src/share/classes/com/sun/tools/javac/code/Types.java

Fri, 28 Jan 2011 12:06:21 +0000

author
mcimadamore
date
Fri, 28 Jan 2011 12:06:21 +0000
changeset 846
17bafae67e9d
parent 816
7c537f4298fb
child 858
96d4226bdd60
permissions
-rw-r--r--

6838943: inference: javac is not handling type-variable substitution properly
Summary: free type-variables are being replaced with type-variables bound to forall type leading to unsoundness
Reviewed-by: jjg, dlsmith

duke@1 1 /*
jjg@816 2 * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.code;
duke@1 27
mcimadamore@341 28 import java.lang.ref.SoftReference;
duke@1 29 import java.util.*;
duke@1 30
duke@1 31 import com.sun.tools.javac.util.*;
duke@1 32 import com.sun.tools.javac.util.List;
duke@1 33
duke@1 34 import com.sun.tools.javac.jvm.ClassReader;
jjg@657 35 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
mcimadamore@795 36 import com.sun.tools.javac.code.Lint.LintCategory;
duke@1 37 import com.sun.tools.javac.comp.Check;
duke@1 38
duke@1 39 import static com.sun.tools.javac.code.Type.*;
duke@1 40 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 41 import static com.sun.tools.javac.code.Symbol.*;
duke@1 42 import static com.sun.tools.javac.code.Flags.*;
duke@1 43 import static com.sun.tools.javac.code.BoundKind.*;
duke@1 44 import static com.sun.tools.javac.util.ListBuffer.lb;
duke@1 45
duke@1 46 /**
duke@1 47 * Utility class containing various operations on types.
duke@1 48 *
duke@1 49 * <p>Unless other names are more illustrative, the following naming
duke@1 50 * conventions should be observed in this file:
duke@1 51 *
duke@1 52 * <dl>
duke@1 53 * <dt>t</dt>
duke@1 54 * <dd>If the first argument to an operation is a type, it should be named t.</dd>
duke@1 55 * <dt>s</dt>
duke@1 56 * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
duke@1 57 * <dt>ts</dt>
duke@1 58 * <dd>If an operations takes a list of types, the first should be named ts.</dd>
duke@1 59 * <dt>ss</dt>
duke@1 60 * <dd>A second list of types should be named ss.</dd>
duke@1 61 * </dl>
duke@1 62 *
jjg@581 63 * <p><b>This is NOT part of any supported API.
duke@1 64 * If you write code that depends on this, you do so at your own risk.
duke@1 65 * This code and its internal interfaces are subject to change or
duke@1 66 * deletion without notice.</b>
duke@1 67 */
duke@1 68 public class Types {
duke@1 69 protected static final Context.Key<Types> typesKey =
duke@1 70 new Context.Key<Types>();
duke@1 71
duke@1 72 final Symtab syms;
mcimadamore@688 73 final Scope.ScopeCounter scopeCounter;
mcimadamore@136 74 final JavacMessages messages;
jjg@113 75 final Names names;
duke@1 76 final boolean allowBoxing;
duke@1 77 final ClassReader reader;
duke@1 78 final Source source;
duke@1 79 final Check chk;
duke@1 80 List<Warner> warnStack = List.nil();
duke@1 81 final Name capturedName;
duke@1 82
duke@1 83 // <editor-fold defaultstate="collapsed" desc="Instantiating">
duke@1 84 public static Types instance(Context context) {
duke@1 85 Types instance = context.get(typesKey);
duke@1 86 if (instance == null)
duke@1 87 instance = new Types(context);
duke@1 88 return instance;
duke@1 89 }
duke@1 90
duke@1 91 protected Types(Context context) {
duke@1 92 context.put(typesKey, this);
duke@1 93 syms = Symtab.instance(context);
mcimadamore@688 94 scopeCounter = Scope.ScopeCounter.instance(context);
jjg@113 95 names = Names.instance(context);
duke@1 96 allowBoxing = Source.instance(context).allowBoxing();
duke@1 97 reader = ClassReader.instance(context);
duke@1 98 source = Source.instance(context);
duke@1 99 chk = Check.instance(context);
duke@1 100 capturedName = names.fromString("<captured wildcard>");
mcimadamore@136 101 messages = JavacMessages.instance(context);
duke@1 102 }
duke@1 103 // </editor-fold>
duke@1 104
duke@1 105 // <editor-fold defaultstate="collapsed" desc="upperBound">
duke@1 106 /**
duke@1 107 * The "rvalue conversion".<br>
duke@1 108 * The upper bound of most types is the type
duke@1 109 * itself. Wildcards, on the other hand have upper
duke@1 110 * and lower bounds.
duke@1 111 * @param t a type
duke@1 112 * @return the upper bound of the given type
duke@1 113 */
duke@1 114 public Type upperBound(Type t) {
duke@1 115 return upperBound.visit(t);
duke@1 116 }
duke@1 117 // where
duke@1 118 private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
duke@1 119
duke@1 120 @Override
duke@1 121 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 122 if (t.isSuperBound())
duke@1 123 return t.bound == null ? syms.objectType : t.bound.bound;
duke@1 124 else
duke@1 125 return visit(t.type);
duke@1 126 }
duke@1 127
duke@1 128 @Override
duke@1 129 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 130 return visit(t.bound);
duke@1 131 }
duke@1 132 };
duke@1 133 // </editor-fold>
duke@1 134
duke@1 135 // <editor-fold defaultstate="collapsed" desc="lowerBound">
duke@1 136 /**
duke@1 137 * The "lvalue conversion".<br>
duke@1 138 * The lower bound of most types is the type
duke@1 139 * itself. Wildcards, on the other hand have upper
duke@1 140 * and lower bounds.
duke@1 141 * @param t a type
duke@1 142 * @return the lower bound of the given type
duke@1 143 */
duke@1 144 public Type lowerBound(Type t) {
duke@1 145 return lowerBound.visit(t);
duke@1 146 }
duke@1 147 // where
duke@1 148 private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
duke@1 149
duke@1 150 @Override
duke@1 151 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 152 return t.isExtendsBound() ? syms.botType : visit(t.type);
duke@1 153 }
duke@1 154
duke@1 155 @Override
duke@1 156 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 157 return visit(t.getLowerBound());
duke@1 158 }
duke@1 159 };
duke@1 160 // </editor-fold>
duke@1 161
duke@1 162 // <editor-fold defaultstate="collapsed" desc="isUnbounded">
duke@1 163 /**
duke@1 164 * Checks that all the arguments to a class are unbounded
duke@1 165 * wildcards or something else that doesn't make any restrictions
duke@1 166 * on the arguments. If a class isUnbounded, a raw super- or
duke@1 167 * subclass can be cast to it without a warning.
duke@1 168 * @param t a type
duke@1 169 * @return true iff the given type is unbounded or raw
duke@1 170 */
duke@1 171 public boolean isUnbounded(Type t) {
duke@1 172 return isUnbounded.visit(t);
duke@1 173 }
duke@1 174 // where
duke@1 175 private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
duke@1 176
duke@1 177 public Boolean visitType(Type t, Void ignored) {
duke@1 178 return true;
duke@1 179 }
duke@1 180
duke@1 181 @Override
duke@1 182 public Boolean visitClassType(ClassType t, Void ignored) {
duke@1 183 List<Type> parms = t.tsym.type.allparams();
duke@1 184 List<Type> args = t.allparams();
duke@1 185 while (parms.nonEmpty()) {
duke@1 186 WildcardType unb = new WildcardType(syms.objectType,
duke@1 187 BoundKind.UNBOUND,
duke@1 188 syms.boundClass,
duke@1 189 (TypeVar)parms.head);
duke@1 190 if (!containsType(args.head, unb))
duke@1 191 return false;
duke@1 192 parms = parms.tail;
duke@1 193 args = args.tail;
duke@1 194 }
duke@1 195 return true;
duke@1 196 }
duke@1 197 };
duke@1 198 // </editor-fold>
duke@1 199
duke@1 200 // <editor-fold defaultstate="collapsed" desc="asSub">
duke@1 201 /**
duke@1 202 * Return the least specific subtype of t that starts with symbol
duke@1 203 * sym. If none exists, return null. The least specific subtype
duke@1 204 * is determined as follows:
duke@1 205 *
duke@1 206 * <p>If there is exactly one parameterized instance of sym that is a
duke@1 207 * subtype of t, that parameterized instance is returned.<br>
duke@1 208 * Otherwise, if the plain type or raw type `sym' is a subtype of
duke@1 209 * type t, the type `sym' itself is returned. Otherwise, null is
duke@1 210 * returned.
duke@1 211 */
duke@1 212 public Type asSub(Type t, Symbol sym) {
duke@1 213 return asSub.visit(t, sym);
duke@1 214 }
duke@1 215 // where
duke@1 216 private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
duke@1 217
duke@1 218 public Type visitType(Type t, Symbol sym) {
duke@1 219 return null;
duke@1 220 }
duke@1 221
duke@1 222 @Override
duke@1 223 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 224 if (t.tsym == sym)
duke@1 225 return t;
duke@1 226 Type base = asSuper(sym.type, t.tsym);
duke@1 227 if (base == null)
duke@1 228 return null;
duke@1 229 ListBuffer<Type> from = new ListBuffer<Type>();
duke@1 230 ListBuffer<Type> to = new ListBuffer<Type>();
duke@1 231 try {
duke@1 232 adapt(base, t, from, to);
duke@1 233 } catch (AdaptFailure ex) {
duke@1 234 return null;
duke@1 235 }
duke@1 236 Type res = subst(sym.type, from.toList(), to.toList());
duke@1 237 if (!isSubtype(res, t))
duke@1 238 return null;
duke@1 239 ListBuffer<Type> openVars = new ListBuffer<Type>();
duke@1 240 for (List<Type> l = sym.type.allparams();
duke@1 241 l.nonEmpty(); l = l.tail)
duke@1 242 if (res.contains(l.head) && !t.contains(l.head))
duke@1 243 openVars.append(l.head);
duke@1 244 if (openVars.nonEmpty()) {
duke@1 245 if (t.isRaw()) {
duke@1 246 // The subtype of a raw type is raw
duke@1 247 res = erasure(res);
duke@1 248 } else {
duke@1 249 // Unbound type arguments default to ?
duke@1 250 List<Type> opens = openVars.toList();
duke@1 251 ListBuffer<Type> qs = new ListBuffer<Type>();
duke@1 252 for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
duke@1 253 qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
duke@1 254 }
duke@1 255 res = subst(res, opens, qs.toList());
duke@1 256 }
duke@1 257 }
duke@1 258 return res;
duke@1 259 }
duke@1 260
duke@1 261 @Override
duke@1 262 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 263 return t;
duke@1 264 }
duke@1 265 };
duke@1 266 // </editor-fold>
duke@1 267
duke@1 268 // <editor-fold defaultstate="collapsed" desc="isConvertible">
duke@1 269 /**
duke@1 270 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 271 * convertions to s?
duke@1 272 */
duke@1 273 public boolean isConvertible(Type t, Type s, Warner warn) {
duke@1 274 boolean tPrimitive = t.isPrimitive();
duke@1 275 boolean sPrimitive = s.isPrimitive();
mcimadamore@795 276 if (tPrimitive == sPrimitive) {
mcimadamore@795 277 checkUnsafeVarargsConversion(t, s, warn);
duke@1 278 return isSubtypeUnchecked(t, s, warn);
mcimadamore@795 279 }
duke@1 280 if (!allowBoxing) return false;
duke@1 281 return tPrimitive
duke@1 282 ? isSubtype(boxedClass(t).type, s)
duke@1 283 : isSubtype(unboxedType(t), s);
duke@1 284 }
mcimadamore@795 285 //where
mcimadamore@795 286 private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
mcimadamore@795 287 if (t.tag != ARRAY || isReifiable(t)) return;
mcimadamore@795 288 ArrayType from = (ArrayType)t;
mcimadamore@795 289 boolean shouldWarn = false;
mcimadamore@795 290 switch (s.tag) {
mcimadamore@795 291 case ARRAY:
mcimadamore@795 292 ArrayType to = (ArrayType)s;
mcimadamore@795 293 shouldWarn = from.isVarargs() &&
mcimadamore@795 294 !to.isVarargs() &&
mcimadamore@795 295 !isReifiable(from);
mcimadamore@795 296 break;
mcimadamore@795 297 case CLASS:
mcimadamore@795 298 shouldWarn = from.isVarargs() &&
mcimadamore@795 299 isSubtype(from, s);
mcimadamore@795 300 break;
mcimadamore@795 301 }
mcimadamore@795 302 if (shouldWarn) {
mcimadamore@795 303 warn.warn(LintCategory.VARARGS);
mcimadamore@795 304 }
mcimadamore@795 305 }
duke@1 306
duke@1 307 /**
duke@1 308 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 309 * convertions to s?
duke@1 310 */
duke@1 311 public boolean isConvertible(Type t, Type s) {
duke@1 312 return isConvertible(t, s, Warner.noWarnings);
duke@1 313 }
duke@1 314 // </editor-fold>
duke@1 315
duke@1 316 // <editor-fold defaultstate="collapsed" desc="isSubtype">
duke@1 317 /**
duke@1 318 * Is t an unchecked subtype of s?
duke@1 319 */
duke@1 320 public boolean isSubtypeUnchecked(Type t, Type s) {
duke@1 321 return isSubtypeUnchecked(t, s, Warner.noWarnings);
duke@1 322 }
duke@1 323 /**
duke@1 324 * Is t an unchecked subtype of s?
duke@1 325 */
duke@1 326 public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
duke@1 327 if (t.tag == ARRAY && s.tag == ARRAY) {
mcimadamore@795 328 if (((ArrayType)t).elemtype.tag <= lastBaseTag) {
mcimadamore@795 329 return isSameType(elemtype(t), elemtype(s));
mcimadamore@795 330 } else {
mcimadamore@795 331 ArrayType from = (ArrayType)t;
mcimadamore@795 332 ArrayType to = (ArrayType)s;
mcimadamore@795 333 if (from.isVarargs() &&
mcimadamore@795 334 !to.isVarargs() &&
mcimadamore@795 335 !isReifiable(from)) {
mcimadamore@795 336 warn.warn(LintCategory.VARARGS);
mcimadamore@795 337 }
mcimadamore@795 338 return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
mcimadamore@795 339 }
duke@1 340 } else if (isSubtype(t, s)) {
duke@1 341 return true;
mcimadamore@41 342 }
mcimadamore@41 343 else if (t.tag == TYPEVAR) {
mcimadamore@41 344 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
mcimadamore@41 345 }
mcimadamore@93 346 else if (s.tag == UNDETVAR) {
mcimadamore@93 347 UndetVar uv = (UndetVar)s;
mcimadamore@93 348 if (uv.inst != null)
mcimadamore@93 349 return isSubtypeUnchecked(t, uv.inst, warn);
mcimadamore@93 350 }
mcimadamore@41 351 else if (!s.isRaw()) {
duke@1 352 Type t2 = asSuper(t, s.tsym);
duke@1 353 if (t2 != null && t2.isRaw()) {
duke@1 354 if (isReifiable(s))
mcimadamore@795 355 warn.silentWarn(LintCategory.UNCHECKED);
duke@1 356 else
mcimadamore@795 357 warn.warn(LintCategory.UNCHECKED);
duke@1 358 return true;
duke@1 359 }
duke@1 360 }
duke@1 361 return false;
duke@1 362 }
duke@1 363
duke@1 364 /**
duke@1 365 * Is t a subtype of s?<br>
duke@1 366 * (not defined for Method and ForAll types)
duke@1 367 */
duke@1 368 final public boolean isSubtype(Type t, Type s) {
duke@1 369 return isSubtype(t, s, true);
duke@1 370 }
duke@1 371 final public boolean isSubtypeNoCapture(Type t, Type s) {
duke@1 372 return isSubtype(t, s, false);
duke@1 373 }
duke@1 374 public boolean isSubtype(Type t, Type s, boolean capture) {
duke@1 375 if (t == s)
duke@1 376 return true;
duke@1 377
duke@1 378 if (s.tag >= firstPartialTag)
duke@1 379 return isSuperType(s, t);
duke@1 380
mcimadamore@299 381 if (s.isCompound()) {
mcimadamore@299 382 for (Type s2 : interfaces(s).prepend(supertype(s))) {
mcimadamore@299 383 if (!isSubtype(t, s2, capture))
mcimadamore@299 384 return false;
mcimadamore@299 385 }
mcimadamore@299 386 return true;
mcimadamore@299 387 }
mcimadamore@299 388
duke@1 389 Type lower = lowerBound(s);
duke@1 390 if (s != lower)
duke@1 391 return isSubtype(capture ? capture(t) : t, lower, false);
duke@1 392
duke@1 393 return isSubtype.visit(capture ? capture(t) : t, s);
duke@1 394 }
duke@1 395 // where
duke@1 396 private TypeRelation isSubtype = new TypeRelation()
duke@1 397 {
duke@1 398 public Boolean visitType(Type t, Type s) {
duke@1 399 switch (t.tag) {
duke@1 400 case BYTE: case CHAR:
duke@1 401 return (t.tag == s.tag ||
duke@1 402 t.tag + 2 <= s.tag && s.tag <= DOUBLE);
duke@1 403 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
duke@1 404 return t.tag <= s.tag && s.tag <= DOUBLE;
duke@1 405 case BOOLEAN: case VOID:
duke@1 406 return t.tag == s.tag;
duke@1 407 case TYPEVAR:
duke@1 408 return isSubtypeNoCapture(t.getUpperBound(), s);
duke@1 409 case BOT:
duke@1 410 return
duke@1 411 s.tag == BOT || s.tag == CLASS ||
duke@1 412 s.tag == ARRAY || s.tag == TYPEVAR;
duke@1 413 case NONE:
duke@1 414 return false;
duke@1 415 default:
duke@1 416 throw new AssertionError("isSubtype " + t.tag);
duke@1 417 }
duke@1 418 }
duke@1 419
duke@1 420 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 421
duke@1 422 private boolean containsTypeRecursive(Type t, Type s) {
duke@1 423 TypePair pair = new TypePair(t, s);
duke@1 424 if (cache.add(pair)) {
duke@1 425 try {
duke@1 426 return containsType(t.getTypeArguments(),
duke@1 427 s.getTypeArguments());
duke@1 428 } finally {
duke@1 429 cache.remove(pair);
duke@1 430 }
duke@1 431 } else {
duke@1 432 return containsType(t.getTypeArguments(),
duke@1 433 rewriteSupers(s).getTypeArguments());
duke@1 434 }
duke@1 435 }
duke@1 436
duke@1 437 private Type rewriteSupers(Type t) {
duke@1 438 if (!t.isParameterized())
duke@1 439 return t;
duke@1 440 ListBuffer<Type> from = lb();
duke@1 441 ListBuffer<Type> to = lb();
duke@1 442 adaptSelf(t, from, to);
duke@1 443 if (from.isEmpty())
duke@1 444 return t;
duke@1 445 ListBuffer<Type> rewrite = lb();
duke@1 446 boolean changed = false;
duke@1 447 for (Type orig : to.toList()) {
duke@1 448 Type s = rewriteSupers(orig);
duke@1 449 if (s.isSuperBound() && !s.isExtendsBound()) {
duke@1 450 s = new WildcardType(syms.objectType,
duke@1 451 BoundKind.UNBOUND,
duke@1 452 syms.boundClass);
duke@1 453 changed = true;
duke@1 454 } else if (s != orig) {
duke@1 455 s = new WildcardType(upperBound(s),
duke@1 456 BoundKind.EXTENDS,
duke@1 457 syms.boundClass);
duke@1 458 changed = true;
duke@1 459 }
duke@1 460 rewrite.append(s);
duke@1 461 }
duke@1 462 if (changed)
duke@1 463 return subst(t.tsym.type, from.toList(), rewrite.toList());
duke@1 464 else
duke@1 465 return t;
duke@1 466 }
duke@1 467
duke@1 468 @Override
duke@1 469 public Boolean visitClassType(ClassType t, Type s) {
duke@1 470 Type sup = asSuper(t, s.tsym);
duke@1 471 return sup != null
duke@1 472 && sup.tsym == s.tsym
duke@1 473 // You're not allowed to write
duke@1 474 // Vector<Object> vec = new Vector<String>();
duke@1 475 // But with wildcards you can write
duke@1 476 // Vector<? extends Object> vec = new Vector<String>();
duke@1 477 // which means that subtype checking must be done
duke@1 478 // here instead of same-type checking (via containsType).
duke@1 479 && (!s.isParameterized() || containsTypeRecursive(s, sup))
duke@1 480 && isSubtypeNoCapture(sup.getEnclosingType(),
duke@1 481 s.getEnclosingType());
duke@1 482 }
duke@1 483
duke@1 484 @Override
duke@1 485 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 486 if (s.tag == ARRAY) {
duke@1 487 if (t.elemtype.tag <= lastBaseTag)
duke@1 488 return isSameType(t.elemtype, elemtype(s));
duke@1 489 else
duke@1 490 return isSubtypeNoCapture(t.elemtype, elemtype(s));
duke@1 491 }
duke@1 492
duke@1 493 if (s.tag == CLASS) {
duke@1 494 Name sname = s.tsym.getQualifiedName();
duke@1 495 return sname == names.java_lang_Object
duke@1 496 || sname == names.java_lang_Cloneable
duke@1 497 || sname == names.java_io_Serializable;
duke@1 498 }
duke@1 499
duke@1 500 return false;
duke@1 501 }
duke@1 502
duke@1 503 @Override
duke@1 504 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 505 //todo: test against origin needed? or replace with substitution?
duke@1 506 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 507 return true;
duke@1 508
duke@1 509 if (t.inst != null)
duke@1 510 return isSubtypeNoCapture(t.inst, s); // TODO: ", warn"?
duke@1 511
duke@1 512 t.hibounds = t.hibounds.prepend(s);
duke@1 513 return true;
duke@1 514 }
duke@1 515
duke@1 516 @Override
duke@1 517 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 518 return true;
duke@1 519 }
duke@1 520 };
duke@1 521
duke@1 522 /**
duke@1 523 * Is t a subtype of every type in given list `ts'?<br>
duke@1 524 * (not defined for Method and ForAll types)<br>
duke@1 525 * Allows unchecked conversions.
duke@1 526 */
duke@1 527 public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
duke@1 528 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 529 if (!isSubtypeUnchecked(t, l.head, warn))
duke@1 530 return false;
duke@1 531 return true;
duke@1 532 }
duke@1 533
duke@1 534 /**
duke@1 535 * Are corresponding elements of ts subtypes of ss? If lists are
duke@1 536 * of different length, return false.
duke@1 537 */
duke@1 538 public boolean isSubtypes(List<Type> ts, List<Type> ss) {
duke@1 539 while (ts.tail != null && ss.tail != null
duke@1 540 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 541 isSubtype(ts.head, ss.head)) {
duke@1 542 ts = ts.tail;
duke@1 543 ss = ss.tail;
duke@1 544 }
duke@1 545 return ts.tail == null && ss.tail == null;
duke@1 546 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 547 }
duke@1 548
duke@1 549 /**
duke@1 550 * Are corresponding elements of ts subtypes of ss, allowing
duke@1 551 * unchecked conversions? If lists are of different length,
duke@1 552 * return false.
duke@1 553 **/
duke@1 554 public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
duke@1 555 while (ts.tail != null && ss.tail != null
duke@1 556 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 557 isSubtypeUnchecked(ts.head, ss.head, warn)) {
duke@1 558 ts = ts.tail;
duke@1 559 ss = ss.tail;
duke@1 560 }
duke@1 561 return ts.tail == null && ss.tail == null;
duke@1 562 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 563 }
duke@1 564 // </editor-fold>
duke@1 565
duke@1 566 // <editor-fold defaultstate="collapsed" desc="isSuperType">
duke@1 567 /**
duke@1 568 * Is t a supertype of s?
duke@1 569 */
duke@1 570 public boolean isSuperType(Type t, Type s) {
duke@1 571 switch (t.tag) {
duke@1 572 case ERROR:
duke@1 573 return true;
duke@1 574 case UNDETVAR: {
duke@1 575 UndetVar undet = (UndetVar)t;
duke@1 576 if (t == s ||
duke@1 577 undet.qtype == s ||
duke@1 578 s.tag == ERROR ||
duke@1 579 s.tag == BOT) return true;
duke@1 580 if (undet.inst != null)
duke@1 581 return isSubtype(s, undet.inst);
duke@1 582 undet.lobounds = undet.lobounds.prepend(s);
duke@1 583 return true;
duke@1 584 }
duke@1 585 default:
duke@1 586 return isSubtype(s, t);
duke@1 587 }
duke@1 588 }
duke@1 589 // </editor-fold>
duke@1 590
duke@1 591 // <editor-fold defaultstate="collapsed" desc="isSameType">
duke@1 592 /**
duke@1 593 * Are corresponding elements of the lists the same type? If
duke@1 594 * lists are of different length, return false.
duke@1 595 */
duke@1 596 public boolean isSameTypes(List<Type> ts, List<Type> ss) {
duke@1 597 while (ts.tail != null && ss.tail != null
duke@1 598 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 599 isSameType(ts.head, ss.head)) {
duke@1 600 ts = ts.tail;
duke@1 601 ss = ss.tail;
duke@1 602 }
duke@1 603 return ts.tail == null && ss.tail == null;
duke@1 604 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 605 }
duke@1 606
duke@1 607 /**
duke@1 608 * Is t the same type as s?
duke@1 609 */
duke@1 610 public boolean isSameType(Type t, Type s) {
duke@1 611 return isSameType.visit(t, s);
duke@1 612 }
duke@1 613 // where
duke@1 614 private TypeRelation isSameType = new TypeRelation() {
duke@1 615
duke@1 616 public Boolean visitType(Type t, Type s) {
duke@1 617 if (t == s)
duke@1 618 return true;
duke@1 619
duke@1 620 if (s.tag >= firstPartialTag)
duke@1 621 return visit(s, t);
duke@1 622
duke@1 623 switch (t.tag) {
duke@1 624 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 625 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
duke@1 626 return t.tag == s.tag;
mcimadamore@561 627 case TYPEVAR: {
mcimadamore@561 628 if (s.tag == TYPEVAR) {
mcimadamore@561 629 //type-substitution does not preserve type-var types
mcimadamore@561 630 //check that type var symbols and bounds are indeed the same
mcimadamore@561 631 return t.tsym == s.tsym &&
mcimadamore@561 632 visit(t.getUpperBound(), s.getUpperBound());
mcimadamore@561 633 }
mcimadamore@561 634 else {
mcimadamore@561 635 //special case for s == ? super X, where upper(s) = u
mcimadamore@561 636 //check that u == t, where u has been set by Type.withTypeVar
mcimadamore@561 637 return s.isSuperBound() &&
mcimadamore@561 638 !s.isExtendsBound() &&
mcimadamore@561 639 visit(t, upperBound(s));
mcimadamore@561 640 }
mcimadamore@561 641 }
duke@1 642 default:
duke@1 643 throw new AssertionError("isSameType " + t.tag);
duke@1 644 }
duke@1 645 }
duke@1 646
duke@1 647 @Override
duke@1 648 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 649 if (s.tag >= firstPartialTag)
duke@1 650 return visit(s, t);
duke@1 651 else
duke@1 652 return false;
duke@1 653 }
duke@1 654
duke@1 655 @Override
duke@1 656 public Boolean visitClassType(ClassType t, Type s) {
duke@1 657 if (t == s)
duke@1 658 return true;
duke@1 659
duke@1 660 if (s.tag >= firstPartialTag)
duke@1 661 return visit(s, t);
duke@1 662
duke@1 663 if (s.isSuperBound() && !s.isExtendsBound())
duke@1 664 return visit(t, upperBound(s)) && visit(t, lowerBound(s));
duke@1 665
duke@1 666 if (t.isCompound() && s.isCompound()) {
duke@1 667 if (!visit(supertype(t), supertype(s)))
duke@1 668 return false;
duke@1 669
duke@1 670 HashSet<SingletonType> set = new HashSet<SingletonType>();
duke@1 671 for (Type x : interfaces(t))
duke@1 672 set.add(new SingletonType(x));
duke@1 673 for (Type x : interfaces(s)) {
duke@1 674 if (!set.remove(new SingletonType(x)))
duke@1 675 return false;
duke@1 676 }
jjg@789 677 return (set.isEmpty());
duke@1 678 }
duke@1 679 return t.tsym == s.tsym
duke@1 680 && visit(t.getEnclosingType(), s.getEnclosingType())
duke@1 681 && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
duke@1 682 }
duke@1 683
duke@1 684 @Override
duke@1 685 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 686 if (t == s)
duke@1 687 return true;
duke@1 688
duke@1 689 if (s.tag >= firstPartialTag)
duke@1 690 return visit(s, t);
duke@1 691
duke@1 692 return s.tag == ARRAY
duke@1 693 && containsTypeEquivalent(t.elemtype, elemtype(s));
duke@1 694 }
duke@1 695
duke@1 696 @Override
duke@1 697 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 698 // isSameType for methods does not take thrown
duke@1 699 // exceptions into account!
duke@1 700 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
duke@1 701 }
duke@1 702
duke@1 703 @Override
duke@1 704 public Boolean visitPackageType(PackageType t, Type s) {
duke@1 705 return t == s;
duke@1 706 }
duke@1 707
duke@1 708 @Override
duke@1 709 public Boolean visitForAll(ForAll t, Type s) {
duke@1 710 if (s.tag != FORALL)
duke@1 711 return false;
duke@1 712
duke@1 713 ForAll forAll = (ForAll)s;
duke@1 714 return hasSameBounds(t, forAll)
duke@1 715 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 716 }
duke@1 717
duke@1 718 @Override
duke@1 719 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 720 if (s.tag == WILDCARD)
duke@1 721 // FIXME, this might be leftovers from before capture conversion
duke@1 722 return false;
duke@1 723
duke@1 724 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 725 return true;
duke@1 726
duke@1 727 if (t.inst != null)
duke@1 728 return visit(t.inst, s);
duke@1 729
duke@1 730 t.inst = fromUnknownFun.apply(s);
duke@1 731 for (List<Type> l = t.lobounds; l.nonEmpty(); l = l.tail) {
duke@1 732 if (!isSubtype(l.head, t.inst))
duke@1 733 return false;
duke@1 734 }
duke@1 735 for (List<Type> l = t.hibounds; l.nonEmpty(); l = l.tail) {
duke@1 736 if (!isSubtype(t.inst, l.head))
duke@1 737 return false;
duke@1 738 }
duke@1 739 return true;
duke@1 740 }
duke@1 741
duke@1 742 @Override
duke@1 743 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 744 return true;
duke@1 745 }
duke@1 746 };
duke@1 747 // </editor-fold>
duke@1 748
duke@1 749 // <editor-fold defaultstate="collapsed" desc="fromUnknownFun">
duke@1 750 /**
duke@1 751 * A mapping that turns all unknown types in this type to fresh
duke@1 752 * unknown variables.
duke@1 753 */
duke@1 754 public Mapping fromUnknownFun = new Mapping("fromUnknownFun") {
duke@1 755 public Type apply(Type t) {
duke@1 756 if (t.tag == UNKNOWN) return new UndetVar(t);
duke@1 757 else return t.map(this);
duke@1 758 }
duke@1 759 };
duke@1 760 // </editor-fold>
duke@1 761
duke@1 762 // <editor-fold defaultstate="collapsed" desc="Contains Type">
duke@1 763 public boolean containedBy(Type t, Type s) {
duke@1 764 switch (t.tag) {
duke@1 765 case UNDETVAR:
duke@1 766 if (s.tag == WILDCARD) {
duke@1 767 UndetVar undetvar = (UndetVar)t;
mcimadamore@210 768 WildcardType wt = (WildcardType)s;
mcimadamore@210 769 switch(wt.kind) {
mcimadamore@210 770 case UNBOUND: //similar to ? extends Object
mcimadamore@210 771 case EXTENDS: {
mcimadamore@210 772 Type bound = upperBound(s);
mcimadamore@210 773 // We should check the new upper bound against any of the
mcimadamore@210 774 // undetvar's lower bounds.
mcimadamore@210 775 for (Type t2 : undetvar.lobounds) {
mcimadamore@210 776 if (!isSubtype(t2, bound))
mcimadamore@210 777 return false;
mcimadamore@210 778 }
mcimadamore@210 779 undetvar.hibounds = undetvar.hibounds.prepend(bound);
mcimadamore@210 780 break;
mcimadamore@210 781 }
mcimadamore@210 782 case SUPER: {
mcimadamore@210 783 Type bound = lowerBound(s);
mcimadamore@210 784 // We should check the new lower bound against any of the
mcimadamore@210 785 // undetvar's lower bounds.
mcimadamore@210 786 for (Type t2 : undetvar.hibounds) {
mcimadamore@210 787 if (!isSubtype(bound, t2))
mcimadamore@210 788 return false;
mcimadamore@210 789 }
mcimadamore@210 790 undetvar.lobounds = undetvar.lobounds.prepend(bound);
mcimadamore@210 791 break;
mcimadamore@210 792 }
mcimadamore@162 793 }
duke@1 794 return true;
duke@1 795 } else {
duke@1 796 return isSameType(t, s);
duke@1 797 }
duke@1 798 case ERROR:
duke@1 799 return true;
duke@1 800 default:
duke@1 801 return containsType(s, t);
duke@1 802 }
duke@1 803 }
duke@1 804
duke@1 805 boolean containsType(List<Type> ts, List<Type> ss) {
duke@1 806 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 807 && containsType(ts.head, ss.head)) {
duke@1 808 ts = ts.tail;
duke@1 809 ss = ss.tail;
duke@1 810 }
duke@1 811 return ts.isEmpty() && ss.isEmpty();
duke@1 812 }
duke@1 813
duke@1 814 /**
duke@1 815 * Check if t contains s.
duke@1 816 *
duke@1 817 * <p>T contains S if:
duke@1 818 *
duke@1 819 * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
duke@1 820 *
duke@1 821 * <p>This relation is only used by ClassType.isSubtype(), that
duke@1 822 * is,
duke@1 823 *
duke@1 824 * <p>{@code C<S> <: C<T> if T contains S.}
duke@1 825 *
duke@1 826 * <p>Because of F-bounds, this relation can lead to infinite
duke@1 827 * recursion. Thus we must somehow break that recursion. Notice
duke@1 828 * that containsType() is only called from ClassType.isSubtype().
duke@1 829 * Since the arguments have already been checked against their
duke@1 830 * bounds, we know:
duke@1 831 *
duke@1 832 * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
duke@1 833 *
duke@1 834 * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
duke@1 835 *
duke@1 836 * @param t a type
duke@1 837 * @param s a type
duke@1 838 */
duke@1 839 public boolean containsType(Type t, Type s) {
duke@1 840 return containsType.visit(t, s);
duke@1 841 }
duke@1 842 // where
duke@1 843 private TypeRelation containsType = new TypeRelation() {
duke@1 844
duke@1 845 private Type U(Type t) {
duke@1 846 while (t.tag == WILDCARD) {
duke@1 847 WildcardType w = (WildcardType)t;
duke@1 848 if (w.isSuperBound())
duke@1 849 return w.bound == null ? syms.objectType : w.bound.bound;
duke@1 850 else
duke@1 851 t = w.type;
duke@1 852 }
duke@1 853 return t;
duke@1 854 }
duke@1 855
duke@1 856 private Type L(Type t) {
duke@1 857 while (t.tag == WILDCARD) {
duke@1 858 WildcardType w = (WildcardType)t;
duke@1 859 if (w.isExtendsBound())
duke@1 860 return syms.botType;
duke@1 861 else
duke@1 862 t = w.type;
duke@1 863 }
duke@1 864 return t;
duke@1 865 }
duke@1 866
duke@1 867 public Boolean visitType(Type t, Type s) {
duke@1 868 if (s.tag >= firstPartialTag)
duke@1 869 return containedBy(s, t);
duke@1 870 else
duke@1 871 return isSameType(t, s);
duke@1 872 }
duke@1 873
jjg@789 874 // void debugContainsType(WildcardType t, Type s) {
jjg@789 875 // System.err.println();
jjg@789 876 // System.err.format(" does %s contain %s?%n", t, s);
jjg@789 877 // System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
jjg@789 878 // upperBound(s), s, t, U(t),
jjg@789 879 // t.isSuperBound()
jjg@789 880 // || isSubtypeNoCapture(upperBound(s), U(t)));
jjg@789 881 // System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
jjg@789 882 // L(t), t, s, lowerBound(s),
jjg@789 883 // t.isExtendsBound()
jjg@789 884 // || isSubtypeNoCapture(L(t), lowerBound(s)));
jjg@789 885 // System.err.println();
jjg@789 886 // }
duke@1 887
duke@1 888 @Override
duke@1 889 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 890 if (s.tag >= firstPartialTag)
duke@1 891 return containedBy(s, t);
duke@1 892 else {
jjg@789 893 // debugContainsType(t, s);
duke@1 894 return isSameWildcard(t, s)
duke@1 895 || isCaptureOf(s, t)
duke@1 896 || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
duke@1 897 (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
duke@1 898 }
duke@1 899 }
duke@1 900
duke@1 901 @Override
duke@1 902 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 903 if (s.tag != WILDCARD)
duke@1 904 return isSameType(t, s);
duke@1 905 else
duke@1 906 return false;
duke@1 907 }
duke@1 908
duke@1 909 @Override
duke@1 910 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 911 return true;
duke@1 912 }
duke@1 913 };
duke@1 914
duke@1 915 public boolean isCaptureOf(Type s, WildcardType t) {
mcimadamore@79 916 if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
duke@1 917 return false;
duke@1 918 return isSameWildcard(t, ((CapturedType)s).wildcard);
duke@1 919 }
duke@1 920
duke@1 921 public boolean isSameWildcard(WildcardType t, Type s) {
duke@1 922 if (s.tag != WILDCARD)
duke@1 923 return false;
duke@1 924 WildcardType w = (WildcardType)s;
duke@1 925 return w.kind == t.kind && w.type == t.type;
duke@1 926 }
duke@1 927
duke@1 928 public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
duke@1 929 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 930 && containsTypeEquivalent(ts.head, ss.head)) {
duke@1 931 ts = ts.tail;
duke@1 932 ss = ss.tail;
duke@1 933 }
duke@1 934 return ts.isEmpty() && ss.isEmpty();
duke@1 935 }
duke@1 936 // </editor-fold>
duke@1 937
duke@1 938 // <editor-fold defaultstate="collapsed" desc="isCastable">
duke@1 939 public boolean isCastable(Type t, Type s) {
duke@1 940 return isCastable(t, s, Warner.noWarnings);
duke@1 941 }
duke@1 942
duke@1 943 /**
duke@1 944 * Is t is castable to s?<br>
duke@1 945 * s is assumed to be an erased type.<br>
duke@1 946 * (not defined for Method and ForAll types).
duke@1 947 */
duke@1 948 public boolean isCastable(Type t, Type s, Warner warn) {
duke@1 949 if (t == s)
duke@1 950 return true;
duke@1 951
duke@1 952 if (t.isPrimitive() != s.isPrimitive())
jrose@665 953 return allowBoxing && (isConvertible(t, s, warn) || isConvertible(s, t, warn));
duke@1 954
duke@1 955 if (warn != warnStack.head) {
duke@1 956 try {
duke@1 957 warnStack = warnStack.prepend(warn);
mcimadamore@795 958 checkUnsafeVarargsConversion(t, s, warn);
mcimadamore@185 959 return isCastable.visit(t,s);
duke@1 960 } finally {
duke@1 961 warnStack = warnStack.tail;
duke@1 962 }
duke@1 963 } else {
mcimadamore@185 964 return isCastable.visit(t,s);
duke@1 965 }
duke@1 966 }
duke@1 967 // where
duke@1 968 private TypeRelation isCastable = new TypeRelation() {
duke@1 969
duke@1 970 public Boolean visitType(Type t, Type s) {
duke@1 971 if (s.tag == ERROR)
duke@1 972 return true;
duke@1 973
duke@1 974 switch (t.tag) {
duke@1 975 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 976 case DOUBLE:
duke@1 977 return s.tag <= DOUBLE;
duke@1 978 case BOOLEAN:
duke@1 979 return s.tag == BOOLEAN;
duke@1 980 case VOID:
duke@1 981 return false;
duke@1 982 case BOT:
duke@1 983 return isSubtype(t, s);
duke@1 984 default:
duke@1 985 throw new AssertionError();
duke@1 986 }
duke@1 987 }
duke@1 988
duke@1 989 @Override
duke@1 990 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 991 return isCastable(upperBound(t), s, warnStack.head);
duke@1 992 }
duke@1 993
duke@1 994 @Override
duke@1 995 public Boolean visitClassType(ClassType t, Type s) {
duke@1 996 if (s.tag == ERROR || s.tag == BOT)
duke@1 997 return true;
duke@1 998
duke@1 999 if (s.tag == TYPEVAR) {
mcimadamore@640 1000 if (isCastable(t, s.getUpperBound(), Warner.noWarnings)) {
mcimadamore@795 1001 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1002 return true;
duke@1 1003 } else {
duke@1 1004 return false;
duke@1 1005 }
duke@1 1006 }
duke@1 1007
duke@1 1008 if (t.isCompound()) {
mcimadamore@211 1009 Warner oldWarner = warnStack.head;
mcimadamore@211 1010 warnStack.head = Warner.noWarnings;
duke@1 1011 if (!visit(supertype(t), s))
duke@1 1012 return false;
duke@1 1013 for (Type intf : interfaces(t)) {
duke@1 1014 if (!visit(intf, s))
duke@1 1015 return false;
duke@1 1016 }
mcimadamore@795 1017 if (warnStack.head.hasLint(LintCategory.UNCHECKED))
mcimadamore@795 1018 oldWarner.warn(LintCategory.UNCHECKED);
duke@1 1019 return true;
duke@1 1020 }
duke@1 1021
duke@1 1022 if (s.isCompound()) {
duke@1 1023 // call recursively to reuse the above code
duke@1 1024 return visitClassType((ClassType)s, t);
duke@1 1025 }
duke@1 1026
duke@1 1027 if (s.tag == CLASS || s.tag == ARRAY) {
duke@1 1028 boolean upcast;
duke@1 1029 if ((upcast = isSubtype(erasure(t), erasure(s)))
duke@1 1030 || isSubtype(erasure(s), erasure(t))) {
duke@1 1031 if (!upcast && s.tag == ARRAY) {
duke@1 1032 if (!isReifiable(s))
mcimadamore@795 1033 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1034 return true;
duke@1 1035 } else if (s.isRaw()) {
duke@1 1036 return true;
duke@1 1037 } else if (t.isRaw()) {
duke@1 1038 if (!isUnbounded(s))
mcimadamore@795 1039 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1040 return true;
duke@1 1041 }
duke@1 1042 // Assume |a| <: |b|
duke@1 1043 final Type a = upcast ? t : s;
duke@1 1044 final Type b = upcast ? s : t;
duke@1 1045 final boolean HIGH = true;
duke@1 1046 final boolean LOW = false;
duke@1 1047 final boolean DONT_REWRITE_TYPEVARS = false;
duke@1 1048 Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1049 Type aLow = rewriteQuantifiers(a, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1050 Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1051 Type bLow = rewriteQuantifiers(b, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1052 Type lowSub = asSub(bLow, aLow.tsym);
duke@1 1053 Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1054 if (highSub == null) {
duke@1 1055 final boolean REWRITE_TYPEVARS = true;
duke@1 1056 aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
duke@1 1057 aLow = rewriteQuantifiers(a, LOW, REWRITE_TYPEVARS);
duke@1 1058 bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
duke@1 1059 bLow = rewriteQuantifiers(b, LOW, REWRITE_TYPEVARS);
duke@1 1060 lowSub = asSub(bLow, aLow.tsym);
duke@1 1061 highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1062 }
duke@1 1063 if (highSub != null) {
jjg@816 1064 if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
jjg@816 1065 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
jjg@816 1066 }
mcimadamore@185 1067 if (!disjointTypes(aHigh.allparams(), highSub.allparams())
mcimadamore@185 1068 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
mcimadamore@185 1069 && !disjointTypes(aLow.allparams(), highSub.allparams())
mcimadamore@185 1070 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
mcimadamore@779 1071 if (upcast ? giveWarning(a, b) :
mcimadamore@235 1072 giveWarning(b, a))
mcimadamore@795 1073 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1074 return true;
duke@1 1075 }
duke@1 1076 }
duke@1 1077 if (isReifiable(s))
duke@1 1078 return isSubtypeUnchecked(a, b);
duke@1 1079 else
duke@1 1080 return isSubtypeUnchecked(a, b, warnStack.head);
duke@1 1081 }
duke@1 1082
duke@1 1083 // Sidecast
duke@1 1084 if (s.tag == CLASS) {
duke@1 1085 if ((s.tsym.flags() & INTERFACE) != 0) {
duke@1 1086 return ((t.tsym.flags() & FINAL) == 0)
duke@1 1087 ? sideCast(t, s, warnStack.head)
duke@1 1088 : sideCastFinal(t, s, warnStack.head);
duke@1 1089 } else if ((t.tsym.flags() & INTERFACE) != 0) {
duke@1 1090 return ((s.tsym.flags() & FINAL) == 0)
duke@1 1091 ? sideCast(t, s, warnStack.head)
duke@1 1092 : sideCastFinal(t, s, warnStack.head);
duke@1 1093 } else {
duke@1 1094 // unrelated class types
duke@1 1095 return false;
duke@1 1096 }
duke@1 1097 }
duke@1 1098 }
duke@1 1099 return false;
duke@1 1100 }
duke@1 1101
duke@1 1102 @Override
duke@1 1103 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 1104 switch (s.tag) {
duke@1 1105 case ERROR:
duke@1 1106 case BOT:
duke@1 1107 return true;
duke@1 1108 case TYPEVAR:
duke@1 1109 if (isCastable(s, t, Warner.noWarnings)) {
mcimadamore@795 1110 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1111 return true;
duke@1 1112 } else {
duke@1 1113 return false;
duke@1 1114 }
duke@1 1115 case CLASS:
duke@1 1116 return isSubtype(t, s);
duke@1 1117 case ARRAY:
mcimadamore@786 1118 if (elemtype(t).tag <= lastBaseTag ||
mcimadamore@786 1119 elemtype(s).tag <= lastBaseTag) {
duke@1 1120 return elemtype(t).tag == elemtype(s).tag;
duke@1 1121 } else {
duke@1 1122 return visit(elemtype(t), elemtype(s));
duke@1 1123 }
duke@1 1124 default:
duke@1 1125 return false;
duke@1 1126 }
duke@1 1127 }
duke@1 1128
duke@1 1129 @Override
duke@1 1130 public Boolean visitTypeVar(TypeVar t, Type s) {
duke@1 1131 switch (s.tag) {
duke@1 1132 case ERROR:
duke@1 1133 case BOT:
duke@1 1134 return true;
duke@1 1135 case TYPEVAR:
duke@1 1136 if (isSubtype(t, s)) {
duke@1 1137 return true;
duke@1 1138 } else if (isCastable(t.bound, s, Warner.noWarnings)) {
mcimadamore@795 1139 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1140 return true;
duke@1 1141 } else {
duke@1 1142 return false;
duke@1 1143 }
duke@1 1144 default:
duke@1 1145 return isCastable(t.bound, s, warnStack.head);
duke@1 1146 }
duke@1 1147 }
duke@1 1148
duke@1 1149 @Override
duke@1 1150 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1151 return true;
duke@1 1152 }
duke@1 1153 };
duke@1 1154 // </editor-fold>
duke@1 1155
duke@1 1156 // <editor-fold defaultstate="collapsed" desc="disjointTypes">
duke@1 1157 public boolean disjointTypes(List<Type> ts, List<Type> ss) {
duke@1 1158 while (ts.tail != null && ss.tail != null) {
duke@1 1159 if (disjointType(ts.head, ss.head)) return true;
duke@1 1160 ts = ts.tail;
duke@1 1161 ss = ss.tail;
duke@1 1162 }
duke@1 1163 return false;
duke@1 1164 }
duke@1 1165
duke@1 1166 /**
duke@1 1167 * Two types or wildcards are considered disjoint if it can be
duke@1 1168 * proven that no type can be contained in both. It is
duke@1 1169 * conservative in that it is allowed to say that two types are
duke@1 1170 * not disjoint, even though they actually are.
duke@1 1171 *
duke@1 1172 * The type C<X> is castable to C<Y> exactly if X and Y are not
duke@1 1173 * disjoint.
duke@1 1174 */
duke@1 1175 public boolean disjointType(Type t, Type s) {
duke@1 1176 return disjointType.visit(t, s);
duke@1 1177 }
duke@1 1178 // where
duke@1 1179 private TypeRelation disjointType = new TypeRelation() {
duke@1 1180
duke@1 1181 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 1182
duke@1 1183 public Boolean visitType(Type t, Type s) {
duke@1 1184 if (s.tag == WILDCARD)
duke@1 1185 return visit(s, t);
duke@1 1186 else
duke@1 1187 return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
duke@1 1188 }
duke@1 1189
duke@1 1190 private boolean isCastableRecursive(Type t, Type s) {
duke@1 1191 TypePair pair = new TypePair(t, s);
duke@1 1192 if (cache.add(pair)) {
duke@1 1193 try {
duke@1 1194 return Types.this.isCastable(t, s);
duke@1 1195 } finally {
duke@1 1196 cache.remove(pair);
duke@1 1197 }
duke@1 1198 } else {
duke@1 1199 return true;
duke@1 1200 }
duke@1 1201 }
duke@1 1202
duke@1 1203 private boolean notSoftSubtypeRecursive(Type t, Type s) {
duke@1 1204 TypePair pair = new TypePair(t, s);
duke@1 1205 if (cache.add(pair)) {
duke@1 1206 try {
duke@1 1207 return Types.this.notSoftSubtype(t, s);
duke@1 1208 } finally {
duke@1 1209 cache.remove(pair);
duke@1 1210 }
duke@1 1211 } else {
duke@1 1212 return false;
duke@1 1213 }
duke@1 1214 }
duke@1 1215
duke@1 1216 @Override
duke@1 1217 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 1218 if (t.isUnbound())
duke@1 1219 return false;
duke@1 1220
duke@1 1221 if (s.tag != WILDCARD) {
duke@1 1222 if (t.isExtendsBound())
duke@1 1223 return notSoftSubtypeRecursive(s, t.type);
duke@1 1224 else // isSuperBound()
duke@1 1225 return notSoftSubtypeRecursive(t.type, s);
duke@1 1226 }
duke@1 1227
duke@1 1228 if (s.isUnbound())
duke@1 1229 return false;
duke@1 1230
duke@1 1231 if (t.isExtendsBound()) {
duke@1 1232 if (s.isExtendsBound())
duke@1 1233 return !isCastableRecursive(t.type, upperBound(s));
duke@1 1234 else if (s.isSuperBound())
duke@1 1235 return notSoftSubtypeRecursive(lowerBound(s), t.type);
duke@1 1236 } else if (t.isSuperBound()) {
duke@1 1237 if (s.isExtendsBound())
duke@1 1238 return notSoftSubtypeRecursive(t.type, upperBound(s));
duke@1 1239 }
duke@1 1240 return false;
duke@1 1241 }
duke@1 1242 };
duke@1 1243 // </editor-fold>
duke@1 1244
duke@1 1245 // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
duke@1 1246 /**
duke@1 1247 * Returns the lower bounds of the formals of a method.
duke@1 1248 */
duke@1 1249 public List<Type> lowerBoundArgtypes(Type t) {
duke@1 1250 return map(t.getParameterTypes(), lowerBoundMapping);
duke@1 1251 }
duke@1 1252 private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
duke@1 1253 public Type apply(Type t) {
duke@1 1254 return lowerBound(t);
duke@1 1255 }
duke@1 1256 };
duke@1 1257 // </editor-fold>
duke@1 1258
duke@1 1259 // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
duke@1 1260 /**
duke@1 1261 * This relation answers the question: is impossible that
duke@1 1262 * something of type `t' can be a subtype of `s'? This is
duke@1 1263 * different from the question "is `t' not a subtype of `s'?"
duke@1 1264 * when type variables are involved: Integer is not a subtype of T
duke@1 1265 * where <T extends Number> but it is not true that Integer cannot
duke@1 1266 * possibly be a subtype of T.
duke@1 1267 */
duke@1 1268 public boolean notSoftSubtype(Type t, Type s) {
duke@1 1269 if (t == s) return false;
duke@1 1270 if (t.tag == TYPEVAR) {
duke@1 1271 TypeVar tv = (TypeVar) t;
duke@1 1272 return !isCastable(tv.bound,
mcimadamore@640 1273 relaxBound(s),
duke@1 1274 Warner.noWarnings);
duke@1 1275 }
duke@1 1276 if (s.tag != WILDCARD)
duke@1 1277 s = upperBound(s);
mcimadamore@640 1278
mcimadamore@640 1279 return !isSubtype(t, relaxBound(s));
mcimadamore@640 1280 }
mcimadamore@640 1281
mcimadamore@640 1282 private Type relaxBound(Type t) {
mcimadamore@640 1283 if (t.tag == TYPEVAR) {
mcimadamore@640 1284 while (t.tag == TYPEVAR)
mcimadamore@640 1285 t = t.getUpperBound();
mcimadamore@640 1286 t = rewriteQuantifiers(t, true, true);
mcimadamore@640 1287 }
mcimadamore@640 1288 return t;
duke@1 1289 }
duke@1 1290 // </editor-fold>
duke@1 1291
duke@1 1292 // <editor-fold defaultstate="collapsed" desc="isReifiable">
duke@1 1293 public boolean isReifiable(Type t) {
duke@1 1294 return isReifiable.visit(t);
duke@1 1295 }
duke@1 1296 // where
duke@1 1297 private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
duke@1 1298
duke@1 1299 public Boolean visitType(Type t, Void ignored) {
duke@1 1300 return true;
duke@1 1301 }
duke@1 1302
duke@1 1303 @Override
duke@1 1304 public Boolean visitClassType(ClassType t, Void ignored) {
mcimadamore@356 1305 if (t.isCompound())
mcimadamore@356 1306 return false;
mcimadamore@356 1307 else {
mcimadamore@356 1308 if (!t.isParameterized())
mcimadamore@356 1309 return true;
mcimadamore@356 1310
mcimadamore@356 1311 for (Type param : t.allparams()) {
mcimadamore@356 1312 if (!param.isUnbound())
mcimadamore@356 1313 return false;
mcimadamore@356 1314 }
duke@1 1315 return true;
duke@1 1316 }
duke@1 1317 }
duke@1 1318
duke@1 1319 @Override
duke@1 1320 public Boolean visitArrayType(ArrayType t, Void ignored) {
duke@1 1321 return visit(t.elemtype);
duke@1 1322 }
duke@1 1323
duke@1 1324 @Override
duke@1 1325 public Boolean visitTypeVar(TypeVar t, Void ignored) {
duke@1 1326 return false;
duke@1 1327 }
duke@1 1328 };
duke@1 1329 // </editor-fold>
duke@1 1330
duke@1 1331 // <editor-fold defaultstate="collapsed" desc="Array Utils">
duke@1 1332 public boolean isArray(Type t) {
duke@1 1333 while (t.tag == WILDCARD)
duke@1 1334 t = upperBound(t);
duke@1 1335 return t.tag == ARRAY;
duke@1 1336 }
duke@1 1337
duke@1 1338 /**
duke@1 1339 * The element type of an array.
duke@1 1340 */
duke@1 1341 public Type elemtype(Type t) {
duke@1 1342 switch (t.tag) {
duke@1 1343 case WILDCARD:
duke@1 1344 return elemtype(upperBound(t));
duke@1 1345 case ARRAY:
duke@1 1346 return ((ArrayType)t).elemtype;
duke@1 1347 case FORALL:
duke@1 1348 return elemtype(((ForAll)t).qtype);
duke@1 1349 case ERROR:
duke@1 1350 return t;
duke@1 1351 default:
duke@1 1352 return null;
duke@1 1353 }
duke@1 1354 }
duke@1 1355
mcimadamore@787 1356 public Type elemtypeOrType(Type t) {
mcimadamore@787 1357 Type elemtype = elemtype(t);
mcimadamore@787 1358 return elemtype != null ?
mcimadamore@787 1359 elemtype :
mcimadamore@787 1360 t;
mcimadamore@787 1361 }
mcimadamore@787 1362
duke@1 1363 /**
duke@1 1364 * Mapping to take element type of an arraytype
duke@1 1365 */
duke@1 1366 private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
duke@1 1367 public Type apply(Type t) { return elemtype(t); }
duke@1 1368 };
duke@1 1369
duke@1 1370 /**
duke@1 1371 * The number of dimensions of an array type.
duke@1 1372 */
duke@1 1373 public int dimensions(Type t) {
duke@1 1374 int result = 0;
duke@1 1375 while (t.tag == ARRAY) {
duke@1 1376 result++;
duke@1 1377 t = elemtype(t);
duke@1 1378 }
duke@1 1379 return result;
duke@1 1380 }
duke@1 1381 // </editor-fold>
duke@1 1382
duke@1 1383 // <editor-fold defaultstate="collapsed" desc="asSuper">
duke@1 1384 /**
duke@1 1385 * Return the (most specific) base type of t that starts with the
duke@1 1386 * given symbol. If none exists, return null.
duke@1 1387 *
duke@1 1388 * @param t a type
duke@1 1389 * @param sym a symbol
duke@1 1390 */
duke@1 1391 public Type asSuper(Type t, Symbol sym) {
duke@1 1392 return asSuper.visit(t, sym);
duke@1 1393 }
duke@1 1394 // where
duke@1 1395 private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
duke@1 1396
duke@1 1397 public Type visitType(Type t, Symbol sym) {
duke@1 1398 return null;
duke@1 1399 }
duke@1 1400
duke@1 1401 @Override
duke@1 1402 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1403 if (t.tsym == sym)
duke@1 1404 return t;
duke@1 1405
duke@1 1406 Type st = supertype(t);
mcimadamore@19 1407 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
duke@1 1408 Type x = asSuper(st, sym);
duke@1 1409 if (x != null)
duke@1 1410 return x;
duke@1 1411 }
duke@1 1412 if ((sym.flags() & INTERFACE) != 0) {
duke@1 1413 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 1414 Type x = asSuper(l.head, sym);
duke@1 1415 if (x != null)
duke@1 1416 return x;
duke@1 1417 }
duke@1 1418 }
duke@1 1419 return null;
duke@1 1420 }
duke@1 1421
duke@1 1422 @Override
duke@1 1423 public Type visitArrayType(ArrayType t, Symbol sym) {
duke@1 1424 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1425 }
duke@1 1426
duke@1 1427 @Override
duke@1 1428 public Type visitTypeVar(TypeVar t, Symbol sym) {
mcimadamore@19 1429 if (t.tsym == sym)
mcimadamore@19 1430 return t;
mcimadamore@19 1431 else
mcimadamore@19 1432 return asSuper(t.bound, sym);
duke@1 1433 }
duke@1 1434
duke@1 1435 @Override
duke@1 1436 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1437 return t;
duke@1 1438 }
duke@1 1439 };
duke@1 1440
duke@1 1441 /**
duke@1 1442 * Return the base type of t or any of its outer types that starts
duke@1 1443 * with the given symbol. If none exists, return null.
duke@1 1444 *
duke@1 1445 * @param t a type
duke@1 1446 * @param sym a symbol
duke@1 1447 */
duke@1 1448 public Type asOuterSuper(Type t, Symbol sym) {
duke@1 1449 switch (t.tag) {
duke@1 1450 case CLASS:
duke@1 1451 do {
duke@1 1452 Type s = asSuper(t, sym);
duke@1 1453 if (s != null) return s;
duke@1 1454 t = t.getEnclosingType();
duke@1 1455 } while (t.tag == CLASS);
duke@1 1456 return null;
duke@1 1457 case ARRAY:
duke@1 1458 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1459 case TYPEVAR:
duke@1 1460 return asSuper(t, sym);
duke@1 1461 case ERROR:
duke@1 1462 return t;
duke@1 1463 default:
duke@1 1464 return null;
duke@1 1465 }
duke@1 1466 }
duke@1 1467
duke@1 1468 /**
duke@1 1469 * Return the base type of t or any of its enclosing types that
duke@1 1470 * starts with the given symbol. If none exists, return null.
duke@1 1471 *
duke@1 1472 * @param t a type
duke@1 1473 * @param sym a symbol
duke@1 1474 */
duke@1 1475 public Type asEnclosingSuper(Type t, Symbol sym) {
duke@1 1476 switch (t.tag) {
duke@1 1477 case CLASS:
duke@1 1478 do {
duke@1 1479 Type s = asSuper(t, sym);
duke@1 1480 if (s != null) return s;
duke@1 1481 Type outer = t.getEnclosingType();
duke@1 1482 t = (outer.tag == CLASS) ? outer :
duke@1 1483 (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
duke@1 1484 Type.noType;
duke@1 1485 } while (t.tag == CLASS);
duke@1 1486 return null;
duke@1 1487 case ARRAY:
duke@1 1488 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1489 case TYPEVAR:
duke@1 1490 return asSuper(t, sym);
duke@1 1491 case ERROR:
duke@1 1492 return t;
duke@1 1493 default:
duke@1 1494 return null;
duke@1 1495 }
duke@1 1496 }
duke@1 1497 // </editor-fold>
duke@1 1498
duke@1 1499 // <editor-fold defaultstate="collapsed" desc="memberType">
duke@1 1500 /**
duke@1 1501 * The type of given symbol, seen as a member of t.
duke@1 1502 *
duke@1 1503 * @param t a type
duke@1 1504 * @param sym a symbol
duke@1 1505 */
duke@1 1506 public Type memberType(Type t, Symbol sym) {
duke@1 1507 return (sym.flags() & STATIC) != 0
duke@1 1508 ? sym.type
duke@1 1509 : memberType.visit(t, sym);
mcimadamore@341 1510 }
duke@1 1511 // where
duke@1 1512 private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
duke@1 1513
duke@1 1514 public Type visitType(Type t, Symbol sym) {
duke@1 1515 return sym.type;
duke@1 1516 }
duke@1 1517
duke@1 1518 @Override
duke@1 1519 public Type visitWildcardType(WildcardType t, Symbol sym) {
duke@1 1520 return memberType(upperBound(t), sym);
duke@1 1521 }
duke@1 1522
duke@1 1523 @Override
duke@1 1524 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1525 Symbol owner = sym.owner;
duke@1 1526 long flags = sym.flags();
duke@1 1527 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
duke@1 1528 Type base = asOuterSuper(t, owner);
mcimadamore@134 1529 //if t is an intersection type T = CT & I1 & I2 ... & In
mcimadamore@134 1530 //its supertypes CT, I1, ... In might contain wildcards
mcimadamore@134 1531 //so we need to go through capture conversion
mcimadamore@134 1532 base = t.isCompound() ? capture(base) : base;
duke@1 1533 if (base != null) {
duke@1 1534 List<Type> ownerParams = owner.type.allparams();
duke@1 1535 List<Type> baseParams = base.allparams();
duke@1 1536 if (ownerParams.nonEmpty()) {
duke@1 1537 if (baseParams.isEmpty()) {
duke@1 1538 // then base is a raw type
duke@1 1539 return erasure(sym.type);
duke@1 1540 } else {
duke@1 1541 return subst(sym.type, ownerParams, baseParams);
duke@1 1542 }
duke@1 1543 }
duke@1 1544 }
duke@1 1545 }
duke@1 1546 return sym.type;
duke@1 1547 }
duke@1 1548
duke@1 1549 @Override
duke@1 1550 public Type visitTypeVar(TypeVar t, Symbol sym) {
duke@1 1551 return memberType(t.bound, sym);
duke@1 1552 }
duke@1 1553
duke@1 1554 @Override
duke@1 1555 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1556 return t;
duke@1 1557 }
duke@1 1558 };
duke@1 1559 // </editor-fold>
duke@1 1560
duke@1 1561 // <editor-fold defaultstate="collapsed" desc="isAssignable">
duke@1 1562 public boolean isAssignable(Type t, Type s) {
duke@1 1563 return isAssignable(t, s, Warner.noWarnings);
duke@1 1564 }
duke@1 1565
duke@1 1566 /**
duke@1 1567 * Is t assignable to s?<br>
duke@1 1568 * Equivalent to subtype except for constant values and raw
duke@1 1569 * types.<br>
duke@1 1570 * (not defined for Method and ForAll types)
duke@1 1571 */
duke@1 1572 public boolean isAssignable(Type t, Type s, Warner warn) {
duke@1 1573 if (t.tag == ERROR)
duke@1 1574 return true;
duke@1 1575 if (t.tag <= INT && t.constValue() != null) {
duke@1 1576 int value = ((Number)t.constValue()).intValue();
duke@1 1577 switch (s.tag) {
duke@1 1578 case BYTE:
duke@1 1579 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
duke@1 1580 return true;
duke@1 1581 break;
duke@1 1582 case CHAR:
duke@1 1583 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
duke@1 1584 return true;
duke@1 1585 break;
duke@1 1586 case SHORT:
duke@1 1587 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
duke@1 1588 return true;
duke@1 1589 break;
duke@1 1590 case INT:
duke@1 1591 return true;
duke@1 1592 case CLASS:
duke@1 1593 switch (unboxedType(s).tag) {
duke@1 1594 case BYTE:
duke@1 1595 case CHAR:
duke@1 1596 case SHORT:
duke@1 1597 return isAssignable(t, unboxedType(s), warn);
duke@1 1598 }
duke@1 1599 break;
duke@1 1600 }
duke@1 1601 }
duke@1 1602 return isConvertible(t, s, warn);
duke@1 1603 }
duke@1 1604 // </editor-fold>
duke@1 1605
duke@1 1606 // <editor-fold defaultstate="collapsed" desc="erasure">
duke@1 1607 /**
duke@1 1608 * The erasure of t {@code |t|} -- the type that results when all
duke@1 1609 * type parameters in t are deleted.
duke@1 1610 */
duke@1 1611 public Type erasure(Type t) {
mcimadamore@30 1612 return erasure(t, false);
mcimadamore@30 1613 }
mcimadamore@30 1614 //where
mcimadamore@30 1615 private Type erasure(Type t, boolean recurse) {
duke@1 1616 if (t.tag <= lastBaseTag)
duke@1 1617 return t; /* fast special case */
duke@1 1618 else
mcimadamore@30 1619 return erasure.visit(t, recurse);
mcimadamore@341 1620 }
duke@1 1621 // where
mcimadamore@30 1622 private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
mcimadamore@30 1623 public Type visitType(Type t, Boolean recurse) {
duke@1 1624 if (t.tag <= lastBaseTag)
duke@1 1625 return t; /*fast special case*/
duke@1 1626 else
mcimadamore@30 1627 return t.map(recurse ? erasureRecFun : erasureFun);
duke@1 1628 }
duke@1 1629
duke@1 1630 @Override
mcimadamore@30 1631 public Type visitWildcardType(WildcardType t, Boolean recurse) {
mcimadamore@30 1632 return erasure(upperBound(t), recurse);
duke@1 1633 }
duke@1 1634
duke@1 1635 @Override
mcimadamore@30 1636 public Type visitClassType(ClassType t, Boolean recurse) {
mcimadamore@30 1637 Type erased = t.tsym.erasure(Types.this);
mcimadamore@30 1638 if (recurse) {
mcimadamore@30 1639 erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
mcimadamore@30 1640 }
mcimadamore@30 1641 return erased;
duke@1 1642 }
duke@1 1643
duke@1 1644 @Override
mcimadamore@30 1645 public Type visitTypeVar(TypeVar t, Boolean recurse) {
mcimadamore@30 1646 return erasure(t.bound, recurse);
duke@1 1647 }
duke@1 1648
duke@1 1649 @Override
mcimadamore@30 1650 public Type visitErrorType(ErrorType t, Boolean recurse) {
duke@1 1651 return t;
duke@1 1652 }
duke@1 1653 };
mcimadamore@30 1654
duke@1 1655 private Mapping erasureFun = new Mapping ("erasure") {
duke@1 1656 public Type apply(Type t) { return erasure(t); }
duke@1 1657 };
duke@1 1658
mcimadamore@30 1659 private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
mcimadamore@30 1660 public Type apply(Type t) { return erasureRecursive(t); }
mcimadamore@30 1661 };
mcimadamore@30 1662
duke@1 1663 public List<Type> erasure(List<Type> ts) {
duke@1 1664 return Type.map(ts, erasureFun);
duke@1 1665 }
mcimadamore@30 1666
mcimadamore@30 1667 public Type erasureRecursive(Type t) {
mcimadamore@30 1668 return erasure(t, true);
mcimadamore@30 1669 }
mcimadamore@30 1670
mcimadamore@30 1671 public List<Type> erasureRecursive(List<Type> ts) {
mcimadamore@30 1672 return Type.map(ts, erasureRecFun);
mcimadamore@30 1673 }
duke@1 1674 // </editor-fold>
duke@1 1675
duke@1 1676 // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
duke@1 1677 /**
duke@1 1678 * Make a compound type from non-empty list of types
duke@1 1679 *
duke@1 1680 * @param bounds the types from which the compound type is formed
duke@1 1681 * @param supertype is objectType if all bounds are interfaces,
duke@1 1682 * null otherwise.
duke@1 1683 */
duke@1 1684 public Type makeCompoundType(List<Type> bounds,
duke@1 1685 Type supertype) {
duke@1 1686 ClassSymbol bc =
duke@1 1687 new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
duke@1 1688 Type.moreInfo
duke@1 1689 ? names.fromString(bounds.toString())
duke@1 1690 : names.empty,
duke@1 1691 syms.noSymbol);
duke@1 1692 if (bounds.head.tag == TYPEVAR)
duke@1 1693 // error condition, recover
mcimadamore@121 1694 bc.erasure_field = syms.objectType;
mcimadamore@121 1695 else
mcimadamore@121 1696 bc.erasure_field = erasure(bounds.head);
mcimadamore@121 1697 bc.members_field = new Scope(bc);
duke@1 1698 ClassType bt = (ClassType)bc.type;
duke@1 1699 bt.allparams_field = List.nil();
duke@1 1700 if (supertype != null) {
duke@1 1701 bt.supertype_field = supertype;
duke@1 1702 bt.interfaces_field = bounds;
duke@1 1703 } else {
duke@1 1704 bt.supertype_field = bounds.head;
duke@1 1705 bt.interfaces_field = bounds.tail;
duke@1 1706 }
jjg@816 1707 Assert.check(bt.supertype_field.tsym.completer != null
jjg@816 1708 || !bt.supertype_field.isInterface(),
jjg@816 1709 bt.supertype_field);
duke@1 1710 return bt;
duke@1 1711 }
duke@1 1712
duke@1 1713 /**
duke@1 1714 * Same as {@link #makeCompoundType(List,Type)}, except that the
duke@1 1715 * second parameter is computed directly. Note that this might
duke@1 1716 * cause a symbol completion. Hence, this version of
duke@1 1717 * makeCompoundType may not be called during a classfile read.
duke@1 1718 */
duke@1 1719 public Type makeCompoundType(List<Type> bounds) {
duke@1 1720 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
duke@1 1721 supertype(bounds.head) : null;
duke@1 1722 return makeCompoundType(bounds, supertype);
duke@1 1723 }
duke@1 1724
duke@1 1725 /**
duke@1 1726 * A convenience wrapper for {@link #makeCompoundType(List)}; the
duke@1 1727 * arguments are converted to a list and passed to the other
duke@1 1728 * method. Note that this might cause a symbol completion.
duke@1 1729 * Hence, this version of makeCompoundType may not be called
duke@1 1730 * during a classfile read.
duke@1 1731 */
duke@1 1732 public Type makeCompoundType(Type bound1, Type bound2) {
duke@1 1733 return makeCompoundType(List.of(bound1, bound2));
duke@1 1734 }
duke@1 1735 // </editor-fold>
duke@1 1736
duke@1 1737 // <editor-fold defaultstate="collapsed" desc="supertype">
duke@1 1738 public Type supertype(Type t) {
duke@1 1739 return supertype.visit(t);
duke@1 1740 }
duke@1 1741 // where
duke@1 1742 private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
duke@1 1743
duke@1 1744 public Type visitType(Type t, Void ignored) {
duke@1 1745 // A note on wildcards: there is no good way to
duke@1 1746 // determine a supertype for a super bounded wildcard.
duke@1 1747 return null;
duke@1 1748 }
duke@1 1749
duke@1 1750 @Override
duke@1 1751 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1752 if (t.supertype_field == null) {
duke@1 1753 Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
duke@1 1754 // An interface has no superclass; its supertype is Object.
duke@1 1755 if (t.isInterface())
duke@1 1756 supertype = ((ClassType)t.tsym.type).supertype_field;
duke@1 1757 if (t.supertype_field == null) {
duke@1 1758 List<Type> actuals = classBound(t).allparams();
duke@1 1759 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1760 if (t.hasErasedSupertypes()) {
mcimadamore@30 1761 t.supertype_field = erasureRecursive(supertype);
mcimadamore@30 1762 } else if (formals.nonEmpty()) {
duke@1 1763 t.supertype_field = subst(supertype, formals, actuals);
duke@1 1764 }
mcimadamore@30 1765 else {
mcimadamore@30 1766 t.supertype_field = supertype;
mcimadamore@30 1767 }
duke@1 1768 }
duke@1 1769 }
duke@1 1770 return t.supertype_field;
duke@1 1771 }
duke@1 1772
duke@1 1773 /**
duke@1 1774 * The supertype is always a class type. If the type
duke@1 1775 * variable's bounds start with a class type, this is also
duke@1 1776 * the supertype. Otherwise, the supertype is
duke@1 1777 * java.lang.Object.
duke@1 1778 */
duke@1 1779 @Override
duke@1 1780 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1781 if (t.bound.tag == TYPEVAR ||
duke@1 1782 (!t.bound.isCompound() && !t.bound.isInterface())) {
duke@1 1783 return t.bound;
duke@1 1784 } else {
duke@1 1785 return supertype(t.bound);
duke@1 1786 }
duke@1 1787 }
duke@1 1788
duke@1 1789 @Override
duke@1 1790 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 1791 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
duke@1 1792 return arraySuperType();
duke@1 1793 else
duke@1 1794 return new ArrayType(supertype(t.elemtype), t.tsym);
duke@1 1795 }
duke@1 1796
duke@1 1797 @Override
duke@1 1798 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1799 return t;
duke@1 1800 }
duke@1 1801 };
duke@1 1802 // </editor-fold>
duke@1 1803
duke@1 1804 // <editor-fold defaultstate="collapsed" desc="interfaces">
duke@1 1805 /**
duke@1 1806 * Return the interfaces implemented by this class.
duke@1 1807 */
duke@1 1808 public List<Type> interfaces(Type t) {
duke@1 1809 return interfaces.visit(t);
duke@1 1810 }
duke@1 1811 // where
duke@1 1812 private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
duke@1 1813
duke@1 1814 public List<Type> visitType(Type t, Void ignored) {
duke@1 1815 return List.nil();
duke@1 1816 }
duke@1 1817
duke@1 1818 @Override
duke@1 1819 public List<Type> visitClassType(ClassType t, Void ignored) {
duke@1 1820 if (t.interfaces_field == null) {
duke@1 1821 List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
duke@1 1822 if (t.interfaces_field == null) {
duke@1 1823 // If t.interfaces_field is null, then t must
duke@1 1824 // be a parameterized type (not to be confused
duke@1 1825 // with a generic type declaration).
duke@1 1826 // Terminology:
duke@1 1827 // Parameterized type: List<String>
duke@1 1828 // Generic type declaration: class List<E> { ... }
duke@1 1829 // So t corresponds to List<String> and
duke@1 1830 // t.tsym.type corresponds to List<E>.
duke@1 1831 // The reason t must be parameterized type is
duke@1 1832 // that completion will happen as a side
duke@1 1833 // effect of calling
duke@1 1834 // ClassSymbol.getInterfaces. Since
duke@1 1835 // t.interfaces_field is null after
duke@1 1836 // completion, we can assume that t is not the
duke@1 1837 // type of a class/interface declaration.
jjg@816 1838 Assert.check(t != t.tsym.type, t);
duke@1 1839 List<Type> actuals = t.allparams();
duke@1 1840 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 1841 if (t.hasErasedSupertypes()) {
mcimadamore@30 1842 t.interfaces_field = erasureRecursive(interfaces);
mcimadamore@30 1843 } else if (formals.nonEmpty()) {
duke@1 1844 t.interfaces_field =
duke@1 1845 upperBounds(subst(interfaces, formals, actuals));
duke@1 1846 }
mcimadamore@30 1847 else {
mcimadamore@30 1848 t.interfaces_field = interfaces;
mcimadamore@30 1849 }
duke@1 1850 }
duke@1 1851 }
duke@1 1852 return t.interfaces_field;
duke@1 1853 }
duke@1 1854
duke@1 1855 @Override
duke@1 1856 public List<Type> visitTypeVar(TypeVar t, Void ignored) {
duke@1 1857 if (t.bound.isCompound())
duke@1 1858 return interfaces(t.bound);
duke@1 1859
duke@1 1860 if (t.bound.isInterface())
duke@1 1861 return List.of(t.bound);
duke@1 1862
duke@1 1863 return List.nil();
duke@1 1864 }
duke@1 1865 };
duke@1 1866 // </editor-fold>
duke@1 1867
duke@1 1868 // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
duke@1 1869 Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
duke@1 1870
duke@1 1871 public boolean isDerivedRaw(Type t) {
duke@1 1872 Boolean result = isDerivedRawCache.get(t);
duke@1 1873 if (result == null) {
duke@1 1874 result = isDerivedRawInternal(t);
duke@1 1875 isDerivedRawCache.put(t, result);
duke@1 1876 }
duke@1 1877 return result;
duke@1 1878 }
duke@1 1879
duke@1 1880 public boolean isDerivedRawInternal(Type t) {
duke@1 1881 if (t.isErroneous())
duke@1 1882 return false;
duke@1 1883 return
duke@1 1884 t.isRaw() ||
duke@1 1885 supertype(t) != null && isDerivedRaw(supertype(t)) ||
duke@1 1886 isDerivedRaw(interfaces(t));
duke@1 1887 }
duke@1 1888
duke@1 1889 public boolean isDerivedRaw(List<Type> ts) {
duke@1 1890 List<Type> l = ts;
duke@1 1891 while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
duke@1 1892 return l.nonEmpty();
duke@1 1893 }
duke@1 1894 // </editor-fold>
duke@1 1895
duke@1 1896 // <editor-fold defaultstate="collapsed" desc="setBounds">
duke@1 1897 /**
duke@1 1898 * Set the bounds field of the given type variable to reflect a
duke@1 1899 * (possibly multiple) list of bounds.
duke@1 1900 * @param t a type variable
duke@1 1901 * @param bounds the bounds, must be nonempty
duke@1 1902 * @param supertype is objectType if all bounds are interfaces,
duke@1 1903 * null otherwise.
duke@1 1904 */
duke@1 1905 public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
duke@1 1906 if (bounds.tail.isEmpty())
duke@1 1907 t.bound = bounds.head;
duke@1 1908 else
duke@1 1909 t.bound = makeCompoundType(bounds, supertype);
duke@1 1910 t.rank_field = -1;
duke@1 1911 }
duke@1 1912
duke@1 1913 /**
duke@1 1914 * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
mcimadamore@563 1915 * third parameter is computed directly, as follows: if all
mcimadamore@563 1916 * all bounds are interface types, the computed supertype is Object,
mcimadamore@563 1917 * otherwise the supertype is simply left null (in this case, the supertype
mcimadamore@563 1918 * is assumed to be the head of the bound list passed as second argument).
mcimadamore@563 1919 * Note that this check might cause a symbol completion. Hence, this version of
duke@1 1920 * setBounds may not be called during a classfile read.
duke@1 1921 */
duke@1 1922 public void setBounds(TypeVar t, List<Type> bounds) {
duke@1 1923 Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
mcimadamore@563 1924 syms.objectType : null;
duke@1 1925 setBounds(t, bounds, supertype);
duke@1 1926 t.rank_field = -1;
duke@1 1927 }
duke@1 1928 // </editor-fold>
duke@1 1929
duke@1 1930 // <editor-fold defaultstate="collapsed" desc="getBounds">
duke@1 1931 /**
duke@1 1932 * Return list of bounds of the given type variable.
duke@1 1933 */
duke@1 1934 public List<Type> getBounds(TypeVar t) {
duke@1 1935 if (t.bound.isErroneous() || !t.bound.isCompound())
duke@1 1936 return List.of(t.bound);
duke@1 1937 else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
duke@1 1938 return interfaces(t).prepend(supertype(t));
duke@1 1939 else
duke@1 1940 // No superclass was given in bounds.
duke@1 1941 // In this case, supertype is Object, erasure is first interface.
duke@1 1942 return interfaces(t);
duke@1 1943 }
duke@1 1944 // </editor-fold>
duke@1 1945
duke@1 1946 // <editor-fold defaultstate="collapsed" desc="classBound">
duke@1 1947 /**
duke@1 1948 * If the given type is a (possibly selected) type variable,
duke@1 1949 * return the bounding class of this type, otherwise return the
duke@1 1950 * type itself.
duke@1 1951 */
duke@1 1952 public Type classBound(Type t) {
duke@1 1953 return classBound.visit(t);
duke@1 1954 }
duke@1 1955 // where
duke@1 1956 private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
duke@1 1957
duke@1 1958 public Type visitType(Type t, Void ignored) {
duke@1 1959 return t;
duke@1 1960 }
duke@1 1961
duke@1 1962 @Override
duke@1 1963 public Type visitClassType(ClassType t, Void ignored) {
duke@1 1964 Type outer1 = classBound(t.getEnclosingType());
duke@1 1965 if (outer1 != t.getEnclosingType())
duke@1 1966 return new ClassType(outer1, t.getTypeArguments(), t.tsym);
duke@1 1967 else
duke@1 1968 return t;
duke@1 1969 }
duke@1 1970
duke@1 1971 @Override
duke@1 1972 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 1973 return classBound(supertype(t));
duke@1 1974 }
duke@1 1975
duke@1 1976 @Override
duke@1 1977 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 1978 return t;
duke@1 1979 }
duke@1 1980 };
duke@1 1981 // </editor-fold>
duke@1 1982
duke@1 1983 // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
duke@1 1984 /**
duke@1 1985 * Returns true iff the first signature is a <em>sub
duke@1 1986 * signature</em> of the other. This is <b>not</b> an equivalence
duke@1 1987 * relation.
duke@1 1988 *
duke@1 1989 * @see "The Java Language Specification, Third Ed. (8.4.2)."
duke@1 1990 * @see #overrideEquivalent(Type t, Type s)
duke@1 1991 * @param t first signature (possibly raw).
duke@1 1992 * @param s second signature (could be subjected to erasure).
duke@1 1993 * @return true if t is a sub signature of s.
duke@1 1994 */
duke@1 1995 public boolean isSubSignature(Type t, Type s) {
duke@1 1996 return hasSameArgs(t, s) || hasSameArgs(t, erasure(s));
duke@1 1997 }
duke@1 1998
duke@1 1999 /**
duke@1 2000 * Returns true iff these signatures are related by <em>override
duke@1 2001 * equivalence</em>. This is the natural extension of
duke@1 2002 * isSubSignature to an equivalence relation.
duke@1 2003 *
duke@1 2004 * @see "The Java Language Specification, Third Ed. (8.4.2)."
duke@1 2005 * @see #isSubSignature(Type t, Type s)
duke@1 2006 * @param t a signature (possible raw, could be subjected to
duke@1 2007 * erasure).
duke@1 2008 * @param s a signature (possible raw, could be subjected to
duke@1 2009 * erasure).
duke@1 2010 * @return true if either argument is a sub signature of the other.
duke@1 2011 */
duke@1 2012 public boolean overrideEquivalent(Type t, Type s) {
duke@1 2013 return hasSameArgs(t, s) ||
duke@1 2014 hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
duke@1 2015 }
duke@1 2016
mcimadamore@673 2017 // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
mcimadamore@673 2018 class ImplementationCache {
mcimadamore@673 2019
mcimadamore@673 2020 private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
mcimadamore@673 2021 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
mcimadamore@673 2022
mcimadamore@673 2023 class Entry {
mcimadamore@673 2024 final MethodSymbol cachedImpl;
mcimadamore@673 2025 final Filter<Symbol> implFilter;
mcimadamore@673 2026 final boolean checkResult;
mcimadamore@688 2027 final Scope.ScopeCounter scopeCounter;
mcimadamore@673 2028
mcimadamore@673 2029 public Entry(MethodSymbol cachedImpl,
mcimadamore@673 2030 Filter<Symbol> scopeFilter,
mcimadamore@688 2031 boolean checkResult,
mcimadamore@688 2032 Scope.ScopeCounter scopeCounter) {
mcimadamore@673 2033 this.cachedImpl = cachedImpl;
mcimadamore@673 2034 this.implFilter = scopeFilter;
mcimadamore@673 2035 this.checkResult = checkResult;
mcimadamore@688 2036 this.scopeCounter = scopeCounter;
mcimadamore@673 2037 }
mcimadamore@673 2038
mcimadamore@688 2039 boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, Scope.ScopeCounter scopeCounter) {
mcimadamore@673 2040 return this.implFilter == scopeFilter &&
mcimadamore@688 2041 this.checkResult == checkResult &&
mcimadamore@688 2042 this.scopeCounter.val() >= scopeCounter.val();
mcimadamore@673 2043 }
mcimadamore@341 2044 }
mcimadamore@673 2045
mcimadamore@688 2046 MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter, Scope.ScopeCounter scopeCounter) {
mcimadamore@673 2047 SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
mcimadamore@673 2048 Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
mcimadamore@673 2049 if (cache == null) {
mcimadamore@673 2050 cache = new HashMap<TypeSymbol, Entry>();
mcimadamore@673 2051 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
mcimadamore@673 2052 }
mcimadamore@673 2053 Entry e = cache.get(origin);
mcimadamore@673 2054 if (e == null ||
mcimadamore@688 2055 !e.matches(implFilter, checkResult, scopeCounter)) {
mcimadamore@673 2056 MethodSymbol impl = implementationInternal(ms, origin, Types.this, checkResult, implFilter);
mcimadamore@688 2057 cache.put(origin, new Entry(impl, implFilter, checkResult, scopeCounter));
mcimadamore@673 2058 return impl;
mcimadamore@673 2059 }
mcimadamore@673 2060 else {
mcimadamore@673 2061 return e.cachedImpl;
mcimadamore@673 2062 }
mcimadamore@673 2063 }
mcimadamore@673 2064
mcimadamore@673 2065 private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, Types types, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@341 2066 for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = types.supertype(t)) {
mcimadamore@341 2067 while (t.tag == TYPEVAR)
mcimadamore@341 2068 t = t.getUpperBound();
mcimadamore@341 2069 TypeSymbol c = t.tsym;
mcimadamore@673 2070 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
mcimadamore@341 2071 e.scope != null;
mcimadamore@780 2072 e = e.next(implFilter)) {
mcimadamore@673 2073 if (e.sym != null &&
mcimadamore@673 2074 e.sym.overrides(ms, origin, types, checkResult))
mcimadamore@673 2075 return (MethodSymbol)e.sym;
mcimadamore@341 2076 }
mcimadamore@341 2077 }
mcimadamore@673 2078 return null;
mcimadamore@341 2079 }
mcimadamore@341 2080 }
mcimadamore@341 2081
mcimadamore@673 2082 private ImplementationCache implCache = new ImplementationCache();
mcimadamore@673 2083
mcimadamore@673 2084 public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, Types types, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@688 2085 return implCache.get(ms, origin, checkResult, implFilter, scopeCounter);
mcimadamore@673 2086 }
mcimadamore@673 2087 // </editor-fold>
mcimadamore@673 2088
duke@1 2089 /**
duke@1 2090 * Does t have the same arguments as s? It is assumed that both
duke@1 2091 * types are (possibly polymorphic) method types. Monomorphic
duke@1 2092 * method types "have the same arguments", if their argument lists
duke@1 2093 * are equal. Polymorphic method types "have the same arguments",
duke@1 2094 * if they have the same arguments after renaming all type
duke@1 2095 * variables of one to corresponding type variables in the other,
duke@1 2096 * where correspondence is by position in the type parameter list.
duke@1 2097 */
duke@1 2098 public boolean hasSameArgs(Type t, Type s) {
duke@1 2099 return hasSameArgs.visit(t, s);
duke@1 2100 }
duke@1 2101 // where
duke@1 2102 private TypeRelation hasSameArgs = new TypeRelation() {
duke@1 2103
duke@1 2104 public Boolean visitType(Type t, Type s) {
duke@1 2105 throw new AssertionError();
duke@1 2106 }
duke@1 2107
duke@1 2108 @Override
duke@1 2109 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 2110 return s.tag == METHOD
duke@1 2111 && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
duke@1 2112 }
duke@1 2113
duke@1 2114 @Override
duke@1 2115 public Boolean visitForAll(ForAll t, Type s) {
duke@1 2116 if (s.tag != FORALL)
duke@1 2117 return false;
duke@1 2118
duke@1 2119 ForAll forAll = (ForAll)s;
duke@1 2120 return hasSameBounds(t, forAll)
duke@1 2121 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 2122 }
duke@1 2123
duke@1 2124 @Override
duke@1 2125 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 2126 return false;
duke@1 2127 }
duke@1 2128 };
duke@1 2129 // </editor-fold>
duke@1 2130
duke@1 2131 // <editor-fold defaultstate="collapsed" desc="subst">
duke@1 2132 public List<Type> subst(List<Type> ts,
duke@1 2133 List<Type> from,
duke@1 2134 List<Type> to) {
duke@1 2135 return new Subst(from, to).subst(ts);
duke@1 2136 }
duke@1 2137
duke@1 2138 /**
duke@1 2139 * Substitute all occurrences of a type in `from' with the
duke@1 2140 * corresponding type in `to' in 't'. Match lists `from' and `to'
duke@1 2141 * from the right: If lists have different length, discard leading
duke@1 2142 * elements of the longer list.
duke@1 2143 */
duke@1 2144 public Type subst(Type t, List<Type> from, List<Type> to) {
duke@1 2145 return new Subst(from, to).subst(t);
duke@1 2146 }
duke@1 2147
duke@1 2148 private class Subst extends UnaryVisitor<Type> {
duke@1 2149 List<Type> from;
duke@1 2150 List<Type> to;
duke@1 2151
duke@1 2152 public Subst(List<Type> from, List<Type> to) {
duke@1 2153 int fromLength = from.length();
duke@1 2154 int toLength = to.length();
duke@1 2155 while (fromLength > toLength) {
duke@1 2156 fromLength--;
duke@1 2157 from = from.tail;
duke@1 2158 }
duke@1 2159 while (fromLength < toLength) {
duke@1 2160 toLength--;
duke@1 2161 to = to.tail;
duke@1 2162 }
duke@1 2163 this.from = from;
duke@1 2164 this.to = to;
duke@1 2165 }
duke@1 2166
duke@1 2167 Type subst(Type t) {
duke@1 2168 if (from.tail == null)
duke@1 2169 return t;
duke@1 2170 else
duke@1 2171 return visit(t);
mcimadamore@238 2172 }
duke@1 2173
duke@1 2174 List<Type> subst(List<Type> ts) {
duke@1 2175 if (from.tail == null)
duke@1 2176 return ts;
duke@1 2177 boolean wild = false;
duke@1 2178 if (ts.nonEmpty() && from.nonEmpty()) {
duke@1 2179 Type head1 = subst(ts.head);
duke@1 2180 List<Type> tail1 = subst(ts.tail);
duke@1 2181 if (head1 != ts.head || tail1 != ts.tail)
duke@1 2182 return tail1.prepend(head1);
duke@1 2183 }
duke@1 2184 return ts;
duke@1 2185 }
duke@1 2186
duke@1 2187 public Type visitType(Type t, Void ignored) {
duke@1 2188 return t;
duke@1 2189 }
duke@1 2190
duke@1 2191 @Override
duke@1 2192 public Type visitMethodType(MethodType t, Void ignored) {
duke@1 2193 List<Type> argtypes = subst(t.argtypes);
duke@1 2194 Type restype = subst(t.restype);
duke@1 2195 List<Type> thrown = subst(t.thrown);
duke@1 2196 if (argtypes == t.argtypes &&
duke@1 2197 restype == t.restype &&
duke@1 2198 thrown == t.thrown)
duke@1 2199 return t;
duke@1 2200 else
duke@1 2201 return new MethodType(argtypes, restype, thrown, t.tsym);
duke@1 2202 }
duke@1 2203
duke@1 2204 @Override
duke@1 2205 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2206 for (List<Type> from = this.from, to = this.to;
duke@1 2207 from.nonEmpty();
duke@1 2208 from = from.tail, to = to.tail) {
duke@1 2209 if (t == from.head) {
duke@1 2210 return to.head.withTypeVar(t);
duke@1 2211 }
duke@1 2212 }
duke@1 2213 return t;
duke@1 2214 }
duke@1 2215
duke@1 2216 @Override
duke@1 2217 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2218 if (!t.isCompound()) {
duke@1 2219 List<Type> typarams = t.getTypeArguments();
duke@1 2220 List<Type> typarams1 = subst(typarams);
duke@1 2221 Type outer = t.getEnclosingType();
duke@1 2222 Type outer1 = subst(outer);
duke@1 2223 if (typarams1 == typarams && outer1 == outer)
duke@1 2224 return t;
duke@1 2225 else
duke@1 2226 return new ClassType(outer1, typarams1, t.tsym);
duke@1 2227 } else {
duke@1 2228 Type st = subst(supertype(t));
duke@1 2229 List<Type> is = upperBounds(subst(interfaces(t)));
duke@1 2230 if (st == supertype(t) && is == interfaces(t))
duke@1 2231 return t;
duke@1 2232 else
duke@1 2233 return makeCompoundType(is.prepend(st));
duke@1 2234 }
duke@1 2235 }
duke@1 2236
duke@1 2237 @Override
duke@1 2238 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 2239 Type bound = t.type;
duke@1 2240 if (t.kind != BoundKind.UNBOUND)
duke@1 2241 bound = subst(bound);
duke@1 2242 if (bound == t.type) {
duke@1 2243 return t;
duke@1 2244 } else {
duke@1 2245 if (t.isExtendsBound() && bound.isExtendsBound())
duke@1 2246 bound = upperBound(bound);
duke@1 2247 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
duke@1 2248 }
duke@1 2249 }
duke@1 2250
duke@1 2251 @Override
duke@1 2252 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 2253 Type elemtype = subst(t.elemtype);
duke@1 2254 if (elemtype == t.elemtype)
duke@1 2255 return t;
duke@1 2256 else
duke@1 2257 return new ArrayType(upperBound(elemtype), t.tsym);
duke@1 2258 }
duke@1 2259
duke@1 2260 @Override
duke@1 2261 public Type visitForAll(ForAll t, Void ignored) {
mcimadamore@846 2262 if (Type.containsAny(to, t.tvars)) {
mcimadamore@846 2263 //perform alpha-renaming of free-variables in 't'
mcimadamore@846 2264 //if 'to' types contain variables that are free in 't'
mcimadamore@846 2265 List<Type> freevars = newInstances(t.tvars);
mcimadamore@846 2266 t = new ForAll(freevars,
mcimadamore@846 2267 Types.this.subst(t.qtype, t.tvars, freevars));
mcimadamore@846 2268 }
duke@1 2269 List<Type> tvars1 = substBounds(t.tvars, from, to);
duke@1 2270 Type qtype1 = subst(t.qtype);
duke@1 2271 if (tvars1 == t.tvars && qtype1 == t.qtype) {
duke@1 2272 return t;
duke@1 2273 } else if (tvars1 == t.tvars) {
duke@1 2274 return new ForAll(tvars1, qtype1);
duke@1 2275 } else {
duke@1 2276 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
duke@1 2277 }
duke@1 2278 }
duke@1 2279
duke@1 2280 @Override
duke@1 2281 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2282 return t;
duke@1 2283 }
duke@1 2284 }
duke@1 2285
duke@1 2286 public List<Type> substBounds(List<Type> tvars,
duke@1 2287 List<Type> from,
duke@1 2288 List<Type> to) {
duke@1 2289 if (tvars.isEmpty())
duke@1 2290 return tvars;
duke@1 2291 ListBuffer<Type> newBoundsBuf = lb();
duke@1 2292 boolean changed = false;
duke@1 2293 // calculate new bounds
duke@1 2294 for (Type t : tvars) {
duke@1 2295 TypeVar tv = (TypeVar) t;
duke@1 2296 Type bound = subst(tv.bound, from, to);
duke@1 2297 if (bound != tv.bound)
duke@1 2298 changed = true;
duke@1 2299 newBoundsBuf.append(bound);
duke@1 2300 }
duke@1 2301 if (!changed)
duke@1 2302 return tvars;
duke@1 2303 ListBuffer<Type> newTvars = lb();
duke@1 2304 // create new type variables without bounds
duke@1 2305 for (Type t : tvars) {
duke@1 2306 newTvars.append(new TypeVar(t.tsym, null, syms.botType));
duke@1 2307 }
duke@1 2308 // the new bounds should use the new type variables in place
duke@1 2309 // of the old
duke@1 2310 List<Type> newBounds = newBoundsBuf.toList();
duke@1 2311 from = tvars;
duke@1 2312 to = newTvars.toList();
duke@1 2313 for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
duke@1 2314 newBounds.head = subst(newBounds.head, from, to);
duke@1 2315 }
duke@1 2316 newBounds = newBoundsBuf.toList();
duke@1 2317 // set the bounds of new type variables to the new bounds
duke@1 2318 for (Type t : newTvars.toList()) {
duke@1 2319 TypeVar tv = (TypeVar) t;
duke@1 2320 tv.bound = newBounds.head;
duke@1 2321 newBounds = newBounds.tail;
duke@1 2322 }
duke@1 2323 return newTvars.toList();
duke@1 2324 }
duke@1 2325
duke@1 2326 public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
duke@1 2327 Type bound1 = subst(t.bound, from, to);
duke@1 2328 if (bound1 == t.bound)
duke@1 2329 return t;
mcimadamore@212 2330 else {
mcimadamore@212 2331 // create new type variable without bounds
mcimadamore@212 2332 TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
mcimadamore@212 2333 // the new bound should use the new type variable in place
mcimadamore@212 2334 // of the old
mcimadamore@212 2335 tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
mcimadamore@212 2336 return tv;
mcimadamore@212 2337 }
duke@1 2338 }
duke@1 2339 // </editor-fold>
duke@1 2340
duke@1 2341 // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
duke@1 2342 /**
duke@1 2343 * Does t have the same bounds for quantified variables as s?
duke@1 2344 */
duke@1 2345 boolean hasSameBounds(ForAll t, ForAll s) {
duke@1 2346 List<Type> l1 = t.tvars;
duke@1 2347 List<Type> l2 = s.tvars;
duke@1 2348 while (l1.nonEmpty() && l2.nonEmpty() &&
duke@1 2349 isSameType(l1.head.getUpperBound(),
duke@1 2350 subst(l2.head.getUpperBound(),
duke@1 2351 s.tvars,
duke@1 2352 t.tvars))) {
duke@1 2353 l1 = l1.tail;
duke@1 2354 l2 = l2.tail;
duke@1 2355 }
duke@1 2356 return l1.isEmpty() && l2.isEmpty();
duke@1 2357 }
duke@1 2358 // </editor-fold>
duke@1 2359
duke@1 2360 // <editor-fold defaultstate="collapsed" desc="newInstances">
duke@1 2361 /** Create new vector of type variables from list of variables
duke@1 2362 * changing all recursive bounds from old to new list.
duke@1 2363 */
duke@1 2364 public List<Type> newInstances(List<Type> tvars) {
duke@1 2365 List<Type> tvars1 = Type.map(tvars, newInstanceFun);
duke@1 2366 for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
duke@1 2367 TypeVar tv = (TypeVar) l.head;
duke@1 2368 tv.bound = subst(tv.bound, tvars, tvars1);
duke@1 2369 }
duke@1 2370 return tvars1;
duke@1 2371 }
duke@1 2372 static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
duke@1 2373 public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
duke@1 2374 };
duke@1 2375 // </editor-fold>
duke@1 2376
jjg@110 2377 // <editor-fold defaultstate="collapsed" desc="createErrorType">
jjg@110 2378 public Type createErrorType(Type originalType) {
jjg@110 2379 return new ErrorType(originalType, syms.errSymbol);
jjg@110 2380 }
jjg@110 2381
jjg@110 2382 public Type createErrorType(ClassSymbol c, Type originalType) {
jjg@110 2383 return new ErrorType(c, originalType);
jjg@110 2384 }
jjg@110 2385
jjg@110 2386 public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
jjg@110 2387 return new ErrorType(name, container, originalType);
jjg@110 2388 }
jjg@110 2389 // </editor-fold>
jjg@110 2390
duke@1 2391 // <editor-fold defaultstate="collapsed" desc="rank">
duke@1 2392 /**
duke@1 2393 * The rank of a class is the length of the longest path between
duke@1 2394 * the class and java.lang.Object in the class inheritance
duke@1 2395 * graph. Undefined for all but reference types.
duke@1 2396 */
duke@1 2397 public int rank(Type t) {
duke@1 2398 switch(t.tag) {
duke@1 2399 case CLASS: {
duke@1 2400 ClassType cls = (ClassType)t;
duke@1 2401 if (cls.rank_field < 0) {
duke@1 2402 Name fullname = cls.tsym.getQualifiedName();
jjg@113 2403 if (fullname == names.java_lang_Object)
duke@1 2404 cls.rank_field = 0;
duke@1 2405 else {
duke@1 2406 int r = rank(supertype(cls));
duke@1 2407 for (List<Type> l = interfaces(cls);
duke@1 2408 l.nonEmpty();
duke@1 2409 l = l.tail) {
duke@1 2410 if (rank(l.head) > r)
duke@1 2411 r = rank(l.head);
duke@1 2412 }
duke@1 2413 cls.rank_field = r + 1;
duke@1 2414 }
duke@1 2415 }
duke@1 2416 return cls.rank_field;
duke@1 2417 }
duke@1 2418 case TYPEVAR: {
duke@1 2419 TypeVar tvar = (TypeVar)t;
duke@1 2420 if (tvar.rank_field < 0) {
duke@1 2421 int r = rank(supertype(tvar));
duke@1 2422 for (List<Type> l = interfaces(tvar);
duke@1 2423 l.nonEmpty();
duke@1 2424 l = l.tail) {
duke@1 2425 if (rank(l.head) > r) r = rank(l.head);
duke@1 2426 }
duke@1 2427 tvar.rank_field = r + 1;
duke@1 2428 }
duke@1 2429 return tvar.rank_field;
duke@1 2430 }
duke@1 2431 case ERROR:
duke@1 2432 return 0;
duke@1 2433 default:
duke@1 2434 throw new AssertionError();
duke@1 2435 }
duke@1 2436 }
duke@1 2437 // </editor-fold>
duke@1 2438
mcimadamore@121 2439 /**
mcimadamore@238 2440 * Helper method for generating a string representation of a given type
mcimadamore@121 2441 * accordingly to a given locale
mcimadamore@121 2442 */
mcimadamore@121 2443 public String toString(Type t, Locale locale) {
mcimadamore@238 2444 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2445 }
mcimadamore@121 2446
mcimadamore@121 2447 /**
mcimadamore@238 2448 * Helper method for generating a string representation of a given type
mcimadamore@121 2449 * accordingly to a given locale
mcimadamore@121 2450 */
mcimadamore@121 2451 public String toString(Symbol t, Locale locale) {
mcimadamore@238 2452 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2453 }
mcimadamore@121 2454
duke@1 2455 // <editor-fold defaultstate="collapsed" desc="toString">
duke@1 2456 /**
duke@1 2457 * This toString is slightly more descriptive than the one on Type.
mcimadamore@121 2458 *
mcimadamore@121 2459 * @deprecated Types.toString(Type t, Locale l) provides better support
mcimadamore@121 2460 * for localization
duke@1 2461 */
mcimadamore@121 2462 @Deprecated
duke@1 2463 public String toString(Type t) {
duke@1 2464 if (t.tag == FORALL) {
duke@1 2465 ForAll forAll = (ForAll)t;
duke@1 2466 return typaramsString(forAll.tvars) + forAll.qtype;
duke@1 2467 }
duke@1 2468 return "" + t;
duke@1 2469 }
duke@1 2470 // where
duke@1 2471 private String typaramsString(List<Type> tvars) {
duke@1 2472 StringBuffer s = new StringBuffer();
duke@1 2473 s.append('<');
duke@1 2474 boolean first = true;
duke@1 2475 for (Type t : tvars) {
duke@1 2476 if (!first) s.append(", ");
duke@1 2477 first = false;
duke@1 2478 appendTyparamString(((TypeVar)t), s);
duke@1 2479 }
duke@1 2480 s.append('>');
duke@1 2481 return s.toString();
duke@1 2482 }
duke@1 2483 private void appendTyparamString(TypeVar t, StringBuffer buf) {
duke@1 2484 buf.append(t);
duke@1 2485 if (t.bound == null ||
duke@1 2486 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
duke@1 2487 return;
duke@1 2488 buf.append(" extends "); // Java syntax; no need for i18n
duke@1 2489 Type bound = t.bound;
duke@1 2490 if (!bound.isCompound()) {
duke@1 2491 buf.append(bound);
duke@1 2492 } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
duke@1 2493 buf.append(supertype(t));
duke@1 2494 for (Type intf : interfaces(t)) {
duke@1 2495 buf.append('&');
duke@1 2496 buf.append(intf);
duke@1 2497 }
duke@1 2498 } else {
duke@1 2499 // No superclass was given in bounds.
duke@1 2500 // In this case, supertype is Object, erasure is first interface.
duke@1 2501 boolean first = true;
duke@1 2502 for (Type intf : interfaces(t)) {
duke@1 2503 if (!first) buf.append('&');
duke@1 2504 first = false;
duke@1 2505 buf.append(intf);
duke@1 2506 }
duke@1 2507 }
duke@1 2508 }
duke@1 2509 // </editor-fold>
duke@1 2510
duke@1 2511 // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
duke@1 2512 /**
duke@1 2513 * A cache for closures.
duke@1 2514 *
duke@1 2515 * <p>A closure is a list of all the supertypes and interfaces of
duke@1 2516 * a class or interface type, ordered by ClassSymbol.precedes
duke@1 2517 * (that is, subclasses come first, arbitrary but fixed
duke@1 2518 * otherwise).
duke@1 2519 */
duke@1 2520 private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
duke@1 2521
duke@1 2522 /**
duke@1 2523 * Returns the closure of a class or interface type.
duke@1 2524 */
duke@1 2525 public List<Type> closure(Type t) {
duke@1 2526 List<Type> cl = closureCache.get(t);
duke@1 2527 if (cl == null) {
duke@1 2528 Type st = supertype(t);
duke@1 2529 if (!t.isCompound()) {
duke@1 2530 if (st.tag == CLASS) {
duke@1 2531 cl = insert(closure(st), t);
duke@1 2532 } else if (st.tag == TYPEVAR) {
duke@1 2533 cl = closure(st).prepend(t);
duke@1 2534 } else {
duke@1 2535 cl = List.of(t);
duke@1 2536 }
duke@1 2537 } else {
duke@1 2538 cl = closure(supertype(t));
duke@1 2539 }
duke@1 2540 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
duke@1 2541 cl = union(cl, closure(l.head));
duke@1 2542 closureCache.put(t, cl);
duke@1 2543 }
duke@1 2544 return cl;
duke@1 2545 }
duke@1 2546
duke@1 2547 /**
duke@1 2548 * Insert a type in a closure
duke@1 2549 */
duke@1 2550 public List<Type> insert(List<Type> cl, Type t) {
duke@1 2551 if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
duke@1 2552 return cl.prepend(t);
duke@1 2553 } else if (cl.head.tsym.precedes(t.tsym, this)) {
duke@1 2554 return insert(cl.tail, t).prepend(cl.head);
duke@1 2555 } else {
duke@1 2556 return cl;
duke@1 2557 }
duke@1 2558 }
duke@1 2559
duke@1 2560 /**
duke@1 2561 * Form the union of two closures
duke@1 2562 */
duke@1 2563 public List<Type> union(List<Type> cl1, List<Type> cl2) {
duke@1 2564 if (cl1.isEmpty()) {
duke@1 2565 return cl2;
duke@1 2566 } else if (cl2.isEmpty()) {
duke@1 2567 return cl1;
duke@1 2568 } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
duke@1 2569 return union(cl1.tail, cl2).prepend(cl1.head);
duke@1 2570 } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
duke@1 2571 return union(cl1, cl2.tail).prepend(cl2.head);
duke@1 2572 } else {
duke@1 2573 return union(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2574 }
duke@1 2575 }
duke@1 2576
duke@1 2577 /**
duke@1 2578 * Intersect two closures
duke@1 2579 */
duke@1 2580 public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
duke@1 2581 if (cl1 == cl2)
duke@1 2582 return cl1;
duke@1 2583 if (cl1.isEmpty() || cl2.isEmpty())
duke@1 2584 return List.nil();
duke@1 2585 if (cl1.head.tsym.precedes(cl2.head.tsym, this))
duke@1 2586 return intersect(cl1.tail, cl2);
duke@1 2587 if (cl2.head.tsym.precedes(cl1.head.tsym, this))
duke@1 2588 return intersect(cl1, cl2.tail);
duke@1 2589 if (isSameType(cl1.head, cl2.head))
duke@1 2590 return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 2591 if (cl1.head.tsym == cl2.head.tsym &&
duke@1 2592 cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
duke@1 2593 if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
duke@1 2594 Type merge = merge(cl1.head,cl2.head);
duke@1 2595 return intersect(cl1.tail, cl2.tail).prepend(merge);
duke@1 2596 }
duke@1 2597 if (cl1.head.isRaw() || cl2.head.isRaw())
duke@1 2598 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
duke@1 2599 }
duke@1 2600 return intersect(cl1.tail, cl2.tail);
duke@1 2601 }
duke@1 2602 // where
duke@1 2603 class TypePair {
duke@1 2604 final Type t1;
duke@1 2605 final Type t2;
duke@1 2606 TypePair(Type t1, Type t2) {
duke@1 2607 this.t1 = t1;
duke@1 2608 this.t2 = t2;
duke@1 2609 }
duke@1 2610 @Override
duke@1 2611 public int hashCode() {
jjg@507 2612 return 127 * Types.hashCode(t1) + Types.hashCode(t2);
duke@1 2613 }
duke@1 2614 @Override
duke@1 2615 public boolean equals(Object obj) {
duke@1 2616 if (!(obj instanceof TypePair))
duke@1 2617 return false;
duke@1 2618 TypePair typePair = (TypePair)obj;
duke@1 2619 return isSameType(t1, typePair.t1)
duke@1 2620 && isSameType(t2, typePair.t2);
duke@1 2621 }
duke@1 2622 }
duke@1 2623 Set<TypePair> mergeCache = new HashSet<TypePair>();
duke@1 2624 private Type merge(Type c1, Type c2) {
duke@1 2625 ClassType class1 = (ClassType) c1;
duke@1 2626 List<Type> act1 = class1.getTypeArguments();
duke@1 2627 ClassType class2 = (ClassType) c2;
duke@1 2628 List<Type> act2 = class2.getTypeArguments();
duke@1 2629 ListBuffer<Type> merged = new ListBuffer<Type>();
duke@1 2630 List<Type> typarams = class1.tsym.type.getTypeArguments();
duke@1 2631
duke@1 2632 while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
duke@1 2633 if (containsType(act1.head, act2.head)) {
duke@1 2634 merged.append(act1.head);
duke@1 2635 } else if (containsType(act2.head, act1.head)) {
duke@1 2636 merged.append(act2.head);
duke@1 2637 } else {
duke@1 2638 TypePair pair = new TypePair(c1, c2);
duke@1 2639 Type m;
duke@1 2640 if (mergeCache.add(pair)) {
duke@1 2641 m = new WildcardType(lub(upperBound(act1.head),
duke@1 2642 upperBound(act2.head)),
duke@1 2643 BoundKind.EXTENDS,
duke@1 2644 syms.boundClass);
duke@1 2645 mergeCache.remove(pair);
duke@1 2646 } else {
duke@1 2647 m = new WildcardType(syms.objectType,
duke@1 2648 BoundKind.UNBOUND,
duke@1 2649 syms.boundClass);
duke@1 2650 }
duke@1 2651 merged.append(m.withTypeVar(typarams.head));
duke@1 2652 }
duke@1 2653 act1 = act1.tail;
duke@1 2654 act2 = act2.tail;
duke@1 2655 typarams = typarams.tail;
duke@1 2656 }
jjg@816 2657 Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
duke@1 2658 return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
duke@1 2659 }
duke@1 2660
duke@1 2661 /**
duke@1 2662 * Return the minimum type of a closure, a compound type if no
duke@1 2663 * unique minimum exists.
duke@1 2664 */
duke@1 2665 private Type compoundMin(List<Type> cl) {
duke@1 2666 if (cl.isEmpty()) return syms.objectType;
duke@1 2667 List<Type> compound = closureMin(cl);
duke@1 2668 if (compound.isEmpty())
duke@1 2669 return null;
duke@1 2670 else if (compound.tail.isEmpty())
duke@1 2671 return compound.head;
duke@1 2672 else
duke@1 2673 return makeCompoundType(compound);
duke@1 2674 }
duke@1 2675
duke@1 2676 /**
duke@1 2677 * Return the minimum types of a closure, suitable for computing
duke@1 2678 * compoundMin or glb.
duke@1 2679 */
duke@1 2680 private List<Type> closureMin(List<Type> cl) {
duke@1 2681 ListBuffer<Type> classes = lb();
duke@1 2682 ListBuffer<Type> interfaces = lb();
duke@1 2683 while (!cl.isEmpty()) {
duke@1 2684 Type current = cl.head;
duke@1 2685 if (current.isInterface())
duke@1 2686 interfaces.append(current);
duke@1 2687 else
duke@1 2688 classes.append(current);
duke@1 2689 ListBuffer<Type> candidates = lb();
duke@1 2690 for (Type t : cl.tail) {
duke@1 2691 if (!isSubtypeNoCapture(current, t))
duke@1 2692 candidates.append(t);
duke@1 2693 }
duke@1 2694 cl = candidates.toList();
duke@1 2695 }
duke@1 2696 return classes.appendList(interfaces).toList();
duke@1 2697 }
duke@1 2698
duke@1 2699 /**
duke@1 2700 * Return the least upper bound of pair of types. if the lub does
duke@1 2701 * not exist return null.
duke@1 2702 */
duke@1 2703 public Type lub(Type t1, Type t2) {
duke@1 2704 return lub(List.of(t1, t2));
duke@1 2705 }
duke@1 2706
duke@1 2707 /**
duke@1 2708 * Return the least upper bound (lub) of set of types. If the lub
duke@1 2709 * does not exist return the type of null (bottom).
duke@1 2710 */
duke@1 2711 public Type lub(List<Type> ts) {
duke@1 2712 final int ARRAY_BOUND = 1;
duke@1 2713 final int CLASS_BOUND = 2;
duke@1 2714 int boundkind = 0;
duke@1 2715 for (Type t : ts) {
duke@1 2716 switch (t.tag) {
duke@1 2717 case CLASS:
duke@1 2718 boundkind |= CLASS_BOUND;
duke@1 2719 break;
duke@1 2720 case ARRAY:
duke@1 2721 boundkind |= ARRAY_BOUND;
duke@1 2722 break;
duke@1 2723 case TYPEVAR:
duke@1 2724 do {
duke@1 2725 t = t.getUpperBound();
duke@1 2726 } while (t.tag == TYPEVAR);
duke@1 2727 if (t.tag == ARRAY) {
duke@1 2728 boundkind |= ARRAY_BOUND;
duke@1 2729 } else {
duke@1 2730 boundkind |= CLASS_BOUND;
duke@1 2731 }
duke@1 2732 break;
duke@1 2733 default:
duke@1 2734 if (t.isPrimitive())
mcimadamore@5 2735 return syms.errType;
duke@1 2736 }
duke@1 2737 }
duke@1 2738 switch (boundkind) {
duke@1 2739 case 0:
duke@1 2740 return syms.botType;
duke@1 2741
duke@1 2742 case ARRAY_BOUND:
duke@1 2743 // calculate lub(A[], B[])
duke@1 2744 List<Type> elements = Type.map(ts, elemTypeFun);
duke@1 2745 for (Type t : elements) {
duke@1 2746 if (t.isPrimitive()) {
duke@1 2747 // if a primitive type is found, then return
duke@1 2748 // arraySuperType unless all the types are the
duke@1 2749 // same
duke@1 2750 Type first = ts.head;
duke@1 2751 for (Type s : ts.tail) {
duke@1 2752 if (!isSameType(first, s)) {
duke@1 2753 // lub(int[], B[]) is Cloneable & Serializable
duke@1 2754 return arraySuperType();
duke@1 2755 }
duke@1 2756 }
duke@1 2757 // all the array types are the same, return one
duke@1 2758 // lub(int[], int[]) is int[]
duke@1 2759 return first;
duke@1 2760 }
duke@1 2761 }
duke@1 2762 // lub(A[], B[]) is lub(A, B)[]
duke@1 2763 return new ArrayType(lub(elements), syms.arrayClass);
duke@1 2764
duke@1 2765 case CLASS_BOUND:
duke@1 2766 // calculate lub(A, B)
duke@1 2767 while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
duke@1 2768 ts = ts.tail;
jjg@816 2769 Assert.check(!ts.isEmpty());
duke@1 2770 List<Type> cl = closure(ts.head);
duke@1 2771 for (Type t : ts.tail) {
duke@1 2772 if (t.tag == CLASS || t.tag == TYPEVAR)
duke@1 2773 cl = intersect(cl, closure(t));
duke@1 2774 }
duke@1 2775 return compoundMin(cl);
duke@1 2776
duke@1 2777 default:
duke@1 2778 // calculate lub(A, B[])
duke@1 2779 List<Type> classes = List.of(arraySuperType());
duke@1 2780 for (Type t : ts) {
duke@1 2781 if (t.tag != ARRAY) // Filter out any arrays
duke@1 2782 classes = classes.prepend(t);
duke@1 2783 }
duke@1 2784 // lub(A, B[]) is lub(A, arraySuperType)
duke@1 2785 return lub(classes);
duke@1 2786 }
duke@1 2787 }
duke@1 2788 // where
duke@1 2789 private Type arraySuperType = null;
duke@1 2790 private Type arraySuperType() {
duke@1 2791 // initialized lazily to avoid problems during compiler startup
duke@1 2792 if (arraySuperType == null) {
duke@1 2793 synchronized (this) {
duke@1 2794 if (arraySuperType == null) {
duke@1 2795 // JLS 10.8: all arrays implement Cloneable and Serializable.
duke@1 2796 arraySuperType = makeCompoundType(List.of(syms.serializableType,
duke@1 2797 syms.cloneableType),
duke@1 2798 syms.objectType);
duke@1 2799 }
duke@1 2800 }
duke@1 2801 }
duke@1 2802 return arraySuperType;
duke@1 2803 }
duke@1 2804 // </editor-fold>
duke@1 2805
duke@1 2806 // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
mcimadamore@210 2807 public Type glb(List<Type> ts) {
mcimadamore@210 2808 Type t1 = ts.head;
mcimadamore@210 2809 for (Type t2 : ts.tail) {
mcimadamore@210 2810 if (t1.isErroneous())
mcimadamore@210 2811 return t1;
mcimadamore@210 2812 t1 = glb(t1, t2);
mcimadamore@210 2813 }
mcimadamore@210 2814 return t1;
mcimadamore@210 2815 }
mcimadamore@210 2816 //where
duke@1 2817 public Type glb(Type t, Type s) {
duke@1 2818 if (s == null)
duke@1 2819 return t;
mcimadamore@753 2820 else if (t.isPrimitive() || s.isPrimitive())
mcimadamore@753 2821 return syms.errType;
duke@1 2822 else if (isSubtypeNoCapture(t, s))
duke@1 2823 return t;
duke@1 2824 else if (isSubtypeNoCapture(s, t))
duke@1 2825 return s;
duke@1 2826
duke@1 2827 List<Type> closure = union(closure(t), closure(s));
duke@1 2828 List<Type> bounds = closureMin(closure);
duke@1 2829
duke@1 2830 if (bounds.isEmpty()) { // length == 0
duke@1 2831 return syms.objectType;
duke@1 2832 } else if (bounds.tail.isEmpty()) { // length == 1
duke@1 2833 return bounds.head;
duke@1 2834 } else { // length > 1
duke@1 2835 int classCount = 0;
duke@1 2836 for (Type bound : bounds)
duke@1 2837 if (!bound.isInterface())
duke@1 2838 classCount++;
duke@1 2839 if (classCount > 1)
jjg@110 2840 return createErrorType(t);
duke@1 2841 }
duke@1 2842 return makeCompoundType(bounds);
duke@1 2843 }
duke@1 2844 // </editor-fold>
duke@1 2845
duke@1 2846 // <editor-fold defaultstate="collapsed" desc="hashCode">
duke@1 2847 /**
duke@1 2848 * Compute a hash code on a type.
duke@1 2849 */
duke@1 2850 public static int hashCode(Type t) {
duke@1 2851 return hashCode.visit(t);
duke@1 2852 }
duke@1 2853 // where
duke@1 2854 private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
duke@1 2855
duke@1 2856 public Integer visitType(Type t, Void ignored) {
duke@1 2857 return t.tag;
duke@1 2858 }
duke@1 2859
duke@1 2860 @Override
duke@1 2861 public Integer visitClassType(ClassType t, Void ignored) {
duke@1 2862 int result = visit(t.getEnclosingType());
duke@1 2863 result *= 127;
duke@1 2864 result += t.tsym.flatName().hashCode();
duke@1 2865 for (Type s : t.getTypeArguments()) {
duke@1 2866 result *= 127;
duke@1 2867 result += visit(s);
duke@1 2868 }
duke@1 2869 return result;
duke@1 2870 }
duke@1 2871
duke@1 2872 @Override
duke@1 2873 public Integer visitWildcardType(WildcardType t, Void ignored) {
duke@1 2874 int result = t.kind.hashCode();
duke@1 2875 if (t.type != null) {
duke@1 2876 result *= 127;
duke@1 2877 result += visit(t.type);
duke@1 2878 }
duke@1 2879 return result;
duke@1 2880 }
duke@1 2881
duke@1 2882 @Override
duke@1 2883 public Integer visitArrayType(ArrayType t, Void ignored) {
duke@1 2884 return visit(t.elemtype) + 12;
duke@1 2885 }
duke@1 2886
duke@1 2887 @Override
duke@1 2888 public Integer visitTypeVar(TypeVar t, Void ignored) {
duke@1 2889 return System.identityHashCode(t.tsym);
duke@1 2890 }
duke@1 2891
duke@1 2892 @Override
duke@1 2893 public Integer visitUndetVar(UndetVar t, Void ignored) {
duke@1 2894 return System.identityHashCode(t);
duke@1 2895 }
duke@1 2896
duke@1 2897 @Override
duke@1 2898 public Integer visitErrorType(ErrorType t, Void ignored) {
duke@1 2899 return 0;
duke@1 2900 }
duke@1 2901 };
duke@1 2902 // </editor-fold>
duke@1 2903
duke@1 2904 // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
duke@1 2905 /**
duke@1 2906 * Does t have a result that is a subtype of the result type of s,
duke@1 2907 * suitable for covariant returns? It is assumed that both types
duke@1 2908 * are (possibly polymorphic) method types. Monomorphic method
duke@1 2909 * types are handled in the obvious way. Polymorphic method types
duke@1 2910 * require renaming all type variables of one to corresponding
duke@1 2911 * type variables in the other, where correspondence is by
duke@1 2912 * position in the type parameter list. */
duke@1 2913 public boolean resultSubtype(Type t, Type s, Warner warner) {
duke@1 2914 List<Type> tvars = t.getTypeArguments();
duke@1 2915 List<Type> svars = s.getTypeArguments();
duke@1 2916 Type tres = t.getReturnType();
duke@1 2917 Type sres = subst(s.getReturnType(), svars, tvars);
duke@1 2918 return covariantReturnType(tres, sres, warner);
duke@1 2919 }
duke@1 2920
duke@1 2921 /**
duke@1 2922 * Return-Type-Substitutable.
duke@1 2923 * @see <a href="http://java.sun.com/docs/books/jls/">The Java
duke@1 2924 * Language Specification, Third Ed. (8.4.5)</a>
duke@1 2925 */
duke@1 2926 public boolean returnTypeSubstitutable(Type r1, Type r2) {
duke@1 2927 if (hasSameArgs(r1, r2))
tbell@202 2928 return resultSubtype(r1, r2, Warner.noWarnings);
duke@1 2929 else
duke@1 2930 return covariantReturnType(r1.getReturnType(),
tbell@202 2931 erasure(r2.getReturnType()),
tbell@202 2932 Warner.noWarnings);
tbell@202 2933 }
tbell@202 2934
tbell@202 2935 public boolean returnTypeSubstitutable(Type r1,
tbell@202 2936 Type r2, Type r2res,
tbell@202 2937 Warner warner) {
tbell@202 2938 if (isSameType(r1.getReturnType(), r2res))
tbell@202 2939 return true;
tbell@202 2940 if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
tbell@202 2941 return false;
tbell@202 2942
tbell@202 2943 if (hasSameArgs(r1, r2))
tbell@202 2944 return covariantReturnType(r1.getReturnType(), r2res, warner);
tbell@202 2945 if (!source.allowCovariantReturns())
tbell@202 2946 return false;
tbell@202 2947 if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
tbell@202 2948 return true;
tbell@202 2949 if (!isSubtype(r1.getReturnType(), erasure(r2res)))
tbell@202 2950 return false;
mcimadamore@795 2951 warner.warn(LintCategory.UNCHECKED);
tbell@202 2952 return true;
duke@1 2953 }
duke@1 2954
duke@1 2955 /**
duke@1 2956 * Is t an appropriate return type in an overrider for a
duke@1 2957 * method that returns s?
duke@1 2958 */
duke@1 2959 public boolean covariantReturnType(Type t, Type s, Warner warner) {
tbell@202 2960 return
tbell@202 2961 isSameType(t, s) ||
tbell@202 2962 source.allowCovariantReturns() &&
duke@1 2963 !t.isPrimitive() &&
tbell@202 2964 !s.isPrimitive() &&
tbell@202 2965 isAssignable(t, s, warner);
duke@1 2966 }
duke@1 2967 // </editor-fold>
duke@1 2968
duke@1 2969 // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
duke@1 2970 /**
duke@1 2971 * Return the class that boxes the given primitive.
duke@1 2972 */
duke@1 2973 public ClassSymbol boxedClass(Type t) {
duke@1 2974 return reader.enterClass(syms.boxedName[t.tag]);
duke@1 2975 }
duke@1 2976
duke@1 2977 /**
mcimadamore@753 2978 * Return the boxed type if 't' is primitive, otherwise return 't' itself.
mcimadamore@753 2979 */
mcimadamore@753 2980 public Type boxedTypeOrType(Type t) {
mcimadamore@753 2981 return t.isPrimitive() ?
mcimadamore@753 2982 boxedClass(t).type :
mcimadamore@753 2983 t;
mcimadamore@753 2984 }
mcimadamore@753 2985
mcimadamore@753 2986 /**
duke@1 2987 * Return the primitive type corresponding to a boxed type.
duke@1 2988 */
duke@1 2989 public Type unboxedType(Type t) {
duke@1 2990 if (allowBoxing) {
duke@1 2991 for (int i=0; i<syms.boxedName.length; i++) {
duke@1 2992 Name box = syms.boxedName[i];
duke@1 2993 if (box != null &&
duke@1 2994 asSuper(t, reader.enterClass(box)) != null)
duke@1 2995 return syms.typeOfTag[i];
duke@1 2996 }
duke@1 2997 }
duke@1 2998 return Type.noType;
duke@1 2999 }
duke@1 3000 // </editor-fold>
duke@1 3001
duke@1 3002 // <editor-fold defaultstate="collapsed" desc="Capture conversion">
duke@1 3003 /*
duke@1 3004 * JLS 3rd Ed. 5.1.10 Capture Conversion:
duke@1 3005 *
duke@1 3006 * Let G name a generic type declaration with n formal type
duke@1 3007 * parameters A1 ... An with corresponding bounds U1 ... Un. There
duke@1 3008 * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
duke@1 3009 * where, for 1 <= i <= n:
duke@1 3010 *
duke@1 3011 * + If Ti is a wildcard type argument (4.5.1) of the form ? then
duke@1 3012 * Si is a fresh type variable whose upper bound is
duke@1 3013 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
duke@1 3014 * type.
duke@1 3015 *
duke@1 3016 * + If Ti is a wildcard type argument of the form ? extends Bi,
duke@1 3017 * then Si is a fresh type variable whose upper bound is
duke@1 3018 * glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
duke@1 3019 * the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
duke@1 3020 * a compile-time error if for any two classes (not interfaces)
duke@1 3021 * Vi and Vj,Vi is not a subclass of Vj or vice versa.
duke@1 3022 *
duke@1 3023 * + If Ti is a wildcard type argument of the form ? super Bi,
duke@1 3024 * then Si is a fresh type variable whose upper bound is
duke@1 3025 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
duke@1 3026 *
duke@1 3027 * + Otherwise, Si = Ti.
duke@1 3028 *
duke@1 3029 * Capture conversion on any type other than a parameterized type
duke@1 3030 * (4.5) acts as an identity conversion (5.1.1). Capture
duke@1 3031 * conversions never require a special action at run time and
duke@1 3032 * therefore never throw an exception at run time.
duke@1 3033 *
duke@1 3034 * Capture conversion is not applied recursively.
duke@1 3035 */
duke@1 3036 /**
duke@1 3037 * Capture conversion as specified by JLS 3rd Ed.
duke@1 3038 */
mcimadamore@299 3039
mcimadamore@299 3040 public List<Type> capture(List<Type> ts) {
mcimadamore@299 3041 List<Type> buf = List.nil();
mcimadamore@299 3042 for (Type t : ts) {
mcimadamore@299 3043 buf = buf.prepend(capture(t));
mcimadamore@299 3044 }
mcimadamore@299 3045 return buf.reverse();
mcimadamore@299 3046 }
duke@1 3047 public Type capture(Type t) {
duke@1 3048 if (t.tag != CLASS)
duke@1 3049 return t;
mcimadamore@637 3050 if (t.getEnclosingType() != Type.noType) {
mcimadamore@637 3051 Type capturedEncl = capture(t.getEnclosingType());
mcimadamore@637 3052 if (capturedEncl != t.getEnclosingType()) {
mcimadamore@637 3053 Type type1 = memberType(capturedEncl, t.tsym);
mcimadamore@637 3054 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
mcimadamore@637 3055 }
mcimadamore@637 3056 }
duke@1 3057 ClassType cls = (ClassType)t;
duke@1 3058 if (cls.isRaw() || !cls.isParameterized())
duke@1 3059 return cls;
duke@1 3060
duke@1 3061 ClassType G = (ClassType)cls.asElement().asType();
duke@1 3062 List<Type> A = G.getTypeArguments();
duke@1 3063 List<Type> T = cls.getTypeArguments();
duke@1 3064 List<Type> S = freshTypeVariables(T);
duke@1 3065
duke@1 3066 List<Type> currentA = A;
duke@1 3067 List<Type> currentT = T;
duke@1 3068 List<Type> currentS = S;
duke@1 3069 boolean captured = false;
duke@1 3070 while (!currentA.isEmpty() &&
duke@1 3071 !currentT.isEmpty() &&
duke@1 3072 !currentS.isEmpty()) {
duke@1 3073 if (currentS.head != currentT.head) {
duke@1 3074 captured = true;
duke@1 3075 WildcardType Ti = (WildcardType)currentT.head;
duke@1 3076 Type Ui = currentA.head.getUpperBound();
duke@1 3077 CapturedType Si = (CapturedType)currentS.head;
duke@1 3078 if (Ui == null)
duke@1 3079 Ui = syms.objectType;
duke@1 3080 switch (Ti.kind) {
duke@1 3081 case UNBOUND:
duke@1 3082 Si.bound = subst(Ui, A, S);
duke@1 3083 Si.lower = syms.botType;
duke@1 3084 break;
duke@1 3085 case EXTENDS:
duke@1 3086 Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
duke@1 3087 Si.lower = syms.botType;
duke@1 3088 break;
duke@1 3089 case SUPER:
duke@1 3090 Si.bound = subst(Ui, A, S);
duke@1 3091 Si.lower = Ti.getSuperBound();
duke@1 3092 break;
duke@1 3093 }
duke@1 3094 if (Si.bound == Si.lower)
duke@1 3095 currentS.head = Si.bound;
duke@1 3096 }
duke@1 3097 currentA = currentA.tail;
duke@1 3098 currentT = currentT.tail;
duke@1 3099 currentS = currentS.tail;
duke@1 3100 }
duke@1 3101 if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
duke@1 3102 return erasure(t); // some "rare" type involved
duke@1 3103
duke@1 3104 if (captured)
duke@1 3105 return new ClassType(cls.getEnclosingType(), S, cls.tsym);
duke@1 3106 else
duke@1 3107 return t;
duke@1 3108 }
duke@1 3109 // where
mcimadamore@238 3110 public List<Type> freshTypeVariables(List<Type> types) {
duke@1 3111 ListBuffer<Type> result = lb();
duke@1 3112 for (Type t : types) {
duke@1 3113 if (t.tag == WILDCARD) {
duke@1 3114 Type bound = ((WildcardType)t).getExtendsBound();
duke@1 3115 if (bound == null)
duke@1 3116 bound = syms.objectType;
duke@1 3117 result.append(new CapturedType(capturedName,
duke@1 3118 syms.noSymbol,
duke@1 3119 bound,
duke@1 3120 syms.botType,
duke@1 3121 (WildcardType)t));
duke@1 3122 } else {
duke@1 3123 result.append(t);
duke@1 3124 }
duke@1 3125 }
duke@1 3126 return result.toList();
duke@1 3127 }
duke@1 3128 // </editor-fold>
duke@1 3129
duke@1 3130 // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
duke@1 3131 private List<Type> upperBounds(List<Type> ss) {
duke@1 3132 if (ss.isEmpty()) return ss;
duke@1 3133 Type head = upperBound(ss.head);
duke@1 3134 List<Type> tail = upperBounds(ss.tail);
duke@1 3135 if (head != ss.head || tail != ss.tail)
duke@1 3136 return tail.prepend(head);
duke@1 3137 else
duke@1 3138 return ss;
duke@1 3139 }
duke@1 3140
duke@1 3141 private boolean sideCast(Type from, Type to, Warner warn) {
duke@1 3142 // We are casting from type $from$ to type $to$, which are
duke@1 3143 // non-final unrelated types. This method
duke@1 3144 // tries to reject a cast by transferring type parameters
duke@1 3145 // from $to$ to $from$ by common superinterfaces.
duke@1 3146 boolean reverse = false;
duke@1 3147 Type target = to;
duke@1 3148 if ((to.tsym.flags() & INTERFACE) == 0) {
jjg@816 3149 Assert.check((from.tsym.flags() & INTERFACE) != 0);
duke@1 3150 reverse = true;
duke@1 3151 to = from;
duke@1 3152 from = target;
duke@1 3153 }
duke@1 3154 List<Type> commonSupers = superClosure(to, erasure(from));
duke@1 3155 boolean giveWarning = commonSupers.isEmpty();
duke@1 3156 // The arguments to the supers could be unified here to
duke@1 3157 // get a more accurate analysis
duke@1 3158 while (commonSupers.nonEmpty()) {
duke@1 3159 Type t1 = asSuper(from, commonSupers.head.tsym);
duke@1 3160 Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
duke@1 3161 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3162 return false;
duke@1 3163 giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
duke@1 3164 commonSupers = commonSupers.tail;
duke@1 3165 }
mcimadamore@187 3166 if (giveWarning && !isReifiable(reverse ? from : to))
mcimadamore@795 3167 warn.warn(LintCategory.UNCHECKED);
duke@1 3168 if (!source.allowCovariantReturns())
duke@1 3169 // reject if there is a common method signature with
duke@1 3170 // incompatible return types.
duke@1 3171 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3172 return true;
duke@1 3173 }
duke@1 3174
duke@1 3175 private boolean sideCastFinal(Type from, Type to, Warner warn) {
duke@1 3176 // We are casting from type $from$ to type $to$, which are
duke@1 3177 // unrelated types one of which is final and the other of
duke@1 3178 // which is an interface. This method
duke@1 3179 // tries to reject a cast by transferring type parameters
duke@1 3180 // from the final class to the interface.
duke@1 3181 boolean reverse = false;
duke@1 3182 Type target = to;
duke@1 3183 if ((to.tsym.flags() & INTERFACE) == 0) {
jjg@816 3184 Assert.check((from.tsym.flags() & INTERFACE) != 0);
duke@1 3185 reverse = true;
duke@1 3186 to = from;
duke@1 3187 from = target;
duke@1 3188 }
jjg@816 3189 Assert.check((from.tsym.flags() & FINAL) != 0);
duke@1 3190 Type t1 = asSuper(from, to.tsym);
duke@1 3191 if (t1 == null) return false;
duke@1 3192 Type t2 = to;
duke@1 3193 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3194 return false;
duke@1 3195 if (!source.allowCovariantReturns())
duke@1 3196 // reject if there is a common method signature with
duke@1 3197 // incompatible return types.
duke@1 3198 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3199 if (!isReifiable(target) &&
duke@1 3200 (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
mcimadamore@795 3201 warn.warn(LintCategory.UNCHECKED);
duke@1 3202 return true;
duke@1 3203 }
duke@1 3204
duke@1 3205 private boolean giveWarning(Type from, Type to) {
mcimadamore@235 3206 Type subFrom = asSub(from, to.tsym);
mcimadamore@235 3207 return to.isParameterized() &&
mcimadamore@235 3208 (!(isUnbounded(to) ||
mcimadamore@235 3209 isSubtype(from, to) ||
mcimadamore@736 3210 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
duke@1 3211 }
duke@1 3212
duke@1 3213 private List<Type> superClosure(Type t, Type s) {
duke@1 3214 List<Type> cl = List.nil();
duke@1 3215 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 3216 if (isSubtype(s, erasure(l.head))) {
duke@1 3217 cl = insert(cl, l.head);
duke@1 3218 } else {
duke@1 3219 cl = union(cl, superClosure(l.head, s));
duke@1 3220 }
duke@1 3221 }
duke@1 3222 return cl;
duke@1 3223 }
duke@1 3224
duke@1 3225 private boolean containsTypeEquivalent(Type t, Type s) {
duke@1 3226 return
duke@1 3227 isSameType(t, s) || // shortcut
duke@1 3228 containsType(t, s) && containsType(s, t);
duke@1 3229 }
duke@1 3230
mcimadamore@138 3231 // <editor-fold defaultstate="collapsed" desc="adapt">
duke@1 3232 /**
duke@1 3233 * Adapt a type by computing a substitution which maps a source
duke@1 3234 * type to a target type.
duke@1 3235 *
duke@1 3236 * @param source the source type
duke@1 3237 * @param target the target type
duke@1 3238 * @param from the type variables of the computed substitution
duke@1 3239 * @param to the types of the computed substitution.
duke@1 3240 */
duke@1 3241 public void adapt(Type source,
duke@1 3242 Type target,
duke@1 3243 ListBuffer<Type> from,
duke@1 3244 ListBuffer<Type> to) throws AdaptFailure {
mcimadamore@138 3245 new Adapter(from, to).adapt(source, target);
mcimadamore@138 3246 }
mcimadamore@138 3247
mcimadamore@138 3248 class Adapter extends SimpleVisitor<Void, Type> {
mcimadamore@138 3249
mcimadamore@138 3250 ListBuffer<Type> from;
mcimadamore@138 3251 ListBuffer<Type> to;
mcimadamore@138 3252 Map<Symbol,Type> mapping;
mcimadamore@138 3253
mcimadamore@138 3254 Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
mcimadamore@138 3255 this.from = from;
mcimadamore@138 3256 this.to = to;
mcimadamore@138 3257 mapping = new HashMap<Symbol,Type>();
duke@1 3258 }
mcimadamore@138 3259
mcimadamore@138 3260 public void adapt(Type source, Type target) throws AdaptFailure {
mcimadamore@138 3261 visit(source, target);
mcimadamore@138 3262 List<Type> fromList = from.toList();
mcimadamore@138 3263 List<Type> toList = to.toList();
mcimadamore@138 3264 while (!fromList.isEmpty()) {
mcimadamore@138 3265 Type val = mapping.get(fromList.head.tsym);
mcimadamore@138 3266 if (toList.head != val)
mcimadamore@138 3267 toList.head = val;
mcimadamore@138 3268 fromList = fromList.tail;
mcimadamore@138 3269 toList = toList.tail;
mcimadamore@138 3270 }
mcimadamore@138 3271 }
mcimadamore@138 3272
mcimadamore@138 3273 @Override
mcimadamore@138 3274 public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
mcimadamore@138 3275 if (target.tag == CLASS)
mcimadamore@138 3276 adaptRecursive(source.allparams(), target.allparams());
mcimadamore@138 3277 return null;
mcimadamore@138 3278 }
mcimadamore@138 3279
mcimadamore@138 3280 @Override
mcimadamore@138 3281 public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
mcimadamore@138 3282 if (target.tag == ARRAY)
mcimadamore@138 3283 adaptRecursive(elemtype(source), elemtype(target));
mcimadamore@138 3284 return null;
mcimadamore@138 3285 }
mcimadamore@138 3286
mcimadamore@138 3287 @Override
mcimadamore@138 3288 public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
mcimadamore@138 3289 if (source.isExtendsBound())
mcimadamore@138 3290 adaptRecursive(upperBound(source), upperBound(target));
mcimadamore@138 3291 else if (source.isSuperBound())
mcimadamore@138 3292 adaptRecursive(lowerBound(source), lowerBound(target));
mcimadamore@138 3293 return null;
mcimadamore@138 3294 }
mcimadamore@138 3295
mcimadamore@138 3296 @Override
mcimadamore@138 3297 public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
mcimadamore@138 3298 // Check to see if there is
mcimadamore@138 3299 // already a mapping for $source$, in which case
mcimadamore@138 3300 // the old mapping will be merged with the new
mcimadamore@138 3301 Type val = mapping.get(source.tsym);
mcimadamore@138 3302 if (val != null) {
mcimadamore@138 3303 if (val.isSuperBound() && target.isSuperBound()) {
mcimadamore@138 3304 val = isSubtype(lowerBound(val), lowerBound(target))
mcimadamore@138 3305 ? target : val;
mcimadamore@138 3306 } else if (val.isExtendsBound() && target.isExtendsBound()) {
mcimadamore@138 3307 val = isSubtype(upperBound(val), upperBound(target))
mcimadamore@138 3308 ? val : target;
mcimadamore@138 3309 } else if (!isSameType(val, target)) {
mcimadamore@138 3310 throw new AdaptFailure();
duke@1 3311 }
mcimadamore@138 3312 } else {
mcimadamore@138 3313 val = target;
mcimadamore@138 3314 from.append(source);
mcimadamore@138 3315 to.append(target);
mcimadamore@138 3316 }
mcimadamore@138 3317 mapping.put(source.tsym, val);
mcimadamore@138 3318 return null;
mcimadamore@138 3319 }
mcimadamore@138 3320
mcimadamore@138 3321 @Override
mcimadamore@138 3322 public Void visitType(Type source, Type target) {
mcimadamore@138 3323 return null;
mcimadamore@138 3324 }
mcimadamore@138 3325
mcimadamore@138 3326 private Set<TypePair> cache = new HashSet<TypePair>();
mcimadamore@138 3327
mcimadamore@138 3328 private void adaptRecursive(Type source, Type target) {
mcimadamore@138 3329 TypePair pair = new TypePair(source, target);
mcimadamore@138 3330 if (cache.add(pair)) {
mcimadamore@138 3331 try {
mcimadamore@138 3332 visit(source, target);
mcimadamore@138 3333 } finally {
mcimadamore@138 3334 cache.remove(pair);
duke@1 3335 }
duke@1 3336 }
duke@1 3337 }
mcimadamore@138 3338
mcimadamore@138 3339 private void adaptRecursive(List<Type> source, List<Type> target) {
mcimadamore@138 3340 if (source.length() == target.length()) {
mcimadamore@138 3341 while (source.nonEmpty()) {
mcimadamore@138 3342 adaptRecursive(source.head, target.head);
mcimadamore@138 3343 source = source.tail;
mcimadamore@138 3344 target = target.tail;
mcimadamore@138 3345 }
duke@1 3346 }
duke@1 3347 }
duke@1 3348 }
duke@1 3349
mcimadamore@138 3350 public static class AdaptFailure extends RuntimeException {
mcimadamore@138 3351 static final long serialVersionUID = -7490231548272701566L;
mcimadamore@138 3352 }
mcimadamore@138 3353
duke@1 3354 private void adaptSelf(Type t,
duke@1 3355 ListBuffer<Type> from,
duke@1 3356 ListBuffer<Type> to) {
duke@1 3357 try {
duke@1 3358 //if (t.tsym.type != t)
duke@1 3359 adapt(t.tsym.type, t, from, to);
duke@1 3360 } catch (AdaptFailure ex) {
duke@1 3361 // Adapt should never fail calculating a mapping from
duke@1 3362 // t.tsym.type to t as there can be no merge problem.
duke@1 3363 throw new AssertionError(ex);
duke@1 3364 }
duke@1 3365 }
mcimadamore@138 3366 // </editor-fold>
duke@1 3367
duke@1 3368 /**
duke@1 3369 * Rewrite all type variables (universal quantifiers) in the given
duke@1 3370 * type to wildcards (existential quantifiers). This is used to
duke@1 3371 * determine if a cast is allowed. For example, if high is true
duke@1 3372 * and {@code T <: Number}, then {@code List<T>} is rewritten to
duke@1 3373 * {@code List<? extends Number>}. Since {@code List<Integer> <:
duke@1 3374 * List<? extends Number>} a {@code List<T>} can be cast to {@code
duke@1 3375 * List<Integer>} with a warning.
duke@1 3376 * @param t a type
duke@1 3377 * @param high if true return an upper bound; otherwise a lower
duke@1 3378 * bound
duke@1 3379 * @param rewriteTypeVars only rewrite captured wildcards if false;
duke@1 3380 * otherwise rewrite all type variables
duke@1 3381 * @return the type rewritten with wildcards (existential
duke@1 3382 * quantifiers) only
duke@1 3383 */
duke@1 3384 private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
mcimadamore@640 3385 return new Rewriter(high, rewriteTypeVars).visit(t);
mcimadamore@157 3386 }
mcimadamore@157 3387
mcimadamore@157 3388 class Rewriter extends UnaryVisitor<Type> {
mcimadamore@157 3389
mcimadamore@157 3390 boolean high;
mcimadamore@157 3391 boolean rewriteTypeVars;
mcimadamore@157 3392
mcimadamore@157 3393 Rewriter(boolean high, boolean rewriteTypeVars) {
mcimadamore@157 3394 this.high = high;
mcimadamore@157 3395 this.rewriteTypeVars = rewriteTypeVars;
mcimadamore@157 3396 }
mcimadamore@157 3397
mcimadamore@640 3398 @Override
mcimadamore@640 3399 public Type visitClassType(ClassType t, Void s) {
mcimadamore@157 3400 ListBuffer<Type> rewritten = new ListBuffer<Type>();
mcimadamore@157 3401 boolean changed = false;
mcimadamore@640 3402 for (Type arg : t.allparams()) {
mcimadamore@157 3403 Type bound = visit(arg);
mcimadamore@157 3404 if (arg != bound) {
mcimadamore@157 3405 changed = true;
mcimadamore@157 3406 }
mcimadamore@157 3407 rewritten.append(bound);
duke@1 3408 }
mcimadamore@157 3409 if (changed)
mcimadamore@640 3410 return subst(t.tsym.type,
mcimadamore@640 3411 t.tsym.type.allparams(),
mcimadamore@640 3412 rewritten.toList());
mcimadamore@157 3413 else
mcimadamore@157 3414 return t;
duke@1 3415 }
mcimadamore@157 3416
mcimadamore@157 3417 public Type visitType(Type t, Void s) {
mcimadamore@157 3418 return high ? upperBound(t) : lowerBound(t);
mcimadamore@157 3419 }
mcimadamore@157 3420
mcimadamore@157 3421 @Override
mcimadamore@157 3422 public Type visitCapturedType(CapturedType t, Void s) {
mcimadamore@640 3423 Type bound = visitWildcardType(t.wildcard, null);
mcimadamore@640 3424 return (bound.contains(t)) ?
mcimadamore@779 3425 erasure(bound) :
mcimadamore@779 3426 bound;
mcimadamore@157 3427 }
mcimadamore@157 3428
mcimadamore@157 3429 @Override
mcimadamore@157 3430 public Type visitTypeVar(TypeVar t, Void s) {
mcimadamore@640 3431 if (rewriteTypeVars) {
mcimadamore@640 3432 Type bound = high ?
mcimadamore@640 3433 (t.bound.contains(t) ?
mcimadamore@779 3434 erasure(t.bound) :
mcimadamore@640 3435 visit(t.bound)) :
mcimadamore@640 3436 syms.botType;
mcimadamore@640 3437 return rewriteAsWildcardType(bound, t);
mcimadamore@640 3438 }
mcimadamore@157 3439 else
mcimadamore@157 3440 return t;
mcimadamore@157 3441 }
mcimadamore@157 3442
mcimadamore@157 3443 @Override
mcimadamore@157 3444 public Type visitWildcardType(WildcardType t, Void s) {
mcimadamore@157 3445 Type bound = high ? t.getExtendsBound() :
mcimadamore@157 3446 t.getSuperBound();
mcimadamore@157 3447 if (bound == null)
mcimadamore@640 3448 bound = high ? syms.objectType : syms.botType;
mcimadamore@640 3449 return rewriteAsWildcardType(visit(bound), t.bound);
mcimadamore@640 3450 }
mcimadamore@640 3451
mcimadamore@640 3452 private Type rewriteAsWildcardType(Type bound, TypeVar formal) {
mcimadamore@640 3453 return high ?
mcimadamore@640 3454 makeExtendsWildcard(B(bound), formal) :
mcimadamore@640 3455 makeSuperWildcard(B(bound), formal);
mcimadamore@640 3456 }
mcimadamore@640 3457
mcimadamore@640 3458 Type B(Type t) {
mcimadamore@640 3459 while (t.tag == WILDCARD) {
mcimadamore@640 3460 WildcardType w = (WildcardType)t;
mcimadamore@640 3461 t = high ?
mcimadamore@640 3462 w.getExtendsBound() :
mcimadamore@640 3463 w.getSuperBound();
mcimadamore@640 3464 if (t == null) {
mcimadamore@640 3465 t = high ? syms.objectType : syms.botType;
mcimadamore@640 3466 }
mcimadamore@640 3467 }
mcimadamore@640 3468 return t;
mcimadamore@157 3469 }
duke@1 3470 }
duke@1 3471
mcimadamore@640 3472
duke@1 3473 /**
duke@1 3474 * Create a wildcard with the given upper (extends) bound; create
duke@1 3475 * an unbounded wildcard if bound is Object.
duke@1 3476 *
duke@1 3477 * @param bound the upper bound
duke@1 3478 * @param formal the formal type parameter that will be
duke@1 3479 * substituted by the wildcard
duke@1 3480 */
duke@1 3481 private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
duke@1 3482 if (bound == syms.objectType) {
duke@1 3483 return new WildcardType(syms.objectType,
duke@1 3484 BoundKind.UNBOUND,
duke@1 3485 syms.boundClass,
duke@1 3486 formal);
duke@1 3487 } else {
duke@1 3488 return new WildcardType(bound,
duke@1 3489 BoundKind.EXTENDS,
duke@1 3490 syms.boundClass,
duke@1 3491 formal);
duke@1 3492 }
duke@1 3493 }
duke@1 3494
duke@1 3495 /**
duke@1 3496 * Create a wildcard with the given lower (super) bound; create an
duke@1 3497 * unbounded wildcard if bound is bottom (type of {@code null}).
duke@1 3498 *
duke@1 3499 * @param bound the lower bound
duke@1 3500 * @param formal the formal type parameter that will be
duke@1 3501 * substituted by the wildcard
duke@1 3502 */
duke@1 3503 private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
duke@1 3504 if (bound.tag == BOT) {
duke@1 3505 return new WildcardType(syms.objectType,
duke@1 3506 BoundKind.UNBOUND,
duke@1 3507 syms.boundClass,
duke@1 3508 formal);
duke@1 3509 } else {
duke@1 3510 return new WildcardType(bound,
duke@1 3511 BoundKind.SUPER,
duke@1 3512 syms.boundClass,
duke@1 3513 formal);
duke@1 3514 }
duke@1 3515 }
duke@1 3516
duke@1 3517 /**
duke@1 3518 * A wrapper for a type that allows use in sets.
duke@1 3519 */
duke@1 3520 class SingletonType {
duke@1 3521 final Type t;
duke@1 3522 SingletonType(Type t) {
duke@1 3523 this.t = t;
duke@1 3524 }
duke@1 3525 public int hashCode() {
jjg@507 3526 return Types.hashCode(t);
duke@1 3527 }
duke@1 3528 public boolean equals(Object obj) {
duke@1 3529 return (obj instanceof SingletonType) &&
duke@1 3530 isSameType(t, ((SingletonType)obj).t);
duke@1 3531 }
duke@1 3532 public String toString() {
duke@1 3533 return t.toString();
duke@1 3534 }
duke@1 3535 }
duke@1 3536 // </editor-fold>
duke@1 3537
duke@1 3538 // <editor-fold defaultstate="collapsed" desc="Visitors">
duke@1 3539 /**
duke@1 3540 * A default visitor for types. All visitor methods except
duke@1 3541 * visitType are implemented by delegating to visitType. Concrete
duke@1 3542 * subclasses must provide an implementation of visitType and can
duke@1 3543 * override other methods as needed.
duke@1 3544 *
duke@1 3545 * @param <R> the return type of the operation implemented by this
duke@1 3546 * visitor; use Void if no return type is needed.
duke@1 3547 * @param <S> the type of the second argument (the first being the
duke@1 3548 * type itself) of the operation implemented by this visitor; use
duke@1 3549 * Void if a second argument is not needed.
duke@1 3550 */
duke@1 3551 public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
duke@1 3552 final public R visit(Type t, S s) { return t.accept(this, s); }
duke@1 3553 public R visitClassType(ClassType t, S s) { return visitType(t, s); }
duke@1 3554 public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
duke@1 3555 public R visitArrayType(ArrayType t, S s) { return visitType(t, s); }
duke@1 3556 public R visitMethodType(MethodType t, S s) { return visitType(t, s); }
duke@1 3557 public R visitPackageType(PackageType t, S s) { return visitType(t, s); }
duke@1 3558 public R visitTypeVar(TypeVar t, S s) { return visitType(t, s); }
duke@1 3559 public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
duke@1 3560 public R visitForAll(ForAll t, S s) { return visitType(t, s); }
duke@1 3561 public R visitUndetVar(UndetVar t, S s) { return visitType(t, s); }
duke@1 3562 public R visitErrorType(ErrorType t, S s) { return visitType(t, s); }
duke@1 3563 }
duke@1 3564
duke@1 3565 /**
mcimadamore@121 3566 * A default visitor for symbols. All visitor methods except
mcimadamore@121 3567 * visitSymbol are implemented by delegating to visitSymbol. Concrete
mcimadamore@121 3568 * subclasses must provide an implementation of visitSymbol and can
mcimadamore@121 3569 * override other methods as needed.
mcimadamore@121 3570 *
mcimadamore@121 3571 * @param <R> the return type of the operation implemented by this
mcimadamore@121 3572 * visitor; use Void if no return type is needed.
mcimadamore@121 3573 * @param <S> the type of the second argument (the first being the
mcimadamore@121 3574 * symbol itself) of the operation implemented by this visitor; use
mcimadamore@121 3575 * Void if a second argument is not needed.
mcimadamore@121 3576 */
mcimadamore@121 3577 public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
mcimadamore@121 3578 final public R visit(Symbol s, S arg) { return s.accept(this, arg); }
mcimadamore@121 3579 public R visitClassSymbol(ClassSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3580 public R visitMethodSymbol(MethodSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3581 public R visitOperatorSymbol(OperatorSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3582 public R visitPackageSymbol(PackageSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3583 public R visitTypeSymbol(TypeSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3584 public R visitVarSymbol(VarSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 3585 }
mcimadamore@121 3586
mcimadamore@121 3587 /**
duke@1 3588 * A <em>simple</em> visitor for types. This visitor is simple as
duke@1 3589 * captured wildcards, for-all types (generic methods), and
duke@1 3590 * undetermined type variables (part of inference) are hidden.
duke@1 3591 * Captured wildcards are hidden by treating them as type
duke@1 3592 * variables and the rest are hidden by visiting their qtypes.
duke@1 3593 *
duke@1 3594 * @param <R> the return type of the operation implemented by this
duke@1 3595 * visitor; use Void if no return type is needed.
duke@1 3596 * @param <S> the type of the second argument (the first being the
duke@1 3597 * type itself) of the operation implemented by this visitor; use
duke@1 3598 * Void if a second argument is not needed.
duke@1 3599 */
duke@1 3600 public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
duke@1 3601 @Override
duke@1 3602 public R visitCapturedType(CapturedType t, S s) {
duke@1 3603 return visitTypeVar(t, s);
duke@1 3604 }
duke@1 3605 @Override
duke@1 3606 public R visitForAll(ForAll t, S s) {
duke@1 3607 return visit(t.qtype, s);
duke@1 3608 }
duke@1 3609 @Override
duke@1 3610 public R visitUndetVar(UndetVar t, S s) {
duke@1 3611 return visit(t.qtype, s);
duke@1 3612 }
duke@1 3613 }
duke@1 3614
duke@1 3615 /**
duke@1 3616 * A plain relation on types. That is a 2-ary function on the
duke@1 3617 * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
duke@1 3618 * <!-- In plain text: Type x Type -> Boolean -->
duke@1 3619 */
duke@1 3620 public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
duke@1 3621
duke@1 3622 /**
duke@1 3623 * A convenience visitor for implementing operations that only
duke@1 3624 * require one argument (the type itself), that is, unary
duke@1 3625 * operations.
duke@1 3626 *
duke@1 3627 * @param <R> the return type of the operation implemented by this
duke@1 3628 * visitor; use Void if no return type is needed.
duke@1 3629 */
duke@1 3630 public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
duke@1 3631 final public R visit(Type t) { return t.accept(this, null); }
duke@1 3632 }
duke@1 3633
duke@1 3634 /**
duke@1 3635 * A visitor for implementing a mapping from types to types. The
duke@1 3636 * default behavior of this class is to implement the identity
duke@1 3637 * mapping (mapping a type to itself). This can be overridden in
duke@1 3638 * subclasses.
duke@1 3639 *
duke@1 3640 * @param <S> the type of the second argument (the first being the
duke@1 3641 * type itself) of this mapping; use Void if a second argument is
duke@1 3642 * not needed.
duke@1 3643 */
duke@1 3644 public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
duke@1 3645 final public Type visit(Type t) { return t.accept(this, null); }
duke@1 3646 public Type visitType(Type t, S s) { return t; }
duke@1 3647 }
duke@1 3648 // </editor-fold>
jjg@657 3649
jjg@657 3650
jjg@657 3651 // <editor-fold defaultstate="collapsed" desc="Annotation support">
jjg@657 3652
jjg@657 3653 public RetentionPolicy getRetention(Attribute.Compound a) {
jjg@657 3654 RetentionPolicy vis = RetentionPolicy.CLASS; // the default
jjg@657 3655 Attribute.Compound c = a.type.tsym.attribute(syms.retentionType.tsym);
jjg@657 3656 if (c != null) {
jjg@657 3657 Attribute value = c.member(names.value);
jjg@657 3658 if (value != null && value instanceof Attribute.Enum) {
jjg@657 3659 Name levelName = ((Attribute.Enum)value).value.name;
jjg@657 3660 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
jjg@657 3661 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
jjg@657 3662 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
jjg@657 3663 else ;// /* fail soft */ throw new AssertionError(levelName);
jjg@657 3664 }
jjg@657 3665 }
jjg@657 3666 return vis;
jjg@657 3667 }
jjg@657 3668 // </editor-fold>
duke@1 3669 }

mercurial