src/share/classes/com/sun/tools/javac/code/Types.java

Fri, 10 Dec 2010 15:24:17 +0000

author
mcimadamore
date
Fri, 10 Dec 2010 15:24:17 +0000
changeset 787
b1c98bfd4709
parent 786
2ca5866a8dfb
child 789
878c8f760ded
permissions
-rw-r--r--

6199075: Unambiguous varargs method calls flagged as ambiguous
Summary: javac does not implement overload resolution w.r.t. varargs methods as described in the JLS
Reviewed-by: jjg

duke@1 1 /*
ohair@554 2 * Copyright (c) 2003, 2009, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.code;
duke@1 27
mcimadamore@341 28 import java.lang.ref.SoftReference;
duke@1 29 import java.util.*;
duke@1 30
duke@1 31 import com.sun.tools.javac.util.*;
duke@1 32 import com.sun.tools.javac.util.List;
duke@1 33
duke@1 34 import com.sun.tools.javac.jvm.ClassReader;
jjg@657 35 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
duke@1 36 import com.sun.tools.javac.comp.Check;
duke@1 37
duke@1 38 import static com.sun.tools.javac.code.Type.*;
duke@1 39 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 40 import static com.sun.tools.javac.code.Symbol.*;
duke@1 41 import static com.sun.tools.javac.code.Flags.*;
duke@1 42 import static com.sun.tools.javac.code.BoundKind.*;
duke@1 43 import static com.sun.tools.javac.util.ListBuffer.lb;
duke@1 44
duke@1 45 /**
duke@1 46 * Utility class containing various operations on types.
duke@1 47 *
duke@1 48 * <p>Unless other names are more illustrative, the following naming
duke@1 49 * conventions should be observed in this file:
duke@1 50 *
duke@1 51 * <dl>
duke@1 52 * <dt>t</dt>
duke@1 53 * <dd>If the first argument to an operation is a type, it should be named t.</dd>
duke@1 54 * <dt>s</dt>
duke@1 55 * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
duke@1 56 * <dt>ts</dt>
duke@1 57 * <dd>If an operations takes a list of types, the first should be named ts.</dd>
duke@1 58 * <dt>ss</dt>
duke@1 59 * <dd>A second list of types should be named ss.</dd>
duke@1 60 * </dl>
duke@1 61 *
jjg@581 62 * <p><b>This is NOT part of any supported API.
duke@1 63 * If you write code that depends on this, you do so at your own risk.
duke@1 64 * This code and its internal interfaces are subject to change or
duke@1 65 * deletion without notice.</b>
duke@1 66 */
duke@1 67 public class Types {
duke@1 68 protected static final Context.Key<Types> typesKey =
duke@1 69 new Context.Key<Types>();
duke@1 70
duke@1 71 final Symtab syms;
mcimadamore@688 72 final Scope.ScopeCounter scopeCounter;
mcimadamore@136 73 final JavacMessages messages;
jjg@113 74 final Names names;
duke@1 75 final boolean allowBoxing;
duke@1 76 final ClassReader reader;
duke@1 77 final Source source;
duke@1 78 final Check chk;
duke@1 79 List<Warner> warnStack = List.nil();
duke@1 80 final Name capturedName;
duke@1 81
duke@1 82 // <editor-fold defaultstate="collapsed" desc="Instantiating">
duke@1 83 public static Types instance(Context context) {
duke@1 84 Types instance = context.get(typesKey);
duke@1 85 if (instance == null)
duke@1 86 instance = new Types(context);
duke@1 87 return instance;
duke@1 88 }
duke@1 89
duke@1 90 protected Types(Context context) {
duke@1 91 context.put(typesKey, this);
duke@1 92 syms = Symtab.instance(context);
mcimadamore@688 93 scopeCounter = Scope.ScopeCounter.instance(context);
jjg@113 94 names = Names.instance(context);
duke@1 95 allowBoxing = Source.instance(context).allowBoxing();
duke@1 96 reader = ClassReader.instance(context);
duke@1 97 source = Source.instance(context);
duke@1 98 chk = Check.instance(context);
duke@1 99 capturedName = names.fromString("<captured wildcard>");
mcimadamore@136 100 messages = JavacMessages.instance(context);
duke@1 101 }
duke@1 102 // </editor-fold>
duke@1 103
duke@1 104 // <editor-fold defaultstate="collapsed" desc="upperBound">
duke@1 105 /**
duke@1 106 * The "rvalue conversion".<br>
duke@1 107 * The upper bound of most types is the type
duke@1 108 * itself. Wildcards, on the other hand have upper
duke@1 109 * and lower bounds.
duke@1 110 * @param t a type
duke@1 111 * @return the upper bound of the given type
duke@1 112 */
duke@1 113 public Type upperBound(Type t) {
duke@1 114 return upperBound.visit(t);
duke@1 115 }
duke@1 116 // where
duke@1 117 private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
duke@1 118
duke@1 119 @Override
duke@1 120 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 121 if (t.isSuperBound())
duke@1 122 return t.bound == null ? syms.objectType : t.bound.bound;
duke@1 123 else
duke@1 124 return visit(t.type);
duke@1 125 }
duke@1 126
duke@1 127 @Override
duke@1 128 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 129 return visit(t.bound);
duke@1 130 }
duke@1 131 };
duke@1 132 // </editor-fold>
duke@1 133
duke@1 134 // <editor-fold defaultstate="collapsed" desc="lowerBound">
duke@1 135 /**
duke@1 136 * The "lvalue conversion".<br>
duke@1 137 * The lower bound of most types is the type
duke@1 138 * itself. Wildcards, on the other hand have upper
duke@1 139 * and lower bounds.
duke@1 140 * @param t a type
duke@1 141 * @return the lower bound of the given type
duke@1 142 */
duke@1 143 public Type lowerBound(Type t) {
duke@1 144 return lowerBound.visit(t);
duke@1 145 }
duke@1 146 // where
duke@1 147 private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
duke@1 148
duke@1 149 @Override
duke@1 150 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 151 return t.isExtendsBound() ? syms.botType : visit(t.type);
duke@1 152 }
duke@1 153
duke@1 154 @Override
duke@1 155 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 156 return visit(t.getLowerBound());
duke@1 157 }
duke@1 158 };
duke@1 159 // </editor-fold>
duke@1 160
duke@1 161 // <editor-fold defaultstate="collapsed" desc="isUnbounded">
duke@1 162 /**
duke@1 163 * Checks that all the arguments to a class are unbounded
duke@1 164 * wildcards or something else that doesn't make any restrictions
duke@1 165 * on the arguments. If a class isUnbounded, a raw super- or
duke@1 166 * subclass can be cast to it without a warning.
duke@1 167 * @param t a type
duke@1 168 * @return true iff the given type is unbounded or raw
duke@1 169 */
duke@1 170 public boolean isUnbounded(Type t) {
duke@1 171 return isUnbounded.visit(t);
duke@1 172 }
duke@1 173 // where
duke@1 174 private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
duke@1 175
duke@1 176 public Boolean visitType(Type t, Void ignored) {
duke@1 177 return true;
duke@1 178 }
duke@1 179
duke@1 180 @Override
duke@1 181 public Boolean visitClassType(ClassType t, Void ignored) {
duke@1 182 List<Type> parms = t.tsym.type.allparams();
duke@1 183 List<Type> args = t.allparams();
duke@1 184 while (parms.nonEmpty()) {
duke@1 185 WildcardType unb = new WildcardType(syms.objectType,
duke@1 186 BoundKind.UNBOUND,
duke@1 187 syms.boundClass,
duke@1 188 (TypeVar)parms.head);
duke@1 189 if (!containsType(args.head, unb))
duke@1 190 return false;
duke@1 191 parms = parms.tail;
duke@1 192 args = args.tail;
duke@1 193 }
duke@1 194 return true;
duke@1 195 }
duke@1 196 };
duke@1 197 // </editor-fold>
duke@1 198
duke@1 199 // <editor-fold defaultstate="collapsed" desc="asSub">
duke@1 200 /**
duke@1 201 * Return the least specific subtype of t that starts with symbol
duke@1 202 * sym. If none exists, return null. The least specific subtype
duke@1 203 * is determined as follows:
duke@1 204 *
duke@1 205 * <p>If there is exactly one parameterized instance of sym that is a
duke@1 206 * subtype of t, that parameterized instance is returned.<br>
duke@1 207 * Otherwise, if the plain type or raw type `sym' is a subtype of
duke@1 208 * type t, the type `sym' itself is returned. Otherwise, null is
duke@1 209 * returned.
duke@1 210 */
duke@1 211 public Type asSub(Type t, Symbol sym) {
duke@1 212 return asSub.visit(t, sym);
duke@1 213 }
duke@1 214 // where
duke@1 215 private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
duke@1 216
duke@1 217 public Type visitType(Type t, Symbol sym) {
duke@1 218 return null;
duke@1 219 }
duke@1 220
duke@1 221 @Override
duke@1 222 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 223 if (t.tsym == sym)
duke@1 224 return t;
duke@1 225 Type base = asSuper(sym.type, t.tsym);
duke@1 226 if (base == null)
duke@1 227 return null;
duke@1 228 ListBuffer<Type> from = new ListBuffer<Type>();
duke@1 229 ListBuffer<Type> to = new ListBuffer<Type>();
duke@1 230 try {
duke@1 231 adapt(base, t, from, to);
duke@1 232 } catch (AdaptFailure ex) {
duke@1 233 return null;
duke@1 234 }
duke@1 235 Type res = subst(sym.type, from.toList(), to.toList());
duke@1 236 if (!isSubtype(res, t))
duke@1 237 return null;
duke@1 238 ListBuffer<Type> openVars = new ListBuffer<Type>();
duke@1 239 for (List<Type> l = sym.type.allparams();
duke@1 240 l.nonEmpty(); l = l.tail)
duke@1 241 if (res.contains(l.head) && !t.contains(l.head))
duke@1 242 openVars.append(l.head);
duke@1 243 if (openVars.nonEmpty()) {
duke@1 244 if (t.isRaw()) {
duke@1 245 // The subtype of a raw type is raw
duke@1 246 res = erasure(res);
duke@1 247 } else {
duke@1 248 // Unbound type arguments default to ?
duke@1 249 List<Type> opens = openVars.toList();
duke@1 250 ListBuffer<Type> qs = new ListBuffer<Type>();
duke@1 251 for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
duke@1 252 qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
duke@1 253 }
duke@1 254 res = subst(res, opens, qs.toList());
duke@1 255 }
duke@1 256 }
duke@1 257 return res;
duke@1 258 }
duke@1 259
duke@1 260 @Override
duke@1 261 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 262 return t;
duke@1 263 }
duke@1 264 };
duke@1 265 // </editor-fold>
duke@1 266
duke@1 267 // <editor-fold defaultstate="collapsed" desc="isConvertible">
duke@1 268 /**
duke@1 269 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 270 * convertions to s?
duke@1 271 */
duke@1 272 public boolean isConvertible(Type t, Type s, Warner warn) {
duke@1 273 boolean tPrimitive = t.isPrimitive();
duke@1 274 boolean sPrimitive = s.isPrimitive();
duke@1 275 if (tPrimitive == sPrimitive)
duke@1 276 return isSubtypeUnchecked(t, s, warn);
duke@1 277 if (!allowBoxing) return false;
duke@1 278 return tPrimitive
duke@1 279 ? isSubtype(boxedClass(t).type, s)
duke@1 280 : isSubtype(unboxedType(t), s);
duke@1 281 }
duke@1 282
duke@1 283 /**
duke@1 284 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 285 * convertions to s?
duke@1 286 */
duke@1 287 public boolean isConvertible(Type t, Type s) {
duke@1 288 return isConvertible(t, s, Warner.noWarnings);
duke@1 289 }
duke@1 290 // </editor-fold>
duke@1 291
duke@1 292 // <editor-fold defaultstate="collapsed" desc="isSubtype">
duke@1 293 /**
duke@1 294 * Is t an unchecked subtype of s?
duke@1 295 */
duke@1 296 public boolean isSubtypeUnchecked(Type t, Type s) {
duke@1 297 return isSubtypeUnchecked(t, s, Warner.noWarnings);
duke@1 298 }
duke@1 299 /**
duke@1 300 * Is t an unchecked subtype of s?
duke@1 301 */
duke@1 302 public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
duke@1 303 if (t.tag == ARRAY && s.tag == ARRAY) {
duke@1 304 return (((ArrayType)t).elemtype.tag <= lastBaseTag)
duke@1 305 ? isSameType(elemtype(t), elemtype(s))
duke@1 306 : isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
duke@1 307 } else if (isSubtype(t, s)) {
duke@1 308 return true;
mcimadamore@41 309 }
mcimadamore@41 310 else if (t.tag == TYPEVAR) {
mcimadamore@41 311 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
mcimadamore@41 312 }
mcimadamore@93 313 else if (s.tag == UNDETVAR) {
mcimadamore@93 314 UndetVar uv = (UndetVar)s;
mcimadamore@93 315 if (uv.inst != null)
mcimadamore@93 316 return isSubtypeUnchecked(t, uv.inst, warn);
mcimadamore@93 317 }
mcimadamore@41 318 else if (!s.isRaw()) {
duke@1 319 Type t2 = asSuper(t, s.tsym);
duke@1 320 if (t2 != null && t2.isRaw()) {
duke@1 321 if (isReifiable(s))
duke@1 322 warn.silentUnchecked();
duke@1 323 else
duke@1 324 warn.warnUnchecked();
duke@1 325 return true;
duke@1 326 }
duke@1 327 }
duke@1 328 return false;
duke@1 329 }
duke@1 330
duke@1 331 /**
duke@1 332 * Is t a subtype of s?<br>
duke@1 333 * (not defined for Method and ForAll types)
duke@1 334 */
duke@1 335 final public boolean isSubtype(Type t, Type s) {
duke@1 336 return isSubtype(t, s, true);
duke@1 337 }
duke@1 338 final public boolean isSubtypeNoCapture(Type t, Type s) {
duke@1 339 return isSubtype(t, s, false);
duke@1 340 }
duke@1 341 public boolean isSubtype(Type t, Type s, boolean capture) {
duke@1 342 if (t == s)
duke@1 343 return true;
duke@1 344
duke@1 345 if (s.tag >= firstPartialTag)
duke@1 346 return isSuperType(s, t);
duke@1 347
mcimadamore@299 348 if (s.isCompound()) {
mcimadamore@299 349 for (Type s2 : interfaces(s).prepend(supertype(s))) {
mcimadamore@299 350 if (!isSubtype(t, s2, capture))
mcimadamore@299 351 return false;
mcimadamore@299 352 }
mcimadamore@299 353 return true;
mcimadamore@299 354 }
mcimadamore@299 355
duke@1 356 Type lower = lowerBound(s);
duke@1 357 if (s != lower)
duke@1 358 return isSubtype(capture ? capture(t) : t, lower, false);
duke@1 359
duke@1 360 return isSubtype.visit(capture ? capture(t) : t, s);
duke@1 361 }
duke@1 362 // where
duke@1 363 private TypeRelation isSubtype = new TypeRelation()
duke@1 364 {
duke@1 365 public Boolean visitType(Type t, Type s) {
duke@1 366 switch (t.tag) {
duke@1 367 case BYTE: case CHAR:
duke@1 368 return (t.tag == s.tag ||
duke@1 369 t.tag + 2 <= s.tag && s.tag <= DOUBLE);
duke@1 370 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
duke@1 371 return t.tag <= s.tag && s.tag <= DOUBLE;
duke@1 372 case BOOLEAN: case VOID:
duke@1 373 return t.tag == s.tag;
duke@1 374 case TYPEVAR:
duke@1 375 return isSubtypeNoCapture(t.getUpperBound(), s);
duke@1 376 case BOT:
duke@1 377 return
duke@1 378 s.tag == BOT || s.tag == CLASS ||
duke@1 379 s.tag == ARRAY || s.tag == TYPEVAR;
duke@1 380 case NONE:
duke@1 381 return false;
duke@1 382 default:
duke@1 383 throw new AssertionError("isSubtype " + t.tag);
duke@1 384 }
duke@1 385 }
duke@1 386
duke@1 387 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 388
duke@1 389 private boolean containsTypeRecursive(Type t, Type s) {
duke@1 390 TypePair pair = new TypePair(t, s);
duke@1 391 if (cache.add(pair)) {
duke@1 392 try {
duke@1 393 return containsType(t.getTypeArguments(),
duke@1 394 s.getTypeArguments());
duke@1 395 } finally {
duke@1 396 cache.remove(pair);
duke@1 397 }
duke@1 398 } else {
duke@1 399 return containsType(t.getTypeArguments(),
duke@1 400 rewriteSupers(s).getTypeArguments());
duke@1 401 }
duke@1 402 }
duke@1 403
duke@1 404 private Type rewriteSupers(Type t) {
duke@1 405 if (!t.isParameterized())
duke@1 406 return t;
duke@1 407 ListBuffer<Type> from = lb();
duke@1 408 ListBuffer<Type> to = lb();
duke@1 409 adaptSelf(t, from, to);
duke@1 410 if (from.isEmpty())
duke@1 411 return t;
duke@1 412 ListBuffer<Type> rewrite = lb();
duke@1 413 boolean changed = false;
duke@1 414 for (Type orig : to.toList()) {
duke@1 415 Type s = rewriteSupers(orig);
duke@1 416 if (s.isSuperBound() && !s.isExtendsBound()) {
duke@1 417 s = new WildcardType(syms.objectType,
duke@1 418 BoundKind.UNBOUND,
duke@1 419 syms.boundClass);
duke@1 420 changed = true;
duke@1 421 } else if (s != orig) {
duke@1 422 s = new WildcardType(upperBound(s),
duke@1 423 BoundKind.EXTENDS,
duke@1 424 syms.boundClass);
duke@1 425 changed = true;
duke@1 426 }
duke@1 427 rewrite.append(s);
duke@1 428 }
duke@1 429 if (changed)
duke@1 430 return subst(t.tsym.type, from.toList(), rewrite.toList());
duke@1 431 else
duke@1 432 return t;
duke@1 433 }
duke@1 434
duke@1 435 @Override
duke@1 436 public Boolean visitClassType(ClassType t, Type s) {
duke@1 437 Type sup = asSuper(t, s.tsym);
duke@1 438 return sup != null
duke@1 439 && sup.tsym == s.tsym
duke@1 440 // You're not allowed to write
duke@1 441 // Vector<Object> vec = new Vector<String>();
duke@1 442 // But with wildcards you can write
duke@1 443 // Vector<? extends Object> vec = new Vector<String>();
duke@1 444 // which means that subtype checking must be done
duke@1 445 // here instead of same-type checking (via containsType).
duke@1 446 && (!s.isParameterized() || containsTypeRecursive(s, sup))
duke@1 447 && isSubtypeNoCapture(sup.getEnclosingType(),
duke@1 448 s.getEnclosingType());
duke@1 449 }
duke@1 450
duke@1 451 @Override
duke@1 452 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 453 if (s.tag == ARRAY) {
duke@1 454 if (t.elemtype.tag <= lastBaseTag)
duke@1 455 return isSameType(t.elemtype, elemtype(s));
duke@1 456 else
duke@1 457 return isSubtypeNoCapture(t.elemtype, elemtype(s));
duke@1 458 }
duke@1 459
duke@1 460 if (s.tag == CLASS) {
duke@1 461 Name sname = s.tsym.getQualifiedName();
duke@1 462 return sname == names.java_lang_Object
duke@1 463 || sname == names.java_lang_Cloneable
duke@1 464 || sname == names.java_io_Serializable;
duke@1 465 }
duke@1 466
duke@1 467 return false;
duke@1 468 }
duke@1 469
duke@1 470 @Override
duke@1 471 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 472 //todo: test against origin needed? or replace with substitution?
duke@1 473 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 474 return true;
duke@1 475
duke@1 476 if (t.inst != null)
duke@1 477 return isSubtypeNoCapture(t.inst, s); // TODO: ", warn"?
duke@1 478
duke@1 479 t.hibounds = t.hibounds.prepend(s);
duke@1 480 return true;
duke@1 481 }
duke@1 482
duke@1 483 @Override
duke@1 484 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 485 return true;
duke@1 486 }
duke@1 487 };
duke@1 488
duke@1 489 /**
duke@1 490 * Is t a subtype of every type in given list `ts'?<br>
duke@1 491 * (not defined for Method and ForAll types)<br>
duke@1 492 * Allows unchecked conversions.
duke@1 493 */
duke@1 494 public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
duke@1 495 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 496 if (!isSubtypeUnchecked(t, l.head, warn))
duke@1 497 return false;
duke@1 498 return true;
duke@1 499 }
duke@1 500
duke@1 501 /**
duke@1 502 * Are corresponding elements of ts subtypes of ss? If lists are
duke@1 503 * of different length, return false.
duke@1 504 */
duke@1 505 public boolean isSubtypes(List<Type> ts, List<Type> ss) {
duke@1 506 while (ts.tail != null && ss.tail != null
duke@1 507 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 508 isSubtype(ts.head, ss.head)) {
duke@1 509 ts = ts.tail;
duke@1 510 ss = ss.tail;
duke@1 511 }
duke@1 512 return ts.tail == null && ss.tail == null;
duke@1 513 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 514 }
duke@1 515
duke@1 516 /**
duke@1 517 * Are corresponding elements of ts subtypes of ss, allowing
duke@1 518 * unchecked conversions? If lists are of different length,
duke@1 519 * return false.
duke@1 520 **/
duke@1 521 public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
duke@1 522 while (ts.tail != null && ss.tail != null
duke@1 523 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 524 isSubtypeUnchecked(ts.head, ss.head, warn)) {
duke@1 525 ts = ts.tail;
duke@1 526 ss = ss.tail;
duke@1 527 }
duke@1 528 return ts.tail == null && ss.tail == null;
duke@1 529 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 530 }
duke@1 531 // </editor-fold>
duke@1 532
duke@1 533 // <editor-fold defaultstate="collapsed" desc="isSuperType">
duke@1 534 /**
duke@1 535 * Is t a supertype of s?
duke@1 536 */
duke@1 537 public boolean isSuperType(Type t, Type s) {
duke@1 538 switch (t.tag) {
duke@1 539 case ERROR:
duke@1 540 return true;
duke@1 541 case UNDETVAR: {
duke@1 542 UndetVar undet = (UndetVar)t;
duke@1 543 if (t == s ||
duke@1 544 undet.qtype == s ||
duke@1 545 s.tag == ERROR ||
duke@1 546 s.tag == BOT) return true;
duke@1 547 if (undet.inst != null)
duke@1 548 return isSubtype(s, undet.inst);
duke@1 549 undet.lobounds = undet.lobounds.prepend(s);
duke@1 550 return true;
duke@1 551 }
duke@1 552 default:
duke@1 553 return isSubtype(s, t);
duke@1 554 }
duke@1 555 }
duke@1 556 // </editor-fold>
duke@1 557
duke@1 558 // <editor-fold defaultstate="collapsed" desc="isSameType">
duke@1 559 /**
duke@1 560 * Are corresponding elements of the lists the same type? If
duke@1 561 * lists are of different length, return false.
duke@1 562 */
duke@1 563 public boolean isSameTypes(List<Type> ts, List<Type> ss) {
duke@1 564 while (ts.tail != null && ss.tail != null
duke@1 565 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 566 isSameType(ts.head, ss.head)) {
duke@1 567 ts = ts.tail;
duke@1 568 ss = ss.tail;
duke@1 569 }
duke@1 570 return ts.tail == null && ss.tail == null;
duke@1 571 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 572 }
duke@1 573
duke@1 574 /**
duke@1 575 * Is t the same type as s?
duke@1 576 */
duke@1 577 public boolean isSameType(Type t, Type s) {
duke@1 578 return isSameType.visit(t, s);
duke@1 579 }
duke@1 580 // where
duke@1 581 private TypeRelation isSameType = new TypeRelation() {
duke@1 582
duke@1 583 public Boolean visitType(Type t, Type s) {
duke@1 584 if (t == s)
duke@1 585 return true;
duke@1 586
duke@1 587 if (s.tag >= firstPartialTag)
duke@1 588 return visit(s, t);
duke@1 589
duke@1 590 switch (t.tag) {
duke@1 591 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 592 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
duke@1 593 return t.tag == s.tag;
mcimadamore@561 594 case TYPEVAR: {
mcimadamore@561 595 if (s.tag == TYPEVAR) {
mcimadamore@561 596 //type-substitution does not preserve type-var types
mcimadamore@561 597 //check that type var symbols and bounds are indeed the same
mcimadamore@561 598 return t.tsym == s.tsym &&
mcimadamore@561 599 visit(t.getUpperBound(), s.getUpperBound());
mcimadamore@561 600 }
mcimadamore@561 601 else {
mcimadamore@561 602 //special case for s == ? super X, where upper(s) = u
mcimadamore@561 603 //check that u == t, where u has been set by Type.withTypeVar
mcimadamore@561 604 return s.isSuperBound() &&
mcimadamore@561 605 !s.isExtendsBound() &&
mcimadamore@561 606 visit(t, upperBound(s));
mcimadamore@561 607 }
mcimadamore@561 608 }
duke@1 609 default:
duke@1 610 throw new AssertionError("isSameType " + t.tag);
duke@1 611 }
duke@1 612 }
duke@1 613
duke@1 614 @Override
duke@1 615 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 616 if (s.tag >= firstPartialTag)
duke@1 617 return visit(s, t);
duke@1 618 else
duke@1 619 return false;
duke@1 620 }
duke@1 621
duke@1 622 @Override
duke@1 623 public Boolean visitClassType(ClassType t, Type s) {
duke@1 624 if (t == s)
duke@1 625 return true;
duke@1 626
duke@1 627 if (s.tag >= firstPartialTag)
duke@1 628 return visit(s, t);
duke@1 629
duke@1 630 if (s.isSuperBound() && !s.isExtendsBound())
duke@1 631 return visit(t, upperBound(s)) && visit(t, lowerBound(s));
duke@1 632
duke@1 633 if (t.isCompound() && s.isCompound()) {
duke@1 634 if (!visit(supertype(t), supertype(s)))
duke@1 635 return false;
duke@1 636
duke@1 637 HashSet<SingletonType> set = new HashSet<SingletonType>();
duke@1 638 for (Type x : interfaces(t))
duke@1 639 set.add(new SingletonType(x));
duke@1 640 for (Type x : interfaces(s)) {
duke@1 641 if (!set.remove(new SingletonType(x)))
duke@1 642 return false;
duke@1 643 }
duke@1 644 return (set.size() == 0);
duke@1 645 }
duke@1 646 return t.tsym == s.tsym
duke@1 647 && visit(t.getEnclosingType(), s.getEnclosingType())
duke@1 648 && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
duke@1 649 }
duke@1 650
duke@1 651 @Override
duke@1 652 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 653 if (t == s)
duke@1 654 return true;
duke@1 655
duke@1 656 if (s.tag >= firstPartialTag)
duke@1 657 return visit(s, t);
duke@1 658
duke@1 659 return s.tag == ARRAY
duke@1 660 && containsTypeEquivalent(t.elemtype, elemtype(s));
duke@1 661 }
duke@1 662
duke@1 663 @Override
duke@1 664 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 665 // isSameType for methods does not take thrown
duke@1 666 // exceptions into account!
duke@1 667 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
duke@1 668 }
duke@1 669
duke@1 670 @Override
duke@1 671 public Boolean visitPackageType(PackageType t, Type s) {
duke@1 672 return t == s;
duke@1 673 }
duke@1 674
duke@1 675 @Override
duke@1 676 public Boolean visitForAll(ForAll t, Type s) {
duke@1 677 if (s.tag != FORALL)
duke@1 678 return false;
duke@1 679
duke@1 680 ForAll forAll = (ForAll)s;
duke@1 681 return hasSameBounds(t, forAll)
duke@1 682 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 683 }
duke@1 684
duke@1 685 @Override
duke@1 686 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 687 if (s.tag == WILDCARD)
duke@1 688 // FIXME, this might be leftovers from before capture conversion
duke@1 689 return false;
duke@1 690
duke@1 691 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 692 return true;
duke@1 693
duke@1 694 if (t.inst != null)
duke@1 695 return visit(t.inst, s);
duke@1 696
duke@1 697 t.inst = fromUnknownFun.apply(s);
duke@1 698 for (List<Type> l = t.lobounds; l.nonEmpty(); l = l.tail) {
duke@1 699 if (!isSubtype(l.head, t.inst))
duke@1 700 return false;
duke@1 701 }
duke@1 702 for (List<Type> l = t.hibounds; l.nonEmpty(); l = l.tail) {
duke@1 703 if (!isSubtype(t.inst, l.head))
duke@1 704 return false;
duke@1 705 }
duke@1 706 return true;
duke@1 707 }
duke@1 708
duke@1 709 @Override
duke@1 710 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 711 return true;
duke@1 712 }
duke@1 713 };
duke@1 714 // </editor-fold>
duke@1 715
duke@1 716 // <editor-fold defaultstate="collapsed" desc="fromUnknownFun">
duke@1 717 /**
duke@1 718 * A mapping that turns all unknown types in this type to fresh
duke@1 719 * unknown variables.
duke@1 720 */
duke@1 721 public Mapping fromUnknownFun = new Mapping("fromUnknownFun") {
duke@1 722 public Type apply(Type t) {
duke@1 723 if (t.tag == UNKNOWN) return new UndetVar(t);
duke@1 724 else return t.map(this);
duke@1 725 }
duke@1 726 };
duke@1 727 // </editor-fold>
duke@1 728
duke@1 729 // <editor-fold defaultstate="collapsed" desc="Contains Type">
duke@1 730 public boolean containedBy(Type t, Type s) {
duke@1 731 switch (t.tag) {
duke@1 732 case UNDETVAR:
duke@1 733 if (s.tag == WILDCARD) {
duke@1 734 UndetVar undetvar = (UndetVar)t;
mcimadamore@210 735 WildcardType wt = (WildcardType)s;
mcimadamore@210 736 switch(wt.kind) {
mcimadamore@210 737 case UNBOUND: //similar to ? extends Object
mcimadamore@210 738 case EXTENDS: {
mcimadamore@210 739 Type bound = upperBound(s);
mcimadamore@210 740 // We should check the new upper bound against any of the
mcimadamore@210 741 // undetvar's lower bounds.
mcimadamore@210 742 for (Type t2 : undetvar.lobounds) {
mcimadamore@210 743 if (!isSubtype(t2, bound))
mcimadamore@210 744 return false;
mcimadamore@210 745 }
mcimadamore@210 746 undetvar.hibounds = undetvar.hibounds.prepend(bound);
mcimadamore@210 747 break;
mcimadamore@210 748 }
mcimadamore@210 749 case SUPER: {
mcimadamore@210 750 Type bound = lowerBound(s);
mcimadamore@210 751 // We should check the new lower bound against any of the
mcimadamore@210 752 // undetvar's lower bounds.
mcimadamore@210 753 for (Type t2 : undetvar.hibounds) {
mcimadamore@210 754 if (!isSubtype(bound, t2))
mcimadamore@210 755 return false;
mcimadamore@210 756 }
mcimadamore@210 757 undetvar.lobounds = undetvar.lobounds.prepend(bound);
mcimadamore@210 758 break;
mcimadamore@210 759 }
mcimadamore@162 760 }
duke@1 761 return true;
duke@1 762 } else {
duke@1 763 return isSameType(t, s);
duke@1 764 }
duke@1 765 case ERROR:
duke@1 766 return true;
duke@1 767 default:
duke@1 768 return containsType(s, t);
duke@1 769 }
duke@1 770 }
duke@1 771
duke@1 772 boolean containsType(List<Type> ts, List<Type> ss) {
duke@1 773 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 774 && containsType(ts.head, ss.head)) {
duke@1 775 ts = ts.tail;
duke@1 776 ss = ss.tail;
duke@1 777 }
duke@1 778 return ts.isEmpty() && ss.isEmpty();
duke@1 779 }
duke@1 780
duke@1 781 /**
duke@1 782 * Check if t contains s.
duke@1 783 *
duke@1 784 * <p>T contains S if:
duke@1 785 *
duke@1 786 * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
duke@1 787 *
duke@1 788 * <p>This relation is only used by ClassType.isSubtype(), that
duke@1 789 * is,
duke@1 790 *
duke@1 791 * <p>{@code C<S> <: C<T> if T contains S.}
duke@1 792 *
duke@1 793 * <p>Because of F-bounds, this relation can lead to infinite
duke@1 794 * recursion. Thus we must somehow break that recursion. Notice
duke@1 795 * that containsType() is only called from ClassType.isSubtype().
duke@1 796 * Since the arguments have already been checked against their
duke@1 797 * bounds, we know:
duke@1 798 *
duke@1 799 * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
duke@1 800 *
duke@1 801 * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
duke@1 802 *
duke@1 803 * @param t a type
duke@1 804 * @param s a type
duke@1 805 */
duke@1 806 public boolean containsType(Type t, Type s) {
duke@1 807 return containsType.visit(t, s);
duke@1 808 }
duke@1 809 // where
duke@1 810 private TypeRelation containsType = new TypeRelation() {
duke@1 811
duke@1 812 private Type U(Type t) {
duke@1 813 while (t.tag == WILDCARD) {
duke@1 814 WildcardType w = (WildcardType)t;
duke@1 815 if (w.isSuperBound())
duke@1 816 return w.bound == null ? syms.objectType : w.bound.bound;
duke@1 817 else
duke@1 818 t = w.type;
duke@1 819 }
duke@1 820 return t;
duke@1 821 }
duke@1 822
duke@1 823 private Type L(Type t) {
duke@1 824 while (t.tag == WILDCARD) {
duke@1 825 WildcardType w = (WildcardType)t;
duke@1 826 if (w.isExtendsBound())
duke@1 827 return syms.botType;
duke@1 828 else
duke@1 829 t = w.type;
duke@1 830 }
duke@1 831 return t;
duke@1 832 }
duke@1 833
duke@1 834 public Boolean visitType(Type t, Type s) {
duke@1 835 if (s.tag >= firstPartialTag)
duke@1 836 return containedBy(s, t);
duke@1 837 else
duke@1 838 return isSameType(t, s);
duke@1 839 }
duke@1 840
duke@1 841 void debugContainsType(WildcardType t, Type s) {
duke@1 842 System.err.println();
duke@1 843 System.err.format(" does %s contain %s?%n", t, s);
duke@1 844 System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
duke@1 845 upperBound(s), s, t, U(t),
duke@1 846 t.isSuperBound()
duke@1 847 || isSubtypeNoCapture(upperBound(s), U(t)));
duke@1 848 System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
duke@1 849 L(t), t, s, lowerBound(s),
duke@1 850 t.isExtendsBound()
duke@1 851 || isSubtypeNoCapture(L(t), lowerBound(s)));
duke@1 852 System.err.println();
duke@1 853 }
duke@1 854
duke@1 855 @Override
duke@1 856 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 857 if (s.tag >= firstPartialTag)
duke@1 858 return containedBy(s, t);
duke@1 859 else {
duke@1 860 // debugContainsType(t, s);
duke@1 861 return isSameWildcard(t, s)
duke@1 862 || isCaptureOf(s, t)
duke@1 863 || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
duke@1 864 (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
duke@1 865 }
duke@1 866 }
duke@1 867
duke@1 868 @Override
duke@1 869 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 870 if (s.tag != WILDCARD)
duke@1 871 return isSameType(t, s);
duke@1 872 else
duke@1 873 return false;
duke@1 874 }
duke@1 875
duke@1 876 @Override
duke@1 877 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 878 return true;
duke@1 879 }
duke@1 880 };
duke@1 881
duke@1 882 public boolean isCaptureOf(Type s, WildcardType t) {
mcimadamore@79 883 if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
duke@1 884 return false;
duke@1 885 return isSameWildcard(t, ((CapturedType)s).wildcard);
duke@1 886 }
duke@1 887
duke@1 888 public boolean isSameWildcard(WildcardType t, Type s) {
duke@1 889 if (s.tag != WILDCARD)
duke@1 890 return false;
duke@1 891 WildcardType w = (WildcardType)s;
duke@1 892 return w.kind == t.kind && w.type == t.type;
duke@1 893 }
duke@1 894
duke@1 895 public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
duke@1 896 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 897 && containsTypeEquivalent(ts.head, ss.head)) {
duke@1 898 ts = ts.tail;
duke@1 899 ss = ss.tail;
duke@1 900 }
duke@1 901 return ts.isEmpty() && ss.isEmpty();
duke@1 902 }
duke@1 903 // </editor-fold>
duke@1 904
duke@1 905 // <editor-fold defaultstate="collapsed" desc="isCastable">
duke@1 906 public boolean isCastable(Type t, Type s) {
duke@1 907 return isCastable(t, s, Warner.noWarnings);
duke@1 908 }
duke@1 909
duke@1 910 /**
duke@1 911 * Is t is castable to s?<br>
duke@1 912 * s is assumed to be an erased type.<br>
duke@1 913 * (not defined for Method and ForAll types).
duke@1 914 */
duke@1 915 public boolean isCastable(Type t, Type s, Warner warn) {
duke@1 916 if (t == s)
duke@1 917 return true;
duke@1 918
duke@1 919 if (t.isPrimitive() != s.isPrimitive())
jrose@665 920 return allowBoxing && (isConvertible(t, s, warn) || isConvertible(s, t, warn));
duke@1 921
duke@1 922 if (warn != warnStack.head) {
duke@1 923 try {
duke@1 924 warnStack = warnStack.prepend(warn);
mcimadamore@185 925 return isCastable.visit(t,s);
duke@1 926 } finally {
duke@1 927 warnStack = warnStack.tail;
duke@1 928 }
duke@1 929 } else {
mcimadamore@185 930 return isCastable.visit(t,s);
duke@1 931 }
duke@1 932 }
duke@1 933 // where
duke@1 934 private TypeRelation isCastable = new TypeRelation() {
duke@1 935
duke@1 936 public Boolean visitType(Type t, Type s) {
duke@1 937 if (s.tag == ERROR)
duke@1 938 return true;
duke@1 939
duke@1 940 switch (t.tag) {
duke@1 941 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 942 case DOUBLE:
duke@1 943 return s.tag <= DOUBLE;
duke@1 944 case BOOLEAN:
duke@1 945 return s.tag == BOOLEAN;
duke@1 946 case VOID:
duke@1 947 return false;
duke@1 948 case BOT:
duke@1 949 return isSubtype(t, s);
duke@1 950 default:
duke@1 951 throw new AssertionError();
duke@1 952 }
duke@1 953 }
duke@1 954
duke@1 955 @Override
duke@1 956 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 957 return isCastable(upperBound(t), s, warnStack.head);
duke@1 958 }
duke@1 959
duke@1 960 @Override
duke@1 961 public Boolean visitClassType(ClassType t, Type s) {
duke@1 962 if (s.tag == ERROR || s.tag == BOT)
duke@1 963 return true;
duke@1 964
duke@1 965 if (s.tag == TYPEVAR) {
mcimadamore@640 966 if (isCastable(t, s.getUpperBound(), Warner.noWarnings)) {
duke@1 967 warnStack.head.warnUnchecked();
duke@1 968 return true;
duke@1 969 } else {
duke@1 970 return false;
duke@1 971 }
duke@1 972 }
duke@1 973
duke@1 974 if (t.isCompound()) {
mcimadamore@211 975 Warner oldWarner = warnStack.head;
mcimadamore@211 976 warnStack.head = Warner.noWarnings;
duke@1 977 if (!visit(supertype(t), s))
duke@1 978 return false;
duke@1 979 for (Type intf : interfaces(t)) {
duke@1 980 if (!visit(intf, s))
duke@1 981 return false;
duke@1 982 }
mcimadamore@211 983 if (warnStack.head.unchecked == true)
mcimadamore@211 984 oldWarner.warnUnchecked();
duke@1 985 return true;
duke@1 986 }
duke@1 987
duke@1 988 if (s.isCompound()) {
duke@1 989 // call recursively to reuse the above code
duke@1 990 return visitClassType((ClassType)s, t);
duke@1 991 }
duke@1 992
duke@1 993 if (s.tag == CLASS || s.tag == ARRAY) {
duke@1 994 boolean upcast;
duke@1 995 if ((upcast = isSubtype(erasure(t), erasure(s)))
duke@1 996 || isSubtype(erasure(s), erasure(t))) {
duke@1 997 if (!upcast && s.tag == ARRAY) {
duke@1 998 if (!isReifiable(s))
duke@1 999 warnStack.head.warnUnchecked();
duke@1 1000 return true;
duke@1 1001 } else if (s.isRaw()) {
duke@1 1002 return true;
duke@1 1003 } else if (t.isRaw()) {
duke@1 1004 if (!isUnbounded(s))
duke@1 1005 warnStack.head.warnUnchecked();
duke@1 1006 return true;
duke@1 1007 }
duke@1 1008 // Assume |a| <: |b|
duke@1 1009 final Type a = upcast ? t : s;
duke@1 1010 final Type b = upcast ? s : t;
duke@1 1011 final boolean HIGH = true;
duke@1 1012 final boolean LOW = false;
duke@1 1013 final boolean DONT_REWRITE_TYPEVARS = false;
duke@1 1014 Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1015 Type aLow = rewriteQuantifiers(a, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1016 Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1017 Type bLow = rewriteQuantifiers(b, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1018 Type lowSub = asSub(bLow, aLow.tsym);
duke@1 1019 Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1020 if (highSub == null) {
duke@1 1021 final boolean REWRITE_TYPEVARS = true;
duke@1 1022 aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
duke@1 1023 aLow = rewriteQuantifiers(a, LOW, REWRITE_TYPEVARS);
duke@1 1024 bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
duke@1 1025 bLow = rewriteQuantifiers(b, LOW, REWRITE_TYPEVARS);
duke@1 1026 lowSub = asSub(bLow, aLow.tsym);
duke@1 1027 highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1028 }
duke@1 1029 if (highSub != null) {
duke@1 1030 assert a.tsym == highSub.tsym && a.tsym == lowSub.tsym
duke@1 1031 : a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym;
mcimadamore@185 1032 if (!disjointTypes(aHigh.allparams(), highSub.allparams())
mcimadamore@185 1033 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
mcimadamore@185 1034 && !disjointTypes(aLow.allparams(), highSub.allparams())
mcimadamore@185 1035 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
mcimadamore@779 1036 if (upcast ? giveWarning(a, b) :
mcimadamore@235 1037 giveWarning(b, a))
duke@1 1038 warnStack.head.warnUnchecked();
duke@1 1039 return true;
duke@1 1040 }
duke@1 1041 }
duke@1 1042 if (isReifiable(s))
duke@1 1043 return isSubtypeUnchecked(a, b);
duke@1 1044 else
duke@1 1045 return isSubtypeUnchecked(a, b, warnStack.head);
duke@1 1046 }
duke@1 1047
duke@1 1048 // Sidecast
duke@1 1049 if (s.tag == CLASS) {
duke@1 1050 if ((s.tsym.flags() & INTERFACE) != 0) {
duke@1 1051 return ((t.tsym.flags() & FINAL) == 0)
duke@1 1052 ? sideCast(t, s, warnStack.head)
duke@1 1053 : sideCastFinal(t, s, warnStack.head);
duke@1 1054 } else if ((t.tsym.flags() & INTERFACE) != 0) {
duke@1 1055 return ((s.tsym.flags() & FINAL) == 0)
duke@1 1056 ? sideCast(t, s, warnStack.head)
duke@1 1057 : sideCastFinal(t, s, warnStack.head);
duke@1 1058 } else {
duke@1 1059 // unrelated class types
duke@1 1060 return false;
duke@1 1061 }
duke@1 1062 }
duke@1 1063 }
duke@1 1064 return false;
duke@1 1065 }
duke@1 1066
duke@1 1067 @Override
duke@1 1068 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 1069 switch (s.tag) {
duke@1 1070 case ERROR:
duke@1 1071 case BOT:
duke@1 1072 return true;
duke@1 1073 case TYPEVAR:
duke@1 1074 if (isCastable(s, t, Warner.noWarnings)) {
duke@1 1075 warnStack.head.warnUnchecked();
duke@1 1076 return true;
duke@1 1077 } else {
duke@1 1078 return false;
duke@1 1079 }
duke@1 1080 case CLASS:
duke@1 1081 return isSubtype(t, s);
duke@1 1082 case ARRAY:
mcimadamore@786 1083 if (elemtype(t).tag <= lastBaseTag ||
mcimadamore@786 1084 elemtype(s).tag <= lastBaseTag) {
duke@1 1085 return elemtype(t).tag == elemtype(s).tag;
duke@1 1086 } else {
duke@1 1087 return visit(elemtype(t), elemtype(s));
duke@1 1088 }
duke@1 1089 default:
duke@1 1090 return false;
duke@1 1091 }
duke@1 1092 }
duke@1 1093
duke@1 1094 @Override
duke@1 1095 public Boolean visitTypeVar(TypeVar t, Type s) {
duke@1 1096 switch (s.tag) {
duke@1 1097 case ERROR:
duke@1 1098 case BOT:
duke@1 1099 return true;
duke@1 1100 case TYPEVAR:
duke@1 1101 if (isSubtype(t, s)) {
duke@1 1102 return true;
duke@1 1103 } else if (isCastable(t.bound, s, Warner.noWarnings)) {
duke@1 1104 warnStack.head.warnUnchecked();
duke@1 1105 return true;
duke@1 1106 } else {
duke@1 1107 return false;
duke@1 1108 }
duke@1 1109 default:
duke@1 1110 return isCastable(t.bound, s, warnStack.head);
duke@1 1111 }
duke@1 1112 }
duke@1 1113
duke@1 1114 @Override
duke@1 1115 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1116 return true;
duke@1 1117 }
duke@1 1118 };
duke@1 1119 // </editor-fold>
duke@1 1120
duke@1 1121 // <editor-fold defaultstate="collapsed" desc="disjointTypes">
duke@1 1122 public boolean disjointTypes(List<Type> ts, List<Type> ss) {
duke@1 1123 while (ts.tail != null && ss.tail != null) {
duke@1 1124 if (disjointType(ts.head, ss.head)) return true;
duke@1 1125 ts = ts.tail;
duke@1 1126 ss = ss.tail;
duke@1 1127 }
duke@1 1128 return false;
duke@1 1129 }
duke@1 1130
duke@1 1131 /**
duke@1 1132 * Two types or wildcards are considered disjoint if it can be
duke@1 1133 * proven that no type can be contained in both. It is
duke@1 1134 * conservative in that it is allowed to say that two types are
duke@1 1135 * not disjoint, even though they actually are.
duke@1 1136 *
duke@1 1137 * The type C<X> is castable to C<Y> exactly if X and Y are not
duke@1 1138 * disjoint.
duke@1 1139 */
duke@1 1140 public boolean disjointType(Type t, Type s) {
duke@1 1141 return disjointType.visit(t, s);
duke@1 1142 }
duke@1 1143 // where
duke@1 1144 private TypeRelation disjointType = new TypeRelation() {
duke@1 1145
duke@1 1146 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 1147
duke@1 1148 public Boolean visitType(Type t, Type s) {
duke@1 1149 if (s.tag == WILDCARD)
duke@1 1150 return visit(s, t);
duke@1 1151 else
duke@1 1152 return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
duke@1 1153 }
duke@1 1154
duke@1 1155 private boolean isCastableRecursive(Type t, Type s) {
duke@1 1156 TypePair pair = new TypePair(t, s);
duke@1 1157 if (cache.add(pair)) {
duke@1 1158 try {
duke@1 1159 return Types.this.isCastable(t, s);
duke@1 1160 } finally {
duke@1 1161 cache.remove(pair);
duke@1 1162 }
duke@1 1163 } else {
duke@1 1164 return true;
duke@1 1165 }
duke@1 1166 }
duke@1 1167
duke@1 1168 private boolean notSoftSubtypeRecursive(Type t, Type s) {
duke@1 1169 TypePair pair = new TypePair(t, s);
duke@1 1170 if (cache.add(pair)) {
duke@1 1171 try {
duke@1 1172 return Types.this.notSoftSubtype(t, s);
duke@1 1173 } finally {
duke@1 1174 cache.remove(pair);
duke@1 1175 }
duke@1 1176 } else {
duke@1 1177 return false;
duke@1 1178 }
duke@1 1179 }
duke@1 1180
duke@1 1181 @Override
duke@1 1182 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 1183 if (t.isUnbound())
duke@1 1184 return false;
duke@1 1185
duke@1 1186 if (s.tag != WILDCARD) {
duke@1 1187 if (t.isExtendsBound())
duke@1 1188 return notSoftSubtypeRecursive(s, t.type);
duke@1 1189 else // isSuperBound()
duke@1 1190 return notSoftSubtypeRecursive(t.type, s);
duke@1 1191 }
duke@1 1192
duke@1 1193 if (s.isUnbound())
duke@1 1194 return false;
duke@1 1195
duke@1 1196 if (t.isExtendsBound()) {
duke@1 1197 if (s.isExtendsBound())
duke@1 1198 return !isCastableRecursive(t.type, upperBound(s));
duke@1 1199 else if (s.isSuperBound())
duke@1 1200 return notSoftSubtypeRecursive(lowerBound(s), t.type);
duke@1 1201 } else if (t.isSuperBound()) {
duke@1 1202 if (s.isExtendsBound())
duke@1 1203 return notSoftSubtypeRecursive(t.type, upperBound(s));
duke@1 1204 }
duke@1 1205 return false;
duke@1 1206 }
duke@1 1207 };
duke@1 1208 // </editor-fold>
duke@1 1209
duke@1 1210 // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
duke@1 1211 /**
duke@1 1212 * Returns the lower bounds of the formals of a method.
duke@1 1213 */
duke@1 1214 public List<Type> lowerBoundArgtypes(Type t) {
duke@1 1215 return map(t.getParameterTypes(), lowerBoundMapping);
duke@1 1216 }
duke@1 1217 private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
duke@1 1218 public Type apply(Type t) {
duke@1 1219 return lowerBound(t);
duke@1 1220 }
duke@1 1221 };
duke@1 1222 // </editor-fold>
duke@1 1223
duke@1 1224 // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
duke@1 1225 /**
duke@1 1226 * This relation answers the question: is impossible that
duke@1 1227 * something of type `t' can be a subtype of `s'? This is
duke@1 1228 * different from the question "is `t' not a subtype of `s'?"
duke@1 1229 * when type variables are involved: Integer is not a subtype of T
duke@1 1230 * where <T extends Number> but it is not true that Integer cannot
duke@1 1231 * possibly be a subtype of T.
duke@1 1232 */
duke@1 1233 public boolean notSoftSubtype(Type t, Type s) {
duke@1 1234 if (t == s) return false;
duke@1 1235 if (t.tag == TYPEVAR) {
duke@1 1236 TypeVar tv = (TypeVar) t;
duke@1 1237 return !isCastable(tv.bound,
mcimadamore@640 1238 relaxBound(s),
duke@1 1239 Warner.noWarnings);
duke@1 1240 }
duke@1 1241 if (s.tag != WILDCARD)
duke@1 1242 s = upperBound(s);
mcimadamore@640 1243
mcimadamore@640 1244 return !isSubtype(t, relaxBound(s));
mcimadamore@640 1245 }
mcimadamore@640 1246
mcimadamore@640 1247 private Type relaxBound(Type t) {
mcimadamore@640 1248 if (t.tag == TYPEVAR) {
mcimadamore@640 1249 while (t.tag == TYPEVAR)
mcimadamore@640 1250 t = t.getUpperBound();
mcimadamore@640 1251 t = rewriteQuantifiers(t, true, true);
mcimadamore@640 1252 }
mcimadamore@640 1253 return t;
duke@1 1254 }
duke@1 1255 // </editor-fold>
duke@1 1256
duke@1 1257 // <editor-fold defaultstate="collapsed" desc="isReifiable">
duke@1 1258 public boolean isReifiable(Type t) {
duke@1 1259 return isReifiable.visit(t);
duke@1 1260 }
duke@1 1261 // where
duke@1 1262 private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
duke@1 1263
duke@1 1264 public Boolean visitType(Type t, Void ignored) {
duke@1 1265 return true;
duke@1 1266 }
duke@1 1267
duke@1 1268 @Override
duke@1 1269 public Boolean visitClassType(ClassType t, Void ignored) {
mcimadamore@356 1270 if (t.isCompound())
mcimadamore@356 1271 return false;
mcimadamore@356 1272 else {
mcimadamore@356 1273 if (!t.isParameterized())
mcimadamore@356 1274 return true;
mcimadamore@356 1275
mcimadamore@356 1276 for (Type param : t.allparams()) {
mcimadamore@356 1277 if (!param.isUnbound())
mcimadamore@356 1278 return false;
mcimadamore@356 1279 }
duke@1 1280 return true;
duke@1 1281 }
duke@1 1282 }
duke@1 1283
duke@1 1284 @Override
duke@1 1285 public Boolean visitArrayType(ArrayType t, Void ignored) {
duke@1 1286 return visit(t.elemtype);
duke@1 1287 }
duke@1 1288
duke@1 1289 @Override
duke@1 1290 public Boolean visitTypeVar(TypeVar t, Void ignored) {
duke@1 1291 return false;
duke@1 1292 }
duke@1 1293 };
duke@1 1294 // </editor-fold>
duke@1 1295
duke@1 1296 // <editor-fold defaultstate="collapsed" desc="Array Utils">
duke@1 1297 public boolean isArray(Type t) {
duke@1 1298 while (t.tag == WILDCARD)
duke@1 1299 t = upperBound(t);
duke@1 1300 return t.tag == ARRAY;
duke@1 1301 }
duke@1 1302
duke@1 1303 /**
duke@1 1304 * The element type of an array.
duke@1 1305 */
duke@1 1306 public Type elemtype(Type t) {
duke@1 1307 switch (t.tag) {
duke@1 1308 case WILDCARD:
duke@1 1309 return elemtype(upperBound(t));
duke@1 1310 case ARRAY:
duke@1 1311 return ((ArrayType)t).elemtype;
duke@1 1312 case FORALL:
duke@1 1313 return elemtype(((ForAll)t).qtype);
duke@1 1314 case ERROR:
duke@1 1315 return t;
duke@1 1316 default:
duke@1 1317 return null;
duke@1 1318 }
duke@1 1319 }
duke@1 1320
mcimadamore@787 1321 public Type elemtypeOrType(Type t) {
mcimadamore@787 1322 Type elemtype = elemtype(t);
mcimadamore@787 1323 return elemtype != null ?
mcimadamore@787 1324 elemtype :
mcimadamore@787 1325 t;
mcimadamore@787 1326 }
mcimadamore@787 1327
duke@1 1328 /**
duke@1 1329 * Mapping to take element type of an arraytype
duke@1 1330 */
duke@1 1331 private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
duke@1 1332 public Type apply(Type t) { return elemtype(t); }
duke@1 1333 };
duke@1 1334
duke@1 1335 /**
duke@1 1336 * The number of dimensions of an array type.
duke@1 1337 */
duke@1 1338 public int dimensions(Type t) {
duke@1 1339 int result = 0;
duke@1 1340 while (t.tag == ARRAY) {
duke@1 1341 result++;
duke@1 1342 t = elemtype(t);
duke@1 1343 }
duke@1 1344 return result;
duke@1 1345 }
duke@1 1346 // </editor-fold>
duke@1 1347
duke@1 1348 // <editor-fold defaultstate="collapsed" desc="asSuper">
duke@1 1349 /**
duke@1 1350 * Return the (most specific) base type of t that starts with the
duke@1 1351 * given symbol. If none exists, return null.
duke@1 1352 *
duke@1 1353 * @param t a type
duke@1 1354 * @param sym a symbol
duke@1 1355 */
duke@1 1356 public Type asSuper(Type t, Symbol sym) {
duke@1 1357 return asSuper.visit(t, sym);
duke@1 1358 }
duke@1 1359 // where
duke@1 1360 private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
duke@1 1361
duke@1 1362 public Type visitType(Type t, Symbol sym) {
duke@1 1363 return null;
duke@1 1364 }
duke@1 1365
duke@1 1366 @Override
duke@1 1367 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1368 if (t.tsym == sym)
duke@1 1369 return t;
duke@1 1370
duke@1 1371 Type st = supertype(t);
mcimadamore@19 1372 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
duke@1 1373 Type x = asSuper(st, sym);
duke@1 1374 if (x != null)
duke@1 1375 return x;
duke@1 1376 }
duke@1 1377 if ((sym.flags() & INTERFACE) != 0) {
duke@1 1378 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 1379 Type x = asSuper(l.head, sym);
duke@1 1380 if (x != null)
duke@1 1381 return x;
duke@1 1382 }
duke@1 1383 }
duke@1 1384 return null;
duke@1 1385 }
duke@1 1386
duke@1 1387 @Override
duke@1 1388 public Type visitArrayType(ArrayType t, Symbol sym) {
duke@1 1389 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1390 }
duke@1 1391
duke@1 1392 @Override
duke@1 1393 public Type visitTypeVar(TypeVar t, Symbol sym) {
mcimadamore@19 1394 if (t.tsym == sym)
mcimadamore@19 1395 return t;
mcimadamore@19 1396 else
mcimadamore@19 1397 return asSuper(t.bound, sym);
duke@1 1398 }
duke@1 1399
duke@1 1400 @Override
duke@1 1401 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1402 return t;
duke@1 1403 }
duke@1 1404 };
duke@1 1405
duke@1 1406 /**
duke@1 1407 * Return the base type of t or any of its outer types that starts
duke@1 1408 * with the given symbol. If none exists, return null.
duke@1 1409 *
duke@1 1410 * @param t a type
duke@1 1411 * @param sym a symbol
duke@1 1412 */
duke@1 1413 public Type asOuterSuper(Type t, Symbol sym) {
duke@1 1414 switch (t.tag) {
duke@1 1415 case CLASS:
duke@1 1416 do {
duke@1 1417 Type s = asSuper(t, sym);
duke@1 1418 if (s != null) return s;
duke@1 1419 t = t.getEnclosingType();
duke@1 1420 } while (t.tag == CLASS);
duke@1 1421 return null;
duke@1 1422 case ARRAY:
duke@1 1423 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1424 case TYPEVAR:
duke@1 1425 return asSuper(t, sym);
duke@1 1426 case ERROR:
duke@1 1427 return t;
duke@1 1428 default:
duke@1 1429 return null;
duke@1 1430 }
duke@1 1431 }
duke@1 1432
duke@1 1433 /**
duke@1 1434 * Return the base type of t or any of its enclosing types that
duke@1 1435 * starts with the given symbol. If none exists, return null.
duke@1 1436 *
duke@1 1437 * @param t a type
duke@1 1438 * @param sym a symbol
duke@1 1439 */
duke@1 1440 public Type asEnclosingSuper(Type t, Symbol sym) {
duke@1 1441 switch (t.tag) {
duke@1 1442 case CLASS:
duke@1 1443 do {
duke@1 1444 Type s = asSuper(t, sym);
duke@1 1445 if (s != null) return s;
duke@1 1446 Type outer = t.getEnclosingType();
duke@1 1447 t = (outer.tag == CLASS) ? outer :
duke@1 1448 (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
duke@1 1449 Type.noType;
duke@1 1450 } while (t.tag == CLASS);
duke@1 1451 return null;
duke@1 1452 case ARRAY:
duke@1 1453 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1454 case TYPEVAR:
duke@1 1455 return asSuper(t, sym);
duke@1 1456 case ERROR:
duke@1 1457 return t;
duke@1 1458 default:
duke@1 1459 return null;
duke@1 1460 }
duke@1 1461 }
duke@1 1462 // </editor-fold>
duke@1 1463
duke@1 1464 // <editor-fold defaultstate="collapsed" desc="memberType">
duke@1 1465 /**
duke@1 1466 * The type of given symbol, seen as a member of t.
duke@1 1467 *
duke@1 1468 * @param t a type
duke@1 1469 * @param sym a symbol
duke@1 1470 */
duke@1 1471 public Type memberType(Type t, Symbol sym) {
duke@1 1472 return (sym.flags() & STATIC) != 0
duke@1 1473 ? sym.type
duke@1 1474 : memberType.visit(t, sym);
mcimadamore@341 1475 }
duke@1 1476 // where
duke@1 1477 private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
duke@1 1478
duke@1 1479 public Type visitType(Type t, Symbol sym) {
duke@1 1480 return sym.type;
duke@1 1481 }
duke@1 1482
duke@1 1483 @Override
duke@1 1484 public Type visitWildcardType(WildcardType t, Symbol sym) {
duke@1 1485 return memberType(upperBound(t), sym);
duke@1 1486 }
duke@1 1487
duke@1 1488 @Override
duke@1 1489 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1490 Symbol owner = sym.owner;
duke@1 1491 long flags = sym.flags();
duke@1 1492 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
duke@1 1493 Type base = asOuterSuper(t, owner);
mcimadamore@134 1494 //if t is an intersection type T = CT & I1 & I2 ... & In
mcimadamore@134 1495 //its supertypes CT, I1, ... In might contain wildcards
mcimadamore@134 1496 //so we need to go through capture conversion
mcimadamore@134 1497 base = t.isCompound() ? capture(base) : base;
duke@1 1498 if (base != null) {
duke@1 1499 List<Type> ownerParams = owner.type.allparams();
duke@1 1500 List<Type> baseParams = base.allparams();
duke@1 1501 if (ownerParams.nonEmpty()) {
duke@1 1502 if (baseParams.isEmpty()) {
duke@1 1503 // then base is a raw type
duke@1 1504 return erasure(sym.type);
duke@1 1505 } else {
duke@1 1506 return subst(sym.type, ownerParams, baseParams);
duke@1 1507 }
duke@1 1508 }
duke@1 1509 }
duke@1 1510 }
duke@1 1511 return sym.type;
duke@1 1512 }
duke@1 1513
duke@1 1514 @Override
duke@1 1515 public Type visitTypeVar(TypeVar t, Symbol sym) {
duke@1 1516 return memberType(t.bound, sym);
duke@1 1517 }
duke@1 1518
duke@1 1519 @Override
duke@1 1520 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1521 return t;
duke@1 1522 }
duke@1 1523 };
duke@1 1524 // </editor-fold>
duke@1 1525
duke@1 1526 // <editor-fold defaultstate="collapsed" desc="isAssignable">
duke@1 1527 public boolean isAssignable(Type t, Type s) {
duke@1 1528 return isAssignable(t, s, Warner.noWarnings);
duke@1 1529 }
duke@1 1530
duke@1 1531 /**
duke@1 1532 * Is t assignable to s?<br>
duke@1 1533 * Equivalent to subtype except for constant values and raw
duke@1 1534 * types.<br>
duke@1 1535 * (not defined for Method and ForAll types)
duke@1 1536 */
duke@1 1537 public boolean isAssignable(Type t, Type s, Warner warn) {
duke@1 1538 if (t.tag == ERROR)
duke@1 1539 return true;
duke@1 1540 if (t.tag <= INT && t.constValue() != null) {
duke@1 1541 int value = ((Number)t.constValue()).intValue();
duke@1 1542 switch (s.tag) {
duke@1 1543 case BYTE:
duke@1 1544 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
duke@1 1545 return true;
duke@1 1546 break;
duke@1 1547 case CHAR:
duke@1 1548 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
duke@1 1549 return true;
duke@1 1550 break;
duke@1 1551 case SHORT:
duke@1 1552 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
duke@1 1553 return true;
duke@1 1554 break;
duke@1 1555 case INT:
duke@1 1556 return true;
duke@1 1557 case CLASS:
duke@1 1558 switch (unboxedType(s).tag) {
duke@1 1559 case BYTE:
duke@1 1560 case CHAR:
duke@1 1561 case SHORT:
duke@1 1562 return isAssignable(t, unboxedType(s), warn);
duke@1 1563 }
duke@1 1564 break;
duke@1 1565 }
duke@1 1566 }
duke@1 1567 return isConvertible(t, s, warn);
duke@1 1568 }
duke@1 1569 // </editor-fold>
duke@1 1570
duke@1 1571 // <editor-fold defaultstate="collapsed" desc="erasure">
duke@1 1572 /**
duke@1 1573 * The erasure of t {@code |t|} -- the type that results when all
duke@1 1574 * type parameters in t are deleted.
duke@1 1575 */
duke@1 1576 public Type erasure(Type t) {
mcimadamore@30 1577 return erasure(t, false);
mcimadamore@30 1578 }
mcimadamore@30 1579 //where
mcimadamore@30 1580 private Type erasure(Type t, boolean recurse) {
duke@1 1581 if (t.tag <= lastBaseTag)
duke@1 1582 return t; /* fast special case */
duke@1 1583 else
mcimadamore@30 1584 return erasure.visit(t, recurse);
mcimadamore@341 1585 }
duke@1 1586 // where
mcimadamore@30 1587 private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
mcimadamore@30 1588 public Type visitType(Type t, Boolean recurse) {
duke@1 1589 if (t.tag <= lastBaseTag)
duke@1 1590 return t; /*fast special case*/
duke@1 1591 else
mcimadamore@30 1592 return t.map(recurse ? erasureRecFun : erasureFun);
duke@1 1593 }
duke@1 1594
duke@1 1595 @Override
mcimadamore@30 1596 public Type visitWildcardType(WildcardType t, Boolean recurse) {
mcimadamore@30 1597 return erasure(upperBound(t), recurse);
duke@1 1598 }
duke@1 1599
duke@1 1600 @Override
mcimadamore@30 1601 public Type visitClassType(ClassType t, Boolean recurse) {
mcimadamore@30 1602 Type erased = t.tsym.erasure(Types.this);
mcimadamore@30 1603 if (recurse) {
mcimadamore@30 1604 erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
mcimadamore@30 1605 }
mcimadamore@30 1606 return erased;
duke@1 1607 }
duke@1 1608
duke@1 1609 @Override
mcimadamore@30 1610 public Type visitTypeVar(TypeVar t, Boolean recurse) {
mcimadamore@30 1611 return erasure(t.bound, recurse);
duke@1 1612 }
duke@1 1613
duke@1 1614 @Override
mcimadamore@30 1615 public Type visitErrorType(ErrorType t, Boolean recurse) {
duke@1 1616 return t;
duke@1 1617 }
duke@1 1618 };
mcimadamore@30 1619
duke@1 1620 private Mapping erasureFun = new Mapping ("erasure") {
duke@1 1621 public Type apply(Type t) { return erasure(t); }
duke@1 1622 };
duke@1 1623
mcimadamore@30 1624 private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
mcimadamore@30 1625 public Type apply(Type t) { return erasureRecursive(t); }
mcimadamore@30 1626 };
mcimadamore@30 1627
duke@1 1628 public List<Type> erasure(List<Type> ts) {
duke@1 1629 return Type.map(ts, erasureFun);
duke@1 1630 }
mcimadamore@30 1631
mcimadamore@30 1632 public Type erasureRecursive(Type t) {
mcimadamore@30 1633 return erasure(t, true);
mcimadamore@30 1634 }
mcimadamore@30 1635
mcimadamore@30 1636 public List<Type> erasureRecursive(List<Type> ts) {
mcimadamore@30 1637 return Type.map(ts, erasureRecFun);
mcimadamore@30 1638 }
duke@1 1639 // </editor-fold>
duke@1 1640
duke@1 1641 // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
duke@1 1642 /**
duke@1 1643 * Make a compound type from non-empty list of types
duke@1 1644 *
duke@1 1645 * @param bounds the types from which the compound type is formed
duke@1 1646 * @param supertype is objectType if all bounds are interfaces,
duke@1 1647 * null otherwise.
duke@1 1648 */
duke@1 1649 public Type makeCompoundType(List<Type> bounds,
duke@1 1650 Type supertype) {
duke@1 1651 ClassSymbol bc =
duke@1 1652 new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
duke@1 1653 Type.moreInfo
duke@1 1654 ? names.fromString(bounds.toString())
duke@1 1655 : names.empty,
duke@1 1656 syms.noSymbol);
duke@1 1657 if (bounds.head.tag == TYPEVAR)
duke@1 1658 // error condition, recover
mcimadamore@121 1659 bc.erasure_field = syms.objectType;
mcimadamore@121 1660 else
mcimadamore@121 1661 bc.erasure_field = erasure(bounds.head);
mcimadamore@121 1662 bc.members_field = new Scope(bc);
duke@1 1663 ClassType bt = (ClassType)bc.type;
duke@1 1664 bt.allparams_field = List.nil();
duke@1 1665 if (supertype != null) {
duke@1 1666 bt.supertype_field = supertype;
duke@1 1667 bt.interfaces_field = bounds;
duke@1 1668 } else {
duke@1 1669 bt.supertype_field = bounds.head;
duke@1 1670 bt.interfaces_field = bounds.tail;
duke@1 1671 }
duke@1 1672 assert bt.supertype_field.tsym.completer != null
duke@1 1673 || !bt.supertype_field.isInterface()
duke@1 1674 : bt.supertype_field;
duke@1 1675 return bt;
duke@1 1676 }
duke@1 1677
duke@1 1678 /**
duke@1 1679 * Same as {@link #makeCompoundType(List,Type)}, except that the
duke@1 1680 * second parameter is computed directly. Note that this might
duke@1 1681 * cause a symbol completion. Hence, this version of
duke@1 1682 * makeCompoundType may not be called during a classfile read.
duke@1 1683 */
duke@1 1684 public Type makeCompoundType(List<Type> bounds) {
duke@1 1685 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
duke@1 1686 supertype(bounds.head) : null;
duke@1 1687 return makeCompoundType(bounds, supertype);
duke@1 1688 }
duke@1 1689
duke@1 1690 /**
duke@1 1691 * A convenience wrapper for {@link #makeCompoundType(List)}; the
duke@1 1692 * arguments are converted to a list and passed to the other
duke@1 1693 * method. Note that this might cause a symbol completion.
duke@1 1694 * Hence, this version of makeCompoundType may not be called
duke@1 1695 * during a classfile read.
duke@1 1696 */
duke@1 1697 public Type makeCompoundType(Type bound1, Type bound2) {
duke@1 1698 return makeCompoundType(List.of(bound1, bound2));
duke@1 1699 }
duke@1 1700 // </editor-fold>
duke@1 1701
duke@1 1702 // <editor-fold defaultstate="collapsed" desc="supertype">
duke@1 1703 public Type supertype(Type t) {
duke@1 1704 return supertype.visit(t);
duke@1 1705 }
duke@1 1706 // where
duke@1 1707 private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
duke@1 1708
duke@1 1709 public Type visitType(Type t, Void ignored) {
duke@1 1710 // A note on wildcards: there is no good way to
duke@1 1711 // determine a supertype for a super bounded wildcard.
duke@1 1712 return null;
duke@1 1713 }
duke@1 1714
duke@1 1715 @Override
duke@1 1716 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1717 if (t.supertype_field == null) {
duke@1 1718 Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
duke@1 1719 // An interface has no superclass; its supertype is Object.
duke@1 1720 if (t.isInterface())
duke@1 1721 supertype = ((ClassType)t.tsym.type).supertype_field;
duke@1 1722 if (t.supertype_field == null) {
duke@1 1723 List<Type> actuals = classBound(t).allparams();
duke@1 1724 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1725 if (t.hasErasedSupertypes()) {
mcimadamore@30 1726 t.supertype_field = erasureRecursive(supertype);
mcimadamore@30 1727 } else if (formals.nonEmpty()) {
duke@1 1728 t.supertype_field = subst(supertype, formals, actuals);
duke@1 1729 }
mcimadamore@30 1730 else {
mcimadamore@30 1731 t.supertype_field = supertype;
mcimadamore@30 1732 }
duke@1 1733 }
duke@1 1734 }
duke@1 1735 return t.supertype_field;
duke@1 1736 }
duke@1 1737
duke@1 1738 /**
duke@1 1739 * The supertype is always a class type. If the type
duke@1 1740 * variable's bounds start with a class type, this is also
duke@1 1741 * the supertype. Otherwise, the supertype is
duke@1 1742 * java.lang.Object.
duke@1 1743 */
duke@1 1744 @Override
duke@1 1745 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1746 if (t.bound.tag == TYPEVAR ||
duke@1 1747 (!t.bound.isCompound() && !t.bound.isInterface())) {
duke@1 1748 return t.bound;
duke@1 1749 } else {
duke@1 1750 return supertype(t.bound);
duke@1 1751 }
duke@1 1752 }
duke@1 1753
duke@1 1754 @Override
duke@1 1755 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 1756 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
duke@1 1757 return arraySuperType();
duke@1 1758 else
duke@1 1759 return new ArrayType(supertype(t.elemtype), t.tsym);
duke@1 1760 }
duke@1 1761
duke@1 1762 @Override
duke@1 1763 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1764 return t;
duke@1 1765 }
duke@1 1766 };
duke@1 1767 // </editor-fold>
duke@1 1768
duke@1 1769 // <editor-fold defaultstate="collapsed" desc="interfaces">
duke@1 1770 /**
duke@1 1771 * Return the interfaces implemented by this class.
duke@1 1772 */
duke@1 1773 public List<Type> interfaces(Type t) {
duke@1 1774 return interfaces.visit(t);
duke@1 1775 }
duke@1 1776 // where
duke@1 1777 private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
duke@1 1778
duke@1 1779 public List<Type> visitType(Type t, Void ignored) {
duke@1 1780 return List.nil();
duke@1 1781 }
duke@1 1782
duke@1 1783 @Override
duke@1 1784 public List<Type> visitClassType(ClassType t, Void ignored) {
duke@1 1785 if (t.interfaces_field == null) {
duke@1 1786 List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
duke@1 1787 if (t.interfaces_field == null) {
duke@1 1788 // If t.interfaces_field is null, then t must
duke@1 1789 // be a parameterized type (not to be confused
duke@1 1790 // with a generic type declaration).
duke@1 1791 // Terminology:
duke@1 1792 // Parameterized type: List<String>
duke@1 1793 // Generic type declaration: class List<E> { ... }
duke@1 1794 // So t corresponds to List<String> and
duke@1 1795 // t.tsym.type corresponds to List<E>.
duke@1 1796 // The reason t must be parameterized type is
duke@1 1797 // that completion will happen as a side
duke@1 1798 // effect of calling
duke@1 1799 // ClassSymbol.getInterfaces. Since
duke@1 1800 // t.interfaces_field is null after
duke@1 1801 // completion, we can assume that t is not the
duke@1 1802 // type of a class/interface declaration.
duke@1 1803 assert t != t.tsym.type : t.toString();
duke@1 1804 List<Type> actuals = t.allparams();
duke@1 1805 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1806 if (t.hasErasedSupertypes()) {
mcimadamore@30 1807 t.interfaces_field = erasureRecursive(interfaces);
mcimadamore@30 1808 } else if (formals.nonEmpty()) {
duke@1 1809 t.interfaces_field =
duke@1 1810 upperBounds(subst(interfaces, formals, actuals));
duke@1 1811 }
mcimadamore@30 1812 else {
mcimadamore@30 1813 t.interfaces_field = interfaces;
mcimadamore@30 1814 }
duke@1 1815 }
duke@1 1816 }
duke@1 1817 return t.interfaces_field;
duke@1 1818 }
duke@1 1819
duke@1 1820 @Override
duke@1 1821 public List<Type> visitTypeVar(TypeVar t, Void ignored) {
duke@1 1822 if (t.bound.isCompound())
duke@1 1823 return interfaces(t.bound);
duke@1 1824
duke@1 1825 if (t.bound.isInterface())
duke@1 1826 return List.of(t.bound);
duke@1 1827
duke@1 1828 return List.nil();
duke@1 1829 }
duke@1 1830 };
duke@1 1831 // </editor-fold>
duke@1 1832
duke@1 1833 // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
duke@1 1834 Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
duke@1 1835
duke@1 1836 public boolean isDerivedRaw(Type t) {
duke@1 1837 Boolean result = isDerivedRawCache.get(t);
duke@1 1838 if (result == null) {
duke@1 1839 result = isDerivedRawInternal(t);
duke@1 1840 isDerivedRawCache.put(t, result);
duke@1 1841 }
duke@1 1842 return result;
duke@1 1843 }
duke@1 1844
duke@1 1845 public boolean isDerivedRawInternal(Type t) {
duke@1 1846 if (t.isErroneous())
duke@1 1847 return false;
duke@1 1848 return
duke@1 1849 t.isRaw() ||
duke@1 1850 supertype(t) != null && isDerivedRaw(supertype(t)) ||
duke@1 1851 isDerivedRaw(interfaces(t));
duke@1 1852 }
duke@1 1853
duke@1 1854 public boolean isDerivedRaw(List<Type> ts) {
duke@1 1855 List<Type> l = ts;
duke@1 1856 while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
duke@1 1857 return l.nonEmpty();
duke@1 1858 }
duke@1 1859 // </editor-fold>
duke@1 1860
duke@1 1861 // <editor-fold defaultstate="collapsed" desc="setBounds">
duke@1 1862 /**
duke@1 1863 * Set the bounds field of the given type variable to reflect a
duke@1 1864 * (possibly multiple) list of bounds.
duke@1 1865 * @param t a type variable
duke@1 1866 * @param bounds the bounds, must be nonempty
duke@1 1867 * @param supertype is objectType if all bounds are interfaces,
duke@1 1868 * null otherwise.
duke@1 1869 */
duke@1 1870 public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
duke@1 1871 if (bounds.tail.isEmpty())
duke@1 1872 t.bound = bounds.head;
duke@1 1873 else
duke@1 1874 t.bound = makeCompoundType(bounds, supertype);
duke@1 1875 t.rank_field = -1;
duke@1 1876 }
duke@1 1877
duke@1 1878 /**
duke@1 1879 * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
mcimadamore@563 1880 * third parameter is computed directly, as follows: if all
mcimadamore@563 1881 * all bounds are interface types, the computed supertype is Object,
mcimadamore@563 1882 * otherwise the supertype is simply left null (in this case, the supertype
mcimadamore@563 1883 * is assumed to be the head of the bound list passed as second argument).
mcimadamore@563 1884 * Note that this check might cause a symbol completion. Hence, this version of
duke@1 1885 * setBounds may not be called during a classfile read.
duke@1 1886 */
duke@1 1887 public void setBounds(TypeVar t, List<Type> bounds) {
duke@1 1888 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
mcimadamore@563 1889 syms.objectType : null;
duke@1 1890 setBounds(t, bounds, supertype);
duke@1 1891 t.rank_field = -1;
duke@1 1892 }
duke@1 1893 // </editor-fold>
duke@1 1894
duke@1 1895 // <editor-fold defaultstate="collapsed" desc="getBounds">
duke@1 1896 /**
duke@1 1897 * Return list of bounds of the given type variable.
duke@1 1898 */
duke@1 1899 public List<Type> getBounds(TypeVar t) {
duke@1 1900 if (t.bound.isErroneous() || !t.bound.isCompound())
duke@1 1901 return List.of(t.bound);
duke@1 1902 else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
duke@1 1903 return interfaces(t).prepend(supertype(t));
duke@1 1904 else
duke@1 1905 // No superclass was given in bounds.
duke@1 1906 // In this case, supertype is Object, erasure is first interface.
duke@1 1907 return interfaces(t);
duke@1 1908 }
duke@1 1909 // </editor-fold>
duke@1 1910
duke@1 1911 // <editor-fold defaultstate="collapsed" desc="classBound">
duke@1 1912 /**
duke@1 1913 * If the given type is a (possibly selected) type variable,
duke@1 1914 * return the bounding class of this type, otherwise return the
duke@1 1915 * type itself.
duke@1 1916 */
duke@1 1917 public Type classBound(Type t) {
duke@1 1918 return classBound.visit(t);
duke@1 1919 }
duke@1 1920 // where
duke@1 1921 private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
duke@1 1922
duke@1 1923 public Type visitType(Type t, Void ignored) {
duke@1 1924 return t;
duke@1 1925 }
duke@1 1926
duke@1 1927 @Override
duke@1 1928 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1929 Type outer1 = classBound(t.getEnclosingType());
duke@1 1930 if (outer1 != t.getEnclosingType())
duke@1 1931 return new ClassType(outer1, t.getTypeArguments(), t.tsym);
duke@1 1932 else
duke@1 1933 return t;
duke@1 1934 }
duke@1 1935
duke@1 1936 @Override
duke@1 1937 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1938 return classBound(supertype(t));
duke@1 1939 }
duke@1 1940
duke@1 1941 @Override
duke@1 1942 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1943 return t;
duke@1 1944 }
duke@1 1945 };
duke@1 1946 // </editor-fold>
duke@1 1947
duke@1 1948 // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
duke@1 1949 /**
duke@1 1950 * Returns true iff the first signature is a <em>sub
duke@1 1951 * signature</em> of the other. This is <b>not</b> an equivalence
duke@1 1952 * relation.
duke@1 1953 *
duke@1 1954 * @see "The Java Language Specification, Third Ed. (8.4.2)."
duke@1 1955 * @see #overrideEquivalent(Type t, Type s)
duke@1 1956 * @param t first signature (possibly raw).
duke@1 1957 * @param s second signature (could be subjected to erasure).
duke@1 1958 * @return true if t is a sub signature of s.
duke@1 1959 */
duke@1 1960 public boolean isSubSignature(Type t, Type s) {
duke@1 1961 return hasSameArgs(t, s) || hasSameArgs(t, erasure(s));
duke@1 1962 }
duke@1 1963
duke@1 1964 /**
duke@1 1965 * Returns true iff these signatures are related by <em>override
duke@1 1966 * equivalence</em>. This is the natural extension of
duke@1 1967 * isSubSignature to an equivalence relation.
duke@1 1968 *
duke@1 1969 * @see "The Java Language Specification, Third Ed. (8.4.2)."
duke@1 1970 * @see #isSubSignature(Type t, Type s)
duke@1 1971 * @param t a signature (possible raw, could be subjected to
duke@1 1972 * erasure).
duke@1 1973 * @param s a signature (possible raw, could be subjected to
duke@1 1974 * erasure).
duke@1 1975 * @return true if either argument is a sub signature of the other.
duke@1 1976 */
duke@1 1977 public boolean overrideEquivalent(Type t, Type s) {
duke@1 1978 return hasSameArgs(t, s) ||
duke@1 1979 hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
duke@1 1980 }
duke@1 1981
mcimadamore@673 1982 // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
mcimadamore@673 1983 class ImplementationCache {
mcimadamore@673 1984
mcimadamore@673 1985 private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
mcimadamore@673 1986 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
mcimadamore@673 1987
mcimadamore@673 1988 class Entry {
mcimadamore@673 1989 final MethodSymbol cachedImpl;
mcimadamore@673 1990 final Filter<Symbol> implFilter;
mcimadamore@673 1991 final boolean checkResult;
mcimadamore@688 1992 final Scope.ScopeCounter scopeCounter;
mcimadamore@673 1993
mcimadamore@673 1994 public Entry(MethodSymbol cachedImpl,
mcimadamore@673 1995 Filter<Symbol> scopeFilter,
mcimadamore@688 1996 boolean checkResult,
mcimadamore@688 1997 Scope.ScopeCounter scopeCounter) {
mcimadamore@673 1998 this.cachedImpl = cachedImpl;
mcimadamore@673 1999 this.implFilter = scopeFilter;
mcimadamore@673 2000 this.checkResult = checkResult;
mcimadamore@688 2001 this.scopeCounter = scopeCounter;
mcimadamore@673 2002 }
mcimadamore@673 2003
mcimadamore@688 2004 boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, Scope.ScopeCounter scopeCounter) {
mcimadamore@673 2005 return this.implFilter == scopeFilter &&
mcimadamore@688 2006 this.checkResult == checkResult &&
mcimadamore@688 2007 this.scopeCounter.val() >= scopeCounter.val();
mcimadamore@673 2008 }
mcimadamore@341 2009 }
mcimadamore@673 2010
mcimadamore@688 2011 MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter, Scope.ScopeCounter scopeCounter) {
mcimadamore@673 2012 SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
mcimadamore@673 2013 Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
mcimadamore@673 2014 if (cache == null) {
mcimadamore@673 2015 cache = new HashMap<TypeSymbol, Entry>();
mcimadamore@673 2016 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
mcimadamore@673 2017 }
mcimadamore@673 2018 Entry e = cache.get(origin);
mcimadamore@673 2019 if (e == null ||
mcimadamore@688 2020 !e.matches(implFilter, checkResult, scopeCounter)) {
mcimadamore@673 2021 MethodSymbol impl = implementationInternal(ms, origin, Types.this, checkResult, implFilter);
mcimadamore@688 2022 cache.put(origin, new Entry(impl, implFilter, checkResult, scopeCounter));
mcimadamore@673 2023 return impl;
mcimadamore@673 2024 }
mcimadamore@673 2025 else {
mcimadamore@673 2026 return e.cachedImpl;
mcimadamore@673 2027 }
mcimadamore@673 2028 }
mcimadamore@673 2029
mcimadamore@673 2030 private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, Types types, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@341 2031 for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = types.supertype(t)) {
mcimadamore@341 2032 while (t.tag == TYPEVAR)
mcimadamore@341 2033 t = t.getUpperBound();
mcimadamore@341 2034 TypeSymbol c = t.tsym;
mcimadamore@673 2035 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
mcimadamore@341 2036 e.scope != null;
mcimadamore@780 2037 e = e.next(implFilter)) {
mcimadamore@673 2038 if (e.sym != null &&
mcimadamore@673 2039 e.sym.overrides(ms, origin, types, checkResult))
mcimadamore@673 2040 return (MethodSymbol)e.sym;
mcimadamore@341 2041 }
mcimadamore@341 2042 }
mcimadamore@673 2043 return null;
mcimadamore@341 2044 }
mcimadamore@341 2045 }
mcimadamore@341 2046
mcimadamore@673 2047 private ImplementationCache implCache = new ImplementationCache();
mcimadamore@673 2048
mcimadamore@673 2049 public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, Types types, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@688 2050 return implCache.get(ms, origin, checkResult, implFilter, scopeCounter);
mcimadamore@673 2051 }
mcimadamore@673 2052 // </editor-fold>
mcimadamore@673 2053
duke@1 2054 /**
duke@1 2055 * Does t have the same arguments as s? It is assumed that both
duke@1 2056 * types are (possibly polymorphic) method types. Monomorphic
duke@1 2057 * method types "have the same arguments", if their argument lists
duke@1 2058 * are equal. Polymorphic method types "have the same arguments",
duke@1 2059 * if they have the same arguments after renaming all type
duke@1 2060 * variables of one to corresponding type variables in the other,
duke@1 2061 * where correspondence is by position in the type parameter list.
duke@1 2062 */
duke@1 2063 public boolean hasSameArgs(Type t, Type s) {
duke@1 2064 return hasSameArgs.visit(t, s);
duke@1 2065 }
duke@1 2066 // where
duke@1 2067 private TypeRelation hasSameArgs = new TypeRelation() {
duke@1 2068
duke@1 2069 public Boolean visitType(Type t, Type s) {
duke@1 2070 throw new AssertionError();
duke@1 2071 }
duke@1 2072
duke@1 2073 @Override
duke@1 2074 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 2075 return s.tag == METHOD
duke@1 2076 && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
duke@1 2077 }
duke@1 2078
duke@1 2079 @Override
duke@1 2080 public Boolean visitForAll(ForAll t, Type s) {
duke@1 2081 if (s.tag != FORALL)
duke@1 2082 return false;
duke@1 2083
duke@1 2084 ForAll forAll = (ForAll)s;
duke@1 2085 return hasSameBounds(t, forAll)
duke@1 2086 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 2087 }
duke@1 2088
duke@1 2089 @Override
duke@1 2090 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 2091 return false;
duke@1 2092 }
duke@1 2093 };
duke@1 2094 // </editor-fold>
duke@1 2095
duke@1 2096 // <editor-fold defaultstate="collapsed" desc="subst">
duke@1 2097 public List<Type> subst(List<Type> ts,
duke@1 2098 List<Type> from,
duke@1 2099 List<Type> to) {
duke@1 2100 return new Subst(from, to).subst(ts);
duke@1 2101 }
duke@1 2102
duke@1 2103 /**
duke@1 2104 * Substitute all occurrences of a type in `from' with the
duke@1 2105 * corresponding type in `to' in 't'. Match lists `from' and `to'
duke@1 2106 * from the right: If lists have different length, discard leading
duke@1 2107 * elements of the longer list.
duke@1 2108 */
duke@1 2109 public Type subst(Type t, List<Type> from, List<Type> to) {
duke@1 2110 return new Subst(from, to).subst(t);
duke@1 2111 }
duke@1 2112
duke@1 2113 private class Subst extends UnaryVisitor<Type> {
duke@1 2114 List<Type> from;
duke@1 2115 List<Type> to;
duke@1 2116
duke@1 2117 public Subst(List<Type> from, List<Type> to) {
duke@1 2118 int fromLength = from.length();
duke@1 2119 int toLength = to.length();
duke@1 2120 while (fromLength > toLength) {
duke@1 2121 fromLength--;
duke@1 2122 from = from.tail;
duke@1 2123 }
duke@1 2124 while (fromLength < toLength) {
duke@1 2125 toLength--;
duke@1 2126 to = to.tail;
duke@1 2127 }
duke@1 2128 this.from = from;
duke@1 2129 this.to = to;
duke@1 2130 }
duke@1 2131
duke@1 2132 Type subst(Type t) {
duke@1 2133 if (from.tail == null)
duke@1 2134 return t;
duke@1 2135 else
duke@1 2136 return visit(t);
mcimadamore@238 2137 }
duke@1 2138
duke@1 2139 List<Type> subst(List<Type> ts) {
duke@1 2140 if (from.tail == null)
duke@1 2141 return ts;
duke@1 2142 boolean wild = false;
duke@1 2143 if (ts.nonEmpty() && from.nonEmpty()) {
duke@1 2144 Type head1 = subst(ts.head);
duke@1 2145 List<Type> tail1 = subst(ts.tail);
duke@1 2146 if (head1 != ts.head || tail1 != ts.tail)
duke@1 2147 return tail1.prepend(head1);
duke@1 2148 }
duke@1 2149 return ts;
duke@1 2150 }
duke@1 2151
duke@1 2152 public Type visitType(Type t, Void ignored) {
duke@1 2153 return t;
duke@1 2154 }
duke@1 2155
duke@1 2156 @Override
duke@1 2157 public Type visitMethodType(MethodType t, Void ignored) {
duke@1 2158 List<Type> argtypes = subst(t.argtypes);
duke@1 2159 Type restype = subst(t.restype);
duke@1 2160 List<Type> thrown = subst(t.thrown);
duke@1 2161 if (argtypes == t.argtypes &&
duke@1 2162 restype == t.restype &&
duke@1 2163 thrown == t.thrown)
duke@1 2164 return t;
duke@1 2165 else
duke@1 2166 return new MethodType(argtypes, restype, thrown, t.tsym);
duke@1 2167 }
duke@1 2168
duke@1 2169 @Override
duke@1 2170 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2171 for (List<Type> from = this.from, to = this.to;
duke@1 2172 from.nonEmpty();
duke@1 2173 from = from.tail, to = to.tail) {
duke@1 2174 if (t == from.head) {
duke@1 2175 return to.head.withTypeVar(t);
duke@1 2176 }
duke@1 2177 }
duke@1 2178 return t;
duke@1 2179 }
duke@1 2180
duke@1 2181 @Override
duke@1 2182 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2183 if (!t.isCompound()) {
duke@1 2184 List<Type> typarams = t.getTypeArguments();
duke@1 2185 List<Type> typarams1 = subst(typarams);
duke@1 2186 Type outer = t.getEnclosingType();
duke@1 2187 Type outer1 = subst(outer);
duke@1 2188 if (typarams1 == typarams && outer1 == outer)
duke@1 2189 return t;
duke@1 2190 else
duke@1 2191 return new ClassType(outer1, typarams1, t.tsym);
duke@1 2192 } else {
duke@1 2193 Type st = subst(supertype(t));
duke@1 2194 List<Type> is = upperBounds(subst(interfaces(t)));
duke@1 2195 if (st == supertype(t) && is == interfaces(t))
duke@1 2196 return t;
duke@1 2197 else
duke@1 2198 return makeCompoundType(is.prepend(st));
duke@1 2199 }
duke@1 2200 }
duke@1 2201
duke@1 2202 @Override
duke@1 2203 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 2204 Type bound = t.type;
duke@1 2205 if (t.kind != BoundKind.UNBOUND)
duke@1 2206 bound = subst(bound);
duke@1 2207 if (bound == t.type) {
duke@1 2208 return t;
duke@1 2209 } else {
duke@1 2210 if (t.isExtendsBound() && bound.isExtendsBound())
duke@1 2211 bound = upperBound(bound);
duke@1 2212 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
duke@1 2213 }
duke@1 2214 }
duke@1 2215
duke@1 2216 @Override
duke@1 2217 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 2218 Type elemtype = subst(t.elemtype);
duke@1 2219 if (elemtype == t.elemtype)
duke@1 2220 return t;
duke@1 2221 else
duke@1 2222 return new ArrayType(upperBound(elemtype), t.tsym);
duke@1 2223 }
duke@1 2224
duke@1 2225 @Override
duke@1 2226 public Type visitForAll(ForAll t, Void ignored) {
duke@1 2227 List<Type> tvars1 = substBounds(t.tvars, from, to);
duke@1 2228 Type qtype1 = subst(t.qtype);
duke@1 2229 if (tvars1 == t.tvars && qtype1 == t.qtype) {
duke@1 2230 return t;
duke@1 2231 } else if (tvars1 == t.tvars) {
duke@1 2232 return new ForAll(tvars1, qtype1);
duke@1 2233 } else {
duke@1 2234 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
duke@1 2235 }
duke@1 2236 }
duke@1 2237
duke@1 2238 @Override
duke@1 2239 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2240 return t;
duke@1 2241 }
duke@1 2242 }
duke@1 2243
duke@1 2244 public List<Type> substBounds(List<Type> tvars,
duke@1 2245 List<Type> from,
duke@1 2246 List<Type> to) {
duke@1 2247 if (tvars.isEmpty())
duke@1 2248 return tvars;
duke@1 2249 ListBuffer<Type> newBoundsBuf = lb();
duke@1 2250 boolean changed = false;
duke@1 2251 // calculate new bounds
duke@1 2252 for (Type t : tvars) {
duke@1 2253 TypeVar tv = (TypeVar) t;
duke@1 2254 Type bound = subst(tv.bound, from, to);
duke@1 2255 if (bound != tv.bound)
duke@1 2256 changed = true;
duke@1 2257 newBoundsBuf.append(bound);
duke@1 2258 }
duke@1 2259 if (!changed)
duke@1 2260 return tvars;
duke@1 2261 ListBuffer<Type> newTvars = lb();
duke@1 2262 // create new type variables without bounds
duke@1 2263 for (Type t : tvars) {
duke@1 2264 newTvars.append(new TypeVar(t.tsym, null, syms.botType));
duke@1 2265 }
duke@1 2266 // the new bounds should use the new type variables in place
duke@1 2267 // of the old
duke@1 2268 List<Type> newBounds = newBoundsBuf.toList();
duke@1 2269 from = tvars;
duke@1 2270 to = newTvars.toList();
duke@1 2271 for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
duke@1 2272 newBounds.head = subst(newBounds.head, from, to);
duke@1 2273 }
duke@1 2274 newBounds = newBoundsBuf.toList();
duke@1 2275 // set the bounds of new type variables to the new bounds
duke@1 2276 for (Type t : newTvars.toList()) {
duke@1 2277 TypeVar tv = (TypeVar) t;
duke@1 2278 tv.bound = newBounds.head;
duke@1 2279 newBounds = newBounds.tail;
duke@1 2280 }
duke@1 2281 return newTvars.toList();
duke@1 2282 }
duke@1 2283
duke@1 2284 public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
duke@1 2285 Type bound1 = subst(t.bound, from, to);
duke@1 2286 if (bound1 == t.bound)
duke@1 2287 return t;
mcimadamore@212 2288 else {
mcimadamore@212 2289 // create new type variable without bounds
mcimadamore@212 2290 TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
mcimadamore@212 2291 // the new bound should use the new type variable in place
mcimadamore@212 2292 // of the old
mcimadamore@212 2293 tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
mcimadamore@212 2294 return tv;
mcimadamore@212 2295 }
duke@1 2296 }
duke@1 2297 // </editor-fold>
duke@1 2298
duke@1 2299 // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
duke@1 2300 /**
duke@1 2301 * Does t have the same bounds for quantified variables as s?
duke@1 2302 */
duke@1 2303 boolean hasSameBounds(ForAll t, ForAll s) {
duke@1 2304 List<Type> l1 = t.tvars;
duke@1 2305 List<Type> l2 = s.tvars;
duke@1 2306 while (l1.nonEmpty() && l2.nonEmpty() &&
duke@1 2307 isSameType(l1.head.getUpperBound(),
duke@1 2308 subst(l2.head.getUpperBound(),
duke@1 2309 s.tvars,
duke@1 2310 t.tvars))) {
duke@1 2311 l1 = l1.tail;
duke@1 2312 l2 = l2.tail;
duke@1 2313 }
duke@1 2314 return l1.isEmpty() && l2.isEmpty();
duke@1 2315 }
duke@1 2316 // </editor-fold>
duke@1 2317
duke@1 2318 // <editor-fold defaultstate="collapsed" desc="newInstances">
duke@1 2319 /** Create new vector of type variables from list of variables
duke@1 2320 * changing all recursive bounds from old to new list.
duke@1 2321 */
duke@1 2322 public List<Type> newInstances(List<Type> tvars) {
duke@1 2323 List<Type> tvars1 = Type.map(tvars, newInstanceFun);
duke@1 2324 for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
duke@1 2325 TypeVar tv = (TypeVar) l.head;
duke@1 2326 tv.bound = subst(tv.bound, tvars, tvars1);
duke@1 2327 }
duke@1 2328 return tvars1;
duke@1 2329 }
duke@1 2330 static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
duke@1 2331 public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
duke@1 2332 };
duke@1 2333 // </editor-fold>
duke@1 2334
jjg@110 2335 // <editor-fold defaultstate="collapsed" desc="createErrorType">
jjg@110 2336 public Type createErrorType(Type originalType) {
jjg@110 2337 return new ErrorType(originalType, syms.errSymbol);
jjg@110 2338 }
jjg@110 2339
jjg@110 2340 public Type createErrorType(ClassSymbol c, Type originalType) {
jjg@110 2341 return new ErrorType(c, originalType);
jjg@110 2342 }
jjg@110 2343
jjg@110 2344 public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
jjg@110 2345 return new ErrorType(name, container, originalType);
jjg@110 2346 }
jjg@110 2347 // </editor-fold>
jjg@110 2348
duke@1 2349 // <editor-fold defaultstate="collapsed" desc="rank">
duke@1 2350 /**
duke@1 2351 * The rank of a class is the length of the longest path between
duke@1 2352 * the class and java.lang.Object in the class inheritance
duke@1 2353 * graph. Undefined for all but reference types.
duke@1 2354 */
duke@1 2355 public int rank(Type t) {
duke@1 2356 switch(t.tag) {
duke@1 2357 case CLASS: {
duke@1 2358 ClassType cls = (ClassType)t;
duke@1 2359 if (cls.rank_field < 0) {
duke@1 2360 Name fullname = cls.tsym.getQualifiedName();
jjg@113 2361 if (fullname == names.java_lang_Object)
duke@1 2362 cls.rank_field = 0;
duke@1 2363 else {
duke@1 2364 int r = rank(supertype(cls));
duke@1 2365 for (List<Type> l = interfaces(cls);
duke@1 2366 l.nonEmpty();
duke@1 2367 l = l.tail) {
duke@1 2368 if (rank(l.head) > r)
duke@1 2369 r = rank(l.head);
duke@1 2370 }
duke@1 2371 cls.rank_field = r + 1;
duke@1 2372 }
duke@1 2373 }
duke@1 2374 return cls.rank_field;
duke@1 2375 }
duke@1 2376 case TYPEVAR: {
duke@1 2377 TypeVar tvar = (TypeVar)t;
duke@1 2378 if (tvar.rank_field < 0) {
duke@1 2379 int r = rank(supertype(tvar));
duke@1 2380 for (List<Type> l = interfaces(tvar);
duke@1 2381 l.nonEmpty();
duke@1 2382 l = l.tail) {
duke@1 2383 if (rank(l.head) > r) r = rank(l.head);
duke@1 2384 }
duke@1 2385 tvar.rank_field = r + 1;
duke@1 2386 }
duke@1 2387 return tvar.rank_field;
duke@1 2388 }
duke@1 2389 case ERROR:
duke@1 2390 return 0;
duke@1 2391 default:
duke@1 2392 throw new AssertionError();
duke@1 2393 }
duke@1 2394 }
duke@1 2395 // </editor-fold>
duke@1 2396
mcimadamore@121 2397 /**
mcimadamore@238 2398 * Helper method for generating a string representation of a given type
mcimadamore@121 2399 * accordingly to a given locale
mcimadamore@121 2400 */
mcimadamore@121 2401 public String toString(Type t, Locale locale) {
mcimadamore@238 2402 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2403 }
mcimadamore@121 2404
mcimadamore@121 2405 /**
mcimadamore@238 2406 * Helper method for generating a string representation of a given type
mcimadamore@121 2407 * accordingly to a given locale
mcimadamore@121 2408 */
mcimadamore@121 2409 public String toString(Symbol t, Locale locale) {
mcimadamore@238 2410 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2411 }
mcimadamore@121 2412
duke@1 2413 // <editor-fold defaultstate="collapsed" desc="toString">
duke@1 2414 /**
duke@1 2415 * This toString is slightly more descriptive than the one on Type.
mcimadamore@121 2416 *
mcimadamore@121 2417 * @deprecated Types.toString(Type t, Locale l) provides better support
mcimadamore@121 2418 * for localization
duke@1 2419 */
mcimadamore@121 2420 @Deprecated
duke@1 2421 public String toString(Type t) {
duke@1 2422 if (t.tag == FORALL) {
duke@1 2423 ForAll forAll = (ForAll)t;
duke@1 2424 return typaramsString(forAll.tvars) + forAll.qtype;
duke@1 2425 }
duke@1 2426 return "" + t;
duke@1 2427 }
duke@1 2428 // where
duke@1 2429 private String typaramsString(List<Type> tvars) {
duke@1 2430 StringBuffer s = new StringBuffer();
duke@1 2431 s.append('<');
duke@1 2432 boolean first = true;
duke@1 2433 for (Type t : tvars) {
duke@1 2434 if (!first) s.append(", ");
duke@1 2435 first = false;
duke@1 2436 appendTyparamString(((TypeVar)t), s);
duke@1 2437 }
duke@1 2438 s.append('>');
duke@1 2439 return s.toString();
duke@1 2440 }
duke@1 2441 private void appendTyparamString(TypeVar t, StringBuffer buf) {
duke@1 2442 buf.append(t);
duke@1 2443 if (t.bound == null ||
duke@1 2444 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
duke@1 2445 return;
duke@1 2446 buf.append(" extends "); // Java syntax; no need for i18n
duke@1 2447 Type bound = t.bound;
duke@1 2448 if (!bound.isCompound()) {
duke@1 2449 buf.append(bound);
duke@1 2450 } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
duke@1 2451 buf.append(supertype(t));
duke@1 2452 for (Type intf : interfaces(t)) {
duke@1 2453 buf.append('&');
duke@1 2454 buf.append(intf);
duke@1 2455 }
duke@1 2456 } else {
duke@1 2457 // No superclass was given in bounds.
duke@1 2458 // In this case, supertype is Object, erasure is first interface.
duke@1 2459 boolean first = true;
duke@1 2460 for (Type intf : interfaces(t)) {
duke@1 2461 if (!first) buf.append('&');
duke@1 2462 first = false;
duke@1 2463 buf.append(intf);
duke@1 2464 }
duke@1 2465 }
duke@1 2466 }
duke@1 2467 // </editor-fold>
duke@1 2468
duke@1 2469 // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
duke@1 2470 /**
duke@1 2471 * A cache for closures.
duke@1 2472 *
duke@1 2473 * <p>A closure is a list of all the supertypes and interfaces of
duke@1 2474 * a class or interface type, ordered by ClassSymbol.precedes
duke@1 2475 * (that is, subclasses come first, arbitrary but fixed
duke@1 2476 * otherwise).
duke@1 2477 */
duke@1 2478 private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
duke@1 2479
duke@1 2480 /**
duke@1 2481 * Returns the closure of a class or interface type.
duke@1 2482 */
duke@1 2483 public List<Type> closure(Type t) {
duke@1 2484 List<Type> cl = closureCache.get(t);
duke@1 2485 if (cl == null) {
duke@1 2486 Type st = supertype(t);
duke@1 2487 if (!t.isCompound()) {
duke@1 2488 if (st.tag == CLASS) {
duke@1 2489 cl = insert(closure(st), t);
duke@1 2490 } else if (st.tag == TYPEVAR) {
duke@1 2491 cl = closure(st).prepend(t);
duke@1 2492 } else {
duke@1 2493 cl = List.of(t);
duke@1 2494 }
duke@1 2495 } else {
duke@1 2496 cl = closure(supertype(t));
duke@1 2497 }
duke@1 2498 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
duke@1 2499 cl = union(cl, closure(l.head));
duke@1 2500 closureCache.put(t, cl);
duke@1 2501 }
duke@1 2502 return cl;
duke@1 2503 }
duke@1 2504
duke@1 2505 /**
duke@1 2506 * Insert a type in a closure
duke@1 2507 */
duke@1 2508 public List<Type> insert(List<Type> cl, Type t) {
duke@1 2509 if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
duke@1 2510 return cl.prepend(t);
duke@1 2511 } else if (cl.head.tsym.precedes(t.tsym, this)) {
duke@1 2512 return insert(cl.tail, t).prepend(cl.head);
duke@1 2513 } else {
duke@1 2514 return cl;
duke@1 2515 }
duke@1 2516 }
duke@1 2517
duke@1 2518 /**
duke@1 2519 * Form the union of two closures
duke@1 2520 */
duke@1 2521 public List<Type> union(List<Type> cl1, List<Type> cl2) {
duke@1 2522 if (cl1.isEmpty()) {
duke@1 2523 return cl2;
duke@1 2524 } else if (cl2.isEmpty()) {
duke@1 2525 return cl1;
duke@1 2526 } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
duke@1 2527 return union(cl1.tail, cl2).prepend(cl1.head);
duke@1 2528 } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
duke@1 2529 return union(cl1, cl2.tail).prepend(cl2.head);
duke@1 2530 } else {
duke@1 2531 return union(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2532 }
duke@1 2533 }
duke@1 2534
duke@1 2535 /**
duke@1 2536 * Intersect two closures
duke@1 2537 */
duke@1 2538 public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
duke@1 2539 if (cl1 == cl2)
duke@1 2540 return cl1;
duke@1 2541 if (cl1.isEmpty() || cl2.isEmpty())
duke@1 2542 return List.nil();
duke@1 2543 if (cl1.head.tsym.precedes(cl2.head.tsym, this))
duke@1 2544 return intersect(cl1.tail, cl2);
duke@1 2545 if (cl2.head.tsym.precedes(cl1.head.tsym, this))
duke@1 2546 return intersect(cl1, cl2.tail);
duke@1 2547 if (isSameType(cl1.head, cl2.head))
duke@1 2548 return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2549 if (cl1.head.tsym == cl2.head.tsym &&
duke@1 2550 cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
duke@1 2551 if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
duke@1 2552 Type merge = merge(cl1.head,cl2.head);
duke@1 2553 return intersect(cl1.tail, cl2.tail).prepend(merge);
duke@1 2554 }
duke@1 2555 if (cl1.head.isRaw() || cl2.head.isRaw())
duke@1 2556 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
duke@1 2557 }
duke@1 2558 return intersect(cl1.tail, cl2.tail);
duke@1 2559 }
duke@1 2560 // where
duke@1 2561 class TypePair {
duke@1 2562 final Type t1;
duke@1 2563 final Type t2;
duke@1 2564 TypePair(Type t1, Type t2) {
duke@1 2565 this.t1 = t1;
duke@1 2566 this.t2 = t2;
duke@1 2567 }
duke@1 2568 @Override
duke@1 2569 public int hashCode() {
jjg@507 2570 return 127 * Types.hashCode(t1) + Types.hashCode(t2);
duke@1 2571 }
duke@1 2572 @Override
duke@1 2573 public boolean equals(Object obj) {
duke@1 2574 if (!(obj instanceof TypePair))
duke@1 2575 return false;
duke@1 2576 TypePair typePair = (TypePair)obj;
duke@1 2577 return isSameType(t1, typePair.t1)
duke@1 2578 && isSameType(t2, typePair.t2);
duke@1 2579 }
duke@1 2580 }
duke@1 2581 Set<TypePair> mergeCache = new HashSet<TypePair>();
duke@1 2582 private Type merge(Type c1, Type c2) {
duke@1 2583 ClassType class1 = (ClassType) c1;
duke@1 2584 List<Type> act1 = class1.getTypeArguments();
duke@1 2585 ClassType class2 = (ClassType) c2;
duke@1 2586 List<Type> act2 = class2.getTypeArguments();
duke@1 2587 ListBuffer<Type> merged = new ListBuffer<Type>();
duke@1 2588 List<Type> typarams = class1.tsym.type.getTypeArguments();
duke@1 2589
duke@1 2590 while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
duke@1 2591 if (containsType(act1.head, act2.head)) {
duke@1 2592 merged.append(act1.head);
duke@1 2593 } else if (containsType(act2.head, act1.head)) {
duke@1 2594 merged.append(act2.head);
duke@1 2595 } else {
duke@1 2596 TypePair pair = new TypePair(c1, c2);
duke@1 2597 Type m;
duke@1 2598 if (mergeCache.add(pair)) {
duke@1 2599 m = new WildcardType(lub(upperBound(act1.head),
duke@1 2600 upperBound(act2.head)),
duke@1 2601 BoundKind.EXTENDS,
duke@1 2602 syms.boundClass);
duke@1 2603 mergeCache.remove(pair);
duke@1 2604 } else {
duke@1 2605 m = new WildcardType(syms.objectType,
duke@1 2606 BoundKind.UNBOUND,
duke@1 2607 syms.boundClass);
duke@1 2608 }
duke@1 2609 merged.append(m.withTypeVar(typarams.head));
duke@1 2610 }
duke@1 2611 act1 = act1.tail;
duke@1 2612 act2 = act2.tail;
duke@1 2613 typarams = typarams.tail;
duke@1 2614 }
duke@1 2615 assert(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
duke@1 2616 return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
duke@1 2617 }
duke@1 2618
duke@1 2619 /**
duke@1 2620 * Return the minimum type of a closure, a compound type if no
duke@1 2621 * unique minimum exists.
duke@1 2622 */
duke@1 2623 private Type compoundMin(List<Type> cl) {
duke@1 2624 if (cl.isEmpty()) return syms.objectType;
duke@1 2625 List<Type> compound = closureMin(cl);
duke@1 2626 if (compound.isEmpty())
duke@1 2627 return null;
duke@1 2628 else if (compound.tail.isEmpty())
duke@1 2629 return compound.head;
duke@1 2630 else
duke@1 2631 return makeCompoundType(compound);
duke@1 2632 }
duke@1 2633
duke@1 2634 /**
duke@1 2635 * Return the minimum types of a closure, suitable for computing
duke@1 2636 * compoundMin or glb.
duke@1 2637 */
duke@1 2638 private List<Type> closureMin(List<Type> cl) {
duke@1 2639 ListBuffer<Type> classes = lb();
duke@1 2640 ListBuffer<Type> interfaces = lb();
duke@1 2641 while (!cl.isEmpty()) {
duke@1 2642 Type current = cl.head;
duke@1 2643 if (current.isInterface())
duke@1 2644 interfaces.append(current);
duke@1 2645 else
duke@1 2646 classes.append(current);
duke@1 2647 ListBuffer<Type> candidates = lb();
duke@1 2648 for (Type t : cl.tail) {
duke@1 2649 if (!isSubtypeNoCapture(current, t))
duke@1 2650 candidates.append(t);
duke@1 2651 }
duke@1 2652 cl = candidates.toList();
duke@1 2653 }
duke@1 2654 return classes.appendList(interfaces).toList();
duke@1 2655 }
duke@1 2656
duke@1 2657 /**
duke@1 2658 * Return the least upper bound of pair of types. if the lub does
duke@1 2659 * not exist return null.
duke@1 2660 */
duke@1 2661 public Type lub(Type t1, Type t2) {
duke@1 2662 return lub(List.of(t1, t2));
duke@1 2663 }
duke@1 2664
duke@1 2665 /**
duke@1 2666 * Return the least upper bound (lub) of set of types. If the lub
duke@1 2667 * does not exist return the type of null (bottom).
duke@1 2668 */
duke@1 2669 public Type lub(List<Type> ts) {
duke@1 2670 final int ARRAY_BOUND = 1;
duke@1 2671 final int CLASS_BOUND = 2;
duke@1 2672 int boundkind = 0;
duke@1 2673 for (Type t : ts) {
duke@1 2674 switch (t.tag) {
duke@1 2675 case CLASS:
duke@1 2676 boundkind |= CLASS_BOUND;
duke@1 2677 break;
duke@1 2678 case ARRAY:
duke@1 2679 boundkind |= ARRAY_BOUND;
duke@1 2680 break;
duke@1 2681 case TYPEVAR:
duke@1 2682 do {
duke@1 2683 t = t.getUpperBound();
duke@1 2684 } while (t.tag == TYPEVAR);
duke@1 2685 if (t.tag == ARRAY) {
duke@1 2686 boundkind |= ARRAY_BOUND;
duke@1 2687 } else {
duke@1 2688 boundkind |= CLASS_BOUND;
duke@1 2689 }
duke@1 2690 break;
duke@1 2691 default:
duke@1 2692 if (t.isPrimitive())
mcimadamore@5 2693 return syms.errType;
duke@1 2694 }
duke@1 2695 }
duke@1 2696 switch (boundkind) {
duke@1 2697 case 0:
duke@1 2698 return syms.botType;
duke@1 2699
duke@1 2700 case ARRAY_BOUND:
duke@1 2701 // calculate lub(A[], B[])
duke@1 2702 List<Type> elements = Type.map(ts, elemTypeFun);
duke@1 2703 for (Type t : elements) {
duke@1 2704 if (t.isPrimitive()) {
duke@1 2705 // if a primitive type is found, then return
duke@1 2706 // arraySuperType unless all the types are the
duke@1 2707 // same
duke@1 2708 Type first = ts.head;
duke@1 2709 for (Type s : ts.tail) {
duke@1 2710 if (!isSameType(first, s)) {
duke@1 2711 // lub(int[], B[]) is Cloneable & Serializable
duke@1 2712 return arraySuperType();
duke@1 2713 }
duke@1 2714 }
duke@1 2715 // all the array types are the same, return one
duke@1 2716 // lub(int[], int[]) is int[]
duke@1 2717 return first;
duke@1 2718 }
duke@1 2719 }
duke@1 2720 // lub(A[], B[]) is lub(A, B)[]
duke@1 2721 return new ArrayType(lub(elements), syms.arrayClass);
duke@1 2722
duke@1 2723 case CLASS_BOUND:
duke@1 2724 // calculate lub(A, B)
duke@1 2725 while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
duke@1 2726 ts = ts.tail;
duke@1 2727 assert !ts.isEmpty();
duke@1 2728 List<Type> cl = closure(ts.head);
duke@1 2729 for (Type t : ts.tail) {
duke@1 2730 if (t.tag == CLASS || t.tag == TYPEVAR)
duke@1 2731 cl = intersect(cl, closure(t));
duke@1 2732 }
duke@1 2733 return compoundMin(cl);
duke@1 2734
duke@1 2735 default:
duke@1 2736 // calculate lub(A, B[])
duke@1 2737 List<Type> classes = List.of(arraySuperType());
duke@1 2738 for (Type t : ts) {
duke@1 2739 if (t.tag != ARRAY) // Filter out any arrays
duke@1 2740 classes = classes.prepend(t);
duke@1 2741 }
duke@1 2742 // lub(A, B[]) is lub(A, arraySuperType)
duke@1 2743 return lub(classes);
duke@1 2744 }
duke@1 2745 }
duke@1 2746 // where
duke@1 2747 private Type arraySuperType = null;
duke@1 2748 private Type arraySuperType() {
duke@1 2749 // initialized lazily to avoid problems during compiler startup
duke@1 2750 if (arraySuperType == null) {
duke@1 2751 synchronized (this) {
duke@1 2752 if (arraySuperType == null) {
duke@1 2753 // JLS 10.8: all arrays implement Cloneable and Serializable.
duke@1 2754 arraySuperType = makeCompoundType(List.of(syms.serializableType,
duke@1 2755 syms.cloneableType),
duke@1 2756 syms.objectType);
duke@1 2757 }
duke@1 2758 }
duke@1 2759 }
duke@1 2760 return arraySuperType;
duke@1 2761 }
duke@1 2762 // </editor-fold>
duke@1 2763
duke@1 2764 // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
mcimadamore@210 2765 public Type glb(List<Type> ts) {
mcimadamore@210 2766 Type t1 = ts.head;
mcimadamore@210 2767 for (Type t2 : ts.tail) {
mcimadamore@210 2768 if (t1.isErroneous())
mcimadamore@210 2769 return t1;
mcimadamore@210 2770 t1 = glb(t1, t2);
mcimadamore@210 2771 }
mcimadamore@210 2772 return t1;
mcimadamore@210 2773 }
mcimadamore@210 2774 //where
duke@1 2775 public Type glb(Type t, Type s) {
duke@1 2776 if (s == null)
duke@1 2777 return t;
mcimadamore@753 2778 else if (t.isPrimitive() || s.isPrimitive())
mcimadamore@753 2779 return syms.errType;
duke@1 2780 else if (isSubtypeNoCapture(t, s))
duke@1 2781 return t;
duke@1 2782 else if (isSubtypeNoCapture(s, t))
duke@1 2783 return s;
duke@1 2784
duke@1 2785 List<Type> closure = union(closure(t), closure(s));
duke@1 2786 List<Type> bounds = closureMin(closure);
duke@1 2787
duke@1 2788 if (bounds.isEmpty()) { // length == 0
duke@1 2789 return syms.objectType;
duke@1 2790 } else if (bounds.tail.isEmpty()) { // length == 1
duke@1 2791 return bounds.head;
duke@1 2792 } else { // length > 1
duke@1 2793 int classCount = 0;
duke@1 2794 for (Type bound : bounds)
duke@1 2795 if (!bound.isInterface())
duke@1 2796 classCount++;
duke@1 2797 if (classCount > 1)
jjg@110 2798 return createErrorType(t);
duke@1 2799 }
duke@1 2800 return makeCompoundType(bounds);
duke@1 2801 }
duke@1 2802 // </editor-fold>
duke@1 2803
duke@1 2804 // <editor-fold defaultstate="collapsed" desc="hashCode">
duke@1 2805 /**
duke@1 2806 * Compute a hash code on a type.
duke@1 2807 */
duke@1 2808 public static int hashCode(Type t) {
duke@1 2809 return hashCode.visit(t);
duke@1 2810 }
duke@1 2811 // where
duke@1 2812 private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
duke@1 2813
duke@1 2814 public Integer visitType(Type t, Void ignored) {
duke@1 2815 return t.tag;
duke@1 2816 }
duke@1 2817
duke@1 2818 @Override
duke@1 2819 public Integer visitClassType(ClassType t, Void ignored) {
duke@1 2820 int result = visit(t.getEnclosingType());
duke@1 2821 result *= 127;
duke@1 2822 result += t.tsym.flatName().hashCode();
duke@1 2823 for (Type s : t.getTypeArguments()) {
duke@1 2824 result *= 127;
duke@1 2825 result += visit(s);
duke@1 2826 }
duke@1 2827 return result;
duke@1 2828 }
duke@1 2829
duke@1 2830 @Override
duke@1 2831 public Integer visitWildcardType(WildcardType t, Void ignored) {
duke@1 2832 int result = t.kind.hashCode();
duke@1 2833 if (t.type != null) {
duke@1 2834 result *= 127;
duke@1 2835 result += visit(t.type);
duke@1 2836 }
duke@1 2837 return result;
duke@1 2838 }
duke@1 2839
duke@1 2840 @Override
duke@1 2841 public Integer visitArrayType(ArrayType t, Void ignored) {
duke@1 2842 return visit(t.elemtype) + 12;
duke@1 2843 }
duke@1 2844
duke@1 2845 @Override
duke@1 2846 public Integer visitTypeVar(TypeVar t, Void ignored) {
duke@1 2847 return System.identityHashCode(t.tsym);
duke@1 2848 }
duke@1 2849
duke@1 2850 @Override
duke@1 2851 public Integer visitUndetVar(UndetVar t, Void ignored) {
duke@1 2852 return System.identityHashCode(t);
duke@1 2853 }
duke@1 2854
duke@1 2855 @Override
duke@1 2856 public Integer visitErrorType(ErrorType t, Void ignored) {
duke@1 2857 return 0;
duke@1 2858 }
duke@1 2859 };
duke@1 2860 // </editor-fold>
duke@1 2861
duke@1 2862 // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
duke@1 2863 /**
duke@1 2864 * Does t have a result that is a subtype of the result type of s,
duke@1 2865 * suitable for covariant returns? It is assumed that both types
duke@1 2866 * are (possibly polymorphic) method types. Monomorphic method
duke@1 2867 * types are handled in the obvious way. Polymorphic method types
duke@1 2868 * require renaming all type variables of one to corresponding
duke@1 2869 * type variables in the other, where correspondence is by
duke@1 2870 * position in the type parameter list. */
duke@1 2871 public boolean resultSubtype(Type t, Type s, Warner warner) {
duke@1 2872 List<Type> tvars = t.getTypeArguments();
duke@1 2873 List<Type> svars = s.getTypeArguments();
duke@1 2874 Type tres = t.getReturnType();
duke@1 2875 Type sres = subst(s.getReturnType(), svars, tvars);
duke@1 2876 return covariantReturnType(tres, sres, warner);
duke@1 2877 }
duke@1 2878
duke@1 2879 /**
duke@1 2880 * Return-Type-Substitutable.
duke@1 2881 * @see <a href="http://java.sun.com/docs/books/jls/">The Java
duke@1 2882 * Language Specification, Third Ed. (8.4.5)</a>
duke@1 2883 */
duke@1 2884 public boolean returnTypeSubstitutable(Type r1, Type r2) {
duke@1 2885 if (hasSameArgs(r1, r2))
tbell@202 2886 return resultSubtype(r1, r2, Warner.noWarnings);
duke@1 2887 else
duke@1 2888 return covariantReturnType(r1.getReturnType(),
tbell@202 2889 erasure(r2.getReturnType()),
tbell@202 2890 Warner.noWarnings);
tbell@202 2891 }
tbell@202 2892
tbell@202 2893 public boolean returnTypeSubstitutable(Type r1,
tbell@202 2894 Type r2, Type r2res,
tbell@202 2895 Warner warner) {
tbell@202 2896 if (isSameType(r1.getReturnType(), r2res))
tbell@202 2897 return true;
tbell@202 2898 if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
tbell@202 2899 return false;
tbell@202 2900
tbell@202 2901 if (hasSameArgs(r1, r2))
tbell@202 2902 return covariantReturnType(r1.getReturnType(), r2res, warner);
tbell@202 2903 if (!source.allowCovariantReturns())
tbell@202 2904 return false;
tbell@202 2905 if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
tbell@202 2906 return true;
tbell@202 2907 if (!isSubtype(r1.getReturnType(), erasure(r2res)))
tbell@202 2908 return false;
tbell@202 2909 warner.warnUnchecked();
tbell@202 2910 return true;
duke@1 2911 }
duke@1 2912
duke@1 2913 /**
duke@1 2914 * Is t an appropriate return type in an overrider for a
duke@1 2915 * method that returns s?
duke@1 2916 */
duke@1 2917 public boolean covariantReturnType(Type t, Type s, Warner warner) {
tbell@202 2918 return
tbell@202 2919 isSameType(t, s) ||
tbell@202 2920 source.allowCovariantReturns() &&
duke@1 2921 !t.isPrimitive() &&
tbell@202 2922 !s.isPrimitive() &&
tbell@202 2923 isAssignable(t, s, warner);
duke@1 2924 }
duke@1 2925 // </editor-fold>
duke@1 2926
duke@1 2927 // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
duke@1 2928 /**
duke@1 2929 * Return the class that boxes the given primitive.
duke@1 2930 */
duke@1 2931 public ClassSymbol boxedClass(Type t) {
duke@1 2932 return reader.enterClass(syms.boxedName[t.tag]);
duke@1 2933 }
duke@1 2934
duke@1 2935 /**
mcimadamore@753 2936 * Return the boxed type if 't' is primitive, otherwise return 't' itself.
mcimadamore@753 2937 */
mcimadamore@753 2938 public Type boxedTypeOrType(Type t) {
mcimadamore@753 2939 return t.isPrimitive() ?
mcimadamore@753 2940 boxedClass(t).type :
mcimadamore@753 2941 t;
mcimadamore@753 2942 }
mcimadamore@753 2943
mcimadamore@753 2944 /**
duke@1 2945 * Return the primitive type corresponding to a boxed type.
duke@1 2946 */
duke@1 2947 public Type unboxedType(Type t) {
duke@1 2948 if (allowBoxing) {
duke@1 2949 for (int i=0; i<syms.boxedName.length; i++) {
duke@1 2950 Name box = syms.boxedName[i];
duke@1 2951 if (box != null &&
duke@1 2952 asSuper(t, reader.enterClass(box)) != null)
duke@1 2953 return syms.typeOfTag[i];
duke@1 2954 }
duke@1 2955 }
duke@1 2956 return Type.noType;
duke@1 2957 }
duke@1 2958 // </editor-fold>
duke@1 2959
duke@1 2960 // <editor-fold defaultstate="collapsed" desc="Capture conversion">
duke@1 2961 /*
duke@1 2962 * JLS 3rd Ed. 5.1.10 Capture Conversion:
duke@1 2963 *
duke@1 2964 * Let G name a generic type declaration with n formal type
duke@1 2965 * parameters A1 ... An with corresponding bounds U1 ... Un. There
duke@1 2966 * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
duke@1 2967 * where, for 1 <= i <= n:
duke@1 2968 *
duke@1 2969 * + If Ti is a wildcard type argument (4.5.1) of the form ? then
duke@1 2970 * Si is a fresh type variable whose upper bound is
duke@1 2971 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
duke@1 2972 * type.
duke@1 2973 *
duke@1 2974 * + If Ti is a wildcard type argument of the form ? extends Bi,
duke@1 2975 * then Si is a fresh type variable whose upper bound is
duke@1 2976 * glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
duke@1 2977 * the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
duke@1 2978 * a compile-time error if for any two classes (not interfaces)
duke@1 2979 * Vi and Vj,Vi is not a subclass of Vj or vice versa.
duke@1 2980 *
duke@1 2981 * + If Ti is a wildcard type argument of the form ? super Bi,
duke@1 2982 * then Si is a fresh type variable whose upper bound is
duke@1 2983 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
duke@1 2984 *
duke@1 2985 * + Otherwise, Si = Ti.
duke@1 2986 *
duke@1 2987 * Capture conversion on any type other than a parameterized type
duke@1 2988 * (4.5) acts as an identity conversion (5.1.1). Capture
duke@1 2989 * conversions never require a special action at run time and
duke@1 2990 * therefore never throw an exception at run time.
duke@1 2991 *
duke@1 2992 * Capture conversion is not applied recursively.
duke@1 2993 */
duke@1 2994 /**
duke@1 2995 * Capture conversion as specified by JLS 3rd Ed.
duke@1 2996 */
mcimadamore@299 2997
mcimadamore@299 2998 public List<Type> capture(List<Type> ts) {
mcimadamore@299 2999 List<Type> buf = List.nil();
mcimadamore@299 3000 for (Type t : ts) {
mcimadamore@299 3001 buf = buf.prepend(capture(t));
mcimadamore@299 3002 }
mcimadamore@299 3003 return buf.reverse();
mcimadamore@299 3004 }
duke@1 3005 public Type capture(Type t) {
duke@1 3006 if (t.tag != CLASS)
duke@1 3007 return t;
mcimadamore@637 3008 if (t.getEnclosingType() != Type.noType) {
mcimadamore@637 3009 Type capturedEncl = capture(t.getEnclosingType());
mcimadamore@637 3010 if (capturedEncl != t.getEnclosingType()) {
mcimadamore@637 3011 Type type1 = memberType(capturedEncl, t.tsym);
mcimadamore@637 3012 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
mcimadamore@637 3013 }
mcimadamore@637 3014 }
duke@1 3015 ClassType cls = (ClassType)t;
duke@1 3016 if (cls.isRaw() || !cls.isParameterized())
duke@1 3017 return cls;
duke@1 3018
duke@1 3019 ClassType G = (ClassType)cls.asElement().asType();
duke@1 3020 List<Type> A = G.getTypeArguments();
duke@1 3021 List<Type> T = cls.getTypeArguments();
duke@1 3022 List<Type> S = freshTypeVariables(T);
duke@1 3023
duke@1 3024 List<Type> currentA = A;
duke@1 3025 List<Type> currentT = T;
duke@1 3026 List<Type> currentS = S;
duke@1 3027 boolean captured = false;
duke@1 3028 while (!currentA.isEmpty() &&
duke@1 3029 !currentT.isEmpty() &&
duke@1 3030 !currentS.isEmpty()) {
duke@1 3031 if (currentS.head != currentT.head) {
duke@1 3032 captured = true;
duke@1 3033 WildcardType Ti = (WildcardType)currentT.head;
duke@1 3034 Type Ui = currentA.head.getUpperBound();
duke@1 3035 CapturedType Si = (CapturedType)currentS.head;
duke@1 3036 if (Ui == null)
duke@1 3037 Ui = syms.objectType;
duke@1 3038 switch (Ti.kind) {
duke@1 3039 case UNBOUND:
duke@1 3040 Si.bound = subst(Ui, A, S);
duke@1 3041 Si.lower = syms.botType;
duke@1 3042 break;
duke@1 3043 case EXTENDS:
duke@1 3044 Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
duke@1 3045 Si.lower = syms.botType;
duke@1 3046 break;
duke@1 3047 case SUPER:
duke@1 3048 Si.bound = subst(Ui, A, S);
duke@1 3049 Si.lower = Ti.getSuperBound();
duke@1 3050 break;
duke@1 3051 }
duke@1 3052 if (Si.bound == Si.lower)
duke@1 3053 currentS.head = Si.bound;
duke@1 3054 }
duke@1 3055 currentA = currentA.tail;
duke@1 3056 currentT = currentT.tail;
duke@1 3057 currentS = currentS.tail;
duke@1 3058 }
duke@1 3059 if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
duke@1 3060 return erasure(t); // some "rare" type involved
duke@1 3061
duke@1 3062 if (captured)
duke@1 3063 return new ClassType(cls.getEnclosingType(), S, cls.tsym);
duke@1 3064 else
duke@1 3065 return t;
duke@1 3066 }
duke@1 3067 // where
mcimadamore@238 3068 public List<Type> freshTypeVariables(List<Type> types) {
duke@1 3069 ListBuffer<Type> result = lb();
duke@1 3070 for (Type t : types) {
duke@1 3071 if (t.tag == WILDCARD) {
duke@1 3072 Type bound = ((WildcardType)t).getExtendsBound();
duke@1 3073 if (bound == null)
duke@1 3074 bound = syms.objectType;
duke@1 3075 result.append(new CapturedType(capturedName,
duke@1 3076 syms.noSymbol,
duke@1 3077 bound,
duke@1 3078 syms.botType,
duke@1 3079 (WildcardType)t));
duke@1 3080 } else {
duke@1 3081 result.append(t);
duke@1 3082 }
duke@1 3083 }
duke@1 3084 return result.toList();
duke@1 3085 }
duke@1 3086 // </editor-fold>
duke@1 3087
duke@1 3088 // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
duke@1 3089 private List<Type> upperBounds(List<Type> ss) {
duke@1 3090 if (ss.isEmpty()) return ss;
duke@1 3091 Type head = upperBound(ss.head);
duke@1 3092 List<Type> tail = upperBounds(ss.tail);
duke@1 3093 if (head != ss.head || tail != ss.tail)
duke@1 3094 return tail.prepend(head);
duke@1 3095 else
duke@1 3096 return ss;
duke@1 3097 }
duke@1 3098
duke@1 3099 private boolean sideCast(Type from, Type to, Warner warn) {
duke@1 3100 // We are casting from type $from$ to type $to$, which are
duke@1 3101 // non-final unrelated types. This method
duke@1 3102 // tries to reject a cast by transferring type parameters
duke@1 3103 // from $to$ to $from$ by common superinterfaces.
duke@1 3104 boolean reverse = false;
duke@1 3105 Type target = to;
duke@1 3106 if ((to.tsym.flags() & INTERFACE) == 0) {
duke@1 3107 assert (from.tsym.flags() & INTERFACE) != 0;
duke@1 3108 reverse = true;
duke@1 3109 to = from;
duke@1 3110 from = target;
duke@1 3111 }
duke@1 3112 List<Type> commonSupers = superClosure(to, erasure(from));
duke@1 3113 boolean giveWarning = commonSupers.isEmpty();
duke@1 3114 // The arguments to the supers could be unified here to
duke@1 3115 // get a more accurate analysis
duke@1 3116 while (commonSupers.nonEmpty()) {
duke@1 3117 Type t1 = asSuper(from, commonSupers.head.tsym);
duke@1 3118 Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
duke@1 3119 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3120 return false;
duke@1 3121 giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
duke@1 3122 commonSupers = commonSupers.tail;
duke@1 3123 }
mcimadamore@187 3124 if (giveWarning && !isReifiable(reverse ? from : to))
duke@1 3125 warn.warnUnchecked();
duke@1 3126 if (!source.allowCovariantReturns())
duke@1 3127 // reject if there is a common method signature with
duke@1 3128 // incompatible return types.
duke@1 3129 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3130 return true;
duke@1 3131 }
duke@1 3132
duke@1 3133 private boolean sideCastFinal(Type from, Type to, Warner warn) {
duke@1 3134 // We are casting from type $from$ to type $to$, which are
duke@1 3135 // unrelated types one of which is final and the other of
duke@1 3136 // which is an interface. This method
duke@1 3137 // tries to reject a cast by transferring type parameters
duke@1 3138 // from the final class to the interface.
duke@1 3139 boolean reverse = false;
duke@1 3140 Type target = to;
duke@1 3141 if ((to.tsym.flags() & INTERFACE) == 0) {
duke@1 3142 assert (from.tsym.flags() & INTERFACE) != 0;
duke@1 3143 reverse = true;
duke@1 3144 to = from;
duke@1 3145 from = target;
duke@1 3146 }
duke@1 3147 assert (from.tsym.flags() & FINAL) != 0;
duke@1 3148 Type t1 = asSuper(from, to.tsym);
duke@1 3149 if (t1 == null) return false;
duke@1 3150 Type t2 = to;
duke@1 3151 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3152 return false;
duke@1 3153 if (!source.allowCovariantReturns())
duke@1 3154 // reject if there is a common method signature with
duke@1 3155 // incompatible return types.
duke@1 3156 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3157 if (!isReifiable(target) &&
duke@1 3158 (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
duke@1 3159 warn.warnUnchecked();
duke@1 3160 return true;
duke@1 3161 }
duke@1 3162
duke@1 3163 private boolean giveWarning(Type from, Type to) {
mcimadamore@235 3164 Type subFrom = asSub(from, to.tsym);
mcimadamore@235 3165 return to.isParameterized() &&
mcimadamore@235 3166 (!(isUnbounded(to) ||
mcimadamore@235 3167 isSubtype(from, to) ||
mcimadamore@736 3168 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
duke@1 3169 }
duke@1 3170
duke@1 3171 private List<Type> superClosure(Type t, Type s) {
duke@1 3172 List<Type> cl = List.nil();
duke@1 3173 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 3174 if (isSubtype(s, erasure(l.head))) {
duke@1 3175 cl = insert(cl, l.head);
duke@1 3176 } else {
duke@1 3177 cl = union(cl, superClosure(l.head, s));
duke@1 3178 }
duke@1 3179 }
duke@1 3180 return cl;
duke@1 3181 }
duke@1 3182
duke@1 3183 private boolean containsTypeEquivalent(Type t, Type s) {
duke@1 3184 return
duke@1 3185 isSameType(t, s) || // shortcut
duke@1 3186 containsType(t, s) && containsType(s, t);
duke@1 3187 }
duke@1 3188
mcimadamore@138 3189 // <editor-fold defaultstate="collapsed" desc="adapt">
duke@1 3190 /**
duke@1 3191 * Adapt a type by computing a substitution which maps a source
duke@1 3192 * type to a target type.
duke@1 3193 *
duke@1 3194 * @param source the source type
duke@1 3195 * @param target the target type
duke@1 3196 * @param from the type variables of the computed substitution
duke@1 3197 * @param to the types of the computed substitution.
duke@1 3198 */
duke@1 3199 public void adapt(Type source,
duke@1 3200 Type target,
duke@1 3201 ListBuffer<Type> from,
duke@1 3202 ListBuffer<Type> to) throws AdaptFailure {
mcimadamore@138 3203 new Adapter(from, to).adapt(source, target);
mcimadamore@138 3204 }
mcimadamore@138 3205
mcimadamore@138 3206 class Adapter extends SimpleVisitor<Void, Type> {
mcimadamore@138 3207
mcimadamore@138 3208 ListBuffer<Type> from;
mcimadamore@138 3209 ListBuffer<Type> to;
mcimadamore@138 3210 Map<Symbol,Type> mapping;
mcimadamore@138 3211
mcimadamore@138 3212 Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
mcimadamore@138 3213 this.from = from;
mcimadamore@138 3214 this.to = to;
mcimadamore@138 3215 mapping = new HashMap<Symbol,Type>();
duke@1 3216 }
mcimadamore@138 3217
mcimadamore@138 3218 public void adapt(Type source, Type target) throws AdaptFailure {
mcimadamore@138 3219 visit(source, target);
mcimadamore@138 3220 List<Type> fromList = from.toList();
mcimadamore@138 3221 List<Type> toList = to.toList();
mcimadamore@138 3222 while (!fromList.isEmpty()) {
mcimadamore@138 3223 Type val = mapping.get(fromList.head.tsym);
mcimadamore@138 3224 if (toList.head != val)
mcimadamore@138 3225 toList.head = val;
mcimadamore@138 3226 fromList = fromList.tail;
mcimadamore@138 3227 toList = toList.tail;
mcimadamore@138 3228 }
mcimadamore@138 3229 }
mcimadamore@138 3230
mcimadamore@138 3231 @Override
mcimadamore@138 3232 public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
mcimadamore@138 3233 if (target.tag == CLASS)
mcimadamore@138 3234 adaptRecursive(source.allparams(), target.allparams());
mcimadamore@138 3235 return null;
mcimadamore@138 3236 }
mcimadamore@138 3237
mcimadamore@138 3238 @Override
mcimadamore@138 3239 public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
mcimadamore@138 3240 if (target.tag == ARRAY)
mcimadamore@138 3241 adaptRecursive(elemtype(source), elemtype(target));
mcimadamore@138 3242 return null;
mcimadamore@138 3243 }
mcimadamore@138 3244
mcimadamore@138 3245 @Override
mcimadamore@138 3246 public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
mcimadamore@138 3247 if (source.isExtendsBound())
mcimadamore@138 3248 adaptRecursive(upperBound(source), upperBound(target));
mcimadamore@138 3249 else if (source.isSuperBound())
mcimadamore@138 3250 adaptRecursive(lowerBound(source), lowerBound(target));
mcimadamore@138 3251 return null;
mcimadamore@138 3252 }
mcimadamore@138 3253
mcimadamore@138 3254 @Override
mcimadamore@138 3255 public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
mcimadamore@138 3256 // Check to see if there is
mcimadamore@138 3257 // already a mapping for $source$, in which case
mcimadamore@138 3258 // the old mapping will be merged with the new
mcimadamore@138 3259 Type val = mapping.get(source.tsym);
mcimadamore@138 3260 if (val != null) {
mcimadamore@138 3261 if (val.isSuperBound() && target.isSuperBound()) {
mcimadamore@138 3262 val = isSubtype(lowerBound(val), lowerBound(target))
mcimadamore@138 3263 ? target : val;
mcimadamore@138 3264 } else if (val.isExtendsBound() && target.isExtendsBound()) {
mcimadamore@138 3265 val = isSubtype(upperBound(val), upperBound(target))
mcimadamore@138 3266 ? val : target;
mcimadamore@138 3267 } else if (!isSameType(val, target)) {
mcimadamore@138 3268 throw new AdaptFailure();
duke@1 3269 }
mcimadamore@138 3270 } else {
mcimadamore@138 3271 val = target;
mcimadamore@138 3272 from.append(source);
mcimadamore@138 3273 to.append(target);
mcimadamore@138 3274 }
mcimadamore@138 3275 mapping.put(source.tsym, val);
mcimadamore@138 3276 return null;
mcimadamore@138 3277 }
mcimadamore@138 3278
mcimadamore@138 3279 @Override
mcimadamore@138 3280 public Void visitType(Type source, Type target) {
mcimadamore@138 3281 return null;
mcimadamore@138 3282 }
mcimadamore@138 3283
mcimadamore@138 3284 private Set<TypePair> cache = new HashSet<TypePair>();
mcimadamore@138 3285
mcimadamore@138 3286 private void adaptRecursive(Type source, Type target) {
mcimadamore@138 3287 TypePair pair = new TypePair(source, target);
mcimadamore@138 3288 if (cache.add(pair)) {
mcimadamore@138 3289 try {
mcimadamore@138 3290 visit(source, target);
mcimadamore@138 3291 } finally {
mcimadamore@138 3292 cache.remove(pair);
duke@1 3293 }
duke@1 3294 }
duke@1 3295 }
mcimadamore@138 3296
mcimadamore@138 3297 private void adaptRecursive(List<Type> source, List<Type> target) {
mcimadamore@138 3298 if (source.length() == target.length()) {
mcimadamore@138 3299 while (source.nonEmpty()) {
mcimadamore@138 3300 adaptRecursive(source.head, target.head);
mcimadamore@138 3301 source = source.tail;
mcimadamore@138 3302 target = target.tail;
mcimadamore@138 3303 }
duke@1 3304 }
duke@1 3305 }
duke@1 3306 }
duke@1 3307
mcimadamore@138 3308 public static class AdaptFailure extends RuntimeException {
mcimadamore@138 3309 static final long serialVersionUID = -7490231548272701566L;
mcimadamore@138 3310 }
mcimadamore@138 3311
duke@1 3312 private void adaptSelf(Type t,
duke@1 3313 ListBuffer<Type> from,
duke@1 3314 ListBuffer<Type> to) {
duke@1 3315 try {
duke@1 3316 //if (t.tsym.type != t)
duke@1 3317 adapt(t.tsym.type, t, from, to);
duke@1 3318 } catch (AdaptFailure ex) {
duke@1 3319 // Adapt should never fail calculating a mapping from
duke@1 3320 // t.tsym.type to t as there can be no merge problem.
duke@1 3321 throw new AssertionError(ex);
duke@1 3322 }
duke@1 3323 }
mcimadamore@138 3324 // </editor-fold>
duke@1 3325
duke@1 3326 /**
duke@1 3327 * Rewrite all type variables (universal quantifiers) in the given
duke@1 3328 * type to wildcards (existential quantifiers). This is used to
duke@1 3329 * determine if a cast is allowed. For example, if high is true
duke@1 3330 * and {@code T <: Number}, then {@code List<T>} is rewritten to
duke@1 3331 * {@code List<? extends Number>}. Since {@code List<Integer> <:
duke@1 3332 * List<? extends Number>} a {@code List<T>} can be cast to {@code
duke@1 3333 * List<Integer>} with a warning.
duke@1 3334 * @param t a type
duke@1 3335 * @param high if true return an upper bound; otherwise a lower
duke@1 3336 * bound
duke@1 3337 * @param rewriteTypeVars only rewrite captured wildcards if false;
duke@1 3338 * otherwise rewrite all type variables
duke@1 3339 * @return the type rewritten with wildcards (existential
duke@1 3340 * quantifiers) only
duke@1 3341 */
duke@1 3342 private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
mcimadamore@640 3343 return new Rewriter(high, rewriteTypeVars).visit(t);
mcimadamore@157 3344 }
mcimadamore@157 3345
mcimadamore@157 3346 class Rewriter extends UnaryVisitor<Type> {
mcimadamore@157 3347
mcimadamore@157 3348 boolean high;
mcimadamore@157 3349 boolean rewriteTypeVars;
mcimadamore@157 3350
mcimadamore@157 3351 Rewriter(boolean high, boolean rewriteTypeVars) {
mcimadamore@157 3352 this.high = high;
mcimadamore@157 3353 this.rewriteTypeVars = rewriteTypeVars;
mcimadamore@157 3354 }
mcimadamore@157 3355
mcimadamore@640 3356 @Override
mcimadamore@640 3357 public Type visitClassType(ClassType t, Void s) {
mcimadamore@157 3358 ListBuffer<Type> rewritten = new ListBuffer<Type>();
mcimadamore@157 3359 boolean changed = false;
mcimadamore@640 3360 for (Type arg : t.allparams()) {
mcimadamore@157 3361 Type bound = visit(arg);
mcimadamore@157 3362 if (arg != bound) {
mcimadamore@157 3363 changed = true;
mcimadamore@157 3364 }
mcimadamore@157 3365 rewritten.append(bound);
duke@1 3366 }
mcimadamore@157 3367 if (changed)
mcimadamore@640 3368 return subst(t.tsym.type,
mcimadamore@640 3369 t.tsym.type.allparams(),
mcimadamore@640 3370 rewritten.toList());
mcimadamore@157 3371 else
mcimadamore@157 3372 return t;
duke@1 3373 }
mcimadamore@157 3374
mcimadamore@157 3375 public Type visitType(Type t, Void s) {
mcimadamore@157 3376 return high ? upperBound(t) : lowerBound(t);
mcimadamore@157 3377 }
mcimadamore@157 3378
mcimadamore@157 3379 @Override
mcimadamore@157 3380 public Type visitCapturedType(CapturedType t, Void s) {
mcimadamore@640 3381 Type bound = visitWildcardType(t.wildcard, null);
mcimadamore@640 3382 return (bound.contains(t)) ?
mcimadamore@779 3383 erasure(bound) :
mcimadamore@779 3384 bound;
mcimadamore@157 3385 }
mcimadamore@157 3386
mcimadamore@157 3387 @Override
mcimadamore@157 3388 public Type visitTypeVar(TypeVar t, Void s) {
mcimadamore@640 3389 if (rewriteTypeVars) {
mcimadamore@640 3390 Type bound = high ?
mcimadamore@640 3391 (t.bound.contains(t) ?
mcimadamore@779 3392 erasure(t.bound) :
mcimadamore@640 3393 visit(t.bound)) :
mcimadamore@640 3394 syms.botType;
mcimadamore@640 3395 return rewriteAsWildcardType(bound, t);
mcimadamore@640 3396 }
mcimadamore@157 3397 else
mcimadamore@157 3398 return t;
mcimadamore@157 3399 }
mcimadamore@157 3400
mcimadamore@157 3401 @Override
mcimadamore@157 3402 public Type visitWildcardType(WildcardType t, Void s) {
mcimadamore@157 3403 Type bound = high ? t.getExtendsBound() :
mcimadamore@157 3404 t.getSuperBound();
mcimadamore@157 3405 if (bound == null)
mcimadamore@640 3406 bound = high ? syms.objectType : syms.botType;
mcimadamore@640 3407 return rewriteAsWildcardType(visit(bound), t.bound);
mcimadamore@640 3408 }
mcimadamore@640 3409
mcimadamore@640 3410 private Type rewriteAsWildcardType(Type bound, TypeVar formal) {
mcimadamore@640 3411 return high ?
mcimadamore@640 3412 makeExtendsWildcard(B(bound), formal) :
mcimadamore@640 3413 makeSuperWildcard(B(bound), formal);
mcimadamore@640 3414 }
mcimadamore@640 3415
mcimadamore@640 3416 Type B(Type t) {
mcimadamore@640 3417 while (t.tag == WILDCARD) {
mcimadamore@640 3418 WildcardType w = (WildcardType)t;
mcimadamore@640 3419 t = high ?
mcimadamore@640 3420 w.getExtendsBound() :
mcimadamore@640 3421 w.getSuperBound();
mcimadamore@640 3422 if (t == null) {
mcimadamore@640 3423 t = high ? syms.objectType : syms.botType;
mcimadamore@640 3424 }
mcimadamore@640 3425 }
mcimadamore@640 3426 return t;
mcimadamore@157 3427 }
duke@1 3428 }
duke@1 3429
mcimadamore@640 3430
duke@1 3431 /**
duke@1 3432 * Create a wildcard with the given upper (extends) bound; create
duke@1 3433 * an unbounded wildcard if bound is Object.
duke@1 3434 *
duke@1 3435 * @param bound the upper bound
duke@1 3436 * @param formal the formal type parameter that will be
duke@1 3437 * substituted by the wildcard
duke@1 3438 */
duke@1 3439 private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
duke@1 3440 if (bound == syms.objectType) {
duke@1 3441 return new WildcardType(syms.objectType,
duke@1 3442 BoundKind.UNBOUND,
duke@1 3443 syms.boundClass,
duke@1 3444 formal);
duke@1 3445 } else {
duke@1 3446 return new WildcardType(bound,
duke@1 3447 BoundKind.EXTENDS,
duke@1 3448 syms.boundClass,
duke@1 3449 formal);
duke@1 3450 }
duke@1 3451 }
duke@1 3452
duke@1 3453 /**
duke@1 3454 * Create a wildcard with the given lower (super) bound; create an
duke@1 3455 * unbounded wildcard if bound is bottom (type of {@code null}).
duke@1 3456 *
duke@1 3457 * @param bound the lower bound
duke@1 3458 * @param formal the formal type parameter that will be
duke@1 3459 * substituted by the wildcard
duke@1 3460 */
duke@1 3461 private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
duke@1 3462 if (bound.tag == BOT) {
duke@1 3463 return new WildcardType(syms.objectType,
duke@1 3464 BoundKind.UNBOUND,
duke@1 3465 syms.boundClass,
duke@1 3466 formal);
duke@1 3467 } else {
duke@1 3468 return new WildcardType(bound,
duke@1 3469 BoundKind.SUPER,
duke@1 3470 syms.boundClass,
duke@1 3471 formal);
duke@1 3472 }
duke@1 3473 }
duke@1 3474
duke@1 3475 /**
duke@1 3476 * A wrapper for a type that allows use in sets.
duke@1 3477 */
duke@1 3478 class SingletonType {
duke@1 3479 final Type t;
duke@1 3480 SingletonType(Type t) {
duke@1 3481 this.t = t;
duke@1 3482 }
duke@1 3483 public int hashCode() {
jjg@507 3484 return Types.hashCode(t);
duke@1 3485 }
duke@1 3486 public boolean equals(Object obj) {
duke@1 3487 return (obj instanceof SingletonType) &&
duke@1 3488 isSameType(t, ((SingletonType)obj).t);
duke@1 3489 }
duke@1 3490 public String toString() {
duke@1 3491 return t.toString();
duke@1 3492 }
duke@1 3493 }
duke@1 3494 // </editor-fold>
duke@1 3495
duke@1 3496 // <editor-fold defaultstate="collapsed" desc="Visitors">
duke@1 3497 /**
duke@1 3498 * A default visitor for types. All visitor methods except
duke@1 3499 * visitType are implemented by delegating to visitType. Concrete
duke@1 3500 * subclasses must provide an implementation of visitType and can
duke@1 3501 * override other methods as needed.
duke@1 3502 *
duke@1 3503 * @param <R> the return type of the operation implemented by this
duke@1 3504 * visitor; use Void if no return type is needed.
duke@1 3505 * @param <S> the type of the second argument (the first being the
duke@1 3506 * type itself) of the operation implemented by this visitor; use
duke@1 3507 * Void if a second argument is not needed.
duke@1 3508 */
duke@1 3509 public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
duke@1 3510 final public R visit(Type t, S s) { return t.accept(this, s); }
duke@1 3511 public R visitClassType(ClassType t, S s) { return visitType(t, s); }
duke@1 3512 public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
duke@1 3513 public R visitArrayType(ArrayType t, S s) { return visitType(t, s); }
duke@1 3514 public R visitMethodType(MethodType t, S s) { return visitType(t, s); }
duke@1 3515 public R visitPackageType(PackageType t, S s) { return visitType(t, s); }
duke@1 3516 public R visitTypeVar(TypeVar t, S s) { return visitType(t, s); }
duke@1 3517 public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
duke@1 3518 public R visitForAll(ForAll t, S s) { return visitType(t, s); }
duke@1 3519 public R visitUndetVar(UndetVar t, S s) { return visitType(t, s); }
duke@1 3520 public R visitErrorType(ErrorType t, S s) { return visitType(t, s); }
duke@1 3521 }
duke@1 3522
duke@1 3523 /**
mcimadamore@121 3524 * A default visitor for symbols. All visitor methods except
mcimadamore@121 3525 * visitSymbol are implemented by delegating to visitSymbol. Concrete
mcimadamore@121 3526 * subclasses must provide an implementation of visitSymbol and can
mcimadamore@121 3527 * override other methods as needed.
mcimadamore@121 3528 *
mcimadamore@121 3529 * @param <R> the return type of the operation implemented by this
mcimadamore@121 3530 * visitor; use Void if no return type is needed.
mcimadamore@121 3531 * @param <S> the type of the second argument (the first being the
mcimadamore@121 3532 * symbol itself) of the operation implemented by this visitor; use
mcimadamore@121 3533 * Void if a second argument is not needed.
mcimadamore@121 3534 */
mcimadamore@121 3535 public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
mcimadamore@121 3536 final public R visit(Symbol s, S arg) { return s.accept(this, arg); }
mcimadamore@121 3537 public R visitClassSymbol(ClassSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3538 public R visitMethodSymbol(MethodSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3539 public R visitOperatorSymbol(OperatorSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3540 public R visitPackageSymbol(PackageSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3541 public R visitTypeSymbol(TypeSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3542 public R visitVarSymbol(VarSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3543 }
mcimadamore@121 3544
mcimadamore@121 3545 /**
duke@1 3546 * A <em>simple</em> visitor for types. This visitor is simple as
duke@1 3547 * captured wildcards, for-all types (generic methods), and
duke@1 3548 * undetermined type variables (part of inference) are hidden.
duke@1 3549 * Captured wildcards are hidden by treating them as type
duke@1 3550 * variables and the rest are hidden by visiting their qtypes.
duke@1 3551 *
duke@1 3552 * @param <R> the return type of the operation implemented by this
duke@1 3553 * visitor; use Void if no return type is needed.
duke@1 3554 * @param <S> the type of the second argument (the first being the
duke@1 3555 * type itself) of the operation implemented by this visitor; use
duke@1 3556 * Void if a second argument is not needed.
duke@1 3557 */
duke@1 3558 public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
duke@1 3559 @Override
duke@1 3560 public R visitCapturedType(CapturedType t, S s) {
duke@1 3561 return visitTypeVar(t, s);
duke@1 3562 }
duke@1 3563 @Override
duke@1 3564 public R visitForAll(ForAll t, S s) {
duke@1 3565 return visit(t.qtype, s);
duke@1 3566 }
duke@1 3567 @Override
duke@1 3568 public R visitUndetVar(UndetVar t, S s) {
duke@1 3569 return visit(t.qtype, s);
duke@1 3570 }
duke@1 3571 }
duke@1 3572
duke@1 3573 /**
duke@1 3574 * A plain relation on types. That is a 2-ary function on the
duke@1 3575 * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
duke@1 3576 * <!-- In plain text: Type x Type -> Boolean -->
duke@1 3577 */
duke@1 3578 public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
duke@1 3579
duke@1 3580 /**
duke@1 3581 * A convenience visitor for implementing operations that only
duke@1 3582 * require one argument (the type itself), that is, unary
duke@1 3583 * operations.
duke@1 3584 *
duke@1 3585 * @param <R> the return type of the operation implemented by this
duke@1 3586 * visitor; use Void if no return type is needed.
duke@1 3587 */
duke@1 3588 public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
duke@1 3589 final public R visit(Type t) { return t.accept(this, null); }
duke@1 3590 }
duke@1 3591
duke@1 3592 /**
duke@1 3593 * A visitor for implementing a mapping from types to types. The
duke@1 3594 * default behavior of this class is to implement the identity
duke@1 3595 * mapping (mapping a type to itself). This can be overridden in
duke@1 3596 * subclasses.
duke@1 3597 *
duke@1 3598 * @param <S> the type of the second argument (the first being the
duke@1 3599 * type itself) of this mapping; use Void if a second argument is
duke@1 3600 * not needed.
duke@1 3601 */
duke@1 3602 public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
duke@1 3603 final public Type visit(Type t) { return t.accept(this, null); }
duke@1 3604 public Type visitType(Type t, S s) { return t; }
duke@1 3605 }
duke@1 3606 // </editor-fold>
jjg@657 3607
jjg@657 3608
jjg@657 3609 // <editor-fold defaultstate="collapsed" desc="Annotation support">
jjg@657 3610
jjg@657 3611 public RetentionPolicy getRetention(Attribute.Compound a) {
jjg@657 3612 RetentionPolicy vis = RetentionPolicy.CLASS; // the default
jjg@657 3613 Attribute.Compound c = a.type.tsym.attribute(syms.retentionType.tsym);
jjg@657 3614 if (c != null) {
jjg@657 3615 Attribute value = c.member(names.value);
jjg@657 3616 if (value != null && value instanceof Attribute.Enum) {
jjg@657 3617 Name levelName = ((Attribute.Enum)value).value.name;
jjg@657 3618 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
jjg@657 3619 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
jjg@657 3620 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
jjg@657 3621 else ;// /* fail soft */ throw new AssertionError(levelName);
jjg@657 3622 }
jjg@657 3623 }
jjg@657 3624 return vis;
jjg@657 3625 }
jjg@657 3626 // </editor-fold>
duke@1 3627 }

mercurial