src/share/classes/com/sun/tools/javac/code/Types.java

Tue, 09 Oct 2012 19:31:58 -0700

author
jjg
date
Tue, 09 Oct 2012 19:31:58 -0700
changeset 1358
fc123bdeddb8
parent 1357
c75be5bc5283
child 1374
c002fdee76fd
permissions
-rw-r--r--

8000208: fix langtools javadoc comment issues
Reviewed-by: bpatel, mcimadamore

duke@1 1 /*
mcimadamore@1177 2 * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.code;
duke@1 27
mcimadamore@341 28 import java.lang.ref.SoftReference;
duke@1 29 import java.util.*;
duke@1 30
jjg@657 31 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
mcimadamore@795 32 import com.sun.tools.javac.code.Lint.LintCategory;
mcimadamore@1338 33 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
duke@1 34 import com.sun.tools.javac.comp.Check;
jjg@1357 35 import com.sun.tools.javac.jvm.ClassReader;
jjg@1357 36 import com.sun.tools.javac.util.*;
jjg@1357 37 import com.sun.tools.javac.util.List;
jjg@1357 38 import static com.sun.tools.javac.code.BoundKind.*;
jjg@1357 39 import static com.sun.tools.javac.code.Flags.*;
mcimadamore@858 40 import static com.sun.tools.javac.code.Scope.*;
jjg@1357 41 import static com.sun.tools.javac.code.Symbol.*;
duke@1 42 import static com.sun.tools.javac.code.Type.*;
duke@1 43 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 44 import static com.sun.tools.javac.util.ListBuffer.lb;
duke@1 45
duke@1 46 /**
duke@1 47 * Utility class containing various operations on types.
duke@1 48 *
duke@1 49 * <p>Unless other names are more illustrative, the following naming
duke@1 50 * conventions should be observed in this file:
duke@1 51 *
duke@1 52 * <dl>
duke@1 53 * <dt>t</dt>
duke@1 54 * <dd>If the first argument to an operation is a type, it should be named t.</dd>
duke@1 55 * <dt>s</dt>
duke@1 56 * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
duke@1 57 * <dt>ts</dt>
duke@1 58 * <dd>If an operations takes a list of types, the first should be named ts.</dd>
duke@1 59 * <dt>ss</dt>
duke@1 60 * <dd>A second list of types should be named ss.</dd>
duke@1 61 * </dl>
duke@1 62 *
jjg@581 63 * <p><b>This is NOT part of any supported API.
duke@1 64 * If you write code that depends on this, you do so at your own risk.
duke@1 65 * This code and its internal interfaces are subject to change or
duke@1 66 * deletion without notice.</b>
duke@1 67 */
duke@1 68 public class Types {
duke@1 69 protected static final Context.Key<Types> typesKey =
duke@1 70 new Context.Key<Types>();
duke@1 71
duke@1 72 final Symtab syms;
mcimadamore@136 73 final JavacMessages messages;
jjg@113 74 final Names names;
duke@1 75 final boolean allowBoxing;
jjg@984 76 final boolean allowCovariantReturns;
jjg@984 77 final boolean allowObjectToPrimitiveCast;
duke@1 78 final ClassReader reader;
duke@1 79 final Check chk;
mcimadamore@1348 80 JCDiagnostic.Factory diags;
duke@1 81 List<Warner> warnStack = List.nil();
duke@1 82 final Name capturedName;
mcimadamore@1348 83 private final FunctionDescriptorLookupError functionDescriptorLookupError;
duke@1 84
duke@1 85 // <editor-fold defaultstate="collapsed" desc="Instantiating">
duke@1 86 public static Types instance(Context context) {
duke@1 87 Types instance = context.get(typesKey);
duke@1 88 if (instance == null)
duke@1 89 instance = new Types(context);
duke@1 90 return instance;
duke@1 91 }
duke@1 92
duke@1 93 protected Types(Context context) {
duke@1 94 context.put(typesKey, this);
duke@1 95 syms = Symtab.instance(context);
jjg@113 96 names = Names.instance(context);
jjg@984 97 Source source = Source.instance(context);
jjg@984 98 allowBoxing = source.allowBoxing();
jjg@984 99 allowCovariantReturns = source.allowCovariantReturns();
jjg@984 100 allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
duke@1 101 reader = ClassReader.instance(context);
duke@1 102 chk = Check.instance(context);
duke@1 103 capturedName = names.fromString("<captured wildcard>");
mcimadamore@136 104 messages = JavacMessages.instance(context);
mcimadamore@1348 105 diags = JCDiagnostic.Factory.instance(context);
mcimadamore@1348 106 functionDescriptorLookupError = new FunctionDescriptorLookupError();
duke@1 107 }
duke@1 108 // </editor-fold>
duke@1 109
duke@1 110 // <editor-fold defaultstate="collapsed" desc="upperBound">
duke@1 111 /**
duke@1 112 * The "rvalue conversion".<br>
duke@1 113 * The upper bound of most types is the type
duke@1 114 * itself. Wildcards, on the other hand have upper
duke@1 115 * and lower bounds.
duke@1 116 * @param t a type
duke@1 117 * @return the upper bound of the given type
duke@1 118 */
duke@1 119 public Type upperBound(Type t) {
duke@1 120 return upperBound.visit(t);
duke@1 121 }
duke@1 122 // where
duke@1 123 private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
duke@1 124
duke@1 125 @Override
duke@1 126 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 127 if (t.isSuperBound())
duke@1 128 return t.bound == null ? syms.objectType : t.bound.bound;
duke@1 129 else
duke@1 130 return visit(t.type);
duke@1 131 }
duke@1 132
duke@1 133 @Override
duke@1 134 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 135 return visit(t.bound);
duke@1 136 }
duke@1 137 };
duke@1 138 // </editor-fold>
duke@1 139
duke@1 140 // <editor-fold defaultstate="collapsed" desc="lowerBound">
duke@1 141 /**
duke@1 142 * The "lvalue conversion".<br>
duke@1 143 * The lower bound of most types is the type
duke@1 144 * itself. Wildcards, on the other hand have upper
duke@1 145 * and lower bounds.
duke@1 146 * @param t a type
duke@1 147 * @return the lower bound of the given type
duke@1 148 */
duke@1 149 public Type lowerBound(Type t) {
duke@1 150 return lowerBound.visit(t);
duke@1 151 }
duke@1 152 // where
duke@1 153 private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
duke@1 154
duke@1 155 @Override
duke@1 156 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 157 return t.isExtendsBound() ? syms.botType : visit(t.type);
duke@1 158 }
duke@1 159
duke@1 160 @Override
duke@1 161 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 162 return visit(t.getLowerBound());
duke@1 163 }
duke@1 164 };
duke@1 165 // </editor-fold>
duke@1 166
duke@1 167 // <editor-fold defaultstate="collapsed" desc="isUnbounded">
duke@1 168 /**
duke@1 169 * Checks that all the arguments to a class are unbounded
duke@1 170 * wildcards or something else that doesn't make any restrictions
duke@1 171 * on the arguments. If a class isUnbounded, a raw super- or
duke@1 172 * subclass can be cast to it without a warning.
duke@1 173 * @param t a type
duke@1 174 * @return true iff the given type is unbounded or raw
duke@1 175 */
duke@1 176 public boolean isUnbounded(Type t) {
duke@1 177 return isUnbounded.visit(t);
duke@1 178 }
duke@1 179 // where
duke@1 180 private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
duke@1 181
duke@1 182 public Boolean visitType(Type t, Void ignored) {
duke@1 183 return true;
duke@1 184 }
duke@1 185
duke@1 186 @Override
duke@1 187 public Boolean visitClassType(ClassType t, Void ignored) {
duke@1 188 List<Type> parms = t.tsym.type.allparams();
duke@1 189 List<Type> args = t.allparams();
duke@1 190 while (parms.nonEmpty()) {
duke@1 191 WildcardType unb = new WildcardType(syms.objectType,
duke@1 192 BoundKind.UNBOUND,
duke@1 193 syms.boundClass,
duke@1 194 (TypeVar)parms.head);
duke@1 195 if (!containsType(args.head, unb))
duke@1 196 return false;
duke@1 197 parms = parms.tail;
duke@1 198 args = args.tail;
duke@1 199 }
duke@1 200 return true;
duke@1 201 }
duke@1 202 };
duke@1 203 // </editor-fold>
duke@1 204
duke@1 205 // <editor-fold defaultstate="collapsed" desc="asSub">
duke@1 206 /**
duke@1 207 * Return the least specific subtype of t that starts with symbol
duke@1 208 * sym. If none exists, return null. The least specific subtype
duke@1 209 * is determined as follows:
duke@1 210 *
duke@1 211 * <p>If there is exactly one parameterized instance of sym that is a
duke@1 212 * subtype of t, that parameterized instance is returned.<br>
duke@1 213 * Otherwise, if the plain type or raw type `sym' is a subtype of
duke@1 214 * type t, the type `sym' itself is returned. Otherwise, null is
duke@1 215 * returned.
duke@1 216 */
duke@1 217 public Type asSub(Type t, Symbol sym) {
duke@1 218 return asSub.visit(t, sym);
duke@1 219 }
duke@1 220 // where
duke@1 221 private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
duke@1 222
duke@1 223 public Type visitType(Type t, Symbol sym) {
duke@1 224 return null;
duke@1 225 }
duke@1 226
duke@1 227 @Override
duke@1 228 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 229 if (t.tsym == sym)
duke@1 230 return t;
duke@1 231 Type base = asSuper(sym.type, t.tsym);
duke@1 232 if (base == null)
duke@1 233 return null;
duke@1 234 ListBuffer<Type> from = new ListBuffer<Type>();
duke@1 235 ListBuffer<Type> to = new ListBuffer<Type>();
duke@1 236 try {
duke@1 237 adapt(base, t, from, to);
duke@1 238 } catch (AdaptFailure ex) {
duke@1 239 return null;
duke@1 240 }
duke@1 241 Type res = subst(sym.type, from.toList(), to.toList());
duke@1 242 if (!isSubtype(res, t))
duke@1 243 return null;
duke@1 244 ListBuffer<Type> openVars = new ListBuffer<Type>();
duke@1 245 for (List<Type> l = sym.type.allparams();
duke@1 246 l.nonEmpty(); l = l.tail)
duke@1 247 if (res.contains(l.head) && !t.contains(l.head))
duke@1 248 openVars.append(l.head);
duke@1 249 if (openVars.nonEmpty()) {
duke@1 250 if (t.isRaw()) {
duke@1 251 // The subtype of a raw type is raw
duke@1 252 res = erasure(res);
duke@1 253 } else {
duke@1 254 // Unbound type arguments default to ?
duke@1 255 List<Type> opens = openVars.toList();
duke@1 256 ListBuffer<Type> qs = new ListBuffer<Type>();
duke@1 257 for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
duke@1 258 qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
duke@1 259 }
duke@1 260 res = subst(res, opens, qs.toList());
duke@1 261 }
duke@1 262 }
duke@1 263 return res;
duke@1 264 }
duke@1 265
duke@1 266 @Override
duke@1 267 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 268 return t;
duke@1 269 }
duke@1 270 };
duke@1 271 // </editor-fold>
duke@1 272
duke@1 273 // <editor-fold defaultstate="collapsed" desc="isConvertible">
duke@1 274 /**
mcimadamore@1071 275 * Is t a subtype of or convertible via boxing/unboxing
mcimadamore@1071 276 * conversion to s?
duke@1 277 */
duke@1 278 public boolean isConvertible(Type t, Type s, Warner warn) {
mcimadamore@1071 279 if (t.tag == ERROR)
mcimadamore@1071 280 return true;
duke@1 281 boolean tPrimitive = t.isPrimitive();
duke@1 282 boolean sPrimitive = s.isPrimitive();
mcimadamore@795 283 if (tPrimitive == sPrimitive) {
duke@1 284 return isSubtypeUnchecked(t, s, warn);
mcimadamore@795 285 }
duke@1 286 if (!allowBoxing) return false;
duke@1 287 return tPrimitive
duke@1 288 ? isSubtype(boxedClass(t).type, s)
duke@1 289 : isSubtype(unboxedType(t), s);
duke@1 290 }
duke@1 291
duke@1 292 /**
duke@1 293 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 294 * convertions to s?
duke@1 295 */
duke@1 296 public boolean isConvertible(Type t, Type s) {
duke@1 297 return isConvertible(t, s, Warner.noWarnings);
duke@1 298 }
duke@1 299 // </editor-fold>
duke@1 300
mcimadamore@1348 301 // <editor-fold defaultstate="collapsed" desc="findSam">
mcimadamore@1348 302
mcimadamore@1348 303 /**
mcimadamore@1348 304 * Exception used to report a function descriptor lookup failure. The exception
mcimadamore@1348 305 * wraps a diagnostic that can be used to generate more details error
mcimadamore@1348 306 * messages.
mcimadamore@1348 307 */
mcimadamore@1348 308 public static class FunctionDescriptorLookupError extends RuntimeException {
mcimadamore@1348 309 private static final long serialVersionUID = 0;
mcimadamore@1348 310
mcimadamore@1348 311 JCDiagnostic diagnostic;
mcimadamore@1348 312
mcimadamore@1348 313 FunctionDescriptorLookupError() {
mcimadamore@1348 314 this.diagnostic = null;
mcimadamore@1348 315 }
mcimadamore@1348 316
mcimadamore@1348 317 FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
mcimadamore@1348 318 this.diagnostic = diag;
mcimadamore@1348 319 return this;
mcimadamore@1348 320 }
mcimadamore@1348 321
mcimadamore@1348 322 public JCDiagnostic getDiagnostic() {
mcimadamore@1348 323 return diagnostic;
mcimadamore@1348 324 }
mcimadamore@1348 325 }
mcimadamore@1348 326
mcimadamore@1348 327 /**
mcimadamore@1348 328 * A cache that keeps track of function descriptors associated with given
mcimadamore@1348 329 * functional interfaces.
mcimadamore@1348 330 */
mcimadamore@1348 331 class DescriptorCache {
mcimadamore@1348 332
mcimadamore@1348 333 private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<TypeSymbol, Entry>();
mcimadamore@1348 334
mcimadamore@1348 335 class FunctionDescriptor {
mcimadamore@1348 336 Symbol descSym;
mcimadamore@1348 337
mcimadamore@1348 338 FunctionDescriptor(Symbol descSym) {
mcimadamore@1348 339 this.descSym = descSym;
mcimadamore@1348 340 }
mcimadamore@1348 341
mcimadamore@1348 342 public Symbol getSymbol() {
mcimadamore@1348 343 return descSym;
mcimadamore@1348 344 }
mcimadamore@1348 345
mcimadamore@1348 346 public Type getType(Type origin) {
mcimadamore@1348 347 return memberType(origin, descSym);
mcimadamore@1348 348 }
mcimadamore@1348 349 }
mcimadamore@1348 350
mcimadamore@1348 351 class Entry {
mcimadamore@1348 352 final FunctionDescriptor cachedDescRes;
mcimadamore@1348 353 final int prevMark;
mcimadamore@1348 354
mcimadamore@1348 355 public Entry(FunctionDescriptor cachedDescRes,
mcimadamore@1348 356 int prevMark) {
mcimadamore@1348 357 this.cachedDescRes = cachedDescRes;
mcimadamore@1348 358 this.prevMark = prevMark;
mcimadamore@1348 359 }
mcimadamore@1348 360
mcimadamore@1348 361 boolean matches(int mark) {
mcimadamore@1348 362 return this.prevMark == mark;
mcimadamore@1348 363 }
mcimadamore@1348 364 }
mcimadamore@1348 365
mcimadamore@1348 366 FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
mcimadamore@1348 367 Entry e = _map.get(origin);
mcimadamore@1348 368 CompoundScope members = membersClosure(origin.type, false);
mcimadamore@1348 369 if (e == null ||
mcimadamore@1348 370 !e.matches(members.getMark())) {
mcimadamore@1348 371 FunctionDescriptor descRes = findDescriptorInternal(origin, members);
mcimadamore@1348 372 _map.put(origin, new Entry(descRes, members.getMark()));
mcimadamore@1348 373 return descRes;
mcimadamore@1348 374 }
mcimadamore@1348 375 else {
mcimadamore@1348 376 return e.cachedDescRes;
mcimadamore@1348 377 }
mcimadamore@1348 378 }
mcimadamore@1348 379
mcimadamore@1348 380 /**
mcimadamore@1348 381 * Scope filter used to skip methods that should be ignored during
mcimadamore@1348 382 * function interface conversion (such as methods overridden by
mcimadamore@1348 383 * j.l.Object)
mcimadamore@1348 384 */
mcimadamore@1348 385 class DescriptorFilter implements Filter<Symbol> {
mcimadamore@1348 386
mcimadamore@1348 387 TypeSymbol origin;
mcimadamore@1348 388
mcimadamore@1348 389 DescriptorFilter(TypeSymbol origin) {
mcimadamore@1348 390 this.origin = origin;
mcimadamore@1348 391 }
mcimadamore@1348 392
mcimadamore@1348 393 @Override
mcimadamore@1348 394 public boolean accepts(Symbol sym) {
mcimadamore@1348 395 return sym.kind == Kinds.MTH &&
mcimadamore@1348 396 (sym.flags() & ABSTRACT) != 0 &&
mcimadamore@1348 397 !overridesObjectMethod(origin, sym) &&
mcimadamore@1348 398 notOverridden(sym);
mcimadamore@1348 399 }
mcimadamore@1348 400
mcimadamore@1348 401 private boolean notOverridden(Symbol msym) {
mcimadamore@1348 402 Symbol impl = ((MethodSymbol)msym).implementation(origin, Types.this, false);
mcimadamore@1348 403 return impl == null || (impl.flags() & ABSTRACT) != 0;
mcimadamore@1348 404 }
mcimadamore@1348 405 };
mcimadamore@1348 406
mcimadamore@1348 407 /**
mcimadamore@1348 408 * Compute the function descriptor associated with a given functional interface
mcimadamore@1348 409 */
mcimadamore@1348 410 public FunctionDescriptor findDescriptorInternal(TypeSymbol origin, CompoundScope membersCache) throws FunctionDescriptorLookupError {
mcimadamore@1348 411 if (!origin.isInterface()) {
mcimadamore@1348 412 //t must be an interface
mcimadamore@1348 413 throw failure("not.a.functional.intf");
mcimadamore@1348 414 }
mcimadamore@1348 415
mcimadamore@1348 416 final ListBuffer<Symbol> abstracts = ListBuffer.lb();
mcimadamore@1348 417 for (Symbol sym : membersCache.getElements(new DescriptorFilter(origin))) {
mcimadamore@1348 418 Type mtype = memberType(origin.type, sym);
mcimadamore@1348 419 if (abstracts.isEmpty() ||
mcimadamore@1348 420 (sym.name == abstracts.first().name &&
mcimadamore@1348 421 overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
mcimadamore@1348 422 abstracts.append(sym);
mcimadamore@1348 423 } else {
mcimadamore@1348 424 //the target method(s) should be the only abstract members of t
mcimadamore@1348 425 throw failure("not.a.functional.intf.1",
mcimadamore@1348 426 diags.fragment("incompatible.abstracts", Kinds.kindName(origin), origin));
mcimadamore@1348 427 }
mcimadamore@1348 428 }
mcimadamore@1348 429 if (abstracts.isEmpty()) {
mcimadamore@1348 430 //t must define a suitable non-generic method
mcimadamore@1348 431 throw failure("not.a.functional.intf.1",
mcimadamore@1348 432 diags.fragment("no.abstracts", Kinds.kindName(origin), origin));
mcimadamore@1348 433 } else if (abstracts.size() == 1) {
mcimadamore@1348 434 if (abstracts.first().type.tag == FORALL) {
mcimadamore@1348 435 throw failure("invalid.generic.desc.in.functional.intf",
mcimadamore@1348 436 abstracts.first(),
mcimadamore@1348 437 Kinds.kindName(origin),
mcimadamore@1348 438 origin);
mcimadamore@1348 439 } else {
mcimadamore@1348 440 return new FunctionDescriptor(abstracts.first());
mcimadamore@1348 441 }
mcimadamore@1348 442 } else { // size > 1
mcimadamore@1348 443 for (Symbol msym : abstracts) {
mcimadamore@1348 444 if (msym.type.tag == FORALL) {
mcimadamore@1348 445 throw failure("invalid.generic.desc.in.functional.intf",
mcimadamore@1348 446 abstracts.first(),
mcimadamore@1348 447 Kinds.kindName(origin),
mcimadamore@1348 448 origin);
mcimadamore@1348 449 }
mcimadamore@1348 450 }
mcimadamore@1348 451 FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
mcimadamore@1348 452 if (descRes == null) {
mcimadamore@1348 453 //we can get here if the functional interface is ill-formed
mcimadamore@1348 454 ListBuffer<JCDiagnostic> descriptors = ListBuffer.lb();
mcimadamore@1348 455 for (Symbol desc : abstracts) {
mcimadamore@1348 456 String key = desc.type.getThrownTypes().nonEmpty() ?
mcimadamore@1348 457 "descriptor.throws" : "descriptor";
mcimadamore@1348 458 descriptors.append(diags.fragment(key, desc.name,
mcimadamore@1348 459 desc.type.getParameterTypes(),
mcimadamore@1348 460 desc.type.getReturnType(),
mcimadamore@1348 461 desc.type.getThrownTypes()));
mcimadamore@1348 462 }
mcimadamore@1348 463 JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
mcimadamore@1348 464 new JCDiagnostic.MultilineDiagnostic(diags.fragment("incompatible.descs.in.functional.intf",
mcimadamore@1348 465 Kinds.kindName(origin), origin), descriptors.toList());
mcimadamore@1348 466 throw failure(incompatibleDescriptors);
mcimadamore@1348 467 }
mcimadamore@1348 468 return descRes;
mcimadamore@1348 469 }
mcimadamore@1348 470 }
mcimadamore@1348 471
mcimadamore@1348 472 /**
mcimadamore@1348 473 * Compute a synthetic type for the target descriptor given a list
mcimadamore@1348 474 * of override-equivalent methods in the functional interface type.
mcimadamore@1348 475 * The resulting method type is a method type that is override-equivalent
mcimadamore@1348 476 * and return-type substitutable with each method in the original list.
mcimadamore@1348 477 */
mcimadamore@1348 478 private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
mcimadamore@1348 479 //pick argument types - simply take the signature that is a
mcimadamore@1348 480 //subsignature of all other signatures in the list (as per JLS 8.4.2)
mcimadamore@1348 481 List<Symbol> mostSpecific = List.nil();
mcimadamore@1348 482 outer: for (Symbol msym1 : methodSyms) {
mcimadamore@1348 483 Type mt1 = memberType(origin.type, msym1);
mcimadamore@1348 484 for (Symbol msym2 : methodSyms) {
mcimadamore@1348 485 Type mt2 = memberType(origin.type, msym2);
mcimadamore@1348 486 if (!isSubSignature(mt1, mt2)) {
mcimadamore@1348 487 continue outer;
mcimadamore@1348 488 }
mcimadamore@1348 489 }
mcimadamore@1348 490 mostSpecific = mostSpecific.prepend(msym1);
mcimadamore@1348 491 }
mcimadamore@1348 492 if (mostSpecific.isEmpty()) {
mcimadamore@1348 493 return null;
mcimadamore@1348 494 }
mcimadamore@1348 495
mcimadamore@1348 496
mcimadamore@1348 497 //pick return types - this is done in two phases: (i) first, the most
mcimadamore@1348 498 //specific return type is chosen using strict subtyping; if this fails,
mcimadamore@1348 499 //a second attempt is made using return type substitutability (see JLS 8.4.5)
mcimadamore@1348 500 boolean phase2 = false;
mcimadamore@1348 501 Symbol bestSoFar = null;
mcimadamore@1348 502 while (bestSoFar == null) {
mcimadamore@1348 503 outer: for (Symbol msym1 : mostSpecific) {
mcimadamore@1348 504 Type mt1 = memberType(origin.type, msym1);
mcimadamore@1348 505 for (Symbol msym2 : methodSyms) {
mcimadamore@1348 506 Type mt2 = memberType(origin.type, msym2);
mcimadamore@1348 507 if (phase2 ?
mcimadamore@1348 508 !returnTypeSubstitutable(mt1, mt2) :
mcimadamore@1348 509 !isSubtypeInternal(mt1.getReturnType(), mt2.getReturnType())) {
mcimadamore@1348 510 continue outer;
mcimadamore@1348 511 }
mcimadamore@1348 512 }
mcimadamore@1348 513 bestSoFar = msym1;
mcimadamore@1348 514 }
mcimadamore@1348 515 if (phase2) {
mcimadamore@1348 516 break;
mcimadamore@1348 517 } else {
mcimadamore@1348 518 phase2 = true;
mcimadamore@1348 519 }
mcimadamore@1348 520 }
mcimadamore@1348 521 if (bestSoFar == null) return null;
mcimadamore@1348 522
mcimadamore@1348 523 //merge thrown types - form the intersection of all the thrown types in
mcimadamore@1348 524 //all the signatures in the list
mcimadamore@1348 525 List<Type> thrown = null;
mcimadamore@1348 526 for (Symbol msym1 : methodSyms) {
mcimadamore@1348 527 Type mt1 = memberType(origin.type, msym1);
mcimadamore@1348 528 thrown = (thrown == null) ?
mcimadamore@1348 529 mt1.getThrownTypes() :
mcimadamore@1348 530 chk.intersect(mt1.getThrownTypes(), thrown);
mcimadamore@1348 531 }
mcimadamore@1348 532
mcimadamore@1348 533 final List<Type> thrown1 = thrown;
mcimadamore@1348 534 return new FunctionDescriptor(bestSoFar) {
mcimadamore@1348 535 @Override
mcimadamore@1348 536 public Type getType(Type origin) {
mcimadamore@1348 537 Type mt = memberType(origin, getSymbol());
mcimadamore@1348 538 return new MethodType(mt.getParameterTypes(), mt.getReturnType(), thrown1, syms.methodClass);
mcimadamore@1348 539 }
mcimadamore@1348 540 };
mcimadamore@1348 541 }
mcimadamore@1348 542
mcimadamore@1348 543 boolean isSubtypeInternal(Type s, Type t) {
mcimadamore@1348 544 return (s.isPrimitive() && t.isPrimitive()) ?
mcimadamore@1348 545 isSameType(t, s) :
mcimadamore@1348 546 isSubtype(s, t);
mcimadamore@1348 547 }
mcimadamore@1348 548
mcimadamore@1348 549 FunctionDescriptorLookupError failure(String msg, Object... args) {
mcimadamore@1348 550 return failure(diags.fragment(msg, args));
mcimadamore@1348 551 }
mcimadamore@1348 552
mcimadamore@1348 553 FunctionDescriptorLookupError failure(JCDiagnostic diag) {
mcimadamore@1348 554 return functionDescriptorLookupError.setMessage(diag);
mcimadamore@1348 555 }
mcimadamore@1348 556 }
mcimadamore@1348 557
mcimadamore@1348 558 private DescriptorCache descCache = new DescriptorCache();
mcimadamore@1348 559
mcimadamore@1348 560 /**
mcimadamore@1348 561 * Find the method descriptor associated to this class symbol - if the
mcimadamore@1348 562 * symbol 'origin' is not a functional interface, an exception is thrown.
mcimadamore@1348 563 */
mcimadamore@1348 564 public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
mcimadamore@1348 565 return descCache.get(origin).getSymbol();
mcimadamore@1348 566 }
mcimadamore@1348 567
mcimadamore@1348 568 /**
mcimadamore@1348 569 * Find the type of the method descriptor associated to this class symbol -
mcimadamore@1348 570 * if the symbol 'origin' is not a functional interface, an exception is thrown.
mcimadamore@1348 571 */
mcimadamore@1348 572 public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
mcimadamore@1348 573 return descCache.get(origin.tsym).getType(origin);
mcimadamore@1348 574 }
mcimadamore@1348 575
mcimadamore@1348 576 /**
mcimadamore@1348 577 * Is given type a functional interface?
mcimadamore@1348 578 */
mcimadamore@1348 579 public boolean isFunctionalInterface(TypeSymbol tsym) {
mcimadamore@1348 580 try {
mcimadamore@1348 581 findDescriptorSymbol(tsym);
mcimadamore@1348 582 return true;
mcimadamore@1348 583 } catch (FunctionDescriptorLookupError ex) {
mcimadamore@1348 584 return false;
mcimadamore@1348 585 }
mcimadamore@1348 586 }
mcimadamore@1348 587 // </editor-fold>
mcimadamore@1348 588
duke@1 589 // <editor-fold defaultstate="collapsed" desc="isSubtype">
duke@1 590 /**
duke@1 591 * Is t an unchecked subtype of s?
duke@1 592 */
duke@1 593 public boolean isSubtypeUnchecked(Type t, Type s) {
duke@1 594 return isSubtypeUnchecked(t, s, Warner.noWarnings);
duke@1 595 }
duke@1 596 /**
duke@1 597 * Is t an unchecked subtype of s?
duke@1 598 */
duke@1 599 public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
mcimadamore@1108 600 boolean result = isSubtypeUncheckedInternal(t, s, warn);
mcimadamore@1108 601 if (result) {
mcimadamore@1108 602 checkUnsafeVarargsConversion(t, s, warn);
mcimadamore@1108 603 }
mcimadamore@1108 604 return result;
mcimadamore@1108 605 }
mcimadamore@1108 606 //where
mcimadamore@1108 607 private boolean isSubtypeUncheckedInternal(Type t, Type s, Warner warn) {
mcimadamore@1108 608 if (t.tag == ARRAY && s.tag == ARRAY) {
mcimadamore@1108 609 if (((ArrayType)t).elemtype.tag <= lastBaseTag) {
mcimadamore@1108 610 return isSameType(elemtype(t), elemtype(s));
mcimadamore@1108 611 } else {
mcimadamore@1108 612 return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
mcimadamore@795 613 }
mcimadamore@1108 614 } else if (isSubtype(t, s)) {
duke@1 615 return true;
duke@1 616 }
mcimadamore@1108 617 else if (t.tag == TYPEVAR) {
mcimadamore@1108 618 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
mcimadamore@1108 619 }
mcimadamore@1108 620 else if (!s.isRaw()) {
mcimadamore@1108 621 Type t2 = asSuper(t, s.tsym);
mcimadamore@1108 622 if (t2 != null && t2.isRaw()) {
mcimadamore@1108 623 if (isReifiable(s))
mcimadamore@1108 624 warn.silentWarn(LintCategory.UNCHECKED);
mcimadamore@1108 625 else
mcimadamore@1108 626 warn.warn(LintCategory.UNCHECKED);
mcimadamore@1108 627 return true;
mcimadamore@1108 628 }
mcimadamore@1108 629 }
mcimadamore@1108 630 return false;
duke@1 631 }
mcimadamore@1108 632
mcimadamore@1108 633 private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
mcimadamore@1108 634 if (t.tag != ARRAY || isReifiable(t)) return;
mcimadamore@1108 635 ArrayType from = (ArrayType)t;
mcimadamore@1108 636 boolean shouldWarn = false;
mcimadamore@1108 637 switch (s.tag) {
mcimadamore@1108 638 case ARRAY:
mcimadamore@1108 639 ArrayType to = (ArrayType)s;
mcimadamore@1108 640 shouldWarn = from.isVarargs() &&
mcimadamore@1108 641 !to.isVarargs() &&
mcimadamore@1108 642 !isReifiable(from);
mcimadamore@1108 643 break;
mcimadamore@1108 644 case CLASS:
mcimadamore@1108 645 shouldWarn = from.isVarargs();
mcimadamore@1108 646 break;
mcimadamore@1108 647 }
mcimadamore@1108 648 if (shouldWarn) {
mcimadamore@1108 649 warn.warn(LintCategory.VARARGS);
mcimadamore@1108 650 }
mcimadamore@1108 651 }
duke@1 652
duke@1 653 /**
duke@1 654 * Is t a subtype of s?<br>
duke@1 655 * (not defined for Method and ForAll types)
duke@1 656 */
duke@1 657 final public boolean isSubtype(Type t, Type s) {
duke@1 658 return isSubtype(t, s, true);
duke@1 659 }
duke@1 660 final public boolean isSubtypeNoCapture(Type t, Type s) {
duke@1 661 return isSubtype(t, s, false);
duke@1 662 }
duke@1 663 public boolean isSubtype(Type t, Type s, boolean capture) {
duke@1 664 if (t == s)
duke@1 665 return true;
duke@1 666
duke@1 667 if (s.tag >= firstPartialTag)
duke@1 668 return isSuperType(s, t);
duke@1 669
mcimadamore@299 670 if (s.isCompound()) {
mcimadamore@299 671 for (Type s2 : interfaces(s).prepend(supertype(s))) {
mcimadamore@299 672 if (!isSubtype(t, s2, capture))
mcimadamore@299 673 return false;
mcimadamore@299 674 }
mcimadamore@299 675 return true;
mcimadamore@299 676 }
mcimadamore@299 677
duke@1 678 Type lower = lowerBound(s);
duke@1 679 if (s != lower)
duke@1 680 return isSubtype(capture ? capture(t) : t, lower, false);
duke@1 681
duke@1 682 return isSubtype.visit(capture ? capture(t) : t, s);
duke@1 683 }
duke@1 684 // where
duke@1 685 private TypeRelation isSubtype = new TypeRelation()
duke@1 686 {
duke@1 687 public Boolean visitType(Type t, Type s) {
duke@1 688 switch (t.tag) {
duke@1 689 case BYTE: case CHAR:
duke@1 690 return (t.tag == s.tag ||
duke@1 691 t.tag + 2 <= s.tag && s.tag <= DOUBLE);
duke@1 692 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
duke@1 693 return t.tag <= s.tag && s.tag <= DOUBLE;
duke@1 694 case BOOLEAN: case VOID:
duke@1 695 return t.tag == s.tag;
duke@1 696 case TYPEVAR:
duke@1 697 return isSubtypeNoCapture(t.getUpperBound(), s);
duke@1 698 case BOT:
duke@1 699 return
duke@1 700 s.tag == BOT || s.tag == CLASS ||
duke@1 701 s.tag == ARRAY || s.tag == TYPEVAR;
mcimadamore@991 702 case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
duke@1 703 case NONE:
duke@1 704 return false;
duke@1 705 default:
duke@1 706 throw new AssertionError("isSubtype " + t.tag);
duke@1 707 }
duke@1 708 }
duke@1 709
duke@1 710 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 711
duke@1 712 private boolean containsTypeRecursive(Type t, Type s) {
duke@1 713 TypePair pair = new TypePair(t, s);
duke@1 714 if (cache.add(pair)) {
duke@1 715 try {
duke@1 716 return containsType(t.getTypeArguments(),
duke@1 717 s.getTypeArguments());
duke@1 718 } finally {
duke@1 719 cache.remove(pair);
duke@1 720 }
duke@1 721 } else {
duke@1 722 return containsType(t.getTypeArguments(),
duke@1 723 rewriteSupers(s).getTypeArguments());
duke@1 724 }
duke@1 725 }
duke@1 726
duke@1 727 private Type rewriteSupers(Type t) {
duke@1 728 if (!t.isParameterized())
duke@1 729 return t;
duke@1 730 ListBuffer<Type> from = lb();
duke@1 731 ListBuffer<Type> to = lb();
duke@1 732 adaptSelf(t, from, to);
duke@1 733 if (from.isEmpty())
duke@1 734 return t;
duke@1 735 ListBuffer<Type> rewrite = lb();
duke@1 736 boolean changed = false;
duke@1 737 for (Type orig : to.toList()) {
duke@1 738 Type s = rewriteSupers(orig);
duke@1 739 if (s.isSuperBound() && !s.isExtendsBound()) {
duke@1 740 s = new WildcardType(syms.objectType,
duke@1 741 BoundKind.UNBOUND,
duke@1 742 syms.boundClass);
duke@1 743 changed = true;
duke@1 744 } else if (s != orig) {
duke@1 745 s = new WildcardType(upperBound(s),
duke@1 746 BoundKind.EXTENDS,
duke@1 747 syms.boundClass);
duke@1 748 changed = true;
duke@1 749 }
duke@1 750 rewrite.append(s);
duke@1 751 }
duke@1 752 if (changed)
duke@1 753 return subst(t.tsym.type, from.toList(), rewrite.toList());
duke@1 754 else
duke@1 755 return t;
duke@1 756 }
duke@1 757
duke@1 758 @Override
duke@1 759 public Boolean visitClassType(ClassType t, Type s) {
duke@1 760 Type sup = asSuper(t, s.tsym);
duke@1 761 return sup != null
duke@1 762 && sup.tsym == s.tsym
duke@1 763 // You're not allowed to write
duke@1 764 // Vector<Object> vec = new Vector<String>();
duke@1 765 // But with wildcards you can write
duke@1 766 // Vector<? extends Object> vec = new Vector<String>();
duke@1 767 // which means that subtype checking must be done
duke@1 768 // here instead of same-type checking (via containsType).
duke@1 769 && (!s.isParameterized() || containsTypeRecursive(s, sup))
duke@1 770 && isSubtypeNoCapture(sup.getEnclosingType(),
duke@1 771 s.getEnclosingType());
duke@1 772 }
duke@1 773
duke@1 774 @Override
duke@1 775 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 776 if (s.tag == ARRAY) {
duke@1 777 if (t.elemtype.tag <= lastBaseTag)
duke@1 778 return isSameType(t.elemtype, elemtype(s));
duke@1 779 else
duke@1 780 return isSubtypeNoCapture(t.elemtype, elemtype(s));
duke@1 781 }
duke@1 782
duke@1 783 if (s.tag == CLASS) {
duke@1 784 Name sname = s.tsym.getQualifiedName();
duke@1 785 return sname == names.java_lang_Object
duke@1 786 || sname == names.java_lang_Cloneable
duke@1 787 || sname == names.java_io_Serializable;
duke@1 788 }
duke@1 789
duke@1 790 return false;
duke@1 791 }
duke@1 792
duke@1 793 @Override
duke@1 794 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 795 //todo: test against origin needed? or replace with substitution?
mcimadamore@1093 796 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN) {
duke@1 797 return true;
mcimadamore@1093 798 } else if (s.tag == BOT) {
mcimadamore@1093 799 //if 's' is 'null' there's no instantiated type U for which
mcimadamore@1093 800 //U <: s (but 'null' itself, which is not a valid type)
mcimadamore@1093 801 return false;
mcimadamore@1093 802 }
duke@1 803
mcimadamore@1338 804 t.addBound(InferenceBound.UPPER, s, Types.this);
duke@1 805 return true;
duke@1 806 }
duke@1 807
duke@1 808 @Override
duke@1 809 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 810 return true;
duke@1 811 }
duke@1 812 };
duke@1 813
duke@1 814 /**
duke@1 815 * Is t a subtype of every type in given list `ts'?<br>
duke@1 816 * (not defined for Method and ForAll types)<br>
duke@1 817 * Allows unchecked conversions.
duke@1 818 */
duke@1 819 public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
duke@1 820 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 821 if (!isSubtypeUnchecked(t, l.head, warn))
duke@1 822 return false;
duke@1 823 return true;
duke@1 824 }
duke@1 825
duke@1 826 /**
duke@1 827 * Are corresponding elements of ts subtypes of ss? If lists are
duke@1 828 * of different length, return false.
duke@1 829 */
duke@1 830 public boolean isSubtypes(List<Type> ts, List<Type> ss) {
duke@1 831 while (ts.tail != null && ss.tail != null
duke@1 832 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 833 isSubtype(ts.head, ss.head)) {
duke@1 834 ts = ts.tail;
duke@1 835 ss = ss.tail;
duke@1 836 }
duke@1 837 return ts.tail == null && ss.tail == null;
duke@1 838 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 839 }
duke@1 840
duke@1 841 /**
duke@1 842 * Are corresponding elements of ts subtypes of ss, allowing
duke@1 843 * unchecked conversions? If lists are of different length,
duke@1 844 * return false.
duke@1 845 **/
duke@1 846 public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
duke@1 847 while (ts.tail != null && ss.tail != null
duke@1 848 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 849 isSubtypeUnchecked(ts.head, ss.head, warn)) {
duke@1 850 ts = ts.tail;
duke@1 851 ss = ss.tail;
duke@1 852 }
duke@1 853 return ts.tail == null && ss.tail == null;
duke@1 854 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 855 }
duke@1 856 // </editor-fold>
duke@1 857
duke@1 858 // <editor-fold defaultstate="collapsed" desc="isSuperType">
duke@1 859 /**
duke@1 860 * Is t a supertype of s?
duke@1 861 */
duke@1 862 public boolean isSuperType(Type t, Type s) {
duke@1 863 switch (t.tag) {
duke@1 864 case ERROR:
duke@1 865 return true;
duke@1 866 case UNDETVAR: {
duke@1 867 UndetVar undet = (UndetVar)t;
duke@1 868 if (t == s ||
duke@1 869 undet.qtype == s ||
duke@1 870 s.tag == ERROR ||
duke@1 871 s.tag == BOT) return true;
mcimadamore@1338 872 undet.addBound(InferenceBound.LOWER, s, this);
duke@1 873 return true;
duke@1 874 }
duke@1 875 default:
duke@1 876 return isSubtype(s, t);
duke@1 877 }
duke@1 878 }
duke@1 879 // </editor-fold>
duke@1 880
duke@1 881 // <editor-fold defaultstate="collapsed" desc="isSameType">
duke@1 882 /**
duke@1 883 * Are corresponding elements of the lists the same type? If
duke@1 884 * lists are of different length, return false.
duke@1 885 */
duke@1 886 public boolean isSameTypes(List<Type> ts, List<Type> ss) {
duke@1 887 while (ts.tail != null && ss.tail != null
duke@1 888 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 889 isSameType(ts.head, ss.head)) {
duke@1 890 ts = ts.tail;
duke@1 891 ss = ss.tail;
duke@1 892 }
duke@1 893 return ts.tail == null && ss.tail == null;
duke@1 894 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 895 }
duke@1 896
duke@1 897 /**
duke@1 898 * Is t the same type as s?
duke@1 899 */
duke@1 900 public boolean isSameType(Type t, Type s) {
duke@1 901 return isSameType.visit(t, s);
duke@1 902 }
duke@1 903 // where
duke@1 904 private TypeRelation isSameType = new TypeRelation() {
duke@1 905
duke@1 906 public Boolean visitType(Type t, Type s) {
duke@1 907 if (t == s)
duke@1 908 return true;
duke@1 909
duke@1 910 if (s.tag >= firstPartialTag)
duke@1 911 return visit(s, t);
duke@1 912
duke@1 913 switch (t.tag) {
duke@1 914 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 915 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
duke@1 916 return t.tag == s.tag;
mcimadamore@561 917 case TYPEVAR: {
mcimadamore@561 918 if (s.tag == TYPEVAR) {
mcimadamore@561 919 //type-substitution does not preserve type-var types
mcimadamore@561 920 //check that type var symbols and bounds are indeed the same
mcimadamore@561 921 return t.tsym == s.tsym &&
mcimadamore@561 922 visit(t.getUpperBound(), s.getUpperBound());
mcimadamore@561 923 }
mcimadamore@561 924 else {
mcimadamore@561 925 //special case for s == ? super X, where upper(s) = u
mcimadamore@561 926 //check that u == t, where u has been set by Type.withTypeVar
mcimadamore@561 927 return s.isSuperBound() &&
mcimadamore@561 928 !s.isExtendsBound() &&
mcimadamore@561 929 visit(t, upperBound(s));
mcimadamore@561 930 }
mcimadamore@561 931 }
duke@1 932 default:
duke@1 933 throw new AssertionError("isSameType " + t.tag);
duke@1 934 }
duke@1 935 }
duke@1 936
duke@1 937 @Override
duke@1 938 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 939 if (s.tag >= firstPartialTag)
duke@1 940 return visit(s, t);
duke@1 941 else
duke@1 942 return false;
duke@1 943 }
duke@1 944
duke@1 945 @Override
duke@1 946 public Boolean visitClassType(ClassType t, Type s) {
duke@1 947 if (t == s)
duke@1 948 return true;
duke@1 949
duke@1 950 if (s.tag >= firstPartialTag)
duke@1 951 return visit(s, t);
duke@1 952
duke@1 953 if (s.isSuperBound() && !s.isExtendsBound())
duke@1 954 return visit(t, upperBound(s)) && visit(t, lowerBound(s));
duke@1 955
duke@1 956 if (t.isCompound() && s.isCompound()) {
duke@1 957 if (!visit(supertype(t), supertype(s)))
duke@1 958 return false;
duke@1 959
duke@1 960 HashSet<SingletonType> set = new HashSet<SingletonType>();
duke@1 961 for (Type x : interfaces(t))
duke@1 962 set.add(new SingletonType(x));
duke@1 963 for (Type x : interfaces(s)) {
duke@1 964 if (!set.remove(new SingletonType(x)))
duke@1 965 return false;
duke@1 966 }
jjg@789 967 return (set.isEmpty());
duke@1 968 }
duke@1 969 return t.tsym == s.tsym
duke@1 970 && visit(t.getEnclosingType(), s.getEnclosingType())
duke@1 971 && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
duke@1 972 }
duke@1 973
duke@1 974 @Override
duke@1 975 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 976 if (t == s)
duke@1 977 return true;
duke@1 978
duke@1 979 if (s.tag >= firstPartialTag)
duke@1 980 return visit(s, t);
duke@1 981
duke@1 982 return s.tag == ARRAY
duke@1 983 && containsTypeEquivalent(t.elemtype, elemtype(s));
duke@1 984 }
duke@1 985
duke@1 986 @Override
duke@1 987 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 988 // isSameType for methods does not take thrown
duke@1 989 // exceptions into account!
duke@1 990 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
duke@1 991 }
duke@1 992
duke@1 993 @Override
duke@1 994 public Boolean visitPackageType(PackageType t, Type s) {
duke@1 995 return t == s;
duke@1 996 }
duke@1 997
duke@1 998 @Override
duke@1 999 public Boolean visitForAll(ForAll t, Type s) {
duke@1 1000 if (s.tag != FORALL)
duke@1 1001 return false;
duke@1 1002
duke@1 1003 ForAll forAll = (ForAll)s;
duke@1 1004 return hasSameBounds(t, forAll)
duke@1 1005 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 1006 }
duke@1 1007
duke@1 1008 @Override
duke@1 1009 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 1010 if (s.tag == WILDCARD)
duke@1 1011 // FIXME, this might be leftovers from before capture conversion
duke@1 1012 return false;
duke@1 1013
duke@1 1014 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 1015 return true;
duke@1 1016
mcimadamore@1338 1017 t.addBound(InferenceBound.EQ, s, Types.this);
mcimadamore@1251 1018
duke@1 1019 return true;
duke@1 1020 }
duke@1 1021
duke@1 1022 @Override
duke@1 1023 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1024 return true;
duke@1 1025 }
duke@1 1026 };
duke@1 1027 // </editor-fold>
duke@1 1028
duke@1 1029 // <editor-fold defaultstate="collapsed" desc="Contains Type">
duke@1 1030 public boolean containedBy(Type t, Type s) {
duke@1 1031 switch (t.tag) {
duke@1 1032 case UNDETVAR:
duke@1 1033 if (s.tag == WILDCARD) {
duke@1 1034 UndetVar undetvar = (UndetVar)t;
mcimadamore@210 1035 WildcardType wt = (WildcardType)s;
mcimadamore@210 1036 switch(wt.kind) {
mcimadamore@210 1037 case UNBOUND: //similar to ? extends Object
mcimadamore@210 1038 case EXTENDS: {
mcimadamore@210 1039 Type bound = upperBound(s);
mcimadamore@1338 1040 undetvar.addBound(InferenceBound.UPPER, bound, this);
mcimadamore@210 1041 break;
mcimadamore@210 1042 }
mcimadamore@210 1043 case SUPER: {
mcimadamore@210 1044 Type bound = lowerBound(s);
mcimadamore@1338 1045 undetvar.addBound(InferenceBound.LOWER, bound, this);
mcimadamore@210 1046 break;
mcimadamore@210 1047 }
mcimadamore@162 1048 }
duke@1 1049 return true;
duke@1 1050 } else {
duke@1 1051 return isSameType(t, s);
duke@1 1052 }
duke@1 1053 case ERROR:
duke@1 1054 return true;
duke@1 1055 default:
duke@1 1056 return containsType(s, t);
duke@1 1057 }
duke@1 1058 }
duke@1 1059
duke@1 1060 boolean containsType(List<Type> ts, List<Type> ss) {
duke@1 1061 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 1062 && containsType(ts.head, ss.head)) {
duke@1 1063 ts = ts.tail;
duke@1 1064 ss = ss.tail;
duke@1 1065 }
duke@1 1066 return ts.isEmpty() && ss.isEmpty();
duke@1 1067 }
duke@1 1068
duke@1 1069 /**
duke@1 1070 * Check if t contains s.
duke@1 1071 *
duke@1 1072 * <p>T contains S if:
duke@1 1073 *
duke@1 1074 * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
duke@1 1075 *
duke@1 1076 * <p>This relation is only used by ClassType.isSubtype(), that
duke@1 1077 * is,
duke@1 1078 *
duke@1 1079 * <p>{@code C<S> <: C<T> if T contains S.}
duke@1 1080 *
duke@1 1081 * <p>Because of F-bounds, this relation can lead to infinite
duke@1 1082 * recursion. Thus we must somehow break that recursion. Notice
duke@1 1083 * that containsType() is only called from ClassType.isSubtype().
duke@1 1084 * Since the arguments have already been checked against their
duke@1 1085 * bounds, we know:
duke@1 1086 *
duke@1 1087 * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
duke@1 1088 *
duke@1 1089 * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
duke@1 1090 *
duke@1 1091 * @param t a type
duke@1 1092 * @param s a type
duke@1 1093 */
duke@1 1094 public boolean containsType(Type t, Type s) {
duke@1 1095 return containsType.visit(t, s);
duke@1 1096 }
duke@1 1097 // where
duke@1 1098 private TypeRelation containsType = new TypeRelation() {
duke@1 1099
duke@1 1100 private Type U(Type t) {
duke@1 1101 while (t.tag == WILDCARD) {
duke@1 1102 WildcardType w = (WildcardType)t;
duke@1 1103 if (w.isSuperBound())
duke@1 1104 return w.bound == null ? syms.objectType : w.bound.bound;
duke@1 1105 else
duke@1 1106 t = w.type;
duke@1 1107 }
duke@1 1108 return t;
duke@1 1109 }
duke@1 1110
duke@1 1111 private Type L(Type t) {
duke@1 1112 while (t.tag == WILDCARD) {
duke@1 1113 WildcardType w = (WildcardType)t;
duke@1 1114 if (w.isExtendsBound())
duke@1 1115 return syms.botType;
duke@1 1116 else
duke@1 1117 t = w.type;
duke@1 1118 }
duke@1 1119 return t;
duke@1 1120 }
duke@1 1121
duke@1 1122 public Boolean visitType(Type t, Type s) {
duke@1 1123 if (s.tag >= firstPartialTag)
duke@1 1124 return containedBy(s, t);
duke@1 1125 else
duke@1 1126 return isSameType(t, s);
duke@1 1127 }
duke@1 1128
jjg@789 1129 // void debugContainsType(WildcardType t, Type s) {
jjg@789 1130 // System.err.println();
jjg@789 1131 // System.err.format(" does %s contain %s?%n", t, s);
jjg@789 1132 // System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
jjg@789 1133 // upperBound(s), s, t, U(t),
jjg@789 1134 // t.isSuperBound()
jjg@789 1135 // || isSubtypeNoCapture(upperBound(s), U(t)));
jjg@789 1136 // System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
jjg@789 1137 // L(t), t, s, lowerBound(s),
jjg@789 1138 // t.isExtendsBound()
jjg@789 1139 // || isSubtypeNoCapture(L(t), lowerBound(s)));
jjg@789 1140 // System.err.println();
jjg@789 1141 // }
duke@1 1142
duke@1 1143 @Override
duke@1 1144 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 1145 if (s.tag >= firstPartialTag)
duke@1 1146 return containedBy(s, t);
duke@1 1147 else {
jjg@789 1148 // debugContainsType(t, s);
duke@1 1149 return isSameWildcard(t, s)
duke@1 1150 || isCaptureOf(s, t)
duke@1 1151 || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
duke@1 1152 (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
duke@1 1153 }
duke@1 1154 }
duke@1 1155
duke@1 1156 @Override
duke@1 1157 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 1158 if (s.tag != WILDCARD)
duke@1 1159 return isSameType(t, s);
duke@1 1160 else
duke@1 1161 return false;
duke@1 1162 }
duke@1 1163
duke@1 1164 @Override
duke@1 1165 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1166 return true;
duke@1 1167 }
duke@1 1168 };
duke@1 1169
duke@1 1170 public boolean isCaptureOf(Type s, WildcardType t) {
mcimadamore@79 1171 if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
duke@1 1172 return false;
duke@1 1173 return isSameWildcard(t, ((CapturedType)s).wildcard);
duke@1 1174 }
duke@1 1175
duke@1 1176 public boolean isSameWildcard(WildcardType t, Type s) {
duke@1 1177 if (s.tag != WILDCARD)
duke@1 1178 return false;
duke@1 1179 WildcardType w = (WildcardType)s;
duke@1 1180 return w.kind == t.kind && w.type == t.type;
duke@1 1181 }
duke@1 1182
duke@1 1183 public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
duke@1 1184 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 1185 && containsTypeEquivalent(ts.head, ss.head)) {
duke@1 1186 ts = ts.tail;
duke@1 1187 ss = ss.tail;
duke@1 1188 }
duke@1 1189 return ts.isEmpty() && ss.isEmpty();
duke@1 1190 }
duke@1 1191 // </editor-fold>
duke@1 1192
duke@1 1193 // <editor-fold defaultstate="collapsed" desc="isCastable">
duke@1 1194 public boolean isCastable(Type t, Type s) {
duke@1 1195 return isCastable(t, s, Warner.noWarnings);
duke@1 1196 }
duke@1 1197
duke@1 1198 /**
duke@1 1199 * Is t is castable to s?<br>
duke@1 1200 * s is assumed to be an erased type.<br>
duke@1 1201 * (not defined for Method and ForAll types).
duke@1 1202 */
duke@1 1203 public boolean isCastable(Type t, Type s, Warner warn) {
duke@1 1204 if (t == s)
duke@1 1205 return true;
duke@1 1206
duke@1 1207 if (t.isPrimitive() != s.isPrimitive())
jjg@984 1208 return allowBoxing && (
jjg@984 1209 isConvertible(t, s, warn)
mcimadamore@1007 1210 || (allowObjectToPrimitiveCast &&
mcimadamore@1007 1211 s.isPrimitive() &&
mcimadamore@1007 1212 isSubtype(boxedClass(s).type, t)));
duke@1 1213 if (warn != warnStack.head) {
duke@1 1214 try {
duke@1 1215 warnStack = warnStack.prepend(warn);
mcimadamore@795 1216 checkUnsafeVarargsConversion(t, s, warn);
mcimadamore@185 1217 return isCastable.visit(t,s);
duke@1 1218 } finally {
duke@1 1219 warnStack = warnStack.tail;
duke@1 1220 }
duke@1 1221 } else {
mcimadamore@185 1222 return isCastable.visit(t,s);
duke@1 1223 }
duke@1 1224 }
duke@1 1225 // where
duke@1 1226 private TypeRelation isCastable = new TypeRelation() {
duke@1 1227
duke@1 1228 public Boolean visitType(Type t, Type s) {
duke@1 1229 if (s.tag == ERROR)
duke@1 1230 return true;
duke@1 1231
duke@1 1232 switch (t.tag) {
duke@1 1233 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 1234 case DOUBLE:
duke@1 1235 return s.tag <= DOUBLE;
duke@1 1236 case BOOLEAN:
duke@1 1237 return s.tag == BOOLEAN;
duke@1 1238 case VOID:
duke@1 1239 return false;
duke@1 1240 case BOT:
duke@1 1241 return isSubtype(t, s);
duke@1 1242 default:
duke@1 1243 throw new AssertionError();
duke@1 1244 }
duke@1 1245 }
duke@1 1246
duke@1 1247 @Override
duke@1 1248 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 1249 return isCastable(upperBound(t), s, warnStack.head);
duke@1 1250 }
duke@1 1251
duke@1 1252 @Override
duke@1 1253 public Boolean visitClassType(ClassType t, Type s) {
duke@1 1254 if (s.tag == ERROR || s.tag == BOT)
duke@1 1255 return true;
duke@1 1256
duke@1 1257 if (s.tag == TYPEVAR) {
mcimadamore@640 1258 if (isCastable(t, s.getUpperBound(), Warner.noWarnings)) {
mcimadamore@795 1259 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1260 return true;
duke@1 1261 } else {
duke@1 1262 return false;
duke@1 1263 }
duke@1 1264 }
duke@1 1265
duke@1 1266 if (t.isCompound()) {
mcimadamore@211 1267 Warner oldWarner = warnStack.head;
mcimadamore@211 1268 warnStack.head = Warner.noWarnings;
duke@1 1269 if (!visit(supertype(t), s))
duke@1 1270 return false;
duke@1 1271 for (Type intf : interfaces(t)) {
duke@1 1272 if (!visit(intf, s))
duke@1 1273 return false;
duke@1 1274 }
mcimadamore@795 1275 if (warnStack.head.hasLint(LintCategory.UNCHECKED))
mcimadamore@795 1276 oldWarner.warn(LintCategory.UNCHECKED);
duke@1 1277 return true;
duke@1 1278 }
duke@1 1279
duke@1 1280 if (s.isCompound()) {
duke@1 1281 // call recursively to reuse the above code
duke@1 1282 return visitClassType((ClassType)s, t);
duke@1 1283 }
duke@1 1284
duke@1 1285 if (s.tag == CLASS || s.tag == ARRAY) {
duke@1 1286 boolean upcast;
duke@1 1287 if ((upcast = isSubtype(erasure(t), erasure(s)))
duke@1 1288 || isSubtype(erasure(s), erasure(t))) {
duke@1 1289 if (!upcast && s.tag == ARRAY) {
duke@1 1290 if (!isReifiable(s))
mcimadamore@795 1291 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1292 return true;
duke@1 1293 } else if (s.isRaw()) {
duke@1 1294 return true;
duke@1 1295 } else if (t.isRaw()) {
duke@1 1296 if (!isUnbounded(s))
mcimadamore@795 1297 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1298 return true;
duke@1 1299 }
duke@1 1300 // Assume |a| <: |b|
duke@1 1301 final Type a = upcast ? t : s;
duke@1 1302 final Type b = upcast ? s : t;
duke@1 1303 final boolean HIGH = true;
duke@1 1304 final boolean LOW = false;
duke@1 1305 final boolean DONT_REWRITE_TYPEVARS = false;
duke@1 1306 Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1307 Type aLow = rewriteQuantifiers(a, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1308 Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1309 Type bLow = rewriteQuantifiers(b, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1310 Type lowSub = asSub(bLow, aLow.tsym);
duke@1 1311 Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1312 if (highSub == null) {
duke@1 1313 final boolean REWRITE_TYPEVARS = true;
duke@1 1314 aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
duke@1 1315 aLow = rewriteQuantifiers(a, LOW, REWRITE_TYPEVARS);
duke@1 1316 bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
duke@1 1317 bLow = rewriteQuantifiers(b, LOW, REWRITE_TYPEVARS);
duke@1 1318 lowSub = asSub(bLow, aLow.tsym);
duke@1 1319 highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1320 }
duke@1 1321 if (highSub != null) {
jjg@816 1322 if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
jjg@816 1323 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
jjg@816 1324 }
mcimadamore@185 1325 if (!disjointTypes(aHigh.allparams(), highSub.allparams())
mcimadamore@185 1326 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
mcimadamore@185 1327 && !disjointTypes(aLow.allparams(), highSub.allparams())
mcimadamore@185 1328 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
mcimadamore@779 1329 if (upcast ? giveWarning(a, b) :
mcimadamore@235 1330 giveWarning(b, a))
mcimadamore@795 1331 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1332 return true;
duke@1 1333 }
duke@1 1334 }
duke@1 1335 if (isReifiable(s))
duke@1 1336 return isSubtypeUnchecked(a, b);
duke@1 1337 else
duke@1 1338 return isSubtypeUnchecked(a, b, warnStack.head);
duke@1 1339 }
duke@1 1340
duke@1 1341 // Sidecast
duke@1 1342 if (s.tag == CLASS) {
duke@1 1343 if ((s.tsym.flags() & INTERFACE) != 0) {
duke@1 1344 return ((t.tsym.flags() & FINAL) == 0)
duke@1 1345 ? sideCast(t, s, warnStack.head)
duke@1 1346 : sideCastFinal(t, s, warnStack.head);
duke@1 1347 } else if ((t.tsym.flags() & INTERFACE) != 0) {
duke@1 1348 return ((s.tsym.flags() & FINAL) == 0)
duke@1 1349 ? sideCast(t, s, warnStack.head)
duke@1 1350 : sideCastFinal(t, s, warnStack.head);
duke@1 1351 } else {
duke@1 1352 // unrelated class types
duke@1 1353 return false;
duke@1 1354 }
duke@1 1355 }
duke@1 1356 }
duke@1 1357 return false;
duke@1 1358 }
duke@1 1359
duke@1 1360 @Override
duke@1 1361 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 1362 switch (s.tag) {
duke@1 1363 case ERROR:
duke@1 1364 case BOT:
duke@1 1365 return true;
duke@1 1366 case TYPEVAR:
duke@1 1367 if (isCastable(s, t, Warner.noWarnings)) {
mcimadamore@795 1368 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1369 return true;
duke@1 1370 } else {
duke@1 1371 return false;
duke@1 1372 }
duke@1 1373 case CLASS:
duke@1 1374 return isSubtype(t, s);
duke@1 1375 case ARRAY:
mcimadamore@786 1376 if (elemtype(t).tag <= lastBaseTag ||
mcimadamore@786 1377 elemtype(s).tag <= lastBaseTag) {
duke@1 1378 return elemtype(t).tag == elemtype(s).tag;
duke@1 1379 } else {
duke@1 1380 return visit(elemtype(t), elemtype(s));
duke@1 1381 }
duke@1 1382 default:
duke@1 1383 return false;
duke@1 1384 }
duke@1 1385 }
duke@1 1386
duke@1 1387 @Override
duke@1 1388 public Boolean visitTypeVar(TypeVar t, Type s) {
duke@1 1389 switch (s.tag) {
duke@1 1390 case ERROR:
duke@1 1391 case BOT:
duke@1 1392 return true;
duke@1 1393 case TYPEVAR:
duke@1 1394 if (isSubtype(t, s)) {
duke@1 1395 return true;
duke@1 1396 } else if (isCastable(t.bound, s, Warner.noWarnings)) {
mcimadamore@795 1397 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1398 return true;
duke@1 1399 } else {
duke@1 1400 return false;
duke@1 1401 }
duke@1 1402 default:
duke@1 1403 return isCastable(t.bound, s, warnStack.head);
duke@1 1404 }
duke@1 1405 }
duke@1 1406
duke@1 1407 @Override
duke@1 1408 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1409 return true;
duke@1 1410 }
duke@1 1411 };
duke@1 1412 // </editor-fold>
duke@1 1413
duke@1 1414 // <editor-fold defaultstate="collapsed" desc="disjointTypes">
duke@1 1415 public boolean disjointTypes(List<Type> ts, List<Type> ss) {
duke@1 1416 while (ts.tail != null && ss.tail != null) {
duke@1 1417 if (disjointType(ts.head, ss.head)) return true;
duke@1 1418 ts = ts.tail;
duke@1 1419 ss = ss.tail;
duke@1 1420 }
duke@1 1421 return false;
duke@1 1422 }
duke@1 1423
duke@1 1424 /**
duke@1 1425 * Two types or wildcards are considered disjoint if it can be
duke@1 1426 * proven that no type can be contained in both. It is
duke@1 1427 * conservative in that it is allowed to say that two types are
duke@1 1428 * not disjoint, even though they actually are.
duke@1 1429 *
jjg@1358 1430 * The type {@code C<X>} is castable to {@code C<Y>} exactly if
jjg@1358 1431 * {@code X} and {@code Y} are not disjoint.
duke@1 1432 */
duke@1 1433 public boolean disjointType(Type t, Type s) {
duke@1 1434 return disjointType.visit(t, s);
duke@1 1435 }
duke@1 1436 // where
duke@1 1437 private TypeRelation disjointType = new TypeRelation() {
duke@1 1438
duke@1 1439 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 1440
duke@1 1441 public Boolean visitType(Type t, Type s) {
duke@1 1442 if (s.tag == WILDCARD)
duke@1 1443 return visit(s, t);
duke@1 1444 else
duke@1 1445 return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
duke@1 1446 }
duke@1 1447
duke@1 1448 private boolean isCastableRecursive(Type t, Type s) {
duke@1 1449 TypePair pair = new TypePair(t, s);
duke@1 1450 if (cache.add(pair)) {
duke@1 1451 try {
duke@1 1452 return Types.this.isCastable(t, s);
duke@1 1453 } finally {
duke@1 1454 cache.remove(pair);
duke@1 1455 }
duke@1 1456 } else {
duke@1 1457 return true;
duke@1 1458 }
duke@1 1459 }
duke@1 1460
duke@1 1461 private boolean notSoftSubtypeRecursive(Type t, Type s) {
duke@1 1462 TypePair pair = new TypePair(t, s);
duke@1 1463 if (cache.add(pair)) {
duke@1 1464 try {
duke@1 1465 return Types.this.notSoftSubtype(t, s);
duke@1 1466 } finally {
duke@1 1467 cache.remove(pair);
duke@1 1468 }
duke@1 1469 } else {
duke@1 1470 return false;
duke@1 1471 }
duke@1 1472 }
duke@1 1473
duke@1 1474 @Override
duke@1 1475 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 1476 if (t.isUnbound())
duke@1 1477 return false;
duke@1 1478
duke@1 1479 if (s.tag != WILDCARD) {
duke@1 1480 if (t.isExtendsBound())
duke@1 1481 return notSoftSubtypeRecursive(s, t.type);
duke@1 1482 else // isSuperBound()
duke@1 1483 return notSoftSubtypeRecursive(t.type, s);
duke@1 1484 }
duke@1 1485
duke@1 1486 if (s.isUnbound())
duke@1 1487 return false;
duke@1 1488
duke@1 1489 if (t.isExtendsBound()) {
duke@1 1490 if (s.isExtendsBound())
duke@1 1491 return !isCastableRecursive(t.type, upperBound(s));
duke@1 1492 else if (s.isSuperBound())
duke@1 1493 return notSoftSubtypeRecursive(lowerBound(s), t.type);
duke@1 1494 } else if (t.isSuperBound()) {
duke@1 1495 if (s.isExtendsBound())
duke@1 1496 return notSoftSubtypeRecursive(t.type, upperBound(s));
duke@1 1497 }
duke@1 1498 return false;
duke@1 1499 }
duke@1 1500 };
duke@1 1501 // </editor-fold>
duke@1 1502
duke@1 1503 // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
duke@1 1504 /**
duke@1 1505 * Returns the lower bounds of the formals of a method.
duke@1 1506 */
duke@1 1507 public List<Type> lowerBoundArgtypes(Type t) {
mcimadamore@1348 1508 return lowerBounds(t.getParameterTypes());
mcimadamore@1348 1509 }
mcimadamore@1348 1510 public List<Type> lowerBounds(List<Type> ts) {
mcimadamore@1348 1511 return map(ts, lowerBoundMapping);
duke@1 1512 }
duke@1 1513 private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
duke@1 1514 public Type apply(Type t) {
duke@1 1515 return lowerBound(t);
duke@1 1516 }
duke@1 1517 };
duke@1 1518 // </editor-fold>
duke@1 1519
duke@1 1520 // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
duke@1 1521 /**
duke@1 1522 * This relation answers the question: is impossible that
duke@1 1523 * something of type `t' can be a subtype of `s'? This is
duke@1 1524 * different from the question "is `t' not a subtype of `s'?"
duke@1 1525 * when type variables are involved: Integer is not a subtype of T
jjg@1358 1526 * where {@code <T extends Number>} but it is not true that Integer cannot
duke@1 1527 * possibly be a subtype of T.
duke@1 1528 */
duke@1 1529 public boolean notSoftSubtype(Type t, Type s) {
duke@1 1530 if (t == s) return false;
duke@1 1531 if (t.tag == TYPEVAR) {
duke@1 1532 TypeVar tv = (TypeVar) t;
duke@1 1533 return !isCastable(tv.bound,
mcimadamore@640 1534 relaxBound(s),
duke@1 1535 Warner.noWarnings);
duke@1 1536 }
duke@1 1537 if (s.tag != WILDCARD)
duke@1 1538 s = upperBound(s);
mcimadamore@640 1539
mcimadamore@640 1540 return !isSubtype(t, relaxBound(s));
mcimadamore@640 1541 }
mcimadamore@640 1542
mcimadamore@640 1543 private Type relaxBound(Type t) {
mcimadamore@640 1544 if (t.tag == TYPEVAR) {
mcimadamore@640 1545 while (t.tag == TYPEVAR)
mcimadamore@640 1546 t = t.getUpperBound();
mcimadamore@640 1547 t = rewriteQuantifiers(t, true, true);
mcimadamore@640 1548 }
mcimadamore@640 1549 return t;
duke@1 1550 }
duke@1 1551 // </editor-fold>
duke@1 1552
duke@1 1553 // <editor-fold defaultstate="collapsed" desc="isReifiable">
duke@1 1554 public boolean isReifiable(Type t) {
duke@1 1555 return isReifiable.visit(t);
duke@1 1556 }
duke@1 1557 // where
duke@1 1558 private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
duke@1 1559
duke@1 1560 public Boolean visitType(Type t, Void ignored) {
duke@1 1561 return true;
duke@1 1562 }
duke@1 1563
duke@1 1564 @Override
duke@1 1565 public Boolean visitClassType(ClassType t, Void ignored) {
mcimadamore@356 1566 if (t.isCompound())
mcimadamore@356 1567 return false;
mcimadamore@356 1568 else {
mcimadamore@356 1569 if (!t.isParameterized())
mcimadamore@356 1570 return true;
mcimadamore@356 1571
mcimadamore@356 1572 for (Type param : t.allparams()) {
mcimadamore@356 1573 if (!param.isUnbound())
mcimadamore@356 1574 return false;
mcimadamore@356 1575 }
duke@1 1576 return true;
duke@1 1577 }
duke@1 1578 }
duke@1 1579
duke@1 1580 @Override
duke@1 1581 public Boolean visitArrayType(ArrayType t, Void ignored) {
duke@1 1582 return visit(t.elemtype);
duke@1 1583 }
duke@1 1584
duke@1 1585 @Override
duke@1 1586 public Boolean visitTypeVar(TypeVar t, Void ignored) {
duke@1 1587 return false;
duke@1 1588 }
duke@1 1589 };
duke@1 1590 // </editor-fold>
duke@1 1591
duke@1 1592 // <editor-fold defaultstate="collapsed" desc="Array Utils">
duke@1 1593 public boolean isArray(Type t) {
duke@1 1594 while (t.tag == WILDCARD)
duke@1 1595 t = upperBound(t);
duke@1 1596 return t.tag == ARRAY;
duke@1 1597 }
duke@1 1598
duke@1 1599 /**
duke@1 1600 * The element type of an array.
duke@1 1601 */
duke@1 1602 public Type elemtype(Type t) {
duke@1 1603 switch (t.tag) {
duke@1 1604 case WILDCARD:
duke@1 1605 return elemtype(upperBound(t));
duke@1 1606 case ARRAY:
duke@1 1607 return ((ArrayType)t).elemtype;
duke@1 1608 case FORALL:
duke@1 1609 return elemtype(((ForAll)t).qtype);
duke@1 1610 case ERROR:
duke@1 1611 return t;
duke@1 1612 default:
duke@1 1613 return null;
duke@1 1614 }
duke@1 1615 }
duke@1 1616
mcimadamore@787 1617 public Type elemtypeOrType(Type t) {
mcimadamore@787 1618 Type elemtype = elemtype(t);
mcimadamore@787 1619 return elemtype != null ?
mcimadamore@787 1620 elemtype :
mcimadamore@787 1621 t;
mcimadamore@787 1622 }
mcimadamore@787 1623
duke@1 1624 /**
duke@1 1625 * Mapping to take element type of an arraytype
duke@1 1626 */
duke@1 1627 private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
duke@1 1628 public Type apply(Type t) { return elemtype(t); }
duke@1 1629 };
duke@1 1630
duke@1 1631 /**
duke@1 1632 * The number of dimensions of an array type.
duke@1 1633 */
duke@1 1634 public int dimensions(Type t) {
duke@1 1635 int result = 0;
duke@1 1636 while (t.tag == ARRAY) {
duke@1 1637 result++;
duke@1 1638 t = elemtype(t);
duke@1 1639 }
duke@1 1640 return result;
duke@1 1641 }
jfranck@1313 1642
jfranck@1313 1643 /**
jfranck@1313 1644 * Returns an ArrayType with the component type t
jfranck@1313 1645 *
jfranck@1313 1646 * @param t The component type of the ArrayType
jfranck@1313 1647 * @return the ArrayType for the given component
jfranck@1313 1648 */
jfranck@1313 1649 public ArrayType makeArrayType(Type t) {
jfranck@1313 1650 if (t.tag == VOID ||
jfranck@1313 1651 t.tag >= PACKAGE) {
jfranck@1313 1652 Assert.error("Type t must not be a a VOID or PACKAGE type, " + t.toString());
jfranck@1313 1653 }
jfranck@1313 1654 return new ArrayType(t, syms.arrayClass);
jfranck@1313 1655 }
duke@1 1656 // </editor-fold>
duke@1 1657
duke@1 1658 // <editor-fold defaultstate="collapsed" desc="asSuper">
duke@1 1659 /**
duke@1 1660 * Return the (most specific) base type of t that starts with the
duke@1 1661 * given symbol. If none exists, return null.
duke@1 1662 *
duke@1 1663 * @param t a type
duke@1 1664 * @param sym a symbol
duke@1 1665 */
duke@1 1666 public Type asSuper(Type t, Symbol sym) {
duke@1 1667 return asSuper.visit(t, sym);
duke@1 1668 }
duke@1 1669 // where
duke@1 1670 private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
duke@1 1671
duke@1 1672 public Type visitType(Type t, Symbol sym) {
duke@1 1673 return null;
duke@1 1674 }
duke@1 1675
duke@1 1676 @Override
duke@1 1677 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1678 if (t.tsym == sym)
duke@1 1679 return t;
duke@1 1680
duke@1 1681 Type st = supertype(t);
mcimadamore@19 1682 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
duke@1 1683 Type x = asSuper(st, sym);
duke@1 1684 if (x != null)
duke@1 1685 return x;
duke@1 1686 }
duke@1 1687 if ((sym.flags() & INTERFACE) != 0) {
duke@1 1688 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 1689 Type x = asSuper(l.head, sym);
duke@1 1690 if (x != null)
duke@1 1691 return x;
duke@1 1692 }
duke@1 1693 }
duke@1 1694 return null;
duke@1 1695 }
duke@1 1696
duke@1 1697 @Override
duke@1 1698 public Type visitArrayType(ArrayType t, Symbol sym) {
duke@1 1699 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1700 }
duke@1 1701
duke@1 1702 @Override
duke@1 1703 public Type visitTypeVar(TypeVar t, Symbol sym) {
mcimadamore@19 1704 if (t.tsym == sym)
mcimadamore@19 1705 return t;
mcimadamore@19 1706 else
mcimadamore@19 1707 return asSuper(t.bound, sym);
duke@1 1708 }
duke@1 1709
duke@1 1710 @Override
duke@1 1711 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1712 return t;
duke@1 1713 }
duke@1 1714 };
duke@1 1715
duke@1 1716 /**
duke@1 1717 * Return the base type of t or any of its outer types that starts
duke@1 1718 * with the given symbol. If none exists, return null.
duke@1 1719 *
duke@1 1720 * @param t a type
duke@1 1721 * @param sym a symbol
duke@1 1722 */
duke@1 1723 public Type asOuterSuper(Type t, Symbol sym) {
duke@1 1724 switch (t.tag) {
duke@1 1725 case CLASS:
duke@1 1726 do {
duke@1 1727 Type s = asSuper(t, sym);
duke@1 1728 if (s != null) return s;
duke@1 1729 t = t.getEnclosingType();
duke@1 1730 } while (t.tag == CLASS);
duke@1 1731 return null;
duke@1 1732 case ARRAY:
duke@1 1733 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1734 case TYPEVAR:
duke@1 1735 return asSuper(t, sym);
duke@1 1736 case ERROR:
duke@1 1737 return t;
duke@1 1738 default:
duke@1 1739 return null;
duke@1 1740 }
duke@1 1741 }
duke@1 1742
duke@1 1743 /**
duke@1 1744 * Return the base type of t or any of its enclosing types that
duke@1 1745 * starts with the given symbol. If none exists, return null.
duke@1 1746 *
duke@1 1747 * @param t a type
duke@1 1748 * @param sym a symbol
duke@1 1749 */
duke@1 1750 public Type asEnclosingSuper(Type t, Symbol sym) {
duke@1 1751 switch (t.tag) {
duke@1 1752 case CLASS:
duke@1 1753 do {
duke@1 1754 Type s = asSuper(t, sym);
duke@1 1755 if (s != null) return s;
duke@1 1756 Type outer = t.getEnclosingType();
duke@1 1757 t = (outer.tag == CLASS) ? outer :
duke@1 1758 (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
duke@1 1759 Type.noType;
duke@1 1760 } while (t.tag == CLASS);
duke@1 1761 return null;
duke@1 1762 case ARRAY:
duke@1 1763 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1764 case TYPEVAR:
duke@1 1765 return asSuper(t, sym);
duke@1 1766 case ERROR:
duke@1 1767 return t;
duke@1 1768 default:
duke@1 1769 return null;
duke@1 1770 }
duke@1 1771 }
duke@1 1772 // </editor-fold>
duke@1 1773
duke@1 1774 // <editor-fold defaultstate="collapsed" desc="memberType">
duke@1 1775 /**
duke@1 1776 * The type of given symbol, seen as a member of t.
duke@1 1777 *
duke@1 1778 * @param t a type
duke@1 1779 * @param sym a symbol
duke@1 1780 */
duke@1 1781 public Type memberType(Type t, Symbol sym) {
duke@1 1782 return (sym.flags() & STATIC) != 0
duke@1 1783 ? sym.type
duke@1 1784 : memberType.visit(t, sym);
mcimadamore@341 1785 }
duke@1 1786 // where
duke@1 1787 private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
duke@1 1788
duke@1 1789 public Type visitType(Type t, Symbol sym) {
duke@1 1790 return sym.type;
duke@1 1791 }
duke@1 1792
duke@1 1793 @Override
duke@1 1794 public Type visitWildcardType(WildcardType t, Symbol sym) {
duke@1 1795 return memberType(upperBound(t), sym);
duke@1 1796 }
duke@1 1797
duke@1 1798 @Override
duke@1 1799 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1800 Symbol owner = sym.owner;
duke@1 1801 long flags = sym.flags();
duke@1 1802 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
duke@1 1803 Type base = asOuterSuper(t, owner);
mcimadamore@134 1804 //if t is an intersection type T = CT & I1 & I2 ... & In
mcimadamore@134 1805 //its supertypes CT, I1, ... In might contain wildcards
mcimadamore@134 1806 //so we need to go through capture conversion
mcimadamore@134 1807 base = t.isCompound() ? capture(base) : base;
duke@1 1808 if (base != null) {
duke@1 1809 List<Type> ownerParams = owner.type.allparams();
duke@1 1810 List<Type> baseParams = base.allparams();
duke@1 1811 if (ownerParams.nonEmpty()) {
duke@1 1812 if (baseParams.isEmpty()) {
duke@1 1813 // then base is a raw type
duke@1 1814 return erasure(sym.type);
duke@1 1815 } else {
duke@1 1816 return subst(sym.type, ownerParams, baseParams);
duke@1 1817 }
duke@1 1818 }
duke@1 1819 }
duke@1 1820 }
duke@1 1821 return sym.type;
duke@1 1822 }
duke@1 1823
duke@1 1824 @Override
duke@1 1825 public Type visitTypeVar(TypeVar t, Symbol sym) {
duke@1 1826 return memberType(t.bound, sym);
duke@1 1827 }
duke@1 1828
duke@1 1829 @Override
duke@1 1830 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1831 return t;
duke@1 1832 }
duke@1 1833 };
duke@1 1834 // </editor-fold>
duke@1 1835
duke@1 1836 // <editor-fold defaultstate="collapsed" desc="isAssignable">
duke@1 1837 public boolean isAssignable(Type t, Type s) {
duke@1 1838 return isAssignable(t, s, Warner.noWarnings);
duke@1 1839 }
duke@1 1840
duke@1 1841 /**
duke@1 1842 * Is t assignable to s?<br>
duke@1 1843 * Equivalent to subtype except for constant values and raw
duke@1 1844 * types.<br>
duke@1 1845 * (not defined for Method and ForAll types)
duke@1 1846 */
duke@1 1847 public boolean isAssignable(Type t, Type s, Warner warn) {
duke@1 1848 if (t.tag == ERROR)
duke@1 1849 return true;
duke@1 1850 if (t.tag <= INT && t.constValue() != null) {
duke@1 1851 int value = ((Number)t.constValue()).intValue();
duke@1 1852 switch (s.tag) {
duke@1 1853 case BYTE:
duke@1 1854 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
duke@1 1855 return true;
duke@1 1856 break;
duke@1 1857 case CHAR:
duke@1 1858 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
duke@1 1859 return true;
duke@1 1860 break;
duke@1 1861 case SHORT:
duke@1 1862 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
duke@1 1863 return true;
duke@1 1864 break;
duke@1 1865 case INT:
duke@1 1866 return true;
duke@1 1867 case CLASS:
duke@1 1868 switch (unboxedType(s).tag) {
duke@1 1869 case BYTE:
duke@1 1870 case CHAR:
duke@1 1871 case SHORT:
duke@1 1872 return isAssignable(t, unboxedType(s), warn);
duke@1 1873 }
duke@1 1874 break;
duke@1 1875 }
duke@1 1876 }
duke@1 1877 return isConvertible(t, s, warn);
duke@1 1878 }
duke@1 1879 // </editor-fold>
duke@1 1880
duke@1 1881 // <editor-fold defaultstate="collapsed" desc="erasure">
duke@1 1882 /**
duke@1 1883 * The erasure of t {@code |t|} -- the type that results when all
duke@1 1884 * type parameters in t are deleted.
duke@1 1885 */
duke@1 1886 public Type erasure(Type t) {
sundar@1307 1887 return eraseNotNeeded(t)? t : erasure(t, false);
mcimadamore@30 1888 }
mcimadamore@30 1889 //where
sundar@1307 1890 private boolean eraseNotNeeded(Type t) {
sundar@1307 1891 // We don't want to erase primitive types and String type as that
sundar@1307 1892 // operation is idempotent. Also, erasing these could result in loss
sundar@1307 1893 // of information such as constant values attached to such types.
sundar@1307 1894 return (t.tag <= lastBaseTag) || (syms.stringType.tsym == t.tsym);
sundar@1307 1895 }
sundar@1307 1896
mcimadamore@30 1897 private Type erasure(Type t, boolean recurse) {
duke@1 1898 if (t.tag <= lastBaseTag)
duke@1 1899 return t; /* fast special case */
duke@1 1900 else
mcimadamore@30 1901 return erasure.visit(t, recurse);
mcimadamore@341 1902 }
duke@1 1903 // where
mcimadamore@30 1904 private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
mcimadamore@30 1905 public Type visitType(Type t, Boolean recurse) {
duke@1 1906 if (t.tag <= lastBaseTag)
duke@1 1907 return t; /*fast special case*/
duke@1 1908 else
mcimadamore@30 1909 return t.map(recurse ? erasureRecFun : erasureFun);
duke@1 1910 }
duke@1 1911
duke@1 1912 @Override
mcimadamore@30 1913 public Type visitWildcardType(WildcardType t, Boolean recurse) {
mcimadamore@30 1914 return erasure(upperBound(t), recurse);
duke@1 1915 }
duke@1 1916
duke@1 1917 @Override
mcimadamore@30 1918 public Type visitClassType(ClassType t, Boolean recurse) {
mcimadamore@30 1919 Type erased = t.tsym.erasure(Types.this);
mcimadamore@30 1920 if (recurse) {
mcimadamore@30 1921 erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
mcimadamore@30 1922 }
mcimadamore@30 1923 return erased;
duke@1 1924 }
duke@1 1925
duke@1 1926 @Override
mcimadamore@30 1927 public Type visitTypeVar(TypeVar t, Boolean recurse) {
mcimadamore@30 1928 return erasure(t.bound, recurse);
duke@1 1929 }
duke@1 1930
duke@1 1931 @Override
mcimadamore@30 1932 public Type visitErrorType(ErrorType t, Boolean recurse) {
duke@1 1933 return t;
duke@1 1934 }
duke@1 1935 };
mcimadamore@30 1936
duke@1 1937 private Mapping erasureFun = new Mapping ("erasure") {
duke@1 1938 public Type apply(Type t) { return erasure(t); }
duke@1 1939 };
duke@1 1940
mcimadamore@30 1941 private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
mcimadamore@30 1942 public Type apply(Type t) { return erasureRecursive(t); }
mcimadamore@30 1943 };
mcimadamore@30 1944
duke@1 1945 public List<Type> erasure(List<Type> ts) {
duke@1 1946 return Type.map(ts, erasureFun);
duke@1 1947 }
mcimadamore@30 1948
mcimadamore@30 1949 public Type erasureRecursive(Type t) {
mcimadamore@30 1950 return erasure(t, true);
mcimadamore@30 1951 }
mcimadamore@30 1952
mcimadamore@30 1953 public List<Type> erasureRecursive(List<Type> ts) {
mcimadamore@30 1954 return Type.map(ts, erasureRecFun);
mcimadamore@30 1955 }
duke@1 1956 // </editor-fold>
duke@1 1957
duke@1 1958 // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
duke@1 1959 /**
duke@1 1960 * Make a compound type from non-empty list of types
duke@1 1961 *
duke@1 1962 * @param bounds the types from which the compound type is formed
duke@1 1963 * @param supertype is objectType if all bounds are interfaces,
duke@1 1964 * null otherwise.
duke@1 1965 */
duke@1 1966 public Type makeCompoundType(List<Type> bounds,
duke@1 1967 Type supertype) {
duke@1 1968 ClassSymbol bc =
duke@1 1969 new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
duke@1 1970 Type.moreInfo
duke@1 1971 ? names.fromString(bounds.toString())
duke@1 1972 : names.empty,
duke@1 1973 syms.noSymbol);
duke@1 1974 if (bounds.head.tag == TYPEVAR)
duke@1 1975 // error condition, recover
mcimadamore@121 1976 bc.erasure_field = syms.objectType;
mcimadamore@121 1977 else
mcimadamore@121 1978 bc.erasure_field = erasure(bounds.head);
mcimadamore@121 1979 bc.members_field = new Scope(bc);
duke@1 1980 ClassType bt = (ClassType)bc.type;
duke@1 1981 bt.allparams_field = List.nil();
duke@1 1982 if (supertype != null) {
duke@1 1983 bt.supertype_field = supertype;
duke@1 1984 bt.interfaces_field = bounds;
duke@1 1985 } else {
duke@1 1986 bt.supertype_field = bounds.head;
duke@1 1987 bt.interfaces_field = bounds.tail;
duke@1 1988 }
jjg@816 1989 Assert.check(bt.supertype_field.tsym.completer != null
jjg@816 1990 || !bt.supertype_field.isInterface(),
jjg@816 1991 bt.supertype_field);
duke@1 1992 return bt;
duke@1 1993 }
duke@1 1994
duke@1 1995 /**
duke@1 1996 * Same as {@link #makeCompoundType(List,Type)}, except that the
duke@1 1997 * second parameter is computed directly. Note that this might
duke@1 1998 * cause a symbol completion. Hence, this version of
duke@1 1999 * makeCompoundType may not be called during a classfile read.
duke@1 2000 */
duke@1 2001 public Type makeCompoundType(List<Type> bounds) {
duke@1 2002 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
duke@1 2003 supertype(bounds.head) : null;
duke@1 2004 return makeCompoundType(bounds, supertype);
duke@1 2005 }
duke@1 2006
duke@1 2007 /**
duke@1 2008 * A convenience wrapper for {@link #makeCompoundType(List)}; the
duke@1 2009 * arguments are converted to a list and passed to the other
duke@1 2010 * method. Note that this might cause a symbol completion.
duke@1 2011 * Hence, this version of makeCompoundType may not be called
duke@1 2012 * during a classfile read.
duke@1 2013 */
duke@1 2014 public Type makeCompoundType(Type bound1, Type bound2) {
duke@1 2015 return makeCompoundType(List.of(bound1, bound2));
duke@1 2016 }
duke@1 2017 // </editor-fold>
duke@1 2018
duke@1 2019 // <editor-fold defaultstate="collapsed" desc="supertype">
duke@1 2020 public Type supertype(Type t) {
duke@1 2021 return supertype.visit(t);
duke@1 2022 }
duke@1 2023 // where
duke@1 2024 private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
duke@1 2025
duke@1 2026 public Type visitType(Type t, Void ignored) {
duke@1 2027 // A note on wildcards: there is no good way to
duke@1 2028 // determine a supertype for a super bounded wildcard.
duke@1 2029 return null;
duke@1 2030 }
duke@1 2031
duke@1 2032 @Override
duke@1 2033 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2034 if (t.supertype_field == null) {
duke@1 2035 Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
duke@1 2036 // An interface has no superclass; its supertype is Object.
duke@1 2037 if (t.isInterface())
duke@1 2038 supertype = ((ClassType)t.tsym.type).supertype_field;
duke@1 2039 if (t.supertype_field == null) {
duke@1 2040 List<Type> actuals = classBound(t).allparams();
duke@1 2041 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 2042 if (t.hasErasedSupertypes()) {
mcimadamore@30 2043 t.supertype_field = erasureRecursive(supertype);
mcimadamore@30 2044 } else if (formals.nonEmpty()) {
duke@1 2045 t.supertype_field = subst(supertype, formals, actuals);
duke@1 2046 }
mcimadamore@30 2047 else {
mcimadamore@30 2048 t.supertype_field = supertype;
mcimadamore@30 2049 }
duke@1 2050 }
duke@1 2051 }
duke@1 2052 return t.supertype_field;
duke@1 2053 }
duke@1 2054
duke@1 2055 /**
duke@1 2056 * The supertype is always a class type. If the type
duke@1 2057 * variable's bounds start with a class type, this is also
duke@1 2058 * the supertype. Otherwise, the supertype is
duke@1 2059 * java.lang.Object.
duke@1 2060 */
duke@1 2061 @Override
duke@1 2062 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2063 if (t.bound.tag == TYPEVAR ||
duke@1 2064 (!t.bound.isCompound() && !t.bound.isInterface())) {
duke@1 2065 return t.bound;
duke@1 2066 } else {
duke@1 2067 return supertype(t.bound);
duke@1 2068 }
duke@1 2069 }
duke@1 2070
duke@1 2071 @Override
duke@1 2072 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 2073 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
duke@1 2074 return arraySuperType();
duke@1 2075 else
duke@1 2076 return new ArrayType(supertype(t.elemtype), t.tsym);
duke@1 2077 }
duke@1 2078
duke@1 2079 @Override
duke@1 2080 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2081 return t;
duke@1 2082 }
duke@1 2083 };
duke@1 2084 // </editor-fold>
duke@1 2085
duke@1 2086 // <editor-fold defaultstate="collapsed" desc="interfaces">
duke@1 2087 /**
duke@1 2088 * Return the interfaces implemented by this class.
duke@1 2089 */
duke@1 2090 public List<Type> interfaces(Type t) {
duke@1 2091 return interfaces.visit(t);
duke@1 2092 }
duke@1 2093 // where
duke@1 2094 private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
duke@1 2095
duke@1 2096 public List<Type> visitType(Type t, Void ignored) {
duke@1 2097 return List.nil();
duke@1 2098 }
duke@1 2099
duke@1 2100 @Override
duke@1 2101 public List<Type> visitClassType(ClassType t, Void ignored) {
duke@1 2102 if (t.interfaces_field == null) {
duke@1 2103 List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
duke@1 2104 if (t.interfaces_field == null) {
duke@1 2105 // If t.interfaces_field is null, then t must
duke@1 2106 // be a parameterized type (not to be confused
duke@1 2107 // with a generic type declaration).
duke@1 2108 // Terminology:
duke@1 2109 // Parameterized type: List<String>
duke@1 2110 // Generic type declaration: class List<E> { ... }
duke@1 2111 // So t corresponds to List<String> and
duke@1 2112 // t.tsym.type corresponds to List<E>.
duke@1 2113 // The reason t must be parameterized type is
duke@1 2114 // that completion will happen as a side
duke@1 2115 // effect of calling
duke@1 2116 // ClassSymbol.getInterfaces. Since
duke@1 2117 // t.interfaces_field is null after
duke@1 2118 // completion, we can assume that t is not the
duke@1 2119 // type of a class/interface declaration.
jjg@816 2120 Assert.check(t != t.tsym.type, t);
duke@1 2121 List<Type> actuals = t.allparams();
duke@1 2122 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 2123 if (t.hasErasedSupertypes()) {
mcimadamore@30 2124 t.interfaces_field = erasureRecursive(interfaces);
mcimadamore@30 2125 } else if (formals.nonEmpty()) {
duke@1 2126 t.interfaces_field =
duke@1 2127 upperBounds(subst(interfaces, formals, actuals));
duke@1 2128 }
mcimadamore@30 2129 else {
mcimadamore@30 2130 t.interfaces_field = interfaces;
mcimadamore@30 2131 }
duke@1 2132 }
duke@1 2133 }
duke@1 2134 return t.interfaces_field;
duke@1 2135 }
duke@1 2136
duke@1 2137 @Override
duke@1 2138 public List<Type> visitTypeVar(TypeVar t, Void ignored) {
duke@1 2139 if (t.bound.isCompound())
duke@1 2140 return interfaces(t.bound);
duke@1 2141
duke@1 2142 if (t.bound.isInterface())
duke@1 2143 return List.of(t.bound);
duke@1 2144
duke@1 2145 return List.nil();
duke@1 2146 }
duke@1 2147 };
duke@1 2148 // </editor-fold>
duke@1 2149
duke@1 2150 // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
duke@1 2151 Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
duke@1 2152
duke@1 2153 public boolean isDerivedRaw(Type t) {
duke@1 2154 Boolean result = isDerivedRawCache.get(t);
duke@1 2155 if (result == null) {
duke@1 2156 result = isDerivedRawInternal(t);
duke@1 2157 isDerivedRawCache.put(t, result);
duke@1 2158 }
duke@1 2159 return result;
duke@1 2160 }
duke@1 2161
duke@1 2162 public boolean isDerivedRawInternal(Type t) {
duke@1 2163 if (t.isErroneous())
duke@1 2164 return false;
duke@1 2165 return
duke@1 2166 t.isRaw() ||
duke@1 2167 supertype(t) != null && isDerivedRaw(supertype(t)) ||
duke@1 2168 isDerivedRaw(interfaces(t));
duke@1 2169 }
duke@1 2170
duke@1 2171 public boolean isDerivedRaw(List<Type> ts) {
duke@1 2172 List<Type> l = ts;
duke@1 2173 while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
duke@1 2174 return l.nonEmpty();
duke@1 2175 }
duke@1 2176 // </editor-fold>
duke@1 2177
duke@1 2178 // <editor-fold defaultstate="collapsed" desc="setBounds">
duke@1 2179 /**
duke@1 2180 * Set the bounds field of the given type variable to reflect a
duke@1 2181 * (possibly multiple) list of bounds.
duke@1 2182 * @param t a type variable
duke@1 2183 * @param bounds the bounds, must be nonempty
duke@1 2184 * @param supertype is objectType if all bounds are interfaces,
duke@1 2185 * null otherwise.
duke@1 2186 */
duke@1 2187 public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
duke@1 2188 if (bounds.tail.isEmpty())
duke@1 2189 t.bound = bounds.head;
duke@1 2190 else
duke@1 2191 t.bound = makeCompoundType(bounds, supertype);
duke@1 2192 t.rank_field = -1;
duke@1 2193 }
duke@1 2194
duke@1 2195 /**
duke@1 2196 * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
mcimadamore@563 2197 * third parameter is computed directly, as follows: if all
mcimadamore@563 2198 * all bounds are interface types, the computed supertype is Object,
mcimadamore@563 2199 * otherwise the supertype is simply left null (in this case, the supertype
mcimadamore@563 2200 * is assumed to be the head of the bound list passed as second argument).
mcimadamore@563 2201 * Note that this check might cause a symbol completion. Hence, this version of
duke@1 2202 * setBounds may not be called during a classfile read.
duke@1 2203 */
duke@1 2204 public void setBounds(TypeVar t, List<Type> bounds) {
duke@1 2205 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
mcimadamore@563 2206 syms.objectType : null;
duke@1 2207 setBounds(t, bounds, supertype);
duke@1 2208 t.rank_field = -1;
duke@1 2209 }
duke@1 2210 // </editor-fold>
duke@1 2211
duke@1 2212 // <editor-fold defaultstate="collapsed" desc="getBounds">
duke@1 2213 /**
duke@1 2214 * Return list of bounds of the given type variable.
duke@1 2215 */
duke@1 2216 public List<Type> getBounds(TypeVar t) {
duke@1 2217 if (t.bound.isErroneous() || !t.bound.isCompound())
duke@1 2218 return List.of(t.bound);
duke@1 2219 else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
duke@1 2220 return interfaces(t).prepend(supertype(t));
duke@1 2221 else
duke@1 2222 // No superclass was given in bounds.
duke@1 2223 // In this case, supertype is Object, erasure is first interface.
duke@1 2224 return interfaces(t);
duke@1 2225 }
duke@1 2226 // </editor-fold>
duke@1 2227
duke@1 2228 // <editor-fold defaultstate="collapsed" desc="classBound">
duke@1 2229 /**
duke@1 2230 * If the given type is a (possibly selected) type variable,
duke@1 2231 * return the bounding class of this type, otherwise return the
duke@1 2232 * type itself.
duke@1 2233 */
duke@1 2234 public Type classBound(Type t) {
duke@1 2235 return classBound.visit(t);
duke@1 2236 }
duke@1 2237 // where
duke@1 2238 private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
duke@1 2239
duke@1 2240 public Type visitType(Type t, Void ignored) {
duke@1 2241 return t;
duke@1 2242 }
duke@1 2243
duke@1 2244 @Override
duke@1 2245 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2246 Type outer1 = classBound(t.getEnclosingType());
duke@1 2247 if (outer1 != t.getEnclosingType())
duke@1 2248 return new ClassType(outer1, t.getTypeArguments(), t.tsym);
duke@1 2249 else
duke@1 2250 return t;
duke@1 2251 }
duke@1 2252
duke@1 2253 @Override
duke@1 2254 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2255 return classBound(supertype(t));
duke@1 2256 }
duke@1 2257
duke@1 2258 @Override
duke@1 2259 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2260 return t;
duke@1 2261 }
duke@1 2262 };
duke@1 2263 // </editor-fold>
duke@1 2264
duke@1 2265 // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
duke@1 2266 /**
duke@1 2267 * Returns true iff the first signature is a <em>sub
duke@1 2268 * signature</em> of the other. This is <b>not</b> an equivalence
duke@1 2269 * relation.
duke@1 2270 *
jjh@972 2271 * @jls section 8.4.2.
duke@1 2272 * @see #overrideEquivalent(Type t, Type s)
duke@1 2273 * @param t first signature (possibly raw).
duke@1 2274 * @param s second signature (could be subjected to erasure).
duke@1 2275 * @return true if t is a sub signature of s.
duke@1 2276 */
duke@1 2277 public boolean isSubSignature(Type t, Type s) {
mcimadamore@907 2278 return isSubSignature(t, s, true);
mcimadamore@907 2279 }
mcimadamore@907 2280
mcimadamore@907 2281 public boolean isSubSignature(Type t, Type s, boolean strict) {
mcimadamore@907 2282 return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
duke@1 2283 }
duke@1 2284
duke@1 2285 /**
duke@1 2286 * Returns true iff these signatures are related by <em>override
duke@1 2287 * equivalence</em>. This is the natural extension of
duke@1 2288 * isSubSignature to an equivalence relation.
duke@1 2289 *
jjh@972 2290 * @jls section 8.4.2.
duke@1 2291 * @see #isSubSignature(Type t, Type s)
duke@1 2292 * @param t a signature (possible raw, could be subjected to
duke@1 2293 * erasure).
duke@1 2294 * @param s a signature (possible raw, could be subjected to
duke@1 2295 * erasure).
duke@1 2296 * @return true if either argument is a sub signature of the other.
duke@1 2297 */
duke@1 2298 public boolean overrideEquivalent(Type t, Type s) {
duke@1 2299 return hasSameArgs(t, s) ||
duke@1 2300 hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
duke@1 2301 }
duke@1 2302
mcimadamore@1348 2303 public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
mcimadamore@1348 2304 for (Scope.Entry e = syms.objectType.tsym.members().lookup(msym.name) ; e.scope != null ; e = e.next()) {
mcimadamore@1348 2305 if (msym.overrides(e.sym, origin, Types.this, true)) {
mcimadamore@1348 2306 return true;
mcimadamore@1348 2307 }
mcimadamore@1348 2308 }
mcimadamore@1348 2309 return false;
mcimadamore@1348 2310 }
mcimadamore@1348 2311
mcimadamore@673 2312 // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
mcimadamore@673 2313 class ImplementationCache {
mcimadamore@673 2314
mcimadamore@673 2315 private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
mcimadamore@673 2316 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
mcimadamore@673 2317
mcimadamore@673 2318 class Entry {
mcimadamore@673 2319 final MethodSymbol cachedImpl;
mcimadamore@673 2320 final Filter<Symbol> implFilter;
mcimadamore@673 2321 final boolean checkResult;
mcimadamore@877 2322 final int prevMark;
mcimadamore@673 2323
mcimadamore@673 2324 public Entry(MethodSymbol cachedImpl,
mcimadamore@673 2325 Filter<Symbol> scopeFilter,
mcimadamore@877 2326 boolean checkResult,
mcimadamore@877 2327 int prevMark) {
mcimadamore@673 2328 this.cachedImpl = cachedImpl;
mcimadamore@673 2329 this.implFilter = scopeFilter;
mcimadamore@673 2330 this.checkResult = checkResult;
mcimadamore@877 2331 this.prevMark = prevMark;
mcimadamore@673 2332 }
mcimadamore@673 2333
mcimadamore@877 2334 boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
mcimadamore@673 2335 return this.implFilter == scopeFilter &&
mcimadamore@877 2336 this.checkResult == checkResult &&
mcimadamore@877 2337 this.prevMark == mark;
mcimadamore@673 2338 }
mcimadamore@341 2339 }
mcimadamore@673 2340
mcimadamore@858 2341 MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@673 2342 SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
mcimadamore@673 2343 Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
mcimadamore@673 2344 if (cache == null) {
mcimadamore@673 2345 cache = new HashMap<TypeSymbol, Entry>();
mcimadamore@673 2346 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
mcimadamore@673 2347 }
mcimadamore@673 2348 Entry e = cache.get(origin);
mcimadamore@1015 2349 CompoundScope members = membersClosure(origin.type, true);
mcimadamore@673 2350 if (e == null ||
mcimadamore@877 2351 !e.matches(implFilter, checkResult, members.getMark())) {
mcimadamore@877 2352 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
mcimadamore@877 2353 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
mcimadamore@673 2354 return impl;
mcimadamore@673 2355 }
mcimadamore@673 2356 else {
mcimadamore@673 2357 return e.cachedImpl;
mcimadamore@673 2358 }
mcimadamore@673 2359 }
mcimadamore@673 2360
mcimadamore@877 2361 private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@877 2362 for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
mcimadamore@341 2363 while (t.tag == TYPEVAR)
mcimadamore@341 2364 t = t.getUpperBound();
mcimadamore@341 2365 TypeSymbol c = t.tsym;
mcimadamore@673 2366 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
mcimadamore@341 2367 e.scope != null;
mcimadamore@780 2368 e = e.next(implFilter)) {
mcimadamore@673 2369 if (e.sym != null &&
mcimadamore@877 2370 e.sym.overrides(ms, origin, Types.this, checkResult))
mcimadamore@673 2371 return (MethodSymbol)e.sym;
mcimadamore@341 2372 }
mcimadamore@341 2373 }
mcimadamore@673 2374 return null;
mcimadamore@341 2375 }
mcimadamore@341 2376 }
mcimadamore@341 2377
mcimadamore@673 2378 private ImplementationCache implCache = new ImplementationCache();
mcimadamore@673 2379
mcimadamore@858 2380 public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@858 2381 return implCache.get(ms, origin, checkResult, implFilter);
mcimadamore@673 2382 }
mcimadamore@673 2383 // </editor-fold>
mcimadamore@673 2384
mcimadamore@858 2385 // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
mcimadamore@1015 2386 class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
mcimadamore@1015 2387
mcimadamore@1015 2388 private WeakHashMap<TypeSymbol, Entry> _map =
mcimadamore@1015 2389 new WeakHashMap<TypeSymbol, Entry>();
mcimadamore@1015 2390
mcimadamore@1015 2391 class Entry {
mcimadamore@1015 2392 final boolean skipInterfaces;
mcimadamore@1015 2393 final CompoundScope compoundScope;
mcimadamore@1015 2394
mcimadamore@1015 2395 public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
mcimadamore@1015 2396 this.skipInterfaces = skipInterfaces;
mcimadamore@1015 2397 this.compoundScope = compoundScope;
mcimadamore@1015 2398 }
mcimadamore@1015 2399
mcimadamore@1015 2400 boolean matches(boolean skipInterfaces) {
mcimadamore@1015 2401 return this.skipInterfaces == skipInterfaces;
mcimadamore@1015 2402 }
mcimadamore@1015 2403 }
mcimadamore@1015 2404
mcimadamore@1072 2405 List<TypeSymbol> seenTypes = List.nil();
mcimadamore@1072 2406
mcimadamore@1015 2407 /** members closure visitor methods **/
mcimadamore@1015 2408
mcimadamore@1015 2409 public CompoundScope visitType(Type t, Boolean skipInterface) {
mcimadamore@858 2410 return null;
mcimadamore@858 2411 }
mcimadamore@858 2412
mcimadamore@858 2413 @Override
mcimadamore@1015 2414 public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
mcimadamore@1072 2415 if (seenTypes.contains(t.tsym)) {
mcimadamore@1072 2416 //this is possible when an interface is implemented in multiple
mcimadamore@1072 2417 //superclasses, or when a classs hierarchy is circular - in such
mcimadamore@1072 2418 //cases we don't need to recurse (empty scope is returned)
mcimadamore@1072 2419 return new CompoundScope(t.tsym);
mcimadamore@1072 2420 }
mcimadamore@1072 2421 try {
mcimadamore@1072 2422 seenTypes = seenTypes.prepend(t.tsym);
mcimadamore@1072 2423 ClassSymbol csym = (ClassSymbol)t.tsym;
mcimadamore@1072 2424 Entry e = _map.get(csym);
mcimadamore@1072 2425 if (e == null || !e.matches(skipInterface)) {
mcimadamore@1072 2426 CompoundScope membersClosure = new CompoundScope(csym);
mcimadamore@1072 2427 if (!skipInterface) {
mcimadamore@1072 2428 for (Type i : interfaces(t)) {
mcimadamore@1072 2429 membersClosure.addSubScope(visit(i, skipInterface));
mcimadamore@1072 2430 }
mcimadamore@1015 2431 }
mcimadamore@1072 2432 membersClosure.addSubScope(visit(supertype(t), skipInterface));
mcimadamore@1072 2433 membersClosure.addSubScope(csym.members());
mcimadamore@1072 2434 e = new Entry(skipInterface, membersClosure);
mcimadamore@1072 2435 _map.put(csym, e);
mcimadamore@858 2436 }
mcimadamore@1072 2437 return e.compoundScope;
mcimadamore@858 2438 }
mcimadamore@1072 2439 finally {
mcimadamore@1072 2440 seenTypes = seenTypes.tail;
mcimadamore@1072 2441 }
mcimadamore@858 2442 }
mcimadamore@858 2443
mcimadamore@858 2444 @Override
mcimadamore@1015 2445 public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
mcimadamore@1015 2446 return visit(t.getUpperBound(), skipInterface);
mcimadamore@858 2447 }
mcimadamore@1015 2448 }
mcimadamore@1015 2449
mcimadamore@1015 2450 private MembersClosureCache membersCache = new MembersClosureCache();
mcimadamore@1015 2451
mcimadamore@1015 2452 public CompoundScope membersClosure(Type site, boolean skipInterface) {
mcimadamore@1015 2453 return membersCache.visit(site, skipInterface);
mcimadamore@1015 2454 }
mcimadamore@858 2455 // </editor-fold>
mcimadamore@858 2456
duke@1 2457 /**
duke@1 2458 * Does t have the same arguments as s? It is assumed that both
duke@1 2459 * types are (possibly polymorphic) method types. Monomorphic
duke@1 2460 * method types "have the same arguments", if their argument lists
duke@1 2461 * are equal. Polymorphic method types "have the same arguments",
duke@1 2462 * if they have the same arguments after renaming all type
duke@1 2463 * variables of one to corresponding type variables in the other,
duke@1 2464 * where correspondence is by position in the type parameter list.
duke@1 2465 */
duke@1 2466 public boolean hasSameArgs(Type t, Type s) {
mcimadamore@907 2467 return hasSameArgs(t, s, true);
mcimadamore@907 2468 }
mcimadamore@907 2469
mcimadamore@907 2470 public boolean hasSameArgs(Type t, Type s, boolean strict) {
mcimadamore@907 2471 return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
mcimadamore@907 2472 }
mcimadamore@907 2473
mcimadamore@907 2474 private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
duke@1 2475 return hasSameArgs.visit(t, s);
duke@1 2476 }
duke@1 2477 // where
mcimadamore@907 2478 private class HasSameArgs extends TypeRelation {
mcimadamore@907 2479
mcimadamore@907 2480 boolean strict;
mcimadamore@907 2481
mcimadamore@907 2482 public HasSameArgs(boolean strict) {
mcimadamore@907 2483 this.strict = strict;
mcimadamore@907 2484 }
duke@1 2485
duke@1 2486 public Boolean visitType(Type t, Type s) {
duke@1 2487 throw new AssertionError();
duke@1 2488 }
duke@1 2489
duke@1 2490 @Override
duke@1 2491 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 2492 return s.tag == METHOD
duke@1 2493 && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
duke@1 2494 }
duke@1 2495
duke@1 2496 @Override
duke@1 2497 public Boolean visitForAll(ForAll t, Type s) {
duke@1 2498 if (s.tag != FORALL)
mcimadamore@907 2499 return strict ? false : visitMethodType(t.asMethodType(), s);
duke@1 2500
duke@1 2501 ForAll forAll = (ForAll)s;
duke@1 2502 return hasSameBounds(t, forAll)
duke@1 2503 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 2504 }
duke@1 2505
duke@1 2506 @Override
duke@1 2507 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 2508 return false;
duke@1 2509 }
duke@1 2510 };
mcimadamore@907 2511
mcimadamore@907 2512 TypeRelation hasSameArgs_strict = new HasSameArgs(true);
mcimadamore@907 2513 TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
mcimadamore@907 2514
duke@1 2515 // </editor-fold>
duke@1 2516
duke@1 2517 // <editor-fold defaultstate="collapsed" desc="subst">
duke@1 2518 public List<Type> subst(List<Type> ts,
duke@1 2519 List<Type> from,
duke@1 2520 List<Type> to) {
duke@1 2521 return new Subst(from, to).subst(ts);
duke@1 2522 }
duke@1 2523
duke@1 2524 /**
duke@1 2525 * Substitute all occurrences of a type in `from' with the
duke@1 2526 * corresponding type in `to' in 't'. Match lists `from' and `to'
duke@1 2527 * from the right: If lists have different length, discard leading
duke@1 2528 * elements of the longer list.
duke@1 2529 */
duke@1 2530 public Type subst(Type t, List<Type> from, List<Type> to) {
duke@1 2531 return new Subst(from, to).subst(t);
duke@1 2532 }
duke@1 2533
duke@1 2534 private class Subst extends UnaryVisitor<Type> {
duke@1 2535 List<Type> from;
duke@1 2536 List<Type> to;
duke@1 2537
duke@1 2538 public Subst(List<Type> from, List<Type> to) {
duke@1 2539 int fromLength = from.length();
duke@1 2540 int toLength = to.length();
duke@1 2541 while (fromLength > toLength) {
duke@1 2542 fromLength--;
duke@1 2543 from = from.tail;
duke@1 2544 }
duke@1 2545 while (fromLength < toLength) {
duke@1 2546 toLength--;
duke@1 2547 to = to.tail;
duke@1 2548 }
duke@1 2549 this.from = from;
duke@1 2550 this.to = to;
duke@1 2551 }
duke@1 2552
duke@1 2553 Type subst(Type t) {
duke@1 2554 if (from.tail == null)
duke@1 2555 return t;
duke@1 2556 else
duke@1 2557 return visit(t);
mcimadamore@238 2558 }
duke@1 2559
duke@1 2560 List<Type> subst(List<Type> ts) {
duke@1 2561 if (from.tail == null)
duke@1 2562 return ts;
duke@1 2563 boolean wild = false;
duke@1 2564 if (ts.nonEmpty() && from.nonEmpty()) {
duke@1 2565 Type head1 = subst(ts.head);
duke@1 2566 List<Type> tail1 = subst(ts.tail);
duke@1 2567 if (head1 != ts.head || tail1 != ts.tail)
duke@1 2568 return tail1.prepend(head1);
duke@1 2569 }
duke@1 2570 return ts;
duke@1 2571 }
duke@1 2572
duke@1 2573 public Type visitType(Type t, Void ignored) {
duke@1 2574 return t;
duke@1 2575 }
duke@1 2576
duke@1 2577 @Override
duke@1 2578 public Type visitMethodType(MethodType t, Void ignored) {
duke@1 2579 List<Type> argtypes = subst(t.argtypes);
duke@1 2580 Type restype = subst(t.restype);
duke@1 2581 List<Type> thrown = subst(t.thrown);
duke@1 2582 if (argtypes == t.argtypes &&
duke@1 2583 restype == t.restype &&
duke@1 2584 thrown == t.thrown)
duke@1 2585 return t;
duke@1 2586 else
duke@1 2587 return new MethodType(argtypes, restype, thrown, t.tsym);
duke@1 2588 }
duke@1 2589
duke@1 2590 @Override
duke@1 2591 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2592 for (List<Type> from = this.from, to = this.to;
duke@1 2593 from.nonEmpty();
duke@1 2594 from = from.tail, to = to.tail) {
duke@1 2595 if (t == from.head) {
duke@1 2596 return to.head.withTypeVar(t);
duke@1 2597 }
duke@1 2598 }
duke@1 2599 return t;
duke@1 2600 }
duke@1 2601
duke@1 2602 @Override
duke@1 2603 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2604 if (!t.isCompound()) {
duke@1 2605 List<Type> typarams = t.getTypeArguments();
duke@1 2606 List<Type> typarams1 = subst(typarams);
duke@1 2607 Type outer = t.getEnclosingType();
duke@1 2608 Type outer1 = subst(outer);
duke@1 2609 if (typarams1 == typarams && outer1 == outer)
duke@1 2610 return t;
duke@1 2611 else
duke@1 2612 return new ClassType(outer1, typarams1, t.tsym);
duke@1 2613 } else {
duke@1 2614 Type st = subst(supertype(t));
duke@1 2615 List<Type> is = upperBounds(subst(interfaces(t)));
duke@1 2616 if (st == supertype(t) && is == interfaces(t))
duke@1 2617 return t;
duke@1 2618 else
duke@1 2619 return makeCompoundType(is.prepend(st));
duke@1 2620 }
duke@1 2621 }
duke@1 2622
duke@1 2623 @Override
duke@1 2624 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 2625 Type bound = t.type;
duke@1 2626 if (t.kind != BoundKind.UNBOUND)
duke@1 2627 bound = subst(bound);
duke@1 2628 if (bound == t.type) {
duke@1 2629 return t;
duke@1 2630 } else {
duke@1 2631 if (t.isExtendsBound() && bound.isExtendsBound())
duke@1 2632 bound = upperBound(bound);
duke@1 2633 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
duke@1 2634 }
duke@1 2635 }
duke@1 2636
duke@1 2637 @Override
duke@1 2638 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 2639 Type elemtype = subst(t.elemtype);
duke@1 2640 if (elemtype == t.elemtype)
duke@1 2641 return t;
duke@1 2642 else
mcimadamore@996 2643 return new ArrayType(upperBound(elemtype), t.tsym);
duke@1 2644 }
duke@1 2645
duke@1 2646 @Override
duke@1 2647 public Type visitForAll(ForAll t, Void ignored) {
mcimadamore@846 2648 if (Type.containsAny(to, t.tvars)) {
mcimadamore@846 2649 //perform alpha-renaming of free-variables in 't'
mcimadamore@846 2650 //if 'to' types contain variables that are free in 't'
mcimadamore@846 2651 List<Type> freevars = newInstances(t.tvars);
mcimadamore@846 2652 t = new ForAll(freevars,
mcimadamore@846 2653 Types.this.subst(t.qtype, t.tvars, freevars));
mcimadamore@846 2654 }
duke@1 2655 List<Type> tvars1 = substBounds(t.tvars, from, to);
duke@1 2656 Type qtype1 = subst(t.qtype);
duke@1 2657 if (tvars1 == t.tvars && qtype1 == t.qtype) {
duke@1 2658 return t;
duke@1 2659 } else if (tvars1 == t.tvars) {
duke@1 2660 return new ForAll(tvars1, qtype1);
duke@1 2661 } else {
duke@1 2662 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
duke@1 2663 }
duke@1 2664 }
duke@1 2665
duke@1 2666 @Override
duke@1 2667 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2668 return t;
duke@1 2669 }
duke@1 2670 }
duke@1 2671
duke@1 2672 public List<Type> substBounds(List<Type> tvars,
duke@1 2673 List<Type> from,
duke@1 2674 List<Type> to) {
duke@1 2675 if (tvars.isEmpty())
duke@1 2676 return tvars;
duke@1 2677 ListBuffer<Type> newBoundsBuf = lb();
duke@1 2678 boolean changed = false;
duke@1 2679 // calculate new bounds
duke@1 2680 for (Type t : tvars) {
duke@1 2681 TypeVar tv = (TypeVar) t;
duke@1 2682 Type bound = subst(tv.bound, from, to);
duke@1 2683 if (bound != tv.bound)
duke@1 2684 changed = true;
duke@1 2685 newBoundsBuf.append(bound);
duke@1 2686 }
duke@1 2687 if (!changed)
duke@1 2688 return tvars;
duke@1 2689 ListBuffer<Type> newTvars = lb();
duke@1 2690 // create new type variables without bounds
duke@1 2691 for (Type t : tvars) {
duke@1 2692 newTvars.append(new TypeVar(t.tsym, null, syms.botType));
duke@1 2693 }
duke@1 2694 // the new bounds should use the new type variables in place
duke@1 2695 // of the old
duke@1 2696 List<Type> newBounds = newBoundsBuf.toList();
duke@1 2697 from = tvars;
duke@1 2698 to = newTvars.toList();
duke@1 2699 for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
duke@1 2700 newBounds.head = subst(newBounds.head, from, to);
duke@1 2701 }
duke@1 2702 newBounds = newBoundsBuf.toList();
duke@1 2703 // set the bounds of new type variables to the new bounds
duke@1 2704 for (Type t : newTvars.toList()) {
duke@1 2705 TypeVar tv = (TypeVar) t;
duke@1 2706 tv.bound = newBounds.head;
duke@1 2707 newBounds = newBounds.tail;
duke@1 2708 }
duke@1 2709 return newTvars.toList();
duke@1 2710 }
duke@1 2711
duke@1 2712 public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
duke@1 2713 Type bound1 = subst(t.bound, from, to);
duke@1 2714 if (bound1 == t.bound)
duke@1 2715 return t;
mcimadamore@212 2716 else {
mcimadamore@212 2717 // create new type variable without bounds
mcimadamore@212 2718 TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
mcimadamore@212 2719 // the new bound should use the new type variable in place
mcimadamore@212 2720 // of the old
mcimadamore@212 2721 tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
mcimadamore@212 2722 return tv;
mcimadamore@212 2723 }
duke@1 2724 }
duke@1 2725 // </editor-fold>
duke@1 2726
duke@1 2727 // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
duke@1 2728 /**
duke@1 2729 * Does t have the same bounds for quantified variables as s?
duke@1 2730 */
duke@1 2731 boolean hasSameBounds(ForAll t, ForAll s) {
duke@1 2732 List<Type> l1 = t.tvars;
duke@1 2733 List<Type> l2 = s.tvars;
duke@1 2734 while (l1.nonEmpty() && l2.nonEmpty() &&
duke@1 2735 isSameType(l1.head.getUpperBound(),
duke@1 2736 subst(l2.head.getUpperBound(),
duke@1 2737 s.tvars,
duke@1 2738 t.tvars))) {
duke@1 2739 l1 = l1.tail;
duke@1 2740 l2 = l2.tail;
duke@1 2741 }
duke@1 2742 return l1.isEmpty() && l2.isEmpty();
duke@1 2743 }
duke@1 2744 // </editor-fold>
duke@1 2745
duke@1 2746 // <editor-fold defaultstate="collapsed" desc="newInstances">
duke@1 2747 /** Create new vector of type variables from list of variables
duke@1 2748 * changing all recursive bounds from old to new list.
duke@1 2749 */
duke@1 2750 public List<Type> newInstances(List<Type> tvars) {
duke@1 2751 List<Type> tvars1 = Type.map(tvars, newInstanceFun);
duke@1 2752 for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
duke@1 2753 TypeVar tv = (TypeVar) l.head;
duke@1 2754 tv.bound = subst(tv.bound, tvars, tvars1);
duke@1 2755 }
duke@1 2756 return tvars1;
duke@1 2757 }
duke@1 2758 static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
duke@1 2759 public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
duke@1 2760 };
duke@1 2761 // </editor-fold>
duke@1 2762
dlsmith@880 2763 public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
dlsmith@880 2764 return original.accept(methodWithParameters, newParams);
dlsmith@880 2765 }
dlsmith@880 2766 // where
dlsmith@880 2767 private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
dlsmith@880 2768 public Type visitType(Type t, List<Type> newParams) {
dlsmith@880 2769 throw new IllegalArgumentException("Not a method type: " + t);
dlsmith@880 2770 }
dlsmith@880 2771 public Type visitMethodType(MethodType t, List<Type> newParams) {
dlsmith@880 2772 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
dlsmith@880 2773 }
dlsmith@880 2774 public Type visitForAll(ForAll t, List<Type> newParams) {
dlsmith@880 2775 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
dlsmith@880 2776 }
dlsmith@880 2777 };
dlsmith@880 2778
dlsmith@880 2779 public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
dlsmith@880 2780 return original.accept(methodWithThrown, newThrown);
dlsmith@880 2781 }
dlsmith@880 2782 // where
dlsmith@880 2783 private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
dlsmith@880 2784 public Type visitType(Type t, List<Type> newThrown) {
dlsmith@880 2785 throw new IllegalArgumentException("Not a method type: " + t);
dlsmith@880 2786 }
dlsmith@880 2787 public Type visitMethodType(MethodType t, List<Type> newThrown) {
dlsmith@880 2788 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
dlsmith@880 2789 }
dlsmith@880 2790 public Type visitForAll(ForAll t, List<Type> newThrown) {
dlsmith@880 2791 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
dlsmith@880 2792 }
dlsmith@880 2793 };
dlsmith@880 2794
mcimadamore@950 2795 public Type createMethodTypeWithReturn(Type original, Type newReturn) {
mcimadamore@950 2796 return original.accept(methodWithReturn, newReturn);
mcimadamore@950 2797 }
mcimadamore@950 2798 // where
mcimadamore@950 2799 private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
mcimadamore@950 2800 public Type visitType(Type t, Type newReturn) {
mcimadamore@950 2801 throw new IllegalArgumentException("Not a method type: " + t);
mcimadamore@950 2802 }
mcimadamore@950 2803 public Type visitMethodType(MethodType t, Type newReturn) {
mcimadamore@950 2804 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
mcimadamore@950 2805 }
mcimadamore@950 2806 public Type visitForAll(ForAll t, Type newReturn) {
mcimadamore@950 2807 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
mcimadamore@950 2808 }
mcimadamore@950 2809 };
mcimadamore@950 2810
jjg@110 2811 // <editor-fold defaultstate="collapsed" desc="createErrorType">
jjg@110 2812 public Type createErrorType(Type originalType) {
jjg@110 2813 return new ErrorType(originalType, syms.errSymbol);
jjg@110 2814 }
jjg@110 2815
jjg@110 2816 public Type createErrorType(ClassSymbol c, Type originalType) {
jjg@110 2817 return new ErrorType(c, originalType);
jjg@110 2818 }
jjg@110 2819
jjg@110 2820 public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
jjg@110 2821 return new ErrorType(name, container, originalType);
jjg@110 2822 }
jjg@110 2823 // </editor-fold>
jjg@110 2824
duke@1 2825 // <editor-fold defaultstate="collapsed" desc="rank">
duke@1 2826 /**
duke@1 2827 * The rank of a class is the length of the longest path between
duke@1 2828 * the class and java.lang.Object in the class inheritance
duke@1 2829 * graph. Undefined for all but reference types.
duke@1 2830 */
duke@1 2831 public int rank(Type t) {
duke@1 2832 switch(t.tag) {
duke@1 2833 case CLASS: {
duke@1 2834 ClassType cls = (ClassType)t;
duke@1 2835 if (cls.rank_field < 0) {
duke@1 2836 Name fullname = cls.tsym.getQualifiedName();
jjg@113 2837 if (fullname == names.java_lang_Object)
duke@1 2838 cls.rank_field = 0;
duke@1 2839 else {
duke@1 2840 int r = rank(supertype(cls));
duke@1 2841 for (List<Type> l = interfaces(cls);
duke@1 2842 l.nonEmpty();
duke@1 2843 l = l.tail) {
duke@1 2844 if (rank(l.head) > r)
duke@1 2845 r = rank(l.head);
duke@1 2846 }
duke@1 2847 cls.rank_field = r + 1;
duke@1 2848 }
duke@1 2849 }
duke@1 2850 return cls.rank_field;
duke@1 2851 }
duke@1 2852 case TYPEVAR: {
duke@1 2853 TypeVar tvar = (TypeVar)t;
duke@1 2854 if (tvar.rank_field < 0) {
duke@1 2855 int r = rank(supertype(tvar));
duke@1 2856 for (List<Type> l = interfaces(tvar);
duke@1 2857 l.nonEmpty();
duke@1 2858 l = l.tail) {
duke@1 2859 if (rank(l.head) > r) r = rank(l.head);
duke@1 2860 }
duke@1 2861 tvar.rank_field = r + 1;
duke@1 2862 }
duke@1 2863 return tvar.rank_field;
duke@1 2864 }
duke@1 2865 case ERROR:
duke@1 2866 return 0;
duke@1 2867 default:
duke@1 2868 throw new AssertionError();
duke@1 2869 }
duke@1 2870 }
duke@1 2871 // </editor-fold>
duke@1 2872
mcimadamore@121 2873 /**
mcimadamore@238 2874 * Helper method for generating a string representation of a given type
mcimadamore@121 2875 * accordingly to a given locale
mcimadamore@121 2876 */
mcimadamore@121 2877 public String toString(Type t, Locale locale) {
mcimadamore@238 2878 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2879 }
mcimadamore@121 2880
mcimadamore@121 2881 /**
mcimadamore@238 2882 * Helper method for generating a string representation of a given type
mcimadamore@121 2883 * accordingly to a given locale
mcimadamore@121 2884 */
mcimadamore@121 2885 public String toString(Symbol t, Locale locale) {
mcimadamore@238 2886 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2887 }
mcimadamore@121 2888
duke@1 2889 // <editor-fold defaultstate="collapsed" desc="toString">
duke@1 2890 /**
duke@1 2891 * This toString is slightly more descriptive than the one on Type.
mcimadamore@121 2892 *
mcimadamore@121 2893 * @deprecated Types.toString(Type t, Locale l) provides better support
mcimadamore@121 2894 * for localization
duke@1 2895 */
mcimadamore@121 2896 @Deprecated
duke@1 2897 public String toString(Type t) {
duke@1 2898 if (t.tag == FORALL) {
duke@1 2899 ForAll forAll = (ForAll)t;
duke@1 2900 return typaramsString(forAll.tvars) + forAll.qtype;
duke@1 2901 }
duke@1 2902 return "" + t;
duke@1 2903 }
duke@1 2904 // where
duke@1 2905 private String typaramsString(List<Type> tvars) {
jjg@904 2906 StringBuilder s = new StringBuilder();
duke@1 2907 s.append('<');
duke@1 2908 boolean first = true;
duke@1 2909 for (Type t : tvars) {
duke@1 2910 if (!first) s.append(", ");
duke@1 2911 first = false;
duke@1 2912 appendTyparamString(((TypeVar)t), s);
duke@1 2913 }
duke@1 2914 s.append('>');
duke@1 2915 return s.toString();
duke@1 2916 }
jjg@904 2917 private void appendTyparamString(TypeVar t, StringBuilder buf) {
duke@1 2918 buf.append(t);
duke@1 2919 if (t.bound == null ||
duke@1 2920 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
duke@1 2921 return;
duke@1 2922 buf.append(" extends "); // Java syntax; no need for i18n
duke@1 2923 Type bound = t.bound;
duke@1 2924 if (!bound.isCompound()) {
duke@1 2925 buf.append(bound);
duke@1 2926 } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
duke@1 2927 buf.append(supertype(t));
duke@1 2928 for (Type intf : interfaces(t)) {
duke@1 2929 buf.append('&');
duke@1 2930 buf.append(intf);
duke@1 2931 }
duke@1 2932 } else {
duke@1 2933 // No superclass was given in bounds.
duke@1 2934 // In this case, supertype is Object, erasure is first interface.
duke@1 2935 boolean first = true;
duke@1 2936 for (Type intf : interfaces(t)) {
duke@1 2937 if (!first) buf.append('&');
duke@1 2938 first = false;
duke@1 2939 buf.append(intf);
duke@1 2940 }
duke@1 2941 }
duke@1 2942 }
duke@1 2943 // </editor-fold>
duke@1 2944
duke@1 2945 // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
duke@1 2946 /**
duke@1 2947 * A cache for closures.
duke@1 2948 *
duke@1 2949 * <p>A closure is a list of all the supertypes and interfaces of
duke@1 2950 * a class or interface type, ordered by ClassSymbol.precedes
duke@1 2951 * (that is, subclasses come first, arbitrary but fixed
duke@1 2952 * otherwise).
duke@1 2953 */
duke@1 2954 private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
duke@1 2955
duke@1 2956 /**
duke@1 2957 * Returns the closure of a class or interface type.
duke@1 2958 */
duke@1 2959 public List<Type> closure(Type t) {
duke@1 2960 List<Type> cl = closureCache.get(t);
duke@1 2961 if (cl == null) {
duke@1 2962 Type st = supertype(t);
duke@1 2963 if (!t.isCompound()) {
duke@1 2964 if (st.tag == CLASS) {
duke@1 2965 cl = insert(closure(st), t);
duke@1 2966 } else if (st.tag == TYPEVAR) {
duke@1 2967 cl = closure(st).prepend(t);
duke@1 2968 } else {
duke@1 2969 cl = List.of(t);
duke@1 2970 }
duke@1 2971 } else {
duke@1 2972 cl = closure(supertype(t));
duke@1 2973 }
duke@1 2974 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
duke@1 2975 cl = union(cl, closure(l.head));
duke@1 2976 closureCache.put(t, cl);
duke@1 2977 }
duke@1 2978 return cl;
duke@1 2979 }
duke@1 2980
duke@1 2981 /**
duke@1 2982 * Insert a type in a closure
duke@1 2983 */
duke@1 2984 public List<Type> insert(List<Type> cl, Type t) {
duke@1 2985 if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
duke@1 2986 return cl.prepend(t);
duke@1 2987 } else if (cl.head.tsym.precedes(t.tsym, this)) {
duke@1 2988 return insert(cl.tail, t).prepend(cl.head);
duke@1 2989 } else {
duke@1 2990 return cl;
duke@1 2991 }
duke@1 2992 }
duke@1 2993
duke@1 2994 /**
duke@1 2995 * Form the union of two closures
duke@1 2996 */
duke@1 2997 public List<Type> union(List<Type> cl1, List<Type> cl2) {
duke@1 2998 if (cl1.isEmpty()) {
duke@1 2999 return cl2;
duke@1 3000 } else if (cl2.isEmpty()) {
duke@1 3001 return cl1;
duke@1 3002 } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
duke@1 3003 return union(cl1.tail, cl2).prepend(cl1.head);
duke@1 3004 } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
duke@1 3005 return union(cl1, cl2.tail).prepend(cl2.head);
duke@1 3006 } else {
duke@1 3007 return union(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 3008 }
duke@1 3009 }
duke@1 3010
duke@1 3011 /**
duke@1 3012 * Intersect two closures
duke@1 3013 */
duke@1 3014 public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
duke@1 3015 if (cl1 == cl2)
duke@1 3016 return cl1;
duke@1 3017 if (cl1.isEmpty() || cl2.isEmpty())
duke@1 3018 return List.nil();
duke@1 3019 if (cl1.head.tsym.precedes(cl2.head.tsym, this))
duke@1 3020 return intersect(cl1.tail, cl2);
duke@1 3021 if (cl2.head.tsym.precedes(cl1.head.tsym, this))
duke@1 3022 return intersect(cl1, cl2.tail);
duke@1 3023 if (isSameType(cl1.head, cl2.head))
duke@1 3024 return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 3025 if (cl1.head.tsym == cl2.head.tsym &&
duke@1 3026 cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
duke@1 3027 if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
duke@1 3028 Type merge = merge(cl1.head,cl2.head);
duke@1 3029 return intersect(cl1.tail, cl2.tail).prepend(merge);
duke@1 3030 }
duke@1 3031 if (cl1.head.isRaw() || cl2.head.isRaw())
duke@1 3032 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
duke@1 3033 }
duke@1 3034 return intersect(cl1.tail, cl2.tail);
duke@1 3035 }
duke@1 3036 // where
duke@1 3037 class TypePair {
duke@1 3038 final Type t1;
duke@1 3039 final Type t2;
duke@1 3040 TypePair(Type t1, Type t2) {
duke@1 3041 this.t1 = t1;
duke@1 3042 this.t2 = t2;
duke@1 3043 }
duke@1 3044 @Override
duke@1 3045 public int hashCode() {
jjg@507 3046 return 127 * Types.hashCode(t1) + Types.hashCode(t2);
duke@1 3047 }
duke@1 3048 @Override
duke@1 3049 public boolean equals(Object obj) {
duke@1 3050 if (!(obj instanceof TypePair))
duke@1 3051 return false;
duke@1 3052 TypePair typePair = (TypePair)obj;
duke@1 3053 return isSameType(t1, typePair.t1)
duke@1 3054 && isSameType(t2, typePair.t2);
duke@1 3055 }
duke@1 3056 }
duke@1 3057 Set<TypePair> mergeCache = new HashSet<TypePair>();
duke@1 3058 private Type merge(Type c1, Type c2) {
duke@1 3059 ClassType class1 = (ClassType) c1;
duke@1 3060 List<Type> act1 = class1.getTypeArguments();
duke@1 3061 ClassType class2 = (ClassType) c2;
duke@1 3062 List<Type> act2 = class2.getTypeArguments();
duke@1 3063 ListBuffer<Type> merged = new ListBuffer<Type>();
duke@1 3064 List<Type> typarams = class1.tsym.type.getTypeArguments();
duke@1 3065
duke@1 3066 while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
duke@1 3067 if (containsType(act1.head, act2.head)) {
duke@1 3068 merged.append(act1.head);
duke@1 3069 } else if (containsType(act2.head, act1.head)) {
duke@1 3070 merged.append(act2.head);
duke@1 3071 } else {
duke@1 3072 TypePair pair = new TypePair(c1, c2);
duke@1 3073 Type m;
duke@1 3074 if (mergeCache.add(pair)) {
duke@1 3075 m = new WildcardType(lub(upperBound(act1.head),
duke@1 3076 upperBound(act2.head)),
duke@1 3077 BoundKind.EXTENDS,
duke@1 3078 syms.boundClass);
duke@1 3079 mergeCache.remove(pair);
duke@1 3080 } else {
duke@1 3081 m = new WildcardType(syms.objectType,
duke@1 3082 BoundKind.UNBOUND,
duke@1 3083 syms.boundClass);
duke@1 3084 }
duke@1 3085 merged.append(m.withTypeVar(typarams.head));
duke@1 3086 }
duke@1 3087 act1 = act1.tail;
duke@1 3088 act2 = act2.tail;
duke@1 3089 typarams = typarams.tail;
duke@1 3090 }
jjg@816 3091 Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
duke@1 3092 return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
duke@1 3093 }
duke@1 3094
duke@1 3095 /**
duke@1 3096 * Return the minimum type of a closure, a compound type if no
duke@1 3097 * unique minimum exists.
duke@1 3098 */
duke@1 3099 private Type compoundMin(List<Type> cl) {
duke@1 3100 if (cl.isEmpty()) return syms.objectType;
duke@1 3101 List<Type> compound = closureMin(cl);
duke@1 3102 if (compound.isEmpty())
duke@1 3103 return null;
duke@1 3104 else if (compound.tail.isEmpty())
duke@1 3105 return compound.head;
duke@1 3106 else
duke@1 3107 return makeCompoundType(compound);
duke@1 3108 }
duke@1 3109
duke@1 3110 /**
duke@1 3111 * Return the minimum types of a closure, suitable for computing
duke@1 3112 * compoundMin or glb.
duke@1 3113 */
duke@1 3114 private List<Type> closureMin(List<Type> cl) {
duke@1 3115 ListBuffer<Type> classes = lb();
duke@1 3116 ListBuffer<Type> interfaces = lb();
duke@1 3117 while (!cl.isEmpty()) {
duke@1 3118 Type current = cl.head;
duke@1 3119 if (current.isInterface())
duke@1 3120 interfaces.append(current);
duke@1 3121 else
duke@1 3122 classes.append(current);
duke@1 3123 ListBuffer<Type> candidates = lb();
duke@1 3124 for (Type t : cl.tail) {
duke@1 3125 if (!isSubtypeNoCapture(current, t))
duke@1 3126 candidates.append(t);
duke@1 3127 }
duke@1 3128 cl = candidates.toList();
duke@1 3129 }
duke@1 3130 return classes.appendList(interfaces).toList();
duke@1 3131 }
duke@1 3132
duke@1 3133 /**
duke@1 3134 * Return the least upper bound of pair of types. if the lub does
duke@1 3135 * not exist return null.
duke@1 3136 */
duke@1 3137 public Type lub(Type t1, Type t2) {
duke@1 3138 return lub(List.of(t1, t2));
duke@1 3139 }
duke@1 3140
duke@1 3141 /**
duke@1 3142 * Return the least upper bound (lub) of set of types. If the lub
duke@1 3143 * does not exist return the type of null (bottom).
duke@1 3144 */
duke@1 3145 public Type lub(List<Type> ts) {
duke@1 3146 final int ARRAY_BOUND = 1;
duke@1 3147 final int CLASS_BOUND = 2;
duke@1 3148 int boundkind = 0;
duke@1 3149 for (Type t : ts) {
duke@1 3150 switch (t.tag) {
duke@1 3151 case CLASS:
duke@1 3152 boundkind |= CLASS_BOUND;
duke@1 3153 break;
duke@1 3154 case ARRAY:
duke@1 3155 boundkind |= ARRAY_BOUND;
duke@1 3156 break;
duke@1 3157 case TYPEVAR:
duke@1 3158 do {
duke@1 3159 t = t.getUpperBound();
duke@1 3160 } while (t.tag == TYPEVAR);
duke@1 3161 if (t.tag == ARRAY) {
duke@1 3162 boundkind |= ARRAY_BOUND;
duke@1 3163 } else {
duke@1 3164 boundkind |= CLASS_BOUND;
duke@1 3165 }
duke@1 3166 break;
duke@1 3167 default:
duke@1 3168 if (t.isPrimitive())
mcimadamore@5 3169 return syms.errType;
duke@1 3170 }
duke@1 3171 }
duke@1 3172 switch (boundkind) {
duke@1 3173 case 0:
duke@1 3174 return syms.botType;
duke@1 3175
duke@1 3176 case ARRAY_BOUND:
duke@1 3177 // calculate lub(A[], B[])
duke@1 3178 List<Type> elements = Type.map(ts, elemTypeFun);
duke@1 3179 for (Type t : elements) {
duke@1 3180 if (t.isPrimitive()) {
duke@1 3181 // if a primitive type is found, then return
duke@1 3182 // arraySuperType unless all the types are the
duke@1 3183 // same
duke@1 3184 Type first = ts.head;
duke@1 3185 for (Type s : ts.tail) {
duke@1 3186 if (!isSameType(first, s)) {
duke@1 3187 // lub(int[], B[]) is Cloneable & Serializable
duke@1 3188 return arraySuperType();
duke@1 3189 }
duke@1 3190 }
duke@1 3191 // all the array types are the same, return one
duke@1 3192 // lub(int[], int[]) is int[]
duke@1 3193 return first;
duke@1 3194 }
duke@1 3195 }
duke@1 3196 // lub(A[], B[]) is lub(A, B)[]
duke@1 3197 return new ArrayType(lub(elements), syms.arrayClass);
duke@1 3198
duke@1 3199 case CLASS_BOUND:
duke@1 3200 // calculate lub(A, B)
duke@1 3201 while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
duke@1 3202 ts = ts.tail;
jjg@816 3203 Assert.check(!ts.isEmpty());
mcimadamore@896 3204 //step 1 - compute erased candidate set (EC)
mcimadamore@896 3205 List<Type> cl = erasedSupertypes(ts.head);
duke@1 3206 for (Type t : ts.tail) {
duke@1 3207 if (t.tag == CLASS || t.tag == TYPEVAR)
mcimadamore@896 3208 cl = intersect(cl, erasedSupertypes(t));
duke@1 3209 }
mcimadamore@896 3210 //step 2 - compute minimal erased candidate set (MEC)
mcimadamore@896 3211 List<Type> mec = closureMin(cl);
mcimadamore@896 3212 //step 3 - for each element G in MEC, compute lci(Inv(G))
mcimadamore@896 3213 List<Type> candidates = List.nil();
mcimadamore@896 3214 for (Type erasedSupertype : mec) {
mcimadamore@896 3215 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
mcimadamore@896 3216 for (Type t : ts) {
mcimadamore@896 3217 lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
mcimadamore@896 3218 }
mcimadamore@896 3219 candidates = candidates.appendList(lci);
mcimadamore@896 3220 }
mcimadamore@896 3221 //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
mcimadamore@896 3222 //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
mcimadamore@896 3223 return compoundMin(candidates);
duke@1 3224
duke@1 3225 default:
duke@1 3226 // calculate lub(A, B[])
duke@1 3227 List<Type> classes = List.of(arraySuperType());
duke@1 3228 for (Type t : ts) {
duke@1 3229 if (t.tag != ARRAY) // Filter out any arrays
duke@1 3230 classes = classes.prepend(t);
duke@1 3231 }
duke@1 3232 // lub(A, B[]) is lub(A, arraySuperType)
duke@1 3233 return lub(classes);
duke@1 3234 }
duke@1 3235 }
duke@1 3236 // where
mcimadamore@896 3237 List<Type> erasedSupertypes(Type t) {
mcimadamore@896 3238 ListBuffer<Type> buf = lb();
mcimadamore@896 3239 for (Type sup : closure(t)) {
mcimadamore@896 3240 if (sup.tag == TYPEVAR) {
mcimadamore@896 3241 buf.append(sup);
mcimadamore@896 3242 } else {
mcimadamore@896 3243 buf.append(erasure(sup));
mcimadamore@896 3244 }
mcimadamore@896 3245 }
mcimadamore@896 3246 return buf.toList();
mcimadamore@896 3247 }
mcimadamore@896 3248
duke@1 3249 private Type arraySuperType = null;
duke@1 3250 private Type arraySuperType() {
duke@1 3251 // initialized lazily to avoid problems during compiler startup
duke@1 3252 if (arraySuperType == null) {
duke@1 3253 synchronized (this) {
duke@1 3254 if (arraySuperType == null) {
duke@1 3255 // JLS 10.8: all arrays implement Cloneable and Serializable.
duke@1 3256 arraySuperType = makeCompoundType(List.of(syms.serializableType,
duke@1 3257 syms.cloneableType),
duke@1 3258 syms.objectType);
duke@1 3259 }
duke@1 3260 }
duke@1 3261 }
duke@1 3262 return arraySuperType;
duke@1 3263 }
duke@1 3264 // </editor-fold>
duke@1 3265
duke@1 3266 // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
mcimadamore@210 3267 public Type glb(List<Type> ts) {
mcimadamore@210 3268 Type t1 = ts.head;
mcimadamore@210 3269 for (Type t2 : ts.tail) {
mcimadamore@210 3270 if (t1.isErroneous())
mcimadamore@210 3271 return t1;
mcimadamore@210 3272 t1 = glb(t1, t2);
mcimadamore@210 3273 }
mcimadamore@210 3274 return t1;
mcimadamore@210 3275 }
mcimadamore@210 3276 //where
duke@1 3277 public Type glb(Type t, Type s) {
duke@1 3278 if (s == null)
duke@1 3279 return t;
mcimadamore@753 3280 else if (t.isPrimitive() || s.isPrimitive())
mcimadamore@753 3281 return syms.errType;
duke@1 3282 else if (isSubtypeNoCapture(t, s))
duke@1 3283 return t;
duke@1 3284 else if (isSubtypeNoCapture(s, t))
duke@1 3285 return s;
duke@1 3286
duke@1 3287 List<Type> closure = union(closure(t), closure(s));
duke@1 3288 List<Type> bounds = closureMin(closure);
duke@1 3289
duke@1 3290 if (bounds.isEmpty()) { // length == 0
duke@1 3291 return syms.objectType;
duke@1 3292 } else if (bounds.tail.isEmpty()) { // length == 1
duke@1 3293 return bounds.head;
duke@1 3294 } else { // length > 1
duke@1 3295 int classCount = 0;
duke@1 3296 for (Type bound : bounds)
duke@1 3297 if (!bound.isInterface())
duke@1 3298 classCount++;
duke@1 3299 if (classCount > 1)
jjg@110 3300 return createErrorType(t);
duke@1 3301 }
duke@1 3302 return makeCompoundType(bounds);
duke@1 3303 }
duke@1 3304 // </editor-fold>
duke@1 3305
duke@1 3306 // <editor-fold defaultstate="collapsed" desc="hashCode">
duke@1 3307 /**
duke@1 3308 * Compute a hash code on a type.
duke@1 3309 */
duke@1 3310 public static int hashCode(Type t) {
duke@1 3311 return hashCode.visit(t);
duke@1 3312 }
duke@1 3313 // where
duke@1 3314 private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
duke@1 3315
duke@1 3316 public Integer visitType(Type t, Void ignored) {
duke@1 3317 return t.tag;
duke@1 3318 }
duke@1 3319
duke@1 3320 @Override
duke@1 3321 public Integer visitClassType(ClassType t, Void ignored) {
duke@1 3322 int result = visit(t.getEnclosingType());
duke@1 3323 result *= 127;
duke@1 3324 result += t.tsym.flatName().hashCode();
duke@1 3325 for (Type s : t.getTypeArguments()) {
duke@1 3326 result *= 127;
duke@1 3327 result += visit(s);
duke@1 3328 }
duke@1 3329 return result;
duke@1 3330 }
duke@1 3331
duke@1 3332 @Override
duke@1 3333 public Integer visitWildcardType(WildcardType t, Void ignored) {
duke@1 3334 int result = t.kind.hashCode();
duke@1 3335 if (t.type != null) {
duke@1 3336 result *= 127;
duke@1 3337 result += visit(t.type);
duke@1 3338 }
duke@1 3339 return result;
duke@1 3340 }
duke@1 3341
duke@1 3342 @Override
duke@1 3343 public Integer visitArrayType(ArrayType t, Void ignored) {
duke@1 3344 return visit(t.elemtype) + 12;
duke@1 3345 }
duke@1 3346
duke@1 3347 @Override
duke@1 3348 public Integer visitTypeVar(TypeVar t, Void ignored) {
duke@1 3349 return System.identityHashCode(t.tsym);
duke@1 3350 }
duke@1 3351
duke@1 3352 @Override
duke@1 3353 public Integer visitUndetVar(UndetVar t, Void ignored) {
duke@1 3354 return System.identityHashCode(t);
duke@1 3355 }
duke@1 3356
duke@1 3357 @Override
duke@1 3358 public Integer visitErrorType(ErrorType t, Void ignored) {
duke@1 3359 return 0;
duke@1 3360 }
duke@1 3361 };
duke@1 3362 // </editor-fold>
duke@1 3363
duke@1 3364 // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
duke@1 3365 /**
duke@1 3366 * Does t have a result that is a subtype of the result type of s,
duke@1 3367 * suitable for covariant returns? It is assumed that both types
duke@1 3368 * are (possibly polymorphic) method types. Monomorphic method
duke@1 3369 * types are handled in the obvious way. Polymorphic method types
duke@1 3370 * require renaming all type variables of one to corresponding
duke@1 3371 * type variables in the other, where correspondence is by
duke@1 3372 * position in the type parameter list. */
duke@1 3373 public boolean resultSubtype(Type t, Type s, Warner warner) {
duke@1 3374 List<Type> tvars = t.getTypeArguments();
duke@1 3375 List<Type> svars = s.getTypeArguments();
duke@1 3376 Type tres = t.getReturnType();
duke@1 3377 Type sres = subst(s.getReturnType(), svars, tvars);
duke@1 3378 return covariantReturnType(tres, sres, warner);
duke@1 3379 }
duke@1 3380
duke@1 3381 /**
duke@1 3382 * Return-Type-Substitutable.
jjh@972 3383 * @jls section 8.4.5
duke@1 3384 */
duke@1 3385 public boolean returnTypeSubstitutable(Type r1, Type r2) {
duke@1 3386 if (hasSameArgs(r1, r2))
tbell@202 3387 return resultSubtype(r1, r2, Warner.noWarnings);
duke@1 3388 else
duke@1 3389 return covariantReturnType(r1.getReturnType(),
tbell@202 3390 erasure(r2.getReturnType()),
tbell@202 3391 Warner.noWarnings);
tbell@202 3392 }
tbell@202 3393
tbell@202 3394 public boolean returnTypeSubstitutable(Type r1,
tbell@202 3395 Type r2, Type r2res,
tbell@202 3396 Warner warner) {
tbell@202 3397 if (isSameType(r1.getReturnType(), r2res))
tbell@202 3398 return true;
tbell@202 3399 if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
tbell@202 3400 return false;
tbell@202 3401
tbell@202 3402 if (hasSameArgs(r1, r2))
tbell@202 3403 return covariantReturnType(r1.getReturnType(), r2res, warner);
jjg@984 3404 if (!allowCovariantReturns)
tbell@202 3405 return false;
tbell@202 3406 if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
tbell@202 3407 return true;
tbell@202 3408 if (!isSubtype(r1.getReturnType(), erasure(r2res)))
tbell@202 3409 return false;
mcimadamore@795 3410 warner.warn(LintCategory.UNCHECKED);
tbell@202 3411 return true;
duke@1 3412 }
duke@1 3413
duke@1 3414 /**
duke@1 3415 * Is t an appropriate return type in an overrider for a
duke@1 3416 * method that returns s?
duke@1 3417 */
duke@1 3418 public boolean covariantReturnType(Type t, Type s, Warner warner) {
tbell@202 3419 return
tbell@202 3420 isSameType(t, s) ||
jjg@984 3421 allowCovariantReturns &&
duke@1 3422 !t.isPrimitive() &&
tbell@202 3423 !s.isPrimitive() &&
tbell@202 3424 isAssignable(t, s, warner);
duke@1 3425 }
duke@1 3426 // </editor-fold>
duke@1 3427
duke@1 3428 // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
duke@1 3429 /**
duke@1 3430 * Return the class that boxes the given primitive.
duke@1 3431 */
duke@1 3432 public ClassSymbol boxedClass(Type t) {
duke@1 3433 return reader.enterClass(syms.boxedName[t.tag]);
duke@1 3434 }
duke@1 3435
duke@1 3436 /**
mcimadamore@753 3437 * Return the boxed type if 't' is primitive, otherwise return 't' itself.
mcimadamore@753 3438 */
mcimadamore@753 3439 public Type boxedTypeOrType(Type t) {
mcimadamore@753 3440 return t.isPrimitive() ?
mcimadamore@753 3441 boxedClass(t).type :
mcimadamore@753 3442 t;
mcimadamore@753 3443 }
mcimadamore@753 3444
mcimadamore@753 3445 /**
duke@1 3446 * Return the primitive type corresponding to a boxed type.
duke@1 3447 */
duke@1 3448 public Type unboxedType(Type t) {
duke@1 3449 if (allowBoxing) {
duke@1 3450 for (int i=0; i<syms.boxedName.length; i++) {
duke@1 3451 Name box = syms.boxedName[i];
duke@1 3452 if (box != null &&
duke@1 3453 asSuper(t, reader.enterClass(box)) != null)
duke@1 3454 return syms.typeOfTag[i];
duke@1 3455 }
duke@1 3456 }
duke@1 3457 return Type.noType;
duke@1 3458 }
mcimadamore@1347 3459
mcimadamore@1347 3460 /**
mcimadamore@1347 3461 * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
mcimadamore@1347 3462 */
mcimadamore@1347 3463 public Type unboxedTypeOrType(Type t) {
mcimadamore@1347 3464 Type unboxedType = unboxedType(t);
mcimadamore@1347 3465 return unboxedType.tag == NONE ? t : unboxedType;
mcimadamore@1347 3466 }
duke@1 3467 // </editor-fold>
duke@1 3468
duke@1 3469 // <editor-fold defaultstate="collapsed" desc="Capture conversion">
duke@1 3470 /*
jjh@972 3471 * JLS 5.1.10 Capture Conversion:
duke@1 3472 *
duke@1 3473 * Let G name a generic type declaration with n formal type
duke@1 3474 * parameters A1 ... An with corresponding bounds U1 ... Un. There
duke@1 3475 * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
duke@1 3476 * where, for 1 <= i <= n:
duke@1 3477 *
duke@1 3478 * + If Ti is a wildcard type argument (4.5.1) of the form ? then
duke@1 3479 * Si is a fresh type variable whose upper bound is
duke@1 3480 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
duke@1 3481 * type.
duke@1 3482 *
duke@1 3483 * + If Ti is a wildcard type argument of the form ? extends Bi,
duke@1 3484 * then Si is a fresh type variable whose upper bound is
duke@1 3485 * glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
duke@1 3486 * the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
duke@1 3487 * a compile-time error if for any two classes (not interfaces)
duke@1 3488 * Vi and Vj,Vi is not a subclass of Vj or vice versa.
duke@1 3489 *
duke@1 3490 * + If Ti is a wildcard type argument of the form ? super Bi,
duke@1 3491 * then Si is a fresh type variable whose upper bound is
duke@1 3492 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
duke@1 3493 *
duke@1 3494 * + Otherwise, Si = Ti.
duke@1 3495 *
duke@1 3496 * Capture conversion on any type other than a parameterized type
duke@1 3497 * (4.5) acts as an identity conversion (5.1.1). Capture
duke@1 3498 * conversions never require a special action at run time and
duke@1 3499 * therefore never throw an exception at run time.
duke@1 3500 *
duke@1 3501 * Capture conversion is not applied recursively.
duke@1 3502 */
duke@1 3503 /**
jjh@972 3504 * Capture conversion as specified by the JLS.
duke@1 3505 */
mcimadamore@299 3506
mcimadamore@299 3507 public List<Type> capture(List<Type> ts) {
mcimadamore@299 3508 List<Type> buf = List.nil();
mcimadamore@299 3509 for (Type t : ts) {
mcimadamore@299 3510 buf = buf.prepend(capture(t));
mcimadamore@299 3511 }
mcimadamore@299 3512 return buf.reverse();
mcimadamore@299 3513 }
duke@1 3514 public Type capture(Type t) {
duke@1 3515 if (t.tag != CLASS)
duke@1 3516 return t;
mcimadamore@637 3517 if (t.getEnclosingType() != Type.noType) {
mcimadamore@637 3518 Type capturedEncl = capture(t.getEnclosingType());
mcimadamore@637 3519 if (capturedEncl != t.getEnclosingType()) {
mcimadamore@637 3520 Type type1 = memberType(capturedEncl, t.tsym);
mcimadamore@637 3521 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
mcimadamore@637 3522 }
mcimadamore@637 3523 }
duke@1 3524 ClassType cls = (ClassType)t;
duke@1 3525 if (cls.isRaw() || !cls.isParameterized())
duke@1 3526 return cls;
duke@1 3527
duke@1 3528 ClassType G = (ClassType)cls.asElement().asType();
duke@1 3529 List<Type> A = G.getTypeArguments();
duke@1 3530 List<Type> T = cls.getTypeArguments();
duke@1 3531 List<Type> S = freshTypeVariables(T);
duke@1 3532
duke@1 3533 List<Type> currentA = A;
duke@1 3534 List<Type> currentT = T;
duke@1 3535 List<Type> currentS = S;
duke@1 3536 boolean captured = false;
duke@1 3537 while (!currentA.isEmpty() &&
duke@1 3538 !currentT.isEmpty() &&
duke@1 3539 !currentS.isEmpty()) {
duke@1 3540 if (currentS.head != currentT.head) {
duke@1 3541 captured = true;
duke@1 3542 WildcardType Ti = (WildcardType)currentT.head;
duke@1 3543 Type Ui = currentA.head.getUpperBound();
duke@1 3544 CapturedType Si = (CapturedType)currentS.head;
duke@1 3545 if (Ui == null)
duke@1 3546 Ui = syms.objectType;
duke@1 3547 switch (Ti.kind) {
duke@1 3548 case UNBOUND:
duke@1 3549 Si.bound = subst(Ui, A, S);
duke@1 3550 Si.lower = syms.botType;
duke@1 3551 break;
duke@1 3552 case EXTENDS:
duke@1 3553 Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
duke@1 3554 Si.lower = syms.botType;
duke@1 3555 break;
duke@1 3556 case SUPER:
duke@1 3557 Si.bound = subst(Ui, A, S);
duke@1 3558 Si.lower = Ti.getSuperBound();
duke@1 3559 break;
duke@1 3560 }
duke@1 3561 if (Si.bound == Si.lower)
duke@1 3562 currentS.head = Si.bound;
duke@1 3563 }
duke@1 3564 currentA = currentA.tail;
duke@1 3565 currentT = currentT.tail;
duke@1 3566 currentS = currentS.tail;
duke@1 3567 }
duke@1 3568 if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
duke@1 3569 return erasure(t); // some "rare" type involved
duke@1 3570
duke@1 3571 if (captured)
duke@1 3572 return new ClassType(cls.getEnclosingType(), S, cls.tsym);
duke@1 3573 else
duke@1 3574 return t;
duke@1 3575 }
duke@1 3576 // where
mcimadamore@238 3577 public List<Type> freshTypeVariables(List<Type> types) {
duke@1 3578 ListBuffer<Type> result = lb();
duke@1 3579 for (Type t : types) {
duke@1 3580 if (t.tag == WILDCARD) {
duke@1 3581 Type bound = ((WildcardType)t).getExtendsBound();
duke@1 3582 if (bound == null)
duke@1 3583 bound = syms.objectType;
duke@1 3584 result.append(new CapturedType(capturedName,
duke@1 3585 syms.noSymbol,
duke@1 3586 bound,
duke@1 3587 syms.botType,
duke@1 3588 (WildcardType)t));
duke@1 3589 } else {
duke@1 3590 result.append(t);
duke@1 3591 }
duke@1 3592 }
duke@1 3593 return result.toList();
duke@1 3594 }
duke@1 3595 // </editor-fold>
duke@1 3596
duke@1 3597 // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
duke@1 3598 private List<Type> upperBounds(List<Type> ss) {
duke@1 3599 if (ss.isEmpty()) return ss;
duke@1 3600 Type head = upperBound(ss.head);
duke@1 3601 List<Type> tail = upperBounds(ss.tail);
duke@1 3602 if (head != ss.head || tail != ss.tail)
duke@1 3603 return tail.prepend(head);
duke@1 3604 else
duke@1 3605 return ss;
duke@1 3606 }
duke@1 3607
duke@1 3608 private boolean sideCast(Type from, Type to, Warner warn) {
duke@1 3609 // We are casting from type $from$ to type $to$, which are
duke@1 3610 // non-final unrelated types. This method
duke@1 3611 // tries to reject a cast by transferring type parameters
duke@1 3612 // from $to$ to $from$ by common superinterfaces.
duke@1 3613 boolean reverse = false;
duke@1 3614 Type target = to;
duke@1 3615 if ((to.tsym.flags() & INTERFACE) == 0) {
jjg@816 3616 Assert.check((from.tsym.flags() & INTERFACE) != 0);
duke@1 3617 reverse = true;
duke@1 3618 to = from;
duke@1 3619 from = target;
duke@1 3620 }
duke@1 3621 List<Type> commonSupers = superClosure(to, erasure(from));
duke@1 3622 boolean giveWarning = commonSupers.isEmpty();
duke@1 3623 // The arguments to the supers could be unified here to
duke@1 3624 // get a more accurate analysis
duke@1 3625 while (commonSupers.nonEmpty()) {
duke@1 3626 Type t1 = asSuper(from, commonSupers.head.tsym);
duke@1 3627 Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
duke@1 3628 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3629 return false;
duke@1 3630 giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
duke@1 3631 commonSupers = commonSupers.tail;
duke@1 3632 }
mcimadamore@187 3633 if (giveWarning && !isReifiable(reverse ? from : to))
mcimadamore@795 3634 warn.warn(LintCategory.UNCHECKED);
jjg@984 3635 if (!allowCovariantReturns)
duke@1 3636 // reject if there is a common method signature with
duke@1 3637 // incompatible return types.
duke@1 3638 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3639 return true;
duke@1 3640 }
duke@1 3641
duke@1 3642 private boolean sideCastFinal(Type from, Type to, Warner warn) {
duke@1 3643 // We are casting from type $from$ to type $to$, which are
duke@1 3644 // unrelated types one of which is final and the other of
duke@1 3645 // which is an interface. This method
duke@1 3646 // tries to reject a cast by transferring type parameters
duke@1 3647 // from the final class to the interface.
duke@1 3648 boolean reverse = false;
duke@1 3649 Type target = to;
duke@1 3650 if ((to.tsym.flags() & INTERFACE) == 0) {
jjg@816 3651 Assert.check((from.tsym.flags() & INTERFACE) != 0);
duke@1 3652 reverse = true;
duke@1 3653 to = from;
duke@1 3654 from = target;
duke@1 3655 }
jjg@816 3656 Assert.check((from.tsym.flags() & FINAL) != 0);
duke@1 3657 Type t1 = asSuper(from, to.tsym);
duke@1 3658 if (t1 == null) return false;
duke@1 3659 Type t2 = to;
duke@1 3660 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3661 return false;
jjg@984 3662 if (!allowCovariantReturns)
duke@1 3663 // reject if there is a common method signature with
duke@1 3664 // incompatible return types.
duke@1 3665 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3666 if (!isReifiable(target) &&
duke@1 3667 (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
mcimadamore@795 3668 warn.warn(LintCategory.UNCHECKED);
duke@1 3669 return true;
duke@1 3670 }
duke@1 3671
duke@1 3672 private boolean giveWarning(Type from, Type to) {
mcimadamore@235 3673 Type subFrom = asSub(from, to.tsym);
mcimadamore@235 3674 return to.isParameterized() &&
mcimadamore@235 3675 (!(isUnbounded(to) ||
mcimadamore@235 3676 isSubtype(from, to) ||
mcimadamore@736 3677 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
duke@1 3678 }
duke@1 3679
duke@1 3680 private List<Type> superClosure(Type t, Type s) {
duke@1 3681 List<Type> cl = List.nil();
duke@1 3682 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 3683 if (isSubtype(s, erasure(l.head))) {
duke@1 3684 cl = insert(cl, l.head);
duke@1 3685 } else {
duke@1 3686 cl = union(cl, superClosure(l.head, s));
duke@1 3687 }
duke@1 3688 }
duke@1 3689 return cl;
duke@1 3690 }
duke@1 3691
duke@1 3692 private boolean containsTypeEquivalent(Type t, Type s) {
duke@1 3693 return
duke@1 3694 isSameType(t, s) || // shortcut
duke@1 3695 containsType(t, s) && containsType(s, t);
duke@1 3696 }
duke@1 3697
mcimadamore@138 3698 // <editor-fold defaultstate="collapsed" desc="adapt">
duke@1 3699 /**
duke@1 3700 * Adapt a type by computing a substitution which maps a source
duke@1 3701 * type to a target type.
duke@1 3702 *
duke@1 3703 * @param source the source type
duke@1 3704 * @param target the target type
duke@1 3705 * @param from the type variables of the computed substitution
duke@1 3706 * @param to the types of the computed substitution.
duke@1 3707 */
duke@1 3708 public void adapt(Type source,
duke@1 3709 Type target,
duke@1 3710 ListBuffer<Type> from,
duke@1 3711 ListBuffer<Type> to) throws AdaptFailure {
mcimadamore@138 3712 new Adapter(from, to).adapt(source, target);
mcimadamore@138 3713 }
mcimadamore@138 3714
mcimadamore@138 3715 class Adapter extends SimpleVisitor<Void, Type> {
mcimadamore@138 3716
mcimadamore@138 3717 ListBuffer<Type> from;
mcimadamore@138 3718 ListBuffer<Type> to;
mcimadamore@138 3719 Map<Symbol,Type> mapping;
mcimadamore@138 3720
mcimadamore@138 3721 Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
mcimadamore@138 3722 this.from = from;
mcimadamore@138 3723 this.to = to;
mcimadamore@138 3724 mapping = new HashMap<Symbol,Type>();
duke@1 3725 }
mcimadamore@138 3726
mcimadamore@138 3727 public void adapt(Type source, Type target) throws AdaptFailure {
mcimadamore@138 3728 visit(source, target);
mcimadamore@138 3729 List<Type> fromList = from.toList();
mcimadamore@138 3730 List<Type> toList = to.toList();
mcimadamore@138 3731 while (!fromList.isEmpty()) {
mcimadamore@138 3732 Type val = mapping.get(fromList.head.tsym);
mcimadamore@138 3733 if (toList.head != val)
mcimadamore@138 3734 toList.head = val;
mcimadamore@138 3735 fromList = fromList.tail;
mcimadamore@138 3736 toList = toList.tail;
mcimadamore@138 3737 }
mcimadamore@138 3738 }
mcimadamore@138 3739
mcimadamore@138 3740 @Override
mcimadamore@138 3741 public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
mcimadamore@138 3742 if (target.tag == CLASS)
mcimadamore@138 3743 adaptRecursive(source.allparams(), target.allparams());
mcimadamore@138 3744 return null;
mcimadamore@138 3745 }
mcimadamore@138 3746
mcimadamore@138 3747 @Override
mcimadamore@138 3748 public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
mcimadamore@138 3749 if (target.tag == ARRAY)
mcimadamore@138 3750 adaptRecursive(elemtype(source), elemtype(target));
mcimadamore@138 3751 return null;
mcimadamore@138 3752 }
mcimadamore@138 3753
mcimadamore@138 3754 @Override
mcimadamore@138 3755 public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
mcimadamore@138 3756 if (source.isExtendsBound())
mcimadamore@138 3757 adaptRecursive(upperBound(source), upperBound(target));
mcimadamore@138 3758 else if (source.isSuperBound())
mcimadamore@138 3759 adaptRecursive(lowerBound(source), lowerBound(target));
mcimadamore@138 3760 return null;
mcimadamore@138 3761 }
mcimadamore@138 3762
mcimadamore@138 3763 @Override
mcimadamore@138 3764 public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
mcimadamore@138 3765 // Check to see if there is
mcimadamore@138 3766 // already a mapping for $source$, in which case
mcimadamore@138 3767 // the old mapping will be merged with the new
mcimadamore@138 3768 Type val = mapping.get(source.tsym);
mcimadamore@138 3769 if (val != null) {
mcimadamore@138 3770 if (val.isSuperBound() && target.isSuperBound()) {
mcimadamore@138 3771 val = isSubtype(lowerBound(val), lowerBound(target))
mcimadamore@138 3772 ? target : val;
mcimadamore@138 3773 } else if (val.isExtendsBound() && target.isExtendsBound()) {
mcimadamore@138 3774 val = isSubtype(upperBound(val), upperBound(target))
mcimadamore@138 3775 ? val : target;
mcimadamore@138 3776 } else if (!isSameType(val, target)) {
mcimadamore@138 3777 throw new AdaptFailure();
duke@1 3778 }
mcimadamore@138 3779 } else {
mcimadamore@138 3780 val = target;
mcimadamore@138 3781 from.append(source);
mcimadamore@138 3782 to.append(target);
mcimadamore@138 3783 }
mcimadamore@138 3784 mapping.put(source.tsym, val);
mcimadamore@138 3785 return null;
mcimadamore@138 3786 }
mcimadamore@138 3787
mcimadamore@138 3788 @Override
mcimadamore@138 3789 public Void visitType(Type source, Type target) {
mcimadamore@138 3790 return null;
mcimadamore@138 3791 }
mcimadamore@138 3792
mcimadamore@138 3793 private Set<TypePair> cache = new HashSet<TypePair>();
mcimadamore@138 3794
mcimadamore@138 3795 private void adaptRecursive(Type source, Type target) {
mcimadamore@138 3796 TypePair pair = new TypePair(source, target);
mcimadamore@138 3797 if (cache.add(pair)) {
mcimadamore@138 3798 try {
mcimadamore@138 3799 visit(source, target);
mcimadamore@138 3800 } finally {
mcimadamore@138 3801 cache.remove(pair);
duke@1 3802 }
duke@1 3803 }
duke@1 3804 }
mcimadamore@138 3805
mcimadamore@138 3806 private void adaptRecursive(List<Type> source, List<Type> target) {
mcimadamore@138 3807 if (source.length() == target.length()) {
mcimadamore@138 3808 while (source.nonEmpty()) {
mcimadamore@138 3809 adaptRecursive(source.head, target.head);
mcimadamore@138 3810 source = source.tail;
mcimadamore@138 3811 target = target.tail;
mcimadamore@138 3812 }
duke@1 3813 }
duke@1 3814 }
duke@1 3815 }
duke@1 3816
mcimadamore@138 3817 public static class AdaptFailure extends RuntimeException {
mcimadamore@138 3818 static final long serialVersionUID = -7490231548272701566L;
mcimadamore@138 3819 }
mcimadamore@138 3820
duke@1 3821 private void adaptSelf(Type t,
duke@1 3822 ListBuffer<Type> from,
duke@1 3823 ListBuffer<Type> to) {
duke@1 3824 try {
duke@1 3825 //if (t.tsym.type != t)
duke@1 3826 adapt(t.tsym.type, t, from, to);
duke@1 3827 } catch (AdaptFailure ex) {
duke@1 3828 // Adapt should never fail calculating a mapping from
duke@1 3829 // t.tsym.type to t as there can be no merge problem.
duke@1 3830 throw new AssertionError(ex);
duke@1 3831 }
duke@1 3832 }
mcimadamore@138 3833 // </editor-fold>
duke@1 3834
duke@1 3835 /**
duke@1 3836 * Rewrite all type variables (universal quantifiers) in the given
duke@1 3837 * type to wildcards (existential quantifiers). This is used to
duke@1 3838 * determine if a cast is allowed. For example, if high is true
duke@1 3839 * and {@code T <: Number}, then {@code List<T>} is rewritten to
duke@1 3840 * {@code List<? extends Number>}. Since {@code List<Integer> <:
duke@1 3841 * List<? extends Number>} a {@code List<T>} can be cast to {@code
duke@1 3842 * List<Integer>} with a warning.
duke@1 3843 * @param t a type
duke@1 3844 * @param high if true return an upper bound; otherwise a lower
duke@1 3845 * bound
duke@1 3846 * @param rewriteTypeVars only rewrite captured wildcards if false;
duke@1 3847 * otherwise rewrite all type variables
duke@1 3848 * @return the type rewritten with wildcards (existential
duke@1 3849 * quantifiers) only
duke@1 3850 */
duke@1 3851 private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
mcimadamore@640 3852 return new Rewriter(high, rewriteTypeVars).visit(t);
mcimadamore@157 3853 }
mcimadamore@157 3854
mcimadamore@157 3855 class Rewriter extends UnaryVisitor<Type> {
mcimadamore@157 3856
mcimadamore@157 3857 boolean high;
mcimadamore@157 3858 boolean rewriteTypeVars;
mcimadamore@157 3859
mcimadamore@157 3860 Rewriter(boolean high, boolean rewriteTypeVars) {
mcimadamore@157 3861 this.high = high;
mcimadamore@157 3862 this.rewriteTypeVars = rewriteTypeVars;
mcimadamore@157 3863 }
mcimadamore@157 3864
mcimadamore@640 3865 @Override
mcimadamore@640 3866 public Type visitClassType(ClassType t, Void s) {
mcimadamore@157 3867 ListBuffer<Type> rewritten = new ListBuffer<Type>();
mcimadamore@157 3868 boolean changed = false;
mcimadamore@640 3869 for (Type arg : t.allparams()) {
mcimadamore@157 3870 Type bound = visit(arg);
mcimadamore@157 3871 if (arg != bound) {
mcimadamore@157 3872 changed = true;
mcimadamore@157 3873 }
mcimadamore@157 3874 rewritten.append(bound);
duke@1 3875 }
mcimadamore@157 3876 if (changed)
mcimadamore@640 3877 return subst(t.tsym.type,
mcimadamore@640 3878 t.tsym.type.allparams(),
mcimadamore@640 3879 rewritten.toList());
mcimadamore@157 3880 else
mcimadamore@157 3881 return t;
duke@1 3882 }
mcimadamore@157 3883
mcimadamore@157 3884 public Type visitType(Type t, Void s) {
mcimadamore@157 3885 return high ? upperBound(t) : lowerBound(t);
mcimadamore@157 3886 }
mcimadamore@157 3887
mcimadamore@157 3888 @Override
mcimadamore@157 3889 public Type visitCapturedType(CapturedType t, Void s) {
mcimadamore@1177 3890 Type w_bound = t.wildcard.type;
mcimadamore@1177 3891 Type bound = w_bound.contains(t) ?
mcimadamore@1177 3892 erasure(w_bound) :
mcimadamore@1177 3893 visit(w_bound);
mcimadamore@1177 3894 return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
mcimadamore@157 3895 }
mcimadamore@157 3896
mcimadamore@157 3897 @Override
mcimadamore@157 3898 public Type visitTypeVar(TypeVar t, Void s) {
mcimadamore@640 3899 if (rewriteTypeVars) {
mcimadamore@1177 3900 Type bound = t.bound.contains(t) ?
mcimadamore@779 3901 erasure(t.bound) :
mcimadamore@1177 3902 visit(t.bound);
mcimadamore@1177 3903 return rewriteAsWildcardType(bound, t, EXTENDS);
mcimadamore@1177 3904 } else {
mcimadamore@1177 3905 return t;
mcimadamore@640 3906 }
mcimadamore@157 3907 }
mcimadamore@157 3908
mcimadamore@157 3909 @Override
mcimadamore@157 3910 public Type visitWildcardType(WildcardType t, Void s) {
mcimadamore@1177 3911 Type bound2 = visit(t.type);
mcimadamore@1177 3912 return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
mcimadamore@640 3913 }
mcimadamore@640 3914
mcimadamore@1177 3915 private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
mcimadamore@1177 3916 switch (bk) {
mcimadamore@1177 3917 case EXTENDS: return high ?
mcimadamore@1177 3918 makeExtendsWildcard(B(bound), formal) :
mcimadamore@1177 3919 makeExtendsWildcard(syms.objectType, formal);
mcimadamore@1177 3920 case SUPER: return high ?
mcimadamore@1177 3921 makeSuperWildcard(syms.botType, formal) :
mcimadamore@1177 3922 makeSuperWildcard(B(bound), formal);
mcimadamore@1177 3923 case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
mcimadamore@1177 3924 default:
mcimadamore@1177 3925 Assert.error("Invalid bound kind " + bk);
mcimadamore@1177 3926 return null;
mcimadamore@1177 3927 }
mcimadamore@640 3928 }
mcimadamore@640 3929
mcimadamore@640 3930 Type B(Type t) {
mcimadamore@640 3931 while (t.tag == WILDCARD) {
mcimadamore@640 3932 WildcardType w = (WildcardType)t;
mcimadamore@640 3933 t = high ?
mcimadamore@640 3934 w.getExtendsBound() :
mcimadamore@640 3935 w.getSuperBound();
mcimadamore@640 3936 if (t == null) {
mcimadamore@640 3937 t = high ? syms.objectType : syms.botType;
mcimadamore@640 3938 }
mcimadamore@640 3939 }
mcimadamore@640 3940 return t;
mcimadamore@157 3941 }
duke@1 3942 }
duke@1 3943
mcimadamore@640 3944
duke@1 3945 /**
duke@1 3946 * Create a wildcard with the given upper (extends) bound; create
duke@1 3947 * an unbounded wildcard if bound is Object.
duke@1 3948 *
duke@1 3949 * @param bound the upper bound
duke@1 3950 * @param formal the formal type parameter that will be
duke@1 3951 * substituted by the wildcard
duke@1 3952 */
duke@1 3953 private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
duke@1 3954 if (bound == syms.objectType) {
duke@1 3955 return new WildcardType(syms.objectType,
duke@1 3956 BoundKind.UNBOUND,
duke@1 3957 syms.boundClass,
duke@1 3958 formal);
duke@1 3959 } else {
duke@1 3960 return new WildcardType(bound,
duke@1 3961 BoundKind.EXTENDS,
duke@1 3962 syms.boundClass,
duke@1 3963 formal);
duke@1 3964 }
duke@1 3965 }
duke@1 3966
duke@1 3967 /**
duke@1 3968 * Create a wildcard with the given lower (super) bound; create an
duke@1 3969 * unbounded wildcard if bound is bottom (type of {@code null}).
duke@1 3970 *
duke@1 3971 * @param bound the lower bound
duke@1 3972 * @param formal the formal type parameter that will be
duke@1 3973 * substituted by the wildcard
duke@1 3974 */
duke@1 3975 private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
duke@1 3976 if (bound.tag == BOT) {
duke@1 3977 return new WildcardType(syms.objectType,
duke@1 3978 BoundKind.UNBOUND,
duke@1 3979 syms.boundClass,
duke@1 3980 formal);
duke@1 3981 } else {
duke@1 3982 return new WildcardType(bound,
duke@1 3983 BoundKind.SUPER,
duke@1 3984 syms.boundClass,
duke@1 3985 formal);
duke@1 3986 }
duke@1 3987 }
duke@1 3988
duke@1 3989 /**
duke@1 3990 * A wrapper for a type that allows use in sets.
duke@1 3991 */
duke@1 3992 class SingletonType {
duke@1 3993 final Type t;
duke@1 3994 SingletonType(Type t) {
duke@1 3995 this.t = t;
duke@1 3996 }
duke@1 3997 public int hashCode() {
jjg@507 3998 return Types.hashCode(t);
duke@1 3999 }
duke@1 4000 public boolean equals(Object obj) {
duke@1 4001 return (obj instanceof SingletonType) &&
duke@1 4002 isSameType(t, ((SingletonType)obj).t);
duke@1 4003 }
duke@1 4004 public String toString() {
duke@1 4005 return t.toString();
duke@1 4006 }
duke@1 4007 }
duke@1 4008 // </editor-fold>
duke@1 4009
duke@1 4010 // <editor-fold defaultstate="collapsed" desc="Visitors">
duke@1 4011 /**
duke@1 4012 * A default visitor for types. All visitor methods except
duke@1 4013 * visitType are implemented by delegating to visitType. Concrete
duke@1 4014 * subclasses must provide an implementation of visitType and can
duke@1 4015 * override other methods as needed.
duke@1 4016 *
duke@1 4017 * @param <R> the return type of the operation implemented by this
duke@1 4018 * visitor; use Void if no return type is needed.
duke@1 4019 * @param <S> the type of the second argument (the first being the
duke@1 4020 * type itself) of the operation implemented by this visitor; use
duke@1 4021 * Void if a second argument is not needed.
duke@1 4022 */
duke@1 4023 public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
duke@1 4024 final public R visit(Type t, S s) { return t.accept(this, s); }
duke@1 4025 public R visitClassType(ClassType t, S s) { return visitType(t, s); }
duke@1 4026 public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
duke@1 4027 public R visitArrayType(ArrayType t, S s) { return visitType(t, s); }
duke@1 4028 public R visitMethodType(MethodType t, S s) { return visitType(t, s); }
duke@1 4029 public R visitPackageType(PackageType t, S s) { return visitType(t, s); }
duke@1 4030 public R visitTypeVar(TypeVar t, S s) { return visitType(t, s); }
duke@1 4031 public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
duke@1 4032 public R visitForAll(ForAll t, S s) { return visitType(t, s); }
duke@1 4033 public R visitUndetVar(UndetVar t, S s) { return visitType(t, s); }
duke@1 4034 public R visitErrorType(ErrorType t, S s) { return visitType(t, s); }
duke@1 4035 }
duke@1 4036
duke@1 4037 /**
mcimadamore@121 4038 * A default visitor for symbols. All visitor methods except
mcimadamore@121 4039 * visitSymbol are implemented by delegating to visitSymbol. Concrete
mcimadamore@121 4040 * subclasses must provide an implementation of visitSymbol and can
mcimadamore@121 4041 * override other methods as needed.
mcimadamore@121 4042 *
mcimadamore@121 4043 * @param <R> the return type of the operation implemented by this
mcimadamore@121 4044 * visitor; use Void if no return type is needed.
mcimadamore@121 4045 * @param <S> the type of the second argument (the first being the
mcimadamore@121 4046 * symbol itself) of the operation implemented by this visitor; use
mcimadamore@121 4047 * Void if a second argument is not needed.
mcimadamore@121 4048 */
mcimadamore@121 4049 public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
mcimadamore@121 4050 final public R visit(Symbol s, S arg) { return s.accept(this, arg); }
mcimadamore@121 4051 public R visitClassSymbol(ClassSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 4052 public R visitMethodSymbol(MethodSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 4053 public R visitOperatorSymbol(OperatorSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 4054 public R visitPackageSymbol(PackageSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 4055 public R visitTypeSymbol(TypeSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 4056 public R visitVarSymbol(VarSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 4057 }
mcimadamore@121 4058
mcimadamore@121 4059 /**
duke@1 4060 * A <em>simple</em> visitor for types. This visitor is simple as
duke@1 4061 * captured wildcards, for-all types (generic methods), and
duke@1 4062 * undetermined type variables (part of inference) are hidden.
duke@1 4063 * Captured wildcards are hidden by treating them as type
duke@1 4064 * variables and the rest are hidden by visiting their qtypes.
duke@1 4065 *
duke@1 4066 * @param <R> the return type of the operation implemented by this
duke@1 4067 * visitor; use Void if no return type is needed.
duke@1 4068 * @param <S> the type of the second argument (the first being the
duke@1 4069 * type itself) of the operation implemented by this visitor; use
duke@1 4070 * Void if a second argument is not needed.
duke@1 4071 */
duke@1 4072 public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
duke@1 4073 @Override
duke@1 4074 public R visitCapturedType(CapturedType t, S s) {
duke@1 4075 return visitTypeVar(t, s);
duke@1 4076 }
duke@1 4077 @Override
duke@1 4078 public R visitForAll(ForAll t, S s) {
duke@1 4079 return visit(t.qtype, s);
duke@1 4080 }
duke@1 4081 @Override
duke@1 4082 public R visitUndetVar(UndetVar t, S s) {
duke@1 4083 return visit(t.qtype, s);
duke@1 4084 }
duke@1 4085 }
duke@1 4086
duke@1 4087 /**
duke@1 4088 * A plain relation on types. That is a 2-ary function on the
duke@1 4089 * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
duke@1 4090 * <!-- In plain text: Type x Type -> Boolean -->
duke@1 4091 */
duke@1 4092 public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
duke@1 4093
duke@1 4094 /**
duke@1 4095 * A convenience visitor for implementing operations that only
duke@1 4096 * require one argument (the type itself), that is, unary
duke@1 4097 * operations.
duke@1 4098 *
duke@1 4099 * @param <R> the return type of the operation implemented by this
duke@1 4100 * visitor; use Void if no return type is needed.
duke@1 4101 */
duke@1 4102 public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
duke@1 4103 final public R visit(Type t) { return t.accept(this, null); }
duke@1 4104 }
duke@1 4105
duke@1 4106 /**
duke@1 4107 * A visitor for implementing a mapping from types to types. The
duke@1 4108 * default behavior of this class is to implement the identity
duke@1 4109 * mapping (mapping a type to itself). This can be overridden in
duke@1 4110 * subclasses.
duke@1 4111 *
duke@1 4112 * @param <S> the type of the second argument (the first being the
duke@1 4113 * type itself) of this mapping; use Void if a second argument is
duke@1 4114 * not needed.
duke@1 4115 */
duke@1 4116 public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
duke@1 4117 final public Type visit(Type t) { return t.accept(this, null); }
duke@1 4118 public Type visitType(Type t, S s) { return t; }
duke@1 4119 }
duke@1 4120 // </editor-fold>
jjg@657 4121
jjg@657 4122
jjg@657 4123 // <editor-fold defaultstate="collapsed" desc="Annotation support">
jjg@657 4124
jjg@657 4125 public RetentionPolicy getRetention(Attribute.Compound a) {
jfranck@1313 4126 return getRetention(a.type.tsym);
jfranck@1313 4127 }
jfranck@1313 4128
jfranck@1313 4129 public RetentionPolicy getRetention(Symbol sym) {
jjg@657 4130 RetentionPolicy vis = RetentionPolicy.CLASS; // the default
jfranck@1313 4131 Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
jjg@657 4132 if (c != null) {
jjg@657 4133 Attribute value = c.member(names.value);
jjg@657 4134 if (value != null && value instanceof Attribute.Enum) {
jjg@657 4135 Name levelName = ((Attribute.Enum)value).value.name;
jjg@657 4136 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
jjg@657 4137 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
jjg@657 4138 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
jjg@657 4139 else ;// /* fail soft */ throw new AssertionError(levelName);
jjg@657 4140 }
jjg@657 4141 }
jjg@657 4142 return vis;
jjg@657 4143 }
jjg@657 4144 // </editor-fold>
duke@1 4145 }

mercurial