tag == CLASS) ? outer :
duke@1 1486 (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
duke@1 1487 Type.noType;
duke@1 1488 } while (t.tag == CLASS);
duke@1 1489 return null;
duke@1 1490 case ARRAY:
duke@1 1491 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1492 case TYPEVAR:
duke@1 1493 return asSuper(t, sym);
duke@1 1494 case ERROR:
duke@1 1495 return t;
duke@1 1496 default:
duke@1 1497 return null;
duke@1 1498 }
duke@1 1499 }
duke@1 1500 // </editor-fold>
duke@1 1501
duke@1 1502 // <editor-fold defaultstate="collapsed" desc="memberType">
duke@1 1503 /**
duke@1 1504 * The type of given symbol, seen as a member of t.
duke@1 1505 *
duke@1 1506 * @param t a type
duke@1 1507 * @param sym a symbol
duke@1 1508 */
duke@1 1509 public Type memberType(Type t, Symbol sym) {
duke@1 1510 return (sym.flags() & STATIC) != 0
duke@1 1511 ? sym.type
duke@1 1512 : memberType.visit(t, sym);
mcimadamore@341 1513 }
duke@1 1514 // where
duke@1 1515 private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
duke@1 1516
duke@1 1517 public Type visitType(Type t, Symbol sym) {
duke@1 1518 return sym.type;
duke@1 1519 }
duke@1 1520
duke@1 1521 @Override
duke@1 1522 public Type visitWildcardType(WildcardType t, Symbol sym) {
duke@1 1523 return memberType(upperBound(t), sym);
duke@1 1524 }
duke@1 1525
duke@1 1526 @Override
duke@1 1527 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1528 Symbol owner = sym.owner;
duke@1 1529 long flags = sym.flags();
duke@1 1530 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
duke@1 1531 Type base = asOuterSuper(t, owner);
mcimadamore@134 1532 //if t is an intersection type T = CT & I1 & I2 ... & In
mcimadamore@134 1533 //its supertypes CT, I1, ... In might contain wildcards
mcimadamore@134 1534 //so we need to go through capture conversion
mcimadamore@134 1535 base = t.isCompound() ? capture(base) : base;
duke@1 1536 if (base != null) {
duke@1 1537 List<Type> ownerParams = owner.type.allparams();
duke@1 1538 List<Type> baseParams = base.allparams();
duke@1 1539 if (ownerParams.nonEmpty()) {
duke@1 1540 if (baseParams.isEmpty()) {
duke@1 1541 // then base is a raw type
duke@1 1542 return erasure(sym.type);
duke@1 1543 } else {
duke@1 1544 return subst(sym.type, ownerParams, baseParams);
duke@1 1545 }
duke@1 1546 }
duke@1 1547 }
duke@1 1548 }
duke@1 1549 return sym.type;
duke@1 1550 }
duke@1 1551
duke@1 1552 @Override
duke@1 1553 public Type visitTypeVar(TypeVar t, Symbol sym) {
duke@1 1554 return memberType(t.bound, sym);
duke@1 1555 }
duke@1 1556
duke@1 1557 @Override
duke@1 1558 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1559 return t;
duke@1 1560 }
duke@1 1561 };
duke@1 1562 // </editor-fold>
duke@1 1563
duke@1 1564 // <editor-fold defaultstate="collapsed" desc="isAssignable">
duke@1 1565 public boolean isAssignable(Type t, Type s) {
duke@1 1566 return isAssignable(t, s, Warner.noWarnings);
duke@1 1567 }
duke@1 1568
duke@1 1569 /**
duke@1 1570 * Is t assignable to s?<br>
duke@1 1571 * Equivalent to subtype except for constant values and raw
duke@1 1572 * types.<br>
duke@1 1573 * (not defined for Method and ForAll types)
duke@1 1574 */
duke@1 1575 public boolean isAssignable(Type t, Type s, Warner warn) {
duke@1 1576 if (t.tag == ERROR)
duke@1 1577 return true;
duke@1 1578 if (t.tag <= INT && t.constValue() != null) {
duke@1 1579 int value = ((Number)t.constValue()).intValue();
duke@1 1580 switch (s.tag) {
duke@1 1581 case BYTE:
duke@1 1582 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
duke@1 1583 return true;
duke@1 1584 break;
duke@1 1585 case CHAR:
duke@1 1586 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
duke@1 1587 return true;
duke@1 1588 break;
duke@1 1589 case SHORT:
duke@1 1590 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
duke@1 1591 return true;
duke@1 1592 break;
duke@1 1593 case INT:
duke@1 1594 return true;
duke@1 1595 case CLASS:
duke@1 1596 switch (unboxedType(s).tag) {
duke@1 1597 case BYTE:
duke@1 1598 case CHAR:
duke@1 1599 case SHORT:
duke@1 1600 return isAssignable(t, unboxedType(s), warn);
duke@1 1601 }
duke@1 1602 break;
duke@1 1603 }
duke@1 1604 }
duke@1 1605 return isConvertible(t, s, warn);
duke@1 1606 }
duke@1 1607 // </editor-fold>
duke@1 1608
duke@1 1609 // <editor-fold defaultstate="collapsed" desc="erasure">
duke@1 1610 /**
duke@1 1611 * The erasure of t {@code |t|} -- the type that results when all
duke@1 1612 * type parameters in t are deleted.
duke@1 1613 */
duke@1 1614 public Type erasure(Type t) {
mcimadamore@30 1615 return erasure(t, false);
mcimadamore@30 1616 }
mcimadamore@30 1617 //where
mcimadamore@30 1618 private Type erasure(Type t, boolean recurse) {
duke@1 1619 if (t.tag <= lastBaseTag)
duke@1 1620 return t; /* fast special case */
duke@1 1621 else
mcimadamore@30 1622 return erasure.visit(t, recurse);
mcimadamore@341 1623 }
duke@1 1624 // where
mcimadamore@30 1625 private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
mcimadamore@30 1626 public Type visitType(Type t, Boolean recurse) {
duke@1 1627 if (t.tag <= lastBaseTag)
duke@1 1628 return t; /*fast special case*/
duke@1 1629 else
mcimadamore@30 1630 return t.map(recurse ? erasureRecFun : erasureFun);
duke@1 1631 }
duke@1 1632
duke@1 1633 @Override
mcimadamore@30 1634 public Type visitWildcardType(WildcardType t, Boolean recurse) {
mcimadamore@30 1635 return erasure(upperBound(t), recurse);
duke@1 1636 }
duke@1 1637
duke@1 1638 @Override
mcimadamore@30 1639 public Type visitClassType(ClassType t, Boolean recurse) {
mcimadamore@30 1640 Type erased = t.tsym.erasure(Types.this);
mcimadamore@30 1641 if (recurse) {
mcimadamore@30 1642 erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
mcimadamore@30 1643 }
mcimadamore@30 1644 return erased;
duke@1 1645 }
duke@1 1646
duke@1 1647 @Override
mcimadamore@30 1648 public Type visitTypeVar(TypeVar t, Boolean recurse) {
mcimadamore@30 1649 return erasure(t.bound, recurse);
duke@1 1650 }
duke@1 1651
duke@1 1652 @Override
mcimadamore@30 1653 public Type visitErrorType(ErrorType t, Boolean recurse) {
duke@1 1654 return t;
duke@1 1655 }
duke@1 1656 };
mcimadamore@30 1657
duke@1 1658 private Mapping erasureFun = new Mapping ("erasure") {
duke@1 1659 public Type apply(Type t) { return erasure(t); }
duke@1 1660 };
duke@1 1661
mcimadamore@30 1662 private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
mcimadamore@30 1663 public Type apply(Type t) { return erasureRecursive(t); }
mcimadamore@30 1664 };
mcimadamore@30 1665
duke@1 1666 public List<Type> erasure(List<Type> ts) {
duke@1 1667 return Type.map(ts, erasureFun);
duke@1 1668 }
mcimadamore@30 1669
mcimadamore@30 1670 public Type erasureRecursive(Type t) {
mcimadamore@30 1671 return erasure(t, true);
mcimadamore@30 1672 }
mcimadamore@30 1673
mcimadamore@30 1674 public List<Type> erasureRecursive(List<Type> ts) {
mcimadamore@30 1675 return Type.map(ts, erasureRecFun);
mcimadamore@30 1676 }
duke@1 1677 // </editor-fold>
duke@1 1678
duke@1 1679 // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
duke@1 1680 /**
duke@1 1681 * Make a compound type from non-empty list of types
duke@1 1682 *
duke@1 1683 * @param bounds the types from which the compound type is formed
duke@1 1684 * @param supertype is objectType if all bounds are interfaces,
duke@1 1685 * null otherwise.
duke@1 1686 */
duke@1 1687 public Type makeCompoundType(List<Type> bounds,
duke@1 1688 Type supertype) {
duke@1 1689 ClassSymbol bc =
duke@1 1690 new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
duke@1 1691 Type.moreInfo
duke@1 1692 ? names.fromString(bounds.toString())
duke@1 1693 : names.empty,
duke@1 1694 syms.noSymbol);
duke@1 1695 if (bounds.head.tag == TYPEVAR)
duke@1 1696 // error condition, recover
mcimadamore@121 1697 bc.erasure_field = syms.objectType;
mcimadamore@121 1698 else
mcimadamore@121 1699 bc.erasure_field = erasure(bounds.head);
mcimadamore@121 1700 bc.members_field = new Scope(bc);
duke@1 1701 ClassType bt = (ClassType)bc.type;
duke@1 1702 bt.allparams_field = List.nil();
duke@1 1703 if (supertype != null) {
duke@1 1704 bt.supertype_field = supertype;
duke@1 1705 bt.interfaces_field = bounds;
duke@1 1706 } else {
duke@1 1707 bt.supertype_field = bounds.head;
duke@1 1708 bt.interfaces_field = bounds.tail;
duke@1 1709 }
jjg@816 1710 Assert.check(bt.supertype_field.tsym.completer != null
jjg@816 1711 || !bt.supertype_field.isInterface(),
jjg@816 1712 bt.supertype_field);
duke@1 1713 return bt;
duke@1 1714 }
duke@1 1715
duke@1 1716 /**
duke@1 1717 * Same as {@link #makeCompoundType(List,Type)}, except that the
duke@1 1718 * second parameter is computed directly. Note that this might
duke@1 1719 * cause a symbol completion. Hence, this version of
duke@1 1720 * makeCompoundType may not be called during a classfile read.
duke@1 1721 */
duke@1 1722 public Type makeCompoundType(List<Type> bounds) {
duke@1 1723 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
duke@1 1724 supertype(bounds.head) : null;
duke@1 1725 return makeCompoundType(bounds, supertype);
duke@1 1726 }
duke@1 1727
duke@1 1728 /**
duke@1 1729 * A convenience wrapper for {@link #makeCompoundType(List)}; the
duke@1 1730 * arguments are converted to a list and passed to the other
duke@1 1731 * method. Note that this might cause a symbol completion.
duke@1 1732 * Hence, this version of makeCompoundType may not be called
duke@1 1733 * during a classfile read.
duke@1 1734 */
duke@1 1735 public Type makeCompoundType(Type bound1, Type bound2) {
duke@1 1736 return makeCompoundType(List.of(bound1, bound2));
duke@1 1737 }
duke@1 1738 // </editor-fold>
duke@1 1739
duke@1 1740 // <editor-fold defaultstate="collapsed" desc="supertype">
duke@1 1741 public Type supertype(Type t) {
duke@1 1742 return supertype.visit(t);
duke@1 1743 }
duke@1 1744 // where
duke@1 1745 private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
duke@1 1746
duke@1 1747 public Type visitType(Type t, Void ignored) {
duke@1 1748 // A note on wildcards: there is no good way to
duke@1 1749 // determine a supertype for a super bounded wildcard.
duke@1 1750 return null;
duke@1 1751 }
duke@1 1752
duke@1 1753 @Override
duke@1 1754 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1755 if (t.supertype_field == null) {
duke@1 1756 Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
duke@1 1757 // An interface has no superclass; its supertype is Object.
duke@1 1758 if (t.isInterface())
duke@1 1759 supertype = ((ClassType)t.tsym.type).supertype_field;
duke@1 1760 if (t.supertype_field == null) {
duke@1 1761 List<Type> actuals = classBound(t).allparams();
duke@1 1762 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1763 if (t.hasErasedSupertypes()) {
mcimadamore@30 1764 t.supertype_field = erasureRecursive(supertype);
mcimadamore@30 1765 } else if (formals.nonEmpty()) {
duke@1 1766 t.supertype_field = subst(supertype, formals, actuals);
duke@1 1767 }
mcimadamore@30 1768 else {
mcimadamore@30 1769 t.supertype_field = supertype;
mcimadamore@30 1770 }
duke@1 1771 }
duke@1 1772 }
duke@1 1773 return t.supertype_field;
duke@1 1774 }
duke@1 1775
duke@1 1776 /**
duke@1 1777 * The supertype is always a class type. If the type
duke@1 1778 * variable's bounds start with a class type, this is also
duke@1 1779 * the supertype. Otherwise, the supertype is
duke@1 1780 * java.lang.Object.
duke@1 1781 */
duke@1 1782 @Override
duke@1 1783 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1784 if (t.bound.tag == TYPEVAR ||
duke@1 1785 (!t.bound.isCompound() && !t.bound.isInterface())) {
duke@1 1786 return t.bound;
duke@1 1787 } else {
duke@1 1788 return supertype(t.bound);
duke@1 1789 }
duke@1 1790 }
duke@1 1791
duke@1 1792 @Override
duke@1 1793 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 1794 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
duke@1 1795 return arraySuperType();
duke@1 1796 else
duke@1 1797 return new ArrayType(supertype(t.elemtype), t.tsym);
duke@1 1798 }
duke@1 1799
duke@1 1800 @Override
duke@1 1801 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1802 return t;
duke@1 1803 }
duke@1 1804 };
duke@1 1805 // </editor-fold>
duke@1 1806
duke@1 1807 // <editor-fold defaultstate="collapsed" desc="interfaces">
duke@1 1808 /**
duke@1 1809 * Return the interfaces implemented by this class.
duke@1 1810 */
duke@1 1811 public List<Type> interfaces(Type t) {
duke@1 1812 return interfaces.visit(t);
duke@1 1813 }
duke@1 1814 // where
duke@1 1815 private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
duke@1 1816
duke@1 1817 public List<Type> visitType(Type t, Void ignored) {
duke@1 1818 return List.nil();
duke@1 1819 }
duke@1 1820
duke@1 1821 @Override
duke@1 1822 public List<Type> visitClassType(ClassType t, Void ignored) {
duke@1 1823 if (t.interfaces_field == null) {
duke@1 1824 List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
duke@1 1825 if (t.interfaces_field == null) {
duke@1 1826 // If t.interfaces_field is null, then t must
duke@1 1827 // be a parameterized type (not to be confused
duke@1 1828 // with a generic type declaration).
duke@1 1829 // Terminology:
duke@1 1830 // Parameterized type: List<String>
duke@1 1831 // Generic type declaration: class List<E> { ... }
duke@1 1832 // So t corresponds to List<String> and
duke@1 1833 // t.tsym.type corresponds to List<E>.
duke@1 1834 // The reason t must be parameterized type is
duke@1 1835 // that completion will happen as a side
duke@1 1836 // effect of calling
duke@1 1837 // ClassSymbol.getInterfaces. Since
duke@1 1838 // t.interfaces_field is null after
duke@1 1839 // completion, we can assume that t is not the
duke@1 1840 // type of a class/interface declaration.
jjg@816 1841 Assert.check(t != t.tsym.type, t);
duke@1 1842 List<Type> actuals = t.allparams();
duke@1 1843 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1844 if (t.hasErasedSupertypes()) {
mcimadamore@30 1845 t.interfaces_field = erasureRecursive(interfaces);
mcimadamore@30 1846 } else if (formals.nonEmpty()) {
duke@1 1847 t.interfaces_field =
duke@1 1848 upperBounds(subst(interfaces, formals, actuals));
duke@1 1849 }
mcimadamore@30 1850 else {
mcimadamore@30 1851 t.interfaces_field = interfaces;
mcimadamore@30 1852 }
duke@1 1853 }
duke@1 1854 }
duke@1 1855 return t.interfaces_field;
duke@1 1856 }
duke@1 1857
duke@1 1858 @Override
duke@1 1859 public List<Type> visitTypeVar(TypeVar t, Void ignored) {
duke@1 1860 if (t.bound.isCompound())
duke@1 1861 return interfaces(t.bound);
duke@1 1862
duke@1 1863 if (t.bound.isInterface())
duke@1 1864 return List.of(t.bound);
duke@1 1865
duke@1 1866 return List.nil();
duke@1 1867 }
duke@1 1868 };
duke@1 1869 // </editor-fold>
duke@1 1870
duke@1 1871 // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
duke@1 1872 Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
duke@1 1873
duke@1 1874 public boolean isDerivedRaw(Type t) {
duke@1 1875 Boolean result = isDerivedRawCache.get(t);
duke@1 1876 if (result == null) {
duke@1 1877 result = isDerivedRawInternal(t);
duke@1 1878 isDerivedRawCache.put(t, result);
duke@1 1879 }
duke@1 1880 return result;
duke@1 1881 }
duke@1 1882
duke@1 1883 public boolean isDerivedRawInternal(Type t) {
duke@1 1884 if (t.isErroneous())
duke@1 1885 return false;
duke@1 1886 return
duke@1 1887 t.isRaw() ||
duke@1 1888 supertype(t) != null && isDerivedRaw(supertype(t)) ||
duke@1 1889 isDerivedRaw(interfaces(t));
duke@1 1890 }
duke@1 1891
duke@1 1892 public boolean isDerivedRaw(List<Type> ts) {
duke@1 1893 List<Type> l = ts;
duke@1 1894 while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
duke@1 1895 return l.nonEmpty();
duke@1 1896 }
duke@1 1897 // </editor-fold>
duke@1 1898
duke@1 1899 // <editor-fold defaultstate="collapsed" desc="setBounds">
duke@1 1900 /**
duke@1 1901 * Set the bounds field of the given type variable to reflect a
duke@1 1902 * (possibly multiple) list of bounds.
duke@1 1903 * @param t a type variable
duke@1 1904 * @param bounds the bounds, must be nonempty
duke@1 1905 * @param supertype is objectType if all bounds are interfaces,
duke@1 1906 * null otherwise.
duke@1 1907 */
duke@1 1908 public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
duke@1 1909 if (bounds.tail.isEmpty())
duke@1 1910 t.bound = bounds.head;
duke@1 1911 else
duke@1 1912 t.bound = makeCompoundType(bounds, supertype);
duke@1 1913 t.rank_field = -1;
duke@1 1914 }
duke@1 1915
duke@1 1916 /**
duke@1 1917 * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
mcimadamore@563 1918 * third parameter is computed directly, as follows: if all
mcimadamore@563 1919 * all bounds are interface types, the computed supertype is Object,
mcimadamore@563 1920 * otherwise the supertype is simply left null (in this case, the supertype
mcimadamore@563 1921 * is assumed to be the head of the bound list passed as second argument).
mcimadamore@563 1922 * Note that this check might cause a symbol completion. Hence, this version of
duke@1 1923 * setBounds may not be called during a classfile read.
duke@1 1924 */
duke@1 1925 public void setBounds(TypeVar t, List<Type> bounds) {
duke@1 1926 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
mcimadamore@563 1927 syms.objectType : null;
duke@1 1928 setBounds(t, bounds, supertype);
duke@1 1929 t.rank_field = -1;
duke@1 1930 }
duke@1 1931 // </editor-fold>
duke@1 1932
duke@1 1933 // <editor-fold defaultstate="collapsed" desc="getBounds">
duke@1 1934 /**
duke@1 1935 * Return list of bounds of the given type variable.
duke@1 1936 */
duke@1 1937 public List<Type> getBounds(TypeVar t) {
duke@1 1938 if (t.bound.isErroneous() || !t.bound.isCompound())
duke@1 1939 return List.of(t.bound);
duke@1 1940 else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
duke@1 1941 return interfaces(t).prepend(supertype(t));
duke@1 1942 else
duke@1 1943 // No superclass was given in bounds.
duke@1 1944 // In this case, supertype is Object, erasure is first interface.
duke@1 1945 return interfaces(t);
duke@1 1946 }
duke@1 1947 // </editor-fold>
duke@1 1948
duke@1 1949 // <editor-fold defaultstate="collapsed" desc="classBound">
duke@1 1950 /**
duke@1 1951 * If the given type is a (possibly selected) type variable,
duke@1 1952 * return the bounding class of this type, otherwise return the
duke@1 1953 * type itself.
duke@1 1954 */
duke@1 1955 public Type classBound(Type t) {
duke@1 1956 return classBound.visit(t);
duke@1 1957 }
duke@1 1958 // where
duke@1 1959 private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
duke@1 1960
duke@1 1961 public Type visitType(Type t, Void ignored) {
duke@1 1962 return t;
duke@1 1963 }
duke@1 1964
duke@1 1965 @Override
duke@1 1966 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1967 Type outer1 = classBound(t.getEnclosingType());
duke@1 1968 if (outer1 != t.getEnclosingType())
duke@1 1969 return new ClassType(outer1, t.getTypeArguments(), t.tsym);
duke@1 1970 else
duke@1 1971 return t;
duke@1 1972 }
duke@1 1973
duke@1 1974 @Override
duke@1 1975 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1976 return classBound(supertype(t));
duke@1 1977 }
duke@1 1978
duke@1 1979 @Override
duke@1 1980 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1981 return t;
duke@1 1982 }
duke@1 1983 };
duke@1 1984 // </editor-fold>
duke@1 1985
duke@1 1986 // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
duke@1 1987 /**
duke@1 1988 * Returns true iff the first signature is a <em>sub
duke@1 1989 * signature</em> of the other. This is <b>not</b> an equivalence
duke@1 1990 * relation.
duke@1 1991 *
jjh@972 1992 * @jls section 8.4.2.
duke@1 1993 * @see #overrideEquivalent(Type t, Type s)
duke@1 1994 * @param t first signature (possibly raw).
duke@1 1995 * @param s second signature (could be subjected to erasure).
duke@1 1996 * @return true if t is a sub signature of s.
duke@1 1997 */
duke@1 1998 public boolean isSubSignature(Type t, Type s) {
mcimadamore@907 1999 return isSubSignature(t, s, true);
mcimadamore@907 2000 }
mcimadamore@907 2001
mcimadamore@907 2002 public boolean isSubSignature(Type t, Type s, boolean strict) {
mcimadamore@907 2003 return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
duke@1 2004 }
duke@1 2005
duke@1 2006 /**
duke@1 2007 * Returns true iff these signatures are related by <em>override
duke@1 2008 * equivalence</em>. This is the natural extension of
duke@1 2009 * isSubSignature to an equivalence relation.
duke@1 2010 *
jjh@972 2011 * @jls section 8.4.2.
duke@1 2012 * @see #isSubSignature(Type t, Type s)
duke@1 2013 * @param t a signature (possible raw, could be subjected to
duke@1 2014 * erasure).
duke@1 2015 * @param s a signature (possible raw, could be subjected to
duke@1 2016 * erasure).
duke@1 2017 * @return true if either argument is a sub signature of the other.
duke@1 2018 */
duke@1 2019 public boolean overrideEquivalent(Type t, Type s) {
duke@1 2020 return hasSameArgs(t, s) ||
duke@1 2021 hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
duke@1 2022 }
duke@1 2023
mcimadamore@673 2024 // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
mcimadamore@673 2025 class ImplementationCache {
mcimadamore@673 2026
mcimadamore@673 2027 private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
mcimadamore@673 2028 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
mcimadamore@673 2029
mcimadamore@673 2030 class Entry {
mcimadamore@673 2031 final MethodSymbol cachedImpl;
mcimadamore@673 2032 final Filter<Symbol> implFilter;
mcimadamore@673 2033 final boolean checkResult;
mcimadamore@877 2034 final int prevMark;
mcimadamore@673 2035
mcimadamore@673 2036 public Entry(MethodSymbol cachedImpl,
mcimadamore@673 2037 Filter<Symbol> scopeFilter,
mcimadamore@877 2038 boolean checkResult,
mcimadamore@877 2039 int prevMark) {
mcimadamore@673 2040 this.cachedImpl = cachedImpl;
mcimadamore@673 2041 this.implFilter = scopeFilter;
mcimadamore@673 2042 this.checkResult = checkResult;
mcimadamore@877 2043 this.prevMark = prevMark;
mcimadamore@673 2044 }
mcimadamore@673 2045
mcimadamore@877 2046 boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
mcimadamore@673 2047 return this.implFilter == scopeFilter &&
mcimadamore@877 2048 this.checkResult == checkResult &&
mcimadamore@877 2049 this.prevMark == mark;
mcimadamore@673 2050 }
mcimadamore@341 2051 }
mcimadamore@673 2052
mcimadamore@858 2053 MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@673 2054 SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
mcimadamore@673 2055 Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
mcimadamore@673 2056 if (cache == null) {
mcimadamore@673 2057 cache = new HashMap<TypeSymbol, Entry>();
mcimadamore@673 2058 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
mcimadamore@673 2059 }
mcimadamore@673 2060 Entry e = cache.get(origin);
mcimadamore@877 2061 CompoundScope members = membersClosure(origin.type);
mcimadamore@673 2062 if (e == null ||
mcimadamore@877 2063 !e.matches(implFilter, checkResult, members.getMark())) {
mcimadamore@877 2064 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
mcimadamore@877 2065 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
mcimadamore@673 2066 return impl;
mcimadamore@673 2067 }
mcimadamore@673 2068 else {
mcimadamore@673 2069 return e.cachedImpl;
mcimadamore@673 2070 }
mcimadamore@673 2071 }
mcimadamore@673 2072
mcimadamore@877 2073 private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@877 2074 for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
mcimadamore@341 2075 while (t.tag == TYPEVAR)
mcimadamore@341 2076 t = t.getUpperBound();
mcimadamore@341 2077 TypeSymbol c = t.tsym;
mcimadamore@673 2078 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
mcimadamore@341 2079 e.scope != null;
mcimadamore@780 2080 e = e.next(implFilter)) {
mcimadamore@673 2081 if (e.sym != null &&
mcimadamore@877 2082 e.sym.overrides(ms, origin, Types.this, checkResult))
mcimadamore@673 2083 return (MethodSymbol)e.sym;
mcimadamore@341 2084 }
mcimadamore@341 2085 }
mcimadamore@673 2086 return null;
mcimadamore@341 2087 }
mcimadamore@341 2088 }
mcimadamore@341 2089
mcimadamore@673 2090 private ImplementationCache implCache = new ImplementationCache();
mcimadamore@673 2091
mcimadamore@858 2092 public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@858 2093 return implCache.get(ms, origin, checkResult, implFilter);
mcimadamore@673 2094 }
mcimadamore@673 2095 // </editor-fold>
mcimadamore@673 2096
mcimadamore@858 2097 // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
mcimadamore@877 2098 public CompoundScope membersClosure(Type site) {
mcimadamore@858 2099 return membersClosure.visit(site);
mcimadamore@858 2100 }
mcimadamore@858 2101
mcimadamore@877 2102 UnaryVisitor<CompoundScope> membersClosure = new UnaryVisitor<CompoundScope>() {
mcimadamore@877 2103
mcimadamore@877 2104 public CompoundScope visitType(Type t, Void s) {
mcimadamore@858 2105 return null;
mcimadamore@858 2106 }
mcimadamore@858 2107
mcimadamore@858 2108 @Override
mcimadamore@877 2109 public CompoundScope visitClassType(ClassType t, Void s) {
mcimadamore@858 2110 ClassSymbol csym = (ClassSymbol)t.tsym;
mcimadamore@858 2111 if (csym.membersClosure == null) {
mcimadamore@877 2112 CompoundScope membersClosure = new CompoundScope(csym);
mcimadamore@858 2113 for (Type i : interfaces(t)) {
mcimadamore@877 2114 membersClosure.addSubScope(visit(i));
mcimadamore@858 2115 }
mcimadamore@877 2116 membersClosure.addSubScope(visit(supertype(t)));
mcimadamore@877 2117 membersClosure.addSubScope(csym.members());
mcimadamore@858 2118 csym.membersClosure = membersClosure;
mcimadamore@858 2119 }
mcimadamore@858 2120 return csym.membersClosure;
mcimadamore@858 2121 }
mcimadamore@858 2122
mcimadamore@858 2123 @Override
mcimadamore@877 2124 public CompoundScope visitTypeVar(TypeVar t, Void s) {
mcimadamore@858 2125 return visit(t.getUpperBound());
mcimadamore@858 2126 }
mcimadamore@858 2127 };
mcimadamore@858 2128 // </editor-fold>
mcimadamore@858 2129
duke@1 2130 /**
duke@1 2131 * Does t have the same arguments as s? It is assumed that both
duke@1 2132 * types are (possibly polymorphic) method types. Monomorphic
duke@1 2133 * method types "have the same arguments", if their argument lists
duke@1 2134 * are equal. Polymorphic method types "have the same arguments",
duke@1 2135 * if they have the same arguments after renaming all type
duke@1 2136 * variables of one to corresponding type variables in the other,
duke@1 2137 * where correspondence is by position in the type parameter list.
duke@1 2138 */
duke@1 2139 public boolean hasSameArgs(Type t, Type s) {
mcimadamore@907 2140 return hasSameArgs(t, s, true);
mcimadamore@907 2141 }
mcimadamore@907 2142
mcimadamore@907 2143 public boolean hasSameArgs(Type t, Type s, boolean strict) {
mcimadamore@907 2144 return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
mcimadamore@907 2145 }
mcimadamore@907 2146
mcimadamore@907 2147 private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
duke@1 2148 return hasSameArgs.visit(t, s);
duke@1 2149 }
duke@1 2150 // where
mcimadamore@907 2151 private class HasSameArgs extends TypeRelation {
mcimadamore@907 2152
mcimadamore@907 2153 boolean strict;
mcimadamore@907 2154
mcimadamore@907 2155 public HasSameArgs(boolean strict) {
mcimadamore@907 2156 this.strict = strict;
mcimadamore@907 2157 }
duke@1 2158
duke@1 2159 public Boolean visitType(Type t, Type s) {
duke@1 2160 throw new AssertionError();
duke@1 2161 }
duke@1 2162
duke@1 2163 @Override
duke@1 2164 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 2165 return s.tag == METHOD
duke@1 2166 && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
duke@1 2167 }
duke@1 2168
duke@1 2169 @Override
duke@1 2170 public Boolean visitForAll(ForAll t, Type s) {
duke@1 2171 if (s.tag != FORALL)
mcimadamore@907 2172 return strict ? false : visitMethodType(t.asMethodType(), s);
duke@1 2173
duke@1 2174 ForAll forAll = (ForAll)s;
duke@1 2175 return hasSameBounds(t, forAll)
duke@1 2176 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 2177 }
duke@1 2178
duke@1 2179 @Override
duke@1 2180 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 2181 return false;
duke@1 2182 }
duke@1 2183 };
mcimadamore@907 2184
mcimadamore@907 2185 TypeRelation hasSameArgs_strict = new HasSameArgs(true);
mcimadamore@907 2186 TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
mcimadamore@907 2187
duke@1 2188 // </editor-fold>
duke@1 2189
duke@1 2190 // <editor-fold defaultstate="collapsed" desc="subst">
duke@1 2191 public List<Type> subst(List<Type> ts,
duke@1 2192 List<Type> from,
duke@1 2193 List<Type> to) {
duke@1 2194 return new Subst(from, to).subst(ts);
duke@1 2195 }
duke@1 2196
duke@1 2197 /**
duke@1 2198 * Substitute all occurrences of a type in `from' with the
duke@1 2199 * corresponding type in `to' in 't'. Match lists `from' and `to'
duke@1 2200 * from the right: If lists have different length, discard leading
duke@1 2201 * elements of the longer list.
duke@1 2202 */
duke@1 2203 public Type subst(Type t, List<Type> from, List<Type> to) {
duke@1 2204 return new Subst(from, to).subst(t);
duke@1 2205 }
duke@1 2206
duke@1 2207 private class Subst extends UnaryVisitor<Type> {
duke@1 2208 List<Type> from;
duke@1 2209 List<Type> to;
duke@1 2210
duke@1 2211 public Subst(List<Type> from, List<Type> to) {
duke@1 2212 int fromLength = from.length();
duke@1 2213 int toLength = to.length();
duke@1 2214 while (fromLength > toLength) {
duke@1 2215 fromLength--;
duke@1 2216 from = from.tail;
duke@1 2217 }
duke@1 2218 while (fromLength < toLength) {
duke@1 2219 toLength--;
duke@1 2220 to = to.tail;
duke@1 2221 }
duke@1 2222 this.from = from;
duke@1 2223 this.to = to;
duke@1 2224 }
duke@1 2225
duke@1 2226 Type subst(Type t) {
duke@1 2227 if (from.tail == null)
duke@1 2228 return t;
duke@1 2229 else
duke@1 2230 return visit(t);
mcimadamore@238 2231 }
duke@1 2232
duke@1 2233 List<Type> subst(List<Type> ts) {
duke@1 2234 if (from.tail == null)
duke@1 2235 return ts;
duke@1 2236 boolean wild = false;
duke@1 2237 if (ts.nonEmpty() && from.nonEmpty()) {
duke@1 2238 Type head1 = subst(ts.head);
duke@1 2239 List<Type> tail1 = subst(ts.tail);
duke@1 2240 if (head1 != ts.head || tail1 != ts.tail)
duke@1 2241 return tail1.prepend(head1);
duke@1 2242 }
duke@1 2243 return ts;
duke@1 2244 }
duke@1 2245
duke@1 2246 public Type visitType(Type t, Void ignored) {
duke@1 2247 return t;
duke@1 2248 }
duke@1 2249
duke@1 2250 @Override
duke@1 2251 public Type visitMethodType(MethodType t, Void ignored) {
duke@1 2252 List<Type> argtypes = subst(t.argtypes);
duke@1 2253 Type restype = subst(t.restype);
duke@1 2254 List<Type> thrown = subst(t.thrown);
duke@1 2255 if (argtypes == t.argtypes &&
duke@1 2256 restype == t.restype &&
duke@1 2257 thrown == t.thrown)
duke@1 2258 return t;
duke@1 2259 else
duke@1 2260 return new MethodType(argtypes, restype, thrown, t.tsym);
duke@1 2261 }
duke@1 2262
duke@1 2263 @Override
duke@1 2264 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2265 for (List<Type> from = this.from, to = this.to;
duke@1 2266 from.nonEmpty();
duke@1 2267 from = from.tail, to = to.tail) {
duke@1 2268 if (t == from.head) {
duke@1 2269 return to.head.withTypeVar(t);
duke@1 2270 }
duke@1 2271 }
duke@1 2272 return t;
duke@1 2273 }
duke@1 2274
duke@1 2275 @Override
duke@1 2276 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2277 if (!t.isCompound()) {
duke@1 2278 List<Type> typarams = t.getTypeArguments();
duke@1 2279 List<Type> typarams1 = subst(typarams);
duke@1 2280 Type outer = t.getEnclosingType();
duke@1 2281 Type outer1 = subst(outer);
duke@1 2282 if (typarams1 == typarams && outer1 == outer)
duke@1 2283 return t;
duke@1 2284 else
duke@1 2285 return new ClassType(outer1, typarams1, t.tsym);
duke@1 2286 } else {
duke@1 2287 Type st = subst(supertype(t));
duke@1 2288 List<Type> is = upperBounds(subst(interfaces(t)));
duke@1 2289 if (st == supertype(t) && is == interfaces(t))
duke@1 2290 return t;
duke@1 2291 else
duke@1 2292 return makeCompoundType(is.prepend(st));
duke@1 2293 }
duke@1 2294 }
duke@1 2295
duke@1 2296 @Override
duke@1 2297 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 2298 Type bound = t.type;
duke@1 2299 if (t.kind != BoundKind.UNBOUND)
duke@1 2300 bound = subst(bound);
duke@1 2301 if (bound == t.type) {
duke@1 2302 return t;
duke@1 2303 } else {
duke@1 2304 if (t.isExtendsBound() && bound.isExtendsBound())
duke@1 2305 bound = upperBound(bound);
duke@1 2306 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
duke@1 2307 }
duke@1 2308 }
duke@1 2309
duke@1 2310 @Override
duke@1 2311 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 2312 Type elemtype = subst(t.elemtype);
duke@1 2313 if (elemtype == t.elemtype)
duke@1 2314 return t;
duke@1 2315 else
mcimadamore@970 2316 return new ArrayType(elemtype, t.tsym);
duke@1 2317 }
duke@1 2318
duke@1 2319 @Override
duke@1 2320 public Type visitForAll(ForAll t, Void ignored) {
mcimadamore@846 2321 if (Type.containsAny(to, t.tvars)) {
mcimadamore@846 2322 //perform alpha-renaming of free-variables in 't'
mcimadamore@846 2323 //if 'to' types contain variables that are free in 't'
mcimadamore@846 2324 List<Type> freevars = newInstances(t.tvars);
mcimadamore@846 2325 t = new ForAll(freevars,
mcimadamore@846 2326 Types.this.subst(t.qtype, t.tvars, freevars));
mcimadamore@846 2327 }
duke@1 2328 List<Type> tvars1 = substBounds(t.tvars, from, to);
duke@1 2329 Type qtype1 = subst(t.qtype);
duke@1 2330 if (tvars1 == t.tvars && qtype1 == t.qtype) {
duke@1 2331 return t;
duke@1 2332 } else if (tvars1 == t.tvars) {
duke@1 2333 return new ForAll(tvars1, qtype1);
duke@1 2334 } else {
duke@1 2335 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
duke@1 2336 }
duke@1 2337 }
duke@1 2338
duke@1 2339 @Override
duke@1 2340 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2341 return t;
duke@1 2342 }
duke@1 2343 }
duke@1 2344
duke@1 2345 public List<Type> substBounds(List<Type> tvars,
duke@1 2346 List<Type> from,
duke@1 2347 List<Type> to) {
duke@1 2348 if (tvars.isEmpty())
duke@1 2349 return tvars;
duke@1 2350 ListBuffer<Type> newBoundsBuf = lb();
duke@1 2351 boolean changed = false;
duke@1 2352 // calculate new bounds
duke@1 2353 for (Type t : tvars) {
duke@1 2354 TypeVar tv = (TypeVar) t;
duke@1 2355 Type bound = subst(tv.bound, from, to);
duke@1 2356 if (bound != tv.bound)
duke@1 2357 changed = true;
duke@1 2358 newBoundsBuf.append(bound);
duke@1 2359 }
duke@1 2360 if (!changed)
duke@1 2361 return tvars;
duke@1 2362 ListBuffer<Type> newTvars = lb();
duke@1 2363 // create new type variables without bounds
duke@1 2364 for (Type t : tvars) {
duke@1 2365 newTvars.append(new TypeVar(t.tsym, null, syms.botType));
duke@1 2366 }
duke@1 2367 // the new bounds should use the new type variables in place
duke@1 2368 // of the old
duke@1 2369 List<Type> newBounds = newBoundsBuf.toList();
duke@1 2370 from = tvars;
duke@1 2371 to = newTvars.toList();
duke@1 2372 for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
duke@1 2373 newBounds.head = subst(newBounds.head, from, to);
duke@1 2374 }
duke@1 2375 newBounds = newBoundsBuf.toList();
duke@1 2376 // set the bounds of new type variables to the new bounds
duke@1 2377 for (Type t : newTvars.toList()) {
duke@1 2378 TypeVar tv = (TypeVar) t;
duke@1 2379 tv.bound = newBounds.head;
duke@1 2380 newBounds = newBounds.tail;
duke@1 2381 }
duke@1 2382 return newTvars.toList();
duke@1 2383 }
duke@1 2384
duke@1 2385 public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
duke@1 2386 Type bound1 = subst(t.bound, from, to);
duke@1 2387 if (bound1 == t.bound)
duke@1 2388 return t;
mcimadamore@212 2389 else {
mcimadamore@212 2390 // create new type variable without bounds
mcimadamore@212 2391 TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
mcimadamore@212 2392 // the new bound should use the new type variable in place
mcimadamore@212 2393 // of the old
mcimadamore@212 2394 tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
mcimadamore@212 2395 return tv;
mcimadamore@212 2396 }
duke@1 2397 }
duke@1 2398 // </editor-fold>
duke@1 2399
duke@1 2400 // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
duke@1 2401 /**
duke@1 2402 * Does t have the same bounds for quantified variables as s?
duke@1 2403 */
duke@1 2404 boolean hasSameBounds(ForAll t, ForAll s) {
duke@1 2405 List<Type> l1 = t.tvars;
duke@1 2406 List<Type> l2 = s.tvars;
duke@1 2407 while (l1.nonEmpty() && l2.nonEmpty() &&
duke@1 2408 isSameType(l1.head.getUpperBound(),
duke@1 2409 subst(l2.head.getUpperBound(),
duke@1 2410 s.tvars,
duke@1 2411 t.tvars))) {
duke@1 2412 l1 = l1.tail;
duke@1 2413 l2 = l2.tail;
duke@1 2414 }
duke@1 2415 return l1.isEmpty() && l2.isEmpty();
duke@1 2416 }
duke@1 2417 // </editor-fold>
duke@1 2418
duke@1 2419 // <editor-fold defaultstate="collapsed" desc="newInstances">
duke@1 2420 /** Create new vector of type variables from list of variables
duke@1 2421 * changing all recursive bounds from old to new list.
duke@1 2422 */
duke@1 2423 public List<Type> newInstances(List<Type> tvars) {
duke@1 2424 List<Type> tvars1 = Type.map(tvars, newInstanceFun);
duke@1 2425 for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
duke@1 2426 TypeVar tv = (TypeVar) l.head;
duke@1 2427 tv.bound = subst(tv.bound, tvars, tvars1);
duke@1 2428 }
duke@1 2429 return tvars1;
duke@1 2430 }
duke@1 2431 static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
duke@1 2432 public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
duke@1 2433 };
duke@1 2434 // </editor-fold>
duke@1 2435
dlsmith@880 2436 public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
dlsmith@880 2437 return original.accept(methodWithParameters, newParams);
dlsmith@880 2438 }
dlsmith@880 2439 // where
dlsmith@880 2440 private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
dlsmith@880 2441 public Type visitType(Type t, List<Type> newParams) {
dlsmith@880 2442 throw new IllegalArgumentException("Not a method type: " + t);
dlsmith@880 2443 }
dlsmith@880 2444 public Type visitMethodType(MethodType t, List<Type> newParams) {
dlsmith@880 2445 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
dlsmith@880 2446 }
dlsmith@880 2447 public Type visitForAll(ForAll t, List<Type> newParams) {
dlsmith@880 2448 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
dlsmith@880 2449 }
dlsmith@880 2450 };
dlsmith@880 2451
dlsmith@880 2452 public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
dlsmith@880 2453 return original.accept(methodWithThrown, newThrown);
dlsmith@880 2454 }
dlsmith@880 2455 // where
dlsmith@880 2456 private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
dlsmith@880 2457 public Type visitType(Type t, List<Type> newThrown) {
dlsmith@880 2458 throw new IllegalArgumentException("Not a method type: " + t);
dlsmith@880 2459 }
dlsmith@880 2460 public Type visitMethodType(MethodType t, List<Type> newThrown) {
dlsmith@880 2461 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
dlsmith@880 2462 }
dlsmith@880 2463 public Type visitForAll(ForAll t, List<Type> newThrown) {
dlsmith@880 2464 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
dlsmith@880 2465 }
dlsmith@880 2466 };
dlsmith@880 2467
mcimadamore@950 2468 public Type createMethodTypeWithReturn(Type original, Type newReturn) {
mcimadamore@950 2469 return original.accept(methodWithReturn, newReturn);
mcimadamore@950 2470 }
mcimadamore@950 2471 // where
mcimadamore@950 2472 private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
mcimadamore@950 2473 public Type visitType(Type t, Type newReturn) {
mcimadamore@950 2474 throw new IllegalArgumentException("Not a method type: " + t);
mcimadamore@950 2475 }
mcimadamore@950 2476 public Type visitMethodType(MethodType t, Type newReturn) {
mcimadamore@950 2477 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
mcimadamore@950 2478 }
mcimadamore@950 2479 public Type visitForAll(ForAll t, Type newReturn) {
mcimadamore@950 2480 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
mcimadamore@950 2481 }
mcimadamore@950 2482 };
mcimadamore@950 2483
jjg@110 2484 // <editor-fold defaultstate="collapsed" desc="createErrorType">
jjg@110 2485 public Type createErrorType(Type originalType) {
jjg@110 2486 return new ErrorType(originalType, syms.errSymbol);
jjg@110 2487 }
jjg@110 2488
jjg@110 2489 public Type createErrorType(ClassSymbol c, Type originalType) {
jjg@110 2490 return new ErrorType(c, originalType);
jjg@110 2491 }
jjg@110 2492
jjg@110 2493 public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
jjg@110 2494 return new ErrorType(name, container, originalType);
jjg@110 2495 }
jjg@110 2496 // </editor-fold>
jjg@110 2497
duke@1 2498 // <editor-fold defaultstate="collapsed" desc="rank">
duke@1 2499 /**
duke@1 2500 * The rank of a class is the length of the longest path between
duke@1 2501 * the class and java.lang.Object in the class inheritance
duke@1 2502 * graph. Undefined for all but reference types.
duke@1 2503 */
duke@1 2504 public int rank(Type t) {
duke@1 2505 switch(t.tag) {
duke@1 2506 case CLASS: {
duke@1 2507 ClassType cls = (ClassType)t;
duke@1 2508 if (cls.rank_field < 0) {
duke@1 2509 Name fullname = cls.tsym.getQualifiedName();
jjg@113 2510 if (fullname == names.java_lang_Object)
duke@1 2511 cls.rank_field = 0;
duke@1 2512 else {
duke@1 2513 int r = rank(supertype(cls));
duke@1 2514 for (List<Type> l = interfaces(cls);
duke@1 2515 l.nonEmpty();
duke@1 2516 l = l.tail) {
duke@1 2517 if (rank(l.head) > r)
duke@1 2518 r = rank(l.head);
duke@1 2519 }
duke@1 2520 cls.rank_field = r + 1;
duke@1 2521 }
duke@1 2522 }
duke@1 2523 return cls.rank_field;
duke@1 2524 }
duke@1 2525 case TYPEVAR: {
duke@1 2526 TypeVar tvar = (TypeVar)t;
duke@1 2527 if (tvar.rank_field < 0) {
duke@1 2528 int r = rank(supertype(tvar));
duke@1 2529 for (List<Type> l = interfaces(tvar);
duke@1 2530 l.nonEmpty();
duke@1 2531 l = l.tail) {
duke@1 2532 if (rank(l.head) > r) r = rank(l.head);
duke@1 2533 }
duke@1 2534 tvar.rank_field = r + 1;
duke@1 2535 }
duke@1 2536 return tvar.rank_field;
duke@1 2537 }
duke@1 2538 case ERROR:
duke@1 2539 return 0;
duke@1 2540 default:
duke@1 2541 throw new AssertionError();
duke@1 2542 }
duke@1 2543 }
duke@1 2544 // </editor-fold>
duke@1 2545
mcimadamore@121 2546 /**
mcimadamore@238 2547 * Helper method for generating a string representation of a given type
mcimadamore@121 2548 * accordingly to a given locale
mcimadamore@121 2549 */
mcimadamore@121 2550 public String toString(Type t, Locale locale) {
mcimadamore@238 2551 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2552 }
mcimadamore@121 2553
mcimadamore@121 2554 /**
mcimadamore@238 2555 * Helper method for generating a string representation of a given type
mcimadamore@121 2556 * accordingly to a given locale
mcimadamore@121 2557 */
mcimadamore@121 2558 public String toString(Symbol t, Locale locale) {
mcimadamore@238 2559 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2560 }
mcimadamore@121 2561
duke@1 2562 // <editor-fold defaultstate="collapsed" desc="toString">
duke@1 2563 /**
duke@1 2564 * This toString is slightly more descriptive than the one on Type.
mcimadamore@121 2565 *
mcimadamore@121 2566 * @deprecated Types.toString(Type t, Locale l) provides better support
mcimadamore@121 2567 * for localization
duke@1 2568 */
mcimadamore@121 2569 @Deprecated
duke@1 2570 public String toString(Type t) {
duke@1 2571 if (t.tag == FORALL) {
duke@1 2572 ForAll forAll = (ForAll)t;
duke@1 2573 return typaramsString(forAll.tvars) + forAll.qtype;
duke@1 2574 }
duke@1 2575 return "" + t;
duke@1 2576 }
duke@1 2577 // where
duke@1 2578 private String typaramsString(List<Type> tvars) {
jjg@904 2579 StringBuilder s = new StringBuilder();
duke@1 2580 s.append('<');
duke@1 2581 boolean first = true;
duke@1 2582 for (Type t : tvars) {
duke@1 2583 if (!first) s.append(", ");
duke@1 2584 first = false;
duke@1 2585 appendTyparamString(((TypeVar)t), s);
duke@1 2586 }
duke@1 2587 s.append('>');
duke@1 2588 return s.toString();
duke@1 2589 }
jjg@904 2590 private void appendTyparamString(TypeVar t, StringBuilder buf) {
duke@1 2591 buf.append(t);
duke@1 2592 if (t.bound == null ||
duke@1 2593 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
duke@1 2594 return;
duke@1 2595 buf.append(" extends "); // Java syntax; no need for i18n
duke@1 2596 Type bound = t.bound;
duke@1 2597 if (!bound.isCompound()) {
duke@1 2598 buf.append(bound);
duke@1 2599 } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
duke@1 2600 buf.append(supertype(t));
duke@1 2601 for (Type intf : interfaces(t)) {
duke@1 2602 buf.append('&');
duke@1 2603 buf.append(intf);
duke@1 2604 }
duke@1 2605 } else {
duke@1 2606 // No superclass was given in bounds.
duke@1 2607 // In this case, supertype is Object, erasure is first interface.
duke@1 2608 boolean first = true;
duke@1 2609 for (Type intf : interfaces(t)) {
duke@1 2610 if (!first) buf.append('&');
duke@1 2611 first = false;
duke@1 2612 buf.append(intf);
duke@1 2613 }
duke@1 2614 }
duke@1 2615 }
duke@1 2616 // </editor-fold>
duke@1 2617
duke@1 2618 // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
duke@1 2619 /**
duke@1 2620 * A cache for closures.
duke@1 2621 *
duke@1 2622 * <p>A closure is a list of all the supertypes and interfaces of
duke@1 2623 * a class or interface type, ordered by ClassSymbol.precedes
duke@1 2624 * (that is, subclasses come first, arbitrary but fixed
duke@1 2625 * otherwise).
duke@1 2626 */
duke@1 2627 private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
duke@1 2628
duke@1 2629 /**
duke@1 2630 * Returns the closure of a class or interface type.
duke@1 2631 */
duke@1 2632 public List<Type> closure(Type t) {
duke@1 2633 List<Type> cl = closureCache.get(t);
duke@1 2634 if (cl == null) {
duke@1 2635 Type st = supertype(t);
duke@1 2636 if (!t.isCompound()) {
duke@1 2637 if (st.tag == CLASS) {
duke@1 2638 cl = insert(closure(st), t);
duke@1 2639 } else if (st.tag == TYPEVAR) {
duke@1 2640 cl = closure(st).prepend(t);
duke@1 2641 } else {
duke@1 2642 cl = List.of(t);
duke@1 2643 }
duke@1 2644 } else {
duke@1 2645 cl = closure(supertype(t));
duke@1 2646 }
duke@1 2647 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
duke@1 2648 cl = union(cl, closure(l.head));
duke@1 2649 closureCache.put(t, cl);
duke@1 2650 }
duke@1 2651 return cl;
duke@1 2652 }
duke@1 2653
duke@1 2654 /**
duke@1 2655 * Insert a type in a closure
duke@1 2656 */
duke@1 2657 public List<Type> insert(List<Type> cl, Type t) {
duke@1 2658 if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
duke@1 2659 return cl.prepend(t);
duke@1 2660 } else if (cl.head.tsym.precedes(t.tsym, this)) {
duke@1 2661 return insert(cl.tail, t).prepend(cl.head);
duke@1 2662 } else {
duke@1 2663 return cl;
duke@1 2664 }
duke@1 2665 }
duke@1 2666
duke@1 2667 /**
duke@1 2668 * Form the union of two closures
duke@1 2669 */
duke@1 2670 public List<Type> union(List<Type> cl1, List<Type> cl2) {
duke@1 2671 if (cl1.isEmpty()) {
duke@1 2672 return cl2;
duke@1 2673 } else if (cl2.isEmpty()) {
duke@1 2674 return cl1;
duke@1 2675 } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
duke@1 2676 return union(cl1.tail, cl2).prepend(cl1.head);
duke@1 2677 } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
duke@1 2678 return union(cl1, cl2.tail).prepend(cl2.head);
duke@1 2679 } else {
duke@1 2680 return union(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2681 }
duke@1 2682 }
duke@1 2683
duke@1 2684 /**
duke@1 2685 * Intersect two closures
duke@1 2686 */
duke@1 2687 public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
duke@1 2688 if (cl1 == cl2)
duke@1 2689 return cl1;
duke@1 2690 if (cl1.isEmpty() || cl2.isEmpty())
duke@1 2691 return List.nil();
duke@1 2692 if (cl1.head.tsym.precedes(cl2.head.tsym, this))
duke@1 2693 return intersect(cl1.tail, cl2);
duke@1 2694 if (cl2.head.tsym.precedes(cl1.head.tsym, this))
duke@1 2695 return intersect(cl1, cl2.tail);
duke@1 2696 if (isSameType(cl1.head, cl2.head))
duke@1 2697 return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2698 if (cl1.head.tsym == cl2.head.tsym &&
duke@1 2699 cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
duke@1 2700 if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
duke@1 2701 Type merge = merge(cl1.head,cl2.head);
duke@1 2702 return intersect(cl1.tail, cl2.tail).prepend(merge);
duke@1 2703 }
duke@1 2704 if (cl1.head.isRaw() || cl2.head.isRaw())
duke@1 2705 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
duke@1 2706 }
duke@1 2707 return intersect(cl1.tail, cl2.tail);
duke@1 2708 }
duke@1 2709 // where
duke@1 2710 class TypePair {
duke@1 2711 final Type t1;
duke@1 2712 final Type t2;
duke@1 2713 TypePair(Type t1, Type t2) {
duke@1 2714 this.t1 = t1;
duke@1 2715 this.t2 = t2;
duke@1 2716 }
duke@1 2717 @Override
duke@1 2718 public int hashCode() {
jjg@507 2719 return 127 * Types.hashCode(t1) + Types.hashCode(t2);
duke@1 2720 }
duke@1 2721 @Override
duke@1 2722 public boolean equals(Object obj) {
duke@1 2723 if (!(obj instanceof TypePair))
duke@1 2724 return false;
duke@1 2725 TypePair typePair = (TypePair)obj;
duke@1 2726 return isSameType(t1, typePair.t1)
duke@1 2727 && isSameType(t2, typePair.t2);
duke@1 2728 }
duke@1 2729 }
duke@1 2730 Set<TypePair> mergeCache = new HashSet<TypePair>();
duke@1 2731 private Type merge(Type c1, Type c2) {
duke@1 2732 ClassType class1 = (ClassType) c1;
duke@1 2733 List<Type> act1 = class1.getTypeArguments();
duke@1 2734 ClassType class2 = (ClassType) c2;
duke@1 2735 List<Type> act2 = class2.getTypeArguments();
duke@1 2736 ListBuffer<Type> merged = new ListBuffer<Type>();
duke@1 2737 List<Type> typarams = class1.tsym.type.getTypeArguments();
duke@1 2738
duke@1 2739 while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
duke@1 2740 if (containsType(act1.head, act2.head)) {
duke@1 2741 merged.append(act1.head);
duke@1 2742 } else if (containsType(act2.head, act1.head)) {
duke@1 2743 merged.append(act2.head);
duke@1 2744 } else {
duke@1 2745 TypePair pair = new TypePair(c1, c2);
duke@1 2746 Type m;
duke@1 2747 if (mergeCache.add(pair)) {
duke@1 2748 m = new WildcardType(lub(upperBound(act1.head),
duke@1 2749 upperBound(act2.head)),
duke@1 2750 BoundKind.EXTENDS,
duke@1 2751 syms.boundClass);
duke@1 2752 mergeCache.remove(pair);
duke@1 2753 } else {
duke@1 2754 m = new WildcardType(syms.objectType,
duke@1 2755 BoundKind.UNBOUND,
duke@1 2756 syms.boundClass);
duke@1 2757 }
duke@1 2758 merged.append(m.withTypeVar(typarams.head));
duke@1 2759 }
duke@1 2760 act1 = act1.tail;
duke@1 2761 act2 = act2.tail;
duke@1 2762 typarams = typarams.tail;
duke@1 2763 }
jjg@816 2764 Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
duke@1 2765 return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
duke@1 2766 }
duke@1 2767
duke@1 2768 /**
duke@1 2769 * Return the minimum type of a closure, a compound type if no
duke@1 2770 * unique minimum exists.
duke@1 2771 */
duke@1 2772 private Type compoundMin(List<Type> cl) {
duke@1 2773 if (cl.isEmpty()) return syms.objectType;
duke@1 2774 List<Type> compound = closureMin(cl);
duke@1 2775 if (compound.isEmpty())
duke@1 2776 return null;
duke@1 2777 else if (compound.tail.isEmpty())
duke@1 2778 return compound.head;
duke@1 2779 else
duke@1 2780 return makeCompoundType(compound);
duke@1 2781 }
duke@1 2782
duke@1 2783 /**
duke@1 2784 * Return the minimum types of a closure, suitable for computing
duke@1 2785 * compoundMin or glb.
duke@1 2786 */
duke@1 2787 private List<Type> closureMin(List<Type> cl) {
duke@1 2788 ListBuffer<Type> classes = lb();
duke@1 2789 ListBuffer<Type> interfaces = lb();
duke@1 2790 while (!cl.isEmpty()) {
duke@1 2791 Type current = cl.head;
duke@1 2792 if (current.isInterface())
duke@1 2793 interfaces.append(current);
duke@1 2794 else
duke@1 2795 classes.append(current);
duke@1 2796 ListBuffer<Type> candidates = lb();
duke@1 2797 for (Type t : cl.tail) {
duke@1 2798 if (!isSubtypeNoCapture(current, t))
duke@1 2799 candidates.append(t);
duke@1 2800 }
duke@1 2801 cl = candidates.toList();
duke@1 2802 }
duke@1 2803 return classes.appendList(interfaces).toList();
duke@1 2804 }
duke@1 2805
duke@1 2806 /**
duke@1 2807 * Return the least upper bound of pair of types. if the lub does
duke@1 2808 * not exist return null.
duke@1 2809 */
duke@1 2810 public Type lub(Type t1, Type t2) {
duke@1 2811 return lub(List.of(t1, t2));
duke@1 2812 }
duke@1 2813
duke@1 2814 /**
duke@1 2815 * Return the least upper bound (lub) of set of types. If the lub
duke@1 2816 * does not exist return the type of null (bottom).
duke@1 2817 */
duke@1 2818 public Type lub(List<Type> ts) {
duke@1 2819 final int ARRAY_BOUND = 1;
duke@1 2820 final int CLASS_BOUND = 2;
duke@1 2821 int boundkind = 0;
duke@1 2822 for (Type t : ts) {
duke@1 2823 switch (t.tag) {
duke@1 2824 case CLASS:
duke@1 2825 boundkind |= CLASS_BOUND;
duke@1 2826 break;
duke@1 2827 case ARRAY:
duke@1 2828 boundkind |= ARRAY_BOUND;
duke@1 2829 break;
duke@1 2830 case TYPEVAR:
duke@1 2831 do {
duke@1 2832 t = t.getUpperBound();
duke@1 2833 } while (t.tag == TYPEVAR);
duke@1 2834 if (t.tag == ARRAY) {
duke@1 2835 boundkind |= ARRAY_BOUND;
duke@1 2836 } else {
duke@1 2837 boundkind |= CLASS_BOUND;
duke@1 2838 }
duke@1 2839 break;
duke@1 2840 default:
duke@1 2841 if (t.isPrimitive())
mcimadamore@5 2842 return syms.errType;
duke@1 2843 }
duke@1 2844 }
duke@1 2845 switch (boundkind) {
duke@1 2846 case 0:
duke@1 2847 return syms.botType;
duke@1 2848
duke@1 2849 case ARRAY_BOUND:
duke@1 2850 // calculate lub(A[], B[])
duke@1 2851 List<Type> elements = Type.map(ts, elemTypeFun);
duke@1 2852 for (Type t : elements) {
duke@1 2853 if (t.isPrimitive()) {
duke@1 2854 // if a primitive type is found, then return
duke@1 2855 // arraySuperType unless all the types are the
duke@1 2856 // same
duke@1 2857 Type first = ts.head;
duke@1 2858 for (Type s : ts.tail) {
duke@1 2859 if (!isSameType(first, s)) {
duke@1 2860 // lub(int[], B[]) is Cloneable & Serializable
duke@1 2861 return arraySuperType();
duke@1 2862 }
duke@1 2863 }
duke@1 2864 // all the array types are the same, return one
duke@1 2865 // lub(int[], int[]) is int[]
duke@1 2866 return first;
duke@1 2867 }
duke@1 2868 }
duke@1 2869 // lub(A[], B[]) is lub(A, B)[]
duke@1 2870 return new ArrayType(lub(elements), syms.arrayClass);
duke@1 2871
duke@1 2872 case CLASS_BOUND:
duke@1 2873 // calculate lub(A, B)
duke@1 2874 while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
duke@1 2875 ts = ts.tail;
jjg@816 2876 Assert.check(!ts.isEmpty());
mcimadamore@896 2877 //step 1 - compute erased candidate set (EC)
mcimadamore@896 2878 List<Type> cl = erasedSupertypes(ts.head);
duke@1 2879 for (Type t : ts.tail) {
duke@1 2880 if (t.tag == CLASS || t.tag == TYPEVAR)
mcimadamore@896 2881 cl = intersect(cl, erasedSupertypes(t));
duke@1 2882 }
mcimadamore@896 2883 //step 2 - compute minimal erased candidate set (MEC)
mcimadamore@896 2884 List<Type> mec = closureMin(cl);
mcimadamore@896 2885 //step 3 - for each element G in MEC, compute lci(Inv(G))
mcimadamore@896 2886 List<Type> candidates = List.nil();
mcimadamore@896 2887 for (Type erasedSupertype : mec) {
mcimadamore@896 2888 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
mcimadamore@896 2889 for (Type t : ts) {
mcimadamore@896 2890 lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
mcimadamore@896 2891 }
mcimadamore@896 2892 candidates = candidates.appendList(lci);
mcimadamore@896 2893 }
mcimadamore@896 2894 //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
mcimadamore@896 2895 //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
mcimadamore@896 2896 return compoundMin(candidates);
duke@1 2897
duke@1 2898 default:
duke@1 2899 // calculate lub(A, B[])
duke@1 2900 List<Type> classes = List.of(arraySuperType());
duke@1 2901 for (Type t : ts) {
duke@1 2902 if (t.tag != ARRAY) // Filter out any arrays
duke@1 2903 classes = classes.prepend(t);
duke@1 2904 }
duke@1 2905 // lub(A, B[]) is lub(A, arraySuperType)
duke@1 2906 return lub(classes);
duke@1 2907 }
duke@1 2908 }
duke@1 2909 // where
mcimadamore@896 2910 List<Type> erasedSupertypes(Type t) {
mcimadamore@896 2911 ListBuffer<Type> buf = lb();
mcimadamore@896 2912 for (Type sup : closure(t)) {
mcimadamore@896 2913 if (sup.tag == TYPEVAR) {
mcimadamore@896 2914 buf.append(sup);
mcimadamore@896 2915 } else {
mcimadamore@896 2916 buf.append(erasure(sup));
mcimadamore@896 2917 }
mcimadamore@896 2918 }
mcimadamore@896 2919 return buf.toList();
mcimadamore@896 2920 }
mcimadamore@896 2921
duke@1 2922 private Type arraySuperType = null;
duke@1 2923 private Type arraySuperType() {
duke@1 2924 // initialized lazily to avoid problems during compiler startup
duke@1 2925 if (arraySuperType == null) {
duke@1 2926 synchronized (this) {
duke@1 2927 if (arraySuperType == null) {
duke@1 2928 // JLS 10.8: all arrays implement Cloneable and Serializable.
duke@1 2929 arraySuperType = makeCompoundType(List.of(syms.serializableType,
duke@1 2930 syms.cloneableType),
duke@1 2931 syms.objectType);
duke@1 2932 }
duke@1 2933 }
duke@1 2934 }
duke@1 2935 return arraySuperType;
duke@1 2936 }
duke@1 2937 // </editor-fold>
duke@1 2938
duke@1 2939 // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
mcimadamore@210 2940 public Type glb(List<Type> ts) {
mcimadamore@210 2941 Type t1 = ts.head;
mcimadamore@210 2942 for (Type t2 : ts.tail) {
mcimadamore@210 2943 if (t1.isErroneous())
mcimadamore@210 2944 return t1;
mcimadamore@210 2945 t1 = glb(t1, t2);
mcimadamore@210 2946 }
mcimadamore@210 2947 return t1;
mcimadamore@210 2948 }
mcimadamore@210 2949 //where
duke@1 2950 public Type glb(Type t, Type s) {
duke@1 2951 if (s == null)
duke@1 2952 return t;
mcimadamore@753 2953 else if (t.isPrimitive() || s.isPrimitive())
mcimadamore@753 2954 return syms.errType;
duke@1 2955 else if (isSubtypeNoCapture(t, s))
duke@1 2956 return t;
duke@1 2957 else if (isSubtypeNoCapture(s, t))
duke@1 2958 return s;
duke@1 2959
duke@1 2960 List<Type> closure = union(closure(t), closure(s));
duke@1 2961 List<Type> bounds = closureMin(closure);
duke@1 2962
duke@1 2963 if (bounds.isEmpty()) { // length == 0
duke@1 2964 return syms.objectType;
duke@1 2965 } else if (bounds.tail.isEmpty()) { // length == 1
duke@1 2966 return bounds.head;
duke@1 2967 } else { // length > 1
duke@1 2968 int classCount = 0;
duke@1 2969 for (Type bound : bounds)
duke@1 2970 if (!bound.isInterface())
duke@1 2971 classCount++;
duke@1 2972 if (classCount > 1)
jjg@110 2973 return createErrorType(t);
duke@1 2974 }
duke@1 2975 return makeCompoundType(bounds);
duke@1 2976 }
duke@1 2977 // </editor-fold>
duke@1 2978
duke@1 2979 // <editor-fold defaultstate="collapsed" desc="hashCode">
duke@1 2980 /**
duke@1 2981 * Compute a hash code on a type.
duke@1 2982 */
duke@1 2983 public static int hashCode(Type t) {
duke@1 2984 return hashCode.visit(t);
duke@1 2985 }
duke@1 2986 // where
duke@1 2987 private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
duke@1 2988
duke@1 2989 public Integer visitType(Type t, Void ignored) {
duke@1 2990 return t.tag;
duke@1 2991 }
duke@1 2992
duke@1 2993 @Override
duke@1 2994 public Integer visitClassType(ClassType t, Void ignored) {
duke@1 2995 int result = visit(t.getEnclosingType());
duke@1 2996 result *= 127;
duke@1 2997 result += t.tsym.flatName().hashCode();
duke@1 2998 for (Type s : t.getTypeArguments()) {
duke@1 2999 result *= 127;
duke@1 3000 result += visit(s);
duke@1 3001 }
duke@1 3002 return result;
duke@1 3003 }
duke@1 3004
duke@1 3005 @Override
duke@1 3006 public Integer visitWildcardType(WildcardType t, Void ignored) {
duke@1 3007 int result = t.kind.hashCode();
duke@1 3008 if (t.type != null) {
duke@1 3009 result *= 127;
duke@1 3010 result += visit(t.type);
duke@1 3011 }
duke@1 3012 return result;
duke@1 3013 }
duke@1 3014
duke@1 3015 @Override
duke@1 3016 public Integer visitArrayType(ArrayType t, Void ignored) {
duke@1 3017 return visit(t.elemtype) + 12;
duke@1 3018 }
duke@1 3019
duke@1 3020 @Override
duke@1 3021 public Integer visitTypeVar(TypeVar t, Void ignored) {
duke@1 3022 return System.identityHashCode(t.tsym);
duke@1 3023 }
duke@1 3024
duke@1 3025 @Override
duke@1 3026 public Integer visitUndetVar(UndetVar t, Void ignored) {
duke@1 3027 return System.identityHashCode(t);
duke@1 3028 }
duke@1 3029
duke@1 3030 @Override
duke@1 3031 public Integer visitErrorType(ErrorType t, Void ignored) {
duke@1 3032 return 0;
duke@1 3033 }
duke@1 3034 };
duke@1 3035 // </editor-fold>
duke@1 3036
duke@1 3037 // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
duke@1 3038 /**
duke@1 3039 * Does t have a result that is a subtype of the result type of s,
duke@1 3040 * suitable for covariant returns? It is assumed that both types
duke@1 3041 * are (possibly polymorphic) method types. Monomorphic method
duke@1 3042 * types are handled in the obvious way. Polymorphic method types
duke@1 3043 * require renaming all type variables of one to corresponding
duke@1 3044 * type variables in the other, where correspondence is by
duke@1 3045 * position in the type parameter list. */
duke@1 3046 public boolean resultSubtype(Type t, Type s, Warner warner) {
duke@1 3047 List<Type> tvars = t.getTypeArguments();
duke@1 3048 List<Type> svars = s.getTypeArguments();
duke@1 3049 Type tres = t.getReturnType();
duke@1 3050 Type sres = subst(s.getReturnType(), svars, tvars);
duke@1 3051 return covariantReturnType(tres, sres, warner);
duke@1 3052 }
duke@1 3053
duke@1 3054 /**
duke@1 3055 * Return-Type-Substitutable.
jjh@972 3056 * @jls section 8.4.5
duke@1 3057 */
duke@1 3058 public boolean returnTypeSubstitutable(Type r1, Type r2) {
duke@1 3059 if (hasSameArgs(r1, r2))
tbell@202 3060 return resultSubtype(r1, r2, Warner.noWarnings);
duke@1 3061 else
duke@1 3062 return covariantReturnType(r1.getReturnType(),
tbell@202 3063 erasure(r2.getReturnType()),
tbell@202 3064 Warner.noWarnings);
tbell@202 3065 }
tbell@202 3066
tbell@202 3067 public boolean returnTypeSubstitutable(Type r1,
tbell@202 3068 Type r2, Type r2res,
tbell@202 3069 Warner warner) {
tbell@202 3070 if (isSameType(r1.getReturnType(), r2res))
tbell@202 3071 return true;
tbell@202 3072 if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
tbell@202 3073 return false;
tbell@202 3074
tbell@202 3075 if (hasSameArgs(r1, r2))
tbell@202 3076 return covariantReturnType(r1.getReturnType(), r2res, warner);
jjg@984 3077 if (!allowCovariantReturns)
tbell@202 3078 return false;
tbell@202 3079 if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
tbell@202 3080 return true;
tbell@202 3081 if (!isSubtype(r1.getReturnType(), erasure(r2res)))
tbell@202 3082 return false;
mcimadamore@795 3083 warner.warn(LintCategory.UNCHECKED);
tbell@202 3084 return true;
duke@1 3085 }
duke@1 3086
duke@1 3087 /**
duke@1 3088 * Is t an appropriate return type in an overrider for a
duke@1 3089 * method that returns s?
duke@1 3090 */
duke@1 3091 public boolean covariantReturnType(Type t, Type s, Warner warner) {
tbell@202 3092 return
tbell@202 3093 isSameType(t, s) ||
jjg@984 3094 allowCovariantReturns &&
duke@1 3095 !t.isPrimitive() &&
tbell@202 3096 !s.isPrimitive() &&
tbell@202 3097 isAssignable(t, s, warner);
duke@1 3098 }
duke@1 3099 // </editor-fold>
duke@1 3100
duke@1 3101 // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
duke@1 3102 /**
duke@1 3103 * Return the class that boxes the given primitive.
duke@1 3104 */
duke@1 3105 public ClassSymbol boxedClass(Type t) {
duke@1 3106 return reader.enterClass(syms.boxedName[t.tag]);
duke@1 3107 }
duke@1 3108
duke@1 3109 /**
mcimadamore@753 3110 * Return the boxed type if 't' is primitive, otherwise return 't' itself.
mcimadamore@753 3111 */
mcimadamore@753 3112 public Type boxedTypeOrType(Type t) {
mcimadamore@753 3113 return t.isPrimitive() ?
mcimadamore@753 3114 boxedClass(t).type :
mcimadamore@753 3115 t;
mcimadamore@753 3116 }
mcimadamore@753 3117
mcimadamore@753 3118 /**
duke@1 3119 * Return the primitive type corresponding to a boxed type.
duke@1 3120 */
duke@1 3121 public Type unboxedType(Type t) {
duke@1 3122 if (allowBoxing) {
duke@1 3123 for (int i=0; i<syms.boxedName.length; i++) {
duke@1 3124 Name box = syms.boxedName[i];
duke@1 3125 if (box != null &&
duke@1 3126 asSuper(t, reader.enterClass(box)) != null)
duke@1 3127 return syms.typeOfTag[i];
duke@1 3128 }
duke@1 3129 }
duke@1 3130 return Type.noType;
duke@1 3131 }
duke@1 3132 // </editor-fold>
duke@1 3133
duke@1 3134 // <editor-fold defaultstate="collapsed" desc="Capture conversion">
duke@1 3135 /*
jjh@972 3136 * JLS 5.1.10 Capture Conversion:
duke@1 3137 *
duke@1 3138 * Let G name a generic type declaration with n formal type
duke@1 3139 * parameters A1 ... An with corresponding bounds U1 ... Un. There
duke@1 3140 * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
duke@1 3141 * where, for 1 <= i <= n:
duke@1 3142 *
duke@1 3143 * + If Ti is a wildcard type argument (4.5.1) of the form ? then
duke@1 3144 * Si is a fresh type variable whose upper bound is
duke@1 3145 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
duke@1 3146 * type.
duke@1 3147 *
duke@1 3148 * + If Ti is a wildcard type argument of the form ? extends Bi,
duke@1 3149 * then Si is a fresh type variable whose upper bound is
duke@1 3150 * glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
duke@1 3151 * the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
duke@1 3152 * a compile-time error if for any two classes (not interfaces)
duke@1 3153 * Vi and Vj,Vi is not a subclass of Vj or vice versa.
duke@1 3154 *
duke@1 3155 * + If Ti is a wildcard type argument of the form ? super Bi,
duke@1 3156 * then Si is a fresh type variable whose upper bound is
duke@1 3157 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
duke@1 3158 *
duke@1 3159 * + Otherwise, Si = Ti.
duke@1 3160 *
duke@1 3161 * Capture conversion on any type other than a parameterized type
duke@1 3162 * (4.5) acts as an identity conversion (5.1.1). Capture
duke@1 3163 * conversions never require a special action at run time and
duke@1 3164 * therefore never throw an exception at run time.
duke@1 3165 *
duke@1 3166 * Capture conversion is not applied recursively.
duke@1 3167 */
duke@1 3168 /**
jjh@972 3169 * Capture conversion as specified by the JLS.
duke@1 3170 */
mcimadamore@299 3171
mcimadamore@299 3172 public List<Type> capture(List<Type> ts) {
mcimadamore@299 3173 List<Type> buf = List.nil();
mcimadamore@299 3174 for (Type t : ts) {
mcimadamore@299 3175 buf = buf.prepend(capture(t));
mcimadamore@299 3176 }
mcimadamore@299 3177 return buf.reverse();
mcimadamore@299 3178 }
duke@1 3179 public Type capture(Type t) {
duke@1 3180 if (t.tag != CLASS)
duke@1 3181 return t;
mcimadamore@637 3182 if (t.getEnclosingType() != Type.noType) {
mcimadamore@637 3183 Type capturedEncl = capture(t.getEnclosingType());
mcimadamore@637 3184 if (capturedEncl != t.getEnclosingType()) {
mcimadamore@637 3185 Type type1 = memberType(capturedEncl, t.tsym);
mcimadamore@637 3186 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
mcimadamore@637 3187 }
mcimadamore@637 3188 }
duke@1 3189 ClassType cls = (ClassType)t;
duke@1 3190 if (cls.isRaw() || !cls.isParameterized())
duke@1 3191 return cls;
duke@1 3192
duke@1 3193 ClassType G = (ClassType)cls.asElement().asType();
duke@1 3194 List<Type> A = G.getTypeArguments();
duke@1 3195 List<Type> T = cls.getTypeArguments();
duke@1 3196 List<Type> S = freshTypeVariables(T);
duke@1 3197
duke@1 3198 List<Type> currentA = A;
duke@1 3199 List<Type> currentT = T;
duke@1 3200 List<Type> currentS = S;
duke@1 3201 boolean captured = false;
duke@1 3202 while (!currentA.isEmpty() &&
duke@1 3203 !currentT.isEmpty() &&
duke@1 3204 !currentS.isEmpty()) {
duke@1 3205 if (currentS.head != currentT.head) {
duke@1 3206 captured = true;
duke@1 3207 WildcardType Ti = (WildcardType)currentT.head;
duke@1 3208 Type Ui = currentA.head.getUpperBound();
duke@1 3209 CapturedType Si = (CapturedType)currentS.head;
duke@1 3210 if (Ui == null)
duke@1 3211 Ui = syms.objectType;
duke@1 3212 switch (Ti.kind) {
duke@1 3213 case UNBOUND:
duke@1 3214 Si.bound = subst(Ui, A, S);
duke@1 3215 Si.lower = syms.botType;
duke@1 3216 break;
duke@1 3217 case EXTENDS:
duke@1 3218 Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
duke@1 3219 Si.lower = syms.botType;
duke@1 3220 break;
duke@1 3221 case SUPER:
duke@1 3222 Si.bound = subst(Ui, A, S);
duke@1 3223 Si.lower = Ti.getSuperBound();
duke@1 3224 break;
duke@1 3225 }
duke@1 3226 if (Si.bound == Si.lower)
duke@1 3227 currentS.head = Si.bound;
duke@1 3228 }
duke@1 3229 currentA = currentA.tail;
duke@1 3230 currentT = currentT.tail;
duke@1 3231 currentS = currentS.tail;
duke@1 3232 }
duke@1 3233 if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
duke@1 3234 return erasure(t); // some "rare" type involved
duke@1 3235
duke@1 3236 if (captured)
duke@1 3237 return new ClassType(cls.getEnclosingType(), S, cls.tsym);
duke@1 3238 else
duke@1 3239 return t;
duke@1 3240 }
duke@1 3241 // where
mcimadamore@238 3242 public List<Type> freshTypeVariables(List<Type> types) {
duke@1 3243 ListBuffer<Type> result = lb();
duke@1 3244 for (Type t : types) {
duke@1 3245 if (t.tag == WILDCARD) {
duke@1 3246 Type bound = ((WildcardType)t).getExtendsBound();
duke@1 3247 if (bound == null)
duke@1 3248 bound = syms.objectType;
duke@1 3249 result.append(new CapturedType(capturedName,
duke@1 3250 syms.noSymbol,
duke@1 3251 bound,
duke@1 3252 syms.botType,
duke@1 3253 (WildcardType)t));
duke@1 3254 } else {
duke@1 3255 result.append(t);
duke@1 3256 }
duke@1 3257 }
duke@1 3258 return result.toList();
duke@1 3259 }
duke@1 3260 // </editor-fold>
duke@1 3261
duke@1 3262 // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
duke@1 3263 private List<Type> upperBounds(List<Type> ss) {
duke@1 3264 if (ss.isEmpty()) return ss;
duke@1 3265 Type head = upperBound(ss.head);
duke@1 3266 List<Type> tail = upperBounds(ss.tail);
duke@1 3267 if (head != ss.head || tail != ss.tail)
duke@1 3268 return tail.prepend(head);
duke@1 3269 else
duke@1 3270 return ss;
duke@1 3271 }
duke@1 3272
duke@1 3273 private boolean sideCast(Type from, Type to, Warner warn) {
duke@1 3274 // We are casting from type $from$ to type $to$, which are
duke@1 3275 // non-final unrelated types. This method
duke@1 3276 // tries to reject a cast by transferring type parameters
duke@1 3277 // from $to$ to $from$ by common superinterfaces.
duke@1 3278 boolean reverse = false;
duke@1 3279 Type target = to;
duke@1 3280 if ((to.tsym.flags() & INTERFACE) == 0) {
jjg@816 3281 Assert.check((from.tsym.flags() & INTERFACE) != 0);
duke@1 3282 reverse = true;
duke@1 3283 to = from;
duke@1 3284 from = target;
duke@1 3285 }
duke@1 3286 List<Type> commonSupers = superClosure(to, erasure(from));
duke@1 3287 boolean giveWarning = commonSupers.isEmpty();
duke@1 3288 // The arguments to the supers could be unified here to
duke@1 3289 // get a more accurate analysis
duke@1 3290 while (commonSupers.nonEmpty()) {
duke@1 3291 Type t1 = asSuper(from, commonSupers.head.tsym);
duke@1 3292 Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
duke@1 3293 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3294 return false;
duke@1 3295 giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
duke@1 3296 commonSupers = commonSupers.tail;
duke@1 3297 }
mcimadamore@187 3298 if (giveWarning && !isReifiable(reverse ? from : to))
mcimadamore@795 3299 warn.warn(LintCategory.UNCHECKED);
jjg@984 3300 if (!allowCovariantReturns)
duke@1 3301 // reject if there is a common method signature with
duke@1 3302 // incompatible return types.
duke@1 3303 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3304 return true;
duke@1 3305 }
duke@1 3306
duke@1 3307 private boolean sideCastFinal(Type from, Type to, Warner warn) {
duke@1 3308 // We are casting from type $from$ to type $to$, which are
duke@1 3309 // unrelated types one of which is final and the other of
duke@1 3310 // which is an interface. This method
duke@1 3311 // tries to reject a cast by transferring type parameters
duke@1 3312 // from the final class to the interface.
duke@1 3313 boolean reverse = false;
duke@1 3314 Type target = to;
duke@1 3315 if ((to.tsym.flags() & INTERFACE) == 0) {
jjg@816 3316 Assert.check((from.tsym.flags() & INTERFACE) != 0);
duke@1 3317 reverse = true;
duke@1 3318 to = from;
duke@1 3319 from = target;
duke@1 3320 }
jjg@816 3321 Assert.check((from.tsym.flags() & FINAL) != 0);
duke@1 3322 Type t1 = asSuper(from, to.tsym);
duke@1 3323 if (t1 == null) return false;
duke@1 3324 Type t2 = to;
duke@1 3325 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3326 return false;
jjg@984 3327 if (!allowCovariantReturns)
duke@1 3328 // reject if there is a common method signature with
duke@1 3329 // incompatible return types.
duke@1 3330 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3331 if (!isReifiable(target) &&
duke@1 3332 (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
mcimadamore@795 3333 warn.warn(LintCategory.UNCHECKED);
duke@1 3334 return true;
duke@1 3335 }
duke@1 3336
duke@1 3337 private boolean giveWarning(Type from, Type to) {
mcimadamore@235 3338 Type subFrom = asSub(from, to.tsym);
mcimadamore@235 3339 return to.isParameterized() &&
mcimadamore@235 3340 (!(isUnbounded(to) ||
mcimadamore@235 3341 isSubtype(from, to) ||
mcimadamore@736 3342 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
duke@1 3343 }
duke@1 3344
duke@1 3345 private List<Type> superClosure(Type t, Type s) {
duke@1 3346 List<Type> cl = List.nil();
duke@1 3347 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 3348 if (isSubtype(s, erasure(l.head))) {
duke@1 3349 cl = insert(cl, l.head);
duke@1 3350 } else {
duke@1 3351 cl = union(cl, superClosure(l.head, s));
duke@1 3352 }
duke@1 3353 }
duke@1 3354 return cl;
duke@1 3355 }
duke@1 3356
duke@1 3357 private boolean containsTypeEquivalent(Type t, Type s) {
duke@1 3358 return
duke@1 3359 isSameType(t, s) || // shortcut
duke@1 3360 containsType(t, s) && containsType(s, t);
duke@1 3361 }
duke@1 3362
mcimadamore@138 3363 // <editor-fold defaultstate="collapsed" desc="adapt">
duke@1 3364 /**
duke@1 3365 * Adapt a type by computing a substitution which maps a source
duke@1 3366 * type to a target type.
duke@1 3367 *
duke@1 3368 * @param source the source type
duke@1 3369 * @param target the target type
duke@1 3370 * @param from the type variables of the computed substitution
duke@1 3371 * @param to the types of the computed substitution.
duke@1 3372 */
duke@1 3373 public void adapt(Type source,
duke@1 3374 Type target,
duke@1 3375 ListBuffer<Type> from,
duke@1 3376 ListBuffer<Type> to) throws AdaptFailure {
mcimadamore@138 3377 new Adapter(from, to).adapt(source, target);
mcimadamore@138 3378 }
mcimadamore@138 3379
mcimadamore@138 3380 class Adapter extends SimpleVisitor<Void, Type> {
mcimadamore@138 3381
mcimadamore@138 3382 ListBuffer<Type> from;
mcimadamore@138 3383 ListBuffer<Type> to;
mcimadamore@138 3384 Map<Symbol,Type> mapping;
mcimadamore@138 3385
mcimadamore@138 3386 Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
mcimadamore@138 3387 this.from = from;
mcimadamore@138 3388 this.to = to;
mcimadamore@138 3389 mapping = new HashMap<Symbol,Type>();
duke@1 3390 }
mcimadamore@138 3391
mcimadamore@138 3392 public void adapt(Type source, Type target) throws AdaptFailure {
mcimadamore@138 3393 visit(source, target);
mcimadamore@138 3394 List<Type> fromList = from.toList();
mcimadamore@138 3395 List<Type> toList = to.toList();
mcimadamore@138 3396 while (!fromList.isEmpty()) {
mcimadamore@138 3397 Type val = mapping.get(fromList.head.tsym);
mcimadamore@138 3398 if (toList.head != val)
mcimadamore@138 3399 toList.head = val;
mcimadamore@138 3400 fromList = fromList.tail;
mcimadamore@138 3401 toList = toList.tail;
mcimadamore@138 3402 }
mcimadamore@138 3403 }
mcimadamore@138 3404
mcimadamore@138 3405 @Override
mcimadamore@138 3406 public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
mcimadamore@138 3407 if (target.tag == CLASS)
mcimadamore@138 3408 adaptRecursive(source.allparams(), target.allparams());
mcimadamore@138 3409 return null;
mcimadamore@138 3410 }
mcimadamore@138 3411
mcimadamore@138 3412 @Override
mcimadamore@138 3413 public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
mcimadamore@138 3414 if (target.tag == ARRAY)
mcimadamore@138 3415 adaptRecursive(elemtype(source), elemtype(target));
mcimadamore@138 3416 return null;
mcimadamore@138 3417 }
mcimadamore@138 3418
mcimadamore@138 3419 @Override
mcimadamore@138 3420 public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
mcimadamore@138 3421 if (source.isExtendsBound())
mcimadamore@138 3422 adaptRecursive(upperBound(source), upperBound(target));
mcimadamore@138 3423 else if (source.isSuperBound())
mcimadamore@138 3424 adaptRecursive(lowerBound(source), lowerBound(target));
mcimadamore@138 3425 return null;
mcimadamore@138 3426 }
mcimadamore@138 3427
mcimadamore@138 3428 @Override
mcimadamore@138 3429 public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
mcimadamore@138 3430 // Check to see if there is
mcimadamore@138 3431 // already a mapping for $source$, in which case
mcimadamore@138 3432 // the old mapping will be merged with the new
mcimadamore@138 3433 Type val = mapping.get(source.tsym);
mcimadamore@138 3434 if (val != null) {
mcimadamore@138 3435 if (val.isSuperBound() && target.isSuperBound()) {
mcimadamore@138 3436 val = isSubtype(lowerBound(val), lowerBound(target))
mcimadamore@138 3437 ? target : val;
mcimadamore@138 3438 } else if (val.isExtendsBound() && target.isExtendsBound()) {
mcimadamore@138 3439 val = isSubtype(upperBound(val), upperBound(target))
mcimadamore@138 3440 ? val : target;
mcimadamore@138 3441 } else if (!isSameType(val, target)) {
mcimadamore@138 3442 throw new AdaptFailure();
duke@1 3443 }
mcimadamore@138 3444 } else {
mcimadamore@138 3445 val = target;
mcimadamore@138 3446 from.append(source);
mcimadamore@138 3447 to.append(target);
mcimadamore@138 3448 }
mcimadamore@138 3449 mapping.put(source.tsym, val);
mcimadamore@138 3450 return null;
mcimadamore@138 3451 }
mcimadamore@138 3452
mcimadamore@138 3453 @Override
mcimadamore@138 3454 public Void visitType(Type source, Type target) {
mcimadamore@138 3455 return null;
mcimadamore@138 3456 }
mcimadamore@138 3457
mcimadamore@138 3458 private Set<TypePair> cache = new HashSet<TypePair>();
mcimadamore@138 3459
mcimadamore@138 3460 private void adaptRecursive(Type source, Type target) {
mcimadamore@138 3461 TypePair pair = new TypePair(source, target);
mcimadamore@138 3462 if (cache.add(pair)) {
mcimadamore@138 3463 try {
mcimadamore@138 3464 visit(source, target);
mcimadamore@138 3465 } finally {
mcimadamore@138 3466 cache.remove(pair);
duke@1 3467 }
duke@1 3468 }
duke@1 3469 }
mcimadamore@138 3470
mcimadamore@138 3471 private void adaptRecursive(List<Type> source, List<Type> target) {
mcimadamore@138 3472 if (source.length() == target.length()) {
mcimadamore@138 3473 while (source.nonEmpty()) {
mcimadamore@138 3474 adaptRecursive(source.head, target.head);
mcimadamore@138 3475 source = source.tail;
mcimadamore@138 3476 target = target.tail;
mcimadamore@138 3477 }
duke@1 3478 }
duke@1 3479 }
duke@1 3480 }
duke@1 3481
mcimadamore@138 3482 public static class AdaptFailure extends RuntimeException {
mcimadamore@138 3483 static final long serialVersionUID = -7490231548272701566L;
mcimadamore@138 3484 }
mcimadamore@138 3485
duke@1 3486 private void adaptSelf(Type t,
duke@1 3487 ListBuffer<Type> from,
duke@1 3488 ListBuffer<Type> to) {
duke@1 3489 try {
duke@1 3490 //if (t.tsym.type != t)
duke@1 3491 adapt(t.tsym.type, t, from, to);
duke@1 3492 } catch (AdaptFailure ex) {
duke@1 3493 // Adapt should never fail calculating a mapping from
duke@1 3494 // t.tsym.type to t as there can be no merge problem.
duke@1 3495 throw new AssertionError(ex);
duke@1 3496 }
duke@1 3497 }
mcimadamore@138 3498 // </editor-fold>
duke@1 3499
duke@1 3500 /**
duke@1 3501 * Rewrite all type variables (universal quantifiers) in the given
duke@1 3502 * type to wildcards (existential quantifiers). This is used to
duke@1 3503 * determine if a cast is allowed. For example, if high is true
duke@1 3504 * and {@code T <: Number}, then {@code List<T>} is rewritten to
duke@1 3505 * {@code List<? extends Number>}. Since {@code List<Integer> <:
duke@1 3506 * List<? extends Number>} a {@code List<T>} can be cast to {@code
duke@1 3507 * List<Integer>} with a warning.
duke@1 3508 * @param t a type
duke@1 3509 * @param high if true return an upper bound; otherwise a lower
duke@1 3510 * bound
duke@1 3511 * @param rewriteTypeVars only rewrite captured wildcards if false;
duke@1 3512 * otherwise rewrite all type variables
duke@1 3513 * @return the type rewritten with wildcards (existential
duke@1 3514 * quantifiers) only
duke@1 3515 */
duke@1 3516 private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
mcimadamore@640 3517 return new Rewriter(high, rewriteTypeVars).visit(t);
mcimadamore@157 3518 }
mcimadamore@157 3519
mcimadamore@157 3520 class Rewriter extends UnaryVisitor<Type> {
mcimadamore@157 3521
mcimadamore@157 3522 boolean high;
mcimadamore@157 3523 boolean rewriteTypeVars;
mcimadamore@157 3524
mcimadamore@157 3525 Rewriter(boolean high, boolean rewriteTypeVars) {
mcimadamore@157 3526 this.high = high;
mcimadamore@157 3527 this.rewriteTypeVars = rewriteTypeVars;
mcimadamore@157 3528 }
mcimadamore@157 3529
mcimadamore@640 3530 @Override
mcimadamore@640 3531 public Type visitClassType(ClassType t, Void s) {
mcimadamore@157 3532 ListBuffer<Type> rewritten = new ListBuffer<Type>();
mcimadamore@157 3533 boolean changed = false;
mcimadamore@640 3534 for (Type arg : t.allparams()) {
mcimadamore@157 3535 Type bound = visit(arg);
mcimadamore@157 3536 if (arg != bound) {
mcimadamore@157 3537 changed = true;
mcimadamore@157 3538 }
mcimadamore@157 3539 rewritten.append(bound);
duke@1 3540 }
mcimadamore@157 3541 if (changed)
mcimadamore@640 3542 return subst(t.tsym.type,
mcimadamore@640 3543 t.tsym.type.allparams(),
mcimadamore@640 3544 rewritten.toList());
mcimadamore@157 3545 else
mcimadamore@157 3546 return t;
duke@1 3547 }
mcimadamore@157 3548
mcimadamore@157 3549 public Type visitType(Type t, Void s) {
mcimadamore@157 3550 return high ? upperBound(t) : lowerBound(t);
mcimadamore@157 3551 }
mcimadamore@157 3552
mcimadamore@157 3553 @Override
mcimadamore@157 3554 public Type visitCapturedType(CapturedType t, Void s) {
mcimadamore@640 3555 Type bound = visitWildcardType(t.wildcard, null);
mcimadamore@640 3556 return (bound.contains(t)) ?
mcimadamore@779 3557 erasure(bound) :
mcimadamore@779 3558 bound;
mcimadamore@157 3559 }
mcimadamore@157 3560
mcimadamore@157 3561 @Override
mcimadamore@157 3562 public Type visitTypeVar(TypeVar t, Void s) {
mcimadamore@640 3563 if (rewriteTypeVars) {
mcimadamore@640 3564 Type bound = high ?
mcimadamore@640 3565 (t.bound.contains(t) ?
mcimadamore@779 3566 erasure(t.bound) :
mcimadamore@640 3567 visit(t.bound)) :
mcimadamore@640 3568 syms.botType;
mcimadamore@640 3569 return rewriteAsWildcardType(bound, t);
mcimadamore@640 3570 }
mcimadamore@157 3571 else
mcimadamore@157 3572 return t;
mcimadamore@157 3573 }
mcimadamore@157 3574
mcimadamore@157 3575 @Override
mcimadamore@157 3576 public Type visitWildcardType(WildcardType t, Void s) {
mcimadamore@157 3577 Type bound = high ? t.getExtendsBound() :
mcimadamore@157 3578 t.getSuperBound();
mcimadamore@157 3579 if (bound == null)
mcimadamore@640 3580 bound = high ? syms.objectType : syms.botType;
mcimadamore@640 3581 return rewriteAsWildcardType(visit(bound), t.bound);
mcimadamore@640 3582 }
mcimadamore@640 3583
mcimadamore@640 3584 private Type rewriteAsWildcardType(Type bound, TypeVar formal) {
mcimadamore@640 3585 return high ?
mcimadamore@640 3586 makeExtendsWildcard(B(bound), formal) :
mcimadamore@640 3587 makeSuperWildcard(B(bound), formal);
mcimadamore@640 3588 }
mcimadamore@640 3589
mcimadamore@640 3590 Type B(Type t) {
mcimadamore@640 3591 while (t.tag == WILDCARD) {
mcimadamore@640 3592 WildcardType w = (WildcardType)t;
mcimadamore@640 3593 t = high ?
mcimadamore@640 3594 w.getExtendsBound() :
mcimadamore@640 3595 w.getSuperBound();
mcimadamore@640 3596 if (t == null) {
mcimadamore@640 3597 t = high ? syms.objectType : syms.botType;
mcimadamore@640 3598 }
mcimadamore@640 3599 }
mcimadamore@640 3600 return t;
mcimadamore@157 3601 }
duke@1 3602 }
duke@1 3603
mcimadamore@640 3604
duke@1 3605 /**
duke@1 3606 * Create a wildcard with the given upper (extends) bound; create
duke@1 3607 * an unbounded wildcard if bound is Object.
duke@1 3608 *
duke@1 3609 * @param bound the upper bound
duke@1 3610 * @param formal the formal type parameter that will be
duke@1 3611 * substituted by the wildcard
duke@1 3612 */
duke@1 3613 private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
duke@1 3614 if (bound == syms.objectType) {
duke@1 3615 return new WildcardType(syms.objectType,
duke@1 3616 BoundKind.UNBOUND,
duke@1 3617 syms.boundClass,
duke@1 3618 formal);
duke@1 3619 } else {
duke@1 3620 return new WildcardType(bound,
duke@1 3621 BoundKind.EXTENDS,
duke@1 3622 syms.boundClass,
duke@1 3623 formal);
duke@1 3624 }
duke@1 3625 }
duke@1 3626
duke@1 3627 /**
duke@1 3628 * Create a wildcard with the given lower (super) bound; create an
duke@1 3629 * unbounded wildcard if bound is bottom (type of {@code null}).
duke@1 3630 *
duke@1 3631 * @param bound the lower bound
duke@1 3632 * @param formal the formal type parameter that will be
duke@1 3633 * substituted by the wildcard
duke@1 3634 */
duke@1 3635 private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
duke@1 3636 if (bound.tag == BOT) {
duke@1 3637 return new WildcardType(syms.objectType,
duke@1 3638 BoundKind.UNBOUND,
duke@1 3639 syms.boundClass,
duke@1 3640 formal);
duke@1 3641 } else {
duke@1 3642 return new WildcardType(bound,
duke@1 3643 BoundKind.SUPER,
duke@1 3644 syms.boundClass,
duke@1 3645 formal);
duke@1 3646 }
duke@1 3647 }
duke@1 3648
duke@1 3649 /**
duke@1 3650 * A wrapper for a type that allows use in sets.
duke@1 3651 */
duke@1 3652 class SingletonType {
duke@1 3653 final Type t;
duke@1 3654 SingletonType(Type t) {
duke@1 3655 this.t = t;
duke@1 3656 }
duke@1 3657 public int hashCode() {
jjg@507 3658 return Types.hashCode(t);
duke@1 3659 }
duke@1 3660 public boolean equals(Object obj) {
duke@1 3661 return (obj instanceof SingletonType) &&
duke@1 3662 isSameType(t, ((SingletonType)obj).t);
duke@1 3663 }
duke@1 3664 public String toString() {
duke@1 3665 return t.toString();
duke@1 3666 }
duke@1 3667 }
duke@1 3668 // </editor-fold>
duke@1 3669
duke@1 3670 // <editor-fold defaultstate="collapsed" desc="Visitors">
duke@1 3671 /**
duke@1 3672 * A default visitor for types. All visitor methods except
duke@1 3673 * visitType are implemented by delegating to visitType. Concrete
duke@1 3674 * subclasses must provide an implementation of visitType and can
duke@1 3675 * override other methods as needed.
duke@1 3676 *
duke@1 3677 * @param <R> the return type of the operation implemented by this
duke@1 3678 * visitor; use Void if no return type is needed.
duke@1 3679 * @param <S> the type of the second argument (the first being the
duke@1 3680 * type itself) of the operation implemented by this visitor; use
duke@1 3681 * Void if a second argument is not needed.
duke@1 3682 */
duke@1 3683 public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
duke@1 3684 final public R visit(Type t, S s) { return t.accept(this, s); }
duke@1 3685 public R visitClassType(ClassType t, S s) { return visitType(t, s); }
duke@1 3686 public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
duke@1 3687 public R visitArrayType(ArrayType t, S s) { return visitType(t, s); }
duke@1 3688 public R visitMethodType(MethodType t, S s) { return visitType(t, s); }
duke@1 3689 public R visitPackageType(PackageType t, S s) { return visitType(t, s); }
duke@1 3690 public R visitTypeVar(TypeVar t, S s) { return visitType(t, s); }
duke@1 3691 public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
duke@1 3692 public R visitForAll(ForAll t, S s) { return visitType(t, s); }
duke@1 3693 public R visitUndetVar(UndetVar t, S s) { return visitType(t, s); }
duke@1 3694 public R visitErrorType(ErrorType t, S s) { return visitType(t, s); }
duke@1 3695 }
duke@1 3696
duke@1 3697 /**
mcimadamore@121 3698 * A default visitor for symbols. All visitor methods except
mcimadamore@121 3699 * visitSymbol are implemented by delegating to visitSymbol. Concrete
mcimadamore@121 3700 * subclasses must provide an implementation of visitSymbol and can
mcimadamore@121 3701 * override other methods as needed.
mcimadamore@121 3702 *
mcimadamore@121 3703 * @param <R> the return type of the operation implemented by this
mcimadamore@121 3704 * visitor; use Void if no return type is needed.
mcimadamore@121 3705 * @param <S> the type of the second argument (the first being the
mcimadamore@121 3706 * symbol itself) of the operation implemented by this visitor; use
mcimadamore@121 3707 * Void if a second argument is not needed.
mcimadamore@121 3708 */
mcimadamore@121 3709 public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
mcimadamore@121 3710 final public R visit(Symbol s, S arg) { return s.accept(this, arg); }
mcimadamore@121 3711 public R visitClassSymbol(ClassSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3712 public R visitMethodSymbol(MethodSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3713 public R visitOperatorSymbol(OperatorSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3714 public R visitPackageSymbol(PackageSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3715 public R visitTypeSymbol(TypeSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3716 public R visitVarSymbol(VarSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3717 }
mcimadamore@121 3718
mcimadamore@121 3719 /**
duke@1 3720 * A <em>simple</em> visitor for types. This visitor is simple as
duke@1 3721 * captured wildcards, for-all types (generic methods), and
duke@1 3722 * undetermined type variables (part of inference) are hidden.
duke@1 3723 * Captured wildcards are hidden by treating them as type
duke@1 3724 * variables and the rest are hidden by visiting their qtypes.
duke@1 3725 *
duke@1 3726 * @param <R> the return type of the operation implemented by this
duke@1 3727 * visitor; use Void if no return type is needed.
duke@1 3728 * @param <S> the type of the second argument (the first being the
duke@1 3729 * type itself) of the operation implemented by this visitor; use
duke@1 3730 * Void if a second argument is not needed.
duke@1 3731 */
duke@1 3732 public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
duke@1 3733 @Override
duke@1 3734 public R visitCapturedType(CapturedType t, S s) {
duke@1 3735 return visitTypeVar(t, s);
duke@1 3736 }
duke@1 3737 @Override
duke@1 3738 public R visitForAll(ForAll t, S s) {
duke@1 3739 return visit(t.qtype, s);
duke@1 3740 }
duke@1 3741 @Override
duke@1 3742 public R visitUndetVar(UndetVar t, S s) {
duke@1 3743 return visit(t.qtype, s);
duke@1 3744 }
duke@1 3745 }
duke@1 3746
duke@1 3747 /**
duke@1 3748 * A plain relation on types. That is a 2-ary function on the
duke@1 3749 * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
duke@1 3750 * <!-- In plain text: Type x Type -> Boolean -->
duke@1 3751 */
duke@1 3752 public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
duke@1 3753
duke@1 3754 /**
duke@1 3755 * A convenience visitor for implementing operations that only
duke@1 3756 * require one argument (the type itself), that is, unary
duke@1 3757 * operations.
duke@1 3758 *
duke@1 3759 * @param <R> the return type of the operation implemented by this
duke@1 3760 * visitor; use Void if no return type is needed.
duke@1 3761 */
duke@1 3762 public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
duke@1 3763 final public R visit(Type t) { return t.accept(this, null); }
duke@1 3764 }
duke@1 3765
duke@1 3766 /**
duke@1 3767 * A visitor for implementing a mapping from types to types. The
duke@1 3768 * default behavior of this class is to implement the identity
duke@1 3769 * mapping (mapping a type to itself). This can be overridden in
duke@1 3770 * subclasses.
duke@1 3771 *
duke@1 3772 * @param <S> the type of the second argument (the first being the
duke@1 3773 * type itself) of this mapping; use Void if a second argument is
duke@1 3774 * not needed.
duke@1 3775 */
duke@1 3776 public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
duke@1 3777 final public Type visit(Type t) { return t.accept(this, null); }
duke@1 3778 public Type visitType(Type t, S s) { return t; }
duke@1 3779 }
duke@1 3780 // </editor-fold>
jjg@657 3781
jjg@657 3782
jjg@657 3783 // <editor-fold defaultstate="collapsed" desc="Annotation support">
jjg@657 3784
jjg@657 3785 public RetentionPolicy getRetention(Attribute.Compound a) {
jjg@657 3786 RetentionPolicy vis = RetentionPolicy.CLASS; // the default
jjg@657 3787 Attribute.Compound c = a.type.tsym.attribute(syms.retentionType.tsym);
jjg@657 3788 if (c != null) {
jjg@657 3789 Attribute value = c.member(names.value);
jjg@657 3790 if (value != null && value instanceof Attribute.Enum) {
jjg@657 3791 Name levelName = ((Attribute.Enum)value).value.name;
jjg@657 3792 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
jjg@657 3793 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
jjg@657 3794 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
jjg@657 3795 else ;// /* fail soft */ throw new AssertionError(levelName);
jjg@657 3796 }
jjg@657 3797 }
jjg@657 3798 return vis;
jjg@657 3799 }
jjg@657 3800 // </editor-fold>
duke@1 3801 }

mercurial