src/share/classes/com/sun/tools/javac/code/Types.java

Tue, 16 Jun 2009 10:46:37 +0100

author
mcimadamore
date
Tue, 16 Jun 2009 10:46:37 +0100
changeset 299
22872b24d38c
parent 240
8c55d5b0ed71
child 341
85fecace920b
permissions
-rw-r--r--

6638712: Inference with wildcard types causes selection of inapplicable method
Summary: Added global sanity check in order to make sure that return type inference does not violate bounds constraints
Reviewed-by: jjg

duke@1 1 /*
mcimadamore@238 2 * Copyright 2003-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
duke@1 7 * published by the Free Software Foundation. Sun designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
duke@1 9 * by Sun in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
duke@1 21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@1 22 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@1 23 * have any questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.code;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29
mcimadamore@238 30 import com.sun.tools.javac.api.Messages;
mcimadamore@238 31
duke@1 32 import com.sun.tools.javac.util.*;
duke@1 33 import com.sun.tools.javac.util.List;
duke@1 34
duke@1 35 import com.sun.tools.javac.jvm.ClassReader;
duke@1 36 import com.sun.tools.javac.comp.Check;
duke@1 37
duke@1 38 import static com.sun.tools.javac.code.Type.*;
duke@1 39 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 40 import static com.sun.tools.javac.code.Symbol.*;
duke@1 41 import static com.sun.tools.javac.code.Flags.*;
duke@1 42 import static com.sun.tools.javac.code.BoundKind.*;
duke@1 43 import static com.sun.tools.javac.util.ListBuffer.lb;
duke@1 44
duke@1 45 /**
duke@1 46 * Utility class containing various operations on types.
duke@1 47 *
duke@1 48 * <p>Unless other names are more illustrative, the following naming
duke@1 49 * conventions should be observed in this file:
duke@1 50 *
duke@1 51 * <dl>
duke@1 52 * <dt>t</dt>
duke@1 53 * <dd>If the first argument to an operation is a type, it should be named t.</dd>
duke@1 54 * <dt>s</dt>
duke@1 55 * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
duke@1 56 * <dt>ts</dt>
duke@1 57 * <dd>If an operations takes a list of types, the first should be named ts.</dd>
duke@1 58 * <dt>ss</dt>
duke@1 59 * <dd>A second list of types should be named ss.</dd>
duke@1 60 * </dl>
duke@1 61 *
duke@1 62 * <p><b>This is NOT part of any API supported by Sun Microsystems.
duke@1 63 * If you write code that depends on this, you do so at your own risk.
duke@1 64 * This code and its internal interfaces are subject to change or
duke@1 65 * deletion without notice.</b>
duke@1 66 */
duke@1 67 public class Types {
duke@1 68 protected static final Context.Key<Types> typesKey =
duke@1 69 new Context.Key<Types>();
duke@1 70
duke@1 71 final Symtab syms;
mcimadamore@136 72 final JavacMessages messages;
jjg@113 73 final Names names;
duke@1 74 final boolean allowBoxing;
duke@1 75 final ClassReader reader;
duke@1 76 final Source source;
duke@1 77 final Check chk;
duke@1 78 List<Warner> warnStack = List.nil();
duke@1 79 final Name capturedName;
duke@1 80
duke@1 81 // <editor-fold defaultstate="collapsed" desc="Instantiating">
duke@1 82 public static Types instance(Context context) {
duke@1 83 Types instance = context.get(typesKey);
duke@1 84 if (instance == null)
duke@1 85 instance = new Types(context);
duke@1 86 return instance;
duke@1 87 }
duke@1 88
duke@1 89 protected Types(Context context) {
duke@1 90 context.put(typesKey, this);
duke@1 91 syms = Symtab.instance(context);
jjg@113 92 names = Names.instance(context);
duke@1 93 allowBoxing = Source.instance(context).allowBoxing();
duke@1 94 reader = ClassReader.instance(context);
duke@1 95 source = Source.instance(context);
duke@1 96 chk = Check.instance(context);
duke@1 97 capturedName = names.fromString("<captured wildcard>");
mcimadamore@136 98 messages = JavacMessages.instance(context);
duke@1 99 }
duke@1 100 // </editor-fold>
duke@1 101
duke@1 102 // <editor-fold defaultstate="collapsed" desc="upperBound">
duke@1 103 /**
duke@1 104 * The "rvalue conversion".<br>
duke@1 105 * The upper bound of most types is the type
duke@1 106 * itself. Wildcards, on the other hand have upper
duke@1 107 * and lower bounds.
duke@1 108 * @param t a type
duke@1 109 * @return the upper bound of the given type
duke@1 110 */
duke@1 111 public Type upperBound(Type t) {
duke@1 112 return upperBound.visit(t);
duke@1 113 }
duke@1 114 // where
duke@1 115 private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
duke@1 116
duke@1 117 @Override
duke@1 118 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 119 if (t.isSuperBound())
duke@1 120 return t.bound == null ? syms.objectType : t.bound.bound;
duke@1 121 else
duke@1 122 return visit(t.type);
duke@1 123 }
duke@1 124
duke@1 125 @Override
duke@1 126 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 127 return visit(t.bound);
duke@1 128 }
duke@1 129 };
duke@1 130 // </editor-fold>
duke@1 131
duke@1 132 // <editor-fold defaultstate="collapsed" desc="lowerBound">
duke@1 133 /**
duke@1 134 * The "lvalue conversion".<br>
duke@1 135 * The lower bound of most types is the type
duke@1 136 * itself. Wildcards, on the other hand have upper
duke@1 137 * and lower bounds.
duke@1 138 * @param t a type
duke@1 139 * @return the lower bound of the given type
duke@1 140 */
duke@1 141 public Type lowerBound(Type t) {
duke@1 142 return lowerBound.visit(t);
duke@1 143 }
duke@1 144 // where
duke@1 145 private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
duke@1 146
duke@1 147 @Override
duke@1 148 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 149 return t.isExtendsBound() ? syms.botType : visit(t.type);
duke@1 150 }
duke@1 151
duke@1 152 @Override
duke@1 153 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 154 return visit(t.getLowerBound());
duke@1 155 }
duke@1 156 };
duke@1 157 // </editor-fold>
duke@1 158
duke@1 159 // <editor-fold defaultstate="collapsed" desc="isUnbounded">
duke@1 160 /**
duke@1 161 * Checks that all the arguments to a class are unbounded
duke@1 162 * wildcards or something else that doesn't make any restrictions
duke@1 163 * on the arguments. If a class isUnbounded, a raw super- or
duke@1 164 * subclass can be cast to it without a warning.
duke@1 165 * @param t a type
duke@1 166 * @return true iff the given type is unbounded or raw
duke@1 167 */
duke@1 168 public boolean isUnbounded(Type t) {
duke@1 169 return isUnbounded.visit(t);
duke@1 170 }
duke@1 171 // where
duke@1 172 private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
duke@1 173
duke@1 174 public Boolean visitType(Type t, Void ignored) {
duke@1 175 return true;
duke@1 176 }
duke@1 177
duke@1 178 @Override
duke@1 179 public Boolean visitClassType(ClassType t, Void ignored) {
duke@1 180 List<Type> parms = t.tsym.type.allparams();
duke@1 181 List<Type> args = t.allparams();
duke@1 182 while (parms.nonEmpty()) {
duke@1 183 WildcardType unb = new WildcardType(syms.objectType,
duke@1 184 BoundKind.UNBOUND,
duke@1 185 syms.boundClass,
duke@1 186 (TypeVar)parms.head);
duke@1 187 if (!containsType(args.head, unb))
duke@1 188 return false;
duke@1 189 parms = parms.tail;
duke@1 190 args = args.tail;
duke@1 191 }
duke@1 192 return true;
duke@1 193 }
duke@1 194 };
duke@1 195 // </editor-fold>
duke@1 196
duke@1 197 // <editor-fold defaultstate="collapsed" desc="asSub">
duke@1 198 /**
duke@1 199 * Return the least specific subtype of t that starts with symbol
duke@1 200 * sym. If none exists, return null. The least specific subtype
duke@1 201 * is determined as follows:
duke@1 202 *
duke@1 203 * <p>If there is exactly one parameterized instance of sym that is a
duke@1 204 * subtype of t, that parameterized instance is returned.<br>
duke@1 205 * Otherwise, if the plain type or raw type `sym' is a subtype of
duke@1 206 * type t, the type `sym' itself is returned. Otherwise, null is
duke@1 207 * returned.
duke@1 208 */
duke@1 209 public Type asSub(Type t, Symbol sym) {
duke@1 210 return asSub.visit(t, sym);
duke@1 211 }
duke@1 212 // where
duke@1 213 private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
duke@1 214
duke@1 215 public Type visitType(Type t, Symbol sym) {
duke@1 216 return null;
duke@1 217 }
duke@1 218
duke@1 219 @Override
duke@1 220 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 221 if (t.tsym == sym)
duke@1 222 return t;
duke@1 223 Type base = asSuper(sym.type, t.tsym);
duke@1 224 if (base == null)
duke@1 225 return null;
duke@1 226 ListBuffer<Type> from = new ListBuffer<Type>();
duke@1 227 ListBuffer<Type> to = new ListBuffer<Type>();
duke@1 228 try {
duke@1 229 adapt(base, t, from, to);
duke@1 230 } catch (AdaptFailure ex) {
duke@1 231 return null;
duke@1 232 }
duke@1 233 Type res = subst(sym.type, from.toList(), to.toList());
duke@1 234 if (!isSubtype(res, t))
duke@1 235 return null;
duke@1 236 ListBuffer<Type> openVars = new ListBuffer<Type>();
duke@1 237 for (List<Type> l = sym.type.allparams();
duke@1 238 l.nonEmpty(); l = l.tail)
duke@1 239 if (res.contains(l.head) && !t.contains(l.head))
duke@1 240 openVars.append(l.head);
duke@1 241 if (openVars.nonEmpty()) {
duke@1 242 if (t.isRaw()) {
duke@1 243 // The subtype of a raw type is raw
duke@1 244 res = erasure(res);
duke@1 245 } else {
duke@1 246 // Unbound type arguments default to ?
duke@1 247 List<Type> opens = openVars.toList();
duke@1 248 ListBuffer<Type> qs = new ListBuffer<Type>();
duke@1 249 for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
duke@1 250 qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
duke@1 251 }
duke@1 252 res = subst(res, opens, qs.toList());
duke@1 253 }
duke@1 254 }
duke@1 255 return res;
duke@1 256 }
duke@1 257
duke@1 258 @Override
duke@1 259 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 260 return t;
duke@1 261 }
duke@1 262 };
duke@1 263 // </editor-fold>
duke@1 264
duke@1 265 // <editor-fold defaultstate="collapsed" desc="isConvertible">
duke@1 266 /**
duke@1 267 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 268 * convertions to s?
duke@1 269 */
duke@1 270 public boolean isConvertible(Type t, Type s, Warner warn) {
duke@1 271 boolean tPrimitive = t.isPrimitive();
duke@1 272 boolean sPrimitive = s.isPrimitive();
duke@1 273 if (tPrimitive == sPrimitive)
duke@1 274 return isSubtypeUnchecked(t, s, warn);
duke@1 275 if (!allowBoxing) return false;
duke@1 276 return tPrimitive
duke@1 277 ? isSubtype(boxedClass(t).type, s)
duke@1 278 : isSubtype(unboxedType(t), s);
duke@1 279 }
duke@1 280
duke@1 281 /**
duke@1 282 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 283 * convertions to s?
duke@1 284 */
duke@1 285 public boolean isConvertible(Type t, Type s) {
duke@1 286 return isConvertible(t, s, Warner.noWarnings);
duke@1 287 }
duke@1 288 // </editor-fold>
duke@1 289
duke@1 290 // <editor-fold defaultstate="collapsed" desc="isSubtype">
duke@1 291 /**
duke@1 292 * Is t an unchecked subtype of s?
duke@1 293 */
duke@1 294 public boolean isSubtypeUnchecked(Type t, Type s) {
duke@1 295 return isSubtypeUnchecked(t, s, Warner.noWarnings);
duke@1 296 }
duke@1 297 /**
duke@1 298 * Is t an unchecked subtype of s?
duke@1 299 */
duke@1 300 public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
duke@1 301 if (t.tag == ARRAY && s.tag == ARRAY) {
duke@1 302 return (((ArrayType)t).elemtype.tag <= lastBaseTag)
duke@1 303 ? isSameType(elemtype(t), elemtype(s))
duke@1 304 : isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
duke@1 305 } else if (isSubtype(t, s)) {
duke@1 306 return true;
mcimadamore@41 307 }
mcimadamore@41 308 else if (t.tag == TYPEVAR) {
mcimadamore@41 309 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
mcimadamore@41 310 }
mcimadamore@93 311 else if (s.tag == UNDETVAR) {
mcimadamore@93 312 UndetVar uv = (UndetVar)s;
mcimadamore@93 313 if (uv.inst != null)
mcimadamore@93 314 return isSubtypeUnchecked(t, uv.inst, warn);
mcimadamore@93 315 }
mcimadamore@41 316 else if (!s.isRaw()) {
duke@1 317 Type t2 = asSuper(t, s.tsym);
duke@1 318 if (t2 != null && t2.isRaw()) {
duke@1 319 if (isReifiable(s))
duke@1 320 warn.silentUnchecked();
duke@1 321 else
duke@1 322 warn.warnUnchecked();
duke@1 323 return true;
duke@1 324 }
duke@1 325 }
duke@1 326 return false;
duke@1 327 }
duke@1 328
duke@1 329 /**
duke@1 330 * Is t a subtype of s?<br>
duke@1 331 * (not defined for Method and ForAll types)
duke@1 332 */
duke@1 333 final public boolean isSubtype(Type t, Type s) {
duke@1 334 return isSubtype(t, s, true);
duke@1 335 }
duke@1 336 final public boolean isSubtypeNoCapture(Type t, Type s) {
duke@1 337 return isSubtype(t, s, false);
duke@1 338 }
duke@1 339 public boolean isSubtype(Type t, Type s, boolean capture) {
duke@1 340 if (t == s)
duke@1 341 return true;
duke@1 342
duke@1 343 if (s.tag >= firstPartialTag)
duke@1 344 return isSuperType(s, t);
duke@1 345
mcimadamore@299 346 if (s.isCompound()) {
mcimadamore@299 347 for (Type s2 : interfaces(s).prepend(supertype(s))) {
mcimadamore@299 348 if (!isSubtype(t, s2, capture))
mcimadamore@299 349 return false;
mcimadamore@299 350 }
mcimadamore@299 351 return true;
mcimadamore@299 352 }
mcimadamore@299 353
duke@1 354 Type lower = lowerBound(s);
duke@1 355 if (s != lower)
duke@1 356 return isSubtype(capture ? capture(t) : t, lower, false);
duke@1 357
duke@1 358 return isSubtype.visit(capture ? capture(t) : t, s);
duke@1 359 }
duke@1 360 // where
duke@1 361 private TypeRelation isSubtype = new TypeRelation()
duke@1 362 {
duke@1 363 public Boolean visitType(Type t, Type s) {
duke@1 364 switch (t.tag) {
duke@1 365 case BYTE: case CHAR:
duke@1 366 return (t.tag == s.tag ||
duke@1 367 t.tag + 2 <= s.tag && s.tag <= DOUBLE);
duke@1 368 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
duke@1 369 return t.tag <= s.tag && s.tag <= DOUBLE;
duke@1 370 case BOOLEAN: case VOID:
duke@1 371 return t.tag == s.tag;
duke@1 372 case TYPEVAR:
duke@1 373 return isSubtypeNoCapture(t.getUpperBound(), s);
duke@1 374 case BOT:
duke@1 375 return
duke@1 376 s.tag == BOT || s.tag == CLASS ||
duke@1 377 s.tag == ARRAY || s.tag == TYPEVAR;
duke@1 378 case NONE:
duke@1 379 return false;
duke@1 380 default:
duke@1 381 throw new AssertionError("isSubtype " + t.tag);
duke@1 382 }
duke@1 383 }
duke@1 384
duke@1 385 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 386
duke@1 387 private boolean containsTypeRecursive(Type t, Type s) {
duke@1 388 TypePair pair = new TypePair(t, s);
duke@1 389 if (cache.add(pair)) {
duke@1 390 try {
duke@1 391 return containsType(t.getTypeArguments(),
duke@1 392 s.getTypeArguments());
duke@1 393 } finally {
duke@1 394 cache.remove(pair);
duke@1 395 }
duke@1 396 } else {
duke@1 397 return containsType(t.getTypeArguments(),
duke@1 398 rewriteSupers(s).getTypeArguments());
duke@1 399 }
duke@1 400 }
duke@1 401
duke@1 402 private Type rewriteSupers(Type t) {
duke@1 403 if (!t.isParameterized())
duke@1 404 return t;
duke@1 405 ListBuffer<Type> from = lb();
duke@1 406 ListBuffer<Type> to = lb();
duke@1 407 adaptSelf(t, from, to);
duke@1 408 if (from.isEmpty())
duke@1 409 return t;
duke@1 410 ListBuffer<Type> rewrite = lb();
duke@1 411 boolean changed = false;
duke@1 412 for (Type orig : to.toList()) {
duke@1 413 Type s = rewriteSupers(orig);
duke@1 414 if (s.isSuperBound() && !s.isExtendsBound()) {
duke@1 415 s = new WildcardType(syms.objectType,
duke@1 416 BoundKind.UNBOUND,
duke@1 417 syms.boundClass);
duke@1 418 changed = true;
duke@1 419 } else if (s != orig) {
duke@1 420 s = new WildcardType(upperBound(s),
duke@1 421 BoundKind.EXTENDS,
duke@1 422 syms.boundClass);
duke@1 423 changed = true;
duke@1 424 }
duke@1 425 rewrite.append(s);
duke@1 426 }
duke@1 427 if (changed)
duke@1 428 return subst(t.tsym.type, from.toList(), rewrite.toList());
duke@1 429 else
duke@1 430 return t;
duke@1 431 }
duke@1 432
duke@1 433 @Override
duke@1 434 public Boolean visitClassType(ClassType t, Type s) {
duke@1 435 Type sup = asSuper(t, s.tsym);
duke@1 436 return sup != null
duke@1 437 && sup.tsym == s.tsym
duke@1 438 // You're not allowed to write
duke@1 439 // Vector<Object> vec = new Vector<String>();
duke@1 440 // But with wildcards you can write
duke@1 441 // Vector<? extends Object> vec = new Vector<String>();
duke@1 442 // which means that subtype checking must be done
duke@1 443 // here instead of same-type checking (via containsType).
duke@1 444 && (!s.isParameterized() || containsTypeRecursive(s, sup))
duke@1 445 && isSubtypeNoCapture(sup.getEnclosingType(),
duke@1 446 s.getEnclosingType());
duke@1 447 }
duke@1 448
duke@1 449 @Override
duke@1 450 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 451 if (s.tag == ARRAY) {
duke@1 452 if (t.elemtype.tag <= lastBaseTag)
duke@1 453 return isSameType(t.elemtype, elemtype(s));
duke@1 454 else
duke@1 455 return isSubtypeNoCapture(t.elemtype, elemtype(s));
duke@1 456 }
duke@1 457
duke@1 458 if (s.tag == CLASS) {
duke@1 459 Name sname = s.tsym.getQualifiedName();
duke@1 460 return sname == names.java_lang_Object
duke@1 461 || sname == names.java_lang_Cloneable
duke@1 462 || sname == names.java_io_Serializable;
duke@1 463 }
duke@1 464
duke@1 465 return false;
duke@1 466 }
duke@1 467
duke@1 468 @Override
duke@1 469 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 470 //todo: test against origin needed? or replace with substitution?
duke@1 471 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 472 return true;
duke@1 473
duke@1 474 if (t.inst != null)
duke@1 475 return isSubtypeNoCapture(t.inst, s); // TODO: ", warn"?
duke@1 476
duke@1 477 t.hibounds = t.hibounds.prepend(s);
duke@1 478 return true;
duke@1 479 }
duke@1 480
duke@1 481 @Override
duke@1 482 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 483 return true;
duke@1 484 }
duke@1 485 };
duke@1 486
duke@1 487 /**
duke@1 488 * Is t a subtype of every type in given list `ts'?<br>
duke@1 489 * (not defined for Method and ForAll types)<br>
duke@1 490 * Allows unchecked conversions.
duke@1 491 */
duke@1 492 public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
duke@1 493 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 494 if (!isSubtypeUnchecked(t, l.head, warn))
duke@1 495 return false;
duke@1 496 return true;
duke@1 497 }
duke@1 498
duke@1 499 /**
duke@1 500 * Are corresponding elements of ts subtypes of ss? If lists are
duke@1 501 * of different length, return false.
duke@1 502 */
duke@1 503 public boolean isSubtypes(List<Type> ts, List<Type> ss) {
duke@1 504 while (ts.tail != null && ss.tail != null
duke@1 505 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 506 isSubtype(ts.head, ss.head)) {
duke@1 507 ts = ts.tail;
duke@1 508 ss = ss.tail;
duke@1 509 }
duke@1 510 return ts.tail == null && ss.tail == null;
duke@1 511 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 512 }
duke@1 513
duke@1 514 /**
duke@1 515 * Are corresponding elements of ts subtypes of ss, allowing
duke@1 516 * unchecked conversions? If lists are of different length,
duke@1 517 * return false.
duke@1 518 **/
duke@1 519 public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
duke@1 520 while (ts.tail != null && ss.tail != null
duke@1 521 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 522 isSubtypeUnchecked(ts.head, ss.head, warn)) {
duke@1 523 ts = ts.tail;
duke@1 524 ss = ss.tail;
duke@1 525 }
duke@1 526 return ts.tail == null && ss.tail == null;
duke@1 527 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 528 }
duke@1 529 // </editor-fold>
duke@1 530
duke@1 531 // <editor-fold defaultstate="collapsed" desc="isSuperType">
duke@1 532 /**
duke@1 533 * Is t a supertype of s?
duke@1 534 */
duke@1 535 public boolean isSuperType(Type t, Type s) {
duke@1 536 switch (t.tag) {
duke@1 537 case ERROR:
duke@1 538 return true;
duke@1 539 case UNDETVAR: {
duke@1 540 UndetVar undet = (UndetVar)t;
duke@1 541 if (t == s ||
duke@1 542 undet.qtype == s ||
duke@1 543 s.tag == ERROR ||
duke@1 544 s.tag == BOT) return true;
duke@1 545 if (undet.inst != null)
duke@1 546 return isSubtype(s, undet.inst);
duke@1 547 undet.lobounds = undet.lobounds.prepend(s);
duke@1 548 return true;
duke@1 549 }
duke@1 550 default:
duke@1 551 return isSubtype(s, t);
duke@1 552 }
duke@1 553 }
duke@1 554 // </editor-fold>
duke@1 555
duke@1 556 // <editor-fold defaultstate="collapsed" desc="isSameType">
duke@1 557 /**
duke@1 558 * Are corresponding elements of the lists the same type? If
duke@1 559 * lists are of different length, return false.
duke@1 560 */
duke@1 561 public boolean isSameTypes(List<Type> ts, List<Type> ss) {
duke@1 562 while (ts.tail != null && ss.tail != null
duke@1 563 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 564 isSameType(ts.head, ss.head)) {
duke@1 565 ts = ts.tail;
duke@1 566 ss = ss.tail;
duke@1 567 }
duke@1 568 return ts.tail == null && ss.tail == null;
duke@1 569 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 570 }
duke@1 571
duke@1 572 /**
duke@1 573 * Is t the same type as s?
duke@1 574 */
duke@1 575 public boolean isSameType(Type t, Type s) {
duke@1 576 return isSameType.visit(t, s);
duke@1 577 }
duke@1 578 // where
duke@1 579 private TypeRelation isSameType = new TypeRelation() {
duke@1 580
duke@1 581 public Boolean visitType(Type t, Type s) {
duke@1 582 if (t == s)
duke@1 583 return true;
duke@1 584
duke@1 585 if (s.tag >= firstPartialTag)
duke@1 586 return visit(s, t);
duke@1 587
duke@1 588 switch (t.tag) {
duke@1 589 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 590 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
duke@1 591 return t.tag == s.tag;
duke@1 592 case TYPEVAR:
duke@1 593 return s.isSuperBound()
duke@1 594 && !s.isExtendsBound()
duke@1 595 && visit(t, upperBound(s));
duke@1 596 default:
duke@1 597 throw new AssertionError("isSameType " + t.tag);
duke@1 598 }
duke@1 599 }
duke@1 600
duke@1 601 @Override
duke@1 602 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 603 if (s.tag >= firstPartialTag)
duke@1 604 return visit(s, t);
duke@1 605 else
duke@1 606 return false;
duke@1 607 }
duke@1 608
duke@1 609 @Override
duke@1 610 public Boolean visitClassType(ClassType t, Type s) {
duke@1 611 if (t == s)
duke@1 612 return true;
duke@1 613
duke@1 614 if (s.tag >= firstPartialTag)
duke@1 615 return visit(s, t);
duke@1 616
duke@1 617 if (s.isSuperBound() && !s.isExtendsBound())
duke@1 618 return visit(t, upperBound(s)) && visit(t, lowerBound(s));
duke@1 619
duke@1 620 if (t.isCompound() && s.isCompound()) {
duke@1 621 if (!visit(supertype(t), supertype(s)))
duke@1 622 return false;
duke@1 623
duke@1 624 HashSet<SingletonType> set = new HashSet<SingletonType>();
duke@1 625 for (Type x : interfaces(t))
duke@1 626 set.add(new SingletonType(x));
duke@1 627 for (Type x : interfaces(s)) {
duke@1 628 if (!set.remove(new SingletonType(x)))
duke@1 629 return false;
duke@1 630 }
duke@1 631 return (set.size() == 0);
duke@1 632 }
duke@1 633 return t.tsym == s.tsym
duke@1 634 && visit(t.getEnclosingType(), s.getEnclosingType())
duke@1 635 && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
duke@1 636 }
duke@1 637
duke@1 638 @Override
duke@1 639 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 640 if (t == s)
duke@1 641 return true;
duke@1 642
duke@1 643 if (s.tag >= firstPartialTag)
duke@1 644 return visit(s, t);
duke@1 645
duke@1 646 return s.tag == ARRAY
duke@1 647 && containsTypeEquivalent(t.elemtype, elemtype(s));
duke@1 648 }
duke@1 649
duke@1 650 @Override
duke@1 651 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 652 // isSameType for methods does not take thrown
duke@1 653 // exceptions into account!
duke@1 654 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
duke@1 655 }
duke@1 656
duke@1 657 @Override
duke@1 658 public Boolean visitPackageType(PackageType t, Type s) {
duke@1 659 return t == s;
duke@1 660 }
duke@1 661
duke@1 662 @Override
duke@1 663 public Boolean visitForAll(ForAll t, Type s) {
duke@1 664 if (s.tag != FORALL)
duke@1 665 return false;
duke@1 666
duke@1 667 ForAll forAll = (ForAll)s;
duke@1 668 return hasSameBounds(t, forAll)
duke@1 669 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 670 }
duke@1 671
duke@1 672 @Override
duke@1 673 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 674 if (s.tag == WILDCARD)
duke@1 675 // FIXME, this might be leftovers from before capture conversion
duke@1 676 return false;
duke@1 677
duke@1 678 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 679 return true;
duke@1 680
duke@1 681 if (t.inst != null)
duke@1 682 return visit(t.inst, s);
duke@1 683
duke@1 684 t.inst = fromUnknownFun.apply(s);
duke@1 685 for (List<Type> l = t.lobounds; l.nonEmpty(); l = l.tail) {
duke@1 686 if (!isSubtype(l.head, t.inst))
duke@1 687 return false;
duke@1 688 }
duke@1 689 for (List<Type> l = t.hibounds; l.nonEmpty(); l = l.tail) {
duke@1 690 if (!isSubtype(t.inst, l.head))
duke@1 691 return false;
duke@1 692 }
duke@1 693 return true;
duke@1 694 }
duke@1 695
duke@1 696 @Override
duke@1 697 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 698 return true;
duke@1 699 }
duke@1 700 };
duke@1 701 // </editor-fold>
duke@1 702
duke@1 703 // <editor-fold defaultstate="collapsed" desc="fromUnknownFun">
duke@1 704 /**
duke@1 705 * A mapping that turns all unknown types in this type to fresh
duke@1 706 * unknown variables.
duke@1 707 */
duke@1 708 public Mapping fromUnknownFun = new Mapping("fromUnknownFun") {
duke@1 709 public Type apply(Type t) {
duke@1 710 if (t.tag == UNKNOWN) return new UndetVar(t);
duke@1 711 else return t.map(this);
duke@1 712 }
duke@1 713 };
duke@1 714 // </editor-fold>
duke@1 715
duke@1 716 // <editor-fold defaultstate="collapsed" desc="Contains Type">
duke@1 717 public boolean containedBy(Type t, Type s) {
duke@1 718 switch (t.tag) {
duke@1 719 case UNDETVAR:
duke@1 720 if (s.tag == WILDCARD) {
duke@1 721 UndetVar undetvar = (UndetVar)t;
mcimadamore@210 722 WildcardType wt = (WildcardType)s;
mcimadamore@210 723 switch(wt.kind) {
mcimadamore@210 724 case UNBOUND: //similar to ? extends Object
mcimadamore@210 725 case EXTENDS: {
mcimadamore@210 726 Type bound = upperBound(s);
mcimadamore@210 727 // We should check the new upper bound against any of the
mcimadamore@210 728 // undetvar's lower bounds.
mcimadamore@210 729 for (Type t2 : undetvar.lobounds) {
mcimadamore@210 730 if (!isSubtype(t2, bound))
mcimadamore@210 731 return false;
mcimadamore@210 732 }
mcimadamore@210 733 undetvar.hibounds = undetvar.hibounds.prepend(bound);
mcimadamore@210 734 break;
mcimadamore@210 735 }
mcimadamore@210 736 case SUPER: {
mcimadamore@210 737 Type bound = lowerBound(s);
mcimadamore@210 738 // We should check the new lower bound against any of the
mcimadamore@210 739 // undetvar's lower bounds.
mcimadamore@210 740 for (Type t2 : undetvar.hibounds) {
mcimadamore@210 741 if (!isSubtype(bound, t2))
mcimadamore@210 742 return false;
mcimadamore@210 743 }
mcimadamore@210 744 undetvar.lobounds = undetvar.lobounds.prepend(bound);
mcimadamore@210 745 break;
mcimadamore@210 746 }
mcimadamore@162 747 }
duke@1 748 return true;
duke@1 749 } else {
duke@1 750 return isSameType(t, s);
duke@1 751 }
duke@1 752 case ERROR:
duke@1 753 return true;
duke@1 754 default:
duke@1 755 return containsType(s, t);
duke@1 756 }
duke@1 757 }
duke@1 758
duke@1 759 boolean containsType(List<Type> ts, List<Type> ss) {
duke@1 760 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 761 && containsType(ts.head, ss.head)) {
duke@1 762 ts = ts.tail;
duke@1 763 ss = ss.tail;
duke@1 764 }
duke@1 765 return ts.isEmpty() && ss.isEmpty();
duke@1 766 }
duke@1 767
duke@1 768 /**
duke@1 769 * Check if t contains s.
duke@1 770 *
duke@1 771 * <p>T contains S if:
duke@1 772 *
duke@1 773 * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
duke@1 774 *
duke@1 775 * <p>This relation is only used by ClassType.isSubtype(), that
duke@1 776 * is,
duke@1 777 *
duke@1 778 * <p>{@code C<S> <: C<T> if T contains S.}
duke@1 779 *
duke@1 780 * <p>Because of F-bounds, this relation can lead to infinite
duke@1 781 * recursion. Thus we must somehow break that recursion. Notice
duke@1 782 * that containsType() is only called from ClassType.isSubtype().
duke@1 783 * Since the arguments have already been checked against their
duke@1 784 * bounds, we know:
duke@1 785 *
duke@1 786 * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
duke@1 787 *
duke@1 788 * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
duke@1 789 *
duke@1 790 * @param t a type
duke@1 791 * @param s a type
duke@1 792 */
duke@1 793 public boolean containsType(Type t, Type s) {
duke@1 794 return containsType.visit(t, s);
duke@1 795 }
duke@1 796 // where
duke@1 797 private TypeRelation containsType = new TypeRelation() {
duke@1 798
duke@1 799 private Type U(Type t) {
duke@1 800 while (t.tag == WILDCARD) {
duke@1 801 WildcardType w = (WildcardType)t;
duke@1 802 if (w.isSuperBound())
duke@1 803 return w.bound == null ? syms.objectType : w.bound.bound;
duke@1 804 else
duke@1 805 t = w.type;
duke@1 806 }
duke@1 807 return t;
duke@1 808 }
duke@1 809
duke@1 810 private Type L(Type t) {
duke@1 811 while (t.tag == WILDCARD) {
duke@1 812 WildcardType w = (WildcardType)t;
duke@1 813 if (w.isExtendsBound())
duke@1 814 return syms.botType;
duke@1 815 else
duke@1 816 t = w.type;
duke@1 817 }
duke@1 818 return t;
duke@1 819 }
duke@1 820
duke@1 821 public Boolean visitType(Type t, Type s) {
duke@1 822 if (s.tag >= firstPartialTag)
duke@1 823 return containedBy(s, t);
duke@1 824 else
duke@1 825 return isSameType(t, s);
duke@1 826 }
duke@1 827
duke@1 828 void debugContainsType(WildcardType t, Type s) {
duke@1 829 System.err.println();
duke@1 830 System.err.format(" does %s contain %s?%n", t, s);
duke@1 831 System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
duke@1 832 upperBound(s), s, t, U(t),
duke@1 833 t.isSuperBound()
duke@1 834 || isSubtypeNoCapture(upperBound(s), U(t)));
duke@1 835 System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
duke@1 836 L(t), t, s, lowerBound(s),
duke@1 837 t.isExtendsBound()
duke@1 838 || isSubtypeNoCapture(L(t), lowerBound(s)));
duke@1 839 System.err.println();
duke@1 840 }
duke@1 841
duke@1 842 @Override
duke@1 843 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 844 if (s.tag >= firstPartialTag)
duke@1 845 return containedBy(s, t);
duke@1 846 else {
duke@1 847 // debugContainsType(t, s);
duke@1 848 return isSameWildcard(t, s)
duke@1 849 || isCaptureOf(s, t)
duke@1 850 || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
duke@1 851 (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
duke@1 852 }
duke@1 853 }
duke@1 854
duke@1 855 @Override
duke@1 856 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 857 if (s.tag != WILDCARD)
duke@1 858 return isSameType(t, s);
duke@1 859 else
duke@1 860 return false;
duke@1 861 }
duke@1 862
duke@1 863 @Override
duke@1 864 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 865 return true;
duke@1 866 }
duke@1 867 };
duke@1 868
duke@1 869 public boolean isCaptureOf(Type s, WildcardType t) {
mcimadamore@79 870 if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
duke@1 871 return false;
duke@1 872 return isSameWildcard(t, ((CapturedType)s).wildcard);
duke@1 873 }
duke@1 874
duke@1 875 public boolean isSameWildcard(WildcardType t, Type s) {
duke@1 876 if (s.tag != WILDCARD)
duke@1 877 return false;
duke@1 878 WildcardType w = (WildcardType)s;
duke@1 879 return w.kind == t.kind && w.type == t.type;
duke@1 880 }
duke@1 881
duke@1 882 public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
duke@1 883 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 884 && containsTypeEquivalent(ts.head, ss.head)) {
duke@1 885 ts = ts.tail;
duke@1 886 ss = ss.tail;
duke@1 887 }
duke@1 888 return ts.isEmpty() && ss.isEmpty();
duke@1 889 }
duke@1 890 // </editor-fold>
duke@1 891
duke@1 892 // <editor-fold defaultstate="collapsed" desc="isCastable">
duke@1 893 public boolean isCastable(Type t, Type s) {
duke@1 894 return isCastable(t, s, Warner.noWarnings);
duke@1 895 }
duke@1 896
duke@1 897 /**
duke@1 898 * Is t is castable to s?<br>
duke@1 899 * s is assumed to be an erased type.<br>
duke@1 900 * (not defined for Method and ForAll types).
duke@1 901 */
duke@1 902 public boolean isCastable(Type t, Type s, Warner warn) {
duke@1 903 if (t == s)
duke@1 904 return true;
duke@1 905
duke@1 906 if (t.isPrimitive() != s.isPrimitive())
duke@1 907 return allowBoxing && isConvertible(t, s, warn);
duke@1 908
duke@1 909 if (warn != warnStack.head) {
duke@1 910 try {
duke@1 911 warnStack = warnStack.prepend(warn);
mcimadamore@185 912 return isCastable.visit(t,s);
duke@1 913 } finally {
duke@1 914 warnStack = warnStack.tail;
duke@1 915 }
duke@1 916 } else {
mcimadamore@185 917 return isCastable.visit(t,s);
duke@1 918 }
duke@1 919 }
duke@1 920 // where
duke@1 921 private TypeRelation isCastable = new TypeRelation() {
duke@1 922
duke@1 923 public Boolean visitType(Type t, Type s) {
duke@1 924 if (s.tag == ERROR)
duke@1 925 return true;
duke@1 926
duke@1 927 switch (t.tag) {
duke@1 928 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 929 case DOUBLE:
duke@1 930 return s.tag <= DOUBLE;
duke@1 931 case BOOLEAN:
duke@1 932 return s.tag == BOOLEAN;
duke@1 933 case VOID:
duke@1 934 return false;
duke@1 935 case BOT:
duke@1 936 return isSubtype(t, s);
duke@1 937 default:
duke@1 938 throw new AssertionError();
duke@1 939 }
duke@1 940 }
duke@1 941
duke@1 942 @Override
duke@1 943 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 944 return isCastable(upperBound(t), s, warnStack.head);
duke@1 945 }
duke@1 946
duke@1 947 @Override
duke@1 948 public Boolean visitClassType(ClassType t, Type s) {
duke@1 949 if (s.tag == ERROR || s.tag == BOT)
duke@1 950 return true;
duke@1 951
duke@1 952 if (s.tag == TYPEVAR) {
duke@1 953 if (isCastable(s.getUpperBound(), t, Warner.noWarnings)) {
duke@1 954 warnStack.head.warnUnchecked();
duke@1 955 return true;
duke@1 956 } else {
duke@1 957 return false;
duke@1 958 }
duke@1 959 }
duke@1 960
duke@1 961 if (t.isCompound()) {
mcimadamore@211 962 Warner oldWarner = warnStack.head;
mcimadamore@211 963 warnStack.head = Warner.noWarnings;
duke@1 964 if (!visit(supertype(t), s))
duke@1 965 return false;
duke@1 966 for (Type intf : interfaces(t)) {
duke@1 967 if (!visit(intf, s))
duke@1 968 return false;
duke@1 969 }
mcimadamore@211 970 if (warnStack.head.unchecked == true)
mcimadamore@211 971 oldWarner.warnUnchecked();
duke@1 972 return true;
duke@1 973 }
duke@1 974
duke@1 975 if (s.isCompound()) {
duke@1 976 // call recursively to reuse the above code
duke@1 977 return visitClassType((ClassType)s, t);
duke@1 978 }
duke@1 979
duke@1 980 if (s.tag == CLASS || s.tag == ARRAY) {
duke@1 981 boolean upcast;
duke@1 982 if ((upcast = isSubtype(erasure(t), erasure(s)))
duke@1 983 || isSubtype(erasure(s), erasure(t))) {
duke@1 984 if (!upcast && s.tag == ARRAY) {
duke@1 985 if (!isReifiable(s))
duke@1 986 warnStack.head.warnUnchecked();
duke@1 987 return true;
duke@1 988 } else if (s.isRaw()) {
duke@1 989 return true;
duke@1 990 } else if (t.isRaw()) {
duke@1 991 if (!isUnbounded(s))
duke@1 992 warnStack.head.warnUnchecked();
duke@1 993 return true;
duke@1 994 }
duke@1 995 // Assume |a| <: |b|
duke@1 996 final Type a = upcast ? t : s;
duke@1 997 final Type b = upcast ? s : t;
duke@1 998 final boolean HIGH = true;
duke@1 999 final boolean LOW = false;
duke@1 1000 final boolean DONT_REWRITE_TYPEVARS = false;
duke@1 1001 Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1002 Type aLow = rewriteQuantifiers(a, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1003 Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1004 Type bLow = rewriteQuantifiers(b, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1005 Type lowSub = asSub(bLow, aLow.tsym);
duke@1 1006 Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1007 if (highSub == null) {
duke@1 1008 final boolean REWRITE_TYPEVARS = true;
duke@1 1009 aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
duke@1 1010 aLow = rewriteQuantifiers(a, LOW, REWRITE_TYPEVARS);
duke@1 1011 bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
duke@1 1012 bLow = rewriteQuantifiers(b, LOW, REWRITE_TYPEVARS);
duke@1 1013 lowSub = asSub(bLow, aLow.tsym);
duke@1 1014 highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1015 }
duke@1 1016 if (highSub != null) {
duke@1 1017 assert a.tsym == highSub.tsym && a.tsym == lowSub.tsym
duke@1 1018 : a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym;
mcimadamore@185 1019 if (!disjointTypes(aHigh.allparams(), highSub.allparams())
mcimadamore@185 1020 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
mcimadamore@185 1021 && !disjointTypes(aLow.allparams(), highSub.allparams())
mcimadamore@185 1022 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
mcimadamore@235 1023 if (upcast ? giveWarning(a, b) :
mcimadamore@235 1024 giveWarning(b, a))
duke@1 1025 warnStack.head.warnUnchecked();
duke@1 1026 return true;
duke@1 1027 }
duke@1 1028 }
duke@1 1029 if (isReifiable(s))
duke@1 1030 return isSubtypeUnchecked(a, b);
duke@1 1031 else
duke@1 1032 return isSubtypeUnchecked(a, b, warnStack.head);
duke@1 1033 }
duke@1 1034
duke@1 1035 // Sidecast
duke@1 1036 if (s.tag == CLASS) {
duke@1 1037 if ((s.tsym.flags() & INTERFACE) != 0) {
duke@1 1038 return ((t.tsym.flags() & FINAL) == 0)
duke@1 1039 ? sideCast(t, s, warnStack.head)
duke@1 1040 : sideCastFinal(t, s, warnStack.head);
duke@1 1041 } else if ((t.tsym.flags() & INTERFACE) != 0) {
duke@1 1042 return ((s.tsym.flags() & FINAL) == 0)
duke@1 1043 ? sideCast(t, s, warnStack.head)
duke@1 1044 : sideCastFinal(t, s, warnStack.head);
duke@1 1045 } else {
duke@1 1046 // unrelated class types
duke@1 1047 return false;
duke@1 1048 }
duke@1 1049 }
duke@1 1050 }
duke@1 1051 return false;
duke@1 1052 }
duke@1 1053
duke@1 1054 @Override
duke@1 1055 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 1056 switch (s.tag) {
duke@1 1057 case ERROR:
duke@1 1058 case BOT:
duke@1 1059 return true;
duke@1 1060 case TYPEVAR:
duke@1 1061 if (isCastable(s, t, Warner.noWarnings)) {
duke@1 1062 warnStack.head.warnUnchecked();
duke@1 1063 return true;
duke@1 1064 } else {
duke@1 1065 return false;
duke@1 1066 }
duke@1 1067 case CLASS:
duke@1 1068 return isSubtype(t, s);
duke@1 1069 case ARRAY:
duke@1 1070 if (elemtype(t).tag <= lastBaseTag) {
duke@1 1071 return elemtype(t).tag == elemtype(s).tag;
duke@1 1072 } else {
duke@1 1073 return visit(elemtype(t), elemtype(s));
duke@1 1074 }
duke@1 1075 default:
duke@1 1076 return false;
duke@1 1077 }
duke@1 1078 }
duke@1 1079
duke@1 1080 @Override
duke@1 1081 public Boolean visitTypeVar(TypeVar t, Type s) {
duke@1 1082 switch (s.tag) {
duke@1 1083 case ERROR:
duke@1 1084 case BOT:
duke@1 1085 return true;
duke@1 1086 case TYPEVAR:
duke@1 1087 if (isSubtype(t, s)) {
duke@1 1088 return true;
duke@1 1089 } else if (isCastable(t.bound, s, Warner.noWarnings)) {
duke@1 1090 warnStack.head.warnUnchecked();
duke@1 1091 return true;
duke@1 1092 } else {
duke@1 1093 return false;
duke@1 1094 }
duke@1 1095 default:
duke@1 1096 return isCastable(t.bound, s, warnStack.head);
duke@1 1097 }
duke@1 1098 }
duke@1 1099
duke@1 1100 @Override
duke@1 1101 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1102 return true;
duke@1 1103 }
duke@1 1104 };
duke@1 1105 // </editor-fold>
duke@1 1106
duke@1 1107 // <editor-fold defaultstate="collapsed" desc="disjointTypes">
duke@1 1108 public boolean disjointTypes(List<Type> ts, List<Type> ss) {
duke@1 1109 while (ts.tail != null && ss.tail != null) {
duke@1 1110 if (disjointType(ts.head, ss.head)) return true;
duke@1 1111 ts = ts.tail;
duke@1 1112 ss = ss.tail;
duke@1 1113 }
duke@1 1114 return false;
duke@1 1115 }
duke@1 1116
duke@1 1117 /**
duke@1 1118 * Two types or wildcards are considered disjoint if it can be
duke@1 1119 * proven that no type can be contained in both. It is
duke@1 1120 * conservative in that it is allowed to say that two types are
duke@1 1121 * not disjoint, even though they actually are.
duke@1 1122 *
duke@1 1123 * The type C<X> is castable to C<Y> exactly if X and Y are not
duke@1 1124 * disjoint.
duke@1 1125 */
duke@1 1126 public boolean disjointType(Type t, Type s) {
duke@1 1127 return disjointType.visit(t, s);
duke@1 1128 }
duke@1 1129 // where
duke@1 1130 private TypeRelation disjointType = new TypeRelation() {
duke@1 1131
duke@1 1132 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 1133
duke@1 1134 public Boolean visitType(Type t, Type s) {
duke@1 1135 if (s.tag == WILDCARD)
duke@1 1136 return visit(s, t);
duke@1 1137 else
duke@1 1138 return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
duke@1 1139 }
duke@1 1140
duke@1 1141 private boolean isCastableRecursive(Type t, Type s) {
duke@1 1142 TypePair pair = new TypePair(t, s);
duke@1 1143 if (cache.add(pair)) {
duke@1 1144 try {
duke@1 1145 return Types.this.isCastable(t, s);
duke@1 1146 } finally {
duke@1 1147 cache.remove(pair);
duke@1 1148 }
duke@1 1149 } else {
duke@1 1150 return true;
duke@1 1151 }
duke@1 1152 }
duke@1 1153
duke@1 1154 private boolean notSoftSubtypeRecursive(Type t, Type s) {
duke@1 1155 TypePair pair = new TypePair(t, s);
duke@1 1156 if (cache.add(pair)) {
duke@1 1157 try {
duke@1 1158 return Types.this.notSoftSubtype(t, s);
duke@1 1159 } finally {
duke@1 1160 cache.remove(pair);
duke@1 1161 }
duke@1 1162 } else {
duke@1 1163 return false;
duke@1 1164 }
duke@1 1165 }
duke@1 1166
duke@1 1167 @Override
duke@1 1168 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 1169 if (t.isUnbound())
duke@1 1170 return false;
duke@1 1171
duke@1 1172 if (s.tag != WILDCARD) {
duke@1 1173 if (t.isExtendsBound())
duke@1 1174 return notSoftSubtypeRecursive(s, t.type);
duke@1 1175 else // isSuperBound()
duke@1 1176 return notSoftSubtypeRecursive(t.type, s);
duke@1 1177 }
duke@1 1178
duke@1 1179 if (s.isUnbound())
duke@1 1180 return false;
duke@1 1181
duke@1 1182 if (t.isExtendsBound()) {
duke@1 1183 if (s.isExtendsBound())
duke@1 1184 return !isCastableRecursive(t.type, upperBound(s));
duke@1 1185 else if (s.isSuperBound())
duke@1 1186 return notSoftSubtypeRecursive(lowerBound(s), t.type);
duke@1 1187 } else if (t.isSuperBound()) {
duke@1 1188 if (s.isExtendsBound())
duke@1 1189 return notSoftSubtypeRecursive(t.type, upperBound(s));
duke@1 1190 }
duke@1 1191 return false;
duke@1 1192 }
duke@1 1193 };
duke@1 1194 // </editor-fold>
duke@1 1195
duke@1 1196 // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
duke@1 1197 /**
duke@1 1198 * Returns the lower bounds of the formals of a method.
duke@1 1199 */
duke@1 1200 public List<Type> lowerBoundArgtypes(Type t) {
duke@1 1201 return map(t.getParameterTypes(), lowerBoundMapping);
duke@1 1202 }
duke@1 1203 private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
duke@1 1204 public Type apply(Type t) {
duke@1 1205 return lowerBound(t);
duke@1 1206 }
duke@1 1207 };
duke@1 1208 // </editor-fold>
duke@1 1209
duke@1 1210 // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
duke@1 1211 /**
duke@1 1212 * This relation answers the question: is impossible that
duke@1 1213 * something of type `t' can be a subtype of `s'? This is
duke@1 1214 * different from the question "is `t' not a subtype of `s'?"
duke@1 1215 * when type variables are involved: Integer is not a subtype of T
duke@1 1216 * where <T extends Number> but it is not true that Integer cannot
duke@1 1217 * possibly be a subtype of T.
duke@1 1218 */
duke@1 1219 public boolean notSoftSubtype(Type t, Type s) {
duke@1 1220 if (t == s) return false;
duke@1 1221 if (t.tag == TYPEVAR) {
duke@1 1222 TypeVar tv = (TypeVar) t;
duke@1 1223 if (s.tag == TYPEVAR)
duke@1 1224 s = s.getUpperBound();
duke@1 1225 return !isCastable(tv.bound,
duke@1 1226 s,
duke@1 1227 Warner.noWarnings);
duke@1 1228 }
duke@1 1229 if (s.tag != WILDCARD)
duke@1 1230 s = upperBound(s);
duke@1 1231 if (s.tag == TYPEVAR)
duke@1 1232 s = s.getUpperBound();
mcimadamore@185 1233
duke@1 1234 return !isSubtype(t, s);
duke@1 1235 }
duke@1 1236 // </editor-fold>
duke@1 1237
duke@1 1238 // <editor-fold defaultstate="collapsed" desc="isReifiable">
duke@1 1239 public boolean isReifiable(Type t) {
duke@1 1240 return isReifiable.visit(t);
duke@1 1241 }
duke@1 1242 // where
duke@1 1243 private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
duke@1 1244
duke@1 1245 public Boolean visitType(Type t, Void ignored) {
duke@1 1246 return true;
duke@1 1247 }
duke@1 1248
duke@1 1249 @Override
duke@1 1250 public Boolean visitClassType(ClassType t, Void ignored) {
duke@1 1251 if (!t.isParameterized())
duke@1 1252 return true;
duke@1 1253
duke@1 1254 for (Type param : t.allparams()) {
duke@1 1255 if (!param.isUnbound())
duke@1 1256 return false;
duke@1 1257 }
duke@1 1258 return true;
duke@1 1259 }
duke@1 1260
duke@1 1261 @Override
duke@1 1262 public Boolean visitArrayType(ArrayType t, Void ignored) {
duke@1 1263 return visit(t.elemtype);
duke@1 1264 }
duke@1 1265
duke@1 1266 @Override
duke@1 1267 public Boolean visitTypeVar(TypeVar t, Void ignored) {
duke@1 1268 return false;
duke@1 1269 }
duke@1 1270 };
duke@1 1271 // </editor-fold>
duke@1 1272
duke@1 1273 // <editor-fold defaultstate="collapsed" desc="Array Utils">
duke@1 1274 public boolean isArray(Type t) {
duke@1 1275 while (t.tag == WILDCARD)
duke@1 1276 t = upperBound(t);
duke@1 1277 return t.tag == ARRAY;
duke@1 1278 }
duke@1 1279
duke@1 1280 /**
duke@1 1281 * The element type of an array.
duke@1 1282 */
duke@1 1283 public Type elemtype(Type t) {
duke@1 1284 switch (t.tag) {
duke@1 1285 case WILDCARD:
duke@1 1286 return elemtype(upperBound(t));
duke@1 1287 case ARRAY:
duke@1 1288 return ((ArrayType)t).elemtype;
duke@1 1289 case FORALL:
duke@1 1290 return elemtype(((ForAll)t).qtype);
duke@1 1291 case ERROR:
duke@1 1292 return t;
duke@1 1293 default:
duke@1 1294 return null;
duke@1 1295 }
duke@1 1296 }
duke@1 1297
duke@1 1298 /**
duke@1 1299 * Mapping to take element type of an arraytype
duke@1 1300 */
duke@1 1301 private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
duke@1 1302 public Type apply(Type t) { return elemtype(t); }
duke@1 1303 };
duke@1 1304
duke@1 1305 /**
duke@1 1306 * The number of dimensions of an array type.
duke@1 1307 */
duke@1 1308 public int dimensions(Type t) {
duke@1 1309 int result = 0;
duke@1 1310 while (t.tag == ARRAY) {
duke@1 1311 result++;
duke@1 1312 t = elemtype(t);
duke@1 1313 }
duke@1 1314 return result;
duke@1 1315 }
duke@1 1316 // </editor-fold>
duke@1 1317
duke@1 1318 // <editor-fold defaultstate="collapsed" desc="asSuper">
duke@1 1319 /**
duke@1 1320 * Return the (most specific) base type of t that starts with the
duke@1 1321 * given symbol. If none exists, return null.
duke@1 1322 *
duke@1 1323 * @param t a type
duke@1 1324 * @param sym a symbol
duke@1 1325 */
duke@1 1326 public Type asSuper(Type t, Symbol sym) {
duke@1 1327 return asSuper.visit(t, sym);
duke@1 1328 }
duke@1 1329 // where
duke@1 1330 private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
duke@1 1331
duke@1 1332 public Type visitType(Type t, Symbol sym) {
duke@1 1333 return null;
duke@1 1334 }
duke@1 1335
duke@1 1336 @Override
duke@1 1337 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1338 if (t.tsym == sym)
duke@1 1339 return t;
duke@1 1340
duke@1 1341 Type st = supertype(t);
mcimadamore@19 1342 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
duke@1 1343 Type x = asSuper(st, sym);
duke@1 1344 if (x != null)
duke@1 1345 return x;
duke@1 1346 }
duke@1 1347 if ((sym.flags() & INTERFACE) != 0) {
duke@1 1348 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 1349 Type x = asSuper(l.head, sym);
duke@1 1350 if (x != null)
duke@1 1351 return x;
duke@1 1352 }
duke@1 1353 }
duke@1 1354 return null;
duke@1 1355 }
duke@1 1356
duke@1 1357 @Override
duke@1 1358 public Type visitArrayType(ArrayType t, Symbol sym) {
duke@1 1359 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1360 }
duke@1 1361
duke@1 1362 @Override
duke@1 1363 public Type visitTypeVar(TypeVar t, Symbol sym) {
mcimadamore@19 1364 if (t.tsym == sym)
mcimadamore@19 1365 return t;
mcimadamore@19 1366 else
mcimadamore@19 1367 return asSuper(t.bound, sym);
duke@1 1368 }
duke@1 1369
duke@1 1370 @Override
duke@1 1371 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1372 return t;
duke@1 1373 }
duke@1 1374 };
duke@1 1375
duke@1 1376 /**
duke@1 1377 * Return the base type of t or any of its outer types that starts
duke@1 1378 * with the given symbol. If none exists, return null.
duke@1 1379 *
duke@1 1380 * @param t a type
duke@1 1381 * @param sym a symbol
duke@1 1382 */
duke@1 1383 public Type asOuterSuper(Type t, Symbol sym) {
duke@1 1384 switch (t.tag) {
duke@1 1385 case CLASS:
duke@1 1386 do {
duke@1 1387 Type s = asSuper(t, sym);
duke@1 1388 if (s != null) return s;
duke@1 1389 t = t.getEnclosingType();
duke@1 1390 } while (t.tag == CLASS);
duke@1 1391 return null;
duke@1 1392 case ARRAY:
duke@1 1393 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1394 case TYPEVAR:
duke@1 1395 return asSuper(t, sym);
duke@1 1396 case ERROR:
duke@1 1397 return t;
duke@1 1398 default:
duke@1 1399 return null;
duke@1 1400 }
duke@1 1401 }
duke@1 1402
duke@1 1403 /**
duke@1 1404 * Return the base type of t or any of its enclosing types that
duke@1 1405 * starts with the given symbol. If none exists, return null.
duke@1 1406 *
duke@1 1407 * @param t a type
duke@1 1408 * @param sym a symbol
duke@1 1409 */
duke@1 1410 public Type asEnclosingSuper(Type t, Symbol sym) {
duke@1 1411 switch (t.tag) {
duke@1 1412 case CLASS:
duke@1 1413 do {
duke@1 1414 Type s = asSuper(t, sym);
duke@1 1415 if (s != null) return s;
duke@1 1416 Type outer = t.getEnclosingType();
duke@1 1417 t = (outer.tag == CLASS) ? outer :
duke@1 1418 (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
duke@1 1419 Type.noType;
duke@1 1420 } while (t.tag == CLASS);
duke@1 1421 return null;
duke@1 1422 case ARRAY:
duke@1 1423 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1424 case TYPEVAR:
duke@1 1425 return asSuper(t, sym);
duke@1 1426 case ERROR:
duke@1 1427 return t;
duke@1 1428 default:
duke@1 1429 return null;
duke@1 1430 }
duke@1 1431 }
duke@1 1432 // </editor-fold>
duke@1 1433
duke@1 1434 // <editor-fold defaultstate="collapsed" desc="memberType">
duke@1 1435 /**
duke@1 1436 * The type of given symbol, seen as a member of t.
duke@1 1437 *
duke@1 1438 * @param t a type
duke@1 1439 * @param sym a symbol
duke@1 1440 */
duke@1 1441 public Type memberType(Type t, Symbol sym) {
duke@1 1442 return (sym.flags() & STATIC) != 0
duke@1 1443 ? sym.type
duke@1 1444 : memberType.visit(t, sym);
duke@1 1445 }
duke@1 1446 // where
duke@1 1447 private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
duke@1 1448
duke@1 1449 public Type visitType(Type t, Symbol sym) {
duke@1 1450 return sym.type;
duke@1 1451 }
duke@1 1452
duke@1 1453 @Override
duke@1 1454 public Type visitWildcardType(WildcardType t, Symbol sym) {
duke@1 1455 return memberType(upperBound(t), sym);
duke@1 1456 }
duke@1 1457
duke@1 1458 @Override
duke@1 1459 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1460 Symbol owner = sym.owner;
duke@1 1461 long flags = sym.flags();
duke@1 1462 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
duke@1 1463 Type base = asOuterSuper(t, owner);
mcimadamore@134 1464 //if t is an intersection type T = CT & I1 & I2 ... & In
mcimadamore@134 1465 //its supertypes CT, I1, ... In might contain wildcards
mcimadamore@134 1466 //so we need to go through capture conversion
mcimadamore@134 1467 base = t.isCompound() ? capture(base) : base;
duke@1 1468 if (base != null) {
duke@1 1469 List<Type> ownerParams = owner.type.allparams();
duke@1 1470 List<Type> baseParams = base.allparams();
duke@1 1471 if (ownerParams.nonEmpty()) {
duke@1 1472 if (baseParams.isEmpty()) {
duke@1 1473 // then base is a raw type
duke@1 1474 return erasure(sym.type);
duke@1 1475 } else {
duke@1 1476 return subst(sym.type, ownerParams, baseParams);
duke@1 1477 }
duke@1 1478 }
duke@1 1479 }
duke@1 1480 }
duke@1 1481 return sym.type;
duke@1 1482 }
duke@1 1483
duke@1 1484 @Override
duke@1 1485 public Type visitTypeVar(TypeVar t, Symbol sym) {
duke@1 1486 return memberType(t.bound, sym);
duke@1 1487 }
duke@1 1488
duke@1 1489 @Override
duke@1 1490 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1491 return t;
duke@1 1492 }
duke@1 1493 };
duke@1 1494 // </editor-fold>
duke@1 1495
duke@1 1496 // <editor-fold defaultstate="collapsed" desc="isAssignable">
duke@1 1497 public boolean isAssignable(Type t, Type s) {
duke@1 1498 return isAssignable(t, s, Warner.noWarnings);
duke@1 1499 }
duke@1 1500
duke@1 1501 /**
duke@1 1502 * Is t assignable to s?<br>
duke@1 1503 * Equivalent to subtype except for constant values and raw
duke@1 1504 * types.<br>
duke@1 1505 * (not defined for Method and ForAll types)
duke@1 1506 */
duke@1 1507 public boolean isAssignable(Type t, Type s, Warner warn) {
duke@1 1508 if (t.tag == ERROR)
duke@1 1509 return true;
duke@1 1510 if (t.tag <= INT && t.constValue() != null) {
duke@1 1511 int value = ((Number)t.constValue()).intValue();
duke@1 1512 switch (s.tag) {
duke@1 1513 case BYTE:
duke@1 1514 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
duke@1 1515 return true;
duke@1 1516 break;
duke@1 1517 case CHAR:
duke@1 1518 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
duke@1 1519 return true;
duke@1 1520 break;
duke@1 1521 case SHORT:
duke@1 1522 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
duke@1 1523 return true;
duke@1 1524 break;
duke@1 1525 case INT:
duke@1 1526 return true;
duke@1 1527 case CLASS:
duke@1 1528 switch (unboxedType(s).tag) {
duke@1 1529 case BYTE:
duke@1 1530 case CHAR:
duke@1 1531 case SHORT:
duke@1 1532 return isAssignable(t, unboxedType(s), warn);
duke@1 1533 }
duke@1 1534 break;
duke@1 1535 }
duke@1 1536 }
duke@1 1537 return isConvertible(t, s, warn);
duke@1 1538 }
duke@1 1539 // </editor-fold>
duke@1 1540
duke@1 1541 // <editor-fold defaultstate="collapsed" desc="erasure">
duke@1 1542 /**
duke@1 1543 * The erasure of t {@code |t|} -- the type that results when all
duke@1 1544 * type parameters in t are deleted.
duke@1 1545 */
duke@1 1546 public Type erasure(Type t) {
mcimadamore@30 1547 return erasure(t, false);
mcimadamore@30 1548 }
mcimadamore@30 1549 //where
mcimadamore@30 1550 private Type erasure(Type t, boolean recurse) {
duke@1 1551 if (t.tag <= lastBaseTag)
duke@1 1552 return t; /* fast special case */
duke@1 1553 else
mcimadamore@30 1554 return erasure.visit(t, recurse);
duke@1 1555 }
duke@1 1556 // where
mcimadamore@30 1557 private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
mcimadamore@30 1558 public Type visitType(Type t, Boolean recurse) {
duke@1 1559 if (t.tag <= lastBaseTag)
duke@1 1560 return t; /*fast special case*/
duke@1 1561 else
mcimadamore@30 1562 return t.map(recurse ? erasureRecFun : erasureFun);
duke@1 1563 }
duke@1 1564
duke@1 1565 @Override
mcimadamore@30 1566 public Type visitWildcardType(WildcardType t, Boolean recurse) {
mcimadamore@30 1567 return erasure(upperBound(t), recurse);
duke@1 1568 }
duke@1 1569
duke@1 1570 @Override
mcimadamore@30 1571 public Type visitClassType(ClassType t, Boolean recurse) {
mcimadamore@30 1572 Type erased = t.tsym.erasure(Types.this);
mcimadamore@30 1573 if (recurse) {
mcimadamore@30 1574 erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
mcimadamore@30 1575 }
mcimadamore@30 1576 return erased;
duke@1 1577 }
duke@1 1578
duke@1 1579 @Override
mcimadamore@30 1580 public Type visitTypeVar(TypeVar t, Boolean recurse) {
mcimadamore@30 1581 return erasure(t.bound, recurse);
duke@1 1582 }
duke@1 1583
duke@1 1584 @Override
mcimadamore@30 1585 public Type visitErrorType(ErrorType t, Boolean recurse) {
duke@1 1586 return t;
duke@1 1587 }
duke@1 1588 };
mcimadamore@30 1589
duke@1 1590 private Mapping erasureFun = new Mapping ("erasure") {
duke@1 1591 public Type apply(Type t) { return erasure(t); }
duke@1 1592 };
duke@1 1593
mcimadamore@30 1594 private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
mcimadamore@30 1595 public Type apply(Type t) { return erasureRecursive(t); }
mcimadamore@30 1596 };
mcimadamore@30 1597
duke@1 1598 public List<Type> erasure(List<Type> ts) {
duke@1 1599 return Type.map(ts, erasureFun);
duke@1 1600 }
mcimadamore@30 1601
mcimadamore@30 1602 public Type erasureRecursive(Type t) {
mcimadamore@30 1603 return erasure(t, true);
mcimadamore@30 1604 }
mcimadamore@30 1605
mcimadamore@30 1606 public List<Type> erasureRecursive(List<Type> ts) {
mcimadamore@30 1607 return Type.map(ts, erasureRecFun);
mcimadamore@30 1608 }
duke@1 1609 // </editor-fold>
duke@1 1610
duke@1 1611 // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
duke@1 1612 /**
duke@1 1613 * Make a compound type from non-empty list of types
duke@1 1614 *
duke@1 1615 * @param bounds the types from which the compound type is formed
duke@1 1616 * @param supertype is objectType if all bounds are interfaces,
duke@1 1617 * null otherwise.
duke@1 1618 */
duke@1 1619 public Type makeCompoundType(List<Type> bounds,
duke@1 1620 Type supertype) {
duke@1 1621 ClassSymbol bc =
duke@1 1622 new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
duke@1 1623 Type.moreInfo
duke@1 1624 ? names.fromString(bounds.toString())
duke@1 1625 : names.empty,
duke@1 1626 syms.noSymbol);
duke@1 1627 if (bounds.head.tag == TYPEVAR)
duke@1 1628 // error condition, recover
mcimadamore@121 1629 bc.erasure_field = syms.objectType;
mcimadamore@121 1630 else
mcimadamore@121 1631 bc.erasure_field = erasure(bounds.head);
mcimadamore@121 1632 bc.members_field = new Scope(bc);
duke@1 1633 ClassType bt = (ClassType)bc.type;
duke@1 1634 bt.allparams_field = List.nil();
duke@1 1635 if (supertype != null) {
duke@1 1636 bt.supertype_field = supertype;
duke@1 1637 bt.interfaces_field = bounds;
duke@1 1638 } else {
duke@1 1639 bt.supertype_field = bounds.head;
duke@1 1640 bt.interfaces_field = bounds.tail;
duke@1 1641 }
duke@1 1642 assert bt.supertype_field.tsym.completer != null
duke@1 1643 || !bt.supertype_field.isInterface()
duke@1 1644 : bt.supertype_field;
duke@1 1645 return bt;
duke@1 1646 }
duke@1 1647
duke@1 1648 /**
duke@1 1649 * Same as {@link #makeCompoundType(List,Type)}, except that the
duke@1 1650 * second parameter is computed directly. Note that this might
duke@1 1651 * cause a symbol completion. Hence, this version of
duke@1 1652 * makeCompoundType may not be called during a classfile read.
duke@1 1653 */
duke@1 1654 public Type makeCompoundType(List<Type> bounds) {
duke@1 1655 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
duke@1 1656 supertype(bounds.head) : null;
duke@1 1657 return makeCompoundType(bounds, supertype);
duke@1 1658 }
duke@1 1659
duke@1 1660 /**
duke@1 1661 * A convenience wrapper for {@link #makeCompoundType(List)}; the
duke@1 1662 * arguments are converted to a list and passed to the other
duke@1 1663 * method. Note that this might cause a symbol completion.
duke@1 1664 * Hence, this version of makeCompoundType may not be called
duke@1 1665 * during a classfile read.
duke@1 1666 */
duke@1 1667 public Type makeCompoundType(Type bound1, Type bound2) {
duke@1 1668 return makeCompoundType(List.of(bound1, bound2));
duke@1 1669 }
duke@1 1670 // </editor-fold>
duke@1 1671
duke@1 1672 // <editor-fold defaultstate="collapsed" desc="supertype">
duke@1 1673 public Type supertype(Type t) {
duke@1 1674 return supertype.visit(t);
duke@1 1675 }
duke@1 1676 // where
duke@1 1677 private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
duke@1 1678
duke@1 1679 public Type visitType(Type t, Void ignored) {
duke@1 1680 // A note on wildcards: there is no good way to
duke@1 1681 // determine a supertype for a super bounded wildcard.
duke@1 1682 return null;
duke@1 1683 }
duke@1 1684
duke@1 1685 @Override
duke@1 1686 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1687 if (t.supertype_field == null) {
duke@1 1688 Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
duke@1 1689 // An interface has no superclass; its supertype is Object.
duke@1 1690 if (t.isInterface())
duke@1 1691 supertype = ((ClassType)t.tsym.type).supertype_field;
duke@1 1692 if (t.supertype_field == null) {
duke@1 1693 List<Type> actuals = classBound(t).allparams();
duke@1 1694 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1695 if (t.hasErasedSupertypes()) {
mcimadamore@30 1696 t.supertype_field = erasureRecursive(supertype);
mcimadamore@30 1697 } else if (formals.nonEmpty()) {
duke@1 1698 t.supertype_field = subst(supertype, formals, actuals);
duke@1 1699 }
mcimadamore@30 1700 else {
mcimadamore@30 1701 t.supertype_field = supertype;
mcimadamore@30 1702 }
duke@1 1703 }
duke@1 1704 }
duke@1 1705 return t.supertype_field;
duke@1 1706 }
duke@1 1707
duke@1 1708 /**
duke@1 1709 * The supertype is always a class type. If the type
duke@1 1710 * variable's bounds start with a class type, this is also
duke@1 1711 * the supertype. Otherwise, the supertype is
duke@1 1712 * java.lang.Object.
duke@1 1713 */
duke@1 1714 @Override
duke@1 1715 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1716 if (t.bound.tag == TYPEVAR ||
duke@1 1717 (!t.bound.isCompound() && !t.bound.isInterface())) {
duke@1 1718 return t.bound;
duke@1 1719 } else {
duke@1 1720 return supertype(t.bound);
duke@1 1721 }
duke@1 1722 }
duke@1 1723
duke@1 1724 @Override
duke@1 1725 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 1726 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
duke@1 1727 return arraySuperType();
duke@1 1728 else
duke@1 1729 return new ArrayType(supertype(t.elemtype), t.tsym);
duke@1 1730 }
duke@1 1731
duke@1 1732 @Override
duke@1 1733 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1734 return t;
duke@1 1735 }
duke@1 1736 };
duke@1 1737 // </editor-fold>
duke@1 1738
duke@1 1739 // <editor-fold defaultstate="collapsed" desc="interfaces">
duke@1 1740 /**
duke@1 1741 * Return the interfaces implemented by this class.
duke@1 1742 */
duke@1 1743 public List<Type> interfaces(Type t) {
duke@1 1744 return interfaces.visit(t);
duke@1 1745 }
duke@1 1746 // where
duke@1 1747 private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
duke@1 1748
duke@1 1749 public List<Type> visitType(Type t, Void ignored) {
duke@1 1750 return List.nil();
duke@1 1751 }
duke@1 1752
duke@1 1753 @Override
duke@1 1754 public List<Type> visitClassType(ClassType t, Void ignored) {
duke@1 1755 if (t.interfaces_field == null) {
duke@1 1756 List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
duke@1 1757 if (t.interfaces_field == null) {
duke@1 1758 // If t.interfaces_field is null, then t must
duke@1 1759 // be a parameterized type (not to be confused
duke@1 1760 // with a generic type declaration).
duke@1 1761 // Terminology:
duke@1 1762 // Parameterized type: List<String>
duke@1 1763 // Generic type declaration: class List<E> { ... }
duke@1 1764 // So t corresponds to List<String> and
duke@1 1765 // t.tsym.type corresponds to List<E>.
duke@1 1766 // The reason t must be parameterized type is
duke@1 1767 // that completion will happen as a side
duke@1 1768 // effect of calling
duke@1 1769 // ClassSymbol.getInterfaces. Since
duke@1 1770 // t.interfaces_field is null after
duke@1 1771 // completion, we can assume that t is not the
duke@1 1772 // type of a class/interface declaration.
duke@1 1773 assert t != t.tsym.type : t.toString();
duke@1 1774 List<Type> actuals = t.allparams();
duke@1 1775 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1776 if (t.hasErasedSupertypes()) {
mcimadamore@30 1777 t.interfaces_field = erasureRecursive(interfaces);
mcimadamore@30 1778 } else if (formals.nonEmpty()) {
duke@1 1779 t.interfaces_field =
duke@1 1780 upperBounds(subst(interfaces, formals, actuals));
duke@1 1781 }
mcimadamore@30 1782 else {
mcimadamore@30 1783 t.interfaces_field = interfaces;
mcimadamore@30 1784 }
duke@1 1785 }
duke@1 1786 }
duke@1 1787 return t.interfaces_field;
duke@1 1788 }
duke@1 1789
duke@1 1790 @Override
duke@1 1791 public List<Type> visitTypeVar(TypeVar t, Void ignored) {
duke@1 1792 if (t.bound.isCompound())
duke@1 1793 return interfaces(t.bound);
duke@1 1794
duke@1 1795 if (t.bound.isInterface())
duke@1 1796 return List.of(t.bound);
duke@1 1797
duke@1 1798 return List.nil();
duke@1 1799 }
duke@1 1800 };
duke@1 1801 // </editor-fold>
duke@1 1802
duke@1 1803 // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
duke@1 1804 Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
duke@1 1805
duke@1 1806 public boolean isDerivedRaw(Type t) {
duke@1 1807 Boolean result = isDerivedRawCache.get(t);
duke@1 1808 if (result == null) {
duke@1 1809 result = isDerivedRawInternal(t);
duke@1 1810 isDerivedRawCache.put(t, result);
duke@1 1811 }
duke@1 1812 return result;
duke@1 1813 }
duke@1 1814
duke@1 1815 public boolean isDerivedRawInternal(Type t) {
duke@1 1816 if (t.isErroneous())
duke@1 1817 return false;
duke@1 1818 return
duke@1 1819 t.isRaw() ||
duke@1 1820 supertype(t) != null && isDerivedRaw(supertype(t)) ||
duke@1 1821 isDerivedRaw(interfaces(t));
duke@1 1822 }
duke@1 1823
duke@1 1824 public boolean isDerivedRaw(List<Type> ts) {
duke@1 1825 List<Type> l = ts;
duke@1 1826 while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
duke@1 1827 return l.nonEmpty();
duke@1 1828 }
duke@1 1829 // </editor-fold>
duke@1 1830
duke@1 1831 // <editor-fold defaultstate="collapsed" desc="setBounds">
duke@1 1832 /**
duke@1 1833 * Set the bounds field of the given type variable to reflect a
duke@1 1834 * (possibly multiple) list of bounds.
duke@1 1835 * @param t a type variable
duke@1 1836 * @param bounds the bounds, must be nonempty
duke@1 1837 * @param supertype is objectType if all bounds are interfaces,
duke@1 1838 * null otherwise.
duke@1 1839 */
duke@1 1840 public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
duke@1 1841 if (bounds.tail.isEmpty())
duke@1 1842 t.bound = bounds.head;
duke@1 1843 else
duke@1 1844 t.bound = makeCompoundType(bounds, supertype);
duke@1 1845 t.rank_field = -1;
duke@1 1846 }
duke@1 1847
duke@1 1848 /**
duke@1 1849 * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
duke@1 1850 * third parameter is computed directly. Note that this test
duke@1 1851 * might cause a symbol completion. Hence, this version of
duke@1 1852 * setBounds may not be called during a classfile read.
duke@1 1853 */
duke@1 1854 public void setBounds(TypeVar t, List<Type> bounds) {
duke@1 1855 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
duke@1 1856 supertype(bounds.head) : null;
duke@1 1857 setBounds(t, bounds, supertype);
duke@1 1858 t.rank_field = -1;
duke@1 1859 }
duke@1 1860 // </editor-fold>
duke@1 1861
duke@1 1862 // <editor-fold defaultstate="collapsed" desc="getBounds">
duke@1 1863 /**
duke@1 1864 * Return list of bounds of the given type variable.
duke@1 1865 */
duke@1 1866 public List<Type> getBounds(TypeVar t) {
duke@1 1867 if (t.bound.isErroneous() || !t.bound.isCompound())
duke@1 1868 return List.of(t.bound);
duke@1 1869 else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
duke@1 1870 return interfaces(t).prepend(supertype(t));
duke@1 1871 else
duke@1 1872 // No superclass was given in bounds.
duke@1 1873 // In this case, supertype is Object, erasure is first interface.
duke@1 1874 return interfaces(t);
duke@1 1875 }
duke@1 1876 // </editor-fold>
duke@1 1877
duke@1 1878 // <editor-fold defaultstate="collapsed" desc="classBound">
duke@1 1879 /**
duke@1 1880 * If the given type is a (possibly selected) type variable,
duke@1 1881 * return the bounding class of this type, otherwise return the
duke@1 1882 * type itself.
duke@1 1883 */
duke@1 1884 public Type classBound(Type t) {
duke@1 1885 return classBound.visit(t);
duke@1 1886 }
duke@1 1887 // where
duke@1 1888 private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
duke@1 1889
duke@1 1890 public Type visitType(Type t, Void ignored) {
duke@1 1891 return t;
duke@1 1892 }
duke@1 1893
duke@1 1894 @Override
duke@1 1895 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1896 Type outer1 = classBound(t.getEnclosingType());
duke@1 1897 if (outer1 != t.getEnclosingType())
duke@1 1898 return new ClassType(outer1, t.getTypeArguments(), t.tsym);
duke@1 1899 else
duke@1 1900 return t;
duke@1 1901 }
duke@1 1902
duke@1 1903 @Override
duke@1 1904 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1905 return classBound(supertype(t));
duke@1 1906 }
duke@1 1907
duke@1 1908 @Override
duke@1 1909 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1910 return t;
duke@1 1911 }
duke@1 1912 };
duke@1 1913 // </editor-fold>
duke@1 1914
duke@1 1915 // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
duke@1 1916 /**
duke@1 1917 * Returns true iff the first signature is a <em>sub
duke@1 1918 * signature</em> of the other. This is <b>not</b> an equivalence
duke@1 1919 * relation.
duke@1 1920 *
duke@1 1921 * @see "The Java Language Specification, Third Ed. (8.4.2)."
duke@1 1922 * @see #overrideEquivalent(Type t, Type s)
duke@1 1923 * @param t first signature (possibly raw).
duke@1 1924 * @param s second signature (could be subjected to erasure).
duke@1 1925 * @return true if t is a sub signature of s.
duke@1 1926 */
duke@1 1927 public boolean isSubSignature(Type t, Type s) {
duke@1 1928 return hasSameArgs(t, s) || hasSameArgs(t, erasure(s));
duke@1 1929 }
duke@1 1930
duke@1 1931 /**
duke@1 1932 * Returns true iff these signatures are related by <em>override
duke@1 1933 * equivalence</em>. This is the natural extension of
duke@1 1934 * isSubSignature to an equivalence relation.
duke@1 1935 *
duke@1 1936 * @see "The Java Language Specification, Third Ed. (8.4.2)."
duke@1 1937 * @see #isSubSignature(Type t, Type s)
duke@1 1938 * @param t a signature (possible raw, could be subjected to
duke@1 1939 * erasure).
duke@1 1940 * @param s a signature (possible raw, could be subjected to
duke@1 1941 * erasure).
duke@1 1942 * @return true if either argument is a sub signature of the other.
duke@1 1943 */
duke@1 1944 public boolean overrideEquivalent(Type t, Type s) {
duke@1 1945 return hasSameArgs(t, s) ||
duke@1 1946 hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
duke@1 1947 }
duke@1 1948
duke@1 1949 /**
duke@1 1950 * Does t have the same arguments as s? It is assumed that both
duke@1 1951 * types are (possibly polymorphic) method types. Monomorphic
duke@1 1952 * method types "have the same arguments", if their argument lists
duke@1 1953 * are equal. Polymorphic method types "have the same arguments",
duke@1 1954 * if they have the same arguments after renaming all type
duke@1 1955 * variables of one to corresponding type variables in the other,
duke@1 1956 * where correspondence is by position in the type parameter list.
duke@1 1957 */
duke@1 1958 public boolean hasSameArgs(Type t, Type s) {
duke@1 1959 return hasSameArgs.visit(t, s);
duke@1 1960 }
duke@1 1961 // where
duke@1 1962 private TypeRelation hasSameArgs = new TypeRelation() {
duke@1 1963
duke@1 1964 public Boolean visitType(Type t, Type s) {
duke@1 1965 throw new AssertionError();
duke@1 1966 }
duke@1 1967
duke@1 1968 @Override
duke@1 1969 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 1970 return s.tag == METHOD
duke@1 1971 && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
duke@1 1972 }
duke@1 1973
duke@1 1974 @Override
duke@1 1975 public Boolean visitForAll(ForAll t, Type s) {
duke@1 1976 if (s.tag != FORALL)
duke@1 1977 return false;
duke@1 1978
duke@1 1979 ForAll forAll = (ForAll)s;
duke@1 1980 return hasSameBounds(t, forAll)
duke@1 1981 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 1982 }
duke@1 1983
duke@1 1984 @Override
duke@1 1985 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1986 return false;
duke@1 1987 }
duke@1 1988 };
duke@1 1989 // </editor-fold>
duke@1 1990
duke@1 1991 // <editor-fold defaultstate="collapsed" desc="subst">
duke@1 1992 public List<Type> subst(List<Type> ts,
duke@1 1993 List<Type> from,
duke@1 1994 List<Type> to) {
duke@1 1995 return new Subst(from, to).subst(ts);
duke@1 1996 }
duke@1 1997
duke@1 1998 /**
duke@1 1999 * Substitute all occurrences of a type in `from' with the
duke@1 2000 * corresponding type in `to' in 't'. Match lists `from' and `to'
duke@1 2001 * from the right: If lists have different length, discard leading
duke@1 2002 * elements of the longer list.
duke@1 2003 */
duke@1 2004 public Type subst(Type t, List<Type> from, List<Type> to) {
duke@1 2005 return new Subst(from, to).subst(t);
duke@1 2006 }
duke@1 2007
duke@1 2008 private class Subst extends UnaryVisitor<Type> {
duke@1 2009 List<Type> from;
duke@1 2010 List<Type> to;
duke@1 2011
duke@1 2012 public Subst(List<Type> from, List<Type> to) {
duke@1 2013 int fromLength = from.length();
duke@1 2014 int toLength = to.length();
duke@1 2015 while (fromLength > toLength) {
duke@1 2016 fromLength--;
duke@1 2017 from = from.tail;
duke@1 2018 }
duke@1 2019 while (fromLength < toLength) {
duke@1 2020 toLength--;
duke@1 2021 to = to.tail;
duke@1 2022 }
duke@1 2023 this.from = from;
duke@1 2024 this.to = to;
duke@1 2025 }
duke@1 2026
duke@1 2027 Type subst(Type t) {
duke@1 2028 if (from.tail == null)
duke@1 2029 return t;
duke@1 2030 else
duke@1 2031 return visit(t);
mcimadamore@238 2032 }
duke@1 2033
duke@1 2034 List<Type> subst(List<Type> ts) {
duke@1 2035 if (from.tail == null)
duke@1 2036 return ts;
duke@1 2037 boolean wild = false;
duke@1 2038 if (ts.nonEmpty() && from.nonEmpty()) {
duke@1 2039 Type head1 = subst(ts.head);
duke@1 2040 List<Type> tail1 = subst(ts.tail);
duke@1 2041 if (head1 != ts.head || tail1 != ts.tail)
duke@1 2042 return tail1.prepend(head1);
duke@1 2043 }
duke@1 2044 return ts;
duke@1 2045 }
duke@1 2046
duke@1 2047 public Type visitType(Type t, Void ignored) {
duke@1 2048 return t;
duke@1 2049 }
duke@1 2050
duke@1 2051 @Override
duke@1 2052 public Type visitMethodType(MethodType t, Void ignored) {
duke@1 2053 List<Type> argtypes = subst(t.argtypes);
duke@1 2054 Type restype = subst(t.restype);
duke@1 2055 List<Type> thrown = subst(t.thrown);
duke@1 2056 if (argtypes == t.argtypes &&
duke@1 2057 restype == t.restype &&
duke@1 2058 thrown == t.thrown)
duke@1 2059 return t;
duke@1 2060 else
duke@1 2061 return new MethodType(argtypes, restype, thrown, t.tsym);
duke@1 2062 }
duke@1 2063
duke@1 2064 @Override
duke@1 2065 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2066 for (List<Type> from = this.from, to = this.to;
duke@1 2067 from.nonEmpty();
duke@1 2068 from = from.tail, to = to.tail) {
duke@1 2069 if (t == from.head) {
duke@1 2070 return to.head.withTypeVar(t);
duke@1 2071 }
duke@1 2072 }
duke@1 2073 return t;
duke@1 2074 }
duke@1 2075
duke@1 2076 @Override
duke@1 2077 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2078 if (!t.isCompound()) {
duke@1 2079 List<Type> typarams = t.getTypeArguments();
duke@1 2080 List<Type> typarams1 = subst(typarams);
duke@1 2081 Type outer = t.getEnclosingType();
duke@1 2082 Type outer1 = subst(outer);
duke@1 2083 if (typarams1 == typarams && outer1 == outer)
duke@1 2084 return t;
duke@1 2085 else
duke@1 2086 return new ClassType(outer1, typarams1, t.tsym);
duke@1 2087 } else {
duke@1 2088 Type st = subst(supertype(t));
duke@1 2089 List<Type> is = upperBounds(subst(interfaces(t)));
duke@1 2090 if (st == supertype(t) && is == interfaces(t))
duke@1 2091 return t;
duke@1 2092 else
duke@1 2093 return makeCompoundType(is.prepend(st));
duke@1 2094 }
duke@1 2095 }
duke@1 2096
duke@1 2097 @Override
duke@1 2098 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 2099 Type bound = t.type;
duke@1 2100 if (t.kind != BoundKind.UNBOUND)
duke@1 2101 bound = subst(bound);
duke@1 2102 if (bound == t.type) {
duke@1 2103 return t;
duke@1 2104 } else {
duke@1 2105 if (t.isExtendsBound() && bound.isExtendsBound())
duke@1 2106 bound = upperBound(bound);
duke@1 2107 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
duke@1 2108 }
duke@1 2109 }
duke@1 2110
duke@1 2111 @Override
duke@1 2112 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 2113 Type elemtype = subst(t.elemtype);
duke@1 2114 if (elemtype == t.elemtype)
duke@1 2115 return t;
duke@1 2116 else
duke@1 2117 return new ArrayType(upperBound(elemtype), t.tsym);
duke@1 2118 }
duke@1 2119
duke@1 2120 @Override
duke@1 2121 public Type visitForAll(ForAll t, Void ignored) {
duke@1 2122 List<Type> tvars1 = substBounds(t.tvars, from, to);
duke@1 2123 Type qtype1 = subst(t.qtype);
duke@1 2124 if (tvars1 == t.tvars && qtype1 == t.qtype) {
duke@1 2125 return t;
duke@1 2126 } else if (tvars1 == t.tvars) {
duke@1 2127 return new ForAll(tvars1, qtype1);
duke@1 2128 } else {
duke@1 2129 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
duke@1 2130 }
duke@1 2131 }
duke@1 2132
duke@1 2133 @Override
duke@1 2134 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2135 return t;
duke@1 2136 }
duke@1 2137 }
duke@1 2138
duke@1 2139 public List<Type> substBounds(List<Type> tvars,
duke@1 2140 List<Type> from,
duke@1 2141 List<Type> to) {
duke@1 2142 if (tvars.isEmpty())
duke@1 2143 return tvars;
duke@1 2144 ListBuffer<Type> newBoundsBuf = lb();
duke@1 2145 boolean changed = false;
duke@1 2146 // calculate new bounds
duke@1 2147 for (Type t : tvars) {
duke@1 2148 TypeVar tv = (TypeVar) t;
duke@1 2149 Type bound = subst(tv.bound, from, to);
duke@1 2150 if (bound != tv.bound)
duke@1 2151 changed = true;
duke@1 2152 newBoundsBuf.append(bound);
duke@1 2153 }
duke@1 2154 if (!changed)
duke@1 2155 return tvars;
duke@1 2156 ListBuffer<Type> newTvars = lb();
duke@1 2157 // create new type variables without bounds
duke@1 2158 for (Type t : tvars) {
duke@1 2159 newTvars.append(new TypeVar(t.tsym, null, syms.botType));
duke@1 2160 }
duke@1 2161 // the new bounds should use the new type variables in place
duke@1 2162 // of the old
duke@1 2163 List<Type> newBounds = newBoundsBuf.toList();
duke@1 2164 from = tvars;
duke@1 2165 to = newTvars.toList();
duke@1 2166 for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
duke@1 2167 newBounds.head = subst(newBounds.head, from, to);
duke@1 2168 }
duke@1 2169 newBounds = newBoundsBuf.toList();
duke@1 2170 // set the bounds of new type variables to the new bounds
duke@1 2171 for (Type t : newTvars.toList()) {
duke@1 2172 TypeVar tv = (TypeVar) t;
duke@1 2173 tv.bound = newBounds.head;
duke@1 2174 newBounds = newBounds.tail;
duke@1 2175 }
duke@1 2176 return newTvars.toList();
duke@1 2177 }
duke@1 2178
duke@1 2179 public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
duke@1 2180 Type bound1 = subst(t.bound, from, to);
duke@1 2181 if (bound1 == t.bound)
duke@1 2182 return t;
mcimadamore@212 2183 else {
mcimadamore@212 2184 // create new type variable without bounds
mcimadamore@212 2185 TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
mcimadamore@212 2186 // the new bound should use the new type variable in place
mcimadamore@212 2187 // of the old
mcimadamore@212 2188 tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
mcimadamore@212 2189 return tv;
mcimadamore@212 2190 }
duke@1 2191 }
duke@1 2192 // </editor-fold>
duke@1 2193
duke@1 2194 // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
duke@1 2195 /**
duke@1 2196 * Does t have the same bounds for quantified variables as s?
duke@1 2197 */
duke@1 2198 boolean hasSameBounds(ForAll t, ForAll s) {
duke@1 2199 List<Type> l1 = t.tvars;
duke@1 2200 List<Type> l2 = s.tvars;
duke@1 2201 while (l1.nonEmpty() && l2.nonEmpty() &&
duke@1 2202 isSameType(l1.head.getUpperBound(),
duke@1 2203 subst(l2.head.getUpperBound(),
duke@1 2204 s.tvars,
duke@1 2205 t.tvars))) {
duke@1 2206 l1 = l1.tail;
duke@1 2207 l2 = l2.tail;
duke@1 2208 }
duke@1 2209 return l1.isEmpty() && l2.isEmpty();
duke@1 2210 }
duke@1 2211 // </editor-fold>
duke@1 2212
duke@1 2213 // <editor-fold defaultstate="collapsed" desc="newInstances">
duke@1 2214 /** Create new vector of type variables from list of variables
duke@1 2215 * changing all recursive bounds from old to new list.
duke@1 2216 */
duke@1 2217 public List<Type> newInstances(List<Type> tvars) {
duke@1 2218 List<Type> tvars1 = Type.map(tvars, newInstanceFun);
duke@1 2219 for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
duke@1 2220 TypeVar tv = (TypeVar) l.head;
duke@1 2221 tv.bound = subst(tv.bound, tvars, tvars1);
duke@1 2222 }
duke@1 2223 return tvars1;
duke@1 2224 }
duke@1 2225 static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
duke@1 2226 public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
duke@1 2227 };
duke@1 2228 // </editor-fold>
duke@1 2229
jjg@110 2230 // <editor-fold defaultstate="collapsed" desc="createErrorType">
jjg@110 2231 public Type createErrorType(Type originalType) {
jjg@110 2232 return new ErrorType(originalType, syms.errSymbol);
jjg@110 2233 }
jjg@110 2234
jjg@110 2235 public Type createErrorType(ClassSymbol c, Type originalType) {
jjg@110 2236 return new ErrorType(c, originalType);
jjg@110 2237 }
jjg@110 2238
jjg@110 2239 public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
jjg@110 2240 return new ErrorType(name, container, originalType);
jjg@110 2241 }
jjg@110 2242 // </editor-fold>
jjg@110 2243
duke@1 2244 // <editor-fold defaultstate="collapsed" desc="rank">
duke@1 2245 /**
duke@1 2246 * The rank of a class is the length of the longest path between
duke@1 2247 * the class and java.lang.Object in the class inheritance
duke@1 2248 * graph. Undefined for all but reference types.
duke@1 2249 */
duke@1 2250 public int rank(Type t) {
duke@1 2251 switch(t.tag) {
duke@1 2252 case CLASS: {
duke@1 2253 ClassType cls = (ClassType)t;
duke@1 2254 if (cls.rank_field < 0) {
duke@1 2255 Name fullname = cls.tsym.getQualifiedName();
jjg@113 2256 if (fullname == names.java_lang_Object)
duke@1 2257 cls.rank_field = 0;
duke@1 2258 else {
duke@1 2259 int r = rank(supertype(cls));
duke@1 2260 for (List<Type> l = interfaces(cls);
duke@1 2261 l.nonEmpty();
duke@1 2262 l = l.tail) {
duke@1 2263 if (rank(l.head) > r)
duke@1 2264 r = rank(l.head);
duke@1 2265 }
duke@1 2266 cls.rank_field = r + 1;
duke@1 2267 }
duke@1 2268 }
duke@1 2269 return cls.rank_field;
duke@1 2270 }
duke@1 2271 case TYPEVAR: {
duke@1 2272 TypeVar tvar = (TypeVar)t;
duke@1 2273 if (tvar.rank_field < 0) {
duke@1 2274 int r = rank(supertype(tvar));
duke@1 2275 for (List<Type> l = interfaces(tvar);
duke@1 2276 l.nonEmpty();
duke@1 2277 l = l.tail) {
duke@1 2278 if (rank(l.head) > r) r = rank(l.head);
duke@1 2279 }
duke@1 2280 tvar.rank_field = r + 1;
duke@1 2281 }
duke@1 2282 return tvar.rank_field;
duke@1 2283 }
duke@1 2284 case ERROR:
duke@1 2285 return 0;
duke@1 2286 default:
duke@1 2287 throw new AssertionError();
duke@1 2288 }
duke@1 2289 }
duke@1 2290 // </editor-fold>
duke@1 2291
mcimadamore@121 2292 /**
mcimadamore@238 2293 * Helper method for generating a string representation of a given type
mcimadamore@121 2294 * accordingly to a given locale
mcimadamore@121 2295 */
mcimadamore@121 2296 public String toString(Type t, Locale locale) {
mcimadamore@238 2297 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2298 }
mcimadamore@121 2299
mcimadamore@121 2300 /**
mcimadamore@238 2301 * Helper method for generating a string representation of a given type
mcimadamore@121 2302 * accordingly to a given locale
mcimadamore@121 2303 */
mcimadamore@121 2304 public String toString(Symbol t, Locale locale) {
mcimadamore@238 2305 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2306 }
mcimadamore@121 2307
duke@1 2308 // <editor-fold defaultstate="collapsed" desc="toString">
duke@1 2309 /**
duke@1 2310 * This toString is slightly more descriptive than the one on Type.
mcimadamore@121 2311 *
mcimadamore@121 2312 * @deprecated Types.toString(Type t, Locale l) provides better support
mcimadamore@121 2313 * for localization
duke@1 2314 */
mcimadamore@121 2315 @Deprecated
duke@1 2316 public String toString(Type t) {
duke@1 2317 if (t.tag == FORALL) {
duke@1 2318 ForAll forAll = (ForAll)t;
duke@1 2319 return typaramsString(forAll.tvars) + forAll.qtype;
duke@1 2320 }
duke@1 2321 return "" + t;
duke@1 2322 }
duke@1 2323 // where
duke@1 2324 private String typaramsString(List<Type> tvars) {
duke@1 2325 StringBuffer s = new StringBuffer();
duke@1 2326 s.append('<');
duke@1 2327 boolean first = true;
duke@1 2328 for (Type t : tvars) {
duke@1 2329 if (!first) s.append(", ");
duke@1 2330 first = false;
duke@1 2331 appendTyparamString(((TypeVar)t), s);
duke@1 2332 }
duke@1 2333 s.append('>');
duke@1 2334 return s.toString();
duke@1 2335 }
duke@1 2336 private void appendTyparamString(TypeVar t, StringBuffer buf) {
duke@1 2337 buf.append(t);
duke@1 2338 if (t.bound == null ||
duke@1 2339 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
duke@1 2340 return;
duke@1 2341 buf.append(" extends "); // Java syntax; no need for i18n
duke@1 2342 Type bound = t.bound;
duke@1 2343 if (!bound.isCompound()) {
duke@1 2344 buf.append(bound);
duke@1 2345 } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
duke@1 2346 buf.append(supertype(t));
duke@1 2347 for (Type intf : interfaces(t)) {
duke@1 2348 buf.append('&');
duke@1 2349 buf.append(intf);
duke@1 2350 }
duke@1 2351 } else {
duke@1 2352 // No superclass was given in bounds.
duke@1 2353 // In this case, supertype is Object, erasure is first interface.
duke@1 2354 boolean first = true;
duke@1 2355 for (Type intf : interfaces(t)) {
duke@1 2356 if (!first) buf.append('&');
duke@1 2357 first = false;
duke@1 2358 buf.append(intf);
duke@1 2359 }
duke@1 2360 }
duke@1 2361 }
duke@1 2362 // </editor-fold>
duke@1 2363
duke@1 2364 // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
duke@1 2365 /**
duke@1 2366 * A cache for closures.
duke@1 2367 *
duke@1 2368 * <p>A closure is a list of all the supertypes and interfaces of
duke@1 2369 * a class or interface type, ordered by ClassSymbol.precedes
duke@1 2370 * (that is, subclasses come first, arbitrary but fixed
duke@1 2371 * otherwise).
duke@1 2372 */
duke@1 2373 private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
duke@1 2374
duke@1 2375 /**
duke@1 2376 * Returns the closure of a class or interface type.
duke@1 2377 */
duke@1 2378 public List<Type> closure(Type t) {
duke@1 2379 List<Type> cl = closureCache.get(t);
duke@1 2380 if (cl == null) {
duke@1 2381 Type st = supertype(t);
duke@1 2382 if (!t.isCompound()) {
duke@1 2383 if (st.tag == CLASS) {
duke@1 2384 cl = insert(closure(st), t);
duke@1 2385 } else if (st.tag == TYPEVAR) {
duke@1 2386 cl = closure(st).prepend(t);
duke@1 2387 } else {
duke@1 2388 cl = List.of(t);
duke@1 2389 }
duke@1 2390 } else {
duke@1 2391 cl = closure(supertype(t));
duke@1 2392 }
duke@1 2393 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
duke@1 2394 cl = union(cl, closure(l.head));
duke@1 2395 closureCache.put(t, cl);
duke@1 2396 }
duke@1 2397 return cl;
duke@1 2398 }
duke@1 2399
duke@1 2400 /**
duke@1 2401 * Insert a type in a closure
duke@1 2402 */
duke@1 2403 public List<Type> insert(List<Type> cl, Type t) {
duke@1 2404 if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
duke@1 2405 return cl.prepend(t);
duke@1 2406 } else if (cl.head.tsym.precedes(t.tsym, this)) {
duke@1 2407 return insert(cl.tail, t).prepend(cl.head);
duke@1 2408 } else {
duke@1 2409 return cl;
duke@1 2410 }
duke@1 2411 }
duke@1 2412
duke@1 2413 /**
duke@1 2414 * Form the union of two closures
duke@1 2415 */
duke@1 2416 public List<Type> union(List<Type> cl1, List<Type> cl2) {
duke@1 2417 if (cl1.isEmpty()) {
duke@1 2418 return cl2;
duke@1 2419 } else if (cl2.isEmpty()) {
duke@1 2420 return cl1;
duke@1 2421 } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
duke@1 2422 return union(cl1.tail, cl2).prepend(cl1.head);
duke@1 2423 } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
duke@1 2424 return union(cl1, cl2.tail).prepend(cl2.head);
duke@1 2425 } else {
duke@1 2426 return union(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2427 }
duke@1 2428 }
duke@1 2429
duke@1 2430 /**
duke@1 2431 * Intersect two closures
duke@1 2432 */
duke@1 2433 public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
duke@1 2434 if (cl1 == cl2)
duke@1 2435 return cl1;
duke@1 2436 if (cl1.isEmpty() || cl2.isEmpty())
duke@1 2437 return List.nil();
duke@1 2438 if (cl1.head.tsym.precedes(cl2.head.tsym, this))
duke@1 2439 return intersect(cl1.tail, cl2);
duke@1 2440 if (cl2.head.tsym.precedes(cl1.head.tsym, this))
duke@1 2441 return intersect(cl1, cl2.tail);
duke@1 2442 if (isSameType(cl1.head, cl2.head))
duke@1 2443 return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2444 if (cl1.head.tsym == cl2.head.tsym &&
duke@1 2445 cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
duke@1 2446 if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
duke@1 2447 Type merge = merge(cl1.head,cl2.head);
duke@1 2448 return intersect(cl1.tail, cl2.tail).prepend(merge);
duke@1 2449 }
duke@1 2450 if (cl1.head.isRaw() || cl2.head.isRaw())
duke@1 2451 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
duke@1 2452 }
duke@1 2453 return intersect(cl1.tail, cl2.tail);
duke@1 2454 }
duke@1 2455 // where
duke@1 2456 class TypePair {
duke@1 2457 final Type t1;
duke@1 2458 final Type t2;
duke@1 2459 TypePair(Type t1, Type t2) {
duke@1 2460 this.t1 = t1;
duke@1 2461 this.t2 = t2;
duke@1 2462 }
duke@1 2463 @Override
duke@1 2464 public int hashCode() {
duke@1 2465 return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
duke@1 2466 }
duke@1 2467 @Override
duke@1 2468 public boolean equals(Object obj) {
duke@1 2469 if (!(obj instanceof TypePair))
duke@1 2470 return false;
duke@1 2471 TypePair typePair = (TypePair)obj;
duke@1 2472 return isSameType(t1, typePair.t1)
duke@1 2473 && isSameType(t2, typePair.t2);
duke@1 2474 }
duke@1 2475 }
duke@1 2476 Set<TypePair> mergeCache = new HashSet<TypePair>();
duke@1 2477 private Type merge(Type c1, Type c2) {
duke@1 2478 ClassType class1 = (ClassType) c1;
duke@1 2479 List<Type> act1 = class1.getTypeArguments();
duke@1 2480 ClassType class2 = (ClassType) c2;
duke@1 2481 List<Type> act2 = class2.getTypeArguments();
duke@1 2482 ListBuffer<Type> merged = new ListBuffer<Type>();
duke@1 2483 List<Type> typarams = class1.tsym.type.getTypeArguments();
duke@1 2484
duke@1 2485 while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
duke@1 2486 if (containsType(act1.head, act2.head)) {
duke@1 2487 merged.append(act1.head);
duke@1 2488 } else if (containsType(act2.head, act1.head)) {
duke@1 2489 merged.append(act2.head);
duke@1 2490 } else {
duke@1 2491 TypePair pair = new TypePair(c1, c2);
duke@1 2492 Type m;
duke@1 2493 if (mergeCache.add(pair)) {
duke@1 2494 m = new WildcardType(lub(upperBound(act1.head),
duke@1 2495 upperBound(act2.head)),
duke@1 2496 BoundKind.EXTENDS,
duke@1 2497 syms.boundClass);
duke@1 2498 mergeCache.remove(pair);
duke@1 2499 } else {
duke@1 2500 m = new WildcardType(syms.objectType,
duke@1 2501 BoundKind.UNBOUND,
duke@1 2502 syms.boundClass);
duke@1 2503 }
duke@1 2504 merged.append(m.withTypeVar(typarams.head));
duke@1 2505 }
duke@1 2506 act1 = act1.tail;
duke@1 2507 act2 = act2.tail;
duke@1 2508 typarams = typarams.tail;
duke@1 2509 }
duke@1 2510 assert(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
duke@1 2511 return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
duke@1 2512 }
duke@1 2513
duke@1 2514 /**
duke@1 2515 * Return the minimum type of a closure, a compound type if no
duke@1 2516 * unique minimum exists.
duke@1 2517 */
duke@1 2518 private Type compoundMin(List<Type> cl) {
duke@1 2519 if (cl.isEmpty()) return syms.objectType;
duke@1 2520 List<Type> compound = closureMin(cl);
duke@1 2521 if (compound.isEmpty())
duke@1 2522 return null;
duke@1 2523 else if (compound.tail.isEmpty())
duke@1 2524 return compound.head;
duke@1 2525 else
duke@1 2526 return makeCompoundType(compound);
duke@1 2527 }
duke@1 2528
duke@1 2529 /**
duke@1 2530 * Return the minimum types of a closure, suitable for computing
duke@1 2531 * compoundMin or glb.
duke@1 2532 */
duke@1 2533 private List<Type> closureMin(List<Type> cl) {
duke@1 2534 ListBuffer<Type> classes = lb();
duke@1 2535 ListBuffer<Type> interfaces = lb();
duke@1 2536 while (!cl.isEmpty()) {
duke@1 2537 Type current = cl.head;
duke@1 2538 if (current.isInterface())
duke@1 2539 interfaces.append(current);
duke@1 2540 else
duke@1 2541 classes.append(current);
duke@1 2542 ListBuffer<Type> candidates = lb();
duke@1 2543 for (Type t : cl.tail) {
duke@1 2544 if (!isSubtypeNoCapture(current, t))
duke@1 2545 candidates.append(t);
duke@1 2546 }
duke@1 2547 cl = candidates.toList();
duke@1 2548 }
duke@1 2549 return classes.appendList(interfaces).toList();
duke@1 2550 }
duke@1 2551
duke@1 2552 /**
duke@1 2553 * Return the least upper bound of pair of types. if the lub does
duke@1 2554 * not exist return null.
duke@1 2555 */
duke@1 2556 public Type lub(Type t1, Type t2) {
duke@1 2557 return lub(List.of(t1, t2));
duke@1 2558 }
duke@1 2559
duke@1 2560 /**
duke@1 2561 * Return the least upper bound (lub) of set of types. If the lub
duke@1 2562 * does not exist return the type of null (bottom).
duke@1 2563 */
duke@1 2564 public Type lub(List<Type> ts) {
duke@1 2565 final int ARRAY_BOUND = 1;
duke@1 2566 final int CLASS_BOUND = 2;
duke@1 2567 int boundkind = 0;
duke@1 2568 for (Type t : ts) {
duke@1 2569 switch (t.tag) {
duke@1 2570 case CLASS:
duke@1 2571 boundkind |= CLASS_BOUND;
duke@1 2572 break;
duke@1 2573 case ARRAY:
duke@1 2574 boundkind |= ARRAY_BOUND;
duke@1 2575 break;
duke@1 2576 case TYPEVAR:
duke@1 2577 do {
duke@1 2578 t = t.getUpperBound();
duke@1 2579 } while (t.tag == TYPEVAR);
duke@1 2580 if (t.tag == ARRAY) {
duke@1 2581 boundkind |= ARRAY_BOUND;
duke@1 2582 } else {
duke@1 2583 boundkind |= CLASS_BOUND;
duke@1 2584 }
duke@1 2585 break;
duke@1 2586 default:
duke@1 2587 if (t.isPrimitive())
mcimadamore@5 2588 return syms.errType;
duke@1 2589 }
duke@1 2590 }
duke@1 2591 switch (boundkind) {
duke@1 2592 case 0:
duke@1 2593 return syms.botType;
duke@1 2594
duke@1 2595 case ARRAY_BOUND:
duke@1 2596 // calculate lub(A[], B[])
duke@1 2597 List<Type> elements = Type.map(ts, elemTypeFun);
duke@1 2598 for (Type t : elements) {
duke@1 2599 if (t.isPrimitive()) {
duke@1 2600 // if a primitive type is found, then return
duke@1 2601 // arraySuperType unless all the types are the
duke@1 2602 // same
duke@1 2603 Type first = ts.head;
duke@1 2604 for (Type s : ts.tail) {
duke@1 2605 if (!isSameType(first, s)) {
duke@1 2606 // lub(int[], B[]) is Cloneable & Serializable
duke@1 2607 return arraySuperType();
duke@1 2608 }
duke@1 2609 }
duke@1 2610 // all the array types are the same, return one
duke@1 2611 // lub(int[], int[]) is int[]
duke@1 2612 return first;
duke@1 2613 }
duke@1 2614 }
duke@1 2615 // lub(A[], B[]) is lub(A, B)[]
duke@1 2616 return new ArrayType(lub(elements), syms.arrayClass);
duke@1 2617
duke@1 2618 case CLASS_BOUND:
duke@1 2619 // calculate lub(A, B)
duke@1 2620 while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
duke@1 2621 ts = ts.tail;
duke@1 2622 assert !ts.isEmpty();
duke@1 2623 List<Type> cl = closure(ts.head);
duke@1 2624 for (Type t : ts.tail) {
duke@1 2625 if (t.tag == CLASS || t.tag == TYPEVAR)
duke@1 2626 cl = intersect(cl, closure(t));
duke@1 2627 }
duke@1 2628 return compoundMin(cl);
duke@1 2629
duke@1 2630 default:
duke@1 2631 // calculate lub(A, B[])
duke@1 2632 List<Type> classes = List.of(arraySuperType());
duke@1 2633 for (Type t : ts) {
duke@1 2634 if (t.tag != ARRAY) // Filter out any arrays
duke@1 2635 classes = classes.prepend(t);
duke@1 2636 }
duke@1 2637 // lub(A, B[]) is lub(A, arraySuperType)
duke@1 2638 return lub(classes);
duke@1 2639 }
duke@1 2640 }
duke@1 2641 // where
duke@1 2642 private Type arraySuperType = null;
duke@1 2643 private Type arraySuperType() {
duke@1 2644 // initialized lazily to avoid problems during compiler startup
duke@1 2645 if (arraySuperType == null) {
duke@1 2646 synchronized (this) {
duke@1 2647 if (arraySuperType == null) {
duke@1 2648 // JLS 10.8: all arrays implement Cloneable and Serializable.
duke@1 2649 arraySuperType = makeCompoundType(List.of(syms.serializableType,
duke@1 2650 syms.cloneableType),
duke@1 2651 syms.objectType);
duke@1 2652 }
duke@1 2653 }
duke@1 2654 }
duke@1 2655 return arraySuperType;
duke@1 2656 }
duke@1 2657 // </editor-fold>
duke@1 2658
duke@1 2659 // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
mcimadamore@210 2660 public Type glb(List<Type> ts) {
mcimadamore@210 2661 Type t1 = ts.head;
mcimadamore@210 2662 for (Type t2 : ts.tail) {
mcimadamore@210 2663 if (t1.isErroneous())
mcimadamore@210 2664 return t1;
mcimadamore@210 2665 t1 = glb(t1, t2);
mcimadamore@210 2666 }
mcimadamore@210 2667 return t1;
mcimadamore@210 2668 }
mcimadamore@210 2669 //where
duke@1 2670 public Type glb(Type t, Type s) {
duke@1 2671 if (s == null)
duke@1 2672 return t;
duke@1 2673 else if (isSubtypeNoCapture(t, s))
duke@1 2674 return t;
duke@1 2675 else if (isSubtypeNoCapture(s, t))
duke@1 2676 return s;
duke@1 2677
duke@1 2678 List<Type> closure = union(closure(t), closure(s));
duke@1 2679 List<Type> bounds = closureMin(closure);
duke@1 2680
duke@1 2681 if (bounds.isEmpty()) { // length == 0
duke@1 2682 return syms.objectType;
duke@1 2683 } else if (bounds.tail.isEmpty()) { // length == 1
duke@1 2684 return bounds.head;
duke@1 2685 } else { // length > 1
duke@1 2686 int classCount = 0;
duke@1 2687 for (Type bound : bounds)
duke@1 2688 if (!bound.isInterface())
duke@1 2689 classCount++;
duke@1 2690 if (classCount > 1)
jjg@110 2691 return createErrorType(t);
duke@1 2692 }
duke@1 2693 return makeCompoundType(bounds);
duke@1 2694 }
duke@1 2695 // </editor-fold>
duke@1 2696
duke@1 2697 // <editor-fold defaultstate="collapsed" desc="hashCode">
duke@1 2698 /**
duke@1 2699 * Compute a hash code on a type.
duke@1 2700 */
duke@1 2701 public static int hashCode(Type t) {
duke@1 2702 return hashCode.visit(t);
duke@1 2703 }
duke@1 2704 // where
duke@1 2705 private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
duke@1 2706
duke@1 2707 public Integer visitType(Type t, Void ignored) {
duke@1 2708 return t.tag;
duke@1 2709 }
duke@1 2710
duke@1 2711 @Override
duke@1 2712 public Integer visitClassType(ClassType t, Void ignored) {
duke@1 2713 int result = visit(t.getEnclosingType());
duke@1 2714 result *= 127;
duke@1 2715 result += t.tsym.flatName().hashCode();
duke@1 2716 for (Type s : t.getTypeArguments()) {
duke@1 2717 result *= 127;
duke@1 2718 result += visit(s);
duke@1 2719 }
duke@1 2720 return result;
duke@1 2721 }
duke@1 2722
duke@1 2723 @Override
duke@1 2724 public Integer visitWildcardType(WildcardType t, Void ignored) {
duke@1 2725 int result = t.kind.hashCode();
duke@1 2726 if (t.type != null) {
duke@1 2727 result *= 127;
duke@1 2728 result += visit(t.type);
duke@1 2729 }
duke@1 2730 return result;
duke@1 2731 }
duke@1 2732
duke@1 2733 @Override
duke@1 2734 public Integer visitArrayType(ArrayType t, Void ignored) {
duke@1 2735 return visit(t.elemtype) + 12;
duke@1 2736 }
duke@1 2737
duke@1 2738 @Override
duke@1 2739 public Integer visitTypeVar(TypeVar t, Void ignored) {
duke@1 2740 return System.identityHashCode(t.tsym);
duke@1 2741 }
duke@1 2742
duke@1 2743 @Override
duke@1 2744 public Integer visitUndetVar(UndetVar t, Void ignored) {
duke@1 2745 return System.identityHashCode(t);
duke@1 2746 }
duke@1 2747
duke@1 2748 @Override
duke@1 2749 public Integer visitErrorType(ErrorType t, Void ignored) {
duke@1 2750 return 0;
duke@1 2751 }
duke@1 2752 };
duke@1 2753 // </editor-fold>
duke@1 2754
duke@1 2755 // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
duke@1 2756 /**
duke@1 2757 * Does t have a result that is a subtype of the result type of s,
duke@1 2758 * suitable for covariant returns? It is assumed that both types
duke@1 2759 * are (possibly polymorphic) method types. Monomorphic method
duke@1 2760 * types are handled in the obvious way. Polymorphic method types
duke@1 2761 * require renaming all type variables of one to corresponding
duke@1 2762 * type variables in the other, where correspondence is by
duke@1 2763 * position in the type parameter list. */
duke@1 2764 public boolean resultSubtype(Type t, Type s, Warner warner) {
duke@1 2765 List<Type> tvars = t.getTypeArguments();
duke@1 2766 List<Type> svars = s.getTypeArguments();
duke@1 2767 Type tres = t.getReturnType();
duke@1 2768 Type sres = subst(s.getReturnType(), svars, tvars);
duke@1 2769 return covariantReturnType(tres, sres, warner);
duke@1 2770 }
duke@1 2771
duke@1 2772 /**
duke@1 2773 * Return-Type-Substitutable.
duke@1 2774 * @see <a href="http://java.sun.com/docs/books/jls/">The Java
duke@1 2775 * Language Specification, Third Ed. (8.4.5)</a>
duke@1 2776 */
duke@1 2777 public boolean returnTypeSubstitutable(Type r1, Type r2) {
duke@1 2778 if (hasSameArgs(r1, r2))
tbell@202 2779 return resultSubtype(r1, r2, Warner.noWarnings);
duke@1 2780 else
duke@1 2781 return covariantReturnType(r1.getReturnType(),
tbell@202 2782 erasure(r2.getReturnType()),
tbell@202 2783 Warner.noWarnings);
tbell@202 2784 }
tbell@202 2785
tbell@202 2786 public boolean returnTypeSubstitutable(Type r1,
tbell@202 2787 Type r2, Type r2res,
tbell@202 2788 Warner warner) {
tbell@202 2789 if (isSameType(r1.getReturnType(), r2res))
tbell@202 2790 return true;
tbell@202 2791 if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
tbell@202 2792 return false;
tbell@202 2793
tbell@202 2794 if (hasSameArgs(r1, r2))
tbell@202 2795 return covariantReturnType(r1.getReturnType(), r2res, warner);
tbell@202 2796 if (!source.allowCovariantReturns())
tbell@202 2797 return false;
tbell@202 2798 if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
tbell@202 2799 return true;
tbell@202 2800 if (!isSubtype(r1.getReturnType(), erasure(r2res)))
tbell@202 2801 return false;
tbell@202 2802 warner.warnUnchecked();
tbell@202 2803 return true;
duke@1 2804 }
duke@1 2805
duke@1 2806 /**
duke@1 2807 * Is t an appropriate return type in an overrider for a
duke@1 2808 * method that returns s?
duke@1 2809 */
duke@1 2810 public boolean covariantReturnType(Type t, Type s, Warner warner) {
tbell@202 2811 return
tbell@202 2812 isSameType(t, s) ||
tbell@202 2813 source.allowCovariantReturns() &&
duke@1 2814 !t.isPrimitive() &&
tbell@202 2815 !s.isPrimitive() &&
tbell@202 2816 isAssignable(t, s, warner);
duke@1 2817 }
duke@1 2818 // </editor-fold>
duke@1 2819
duke@1 2820 // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
duke@1 2821 /**
duke@1 2822 * Return the class that boxes the given primitive.
duke@1 2823 */
duke@1 2824 public ClassSymbol boxedClass(Type t) {
duke@1 2825 return reader.enterClass(syms.boxedName[t.tag]);
duke@1 2826 }
duke@1 2827
duke@1 2828 /**
duke@1 2829 * Return the primitive type corresponding to a boxed type.
duke@1 2830 */
duke@1 2831 public Type unboxedType(Type t) {
duke@1 2832 if (allowBoxing) {
duke@1 2833 for (int i=0; i<syms.boxedName.length; i++) {
duke@1 2834 Name box = syms.boxedName[i];
duke@1 2835 if (box != null &&
duke@1 2836 asSuper(t, reader.enterClass(box)) != null)
duke@1 2837 return syms.typeOfTag[i];
duke@1 2838 }
duke@1 2839 }
duke@1 2840 return Type.noType;
duke@1 2841 }
duke@1 2842 // </editor-fold>
duke@1 2843
duke@1 2844 // <editor-fold defaultstate="collapsed" desc="Capture conversion">
duke@1 2845 /*
duke@1 2846 * JLS 3rd Ed. 5.1.10 Capture Conversion:
duke@1 2847 *
duke@1 2848 * Let G name a generic type declaration with n formal type
duke@1 2849 * parameters A1 ... An with corresponding bounds U1 ... Un. There
duke@1 2850 * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
duke@1 2851 * where, for 1 <= i <= n:
duke@1 2852 *
duke@1 2853 * + If Ti is a wildcard type argument (4.5.1) of the form ? then
duke@1 2854 * Si is a fresh type variable whose upper bound is
duke@1 2855 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
duke@1 2856 * type.
duke@1 2857 *
duke@1 2858 * + If Ti is a wildcard type argument of the form ? extends Bi,
duke@1 2859 * then Si is a fresh type variable whose upper bound is
duke@1 2860 * glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
duke@1 2861 * the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
duke@1 2862 * a compile-time error if for any two classes (not interfaces)
duke@1 2863 * Vi and Vj,Vi is not a subclass of Vj or vice versa.
duke@1 2864 *
duke@1 2865 * + If Ti is a wildcard type argument of the form ? super Bi,
duke@1 2866 * then Si is a fresh type variable whose upper bound is
duke@1 2867 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
duke@1 2868 *
duke@1 2869 * + Otherwise, Si = Ti.
duke@1 2870 *
duke@1 2871 * Capture conversion on any type other than a parameterized type
duke@1 2872 * (4.5) acts as an identity conversion (5.1.1). Capture
duke@1 2873 * conversions never require a special action at run time and
duke@1 2874 * therefore never throw an exception at run time.
duke@1 2875 *
duke@1 2876 * Capture conversion is not applied recursively.
duke@1 2877 */
duke@1 2878 /**
duke@1 2879 * Capture conversion as specified by JLS 3rd Ed.
duke@1 2880 */
mcimadamore@299 2881
mcimadamore@299 2882 public List<Type> capture(List<Type> ts) {
mcimadamore@299 2883 List<Type> buf = List.nil();
mcimadamore@299 2884 for (Type t : ts) {
mcimadamore@299 2885 buf = buf.prepend(capture(t));
mcimadamore@299 2886 }
mcimadamore@299 2887 return buf.reverse();
mcimadamore@299 2888 }
duke@1 2889 public Type capture(Type t) {
duke@1 2890 if (t.tag != CLASS)
duke@1 2891 return t;
duke@1 2892 ClassType cls = (ClassType)t;
duke@1 2893 if (cls.isRaw() || !cls.isParameterized())
duke@1 2894 return cls;
duke@1 2895
duke@1 2896 ClassType G = (ClassType)cls.asElement().asType();
duke@1 2897 List<Type> A = G.getTypeArguments();
duke@1 2898 List<Type> T = cls.getTypeArguments();
duke@1 2899 List<Type> S = freshTypeVariables(T);
duke@1 2900
duke@1 2901 List<Type> currentA = A;
duke@1 2902 List<Type> currentT = T;
duke@1 2903 List<Type> currentS = S;
duke@1 2904 boolean captured = false;
duke@1 2905 while (!currentA.isEmpty() &&
duke@1 2906 !currentT.isEmpty() &&
duke@1 2907 !currentS.isEmpty()) {
duke@1 2908 if (currentS.head != currentT.head) {
duke@1 2909 captured = true;
duke@1 2910 WildcardType Ti = (WildcardType)currentT.head;
duke@1 2911 Type Ui = currentA.head.getUpperBound();
duke@1 2912 CapturedType Si = (CapturedType)currentS.head;
duke@1 2913 if (Ui == null)
duke@1 2914 Ui = syms.objectType;
duke@1 2915 switch (Ti.kind) {
duke@1 2916 case UNBOUND:
duke@1 2917 Si.bound = subst(Ui, A, S);
duke@1 2918 Si.lower = syms.botType;
duke@1 2919 break;
duke@1 2920 case EXTENDS:
duke@1 2921 Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
duke@1 2922 Si.lower = syms.botType;
duke@1 2923 break;
duke@1 2924 case SUPER:
duke@1 2925 Si.bound = subst(Ui, A, S);
duke@1 2926 Si.lower = Ti.getSuperBound();
duke@1 2927 break;
duke@1 2928 }
duke@1 2929 if (Si.bound == Si.lower)
duke@1 2930 currentS.head = Si.bound;
duke@1 2931 }
duke@1 2932 currentA = currentA.tail;
duke@1 2933 currentT = currentT.tail;
duke@1 2934 currentS = currentS.tail;
duke@1 2935 }
duke@1 2936 if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
duke@1 2937 return erasure(t); // some "rare" type involved
duke@1 2938
duke@1 2939 if (captured)
duke@1 2940 return new ClassType(cls.getEnclosingType(), S, cls.tsym);
duke@1 2941 else
duke@1 2942 return t;
duke@1 2943 }
duke@1 2944 // where
mcimadamore@238 2945 public List<Type> freshTypeVariables(List<Type> types) {
duke@1 2946 ListBuffer<Type> result = lb();
duke@1 2947 for (Type t : types) {
duke@1 2948 if (t.tag == WILDCARD) {
duke@1 2949 Type bound = ((WildcardType)t).getExtendsBound();
duke@1 2950 if (bound == null)
duke@1 2951 bound = syms.objectType;
duke@1 2952 result.append(new CapturedType(capturedName,
duke@1 2953 syms.noSymbol,
duke@1 2954 bound,
duke@1 2955 syms.botType,
duke@1 2956 (WildcardType)t));
duke@1 2957 } else {
duke@1 2958 result.append(t);
duke@1 2959 }
duke@1 2960 }
duke@1 2961 return result.toList();
duke@1 2962 }
duke@1 2963 // </editor-fold>
duke@1 2964
duke@1 2965 // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
duke@1 2966 private List<Type> upperBounds(List<Type> ss) {
duke@1 2967 if (ss.isEmpty()) return ss;
duke@1 2968 Type head = upperBound(ss.head);
duke@1 2969 List<Type> tail = upperBounds(ss.tail);
duke@1 2970 if (head != ss.head || tail != ss.tail)
duke@1 2971 return tail.prepend(head);
duke@1 2972 else
duke@1 2973 return ss;
duke@1 2974 }
duke@1 2975
duke@1 2976 private boolean sideCast(Type from, Type to, Warner warn) {
duke@1 2977 // We are casting from type $from$ to type $to$, which are
duke@1 2978 // non-final unrelated types. This method
duke@1 2979 // tries to reject a cast by transferring type parameters
duke@1 2980 // from $to$ to $from$ by common superinterfaces.
duke@1 2981 boolean reverse = false;
duke@1 2982 Type target = to;
duke@1 2983 if ((to.tsym.flags() & INTERFACE) == 0) {
duke@1 2984 assert (from.tsym.flags() & INTERFACE) != 0;
duke@1 2985 reverse = true;
duke@1 2986 to = from;
duke@1 2987 from = target;
duke@1 2988 }
duke@1 2989 List<Type> commonSupers = superClosure(to, erasure(from));
duke@1 2990 boolean giveWarning = commonSupers.isEmpty();
duke@1 2991 // The arguments to the supers could be unified here to
duke@1 2992 // get a more accurate analysis
duke@1 2993 while (commonSupers.nonEmpty()) {
duke@1 2994 Type t1 = asSuper(from, commonSupers.head.tsym);
duke@1 2995 Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
duke@1 2996 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 2997 return false;
duke@1 2998 giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
duke@1 2999 commonSupers = commonSupers.tail;
duke@1 3000 }
mcimadamore@187 3001 if (giveWarning && !isReifiable(reverse ? from : to))
duke@1 3002 warn.warnUnchecked();
duke@1 3003 if (!source.allowCovariantReturns())
duke@1 3004 // reject if there is a common method signature with
duke@1 3005 // incompatible return types.
duke@1 3006 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3007 return true;
duke@1 3008 }
duke@1 3009
duke@1 3010 private boolean sideCastFinal(Type from, Type to, Warner warn) {
duke@1 3011 // We are casting from type $from$ to type $to$, which are
duke@1 3012 // unrelated types one of which is final and the other of
duke@1 3013 // which is an interface. This method
duke@1 3014 // tries to reject a cast by transferring type parameters
duke@1 3015 // from the final class to the interface.
duke@1 3016 boolean reverse = false;
duke@1 3017 Type target = to;
duke@1 3018 if ((to.tsym.flags() & INTERFACE) == 0) {
duke@1 3019 assert (from.tsym.flags() & INTERFACE) != 0;
duke@1 3020 reverse = true;
duke@1 3021 to = from;
duke@1 3022 from = target;
duke@1 3023 }
duke@1 3024 assert (from.tsym.flags() & FINAL) != 0;
duke@1 3025 Type t1 = asSuper(from, to.tsym);
duke@1 3026 if (t1 == null) return false;
duke@1 3027 Type t2 = to;
duke@1 3028 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3029 return false;
duke@1 3030 if (!source.allowCovariantReturns())
duke@1 3031 // reject if there is a common method signature with
duke@1 3032 // incompatible return types.
duke@1 3033 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3034 if (!isReifiable(target) &&
duke@1 3035 (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
duke@1 3036 warn.warnUnchecked();
duke@1 3037 return true;
duke@1 3038 }
duke@1 3039
duke@1 3040 private boolean giveWarning(Type from, Type to) {
mcimadamore@235 3041 Type subFrom = asSub(from, to.tsym);
mcimadamore@235 3042 return to.isParameterized() &&
mcimadamore@235 3043 (!(isUnbounded(to) ||
mcimadamore@235 3044 isSubtype(from, to) ||
mcimadamore@235 3045 ((subFrom != null) && isSameType(subFrom, to))));
duke@1 3046 }
duke@1 3047
duke@1 3048 private List<Type> superClosure(Type t, Type s) {
duke@1 3049 List<Type> cl = List.nil();
duke@1 3050 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 3051 if (isSubtype(s, erasure(l.head))) {
duke@1 3052 cl = insert(cl, l.head);
duke@1 3053 } else {
duke@1 3054 cl = union(cl, superClosure(l.head, s));
duke@1 3055 }
duke@1 3056 }
duke@1 3057 return cl;
duke@1 3058 }
duke@1 3059
duke@1 3060 private boolean containsTypeEquivalent(Type t, Type s) {
duke@1 3061 return
duke@1 3062 isSameType(t, s) || // shortcut
duke@1 3063 containsType(t, s) && containsType(s, t);
duke@1 3064 }
duke@1 3065
mcimadamore@138 3066 // <editor-fold defaultstate="collapsed" desc="adapt">
duke@1 3067 /**
duke@1 3068 * Adapt a type by computing a substitution which maps a source
duke@1 3069 * type to a target type.
duke@1 3070 *
duke@1 3071 * @param source the source type
duke@1 3072 * @param target the target type
duke@1 3073 * @param from the type variables of the computed substitution
duke@1 3074 * @param to the types of the computed substitution.
duke@1 3075 */
duke@1 3076 public void adapt(Type source,
duke@1 3077 Type target,
duke@1 3078 ListBuffer<Type> from,
duke@1 3079 ListBuffer<Type> to) throws AdaptFailure {
mcimadamore@138 3080 new Adapter(from, to).adapt(source, target);
mcimadamore@138 3081 }
mcimadamore@138 3082
mcimadamore@138 3083 class Adapter extends SimpleVisitor<Void, Type> {
mcimadamore@138 3084
mcimadamore@138 3085 ListBuffer<Type> from;
mcimadamore@138 3086 ListBuffer<Type> to;
mcimadamore@138 3087 Map<Symbol,Type> mapping;
mcimadamore@138 3088
mcimadamore@138 3089 Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
mcimadamore@138 3090 this.from = from;
mcimadamore@138 3091 this.to = to;
mcimadamore@138 3092 mapping = new HashMap<Symbol,Type>();
duke@1 3093 }
mcimadamore@138 3094
mcimadamore@138 3095 public void adapt(Type source, Type target) throws AdaptFailure {
mcimadamore@138 3096 visit(source, target);
mcimadamore@138 3097 List<Type> fromList = from.toList();
mcimadamore@138 3098 List<Type> toList = to.toList();
mcimadamore@138 3099 while (!fromList.isEmpty()) {
mcimadamore@138 3100 Type val = mapping.get(fromList.head.tsym);
mcimadamore@138 3101 if (toList.head != val)
mcimadamore@138 3102 toList.head = val;
mcimadamore@138 3103 fromList = fromList.tail;
mcimadamore@138 3104 toList = toList.tail;
mcimadamore@138 3105 }
mcimadamore@138 3106 }
mcimadamore@138 3107
mcimadamore@138 3108 @Override
mcimadamore@138 3109 public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
mcimadamore@138 3110 if (target.tag == CLASS)
mcimadamore@138 3111 adaptRecursive(source.allparams(), target.allparams());
mcimadamore@138 3112 return null;
mcimadamore@138 3113 }
mcimadamore@138 3114
mcimadamore@138 3115 @Override
mcimadamore@138 3116 public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
mcimadamore@138 3117 if (target.tag == ARRAY)
mcimadamore@138 3118 adaptRecursive(elemtype(source), elemtype(target));
mcimadamore@138 3119 return null;
mcimadamore@138 3120 }
mcimadamore@138 3121
mcimadamore@138 3122 @Override
mcimadamore@138 3123 public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
mcimadamore@138 3124 if (source.isExtendsBound())
mcimadamore@138 3125 adaptRecursive(upperBound(source), upperBound(target));
mcimadamore@138 3126 else if (source.isSuperBound())
mcimadamore@138 3127 adaptRecursive(lowerBound(source), lowerBound(target));
mcimadamore@138 3128 return null;
mcimadamore@138 3129 }
mcimadamore@138 3130
mcimadamore@138 3131 @Override
mcimadamore@138 3132 public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
mcimadamore@138 3133 // Check to see if there is
mcimadamore@138 3134 // already a mapping for $source$, in which case
mcimadamore@138 3135 // the old mapping will be merged with the new
mcimadamore@138 3136 Type val = mapping.get(source.tsym);
mcimadamore@138 3137 if (val != null) {
mcimadamore@138 3138 if (val.isSuperBound() && target.isSuperBound()) {
mcimadamore@138 3139 val = isSubtype(lowerBound(val), lowerBound(target))
mcimadamore@138 3140 ? target : val;
mcimadamore@138 3141 } else if (val.isExtendsBound() && target.isExtendsBound()) {
mcimadamore@138 3142 val = isSubtype(upperBound(val), upperBound(target))
mcimadamore@138 3143 ? val : target;
mcimadamore@138 3144 } else if (!isSameType(val, target)) {
mcimadamore@138 3145 throw new AdaptFailure();
duke@1 3146 }
mcimadamore@138 3147 } else {
mcimadamore@138 3148 val = target;
mcimadamore@138 3149 from.append(source);
mcimadamore@138 3150 to.append(target);
mcimadamore@138 3151 }
mcimadamore@138 3152 mapping.put(source.tsym, val);
mcimadamore@138 3153 return null;
mcimadamore@138 3154 }
mcimadamore@138 3155
mcimadamore@138 3156 @Override
mcimadamore@138 3157 public Void visitType(Type source, Type target) {
mcimadamore@138 3158 return null;
mcimadamore@138 3159 }
mcimadamore@138 3160
mcimadamore@138 3161 private Set<TypePair> cache = new HashSet<TypePair>();
mcimadamore@138 3162
mcimadamore@138 3163 private void adaptRecursive(Type source, Type target) {
mcimadamore@138 3164 TypePair pair = new TypePair(source, target);
mcimadamore@138 3165 if (cache.add(pair)) {
mcimadamore@138 3166 try {
mcimadamore@138 3167 visit(source, target);
mcimadamore@138 3168 } finally {
mcimadamore@138 3169 cache.remove(pair);
duke@1 3170 }
duke@1 3171 }
duke@1 3172 }
mcimadamore@138 3173
mcimadamore@138 3174 private void adaptRecursive(List<Type> source, List<Type> target) {
mcimadamore@138 3175 if (source.length() == target.length()) {
mcimadamore@138 3176 while (source.nonEmpty()) {
mcimadamore@138 3177 adaptRecursive(source.head, target.head);
mcimadamore@138 3178 source = source.tail;
mcimadamore@138 3179 target = target.tail;
mcimadamore@138 3180 }
duke@1 3181 }
duke@1 3182 }
duke@1 3183 }
duke@1 3184
mcimadamore@138 3185 public static class AdaptFailure extends RuntimeException {
mcimadamore@138 3186 static final long serialVersionUID = -7490231548272701566L;
mcimadamore@138 3187 }
mcimadamore@138 3188
duke@1 3189 private void adaptSelf(Type t,
duke@1 3190 ListBuffer<Type> from,
duke@1 3191 ListBuffer<Type> to) {
duke@1 3192 try {
duke@1 3193 //if (t.tsym.type != t)
duke@1 3194 adapt(t.tsym.type, t, from, to);
duke@1 3195 } catch (AdaptFailure ex) {
duke@1 3196 // Adapt should never fail calculating a mapping from
duke@1 3197 // t.tsym.type to t as there can be no merge problem.
duke@1 3198 throw new AssertionError(ex);
duke@1 3199 }
duke@1 3200 }
mcimadamore@138 3201 // </editor-fold>
duke@1 3202
duke@1 3203 /**
duke@1 3204 * Rewrite all type variables (universal quantifiers) in the given
duke@1 3205 * type to wildcards (existential quantifiers). This is used to
duke@1 3206 * determine if a cast is allowed. For example, if high is true
duke@1 3207 * and {@code T <: Number}, then {@code List<T>} is rewritten to
duke@1 3208 * {@code List<? extends Number>}. Since {@code List<Integer> <:
duke@1 3209 * List<? extends Number>} a {@code List<T>} can be cast to {@code
duke@1 3210 * List<Integer>} with a warning.
duke@1 3211 * @param t a type
duke@1 3212 * @param high if true return an upper bound; otherwise a lower
duke@1 3213 * bound
duke@1 3214 * @param rewriteTypeVars only rewrite captured wildcards if false;
duke@1 3215 * otherwise rewrite all type variables
duke@1 3216 * @return the type rewritten with wildcards (existential
duke@1 3217 * quantifiers) only
duke@1 3218 */
duke@1 3219 private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
mcimadamore@157 3220 return new Rewriter(high, rewriteTypeVars).rewrite(t);
mcimadamore@157 3221 }
mcimadamore@157 3222
mcimadamore@157 3223 class Rewriter extends UnaryVisitor<Type> {
mcimadamore@157 3224
mcimadamore@157 3225 boolean high;
mcimadamore@157 3226 boolean rewriteTypeVars;
mcimadamore@157 3227
mcimadamore@157 3228 Rewriter(boolean high, boolean rewriteTypeVars) {
mcimadamore@157 3229 this.high = high;
mcimadamore@157 3230 this.rewriteTypeVars = rewriteTypeVars;
mcimadamore@157 3231 }
mcimadamore@157 3232
mcimadamore@157 3233 Type rewrite(Type t) {
mcimadamore@157 3234 ListBuffer<Type> from = new ListBuffer<Type>();
mcimadamore@157 3235 ListBuffer<Type> to = new ListBuffer<Type>();
mcimadamore@157 3236 adaptSelf(t, from, to);
mcimadamore@157 3237 ListBuffer<Type> rewritten = new ListBuffer<Type>();
mcimadamore@157 3238 List<Type> formals = from.toList();
mcimadamore@157 3239 boolean changed = false;
mcimadamore@157 3240 for (Type arg : to.toList()) {
mcimadamore@157 3241 Type bound = visit(arg);
mcimadamore@157 3242 if (arg != bound) {
mcimadamore@157 3243 changed = true;
mcimadamore@157 3244 bound = high ? makeExtendsWildcard(bound, (TypeVar)formals.head)
mcimadamore@157 3245 : makeSuperWildcard(bound, (TypeVar)formals.head);
mcimadamore@157 3246 }
mcimadamore@157 3247 rewritten.append(bound);
mcimadamore@157 3248 formals = formals.tail;
duke@1 3249 }
mcimadamore@157 3250 if (changed)
mcimadamore@157 3251 return subst(t.tsym.type, from.toList(), rewritten.toList());
mcimadamore@157 3252 else
mcimadamore@157 3253 return t;
duke@1 3254 }
mcimadamore@157 3255
mcimadamore@157 3256 public Type visitType(Type t, Void s) {
mcimadamore@157 3257 return high ? upperBound(t) : lowerBound(t);
mcimadamore@157 3258 }
mcimadamore@157 3259
mcimadamore@157 3260 @Override
mcimadamore@157 3261 public Type visitCapturedType(CapturedType t, Void s) {
mcimadamore@157 3262 return visitWildcardType(t.wildcard, null);
mcimadamore@157 3263 }
mcimadamore@157 3264
mcimadamore@157 3265 @Override
mcimadamore@157 3266 public Type visitTypeVar(TypeVar t, Void s) {
mcimadamore@157 3267 if (rewriteTypeVars)
mcimadamore@157 3268 return high ? t.bound : syms.botType;
mcimadamore@157 3269 else
mcimadamore@157 3270 return t;
mcimadamore@157 3271 }
mcimadamore@157 3272
mcimadamore@157 3273 @Override
mcimadamore@157 3274 public Type visitWildcardType(WildcardType t, Void s) {
mcimadamore@157 3275 Type bound = high ? t.getExtendsBound() :
mcimadamore@157 3276 t.getSuperBound();
mcimadamore@157 3277 if (bound == null)
mcimadamore@157 3278 bound = high ? syms.objectType : syms.botType;
mcimadamore@157 3279 return bound;
mcimadamore@157 3280 }
duke@1 3281 }
duke@1 3282
duke@1 3283 /**
duke@1 3284 * Create a wildcard with the given upper (extends) bound; create
duke@1 3285 * an unbounded wildcard if bound is Object.
duke@1 3286 *
duke@1 3287 * @param bound the upper bound
duke@1 3288 * @param formal the formal type parameter that will be
duke@1 3289 * substituted by the wildcard
duke@1 3290 */
duke@1 3291 private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
duke@1 3292 if (bound == syms.objectType) {
duke@1 3293 return new WildcardType(syms.objectType,
duke@1 3294 BoundKind.UNBOUND,
duke@1 3295 syms.boundClass,
duke@1 3296 formal);
duke@1 3297 } else {
duke@1 3298 return new WildcardType(bound,
duke@1 3299 BoundKind.EXTENDS,
duke@1 3300 syms.boundClass,
duke@1 3301 formal);
duke@1 3302 }
duke@1 3303 }
duke@1 3304
duke@1 3305 /**
duke@1 3306 * Create a wildcard with the given lower (super) bound; create an
duke@1 3307 * unbounded wildcard if bound is bottom (type of {@code null}).
duke@1 3308 *
duke@1 3309 * @param bound the lower bound
duke@1 3310 * @param formal the formal type parameter that will be
duke@1 3311 * substituted by the wildcard
duke@1 3312 */
duke@1 3313 private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
duke@1 3314 if (bound.tag == BOT) {
duke@1 3315 return new WildcardType(syms.objectType,
duke@1 3316 BoundKind.UNBOUND,
duke@1 3317 syms.boundClass,
duke@1 3318 formal);
duke@1 3319 } else {
duke@1 3320 return new WildcardType(bound,
duke@1 3321 BoundKind.SUPER,
duke@1 3322 syms.boundClass,
duke@1 3323 formal);
duke@1 3324 }
duke@1 3325 }
duke@1 3326
duke@1 3327 /**
duke@1 3328 * A wrapper for a type that allows use in sets.
duke@1 3329 */
duke@1 3330 class SingletonType {
duke@1 3331 final Type t;
duke@1 3332 SingletonType(Type t) {
duke@1 3333 this.t = t;
duke@1 3334 }
duke@1 3335 public int hashCode() {
duke@1 3336 return Types.this.hashCode(t);
duke@1 3337 }
duke@1 3338 public boolean equals(Object obj) {
duke@1 3339 return (obj instanceof SingletonType) &&
duke@1 3340 isSameType(t, ((SingletonType)obj).t);
duke@1 3341 }
duke@1 3342 public String toString() {
duke@1 3343 return t.toString();
duke@1 3344 }
duke@1 3345 }
duke@1 3346 // </editor-fold>
duke@1 3347
duke@1 3348 // <editor-fold defaultstate="collapsed" desc="Visitors">
duke@1 3349 /**
duke@1 3350 * A default visitor for types. All visitor methods except
duke@1 3351 * visitType are implemented by delegating to visitType. Concrete
duke@1 3352 * subclasses must provide an implementation of visitType and can
duke@1 3353 * override other methods as needed.
duke@1 3354 *
duke@1 3355 * @param <R> the return type of the operation implemented by this
duke@1 3356 * visitor; use Void if no return type is needed.
duke@1 3357 * @param <S> the type of the second argument (the first being the
duke@1 3358 * type itself) of the operation implemented by this visitor; use
duke@1 3359 * Void if a second argument is not needed.
duke@1 3360 */
duke@1 3361 public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
duke@1 3362 final public R visit(Type t, S s) { return t.accept(this, s); }
duke@1 3363 public R visitClassType(ClassType t, S s) { return visitType(t, s); }
duke@1 3364 public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
duke@1 3365 public R visitArrayType(ArrayType t, S s) { return visitType(t, s); }
duke@1 3366 public R visitMethodType(MethodType t, S s) { return visitType(t, s); }
duke@1 3367 public R visitPackageType(PackageType t, S s) { return visitType(t, s); }
duke@1 3368 public R visitTypeVar(TypeVar t, S s) { return visitType(t, s); }
duke@1 3369 public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
duke@1 3370 public R visitForAll(ForAll t, S s) { return visitType(t, s); }
duke@1 3371 public R visitUndetVar(UndetVar t, S s) { return visitType(t, s); }
duke@1 3372 public R visitErrorType(ErrorType t, S s) { return visitType(t, s); }
duke@1 3373 }
duke@1 3374
duke@1 3375 /**
mcimadamore@121 3376 * A default visitor for symbols. All visitor methods except
mcimadamore@121 3377 * visitSymbol are implemented by delegating to visitSymbol. Concrete
mcimadamore@121 3378 * subclasses must provide an implementation of visitSymbol and can
mcimadamore@121 3379 * override other methods as needed.
mcimadamore@121 3380 *
mcimadamore@121 3381 * @param <R> the return type of the operation implemented by this
mcimadamore@121 3382 * visitor; use Void if no return type is needed.
mcimadamore@121 3383 * @param <S> the type of the second argument (the first being the
mcimadamore@121 3384 * symbol itself) of the operation implemented by this visitor; use
mcimadamore@121 3385 * Void if a second argument is not needed.
mcimadamore@121 3386 */
mcimadamore@121 3387 public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
mcimadamore@121 3388 final public R visit(Symbol s, S arg) { return s.accept(this, arg); }
mcimadamore@121 3389 public R visitClassSymbol(ClassSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3390 public R visitMethodSymbol(MethodSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3391 public R visitOperatorSymbol(OperatorSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3392 public R visitPackageSymbol(PackageSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3393 public R visitTypeSymbol(TypeSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3394 public R visitVarSymbol(VarSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3395 }
mcimadamore@121 3396
mcimadamore@121 3397 /**
duke@1 3398 * A <em>simple</em> visitor for types. This visitor is simple as
duke@1 3399 * captured wildcards, for-all types (generic methods), and
duke@1 3400 * undetermined type variables (part of inference) are hidden.
duke@1 3401 * Captured wildcards are hidden by treating them as type
duke@1 3402 * variables and the rest are hidden by visiting their qtypes.
duke@1 3403 *
duke@1 3404 * @param <R> the return type of the operation implemented by this
duke@1 3405 * visitor; use Void if no return type is needed.
duke@1 3406 * @param <S> the type of the second argument (the first being the
duke@1 3407 * type itself) of the operation implemented by this visitor; use
duke@1 3408 * Void if a second argument is not needed.
duke@1 3409 */
duke@1 3410 public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
duke@1 3411 @Override
duke@1 3412 public R visitCapturedType(CapturedType t, S s) {
duke@1 3413 return visitTypeVar(t, s);
duke@1 3414 }
duke@1 3415 @Override
duke@1 3416 public R visitForAll(ForAll t, S s) {
duke@1 3417 return visit(t.qtype, s);
duke@1 3418 }
duke@1 3419 @Override
duke@1 3420 public R visitUndetVar(UndetVar t, S s) {
duke@1 3421 return visit(t.qtype, s);
duke@1 3422 }
duke@1 3423 }
duke@1 3424
duke@1 3425 /**
duke@1 3426 * A plain relation on types. That is a 2-ary function on the
duke@1 3427 * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
duke@1 3428 * <!-- In plain text: Type x Type -> Boolean -->
duke@1 3429 */
duke@1 3430 public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
duke@1 3431
duke@1 3432 /**
duke@1 3433 * A convenience visitor for implementing operations that only
duke@1 3434 * require one argument (the type itself), that is, unary
duke@1 3435 * operations.
duke@1 3436 *
duke@1 3437 * @param <R> the return type of the operation implemented by this
duke@1 3438 * visitor; use Void if no return type is needed.
duke@1 3439 */
duke@1 3440 public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
duke@1 3441 final public R visit(Type t) { return t.accept(this, null); }
duke@1 3442 }
duke@1 3443
duke@1 3444 /**
duke@1 3445 * A visitor for implementing a mapping from types to types. The
duke@1 3446 * default behavior of this class is to implement the identity
duke@1 3447 * mapping (mapping a type to itself). This can be overridden in
duke@1 3448 * subclasses.
duke@1 3449 *
duke@1 3450 * @param <S> the type of the second argument (the first being the
duke@1 3451 * type itself) of this mapping; use Void if a second argument is
duke@1 3452 * not needed.
duke@1 3453 */
duke@1 3454 public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
duke@1 3455 final public Type visit(Type t) { return t.accept(this, null); }
duke@1 3456 public Type visitType(Type t, S s) { return t; }
duke@1 3457 }
duke@1 3458 // </editor-fold>
duke@1 3459 }

mercurial