src/share/classes/com/sun/tools/javac/code/Types.java

Wed, 16 Feb 2011 10:27:00 -0800

author
dlsmith
date
Wed, 16 Feb 2011 10:27:00 -0800
changeset 880
0c24826853b2
parent 877
351027202f60
child 896
9f9df9684cfc
permissions
-rw-r--r--

6990136: Cleanup use of Type.clone()
Summary: Introduced factory methods in class Types which can be used rather than clone().
Reviewed-by: jjg, mcimadamore

duke@1 1 /*
jjg@816 2 * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.code;
duke@1 27
mcimadamore@341 28 import java.lang.ref.SoftReference;
duke@1 29 import java.util.*;
duke@1 30
duke@1 31 import com.sun.tools.javac.util.*;
duke@1 32 import com.sun.tools.javac.util.List;
duke@1 33
duke@1 34 import com.sun.tools.javac.jvm.ClassReader;
jjg@657 35 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
mcimadamore@795 36 import com.sun.tools.javac.code.Lint.LintCategory;
duke@1 37 import com.sun.tools.javac.comp.Check;
duke@1 38
mcimadamore@858 39 import static com.sun.tools.javac.code.Scope.*;
duke@1 40 import static com.sun.tools.javac.code.Type.*;
duke@1 41 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 42 import static com.sun.tools.javac.code.Symbol.*;
duke@1 43 import static com.sun.tools.javac.code.Flags.*;
duke@1 44 import static com.sun.tools.javac.code.BoundKind.*;
duke@1 45 import static com.sun.tools.javac.util.ListBuffer.lb;
duke@1 46
duke@1 47 /**
duke@1 48 * Utility class containing various operations on types.
duke@1 49 *
duke@1 50 * <p>Unless other names are more illustrative, the following naming
duke@1 51 * conventions should be observed in this file:
duke@1 52 *
duke@1 53 * <dl>
duke@1 54 * <dt>t</dt>
duke@1 55 * <dd>If the first argument to an operation is a type, it should be named t.</dd>
duke@1 56 * <dt>s</dt>
duke@1 57 * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
duke@1 58 * <dt>ts</dt>
duke@1 59 * <dd>If an operations takes a list of types, the first should be named ts.</dd>
duke@1 60 * <dt>ss</dt>
duke@1 61 * <dd>A second list of types should be named ss.</dd>
duke@1 62 * </dl>
duke@1 63 *
jjg@581 64 * <p><b>This is NOT part of any supported API.
duke@1 65 * If you write code that depends on this, you do so at your own risk.
duke@1 66 * This code and its internal interfaces are subject to change or
duke@1 67 * deletion without notice.</b>
duke@1 68 */
duke@1 69 public class Types {
duke@1 70 protected static final Context.Key<Types> typesKey =
duke@1 71 new Context.Key<Types>();
duke@1 72
duke@1 73 final Symtab syms;
mcimadamore@136 74 final JavacMessages messages;
jjg@113 75 final Names names;
duke@1 76 final boolean allowBoxing;
duke@1 77 final ClassReader reader;
duke@1 78 final Source source;
duke@1 79 final Check chk;
duke@1 80 List<Warner> warnStack = List.nil();
duke@1 81 final Name capturedName;
duke@1 82
duke@1 83 // <editor-fold defaultstate="collapsed" desc="Instantiating">
duke@1 84 public static Types instance(Context context) {
duke@1 85 Types instance = context.get(typesKey);
duke@1 86 if (instance == null)
duke@1 87 instance = new Types(context);
duke@1 88 return instance;
duke@1 89 }
duke@1 90
duke@1 91 protected Types(Context context) {
duke@1 92 context.put(typesKey, this);
duke@1 93 syms = Symtab.instance(context);
jjg@113 94 names = Names.instance(context);
duke@1 95 allowBoxing = Source.instance(context).allowBoxing();
duke@1 96 reader = ClassReader.instance(context);
duke@1 97 source = Source.instance(context);
duke@1 98 chk = Check.instance(context);
duke@1 99 capturedName = names.fromString("<captured wildcard>");
mcimadamore@136 100 messages = JavacMessages.instance(context);
duke@1 101 }
duke@1 102 // </editor-fold>
duke@1 103
duke@1 104 // <editor-fold defaultstate="collapsed" desc="upperBound">
duke@1 105 /**
duke@1 106 * The "rvalue conversion".<br>
duke@1 107 * The upper bound of most types is the type
duke@1 108 * itself. Wildcards, on the other hand have upper
duke@1 109 * and lower bounds.
duke@1 110 * @param t a type
duke@1 111 * @return the upper bound of the given type
duke@1 112 */
duke@1 113 public Type upperBound(Type t) {
duke@1 114 return upperBound.visit(t);
duke@1 115 }
duke@1 116 // where
duke@1 117 private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
duke@1 118
duke@1 119 @Override
duke@1 120 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 121 if (t.isSuperBound())
duke@1 122 return t.bound == null ? syms.objectType : t.bound.bound;
duke@1 123 else
duke@1 124 return visit(t.type);
duke@1 125 }
duke@1 126
duke@1 127 @Override
duke@1 128 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 129 return visit(t.bound);
duke@1 130 }
duke@1 131 };
duke@1 132 // </editor-fold>
duke@1 133
duke@1 134 // <editor-fold defaultstate="collapsed" desc="lowerBound">
duke@1 135 /**
duke@1 136 * The "lvalue conversion".<br>
duke@1 137 * The lower bound of most types is the type
duke@1 138 * itself. Wildcards, on the other hand have upper
duke@1 139 * and lower bounds.
duke@1 140 * @param t a type
duke@1 141 * @return the lower bound of the given type
duke@1 142 */
duke@1 143 public Type lowerBound(Type t) {
duke@1 144 return lowerBound.visit(t);
duke@1 145 }
duke@1 146 // where
duke@1 147 private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
duke@1 148
duke@1 149 @Override
duke@1 150 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 151 return t.isExtendsBound() ? syms.botType : visit(t.type);
duke@1 152 }
duke@1 153
duke@1 154 @Override
duke@1 155 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 156 return visit(t.getLowerBound());
duke@1 157 }
duke@1 158 };
duke@1 159 // </editor-fold>
duke@1 160
duke@1 161 // <editor-fold defaultstate="collapsed" desc="isUnbounded">
duke@1 162 /**
duke@1 163 * Checks that all the arguments to a class are unbounded
duke@1 164 * wildcards or something else that doesn't make any restrictions
duke@1 165 * on the arguments. If a class isUnbounded, a raw super- or
duke@1 166 * subclass can be cast to it without a warning.
duke@1 167 * @param t a type
duke@1 168 * @return true iff the given type is unbounded or raw
duke@1 169 */
duke@1 170 public boolean isUnbounded(Type t) {
duke@1 171 return isUnbounded.visit(t);
duke@1 172 }
duke@1 173 // where
duke@1 174 private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
duke@1 175
duke@1 176 public Boolean visitType(Type t, Void ignored) {
duke@1 177 return true;
duke@1 178 }
duke@1 179
duke@1 180 @Override
duke@1 181 public Boolean visitClassType(ClassType t, Void ignored) {
duke@1 182 List<Type> parms = t.tsym.type.allparams();
duke@1 183 List<Type> args = t.allparams();
duke@1 184 while (parms.nonEmpty()) {
duke@1 185 WildcardType unb = new WildcardType(syms.objectType,
duke@1 186 BoundKind.UNBOUND,
duke@1 187 syms.boundClass,
duke@1 188 (TypeVar)parms.head);
duke@1 189 if (!containsType(args.head, unb))
duke@1 190 return false;
duke@1 191 parms = parms.tail;
duke@1 192 args = args.tail;
duke@1 193 }
duke@1 194 return true;
duke@1 195 }
duke@1 196 };
duke@1 197 // </editor-fold>
duke@1 198
duke@1 199 // <editor-fold defaultstate="collapsed" desc="asSub">
duke@1 200 /**
duke@1 201 * Return the least specific subtype of t that starts with symbol
duke@1 202 * sym. If none exists, return null. The least specific subtype
duke@1 203 * is determined as follows:
duke@1 204 *
duke@1 205 * <p>If there is exactly one parameterized instance of sym that is a
duke@1 206 * subtype of t, that parameterized instance is returned.<br>
duke@1 207 * Otherwise, if the plain type or raw type `sym' is a subtype of
duke@1 208 * type t, the type `sym' itself is returned. Otherwise, null is
duke@1 209 * returned.
duke@1 210 */
duke@1 211 public Type asSub(Type t, Symbol sym) {
duke@1 212 return asSub.visit(t, sym);
duke@1 213 }
duke@1 214 // where
duke@1 215 private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
duke@1 216
duke@1 217 public Type visitType(Type t, Symbol sym) {
duke@1 218 return null;
duke@1 219 }
duke@1 220
duke@1 221 @Override
duke@1 222 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 223 if (t.tsym == sym)
duke@1 224 return t;
duke@1 225 Type base = asSuper(sym.type, t.tsym);
duke@1 226 if (base == null)
duke@1 227 return null;
duke@1 228 ListBuffer<Type> from = new ListBuffer<Type>();
duke@1 229 ListBuffer<Type> to = new ListBuffer<Type>();
duke@1 230 try {
duke@1 231 adapt(base, t, from, to);
duke@1 232 } catch (AdaptFailure ex) {
duke@1 233 return null;
duke@1 234 }
duke@1 235 Type res = subst(sym.type, from.toList(), to.toList());
duke@1 236 if (!isSubtype(res, t))
duke@1 237 return null;
duke@1 238 ListBuffer<Type> openVars = new ListBuffer<Type>();
duke@1 239 for (List<Type> l = sym.type.allparams();
duke@1 240 l.nonEmpty(); l = l.tail)
duke@1 241 if (res.contains(l.head) && !t.contains(l.head))
duke@1 242 openVars.append(l.head);
duke@1 243 if (openVars.nonEmpty()) {
duke@1 244 if (t.isRaw()) {
duke@1 245 // The subtype of a raw type is raw
duke@1 246 res = erasure(res);
duke@1 247 } else {
duke@1 248 // Unbound type arguments default to ?
duke@1 249 List<Type> opens = openVars.toList();
duke@1 250 ListBuffer<Type> qs = new ListBuffer<Type>();
duke@1 251 for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
duke@1 252 qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
duke@1 253 }
duke@1 254 res = subst(res, opens, qs.toList());
duke@1 255 }
duke@1 256 }
duke@1 257 return res;
duke@1 258 }
duke@1 259
duke@1 260 @Override
duke@1 261 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 262 return t;
duke@1 263 }
duke@1 264 };
duke@1 265 // </editor-fold>
duke@1 266
duke@1 267 // <editor-fold defaultstate="collapsed" desc="isConvertible">
duke@1 268 /**
duke@1 269 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 270 * convertions to s?
duke@1 271 */
duke@1 272 public boolean isConvertible(Type t, Type s, Warner warn) {
duke@1 273 boolean tPrimitive = t.isPrimitive();
duke@1 274 boolean sPrimitive = s.isPrimitive();
mcimadamore@795 275 if (tPrimitive == sPrimitive) {
mcimadamore@795 276 checkUnsafeVarargsConversion(t, s, warn);
duke@1 277 return isSubtypeUnchecked(t, s, warn);
mcimadamore@795 278 }
duke@1 279 if (!allowBoxing) return false;
duke@1 280 return tPrimitive
duke@1 281 ? isSubtype(boxedClass(t).type, s)
duke@1 282 : isSubtype(unboxedType(t), s);
duke@1 283 }
mcimadamore@795 284 //where
mcimadamore@795 285 private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
mcimadamore@795 286 if (t.tag != ARRAY || isReifiable(t)) return;
mcimadamore@795 287 ArrayType from = (ArrayType)t;
mcimadamore@795 288 boolean shouldWarn = false;
mcimadamore@795 289 switch (s.tag) {
mcimadamore@795 290 case ARRAY:
mcimadamore@795 291 ArrayType to = (ArrayType)s;
mcimadamore@795 292 shouldWarn = from.isVarargs() &&
mcimadamore@795 293 !to.isVarargs() &&
mcimadamore@795 294 !isReifiable(from);
mcimadamore@795 295 break;
mcimadamore@795 296 case CLASS:
mcimadamore@795 297 shouldWarn = from.isVarargs() &&
mcimadamore@795 298 isSubtype(from, s);
mcimadamore@795 299 break;
mcimadamore@795 300 }
mcimadamore@795 301 if (shouldWarn) {
mcimadamore@795 302 warn.warn(LintCategory.VARARGS);
mcimadamore@795 303 }
mcimadamore@795 304 }
duke@1 305
duke@1 306 /**
duke@1 307 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 308 * convertions to s?
duke@1 309 */
duke@1 310 public boolean isConvertible(Type t, Type s) {
duke@1 311 return isConvertible(t, s, Warner.noWarnings);
duke@1 312 }
duke@1 313 // </editor-fold>
duke@1 314
duke@1 315 // <editor-fold defaultstate="collapsed" desc="isSubtype">
duke@1 316 /**
duke@1 317 * Is t an unchecked subtype of s?
duke@1 318 */
duke@1 319 public boolean isSubtypeUnchecked(Type t, Type s) {
duke@1 320 return isSubtypeUnchecked(t, s, Warner.noWarnings);
duke@1 321 }
duke@1 322 /**
duke@1 323 * Is t an unchecked subtype of s?
duke@1 324 */
duke@1 325 public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
duke@1 326 if (t.tag == ARRAY && s.tag == ARRAY) {
mcimadamore@795 327 if (((ArrayType)t).elemtype.tag <= lastBaseTag) {
mcimadamore@795 328 return isSameType(elemtype(t), elemtype(s));
mcimadamore@795 329 } else {
mcimadamore@795 330 ArrayType from = (ArrayType)t;
mcimadamore@795 331 ArrayType to = (ArrayType)s;
mcimadamore@795 332 if (from.isVarargs() &&
mcimadamore@795 333 !to.isVarargs() &&
mcimadamore@795 334 !isReifiable(from)) {
mcimadamore@795 335 warn.warn(LintCategory.VARARGS);
mcimadamore@795 336 }
mcimadamore@795 337 return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
mcimadamore@795 338 }
duke@1 339 } else if (isSubtype(t, s)) {
duke@1 340 return true;
mcimadamore@41 341 }
mcimadamore@41 342 else if (t.tag == TYPEVAR) {
mcimadamore@41 343 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
mcimadamore@41 344 }
mcimadamore@93 345 else if (s.tag == UNDETVAR) {
mcimadamore@93 346 UndetVar uv = (UndetVar)s;
mcimadamore@93 347 if (uv.inst != null)
mcimadamore@93 348 return isSubtypeUnchecked(t, uv.inst, warn);
mcimadamore@93 349 }
mcimadamore@41 350 else if (!s.isRaw()) {
duke@1 351 Type t2 = asSuper(t, s.tsym);
duke@1 352 if (t2 != null && t2.isRaw()) {
duke@1 353 if (isReifiable(s))
mcimadamore@795 354 warn.silentWarn(LintCategory.UNCHECKED);
duke@1 355 else
mcimadamore@795 356 warn.warn(LintCategory.UNCHECKED);
duke@1 357 return true;
duke@1 358 }
duke@1 359 }
duke@1 360 return false;
duke@1 361 }
duke@1 362
duke@1 363 /**
duke@1 364 * Is t a subtype of s?<br>
duke@1 365 * (not defined for Method and ForAll types)
duke@1 366 */
duke@1 367 final public boolean isSubtype(Type t, Type s) {
duke@1 368 return isSubtype(t, s, true);
duke@1 369 }
duke@1 370 final public boolean isSubtypeNoCapture(Type t, Type s) {
duke@1 371 return isSubtype(t, s, false);
duke@1 372 }
duke@1 373 public boolean isSubtype(Type t, Type s, boolean capture) {
duke@1 374 if (t == s)
duke@1 375 return true;
duke@1 376
duke@1 377 if (s.tag >= firstPartialTag)
duke@1 378 return isSuperType(s, t);
duke@1 379
mcimadamore@299 380 if (s.isCompound()) {
mcimadamore@299 381 for (Type s2 : interfaces(s).prepend(supertype(s))) {
mcimadamore@299 382 if (!isSubtype(t, s2, capture))
mcimadamore@299 383 return false;
mcimadamore@299 384 }
mcimadamore@299 385 return true;
mcimadamore@299 386 }
mcimadamore@299 387
duke@1 388 Type lower = lowerBound(s);
duke@1 389 if (s != lower)
duke@1 390 return isSubtype(capture ? capture(t) : t, lower, false);
duke@1 391
duke@1 392 return isSubtype.visit(capture ? capture(t) : t, s);
duke@1 393 }
duke@1 394 // where
duke@1 395 private TypeRelation isSubtype = new TypeRelation()
duke@1 396 {
duke@1 397 public Boolean visitType(Type t, Type s) {
duke@1 398 switch (t.tag) {
duke@1 399 case BYTE: case CHAR:
duke@1 400 return (t.tag == s.tag ||
duke@1 401 t.tag + 2 <= s.tag && s.tag <= DOUBLE);
duke@1 402 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
duke@1 403 return t.tag <= s.tag && s.tag <= DOUBLE;
duke@1 404 case BOOLEAN: case VOID:
duke@1 405 return t.tag == s.tag;
duke@1 406 case TYPEVAR:
duke@1 407 return isSubtypeNoCapture(t.getUpperBound(), s);
duke@1 408 case BOT:
duke@1 409 return
duke@1 410 s.tag == BOT || s.tag == CLASS ||
duke@1 411 s.tag == ARRAY || s.tag == TYPEVAR;
duke@1 412 case NONE:
duke@1 413 return false;
duke@1 414 default:
duke@1 415 throw new AssertionError("isSubtype " + t.tag);
duke@1 416 }
duke@1 417 }
duke@1 418
duke@1 419 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 420
duke@1 421 private boolean containsTypeRecursive(Type t, Type s) {
duke@1 422 TypePair pair = new TypePair(t, s);
duke@1 423 if (cache.add(pair)) {
duke@1 424 try {
duke@1 425 return containsType(t.getTypeArguments(),
duke@1 426 s.getTypeArguments());
duke@1 427 } finally {
duke@1 428 cache.remove(pair);
duke@1 429 }
duke@1 430 } else {
duke@1 431 return containsType(t.getTypeArguments(),
duke@1 432 rewriteSupers(s).getTypeArguments());
duke@1 433 }
duke@1 434 }
duke@1 435
duke@1 436 private Type rewriteSupers(Type t) {
duke@1 437 if (!t.isParameterized())
duke@1 438 return t;
duke@1 439 ListBuffer<Type> from = lb();
duke@1 440 ListBuffer<Type> to = lb();
duke@1 441 adaptSelf(t, from, to);
duke@1 442 if (from.isEmpty())
duke@1 443 return t;
duke@1 444 ListBuffer<Type> rewrite = lb();
duke@1 445 boolean changed = false;
duke@1 446 for (Type orig : to.toList()) {
duke@1 447 Type s = rewriteSupers(orig);
duke@1 448 if (s.isSuperBound() && !s.isExtendsBound()) {
duke@1 449 s = new WildcardType(syms.objectType,
duke@1 450 BoundKind.UNBOUND,
duke@1 451 syms.boundClass);
duke@1 452 changed = true;
duke@1 453 } else if (s != orig) {
duke@1 454 s = new WildcardType(upperBound(s),
duke@1 455 BoundKind.EXTENDS,
duke@1 456 syms.boundClass);
duke@1 457 changed = true;
duke@1 458 }
duke@1 459 rewrite.append(s);
duke@1 460 }
duke@1 461 if (changed)
duke@1 462 return subst(t.tsym.type, from.toList(), rewrite.toList());
duke@1 463 else
duke@1 464 return t;
duke@1 465 }
duke@1 466
duke@1 467 @Override
duke@1 468 public Boolean visitClassType(ClassType t, Type s) {
duke@1 469 Type sup = asSuper(t, s.tsym);
duke@1 470 return sup != null
duke@1 471 && sup.tsym == s.tsym
duke@1 472 // You're not allowed to write
duke@1 473 // Vector<Object> vec = new Vector<String>();
duke@1 474 // But with wildcards you can write
duke@1 475 // Vector<? extends Object> vec = new Vector<String>();
duke@1 476 // which means that subtype checking must be done
duke@1 477 // here instead of same-type checking (via containsType).
duke@1 478 && (!s.isParameterized() || containsTypeRecursive(s, sup))
duke@1 479 && isSubtypeNoCapture(sup.getEnclosingType(),
duke@1 480 s.getEnclosingType());
duke@1 481 }
duke@1 482
duke@1 483 @Override
duke@1 484 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 485 if (s.tag == ARRAY) {
duke@1 486 if (t.elemtype.tag <= lastBaseTag)
duke@1 487 return isSameType(t.elemtype, elemtype(s));
duke@1 488 else
duke@1 489 return isSubtypeNoCapture(t.elemtype, elemtype(s));
duke@1 490 }
duke@1 491
duke@1 492 if (s.tag == CLASS) {
duke@1 493 Name sname = s.tsym.getQualifiedName();
duke@1 494 return sname == names.java_lang_Object
duke@1 495 || sname == names.java_lang_Cloneable
duke@1 496 || sname == names.java_io_Serializable;
duke@1 497 }
duke@1 498
duke@1 499 return false;
duke@1 500 }
duke@1 501
duke@1 502 @Override
duke@1 503 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 504 //todo: test against origin needed? or replace with substitution?
duke@1 505 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 506 return true;
duke@1 507
duke@1 508 if (t.inst != null)
duke@1 509 return isSubtypeNoCapture(t.inst, s); // TODO: ", warn"?
duke@1 510
duke@1 511 t.hibounds = t.hibounds.prepend(s);
duke@1 512 return true;
duke@1 513 }
duke@1 514
duke@1 515 @Override
duke@1 516 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 517 return true;
duke@1 518 }
duke@1 519 };
duke@1 520
duke@1 521 /**
duke@1 522 * Is t a subtype of every type in given list `ts'?<br>
duke@1 523 * (not defined for Method and ForAll types)<br>
duke@1 524 * Allows unchecked conversions.
duke@1 525 */
duke@1 526 public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
duke@1 527 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 528 if (!isSubtypeUnchecked(t, l.head, warn))
duke@1 529 return false;
duke@1 530 return true;
duke@1 531 }
duke@1 532
duke@1 533 /**
duke@1 534 * Are corresponding elements of ts subtypes of ss? If lists are
duke@1 535 * of different length, return false.
duke@1 536 */
duke@1 537 public boolean isSubtypes(List<Type> ts, List<Type> ss) {
duke@1 538 while (ts.tail != null && ss.tail != null
duke@1 539 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 540 isSubtype(ts.head, ss.head)) {
duke@1 541 ts = ts.tail;
duke@1 542 ss = ss.tail;
duke@1 543 }
duke@1 544 return ts.tail == null && ss.tail == null;
duke@1 545 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 546 }
duke@1 547
duke@1 548 /**
duke@1 549 * Are corresponding elements of ts subtypes of ss, allowing
duke@1 550 * unchecked conversions? If lists are of different length,
duke@1 551 * return false.
duke@1 552 **/
duke@1 553 public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
duke@1 554 while (ts.tail != null && ss.tail != null
duke@1 555 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 556 isSubtypeUnchecked(ts.head, ss.head, warn)) {
duke@1 557 ts = ts.tail;
duke@1 558 ss = ss.tail;
duke@1 559 }
duke@1 560 return ts.tail == null && ss.tail == null;
duke@1 561 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 562 }
duke@1 563 // </editor-fold>
duke@1 564
duke@1 565 // <editor-fold defaultstate="collapsed" desc="isSuperType">
duke@1 566 /**
duke@1 567 * Is t a supertype of s?
duke@1 568 */
duke@1 569 public boolean isSuperType(Type t, Type s) {
duke@1 570 switch (t.tag) {
duke@1 571 case ERROR:
duke@1 572 return true;
duke@1 573 case UNDETVAR: {
duke@1 574 UndetVar undet = (UndetVar)t;
duke@1 575 if (t == s ||
duke@1 576 undet.qtype == s ||
duke@1 577 s.tag == ERROR ||
duke@1 578 s.tag == BOT) return true;
duke@1 579 if (undet.inst != null)
duke@1 580 return isSubtype(s, undet.inst);
duke@1 581 undet.lobounds = undet.lobounds.prepend(s);
duke@1 582 return true;
duke@1 583 }
duke@1 584 default:
duke@1 585 return isSubtype(s, t);
duke@1 586 }
duke@1 587 }
duke@1 588 // </editor-fold>
duke@1 589
duke@1 590 // <editor-fold defaultstate="collapsed" desc="isSameType">
duke@1 591 /**
duke@1 592 * Are corresponding elements of the lists the same type? If
duke@1 593 * lists are of different length, return false.
duke@1 594 */
duke@1 595 public boolean isSameTypes(List<Type> ts, List<Type> ss) {
duke@1 596 while (ts.tail != null && ss.tail != null
duke@1 597 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 598 isSameType(ts.head, ss.head)) {
duke@1 599 ts = ts.tail;
duke@1 600 ss = ss.tail;
duke@1 601 }
duke@1 602 return ts.tail == null && ss.tail == null;
duke@1 603 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 604 }
duke@1 605
duke@1 606 /**
duke@1 607 * Is t the same type as s?
duke@1 608 */
duke@1 609 public boolean isSameType(Type t, Type s) {
duke@1 610 return isSameType.visit(t, s);
duke@1 611 }
duke@1 612 // where
duke@1 613 private TypeRelation isSameType = new TypeRelation() {
duke@1 614
duke@1 615 public Boolean visitType(Type t, Type s) {
duke@1 616 if (t == s)
duke@1 617 return true;
duke@1 618
duke@1 619 if (s.tag >= firstPartialTag)
duke@1 620 return visit(s, t);
duke@1 621
duke@1 622 switch (t.tag) {
duke@1 623 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 624 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
duke@1 625 return t.tag == s.tag;
mcimadamore@561 626 case TYPEVAR: {
mcimadamore@561 627 if (s.tag == TYPEVAR) {
mcimadamore@561 628 //type-substitution does not preserve type-var types
mcimadamore@561 629 //check that type var symbols and bounds are indeed the same
mcimadamore@561 630 return t.tsym == s.tsym &&
mcimadamore@561 631 visit(t.getUpperBound(), s.getUpperBound());
mcimadamore@561 632 }
mcimadamore@561 633 else {
mcimadamore@561 634 //special case for s == ? super X, where upper(s) = u
mcimadamore@561 635 //check that u == t, where u has been set by Type.withTypeVar
mcimadamore@561 636 return s.isSuperBound() &&
mcimadamore@561 637 !s.isExtendsBound() &&
mcimadamore@561 638 visit(t, upperBound(s));
mcimadamore@561 639 }
mcimadamore@561 640 }
duke@1 641 default:
duke@1 642 throw new AssertionError("isSameType " + t.tag);
duke@1 643 }
duke@1 644 }
duke@1 645
duke@1 646 @Override
duke@1 647 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 648 if (s.tag >= firstPartialTag)
duke@1 649 return visit(s, t);
duke@1 650 else
duke@1 651 return false;
duke@1 652 }
duke@1 653
duke@1 654 @Override
duke@1 655 public Boolean visitClassType(ClassType t, Type s) {
duke@1 656 if (t == s)
duke@1 657 return true;
duke@1 658
duke@1 659 if (s.tag >= firstPartialTag)
duke@1 660 return visit(s, t);
duke@1 661
duke@1 662 if (s.isSuperBound() && !s.isExtendsBound())
duke@1 663 return visit(t, upperBound(s)) && visit(t, lowerBound(s));
duke@1 664
duke@1 665 if (t.isCompound() && s.isCompound()) {
duke@1 666 if (!visit(supertype(t), supertype(s)))
duke@1 667 return false;
duke@1 668
duke@1 669 HashSet<SingletonType> set = new HashSet<SingletonType>();
duke@1 670 for (Type x : interfaces(t))
duke@1 671 set.add(new SingletonType(x));
duke@1 672 for (Type x : interfaces(s)) {
duke@1 673 if (!set.remove(new SingletonType(x)))
duke@1 674 return false;
duke@1 675 }
jjg@789 676 return (set.isEmpty());
duke@1 677 }
duke@1 678 return t.tsym == s.tsym
duke@1 679 && visit(t.getEnclosingType(), s.getEnclosingType())
duke@1 680 && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
duke@1 681 }
duke@1 682
duke@1 683 @Override
duke@1 684 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 685 if (t == s)
duke@1 686 return true;
duke@1 687
duke@1 688 if (s.tag >= firstPartialTag)
duke@1 689 return visit(s, t);
duke@1 690
duke@1 691 return s.tag == ARRAY
duke@1 692 && containsTypeEquivalent(t.elemtype, elemtype(s));
duke@1 693 }
duke@1 694
duke@1 695 @Override
duke@1 696 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 697 // isSameType for methods does not take thrown
duke@1 698 // exceptions into account!
duke@1 699 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
duke@1 700 }
duke@1 701
duke@1 702 @Override
duke@1 703 public Boolean visitPackageType(PackageType t, Type s) {
duke@1 704 return t == s;
duke@1 705 }
duke@1 706
duke@1 707 @Override
duke@1 708 public Boolean visitForAll(ForAll t, Type s) {
duke@1 709 if (s.tag != FORALL)
duke@1 710 return false;
duke@1 711
duke@1 712 ForAll forAll = (ForAll)s;
duke@1 713 return hasSameBounds(t, forAll)
duke@1 714 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 715 }
duke@1 716
duke@1 717 @Override
duke@1 718 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 719 if (s.tag == WILDCARD)
duke@1 720 // FIXME, this might be leftovers from before capture conversion
duke@1 721 return false;
duke@1 722
duke@1 723 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 724 return true;
duke@1 725
duke@1 726 if (t.inst != null)
duke@1 727 return visit(t.inst, s);
duke@1 728
duke@1 729 t.inst = fromUnknownFun.apply(s);
duke@1 730 for (List<Type> l = t.lobounds; l.nonEmpty(); l = l.tail) {
duke@1 731 if (!isSubtype(l.head, t.inst))
duke@1 732 return false;
duke@1 733 }
duke@1 734 for (List<Type> l = t.hibounds; l.nonEmpty(); l = l.tail) {
duke@1 735 if (!isSubtype(t.inst, l.head))
duke@1 736 return false;
duke@1 737 }
duke@1 738 return true;
duke@1 739 }
duke@1 740
duke@1 741 @Override
duke@1 742 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 743 return true;
duke@1 744 }
duke@1 745 };
duke@1 746 // </editor-fold>
duke@1 747
duke@1 748 // <editor-fold defaultstate="collapsed" desc="fromUnknownFun">
duke@1 749 /**
duke@1 750 * A mapping that turns all unknown types in this type to fresh
duke@1 751 * unknown variables.
duke@1 752 */
duke@1 753 public Mapping fromUnknownFun = new Mapping("fromUnknownFun") {
duke@1 754 public Type apply(Type t) {
duke@1 755 if (t.tag == UNKNOWN) return new UndetVar(t);
duke@1 756 else return t.map(this);
duke@1 757 }
duke@1 758 };
duke@1 759 // </editor-fold>
duke@1 760
duke@1 761 // <editor-fold defaultstate="collapsed" desc="Contains Type">
duke@1 762 public boolean containedBy(Type t, Type s) {
duke@1 763 switch (t.tag) {
duke@1 764 case UNDETVAR:
duke@1 765 if (s.tag == WILDCARD) {
duke@1 766 UndetVar undetvar = (UndetVar)t;
mcimadamore@210 767 WildcardType wt = (WildcardType)s;
mcimadamore@210 768 switch(wt.kind) {
mcimadamore@210 769 case UNBOUND: //similar to ? extends Object
mcimadamore@210 770 case EXTENDS: {
mcimadamore@210 771 Type bound = upperBound(s);
mcimadamore@210 772 // We should check the new upper bound against any of the
mcimadamore@210 773 // undetvar's lower bounds.
mcimadamore@210 774 for (Type t2 : undetvar.lobounds) {
mcimadamore@210 775 if (!isSubtype(t2, bound))
mcimadamore@210 776 return false;
mcimadamore@210 777 }
mcimadamore@210 778 undetvar.hibounds = undetvar.hibounds.prepend(bound);
mcimadamore@210 779 break;
mcimadamore@210 780 }
mcimadamore@210 781 case SUPER: {
mcimadamore@210 782 Type bound = lowerBound(s);
mcimadamore@210 783 // We should check the new lower bound against any of the
mcimadamore@210 784 // undetvar's lower bounds.
mcimadamore@210 785 for (Type t2 : undetvar.hibounds) {
mcimadamore@210 786 if (!isSubtype(bound, t2))
mcimadamore@210 787 return false;
mcimadamore@210 788 }
mcimadamore@210 789 undetvar.lobounds = undetvar.lobounds.prepend(bound);
mcimadamore@210 790 break;
mcimadamore@210 791 }
mcimadamore@162 792 }
duke@1 793 return true;
duke@1 794 } else {
duke@1 795 return isSameType(t, s);
duke@1 796 }
duke@1 797 case ERROR:
duke@1 798 return true;
duke@1 799 default:
duke@1 800 return containsType(s, t);
duke@1 801 }
duke@1 802 }
duke@1 803
duke@1 804 boolean containsType(List<Type> ts, List<Type> ss) {
duke@1 805 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 806 && containsType(ts.head, ss.head)) {
duke@1 807 ts = ts.tail;
duke@1 808 ss = ss.tail;
duke@1 809 }
duke@1 810 return ts.isEmpty() && ss.isEmpty();
duke@1 811 }
duke@1 812
duke@1 813 /**
duke@1 814 * Check if t contains s.
duke@1 815 *
duke@1 816 * <p>T contains S if:
duke@1 817 *
duke@1 818 * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
duke@1 819 *
duke@1 820 * <p>This relation is only used by ClassType.isSubtype(), that
duke@1 821 * is,
duke@1 822 *
duke@1 823 * <p>{@code C<S> <: C<T> if T contains S.}
duke@1 824 *
duke@1 825 * <p>Because of F-bounds, this relation can lead to infinite
duke@1 826 * recursion. Thus we must somehow break that recursion. Notice
duke@1 827 * that containsType() is only called from ClassType.isSubtype().
duke@1 828 * Since the arguments have already been checked against their
duke@1 829 * bounds, we know:
duke@1 830 *
duke@1 831 * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
duke@1 832 *
duke@1 833 * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
duke@1 834 *
duke@1 835 * @param t a type
duke@1 836 * @param s a type
duke@1 837 */
duke@1 838 public boolean containsType(Type t, Type s) {
duke@1 839 return containsType.visit(t, s);
duke@1 840 }
duke@1 841 // where
duke@1 842 private TypeRelation containsType = new TypeRelation() {
duke@1 843
duke@1 844 private Type U(Type t) {
duke@1 845 while (t.tag == WILDCARD) {
duke@1 846 WildcardType w = (WildcardType)t;
duke@1 847 if (w.isSuperBound())
duke@1 848 return w.bound == null ? syms.objectType : w.bound.bound;
duke@1 849 else
duke@1 850 t = w.type;
duke@1 851 }
duke@1 852 return t;
duke@1 853 }
duke@1 854
duke@1 855 private Type L(Type t) {
duke@1 856 while (t.tag == WILDCARD) {
duke@1 857 WildcardType w = (WildcardType)t;
duke@1 858 if (w.isExtendsBound())
duke@1 859 return syms.botType;
duke@1 860 else
duke@1 861 t = w.type;
duke@1 862 }
duke@1 863 return t;
duke@1 864 }
duke@1 865
duke@1 866 public Boolean visitType(Type t, Type s) {
duke@1 867 if (s.tag >= firstPartialTag)
duke@1 868 return containedBy(s, t);
duke@1 869 else
duke@1 870 return isSameType(t, s);
duke@1 871 }
duke@1 872
jjg@789 873 // void debugContainsType(WildcardType t, Type s) {
jjg@789 874 // System.err.println();
jjg@789 875 // System.err.format(" does %s contain %s?%n", t, s);
jjg@789 876 // System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
jjg@789 877 // upperBound(s), s, t, U(t),
jjg@789 878 // t.isSuperBound()
jjg@789 879 // || isSubtypeNoCapture(upperBound(s), U(t)));
jjg@789 880 // System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
jjg@789 881 // L(t), t, s, lowerBound(s),
jjg@789 882 // t.isExtendsBound()
jjg@789 883 // || isSubtypeNoCapture(L(t), lowerBound(s)));
jjg@789 884 // System.err.println();
jjg@789 885 // }
duke@1 886
duke@1 887 @Override
duke@1 888 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 889 if (s.tag >= firstPartialTag)
duke@1 890 return containedBy(s, t);
duke@1 891 else {
jjg@789 892 // debugContainsType(t, s);
duke@1 893 return isSameWildcard(t, s)
duke@1 894 || isCaptureOf(s, t)
duke@1 895 || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
duke@1 896 (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
duke@1 897 }
duke@1 898 }
duke@1 899
duke@1 900 @Override
duke@1 901 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 902 if (s.tag != WILDCARD)
duke@1 903 return isSameType(t, s);
duke@1 904 else
duke@1 905 return false;
duke@1 906 }
duke@1 907
duke@1 908 @Override
duke@1 909 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 910 return true;
duke@1 911 }
duke@1 912 };
duke@1 913
duke@1 914 public boolean isCaptureOf(Type s, WildcardType t) {
mcimadamore@79 915 if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
duke@1 916 return false;
duke@1 917 return isSameWildcard(t, ((CapturedType)s).wildcard);
duke@1 918 }
duke@1 919
duke@1 920 public boolean isSameWildcard(WildcardType t, Type s) {
duke@1 921 if (s.tag != WILDCARD)
duke@1 922 return false;
duke@1 923 WildcardType w = (WildcardType)s;
duke@1 924 return w.kind == t.kind && w.type == t.type;
duke@1 925 }
duke@1 926
duke@1 927 public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
duke@1 928 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 929 && containsTypeEquivalent(ts.head, ss.head)) {
duke@1 930 ts = ts.tail;
duke@1 931 ss = ss.tail;
duke@1 932 }
duke@1 933 return ts.isEmpty() && ss.isEmpty();
duke@1 934 }
duke@1 935 // </editor-fold>
duke@1 936
duke@1 937 // <editor-fold defaultstate="collapsed" desc="isCastable">
duke@1 938 public boolean isCastable(Type t, Type s) {
duke@1 939 return isCastable(t, s, Warner.noWarnings);
duke@1 940 }
duke@1 941
duke@1 942 /**
duke@1 943 * Is t is castable to s?<br>
duke@1 944 * s is assumed to be an erased type.<br>
duke@1 945 * (not defined for Method and ForAll types).
duke@1 946 */
duke@1 947 public boolean isCastable(Type t, Type s, Warner warn) {
duke@1 948 if (t == s)
duke@1 949 return true;
duke@1 950
duke@1 951 if (t.isPrimitive() != s.isPrimitive())
jrose@665 952 return allowBoxing && (isConvertible(t, s, warn) || isConvertible(s, t, warn));
duke@1 953
duke@1 954 if (warn != warnStack.head) {
duke@1 955 try {
duke@1 956 warnStack = warnStack.prepend(warn);
mcimadamore@795 957 checkUnsafeVarargsConversion(t, s, warn);
mcimadamore@185 958 return isCastable.visit(t,s);
duke@1 959 } finally {
duke@1 960 warnStack = warnStack.tail;
duke@1 961 }
duke@1 962 } else {
mcimadamore@185 963 return isCastable.visit(t,s);
duke@1 964 }
duke@1 965 }
duke@1 966 // where
duke@1 967 private TypeRelation isCastable = new TypeRelation() {
duke@1 968
duke@1 969 public Boolean visitType(Type t, Type s) {
duke@1 970 if (s.tag == ERROR)
duke@1 971 return true;
duke@1 972
duke@1 973 switch (t.tag) {
duke@1 974 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 975 case DOUBLE:
duke@1 976 return s.tag <= DOUBLE;
duke@1 977 case BOOLEAN:
duke@1 978 return s.tag == BOOLEAN;
duke@1 979 case VOID:
duke@1 980 return false;
duke@1 981 case BOT:
duke@1 982 return isSubtype(t, s);
duke@1 983 default:
duke@1 984 throw new AssertionError();
duke@1 985 }
duke@1 986 }
duke@1 987
duke@1 988 @Override
duke@1 989 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 990 return isCastable(upperBound(t), s, warnStack.head);
duke@1 991 }
duke@1 992
duke@1 993 @Override
duke@1 994 public Boolean visitClassType(ClassType t, Type s) {
duke@1 995 if (s.tag == ERROR || s.tag == BOT)
duke@1 996 return true;
duke@1 997
duke@1 998 if (s.tag == TYPEVAR) {
mcimadamore@640 999 if (isCastable(t, s.getUpperBound(), Warner.noWarnings)) {
mcimadamore@795 1000 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1001 return true;
duke@1 1002 } else {
duke@1 1003 return false;
duke@1 1004 }
duke@1 1005 }
duke@1 1006
duke@1 1007 if (t.isCompound()) {
mcimadamore@211 1008 Warner oldWarner = warnStack.head;
mcimadamore@211 1009 warnStack.head = Warner.noWarnings;
duke@1 1010 if (!visit(supertype(t), s))
duke@1 1011 return false;
duke@1 1012 for (Type intf : interfaces(t)) {
duke@1 1013 if (!visit(intf, s))
duke@1 1014 return false;
duke@1 1015 }
mcimadamore@795 1016 if (warnStack.head.hasLint(LintCategory.UNCHECKED))
mcimadamore@795 1017 oldWarner.warn(LintCategory.UNCHECKED);
duke@1 1018 return true;
duke@1 1019 }
duke@1 1020
duke@1 1021 if (s.isCompound()) {
duke@1 1022 // call recursively to reuse the above code
duke@1 1023 return visitClassType((ClassType)s, t);
duke@1 1024 }
duke@1 1025
duke@1 1026 if (s.tag == CLASS || s.tag == ARRAY) {
duke@1 1027 boolean upcast;
duke@1 1028 if ((upcast = isSubtype(erasure(t), erasure(s)))
duke@1 1029 || isSubtype(erasure(s), erasure(t))) {
duke@1 1030 if (!upcast && s.tag == ARRAY) {
duke@1 1031 if (!isReifiable(s))
mcimadamore@795 1032 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1033 return true;
duke@1 1034 } else if (s.isRaw()) {
duke@1 1035 return true;
duke@1 1036 } else if (t.isRaw()) {
duke@1 1037 if (!isUnbounded(s))
mcimadamore@795 1038 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1039 return true;
duke@1 1040 }
duke@1 1041 // Assume |a| <: |b|
duke@1 1042 final Type a = upcast ? t : s;
duke@1 1043 final Type b = upcast ? s : t;
duke@1 1044 final boolean HIGH = true;
duke@1 1045 final boolean LOW = false;
duke@1 1046 final boolean DONT_REWRITE_TYPEVARS = false;
duke@1 1047 Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1048 Type aLow = rewriteQuantifiers(a, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1049 Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1050 Type bLow = rewriteQuantifiers(b, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1051 Type lowSub = asSub(bLow, aLow.tsym);
duke@1 1052 Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1053 if (highSub == null) {
duke@1 1054 final boolean REWRITE_TYPEVARS = true;
duke@1 1055 aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
duke@1 1056 aLow = rewriteQuantifiers(a, LOW, REWRITE_TYPEVARS);
duke@1 1057 bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
duke@1 1058 bLow = rewriteQuantifiers(b, LOW, REWRITE_TYPEVARS);
duke@1 1059 lowSub = asSub(bLow, aLow.tsym);
duke@1 1060 highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1061 }
duke@1 1062 if (highSub != null) {
jjg@816 1063 if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
jjg@816 1064 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
jjg@816 1065 }
mcimadamore@185 1066 if (!disjointTypes(aHigh.allparams(), highSub.allparams())
mcimadamore@185 1067 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
mcimadamore@185 1068 && !disjointTypes(aLow.allparams(), highSub.allparams())
mcimadamore@185 1069 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
mcimadamore@779 1070 if (upcast ? giveWarning(a, b) :
mcimadamore@235 1071 giveWarning(b, a))
mcimadamore@795 1072 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1073 return true;
duke@1 1074 }
duke@1 1075 }
duke@1 1076 if (isReifiable(s))
duke@1 1077 return isSubtypeUnchecked(a, b);
duke@1 1078 else
duke@1 1079 return isSubtypeUnchecked(a, b, warnStack.head);
duke@1 1080 }
duke@1 1081
duke@1 1082 // Sidecast
duke@1 1083 if (s.tag == CLASS) {
duke@1 1084 if ((s.tsym.flags() & INTERFACE) != 0) {
duke@1 1085 return ((t.tsym.flags() & FINAL) == 0)
duke@1 1086 ? sideCast(t, s, warnStack.head)
duke@1 1087 : sideCastFinal(t, s, warnStack.head);
duke@1 1088 } else if ((t.tsym.flags() & INTERFACE) != 0) {
duke@1 1089 return ((s.tsym.flags() & FINAL) == 0)
duke@1 1090 ? sideCast(t, s, warnStack.head)
duke@1 1091 : sideCastFinal(t, s, warnStack.head);
duke@1 1092 } else {
duke@1 1093 // unrelated class types
duke@1 1094 return false;
duke@1 1095 }
duke@1 1096 }
duke@1 1097 }
duke@1 1098 return false;
duke@1 1099 }
duke@1 1100
duke@1 1101 @Override
duke@1 1102 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 1103 switch (s.tag) {
duke@1 1104 case ERROR:
duke@1 1105 case BOT:
duke@1 1106 return true;
duke@1 1107 case TYPEVAR:
duke@1 1108 if (isCastable(s, t, Warner.noWarnings)) {
mcimadamore@795 1109 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1110 return true;
duke@1 1111 } else {
duke@1 1112 return false;
duke@1 1113 }
duke@1 1114 case CLASS:
duke@1 1115 return isSubtype(t, s);
duke@1 1116 case ARRAY:
mcimadamore@786 1117 if (elemtype(t).tag <= lastBaseTag ||
mcimadamore@786 1118 elemtype(s).tag <= lastBaseTag) {
duke@1 1119 return elemtype(t).tag == elemtype(s).tag;
duke@1 1120 } else {
duke@1 1121 return visit(elemtype(t), elemtype(s));
duke@1 1122 }
duke@1 1123 default:
duke@1 1124 return false;
duke@1 1125 }
duke@1 1126 }
duke@1 1127
duke@1 1128 @Override
duke@1 1129 public Boolean visitTypeVar(TypeVar t, Type s) {
duke@1 1130 switch (s.tag) {
duke@1 1131 case ERROR:
duke@1 1132 case BOT:
duke@1 1133 return true;
duke@1 1134 case TYPEVAR:
duke@1 1135 if (isSubtype(t, s)) {
duke@1 1136 return true;
duke@1 1137 } else if (isCastable(t.bound, s, Warner.noWarnings)) {
mcimadamore@795 1138 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1139 return true;
duke@1 1140 } else {
duke@1 1141 return false;
duke@1 1142 }
duke@1 1143 default:
duke@1 1144 return isCastable(t.bound, s, warnStack.head);
duke@1 1145 }
duke@1 1146 }
duke@1 1147
duke@1 1148 @Override
duke@1 1149 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1150 return true;
duke@1 1151 }
duke@1 1152 };
duke@1 1153 // </editor-fold>
duke@1 1154
duke@1 1155 // <editor-fold defaultstate="collapsed" desc="disjointTypes">
duke@1 1156 public boolean disjointTypes(List<Type> ts, List<Type> ss) {
duke@1 1157 while (ts.tail != null && ss.tail != null) {
duke@1 1158 if (disjointType(ts.head, ss.head)) return true;
duke@1 1159 ts = ts.tail;
duke@1 1160 ss = ss.tail;
duke@1 1161 }
duke@1 1162 return false;
duke@1 1163 }
duke@1 1164
duke@1 1165 /**
duke@1 1166 * Two types or wildcards are considered disjoint if it can be
duke@1 1167 * proven that no type can be contained in both. It is
duke@1 1168 * conservative in that it is allowed to say that two types are
duke@1 1169 * not disjoint, even though they actually are.
duke@1 1170 *
duke@1 1171 * The type C<X> is castable to C<Y> exactly if X and Y are not
duke@1 1172 * disjoint.
duke@1 1173 */
duke@1 1174 public boolean disjointType(Type t, Type s) {
duke@1 1175 return disjointType.visit(t, s);
duke@1 1176 }
duke@1 1177 // where
duke@1 1178 private TypeRelation disjointType = new TypeRelation() {
duke@1 1179
duke@1 1180 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 1181
duke@1 1182 public Boolean visitType(Type t, Type s) {
duke@1 1183 if (s.tag == WILDCARD)
duke@1 1184 return visit(s, t);
duke@1 1185 else
duke@1 1186 return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
duke@1 1187 }
duke@1 1188
duke@1 1189 private boolean isCastableRecursive(Type t, Type s) {
duke@1 1190 TypePair pair = new TypePair(t, s);
duke@1 1191 if (cache.add(pair)) {
duke@1 1192 try {
duke@1 1193 return Types.this.isCastable(t, s);
duke@1 1194 } finally {
duke@1 1195 cache.remove(pair);
duke@1 1196 }
duke@1 1197 } else {
duke@1 1198 return true;
duke@1 1199 }
duke@1 1200 }
duke@1 1201
duke@1 1202 private boolean notSoftSubtypeRecursive(Type t, Type s) {
duke@1 1203 TypePair pair = new TypePair(t, s);
duke@1 1204 if (cache.add(pair)) {
duke@1 1205 try {
duke@1 1206 return Types.this.notSoftSubtype(t, s);
duke@1 1207 } finally {
duke@1 1208 cache.remove(pair);
duke@1 1209 }
duke@1 1210 } else {
duke@1 1211 return false;
duke@1 1212 }
duke@1 1213 }
duke@1 1214
duke@1 1215 @Override
duke@1 1216 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 1217 if (t.isUnbound())
duke@1 1218 return false;
duke@1 1219
duke@1 1220 if (s.tag != WILDCARD) {
duke@1 1221 if (t.isExtendsBound())
duke@1 1222 return notSoftSubtypeRecursive(s, t.type);
duke@1 1223 else // isSuperBound()
duke@1 1224 return notSoftSubtypeRecursive(t.type, s);
duke@1 1225 }
duke@1 1226
duke@1 1227 if (s.isUnbound())
duke@1 1228 return false;
duke@1 1229
duke@1 1230 if (t.isExtendsBound()) {
duke@1 1231 if (s.isExtendsBound())
duke@1 1232 return !isCastableRecursive(t.type, upperBound(s));
duke@1 1233 else if (s.isSuperBound())
duke@1 1234 return notSoftSubtypeRecursive(lowerBound(s), t.type);
duke@1 1235 } else if (t.isSuperBound()) {
duke@1 1236 if (s.isExtendsBound())
duke@1 1237 return notSoftSubtypeRecursive(t.type, upperBound(s));
duke@1 1238 }
duke@1 1239 return false;
duke@1 1240 }
duke@1 1241 };
duke@1 1242 // </editor-fold>
duke@1 1243
duke@1 1244 // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
duke@1 1245 /**
duke@1 1246 * Returns the lower bounds of the formals of a method.
duke@1 1247 */
duke@1 1248 public List<Type> lowerBoundArgtypes(Type t) {
duke@1 1249 return map(t.getParameterTypes(), lowerBoundMapping);
duke@1 1250 }
duke@1 1251 private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
duke@1 1252 public Type apply(Type t) {
duke@1 1253 return lowerBound(t);
duke@1 1254 }
duke@1 1255 };
duke@1 1256 // </editor-fold>
duke@1 1257
duke@1 1258 // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
duke@1 1259 /**
duke@1 1260 * This relation answers the question: is impossible that
duke@1 1261 * something of type `t' can be a subtype of `s'? This is
duke@1 1262 * different from the question "is `t' not a subtype of `s'?"
duke@1 1263 * when type variables are involved: Integer is not a subtype of T
duke@1 1264 * where <T extends Number> but it is not true that Integer cannot
duke@1 1265 * possibly be a subtype of T.
duke@1 1266 */
duke@1 1267 public boolean notSoftSubtype(Type t, Type s) {
duke@1 1268 if (t == s) return false;
duke@1 1269 if (t.tag == TYPEVAR) {
duke@1 1270 TypeVar tv = (TypeVar) t;
duke@1 1271 return !isCastable(tv.bound,
mcimadamore@640 1272 relaxBound(s),
duke@1 1273 Warner.noWarnings);
duke@1 1274 }
duke@1 1275 if (s.tag != WILDCARD)
duke@1 1276 s = upperBound(s);
mcimadamore@640 1277
mcimadamore@640 1278 return !isSubtype(t, relaxBound(s));
mcimadamore@640 1279 }
mcimadamore@640 1280
mcimadamore@640 1281 private Type relaxBound(Type t) {
mcimadamore@640 1282 if (t.tag == TYPEVAR) {
mcimadamore@640 1283 while (t.tag == TYPEVAR)
mcimadamore@640 1284 t = t.getUpperBound();
mcimadamore@640 1285 t = rewriteQuantifiers(t, true, true);
mcimadamore@640 1286 }
mcimadamore@640 1287 return t;
duke@1 1288 }
duke@1 1289 // </editor-fold>
duke@1 1290
duke@1 1291 // <editor-fold defaultstate="collapsed" desc="isReifiable">
duke@1 1292 public boolean isReifiable(Type t) {
duke@1 1293 return isReifiable.visit(t);
duke@1 1294 }
duke@1 1295 // where
duke@1 1296 private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
duke@1 1297
duke@1 1298 public Boolean visitType(Type t, Void ignored) {
duke@1 1299 return true;
duke@1 1300 }
duke@1 1301
duke@1 1302 @Override
duke@1 1303 public Boolean visitClassType(ClassType t, Void ignored) {
mcimadamore@356 1304 if (t.isCompound())
mcimadamore@356 1305 return false;
mcimadamore@356 1306 else {
mcimadamore@356 1307 if (!t.isParameterized())
mcimadamore@356 1308 return true;
mcimadamore@356 1309
mcimadamore@356 1310 for (Type param : t.allparams()) {
mcimadamore@356 1311 if (!param.isUnbound())
mcimadamore@356 1312 return false;
mcimadamore@356 1313 }
duke@1 1314 return true;
duke@1 1315 }
duke@1 1316 }
duke@1 1317
duke@1 1318 @Override
duke@1 1319 public Boolean visitArrayType(ArrayType t, Void ignored) {
duke@1 1320 return visit(t.elemtype);
duke@1 1321 }
duke@1 1322
duke@1 1323 @Override
duke@1 1324 public Boolean visitTypeVar(TypeVar t, Void ignored) {
duke@1 1325 return false;
duke@1 1326 }
duke@1 1327 };
duke@1 1328 // </editor-fold>
duke@1 1329
duke@1 1330 // <editor-fold defaultstate="collapsed" desc="Array Utils">
duke@1 1331 public boolean isArray(Type t) {
duke@1 1332 while (t.tag == WILDCARD)
duke@1 1333 t = upperBound(t);
duke@1 1334 return t.tag == ARRAY;
duke@1 1335 }
duke@1 1336
duke@1 1337 /**
duke@1 1338 * The element type of an array.
duke@1 1339 */
duke@1 1340 public Type elemtype(Type t) {
duke@1 1341 switch (t.tag) {
duke@1 1342 case WILDCARD:
duke@1 1343 return elemtype(upperBound(t));
duke@1 1344 case ARRAY:
duke@1 1345 return ((ArrayType)t).elemtype;
duke@1 1346 case FORALL:
duke@1 1347 return elemtype(((ForAll)t).qtype);
duke@1 1348 case ERROR:
duke@1 1349 return t;
duke@1 1350 default:
duke@1 1351 return null;
duke@1 1352 }
duke@1 1353 }
duke@1 1354
mcimadamore@787 1355 public Type elemtypeOrType(Type t) {
mcimadamore@787 1356 Type elemtype = elemtype(t);
mcimadamore@787 1357 return elemtype != null ?
mcimadamore@787 1358 elemtype :
mcimadamore@787 1359 t;
mcimadamore@787 1360 }
mcimadamore@787 1361
duke@1 1362 /**
duke@1 1363 * Mapping to take element type of an arraytype
duke@1 1364 */
duke@1 1365 private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
duke@1 1366 public Type apply(Type t) { return elemtype(t); }
duke@1 1367 };
duke@1 1368
duke@1 1369 /**
duke@1 1370 * The number of dimensions of an array type.
duke@1 1371 */
duke@1 1372 public int dimensions(Type t) {
duke@1 1373 int result = 0;
duke@1 1374 while (t.tag == ARRAY) {
duke@1 1375 result++;
duke@1 1376 t = elemtype(t);
duke@1 1377 }
duke@1 1378 return result;
duke@1 1379 }
duke@1 1380 // </editor-fold>
duke@1 1381
duke@1 1382 // <editor-fold defaultstate="collapsed" desc="asSuper">
duke@1 1383 /**
duke@1 1384 * Return the (most specific) base type of t that starts with the
duke@1 1385 * given symbol. If none exists, return null.
duke@1 1386 *
duke@1 1387 * @param t a type
duke@1 1388 * @param sym a symbol
duke@1 1389 */
duke@1 1390 public Type asSuper(Type t, Symbol sym) {
duke@1 1391 return asSuper.visit(t, sym);
duke@1 1392 }
duke@1 1393 // where
duke@1 1394 private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
duke@1 1395
duke@1 1396 public Type visitType(Type t, Symbol sym) {
duke@1 1397 return null;
duke@1 1398 }
duke@1 1399
duke@1 1400 @Override
duke@1 1401 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1402 if (t.tsym == sym)
duke@1 1403 return t;
duke@1 1404
duke@1 1405 Type st = supertype(t);
mcimadamore@19 1406 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
duke@1 1407 Type x = asSuper(st, sym);
duke@1 1408 if (x != null)
duke@1 1409 return x;
duke@1 1410 }
duke@1 1411 if ((sym.flags() & INTERFACE) != 0) {
duke@1 1412 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 1413 Type x = asSuper(l.head, sym);
duke@1 1414 if (x != null)
duke@1 1415 return x;
duke@1 1416 }
duke@1 1417 }
duke@1 1418 return null;
duke@1 1419 }
duke@1 1420
duke@1 1421 @Override
duke@1 1422 public Type visitArrayType(ArrayType t, Symbol sym) {
duke@1 1423 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1424 }
duke@1 1425
duke@1 1426 @Override
duke@1 1427 public Type visitTypeVar(TypeVar t, Symbol sym) {
mcimadamore@19 1428 if (t.tsym == sym)
mcimadamore@19 1429 return t;
mcimadamore@19 1430 else
mcimadamore@19 1431 return asSuper(t.bound, sym);
duke@1 1432 }
duke@1 1433
duke@1 1434 @Override
duke@1 1435 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1436 return t;
duke@1 1437 }
duke@1 1438 };
duke@1 1439
duke@1 1440 /**
duke@1 1441 * Return the base type of t or any of its outer types that starts
duke@1 1442 * with the given symbol. If none exists, return null.
duke@1 1443 *
duke@1 1444 * @param t a type
duke@1 1445 * @param sym a symbol
duke@1 1446 */
duke@1 1447 public Type asOuterSuper(Type t, Symbol sym) {
duke@1 1448 switch (t.tag) {
duke@1 1449 case CLASS:
duke@1 1450 do {
duke@1 1451 Type s = asSuper(t, sym);
duke@1 1452 if (s != null) return s;
duke@1 1453 t = t.getEnclosingType();
duke@1 1454 } while (t.tag == CLASS);
duke@1 1455 return null;
duke@1 1456 case ARRAY:
duke@1 1457 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1458 case TYPEVAR:
duke@1 1459 return asSuper(t, sym);
duke@1 1460 case ERROR:
duke@1 1461 return t;
duke@1 1462 default:
duke@1 1463 return null;
duke@1 1464 }
duke@1 1465 }
duke@1 1466
duke@1 1467 /**
duke@1 1468 * Return the base type of t or any of its enclosing types that
duke@1 1469 * starts with the given symbol. If none exists, return null.
duke@1 1470 *
duke@1 1471 * @param t a type
duke@1 1472 * @param sym a symbol
duke@1 1473 */
duke@1 1474 public Type asEnclosingSuper(Type t, Symbol sym) {
duke@1 1475 switch (t.tag) {
duke@1 1476 case CLASS:
duke@1 1477 do {
duke@1 1478 Type s = asSuper(t, sym);
duke@1 1479 if (s != null) return s;
duke@1 1480 Type outer = t.getEnclosingType();
duke@1 1481 t = (outer.tag == CLASS) ? outer :
duke@1 1482 (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
duke@1 1483 Type.noType;
duke@1 1484 } while (t.tag == CLASS);
duke@1 1485 return null;
duke@1 1486 case ARRAY:
duke@1 1487 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1488 case TYPEVAR:
duke@1 1489 return asSuper(t, sym);
duke@1 1490 case ERROR:
duke@1 1491 return t;
duke@1 1492 default:
duke@1 1493 return null;
duke@1 1494 }
duke@1 1495 }
duke@1 1496 // </editor-fold>
duke@1 1497
duke@1 1498 // <editor-fold defaultstate="collapsed" desc="memberType">
duke@1 1499 /**
duke@1 1500 * The type of given symbol, seen as a member of t.
duke@1 1501 *
duke@1 1502 * @param t a type
duke@1 1503 * @param sym a symbol
duke@1 1504 */
duke@1 1505 public Type memberType(Type t, Symbol sym) {
duke@1 1506 return (sym.flags() & STATIC) != 0
duke@1 1507 ? sym.type
duke@1 1508 : memberType.visit(t, sym);
mcimadamore@341 1509 }
duke@1 1510 // where
duke@1 1511 private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
duke@1 1512
duke@1 1513 public Type visitType(Type t, Symbol sym) {
duke@1 1514 return sym.type;
duke@1 1515 }
duke@1 1516
duke@1 1517 @Override
duke@1 1518 public Type visitWildcardType(WildcardType t, Symbol sym) {
duke@1 1519 return memberType(upperBound(t), sym);
duke@1 1520 }
duke@1 1521
duke@1 1522 @Override
duke@1 1523 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1524 Symbol owner = sym.owner;
duke@1 1525 long flags = sym.flags();
duke@1 1526 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
duke@1 1527 Type base = asOuterSuper(t, owner);
mcimadamore@134 1528 //if t is an intersection type T = CT & I1 & I2 ... & In
mcimadamore@134 1529 //its supertypes CT, I1, ... In might contain wildcards
mcimadamore@134 1530 //so we need to go through capture conversion
mcimadamore@134 1531 base = t.isCompound() ? capture(base) : base;
duke@1 1532 if (base != null) {
duke@1 1533 List<Type> ownerParams = owner.type.allparams();
duke@1 1534 List<Type> baseParams = base.allparams();
duke@1 1535 if (ownerParams.nonEmpty()) {
duke@1 1536 if (baseParams.isEmpty()) {
duke@1 1537 // then base is a raw type
duke@1 1538 return erasure(sym.type);
duke@1 1539 } else {
duke@1 1540 return subst(sym.type, ownerParams, baseParams);
duke@1 1541 }
duke@1 1542 }
duke@1 1543 }
duke@1 1544 }
duke@1 1545 return sym.type;
duke@1 1546 }
duke@1 1547
duke@1 1548 @Override
duke@1 1549 public Type visitTypeVar(TypeVar t, Symbol sym) {
duke@1 1550 return memberType(t.bound, sym);
duke@1 1551 }
duke@1 1552
duke@1 1553 @Override
duke@1 1554 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1555 return t;
duke@1 1556 }
duke@1 1557 };
duke@1 1558 // </editor-fold>
duke@1 1559
duke@1 1560 // <editor-fold defaultstate="collapsed" desc="isAssignable">
duke@1 1561 public boolean isAssignable(Type t, Type s) {
duke@1 1562 return isAssignable(t, s, Warner.noWarnings);
duke@1 1563 }
duke@1 1564
duke@1 1565 /**
duke@1 1566 * Is t assignable to s?<br>
duke@1 1567 * Equivalent to subtype except for constant values and raw
duke@1 1568 * types.<br>
duke@1 1569 * (not defined for Method and ForAll types)
duke@1 1570 */
duke@1 1571 public boolean isAssignable(Type t, Type s, Warner warn) {
duke@1 1572 if (t.tag == ERROR)
duke@1 1573 return true;
duke@1 1574 if (t.tag <= INT && t.constValue() != null) {
duke@1 1575 int value = ((Number)t.constValue()).intValue();
duke@1 1576 switch (s.tag) {
duke@1 1577 case BYTE:
duke@1 1578 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
duke@1 1579 return true;
duke@1 1580 break;
duke@1 1581 case CHAR:
duke@1 1582 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
duke@1 1583 return true;
duke@1 1584 break;
duke@1 1585 case SHORT:
duke@1 1586 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
duke@1 1587 return true;
duke@1 1588 break;
duke@1 1589 case INT:
duke@1 1590 return true;
duke@1 1591 case CLASS:
duke@1 1592 switch (unboxedType(s).tag) {
duke@1 1593 case BYTE:
duke@1 1594 case CHAR:
duke@1 1595 case SHORT:
duke@1 1596 return isAssignable(t, unboxedType(s), warn);
duke@1 1597 }
duke@1 1598 break;
duke@1 1599 }
duke@1 1600 }
duke@1 1601 return isConvertible(t, s, warn);
duke@1 1602 }
duke@1 1603 // </editor-fold>
duke@1 1604
duke@1 1605 // <editor-fold defaultstate="collapsed" desc="erasure">
duke@1 1606 /**
duke@1 1607 * The erasure of t {@code |t|} -- the type that results when all
duke@1 1608 * type parameters in t are deleted.
duke@1 1609 */
duke@1 1610 public Type erasure(Type t) {
mcimadamore@30 1611 return erasure(t, false);
mcimadamore@30 1612 }
mcimadamore@30 1613 //where
mcimadamore@30 1614 private Type erasure(Type t, boolean recurse) {
duke@1 1615 if (t.tag <= lastBaseTag)
duke@1 1616 return t; /* fast special case */
duke@1 1617 else
mcimadamore@30 1618 return erasure.visit(t, recurse);
mcimadamore@341 1619 }
duke@1 1620 // where
mcimadamore@30 1621 private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
mcimadamore@30 1622 public Type visitType(Type t, Boolean recurse) {
duke@1 1623 if (t.tag <= lastBaseTag)
duke@1 1624 return t; /*fast special case*/
duke@1 1625 else
mcimadamore@30 1626 return t.map(recurse ? erasureRecFun : erasureFun);
duke@1 1627 }
duke@1 1628
duke@1 1629 @Override
mcimadamore@30 1630 public Type visitWildcardType(WildcardType t, Boolean recurse) {
mcimadamore@30 1631 return erasure(upperBound(t), recurse);
duke@1 1632 }
duke@1 1633
duke@1 1634 @Override
mcimadamore@30 1635 public Type visitClassType(ClassType t, Boolean recurse) {
mcimadamore@30 1636 Type erased = t.tsym.erasure(Types.this);
mcimadamore@30 1637 if (recurse) {
mcimadamore@30 1638 erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
mcimadamore@30 1639 }
mcimadamore@30 1640 return erased;
duke@1 1641 }
duke@1 1642
duke@1 1643 @Override
mcimadamore@30 1644 public Type visitTypeVar(TypeVar t, Boolean recurse) {
mcimadamore@30 1645 return erasure(t.bound, recurse);
duke@1 1646 }
duke@1 1647
duke@1 1648 @Override
mcimadamore@30 1649 public Type visitErrorType(ErrorType t, Boolean recurse) {
duke@1 1650 return t;
duke@1 1651 }
duke@1 1652 };
mcimadamore@30 1653
duke@1 1654 private Mapping erasureFun = new Mapping ("erasure") {
duke@1 1655 public Type apply(Type t) { return erasure(t); }
duke@1 1656 };
duke@1 1657
mcimadamore@30 1658 private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
mcimadamore@30 1659 public Type apply(Type t) { return erasureRecursive(t); }
mcimadamore@30 1660 };
mcimadamore@30 1661
duke@1 1662 public List<Type> erasure(List<Type> ts) {
duke@1 1663 return Type.map(ts, erasureFun);
duke@1 1664 }
mcimadamore@30 1665
mcimadamore@30 1666 public Type erasureRecursive(Type t) {
mcimadamore@30 1667 return erasure(t, true);
mcimadamore@30 1668 }
mcimadamore@30 1669
mcimadamore@30 1670 public List<Type> erasureRecursive(List<Type> ts) {
mcimadamore@30 1671 return Type.map(ts, erasureRecFun);
mcimadamore@30 1672 }
duke@1 1673 // </editor-fold>
duke@1 1674
duke@1 1675 // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
duke@1 1676 /**
duke@1 1677 * Make a compound type from non-empty list of types
duke@1 1678 *
duke@1 1679 * @param bounds the types from which the compound type is formed
duke@1 1680 * @param supertype is objectType if all bounds are interfaces,
duke@1 1681 * null otherwise.
duke@1 1682 */
duke@1 1683 public Type makeCompoundType(List<Type> bounds,
duke@1 1684 Type supertype) {
duke@1 1685 ClassSymbol bc =
duke@1 1686 new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
duke@1 1687 Type.moreInfo
duke@1 1688 ? names.fromString(bounds.toString())
duke@1 1689 : names.empty,
duke@1 1690 syms.noSymbol);
duke@1 1691 if (bounds.head.tag == TYPEVAR)
duke@1 1692 // error condition, recover
mcimadamore@121 1693 bc.erasure_field = syms.objectType;
mcimadamore@121 1694 else
mcimadamore@121 1695 bc.erasure_field = erasure(bounds.head);
mcimadamore@121 1696 bc.members_field = new Scope(bc);
duke@1 1697 ClassType bt = (ClassType)bc.type;
duke@1 1698 bt.allparams_field = List.nil();
duke@1 1699 if (supertype != null) {
duke@1 1700 bt.supertype_field = supertype;
duke@1 1701 bt.interfaces_field = bounds;
duke@1 1702 } else {
duke@1 1703 bt.supertype_field = bounds.head;
duke@1 1704 bt.interfaces_field = bounds.tail;
duke@1 1705 }
jjg@816 1706 Assert.check(bt.supertype_field.tsym.completer != null
jjg@816 1707 || !bt.supertype_field.isInterface(),
jjg@816 1708 bt.supertype_field);
duke@1 1709 return bt;
duke@1 1710 }
duke@1 1711
duke@1 1712 /**
duke@1 1713 * Same as {@link #makeCompoundType(List,Type)}, except that the
duke@1 1714 * second parameter is computed directly. Note that this might
duke@1 1715 * cause a symbol completion. Hence, this version of
duke@1 1716 * makeCompoundType may not be called during a classfile read.
duke@1 1717 */
duke@1 1718 public Type makeCompoundType(List<Type> bounds) {
duke@1 1719 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
duke@1 1720 supertype(bounds.head) : null;
duke@1 1721 return makeCompoundType(bounds, supertype);
duke@1 1722 }
duke@1 1723
duke@1 1724 /**
duke@1 1725 * A convenience wrapper for {@link #makeCompoundType(List)}; the
duke@1 1726 * arguments are converted to a list and passed to the other
duke@1 1727 * method. Note that this might cause a symbol completion.
duke@1 1728 * Hence, this version of makeCompoundType may not be called
duke@1 1729 * during a classfile read.
duke@1 1730 */
duke@1 1731 public Type makeCompoundType(Type bound1, Type bound2) {
duke@1 1732 return makeCompoundType(List.of(bound1, bound2));
duke@1 1733 }
duke@1 1734 // </editor-fold>
duke@1 1735
duke@1 1736 // <editor-fold defaultstate="collapsed" desc="supertype">
duke@1 1737 public Type supertype(Type t) {
duke@1 1738 return supertype.visit(t);
duke@1 1739 }
duke@1 1740 // where
duke@1 1741 private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
duke@1 1742
duke@1 1743 public Type visitType(Type t, Void ignored) {
duke@1 1744 // A note on wildcards: there is no good way to
duke@1 1745 // determine a supertype for a super bounded wildcard.
duke@1 1746 return null;
duke@1 1747 }
duke@1 1748
duke@1 1749 @Override
duke@1 1750 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1751 if (t.supertype_field == null) {
duke@1 1752 Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
duke@1 1753 // An interface has no superclass; its supertype is Object.
duke@1 1754 if (t.isInterface())
duke@1 1755 supertype = ((ClassType)t.tsym.type).supertype_field;
duke@1 1756 if (t.supertype_field == null) {
duke@1 1757 List<Type> actuals = classBound(t).allparams();
duke@1 1758 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1759 if (t.hasErasedSupertypes()) {
mcimadamore@30 1760 t.supertype_field = erasureRecursive(supertype);
mcimadamore@30 1761 } else if (formals.nonEmpty()) {
duke@1 1762 t.supertype_field = subst(supertype, formals, actuals);
duke@1 1763 }
mcimadamore@30 1764 else {
mcimadamore@30 1765 t.supertype_field = supertype;
mcimadamore@30 1766 }
duke@1 1767 }
duke@1 1768 }
duke@1 1769 return t.supertype_field;
duke@1 1770 }
duke@1 1771
duke@1 1772 /**
duke@1 1773 * The supertype is always a class type. If the type
duke@1 1774 * variable's bounds start with a class type, this is also
duke@1 1775 * the supertype. Otherwise, the supertype is
duke@1 1776 * java.lang.Object.
duke@1 1777 */
duke@1 1778 @Override
duke@1 1779 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1780 if (t.bound.tag == TYPEVAR ||
duke@1 1781 (!t.bound.isCompound() && !t.bound.isInterface())) {
duke@1 1782 return t.bound;
duke@1 1783 } else {
duke@1 1784 return supertype(t.bound);
duke@1 1785 }
duke@1 1786 }
duke@1 1787
duke@1 1788 @Override
duke@1 1789 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 1790 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
duke@1 1791 return arraySuperType();
duke@1 1792 else
duke@1 1793 return new ArrayType(supertype(t.elemtype), t.tsym);
duke@1 1794 }
duke@1 1795
duke@1 1796 @Override
duke@1 1797 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1798 return t;
duke@1 1799 }
duke@1 1800 };
duke@1 1801 // </editor-fold>
duke@1 1802
duke@1 1803 // <editor-fold defaultstate="collapsed" desc="interfaces">
duke@1 1804 /**
duke@1 1805 * Return the interfaces implemented by this class.
duke@1 1806 */
duke@1 1807 public List<Type> interfaces(Type t) {
duke@1 1808 return interfaces.visit(t);
duke@1 1809 }
duke@1 1810 // where
duke@1 1811 private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
duke@1 1812
duke@1 1813 public List<Type> visitType(Type t, Void ignored) {
duke@1 1814 return List.nil();
duke@1 1815 }
duke@1 1816
duke@1 1817 @Override
duke@1 1818 public List<Type> visitClassType(ClassType t, Void ignored) {
duke@1 1819 if (t.interfaces_field == null) {
duke@1 1820 List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
duke@1 1821 if (t.interfaces_field == null) {
duke@1 1822 // If t.interfaces_field is null, then t must
duke@1 1823 // be a parameterized type (not to be confused
duke@1 1824 // with a generic type declaration).
duke@1 1825 // Terminology:
duke@1 1826 // Parameterized type: List<String>
duke@1 1827 // Generic type declaration: class List<E> { ... }
duke@1 1828 // So t corresponds to List<String> and
duke@1 1829 // t.tsym.type corresponds to List<E>.
duke@1 1830 // The reason t must be parameterized type is
duke@1 1831 // that completion will happen as a side
duke@1 1832 // effect of calling
duke@1 1833 // ClassSymbol.getInterfaces. Since
duke@1 1834 // t.interfaces_field is null after
duke@1 1835 // completion, we can assume that t is not the
duke@1 1836 // type of a class/interface declaration.
jjg@816 1837 Assert.check(t != t.tsym.type, t);
duke@1 1838 List<Type> actuals = t.allparams();
duke@1 1839 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1840 if (t.hasErasedSupertypes()) {
mcimadamore@30 1841 t.interfaces_field = erasureRecursive(interfaces);
mcimadamore@30 1842 } else if (formals.nonEmpty()) {
duke@1 1843 t.interfaces_field =
duke@1 1844 upperBounds(subst(interfaces, formals, actuals));
duke@1 1845 }
mcimadamore@30 1846 else {
mcimadamore@30 1847 t.interfaces_field = interfaces;
mcimadamore@30 1848 }
duke@1 1849 }
duke@1 1850 }
duke@1 1851 return t.interfaces_field;
duke@1 1852 }
duke@1 1853
duke@1 1854 @Override
duke@1 1855 public List<Type> visitTypeVar(TypeVar t, Void ignored) {
duke@1 1856 if (t.bound.isCompound())
duke@1 1857 return interfaces(t.bound);
duke@1 1858
duke@1 1859 if (t.bound.isInterface())
duke@1 1860 return List.of(t.bound);
duke@1 1861
duke@1 1862 return List.nil();
duke@1 1863 }
duke@1 1864 };
duke@1 1865 // </editor-fold>
duke@1 1866
duke@1 1867 // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
duke@1 1868 Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
duke@1 1869
duke@1 1870 public boolean isDerivedRaw(Type t) {
duke@1 1871 Boolean result = isDerivedRawCache.get(t);
duke@1 1872 if (result == null) {
duke@1 1873 result = isDerivedRawInternal(t);
duke@1 1874 isDerivedRawCache.put(t, result);
duke@1 1875 }
duke@1 1876 return result;
duke@1 1877 }
duke@1 1878
duke@1 1879 public boolean isDerivedRawInternal(Type t) {
duke@1 1880 if (t.isErroneous())
duke@1 1881 return false;
duke@1 1882 return
duke@1 1883 t.isRaw() ||
duke@1 1884 supertype(t) != null && isDerivedRaw(supertype(t)) ||
duke@1 1885 isDerivedRaw(interfaces(t));
duke@1 1886 }
duke@1 1887
duke@1 1888 public boolean isDerivedRaw(List<Type> ts) {
duke@1 1889 List<Type> l = ts;
duke@1 1890 while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
duke@1 1891 return l.nonEmpty();
duke@1 1892 }
duke@1 1893 // </editor-fold>
duke@1 1894
duke@1 1895 // <editor-fold defaultstate="collapsed" desc="setBounds">
duke@1 1896 /**
duke@1 1897 * Set the bounds field of the given type variable to reflect a
duke@1 1898 * (possibly multiple) list of bounds.
duke@1 1899 * @param t a type variable
duke@1 1900 * @param bounds the bounds, must be nonempty
duke@1 1901 * @param supertype is objectType if all bounds are interfaces,
duke@1 1902 * null otherwise.
duke@1 1903 */
duke@1 1904 public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
duke@1 1905 if (bounds.tail.isEmpty())
duke@1 1906 t.bound = bounds.head;
duke@1 1907 else
duke@1 1908 t.bound = makeCompoundType(bounds, supertype);
duke@1 1909 t.rank_field = -1;
duke@1 1910 }
duke@1 1911
duke@1 1912 /**
duke@1 1913 * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
mcimadamore@563 1914 * third parameter is computed directly, as follows: if all
mcimadamore@563 1915 * all bounds are interface types, the computed supertype is Object,
mcimadamore@563 1916 * otherwise the supertype is simply left null (in this case, the supertype
mcimadamore@563 1917 * is assumed to be the head of the bound list passed as second argument).
mcimadamore@563 1918 * Note that this check might cause a symbol completion. Hence, this version of
duke@1 1919 * setBounds may not be called during a classfile read.
duke@1 1920 */
duke@1 1921 public void setBounds(TypeVar t, List<Type> bounds) {
duke@1 1922 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
mcimadamore@563 1923 syms.objectType : null;
duke@1 1924 setBounds(t, bounds, supertype);
duke@1 1925 t.rank_field = -1;
duke@1 1926 }
duke@1 1927 // </editor-fold>
duke@1 1928
duke@1 1929 // <editor-fold defaultstate="collapsed" desc="getBounds">
duke@1 1930 /**
duke@1 1931 * Return list of bounds of the given type variable.
duke@1 1932 */
duke@1 1933 public List<Type> getBounds(TypeVar t) {
duke@1 1934 if (t.bound.isErroneous() || !t.bound.isCompound())
duke@1 1935 return List.of(t.bound);
duke@1 1936 else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
duke@1 1937 return interfaces(t).prepend(supertype(t));
duke@1 1938 else
duke@1 1939 // No superclass was given in bounds.
duke@1 1940 // In this case, supertype is Object, erasure is first interface.
duke@1 1941 return interfaces(t);
duke@1 1942 }
duke@1 1943 // </editor-fold>
duke@1 1944
duke@1 1945 // <editor-fold defaultstate="collapsed" desc="classBound">
duke@1 1946 /**
duke@1 1947 * If the given type is a (possibly selected) type variable,
duke@1 1948 * return the bounding class of this type, otherwise return the
duke@1 1949 * type itself.
duke@1 1950 */
duke@1 1951 public Type classBound(Type t) {
duke@1 1952 return classBound.visit(t);
duke@1 1953 }
duke@1 1954 // where
duke@1 1955 private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
duke@1 1956
duke@1 1957 public Type visitType(Type t, Void ignored) {
duke@1 1958 return t;
duke@1 1959 }
duke@1 1960
duke@1 1961 @Override
duke@1 1962 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1963 Type outer1 = classBound(t.getEnclosingType());
duke@1 1964 if (outer1 != t.getEnclosingType())
duke@1 1965 return new ClassType(outer1, t.getTypeArguments(), t.tsym);
duke@1 1966 else
duke@1 1967 return t;
duke@1 1968 }
duke@1 1969
duke@1 1970 @Override
duke@1 1971 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1972 return classBound(supertype(t));
duke@1 1973 }
duke@1 1974
duke@1 1975 @Override
duke@1 1976 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1977 return t;
duke@1 1978 }
duke@1 1979 };
duke@1 1980 // </editor-fold>
duke@1 1981
duke@1 1982 // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
duke@1 1983 /**
duke@1 1984 * Returns true iff the first signature is a <em>sub
duke@1 1985 * signature</em> of the other. This is <b>not</b> an equivalence
duke@1 1986 * relation.
duke@1 1987 *
duke@1 1988 * @see "The Java Language Specification, Third Ed. (8.4.2)."
duke@1 1989 * @see #overrideEquivalent(Type t, Type s)
duke@1 1990 * @param t first signature (possibly raw).
duke@1 1991 * @param s second signature (could be subjected to erasure).
duke@1 1992 * @return true if t is a sub signature of s.
duke@1 1993 */
duke@1 1994 public boolean isSubSignature(Type t, Type s) {
duke@1 1995 return hasSameArgs(t, s) || hasSameArgs(t, erasure(s));
duke@1 1996 }
duke@1 1997
duke@1 1998 /**
duke@1 1999 * Returns true iff these signatures are related by <em>override
duke@1 2000 * equivalence</em>. This is the natural extension of
duke@1 2001 * isSubSignature to an equivalence relation.
duke@1 2002 *
duke@1 2003 * @see "The Java Language Specification, Third Ed. (8.4.2)."
duke@1 2004 * @see #isSubSignature(Type t, Type s)
duke@1 2005 * @param t a signature (possible raw, could be subjected to
duke@1 2006 * erasure).
duke@1 2007 * @param s a signature (possible raw, could be subjected to
duke@1 2008 * erasure).
duke@1 2009 * @return true if either argument is a sub signature of the other.
duke@1 2010 */
duke@1 2011 public boolean overrideEquivalent(Type t, Type s) {
duke@1 2012 return hasSameArgs(t, s) ||
duke@1 2013 hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
duke@1 2014 }
duke@1 2015
mcimadamore@673 2016 // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
mcimadamore@673 2017 class ImplementationCache {
mcimadamore@673 2018
mcimadamore@673 2019 private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
mcimadamore@673 2020 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
mcimadamore@673 2021
mcimadamore@673 2022 class Entry {
mcimadamore@673 2023 final MethodSymbol cachedImpl;
mcimadamore@673 2024 final Filter<Symbol> implFilter;
mcimadamore@673 2025 final boolean checkResult;
mcimadamore@877 2026 final int prevMark;
mcimadamore@673 2027
mcimadamore@673 2028 public Entry(MethodSymbol cachedImpl,
mcimadamore@673 2029 Filter<Symbol> scopeFilter,
mcimadamore@877 2030 boolean checkResult,
mcimadamore@877 2031 int prevMark) {
mcimadamore@673 2032 this.cachedImpl = cachedImpl;
mcimadamore@673 2033 this.implFilter = scopeFilter;
mcimadamore@673 2034 this.checkResult = checkResult;
mcimadamore@877 2035 this.prevMark = prevMark;
mcimadamore@673 2036 }
mcimadamore@673 2037
mcimadamore@877 2038 boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
mcimadamore@673 2039 return this.implFilter == scopeFilter &&
mcimadamore@877 2040 this.checkResult == checkResult &&
mcimadamore@877 2041 this.prevMark == mark;
mcimadamore@673 2042 }
mcimadamore@341 2043 }
mcimadamore@673 2044
mcimadamore@858 2045 MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@673 2046 SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
mcimadamore@673 2047 Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
mcimadamore@673 2048 if (cache == null) {
mcimadamore@673 2049 cache = new HashMap<TypeSymbol, Entry>();
mcimadamore@673 2050 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
mcimadamore@673 2051 }
mcimadamore@673 2052 Entry e = cache.get(origin);
mcimadamore@877 2053 CompoundScope members = membersClosure(origin.type);
mcimadamore@673 2054 if (e == null ||
mcimadamore@877 2055 !e.matches(implFilter, checkResult, members.getMark())) {
mcimadamore@877 2056 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
mcimadamore@877 2057 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
mcimadamore@673 2058 return impl;
mcimadamore@673 2059 }
mcimadamore@673 2060 else {
mcimadamore@673 2061 return e.cachedImpl;
mcimadamore@673 2062 }
mcimadamore@673 2063 }
mcimadamore@673 2064
mcimadamore@877 2065 private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@877 2066 for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
mcimadamore@341 2067 while (t.tag == TYPEVAR)
mcimadamore@341 2068 t = t.getUpperBound();
mcimadamore@341 2069 TypeSymbol c = t.tsym;
mcimadamore@673 2070 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
mcimadamore@341 2071 e.scope != null;
mcimadamore@780 2072 e = e.next(implFilter)) {
mcimadamore@673 2073 if (e.sym != null &&
mcimadamore@877 2074 e.sym.overrides(ms, origin, Types.this, checkResult))
mcimadamore@673 2075 return (MethodSymbol)e.sym;
mcimadamore@341 2076 }
mcimadamore@341 2077 }
mcimadamore@673 2078 return null;
mcimadamore@341 2079 }
mcimadamore@341 2080 }
mcimadamore@341 2081
mcimadamore@673 2082 private ImplementationCache implCache = new ImplementationCache();
mcimadamore@673 2083
mcimadamore@858 2084 public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@858 2085 return implCache.get(ms, origin, checkResult, implFilter);
mcimadamore@673 2086 }
mcimadamore@673 2087 // </editor-fold>
mcimadamore@673 2088
mcimadamore@858 2089 // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
mcimadamore@877 2090 public CompoundScope membersClosure(Type site) {
mcimadamore@858 2091 return membersClosure.visit(site);
mcimadamore@858 2092 }
mcimadamore@858 2093
mcimadamore@877 2094 UnaryVisitor<CompoundScope> membersClosure = new UnaryVisitor<CompoundScope>() {
mcimadamore@877 2095
mcimadamore@877 2096 public CompoundScope visitType(Type t, Void s) {
mcimadamore@858 2097 return null;
mcimadamore@858 2098 }
mcimadamore@858 2099
mcimadamore@858 2100 @Override
mcimadamore@877 2101 public CompoundScope visitClassType(ClassType t, Void s) {
mcimadamore@858 2102 ClassSymbol csym = (ClassSymbol)t.tsym;
mcimadamore@858 2103 if (csym.membersClosure == null) {
mcimadamore@877 2104 CompoundScope membersClosure = new CompoundScope(csym);
mcimadamore@858 2105 for (Type i : interfaces(t)) {
mcimadamore@877 2106 membersClosure.addSubScope(visit(i));
mcimadamore@858 2107 }
mcimadamore@877 2108 membersClosure.addSubScope(visit(supertype(t)));
mcimadamore@877 2109 membersClosure.addSubScope(csym.members());
mcimadamore@858 2110 csym.membersClosure = membersClosure;
mcimadamore@858 2111 }
mcimadamore@858 2112 return csym.membersClosure;
mcimadamore@858 2113 }
mcimadamore@858 2114
mcimadamore@858 2115 @Override
mcimadamore@877 2116 public CompoundScope visitTypeVar(TypeVar t, Void s) {
mcimadamore@858 2117 return visit(t.getUpperBound());
mcimadamore@858 2118 }
mcimadamore@858 2119 };
mcimadamore@858 2120 // </editor-fold>
mcimadamore@858 2121
duke@1 2122 /**
duke@1 2123 * Does t have the same arguments as s? It is assumed that both
duke@1 2124 * types are (possibly polymorphic) method types. Monomorphic
duke@1 2125 * method types "have the same arguments", if their argument lists
duke@1 2126 * are equal. Polymorphic method types "have the same arguments",
duke@1 2127 * if they have the same arguments after renaming all type
duke@1 2128 * variables of one to corresponding type variables in the other,
duke@1 2129 * where correspondence is by position in the type parameter list.
duke@1 2130 */
duke@1 2131 public boolean hasSameArgs(Type t, Type s) {
duke@1 2132 return hasSameArgs.visit(t, s);
duke@1 2133 }
duke@1 2134 // where
duke@1 2135 private TypeRelation hasSameArgs = new TypeRelation() {
duke@1 2136
duke@1 2137 public Boolean visitType(Type t, Type s) {
duke@1 2138 throw new AssertionError();
duke@1 2139 }
duke@1 2140
duke@1 2141 @Override
duke@1 2142 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 2143 return s.tag == METHOD
duke@1 2144 && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
duke@1 2145 }
duke@1 2146
duke@1 2147 @Override
duke@1 2148 public Boolean visitForAll(ForAll t, Type s) {
duke@1 2149 if (s.tag != FORALL)
duke@1 2150 return false;
duke@1 2151
duke@1 2152 ForAll forAll = (ForAll)s;
duke@1 2153 return hasSameBounds(t, forAll)
duke@1 2154 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 2155 }
duke@1 2156
duke@1 2157 @Override
duke@1 2158 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 2159 return false;
duke@1 2160 }
duke@1 2161 };
duke@1 2162 // </editor-fold>
duke@1 2163
duke@1 2164 // <editor-fold defaultstate="collapsed" desc="subst">
duke@1 2165 public List<Type> subst(List<Type> ts,
duke@1 2166 List<Type> from,
duke@1 2167 List<Type> to) {
duke@1 2168 return new Subst(from, to).subst(ts);
duke@1 2169 }
duke@1 2170
duke@1 2171 /**
duke@1 2172 * Substitute all occurrences of a type in `from' with the
duke@1 2173 * corresponding type in `to' in 't'. Match lists `from' and `to'
duke@1 2174 * from the right: If lists have different length, discard leading
duke@1 2175 * elements of the longer list.
duke@1 2176 */
duke@1 2177 public Type subst(Type t, List<Type> from, List<Type> to) {
duke@1 2178 return new Subst(from, to).subst(t);
duke@1 2179 }
duke@1 2180
duke@1 2181 private class Subst extends UnaryVisitor<Type> {
duke@1 2182 List<Type> from;
duke@1 2183 List<Type> to;
duke@1 2184
duke@1 2185 public Subst(List<Type> from, List<Type> to) {
duke@1 2186 int fromLength = from.length();
duke@1 2187 int toLength = to.length();
duke@1 2188 while (fromLength > toLength) {
duke@1 2189 fromLength--;
duke@1 2190 from = from.tail;
duke@1 2191 }
duke@1 2192 while (fromLength < toLength) {
duke@1 2193 toLength--;
duke@1 2194 to = to.tail;
duke@1 2195 }
duke@1 2196 this.from = from;
duke@1 2197 this.to = to;
duke@1 2198 }
duke@1 2199
duke@1 2200 Type subst(Type t) {
duke@1 2201 if (from.tail == null)
duke@1 2202 return t;
duke@1 2203 else
duke@1 2204 return visit(t);
mcimadamore@238 2205 }
duke@1 2206
duke@1 2207 List<Type> subst(List<Type> ts) {
duke@1 2208 if (from.tail == null)
duke@1 2209 return ts;
duke@1 2210 boolean wild = false;
duke@1 2211 if (ts.nonEmpty() && from.nonEmpty()) {
duke@1 2212 Type head1 = subst(ts.head);
duke@1 2213 List<Type> tail1 = subst(ts.tail);
duke@1 2214 if (head1 != ts.head || tail1 != ts.tail)
duke@1 2215 return tail1.prepend(head1);
duke@1 2216 }
duke@1 2217 return ts;
duke@1 2218 }
duke@1 2219
duke@1 2220 public Type visitType(Type t, Void ignored) {
duke@1 2221 return t;
duke@1 2222 }
duke@1 2223
duke@1 2224 @Override
duke@1 2225 public Type visitMethodType(MethodType t, Void ignored) {
duke@1 2226 List<Type> argtypes = subst(t.argtypes);
duke@1 2227 Type restype = subst(t.restype);
duke@1 2228 List<Type> thrown = subst(t.thrown);
duke@1 2229 if (argtypes == t.argtypes &&
duke@1 2230 restype == t.restype &&
duke@1 2231 thrown == t.thrown)
duke@1 2232 return t;
duke@1 2233 else
duke@1 2234 return new MethodType(argtypes, restype, thrown, t.tsym);
duke@1 2235 }
duke@1 2236
duke@1 2237 @Override
duke@1 2238 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2239 for (List<Type> from = this.from, to = this.to;
duke@1 2240 from.nonEmpty();
duke@1 2241 from = from.tail, to = to.tail) {
duke@1 2242 if (t == from.head) {
duke@1 2243 return to.head.withTypeVar(t);
duke@1 2244 }
duke@1 2245 }
duke@1 2246 return t;
duke@1 2247 }
duke@1 2248
duke@1 2249 @Override
duke@1 2250 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2251 if (!t.isCompound()) {
duke@1 2252 List<Type> typarams = t.getTypeArguments();
duke@1 2253 List<Type> typarams1 = subst(typarams);
duke@1 2254 Type outer = t.getEnclosingType();
duke@1 2255 Type outer1 = subst(outer);
duke@1 2256 if (typarams1 == typarams && outer1 == outer)
duke@1 2257 return t;
duke@1 2258 else
duke@1 2259 return new ClassType(outer1, typarams1, t.tsym);
duke@1 2260 } else {
duke@1 2261 Type st = subst(supertype(t));
duke@1 2262 List<Type> is = upperBounds(subst(interfaces(t)));
duke@1 2263 if (st == supertype(t) && is == interfaces(t))
duke@1 2264 return t;
duke@1 2265 else
duke@1 2266 return makeCompoundType(is.prepend(st));
duke@1 2267 }
duke@1 2268 }
duke@1 2269
duke@1 2270 @Override
duke@1 2271 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 2272 Type bound = t.type;
duke@1 2273 if (t.kind != BoundKind.UNBOUND)
duke@1 2274 bound = subst(bound);
duke@1 2275 if (bound == t.type) {
duke@1 2276 return t;
duke@1 2277 } else {
duke@1 2278 if (t.isExtendsBound() && bound.isExtendsBound())
duke@1 2279 bound = upperBound(bound);
duke@1 2280 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
duke@1 2281 }
duke@1 2282 }
duke@1 2283
duke@1 2284 @Override
duke@1 2285 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 2286 Type elemtype = subst(t.elemtype);
duke@1 2287 if (elemtype == t.elemtype)
duke@1 2288 return t;
duke@1 2289 else
duke@1 2290 return new ArrayType(upperBound(elemtype), t.tsym);
duke@1 2291 }
duke@1 2292
duke@1 2293 @Override
duke@1 2294 public Type visitForAll(ForAll t, Void ignored) {
mcimadamore@846 2295 if (Type.containsAny(to, t.tvars)) {
mcimadamore@846 2296 //perform alpha-renaming of free-variables in 't'
mcimadamore@846 2297 //if 'to' types contain variables that are free in 't'
mcimadamore@846 2298 List<Type> freevars = newInstances(t.tvars);
mcimadamore@846 2299 t = new ForAll(freevars,
mcimadamore@846 2300 Types.this.subst(t.qtype, t.tvars, freevars));
mcimadamore@846 2301 }
duke@1 2302 List<Type> tvars1 = substBounds(t.tvars, from, to);
duke@1 2303 Type qtype1 = subst(t.qtype);
duke@1 2304 if (tvars1 == t.tvars && qtype1 == t.qtype) {
duke@1 2305 return t;
duke@1 2306 } else if (tvars1 == t.tvars) {
duke@1 2307 return new ForAll(tvars1, qtype1);
duke@1 2308 } else {
duke@1 2309 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
duke@1 2310 }
duke@1 2311 }
duke@1 2312
duke@1 2313 @Override
duke@1 2314 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2315 return t;
duke@1 2316 }
duke@1 2317 }
duke@1 2318
duke@1 2319 public List<Type> substBounds(List<Type> tvars,
duke@1 2320 List<Type> from,
duke@1 2321 List<Type> to) {
duke@1 2322 if (tvars.isEmpty())
duke@1 2323 return tvars;
duke@1 2324 ListBuffer<Type> newBoundsBuf = lb();
duke@1 2325 boolean changed = false;
duke@1 2326 // calculate new bounds
duke@1 2327 for (Type t : tvars) {
duke@1 2328 TypeVar tv = (TypeVar) t;
duke@1 2329 Type bound = subst(tv.bound, from, to);
duke@1 2330 if (bound != tv.bound)
duke@1 2331 changed = true;
duke@1 2332 newBoundsBuf.append(bound);
duke@1 2333 }
duke@1 2334 if (!changed)
duke@1 2335 return tvars;
duke@1 2336 ListBuffer<Type> newTvars = lb();
duke@1 2337 // create new type variables without bounds
duke@1 2338 for (Type t : tvars) {
duke@1 2339 newTvars.append(new TypeVar(t.tsym, null, syms.botType));
duke@1 2340 }
duke@1 2341 // the new bounds should use the new type variables in place
duke@1 2342 // of the old
duke@1 2343 List<Type> newBounds = newBoundsBuf.toList();
duke@1 2344 from = tvars;
duke@1 2345 to = newTvars.toList();
duke@1 2346 for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
duke@1 2347 newBounds.head = subst(newBounds.head, from, to);
duke@1 2348 }
duke@1 2349 newBounds = newBoundsBuf.toList();
duke@1 2350 // set the bounds of new type variables to the new bounds
duke@1 2351 for (Type t : newTvars.toList()) {
duke@1 2352 TypeVar tv = (TypeVar) t;
duke@1 2353 tv.bound = newBounds.head;
duke@1 2354 newBounds = newBounds.tail;
duke@1 2355 }
duke@1 2356 return newTvars.toList();
duke@1 2357 }
duke@1 2358
duke@1 2359 public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
duke@1 2360 Type bound1 = subst(t.bound, from, to);
duke@1 2361 if (bound1 == t.bound)
duke@1 2362 return t;
mcimadamore@212 2363 else {
mcimadamore@212 2364 // create new type variable without bounds
mcimadamore@212 2365 TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
mcimadamore@212 2366 // the new bound should use the new type variable in place
mcimadamore@212 2367 // of the old
mcimadamore@212 2368 tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
mcimadamore@212 2369 return tv;
mcimadamore@212 2370 }
duke@1 2371 }
duke@1 2372 // </editor-fold>
duke@1 2373
duke@1 2374 // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
duke@1 2375 /**
duke@1 2376 * Does t have the same bounds for quantified variables as s?
duke@1 2377 */
duke@1 2378 boolean hasSameBounds(ForAll t, ForAll s) {
duke@1 2379 List<Type> l1 = t.tvars;
duke@1 2380 List<Type> l2 = s.tvars;
duke@1 2381 while (l1.nonEmpty() && l2.nonEmpty() &&
duke@1 2382 isSameType(l1.head.getUpperBound(),
duke@1 2383 subst(l2.head.getUpperBound(),
duke@1 2384 s.tvars,
duke@1 2385 t.tvars))) {
duke@1 2386 l1 = l1.tail;
duke@1 2387 l2 = l2.tail;
duke@1 2388 }
duke@1 2389 return l1.isEmpty() && l2.isEmpty();
duke@1 2390 }
duke@1 2391 // </editor-fold>
duke@1 2392
duke@1 2393 // <editor-fold defaultstate="collapsed" desc="newInstances">
duke@1 2394 /** Create new vector of type variables from list of variables
duke@1 2395 * changing all recursive bounds from old to new list.
duke@1 2396 */
duke@1 2397 public List<Type> newInstances(List<Type> tvars) {
duke@1 2398 List<Type> tvars1 = Type.map(tvars, newInstanceFun);
duke@1 2399 for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
duke@1 2400 TypeVar tv = (TypeVar) l.head;
duke@1 2401 tv.bound = subst(tv.bound, tvars, tvars1);
duke@1 2402 }
duke@1 2403 return tvars1;
duke@1 2404 }
duke@1 2405 static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
duke@1 2406 public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
duke@1 2407 };
duke@1 2408 // </editor-fold>
duke@1 2409
dlsmith@880 2410 public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
dlsmith@880 2411 return original.accept(methodWithParameters, newParams);
dlsmith@880 2412 }
dlsmith@880 2413 // where
dlsmith@880 2414 private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
dlsmith@880 2415 public Type visitType(Type t, List<Type> newParams) {
dlsmith@880 2416 throw new IllegalArgumentException("Not a method type: " + t);
dlsmith@880 2417 }
dlsmith@880 2418 public Type visitMethodType(MethodType t, List<Type> newParams) {
dlsmith@880 2419 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
dlsmith@880 2420 }
dlsmith@880 2421 public Type visitForAll(ForAll t, List<Type> newParams) {
dlsmith@880 2422 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
dlsmith@880 2423 }
dlsmith@880 2424 };
dlsmith@880 2425
dlsmith@880 2426 public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
dlsmith@880 2427 return original.accept(methodWithThrown, newThrown);
dlsmith@880 2428 }
dlsmith@880 2429 // where
dlsmith@880 2430 private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
dlsmith@880 2431 public Type visitType(Type t, List<Type> newThrown) {
dlsmith@880 2432 throw new IllegalArgumentException("Not a method type: " + t);
dlsmith@880 2433 }
dlsmith@880 2434 public Type visitMethodType(MethodType t, List<Type> newThrown) {
dlsmith@880 2435 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
dlsmith@880 2436 }
dlsmith@880 2437 public Type visitForAll(ForAll t, List<Type> newThrown) {
dlsmith@880 2438 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
dlsmith@880 2439 }
dlsmith@880 2440 };
dlsmith@880 2441
jjg@110 2442 // <editor-fold defaultstate="collapsed" desc="createErrorType">
jjg@110 2443 public Type createErrorType(Type originalType) {
jjg@110 2444 return new ErrorType(originalType, syms.errSymbol);
jjg@110 2445 }
jjg@110 2446
jjg@110 2447 public Type createErrorType(ClassSymbol c, Type originalType) {
jjg@110 2448 return new ErrorType(c, originalType);
jjg@110 2449 }
jjg@110 2450
jjg@110 2451 public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
jjg@110 2452 return new ErrorType(name, container, originalType);
jjg@110 2453 }
jjg@110 2454 // </editor-fold>
jjg@110 2455
duke@1 2456 // <editor-fold defaultstate="collapsed" desc="rank">
duke@1 2457 /**
duke@1 2458 * The rank of a class is the length of the longest path between
duke@1 2459 * the class and java.lang.Object in the class inheritance
duke@1 2460 * graph. Undefined for all but reference types.
duke@1 2461 */
duke@1 2462 public int rank(Type t) {
duke@1 2463 switch(t.tag) {
duke@1 2464 case CLASS: {
duke@1 2465 ClassType cls = (ClassType)t;
duke@1 2466 if (cls.rank_field < 0) {
duke@1 2467 Name fullname = cls.tsym.getQualifiedName();
jjg@113 2468 if (fullname == names.java_lang_Object)
duke@1 2469 cls.rank_field = 0;
duke@1 2470 else {
duke@1 2471 int r = rank(supertype(cls));
duke@1 2472 for (List<Type> l = interfaces(cls);
duke@1 2473 l.nonEmpty();
duke@1 2474 l = l.tail) {
duke@1 2475 if (rank(l.head) > r)
duke@1 2476 r = rank(l.head);
duke@1 2477 }
duke@1 2478 cls.rank_field = r + 1;
duke@1 2479 }
duke@1 2480 }
duke@1 2481 return cls.rank_field;
duke@1 2482 }
duke@1 2483 case TYPEVAR: {
duke@1 2484 TypeVar tvar = (TypeVar)t;
duke@1 2485 if (tvar.rank_field < 0) {
duke@1 2486 int r = rank(supertype(tvar));
duke@1 2487 for (List<Type> l = interfaces(tvar);
duke@1 2488 l.nonEmpty();
duke@1 2489 l = l.tail) {
duke@1 2490 if (rank(l.head) > r) r = rank(l.head);
duke@1 2491 }
duke@1 2492 tvar.rank_field = r + 1;
duke@1 2493 }
duke@1 2494 return tvar.rank_field;
duke@1 2495 }
duke@1 2496 case ERROR:
duke@1 2497 return 0;
duke@1 2498 default:
duke@1 2499 throw new AssertionError();
duke@1 2500 }
duke@1 2501 }
duke@1 2502 // </editor-fold>
duke@1 2503
mcimadamore@121 2504 /**
mcimadamore@238 2505 * Helper method for generating a string representation of a given type
mcimadamore@121 2506 * accordingly to a given locale
mcimadamore@121 2507 */
mcimadamore@121 2508 public String toString(Type t, Locale locale) {
mcimadamore@238 2509 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2510 }
mcimadamore@121 2511
mcimadamore@121 2512 /**
mcimadamore@238 2513 * Helper method for generating a string representation of a given type
mcimadamore@121 2514 * accordingly to a given locale
mcimadamore@121 2515 */
mcimadamore@121 2516 public String toString(Symbol t, Locale locale) {
mcimadamore@238 2517 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2518 }
mcimadamore@121 2519
duke@1 2520 // <editor-fold defaultstate="collapsed" desc="toString">
duke@1 2521 /**
duke@1 2522 * This toString is slightly more descriptive than the one on Type.
mcimadamore@121 2523 *
mcimadamore@121 2524 * @deprecated Types.toString(Type t, Locale l) provides better support
mcimadamore@121 2525 * for localization
duke@1 2526 */
mcimadamore@121 2527 @Deprecated
duke@1 2528 public String toString(Type t) {
duke@1 2529 if (t.tag == FORALL) {
duke@1 2530 ForAll forAll = (ForAll)t;
duke@1 2531 return typaramsString(forAll.tvars) + forAll.qtype;
duke@1 2532 }
duke@1 2533 return "" + t;
duke@1 2534 }
duke@1 2535 // where
duke@1 2536 private String typaramsString(List<Type> tvars) {
duke@1 2537 StringBuffer s = new StringBuffer();
duke@1 2538 s.append('<');
duke@1 2539 boolean first = true;
duke@1 2540 for (Type t : tvars) {
duke@1 2541 if (!first) s.append(", ");
duke@1 2542 first = false;
duke@1 2543 appendTyparamString(((TypeVar)t), s);
duke@1 2544 }
duke@1 2545 s.append('>');
duke@1 2546 return s.toString();
duke@1 2547 }
duke@1 2548 private void appendTyparamString(TypeVar t, StringBuffer buf) {
duke@1 2549 buf.append(t);
duke@1 2550 if (t.bound == null ||
duke@1 2551 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
duke@1 2552 return;
duke@1 2553 buf.append(" extends "); // Java syntax; no need for i18n
duke@1 2554 Type bound = t.bound;
duke@1 2555 if (!bound.isCompound()) {
duke@1 2556 buf.append(bound);
duke@1 2557 } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
duke@1 2558 buf.append(supertype(t));
duke@1 2559 for (Type intf : interfaces(t)) {
duke@1 2560 buf.append('&');
duke@1 2561 buf.append(intf);
duke@1 2562 }
duke@1 2563 } else {
duke@1 2564 // No superclass was given in bounds.
duke@1 2565 // In this case, supertype is Object, erasure is first interface.
duke@1 2566 boolean first = true;
duke@1 2567 for (Type intf : interfaces(t)) {
duke@1 2568 if (!first) buf.append('&');
duke@1 2569 first = false;
duke@1 2570 buf.append(intf);
duke@1 2571 }
duke@1 2572 }
duke@1 2573 }
duke@1 2574 // </editor-fold>
duke@1 2575
duke@1 2576 // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
duke@1 2577 /**
duke@1 2578 * A cache for closures.
duke@1 2579 *
duke@1 2580 * <p>A closure is a list of all the supertypes and interfaces of
duke@1 2581 * a class or interface type, ordered by ClassSymbol.precedes
duke@1 2582 * (that is, subclasses come first, arbitrary but fixed
duke@1 2583 * otherwise).
duke@1 2584 */
duke@1 2585 private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
duke@1 2586
duke@1 2587 /**
duke@1 2588 * Returns the closure of a class or interface type.
duke@1 2589 */
duke@1 2590 public List<Type> closure(Type t) {
duke@1 2591 List<Type> cl = closureCache.get(t);
duke@1 2592 if (cl == null) {
duke@1 2593 Type st = supertype(t);
duke@1 2594 if (!t.isCompound()) {
duke@1 2595 if (st.tag == CLASS) {
duke@1 2596 cl = insert(closure(st), t);
duke@1 2597 } else if (st.tag == TYPEVAR) {
duke@1 2598 cl = closure(st).prepend(t);
duke@1 2599 } else {
duke@1 2600 cl = List.of(t);
duke@1 2601 }
duke@1 2602 } else {
duke@1 2603 cl = closure(supertype(t));
duke@1 2604 }
duke@1 2605 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
duke@1 2606 cl = union(cl, closure(l.head));
duke@1 2607 closureCache.put(t, cl);
duke@1 2608 }
duke@1 2609 return cl;
duke@1 2610 }
duke@1 2611
duke@1 2612 /**
duke@1 2613 * Insert a type in a closure
duke@1 2614 */
duke@1 2615 public List<Type> insert(List<Type> cl, Type t) {
duke@1 2616 if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
duke@1 2617 return cl.prepend(t);
duke@1 2618 } else if (cl.head.tsym.precedes(t.tsym, this)) {
duke@1 2619 return insert(cl.tail, t).prepend(cl.head);
duke@1 2620 } else {
duke@1 2621 return cl;
duke@1 2622 }
duke@1 2623 }
duke@1 2624
duke@1 2625 /**
duke@1 2626 * Form the union of two closures
duke@1 2627 */
duke@1 2628 public List<Type> union(List<Type> cl1, List<Type> cl2) {
duke@1 2629 if (cl1.isEmpty()) {
duke@1 2630 return cl2;
duke@1 2631 } else if (cl2.isEmpty()) {
duke@1 2632 return cl1;
duke@1 2633 } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
duke@1 2634 return union(cl1.tail, cl2).prepend(cl1.head);
duke@1 2635 } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
duke@1 2636 return union(cl1, cl2.tail).prepend(cl2.head);
duke@1 2637 } else {
duke@1 2638 return union(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2639 }
duke@1 2640 }
duke@1 2641
duke@1 2642 /**
duke@1 2643 * Intersect two closures
duke@1 2644 */
duke@1 2645 public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
duke@1 2646 if (cl1 == cl2)
duke@1 2647 return cl1;
duke@1 2648 if (cl1.isEmpty() || cl2.isEmpty())
duke@1 2649 return List.nil();
duke@1 2650 if (cl1.head.tsym.precedes(cl2.head.tsym, this))
duke@1 2651 return intersect(cl1.tail, cl2);
duke@1 2652 if (cl2.head.tsym.precedes(cl1.head.tsym, this))
duke@1 2653 return intersect(cl1, cl2.tail);
duke@1 2654 if (isSameType(cl1.head, cl2.head))
duke@1 2655 return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2656 if (cl1.head.tsym == cl2.head.tsym &&
duke@1 2657 cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
duke@1 2658 if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
duke@1 2659 Type merge = merge(cl1.head,cl2.head);
duke@1 2660 return intersect(cl1.tail, cl2.tail).prepend(merge);
duke@1 2661 }
duke@1 2662 if (cl1.head.isRaw() || cl2.head.isRaw())
duke@1 2663 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
duke@1 2664 }
duke@1 2665 return intersect(cl1.tail, cl2.tail);
duke@1 2666 }
duke@1 2667 // where
duke@1 2668 class TypePair {
duke@1 2669 final Type t1;
duke@1 2670 final Type t2;
duke@1 2671 TypePair(Type t1, Type t2) {
duke@1 2672 this.t1 = t1;
duke@1 2673 this.t2 = t2;
duke@1 2674 }
duke@1 2675 @Override
duke@1 2676 public int hashCode() {
jjg@507 2677 return 127 * Types.hashCode(t1) + Types.hashCode(t2);
duke@1 2678 }
duke@1 2679 @Override
duke@1 2680 public boolean equals(Object obj) {
duke@1 2681 if (!(obj instanceof TypePair))
duke@1 2682 return false;
duke@1 2683 TypePair typePair = (TypePair)obj;
duke@1 2684 return isSameType(t1, typePair.t1)
duke@1 2685 && isSameType(t2, typePair.t2);
duke@1 2686 }
duke@1 2687 }
duke@1 2688 Set<TypePair> mergeCache = new HashSet<TypePair>();
duke@1 2689 private Type merge(Type c1, Type c2) {
duke@1 2690 ClassType class1 = (ClassType) c1;
duke@1 2691 List<Type> act1 = class1.getTypeArguments();
duke@1 2692 ClassType class2 = (ClassType) c2;
duke@1 2693 List<Type> act2 = class2.getTypeArguments();
duke@1 2694 ListBuffer<Type> merged = new ListBuffer<Type>();
duke@1 2695 List<Type> typarams = class1.tsym.type.getTypeArguments();
duke@1 2696
duke@1 2697 while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
duke@1 2698 if (containsType(act1.head, act2.head)) {
duke@1 2699 merged.append(act1.head);
duke@1 2700 } else if (containsType(act2.head, act1.head)) {
duke@1 2701 merged.append(act2.head);
duke@1 2702 } else {
duke@1 2703 TypePair pair = new TypePair(c1, c2);
duke@1 2704 Type m;
duke@1 2705 if (mergeCache.add(pair)) {
duke@1 2706 m = new WildcardType(lub(upperBound(act1.head),
duke@1 2707 upperBound(act2.head)),
duke@1 2708 BoundKind.EXTENDS,
duke@1 2709 syms.boundClass);
duke@1 2710 mergeCache.remove(pair);
duke@1 2711 } else {
duke@1 2712 m = new WildcardType(syms.objectType,
duke@1 2713 BoundKind.UNBOUND,
duke@1 2714 syms.boundClass);
duke@1 2715 }
duke@1 2716 merged.append(m.withTypeVar(typarams.head));
duke@1 2717 }
duke@1 2718 act1 = act1.tail;
duke@1 2719 act2 = act2.tail;
duke@1 2720 typarams = typarams.tail;
duke@1 2721 }
jjg@816 2722 Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
duke@1 2723 return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
duke@1 2724 }
duke@1 2725
duke@1 2726 /**
duke@1 2727 * Return the minimum type of a closure, a compound type if no
duke@1 2728 * unique minimum exists.
duke@1 2729 */
duke@1 2730 private Type compoundMin(List<Type> cl) {
duke@1 2731 if (cl.isEmpty()) return syms.objectType;
duke@1 2732 List<Type> compound = closureMin(cl);
duke@1 2733 if (compound.isEmpty())
duke@1 2734 return null;
duke@1 2735 else if (compound.tail.isEmpty())
duke@1 2736 return compound.head;
duke@1 2737 else
duke@1 2738 return makeCompoundType(compound);
duke@1 2739 }
duke@1 2740
duke@1 2741 /**
duke@1 2742 * Return the minimum types of a closure, suitable for computing
duke@1 2743 * compoundMin or glb.
duke@1 2744 */
duke@1 2745 private List<Type> closureMin(List<Type> cl) {
duke@1 2746 ListBuffer<Type> classes = lb();
duke@1 2747 ListBuffer<Type> interfaces = lb();
duke@1 2748 while (!cl.isEmpty()) {
duke@1 2749 Type current = cl.head;
duke@1 2750 if (current.isInterface())
duke@1 2751 interfaces.append(current);
duke@1 2752 else
duke@1 2753 classes.append(current);
duke@1 2754 ListBuffer<Type> candidates = lb();
duke@1 2755 for (Type t : cl.tail) {
duke@1 2756 if (!isSubtypeNoCapture(current, t))
duke@1 2757 candidates.append(t);
duke@1 2758 }
duke@1 2759 cl = candidates.toList();
duke@1 2760 }
duke@1 2761 return classes.appendList(interfaces).toList();
duke@1 2762 }
duke@1 2763
duke@1 2764 /**
duke@1 2765 * Return the least upper bound of pair of types. if the lub does
duke@1 2766 * not exist return null.
duke@1 2767 */
duke@1 2768 public Type lub(Type t1, Type t2) {
duke@1 2769 return lub(List.of(t1, t2));
duke@1 2770 }
duke@1 2771
duke@1 2772 /**
duke@1 2773 * Return the least upper bound (lub) of set of types. If the lub
duke@1 2774 * does not exist return the type of null (bottom).
duke@1 2775 */
duke@1 2776 public Type lub(List<Type> ts) {
duke@1 2777 final int ARRAY_BOUND = 1;
duke@1 2778 final int CLASS_BOUND = 2;
duke@1 2779 int boundkind = 0;
duke@1 2780 for (Type t : ts) {
duke@1 2781 switch (t.tag) {
duke@1 2782 case CLASS:
duke@1 2783 boundkind |= CLASS_BOUND;
duke@1 2784 break;
duke@1 2785 case ARRAY:
duke@1 2786 boundkind |= ARRAY_BOUND;
duke@1 2787 break;
duke@1 2788 case TYPEVAR:
duke@1 2789 do {
duke@1 2790 t = t.getUpperBound();
duke@1 2791 } while (t.tag == TYPEVAR);
duke@1 2792 if (t.tag == ARRAY) {
duke@1 2793 boundkind |= ARRAY_BOUND;
duke@1 2794 } else {
duke@1 2795 boundkind |= CLASS_BOUND;
duke@1 2796 }
duke@1 2797 break;
duke@1 2798 default:
duke@1 2799 if (t.isPrimitive())
mcimadamore@5 2800 return syms.errType;
duke@1 2801 }
duke@1 2802 }
duke@1 2803 switch (boundkind) {
duke@1 2804 case 0:
duke@1 2805 return syms.botType;
duke@1 2806
duke@1 2807 case ARRAY_BOUND:
duke@1 2808 // calculate lub(A[], B[])
duke@1 2809 List<Type> elements = Type.map(ts, elemTypeFun);
duke@1 2810 for (Type t : elements) {
duke@1 2811 if (t.isPrimitive()) {
duke@1 2812 // if a primitive type is found, then return
duke@1 2813 // arraySuperType unless all the types are the
duke@1 2814 // same
duke@1 2815 Type first = ts.head;
duke@1 2816 for (Type s : ts.tail) {
duke@1 2817 if (!isSameType(first, s)) {
duke@1 2818 // lub(int[], B[]) is Cloneable & Serializable
duke@1 2819 return arraySuperType();
duke@1 2820 }
duke@1 2821 }
duke@1 2822 // all the array types are the same, return one
duke@1 2823 // lub(int[], int[]) is int[]
duke@1 2824 return first;
duke@1 2825 }
duke@1 2826 }
duke@1 2827 // lub(A[], B[]) is lub(A, B)[]
duke@1 2828 return new ArrayType(lub(elements), syms.arrayClass);
duke@1 2829
duke@1 2830 case CLASS_BOUND:
duke@1 2831 // calculate lub(A, B)
duke@1 2832 while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
duke@1 2833 ts = ts.tail;
jjg@816 2834 Assert.check(!ts.isEmpty());
duke@1 2835 List<Type> cl = closure(ts.head);
duke@1 2836 for (Type t : ts.tail) {
duke@1 2837 if (t.tag == CLASS || t.tag == TYPEVAR)
duke@1 2838 cl = intersect(cl, closure(t));
duke@1 2839 }
duke@1 2840 return compoundMin(cl);
duke@1 2841
duke@1 2842 default:
duke@1 2843 // calculate lub(A, B[])
duke@1 2844 List<Type> classes = List.of(arraySuperType());
duke@1 2845 for (Type t : ts) {
duke@1 2846 if (t.tag != ARRAY) // Filter out any arrays
duke@1 2847 classes = classes.prepend(t);
duke@1 2848 }
duke@1 2849 // lub(A, B[]) is lub(A, arraySuperType)
duke@1 2850 return lub(classes);
duke@1 2851 }
duke@1 2852 }
duke@1 2853 // where
duke@1 2854 private Type arraySuperType = null;
duke@1 2855 private Type arraySuperType() {
duke@1 2856 // initialized lazily to avoid problems during compiler startup
duke@1 2857 if (arraySuperType == null) {
duke@1 2858 synchronized (this) {
duke@1 2859 if (arraySuperType == null) {
duke@1 2860 // JLS 10.8: all arrays implement Cloneable and Serializable.
duke@1 2861 arraySuperType = makeCompoundType(List.of(syms.serializableType,
duke@1 2862 syms.cloneableType),
duke@1 2863 syms.objectType);
duke@1 2864 }
duke@1 2865 }
duke@1 2866 }
duke@1 2867 return arraySuperType;
duke@1 2868 }
duke@1 2869 // </editor-fold>
duke@1 2870
duke@1 2871 // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
mcimadamore@210 2872 public Type glb(List<Type> ts) {
mcimadamore@210 2873 Type t1 = ts.head;
mcimadamore@210 2874 for (Type t2 : ts.tail) {
mcimadamore@210 2875 if (t1.isErroneous())
mcimadamore@210 2876 return t1;
mcimadamore@210 2877 t1 = glb(t1, t2);
mcimadamore@210 2878 }
mcimadamore@210 2879 return t1;
mcimadamore@210 2880 }
mcimadamore@210 2881 //where
duke@1 2882 public Type glb(Type t, Type s) {
duke@1 2883 if (s == null)
duke@1 2884 return t;
mcimadamore@753 2885 else if (t.isPrimitive() || s.isPrimitive())
mcimadamore@753 2886 return syms.errType;
duke@1 2887 else if (isSubtypeNoCapture(t, s))
duke@1 2888 return t;
duke@1 2889 else if (isSubtypeNoCapture(s, t))
duke@1 2890 return s;
duke@1 2891
duke@1 2892 List<Type> closure = union(closure(t), closure(s));
duke@1 2893 List<Type> bounds = closureMin(closure);
duke@1 2894
duke@1 2895 if (bounds.isEmpty()) { // length == 0
duke@1 2896 return syms.objectType;
duke@1 2897 } else if (bounds.tail.isEmpty()) { // length == 1
duke@1 2898 return bounds.head;
duke@1 2899 } else { // length > 1
duke@1 2900 int classCount = 0;
duke@1 2901 for (Type bound : bounds)
duke@1 2902 if (!bound.isInterface())
duke@1 2903 classCount++;
duke@1 2904 if (classCount > 1)
jjg@110 2905 return createErrorType(t);
duke@1 2906 }
duke@1 2907 return makeCompoundType(bounds);
duke@1 2908 }
duke@1 2909 // </editor-fold>
duke@1 2910
duke@1 2911 // <editor-fold defaultstate="collapsed" desc="hashCode">
duke@1 2912 /**
duke@1 2913 * Compute a hash code on a type.
duke@1 2914 */
duke@1 2915 public static int hashCode(Type t) {
duke@1 2916 return hashCode.visit(t);
duke@1 2917 }
duke@1 2918 // where
duke@1 2919 private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
duke@1 2920
duke@1 2921 public Integer visitType(Type t, Void ignored) {
duke@1 2922 return t.tag;
duke@1 2923 }
duke@1 2924
duke@1 2925 @Override
duke@1 2926 public Integer visitClassType(ClassType t, Void ignored) {
duke@1 2927 int result = visit(t.getEnclosingType());
duke@1 2928 result *= 127;
duke@1 2929 result += t.tsym.flatName().hashCode();
duke@1 2930 for (Type s : t.getTypeArguments()) {
duke@1 2931 result *= 127;
duke@1 2932 result += visit(s);
duke@1 2933 }
duke@1 2934 return result;
duke@1 2935 }
duke@1 2936
duke@1 2937 @Override
duke@1 2938 public Integer visitWildcardType(WildcardType t, Void ignored) {
duke@1 2939 int result = t.kind.hashCode();
duke@1 2940 if (t.type != null) {
duke@1 2941 result *= 127;
duke@1 2942 result += visit(t.type);
duke@1 2943 }
duke@1 2944 return result;
duke@1 2945 }
duke@1 2946
duke@1 2947 @Override
duke@1 2948 public Integer visitArrayType(ArrayType t, Void ignored) {
duke@1 2949 return visit(t.elemtype) + 12;
duke@1 2950 }
duke@1 2951
duke@1 2952 @Override
duke@1 2953 public Integer visitTypeVar(TypeVar t, Void ignored) {
duke@1 2954 return System.identityHashCode(t.tsym);
duke@1 2955 }
duke@1 2956
duke@1 2957 @Override
duke@1 2958 public Integer visitUndetVar(UndetVar t, Void ignored) {
duke@1 2959 return System.identityHashCode(t);
duke@1 2960 }
duke@1 2961
duke@1 2962 @Override
duke@1 2963 public Integer visitErrorType(ErrorType t, Void ignored) {
duke@1 2964 return 0;
duke@1 2965 }
duke@1 2966 };
duke@1 2967 // </editor-fold>
duke@1 2968
duke@1 2969 // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
duke@1 2970 /**
duke@1 2971 * Does t have a result that is a subtype of the result type of s,
duke@1 2972 * suitable for covariant returns? It is assumed that both types
duke@1 2973 * are (possibly polymorphic) method types. Monomorphic method
duke@1 2974 * types are handled in the obvious way. Polymorphic method types
duke@1 2975 * require renaming all type variables of one to corresponding
duke@1 2976 * type variables in the other, where correspondence is by
duke@1 2977 * position in the type parameter list. */
duke@1 2978 public boolean resultSubtype(Type t, Type s, Warner warner) {
duke@1 2979 List<Type> tvars = t.getTypeArguments();
duke@1 2980 List<Type> svars = s.getTypeArguments();
duke@1 2981 Type tres = t.getReturnType();
duke@1 2982 Type sres = subst(s.getReturnType(), svars, tvars);
duke@1 2983 return covariantReturnType(tres, sres, warner);
duke@1 2984 }
duke@1 2985
duke@1 2986 /**
duke@1 2987 * Return-Type-Substitutable.
duke@1 2988 * @see <a href="http://java.sun.com/docs/books/jls/">The Java
duke@1 2989 * Language Specification, Third Ed. (8.4.5)</a>
duke@1 2990 */
duke@1 2991 public boolean returnTypeSubstitutable(Type r1, Type r2) {
duke@1 2992 if (hasSameArgs(r1, r2))
tbell@202 2993 return resultSubtype(r1, r2, Warner.noWarnings);
duke@1 2994 else
duke@1 2995 return covariantReturnType(r1.getReturnType(),
tbell@202 2996 erasure(r2.getReturnType()),
tbell@202 2997 Warner.noWarnings);
tbell@202 2998 }
tbell@202 2999
tbell@202 3000 public boolean returnTypeSubstitutable(Type r1,
tbell@202 3001 Type r2, Type r2res,
tbell@202 3002 Warner warner) {
tbell@202 3003 if (isSameType(r1.getReturnType(), r2res))
tbell@202 3004 return true;
tbell@202 3005 if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
tbell@202 3006 return false;
tbell@202 3007
tbell@202 3008 if (hasSameArgs(r1, r2))
tbell@202 3009 return covariantReturnType(r1.getReturnType(), r2res, warner);
tbell@202 3010 if (!source.allowCovariantReturns())
tbell@202 3011 return false;
tbell@202 3012 if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
tbell@202 3013 return true;
tbell@202 3014 if (!isSubtype(r1.getReturnType(), erasure(r2res)))
tbell@202 3015 return false;
mcimadamore@795 3016 warner.warn(LintCategory.UNCHECKED);
tbell@202 3017 return true;
duke@1 3018 }
duke@1 3019
duke@1 3020 /**
duke@1 3021 * Is t an appropriate return type in an overrider for a
duke@1 3022 * method that returns s?
duke@1 3023 */
duke@1 3024 public boolean covariantReturnType(Type t, Type s, Warner warner) {
tbell@202 3025 return
tbell@202 3026 isSameType(t, s) ||
tbell@202 3027 source.allowCovariantReturns() &&
duke@1 3028 !t.isPrimitive() &&
tbell@202 3029 !s.isPrimitive() &&
tbell@202 3030 isAssignable(t, s, warner);
duke@1 3031 }
duke@1 3032 // </editor-fold>
duke@1 3033
duke@1 3034 // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
duke@1 3035 /**
duke@1 3036 * Return the class that boxes the given primitive.
duke@1 3037 */
duke@1 3038 public ClassSymbol boxedClass(Type t) {
duke@1 3039 return reader.enterClass(syms.boxedName[t.tag]);
duke@1 3040 }
duke@1 3041
duke@1 3042 /**
mcimadamore@753 3043 * Return the boxed type if 't' is primitive, otherwise return 't' itself.
mcimadamore@753 3044 */
mcimadamore@753 3045 public Type boxedTypeOrType(Type t) {
mcimadamore@753 3046 return t.isPrimitive() ?
mcimadamore@753 3047 boxedClass(t).type :
mcimadamore@753 3048 t;
mcimadamore@753 3049 }
mcimadamore@753 3050
mcimadamore@753 3051 /**
duke@1 3052 * Return the primitive type corresponding to a boxed type.
duke@1 3053 */
duke@1 3054 public Type unboxedType(Type t) {
duke@1 3055 if (allowBoxing) {
duke@1 3056 for (int i=0; i<syms.boxedName.length; i++) {
duke@1 3057 Name box = syms.boxedName[i];
duke@1 3058 if (box != null &&
duke@1 3059 asSuper(t, reader.enterClass(box)) != null)
duke@1 3060 return syms.typeOfTag[i];
duke@1 3061 }
duke@1 3062 }
duke@1 3063 return Type.noType;
duke@1 3064 }
duke@1 3065 // </editor-fold>
duke@1 3066
duke@1 3067 // <editor-fold defaultstate="collapsed" desc="Capture conversion">
duke@1 3068 /*
duke@1 3069 * JLS 3rd Ed. 5.1.10 Capture Conversion:
duke@1 3070 *
duke@1 3071 * Let G name a generic type declaration with n formal type
duke@1 3072 * parameters A1 ... An with corresponding bounds U1 ... Un. There
duke@1 3073 * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
duke@1 3074 * where, for 1 <= i <= n:
duke@1 3075 *
duke@1 3076 * + If Ti is a wildcard type argument (4.5.1) of the form ? then
duke@1 3077 * Si is a fresh type variable whose upper bound is
duke@1 3078 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
duke@1 3079 * type.
duke@1 3080 *
duke@1 3081 * + If Ti is a wildcard type argument of the form ? extends Bi,
duke@1 3082 * then Si is a fresh type variable whose upper bound is
duke@1 3083 * glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
duke@1 3084 * the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
duke@1 3085 * a compile-time error if for any two classes (not interfaces)
duke@1 3086 * Vi and Vj,Vi is not a subclass of Vj or vice versa.
duke@1 3087 *
duke@1 3088 * + If Ti is a wildcard type argument of the form ? super Bi,
duke@1 3089 * then Si is a fresh type variable whose upper bound is
duke@1 3090 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
duke@1 3091 *
duke@1 3092 * + Otherwise, Si = Ti.
duke@1 3093 *
duke@1 3094 * Capture conversion on any type other than a parameterized type
duke@1 3095 * (4.5) acts as an identity conversion (5.1.1). Capture
duke@1 3096 * conversions never require a special action at run time and
duke@1 3097 * therefore never throw an exception at run time.
duke@1 3098 *
duke@1 3099 * Capture conversion is not applied recursively.
duke@1 3100 */
duke@1 3101 /**
duke@1 3102 * Capture conversion as specified by JLS 3rd Ed.
duke@1 3103 */
mcimadamore@299 3104
mcimadamore@299 3105 public List<Type> capture(List<Type> ts) {
mcimadamore@299 3106 List<Type> buf = List.nil();
mcimadamore@299 3107 for (Type t : ts) {
mcimadamore@299 3108 buf = buf.prepend(capture(t));
mcimadamore@299 3109 }
mcimadamore@299 3110 return buf.reverse();
mcimadamore@299 3111 }
duke@1 3112 public Type capture(Type t) {
duke@1 3113 if (t.tag != CLASS)
duke@1 3114 return t;
mcimadamore@637 3115 if (t.getEnclosingType() != Type.noType) {
mcimadamore@637 3116 Type capturedEncl = capture(t.getEnclosingType());
mcimadamore@637 3117 if (capturedEncl != t.getEnclosingType()) {
mcimadamore@637 3118 Type type1 = memberType(capturedEncl, t.tsym);
mcimadamore@637 3119 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
mcimadamore@637 3120 }
mcimadamore@637 3121 }
duke@1 3122 ClassType cls = (ClassType)t;
duke@1 3123 if (cls.isRaw() || !cls.isParameterized())
duke@1 3124 return cls;
duke@1 3125
duke@1 3126 ClassType G = (ClassType)cls.asElement().asType();
duke@1 3127 List<Type> A = G.getTypeArguments();
duke@1 3128 List<Type> T = cls.getTypeArguments();
duke@1 3129 List<Type> S = freshTypeVariables(T);
duke@1 3130
duke@1 3131 List<Type> currentA = A;
duke@1 3132 List<Type> currentT = T;
duke@1 3133 List<Type> currentS = S;
duke@1 3134 boolean captured = false;
duke@1 3135 while (!currentA.isEmpty() &&
duke@1 3136 !currentT.isEmpty() &&
duke@1 3137 !currentS.isEmpty()) {
duke@1 3138 if (currentS.head != currentT.head) {
duke@1 3139 captured = true;
duke@1 3140 WildcardType Ti = (WildcardType)currentT.head;
duke@1 3141 Type Ui = currentA.head.getUpperBound();
duke@1 3142 CapturedType Si = (CapturedType)currentS.head;
duke@1 3143 if (Ui == null)
duke@1 3144 Ui = syms.objectType;
duke@1 3145 switch (Ti.kind) {
duke@1 3146 case UNBOUND:
duke@1 3147 Si.bound = subst(Ui, A, S);
duke@1 3148 Si.lower = syms.botType;
duke@1 3149 break;
duke@1 3150 case EXTENDS:
duke@1 3151 Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
duke@1 3152 Si.lower = syms.botType;
duke@1 3153 break;
duke@1 3154 case SUPER:
duke@1 3155 Si.bound = subst(Ui, A, S);
duke@1 3156 Si.lower = Ti.getSuperBound();
duke@1 3157 break;
duke@1 3158 }
duke@1 3159 if (Si.bound == Si.lower)
duke@1 3160 currentS.head = Si.bound;
duke@1 3161 }
duke@1 3162 currentA = currentA.tail;
duke@1 3163 currentT = currentT.tail;
duke@1 3164 currentS = currentS.tail;
duke@1 3165 }
duke@1 3166 if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
duke@1 3167 return erasure(t); // some "rare" type involved
duke@1 3168
duke@1 3169 if (captured)
duke@1 3170 return new ClassType(cls.getEnclosingType(), S, cls.tsym);
duke@1 3171 else
duke@1 3172 return t;
duke@1 3173 }
duke@1 3174 // where
mcimadamore@238 3175 public List<Type> freshTypeVariables(List<Type> types) {
duke@1 3176 ListBuffer<Type> result = lb();
duke@1 3177 for (Type t : types) {
duke@1 3178 if (t.tag == WILDCARD) {
duke@1 3179 Type bound = ((WildcardType)t).getExtendsBound();
duke@1 3180 if (bound == null)
duke@1 3181 bound = syms.objectType;
duke@1 3182 result.append(new CapturedType(capturedName,
duke@1 3183 syms.noSymbol,
duke@1 3184 bound,
duke@1 3185 syms.botType,
duke@1 3186 (WildcardType)t));
duke@1 3187 } else {
duke@1 3188 result.append(t);
duke@1 3189 }
duke@1 3190 }
duke@1 3191 return result.toList();
duke@1 3192 }
duke@1 3193 // </editor-fold>
duke@1 3194
duke@1 3195 // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
duke@1 3196 private List<Type> upperBounds(List<Type> ss) {
duke@1 3197 if (ss.isEmpty()) return ss;
duke@1 3198 Type head = upperBound(ss.head);
duke@1 3199 List<Type> tail = upperBounds(ss.tail);
duke@1 3200 if (head != ss.head || tail != ss.tail)
duke@1 3201 return tail.prepend(head);
duke@1 3202 else
duke@1 3203 return ss;
duke@1 3204 }
duke@1 3205
duke@1 3206 private boolean sideCast(Type from, Type to, Warner warn) {
duke@1 3207 // We are casting from type $from$ to type $to$, which are
duke@1 3208 // non-final unrelated types. This method
duke@1 3209 // tries to reject a cast by transferring type parameters
duke@1 3210 // from $to$ to $from$ by common superinterfaces.
duke@1 3211 boolean reverse = false;
duke@1 3212 Type target = to;
duke@1 3213 if ((to.tsym.flags() & INTERFACE) == 0) {
jjg@816 3214 Assert.check((from.tsym.flags() & INTERFACE) != 0);
duke@1 3215 reverse = true;
duke@1 3216 to = from;
duke@1 3217 from = target;
duke@1 3218 }
duke@1 3219 List<Type> commonSupers = superClosure(to, erasure(from));
duke@1 3220 boolean giveWarning = commonSupers.isEmpty();
duke@1 3221 // The arguments to the supers could be unified here to
duke@1 3222 // get a more accurate analysis
duke@1 3223 while (commonSupers.nonEmpty()) {
duke@1 3224 Type t1 = asSuper(from, commonSupers.head.tsym);
duke@1 3225 Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
duke@1 3226 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3227 return false;
duke@1 3228 giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
duke@1 3229 commonSupers = commonSupers.tail;
duke@1 3230 }
mcimadamore@187 3231 if (giveWarning && !isReifiable(reverse ? from : to))
mcimadamore@795 3232 warn.warn(LintCategory.UNCHECKED);
duke@1 3233 if (!source.allowCovariantReturns())
duke@1 3234 // reject if there is a common method signature with
duke@1 3235 // incompatible return types.
duke@1 3236 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3237 return true;
duke@1 3238 }
duke@1 3239
duke@1 3240 private boolean sideCastFinal(Type from, Type to, Warner warn) {
duke@1 3241 // We are casting from type $from$ to type $to$, which are
duke@1 3242 // unrelated types one of which is final and the other of
duke@1 3243 // which is an interface. This method
duke@1 3244 // tries to reject a cast by transferring type parameters
duke@1 3245 // from the final class to the interface.
duke@1 3246 boolean reverse = false;
duke@1 3247 Type target = to;
duke@1 3248 if ((to.tsym.flags() & INTERFACE) == 0) {
jjg@816 3249 Assert.check((from.tsym.flags() & INTERFACE) != 0);
duke@1 3250 reverse = true;
duke@1 3251 to = from;
duke@1 3252 from = target;
duke@1 3253 }
jjg@816 3254 Assert.check((from.tsym.flags() & FINAL) != 0);
duke@1 3255 Type t1 = asSuper(from, to.tsym);
duke@1 3256 if (t1 == null) return false;
duke@1 3257 Type t2 = to;
duke@1 3258 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3259 return false;
duke@1 3260 if (!source.allowCovariantReturns())
duke@1 3261 // reject if there is a common method signature with
duke@1 3262 // incompatible return types.
duke@1 3263 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3264 if (!isReifiable(target) &&
duke@1 3265 (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
mcimadamore@795 3266 warn.warn(LintCategory.UNCHECKED);
duke@1 3267 return true;
duke@1 3268 }
duke@1 3269
duke@1 3270 private boolean giveWarning(Type from, Type to) {
mcimadamore@235 3271 Type subFrom = asSub(from, to.tsym);
mcimadamore@235 3272 return to.isParameterized() &&
mcimadamore@235 3273 (!(isUnbounded(to) ||
mcimadamore@235 3274 isSubtype(from, to) ||
mcimadamore@736 3275 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
duke@1 3276 }
duke@1 3277
duke@1 3278 private List<Type> superClosure(Type t, Type s) {
duke@1 3279 List<Type> cl = List.nil();
duke@1 3280 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 3281 if (isSubtype(s, erasure(l.head))) {
duke@1 3282 cl = insert(cl, l.head);
duke@1 3283 } else {
duke@1 3284 cl = union(cl, superClosure(l.head, s));
duke@1 3285 }
duke@1 3286 }
duke@1 3287 return cl;
duke@1 3288 }
duke@1 3289
duke@1 3290 private boolean containsTypeEquivalent(Type t, Type s) {
duke@1 3291 return
duke@1 3292 isSameType(t, s) || // shortcut
duke@1 3293 containsType(t, s) && containsType(s, t);
duke@1 3294 }
duke@1 3295
mcimadamore@138 3296 // <editor-fold defaultstate="collapsed" desc="adapt">
duke@1 3297 /**
duke@1 3298 * Adapt a type by computing a substitution which maps a source
duke@1 3299 * type to a target type.
duke@1 3300 *
duke@1 3301 * @param source the source type
duke@1 3302 * @param target the target type
duke@1 3303 * @param from the type variables of the computed substitution
duke@1 3304 * @param to the types of the computed substitution.
duke@1 3305 */
duke@1 3306 public void adapt(Type source,
duke@1 3307 Type target,
duke@1 3308 ListBuffer<Type> from,
duke@1 3309 ListBuffer<Type> to) throws AdaptFailure {
mcimadamore@138 3310 new Adapter(from, to).adapt(source, target);
mcimadamore@138 3311 }
mcimadamore@138 3312
mcimadamore@138 3313 class Adapter extends SimpleVisitor<Void, Type> {
mcimadamore@138 3314
mcimadamore@138 3315 ListBuffer<Type> from;
mcimadamore@138 3316 ListBuffer<Type> to;
mcimadamore@138 3317 Map<Symbol,Type> mapping;
mcimadamore@138 3318
mcimadamore@138 3319 Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
mcimadamore@138 3320 this.from = from;
mcimadamore@138 3321 this.to = to;
mcimadamore@138 3322 mapping = new HashMap<Symbol,Type>();
duke@1 3323 }
mcimadamore@138 3324
mcimadamore@138 3325 public void adapt(Type source, Type target) throws AdaptFailure {
mcimadamore@138 3326 visit(source, target);
mcimadamore@138 3327 List<Type> fromList = from.toList();
mcimadamore@138 3328 List<Type> toList = to.toList();
mcimadamore@138 3329 while (!fromList.isEmpty()) {
mcimadamore@138 3330 Type val = mapping.get(fromList.head.tsym);
mcimadamore@138 3331 if (toList.head != val)
mcimadamore@138 3332 toList.head = val;
mcimadamore@138 3333 fromList = fromList.tail;
mcimadamore@138 3334 toList = toList.tail;
mcimadamore@138 3335 }
mcimadamore@138 3336 }
mcimadamore@138 3337
mcimadamore@138 3338 @Override
mcimadamore@138 3339 public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
mcimadamore@138 3340 if (target.tag == CLASS)
mcimadamore@138 3341 adaptRecursive(source.allparams(), target.allparams());
mcimadamore@138 3342 return null;
mcimadamore@138 3343 }
mcimadamore@138 3344
mcimadamore@138 3345 @Override
mcimadamore@138 3346 public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
mcimadamore@138 3347 if (target.tag == ARRAY)
mcimadamore@138 3348 adaptRecursive(elemtype(source), elemtype(target));
mcimadamore@138 3349 return null;
mcimadamore@138 3350 }
mcimadamore@138 3351
mcimadamore@138 3352 @Override
mcimadamore@138 3353 public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
mcimadamore@138 3354 if (source.isExtendsBound())
mcimadamore@138 3355 adaptRecursive(upperBound(source), upperBound(target));
mcimadamore@138 3356 else if (source.isSuperBound())
mcimadamore@138 3357 adaptRecursive(lowerBound(source), lowerBound(target));
mcimadamore@138 3358 return null;
mcimadamore@138 3359 }
mcimadamore@138 3360
mcimadamore@138 3361 @Override
mcimadamore@138 3362 public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
mcimadamore@138 3363 // Check to see if there is
mcimadamore@138 3364 // already a mapping for $source$, in which case
mcimadamore@138 3365 // the old mapping will be merged with the new
mcimadamore@138 3366 Type val = mapping.get(source.tsym);
mcimadamore@138 3367 if (val != null) {
mcimadamore@138 3368 if (val.isSuperBound() && target.isSuperBound()) {
mcimadamore@138 3369 val = isSubtype(lowerBound(val), lowerBound(target))
mcimadamore@138 3370 ? target : val;
mcimadamore@138 3371 } else if (val.isExtendsBound() && target.isExtendsBound()) {
mcimadamore@138 3372 val = isSubtype(upperBound(val), upperBound(target))
mcimadamore@138 3373 ? val : target;
mcimadamore@138 3374 } else if (!isSameType(val, target)) {
mcimadamore@138 3375 throw new AdaptFailure();
duke@1 3376 }
mcimadamore@138 3377 } else {
mcimadamore@138 3378 val = target;
mcimadamore@138 3379 from.append(source);
mcimadamore@138 3380 to.append(target);
mcimadamore@138 3381 }
mcimadamore@138 3382 mapping.put(source.tsym, val);
mcimadamore@138 3383 return null;
mcimadamore@138 3384 }
mcimadamore@138 3385
mcimadamore@138 3386 @Override
mcimadamore@138 3387 public Void visitType(Type source, Type target) {
mcimadamore@138 3388 return null;
mcimadamore@138 3389 }
mcimadamore@138 3390
mcimadamore@138 3391 private Set<TypePair> cache = new HashSet<TypePair>();
mcimadamore@138 3392
mcimadamore@138 3393 private void adaptRecursive(Type source, Type target) {
mcimadamore@138 3394 TypePair pair = new TypePair(source, target);
mcimadamore@138 3395 if (cache.add(pair)) {
mcimadamore@138 3396 try {
mcimadamore@138 3397 visit(source, target);
mcimadamore@138 3398 } finally {
mcimadamore@138 3399 cache.remove(pair);
duke@1 3400 }
duke@1 3401 }
duke@1 3402 }
mcimadamore@138 3403
mcimadamore@138 3404 private void adaptRecursive(List<Type> source, List<Type> target) {
mcimadamore@138 3405 if (source.length() == target.length()) {
mcimadamore@138 3406 while (source.nonEmpty()) {
mcimadamore@138 3407 adaptRecursive(source.head, target.head);
mcimadamore@138 3408 source = source.tail;
mcimadamore@138 3409 target = target.tail;
mcimadamore@138 3410 }
duke@1 3411 }
duke@1 3412 }
duke@1 3413 }
duke@1 3414
mcimadamore@138 3415 public static class AdaptFailure extends RuntimeException {
mcimadamore@138 3416 static final long serialVersionUID = -7490231548272701566L;
mcimadamore@138 3417 }
mcimadamore@138 3418
duke@1 3419 private void adaptSelf(Type t,
duke@1 3420 ListBuffer<Type> from,
duke@1 3421 ListBuffer<Type> to) {
duke@1 3422 try {
duke@1 3423 //if (t.tsym.type != t)
duke@1 3424 adapt(t.tsym.type, t, from, to);
duke@1 3425 } catch (AdaptFailure ex) {
duke@1 3426 // Adapt should never fail calculating a mapping from
duke@1 3427 // t.tsym.type to t as there can be no merge problem.
duke@1 3428 throw new AssertionError(ex);
duke@1 3429 }
duke@1 3430 }
mcimadamore@138 3431 // </editor-fold>
duke@1 3432
duke@1 3433 /**
duke@1 3434 * Rewrite all type variables (universal quantifiers) in the given
duke@1 3435 * type to wildcards (existential quantifiers). This is used to
duke@1 3436 * determine if a cast is allowed. For example, if high is true
duke@1 3437 * and {@code T <: Number}, then {@code List<T>} is rewritten to
duke@1 3438 * {@code List<? extends Number>}. Since {@code List<Integer> <:
duke@1 3439 * List<? extends Number>} a {@code List<T>} can be cast to {@code
duke@1 3440 * List<Integer>} with a warning.
duke@1 3441 * @param t a type
duke@1 3442 * @param high if true return an upper bound; otherwise a lower
duke@1 3443 * bound
duke@1 3444 * @param rewriteTypeVars only rewrite captured wildcards if false;
duke@1 3445 * otherwise rewrite all type variables
duke@1 3446 * @return the type rewritten with wildcards (existential
duke@1 3447 * quantifiers) only
duke@1 3448 */
duke@1 3449 private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
mcimadamore@640 3450 return new Rewriter(high, rewriteTypeVars).visit(t);
mcimadamore@157 3451 }
mcimadamore@157 3452
mcimadamore@157 3453 class Rewriter extends UnaryVisitor<Type> {
mcimadamore@157 3454
mcimadamore@157 3455 boolean high;
mcimadamore@157 3456 boolean rewriteTypeVars;
mcimadamore@157 3457
mcimadamore@157 3458 Rewriter(boolean high, boolean rewriteTypeVars) {
mcimadamore@157 3459 this.high = high;
mcimadamore@157 3460 this.rewriteTypeVars = rewriteTypeVars;
mcimadamore@157 3461 }
mcimadamore@157 3462
mcimadamore@640 3463 @Override
mcimadamore@640 3464 public Type visitClassType(ClassType t, Void s) {
mcimadamore@157 3465 ListBuffer<Type> rewritten = new ListBuffer<Type>();
mcimadamore@157 3466 boolean changed = false;
mcimadamore@640 3467 for (Type arg : t.allparams()) {
mcimadamore@157 3468 Type bound = visit(arg);
mcimadamore@157 3469 if (arg != bound) {
mcimadamore@157 3470 changed = true;
mcimadamore@157 3471 }
mcimadamore@157 3472 rewritten.append(bound);
duke@1 3473 }
mcimadamore@157 3474 if (changed)
mcimadamore@640 3475 return subst(t.tsym.type,
mcimadamore@640 3476 t.tsym.type.allparams(),
mcimadamore@640 3477 rewritten.toList());
mcimadamore@157 3478 else
mcimadamore@157 3479 return t;
duke@1 3480 }
mcimadamore@157 3481
mcimadamore@157 3482 public Type visitType(Type t, Void s) {
mcimadamore@157 3483 return high ? upperBound(t) : lowerBound(t);
mcimadamore@157 3484 }
mcimadamore@157 3485
mcimadamore@157 3486 @Override
mcimadamore@157 3487 public Type visitCapturedType(CapturedType t, Void s) {
mcimadamore@640 3488 Type bound = visitWildcardType(t.wildcard, null);
mcimadamore@640 3489 return (bound.contains(t)) ?
mcimadamore@779 3490 erasure(bound) :
mcimadamore@779 3491 bound;
mcimadamore@157 3492 }
mcimadamore@157 3493
mcimadamore@157 3494 @Override
mcimadamore@157 3495 public Type visitTypeVar(TypeVar t, Void s) {
mcimadamore@640 3496 if (rewriteTypeVars) {
mcimadamore@640 3497 Type bound = high ?
mcimadamore@640 3498 (t.bound.contains(t) ?
mcimadamore@779 3499 erasure(t.bound) :
mcimadamore@640 3500 visit(t.bound)) :
mcimadamore@640 3501 syms.botType;
mcimadamore@640 3502 return rewriteAsWildcardType(bound, t);
mcimadamore@640 3503 }
mcimadamore@157 3504 else
mcimadamore@157 3505 return t;
mcimadamore@157 3506 }
mcimadamore@157 3507
mcimadamore@157 3508 @Override
mcimadamore@157 3509 public Type visitWildcardType(WildcardType t, Void s) {
mcimadamore@157 3510 Type bound = high ? t.getExtendsBound() :
mcimadamore@157 3511 t.getSuperBound();
mcimadamore@157 3512 if (bound == null)
mcimadamore@640 3513 bound = high ? syms.objectType : syms.botType;
mcimadamore@640 3514 return rewriteAsWildcardType(visit(bound), t.bound);
mcimadamore@640 3515 }
mcimadamore@640 3516
mcimadamore@640 3517 private Type rewriteAsWildcardType(Type bound, TypeVar formal) {
mcimadamore@640 3518 return high ?
mcimadamore@640 3519 makeExtendsWildcard(B(bound), formal) :
mcimadamore@640 3520 makeSuperWildcard(B(bound), formal);
mcimadamore@640 3521 }
mcimadamore@640 3522
mcimadamore@640 3523 Type B(Type t) {
mcimadamore@640 3524 while (t.tag == WILDCARD) {
mcimadamore@640 3525 WildcardType w = (WildcardType)t;
mcimadamore@640 3526 t = high ?
mcimadamore@640 3527 w.getExtendsBound() :
mcimadamore@640 3528 w.getSuperBound();
mcimadamore@640 3529 if (t == null) {
mcimadamore@640 3530 t = high ? syms.objectType : syms.botType;
mcimadamore@640 3531 }
mcimadamore@640 3532 }
mcimadamore@640 3533 return t;
mcimadamore@157 3534 }
duke@1 3535 }
duke@1 3536
mcimadamore@640 3537
duke@1 3538 /**
duke@1 3539 * Create a wildcard with the given upper (extends) bound; create
duke@1 3540 * an unbounded wildcard if bound is Object.
duke@1 3541 *
duke@1 3542 * @param bound the upper bound
duke@1 3543 * @param formal the formal type parameter that will be
duke@1 3544 * substituted by the wildcard
duke@1 3545 */
duke@1 3546 private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
duke@1 3547 if (bound == syms.objectType) {
duke@1 3548 return new WildcardType(syms.objectType,
duke@1 3549 BoundKind.UNBOUND,
duke@1 3550 syms.boundClass,
duke@1 3551 formal);
duke@1 3552 } else {
duke@1 3553 return new WildcardType(bound,
duke@1 3554 BoundKind.EXTENDS,
duke@1 3555 syms.boundClass,
duke@1 3556 formal);
duke@1 3557 }
duke@1 3558 }
duke@1 3559
duke@1 3560 /**
duke@1 3561 * Create a wildcard with the given lower (super) bound; create an
duke@1 3562 * unbounded wildcard if bound is bottom (type of {@code null}).
duke@1 3563 *
duke@1 3564 * @param bound the lower bound
duke@1 3565 * @param formal the formal type parameter that will be
duke@1 3566 * substituted by the wildcard
duke@1 3567 */
duke@1 3568 private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
duke@1 3569 if (bound.tag == BOT) {
duke@1 3570 return new WildcardType(syms.objectType,
duke@1 3571 BoundKind.UNBOUND,
duke@1 3572 syms.boundClass,
duke@1 3573 formal);
duke@1 3574 } else {
duke@1 3575 return new WildcardType(bound,
duke@1 3576 BoundKind.SUPER,
duke@1 3577 syms.boundClass,
duke@1 3578 formal);
duke@1 3579 }
duke@1 3580 }
duke@1 3581
duke@1 3582 /**
duke@1 3583 * A wrapper for a type that allows use in sets.
duke@1 3584 */
duke@1 3585 class SingletonType {
duke@1 3586 final Type t;
duke@1 3587 SingletonType(Type t) {
duke@1 3588 this.t = t;
duke@1 3589 }
duke@1 3590 public int hashCode() {
jjg@507 3591 return Types.hashCode(t);
duke@1 3592 }
duke@1 3593 public boolean equals(Object obj) {
duke@1 3594 return (obj instanceof SingletonType) &&
duke@1 3595 isSameType(t, ((SingletonType)obj).t);
duke@1 3596 }
duke@1 3597 public String toString() {
duke@1 3598 return t.toString();
duke@1 3599 }
duke@1 3600 }
duke@1 3601 // </editor-fold>
duke@1 3602
duke@1 3603 // <editor-fold defaultstate="collapsed" desc="Visitors">
duke@1 3604 /**
duke@1 3605 * A default visitor for types. All visitor methods except
duke@1 3606 * visitType are implemented by delegating to visitType. Concrete
duke@1 3607 * subclasses must provide an implementation of visitType and can
duke@1 3608 * override other methods as needed.
duke@1 3609 *
duke@1 3610 * @param <R> the return type of the operation implemented by this
duke@1 3611 * visitor; use Void if no return type is needed.
duke@1 3612 * @param <S> the type of the second argument (the first being the
duke@1 3613 * type itself) of the operation implemented by this visitor; use
duke@1 3614 * Void if a second argument is not needed.
duke@1 3615 */
duke@1 3616 public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
duke@1 3617 final public R visit(Type t, S s) { return t.accept(this, s); }
duke@1 3618 public R visitClassType(ClassType t, S s) { return visitType(t, s); }
duke@1 3619 public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
duke@1 3620 public R visitArrayType(ArrayType t, S s) { return visitType(t, s); }
duke@1 3621 public R visitMethodType(MethodType t, S s) { return visitType(t, s); }
duke@1 3622 public R visitPackageType(PackageType t, S s) { return visitType(t, s); }
duke@1 3623 public R visitTypeVar(TypeVar t, S s) { return visitType(t, s); }
duke@1 3624 public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
duke@1 3625 public R visitForAll(ForAll t, S s) { return visitType(t, s); }
duke@1 3626 public R visitUndetVar(UndetVar t, S s) { return visitType(t, s); }
duke@1 3627 public R visitErrorType(ErrorType t, S s) { return visitType(t, s); }
duke@1 3628 }
duke@1 3629
duke@1 3630 /**
mcimadamore@121 3631 * A default visitor for symbols. All visitor methods except
mcimadamore@121 3632 * visitSymbol are implemented by delegating to visitSymbol. Concrete
mcimadamore@121 3633 * subclasses must provide an implementation of visitSymbol and can
mcimadamore@121 3634 * override other methods as needed.
mcimadamore@121 3635 *
mcimadamore@121 3636 * @param <R> the return type of the operation implemented by this
mcimadamore@121 3637 * visitor; use Void if no return type is needed.
mcimadamore@121 3638 * @param <S> the type of the second argument (the first being the
mcimadamore@121 3639 * symbol itself) of the operation implemented by this visitor; use
mcimadamore@121 3640 * Void if a second argument is not needed.
mcimadamore@121 3641 */
mcimadamore@121 3642 public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
mcimadamore@121 3643 final public R visit(Symbol s, S arg) { return s.accept(this, arg); }
mcimadamore@121 3644 public R visitClassSymbol(ClassSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3645 public R visitMethodSymbol(MethodSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3646 public R visitOperatorSymbol(OperatorSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3647 public R visitPackageSymbol(PackageSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3648 public R visitTypeSymbol(TypeSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3649 public R visitVarSymbol(VarSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3650 }
mcimadamore@121 3651
mcimadamore@121 3652 /**
duke@1 3653 * A <em>simple</em> visitor for types. This visitor is simple as
duke@1 3654 * captured wildcards, for-all types (generic methods), and
duke@1 3655 * undetermined type variables (part of inference) are hidden.
duke@1 3656 * Captured wildcards are hidden by treating them as type
duke@1 3657 * variables and the rest are hidden by visiting their qtypes.
duke@1 3658 *
duke@1 3659 * @param <R> the return type of the operation implemented by this
duke@1 3660 * visitor; use Void if no return type is needed.
duke@1 3661 * @param <S> the type of the second argument (the first being the
duke@1 3662 * type itself) of the operation implemented by this visitor; use
duke@1 3663 * Void if a second argument is not needed.
duke@1 3664 */
duke@1 3665 public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
duke@1 3666 @Override
duke@1 3667 public R visitCapturedType(CapturedType t, S s) {
duke@1 3668 return visitTypeVar(t, s);
duke@1 3669 }
duke@1 3670 @Override
duke@1 3671 public R visitForAll(ForAll t, S s) {
duke@1 3672 return visit(t.qtype, s);
duke@1 3673 }
duke@1 3674 @Override
duke@1 3675 public R visitUndetVar(UndetVar t, S s) {
duke@1 3676 return visit(t.qtype, s);
duke@1 3677 }
duke@1 3678 }
duke@1 3679
duke@1 3680 /**
duke@1 3681 * A plain relation on types. That is a 2-ary function on the
duke@1 3682 * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
duke@1 3683 * <!-- In plain text: Type x Type -> Boolean -->
duke@1 3684 */
duke@1 3685 public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
duke@1 3686
duke@1 3687 /**
duke@1 3688 * A convenience visitor for implementing operations that only
duke@1 3689 * require one argument (the type itself), that is, unary
duke@1 3690 * operations.
duke@1 3691 *
duke@1 3692 * @param <R> the return type of the operation implemented by this
duke@1 3693 * visitor; use Void if no return type is needed.
duke@1 3694 */
duke@1 3695 public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
duke@1 3696 final public R visit(Type t) { return t.accept(this, null); }
duke@1 3697 }
duke@1 3698
duke@1 3699 /**
duke@1 3700 * A visitor for implementing a mapping from types to types. The
duke@1 3701 * default behavior of this class is to implement the identity
duke@1 3702 * mapping (mapping a type to itself). This can be overridden in
duke@1 3703 * subclasses.
duke@1 3704 *
duke@1 3705 * @param <S> the type of the second argument (the first being the
duke@1 3706 * type itself) of this mapping; use Void if a second argument is
duke@1 3707 * not needed.
duke@1 3708 */
duke@1 3709 public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
duke@1 3710 final public Type visit(Type t) { return t.accept(this, null); }
duke@1 3711 public Type visitType(Type t, S s) { return t; }
duke@1 3712 }
duke@1 3713 // </editor-fold>
jjg@657 3714
jjg@657 3715
jjg@657 3716 // <editor-fold defaultstate="collapsed" desc="Annotation support">
jjg@657 3717
jjg@657 3718 public RetentionPolicy getRetention(Attribute.Compound a) {
jjg@657 3719 RetentionPolicy vis = RetentionPolicy.CLASS; // the default
jjg@657 3720 Attribute.Compound c = a.type.tsym.attribute(syms.retentionType.tsym);
jjg@657 3721 if (c != null) {
jjg@657 3722 Attribute value = c.member(names.value);
jjg@657 3723 if (value != null && value instanceof Attribute.Enum) {
jjg@657 3724 Name levelName = ((Attribute.Enum)value).value.name;
jjg@657 3725 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
jjg@657 3726 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
jjg@657 3727 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
jjg@657 3728 else ;// /* fail soft */ throw new AssertionError(levelName);
jjg@657 3729 }
jjg@657 3730 }
jjg@657 3731 return vis;
jjg@657 3732 }
jjg@657 3733 // </editor-fold>
duke@1 3734 }

mercurial