src/share/classes/com/sun/tools/javac/code/Types.java

Wed, 16 Jan 2013 16:30:11 +0000

author
mcimadamore
date
Wed, 16 Jan 2013 16:30:11 +0000
changeset 1497
7aa2025bbb7b
parent 1452
de1ec6fc93fe
child 1510
7873d37f5b37
permissions
-rw-r--r--

8005299: Add FunctionalInterface checking to javac
Summary: Javac should check that types annotated with @FunctionalInterface are indeed functional interfaces
Reviewed-by: jjg

duke@1 1 /*
mcimadamore@1177 2 * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.code;
duke@1 27
mcimadamore@341 28 import java.lang.ref.SoftReference;
jjg@1430 29 import java.util.Comparator;
jjg@1430 30 import java.util.HashSet;
jjg@1430 31 import java.util.HashMap;
jjg@1430 32 import java.util.Locale;
jjg@1430 33 import java.util.Map;
jjg@1430 34 import java.util.Set;
jjg@1430 35 import java.util.WeakHashMap;
duke@1 36
jjg@657 37 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
mcimadamore@795 38 import com.sun.tools.javac.code.Lint.LintCategory;
mcimadamore@1338 39 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
duke@1 40 import com.sun.tools.javac.comp.Check;
jjg@1357 41 import com.sun.tools.javac.jvm.ClassReader;
jjg@1357 42 import com.sun.tools.javac.util.*;
jjg@1357 43 import com.sun.tools.javac.util.List;
jjg@1357 44 import static com.sun.tools.javac.code.BoundKind.*;
jjg@1357 45 import static com.sun.tools.javac.code.Flags.*;
mcimadamore@858 46 import static com.sun.tools.javac.code.Scope.*;
jjg@1357 47 import static com.sun.tools.javac.code.Symbol.*;
duke@1 48 import static com.sun.tools.javac.code.Type.*;
jjg@1374 49 import static com.sun.tools.javac.code.TypeTag.*;
duke@1 50 import static com.sun.tools.javac.util.ListBuffer.lb;
duke@1 51
duke@1 52 /**
duke@1 53 * Utility class containing various operations on types.
duke@1 54 *
duke@1 55 * <p>Unless other names are more illustrative, the following naming
duke@1 56 * conventions should be observed in this file:
duke@1 57 *
duke@1 58 * <dl>
duke@1 59 * <dt>t</dt>
duke@1 60 * <dd>If the first argument to an operation is a type, it should be named t.</dd>
duke@1 61 * <dt>s</dt>
duke@1 62 * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
duke@1 63 * <dt>ts</dt>
duke@1 64 * <dd>If an operations takes a list of types, the first should be named ts.</dd>
duke@1 65 * <dt>ss</dt>
duke@1 66 * <dd>A second list of types should be named ss.</dd>
duke@1 67 * </dl>
duke@1 68 *
jjg@581 69 * <p><b>This is NOT part of any supported API.
duke@1 70 * If you write code that depends on this, you do so at your own risk.
duke@1 71 * This code and its internal interfaces are subject to change or
duke@1 72 * deletion without notice.</b>
duke@1 73 */
duke@1 74 public class Types {
duke@1 75 protected static final Context.Key<Types> typesKey =
duke@1 76 new Context.Key<Types>();
duke@1 77
duke@1 78 final Symtab syms;
mcimadamore@136 79 final JavacMessages messages;
jjg@113 80 final Names names;
duke@1 81 final boolean allowBoxing;
jjg@984 82 final boolean allowCovariantReturns;
jjg@984 83 final boolean allowObjectToPrimitiveCast;
mcimadamore@1393 84 final boolean allowDefaultMethods;
duke@1 85 final ClassReader reader;
duke@1 86 final Check chk;
mcimadamore@1348 87 JCDiagnostic.Factory diags;
duke@1 88 List<Warner> warnStack = List.nil();
duke@1 89 final Name capturedName;
mcimadamore@1348 90 private final FunctionDescriptorLookupError functionDescriptorLookupError;
duke@1 91
mcimadamore@1415 92 public final Warner noWarnings;
mcimadamore@1415 93
duke@1 94 // <editor-fold defaultstate="collapsed" desc="Instantiating">
duke@1 95 public static Types instance(Context context) {
duke@1 96 Types instance = context.get(typesKey);
duke@1 97 if (instance == null)
duke@1 98 instance = new Types(context);
duke@1 99 return instance;
duke@1 100 }
duke@1 101
duke@1 102 protected Types(Context context) {
duke@1 103 context.put(typesKey, this);
duke@1 104 syms = Symtab.instance(context);
jjg@113 105 names = Names.instance(context);
jjg@984 106 Source source = Source.instance(context);
jjg@984 107 allowBoxing = source.allowBoxing();
jjg@984 108 allowCovariantReturns = source.allowCovariantReturns();
jjg@984 109 allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
mcimadamore@1393 110 allowDefaultMethods = source.allowDefaultMethods();
duke@1 111 reader = ClassReader.instance(context);
duke@1 112 chk = Check.instance(context);
duke@1 113 capturedName = names.fromString("<captured wildcard>");
mcimadamore@136 114 messages = JavacMessages.instance(context);
mcimadamore@1348 115 diags = JCDiagnostic.Factory.instance(context);
mcimadamore@1348 116 functionDescriptorLookupError = new FunctionDescriptorLookupError();
mcimadamore@1415 117 noWarnings = new Warner(null);
duke@1 118 }
duke@1 119 // </editor-fold>
duke@1 120
duke@1 121 // <editor-fold defaultstate="collapsed" desc="upperBound">
duke@1 122 /**
duke@1 123 * The "rvalue conversion".<br>
duke@1 124 * The upper bound of most types is the type
duke@1 125 * itself. Wildcards, on the other hand have upper
duke@1 126 * and lower bounds.
duke@1 127 * @param t a type
duke@1 128 * @return the upper bound of the given type
duke@1 129 */
duke@1 130 public Type upperBound(Type t) {
duke@1 131 return upperBound.visit(t);
duke@1 132 }
duke@1 133 // where
duke@1 134 private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
duke@1 135
duke@1 136 @Override
duke@1 137 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 138 if (t.isSuperBound())
duke@1 139 return t.bound == null ? syms.objectType : t.bound.bound;
duke@1 140 else
duke@1 141 return visit(t.type);
duke@1 142 }
duke@1 143
duke@1 144 @Override
duke@1 145 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 146 return visit(t.bound);
duke@1 147 }
duke@1 148 };
duke@1 149 // </editor-fold>
duke@1 150
duke@1 151 // <editor-fold defaultstate="collapsed" desc="lowerBound">
duke@1 152 /**
duke@1 153 * The "lvalue conversion".<br>
duke@1 154 * The lower bound of most types is the type
duke@1 155 * itself. Wildcards, on the other hand have upper
duke@1 156 * and lower bounds.
duke@1 157 * @param t a type
duke@1 158 * @return the lower bound of the given type
duke@1 159 */
duke@1 160 public Type lowerBound(Type t) {
duke@1 161 return lowerBound.visit(t);
duke@1 162 }
duke@1 163 // where
duke@1 164 private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
duke@1 165
duke@1 166 @Override
duke@1 167 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 168 return t.isExtendsBound() ? syms.botType : visit(t.type);
duke@1 169 }
duke@1 170
duke@1 171 @Override
duke@1 172 public Type visitCapturedType(CapturedType t, Void ignored) {
duke@1 173 return visit(t.getLowerBound());
duke@1 174 }
duke@1 175 };
duke@1 176 // </editor-fold>
duke@1 177
duke@1 178 // <editor-fold defaultstate="collapsed" desc="isUnbounded">
duke@1 179 /**
duke@1 180 * Checks that all the arguments to a class are unbounded
duke@1 181 * wildcards or something else that doesn't make any restrictions
duke@1 182 * on the arguments. If a class isUnbounded, a raw super- or
duke@1 183 * subclass can be cast to it without a warning.
duke@1 184 * @param t a type
duke@1 185 * @return true iff the given type is unbounded or raw
duke@1 186 */
duke@1 187 public boolean isUnbounded(Type t) {
duke@1 188 return isUnbounded.visit(t);
duke@1 189 }
duke@1 190 // where
duke@1 191 private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
duke@1 192
duke@1 193 public Boolean visitType(Type t, Void ignored) {
duke@1 194 return true;
duke@1 195 }
duke@1 196
duke@1 197 @Override
duke@1 198 public Boolean visitClassType(ClassType t, Void ignored) {
duke@1 199 List<Type> parms = t.tsym.type.allparams();
duke@1 200 List<Type> args = t.allparams();
duke@1 201 while (parms.nonEmpty()) {
duke@1 202 WildcardType unb = new WildcardType(syms.objectType,
duke@1 203 BoundKind.UNBOUND,
duke@1 204 syms.boundClass,
duke@1 205 (TypeVar)parms.head);
duke@1 206 if (!containsType(args.head, unb))
duke@1 207 return false;
duke@1 208 parms = parms.tail;
duke@1 209 args = args.tail;
duke@1 210 }
duke@1 211 return true;
duke@1 212 }
duke@1 213 };
duke@1 214 // </editor-fold>
duke@1 215
duke@1 216 // <editor-fold defaultstate="collapsed" desc="asSub">
duke@1 217 /**
duke@1 218 * Return the least specific subtype of t that starts with symbol
duke@1 219 * sym. If none exists, return null. The least specific subtype
duke@1 220 * is determined as follows:
duke@1 221 *
duke@1 222 * <p>If there is exactly one parameterized instance of sym that is a
duke@1 223 * subtype of t, that parameterized instance is returned.<br>
duke@1 224 * Otherwise, if the plain type or raw type `sym' is a subtype of
duke@1 225 * type t, the type `sym' itself is returned. Otherwise, null is
duke@1 226 * returned.
duke@1 227 */
duke@1 228 public Type asSub(Type t, Symbol sym) {
duke@1 229 return asSub.visit(t, sym);
duke@1 230 }
duke@1 231 // where
duke@1 232 private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
duke@1 233
duke@1 234 public Type visitType(Type t, Symbol sym) {
duke@1 235 return null;
duke@1 236 }
duke@1 237
duke@1 238 @Override
duke@1 239 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 240 if (t.tsym == sym)
duke@1 241 return t;
duke@1 242 Type base = asSuper(sym.type, t.tsym);
duke@1 243 if (base == null)
duke@1 244 return null;
duke@1 245 ListBuffer<Type> from = new ListBuffer<Type>();
duke@1 246 ListBuffer<Type> to = new ListBuffer<Type>();
duke@1 247 try {
duke@1 248 adapt(base, t, from, to);
duke@1 249 } catch (AdaptFailure ex) {
duke@1 250 return null;
duke@1 251 }
duke@1 252 Type res = subst(sym.type, from.toList(), to.toList());
duke@1 253 if (!isSubtype(res, t))
duke@1 254 return null;
duke@1 255 ListBuffer<Type> openVars = new ListBuffer<Type>();
duke@1 256 for (List<Type> l = sym.type.allparams();
duke@1 257 l.nonEmpty(); l = l.tail)
duke@1 258 if (res.contains(l.head) && !t.contains(l.head))
duke@1 259 openVars.append(l.head);
duke@1 260 if (openVars.nonEmpty()) {
duke@1 261 if (t.isRaw()) {
duke@1 262 // The subtype of a raw type is raw
duke@1 263 res = erasure(res);
duke@1 264 } else {
duke@1 265 // Unbound type arguments default to ?
duke@1 266 List<Type> opens = openVars.toList();
duke@1 267 ListBuffer<Type> qs = new ListBuffer<Type>();
duke@1 268 for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
duke@1 269 qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
duke@1 270 }
duke@1 271 res = subst(res, opens, qs.toList());
duke@1 272 }
duke@1 273 }
duke@1 274 return res;
duke@1 275 }
duke@1 276
duke@1 277 @Override
duke@1 278 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 279 return t;
duke@1 280 }
duke@1 281 };
duke@1 282 // </editor-fold>
duke@1 283
duke@1 284 // <editor-fold defaultstate="collapsed" desc="isConvertible">
duke@1 285 /**
mcimadamore@1071 286 * Is t a subtype of or convertible via boxing/unboxing
mcimadamore@1071 287 * conversion to s?
duke@1 288 */
duke@1 289 public boolean isConvertible(Type t, Type s, Warner warn) {
mcimadamore@1071 290 if (t.tag == ERROR)
mcimadamore@1071 291 return true;
duke@1 292 boolean tPrimitive = t.isPrimitive();
duke@1 293 boolean sPrimitive = s.isPrimitive();
mcimadamore@795 294 if (tPrimitive == sPrimitive) {
duke@1 295 return isSubtypeUnchecked(t, s, warn);
mcimadamore@795 296 }
duke@1 297 if (!allowBoxing) return false;
duke@1 298 return tPrimitive
duke@1 299 ? isSubtype(boxedClass(t).type, s)
duke@1 300 : isSubtype(unboxedType(t), s);
duke@1 301 }
duke@1 302
duke@1 303 /**
duke@1 304 * Is t a subtype of or convertiable via boxing/unboxing
duke@1 305 * convertions to s?
duke@1 306 */
duke@1 307 public boolean isConvertible(Type t, Type s) {
mcimadamore@1415 308 return isConvertible(t, s, noWarnings);
duke@1 309 }
duke@1 310 // </editor-fold>
duke@1 311
mcimadamore@1348 312 // <editor-fold defaultstate="collapsed" desc="findSam">
mcimadamore@1348 313
mcimadamore@1348 314 /**
mcimadamore@1348 315 * Exception used to report a function descriptor lookup failure. The exception
mcimadamore@1348 316 * wraps a diagnostic that can be used to generate more details error
mcimadamore@1348 317 * messages.
mcimadamore@1348 318 */
mcimadamore@1348 319 public static class FunctionDescriptorLookupError extends RuntimeException {
mcimadamore@1348 320 private static final long serialVersionUID = 0;
mcimadamore@1348 321
mcimadamore@1348 322 JCDiagnostic diagnostic;
mcimadamore@1348 323
mcimadamore@1348 324 FunctionDescriptorLookupError() {
mcimadamore@1348 325 this.diagnostic = null;
mcimadamore@1348 326 }
mcimadamore@1348 327
mcimadamore@1348 328 FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
mcimadamore@1348 329 this.diagnostic = diag;
mcimadamore@1348 330 return this;
mcimadamore@1348 331 }
mcimadamore@1348 332
mcimadamore@1348 333 public JCDiagnostic getDiagnostic() {
mcimadamore@1348 334 return diagnostic;
mcimadamore@1348 335 }
mcimadamore@1348 336 }
mcimadamore@1348 337
mcimadamore@1348 338 /**
mcimadamore@1348 339 * A cache that keeps track of function descriptors associated with given
mcimadamore@1348 340 * functional interfaces.
mcimadamore@1348 341 */
mcimadamore@1348 342 class DescriptorCache {
mcimadamore@1348 343
mcimadamore@1348 344 private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<TypeSymbol, Entry>();
mcimadamore@1348 345
mcimadamore@1348 346 class FunctionDescriptor {
mcimadamore@1348 347 Symbol descSym;
mcimadamore@1348 348
mcimadamore@1348 349 FunctionDescriptor(Symbol descSym) {
mcimadamore@1348 350 this.descSym = descSym;
mcimadamore@1348 351 }
mcimadamore@1348 352
mcimadamore@1348 353 public Symbol getSymbol() {
mcimadamore@1348 354 return descSym;
mcimadamore@1348 355 }
mcimadamore@1348 356
mcimadamore@1348 357 public Type getType(Type origin) {
mcimadamore@1348 358 return memberType(origin, descSym);
mcimadamore@1348 359 }
mcimadamore@1348 360 }
mcimadamore@1348 361
mcimadamore@1348 362 class Entry {
mcimadamore@1348 363 final FunctionDescriptor cachedDescRes;
mcimadamore@1348 364 final int prevMark;
mcimadamore@1348 365
mcimadamore@1348 366 public Entry(FunctionDescriptor cachedDescRes,
mcimadamore@1348 367 int prevMark) {
mcimadamore@1348 368 this.cachedDescRes = cachedDescRes;
mcimadamore@1348 369 this.prevMark = prevMark;
mcimadamore@1348 370 }
mcimadamore@1348 371
mcimadamore@1348 372 boolean matches(int mark) {
mcimadamore@1348 373 return this.prevMark == mark;
mcimadamore@1348 374 }
mcimadamore@1348 375 }
mcimadamore@1348 376
mcimadamore@1348 377 FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
mcimadamore@1348 378 Entry e = _map.get(origin);
mcimadamore@1348 379 CompoundScope members = membersClosure(origin.type, false);
mcimadamore@1348 380 if (e == null ||
mcimadamore@1348 381 !e.matches(members.getMark())) {
mcimadamore@1348 382 FunctionDescriptor descRes = findDescriptorInternal(origin, members);
mcimadamore@1348 383 _map.put(origin, new Entry(descRes, members.getMark()));
mcimadamore@1348 384 return descRes;
mcimadamore@1348 385 }
mcimadamore@1348 386 else {
mcimadamore@1348 387 return e.cachedDescRes;
mcimadamore@1348 388 }
mcimadamore@1348 389 }
mcimadamore@1348 390
mcimadamore@1348 391 /**
mcimadamore@1348 392 * Compute the function descriptor associated with a given functional interface
mcimadamore@1348 393 */
mcimadamore@1348 394 public FunctionDescriptor findDescriptorInternal(TypeSymbol origin, CompoundScope membersCache) throws FunctionDescriptorLookupError {
mcimadamore@1497 395 if (!origin.isInterface() || (origin.flags() & ANNOTATION) != 0) {
mcimadamore@1348 396 //t must be an interface
mcimadamore@1497 397 throw failure("not.a.functional.intf", origin);
mcimadamore@1348 398 }
mcimadamore@1348 399
mcimadamore@1348 400 final ListBuffer<Symbol> abstracts = ListBuffer.lb();
mcimadamore@1348 401 for (Symbol sym : membersCache.getElements(new DescriptorFilter(origin))) {
mcimadamore@1348 402 Type mtype = memberType(origin.type, sym);
mcimadamore@1348 403 if (abstracts.isEmpty() ||
mcimadamore@1348 404 (sym.name == abstracts.first().name &&
mcimadamore@1348 405 overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
mcimadamore@1348 406 abstracts.append(sym);
mcimadamore@1348 407 } else {
mcimadamore@1348 408 //the target method(s) should be the only abstract members of t
mcimadamore@1497 409 throw failure("not.a.functional.intf.1", origin,
mcimadamore@1348 410 diags.fragment("incompatible.abstracts", Kinds.kindName(origin), origin));
mcimadamore@1348 411 }
mcimadamore@1348 412 }
mcimadamore@1348 413 if (abstracts.isEmpty()) {
mcimadamore@1348 414 //t must define a suitable non-generic method
mcimadamore@1497 415 throw failure("not.a.functional.intf.1", origin,
mcimadamore@1348 416 diags.fragment("no.abstracts", Kinds.kindName(origin), origin));
mcimadamore@1348 417 } else if (abstracts.size() == 1) {
mcimadamore@1434 418 return new FunctionDescriptor(abstracts.first());
mcimadamore@1348 419 } else { // size > 1
mcimadamore@1348 420 FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
mcimadamore@1348 421 if (descRes == null) {
mcimadamore@1348 422 //we can get here if the functional interface is ill-formed
mcimadamore@1348 423 ListBuffer<JCDiagnostic> descriptors = ListBuffer.lb();
mcimadamore@1348 424 for (Symbol desc : abstracts) {
mcimadamore@1348 425 String key = desc.type.getThrownTypes().nonEmpty() ?
mcimadamore@1348 426 "descriptor.throws" : "descriptor";
mcimadamore@1348 427 descriptors.append(diags.fragment(key, desc.name,
mcimadamore@1348 428 desc.type.getParameterTypes(),
mcimadamore@1348 429 desc.type.getReturnType(),
mcimadamore@1348 430 desc.type.getThrownTypes()));
mcimadamore@1348 431 }
mcimadamore@1348 432 JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
mcimadamore@1348 433 new JCDiagnostic.MultilineDiagnostic(diags.fragment("incompatible.descs.in.functional.intf",
mcimadamore@1348 434 Kinds.kindName(origin), origin), descriptors.toList());
mcimadamore@1348 435 throw failure(incompatibleDescriptors);
mcimadamore@1348 436 }
mcimadamore@1348 437 return descRes;
mcimadamore@1348 438 }
mcimadamore@1348 439 }
mcimadamore@1348 440
mcimadamore@1348 441 /**
mcimadamore@1348 442 * Compute a synthetic type for the target descriptor given a list
mcimadamore@1348 443 * of override-equivalent methods in the functional interface type.
mcimadamore@1348 444 * The resulting method type is a method type that is override-equivalent
mcimadamore@1348 445 * and return-type substitutable with each method in the original list.
mcimadamore@1348 446 */
mcimadamore@1348 447 private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
mcimadamore@1348 448 //pick argument types - simply take the signature that is a
mcimadamore@1348 449 //subsignature of all other signatures in the list (as per JLS 8.4.2)
mcimadamore@1348 450 List<Symbol> mostSpecific = List.nil();
mcimadamore@1348 451 outer: for (Symbol msym1 : methodSyms) {
mcimadamore@1348 452 Type mt1 = memberType(origin.type, msym1);
mcimadamore@1348 453 for (Symbol msym2 : methodSyms) {
mcimadamore@1348 454 Type mt2 = memberType(origin.type, msym2);
mcimadamore@1348 455 if (!isSubSignature(mt1, mt2)) {
mcimadamore@1348 456 continue outer;
mcimadamore@1348 457 }
mcimadamore@1348 458 }
mcimadamore@1348 459 mostSpecific = mostSpecific.prepend(msym1);
mcimadamore@1348 460 }
mcimadamore@1348 461 if (mostSpecific.isEmpty()) {
mcimadamore@1348 462 return null;
mcimadamore@1348 463 }
mcimadamore@1348 464
mcimadamore@1348 465
mcimadamore@1348 466 //pick return types - this is done in two phases: (i) first, the most
mcimadamore@1348 467 //specific return type is chosen using strict subtyping; if this fails,
mcimadamore@1348 468 //a second attempt is made using return type substitutability (see JLS 8.4.5)
mcimadamore@1348 469 boolean phase2 = false;
mcimadamore@1348 470 Symbol bestSoFar = null;
mcimadamore@1348 471 while (bestSoFar == null) {
mcimadamore@1348 472 outer: for (Symbol msym1 : mostSpecific) {
mcimadamore@1348 473 Type mt1 = memberType(origin.type, msym1);
mcimadamore@1348 474 for (Symbol msym2 : methodSyms) {
mcimadamore@1348 475 Type mt2 = memberType(origin.type, msym2);
mcimadamore@1348 476 if (phase2 ?
mcimadamore@1348 477 !returnTypeSubstitutable(mt1, mt2) :
mcimadamore@1348 478 !isSubtypeInternal(mt1.getReturnType(), mt2.getReturnType())) {
mcimadamore@1348 479 continue outer;
mcimadamore@1348 480 }
mcimadamore@1348 481 }
mcimadamore@1348 482 bestSoFar = msym1;
mcimadamore@1348 483 }
mcimadamore@1348 484 if (phase2) {
mcimadamore@1348 485 break;
mcimadamore@1348 486 } else {
mcimadamore@1348 487 phase2 = true;
mcimadamore@1348 488 }
mcimadamore@1348 489 }
mcimadamore@1348 490 if (bestSoFar == null) return null;
mcimadamore@1348 491
mcimadamore@1348 492 //merge thrown types - form the intersection of all the thrown types in
mcimadamore@1348 493 //all the signatures in the list
mcimadamore@1348 494 List<Type> thrown = null;
mcimadamore@1348 495 for (Symbol msym1 : methodSyms) {
mcimadamore@1348 496 Type mt1 = memberType(origin.type, msym1);
mcimadamore@1348 497 thrown = (thrown == null) ?
mcimadamore@1348 498 mt1.getThrownTypes() :
mcimadamore@1348 499 chk.intersect(mt1.getThrownTypes(), thrown);
mcimadamore@1348 500 }
mcimadamore@1348 501
mcimadamore@1348 502 final List<Type> thrown1 = thrown;
mcimadamore@1348 503 return new FunctionDescriptor(bestSoFar) {
mcimadamore@1348 504 @Override
mcimadamore@1348 505 public Type getType(Type origin) {
mcimadamore@1348 506 Type mt = memberType(origin, getSymbol());
mcimadamore@1348 507 return new MethodType(mt.getParameterTypes(), mt.getReturnType(), thrown1, syms.methodClass);
mcimadamore@1348 508 }
mcimadamore@1348 509 };
mcimadamore@1348 510 }
mcimadamore@1348 511
mcimadamore@1348 512 boolean isSubtypeInternal(Type s, Type t) {
mcimadamore@1348 513 return (s.isPrimitive() && t.isPrimitive()) ?
mcimadamore@1348 514 isSameType(t, s) :
mcimadamore@1348 515 isSubtype(s, t);
mcimadamore@1348 516 }
mcimadamore@1348 517
mcimadamore@1348 518 FunctionDescriptorLookupError failure(String msg, Object... args) {
mcimadamore@1348 519 return failure(diags.fragment(msg, args));
mcimadamore@1348 520 }
mcimadamore@1348 521
mcimadamore@1348 522 FunctionDescriptorLookupError failure(JCDiagnostic diag) {
mcimadamore@1348 523 return functionDescriptorLookupError.setMessage(diag);
mcimadamore@1348 524 }
mcimadamore@1348 525 }
mcimadamore@1348 526
mcimadamore@1348 527 private DescriptorCache descCache = new DescriptorCache();
mcimadamore@1348 528
mcimadamore@1348 529 /**
mcimadamore@1348 530 * Find the method descriptor associated to this class symbol - if the
mcimadamore@1348 531 * symbol 'origin' is not a functional interface, an exception is thrown.
mcimadamore@1348 532 */
mcimadamore@1348 533 public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
mcimadamore@1348 534 return descCache.get(origin).getSymbol();
mcimadamore@1348 535 }
mcimadamore@1348 536
mcimadamore@1348 537 /**
mcimadamore@1348 538 * Find the type of the method descriptor associated to this class symbol -
mcimadamore@1348 539 * if the symbol 'origin' is not a functional interface, an exception is thrown.
mcimadamore@1348 540 */
mcimadamore@1348 541 public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
mcimadamore@1348 542 return descCache.get(origin.tsym).getType(origin);
mcimadamore@1348 543 }
mcimadamore@1348 544
mcimadamore@1348 545 /**
mcimadamore@1348 546 * Is given type a functional interface?
mcimadamore@1348 547 */
mcimadamore@1348 548 public boolean isFunctionalInterface(TypeSymbol tsym) {
mcimadamore@1348 549 try {
mcimadamore@1348 550 findDescriptorSymbol(tsym);
mcimadamore@1348 551 return true;
mcimadamore@1348 552 } catch (FunctionDescriptorLookupError ex) {
mcimadamore@1348 553 return false;
mcimadamore@1348 554 }
mcimadamore@1348 555 }
mcimadamore@1348 556 // </editor-fold>
mcimadamore@1348 557
mcimadamore@1436 558 /**
mcimadamore@1436 559 * Scope filter used to skip methods that should be ignored (such as methods
mcimadamore@1436 560 * overridden by j.l.Object) during function interface conversion/marker interface checks
mcimadamore@1436 561 */
mcimadamore@1436 562 class DescriptorFilter implements Filter<Symbol> {
mcimadamore@1436 563
mcimadamore@1436 564 TypeSymbol origin;
mcimadamore@1436 565
mcimadamore@1436 566 DescriptorFilter(TypeSymbol origin) {
mcimadamore@1436 567 this.origin = origin;
mcimadamore@1436 568 }
mcimadamore@1436 569
mcimadamore@1436 570 @Override
mcimadamore@1436 571 public boolean accepts(Symbol sym) {
mcimadamore@1436 572 return sym.kind == Kinds.MTH &&
mcimadamore@1436 573 (sym.flags() & (ABSTRACT | DEFAULT)) == ABSTRACT &&
mcimadamore@1436 574 !overridesObjectMethod(origin, sym) &&
mcimadamore@1436 575 (interfaceCandidates(origin.type, (MethodSymbol)sym).head.flags() & DEFAULT) == 0;
mcimadamore@1436 576 }
mcimadamore@1436 577 };
mcimadamore@1436 578
mcimadamore@1436 579 // <editor-fold defaultstate="collapsed" desc="isMarker">
mcimadamore@1436 580
mcimadamore@1436 581 /**
mcimadamore@1436 582 * A cache that keeps track of marker interfaces
mcimadamore@1436 583 */
mcimadamore@1436 584 class MarkerCache {
mcimadamore@1436 585
mcimadamore@1436 586 private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<TypeSymbol, Entry>();
mcimadamore@1436 587
mcimadamore@1436 588 class Entry {
mcimadamore@1436 589 final boolean isMarkerIntf;
mcimadamore@1436 590 final int prevMark;
mcimadamore@1436 591
mcimadamore@1436 592 public Entry(boolean isMarkerIntf,
mcimadamore@1436 593 int prevMark) {
mcimadamore@1436 594 this.isMarkerIntf = isMarkerIntf;
mcimadamore@1436 595 this.prevMark = prevMark;
mcimadamore@1436 596 }
mcimadamore@1436 597
mcimadamore@1436 598 boolean matches(int mark) {
mcimadamore@1436 599 return this.prevMark == mark;
mcimadamore@1436 600 }
mcimadamore@1436 601 }
mcimadamore@1436 602
mcimadamore@1436 603 boolean get(TypeSymbol origin) throws FunctionDescriptorLookupError {
mcimadamore@1436 604 Entry e = _map.get(origin);
mcimadamore@1436 605 CompoundScope members = membersClosure(origin.type, false);
mcimadamore@1436 606 if (e == null ||
mcimadamore@1436 607 !e.matches(members.getMark())) {
mcimadamore@1436 608 boolean isMarkerIntf = isMarkerInterfaceInternal(origin, members);
mcimadamore@1436 609 _map.put(origin, new Entry(isMarkerIntf, members.getMark()));
mcimadamore@1436 610 return isMarkerIntf;
mcimadamore@1436 611 }
mcimadamore@1436 612 else {
mcimadamore@1436 613 return e.isMarkerIntf;
mcimadamore@1436 614 }
mcimadamore@1436 615 }
mcimadamore@1436 616
mcimadamore@1436 617 /**
mcimadamore@1436 618 * Is given symbol a marker interface
mcimadamore@1436 619 */
mcimadamore@1436 620 public boolean isMarkerInterfaceInternal(TypeSymbol origin, CompoundScope membersCache) throws FunctionDescriptorLookupError {
mcimadamore@1436 621 return !origin.isInterface() ?
mcimadamore@1436 622 false :
mcimadamore@1436 623 !membersCache.getElements(new DescriptorFilter(origin)).iterator().hasNext();
mcimadamore@1436 624 }
mcimadamore@1436 625 }
mcimadamore@1436 626
mcimadamore@1436 627 private MarkerCache markerCache = new MarkerCache();
mcimadamore@1436 628
mcimadamore@1436 629 /**
mcimadamore@1436 630 * Is given type a marker interface?
mcimadamore@1436 631 */
mcimadamore@1436 632 public boolean isMarkerInterface(Type site) {
mcimadamore@1436 633 return markerCache.get(site.tsym);
mcimadamore@1436 634 }
mcimadamore@1436 635 // </editor-fold>
mcimadamore@1436 636
duke@1 637 // <editor-fold defaultstate="collapsed" desc="isSubtype">
duke@1 638 /**
duke@1 639 * Is t an unchecked subtype of s?
duke@1 640 */
duke@1 641 public boolean isSubtypeUnchecked(Type t, Type s) {
mcimadamore@1415 642 return isSubtypeUnchecked(t, s, noWarnings);
duke@1 643 }
duke@1 644 /**
duke@1 645 * Is t an unchecked subtype of s?
duke@1 646 */
duke@1 647 public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
mcimadamore@1108 648 boolean result = isSubtypeUncheckedInternal(t, s, warn);
mcimadamore@1108 649 if (result) {
mcimadamore@1108 650 checkUnsafeVarargsConversion(t, s, warn);
mcimadamore@1108 651 }
mcimadamore@1108 652 return result;
mcimadamore@1108 653 }
mcimadamore@1108 654 //where
mcimadamore@1108 655 private boolean isSubtypeUncheckedInternal(Type t, Type s, Warner warn) {
jjg@1374 656 if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
jjg@1374 657 if (((ArrayType)t).elemtype.isPrimitive()) {
mcimadamore@1108 658 return isSameType(elemtype(t), elemtype(s));
mcimadamore@1108 659 } else {
mcimadamore@1108 660 return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
mcimadamore@795 661 }
mcimadamore@1108 662 } else if (isSubtype(t, s)) {
duke@1 663 return true;
duke@1 664 }
mcimadamore@1108 665 else if (t.tag == TYPEVAR) {
mcimadamore@1108 666 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
mcimadamore@1108 667 }
mcimadamore@1108 668 else if (!s.isRaw()) {
mcimadamore@1108 669 Type t2 = asSuper(t, s.tsym);
mcimadamore@1108 670 if (t2 != null && t2.isRaw()) {
mcimadamore@1108 671 if (isReifiable(s))
mcimadamore@1108 672 warn.silentWarn(LintCategory.UNCHECKED);
mcimadamore@1108 673 else
mcimadamore@1108 674 warn.warn(LintCategory.UNCHECKED);
mcimadamore@1108 675 return true;
mcimadamore@1108 676 }
mcimadamore@1108 677 }
mcimadamore@1108 678 return false;
duke@1 679 }
mcimadamore@1108 680
mcimadamore@1108 681 private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
mcimadamore@1108 682 if (t.tag != ARRAY || isReifiable(t)) return;
mcimadamore@1108 683 ArrayType from = (ArrayType)t;
mcimadamore@1108 684 boolean shouldWarn = false;
mcimadamore@1108 685 switch (s.tag) {
mcimadamore@1108 686 case ARRAY:
mcimadamore@1108 687 ArrayType to = (ArrayType)s;
mcimadamore@1108 688 shouldWarn = from.isVarargs() &&
mcimadamore@1108 689 !to.isVarargs() &&
mcimadamore@1108 690 !isReifiable(from);
mcimadamore@1108 691 break;
mcimadamore@1108 692 case CLASS:
mcimadamore@1108 693 shouldWarn = from.isVarargs();
mcimadamore@1108 694 break;
mcimadamore@1108 695 }
mcimadamore@1108 696 if (shouldWarn) {
mcimadamore@1108 697 warn.warn(LintCategory.VARARGS);
mcimadamore@1108 698 }
mcimadamore@1108 699 }
duke@1 700
duke@1 701 /**
duke@1 702 * Is t a subtype of s?<br>
duke@1 703 * (not defined for Method and ForAll types)
duke@1 704 */
duke@1 705 final public boolean isSubtype(Type t, Type s) {
duke@1 706 return isSubtype(t, s, true);
duke@1 707 }
duke@1 708 final public boolean isSubtypeNoCapture(Type t, Type s) {
duke@1 709 return isSubtype(t, s, false);
duke@1 710 }
duke@1 711 public boolean isSubtype(Type t, Type s, boolean capture) {
duke@1 712 if (t == s)
duke@1 713 return true;
duke@1 714
jjg@1374 715 if (s.isPartial())
duke@1 716 return isSuperType(s, t);
duke@1 717
mcimadamore@299 718 if (s.isCompound()) {
mcimadamore@299 719 for (Type s2 : interfaces(s).prepend(supertype(s))) {
mcimadamore@299 720 if (!isSubtype(t, s2, capture))
mcimadamore@299 721 return false;
mcimadamore@299 722 }
mcimadamore@299 723 return true;
mcimadamore@299 724 }
mcimadamore@299 725
duke@1 726 Type lower = lowerBound(s);
duke@1 727 if (s != lower)
duke@1 728 return isSubtype(capture ? capture(t) : t, lower, false);
duke@1 729
duke@1 730 return isSubtype.visit(capture ? capture(t) : t, s);
duke@1 731 }
duke@1 732 // where
duke@1 733 private TypeRelation isSubtype = new TypeRelation()
duke@1 734 {
duke@1 735 public Boolean visitType(Type t, Type s) {
duke@1 736 switch (t.tag) {
jjg@1374 737 case BYTE:
jjg@1374 738 return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
jjg@1374 739 case CHAR:
jjg@1374 740 return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
jjg@1374 741 case SHORT: case INT: case LONG:
jjg@1374 742 case FLOAT: case DOUBLE:
jjg@1374 743 return t.getTag().isSubRangeOf(s.getTag());
jjg@1374 744 case BOOLEAN: case VOID:
jjg@1374 745 return t.hasTag(s.getTag());
jjg@1374 746 case TYPEVAR:
jjg@1374 747 return isSubtypeNoCapture(t.getUpperBound(), s);
jjg@1374 748 case BOT:
jjg@1374 749 return
jjg@1374 750 s.hasTag(BOT) || s.hasTag(CLASS) ||
jjg@1374 751 s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
jjg@1374 752 case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
jjg@1374 753 case NONE:
jjg@1374 754 return false;
jjg@1374 755 default:
jjg@1374 756 throw new AssertionError("isSubtype " + t.tag);
jjg@1374 757 }
duke@1 758 }
duke@1 759
duke@1 760 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 761
duke@1 762 private boolean containsTypeRecursive(Type t, Type s) {
duke@1 763 TypePair pair = new TypePair(t, s);
duke@1 764 if (cache.add(pair)) {
duke@1 765 try {
duke@1 766 return containsType(t.getTypeArguments(),
duke@1 767 s.getTypeArguments());
duke@1 768 } finally {
duke@1 769 cache.remove(pair);
duke@1 770 }
duke@1 771 } else {
duke@1 772 return containsType(t.getTypeArguments(),
duke@1 773 rewriteSupers(s).getTypeArguments());
duke@1 774 }
duke@1 775 }
duke@1 776
duke@1 777 private Type rewriteSupers(Type t) {
duke@1 778 if (!t.isParameterized())
duke@1 779 return t;
duke@1 780 ListBuffer<Type> from = lb();
duke@1 781 ListBuffer<Type> to = lb();
duke@1 782 adaptSelf(t, from, to);
duke@1 783 if (from.isEmpty())
duke@1 784 return t;
duke@1 785 ListBuffer<Type> rewrite = lb();
duke@1 786 boolean changed = false;
duke@1 787 for (Type orig : to.toList()) {
duke@1 788 Type s = rewriteSupers(orig);
duke@1 789 if (s.isSuperBound() && !s.isExtendsBound()) {
duke@1 790 s = new WildcardType(syms.objectType,
duke@1 791 BoundKind.UNBOUND,
duke@1 792 syms.boundClass);
duke@1 793 changed = true;
duke@1 794 } else if (s != orig) {
duke@1 795 s = new WildcardType(upperBound(s),
duke@1 796 BoundKind.EXTENDS,
duke@1 797 syms.boundClass);
duke@1 798 changed = true;
duke@1 799 }
duke@1 800 rewrite.append(s);
duke@1 801 }
duke@1 802 if (changed)
duke@1 803 return subst(t.tsym.type, from.toList(), rewrite.toList());
duke@1 804 else
duke@1 805 return t;
duke@1 806 }
duke@1 807
duke@1 808 @Override
duke@1 809 public Boolean visitClassType(ClassType t, Type s) {
duke@1 810 Type sup = asSuper(t, s.tsym);
duke@1 811 return sup != null
duke@1 812 && sup.tsym == s.tsym
duke@1 813 // You're not allowed to write
duke@1 814 // Vector<Object> vec = new Vector<String>();
duke@1 815 // But with wildcards you can write
duke@1 816 // Vector<? extends Object> vec = new Vector<String>();
duke@1 817 // which means that subtype checking must be done
duke@1 818 // here instead of same-type checking (via containsType).
duke@1 819 && (!s.isParameterized() || containsTypeRecursive(s, sup))
duke@1 820 && isSubtypeNoCapture(sup.getEnclosingType(),
duke@1 821 s.getEnclosingType());
duke@1 822 }
duke@1 823
duke@1 824 @Override
duke@1 825 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 826 if (s.tag == ARRAY) {
jjg@1374 827 if (t.elemtype.isPrimitive())
duke@1 828 return isSameType(t.elemtype, elemtype(s));
duke@1 829 else
duke@1 830 return isSubtypeNoCapture(t.elemtype, elemtype(s));
duke@1 831 }
duke@1 832
duke@1 833 if (s.tag == CLASS) {
duke@1 834 Name sname = s.tsym.getQualifiedName();
duke@1 835 return sname == names.java_lang_Object
duke@1 836 || sname == names.java_lang_Cloneable
duke@1 837 || sname == names.java_io_Serializable;
duke@1 838 }
duke@1 839
duke@1 840 return false;
duke@1 841 }
duke@1 842
duke@1 843 @Override
duke@1 844 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 845 //todo: test against origin needed? or replace with substitution?
mcimadamore@1093 846 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN) {
duke@1 847 return true;
mcimadamore@1093 848 } else if (s.tag == BOT) {
mcimadamore@1093 849 //if 's' is 'null' there's no instantiated type U for which
mcimadamore@1093 850 //U <: s (but 'null' itself, which is not a valid type)
mcimadamore@1093 851 return false;
mcimadamore@1093 852 }
duke@1 853
mcimadamore@1338 854 t.addBound(InferenceBound.UPPER, s, Types.this);
duke@1 855 return true;
duke@1 856 }
duke@1 857
duke@1 858 @Override
duke@1 859 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 860 return true;
duke@1 861 }
duke@1 862 };
duke@1 863
duke@1 864 /**
duke@1 865 * Is t a subtype of every type in given list `ts'?<br>
duke@1 866 * (not defined for Method and ForAll types)<br>
duke@1 867 * Allows unchecked conversions.
duke@1 868 */
duke@1 869 public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
duke@1 870 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 871 if (!isSubtypeUnchecked(t, l.head, warn))
duke@1 872 return false;
duke@1 873 return true;
duke@1 874 }
duke@1 875
duke@1 876 /**
duke@1 877 * Are corresponding elements of ts subtypes of ss? If lists are
duke@1 878 * of different length, return false.
duke@1 879 */
duke@1 880 public boolean isSubtypes(List<Type> ts, List<Type> ss) {
duke@1 881 while (ts.tail != null && ss.tail != null
duke@1 882 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 883 isSubtype(ts.head, ss.head)) {
duke@1 884 ts = ts.tail;
duke@1 885 ss = ss.tail;
duke@1 886 }
duke@1 887 return ts.tail == null && ss.tail == null;
duke@1 888 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 889 }
duke@1 890
duke@1 891 /**
duke@1 892 * Are corresponding elements of ts subtypes of ss, allowing
duke@1 893 * unchecked conversions? If lists are of different length,
duke@1 894 * return false.
duke@1 895 **/
duke@1 896 public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
duke@1 897 while (ts.tail != null && ss.tail != null
duke@1 898 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 899 isSubtypeUnchecked(ts.head, ss.head, warn)) {
duke@1 900 ts = ts.tail;
duke@1 901 ss = ss.tail;
duke@1 902 }
duke@1 903 return ts.tail == null && ss.tail == null;
duke@1 904 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 905 }
duke@1 906 // </editor-fold>
duke@1 907
duke@1 908 // <editor-fold defaultstate="collapsed" desc="isSuperType">
duke@1 909 /**
duke@1 910 * Is t a supertype of s?
duke@1 911 */
duke@1 912 public boolean isSuperType(Type t, Type s) {
duke@1 913 switch (t.tag) {
duke@1 914 case ERROR:
duke@1 915 return true;
duke@1 916 case UNDETVAR: {
duke@1 917 UndetVar undet = (UndetVar)t;
duke@1 918 if (t == s ||
duke@1 919 undet.qtype == s ||
duke@1 920 s.tag == ERROR ||
duke@1 921 s.tag == BOT) return true;
mcimadamore@1338 922 undet.addBound(InferenceBound.LOWER, s, this);
duke@1 923 return true;
duke@1 924 }
duke@1 925 default:
duke@1 926 return isSubtype(s, t);
duke@1 927 }
duke@1 928 }
duke@1 929 // </editor-fold>
duke@1 930
duke@1 931 // <editor-fold defaultstate="collapsed" desc="isSameType">
duke@1 932 /**
duke@1 933 * Are corresponding elements of the lists the same type? If
duke@1 934 * lists are of different length, return false.
duke@1 935 */
duke@1 936 public boolean isSameTypes(List<Type> ts, List<Type> ss) {
duke@1 937 while (ts.tail != null && ss.tail != null
duke@1 938 /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
duke@1 939 isSameType(ts.head, ss.head)) {
duke@1 940 ts = ts.tail;
duke@1 941 ss = ss.tail;
duke@1 942 }
duke@1 943 return ts.tail == null && ss.tail == null;
duke@1 944 /*inlined: ts.isEmpty() && ss.isEmpty();*/
duke@1 945 }
duke@1 946
duke@1 947 /**
duke@1 948 * Is t the same type as s?
duke@1 949 */
duke@1 950 public boolean isSameType(Type t, Type s) {
duke@1 951 return isSameType.visit(t, s);
duke@1 952 }
duke@1 953 // where
duke@1 954 private TypeRelation isSameType = new TypeRelation() {
duke@1 955
duke@1 956 public Boolean visitType(Type t, Type s) {
duke@1 957 if (t == s)
duke@1 958 return true;
duke@1 959
jjg@1374 960 if (s.isPartial())
duke@1 961 return visit(s, t);
duke@1 962
duke@1 963 switch (t.tag) {
duke@1 964 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 965 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
duke@1 966 return t.tag == s.tag;
mcimadamore@561 967 case TYPEVAR: {
mcimadamore@561 968 if (s.tag == TYPEVAR) {
mcimadamore@561 969 //type-substitution does not preserve type-var types
mcimadamore@561 970 //check that type var symbols and bounds are indeed the same
mcimadamore@561 971 return t.tsym == s.tsym &&
mcimadamore@561 972 visit(t.getUpperBound(), s.getUpperBound());
mcimadamore@561 973 }
mcimadamore@561 974 else {
mcimadamore@561 975 //special case for s == ? super X, where upper(s) = u
mcimadamore@561 976 //check that u == t, where u has been set by Type.withTypeVar
mcimadamore@561 977 return s.isSuperBound() &&
mcimadamore@561 978 !s.isExtendsBound() &&
mcimadamore@561 979 visit(t, upperBound(s));
mcimadamore@561 980 }
mcimadamore@561 981 }
duke@1 982 default:
duke@1 983 throw new AssertionError("isSameType " + t.tag);
duke@1 984 }
duke@1 985 }
duke@1 986
duke@1 987 @Override
duke@1 988 public Boolean visitWildcardType(WildcardType t, Type s) {
jjg@1374 989 if (s.isPartial())
duke@1 990 return visit(s, t);
duke@1 991 else
duke@1 992 return false;
duke@1 993 }
duke@1 994
duke@1 995 @Override
duke@1 996 public Boolean visitClassType(ClassType t, Type s) {
duke@1 997 if (t == s)
duke@1 998 return true;
duke@1 999
jjg@1374 1000 if (s.isPartial())
duke@1 1001 return visit(s, t);
duke@1 1002
duke@1 1003 if (s.isSuperBound() && !s.isExtendsBound())
duke@1 1004 return visit(t, upperBound(s)) && visit(t, lowerBound(s));
duke@1 1005
duke@1 1006 if (t.isCompound() && s.isCompound()) {
duke@1 1007 if (!visit(supertype(t), supertype(s)))
duke@1 1008 return false;
duke@1 1009
vromero@1452 1010 HashSet<UniqueType> set = new HashSet<UniqueType>();
duke@1 1011 for (Type x : interfaces(t))
vromero@1452 1012 set.add(new UniqueType(x, Types.this));
duke@1 1013 for (Type x : interfaces(s)) {
vromero@1452 1014 if (!set.remove(new UniqueType(x, Types.this)))
duke@1 1015 return false;
duke@1 1016 }
jjg@789 1017 return (set.isEmpty());
duke@1 1018 }
duke@1 1019 return t.tsym == s.tsym
duke@1 1020 && visit(t.getEnclosingType(), s.getEnclosingType())
duke@1 1021 && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
duke@1 1022 }
duke@1 1023
duke@1 1024 @Override
duke@1 1025 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 1026 if (t == s)
duke@1 1027 return true;
duke@1 1028
jjg@1374 1029 if (s.isPartial())
duke@1 1030 return visit(s, t);
duke@1 1031
jjg@1374 1032 return s.hasTag(ARRAY)
duke@1 1033 && containsTypeEquivalent(t.elemtype, elemtype(s));
duke@1 1034 }
duke@1 1035
duke@1 1036 @Override
duke@1 1037 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 1038 // isSameType for methods does not take thrown
duke@1 1039 // exceptions into account!
duke@1 1040 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
duke@1 1041 }
duke@1 1042
duke@1 1043 @Override
duke@1 1044 public Boolean visitPackageType(PackageType t, Type s) {
duke@1 1045 return t == s;
duke@1 1046 }
duke@1 1047
duke@1 1048 @Override
duke@1 1049 public Boolean visitForAll(ForAll t, Type s) {
duke@1 1050 if (s.tag != FORALL)
duke@1 1051 return false;
duke@1 1052
duke@1 1053 ForAll forAll = (ForAll)s;
duke@1 1054 return hasSameBounds(t, forAll)
duke@1 1055 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 1056 }
duke@1 1057
duke@1 1058 @Override
duke@1 1059 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 1060 if (s.tag == WILDCARD)
duke@1 1061 // FIXME, this might be leftovers from before capture conversion
duke@1 1062 return false;
duke@1 1063
duke@1 1064 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
duke@1 1065 return true;
duke@1 1066
mcimadamore@1338 1067 t.addBound(InferenceBound.EQ, s, Types.this);
mcimadamore@1251 1068
duke@1 1069 return true;
duke@1 1070 }
duke@1 1071
duke@1 1072 @Override
duke@1 1073 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1074 return true;
duke@1 1075 }
duke@1 1076 };
duke@1 1077 // </editor-fold>
duke@1 1078
duke@1 1079 // <editor-fold defaultstate="collapsed" desc="Contains Type">
duke@1 1080 public boolean containedBy(Type t, Type s) {
duke@1 1081 switch (t.tag) {
duke@1 1082 case UNDETVAR:
duke@1 1083 if (s.tag == WILDCARD) {
duke@1 1084 UndetVar undetvar = (UndetVar)t;
mcimadamore@210 1085 WildcardType wt = (WildcardType)s;
mcimadamore@210 1086 switch(wt.kind) {
mcimadamore@210 1087 case UNBOUND: //similar to ? extends Object
mcimadamore@210 1088 case EXTENDS: {
mcimadamore@210 1089 Type bound = upperBound(s);
mcimadamore@1338 1090 undetvar.addBound(InferenceBound.UPPER, bound, this);
mcimadamore@210 1091 break;
mcimadamore@210 1092 }
mcimadamore@210 1093 case SUPER: {
mcimadamore@210 1094 Type bound = lowerBound(s);
mcimadamore@1338 1095 undetvar.addBound(InferenceBound.LOWER, bound, this);
mcimadamore@210 1096 break;
mcimadamore@210 1097 }
mcimadamore@162 1098 }
duke@1 1099 return true;
duke@1 1100 } else {
duke@1 1101 return isSameType(t, s);
duke@1 1102 }
duke@1 1103 case ERROR:
duke@1 1104 return true;
duke@1 1105 default:
duke@1 1106 return containsType(s, t);
duke@1 1107 }
duke@1 1108 }
duke@1 1109
duke@1 1110 boolean containsType(List<Type> ts, List<Type> ss) {
duke@1 1111 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 1112 && containsType(ts.head, ss.head)) {
duke@1 1113 ts = ts.tail;
duke@1 1114 ss = ss.tail;
duke@1 1115 }
duke@1 1116 return ts.isEmpty() && ss.isEmpty();
duke@1 1117 }
duke@1 1118
duke@1 1119 /**
duke@1 1120 * Check if t contains s.
duke@1 1121 *
duke@1 1122 * <p>T contains S if:
duke@1 1123 *
duke@1 1124 * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
duke@1 1125 *
duke@1 1126 * <p>This relation is only used by ClassType.isSubtype(), that
duke@1 1127 * is,
duke@1 1128 *
duke@1 1129 * <p>{@code C<S> <: C<T> if T contains S.}
duke@1 1130 *
duke@1 1131 * <p>Because of F-bounds, this relation can lead to infinite
duke@1 1132 * recursion. Thus we must somehow break that recursion. Notice
duke@1 1133 * that containsType() is only called from ClassType.isSubtype().
duke@1 1134 * Since the arguments have already been checked against their
duke@1 1135 * bounds, we know:
duke@1 1136 *
duke@1 1137 * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
duke@1 1138 *
duke@1 1139 * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
duke@1 1140 *
duke@1 1141 * @param t a type
duke@1 1142 * @param s a type
duke@1 1143 */
duke@1 1144 public boolean containsType(Type t, Type s) {
duke@1 1145 return containsType.visit(t, s);
duke@1 1146 }
duke@1 1147 // where
duke@1 1148 private TypeRelation containsType = new TypeRelation() {
duke@1 1149
duke@1 1150 private Type U(Type t) {
duke@1 1151 while (t.tag == WILDCARD) {
duke@1 1152 WildcardType w = (WildcardType)t;
duke@1 1153 if (w.isSuperBound())
duke@1 1154 return w.bound == null ? syms.objectType : w.bound.bound;
duke@1 1155 else
duke@1 1156 t = w.type;
duke@1 1157 }
duke@1 1158 return t;
duke@1 1159 }
duke@1 1160
duke@1 1161 private Type L(Type t) {
duke@1 1162 while (t.tag == WILDCARD) {
duke@1 1163 WildcardType w = (WildcardType)t;
duke@1 1164 if (w.isExtendsBound())
duke@1 1165 return syms.botType;
duke@1 1166 else
duke@1 1167 t = w.type;
duke@1 1168 }
duke@1 1169 return t;
duke@1 1170 }
duke@1 1171
duke@1 1172 public Boolean visitType(Type t, Type s) {
jjg@1374 1173 if (s.isPartial())
duke@1 1174 return containedBy(s, t);
duke@1 1175 else
duke@1 1176 return isSameType(t, s);
duke@1 1177 }
duke@1 1178
jjg@789 1179 // void debugContainsType(WildcardType t, Type s) {
jjg@789 1180 // System.err.println();
jjg@789 1181 // System.err.format(" does %s contain %s?%n", t, s);
jjg@789 1182 // System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
jjg@789 1183 // upperBound(s), s, t, U(t),
jjg@789 1184 // t.isSuperBound()
jjg@789 1185 // || isSubtypeNoCapture(upperBound(s), U(t)));
jjg@789 1186 // System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
jjg@789 1187 // L(t), t, s, lowerBound(s),
jjg@789 1188 // t.isExtendsBound()
jjg@789 1189 // || isSubtypeNoCapture(L(t), lowerBound(s)));
jjg@789 1190 // System.err.println();
jjg@789 1191 // }
duke@1 1192
duke@1 1193 @Override
duke@1 1194 public Boolean visitWildcardType(WildcardType t, Type s) {
jjg@1374 1195 if (s.isPartial())
duke@1 1196 return containedBy(s, t);
duke@1 1197 else {
jjg@789 1198 // debugContainsType(t, s);
duke@1 1199 return isSameWildcard(t, s)
duke@1 1200 || isCaptureOf(s, t)
duke@1 1201 || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
duke@1 1202 (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
duke@1 1203 }
duke@1 1204 }
duke@1 1205
duke@1 1206 @Override
duke@1 1207 public Boolean visitUndetVar(UndetVar t, Type s) {
duke@1 1208 if (s.tag != WILDCARD)
duke@1 1209 return isSameType(t, s);
duke@1 1210 else
duke@1 1211 return false;
duke@1 1212 }
duke@1 1213
duke@1 1214 @Override
duke@1 1215 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1216 return true;
duke@1 1217 }
duke@1 1218 };
duke@1 1219
duke@1 1220 public boolean isCaptureOf(Type s, WildcardType t) {
mcimadamore@79 1221 if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
duke@1 1222 return false;
duke@1 1223 return isSameWildcard(t, ((CapturedType)s).wildcard);
duke@1 1224 }
duke@1 1225
duke@1 1226 public boolean isSameWildcard(WildcardType t, Type s) {
duke@1 1227 if (s.tag != WILDCARD)
duke@1 1228 return false;
duke@1 1229 WildcardType w = (WildcardType)s;
duke@1 1230 return w.kind == t.kind && w.type == t.type;
duke@1 1231 }
duke@1 1232
duke@1 1233 public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
duke@1 1234 while (ts.nonEmpty() && ss.nonEmpty()
duke@1 1235 && containsTypeEquivalent(ts.head, ss.head)) {
duke@1 1236 ts = ts.tail;
duke@1 1237 ss = ss.tail;
duke@1 1238 }
duke@1 1239 return ts.isEmpty() && ss.isEmpty();
duke@1 1240 }
duke@1 1241 // </editor-fold>
duke@1 1242
duke@1 1243 // <editor-fold defaultstate="collapsed" desc="isCastable">
duke@1 1244 public boolean isCastable(Type t, Type s) {
mcimadamore@1415 1245 return isCastable(t, s, noWarnings);
duke@1 1246 }
duke@1 1247
duke@1 1248 /**
duke@1 1249 * Is t is castable to s?<br>
duke@1 1250 * s is assumed to be an erased type.<br>
duke@1 1251 * (not defined for Method and ForAll types).
duke@1 1252 */
duke@1 1253 public boolean isCastable(Type t, Type s, Warner warn) {
duke@1 1254 if (t == s)
duke@1 1255 return true;
duke@1 1256
duke@1 1257 if (t.isPrimitive() != s.isPrimitive())
jjg@984 1258 return allowBoxing && (
jjg@984 1259 isConvertible(t, s, warn)
mcimadamore@1007 1260 || (allowObjectToPrimitiveCast &&
mcimadamore@1007 1261 s.isPrimitive() &&
mcimadamore@1007 1262 isSubtype(boxedClass(s).type, t)));
duke@1 1263 if (warn != warnStack.head) {
duke@1 1264 try {
duke@1 1265 warnStack = warnStack.prepend(warn);
mcimadamore@795 1266 checkUnsafeVarargsConversion(t, s, warn);
mcimadamore@185 1267 return isCastable.visit(t,s);
duke@1 1268 } finally {
duke@1 1269 warnStack = warnStack.tail;
duke@1 1270 }
duke@1 1271 } else {
mcimadamore@185 1272 return isCastable.visit(t,s);
duke@1 1273 }
duke@1 1274 }
duke@1 1275 // where
duke@1 1276 private TypeRelation isCastable = new TypeRelation() {
duke@1 1277
duke@1 1278 public Boolean visitType(Type t, Type s) {
duke@1 1279 if (s.tag == ERROR)
duke@1 1280 return true;
duke@1 1281
duke@1 1282 switch (t.tag) {
duke@1 1283 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
duke@1 1284 case DOUBLE:
jjg@1374 1285 return s.isNumeric();
duke@1 1286 case BOOLEAN:
duke@1 1287 return s.tag == BOOLEAN;
duke@1 1288 case VOID:
duke@1 1289 return false;
duke@1 1290 case BOT:
duke@1 1291 return isSubtype(t, s);
duke@1 1292 default:
duke@1 1293 throw new AssertionError();
duke@1 1294 }
duke@1 1295 }
duke@1 1296
duke@1 1297 @Override
duke@1 1298 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 1299 return isCastable(upperBound(t), s, warnStack.head);
duke@1 1300 }
duke@1 1301
duke@1 1302 @Override
duke@1 1303 public Boolean visitClassType(ClassType t, Type s) {
duke@1 1304 if (s.tag == ERROR || s.tag == BOT)
duke@1 1305 return true;
duke@1 1306
duke@1 1307 if (s.tag == TYPEVAR) {
mcimadamore@1415 1308 if (isCastable(t, s.getUpperBound(), noWarnings)) {
mcimadamore@795 1309 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1310 return true;
duke@1 1311 } else {
duke@1 1312 return false;
duke@1 1313 }
duke@1 1314 }
duke@1 1315
duke@1 1316 if (t.isCompound()) {
mcimadamore@211 1317 Warner oldWarner = warnStack.head;
mcimadamore@1415 1318 warnStack.head = noWarnings;
duke@1 1319 if (!visit(supertype(t), s))
duke@1 1320 return false;
duke@1 1321 for (Type intf : interfaces(t)) {
duke@1 1322 if (!visit(intf, s))
duke@1 1323 return false;
duke@1 1324 }
mcimadamore@795 1325 if (warnStack.head.hasLint(LintCategory.UNCHECKED))
mcimadamore@795 1326 oldWarner.warn(LintCategory.UNCHECKED);
duke@1 1327 return true;
duke@1 1328 }
duke@1 1329
duke@1 1330 if (s.isCompound()) {
duke@1 1331 // call recursively to reuse the above code
duke@1 1332 return visitClassType((ClassType)s, t);
duke@1 1333 }
duke@1 1334
duke@1 1335 if (s.tag == CLASS || s.tag == ARRAY) {
duke@1 1336 boolean upcast;
duke@1 1337 if ((upcast = isSubtype(erasure(t), erasure(s)))
duke@1 1338 || isSubtype(erasure(s), erasure(t))) {
duke@1 1339 if (!upcast && s.tag == ARRAY) {
duke@1 1340 if (!isReifiable(s))
mcimadamore@795 1341 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1342 return true;
duke@1 1343 } else if (s.isRaw()) {
duke@1 1344 return true;
duke@1 1345 } else if (t.isRaw()) {
duke@1 1346 if (!isUnbounded(s))
mcimadamore@795 1347 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1348 return true;
duke@1 1349 }
duke@1 1350 // Assume |a| <: |b|
duke@1 1351 final Type a = upcast ? t : s;
duke@1 1352 final Type b = upcast ? s : t;
duke@1 1353 final boolean HIGH = true;
duke@1 1354 final boolean LOW = false;
duke@1 1355 final boolean DONT_REWRITE_TYPEVARS = false;
duke@1 1356 Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1357 Type aLow = rewriteQuantifiers(a, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1358 Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
duke@1 1359 Type bLow = rewriteQuantifiers(b, LOW, DONT_REWRITE_TYPEVARS);
duke@1 1360 Type lowSub = asSub(bLow, aLow.tsym);
duke@1 1361 Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1362 if (highSub == null) {
duke@1 1363 final boolean REWRITE_TYPEVARS = true;
duke@1 1364 aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
duke@1 1365 aLow = rewriteQuantifiers(a, LOW, REWRITE_TYPEVARS);
duke@1 1366 bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
duke@1 1367 bLow = rewriteQuantifiers(b, LOW, REWRITE_TYPEVARS);
duke@1 1368 lowSub = asSub(bLow, aLow.tsym);
duke@1 1369 highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
duke@1 1370 }
duke@1 1371 if (highSub != null) {
jjg@816 1372 if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
jjg@816 1373 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
jjg@816 1374 }
mcimadamore@185 1375 if (!disjointTypes(aHigh.allparams(), highSub.allparams())
mcimadamore@185 1376 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
mcimadamore@185 1377 && !disjointTypes(aLow.allparams(), highSub.allparams())
mcimadamore@185 1378 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
mcimadamore@779 1379 if (upcast ? giveWarning(a, b) :
mcimadamore@235 1380 giveWarning(b, a))
mcimadamore@795 1381 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1382 return true;
duke@1 1383 }
duke@1 1384 }
duke@1 1385 if (isReifiable(s))
duke@1 1386 return isSubtypeUnchecked(a, b);
duke@1 1387 else
duke@1 1388 return isSubtypeUnchecked(a, b, warnStack.head);
duke@1 1389 }
duke@1 1390
duke@1 1391 // Sidecast
duke@1 1392 if (s.tag == CLASS) {
duke@1 1393 if ((s.tsym.flags() & INTERFACE) != 0) {
duke@1 1394 return ((t.tsym.flags() & FINAL) == 0)
duke@1 1395 ? sideCast(t, s, warnStack.head)
duke@1 1396 : sideCastFinal(t, s, warnStack.head);
duke@1 1397 } else if ((t.tsym.flags() & INTERFACE) != 0) {
duke@1 1398 return ((s.tsym.flags() & FINAL) == 0)
duke@1 1399 ? sideCast(t, s, warnStack.head)
duke@1 1400 : sideCastFinal(t, s, warnStack.head);
duke@1 1401 } else {
duke@1 1402 // unrelated class types
duke@1 1403 return false;
duke@1 1404 }
duke@1 1405 }
duke@1 1406 }
duke@1 1407 return false;
duke@1 1408 }
duke@1 1409
duke@1 1410 @Override
duke@1 1411 public Boolean visitArrayType(ArrayType t, Type s) {
duke@1 1412 switch (s.tag) {
duke@1 1413 case ERROR:
duke@1 1414 case BOT:
duke@1 1415 return true;
duke@1 1416 case TYPEVAR:
mcimadamore@1415 1417 if (isCastable(s, t, noWarnings)) {
mcimadamore@795 1418 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1419 return true;
duke@1 1420 } else {
duke@1 1421 return false;
duke@1 1422 }
duke@1 1423 case CLASS:
duke@1 1424 return isSubtype(t, s);
duke@1 1425 case ARRAY:
jjg@1374 1426 if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
duke@1 1427 return elemtype(t).tag == elemtype(s).tag;
duke@1 1428 } else {
duke@1 1429 return visit(elemtype(t), elemtype(s));
duke@1 1430 }
duke@1 1431 default:
duke@1 1432 return false;
duke@1 1433 }
duke@1 1434 }
duke@1 1435
duke@1 1436 @Override
duke@1 1437 public Boolean visitTypeVar(TypeVar t, Type s) {
duke@1 1438 switch (s.tag) {
duke@1 1439 case ERROR:
duke@1 1440 case BOT:
duke@1 1441 return true;
duke@1 1442 case TYPEVAR:
duke@1 1443 if (isSubtype(t, s)) {
duke@1 1444 return true;
mcimadamore@1415 1445 } else if (isCastable(t.bound, s, noWarnings)) {
mcimadamore@795 1446 warnStack.head.warn(LintCategory.UNCHECKED);
duke@1 1447 return true;
duke@1 1448 } else {
duke@1 1449 return false;
duke@1 1450 }
duke@1 1451 default:
duke@1 1452 return isCastable(t.bound, s, warnStack.head);
duke@1 1453 }
duke@1 1454 }
duke@1 1455
duke@1 1456 @Override
duke@1 1457 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 1458 return true;
duke@1 1459 }
duke@1 1460 };
duke@1 1461 // </editor-fold>
duke@1 1462
duke@1 1463 // <editor-fold defaultstate="collapsed" desc="disjointTypes">
duke@1 1464 public boolean disjointTypes(List<Type> ts, List<Type> ss) {
duke@1 1465 while (ts.tail != null && ss.tail != null) {
duke@1 1466 if (disjointType(ts.head, ss.head)) return true;
duke@1 1467 ts = ts.tail;
duke@1 1468 ss = ss.tail;
duke@1 1469 }
duke@1 1470 return false;
duke@1 1471 }
duke@1 1472
duke@1 1473 /**
duke@1 1474 * Two types or wildcards are considered disjoint if it can be
duke@1 1475 * proven that no type can be contained in both. It is
duke@1 1476 * conservative in that it is allowed to say that two types are
duke@1 1477 * not disjoint, even though they actually are.
duke@1 1478 *
jjg@1358 1479 * The type {@code C<X>} is castable to {@code C<Y>} exactly if
jjg@1358 1480 * {@code X} and {@code Y} are not disjoint.
duke@1 1481 */
duke@1 1482 public boolean disjointType(Type t, Type s) {
duke@1 1483 return disjointType.visit(t, s);
duke@1 1484 }
duke@1 1485 // where
duke@1 1486 private TypeRelation disjointType = new TypeRelation() {
duke@1 1487
duke@1 1488 private Set<TypePair> cache = new HashSet<TypePair>();
duke@1 1489
duke@1 1490 public Boolean visitType(Type t, Type s) {
duke@1 1491 if (s.tag == WILDCARD)
duke@1 1492 return visit(s, t);
duke@1 1493 else
duke@1 1494 return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
duke@1 1495 }
duke@1 1496
duke@1 1497 private boolean isCastableRecursive(Type t, Type s) {
duke@1 1498 TypePair pair = new TypePair(t, s);
duke@1 1499 if (cache.add(pair)) {
duke@1 1500 try {
duke@1 1501 return Types.this.isCastable(t, s);
duke@1 1502 } finally {
duke@1 1503 cache.remove(pair);
duke@1 1504 }
duke@1 1505 } else {
duke@1 1506 return true;
duke@1 1507 }
duke@1 1508 }
duke@1 1509
duke@1 1510 private boolean notSoftSubtypeRecursive(Type t, Type s) {
duke@1 1511 TypePair pair = new TypePair(t, s);
duke@1 1512 if (cache.add(pair)) {
duke@1 1513 try {
duke@1 1514 return Types.this.notSoftSubtype(t, s);
duke@1 1515 } finally {
duke@1 1516 cache.remove(pair);
duke@1 1517 }
duke@1 1518 } else {
duke@1 1519 return false;
duke@1 1520 }
duke@1 1521 }
duke@1 1522
duke@1 1523 @Override
duke@1 1524 public Boolean visitWildcardType(WildcardType t, Type s) {
duke@1 1525 if (t.isUnbound())
duke@1 1526 return false;
duke@1 1527
duke@1 1528 if (s.tag != WILDCARD) {
duke@1 1529 if (t.isExtendsBound())
duke@1 1530 return notSoftSubtypeRecursive(s, t.type);
duke@1 1531 else // isSuperBound()
duke@1 1532 return notSoftSubtypeRecursive(t.type, s);
duke@1 1533 }
duke@1 1534
duke@1 1535 if (s.isUnbound())
duke@1 1536 return false;
duke@1 1537
duke@1 1538 if (t.isExtendsBound()) {
duke@1 1539 if (s.isExtendsBound())
duke@1 1540 return !isCastableRecursive(t.type, upperBound(s));
duke@1 1541 else if (s.isSuperBound())
duke@1 1542 return notSoftSubtypeRecursive(lowerBound(s), t.type);
duke@1 1543 } else if (t.isSuperBound()) {
duke@1 1544 if (s.isExtendsBound())
duke@1 1545 return notSoftSubtypeRecursive(t.type, upperBound(s));
duke@1 1546 }
duke@1 1547 return false;
duke@1 1548 }
duke@1 1549 };
duke@1 1550 // </editor-fold>
duke@1 1551
duke@1 1552 // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
duke@1 1553 /**
duke@1 1554 * Returns the lower bounds of the formals of a method.
duke@1 1555 */
duke@1 1556 public List<Type> lowerBoundArgtypes(Type t) {
mcimadamore@1348 1557 return lowerBounds(t.getParameterTypes());
mcimadamore@1348 1558 }
mcimadamore@1348 1559 public List<Type> lowerBounds(List<Type> ts) {
mcimadamore@1348 1560 return map(ts, lowerBoundMapping);
duke@1 1561 }
duke@1 1562 private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
duke@1 1563 public Type apply(Type t) {
duke@1 1564 return lowerBound(t);
duke@1 1565 }
duke@1 1566 };
duke@1 1567 // </editor-fold>
duke@1 1568
duke@1 1569 // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
duke@1 1570 /**
duke@1 1571 * This relation answers the question: is impossible that
duke@1 1572 * something of type `t' can be a subtype of `s'? This is
duke@1 1573 * different from the question "is `t' not a subtype of `s'?"
duke@1 1574 * when type variables are involved: Integer is not a subtype of T
jjg@1358 1575 * where {@code <T extends Number>} but it is not true that Integer cannot
duke@1 1576 * possibly be a subtype of T.
duke@1 1577 */
duke@1 1578 public boolean notSoftSubtype(Type t, Type s) {
duke@1 1579 if (t == s) return false;
duke@1 1580 if (t.tag == TYPEVAR) {
duke@1 1581 TypeVar tv = (TypeVar) t;
duke@1 1582 return !isCastable(tv.bound,
mcimadamore@640 1583 relaxBound(s),
mcimadamore@1415 1584 noWarnings);
duke@1 1585 }
duke@1 1586 if (s.tag != WILDCARD)
duke@1 1587 s = upperBound(s);
mcimadamore@640 1588
mcimadamore@640 1589 return !isSubtype(t, relaxBound(s));
mcimadamore@640 1590 }
mcimadamore@640 1591
mcimadamore@640 1592 private Type relaxBound(Type t) {
mcimadamore@640 1593 if (t.tag == TYPEVAR) {
mcimadamore@640 1594 while (t.tag == TYPEVAR)
mcimadamore@640 1595 t = t.getUpperBound();
mcimadamore@640 1596 t = rewriteQuantifiers(t, true, true);
mcimadamore@640 1597 }
mcimadamore@640 1598 return t;
duke@1 1599 }
duke@1 1600 // </editor-fold>
duke@1 1601
duke@1 1602 // <editor-fold defaultstate="collapsed" desc="isReifiable">
duke@1 1603 public boolean isReifiable(Type t) {
duke@1 1604 return isReifiable.visit(t);
duke@1 1605 }
duke@1 1606 // where
duke@1 1607 private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
duke@1 1608
duke@1 1609 public Boolean visitType(Type t, Void ignored) {
duke@1 1610 return true;
duke@1 1611 }
duke@1 1612
duke@1 1613 @Override
duke@1 1614 public Boolean visitClassType(ClassType t, Void ignored) {
mcimadamore@356 1615 if (t.isCompound())
mcimadamore@356 1616 return false;
mcimadamore@356 1617 else {
mcimadamore@356 1618 if (!t.isParameterized())
mcimadamore@356 1619 return true;
mcimadamore@356 1620
mcimadamore@356 1621 for (Type param : t.allparams()) {
mcimadamore@356 1622 if (!param.isUnbound())
mcimadamore@356 1623 return false;
mcimadamore@356 1624 }
duke@1 1625 return true;
duke@1 1626 }
duke@1 1627 }
duke@1 1628
duke@1 1629 @Override
duke@1 1630 public Boolean visitArrayType(ArrayType t, Void ignored) {
duke@1 1631 return visit(t.elemtype);
duke@1 1632 }
duke@1 1633
duke@1 1634 @Override
duke@1 1635 public Boolean visitTypeVar(TypeVar t, Void ignored) {
duke@1 1636 return false;
duke@1 1637 }
duke@1 1638 };
duke@1 1639 // </editor-fold>
duke@1 1640
duke@1 1641 // <editor-fold defaultstate="collapsed" desc="Array Utils">
duke@1 1642 public boolean isArray(Type t) {
duke@1 1643 while (t.tag == WILDCARD)
duke@1 1644 t = upperBound(t);
duke@1 1645 return t.tag == ARRAY;
duke@1 1646 }
duke@1 1647
duke@1 1648 /**
duke@1 1649 * The element type of an array.
duke@1 1650 */
duke@1 1651 public Type elemtype(Type t) {
duke@1 1652 switch (t.tag) {
duke@1 1653 case WILDCARD:
duke@1 1654 return elemtype(upperBound(t));
duke@1 1655 case ARRAY:
duke@1 1656 return ((ArrayType)t).elemtype;
duke@1 1657 case FORALL:
duke@1 1658 return elemtype(((ForAll)t).qtype);
duke@1 1659 case ERROR:
duke@1 1660 return t;
duke@1 1661 default:
duke@1 1662 return null;
duke@1 1663 }
duke@1 1664 }
duke@1 1665
mcimadamore@787 1666 public Type elemtypeOrType(Type t) {
mcimadamore@787 1667 Type elemtype = elemtype(t);
mcimadamore@787 1668 return elemtype != null ?
mcimadamore@787 1669 elemtype :
mcimadamore@787 1670 t;
mcimadamore@787 1671 }
mcimadamore@787 1672
duke@1 1673 /**
duke@1 1674 * Mapping to take element type of an arraytype
duke@1 1675 */
duke@1 1676 private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
duke@1 1677 public Type apply(Type t) { return elemtype(t); }
duke@1 1678 };
duke@1 1679
duke@1 1680 /**
duke@1 1681 * The number of dimensions of an array type.
duke@1 1682 */
duke@1 1683 public int dimensions(Type t) {
duke@1 1684 int result = 0;
duke@1 1685 while (t.tag == ARRAY) {
duke@1 1686 result++;
duke@1 1687 t = elemtype(t);
duke@1 1688 }
duke@1 1689 return result;
duke@1 1690 }
jfranck@1313 1691
jfranck@1313 1692 /**
jfranck@1313 1693 * Returns an ArrayType with the component type t
jfranck@1313 1694 *
jfranck@1313 1695 * @param t The component type of the ArrayType
jfranck@1313 1696 * @return the ArrayType for the given component
jfranck@1313 1697 */
jfranck@1313 1698 public ArrayType makeArrayType(Type t) {
jfranck@1313 1699 if (t.tag == VOID ||
jjg@1374 1700 t.tag == PACKAGE) {
jjg@1374 1701 Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
jfranck@1313 1702 }
jfranck@1313 1703 return new ArrayType(t, syms.arrayClass);
jfranck@1313 1704 }
duke@1 1705 // </editor-fold>
duke@1 1706
duke@1 1707 // <editor-fold defaultstate="collapsed" desc="asSuper">
duke@1 1708 /**
duke@1 1709 * Return the (most specific) base type of t that starts with the
duke@1 1710 * given symbol. If none exists, return null.
duke@1 1711 *
duke@1 1712 * @param t a type
duke@1 1713 * @param sym a symbol
duke@1 1714 */
duke@1 1715 public Type asSuper(Type t, Symbol sym) {
duke@1 1716 return asSuper.visit(t, sym);
duke@1 1717 }
duke@1 1718 // where
duke@1 1719 private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
duke@1 1720
duke@1 1721 public Type visitType(Type t, Symbol sym) {
duke@1 1722 return null;
duke@1 1723 }
duke@1 1724
duke@1 1725 @Override
duke@1 1726 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1727 if (t.tsym == sym)
duke@1 1728 return t;
duke@1 1729
duke@1 1730 Type st = supertype(t);
mcimadamore@19 1731 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
duke@1 1732 Type x = asSuper(st, sym);
duke@1 1733 if (x != null)
duke@1 1734 return x;
duke@1 1735 }
duke@1 1736 if ((sym.flags() & INTERFACE) != 0) {
duke@1 1737 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 1738 Type x = asSuper(l.head, sym);
duke@1 1739 if (x != null)
duke@1 1740 return x;
duke@1 1741 }
duke@1 1742 }
duke@1 1743 return null;
duke@1 1744 }
duke@1 1745
duke@1 1746 @Override
duke@1 1747 public Type visitArrayType(ArrayType t, Symbol sym) {
duke@1 1748 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1749 }
duke@1 1750
duke@1 1751 @Override
duke@1 1752 public Type visitTypeVar(TypeVar t, Symbol sym) {
mcimadamore@19 1753 if (t.tsym == sym)
mcimadamore@19 1754 return t;
mcimadamore@19 1755 else
mcimadamore@19 1756 return asSuper(t.bound, sym);
duke@1 1757 }
duke@1 1758
duke@1 1759 @Override
duke@1 1760 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1761 return t;
duke@1 1762 }
duke@1 1763 };
duke@1 1764
duke@1 1765 /**
duke@1 1766 * Return the base type of t or any of its outer types that starts
duke@1 1767 * with the given symbol. If none exists, return null.
duke@1 1768 *
duke@1 1769 * @param t a type
duke@1 1770 * @param sym a symbol
duke@1 1771 */
duke@1 1772 public Type asOuterSuper(Type t, Symbol sym) {
duke@1 1773 switch (t.tag) {
duke@1 1774 case CLASS:
duke@1 1775 do {
duke@1 1776 Type s = asSuper(t, sym);
duke@1 1777 if (s != null) return s;
duke@1 1778 t = t.getEnclosingType();
duke@1 1779 } while (t.tag == CLASS);
duke@1 1780 return null;
duke@1 1781 case ARRAY:
duke@1 1782 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1783 case TYPEVAR:
duke@1 1784 return asSuper(t, sym);
duke@1 1785 case ERROR:
duke@1 1786 return t;
duke@1 1787 default:
duke@1 1788 return null;
duke@1 1789 }
duke@1 1790 }
duke@1 1791
duke@1 1792 /**
duke@1 1793 * Return the base type of t or any of its enclosing types that
duke@1 1794 * starts with the given symbol. If none exists, return null.
duke@1 1795 *
duke@1 1796 * @param t a type
duke@1 1797 * @param sym a symbol
duke@1 1798 */
duke@1 1799 public Type asEnclosingSuper(Type t, Symbol sym) {
duke@1 1800 switch (t.tag) {
duke@1 1801 case CLASS:
duke@1 1802 do {
duke@1 1803 Type s = asSuper(t, sym);
duke@1 1804 if (s != null) return s;
duke@1 1805 Type outer = t.getEnclosingType();
duke@1 1806 t = (outer.tag == CLASS) ? outer :
duke@1 1807 (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
duke@1 1808 Type.noType;
duke@1 1809 } while (t.tag == CLASS);
duke@1 1810 return null;
duke@1 1811 case ARRAY:
duke@1 1812 return isSubtype(t, sym.type) ? sym.type : null;
duke@1 1813 case TYPEVAR:
duke@1 1814 return asSuper(t, sym);
duke@1 1815 case ERROR:
duke@1 1816 return t;
duke@1 1817 default:
duke@1 1818 return null;
duke@1 1819 }
duke@1 1820 }
duke@1 1821 // </editor-fold>
duke@1 1822
duke@1 1823 // <editor-fold defaultstate="collapsed" desc="memberType">
duke@1 1824 /**
duke@1 1825 * The type of given symbol, seen as a member of t.
duke@1 1826 *
duke@1 1827 * @param t a type
duke@1 1828 * @param sym a symbol
duke@1 1829 */
duke@1 1830 public Type memberType(Type t, Symbol sym) {
duke@1 1831 return (sym.flags() & STATIC) != 0
duke@1 1832 ? sym.type
duke@1 1833 : memberType.visit(t, sym);
mcimadamore@341 1834 }
duke@1 1835 // where
duke@1 1836 private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
duke@1 1837
duke@1 1838 public Type visitType(Type t, Symbol sym) {
duke@1 1839 return sym.type;
duke@1 1840 }
duke@1 1841
duke@1 1842 @Override
duke@1 1843 public Type visitWildcardType(WildcardType t, Symbol sym) {
duke@1 1844 return memberType(upperBound(t), sym);
duke@1 1845 }
duke@1 1846
duke@1 1847 @Override
duke@1 1848 public Type visitClassType(ClassType t, Symbol sym) {
duke@1 1849 Symbol owner = sym.owner;
duke@1 1850 long flags = sym.flags();
duke@1 1851 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
duke@1 1852 Type base = asOuterSuper(t, owner);
mcimadamore@134 1853 //if t is an intersection type T = CT & I1 & I2 ... & In
mcimadamore@134 1854 //its supertypes CT, I1, ... In might contain wildcards
mcimadamore@134 1855 //so we need to go through capture conversion
mcimadamore@134 1856 base = t.isCompound() ? capture(base) : base;
duke@1 1857 if (base != null) {
duke@1 1858 List<Type> ownerParams = owner.type.allparams();
duke@1 1859 List<Type> baseParams = base.allparams();
duke@1 1860 if (ownerParams.nonEmpty()) {
duke@1 1861 if (baseParams.isEmpty()) {
duke@1 1862 // then base is a raw type
duke@1 1863 return erasure(sym.type);
duke@1 1864 } else {
duke@1 1865 return subst(sym.type, ownerParams, baseParams);
duke@1 1866 }
duke@1 1867 }
duke@1 1868 }
duke@1 1869 }
duke@1 1870 return sym.type;
duke@1 1871 }
duke@1 1872
duke@1 1873 @Override
duke@1 1874 public Type visitTypeVar(TypeVar t, Symbol sym) {
duke@1 1875 return memberType(t.bound, sym);
duke@1 1876 }
duke@1 1877
duke@1 1878 @Override
duke@1 1879 public Type visitErrorType(ErrorType t, Symbol sym) {
duke@1 1880 return t;
duke@1 1881 }
duke@1 1882 };
duke@1 1883 // </editor-fold>
duke@1 1884
duke@1 1885 // <editor-fold defaultstate="collapsed" desc="isAssignable">
duke@1 1886 public boolean isAssignable(Type t, Type s) {
mcimadamore@1415 1887 return isAssignable(t, s, noWarnings);
duke@1 1888 }
duke@1 1889
duke@1 1890 /**
duke@1 1891 * Is t assignable to s?<br>
duke@1 1892 * Equivalent to subtype except for constant values and raw
duke@1 1893 * types.<br>
duke@1 1894 * (not defined for Method and ForAll types)
duke@1 1895 */
duke@1 1896 public boolean isAssignable(Type t, Type s, Warner warn) {
duke@1 1897 if (t.tag == ERROR)
duke@1 1898 return true;
jjg@1374 1899 if (t.tag.isSubRangeOf(INT) && t.constValue() != null) {
duke@1 1900 int value = ((Number)t.constValue()).intValue();
duke@1 1901 switch (s.tag) {
duke@1 1902 case BYTE:
duke@1 1903 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
duke@1 1904 return true;
duke@1 1905 break;
duke@1 1906 case CHAR:
duke@1 1907 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
duke@1 1908 return true;
duke@1 1909 break;
duke@1 1910 case SHORT:
duke@1 1911 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
duke@1 1912 return true;
duke@1 1913 break;
duke@1 1914 case INT:
duke@1 1915 return true;
duke@1 1916 case CLASS:
duke@1 1917 switch (unboxedType(s).tag) {
duke@1 1918 case BYTE:
duke@1 1919 case CHAR:
duke@1 1920 case SHORT:
duke@1 1921 return isAssignable(t, unboxedType(s), warn);
duke@1 1922 }
duke@1 1923 break;
duke@1 1924 }
duke@1 1925 }
duke@1 1926 return isConvertible(t, s, warn);
duke@1 1927 }
duke@1 1928 // </editor-fold>
duke@1 1929
duke@1 1930 // <editor-fold defaultstate="collapsed" desc="erasure">
duke@1 1931 /**
duke@1 1932 * The erasure of t {@code |t|} -- the type that results when all
duke@1 1933 * type parameters in t are deleted.
duke@1 1934 */
duke@1 1935 public Type erasure(Type t) {
sundar@1307 1936 return eraseNotNeeded(t)? t : erasure(t, false);
mcimadamore@30 1937 }
mcimadamore@30 1938 //where
sundar@1307 1939 private boolean eraseNotNeeded(Type t) {
sundar@1307 1940 // We don't want to erase primitive types and String type as that
sundar@1307 1941 // operation is idempotent. Also, erasing these could result in loss
sundar@1307 1942 // of information such as constant values attached to such types.
jjg@1374 1943 return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
sundar@1307 1944 }
sundar@1307 1945
mcimadamore@30 1946 private Type erasure(Type t, boolean recurse) {
jjg@1374 1947 if (t.isPrimitive())
duke@1 1948 return t; /* fast special case */
duke@1 1949 else
mcimadamore@30 1950 return erasure.visit(t, recurse);
mcimadamore@341 1951 }
duke@1 1952 // where
mcimadamore@30 1953 private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
mcimadamore@30 1954 public Type visitType(Type t, Boolean recurse) {
jjg@1374 1955 if (t.isPrimitive())
duke@1 1956 return t; /*fast special case*/
duke@1 1957 else
mcimadamore@30 1958 return t.map(recurse ? erasureRecFun : erasureFun);
duke@1 1959 }
duke@1 1960
duke@1 1961 @Override
mcimadamore@30 1962 public Type visitWildcardType(WildcardType t, Boolean recurse) {
mcimadamore@30 1963 return erasure(upperBound(t), recurse);
duke@1 1964 }
duke@1 1965
duke@1 1966 @Override
mcimadamore@30 1967 public Type visitClassType(ClassType t, Boolean recurse) {
mcimadamore@30 1968 Type erased = t.tsym.erasure(Types.this);
mcimadamore@30 1969 if (recurse) {
mcimadamore@30 1970 erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
mcimadamore@30 1971 }
mcimadamore@30 1972 return erased;
duke@1 1973 }
duke@1 1974
duke@1 1975 @Override
mcimadamore@30 1976 public Type visitTypeVar(TypeVar t, Boolean recurse) {
mcimadamore@30 1977 return erasure(t.bound, recurse);
duke@1 1978 }
duke@1 1979
duke@1 1980 @Override
mcimadamore@30 1981 public Type visitErrorType(ErrorType t, Boolean recurse) {
duke@1 1982 return t;
duke@1 1983 }
duke@1 1984 };
mcimadamore@30 1985
duke@1 1986 private Mapping erasureFun = new Mapping ("erasure") {
duke@1 1987 public Type apply(Type t) { return erasure(t); }
duke@1 1988 };
duke@1 1989
mcimadamore@30 1990 private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
mcimadamore@30 1991 public Type apply(Type t) { return erasureRecursive(t); }
mcimadamore@30 1992 };
mcimadamore@30 1993
duke@1 1994 public List<Type> erasure(List<Type> ts) {
duke@1 1995 return Type.map(ts, erasureFun);
duke@1 1996 }
mcimadamore@30 1997
mcimadamore@30 1998 public Type erasureRecursive(Type t) {
mcimadamore@30 1999 return erasure(t, true);
mcimadamore@30 2000 }
mcimadamore@30 2001
mcimadamore@30 2002 public List<Type> erasureRecursive(List<Type> ts) {
mcimadamore@30 2003 return Type.map(ts, erasureRecFun);
mcimadamore@30 2004 }
duke@1 2005 // </editor-fold>
duke@1 2006
duke@1 2007 // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
duke@1 2008 /**
duke@1 2009 * Make a compound type from non-empty list of types
duke@1 2010 *
duke@1 2011 * @param bounds the types from which the compound type is formed
duke@1 2012 * @param supertype is objectType if all bounds are interfaces,
duke@1 2013 * null otherwise.
duke@1 2014 */
mcimadamore@1436 2015 public Type makeCompoundType(List<Type> bounds) {
mcimadamore@1436 2016 return makeCompoundType(bounds, bounds.head.tsym.isInterface());
mcimadamore@1436 2017 }
mcimadamore@1436 2018 public Type makeCompoundType(List<Type> bounds, boolean allInterfaces) {
mcimadamore@1436 2019 Assert.check(bounds.nonEmpty());
mcimadamore@1436 2020 Type firstExplicitBound = bounds.head;
mcimadamore@1436 2021 if (allInterfaces) {
mcimadamore@1436 2022 bounds = bounds.prepend(syms.objectType);
mcimadamore@1436 2023 }
duke@1 2024 ClassSymbol bc =
duke@1 2025 new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
duke@1 2026 Type.moreInfo
duke@1 2027 ? names.fromString(bounds.toString())
duke@1 2028 : names.empty,
mcimadamore@1436 2029 null,
duke@1 2030 syms.noSymbol);
mcimadamore@1436 2031 bc.type = new IntersectionClassType(bounds, bc, allInterfaces);
mcimadamore@1436 2032 bc.erasure_field = (bounds.head.tag == TYPEVAR) ?
mcimadamore@1436 2033 syms.objectType : // error condition, recover
mcimadamore@1436 2034 erasure(firstExplicitBound);
mcimadamore@1436 2035 bc.members_field = new Scope(bc);
mcimadamore@1436 2036 return bc.type;
duke@1 2037 }
duke@1 2038
duke@1 2039 /**
duke@1 2040 * A convenience wrapper for {@link #makeCompoundType(List)}; the
duke@1 2041 * arguments are converted to a list and passed to the other
duke@1 2042 * method. Note that this might cause a symbol completion.
duke@1 2043 * Hence, this version of makeCompoundType may not be called
duke@1 2044 * during a classfile read.
duke@1 2045 */
duke@1 2046 public Type makeCompoundType(Type bound1, Type bound2) {
duke@1 2047 return makeCompoundType(List.of(bound1, bound2));
duke@1 2048 }
duke@1 2049 // </editor-fold>
duke@1 2050
duke@1 2051 // <editor-fold defaultstate="collapsed" desc="supertype">
duke@1 2052 public Type supertype(Type t) {
duke@1 2053 return supertype.visit(t);
duke@1 2054 }
duke@1 2055 // where
duke@1 2056 private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
duke@1 2057
duke@1 2058 public Type visitType(Type t, Void ignored) {
duke@1 2059 // A note on wildcards: there is no good way to
duke@1 2060 // determine a supertype for a super bounded wildcard.
duke@1 2061 return null;
duke@1 2062 }
duke@1 2063
duke@1 2064 @Override
duke@1 2065 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2066 if (t.supertype_field == null) {
duke@1 2067 Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
duke@1 2068 // An interface has no superclass; its supertype is Object.
duke@1 2069 if (t.isInterface())
duke@1 2070 supertype = ((ClassType)t.tsym.type).supertype_field;
duke@1 2071 if (t.supertype_field == null) {
duke@1 2072 List<Type> actuals = classBound(t).allparams();
duke@1 2073 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 2074 if (t.hasErasedSupertypes()) {
mcimadamore@30 2075 t.supertype_field = erasureRecursive(supertype);
mcimadamore@30 2076 } else if (formals.nonEmpty()) {
duke@1 2077 t.supertype_field = subst(supertype, formals, actuals);
duke@1 2078 }
mcimadamore@30 2079 else {
mcimadamore@30 2080 t.supertype_field = supertype;
mcimadamore@30 2081 }
duke@1 2082 }
duke@1 2083 }
duke@1 2084 return t.supertype_field;
duke@1 2085 }
duke@1 2086
duke@1 2087 /**
duke@1 2088 * The supertype is always a class type. If the type
duke@1 2089 * variable's bounds start with a class type, this is also
duke@1 2090 * the supertype. Otherwise, the supertype is
duke@1 2091 * java.lang.Object.
duke@1 2092 */
duke@1 2093 @Override
duke@1 2094 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2095 if (t.bound.tag == TYPEVAR ||
duke@1 2096 (!t.bound.isCompound() && !t.bound.isInterface())) {
duke@1 2097 return t.bound;
duke@1 2098 } else {
duke@1 2099 return supertype(t.bound);
duke@1 2100 }
duke@1 2101 }
duke@1 2102
duke@1 2103 @Override
duke@1 2104 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 2105 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
duke@1 2106 return arraySuperType();
duke@1 2107 else
duke@1 2108 return new ArrayType(supertype(t.elemtype), t.tsym);
duke@1 2109 }
duke@1 2110
duke@1 2111 @Override
duke@1 2112 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2113 return t;
duke@1 2114 }
duke@1 2115 };
duke@1 2116 // </editor-fold>
duke@1 2117
duke@1 2118 // <editor-fold defaultstate="collapsed" desc="interfaces">
duke@1 2119 /**
duke@1 2120 * Return the interfaces implemented by this class.
duke@1 2121 */
duke@1 2122 public List<Type> interfaces(Type t) {
duke@1 2123 return interfaces.visit(t);
duke@1 2124 }
duke@1 2125 // where
duke@1 2126 private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
duke@1 2127
duke@1 2128 public List<Type> visitType(Type t, Void ignored) {
duke@1 2129 return List.nil();
duke@1 2130 }
duke@1 2131
duke@1 2132 @Override
duke@1 2133 public List<Type> visitClassType(ClassType t, Void ignored) {
duke@1 2134 if (t.interfaces_field == null) {
duke@1 2135 List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
duke@1 2136 if (t.interfaces_field == null) {
duke@1 2137 // If t.interfaces_field is null, then t must
duke@1 2138 // be a parameterized type (not to be confused
duke@1 2139 // with a generic type declaration).
duke@1 2140 // Terminology:
duke@1 2141 // Parameterized type: List<String>
duke@1 2142 // Generic type declaration: class List<E> { ... }
duke@1 2143 // So t corresponds to List<String> and
duke@1 2144 // t.tsym.type corresponds to List<E>.
duke@1 2145 // The reason t must be parameterized type is
duke@1 2146 // that completion will happen as a side
duke@1 2147 // effect of calling
duke@1 2148 // ClassSymbol.getInterfaces. Since
duke@1 2149 // t.interfaces_field is null after
duke@1 2150 // completion, we can assume that t is not the
duke@1 2151 // type of a class/interface declaration.
jjg@816 2152 Assert.check(t != t.tsym.type, t);
duke@1 2153 List<Type> actuals = t.allparams();
duke@1 2154 List<Type> formals = t.tsym.type.allparams();
mcimadamore@30 2155 if (t.hasErasedSupertypes()) {
mcimadamore@30 2156 t.interfaces_field = erasureRecursive(interfaces);
mcimadamore@30 2157 } else if (formals.nonEmpty()) {
duke@1 2158 t.interfaces_field =
duke@1 2159 upperBounds(subst(interfaces, formals, actuals));
duke@1 2160 }
mcimadamore@30 2161 else {
mcimadamore@30 2162 t.interfaces_field = interfaces;
mcimadamore@30 2163 }
duke@1 2164 }
duke@1 2165 }
duke@1 2166 return t.interfaces_field;
duke@1 2167 }
duke@1 2168
duke@1 2169 @Override
duke@1 2170 public List<Type> visitTypeVar(TypeVar t, Void ignored) {
duke@1 2171 if (t.bound.isCompound())
duke@1 2172 return interfaces(t.bound);
duke@1 2173
duke@1 2174 if (t.bound.isInterface())
duke@1 2175 return List.of(t.bound);
duke@1 2176
duke@1 2177 return List.nil();
duke@1 2178 }
duke@1 2179 };
mcimadamore@1393 2180
mcimadamore@1415 2181 public boolean isDirectSuperInterface(TypeSymbol isym, TypeSymbol origin) {
mcimadamore@1415 2182 for (Type i2 : interfaces(origin.type)) {
mcimadamore@1415 2183 if (isym == i2.tsym) return true;
mcimadamore@1393 2184 }
mcimadamore@1393 2185 return false;
mcimadamore@1393 2186 }
duke@1 2187 // </editor-fold>
duke@1 2188
duke@1 2189 // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
duke@1 2190 Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
duke@1 2191
duke@1 2192 public boolean isDerivedRaw(Type t) {
duke@1 2193 Boolean result = isDerivedRawCache.get(t);
duke@1 2194 if (result == null) {
duke@1 2195 result = isDerivedRawInternal(t);
duke@1 2196 isDerivedRawCache.put(t, result);
duke@1 2197 }
duke@1 2198 return result;
duke@1 2199 }
duke@1 2200
duke@1 2201 public boolean isDerivedRawInternal(Type t) {
duke@1 2202 if (t.isErroneous())
duke@1 2203 return false;
duke@1 2204 return
duke@1 2205 t.isRaw() ||
duke@1 2206 supertype(t) != null && isDerivedRaw(supertype(t)) ||
duke@1 2207 isDerivedRaw(interfaces(t));
duke@1 2208 }
duke@1 2209
duke@1 2210 public boolean isDerivedRaw(List<Type> ts) {
duke@1 2211 List<Type> l = ts;
duke@1 2212 while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
duke@1 2213 return l.nonEmpty();
duke@1 2214 }
duke@1 2215 // </editor-fold>
duke@1 2216
duke@1 2217 // <editor-fold defaultstate="collapsed" desc="setBounds">
duke@1 2218 /**
duke@1 2219 * Set the bounds field of the given type variable to reflect a
duke@1 2220 * (possibly multiple) list of bounds.
duke@1 2221 * @param t a type variable
duke@1 2222 * @param bounds the bounds, must be nonempty
duke@1 2223 * @param supertype is objectType if all bounds are interfaces,
duke@1 2224 * null otherwise.
duke@1 2225 */
mcimadamore@1436 2226 public void setBounds(TypeVar t, List<Type> bounds) {
mcimadamore@1436 2227 setBounds(t, bounds, bounds.head.tsym.isInterface());
duke@1 2228 }
duke@1 2229
duke@1 2230 /**
duke@1 2231 * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
mcimadamore@563 2232 * third parameter is computed directly, as follows: if all
mcimadamore@563 2233 * all bounds are interface types, the computed supertype is Object,
mcimadamore@563 2234 * otherwise the supertype is simply left null (in this case, the supertype
mcimadamore@563 2235 * is assumed to be the head of the bound list passed as second argument).
mcimadamore@563 2236 * Note that this check might cause a symbol completion. Hence, this version of
duke@1 2237 * setBounds may not be called during a classfile read.
duke@1 2238 */
mcimadamore@1436 2239 public void setBounds(TypeVar t, List<Type> bounds, boolean allInterfaces) {
mcimadamore@1436 2240 t.bound = bounds.tail.isEmpty() ?
mcimadamore@1436 2241 bounds.head :
mcimadamore@1436 2242 makeCompoundType(bounds, allInterfaces);
duke@1 2243 t.rank_field = -1;
duke@1 2244 }
duke@1 2245 // </editor-fold>
duke@1 2246
duke@1 2247 // <editor-fold defaultstate="collapsed" desc="getBounds">
duke@1 2248 /**
duke@1 2249 * Return list of bounds of the given type variable.
duke@1 2250 */
duke@1 2251 public List<Type> getBounds(TypeVar t) {
mcimadamore@1436 2252 if (t.bound.hasTag(NONE))
mcimadamore@1415 2253 return List.nil();
mcimadamore@1415 2254 else if (t.bound.isErroneous() || !t.bound.isCompound())
duke@1 2255 return List.of(t.bound);
duke@1 2256 else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
duke@1 2257 return interfaces(t).prepend(supertype(t));
duke@1 2258 else
duke@1 2259 // No superclass was given in bounds.
duke@1 2260 // In this case, supertype is Object, erasure is first interface.
duke@1 2261 return interfaces(t);
duke@1 2262 }
duke@1 2263 // </editor-fold>
duke@1 2264
duke@1 2265 // <editor-fold defaultstate="collapsed" desc="classBound">
duke@1 2266 /**
duke@1 2267 * If the given type is a (possibly selected) type variable,
duke@1 2268 * return the bounding class of this type, otherwise return the
duke@1 2269 * type itself.
duke@1 2270 */
duke@1 2271 public Type classBound(Type t) {
duke@1 2272 return classBound.visit(t);
duke@1 2273 }
duke@1 2274 // where
duke@1 2275 private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
duke@1 2276
duke@1 2277 public Type visitType(Type t, Void ignored) {
duke@1 2278 return t;
duke@1 2279 }
duke@1 2280
duke@1 2281 @Override
duke@1 2282 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2283 Type outer1 = classBound(t.getEnclosingType());
duke@1 2284 if (outer1 != t.getEnclosingType())
duke@1 2285 return new ClassType(outer1, t.getTypeArguments(), t.tsym);
duke@1 2286 else
duke@1 2287 return t;
duke@1 2288 }
duke@1 2289
duke@1 2290 @Override
duke@1 2291 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2292 return classBound(supertype(t));
duke@1 2293 }
duke@1 2294
duke@1 2295 @Override
duke@1 2296 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2297 return t;
duke@1 2298 }
duke@1 2299 };
duke@1 2300 // </editor-fold>
duke@1 2301
duke@1 2302 // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
duke@1 2303 /**
duke@1 2304 * Returns true iff the first signature is a <em>sub
duke@1 2305 * signature</em> of the other. This is <b>not</b> an equivalence
duke@1 2306 * relation.
duke@1 2307 *
jjh@972 2308 * @jls section 8.4.2.
duke@1 2309 * @see #overrideEquivalent(Type t, Type s)
duke@1 2310 * @param t first signature (possibly raw).
duke@1 2311 * @param s second signature (could be subjected to erasure).
duke@1 2312 * @return true if t is a sub signature of s.
duke@1 2313 */
duke@1 2314 public boolean isSubSignature(Type t, Type s) {
mcimadamore@907 2315 return isSubSignature(t, s, true);
mcimadamore@907 2316 }
mcimadamore@907 2317
mcimadamore@907 2318 public boolean isSubSignature(Type t, Type s, boolean strict) {
mcimadamore@907 2319 return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
duke@1 2320 }
duke@1 2321
duke@1 2322 /**
duke@1 2323 * Returns true iff these signatures are related by <em>override
duke@1 2324 * equivalence</em>. This is the natural extension of
duke@1 2325 * isSubSignature to an equivalence relation.
duke@1 2326 *
jjh@972 2327 * @jls section 8.4.2.
duke@1 2328 * @see #isSubSignature(Type t, Type s)
duke@1 2329 * @param t a signature (possible raw, could be subjected to
duke@1 2330 * erasure).
duke@1 2331 * @param s a signature (possible raw, could be subjected to
duke@1 2332 * erasure).
duke@1 2333 * @return true if either argument is a sub signature of the other.
duke@1 2334 */
duke@1 2335 public boolean overrideEquivalent(Type t, Type s) {
duke@1 2336 return hasSameArgs(t, s) ||
duke@1 2337 hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
duke@1 2338 }
duke@1 2339
mcimadamore@1348 2340 public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
mcimadamore@1348 2341 for (Scope.Entry e = syms.objectType.tsym.members().lookup(msym.name) ; e.scope != null ; e = e.next()) {
mcimadamore@1348 2342 if (msym.overrides(e.sym, origin, Types.this, true)) {
mcimadamore@1348 2343 return true;
mcimadamore@1348 2344 }
mcimadamore@1348 2345 }
mcimadamore@1348 2346 return false;
mcimadamore@1348 2347 }
mcimadamore@1348 2348
mcimadamore@673 2349 // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
mcimadamore@673 2350 class ImplementationCache {
mcimadamore@673 2351
mcimadamore@673 2352 private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
mcimadamore@673 2353 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
mcimadamore@673 2354
mcimadamore@673 2355 class Entry {
mcimadamore@673 2356 final MethodSymbol cachedImpl;
mcimadamore@673 2357 final Filter<Symbol> implFilter;
mcimadamore@673 2358 final boolean checkResult;
mcimadamore@877 2359 final int prevMark;
mcimadamore@673 2360
mcimadamore@673 2361 public Entry(MethodSymbol cachedImpl,
mcimadamore@673 2362 Filter<Symbol> scopeFilter,
mcimadamore@877 2363 boolean checkResult,
mcimadamore@877 2364 int prevMark) {
mcimadamore@673 2365 this.cachedImpl = cachedImpl;
mcimadamore@673 2366 this.implFilter = scopeFilter;
mcimadamore@673 2367 this.checkResult = checkResult;
mcimadamore@877 2368 this.prevMark = prevMark;
mcimadamore@673 2369 }
mcimadamore@673 2370
mcimadamore@877 2371 boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
mcimadamore@673 2372 return this.implFilter == scopeFilter &&
mcimadamore@877 2373 this.checkResult == checkResult &&
mcimadamore@877 2374 this.prevMark == mark;
mcimadamore@673 2375 }
mcimadamore@341 2376 }
mcimadamore@673 2377
mcimadamore@858 2378 MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@673 2379 SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
mcimadamore@673 2380 Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
mcimadamore@673 2381 if (cache == null) {
mcimadamore@673 2382 cache = new HashMap<TypeSymbol, Entry>();
mcimadamore@673 2383 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
mcimadamore@673 2384 }
mcimadamore@673 2385 Entry e = cache.get(origin);
mcimadamore@1015 2386 CompoundScope members = membersClosure(origin.type, true);
mcimadamore@673 2387 if (e == null ||
mcimadamore@877 2388 !e.matches(implFilter, checkResult, members.getMark())) {
mcimadamore@877 2389 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
mcimadamore@877 2390 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
mcimadamore@673 2391 return impl;
mcimadamore@673 2392 }
mcimadamore@673 2393 else {
mcimadamore@673 2394 return e.cachedImpl;
mcimadamore@673 2395 }
mcimadamore@673 2396 }
mcimadamore@673 2397
mcimadamore@877 2398 private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@877 2399 for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
mcimadamore@341 2400 while (t.tag == TYPEVAR)
mcimadamore@341 2401 t = t.getUpperBound();
mcimadamore@341 2402 TypeSymbol c = t.tsym;
mcimadamore@673 2403 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
mcimadamore@341 2404 e.scope != null;
mcimadamore@780 2405 e = e.next(implFilter)) {
mcimadamore@673 2406 if (e.sym != null &&
mcimadamore@877 2407 e.sym.overrides(ms, origin, Types.this, checkResult))
mcimadamore@673 2408 return (MethodSymbol)e.sym;
mcimadamore@341 2409 }
mcimadamore@341 2410 }
mcimadamore@673 2411 return null;
mcimadamore@341 2412 }
mcimadamore@341 2413 }
mcimadamore@341 2414
mcimadamore@673 2415 private ImplementationCache implCache = new ImplementationCache();
mcimadamore@673 2416
mcimadamore@858 2417 public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
mcimadamore@858 2418 return implCache.get(ms, origin, checkResult, implFilter);
mcimadamore@673 2419 }
mcimadamore@673 2420 // </editor-fold>
mcimadamore@673 2421
mcimadamore@858 2422 // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
mcimadamore@1015 2423 class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
mcimadamore@1015 2424
mcimadamore@1015 2425 private WeakHashMap<TypeSymbol, Entry> _map =
mcimadamore@1015 2426 new WeakHashMap<TypeSymbol, Entry>();
mcimadamore@1015 2427
mcimadamore@1015 2428 class Entry {
mcimadamore@1015 2429 final boolean skipInterfaces;
mcimadamore@1015 2430 final CompoundScope compoundScope;
mcimadamore@1015 2431
mcimadamore@1015 2432 public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
mcimadamore@1015 2433 this.skipInterfaces = skipInterfaces;
mcimadamore@1015 2434 this.compoundScope = compoundScope;
mcimadamore@1015 2435 }
mcimadamore@1015 2436
mcimadamore@1015 2437 boolean matches(boolean skipInterfaces) {
mcimadamore@1015 2438 return this.skipInterfaces == skipInterfaces;
mcimadamore@1015 2439 }
mcimadamore@1015 2440 }
mcimadamore@1015 2441
mcimadamore@1072 2442 List<TypeSymbol> seenTypes = List.nil();
mcimadamore@1072 2443
mcimadamore@1015 2444 /** members closure visitor methods **/
mcimadamore@1015 2445
mcimadamore@1015 2446 public CompoundScope visitType(Type t, Boolean skipInterface) {
mcimadamore@858 2447 return null;
mcimadamore@858 2448 }
mcimadamore@858 2449
mcimadamore@858 2450 @Override
mcimadamore@1015 2451 public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
mcimadamore@1072 2452 if (seenTypes.contains(t.tsym)) {
mcimadamore@1072 2453 //this is possible when an interface is implemented in multiple
mcimadamore@1072 2454 //superclasses, or when a classs hierarchy is circular - in such
mcimadamore@1072 2455 //cases we don't need to recurse (empty scope is returned)
mcimadamore@1072 2456 return new CompoundScope(t.tsym);
mcimadamore@1072 2457 }
mcimadamore@1072 2458 try {
mcimadamore@1072 2459 seenTypes = seenTypes.prepend(t.tsym);
mcimadamore@1072 2460 ClassSymbol csym = (ClassSymbol)t.tsym;
mcimadamore@1072 2461 Entry e = _map.get(csym);
mcimadamore@1072 2462 if (e == null || !e.matches(skipInterface)) {
mcimadamore@1072 2463 CompoundScope membersClosure = new CompoundScope(csym);
mcimadamore@1072 2464 if (!skipInterface) {
mcimadamore@1072 2465 for (Type i : interfaces(t)) {
mcimadamore@1072 2466 membersClosure.addSubScope(visit(i, skipInterface));
mcimadamore@1072 2467 }
mcimadamore@1015 2468 }
mcimadamore@1072 2469 membersClosure.addSubScope(visit(supertype(t), skipInterface));
mcimadamore@1072 2470 membersClosure.addSubScope(csym.members());
mcimadamore@1072 2471 e = new Entry(skipInterface, membersClosure);
mcimadamore@1072 2472 _map.put(csym, e);
mcimadamore@858 2473 }
mcimadamore@1072 2474 return e.compoundScope;
mcimadamore@858 2475 }
mcimadamore@1072 2476 finally {
mcimadamore@1072 2477 seenTypes = seenTypes.tail;
mcimadamore@1072 2478 }
mcimadamore@858 2479 }
mcimadamore@858 2480
mcimadamore@858 2481 @Override
mcimadamore@1015 2482 public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
mcimadamore@1015 2483 return visit(t.getUpperBound(), skipInterface);
mcimadamore@858 2484 }
mcimadamore@1015 2485 }
mcimadamore@1015 2486
mcimadamore@1015 2487 private MembersClosureCache membersCache = new MembersClosureCache();
mcimadamore@1015 2488
mcimadamore@1015 2489 public CompoundScope membersClosure(Type site, boolean skipInterface) {
mcimadamore@1015 2490 return membersCache.visit(site, skipInterface);
mcimadamore@1015 2491 }
mcimadamore@858 2492 // </editor-fold>
mcimadamore@858 2493
mcimadamore@1393 2494
mcimadamore@1393 2495 //where
mcimadamore@1393 2496 public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
mcimadamore@1415 2497 Filter<Symbol> filter = new MethodFilter(ms, site);
mcimadamore@1393 2498 List<MethodSymbol> candidates = List.nil();
mcimadamore@1393 2499 for (Symbol s : membersClosure(site, false).getElements(filter)) {
mcimadamore@1393 2500 if (!site.tsym.isInterface() && !s.owner.isInterface()) {
mcimadamore@1393 2501 return List.of((MethodSymbol)s);
mcimadamore@1393 2502 } else if (!candidates.contains(s)) {
mcimadamore@1393 2503 candidates = candidates.prepend((MethodSymbol)s);
mcimadamore@1393 2504 }
mcimadamore@1393 2505 }
mcimadamore@1393 2506 return prune(candidates, ownerComparator);
mcimadamore@1393 2507 }
mcimadamore@1393 2508
mcimadamore@1393 2509 public List<MethodSymbol> prune(List<MethodSymbol> methods, Comparator<MethodSymbol> cmp) {
mcimadamore@1393 2510 ListBuffer<MethodSymbol> methodsMin = ListBuffer.lb();
mcimadamore@1393 2511 for (MethodSymbol m1 : methods) {
mcimadamore@1393 2512 boolean isMin_m1 = true;
mcimadamore@1393 2513 for (MethodSymbol m2 : methods) {
mcimadamore@1393 2514 if (m1 == m2) continue;
mcimadamore@1393 2515 if (cmp.compare(m2, m1) < 0) {
mcimadamore@1393 2516 isMin_m1 = false;
mcimadamore@1393 2517 break;
mcimadamore@1393 2518 }
mcimadamore@1393 2519 }
mcimadamore@1393 2520 if (isMin_m1)
mcimadamore@1393 2521 methodsMin.append(m1);
mcimadamore@1393 2522 }
mcimadamore@1393 2523 return methodsMin.toList();
mcimadamore@1393 2524 }
mcimadamore@1393 2525
mcimadamore@1393 2526 Comparator<MethodSymbol> ownerComparator = new Comparator<MethodSymbol>() {
mcimadamore@1393 2527 public int compare(MethodSymbol s1, MethodSymbol s2) {
mcimadamore@1393 2528 return s1.owner.isSubClass(s2.owner, Types.this) ? -1 : 1;
mcimadamore@1393 2529 }
mcimadamore@1393 2530 };
mcimadamore@1393 2531 // where
mcimadamore@1393 2532 private class MethodFilter implements Filter<Symbol> {
mcimadamore@1393 2533
mcimadamore@1393 2534 Symbol msym;
mcimadamore@1393 2535 Type site;
mcimadamore@1415 2536
mcimadamore@1415 2537 MethodFilter(Symbol msym, Type site) {
mcimadamore@1393 2538 this.msym = msym;
mcimadamore@1393 2539 this.site = site;
mcimadamore@1393 2540 }
mcimadamore@1393 2541
mcimadamore@1393 2542 public boolean accepts(Symbol s) {
mcimadamore@1393 2543 return s.kind == Kinds.MTH &&
mcimadamore@1393 2544 s.name == msym.name &&
mcimadamore@1393 2545 s.isInheritedIn(site.tsym, Types.this) &&
mcimadamore@1393 2546 overrideEquivalent(memberType(site, s), memberType(site, msym));
mcimadamore@1393 2547 }
mcimadamore@1393 2548 };
mcimadamore@1393 2549 // </editor-fold>
mcimadamore@1393 2550
duke@1 2551 /**
duke@1 2552 * Does t have the same arguments as s? It is assumed that both
duke@1 2553 * types are (possibly polymorphic) method types. Monomorphic
duke@1 2554 * method types "have the same arguments", if their argument lists
duke@1 2555 * are equal. Polymorphic method types "have the same arguments",
duke@1 2556 * if they have the same arguments after renaming all type
duke@1 2557 * variables of one to corresponding type variables in the other,
duke@1 2558 * where correspondence is by position in the type parameter list.
duke@1 2559 */
duke@1 2560 public boolean hasSameArgs(Type t, Type s) {
mcimadamore@907 2561 return hasSameArgs(t, s, true);
mcimadamore@907 2562 }
mcimadamore@907 2563
mcimadamore@907 2564 public boolean hasSameArgs(Type t, Type s, boolean strict) {
mcimadamore@907 2565 return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
mcimadamore@907 2566 }
mcimadamore@907 2567
mcimadamore@907 2568 private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
duke@1 2569 return hasSameArgs.visit(t, s);
duke@1 2570 }
duke@1 2571 // where
mcimadamore@907 2572 private class HasSameArgs extends TypeRelation {
mcimadamore@907 2573
mcimadamore@907 2574 boolean strict;
mcimadamore@907 2575
mcimadamore@907 2576 public HasSameArgs(boolean strict) {
mcimadamore@907 2577 this.strict = strict;
mcimadamore@907 2578 }
duke@1 2579
duke@1 2580 public Boolean visitType(Type t, Type s) {
duke@1 2581 throw new AssertionError();
duke@1 2582 }
duke@1 2583
duke@1 2584 @Override
duke@1 2585 public Boolean visitMethodType(MethodType t, Type s) {
duke@1 2586 return s.tag == METHOD
duke@1 2587 && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
duke@1 2588 }
duke@1 2589
duke@1 2590 @Override
duke@1 2591 public Boolean visitForAll(ForAll t, Type s) {
duke@1 2592 if (s.tag != FORALL)
mcimadamore@907 2593 return strict ? false : visitMethodType(t.asMethodType(), s);
duke@1 2594
duke@1 2595 ForAll forAll = (ForAll)s;
duke@1 2596 return hasSameBounds(t, forAll)
duke@1 2597 && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
duke@1 2598 }
duke@1 2599
duke@1 2600 @Override
duke@1 2601 public Boolean visitErrorType(ErrorType t, Type s) {
duke@1 2602 return false;
duke@1 2603 }
duke@1 2604 };
mcimadamore@907 2605
mcimadamore@907 2606 TypeRelation hasSameArgs_strict = new HasSameArgs(true);
mcimadamore@907 2607 TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
mcimadamore@907 2608
duke@1 2609 // </editor-fold>
duke@1 2610
duke@1 2611 // <editor-fold defaultstate="collapsed" desc="subst">
duke@1 2612 public List<Type> subst(List<Type> ts,
duke@1 2613 List<Type> from,
duke@1 2614 List<Type> to) {
duke@1 2615 return new Subst(from, to).subst(ts);
duke@1 2616 }
duke@1 2617
duke@1 2618 /**
duke@1 2619 * Substitute all occurrences of a type in `from' with the
duke@1 2620 * corresponding type in `to' in 't'. Match lists `from' and `to'
duke@1 2621 * from the right: If lists have different length, discard leading
duke@1 2622 * elements of the longer list.
duke@1 2623 */
duke@1 2624 public Type subst(Type t, List<Type> from, List<Type> to) {
duke@1 2625 return new Subst(from, to).subst(t);
duke@1 2626 }
duke@1 2627
duke@1 2628 private class Subst extends UnaryVisitor<Type> {
duke@1 2629 List<Type> from;
duke@1 2630 List<Type> to;
duke@1 2631
duke@1 2632 public Subst(List<Type> from, List<Type> to) {
duke@1 2633 int fromLength = from.length();
duke@1 2634 int toLength = to.length();
duke@1 2635 while (fromLength > toLength) {
duke@1 2636 fromLength--;
duke@1 2637 from = from.tail;
duke@1 2638 }
duke@1 2639 while (fromLength < toLength) {
duke@1 2640 toLength--;
duke@1 2641 to = to.tail;
duke@1 2642 }
duke@1 2643 this.from = from;
duke@1 2644 this.to = to;
duke@1 2645 }
duke@1 2646
duke@1 2647 Type subst(Type t) {
duke@1 2648 if (from.tail == null)
duke@1 2649 return t;
duke@1 2650 else
duke@1 2651 return visit(t);
mcimadamore@238 2652 }
duke@1 2653
duke@1 2654 List<Type> subst(List<Type> ts) {
duke@1 2655 if (from.tail == null)
duke@1 2656 return ts;
duke@1 2657 boolean wild = false;
duke@1 2658 if (ts.nonEmpty() && from.nonEmpty()) {
duke@1 2659 Type head1 = subst(ts.head);
duke@1 2660 List<Type> tail1 = subst(ts.tail);
duke@1 2661 if (head1 != ts.head || tail1 != ts.tail)
duke@1 2662 return tail1.prepend(head1);
duke@1 2663 }
duke@1 2664 return ts;
duke@1 2665 }
duke@1 2666
duke@1 2667 public Type visitType(Type t, Void ignored) {
duke@1 2668 return t;
duke@1 2669 }
duke@1 2670
duke@1 2671 @Override
duke@1 2672 public Type visitMethodType(MethodType t, Void ignored) {
duke@1 2673 List<Type> argtypes = subst(t.argtypes);
duke@1 2674 Type restype = subst(t.restype);
duke@1 2675 List<Type> thrown = subst(t.thrown);
duke@1 2676 if (argtypes == t.argtypes &&
duke@1 2677 restype == t.restype &&
duke@1 2678 thrown == t.thrown)
duke@1 2679 return t;
duke@1 2680 else
duke@1 2681 return new MethodType(argtypes, restype, thrown, t.tsym);
duke@1 2682 }
duke@1 2683
duke@1 2684 @Override
duke@1 2685 public Type visitTypeVar(TypeVar t, Void ignored) {
duke@1 2686 for (List<Type> from = this.from, to = this.to;
duke@1 2687 from.nonEmpty();
duke@1 2688 from = from.tail, to = to.tail) {
duke@1 2689 if (t == from.head) {
duke@1 2690 return to.head.withTypeVar(t);
duke@1 2691 }
duke@1 2692 }
duke@1 2693 return t;
duke@1 2694 }
duke@1 2695
duke@1 2696 @Override
duke@1 2697 public Type visitClassType(ClassType t, Void ignored) {
duke@1 2698 if (!t.isCompound()) {
duke@1 2699 List<Type> typarams = t.getTypeArguments();
duke@1 2700 List<Type> typarams1 = subst(typarams);
duke@1 2701 Type outer = t.getEnclosingType();
duke@1 2702 Type outer1 = subst(outer);
duke@1 2703 if (typarams1 == typarams && outer1 == outer)
duke@1 2704 return t;
duke@1 2705 else
duke@1 2706 return new ClassType(outer1, typarams1, t.tsym);
duke@1 2707 } else {
duke@1 2708 Type st = subst(supertype(t));
duke@1 2709 List<Type> is = upperBounds(subst(interfaces(t)));
duke@1 2710 if (st == supertype(t) && is == interfaces(t))
duke@1 2711 return t;
duke@1 2712 else
duke@1 2713 return makeCompoundType(is.prepend(st));
duke@1 2714 }
duke@1 2715 }
duke@1 2716
duke@1 2717 @Override
duke@1 2718 public Type visitWildcardType(WildcardType t, Void ignored) {
duke@1 2719 Type bound = t.type;
duke@1 2720 if (t.kind != BoundKind.UNBOUND)
duke@1 2721 bound = subst(bound);
duke@1 2722 if (bound == t.type) {
duke@1 2723 return t;
duke@1 2724 } else {
duke@1 2725 if (t.isExtendsBound() && bound.isExtendsBound())
duke@1 2726 bound = upperBound(bound);
duke@1 2727 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
duke@1 2728 }
duke@1 2729 }
duke@1 2730
duke@1 2731 @Override
duke@1 2732 public Type visitArrayType(ArrayType t, Void ignored) {
duke@1 2733 Type elemtype = subst(t.elemtype);
duke@1 2734 if (elemtype == t.elemtype)
duke@1 2735 return t;
duke@1 2736 else
mcimadamore@996 2737 return new ArrayType(upperBound(elemtype), t.tsym);
duke@1 2738 }
duke@1 2739
duke@1 2740 @Override
duke@1 2741 public Type visitForAll(ForAll t, Void ignored) {
mcimadamore@846 2742 if (Type.containsAny(to, t.tvars)) {
mcimadamore@846 2743 //perform alpha-renaming of free-variables in 't'
mcimadamore@846 2744 //if 'to' types contain variables that are free in 't'
mcimadamore@846 2745 List<Type> freevars = newInstances(t.tvars);
mcimadamore@846 2746 t = new ForAll(freevars,
mcimadamore@846 2747 Types.this.subst(t.qtype, t.tvars, freevars));
mcimadamore@846 2748 }
duke@1 2749 List<Type> tvars1 = substBounds(t.tvars, from, to);
duke@1 2750 Type qtype1 = subst(t.qtype);
duke@1 2751 if (tvars1 == t.tvars && qtype1 == t.qtype) {
duke@1 2752 return t;
duke@1 2753 } else if (tvars1 == t.tvars) {
duke@1 2754 return new ForAll(tvars1, qtype1);
duke@1 2755 } else {
duke@1 2756 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
duke@1 2757 }
duke@1 2758 }
duke@1 2759
duke@1 2760 @Override
duke@1 2761 public Type visitErrorType(ErrorType t, Void ignored) {
duke@1 2762 return t;
duke@1 2763 }
duke@1 2764 }
duke@1 2765
duke@1 2766 public List<Type> substBounds(List<Type> tvars,
duke@1 2767 List<Type> from,
duke@1 2768 List<Type> to) {
duke@1 2769 if (tvars.isEmpty())
duke@1 2770 return tvars;
duke@1 2771 ListBuffer<Type> newBoundsBuf = lb();
duke@1 2772 boolean changed = false;
duke@1 2773 // calculate new bounds
duke@1 2774 for (Type t : tvars) {
duke@1 2775 TypeVar tv = (TypeVar) t;
duke@1 2776 Type bound = subst(tv.bound, from, to);
duke@1 2777 if (bound != tv.bound)
duke@1 2778 changed = true;
duke@1 2779 newBoundsBuf.append(bound);
duke@1 2780 }
duke@1 2781 if (!changed)
duke@1 2782 return tvars;
duke@1 2783 ListBuffer<Type> newTvars = lb();
duke@1 2784 // create new type variables without bounds
duke@1 2785 for (Type t : tvars) {
duke@1 2786 newTvars.append(new TypeVar(t.tsym, null, syms.botType));
duke@1 2787 }
duke@1 2788 // the new bounds should use the new type variables in place
duke@1 2789 // of the old
duke@1 2790 List<Type> newBounds = newBoundsBuf.toList();
duke@1 2791 from = tvars;
duke@1 2792 to = newTvars.toList();
duke@1 2793 for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
duke@1 2794 newBounds.head = subst(newBounds.head, from, to);
duke@1 2795 }
duke@1 2796 newBounds = newBoundsBuf.toList();
duke@1 2797 // set the bounds of new type variables to the new bounds
duke@1 2798 for (Type t : newTvars.toList()) {
duke@1 2799 TypeVar tv = (TypeVar) t;
duke@1 2800 tv.bound = newBounds.head;
duke@1 2801 newBounds = newBounds.tail;
duke@1 2802 }
duke@1 2803 return newTvars.toList();
duke@1 2804 }
duke@1 2805
duke@1 2806 public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
duke@1 2807 Type bound1 = subst(t.bound, from, to);
duke@1 2808 if (bound1 == t.bound)
duke@1 2809 return t;
mcimadamore@212 2810 else {
mcimadamore@212 2811 // create new type variable without bounds
mcimadamore@212 2812 TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
mcimadamore@212 2813 // the new bound should use the new type variable in place
mcimadamore@212 2814 // of the old
mcimadamore@212 2815 tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
mcimadamore@212 2816 return tv;
mcimadamore@212 2817 }
duke@1 2818 }
duke@1 2819 // </editor-fold>
duke@1 2820
duke@1 2821 // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
duke@1 2822 /**
duke@1 2823 * Does t have the same bounds for quantified variables as s?
duke@1 2824 */
duke@1 2825 boolean hasSameBounds(ForAll t, ForAll s) {
duke@1 2826 List<Type> l1 = t.tvars;
duke@1 2827 List<Type> l2 = s.tvars;
duke@1 2828 while (l1.nonEmpty() && l2.nonEmpty() &&
duke@1 2829 isSameType(l1.head.getUpperBound(),
duke@1 2830 subst(l2.head.getUpperBound(),
duke@1 2831 s.tvars,
duke@1 2832 t.tvars))) {
duke@1 2833 l1 = l1.tail;
duke@1 2834 l2 = l2.tail;
duke@1 2835 }
duke@1 2836 return l1.isEmpty() && l2.isEmpty();
duke@1 2837 }
duke@1 2838 // </editor-fold>
duke@1 2839
duke@1 2840 // <editor-fold defaultstate="collapsed" desc="newInstances">
duke@1 2841 /** Create new vector of type variables from list of variables
duke@1 2842 * changing all recursive bounds from old to new list.
duke@1 2843 */
duke@1 2844 public List<Type> newInstances(List<Type> tvars) {
duke@1 2845 List<Type> tvars1 = Type.map(tvars, newInstanceFun);
duke@1 2846 for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
duke@1 2847 TypeVar tv = (TypeVar) l.head;
duke@1 2848 tv.bound = subst(tv.bound, tvars, tvars1);
duke@1 2849 }
duke@1 2850 return tvars1;
duke@1 2851 }
vromero@1442 2852 private static final Mapping newInstanceFun = new Mapping("newInstanceFun") {
duke@1 2853 public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
duke@1 2854 };
duke@1 2855 // </editor-fold>
duke@1 2856
dlsmith@880 2857 public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
dlsmith@880 2858 return original.accept(methodWithParameters, newParams);
dlsmith@880 2859 }
dlsmith@880 2860 // where
dlsmith@880 2861 private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
dlsmith@880 2862 public Type visitType(Type t, List<Type> newParams) {
dlsmith@880 2863 throw new IllegalArgumentException("Not a method type: " + t);
dlsmith@880 2864 }
dlsmith@880 2865 public Type visitMethodType(MethodType t, List<Type> newParams) {
dlsmith@880 2866 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
dlsmith@880 2867 }
dlsmith@880 2868 public Type visitForAll(ForAll t, List<Type> newParams) {
dlsmith@880 2869 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
dlsmith@880 2870 }
dlsmith@880 2871 };
dlsmith@880 2872
dlsmith@880 2873 public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
dlsmith@880 2874 return original.accept(methodWithThrown, newThrown);
dlsmith@880 2875 }
dlsmith@880 2876 // where
dlsmith@880 2877 private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
dlsmith@880 2878 public Type visitType(Type t, List<Type> newThrown) {
dlsmith@880 2879 throw new IllegalArgumentException("Not a method type: " + t);
dlsmith@880 2880 }
dlsmith@880 2881 public Type visitMethodType(MethodType t, List<Type> newThrown) {
dlsmith@880 2882 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
dlsmith@880 2883 }
dlsmith@880 2884 public Type visitForAll(ForAll t, List<Type> newThrown) {
dlsmith@880 2885 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
dlsmith@880 2886 }
dlsmith@880 2887 };
dlsmith@880 2888
mcimadamore@950 2889 public Type createMethodTypeWithReturn(Type original, Type newReturn) {
mcimadamore@950 2890 return original.accept(methodWithReturn, newReturn);
mcimadamore@950 2891 }
mcimadamore@950 2892 // where
mcimadamore@950 2893 private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
mcimadamore@950 2894 public Type visitType(Type t, Type newReturn) {
mcimadamore@950 2895 throw new IllegalArgumentException("Not a method type: " + t);
mcimadamore@950 2896 }
mcimadamore@950 2897 public Type visitMethodType(MethodType t, Type newReturn) {
mcimadamore@950 2898 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
mcimadamore@950 2899 }
mcimadamore@950 2900 public Type visitForAll(ForAll t, Type newReturn) {
mcimadamore@950 2901 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
mcimadamore@950 2902 }
mcimadamore@950 2903 };
mcimadamore@950 2904
jjg@110 2905 // <editor-fold defaultstate="collapsed" desc="createErrorType">
jjg@110 2906 public Type createErrorType(Type originalType) {
jjg@110 2907 return new ErrorType(originalType, syms.errSymbol);
jjg@110 2908 }
jjg@110 2909
jjg@110 2910 public Type createErrorType(ClassSymbol c, Type originalType) {
jjg@110 2911 return new ErrorType(c, originalType);
jjg@110 2912 }
jjg@110 2913
jjg@110 2914 public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
jjg@110 2915 return new ErrorType(name, container, originalType);
jjg@110 2916 }
jjg@110 2917 // </editor-fold>
jjg@110 2918
duke@1 2919 // <editor-fold defaultstate="collapsed" desc="rank">
duke@1 2920 /**
duke@1 2921 * The rank of a class is the length of the longest path between
duke@1 2922 * the class and java.lang.Object in the class inheritance
duke@1 2923 * graph. Undefined for all but reference types.
duke@1 2924 */
duke@1 2925 public int rank(Type t) {
duke@1 2926 switch(t.tag) {
duke@1 2927 case CLASS: {
duke@1 2928 ClassType cls = (ClassType)t;
duke@1 2929 if (cls.rank_field < 0) {
duke@1 2930 Name fullname = cls.tsym.getQualifiedName();
jjg@113 2931 if (fullname == names.java_lang_Object)
duke@1 2932 cls.rank_field = 0;
duke@1 2933 else {
duke@1 2934 int r = rank(supertype(cls));
duke@1 2935 for (List<Type> l = interfaces(cls);
duke@1 2936 l.nonEmpty();
duke@1 2937 l = l.tail) {
duke@1 2938 if (rank(l.head) > r)
duke@1 2939 r = rank(l.head);
duke@1 2940 }
duke@1 2941 cls.rank_field = r + 1;
duke@1 2942 }
duke@1 2943 }
duke@1 2944 return cls.rank_field;
duke@1 2945 }
duke@1 2946 case TYPEVAR: {
duke@1 2947 TypeVar tvar = (TypeVar)t;
duke@1 2948 if (tvar.rank_field < 0) {
duke@1 2949 int r = rank(supertype(tvar));
duke@1 2950 for (List<Type> l = interfaces(tvar);
duke@1 2951 l.nonEmpty();
duke@1 2952 l = l.tail) {
duke@1 2953 if (rank(l.head) > r) r = rank(l.head);
duke@1 2954 }
duke@1 2955 tvar.rank_field = r + 1;
duke@1 2956 }
duke@1 2957 return tvar.rank_field;
duke@1 2958 }
duke@1 2959 case ERROR:
duke@1 2960 return 0;
duke@1 2961 default:
duke@1 2962 throw new AssertionError();
duke@1 2963 }
duke@1 2964 }
duke@1 2965 // </editor-fold>
duke@1 2966
mcimadamore@121 2967 /**
mcimadamore@238 2968 * Helper method for generating a string representation of a given type
mcimadamore@121 2969 * accordingly to a given locale
mcimadamore@121 2970 */
mcimadamore@121 2971 public String toString(Type t, Locale locale) {
mcimadamore@238 2972 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2973 }
mcimadamore@121 2974
mcimadamore@121 2975 /**
mcimadamore@238 2976 * Helper method for generating a string representation of a given type
mcimadamore@121 2977 * accordingly to a given locale
mcimadamore@121 2978 */
mcimadamore@121 2979 public String toString(Symbol t, Locale locale) {
mcimadamore@238 2980 return Printer.createStandardPrinter(messages).visit(t, locale);
mcimadamore@121 2981 }
mcimadamore@121 2982
duke@1 2983 // <editor-fold defaultstate="collapsed" desc="toString">
duke@1 2984 /**
duke@1 2985 * This toString is slightly more descriptive than the one on Type.
mcimadamore@121 2986 *
mcimadamore@121 2987 * @deprecated Types.toString(Type t, Locale l) provides better support
mcimadamore@121 2988 * for localization
duke@1 2989 */
mcimadamore@121 2990 @Deprecated
duke@1 2991 public String toString(Type t) {
duke@1 2992 if (t.tag == FORALL) {
duke@1 2993 ForAll forAll = (ForAll)t;
duke@1 2994 return typaramsString(forAll.tvars) + forAll.qtype;
duke@1 2995 }
duke@1 2996 return "" + t;
duke@1 2997 }
duke@1 2998 // where
duke@1 2999 private String typaramsString(List<Type> tvars) {
jjg@904 3000 StringBuilder s = new StringBuilder();
duke@1 3001 s.append('<');
duke@1 3002 boolean first = true;
duke@1 3003 for (Type t : tvars) {
duke@1 3004 if (!first) s.append(", ");
duke@1 3005 first = false;
duke@1 3006 appendTyparamString(((TypeVar)t), s);
duke@1 3007 }
duke@1 3008 s.append('>');
duke@1 3009 return s.toString();
duke@1 3010 }
jjg@904 3011 private void appendTyparamString(TypeVar t, StringBuilder buf) {
duke@1 3012 buf.append(t);
duke@1 3013 if (t.bound == null ||
duke@1 3014 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
duke@1 3015 return;
duke@1 3016 buf.append(" extends "); // Java syntax; no need for i18n
duke@1 3017 Type bound = t.bound;
duke@1 3018 if (!bound.isCompound()) {
duke@1 3019 buf.append(bound);
duke@1 3020 } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
duke@1 3021 buf.append(supertype(t));
duke@1 3022 for (Type intf : interfaces(t)) {
duke@1 3023 buf.append('&');
duke@1 3024 buf.append(intf);
duke@1 3025 }
duke@1 3026 } else {
duke@1 3027 // No superclass was given in bounds.
duke@1 3028 // In this case, supertype is Object, erasure is first interface.
duke@1 3029 boolean first = true;
duke@1 3030 for (Type intf : interfaces(t)) {
duke@1 3031 if (!first) buf.append('&');
duke@1 3032 first = false;
duke@1 3033 buf.append(intf);
duke@1 3034 }
duke@1 3035 }
duke@1 3036 }
duke@1 3037 // </editor-fold>
duke@1 3038
duke@1 3039 // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
duke@1 3040 /**
duke@1 3041 * A cache for closures.
duke@1 3042 *
duke@1 3043 * <p>A closure is a list of all the supertypes and interfaces of
duke@1 3044 * a class or interface type, ordered by ClassSymbol.precedes
duke@1 3045 * (that is, subclasses come first, arbitrary but fixed
duke@1 3046 * otherwise).
duke@1 3047 */
duke@1 3048 private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
duke@1 3049
duke@1 3050 /**
duke@1 3051 * Returns the closure of a class or interface type.
duke@1 3052 */
duke@1 3053 public List<Type> closure(Type t) {
duke@1 3054 List<Type> cl = closureCache.get(t);
duke@1 3055 if (cl == null) {
duke@1 3056 Type st = supertype(t);
duke@1 3057 if (!t.isCompound()) {
duke@1 3058 if (st.tag == CLASS) {
duke@1 3059 cl = insert(closure(st), t);
duke@1 3060 } else if (st.tag == TYPEVAR) {
duke@1 3061 cl = closure(st).prepend(t);
duke@1 3062 } else {
duke@1 3063 cl = List.of(t);
duke@1 3064 }
duke@1 3065 } else {
duke@1 3066 cl = closure(supertype(t));
duke@1 3067 }
duke@1 3068 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
duke@1 3069 cl = union(cl, closure(l.head));
duke@1 3070 closureCache.put(t, cl);
duke@1 3071 }
duke@1 3072 return cl;
duke@1 3073 }
duke@1 3074
duke@1 3075 /**
duke@1 3076 * Insert a type in a closure
duke@1 3077 */
duke@1 3078 public List<Type> insert(List<Type> cl, Type t) {
duke@1 3079 if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
duke@1 3080 return cl.prepend(t);
duke@1 3081 } else if (cl.head.tsym.precedes(t.tsym, this)) {
duke@1 3082 return insert(cl.tail, t).prepend(cl.head);
duke@1 3083 } else {
duke@1 3084 return cl;
duke@1 3085 }
duke@1 3086 }
duke@1 3087
duke@1 3088 /**
duke@1 3089 * Form the union of two closures
duke@1 3090 */
duke@1 3091 public List<Type> union(List<Type> cl1, List<Type> cl2) {
duke@1 3092 if (cl1.isEmpty()) {
duke@1 3093 return cl2;
duke@1 3094 } else if (cl2.isEmpty()) {
duke@1 3095 return cl1;
duke@1 3096 } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
duke@1 3097 return union(cl1.tail, cl2).prepend(cl1.head);
duke@1 3098 } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
duke@1 3099 return union(cl1, cl2.tail).prepend(cl2.head);
duke@1 3100 } else {
duke@1 3101 return union(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 3102 }
duke@1 3103 }
duke@1 3104
duke@1 3105 /**
duke@1 3106 * Intersect two closures
duke@1 3107 */
duke@1 3108 public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
duke@1 3109 if (cl1 == cl2)
duke@1 3110 return cl1;
duke@1 3111 if (cl1.isEmpty() || cl2.isEmpty())
duke@1 3112 return List.nil();
duke@1 3113 if (cl1.head.tsym.precedes(cl2.head.tsym, this))
duke@1 3114 return intersect(cl1.tail, cl2);
duke@1 3115 if (cl2.head.tsym.precedes(cl1.head.tsym, this))
duke@1 3116 return intersect(cl1, cl2.tail);
duke@1 3117 if (isSameType(cl1.head, cl2.head))
duke@1 3118 return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
duke@1 3119 if (cl1.head.tsym == cl2.head.tsym &&
duke@1 3120 cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
duke@1 3121 if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
duke@1 3122 Type merge = merge(cl1.head,cl2.head);
duke@1 3123 return intersect(cl1.tail, cl2.tail).prepend(merge);
duke@1 3124 }
duke@1 3125 if (cl1.head.isRaw() || cl2.head.isRaw())
duke@1 3126 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
duke@1 3127 }
duke@1 3128 return intersect(cl1.tail, cl2.tail);
duke@1 3129 }
duke@1 3130 // where
duke@1 3131 class TypePair {
duke@1 3132 final Type t1;
duke@1 3133 final Type t2;
duke@1 3134 TypePair(Type t1, Type t2) {
duke@1 3135 this.t1 = t1;
duke@1 3136 this.t2 = t2;
duke@1 3137 }
duke@1 3138 @Override
duke@1 3139 public int hashCode() {
vromero@1452 3140 return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
duke@1 3141 }
duke@1 3142 @Override
duke@1 3143 public boolean equals(Object obj) {
duke@1 3144 if (!(obj instanceof TypePair))
duke@1 3145 return false;
duke@1 3146 TypePair typePair = (TypePair)obj;
duke@1 3147 return isSameType(t1, typePair.t1)
duke@1 3148 && isSameType(t2, typePair.t2);
duke@1 3149 }
duke@1 3150 }
duke@1 3151 Set<TypePair> mergeCache = new HashSet<TypePair>();
duke@1 3152 private Type merge(Type c1, Type c2) {
duke@1 3153 ClassType class1 = (ClassType) c1;
duke@1 3154 List<Type> act1 = class1.getTypeArguments();
duke@1 3155 ClassType class2 = (ClassType) c2;
duke@1 3156 List<Type> act2 = class2.getTypeArguments();
duke@1 3157 ListBuffer<Type> merged = new ListBuffer<Type>();
duke@1 3158 List<Type> typarams = class1.tsym.type.getTypeArguments();
duke@1 3159
duke@1 3160 while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
duke@1 3161 if (containsType(act1.head, act2.head)) {
duke@1 3162 merged.append(act1.head);
duke@1 3163 } else if (containsType(act2.head, act1.head)) {
duke@1 3164 merged.append(act2.head);
duke@1 3165 } else {
duke@1 3166 TypePair pair = new TypePair(c1, c2);
duke@1 3167 Type m;
duke@1 3168 if (mergeCache.add(pair)) {
duke@1 3169 m = new WildcardType(lub(upperBound(act1.head),
duke@1 3170 upperBound(act2.head)),
duke@1 3171 BoundKind.EXTENDS,
duke@1 3172 syms.boundClass);
duke@1 3173 mergeCache.remove(pair);
duke@1 3174 } else {
duke@1 3175 m = new WildcardType(syms.objectType,
duke@1 3176 BoundKind.UNBOUND,
duke@1 3177 syms.boundClass);
duke@1 3178 }
duke@1 3179 merged.append(m.withTypeVar(typarams.head));
duke@1 3180 }
duke@1 3181 act1 = act1.tail;
duke@1 3182 act2 = act2.tail;
duke@1 3183 typarams = typarams.tail;
duke@1 3184 }
jjg@816 3185 Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
duke@1 3186 return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
duke@1 3187 }
duke@1 3188
duke@1 3189 /**
duke@1 3190 * Return the minimum type of a closure, a compound type if no
duke@1 3191 * unique minimum exists.
duke@1 3192 */
duke@1 3193 private Type compoundMin(List<Type> cl) {
duke@1 3194 if (cl.isEmpty()) return syms.objectType;
duke@1 3195 List<Type> compound = closureMin(cl);
duke@1 3196 if (compound.isEmpty())
duke@1 3197 return null;
duke@1 3198 else if (compound.tail.isEmpty())
duke@1 3199 return compound.head;
duke@1 3200 else
duke@1 3201 return makeCompoundType(compound);
duke@1 3202 }
duke@1 3203
duke@1 3204 /**
duke@1 3205 * Return the minimum types of a closure, suitable for computing
duke@1 3206 * compoundMin or glb.
duke@1 3207 */
duke@1 3208 private List<Type> closureMin(List<Type> cl) {
duke@1 3209 ListBuffer<Type> classes = lb();
duke@1 3210 ListBuffer<Type> interfaces = lb();
duke@1 3211 while (!cl.isEmpty()) {
duke@1 3212 Type current = cl.head;
duke@1 3213 if (current.isInterface())
duke@1 3214 interfaces.append(current);
duke@1 3215 else
duke@1 3216 classes.append(current);
duke@1 3217 ListBuffer<Type> candidates = lb();
duke@1 3218 for (Type t : cl.tail) {
duke@1 3219 if (!isSubtypeNoCapture(current, t))
duke@1 3220 candidates.append(t);
duke@1 3221 }
duke@1 3222 cl = candidates.toList();
duke@1 3223 }
duke@1 3224 return classes.appendList(interfaces).toList();
duke@1 3225 }
duke@1 3226
duke@1 3227 /**
duke@1 3228 * Return the least upper bound of pair of types. if the lub does
duke@1 3229 * not exist return null.
duke@1 3230 */
duke@1 3231 public Type lub(Type t1, Type t2) {
duke@1 3232 return lub(List.of(t1, t2));
duke@1 3233 }
duke@1 3234
duke@1 3235 /**
duke@1 3236 * Return the least upper bound (lub) of set of types. If the lub
duke@1 3237 * does not exist return the type of null (bottom).
duke@1 3238 */
duke@1 3239 public Type lub(List<Type> ts) {
duke@1 3240 final int ARRAY_BOUND = 1;
duke@1 3241 final int CLASS_BOUND = 2;
duke@1 3242 int boundkind = 0;
duke@1 3243 for (Type t : ts) {
duke@1 3244 switch (t.tag) {
duke@1 3245 case CLASS:
duke@1 3246 boundkind |= CLASS_BOUND;
duke@1 3247 break;
duke@1 3248 case ARRAY:
duke@1 3249 boundkind |= ARRAY_BOUND;
duke@1 3250 break;
duke@1 3251 case TYPEVAR:
duke@1 3252 do {
duke@1 3253 t = t.getUpperBound();
duke@1 3254 } while (t.tag == TYPEVAR);
duke@1 3255 if (t.tag == ARRAY) {
duke@1 3256 boundkind |= ARRAY_BOUND;
duke@1 3257 } else {
duke@1 3258 boundkind |= CLASS_BOUND;
duke@1 3259 }
duke@1 3260 break;
duke@1 3261 default:
duke@1 3262 if (t.isPrimitive())
mcimadamore@5 3263 return syms.errType;
duke@1 3264 }
duke@1 3265 }
duke@1 3266 switch (boundkind) {
duke@1 3267 case 0:
duke@1 3268 return syms.botType;
duke@1 3269
duke@1 3270 case ARRAY_BOUND:
duke@1 3271 // calculate lub(A[], B[])
duke@1 3272 List<Type> elements = Type.map(ts, elemTypeFun);
duke@1 3273 for (Type t : elements) {
duke@1 3274 if (t.isPrimitive()) {
duke@1 3275 // if a primitive type is found, then return
duke@1 3276 // arraySuperType unless all the types are the
duke@1 3277 // same
duke@1 3278 Type first = ts.head;
duke@1 3279 for (Type s : ts.tail) {
duke@1 3280 if (!isSameType(first, s)) {
duke@1 3281 // lub(int[], B[]) is Cloneable & Serializable
duke@1 3282 return arraySuperType();
duke@1 3283 }
duke@1 3284 }
duke@1 3285 // all the array types are the same, return one
duke@1 3286 // lub(int[], int[]) is int[]
duke@1 3287 return first;
duke@1 3288 }
duke@1 3289 }
duke@1 3290 // lub(A[], B[]) is lub(A, B)[]
duke@1 3291 return new ArrayType(lub(elements), syms.arrayClass);
duke@1 3292
duke@1 3293 case CLASS_BOUND:
duke@1 3294 // calculate lub(A, B)
duke@1 3295 while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
duke@1 3296 ts = ts.tail;
jjg@816 3297 Assert.check(!ts.isEmpty());
mcimadamore@896 3298 //step 1 - compute erased candidate set (EC)
mcimadamore@896 3299 List<Type> cl = erasedSupertypes(ts.head);
duke@1 3300 for (Type t : ts.tail) {
duke@1 3301 if (t.tag == CLASS || t.tag == TYPEVAR)
mcimadamore@896 3302 cl = intersect(cl, erasedSupertypes(t));
duke@1 3303 }
mcimadamore@896 3304 //step 2 - compute minimal erased candidate set (MEC)
mcimadamore@896 3305 List<Type> mec = closureMin(cl);
mcimadamore@896 3306 //step 3 - for each element G in MEC, compute lci(Inv(G))
mcimadamore@896 3307 List<Type> candidates = List.nil();
mcimadamore@896 3308 for (Type erasedSupertype : mec) {
mcimadamore@896 3309 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
mcimadamore@896 3310 for (Type t : ts) {
mcimadamore@896 3311 lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
mcimadamore@896 3312 }
mcimadamore@896 3313 candidates = candidates.appendList(lci);
mcimadamore@896 3314 }
mcimadamore@896 3315 //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
mcimadamore@896 3316 //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
mcimadamore@896 3317 return compoundMin(candidates);
duke@1 3318
duke@1 3319 default:
duke@1 3320 // calculate lub(A, B[])
duke@1 3321 List<Type> classes = List.of(arraySuperType());
duke@1 3322 for (Type t : ts) {
duke@1 3323 if (t.tag != ARRAY) // Filter out any arrays
duke@1 3324 classes = classes.prepend(t);
duke@1 3325 }
duke@1 3326 // lub(A, B[]) is lub(A, arraySuperType)
duke@1 3327 return lub(classes);
duke@1 3328 }
duke@1 3329 }
duke@1 3330 // where
mcimadamore@896 3331 List<Type> erasedSupertypes(Type t) {
mcimadamore@896 3332 ListBuffer<Type> buf = lb();
mcimadamore@896 3333 for (Type sup : closure(t)) {
mcimadamore@896 3334 if (sup.tag == TYPEVAR) {
mcimadamore@896 3335 buf.append(sup);
mcimadamore@896 3336 } else {
mcimadamore@896 3337 buf.append(erasure(sup));
mcimadamore@896 3338 }
mcimadamore@896 3339 }
mcimadamore@896 3340 return buf.toList();
mcimadamore@896 3341 }
mcimadamore@896 3342
duke@1 3343 private Type arraySuperType = null;
duke@1 3344 private Type arraySuperType() {
duke@1 3345 // initialized lazily to avoid problems during compiler startup
duke@1 3346 if (arraySuperType == null) {
duke@1 3347 synchronized (this) {
duke@1 3348 if (arraySuperType == null) {
duke@1 3349 // JLS 10.8: all arrays implement Cloneable and Serializable.
duke@1 3350 arraySuperType = makeCompoundType(List.of(syms.serializableType,
mcimadamore@1436 3351 syms.cloneableType), true);
duke@1 3352 }
duke@1 3353 }
duke@1 3354 }
duke@1 3355 return arraySuperType;
duke@1 3356 }
duke@1 3357 // </editor-fold>
duke@1 3358
duke@1 3359 // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
mcimadamore@210 3360 public Type glb(List<Type> ts) {
mcimadamore@210 3361 Type t1 = ts.head;
mcimadamore@210 3362 for (Type t2 : ts.tail) {
mcimadamore@210 3363 if (t1.isErroneous())
mcimadamore@210 3364 return t1;
mcimadamore@210 3365 t1 = glb(t1, t2);
mcimadamore@210 3366 }
mcimadamore@210 3367 return t1;
mcimadamore@210 3368 }
mcimadamore@210 3369 //where
duke@1 3370 public Type glb(Type t, Type s) {
duke@1 3371 if (s == null)
duke@1 3372 return t;
mcimadamore@753 3373 else if (t.isPrimitive() || s.isPrimitive())
mcimadamore@753 3374 return syms.errType;
duke@1 3375 else if (isSubtypeNoCapture(t, s))
duke@1 3376 return t;
duke@1 3377 else if (isSubtypeNoCapture(s, t))
duke@1 3378 return s;
duke@1 3379
duke@1 3380 List<Type> closure = union(closure(t), closure(s));
duke@1 3381 List<Type> bounds = closureMin(closure);
duke@1 3382
duke@1 3383 if (bounds.isEmpty()) { // length == 0
duke@1 3384 return syms.objectType;
duke@1 3385 } else if (bounds.tail.isEmpty()) { // length == 1
duke@1 3386 return bounds.head;
duke@1 3387 } else { // length > 1
duke@1 3388 int classCount = 0;
duke@1 3389 for (Type bound : bounds)
duke@1 3390 if (!bound.isInterface())
duke@1 3391 classCount++;
duke@1 3392 if (classCount > 1)
jjg@110 3393 return createErrorType(t);
duke@1 3394 }
duke@1 3395 return makeCompoundType(bounds);
duke@1 3396 }
duke@1 3397 // </editor-fold>
duke@1 3398
duke@1 3399 // <editor-fold defaultstate="collapsed" desc="hashCode">
duke@1 3400 /**
duke@1 3401 * Compute a hash code on a type.
duke@1 3402 */
vromero@1452 3403 public int hashCode(Type t) {
duke@1 3404 return hashCode.visit(t);
duke@1 3405 }
duke@1 3406 // where
duke@1 3407 private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
duke@1 3408
duke@1 3409 public Integer visitType(Type t, Void ignored) {
jjg@1374 3410 return t.tag.ordinal();
duke@1 3411 }
duke@1 3412
duke@1 3413 @Override
duke@1 3414 public Integer visitClassType(ClassType t, Void ignored) {
duke@1 3415 int result = visit(t.getEnclosingType());
duke@1 3416 result *= 127;
duke@1 3417 result += t.tsym.flatName().hashCode();
duke@1 3418 for (Type s : t.getTypeArguments()) {
duke@1 3419 result *= 127;
duke@1 3420 result += visit(s);
duke@1 3421 }
duke@1 3422 return result;
duke@1 3423 }
duke@1 3424
duke@1 3425 @Override
vromero@1452 3426 public Integer visitMethodType(MethodType t, Void ignored) {
vromero@1452 3427 int h = METHOD.ordinal();
vromero@1452 3428 for (List<Type> thisargs = t.argtypes;
vromero@1452 3429 thisargs.tail != null;
vromero@1452 3430 thisargs = thisargs.tail)
vromero@1452 3431 h = (h << 5) + visit(thisargs.head);
vromero@1452 3432 return (h << 5) + visit(t.restype);
vromero@1452 3433 }
vromero@1452 3434
vromero@1452 3435 @Override
duke@1 3436 public Integer visitWildcardType(WildcardType t, Void ignored) {
duke@1 3437 int result = t.kind.hashCode();
duke@1 3438 if (t.type != null) {
duke@1 3439 result *= 127;
duke@1 3440 result += visit(t.type);
duke@1 3441 }
duke@1 3442 return result;
duke@1 3443 }
duke@1 3444
duke@1 3445 @Override
duke@1 3446 public Integer visitArrayType(ArrayType t, Void ignored) {
duke@1 3447 return visit(t.elemtype) + 12;
duke@1 3448 }
duke@1 3449
duke@1 3450 @Override
duke@1 3451 public Integer visitTypeVar(TypeVar t, Void ignored) {
duke@1 3452 return System.identityHashCode(t.tsym);
duke@1 3453 }
duke@1 3454
duke@1 3455 @Override
duke@1 3456 public Integer visitUndetVar(UndetVar t, Void ignored) {
duke@1 3457 return System.identityHashCode(t);
duke@1 3458 }
duke@1 3459
duke@1 3460 @Override
duke@1 3461 public Integer visitErrorType(ErrorType t, Void ignored) {
duke@1 3462 return 0;
duke@1 3463 }
duke@1 3464 };
duke@1 3465 // </editor-fold>
duke@1 3466
duke@1 3467 // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
duke@1 3468 /**
duke@1 3469 * Does t have a result that is a subtype of the result type of s,
duke@1 3470 * suitable for covariant returns? It is assumed that both types
duke@1 3471 * are (possibly polymorphic) method types. Monomorphic method
duke@1 3472 * types are handled in the obvious way. Polymorphic method types
duke@1 3473 * require renaming all type variables of one to corresponding
duke@1 3474 * type variables in the other, where correspondence is by
duke@1 3475 * position in the type parameter list. */
duke@1 3476 public boolean resultSubtype(Type t, Type s, Warner warner) {
duke@1 3477 List<Type> tvars = t.getTypeArguments();
duke@1 3478 List<Type> svars = s.getTypeArguments();
duke@1 3479 Type tres = t.getReturnType();
duke@1 3480 Type sres = subst(s.getReturnType(), svars, tvars);
duke@1 3481 return covariantReturnType(tres, sres, warner);
duke@1 3482 }
duke@1 3483
duke@1 3484 /**
duke@1 3485 * Return-Type-Substitutable.
jjh@972 3486 * @jls section 8.4.5
duke@1 3487 */
duke@1 3488 public boolean returnTypeSubstitutable(Type r1, Type r2) {
duke@1 3489 if (hasSameArgs(r1, r2))
mcimadamore@1415 3490 return resultSubtype(r1, r2, noWarnings);
duke@1 3491 else
duke@1 3492 return covariantReturnType(r1.getReturnType(),
tbell@202 3493 erasure(r2.getReturnType()),
mcimadamore@1415 3494 noWarnings);
tbell@202 3495 }
tbell@202 3496
tbell@202 3497 public boolean returnTypeSubstitutable(Type r1,
tbell@202 3498 Type r2, Type r2res,
tbell@202 3499 Warner warner) {
tbell@202 3500 if (isSameType(r1.getReturnType(), r2res))
tbell@202 3501 return true;
tbell@202 3502 if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
tbell@202 3503 return false;
tbell@202 3504
tbell@202 3505 if (hasSameArgs(r1, r2))
tbell@202 3506 return covariantReturnType(r1.getReturnType(), r2res, warner);
jjg@984 3507 if (!allowCovariantReturns)
tbell@202 3508 return false;
tbell@202 3509 if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
tbell@202 3510 return true;
tbell@202 3511 if (!isSubtype(r1.getReturnType(), erasure(r2res)))
tbell@202 3512 return false;
mcimadamore@795 3513 warner.warn(LintCategory.UNCHECKED);
tbell@202 3514 return true;
duke@1 3515 }
duke@1 3516
duke@1 3517 /**
duke@1 3518 * Is t an appropriate return type in an overrider for a
duke@1 3519 * method that returns s?
duke@1 3520 */
duke@1 3521 public boolean covariantReturnType(Type t, Type s, Warner warner) {
tbell@202 3522 return
tbell@202 3523 isSameType(t, s) ||
jjg@984 3524 allowCovariantReturns &&
duke@1 3525 !t.isPrimitive() &&
tbell@202 3526 !s.isPrimitive() &&
tbell@202 3527 isAssignable(t, s, warner);
duke@1 3528 }
duke@1 3529 // </editor-fold>
duke@1 3530
duke@1 3531 // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
duke@1 3532 /**
duke@1 3533 * Return the class that boxes the given primitive.
duke@1 3534 */
duke@1 3535 public ClassSymbol boxedClass(Type t) {
jjg@1374 3536 return reader.enterClass(syms.boxedName[t.tag.ordinal()]);
duke@1 3537 }
duke@1 3538
duke@1 3539 /**
mcimadamore@753 3540 * Return the boxed type if 't' is primitive, otherwise return 't' itself.
mcimadamore@753 3541 */
mcimadamore@753 3542 public Type boxedTypeOrType(Type t) {
mcimadamore@753 3543 return t.isPrimitive() ?
mcimadamore@753 3544 boxedClass(t).type :
mcimadamore@753 3545 t;
mcimadamore@753 3546 }
mcimadamore@753 3547
mcimadamore@753 3548 /**
duke@1 3549 * Return the primitive type corresponding to a boxed type.
duke@1 3550 */
duke@1 3551 public Type unboxedType(Type t) {
duke@1 3552 if (allowBoxing) {
duke@1 3553 for (int i=0; i<syms.boxedName.length; i++) {
duke@1 3554 Name box = syms.boxedName[i];
duke@1 3555 if (box != null &&
duke@1 3556 asSuper(t, reader.enterClass(box)) != null)
duke@1 3557 return syms.typeOfTag[i];
duke@1 3558 }
duke@1 3559 }
duke@1 3560 return Type.noType;
duke@1 3561 }
mcimadamore@1347 3562
mcimadamore@1347 3563 /**
mcimadamore@1347 3564 * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
mcimadamore@1347 3565 */
mcimadamore@1347 3566 public Type unboxedTypeOrType(Type t) {
mcimadamore@1347 3567 Type unboxedType = unboxedType(t);
mcimadamore@1347 3568 return unboxedType.tag == NONE ? t : unboxedType;
mcimadamore@1347 3569 }
duke@1 3570 // </editor-fold>
duke@1 3571
duke@1 3572 // <editor-fold defaultstate="collapsed" desc="Capture conversion">
duke@1 3573 /*
jjh@972 3574 * JLS 5.1.10 Capture Conversion:
duke@1 3575 *
duke@1 3576 * Let G name a generic type declaration with n formal type
duke@1 3577 * parameters A1 ... An with corresponding bounds U1 ... Un. There
duke@1 3578 * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
duke@1 3579 * where, for 1 <= i <= n:
duke@1 3580 *
duke@1 3581 * + If Ti is a wildcard type argument (4.5.1) of the form ? then
duke@1 3582 * Si is a fresh type variable whose upper bound is
duke@1 3583 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
duke@1 3584 * type.
duke@1 3585 *
duke@1 3586 * + If Ti is a wildcard type argument of the form ? extends Bi,
duke@1 3587 * then Si is a fresh type variable whose upper bound is
duke@1 3588 * glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
duke@1 3589 * the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
duke@1 3590 * a compile-time error if for any two classes (not interfaces)
duke@1 3591 * Vi and Vj,Vi is not a subclass of Vj or vice versa.
duke@1 3592 *
duke@1 3593 * + If Ti is a wildcard type argument of the form ? super Bi,
duke@1 3594 * then Si is a fresh type variable whose upper bound is
duke@1 3595 * Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
duke@1 3596 *
duke@1 3597 * + Otherwise, Si = Ti.
duke@1 3598 *
duke@1 3599 * Capture conversion on any type other than a parameterized type
duke@1 3600 * (4.5) acts as an identity conversion (5.1.1). Capture
duke@1 3601 * conversions never require a special action at run time and
duke@1 3602 * therefore never throw an exception at run time.
duke@1 3603 *
duke@1 3604 * Capture conversion is not applied recursively.
duke@1 3605 */
duke@1 3606 /**
jjh@972 3607 * Capture conversion as specified by the JLS.
duke@1 3608 */
mcimadamore@299 3609
mcimadamore@299 3610 public List<Type> capture(List<Type> ts) {
mcimadamore@299 3611 List<Type> buf = List.nil();
mcimadamore@299 3612 for (Type t : ts) {
mcimadamore@299 3613 buf = buf.prepend(capture(t));
mcimadamore@299 3614 }
mcimadamore@299 3615 return buf.reverse();
mcimadamore@299 3616 }
duke@1 3617 public Type capture(Type t) {
duke@1 3618 if (t.tag != CLASS)
duke@1 3619 return t;
mcimadamore@637 3620 if (t.getEnclosingType() != Type.noType) {
mcimadamore@637 3621 Type capturedEncl = capture(t.getEnclosingType());
mcimadamore@637 3622 if (capturedEncl != t.getEnclosingType()) {
mcimadamore@637 3623 Type type1 = memberType(capturedEncl, t.tsym);
mcimadamore@637 3624 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
mcimadamore@637 3625 }
mcimadamore@637 3626 }
duke@1 3627 ClassType cls = (ClassType)t;
duke@1 3628 if (cls.isRaw() || !cls.isParameterized())
duke@1 3629 return cls;
duke@1 3630
duke@1 3631 ClassType G = (ClassType)cls.asElement().asType();
duke@1 3632 List<Type> A = G.getTypeArguments();
duke@1 3633 List<Type> T = cls.getTypeArguments();
duke@1 3634 List<Type> S = freshTypeVariables(T);
duke@1 3635
duke@1 3636 List<Type> currentA = A;
duke@1 3637 List<Type> currentT = T;
duke@1 3638 List<Type> currentS = S;
duke@1 3639 boolean captured = false;
duke@1 3640 while (!currentA.isEmpty() &&
duke@1 3641 !currentT.isEmpty() &&
duke@1 3642 !currentS.isEmpty()) {
duke@1 3643 if (currentS.head != currentT.head) {
duke@1 3644 captured = true;
duke@1 3645 WildcardType Ti = (WildcardType)currentT.head;
duke@1 3646 Type Ui = currentA.head.getUpperBound();
duke@1 3647 CapturedType Si = (CapturedType)currentS.head;
duke@1 3648 if (Ui == null)
duke@1 3649 Ui = syms.objectType;
duke@1 3650 switch (Ti.kind) {
duke@1 3651 case UNBOUND:
duke@1 3652 Si.bound = subst(Ui, A, S);
duke@1 3653 Si.lower = syms.botType;
duke@1 3654 break;
duke@1 3655 case EXTENDS:
duke@1 3656 Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
duke@1 3657 Si.lower = syms.botType;
duke@1 3658 break;
duke@1 3659 case SUPER:
duke@1 3660 Si.bound = subst(Ui, A, S);
duke@1 3661 Si.lower = Ti.getSuperBound();
duke@1 3662 break;
duke@1 3663 }
duke@1 3664 if (Si.bound == Si.lower)
duke@1 3665 currentS.head = Si.bound;
duke@1 3666 }
duke@1 3667 currentA = currentA.tail;
duke@1 3668 currentT = currentT.tail;
duke@1 3669 currentS = currentS.tail;
duke@1 3670 }
duke@1 3671 if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
duke@1 3672 return erasure(t); // some "rare" type involved
duke@1 3673
duke@1 3674 if (captured)
duke@1 3675 return new ClassType(cls.getEnclosingType(), S, cls.tsym);
duke@1 3676 else
duke@1 3677 return t;
duke@1 3678 }
duke@1 3679 // where
mcimadamore@238 3680 public List<Type> freshTypeVariables(List<Type> types) {
duke@1 3681 ListBuffer<Type> result = lb();
duke@1 3682 for (Type t : types) {
duke@1 3683 if (t.tag == WILDCARD) {
duke@1 3684 Type bound = ((WildcardType)t).getExtendsBound();
duke@1 3685 if (bound == null)
duke@1 3686 bound = syms.objectType;
duke@1 3687 result.append(new CapturedType(capturedName,
duke@1 3688 syms.noSymbol,
duke@1 3689 bound,
duke@1 3690 syms.botType,
duke@1 3691 (WildcardType)t));
duke@1 3692 } else {
duke@1 3693 result.append(t);
duke@1 3694 }
duke@1 3695 }
duke@1 3696 return result.toList();
duke@1 3697 }
duke@1 3698 // </editor-fold>
duke@1 3699
duke@1 3700 // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
duke@1 3701 private List<Type> upperBounds(List<Type> ss) {
duke@1 3702 if (ss.isEmpty()) return ss;
duke@1 3703 Type head = upperBound(ss.head);
duke@1 3704 List<Type> tail = upperBounds(ss.tail);
duke@1 3705 if (head != ss.head || tail != ss.tail)
duke@1 3706 return tail.prepend(head);
duke@1 3707 else
duke@1 3708 return ss;
duke@1 3709 }
duke@1 3710
duke@1 3711 private boolean sideCast(Type from, Type to, Warner warn) {
duke@1 3712 // We are casting from type $from$ to type $to$, which are
duke@1 3713 // non-final unrelated types. This method
duke@1 3714 // tries to reject a cast by transferring type parameters
duke@1 3715 // from $to$ to $from$ by common superinterfaces.
duke@1 3716 boolean reverse = false;
duke@1 3717 Type target = to;
duke@1 3718 if ((to.tsym.flags() & INTERFACE) == 0) {
jjg@816 3719 Assert.check((from.tsym.flags() & INTERFACE) != 0);
duke@1 3720 reverse = true;
duke@1 3721 to = from;
duke@1 3722 from = target;
duke@1 3723 }
duke@1 3724 List<Type> commonSupers = superClosure(to, erasure(from));
duke@1 3725 boolean giveWarning = commonSupers.isEmpty();
duke@1 3726 // The arguments to the supers could be unified here to
duke@1 3727 // get a more accurate analysis
duke@1 3728 while (commonSupers.nonEmpty()) {
duke@1 3729 Type t1 = asSuper(from, commonSupers.head.tsym);
duke@1 3730 Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
duke@1 3731 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3732 return false;
duke@1 3733 giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
duke@1 3734 commonSupers = commonSupers.tail;
duke@1 3735 }
mcimadamore@187 3736 if (giveWarning && !isReifiable(reverse ? from : to))
mcimadamore@795 3737 warn.warn(LintCategory.UNCHECKED);
jjg@984 3738 if (!allowCovariantReturns)
duke@1 3739 // reject if there is a common method signature with
duke@1 3740 // incompatible return types.
duke@1 3741 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3742 return true;
duke@1 3743 }
duke@1 3744
duke@1 3745 private boolean sideCastFinal(Type from, Type to, Warner warn) {
duke@1 3746 // We are casting from type $from$ to type $to$, which are
duke@1 3747 // unrelated types one of which is final and the other of
duke@1 3748 // which is an interface. This method
duke@1 3749 // tries to reject a cast by transferring type parameters
duke@1 3750 // from the final class to the interface.
duke@1 3751 boolean reverse = false;
duke@1 3752 Type target = to;
duke@1 3753 if ((to.tsym.flags() & INTERFACE) == 0) {
jjg@816 3754 Assert.check((from.tsym.flags() & INTERFACE) != 0);
duke@1 3755 reverse = true;
duke@1 3756 to = from;
duke@1 3757 from = target;
duke@1 3758 }
jjg@816 3759 Assert.check((from.tsym.flags() & FINAL) != 0);
duke@1 3760 Type t1 = asSuper(from, to.tsym);
duke@1 3761 if (t1 == null) return false;
duke@1 3762 Type t2 = to;
duke@1 3763 if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
duke@1 3764 return false;
jjg@984 3765 if (!allowCovariantReturns)
duke@1 3766 // reject if there is a common method signature with
duke@1 3767 // incompatible return types.
duke@1 3768 chk.checkCompatibleAbstracts(warn.pos(), from, to);
duke@1 3769 if (!isReifiable(target) &&
duke@1 3770 (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
mcimadamore@795 3771 warn.warn(LintCategory.UNCHECKED);
duke@1 3772 return true;
duke@1 3773 }
duke@1 3774
duke@1 3775 private boolean giveWarning(Type from, Type to) {
mcimadamore@235 3776 Type subFrom = asSub(from, to.tsym);
mcimadamore@235 3777 return to.isParameterized() &&
mcimadamore@235 3778 (!(isUnbounded(to) ||
mcimadamore@235 3779 isSubtype(from, to) ||
mcimadamore@736 3780 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
duke@1 3781 }
duke@1 3782
duke@1 3783 private List<Type> superClosure(Type t, Type s) {
duke@1 3784 List<Type> cl = List.nil();
duke@1 3785 for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
duke@1 3786 if (isSubtype(s, erasure(l.head))) {
duke@1 3787 cl = insert(cl, l.head);
duke@1 3788 } else {
duke@1 3789 cl = union(cl, superClosure(l.head, s));
duke@1 3790 }
duke@1 3791 }
duke@1 3792 return cl;
duke@1 3793 }
duke@1 3794
duke@1 3795 private boolean containsTypeEquivalent(Type t, Type s) {
duke@1 3796 return
duke@1 3797 isSameType(t, s) || // shortcut
duke@1 3798 containsType(t, s) && containsType(s, t);
duke@1 3799 }
duke@1 3800
mcimadamore@138 3801 // <editor-fold defaultstate="collapsed" desc="adapt">
duke@1 3802 /**
duke@1 3803 * Adapt a type by computing a substitution which maps a source
duke@1 3804 * type to a target type.
duke@1 3805 *
duke@1 3806 * @param source the source type
duke@1 3807 * @param target the target type
duke@1 3808 * @param from the type variables of the computed substitution
duke@1 3809 * @param to the types of the computed substitution.
duke@1 3810 */
duke@1 3811 public void adapt(Type source,
duke@1 3812 Type target,
duke@1 3813 ListBuffer<Type> from,
duke@1 3814 ListBuffer<Type> to) throws AdaptFailure {
mcimadamore@138 3815 new Adapter(from, to).adapt(source, target);
mcimadamore@138 3816 }
mcimadamore@138 3817
mcimadamore@138 3818 class Adapter extends SimpleVisitor<Void, Type> {
mcimadamore@138 3819
mcimadamore@138 3820 ListBuffer<Type> from;
mcimadamore@138 3821 ListBuffer<Type> to;
mcimadamore@138 3822 Map<Symbol,Type> mapping;
mcimadamore@138 3823
mcimadamore@138 3824 Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
mcimadamore@138 3825 this.from = from;
mcimadamore@138 3826 this.to = to;
mcimadamore@138 3827 mapping = new HashMap<Symbol,Type>();
duke@1 3828 }
mcimadamore@138 3829
mcimadamore@138 3830 public void adapt(Type source, Type target) throws AdaptFailure {
mcimadamore@138 3831 visit(source, target);
mcimadamore@138 3832 List<Type> fromList = from.toList();
mcimadamore@138 3833 List<Type> toList = to.toList();
mcimadamore@138 3834 while (!fromList.isEmpty()) {
mcimadamore@138 3835 Type val = mapping.get(fromList.head.tsym);
mcimadamore@138 3836 if (toList.head != val)
mcimadamore@138 3837 toList.head = val;
mcimadamore@138 3838 fromList = fromList.tail;
mcimadamore@138 3839 toList = toList.tail;
mcimadamore@138 3840 }
mcimadamore@138 3841 }
mcimadamore@138 3842
mcimadamore@138 3843 @Override
mcimadamore@138 3844 public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
mcimadamore@138 3845 if (target.tag == CLASS)
mcimadamore@138 3846 adaptRecursive(source.allparams(), target.allparams());
mcimadamore@138 3847 return null;
mcimadamore@138 3848 }
mcimadamore@138 3849
mcimadamore@138 3850 @Override
mcimadamore@138 3851 public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
mcimadamore@138 3852 if (target.tag == ARRAY)
mcimadamore@138 3853 adaptRecursive(elemtype(source), elemtype(target));
mcimadamore@138 3854 return null;
mcimadamore@138 3855 }
mcimadamore@138 3856
mcimadamore@138 3857 @Override
mcimadamore@138 3858 public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
mcimadamore@138 3859 if (source.isExtendsBound())
mcimadamore@138 3860 adaptRecursive(upperBound(source), upperBound(target));
mcimadamore@138 3861 else if (source.isSuperBound())
mcimadamore@138 3862 adaptRecursive(lowerBound(source), lowerBound(target));
mcimadamore@138 3863 return null;
mcimadamore@138 3864 }
mcimadamore@138 3865
mcimadamore@138 3866 @Override
mcimadamore@138 3867 public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
mcimadamore@138 3868 // Check to see if there is
mcimadamore@138 3869 // already a mapping for $source$, in which case
mcimadamore@138 3870 // the old mapping will be merged with the new
mcimadamore@138 3871 Type val = mapping.get(source.tsym);
mcimadamore@138 3872 if (val != null) {
mcimadamore@138 3873 if (val.isSuperBound() && target.isSuperBound()) {
mcimadamore@138 3874 val = isSubtype(lowerBound(val), lowerBound(target))
mcimadamore@138 3875 ? target : val;
mcimadamore@138 3876 } else if (val.isExtendsBound() && target.isExtendsBound()) {
mcimadamore@138 3877 val = isSubtype(upperBound(val), upperBound(target))
mcimadamore@138 3878 ? val : target;
mcimadamore@138 3879 } else if (!isSameType(val, target)) {
mcimadamore@138 3880 throw new AdaptFailure();
duke@1 3881 }
mcimadamore@138 3882 } else {
mcimadamore@138 3883 val = target;
mcimadamore@138 3884 from.append(source);
mcimadamore@138 3885 to.append(target);
mcimadamore@138 3886 }
mcimadamore@138 3887 mapping.put(source.tsym, val);
mcimadamore@138 3888 return null;
mcimadamore@138 3889 }
mcimadamore@138 3890
mcimadamore@138 3891 @Override
mcimadamore@138 3892 public Void visitType(Type source, Type target) {
mcimadamore@138 3893 return null;
mcimadamore@138 3894 }
mcimadamore@138 3895
mcimadamore@138 3896 private Set<TypePair> cache = new HashSet<TypePair>();
mcimadamore@138 3897
mcimadamore@138 3898 private void adaptRecursive(Type source, Type target) {
mcimadamore@138 3899 TypePair pair = new TypePair(source, target);
mcimadamore@138 3900 if (cache.add(pair)) {
mcimadamore@138 3901 try {
mcimadamore@138 3902 visit(source, target);
mcimadamore@138 3903 } finally {
mcimadamore@138 3904 cache.remove(pair);
duke@1 3905 }
duke@1 3906 }
duke@1 3907 }
mcimadamore@138 3908
mcimadamore@138 3909 private void adaptRecursive(List<Type> source, List<Type> target) {
mcimadamore@138 3910 if (source.length() == target.length()) {
mcimadamore@138 3911 while (source.nonEmpty()) {
mcimadamore@138 3912 adaptRecursive(source.head, target.head);
mcimadamore@138 3913 source = source.tail;
mcimadamore@138 3914 target = target.tail;
mcimadamore@138 3915 }
duke@1 3916 }
duke@1 3917 }
duke@1 3918 }
duke@1 3919
mcimadamore@138 3920 public static class AdaptFailure extends RuntimeException {
mcimadamore@138 3921 static final long serialVersionUID = -7490231548272701566L;
mcimadamore@138 3922 }
mcimadamore@138 3923
duke@1 3924 private void adaptSelf(Type t,
duke@1 3925 ListBuffer<Type> from,
duke@1 3926 ListBuffer<Type> to) {
duke@1 3927 try {
duke@1 3928 //if (t.tsym.type != t)
duke@1 3929 adapt(t.tsym.type, t, from, to);
duke@1 3930 } catch (AdaptFailure ex) {
duke@1 3931 // Adapt should never fail calculating a mapping from
duke@1 3932 // t.tsym.type to t as there can be no merge problem.
duke@1 3933 throw new AssertionError(ex);
duke@1 3934 }
duke@1 3935 }
mcimadamore@138 3936 // </editor-fold>
duke@1 3937
duke@1 3938 /**
duke@1 3939 * Rewrite all type variables (universal quantifiers) in the given
duke@1 3940 * type to wildcards (existential quantifiers). This is used to
duke@1 3941 * determine if a cast is allowed. For example, if high is true
duke@1 3942 * and {@code T <: Number}, then {@code List<T>} is rewritten to
duke@1 3943 * {@code List<? extends Number>}. Since {@code List<Integer> <:
duke@1 3944 * List<? extends Number>} a {@code List<T>} can be cast to {@code
duke@1 3945 * List<Integer>} with a warning.
duke@1 3946 * @param t a type
duke@1 3947 * @param high if true return an upper bound; otherwise a lower
duke@1 3948 * bound
duke@1 3949 * @param rewriteTypeVars only rewrite captured wildcards if false;
duke@1 3950 * otherwise rewrite all type variables
duke@1 3951 * @return the type rewritten with wildcards (existential
duke@1 3952 * quantifiers) only
duke@1 3953 */
duke@1 3954 private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
mcimadamore@640 3955 return new Rewriter(high, rewriteTypeVars).visit(t);
mcimadamore@157 3956 }
mcimadamore@157 3957
mcimadamore@157 3958 class Rewriter extends UnaryVisitor<Type> {
mcimadamore@157 3959
mcimadamore@157 3960 boolean high;
mcimadamore@157 3961 boolean rewriteTypeVars;
mcimadamore@157 3962
mcimadamore@157 3963 Rewriter(boolean high, boolean rewriteTypeVars) {
mcimadamore@157 3964 this.high = high;
mcimadamore@157 3965 this.rewriteTypeVars = rewriteTypeVars;
mcimadamore@157 3966 }
mcimadamore@157 3967
mcimadamore@640 3968 @Override
mcimadamore@640 3969 public Type visitClassType(ClassType t, Void s) {
mcimadamore@157 3970 ListBuffer<Type> rewritten = new ListBuffer<Type>();
mcimadamore@157 3971 boolean changed = false;
mcimadamore@640 3972 for (Type arg : t.allparams()) {
mcimadamore@157 3973 Type bound = visit(arg);
mcimadamore@157 3974 if (arg != bound) {
mcimadamore@157 3975 changed = true;
mcimadamore@157 3976 }
mcimadamore@157 3977 rewritten.append(bound);
duke@1 3978 }
mcimadamore@157 3979 if (changed)
mcimadamore@640 3980 return subst(t.tsym.type,
mcimadamore@640 3981 t.tsym.type.allparams(),
mcimadamore@640 3982 rewritten.toList());
mcimadamore@157 3983 else
mcimadamore@157 3984 return t;
duke@1 3985 }
mcimadamore@157 3986
mcimadamore@157 3987 public Type visitType(Type t, Void s) {
mcimadamore@157 3988 return high ? upperBound(t) : lowerBound(t);
mcimadamore@157 3989 }
mcimadamore@157 3990
mcimadamore@157 3991 @Override
mcimadamore@157 3992 public Type visitCapturedType(CapturedType t, Void s) {
mcimadamore@1177 3993 Type w_bound = t.wildcard.type;
mcimadamore@1177 3994 Type bound = w_bound.contains(t) ?
mcimadamore@1177 3995 erasure(w_bound) :
mcimadamore@1177 3996 visit(w_bound);
mcimadamore@1177 3997 return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
mcimadamore@157 3998 }
mcimadamore@157 3999
mcimadamore@157 4000 @Override
mcimadamore@157 4001 public Type visitTypeVar(TypeVar t, Void s) {
mcimadamore@640 4002 if (rewriteTypeVars) {
mcimadamore@1177 4003 Type bound = t.bound.contains(t) ?
mcimadamore@779 4004 erasure(t.bound) :
mcimadamore@1177 4005 visit(t.bound);
mcimadamore@1177 4006 return rewriteAsWildcardType(bound, t, EXTENDS);
mcimadamore@1177 4007 } else {
mcimadamore@1177 4008 return t;
mcimadamore@640 4009 }
mcimadamore@157 4010 }
mcimadamore@157 4011
mcimadamore@157 4012 @Override
mcimadamore@157 4013 public Type visitWildcardType(WildcardType t, Void s) {
mcimadamore@1177 4014 Type bound2 = visit(t.type);
mcimadamore@1177 4015 return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
mcimadamore@640 4016 }
mcimadamore@640 4017
mcimadamore@1177 4018 private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
mcimadamore@1177 4019 switch (bk) {
mcimadamore@1177 4020 case EXTENDS: return high ?
mcimadamore@1177 4021 makeExtendsWildcard(B(bound), formal) :
mcimadamore@1177 4022 makeExtendsWildcard(syms.objectType, formal);
mcimadamore@1177 4023 case SUPER: return high ?
mcimadamore@1177 4024 makeSuperWildcard(syms.botType, formal) :
mcimadamore@1177 4025 makeSuperWildcard(B(bound), formal);
mcimadamore@1177 4026 case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
mcimadamore@1177 4027 default:
mcimadamore@1177 4028 Assert.error("Invalid bound kind " + bk);
mcimadamore@1177 4029 return null;
mcimadamore@1177 4030 }
mcimadamore@640 4031 }
mcimadamore@640 4032
mcimadamore@640 4033 Type B(Type t) {
mcimadamore@640 4034 while (t.tag == WILDCARD) {
mcimadamore@640 4035 WildcardType w = (WildcardType)t;
mcimadamore@640 4036 t = high ?
mcimadamore@640 4037 w.getExtendsBound() :
mcimadamore@640 4038 w.getSuperBound();
mcimadamore@640 4039 if (t == null) {
mcimadamore@640 4040 t = high ? syms.objectType : syms.botType;
mcimadamore@640 4041 }
mcimadamore@640 4042 }
mcimadamore@640 4043 return t;
mcimadamore@157 4044 }
duke@1 4045 }
duke@1 4046
mcimadamore@640 4047
duke@1 4048 /**
duke@1 4049 * Create a wildcard with the given upper (extends) bound; create
duke@1 4050 * an unbounded wildcard if bound is Object.
duke@1 4051 *
duke@1 4052 * @param bound the upper bound
duke@1 4053 * @param formal the formal type parameter that will be
duke@1 4054 * substituted by the wildcard
duke@1 4055 */
duke@1 4056 private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
duke@1 4057 if (bound == syms.objectType) {
duke@1 4058 return new WildcardType(syms.objectType,
duke@1 4059 BoundKind.UNBOUND,
duke@1 4060 syms.boundClass,
duke@1 4061 formal);
duke@1 4062 } else {
duke@1 4063 return new WildcardType(bound,
duke@1 4064 BoundKind.EXTENDS,
duke@1 4065 syms.boundClass,
duke@1 4066 formal);
duke@1 4067 }
duke@1 4068 }
duke@1 4069
duke@1 4070 /**
duke@1 4071 * Create a wildcard with the given lower (super) bound; create an
duke@1 4072 * unbounded wildcard if bound is bottom (type of {@code null}).
duke@1 4073 *
duke@1 4074 * @param bound the lower bound
duke@1 4075 * @param formal the formal type parameter that will be
duke@1 4076 * substituted by the wildcard
duke@1 4077 */
duke@1 4078 private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
duke@1 4079 if (bound.tag == BOT) {
duke@1 4080 return new WildcardType(syms.objectType,
duke@1 4081 BoundKind.UNBOUND,
duke@1 4082 syms.boundClass,
duke@1 4083 formal);
duke@1 4084 } else {
duke@1 4085 return new WildcardType(bound,
duke@1 4086 BoundKind.SUPER,
duke@1 4087 syms.boundClass,
duke@1 4088 formal);
duke@1 4089 }
duke@1 4090 }
duke@1 4091
duke@1 4092 /**
duke@1 4093 * A wrapper for a type that allows use in sets.
duke@1 4094 */
vromero@1452 4095 public static class UniqueType {
vromero@1452 4096 public final Type type;
vromero@1452 4097 final Types types;
vromero@1452 4098
vromero@1452 4099 public UniqueType(Type type, Types types) {
vromero@1452 4100 this.type = type;
vromero@1452 4101 this.types = types;
duke@1 4102 }
vromero@1452 4103
duke@1 4104 public int hashCode() {
vromero@1452 4105 return types.hashCode(type);
duke@1 4106 }
vromero@1452 4107
duke@1 4108 public boolean equals(Object obj) {
vromero@1452 4109 return (obj instanceof UniqueType) &&
vromero@1452 4110 types.isSameType(type, ((UniqueType)obj).type);
duke@1 4111 }
vromero@1452 4112
duke@1 4113 public String toString() {
vromero@1452 4114 return type.toString();
duke@1 4115 }
vromero@1452 4116
duke@1 4117 }
duke@1 4118 // </editor-fold>
duke@1 4119
duke@1 4120 // <editor-fold defaultstate="collapsed" desc="Visitors">
duke@1 4121 /**
duke@1 4122 * A default visitor for types. All visitor methods except
duke@1 4123 * visitType are implemented by delegating to visitType. Concrete
duke@1 4124 * subclasses must provide an implementation of visitType and can
duke@1 4125 * override other methods as needed.
duke@1 4126 *
duke@1 4127 * @param <R> the return type of the operation implemented by this
duke@1 4128 * visitor; use Void if no return type is needed.
duke@1 4129 * @param <S> the type of the second argument (the first being the
duke@1 4130 * type itself) of the operation implemented by this visitor; use
duke@1 4131 * Void if a second argument is not needed.
duke@1 4132 */
duke@1 4133 public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
duke@1 4134 final public R visit(Type t, S s) { return t.accept(this, s); }
duke@1 4135 public R visitClassType(ClassType t, S s) { return visitType(t, s); }
duke@1 4136 public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
duke@1 4137 public R visitArrayType(ArrayType t, S s) { return visitType(t, s); }
duke@1 4138 public R visitMethodType(MethodType t, S s) { return visitType(t, s); }
duke@1 4139 public R visitPackageType(PackageType t, S s) { return visitType(t, s); }
duke@1 4140 public R visitTypeVar(TypeVar t, S s) { return visitType(t, s); }
duke@1 4141 public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
duke@1 4142 public R visitForAll(ForAll t, S s) { return visitType(t, s); }
duke@1 4143 public R visitUndetVar(UndetVar t, S s) { return visitType(t, s); }
duke@1 4144 public R visitErrorType(ErrorType t, S s) { return visitType(t, s); }
duke@1 4145 }
duke@1 4146
duke@1 4147 /**
mcimadamore@121 4148 * A default visitor for symbols. All visitor methods except
mcimadamore@121 4149 * visitSymbol are implemented by delegating to visitSymbol. Concrete
mcimadamore@121 4150 * subclasses must provide an implementation of visitSymbol and can
mcimadamore@121 4151 * override other methods as needed.
mcimadamore@121 4152 *
mcimadamore@121 4153 * @param <R> the return type of the operation implemented by this
mcimadamore@121 4154 * visitor; use Void if no return type is needed.
mcimadamore@121 4155 * @param <S> the type of the second argument (the first being the
mcimadamore@121 4156 * symbol itself) of the operation implemented by this visitor; use
mcimadamore@121 4157 * Void if a second argument is not needed.
mcimadamore@121 4158 */
mcimadamore@121 4159 public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
mcimadamore@121 4160 final public R visit(Symbol s, S arg) { return s.accept(this, arg); }
mcimadamore@121 4161 public R visitClassSymbol(ClassSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 4162 public R visitMethodSymbol(MethodSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 4163 public R visitOperatorSymbol(OperatorSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 4164 public R visitPackageSymbol(PackageSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 4165 public R visitTypeSymbol(TypeSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 4166 public R visitVarSymbol(VarSymbol s, S arg) { return visitSymbol(s, arg); }
mcimadamore@121 4167 }
mcimadamore@121 4168
mcimadamore@121 4169 /**
duke@1 4170 * A <em>simple</em> visitor for types. This visitor is simple as
duke@1 4171 * captured wildcards, for-all types (generic methods), and
duke@1 4172 * undetermined type variables (part of inference) are hidden.
duke@1 4173 * Captured wildcards are hidden by treating them as type
duke@1 4174 * variables and the rest are hidden by visiting their qtypes.
duke@1 4175 *
duke@1 4176 * @param <R> the return type of the operation implemented by this
duke@1 4177 * visitor; use Void if no return type is needed.
duke@1 4178 * @param <S> the type of the second argument (the first being the
duke@1 4179 * type itself) of the operation implemented by this visitor; use
duke@1 4180 * Void if a second argument is not needed.
duke@1 4181 */
duke@1 4182 public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
duke@1 4183 @Override
duke@1 4184 public R visitCapturedType(CapturedType t, S s) {
duke@1 4185 return visitTypeVar(t, s);
duke@1 4186 }
duke@1 4187 @Override
duke@1 4188 public R visitForAll(ForAll t, S s) {
duke@1 4189 return visit(t.qtype, s);
duke@1 4190 }
duke@1 4191 @Override
duke@1 4192 public R visitUndetVar(UndetVar t, S s) {
duke@1 4193 return visit(t.qtype, s);
duke@1 4194 }
duke@1 4195 }
duke@1 4196
duke@1 4197 /**
duke@1 4198 * A plain relation on types. That is a 2-ary function on the
duke@1 4199 * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
duke@1 4200 * <!-- In plain text: Type x Type -> Boolean -->
duke@1 4201 */
duke@1 4202 public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
duke@1 4203
duke@1 4204 /**
duke@1 4205 * A convenience visitor for implementing operations that only
duke@1 4206 * require one argument (the type itself), that is, unary
duke@1 4207 * operations.
duke@1 4208 *
duke@1 4209 * @param <R> the return type of the operation implemented by this
duke@1 4210 * visitor; use Void if no return type is needed.
duke@1 4211 */
duke@1 4212 public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
duke@1 4213 final public R visit(Type t) { return t.accept(this, null); }
duke@1 4214 }
duke@1 4215
duke@1 4216 /**
duke@1 4217 * A visitor for implementing a mapping from types to types. The
duke@1 4218 * default behavior of this class is to implement the identity
duke@1 4219 * mapping (mapping a type to itself). This can be overridden in
duke@1 4220 * subclasses.
duke@1 4221 *
duke@1 4222 * @param <S> the type of the second argument (the first being the
duke@1 4223 * type itself) of this mapping; use Void if a second argument is
duke@1 4224 * not needed.
duke@1 4225 */
duke@1 4226 public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
duke@1 4227 final public Type visit(Type t) { return t.accept(this, null); }
duke@1 4228 public Type visitType(Type t, S s) { return t; }
duke@1 4229 }
duke@1 4230 // </editor-fold>
jjg@657 4231
jjg@657 4232
jjg@657 4233 // <editor-fold defaultstate="collapsed" desc="Annotation support">
jjg@657 4234
jjg@657 4235 public RetentionPolicy getRetention(Attribute.Compound a) {
jfranck@1313 4236 return getRetention(a.type.tsym);
jfranck@1313 4237 }
jfranck@1313 4238
jfranck@1313 4239 public RetentionPolicy getRetention(Symbol sym) {
jjg@657 4240 RetentionPolicy vis = RetentionPolicy.CLASS; // the default
jfranck@1313 4241 Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
jjg@657 4242 if (c != null) {
jjg@657 4243 Attribute value = c.member(names.value);
jjg@657 4244 if (value != null && value instanceof Attribute.Enum) {
jjg@657 4245 Name levelName = ((Attribute.Enum)value).value.name;
jjg@657 4246 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
jjg@657 4247 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
jjg@657 4248 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
jjg@657 4249 else ;// /* fail soft */ throw new AssertionError(levelName);
jjg@657 4250 }
jjg@657 4251 }
jjg@657 4252 return vis;
jjg@657 4253 }
jjg@657 4254 // </editor-fold>
duke@1 4255 }

mercurial