src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Fri, 18 Oct 2013 10:41:56 +0200

author
rbackman
date
Fri, 18 Oct 2013 10:41:56 +0200
changeset 5997
59e8ad757e19
parent 5994
9acbfe04b5c3
child 6278
12ad8db39f76
permissions
-rw-r--r--

8026844: Various Math functions needs intrinsification
Reviewed-by: kvn, twisti

duke@435 1 /*
drchase@5353 2 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@4318 26 #include "asm/macroAssembler.hpp"
twisti@4318 27 #include "asm/macroAssembler.inline.hpp"
stefank@2314 28 #include "c1/c1_Compilation.hpp"
stefank@2314 29 #include "c1/c1_LIRAssembler.hpp"
stefank@2314 30 #include "c1/c1_MacroAssembler.hpp"
stefank@2314 31 #include "c1/c1_Runtime1.hpp"
stefank@2314 32 #include "c1/c1_ValueStack.hpp"
stefank@2314 33 #include "ci/ciArrayKlass.hpp"
stefank@2314 34 #include "ci/ciInstance.hpp"
stefank@2314 35 #include "gc_interface/collectedHeap.hpp"
stefank@2314 36 #include "memory/barrierSet.hpp"
stefank@2314 37 #include "memory/cardTableModRefBS.hpp"
stefank@2314 38 #include "nativeInst_x86.hpp"
stefank@2314 39 #include "oops/objArrayKlass.hpp"
stefank@2314 40 #include "runtime/sharedRuntime.hpp"
duke@435 41
duke@435 42
duke@435 43 // These masks are used to provide 128-bit aligned bitmasks to the XMM
duke@435 44 // instructions, to allow sign-masking or sign-bit flipping. They allow
duke@435 45 // fast versions of NegF/NegD and AbsF/AbsD.
duke@435 46
duke@435 47 // Note: 'double' and 'long long' have 32-bits alignment on x86.
duke@435 48 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
duke@435 49 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
duke@435 50 // of 128-bits operands for SSE instructions.
iveresov@2932 51 jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
duke@435 52 // Store the value to a 128-bits operand.
duke@435 53 operand[0] = lo;
duke@435 54 operand[1] = hi;
duke@435 55 return operand;
duke@435 56 }
duke@435 57
duke@435 58 // Buffer for 128-bits masks used by SSE instructions.
duke@435 59 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
duke@435 60
duke@435 61 // Static initialization during VM startup.
duke@435 62 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
duke@435 63 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
duke@435 64 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
duke@435 65 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
duke@435 66
duke@435 67
duke@435 68
duke@435 69 NEEDS_CLEANUP // remove this definitions ?
duke@435 70 const Register IC_Klass = rax; // where the IC klass is cached
duke@435 71 const Register SYNC_header = rax; // synchronization header
duke@435 72 const Register SHIFT_count = rcx; // where count for shift operations must be
duke@435 73
duke@435 74 #define __ _masm->
duke@435 75
duke@435 76
duke@435 77 static void select_different_registers(Register preserve,
duke@435 78 Register extra,
duke@435 79 Register &tmp1,
duke@435 80 Register &tmp2) {
duke@435 81 if (tmp1 == preserve) {
duke@435 82 assert_different_registers(tmp1, tmp2, extra);
duke@435 83 tmp1 = extra;
duke@435 84 } else if (tmp2 == preserve) {
duke@435 85 assert_different_registers(tmp1, tmp2, extra);
duke@435 86 tmp2 = extra;
duke@435 87 }
duke@435 88 assert_different_registers(preserve, tmp1, tmp2);
duke@435 89 }
duke@435 90
duke@435 91
duke@435 92
duke@435 93 static void select_different_registers(Register preserve,
duke@435 94 Register extra,
duke@435 95 Register &tmp1,
duke@435 96 Register &tmp2,
duke@435 97 Register &tmp3) {
duke@435 98 if (tmp1 == preserve) {
duke@435 99 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 100 tmp1 = extra;
duke@435 101 } else if (tmp2 == preserve) {
duke@435 102 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 103 tmp2 = extra;
duke@435 104 } else if (tmp3 == preserve) {
duke@435 105 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 106 tmp3 = extra;
duke@435 107 }
duke@435 108 assert_different_registers(preserve, tmp1, tmp2, tmp3);
duke@435 109 }
duke@435 110
duke@435 111
duke@435 112
duke@435 113 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 114 if (opr->is_constant()) {
duke@435 115 LIR_Const* constant = opr->as_constant_ptr();
duke@435 116 switch (constant->type()) {
duke@435 117 case T_INT: {
duke@435 118 return true;
duke@435 119 }
duke@435 120
duke@435 121 default:
duke@435 122 return false;
duke@435 123 }
duke@435 124 }
duke@435 125 return false;
duke@435 126 }
duke@435 127
duke@435 128
duke@435 129 LIR_Opr LIR_Assembler::receiverOpr() {
never@739 130 return FrameMap::receiver_opr;
duke@435 131 }
duke@435 132
duke@435 133 LIR_Opr LIR_Assembler::osrBufferPointer() {
never@739 134 return FrameMap::as_pointer_opr(receiverOpr()->as_register());
duke@435 135 }
duke@435 136
duke@435 137 //--------------fpu register translations-----------------------
duke@435 138
duke@435 139
duke@435 140 address LIR_Assembler::float_constant(float f) {
duke@435 141 address const_addr = __ float_constant(f);
duke@435 142 if (const_addr == NULL) {
duke@435 143 bailout("const section overflow");
duke@435 144 return __ code()->consts()->start();
duke@435 145 } else {
duke@435 146 return const_addr;
duke@435 147 }
duke@435 148 }
duke@435 149
duke@435 150
duke@435 151 address LIR_Assembler::double_constant(double d) {
duke@435 152 address const_addr = __ double_constant(d);
duke@435 153 if (const_addr == NULL) {
duke@435 154 bailout("const section overflow");
duke@435 155 return __ code()->consts()->start();
duke@435 156 } else {
duke@435 157 return const_addr;
duke@435 158 }
duke@435 159 }
duke@435 160
duke@435 161
duke@435 162 void LIR_Assembler::set_24bit_FPU() {
duke@435 163 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
duke@435 164 }
duke@435 165
duke@435 166 void LIR_Assembler::reset_FPU() {
duke@435 167 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 168 }
duke@435 169
duke@435 170 void LIR_Assembler::fpop() {
duke@435 171 __ fpop();
duke@435 172 }
duke@435 173
duke@435 174 void LIR_Assembler::fxch(int i) {
duke@435 175 __ fxch(i);
duke@435 176 }
duke@435 177
duke@435 178 void LIR_Assembler::fld(int i) {
duke@435 179 __ fld_s(i);
duke@435 180 }
duke@435 181
duke@435 182 void LIR_Assembler::ffree(int i) {
duke@435 183 __ ffree(i);
duke@435 184 }
duke@435 185
duke@435 186 void LIR_Assembler::breakpoint() {
duke@435 187 __ int3();
duke@435 188 }
duke@435 189
duke@435 190 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 191 if (opr->is_single_cpu()) {
duke@435 192 __ push_reg(opr->as_register());
duke@435 193 } else if (opr->is_double_cpu()) {
never@739 194 NOT_LP64(__ push_reg(opr->as_register_hi()));
duke@435 195 __ push_reg(opr->as_register_lo());
duke@435 196 } else if (opr->is_stack()) {
duke@435 197 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
duke@435 198 } else if (opr->is_constant()) {
duke@435 199 LIR_Const* const_opr = opr->as_constant_ptr();
duke@435 200 if (const_opr->type() == T_OBJECT) {
duke@435 201 __ push_oop(const_opr->as_jobject());
duke@435 202 } else if (const_opr->type() == T_INT) {
duke@435 203 __ push_jint(const_opr->as_jint());
duke@435 204 } else {
duke@435 205 ShouldNotReachHere();
duke@435 206 }
duke@435 207
duke@435 208 } else {
duke@435 209 ShouldNotReachHere();
duke@435 210 }
duke@435 211 }
duke@435 212
duke@435 213 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 214 if (opr->is_single_cpu()) {
never@739 215 __ pop_reg(opr->as_register());
duke@435 216 } else {
duke@435 217 ShouldNotReachHere();
duke@435 218 }
duke@435 219 }
duke@435 220
never@739 221 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
never@739 222 return addr->base()->is_illegal() && addr->index()->is_illegal();
never@739 223 }
never@739 224
duke@435 225 //-------------------------------------------
never@739 226
duke@435 227 Address LIR_Assembler::as_Address(LIR_Address* addr) {
never@739 228 return as_Address(addr, rscratch1);
never@739 229 }
never@739 230
never@739 231 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
duke@435 232 if (addr->base()->is_illegal()) {
duke@435 233 assert(addr->index()->is_illegal(), "must be illegal too");
never@739 234 AddressLiteral laddr((address)addr->disp(), relocInfo::none);
never@739 235 if (! __ reachable(laddr)) {
never@739 236 __ movptr(tmp, laddr.addr());
never@739 237 Address res(tmp, 0);
never@739 238 return res;
never@739 239 } else {
never@739 240 return __ as_Address(laddr);
never@739 241 }
duke@435 242 }
duke@435 243
never@739 244 Register base = addr->base()->as_pointer_register();
duke@435 245
duke@435 246 if (addr->index()->is_illegal()) {
duke@435 247 return Address( base, addr->disp());
never@739 248 } else if (addr->index()->is_cpu_register()) {
never@739 249 Register index = addr->index()->as_pointer_register();
duke@435 250 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
duke@435 251 } else if (addr->index()->is_constant()) {
never@739 252 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
never@739 253 assert(Assembler::is_simm32(addr_offset), "must be");
duke@435 254
duke@435 255 return Address(base, addr_offset);
duke@435 256 } else {
duke@435 257 Unimplemented();
duke@435 258 return Address();
duke@435 259 }
duke@435 260 }
duke@435 261
duke@435 262
duke@435 263 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 264 Address base = as_Address(addr);
duke@435 265 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
duke@435 266 }
duke@435 267
duke@435 268
duke@435 269 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 270 return as_Address(addr);
duke@435 271 }
duke@435 272
duke@435 273
duke@435 274 void LIR_Assembler::osr_entry() {
duke@435 275 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 276 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 277 ValueStack* entry_state = osr_entry->state();
duke@435 278 int number_of_locks = entry_state->locks_size();
duke@435 279
duke@435 280 // we jump here if osr happens with the interpreter
duke@435 281 // state set up to continue at the beginning of the
duke@435 282 // loop that triggered osr - in particular, we have
duke@435 283 // the following registers setup:
duke@435 284 //
duke@435 285 // rcx: osr buffer
duke@435 286 //
duke@435 287
duke@435 288 // build frame
duke@435 289 ciMethod* m = compilation()->method();
duke@435 290 __ build_frame(initial_frame_size_in_bytes());
duke@435 291
duke@435 292 // OSR buffer is
duke@435 293 //
duke@435 294 // locals[nlocals-1..0]
duke@435 295 // monitors[0..number_of_locks]
duke@435 296 //
duke@435 297 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 298 // so first slot in the local array is the last local from the interpreter
duke@435 299 // and last slot is local[0] (receiver) from the interpreter
duke@435 300 //
duke@435 301 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 302 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 303 // in the interpreter frame (the method lock if a sync method)
duke@435 304
duke@435 305 // Initialize monitors in the compiled activation.
duke@435 306 // rcx: pointer to osr buffer
duke@435 307 //
duke@435 308 // All other registers are dead at this point and the locals will be
duke@435 309 // copied into place by code emitted in the IR.
duke@435 310
never@739 311 Register OSR_buf = osrBufferPointer()->as_pointer_register();
duke@435 312 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 313 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 314 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 315 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 316 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 317 // the oop.
duke@435 318 for (int i = 0; i < number_of_locks; i++) {
roland@1495 319 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 320 #ifdef ASSERT
duke@435 321 // verify the interpreter's monitor has a non-null object
duke@435 322 {
duke@435 323 Label L;
roland@1495 324 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
duke@435 325 __ jcc(Assembler::notZero, L);
duke@435 326 __ stop("locked object is NULL");
duke@435 327 __ bind(L);
duke@435 328 }
duke@435 329 #endif
roland@1495 330 __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
never@739 331 __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
roland@1495 332 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
never@739 333 __ movptr(frame_map()->address_for_monitor_object(i), rbx);
duke@435 334 }
duke@435 335 }
duke@435 336 }
duke@435 337
duke@435 338
duke@435 339 // inline cache check; done before the frame is built.
duke@435 340 int LIR_Assembler::check_icache() {
duke@435 341 Register receiver = FrameMap::receiver_opr->as_register();
duke@435 342 Register ic_klass = IC_Klass;
never@739 343 const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
ehelin@5694 344 const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
iveresov@2344 345 if (!do_post_padding) {
duke@435 346 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
never@739 347 while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
duke@435 348 __ nop();
duke@435 349 }
duke@435 350 }
duke@435 351 int offset = __ offset();
duke@435 352 __ inline_cache_check(receiver, IC_Klass);
iveresov@2344 353 assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
iveresov@2344 354 if (do_post_padding) {
duke@435 355 // force alignment after the cache check.
duke@435 356 // It's been verified to be aligned if !VerifyOops
duke@435 357 __ align(CodeEntryAlignment);
duke@435 358 }
duke@435 359 return offset;
duke@435 360 }
duke@435 361
duke@435 362
duke@435 363 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
duke@435 364 jobject o = NULL;
roland@5628 365 PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
duke@435 366 __ movoop(reg, o);
duke@435 367 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 368 }
duke@435 369
coleenp@4037 370 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
coleenp@4037 371 Metadata* o = NULL;
coleenp@4037 372 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
coleenp@4037 373 __ mov_metadata(reg, o);
coleenp@4037 374 patching_epilog(patch, lir_patch_normal, reg, info);
coleenp@4037 375 }
duke@435 376
duke@435 377 // This specifies the rsp decrement needed to build the frame
duke@435 378 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 379 // if rounding, must let FrameMap know!
never@739 380
never@739 381 // The frame_map records size in slots (32bit word)
never@739 382
never@739 383 // subtract two words to account for return address and link
never@739 384 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size;
duke@435 385 }
duke@435 386
duke@435 387
twisti@1639 388 int LIR_Assembler::emit_exception_handler() {
duke@435 389 // if the last instruction is a call (typically to do a throw which
duke@435 390 // is coming at the end after block reordering) the return address
duke@435 391 // must still point into the code area in order to avoid assertion
duke@435 392 // failures when searching for the corresponding bci => add a nop
duke@435 393 // (was bug 5/14/1999 - gri)
duke@435 394 __ nop();
duke@435 395
duke@435 396 // generate code for exception handler
duke@435 397 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 398 if (handler_base == NULL) {
duke@435 399 // not enough space left for the handler
duke@435 400 bailout("exception handler overflow");
twisti@1639 401 return -1;
duke@435 402 }
twisti@1639 403
duke@435 404 int offset = code_offset();
duke@435 405
twisti@1730 406 // the exception oop and pc are in rax, and rdx
duke@435 407 // no other registers need to be preserved, so invalidate them
twisti@1730 408 __ invalidate_registers(false, true, true, false, true, true);
duke@435 409
duke@435 410 // check that there is really an exception
duke@435 411 __ verify_not_null_oop(rax);
duke@435 412
twisti@1730 413 // search an exception handler (rax: exception oop, rdx: throwing pc)
twisti@2603 414 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
twisti@2603 415 __ should_not_reach_here();
iveresov@3435 416 guarantee(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 417 __ end_a_stub();
twisti@1639 418
twisti@1639 419 return offset;
duke@435 420 }
duke@435 421
twisti@1639 422
never@1813 423 // Emit the code to remove the frame from the stack in the exception
never@1813 424 // unwind path.
never@1813 425 int LIR_Assembler::emit_unwind_handler() {
never@1813 426 #ifndef PRODUCT
never@1813 427 if (CommentedAssembly) {
never@1813 428 _masm->block_comment("Unwind handler");
never@1813 429 }
never@1813 430 #endif
never@1813 431
never@1813 432 int offset = code_offset();
never@1813 433
never@1813 434 // Fetch the exception from TLS and clear out exception related thread state
iveresov@5994 435 Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
iveresov@5994 436 NOT_LP64(__ get_thread(rsi));
iveresov@5994 437 __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
iveresov@5994 438 __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
iveresov@5994 439 __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
never@1813 440
never@1813 441 __ bind(_unwind_handler_entry);
never@1813 442 __ verify_not_null_oop(rax);
never@1813 443 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
iveresov@5994 444 __ mov(rbx, rax); // Preserve the exception (rbx is always callee-saved)
never@1813 445 }
never@1813 446
never@1813 447 // Preform needed unlocking
never@1813 448 MonitorExitStub* stub = NULL;
never@1813 449 if (method()->is_synchronized()) {
never@1813 450 monitor_address(0, FrameMap::rax_opr);
never@1813 451 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
iveresov@5994 452 __ unlock_object(rdi, rsi, rax, *stub->entry());
never@1813 453 __ bind(*stub->continuation());
never@1813 454 }
never@1813 455
never@1813 456 if (compilation()->env()->dtrace_method_probes()) {
iveresov@5994 457 #ifdef _LP64
iveresov@5994 458 __ mov(rdi, r15_thread);
iveresov@5994 459 __ mov_metadata(rsi, method()->constant_encoding());
iveresov@5994 460 #else
never@2185 461 __ get_thread(rax);
never@2185 462 __ movptr(Address(rsp, 0), rax);
coleenp@4037 463 __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
iveresov@5994 464 #endif
never@1813 465 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
never@1813 466 }
never@1813 467
never@1813 468 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
iveresov@5994 469 __ mov(rax, rbx); // Restore the exception
never@1813 470 }
never@1813 471
never@1813 472 // remove the activation and dispatch to the unwind handler
never@1813 473 __ remove_frame(initial_frame_size_in_bytes());
never@1813 474 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
never@1813 475
never@1813 476 // Emit the slow path assembly
never@1813 477 if (stub != NULL) {
never@1813 478 stub->emit_code(this);
never@1813 479 }
never@1813 480
never@1813 481 return offset;
never@1813 482 }
never@1813 483
never@1813 484
twisti@1639 485 int LIR_Assembler::emit_deopt_handler() {
duke@435 486 // if the last instruction is a call (typically to do a throw which
duke@435 487 // is coming at the end after block reordering) the return address
duke@435 488 // must still point into the code area in order to avoid assertion
duke@435 489 // failures when searching for the corresponding bci => add a nop
duke@435 490 // (was bug 5/14/1999 - gri)
duke@435 491 __ nop();
duke@435 492
duke@435 493 // generate code for exception handler
duke@435 494 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 495 if (handler_base == NULL) {
duke@435 496 // not enough space left for the handler
duke@435 497 bailout("deopt handler overflow");
twisti@1639 498 return -1;
duke@435 499 }
twisti@1639 500
duke@435 501 int offset = code_offset();
duke@435 502 InternalAddress here(__ pc());
twisti@1730 503
duke@435 504 __ pushptr(here.addr());
duke@435 505 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
iveresov@3435 506 guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 507 __ end_a_stub();
duke@435 508
twisti@1639 509 return offset;
duke@435 510 }
duke@435 511
duke@435 512
duke@435 513 // This is the fast version of java.lang.String.compare; it has not
duke@435 514 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 515 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
never@739 516 __ movptr (rbx, rcx); // receiver is in rcx
never@739 517 __ movptr (rax, arg1->as_register());
duke@435 518
duke@435 519 // Get addresses of first characters from both Strings
iveresov@2344 520 __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
kvn@3760 521 if (java_lang_String::has_offset_field()) {
kvn@3760 522 __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
kvn@3760 523 __ movl (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
kvn@3760 524 __ lea (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
kvn@3760 525 } else {
kvn@3760 526 __ movl (rax, Address(rsi, arrayOopDesc::length_offset_in_bytes()));
kvn@3760 527 __ lea (rsi, Address(rsi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
kvn@3760 528 }
duke@435 529
duke@435 530 // rbx, may be NULL
duke@435 531 add_debug_info_for_null_check_here(info);
iveresov@2344 532 __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
kvn@3760 533 if (java_lang_String::has_offset_field()) {
kvn@3760 534 __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
kvn@3760 535 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
kvn@3760 536 __ lea (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
kvn@3760 537 } else {
kvn@3760 538 __ movl (rbx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
kvn@3760 539 __ lea (rdi, Address(rdi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
kvn@3760 540 }
duke@435 541
duke@435 542 // compute minimum length (in rax) and difference of lengths (on top of stack)
twisti@2697 543 __ mov (rcx, rbx);
twisti@2697 544 __ subptr(rbx, rax); // subtract lengths
twisti@2697 545 __ push (rbx); // result
twisti@2697 546 __ cmov (Assembler::lessEqual, rax, rcx);
twisti@2697 547
duke@435 548 // is minimum length 0?
duke@435 549 Label noLoop, haveResult;
never@739 550 __ testptr (rax, rax);
duke@435 551 __ jcc (Assembler::zero, noLoop);
duke@435 552
duke@435 553 // compare first characters
jrose@1057 554 __ load_unsigned_short(rcx, Address(rdi, 0));
jrose@1057 555 __ load_unsigned_short(rbx, Address(rsi, 0));
duke@435 556 __ subl(rcx, rbx);
duke@435 557 __ jcc(Assembler::notZero, haveResult);
duke@435 558 // starting loop
duke@435 559 __ decrement(rax); // we already tested index: skip one
duke@435 560 __ jcc(Assembler::zero, noLoop);
duke@435 561
duke@435 562 // set rsi.edi to the end of the arrays (arrays have same length)
duke@435 563 // negate the index
duke@435 564
never@739 565 __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 566 __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 567 __ negptr(rax);
duke@435 568
duke@435 569 // compare the strings in a loop
duke@435 570
duke@435 571 Label loop;
duke@435 572 __ align(wordSize);
duke@435 573 __ bind(loop);
jrose@1057 574 __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
jrose@1057 575 __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
duke@435 576 __ subl(rcx, rbx);
duke@435 577 __ jcc(Assembler::notZero, haveResult);
duke@435 578 __ increment(rax);
duke@435 579 __ jcc(Assembler::notZero, loop);
duke@435 580
duke@435 581 // strings are equal up to min length
duke@435 582
duke@435 583 __ bind(noLoop);
never@739 584 __ pop(rax);
duke@435 585 return_op(LIR_OprFact::illegalOpr);
duke@435 586
duke@435 587 __ bind(haveResult);
duke@435 588 // leave instruction is going to discard the TOS value
never@739 589 __ mov (rax, rcx); // result of call is in rax,
duke@435 590 }
duke@435 591
duke@435 592
duke@435 593 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 594 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
duke@435 595 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
duke@435 596 assert(result->fpu() == 0, "result must already be on TOS");
duke@435 597 }
duke@435 598
duke@435 599 // Pop the stack before the safepoint code
twisti@1730 600 __ remove_frame(initial_frame_size_in_bytes());
duke@435 601
duke@435 602 bool result_is_oop = result->is_valid() ? result->is_oop() : false;
duke@435 603
duke@435 604 // Note: we do not need to round double result; float result has the right precision
duke@435 605 // the poll sets the condition code, but no data registers
duke@435 606 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 607 relocInfo::poll_return_type);
never@739 608
iveresov@2686 609 if (Assembler::is_polling_page_far()) {
iveresov@2686 610 __ lea(rscratch1, polling_page);
iveresov@2686 611 __ relocate(relocInfo::poll_return_type);
iveresov@2686 612 __ testl(rax, Address(rscratch1, 0));
iveresov@2686 613 } else {
iveresov@2686 614 __ testl(rax, polling_page);
iveresov@2686 615 }
duke@435 616 __ ret(0);
duke@435 617 }
duke@435 618
duke@435 619
duke@435 620 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 621 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 622 relocInfo::poll_type);
iveresov@2686 623 guarantee(info != NULL, "Shouldn't be NULL");
iveresov@2686 624 int offset = __ offset();
iveresov@2686 625 if (Assembler::is_polling_page_far()) {
iveresov@2686 626 __ lea(rscratch1, polling_page);
iveresov@2686 627 offset = __ offset();
duke@435 628 add_debug_info_for_branch(info);
iveresov@2686 629 __ testl(rax, Address(rscratch1, 0));
duke@435 630 } else {
iveresov@2686 631 add_debug_info_for_branch(info);
iveresov@2686 632 __ testl(rax, polling_page);
duke@435 633 }
duke@435 634 return offset;
duke@435 635 }
duke@435 636
duke@435 637
duke@435 638 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
never@739 639 if (from_reg != to_reg) __ mov(to_reg, from_reg);
duke@435 640 }
duke@435 641
duke@435 642 void LIR_Assembler::swap_reg(Register a, Register b) {
never@739 643 __ xchgptr(a, b);
duke@435 644 }
duke@435 645
duke@435 646
duke@435 647 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 648 assert(src->is_constant(), "should not call otherwise");
duke@435 649 assert(dest->is_register(), "should not call otherwise");
duke@435 650 LIR_Const* c = src->as_constant_ptr();
duke@435 651
duke@435 652 switch (c->type()) {
iveresov@2344 653 case T_INT: {
iveresov@2344 654 assert(patch_code == lir_patch_none, "no patching handled here");
iveresov@2344 655 __ movl(dest->as_register(), c->as_jint());
iveresov@2344 656 break;
iveresov@2344 657 }
iveresov@2344 658
roland@1732 659 case T_ADDRESS: {
duke@435 660 assert(patch_code == lir_patch_none, "no patching handled here");
iveresov@2344 661 __ movptr(dest->as_register(), c->as_jint());
duke@435 662 break;
duke@435 663 }
duke@435 664
duke@435 665 case T_LONG: {
duke@435 666 assert(patch_code == lir_patch_none, "no patching handled here");
never@739 667 #ifdef _LP64
never@739 668 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
never@739 669 #else
never@739 670 __ movptr(dest->as_register_lo(), c->as_jint_lo());
never@739 671 __ movptr(dest->as_register_hi(), c->as_jint_hi());
never@739 672 #endif // _LP64
duke@435 673 break;
duke@435 674 }
duke@435 675
duke@435 676 case T_OBJECT: {
duke@435 677 if (patch_code != lir_patch_none) {
duke@435 678 jobject2reg_with_patching(dest->as_register(), info);
duke@435 679 } else {
duke@435 680 __ movoop(dest->as_register(), c->as_jobject());
duke@435 681 }
duke@435 682 break;
duke@435 683 }
duke@435 684
coleenp@4037 685 case T_METADATA: {
coleenp@4037 686 if (patch_code != lir_patch_none) {
coleenp@4037 687 klass2reg_with_patching(dest->as_register(), info);
coleenp@4037 688 } else {
coleenp@4037 689 __ mov_metadata(dest->as_register(), c->as_metadata());
coleenp@4037 690 }
coleenp@4037 691 break;
coleenp@4037 692 }
coleenp@4037 693
duke@435 694 case T_FLOAT: {
duke@435 695 if (dest->is_single_xmm()) {
duke@435 696 if (c->is_zero_float()) {
duke@435 697 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
duke@435 698 } else {
duke@435 699 __ movflt(dest->as_xmm_float_reg(),
duke@435 700 InternalAddress(float_constant(c->as_jfloat())));
duke@435 701 }
duke@435 702 } else {
duke@435 703 assert(dest->is_single_fpu(), "must be");
duke@435 704 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 705 if (c->is_zero_float()) {
duke@435 706 __ fldz();
duke@435 707 } else if (c->is_one_float()) {
duke@435 708 __ fld1();
duke@435 709 } else {
duke@435 710 __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
duke@435 711 }
duke@435 712 }
duke@435 713 break;
duke@435 714 }
duke@435 715
duke@435 716 case T_DOUBLE: {
duke@435 717 if (dest->is_double_xmm()) {
duke@435 718 if (c->is_zero_double()) {
duke@435 719 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
duke@435 720 } else {
duke@435 721 __ movdbl(dest->as_xmm_double_reg(),
duke@435 722 InternalAddress(double_constant(c->as_jdouble())));
duke@435 723 }
duke@435 724 } else {
duke@435 725 assert(dest->is_double_fpu(), "must be");
duke@435 726 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 727 if (c->is_zero_double()) {
duke@435 728 __ fldz();
duke@435 729 } else if (c->is_one_double()) {
duke@435 730 __ fld1();
duke@435 731 } else {
duke@435 732 __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
duke@435 733 }
duke@435 734 }
duke@435 735 break;
duke@435 736 }
duke@435 737
duke@435 738 default:
duke@435 739 ShouldNotReachHere();
duke@435 740 }
duke@435 741 }
duke@435 742
duke@435 743 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 744 assert(src->is_constant(), "should not call otherwise");
duke@435 745 assert(dest->is_stack(), "should not call otherwise");
duke@435 746 LIR_Const* c = src->as_constant_ptr();
duke@435 747
duke@435 748 switch (c->type()) {
duke@435 749 case T_INT: // fall through
duke@435 750 case T_FLOAT:
iveresov@2344 751 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
iveresov@2344 752 break;
iveresov@2344 753
roland@1732 754 case T_ADDRESS:
iveresov@2344 755 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
duke@435 756 break;
duke@435 757
duke@435 758 case T_OBJECT:
duke@435 759 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
duke@435 760 break;
duke@435 761
duke@435 762 case T_LONG: // fall through
duke@435 763 case T_DOUBLE:
never@739 764 #ifdef _LP64
never@739 765 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 766 lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
never@739 767 #else
never@739 768 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 769 lo_word_offset_in_bytes), c->as_jint_lo_bits());
never@739 770 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 771 hi_word_offset_in_bytes), c->as_jint_hi_bits());
never@739 772 #endif // _LP64
duke@435 773 break;
duke@435 774
duke@435 775 default:
duke@435 776 ShouldNotReachHere();
duke@435 777 }
duke@435 778 }
duke@435 779
iveresov@2344 780 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
duke@435 781 assert(src->is_constant(), "should not call otherwise");
duke@435 782 assert(dest->is_address(), "should not call otherwise");
duke@435 783 LIR_Const* c = src->as_constant_ptr();
duke@435 784 LIR_Address* addr = dest->as_address_ptr();
duke@435 785
never@739 786 int null_check_here = code_offset();
duke@435 787 switch (type) {
duke@435 788 case T_INT: // fall through
duke@435 789 case T_FLOAT:
iveresov@2344 790 __ movl(as_Address(addr), c->as_jint_bits());
iveresov@2344 791 break;
iveresov@2344 792
roland@1732 793 case T_ADDRESS:
iveresov@2344 794 __ movptr(as_Address(addr), c->as_jint_bits());
duke@435 795 break;
duke@435 796
duke@435 797 case T_OBJECT: // fall through
duke@435 798 case T_ARRAY:
duke@435 799 if (c->as_jobject() == NULL) {
iveresov@2344 800 if (UseCompressedOops && !wide) {
iveresov@2344 801 __ movl(as_Address(addr), (int32_t)NULL_WORD);
iveresov@2344 802 } else {
iveresov@2344 803 __ movptr(as_Address(addr), NULL_WORD);
iveresov@2344 804 }
duke@435 805 } else {
never@739 806 if (is_literal_address(addr)) {
never@739 807 ShouldNotReachHere();
never@739 808 __ movoop(as_Address(addr, noreg), c->as_jobject());
never@739 809 } else {
roland@1495 810 #ifdef _LP64
roland@1495 811 __ movoop(rscratch1, c->as_jobject());
iveresov@2344 812 if (UseCompressedOops && !wide) {
iveresov@2344 813 __ encode_heap_oop(rscratch1);
iveresov@2344 814 null_check_here = code_offset();
iveresov@2344 815 __ movl(as_Address_lo(addr), rscratch1);
iveresov@2344 816 } else {
iveresov@2344 817 null_check_here = code_offset();
iveresov@2344 818 __ movptr(as_Address_lo(addr), rscratch1);
iveresov@2344 819 }
roland@1495 820 #else
never@739 821 __ movoop(as_Address(addr), c->as_jobject());
roland@1495 822 #endif
never@739 823 }
duke@435 824 }
duke@435 825 break;
duke@435 826
duke@435 827 case T_LONG: // fall through
duke@435 828 case T_DOUBLE:
never@739 829 #ifdef _LP64
never@739 830 if (is_literal_address(addr)) {
never@739 831 ShouldNotReachHere();
never@739 832 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
never@739 833 } else {
never@739 834 __ movptr(r10, (intptr_t)c->as_jlong_bits());
never@739 835 null_check_here = code_offset();
never@739 836 __ movptr(as_Address_lo(addr), r10);
never@739 837 }
never@739 838 #else
never@739 839 // Always reachable in 32bit so this doesn't produce useless move literal
never@739 840 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
never@739 841 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
never@739 842 #endif // _LP64
duke@435 843 break;
duke@435 844
duke@435 845 case T_BOOLEAN: // fall through
duke@435 846 case T_BYTE:
duke@435 847 __ movb(as_Address(addr), c->as_jint() & 0xFF);
duke@435 848 break;
duke@435 849
duke@435 850 case T_CHAR: // fall through
duke@435 851 case T_SHORT:
duke@435 852 __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
duke@435 853 break;
duke@435 854
duke@435 855 default:
duke@435 856 ShouldNotReachHere();
duke@435 857 };
never@739 858
never@739 859 if (info != NULL) {
never@739 860 add_debug_info_for_null_check(null_check_here, info);
never@739 861 }
duke@435 862 }
duke@435 863
duke@435 864
duke@435 865 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
duke@435 866 assert(src->is_register(), "should not call otherwise");
duke@435 867 assert(dest->is_register(), "should not call otherwise");
duke@435 868
duke@435 869 // move between cpu-registers
duke@435 870 if (dest->is_single_cpu()) {
never@739 871 #ifdef _LP64
never@739 872 if (src->type() == T_LONG) {
never@739 873 // Can do LONG -> OBJECT
never@739 874 move_regs(src->as_register_lo(), dest->as_register());
never@739 875 return;
never@739 876 }
never@739 877 #endif
duke@435 878 assert(src->is_single_cpu(), "must match");
duke@435 879 if (src->type() == T_OBJECT) {
duke@435 880 __ verify_oop(src->as_register());
duke@435 881 }
duke@435 882 move_regs(src->as_register(), dest->as_register());
duke@435 883
duke@435 884 } else if (dest->is_double_cpu()) {
never@739 885 #ifdef _LP64
never@739 886 if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
never@739 887 // Surprising to me but we can see move of a long to t_object
never@739 888 __ verify_oop(src->as_register());
never@739 889 move_regs(src->as_register(), dest->as_register_lo());
never@739 890 return;
never@739 891 }
never@739 892 #endif
duke@435 893 assert(src->is_double_cpu(), "must match");
duke@435 894 Register f_lo = src->as_register_lo();
duke@435 895 Register f_hi = src->as_register_hi();
duke@435 896 Register t_lo = dest->as_register_lo();
duke@435 897 Register t_hi = dest->as_register_hi();
never@739 898 #ifdef _LP64
never@739 899 assert(f_hi == f_lo, "must be same");
never@739 900 assert(t_hi == t_lo, "must be same");
never@739 901 move_regs(f_lo, t_lo);
never@739 902 #else
duke@435 903 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
duke@435 904
never@739 905
duke@435 906 if (f_lo == t_hi && f_hi == t_lo) {
duke@435 907 swap_reg(f_lo, f_hi);
duke@435 908 } else if (f_hi == t_lo) {
duke@435 909 assert(f_lo != t_hi, "overwriting register");
duke@435 910 move_regs(f_hi, t_hi);
duke@435 911 move_regs(f_lo, t_lo);
duke@435 912 } else {
duke@435 913 assert(f_hi != t_lo, "overwriting register");
duke@435 914 move_regs(f_lo, t_lo);
duke@435 915 move_regs(f_hi, t_hi);
duke@435 916 }
never@739 917 #endif // LP64
duke@435 918
duke@435 919 // special moves from fpu-register to xmm-register
duke@435 920 // necessary for method results
duke@435 921 } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
duke@435 922 __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
duke@435 923 __ fld_s(Address(rsp, 0));
duke@435 924 } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
duke@435 925 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
duke@435 926 __ fld_d(Address(rsp, 0));
duke@435 927 } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
duke@435 928 __ fstp_s(Address(rsp, 0));
duke@435 929 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
duke@435 930 } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
duke@435 931 __ fstp_d(Address(rsp, 0));
duke@435 932 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
duke@435 933
duke@435 934 // move between xmm-registers
duke@435 935 } else if (dest->is_single_xmm()) {
duke@435 936 assert(src->is_single_xmm(), "must match");
duke@435 937 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
duke@435 938 } else if (dest->is_double_xmm()) {
duke@435 939 assert(src->is_double_xmm(), "must match");
duke@435 940 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
duke@435 941
duke@435 942 // move between fpu-registers (no instruction necessary because of fpu-stack)
duke@435 943 } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
duke@435 944 assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
duke@435 945 assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
duke@435 946 } else {
duke@435 947 ShouldNotReachHere();
duke@435 948 }
duke@435 949 }
duke@435 950
duke@435 951 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 952 assert(src->is_register(), "should not call otherwise");
duke@435 953 assert(dest->is_stack(), "should not call otherwise");
duke@435 954
duke@435 955 if (src->is_single_cpu()) {
duke@435 956 Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 957 if (type == T_OBJECT || type == T_ARRAY) {
duke@435 958 __ verify_oop(src->as_register());
never@739 959 __ movptr (dst, src->as_register());
roland@4051 960 } else if (type == T_METADATA) {
roland@4051 961 __ movptr (dst, src->as_register());
never@739 962 } else {
never@739 963 __ movl (dst, src->as_register());
duke@435 964 }
duke@435 965
duke@435 966 } else if (src->is_double_cpu()) {
duke@435 967 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 968 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
never@739 969 __ movptr (dstLO, src->as_register_lo());
never@739 970 NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
duke@435 971
duke@435 972 } else if (src->is_single_xmm()) {
duke@435 973 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 974 __ movflt(dst_addr, src->as_xmm_float_reg());
duke@435 975
duke@435 976 } else if (src->is_double_xmm()) {
duke@435 977 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 978 __ movdbl(dst_addr, src->as_xmm_double_reg());
duke@435 979
duke@435 980 } else if (src->is_single_fpu()) {
duke@435 981 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 982 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 983 if (pop_fpu_stack) __ fstp_s (dst_addr);
duke@435 984 else __ fst_s (dst_addr);
duke@435 985
duke@435 986 } else if (src->is_double_fpu()) {
duke@435 987 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 988 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 989 if (pop_fpu_stack) __ fstp_d (dst_addr);
duke@435 990 else __ fst_d (dst_addr);
duke@435 991
duke@435 992 } else {
duke@435 993 ShouldNotReachHere();
duke@435 994 }
duke@435 995 }
duke@435 996
duke@435 997
iveresov@2344 998 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
duke@435 999 LIR_Address* to_addr = dest->as_address_ptr();
duke@435 1000 PatchingStub* patch = NULL;
iveresov@2344 1001 Register compressed_src = rscratch1;
duke@435 1002
duke@435 1003 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 1004 __ verify_oop(src->as_register());
iveresov@2344 1005 #ifdef _LP64
iveresov@2344 1006 if (UseCompressedOops && !wide) {
iveresov@2344 1007 __ movptr(compressed_src, src->as_register());
iveresov@2344 1008 __ encode_heap_oop(compressed_src);
iveresov@2344 1009 }
iveresov@2344 1010 #endif
duke@435 1011 }
iveresov@2344 1012
duke@435 1013 if (patch_code != lir_patch_none) {
duke@435 1014 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1015 Address toa = as_Address(to_addr);
never@739 1016 assert(toa.disp() != 0, "must have");
duke@435 1017 }
iveresov@2344 1018
iveresov@2344 1019 int null_check_here = code_offset();
duke@435 1020 switch (type) {
duke@435 1021 case T_FLOAT: {
duke@435 1022 if (src->is_single_xmm()) {
duke@435 1023 __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
duke@435 1024 } else {
duke@435 1025 assert(src->is_single_fpu(), "must be");
duke@435 1026 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 1027 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr));
duke@435 1028 else __ fst_s (as_Address(to_addr));
duke@435 1029 }
duke@435 1030 break;
duke@435 1031 }
duke@435 1032
duke@435 1033 case T_DOUBLE: {
duke@435 1034 if (src->is_double_xmm()) {
duke@435 1035 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
duke@435 1036 } else {
duke@435 1037 assert(src->is_double_fpu(), "must be");
duke@435 1038 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 1039 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr));
duke@435 1040 else __ fst_d (as_Address(to_addr));
duke@435 1041 }
duke@435 1042 break;
duke@435 1043 }
duke@435 1044
duke@435 1045 case T_ARRAY: // fall through
duke@435 1046 case T_OBJECT: // fall through
iveresov@2344 1047 if (UseCompressedOops && !wide) {
iveresov@2344 1048 __ movl(as_Address(to_addr), compressed_src);
iveresov@2344 1049 } else {
iveresov@2344 1050 __ movptr(as_Address(to_addr), src->as_register());
iveresov@2344 1051 }
iveresov@2344 1052 break;
roland@4051 1053 case T_METADATA:
roland@4051 1054 // We get here to store a method pointer to the stack to pass to
roland@4051 1055 // a dtrace runtime call. This can't work on 64 bit with
roland@4051 1056 // compressed klass ptrs: T_METADATA can be a compressed klass
roland@4051 1057 // ptr or a 64 bit method pointer.
roland@4051 1058 LP64_ONLY(ShouldNotReachHere());
roland@4051 1059 __ movptr(as_Address(to_addr), src->as_register());
roland@4051 1060 break;
iveresov@2344 1061 case T_ADDRESS:
never@739 1062 __ movptr(as_Address(to_addr), src->as_register());
never@739 1063 break;
duke@435 1064 case T_INT:
duke@435 1065 __ movl(as_Address(to_addr), src->as_register());
duke@435 1066 break;
duke@435 1067
duke@435 1068 case T_LONG: {
duke@435 1069 Register from_lo = src->as_register_lo();
duke@435 1070 Register from_hi = src->as_register_hi();
never@739 1071 #ifdef _LP64
never@739 1072 __ movptr(as_Address_lo(to_addr), from_lo);
never@739 1073 #else
duke@435 1074 Register base = to_addr->base()->as_register();
duke@435 1075 Register index = noreg;
duke@435 1076 if (to_addr->index()->is_register()) {
duke@435 1077 index = to_addr->index()->as_register();
duke@435 1078 }
duke@435 1079 if (base == from_lo || index == from_lo) {
duke@435 1080 assert(base != from_hi, "can't be");
duke@435 1081 assert(index == noreg || (index != base && index != from_hi), "can't handle this");
duke@435 1082 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1083 if (patch != NULL) {
duke@435 1084 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1085 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1086 patch_code = lir_patch_low;
duke@435 1087 }
duke@435 1088 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1089 } else {
duke@435 1090 assert(index == noreg || (index != base && index != from_lo), "can't handle this");
duke@435 1091 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1092 if (patch != NULL) {
duke@435 1093 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1094 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1095 patch_code = lir_patch_high;
duke@435 1096 }
duke@435 1097 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1098 }
never@739 1099 #endif // _LP64
duke@435 1100 break;
duke@435 1101 }
duke@435 1102
duke@435 1103 case T_BYTE: // fall through
duke@435 1104 case T_BOOLEAN: {
duke@435 1105 Register src_reg = src->as_register();
duke@435 1106 Address dst_addr = as_Address(to_addr);
duke@435 1107 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1108 __ movb(dst_addr, src_reg);
duke@435 1109 break;
duke@435 1110 }
duke@435 1111
duke@435 1112 case T_CHAR: // fall through
duke@435 1113 case T_SHORT:
duke@435 1114 __ movw(as_Address(to_addr), src->as_register());
duke@435 1115 break;
duke@435 1116
duke@435 1117 default:
duke@435 1118 ShouldNotReachHere();
duke@435 1119 }
iveresov@2344 1120 if (info != NULL) {
iveresov@2344 1121 add_debug_info_for_null_check(null_check_here, info);
iveresov@2344 1122 }
duke@435 1123
duke@435 1124 if (patch_code != lir_patch_none) {
duke@435 1125 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
duke@435 1126 }
duke@435 1127 }
duke@435 1128
duke@435 1129
duke@435 1130 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1131 assert(src->is_stack(), "should not call otherwise");
duke@435 1132 assert(dest->is_register(), "should not call otherwise");
duke@435 1133
duke@435 1134 if (dest->is_single_cpu()) {
duke@435 1135 if (type == T_ARRAY || type == T_OBJECT) {
never@739 1136 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1137 __ verify_oop(dest->as_register());
roland@4051 1138 } else if (type == T_METADATA) {
roland@4051 1139 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
never@739 1140 } else {
never@739 1141 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1142 }
duke@435 1143
duke@435 1144 } else if (dest->is_double_cpu()) {
duke@435 1145 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 1146 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
never@739 1147 __ movptr(dest->as_register_lo(), src_addr_LO);
never@739 1148 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
duke@435 1149
duke@435 1150 } else if (dest->is_single_xmm()) {
duke@435 1151 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1152 __ movflt(dest->as_xmm_float_reg(), src_addr);
duke@435 1153
duke@435 1154 } else if (dest->is_double_xmm()) {
duke@435 1155 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1156 __ movdbl(dest->as_xmm_double_reg(), src_addr);
duke@435 1157
duke@435 1158 } else if (dest->is_single_fpu()) {
duke@435 1159 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1160 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1161 __ fld_s(src_addr);
duke@435 1162
duke@435 1163 } else if (dest->is_double_fpu()) {
duke@435 1164 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1165 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1166 __ fld_d(src_addr);
duke@435 1167
duke@435 1168 } else {
duke@435 1169 ShouldNotReachHere();
duke@435 1170 }
duke@435 1171 }
duke@435 1172
duke@435 1173
duke@435 1174 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1175 if (src->is_single_stack()) {
never@739 1176 if (type == T_OBJECT || type == T_ARRAY) {
never@739 1177 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1178 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
never@739 1179 } else {
roland@1495 1180 #ifndef _LP64
never@739 1181 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1182 __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
roland@1495 1183 #else
roland@1495 1184 //no pushl on 64bits
roland@1495 1185 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
roland@1495 1186 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
roland@1495 1187 #endif
never@739 1188 }
duke@435 1189
duke@435 1190 } else if (src->is_double_stack()) {
never@739 1191 #ifdef _LP64
never@739 1192 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
never@739 1193 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
never@739 1194 #else
duke@435 1195 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
never@739 1196 // push and pop the part at src + wordSize, adding wordSize for the previous push
never@756 1197 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
never@756 1198 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
duke@435 1199 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
never@739 1200 #endif // _LP64
duke@435 1201
duke@435 1202 } else {
duke@435 1203 ShouldNotReachHere();
duke@435 1204 }
duke@435 1205 }
duke@435 1206
duke@435 1207
iveresov@2344 1208 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
duke@435 1209 assert(src->is_address(), "should not call otherwise");
duke@435 1210 assert(dest->is_register(), "should not call otherwise");
duke@435 1211
duke@435 1212 LIR_Address* addr = src->as_address_ptr();
duke@435 1213 Address from_addr = as_Address(addr);
duke@435 1214
morris@5980 1215 if (addr->base()->type() == T_OBJECT) {
morris@5980 1216 __ verify_oop(addr->base()->as_pointer_register());
morris@5980 1217 }
morris@5980 1218
duke@435 1219 switch (type) {
duke@435 1220 case T_BOOLEAN: // fall through
duke@435 1221 case T_BYTE: // fall through
duke@435 1222 case T_CHAR: // fall through
duke@435 1223 case T_SHORT:
duke@435 1224 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
duke@435 1225 // on pre P6 processors we may get partial register stalls
duke@435 1226 // so blow away the value of to_rinfo before loading a
duke@435 1227 // partial word into it. Do it here so that it precedes
duke@435 1228 // the potential patch point below.
never@739 1229 __ xorptr(dest->as_register(), dest->as_register());
duke@435 1230 }
duke@435 1231 break;
duke@435 1232 }
duke@435 1233
duke@435 1234 PatchingStub* patch = NULL;
duke@435 1235 if (patch_code != lir_patch_none) {
duke@435 1236 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1237 assert(from_addr.disp() != 0, "must have");
duke@435 1238 }
duke@435 1239 if (info != NULL) {
duke@435 1240 add_debug_info_for_null_check_here(info);
duke@435 1241 }
duke@435 1242
duke@435 1243 switch (type) {
duke@435 1244 case T_FLOAT: {
duke@435 1245 if (dest->is_single_xmm()) {
duke@435 1246 __ movflt(dest->as_xmm_float_reg(), from_addr);
duke@435 1247 } else {
duke@435 1248 assert(dest->is_single_fpu(), "must be");
duke@435 1249 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1250 __ fld_s(from_addr);
duke@435 1251 }
duke@435 1252 break;
duke@435 1253 }
duke@435 1254
duke@435 1255 case T_DOUBLE: {
duke@435 1256 if (dest->is_double_xmm()) {
duke@435 1257 __ movdbl(dest->as_xmm_double_reg(), from_addr);
duke@435 1258 } else {
duke@435 1259 assert(dest->is_double_fpu(), "must be");
duke@435 1260 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1261 __ fld_d(from_addr);
duke@435 1262 }
duke@435 1263 break;
duke@435 1264 }
duke@435 1265
duke@435 1266 case T_OBJECT: // fall through
duke@435 1267 case T_ARRAY: // fall through
iveresov@2344 1268 if (UseCompressedOops && !wide) {
iveresov@2344 1269 __ movl(dest->as_register(), from_addr);
iveresov@2344 1270 } else {
iveresov@2344 1271 __ movptr(dest->as_register(), from_addr);
iveresov@2344 1272 }
iveresov@2344 1273 break;
iveresov@2344 1274
iveresov@2344 1275 case T_ADDRESS:
ehelin@5694 1276 if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
roland@4159 1277 __ movl(dest->as_register(), from_addr);
roland@4159 1278 } else {
roland@4159 1279 __ movptr(dest->as_register(), from_addr);
roland@4159 1280 }
never@739 1281 break;
duke@435 1282 case T_INT:
iveresov@1833 1283 __ movl(dest->as_register(), from_addr);
duke@435 1284 break;
duke@435 1285
duke@435 1286 case T_LONG: {
duke@435 1287 Register to_lo = dest->as_register_lo();
duke@435 1288 Register to_hi = dest->as_register_hi();
never@739 1289 #ifdef _LP64
never@739 1290 __ movptr(to_lo, as_Address_lo(addr));
never@739 1291 #else
duke@435 1292 Register base = addr->base()->as_register();
duke@435 1293 Register index = noreg;
duke@435 1294 if (addr->index()->is_register()) {
duke@435 1295 index = addr->index()->as_register();
duke@435 1296 }
duke@435 1297 if ((base == to_lo && index == to_hi) ||
duke@435 1298 (base == to_hi && index == to_lo)) {
duke@435 1299 // addresses with 2 registers are only formed as a result of
duke@435 1300 // array access so this code will never have to deal with
duke@435 1301 // patches or null checks.
duke@435 1302 assert(info == NULL && patch == NULL, "must be");
never@739 1303 __ lea(to_hi, as_Address(addr));
duke@435 1304 __ movl(to_lo, Address(to_hi, 0));
duke@435 1305 __ movl(to_hi, Address(to_hi, BytesPerWord));
duke@435 1306 } else if (base == to_lo || index == to_lo) {
duke@435 1307 assert(base != to_hi, "can't be");
duke@435 1308 assert(index == noreg || (index != base && index != to_hi), "can't handle this");
duke@435 1309 __ movl(to_hi, as_Address_hi(addr));
duke@435 1310 if (patch != NULL) {
duke@435 1311 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1312 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1313 patch_code = lir_patch_low;
duke@435 1314 }
duke@435 1315 __ movl(to_lo, as_Address_lo(addr));
duke@435 1316 } else {
duke@435 1317 assert(index == noreg || (index != base && index != to_lo), "can't handle this");
duke@435 1318 __ movl(to_lo, as_Address_lo(addr));
duke@435 1319 if (patch != NULL) {
duke@435 1320 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1321 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1322 patch_code = lir_patch_high;
duke@435 1323 }
duke@435 1324 __ movl(to_hi, as_Address_hi(addr));
duke@435 1325 }
never@739 1326 #endif // _LP64
duke@435 1327 break;
duke@435 1328 }
duke@435 1329
duke@435 1330 case T_BOOLEAN: // fall through
duke@435 1331 case T_BYTE: {
duke@435 1332 Register dest_reg = dest->as_register();
duke@435 1333 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1334 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1335 __ movsbl(dest_reg, from_addr);
duke@435 1336 } else {
duke@435 1337 __ movb(dest_reg, from_addr);
duke@435 1338 __ shll(dest_reg, 24);
duke@435 1339 __ sarl(dest_reg, 24);
duke@435 1340 }
duke@435 1341 break;
duke@435 1342 }
duke@435 1343
duke@435 1344 case T_CHAR: {
duke@435 1345 Register dest_reg = dest->as_register();
duke@435 1346 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1347 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1348 __ movzwl(dest_reg, from_addr);
duke@435 1349 } else {
duke@435 1350 __ movw(dest_reg, from_addr);
duke@435 1351 }
duke@435 1352 break;
duke@435 1353 }
duke@435 1354
duke@435 1355 case T_SHORT: {
duke@435 1356 Register dest_reg = dest->as_register();
duke@435 1357 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1358 __ movswl(dest_reg, from_addr);
duke@435 1359 } else {
duke@435 1360 __ movw(dest_reg, from_addr);
duke@435 1361 __ shll(dest_reg, 16);
duke@435 1362 __ sarl(dest_reg, 16);
duke@435 1363 }
duke@435 1364 break;
duke@435 1365 }
duke@435 1366
duke@435 1367 default:
duke@435 1368 ShouldNotReachHere();
duke@435 1369 }
duke@435 1370
duke@435 1371 if (patch != NULL) {
duke@435 1372 patching_epilog(patch, patch_code, addr->base()->as_register(), info);
duke@435 1373 }
duke@435 1374
duke@435 1375 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 1376 #ifdef _LP64
iveresov@2344 1377 if (UseCompressedOops && !wide) {
iveresov@2344 1378 __ decode_heap_oop(dest->as_register());
iveresov@2344 1379 }
iveresov@2344 1380 #endif
duke@435 1381 __ verify_oop(dest->as_register());
roland@4159 1382 } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
roland@4159 1383 #ifdef _LP64
ehelin@5694 1384 if (UseCompressedClassPointers) {
roland@4159 1385 __ decode_klass_not_null(dest->as_register());
roland@4159 1386 }
roland@4159 1387 #endif
duke@435 1388 }
duke@435 1389 }
duke@435 1390
duke@435 1391
duke@435 1392 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1393 LIR_Address* addr = src->as_address_ptr();
duke@435 1394 Address from_addr = as_Address(addr);
duke@435 1395
duke@435 1396 if (VM_Version::supports_sse()) {
duke@435 1397 switch (ReadPrefetchInstr) {
duke@435 1398 case 0:
duke@435 1399 __ prefetchnta(from_addr); break;
duke@435 1400 case 1:
duke@435 1401 __ prefetcht0(from_addr); break;
duke@435 1402 case 2:
duke@435 1403 __ prefetcht2(from_addr); break;
duke@435 1404 default:
duke@435 1405 ShouldNotReachHere(); break;
duke@435 1406 }
kvn@2761 1407 } else if (VM_Version::supports_3dnow_prefetch()) {
duke@435 1408 __ prefetchr(from_addr);
duke@435 1409 }
duke@435 1410 }
duke@435 1411
duke@435 1412
duke@435 1413 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1414 LIR_Address* addr = src->as_address_ptr();
duke@435 1415 Address from_addr = as_Address(addr);
duke@435 1416
duke@435 1417 if (VM_Version::supports_sse()) {
duke@435 1418 switch (AllocatePrefetchInstr) {
duke@435 1419 case 0:
duke@435 1420 __ prefetchnta(from_addr); break;
duke@435 1421 case 1:
duke@435 1422 __ prefetcht0(from_addr); break;
duke@435 1423 case 2:
duke@435 1424 __ prefetcht2(from_addr); break;
duke@435 1425 case 3:
duke@435 1426 __ prefetchw(from_addr); break;
duke@435 1427 default:
duke@435 1428 ShouldNotReachHere(); break;
duke@435 1429 }
kvn@2761 1430 } else if (VM_Version::supports_3dnow_prefetch()) {
duke@435 1431 __ prefetchw(from_addr);
duke@435 1432 }
duke@435 1433 }
duke@435 1434
duke@435 1435
duke@435 1436 NEEDS_CLEANUP; // This could be static?
duke@435 1437 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
kvn@464 1438 int elem_size = type2aelembytes(type);
duke@435 1439 switch (elem_size) {
duke@435 1440 case 1: return Address::times_1;
duke@435 1441 case 2: return Address::times_2;
duke@435 1442 case 4: return Address::times_4;
duke@435 1443 case 8: return Address::times_8;
duke@435 1444 }
duke@435 1445 ShouldNotReachHere();
duke@435 1446 return Address::no_scale;
duke@435 1447 }
duke@435 1448
duke@435 1449
duke@435 1450 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 1451 switch (op->code()) {
duke@435 1452 case lir_idiv:
duke@435 1453 case lir_irem:
duke@435 1454 arithmetic_idiv(op->code(),
duke@435 1455 op->in_opr1(),
duke@435 1456 op->in_opr2(),
duke@435 1457 op->in_opr3(),
duke@435 1458 op->result_opr(),
duke@435 1459 op->info());
duke@435 1460 break;
duke@435 1461 default: ShouldNotReachHere(); break;
duke@435 1462 }
duke@435 1463 }
duke@435 1464
duke@435 1465 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 1466 #ifdef ASSERT
duke@435 1467 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 1468 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 1469 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 1470 #endif
duke@435 1471
duke@435 1472 if (op->cond() == lir_cond_always) {
duke@435 1473 if (op->info() != NULL) add_debug_info_for_branch(op->info());
duke@435 1474 __ jmp (*(op->label()));
duke@435 1475 } else {
duke@435 1476 Assembler::Condition acond = Assembler::zero;
duke@435 1477 if (op->code() == lir_cond_float_branch) {
duke@435 1478 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 1479 __ jcc(Assembler::parity, *(op->ublock()->label()));
duke@435 1480 switch(op->cond()) {
duke@435 1481 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1482 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1483 case lir_cond_less: acond = Assembler::below; break;
duke@435 1484 case lir_cond_lessEqual: acond = Assembler::belowEqual; break;
duke@435 1485 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
duke@435 1486 case lir_cond_greater: acond = Assembler::above; break;
duke@435 1487 default: ShouldNotReachHere();
duke@435 1488 }
duke@435 1489 } else {
duke@435 1490 switch (op->cond()) {
duke@435 1491 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1492 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1493 case lir_cond_less: acond = Assembler::less; break;
duke@435 1494 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1495 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
duke@435 1496 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1497 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
duke@435 1498 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
duke@435 1499 default: ShouldNotReachHere();
duke@435 1500 }
duke@435 1501 }
duke@435 1502 __ jcc(acond,*(op->label()));
duke@435 1503 }
duke@435 1504 }
duke@435 1505
duke@435 1506 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 1507 LIR_Opr src = op->in_opr();
duke@435 1508 LIR_Opr dest = op->result_opr();
duke@435 1509
duke@435 1510 switch (op->bytecode()) {
duke@435 1511 case Bytecodes::_i2l:
never@739 1512 #ifdef _LP64
never@739 1513 __ movl2ptr(dest->as_register_lo(), src->as_register());
never@739 1514 #else
duke@435 1515 move_regs(src->as_register(), dest->as_register_lo());
duke@435 1516 move_regs(src->as_register(), dest->as_register_hi());
duke@435 1517 __ sarl(dest->as_register_hi(), 31);
never@739 1518 #endif // LP64
duke@435 1519 break;
duke@435 1520
duke@435 1521 case Bytecodes::_l2i:
iveresov@3744 1522 #ifdef _LP64
iveresov@3744 1523 __ movl(dest->as_register(), src->as_register_lo());
iveresov@3744 1524 #else
duke@435 1525 move_regs(src->as_register_lo(), dest->as_register());
iveresov@3744 1526 #endif
duke@435 1527 break;
duke@435 1528
duke@435 1529 case Bytecodes::_i2b:
duke@435 1530 move_regs(src->as_register(), dest->as_register());
duke@435 1531 __ sign_extend_byte(dest->as_register());
duke@435 1532 break;
duke@435 1533
duke@435 1534 case Bytecodes::_i2c:
duke@435 1535 move_regs(src->as_register(), dest->as_register());
duke@435 1536 __ andl(dest->as_register(), 0xFFFF);
duke@435 1537 break;
duke@435 1538
duke@435 1539 case Bytecodes::_i2s:
duke@435 1540 move_regs(src->as_register(), dest->as_register());
duke@435 1541 __ sign_extend_short(dest->as_register());
duke@435 1542 break;
duke@435 1543
duke@435 1544
duke@435 1545 case Bytecodes::_f2d:
duke@435 1546 case Bytecodes::_d2f:
duke@435 1547 if (dest->is_single_xmm()) {
duke@435 1548 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
duke@435 1549 } else if (dest->is_double_xmm()) {
duke@435 1550 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
duke@435 1551 } else {
duke@435 1552 assert(src->fpu() == dest->fpu(), "register must be equal");
duke@435 1553 // do nothing (float result is rounded later through spilling)
duke@435 1554 }
duke@435 1555 break;
duke@435 1556
duke@435 1557 case Bytecodes::_i2f:
duke@435 1558 case Bytecodes::_i2d:
duke@435 1559 if (dest->is_single_xmm()) {
never@739 1560 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
duke@435 1561 } else if (dest->is_double_xmm()) {
never@739 1562 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
duke@435 1563 } else {
duke@435 1564 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1565 __ movl(Address(rsp, 0), src->as_register());
duke@435 1566 __ fild_s(Address(rsp, 0));
duke@435 1567 }
duke@435 1568 break;
duke@435 1569
duke@435 1570 case Bytecodes::_f2i:
duke@435 1571 case Bytecodes::_d2i:
duke@435 1572 if (src->is_single_xmm()) {
never@739 1573 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
duke@435 1574 } else if (src->is_double_xmm()) {
never@739 1575 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
duke@435 1576 } else {
duke@435 1577 assert(src->fpu() == 0, "input must be on TOS");
duke@435 1578 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
duke@435 1579 __ fist_s(Address(rsp, 0));
duke@435 1580 __ movl(dest->as_register(), Address(rsp, 0));
duke@435 1581 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1582 }
duke@435 1583
duke@435 1584 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
duke@435 1585 assert(op->stub() != NULL, "stub required");
duke@435 1586 __ cmpl(dest->as_register(), 0x80000000);
duke@435 1587 __ jcc(Assembler::equal, *op->stub()->entry());
duke@435 1588 __ bind(*op->stub()->continuation());
duke@435 1589 break;
duke@435 1590
duke@435 1591 case Bytecodes::_l2f:
duke@435 1592 case Bytecodes::_l2d:
duke@435 1593 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
duke@435 1594 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1595
never@739 1596 __ movptr(Address(rsp, 0), src->as_register_lo());
never@739 1597 NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
duke@435 1598 __ fild_d(Address(rsp, 0));
duke@435 1599 // float result is rounded later through spilling
duke@435 1600 break;
duke@435 1601
duke@435 1602 case Bytecodes::_f2l:
duke@435 1603 case Bytecodes::_d2l:
duke@435 1604 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
duke@435 1605 assert(src->fpu() == 0, "input must be on TOS");
never@739 1606 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
duke@435 1607
duke@435 1608 // instruction sequence too long to inline it here
duke@435 1609 {
duke@435 1610 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
duke@435 1611 }
duke@435 1612 break;
duke@435 1613
duke@435 1614 default: ShouldNotReachHere();
duke@435 1615 }
duke@435 1616 }
duke@435 1617
duke@435 1618 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 1619 if (op->init_check()) {
coleenp@3368 1620 __ cmpb(Address(op->klass()->as_register(),
coleenp@4037 1621 InstanceKlass::init_state_offset()),
coleenp@4037 1622 InstanceKlass::fully_initialized);
duke@435 1623 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 1624 __ jcc(Assembler::notEqual, *op->stub()->entry());
duke@435 1625 }
duke@435 1626 __ allocate_object(op->obj()->as_register(),
duke@435 1627 op->tmp1()->as_register(),
duke@435 1628 op->tmp2()->as_register(),
duke@435 1629 op->header_size(),
duke@435 1630 op->object_size(),
duke@435 1631 op->klass()->as_register(),
duke@435 1632 *op->stub()->entry());
duke@435 1633 __ bind(*op->stub()->continuation());
duke@435 1634 }
duke@435 1635
duke@435 1636 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
iveresov@2432 1637 Register len = op->len()->as_register();
iveresov@2432 1638 LP64_ONLY( __ movslq(len, len); )
iveresov@2432 1639
duke@435 1640 if (UseSlowPath ||
duke@435 1641 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 1642 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
duke@435 1643 __ jmp(*op->stub()->entry());
duke@435 1644 } else {
duke@435 1645 Register tmp1 = op->tmp1()->as_register();
duke@435 1646 Register tmp2 = op->tmp2()->as_register();
duke@435 1647 Register tmp3 = op->tmp3()->as_register();
duke@435 1648 if (len == tmp1) {
duke@435 1649 tmp1 = tmp3;
duke@435 1650 } else if (len == tmp2) {
duke@435 1651 tmp2 = tmp3;
duke@435 1652 } else if (len == tmp3) {
duke@435 1653 // everything is ok
duke@435 1654 } else {
never@739 1655 __ mov(tmp3, len);
duke@435 1656 }
duke@435 1657 __ allocate_array(op->obj()->as_register(),
duke@435 1658 len,
duke@435 1659 tmp1,
duke@435 1660 tmp2,
duke@435 1661 arrayOopDesc::header_size(op->type()),
duke@435 1662 array_element_size(op->type()),
duke@435 1663 op->klass()->as_register(),
duke@435 1664 *op->stub()->entry());
duke@435 1665 }
duke@435 1666 __ bind(*op->stub()->continuation());
duke@435 1667 }
duke@435 1668
iveresov@2138 1669 void LIR_Assembler::type_profile_helper(Register mdo,
iveresov@2138 1670 ciMethodData *md, ciProfileData *data,
iveresov@2138 1671 Register recv, Label* update_done) {
iveresov@2163 1672 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
iveresov@2138 1673 Label next_test;
iveresov@2138 1674 // See if the receiver is receiver[n].
iveresov@2138 1675 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
iveresov@2138 1676 __ jccb(Assembler::notEqual, next_test);
iveresov@2138 1677 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
iveresov@2138 1678 __ addptr(data_addr, DataLayout::counter_increment);
iveresov@2146 1679 __ jmp(*update_done);
iveresov@2138 1680 __ bind(next_test);
iveresov@2138 1681 }
iveresov@2138 1682
iveresov@2138 1683 // Didn't find receiver; find next empty slot and fill it in
iveresov@2163 1684 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
iveresov@2138 1685 Label next_test;
iveresov@2138 1686 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
iveresov@2138 1687 __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
iveresov@2138 1688 __ jccb(Assembler::notEqual, next_test);
iveresov@2138 1689 __ movptr(recv_addr, recv);
iveresov@2138 1690 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
iveresov@2146 1691 __ jmp(*update_done);
iveresov@2138 1692 __ bind(next_test);
iveresov@2138 1693 }
iveresov@2138 1694 }
iveresov@2138 1695
iveresov@2146 1696 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
iveresov@2138 1697 // we always need a stub for the failure case.
iveresov@2138 1698 CodeStub* stub = op->stub();
iveresov@2138 1699 Register obj = op->object()->as_register();
iveresov@2138 1700 Register k_RInfo = op->tmp1()->as_register();
iveresov@2138 1701 Register klass_RInfo = op->tmp2()->as_register();
iveresov@2138 1702 Register dst = op->result_opr()->as_register();
iveresov@2138 1703 ciKlass* k = op->klass();
iveresov@2138 1704 Register Rtmp1 = noreg;
iveresov@2138 1705
iveresov@2138 1706 // check if it needs to be profiled
iveresov@2138 1707 ciMethodData* md;
iveresov@2138 1708 ciProfileData* data;
iveresov@2138 1709
iveresov@2138 1710 if (op->should_profile()) {
iveresov@2138 1711 ciMethod* method = op->profiled_method();
iveresov@2138 1712 assert(method != NULL, "Should have method");
iveresov@2138 1713 int bci = op->profiled_bci();
iveresov@2349 1714 md = method->method_data_or_null();
iveresov@2349 1715 assert(md != NULL, "Sanity");
iveresov@2138 1716 data = md->bci_to_data(bci);
iveresov@2146 1717 assert(data != NULL, "need data for type check");
iveresov@2146 1718 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2138 1719 }
iveresov@2146 1720 Label profile_cast_success, profile_cast_failure;
iveresov@2146 1721 Label *success_target = op->should_profile() ? &profile_cast_success : success;
iveresov@2146 1722 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
iveresov@2138 1723
iveresov@2138 1724 if (obj == k_RInfo) {
iveresov@2138 1725 k_RInfo = dst;
iveresov@2138 1726 } else if (obj == klass_RInfo) {
iveresov@2138 1727 klass_RInfo = dst;
iveresov@2138 1728 }
ehelin@5694 1729 if (k->is_loaded() && !UseCompressedClassPointers) {
iveresov@2138 1730 select_different_registers(obj, dst, k_RInfo, klass_RInfo);
iveresov@2138 1731 } else {
iveresov@2138 1732 Rtmp1 = op->tmp3()->as_register();
iveresov@2138 1733 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
iveresov@2138 1734 }
iveresov@2138 1735
iveresov@2138 1736 assert_different_registers(obj, k_RInfo, klass_RInfo);
iveresov@2138 1737
iveresov@2138 1738 __ cmpptr(obj, (int32_t)NULL_WORD);
iveresov@2138 1739 if (op->should_profile()) {
iveresov@2146 1740 Label not_null;
iveresov@2146 1741 __ jccb(Assembler::notEqual, not_null);
iveresov@2146 1742 // Object is null; update MDO and exit
iveresov@2138 1743 Register mdo = klass_RInfo;
coleenp@4037 1744 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2138 1745 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
iveresov@2138 1746 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
iveresov@2138 1747 __ orl(data_addr, header_bits);
iveresov@2146 1748 __ jmp(*obj_is_null);
iveresov@2146 1749 __ bind(not_null);
iveresov@2138 1750 } else {
iveresov@2146 1751 __ jcc(Assembler::equal, *obj_is_null);
iveresov@2138 1752 }
iveresov@5736 1753
iveresov@5736 1754 if (!k->is_loaded()) {
iveresov@5736 1755 klass2reg_with_patching(k_RInfo, op->info_for_patch());
iveresov@5736 1756 } else {
iveresov@5736 1757 #ifdef _LP64
iveresov@5736 1758 __ mov_metadata(k_RInfo, k->constant_encoding());
iveresov@5736 1759 #endif // _LP64
iveresov@5736 1760 }
iveresov@2138 1761 __ verify_oop(obj);
iveresov@2138 1762
iveresov@2138 1763 if (op->fast_check()) {
iveresov@2146 1764 // get object class
iveresov@2138 1765 // not a safepoint as obj null check happens earlier
iveresov@2138 1766 #ifdef _LP64
ehelin@5694 1767 if (UseCompressedClassPointers) {
iveresov@2344 1768 __ load_klass(Rtmp1, obj);
iveresov@2344 1769 __ cmpptr(k_RInfo, Rtmp1);
iveresov@2138 1770 } else {
iveresov@2138 1771 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2138 1772 }
iveresov@2344 1773 #else
iveresov@2344 1774 if (k->is_loaded()) {
coleenp@4037 1775 __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
iveresov@2344 1776 } else {
iveresov@2344 1777 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2344 1778 }
iveresov@2344 1779 #endif
iveresov@2138 1780 __ jcc(Assembler::notEqual, *failure_target);
iveresov@2146 1781 // successful cast, fall through to profile or jump
iveresov@2138 1782 } else {
iveresov@2138 1783 // get object class
iveresov@2138 1784 // not a safepoint as obj null check happens earlier
iveresov@2344 1785 __ load_klass(klass_RInfo, obj);
iveresov@2138 1786 if (k->is_loaded()) {
iveresov@2138 1787 // See if we get an immediate positive hit
iveresov@2138 1788 #ifdef _LP64
iveresov@2138 1789 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
iveresov@2138 1790 #else
coleenp@4037 1791 __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
iveresov@2138 1792 #endif // _LP64
stefank@3391 1793 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
iveresov@2138 1794 __ jcc(Assembler::notEqual, *failure_target);
iveresov@2146 1795 // successful cast, fall through to profile or jump
iveresov@2138 1796 } else {
iveresov@2138 1797 // See if we get an immediate positive hit
iveresov@2146 1798 __ jcc(Assembler::equal, *success_target);
iveresov@2138 1799 // check for self
iveresov@2138 1800 #ifdef _LP64
iveresov@2138 1801 __ cmpptr(klass_RInfo, k_RInfo);
iveresov@2138 1802 #else
coleenp@4037 1803 __ cmpklass(klass_RInfo, k->constant_encoding());
iveresov@2138 1804 #endif // _LP64
iveresov@2146 1805 __ jcc(Assembler::equal, *success_target);
iveresov@2138 1806
iveresov@2138 1807 __ push(klass_RInfo);
iveresov@2138 1808 #ifdef _LP64
iveresov@2138 1809 __ push(k_RInfo);
iveresov@2138 1810 #else
coleenp@4037 1811 __ pushklass(k->constant_encoding());
iveresov@2138 1812 #endif // _LP64
iveresov@2138 1813 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
iveresov@2138 1814 __ pop(klass_RInfo);
iveresov@2138 1815 __ pop(klass_RInfo);
iveresov@2138 1816 // result is a boolean
iveresov@2138 1817 __ cmpl(klass_RInfo, 0);
iveresov@2138 1818 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1819 // successful cast, fall through to profile or jump
iveresov@2138 1820 }
iveresov@2138 1821 } else {
iveresov@2138 1822 // perform the fast part of the checking logic
iveresov@2146 1823 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
iveresov@2138 1824 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
iveresov@2138 1825 __ push(klass_RInfo);
iveresov@2138 1826 __ push(k_RInfo);
iveresov@2138 1827 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
iveresov@2138 1828 __ pop(klass_RInfo);
iveresov@2138 1829 __ pop(k_RInfo);
iveresov@2138 1830 // result is a boolean
iveresov@2138 1831 __ cmpl(k_RInfo, 0);
iveresov@2138 1832 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1833 // successful cast, fall through to profile or jump
iveresov@2138 1834 }
iveresov@2138 1835 }
iveresov@2138 1836 if (op->should_profile()) {
iveresov@2138 1837 Register mdo = klass_RInfo, recv = k_RInfo;
iveresov@2146 1838 __ bind(profile_cast_success);
coleenp@4037 1839 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2344 1840 __ load_klass(recv, obj);
iveresov@2138 1841 Label update_done;
iveresov@2146 1842 type_profile_helper(mdo, md, data, recv, success);
iveresov@2146 1843 __ jmp(*success);
iveresov@2138 1844
iveresov@2138 1845 __ bind(profile_cast_failure);
coleenp@4037 1846 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2138 1847 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
iveresov@2138 1848 __ subptr(counter_addr, DataLayout::counter_increment);
iveresov@2146 1849 __ jmp(*failure);
iveresov@2138 1850 }
iveresov@2146 1851 __ jmp(*success);
iveresov@2138 1852 }
duke@435 1853
iveresov@2146 1854
duke@435 1855 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 1856 LIR_Code code = op->code();
duke@435 1857 if (code == lir_store_check) {
duke@435 1858 Register value = op->object()->as_register();
duke@435 1859 Register array = op->array()->as_register();
duke@435 1860 Register k_RInfo = op->tmp1()->as_register();
duke@435 1861 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1862 Register Rtmp1 = op->tmp3()->as_register();
duke@435 1863
duke@435 1864 CodeStub* stub = op->stub();
iveresov@2146 1865
iveresov@2146 1866 // check if it needs to be profiled
iveresov@2146 1867 ciMethodData* md;
iveresov@2146 1868 ciProfileData* data;
iveresov@2146 1869
iveresov@2146 1870 if (op->should_profile()) {
iveresov@2146 1871 ciMethod* method = op->profiled_method();
iveresov@2146 1872 assert(method != NULL, "Should have method");
iveresov@2146 1873 int bci = op->profiled_bci();
iveresov@2349 1874 md = method->method_data_or_null();
iveresov@2349 1875 assert(md != NULL, "Sanity");
iveresov@2146 1876 data = md->bci_to_data(bci);
iveresov@2146 1877 assert(data != NULL, "need data for type check");
iveresov@2146 1878 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2146 1879 }
iveresov@2146 1880 Label profile_cast_success, profile_cast_failure, done;
iveresov@2146 1881 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
iveresov@2146 1882 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
iveresov@2146 1883
never@739 1884 __ cmpptr(value, (int32_t)NULL_WORD);
iveresov@2146 1885 if (op->should_profile()) {
iveresov@2146 1886 Label not_null;
iveresov@2146 1887 __ jccb(Assembler::notEqual, not_null);
iveresov@2146 1888 // Object is null; update MDO and exit
iveresov@2146 1889 Register mdo = klass_RInfo;
coleenp@4037 1890 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2146 1891 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
iveresov@2146 1892 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
iveresov@2146 1893 __ orl(data_addr, header_bits);
iveresov@2146 1894 __ jmp(done);
iveresov@2146 1895 __ bind(not_null);
iveresov@2146 1896 } else {
iveresov@2146 1897 __ jcc(Assembler::equal, done);
iveresov@2146 1898 }
iveresov@2146 1899
duke@435 1900 add_debug_info_for_null_check_here(op->info_for_exception());
iveresov@2344 1901 __ load_klass(k_RInfo, array);
iveresov@2344 1902 __ load_klass(klass_RInfo, value);
iveresov@2344 1903
iveresov@2344 1904 // get instance klass (it's already uncompressed)
coleenp@4142 1905 __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
jrose@1079 1906 // perform the fast part of the checking logic
iveresov@2146 1907 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
jrose@1079 1908 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1909 __ push(klass_RInfo);
never@739 1910 __ push(k_RInfo);
duke@435 1911 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1912 __ pop(klass_RInfo);
never@739 1913 __ pop(k_RInfo);
never@739 1914 // result is a boolean
duke@435 1915 __ cmpl(k_RInfo, 0);
iveresov@2146 1916 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1917 // fall through to the success case
iveresov@2146 1918
iveresov@2146 1919 if (op->should_profile()) {
iveresov@2146 1920 Register mdo = klass_RInfo, recv = k_RInfo;
iveresov@2146 1921 __ bind(profile_cast_success);
coleenp@4037 1922 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2344 1923 __ load_klass(recv, value);
iveresov@2146 1924 Label update_done;
iveresov@2146 1925 type_profile_helper(mdo, md, data, recv, &done);
iveresov@2146 1926 __ jmpb(done);
iveresov@2146 1927
iveresov@2146 1928 __ bind(profile_cast_failure);
coleenp@4037 1929 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2146 1930 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
iveresov@2146 1931 __ subptr(counter_addr, DataLayout::counter_increment);
iveresov@2146 1932 __ jmp(*stub->entry());
iveresov@2146 1933 }
iveresov@2146 1934
duke@435 1935 __ bind(done);
iveresov@2146 1936 } else
iveresov@2146 1937 if (code == lir_checkcast) {
iveresov@2146 1938 Register obj = op->object()->as_register();
iveresov@2146 1939 Register dst = op->result_opr()->as_register();
iveresov@2146 1940 Label success;
iveresov@2146 1941 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
iveresov@2146 1942 __ bind(success);
iveresov@2146 1943 if (dst != obj) {
iveresov@2146 1944 __ mov(dst, obj);
iveresov@2146 1945 }
iveresov@2146 1946 } else
iveresov@2146 1947 if (code == lir_instanceof) {
iveresov@2146 1948 Register obj = op->object()->as_register();
iveresov@2146 1949 Register dst = op->result_opr()->as_register();
iveresov@2146 1950 Label success, failure, done;
iveresov@2146 1951 emit_typecheck_helper(op, &success, &failure, &failure);
iveresov@2146 1952 __ bind(failure);
iveresov@2146 1953 __ xorptr(dst, dst);
iveresov@2146 1954 __ jmpb(done);
iveresov@2146 1955 __ bind(success);
iveresov@2146 1956 __ movptr(dst, 1);
iveresov@2146 1957 __ bind(done);
duke@435 1958 } else {
iveresov@2146 1959 ShouldNotReachHere();
duke@435 1960 }
duke@435 1961
duke@435 1962 }
duke@435 1963
duke@435 1964
duke@435 1965 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
never@739 1966 if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
duke@435 1967 assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
duke@435 1968 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
duke@435 1969 assert(op->new_value()->as_register_lo() == rbx, "wrong register");
duke@435 1970 assert(op->new_value()->as_register_hi() == rcx, "wrong register");
duke@435 1971 Register addr = op->addr()->as_register();
duke@435 1972 if (os::is_MP()) {
duke@435 1973 __ lock();
duke@435 1974 }
never@739 1975 NOT_LP64(__ cmpxchg8(Address(addr, 0)));
never@739 1976
never@739 1977 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
never@739 1978 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
never@739 1979 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
duke@435 1980 Register newval = op->new_value()->as_register();
duke@435 1981 Register cmpval = op->cmp_value()->as_register();
duke@435 1982 assert(cmpval == rax, "wrong register");
duke@435 1983 assert(newval != NULL, "new val must be register");
duke@435 1984 assert(cmpval != newval, "cmp and new values must be in different registers");
duke@435 1985 assert(cmpval != addr, "cmp and addr must be in different registers");
duke@435 1986 assert(newval != addr, "new value and addr must be in different registers");
iveresov@2344 1987
never@739 1988 if ( op->code() == lir_cas_obj) {
iveresov@2344 1989 #ifdef _LP64
iveresov@2344 1990 if (UseCompressedOops) {
iveresov@2344 1991 __ encode_heap_oop(cmpval);
iveresov@2355 1992 __ mov(rscratch1, newval);
iveresov@2355 1993 __ encode_heap_oop(rscratch1);
iveresov@2344 1994 if (os::is_MP()) {
iveresov@2344 1995 __ lock();
iveresov@2344 1996 }
iveresov@2355 1997 // cmpval (rax) is implicitly used by this instruction
iveresov@2355 1998 __ cmpxchgl(rscratch1, Address(addr, 0));
iveresov@2344 1999 } else
iveresov@2344 2000 #endif
iveresov@2344 2001 {
iveresov@2344 2002 if (os::is_MP()) {
iveresov@2344 2003 __ lock();
iveresov@2344 2004 }
iveresov@2344 2005 __ cmpxchgptr(newval, Address(addr, 0));
iveresov@2344 2006 }
iveresov@2344 2007 } else {
iveresov@2344 2008 assert(op->code() == lir_cas_int, "lir_cas_int expected");
iveresov@2344 2009 if (os::is_MP()) {
iveresov@2344 2010 __ lock();
iveresov@2344 2011 }
never@739 2012 __ cmpxchgl(newval, Address(addr, 0));
never@739 2013 }
never@739 2014 #ifdef _LP64
never@739 2015 } else if (op->code() == lir_cas_long) {
never@739 2016 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
never@739 2017 Register newval = op->new_value()->as_register_lo();
never@739 2018 Register cmpval = op->cmp_value()->as_register_lo();
never@739 2019 assert(cmpval == rax, "wrong register");
never@739 2020 assert(newval != NULL, "new val must be register");
never@739 2021 assert(cmpval != newval, "cmp and new values must be in different registers");
never@739 2022 assert(cmpval != addr, "cmp and addr must be in different registers");
never@739 2023 assert(newval != addr, "new value and addr must be in different registers");
never@739 2024 if (os::is_MP()) {
never@739 2025 __ lock();
never@739 2026 }
never@739 2027 __ cmpxchgq(newval, Address(addr, 0));
never@739 2028 #endif // _LP64
duke@435 2029 } else {
duke@435 2030 Unimplemented();
duke@435 2031 }
duke@435 2032 }
duke@435 2033
iveresov@2412 2034 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
duke@435 2035 Assembler::Condition acond, ncond;
duke@435 2036 switch (condition) {
duke@435 2037 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break;
duke@435 2038 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break;
duke@435 2039 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break;
duke@435 2040 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break;
duke@435 2041 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break;
duke@435 2042 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break;
duke@435 2043 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break;
duke@435 2044 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break;
duke@435 2045 default: ShouldNotReachHere();
duke@435 2046 }
duke@435 2047
duke@435 2048 if (opr1->is_cpu_register()) {
duke@435 2049 reg2reg(opr1, result);
duke@435 2050 } else if (opr1->is_stack()) {
duke@435 2051 stack2reg(opr1, result, result->type());
duke@435 2052 } else if (opr1->is_constant()) {
duke@435 2053 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 2054 } else {
duke@435 2055 ShouldNotReachHere();
duke@435 2056 }
duke@435 2057
duke@435 2058 if (VM_Version::supports_cmov() && !opr2->is_constant()) {
duke@435 2059 // optimized version that does not require a branch
duke@435 2060 if (opr2->is_single_cpu()) {
duke@435 2061 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
never@739 2062 __ cmov(ncond, result->as_register(), opr2->as_register());
duke@435 2063 } else if (opr2->is_double_cpu()) {
duke@435 2064 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
duke@435 2065 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
never@739 2066 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
never@739 2067 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
duke@435 2068 } else if (opr2->is_single_stack()) {
duke@435 2069 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2070 } else if (opr2->is_double_stack()) {
never@739 2071 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
never@739 2072 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
duke@435 2073 } else {
duke@435 2074 ShouldNotReachHere();
duke@435 2075 }
duke@435 2076
duke@435 2077 } else {
duke@435 2078 Label skip;
duke@435 2079 __ jcc (acond, skip);
duke@435 2080 if (opr2->is_cpu_register()) {
duke@435 2081 reg2reg(opr2, result);
duke@435 2082 } else if (opr2->is_stack()) {
duke@435 2083 stack2reg(opr2, result, result->type());
duke@435 2084 } else if (opr2->is_constant()) {
duke@435 2085 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 2086 } else {
duke@435 2087 ShouldNotReachHere();
duke@435 2088 }
duke@435 2089 __ bind(skip);
duke@435 2090 }
duke@435 2091 }
duke@435 2092
duke@435 2093
duke@435 2094 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 2095 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
duke@435 2096
duke@435 2097 if (left->is_single_cpu()) {
duke@435 2098 assert(left == dest, "left and dest must be equal");
duke@435 2099 Register lreg = left->as_register();
duke@435 2100
duke@435 2101 if (right->is_single_cpu()) {
duke@435 2102 // cpu register - cpu register
duke@435 2103 Register rreg = right->as_register();
duke@435 2104 switch (code) {
duke@435 2105 case lir_add: __ addl (lreg, rreg); break;
duke@435 2106 case lir_sub: __ subl (lreg, rreg); break;
duke@435 2107 case lir_mul: __ imull(lreg, rreg); break;
duke@435 2108 default: ShouldNotReachHere();
duke@435 2109 }
duke@435 2110
duke@435 2111 } else if (right->is_stack()) {
duke@435 2112 // cpu register - stack
duke@435 2113 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2114 switch (code) {
duke@435 2115 case lir_add: __ addl(lreg, raddr); break;
duke@435 2116 case lir_sub: __ subl(lreg, raddr); break;
duke@435 2117 default: ShouldNotReachHere();
duke@435 2118 }
duke@435 2119
duke@435 2120 } else if (right->is_constant()) {
duke@435 2121 // cpu register - constant
duke@435 2122 jint c = right->as_constant_ptr()->as_jint();
duke@435 2123 switch (code) {
duke@435 2124 case lir_add: {
iveresov@2145 2125 __ incrementl(lreg, c);
duke@435 2126 break;
duke@435 2127 }
duke@435 2128 case lir_sub: {
iveresov@2145 2129 __ decrementl(lreg, c);
duke@435 2130 break;
duke@435 2131 }
duke@435 2132 default: ShouldNotReachHere();
duke@435 2133 }
duke@435 2134
duke@435 2135 } else {
duke@435 2136 ShouldNotReachHere();
duke@435 2137 }
duke@435 2138
duke@435 2139 } else if (left->is_double_cpu()) {
duke@435 2140 assert(left == dest, "left and dest must be equal");
duke@435 2141 Register lreg_lo = left->as_register_lo();
duke@435 2142 Register lreg_hi = left->as_register_hi();
duke@435 2143
duke@435 2144 if (right->is_double_cpu()) {
duke@435 2145 // cpu register - cpu register
duke@435 2146 Register rreg_lo = right->as_register_lo();
duke@435 2147 Register rreg_hi = right->as_register_hi();
never@739 2148 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
never@739 2149 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
duke@435 2150 switch (code) {
duke@435 2151 case lir_add:
never@739 2152 __ addptr(lreg_lo, rreg_lo);
never@739 2153 NOT_LP64(__ adcl(lreg_hi, rreg_hi));
duke@435 2154 break;
duke@435 2155 case lir_sub:
never@739 2156 __ subptr(lreg_lo, rreg_lo);
never@739 2157 NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
duke@435 2158 break;
duke@435 2159 case lir_mul:
never@739 2160 #ifdef _LP64
never@739 2161 __ imulq(lreg_lo, rreg_lo);
never@739 2162 #else
duke@435 2163 assert(lreg_lo == rax && lreg_hi == rdx, "must be");
duke@435 2164 __ imull(lreg_hi, rreg_lo);
duke@435 2165 __ imull(rreg_hi, lreg_lo);
duke@435 2166 __ addl (rreg_hi, lreg_hi);
duke@435 2167 __ mull (rreg_lo);
duke@435 2168 __ addl (lreg_hi, rreg_hi);
never@739 2169 #endif // _LP64
duke@435 2170 break;
duke@435 2171 default:
duke@435 2172 ShouldNotReachHere();
duke@435 2173 }
duke@435 2174
duke@435 2175 } else if (right->is_constant()) {
duke@435 2176 // cpu register - constant
never@739 2177 #ifdef _LP64
never@739 2178 jlong c = right->as_constant_ptr()->as_jlong_bits();
never@739 2179 __ movptr(r10, (intptr_t) c);
never@739 2180 switch (code) {
never@739 2181 case lir_add:
never@739 2182 __ addptr(lreg_lo, r10);
never@739 2183 break;
never@739 2184 case lir_sub:
never@739 2185 __ subptr(lreg_lo, r10);
never@739 2186 break;
never@739 2187 default:
never@739 2188 ShouldNotReachHere();
never@739 2189 }
never@739 2190 #else
duke@435 2191 jint c_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2192 jint c_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2193 switch (code) {
duke@435 2194 case lir_add:
never@739 2195 __ addptr(lreg_lo, c_lo);
duke@435 2196 __ adcl(lreg_hi, c_hi);
duke@435 2197 break;
duke@435 2198 case lir_sub:
never@739 2199 __ subptr(lreg_lo, c_lo);
duke@435 2200 __ sbbl(lreg_hi, c_hi);
duke@435 2201 break;
duke@435 2202 default:
duke@435 2203 ShouldNotReachHere();
duke@435 2204 }
never@739 2205 #endif // _LP64
duke@435 2206
duke@435 2207 } else {
duke@435 2208 ShouldNotReachHere();
duke@435 2209 }
duke@435 2210
duke@435 2211 } else if (left->is_single_xmm()) {
duke@435 2212 assert(left == dest, "left and dest must be equal");
duke@435 2213 XMMRegister lreg = left->as_xmm_float_reg();
duke@435 2214
duke@435 2215 if (right->is_single_xmm()) {
duke@435 2216 XMMRegister rreg = right->as_xmm_float_reg();
duke@435 2217 switch (code) {
duke@435 2218 case lir_add: __ addss(lreg, rreg); break;
duke@435 2219 case lir_sub: __ subss(lreg, rreg); break;
duke@435 2220 case lir_mul_strictfp: // fall through
duke@435 2221 case lir_mul: __ mulss(lreg, rreg); break;
duke@435 2222 case lir_div_strictfp: // fall through
duke@435 2223 case lir_div: __ divss(lreg, rreg); break;
duke@435 2224 default: ShouldNotReachHere();
duke@435 2225 }
duke@435 2226 } else {
duke@435 2227 Address raddr;
duke@435 2228 if (right->is_single_stack()) {
duke@435 2229 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2230 } else if (right->is_constant()) {
duke@435 2231 // hack for now
duke@435 2232 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
duke@435 2233 } else {
duke@435 2234 ShouldNotReachHere();
duke@435 2235 }
duke@435 2236 switch (code) {
duke@435 2237 case lir_add: __ addss(lreg, raddr); break;
duke@435 2238 case lir_sub: __ subss(lreg, raddr); break;
duke@435 2239 case lir_mul_strictfp: // fall through
duke@435 2240 case lir_mul: __ mulss(lreg, raddr); break;
duke@435 2241 case lir_div_strictfp: // fall through
duke@435 2242 case lir_div: __ divss(lreg, raddr); break;
duke@435 2243 default: ShouldNotReachHere();
duke@435 2244 }
duke@435 2245 }
duke@435 2246
duke@435 2247 } else if (left->is_double_xmm()) {
duke@435 2248 assert(left == dest, "left and dest must be equal");
duke@435 2249
duke@435 2250 XMMRegister lreg = left->as_xmm_double_reg();
duke@435 2251 if (right->is_double_xmm()) {
duke@435 2252 XMMRegister rreg = right->as_xmm_double_reg();
duke@435 2253 switch (code) {
duke@435 2254 case lir_add: __ addsd(lreg, rreg); break;
duke@435 2255 case lir_sub: __ subsd(lreg, rreg); break;
duke@435 2256 case lir_mul_strictfp: // fall through
duke@435 2257 case lir_mul: __ mulsd(lreg, rreg); break;
duke@435 2258 case lir_div_strictfp: // fall through
duke@435 2259 case lir_div: __ divsd(lreg, rreg); break;
duke@435 2260 default: ShouldNotReachHere();
duke@435 2261 }
duke@435 2262 } else {
duke@435 2263 Address raddr;
duke@435 2264 if (right->is_double_stack()) {
duke@435 2265 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2266 } else if (right->is_constant()) {
duke@435 2267 // hack for now
duke@435 2268 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2269 } else {
duke@435 2270 ShouldNotReachHere();
duke@435 2271 }
duke@435 2272 switch (code) {
duke@435 2273 case lir_add: __ addsd(lreg, raddr); break;
duke@435 2274 case lir_sub: __ subsd(lreg, raddr); break;
duke@435 2275 case lir_mul_strictfp: // fall through
duke@435 2276 case lir_mul: __ mulsd(lreg, raddr); break;
duke@435 2277 case lir_div_strictfp: // fall through
duke@435 2278 case lir_div: __ divsd(lreg, raddr); break;
duke@435 2279 default: ShouldNotReachHere();
duke@435 2280 }
duke@435 2281 }
duke@435 2282
duke@435 2283 } else if (left->is_single_fpu()) {
duke@435 2284 assert(dest->is_single_fpu(), "fpu stack allocation required");
duke@435 2285
duke@435 2286 if (right->is_single_fpu()) {
duke@435 2287 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
duke@435 2288
duke@435 2289 } else {
duke@435 2290 assert(left->fpu_regnr() == 0, "left must be on TOS");
duke@435 2291 assert(dest->fpu_regnr() == 0, "dest must be on TOS");
duke@435 2292
duke@435 2293 Address raddr;
duke@435 2294 if (right->is_single_stack()) {
duke@435 2295 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2296 } else if (right->is_constant()) {
duke@435 2297 address const_addr = float_constant(right->as_jfloat());
duke@435 2298 assert(const_addr != NULL, "incorrect float/double constant maintainance");
duke@435 2299 // hack for now
duke@435 2300 raddr = __ as_Address(InternalAddress(const_addr));
duke@435 2301 } else {
duke@435 2302 ShouldNotReachHere();
duke@435 2303 }
duke@435 2304
duke@435 2305 switch (code) {
duke@435 2306 case lir_add: __ fadd_s(raddr); break;
duke@435 2307 case lir_sub: __ fsub_s(raddr); break;
duke@435 2308 case lir_mul_strictfp: // fall through
duke@435 2309 case lir_mul: __ fmul_s(raddr); break;
duke@435 2310 case lir_div_strictfp: // fall through
duke@435 2311 case lir_div: __ fdiv_s(raddr); break;
duke@435 2312 default: ShouldNotReachHere();
duke@435 2313 }
duke@435 2314 }
duke@435 2315
duke@435 2316 } else if (left->is_double_fpu()) {
duke@435 2317 assert(dest->is_double_fpu(), "fpu stack allocation required");
duke@435 2318
duke@435 2319 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2320 // Double values require special handling for strictfp mul/div on x86
duke@435 2321 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
duke@435 2322 __ fmulp(left->fpu_regnrLo() + 1);
duke@435 2323 }
duke@435 2324
duke@435 2325 if (right->is_double_fpu()) {
duke@435 2326 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
duke@435 2327
duke@435 2328 } else {
duke@435 2329 assert(left->fpu_regnrLo() == 0, "left must be on TOS");
duke@435 2330 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
duke@435 2331
duke@435 2332 Address raddr;
duke@435 2333 if (right->is_double_stack()) {
duke@435 2334 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2335 } else if (right->is_constant()) {
duke@435 2336 // hack for now
duke@435 2337 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2338 } else {
duke@435 2339 ShouldNotReachHere();
duke@435 2340 }
duke@435 2341
duke@435 2342 switch (code) {
duke@435 2343 case lir_add: __ fadd_d(raddr); break;
duke@435 2344 case lir_sub: __ fsub_d(raddr); break;
duke@435 2345 case lir_mul_strictfp: // fall through
duke@435 2346 case lir_mul: __ fmul_d(raddr); break;
duke@435 2347 case lir_div_strictfp: // fall through
duke@435 2348 case lir_div: __ fdiv_d(raddr); break;
duke@435 2349 default: ShouldNotReachHere();
duke@435 2350 }
duke@435 2351 }
duke@435 2352
duke@435 2353 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2354 // Double values require special handling for strictfp mul/div on x86
duke@435 2355 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
duke@435 2356 __ fmulp(dest->fpu_regnrLo() + 1);
duke@435 2357 }
duke@435 2358
duke@435 2359 } else if (left->is_single_stack() || left->is_address()) {
duke@435 2360 assert(left == dest, "left and dest must be equal");
duke@435 2361
duke@435 2362 Address laddr;
duke@435 2363 if (left->is_single_stack()) {
duke@435 2364 laddr = frame_map()->address_for_slot(left->single_stack_ix());
duke@435 2365 } else if (left->is_address()) {
duke@435 2366 laddr = as_Address(left->as_address_ptr());
duke@435 2367 } else {
duke@435 2368 ShouldNotReachHere();
duke@435 2369 }
duke@435 2370
duke@435 2371 if (right->is_single_cpu()) {
duke@435 2372 Register rreg = right->as_register();
duke@435 2373 switch (code) {
duke@435 2374 case lir_add: __ addl(laddr, rreg); break;
duke@435 2375 case lir_sub: __ subl(laddr, rreg); break;
duke@435 2376 default: ShouldNotReachHere();
duke@435 2377 }
duke@435 2378 } else if (right->is_constant()) {
duke@435 2379 jint c = right->as_constant_ptr()->as_jint();
duke@435 2380 switch (code) {
duke@435 2381 case lir_add: {
never@739 2382 __ incrementl(laddr, c);
duke@435 2383 break;
duke@435 2384 }
duke@435 2385 case lir_sub: {
never@739 2386 __ decrementl(laddr, c);
duke@435 2387 break;
duke@435 2388 }
duke@435 2389 default: ShouldNotReachHere();
duke@435 2390 }
duke@435 2391 } else {
duke@435 2392 ShouldNotReachHere();
duke@435 2393 }
duke@435 2394
duke@435 2395 } else {
duke@435 2396 ShouldNotReachHere();
duke@435 2397 }
duke@435 2398 }
duke@435 2399
duke@435 2400 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
duke@435 2401 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR");
duke@435 2402 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
duke@435 2403 assert(left_index == 0 || right_index == 0, "either must be on top of stack");
duke@435 2404
duke@435 2405 bool left_is_tos = (left_index == 0);
duke@435 2406 bool dest_is_tos = (dest_index == 0);
duke@435 2407 int non_tos_index = (left_is_tos ? right_index : left_index);
duke@435 2408
duke@435 2409 switch (code) {
duke@435 2410 case lir_add:
duke@435 2411 if (pop_fpu_stack) __ faddp(non_tos_index);
duke@435 2412 else if (dest_is_tos) __ fadd (non_tos_index);
duke@435 2413 else __ fadda(non_tos_index);
duke@435 2414 break;
duke@435 2415
duke@435 2416 case lir_sub:
duke@435 2417 if (left_is_tos) {
duke@435 2418 if (pop_fpu_stack) __ fsubrp(non_tos_index);
duke@435 2419 else if (dest_is_tos) __ fsub (non_tos_index);
duke@435 2420 else __ fsubra(non_tos_index);
duke@435 2421 } else {
duke@435 2422 if (pop_fpu_stack) __ fsubp (non_tos_index);
duke@435 2423 else if (dest_is_tos) __ fsubr (non_tos_index);
duke@435 2424 else __ fsuba (non_tos_index);
duke@435 2425 }
duke@435 2426 break;
duke@435 2427
duke@435 2428 case lir_mul_strictfp: // fall through
duke@435 2429 case lir_mul:
duke@435 2430 if (pop_fpu_stack) __ fmulp(non_tos_index);
duke@435 2431 else if (dest_is_tos) __ fmul (non_tos_index);
duke@435 2432 else __ fmula(non_tos_index);
duke@435 2433 break;
duke@435 2434
duke@435 2435 case lir_div_strictfp: // fall through
duke@435 2436 case lir_div:
duke@435 2437 if (left_is_tos) {
duke@435 2438 if (pop_fpu_stack) __ fdivrp(non_tos_index);
duke@435 2439 else if (dest_is_tos) __ fdiv (non_tos_index);
duke@435 2440 else __ fdivra(non_tos_index);
duke@435 2441 } else {
duke@435 2442 if (pop_fpu_stack) __ fdivp (non_tos_index);
duke@435 2443 else if (dest_is_tos) __ fdivr (non_tos_index);
duke@435 2444 else __ fdiva (non_tos_index);
duke@435 2445 }
duke@435 2446 break;
duke@435 2447
duke@435 2448 case lir_rem:
duke@435 2449 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
duke@435 2450 __ fremr(noreg);
duke@435 2451 break;
duke@435 2452
duke@435 2453 default:
duke@435 2454 ShouldNotReachHere();
duke@435 2455 }
duke@435 2456 }
duke@435 2457
duke@435 2458
duke@435 2459 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
duke@435 2460 if (value->is_double_xmm()) {
duke@435 2461 switch(code) {
duke@435 2462 case lir_abs :
duke@435 2463 {
duke@435 2464 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
duke@435 2465 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
duke@435 2466 }
duke@435 2467 __ andpd(dest->as_xmm_double_reg(),
duke@435 2468 ExternalAddress((address)double_signmask_pool));
duke@435 2469 }
duke@435 2470 break;
duke@435 2471
duke@435 2472 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
duke@435 2473 // all other intrinsics are not available in the SSE instruction set, so FPU is used
duke@435 2474 default : ShouldNotReachHere();
duke@435 2475 }
duke@435 2476
duke@435 2477 } else if (value->is_double_fpu()) {
duke@435 2478 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
duke@435 2479 switch(code) {
duke@435 2480 case lir_log : __ flog() ; break;
duke@435 2481 case lir_log10 : __ flog10() ; break;
duke@435 2482 case lir_abs : __ fabs() ; break;
duke@435 2483 case lir_sqrt : __ fsqrt(); break;
duke@435 2484 case lir_sin :
duke@435 2485 // Should consider not saving rbx, if not necessary
duke@435 2486 __ trigfunc('s', op->as_Op2()->fpu_stack_size());
duke@435 2487 break;
duke@435 2488 case lir_cos :
duke@435 2489 // Should consider not saving rbx, if not necessary
duke@435 2490 assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
duke@435 2491 __ trigfunc('c', op->as_Op2()->fpu_stack_size());
duke@435 2492 break;
duke@435 2493 case lir_tan :
duke@435 2494 // Should consider not saving rbx, if not necessary
duke@435 2495 __ trigfunc('t', op->as_Op2()->fpu_stack_size());
duke@435 2496 break;
roland@3787 2497 case lir_exp :
roland@3787 2498 __ exp_with_fallback(op->as_Op2()->fpu_stack_size());
roland@3787 2499 break;
roland@3787 2500 case lir_pow :
roland@3787 2501 __ pow_with_fallback(op->as_Op2()->fpu_stack_size());
roland@3787 2502 break;
duke@435 2503 default : ShouldNotReachHere();
duke@435 2504 }
duke@435 2505 } else {
duke@435 2506 Unimplemented();
duke@435 2507 }
duke@435 2508 }
duke@435 2509
duke@435 2510 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
duke@435 2511 // assert(left->destroys_register(), "check");
duke@435 2512 if (left->is_single_cpu()) {
duke@435 2513 Register reg = left->as_register();
duke@435 2514 if (right->is_constant()) {
duke@435 2515 int val = right->as_constant_ptr()->as_jint();
duke@435 2516 switch (code) {
duke@435 2517 case lir_logic_and: __ andl (reg, val); break;
duke@435 2518 case lir_logic_or: __ orl (reg, val); break;
duke@435 2519 case lir_logic_xor: __ xorl (reg, val); break;
duke@435 2520 default: ShouldNotReachHere();
duke@435 2521 }
duke@435 2522 } else if (right->is_stack()) {
duke@435 2523 // added support for stack operands
duke@435 2524 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2525 switch (code) {
duke@435 2526 case lir_logic_and: __ andl (reg, raddr); break;
duke@435 2527 case lir_logic_or: __ orl (reg, raddr); break;
duke@435 2528 case lir_logic_xor: __ xorl (reg, raddr); break;
duke@435 2529 default: ShouldNotReachHere();
duke@435 2530 }
duke@435 2531 } else {
duke@435 2532 Register rright = right->as_register();
duke@435 2533 switch (code) {
never@739 2534 case lir_logic_and: __ andptr (reg, rright); break;
never@739 2535 case lir_logic_or : __ orptr (reg, rright); break;
never@739 2536 case lir_logic_xor: __ xorptr (reg, rright); break;
duke@435 2537 default: ShouldNotReachHere();
duke@435 2538 }
duke@435 2539 }
duke@435 2540 move_regs(reg, dst->as_register());
duke@435 2541 } else {
duke@435 2542 Register l_lo = left->as_register_lo();
duke@435 2543 Register l_hi = left->as_register_hi();
duke@435 2544 if (right->is_constant()) {
never@739 2545 #ifdef _LP64
never@739 2546 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
never@739 2547 switch (code) {
never@739 2548 case lir_logic_and:
never@739 2549 __ andq(l_lo, rscratch1);
never@739 2550 break;
never@739 2551 case lir_logic_or:
never@739 2552 __ orq(l_lo, rscratch1);
never@739 2553 break;
never@739 2554 case lir_logic_xor:
never@739 2555 __ xorq(l_lo, rscratch1);
never@739 2556 break;
never@739 2557 default: ShouldNotReachHere();
never@739 2558 }
never@739 2559 #else
duke@435 2560 int r_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2561 int r_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2562 switch (code) {
duke@435 2563 case lir_logic_and:
duke@435 2564 __ andl(l_lo, r_lo);
duke@435 2565 __ andl(l_hi, r_hi);
duke@435 2566 break;
duke@435 2567 case lir_logic_or:
duke@435 2568 __ orl(l_lo, r_lo);
duke@435 2569 __ orl(l_hi, r_hi);
duke@435 2570 break;
duke@435 2571 case lir_logic_xor:
duke@435 2572 __ xorl(l_lo, r_lo);
duke@435 2573 __ xorl(l_hi, r_hi);
duke@435 2574 break;
duke@435 2575 default: ShouldNotReachHere();
duke@435 2576 }
never@739 2577 #endif // _LP64
duke@435 2578 } else {
iveresov@1927 2579 #ifdef _LP64
iveresov@1927 2580 Register r_lo;
iveresov@1927 2581 if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
iveresov@1927 2582 r_lo = right->as_register();
iveresov@1927 2583 } else {
iveresov@1927 2584 r_lo = right->as_register_lo();
iveresov@1927 2585 }
iveresov@1927 2586 #else
duke@435 2587 Register r_lo = right->as_register_lo();
duke@435 2588 Register r_hi = right->as_register_hi();
duke@435 2589 assert(l_lo != r_hi, "overwriting registers");
iveresov@1927 2590 #endif
duke@435 2591 switch (code) {
duke@435 2592 case lir_logic_and:
never@739 2593 __ andptr(l_lo, r_lo);
never@739 2594 NOT_LP64(__ andptr(l_hi, r_hi);)
duke@435 2595 break;
duke@435 2596 case lir_logic_or:
never@739 2597 __ orptr(l_lo, r_lo);
never@739 2598 NOT_LP64(__ orptr(l_hi, r_hi);)
duke@435 2599 break;
duke@435 2600 case lir_logic_xor:
never@739 2601 __ xorptr(l_lo, r_lo);
never@739 2602 NOT_LP64(__ xorptr(l_hi, r_hi);)
duke@435 2603 break;
duke@435 2604 default: ShouldNotReachHere();
duke@435 2605 }
duke@435 2606 }
duke@435 2607
duke@435 2608 Register dst_lo = dst->as_register_lo();
duke@435 2609 Register dst_hi = dst->as_register_hi();
duke@435 2610
never@739 2611 #ifdef _LP64
never@739 2612 move_regs(l_lo, dst_lo);
never@739 2613 #else
duke@435 2614 if (dst_lo == l_hi) {
duke@435 2615 assert(dst_hi != l_lo, "overwriting registers");
duke@435 2616 move_regs(l_hi, dst_hi);
duke@435 2617 move_regs(l_lo, dst_lo);
duke@435 2618 } else {
duke@435 2619 assert(dst_lo != l_hi, "overwriting registers");
duke@435 2620 move_regs(l_lo, dst_lo);
duke@435 2621 move_regs(l_hi, dst_hi);
duke@435 2622 }
never@739 2623 #endif // _LP64
duke@435 2624 }
duke@435 2625 }
duke@435 2626
duke@435 2627
duke@435 2628 // we assume that rax, and rdx can be overwritten
duke@435 2629 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
duke@435 2630
duke@435 2631 assert(left->is_single_cpu(), "left must be register");
duke@435 2632 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
duke@435 2633 assert(result->is_single_cpu(), "result must be register");
duke@435 2634
duke@435 2635 // assert(left->destroys_register(), "check");
duke@435 2636 // assert(right->destroys_register(), "check");
duke@435 2637
duke@435 2638 Register lreg = left->as_register();
duke@435 2639 Register dreg = result->as_register();
duke@435 2640
duke@435 2641 if (right->is_constant()) {
duke@435 2642 int divisor = right->as_constant_ptr()->as_jint();
duke@435 2643 assert(divisor > 0 && is_power_of_2(divisor), "must be");
duke@435 2644 if (code == lir_idiv) {
duke@435 2645 assert(lreg == rax, "must be rax,");
duke@435 2646 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2647 __ cdql(); // sign extend into rdx:rax
duke@435 2648 if (divisor == 2) {
duke@435 2649 __ subl(lreg, rdx);
duke@435 2650 } else {
duke@435 2651 __ andl(rdx, divisor - 1);
duke@435 2652 __ addl(lreg, rdx);
duke@435 2653 }
duke@435 2654 __ sarl(lreg, log2_intptr(divisor));
duke@435 2655 move_regs(lreg, dreg);
duke@435 2656 } else if (code == lir_irem) {
duke@435 2657 Label done;
never@739 2658 __ mov(dreg, lreg);
duke@435 2659 __ andl(dreg, 0x80000000 | (divisor - 1));
duke@435 2660 __ jcc(Assembler::positive, done);
duke@435 2661 __ decrement(dreg);
duke@435 2662 __ orl(dreg, ~(divisor - 1));
duke@435 2663 __ increment(dreg);
duke@435 2664 __ bind(done);
duke@435 2665 } else {
duke@435 2666 ShouldNotReachHere();
duke@435 2667 }
duke@435 2668 } else {
duke@435 2669 Register rreg = right->as_register();
duke@435 2670 assert(lreg == rax, "left register must be rax,");
duke@435 2671 assert(rreg != rdx, "right register must not be rdx");
duke@435 2672 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2673
duke@435 2674 move_regs(lreg, rax);
duke@435 2675
duke@435 2676 int idivl_offset = __ corrected_idivl(rreg);
duke@435 2677 add_debug_info_for_div0(idivl_offset, info);
duke@435 2678 if (code == lir_irem) {
duke@435 2679 move_regs(rdx, dreg); // result is in rdx
duke@435 2680 } else {
duke@435 2681 move_regs(rax, dreg);
duke@435 2682 }
duke@435 2683 }
duke@435 2684 }
duke@435 2685
duke@435 2686
duke@435 2687 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 2688 if (opr1->is_single_cpu()) {
duke@435 2689 Register reg1 = opr1->as_register();
duke@435 2690 if (opr2->is_single_cpu()) {
duke@435 2691 // cpu register - cpu register
never@739 2692 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2693 __ cmpptr(reg1, opr2->as_register());
never@739 2694 } else {
never@739 2695 assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
never@739 2696 __ cmpl(reg1, opr2->as_register());
never@739 2697 }
duke@435 2698 } else if (opr2->is_stack()) {
duke@435 2699 // cpu register - stack
never@739 2700 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2701 __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2702 } else {
never@739 2703 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2704 }
duke@435 2705 } else if (opr2->is_constant()) {
duke@435 2706 // cpu register - constant
duke@435 2707 LIR_Const* c = opr2->as_constant_ptr();
duke@435 2708 if (c->type() == T_INT) {
duke@435 2709 __ cmpl(reg1, c->as_jint());
never@739 2710 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2711 // In 64bit oops are single register
duke@435 2712 jobject o = c->as_jobject();
duke@435 2713 if (o == NULL) {
never@739 2714 __ cmpptr(reg1, (int32_t)NULL_WORD);
duke@435 2715 } else {
never@739 2716 #ifdef _LP64
never@739 2717 __ movoop(rscratch1, o);
never@739 2718 __ cmpptr(reg1, rscratch1);
never@739 2719 #else
duke@435 2720 __ cmpoop(reg1, c->as_jobject());
never@739 2721 #endif // _LP64
duke@435 2722 }
duke@435 2723 } else {
twisti@3848 2724 fatal(err_msg("unexpected type: %s", basictype_to_str(c->type())));
duke@435 2725 }
duke@435 2726 // cpu register - address
duke@435 2727 } else if (opr2->is_address()) {
duke@435 2728 if (op->info() != NULL) {
duke@435 2729 add_debug_info_for_null_check_here(op->info());
duke@435 2730 }
duke@435 2731 __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2732 } else {
duke@435 2733 ShouldNotReachHere();
duke@435 2734 }
duke@435 2735
duke@435 2736 } else if(opr1->is_double_cpu()) {
duke@435 2737 Register xlo = opr1->as_register_lo();
duke@435 2738 Register xhi = opr1->as_register_hi();
duke@435 2739 if (opr2->is_double_cpu()) {
never@739 2740 #ifdef _LP64
never@739 2741 __ cmpptr(xlo, opr2->as_register_lo());
never@739 2742 #else
duke@435 2743 // cpu register - cpu register
duke@435 2744 Register ylo = opr2->as_register_lo();
duke@435 2745 Register yhi = opr2->as_register_hi();
duke@435 2746 __ subl(xlo, ylo);
duke@435 2747 __ sbbl(xhi, yhi);
duke@435 2748 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 2749 __ orl(xhi, xlo);
duke@435 2750 }
never@739 2751 #endif // _LP64
duke@435 2752 } else if (opr2->is_constant()) {
duke@435 2753 // cpu register - constant 0
duke@435 2754 assert(opr2->as_jlong() == (jlong)0, "only handles zero");
never@739 2755 #ifdef _LP64
never@739 2756 __ cmpptr(xlo, (int32_t)opr2->as_jlong());
never@739 2757 #else
duke@435 2758 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
duke@435 2759 __ orl(xhi, xlo);
never@739 2760 #endif // _LP64
duke@435 2761 } else {
duke@435 2762 ShouldNotReachHere();
duke@435 2763 }
duke@435 2764
duke@435 2765 } else if (opr1->is_single_xmm()) {
duke@435 2766 XMMRegister reg1 = opr1->as_xmm_float_reg();
duke@435 2767 if (opr2->is_single_xmm()) {
duke@435 2768 // xmm register - xmm register
duke@435 2769 __ ucomiss(reg1, opr2->as_xmm_float_reg());
duke@435 2770 } else if (opr2->is_stack()) {
duke@435 2771 // xmm register - stack
duke@435 2772 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2773 } else if (opr2->is_constant()) {
duke@435 2774 // xmm register - constant
duke@435 2775 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
duke@435 2776 } else if (opr2->is_address()) {
duke@435 2777 // xmm register - address
duke@435 2778 if (op->info() != NULL) {
duke@435 2779 add_debug_info_for_null_check_here(op->info());
duke@435 2780 }
duke@435 2781 __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2782 } else {
duke@435 2783 ShouldNotReachHere();
duke@435 2784 }
duke@435 2785
duke@435 2786 } else if (opr1->is_double_xmm()) {
duke@435 2787 XMMRegister reg1 = opr1->as_xmm_double_reg();
duke@435 2788 if (opr2->is_double_xmm()) {
duke@435 2789 // xmm register - xmm register
duke@435 2790 __ ucomisd(reg1, opr2->as_xmm_double_reg());
duke@435 2791 } else if (opr2->is_stack()) {
duke@435 2792 // xmm register - stack
duke@435 2793 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
duke@435 2794 } else if (opr2->is_constant()) {
duke@435 2795 // xmm register - constant
duke@435 2796 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
duke@435 2797 } else if (opr2->is_address()) {
duke@435 2798 // xmm register - address
duke@435 2799 if (op->info() != NULL) {
duke@435 2800 add_debug_info_for_null_check_here(op->info());
duke@435 2801 }
duke@435 2802 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
duke@435 2803 } else {
duke@435 2804 ShouldNotReachHere();
duke@435 2805 }
duke@435 2806
duke@435 2807 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
duke@435 2808 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
duke@435 2809 assert(opr2->is_fpu_register(), "both must be registers");
duke@435 2810 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2811
duke@435 2812 } else if (opr1->is_address() && opr2->is_constant()) {
never@739 2813 LIR_Const* c = opr2->as_constant_ptr();
never@739 2814 #ifdef _LP64
never@739 2815 if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2816 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
never@739 2817 __ movoop(rscratch1, c->as_jobject());
never@739 2818 }
never@739 2819 #endif // LP64
duke@435 2820 if (op->info() != NULL) {
duke@435 2821 add_debug_info_for_null_check_here(op->info());
duke@435 2822 }
duke@435 2823 // special case: address - constant
duke@435 2824 LIR_Address* addr = opr1->as_address_ptr();
duke@435 2825 if (c->type() == T_INT) {
duke@435 2826 __ cmpl(as_Address(addr), c->as_jint());
never@739 2827 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2828 #ifdef _LP64
never@739 2829 // %%% Make this explode if addr isn't reachable until we figure out a
never@739 2830 // better strategy by giving noreg as the temp for as_Address
never@739 2831 __ cmpptr(rscratch1, as_Address(addr, noreg));
never@739 2832 #else
duke@435 2833 __ cmpoop(as_Address(addr), c->as_jobject());
never@739 2834 #endif // _LP64
duke@435 2835 } else {
duke@435 2836 ShouldNotReachHere();
duke@435 2837 }
duke@435 2838
duke@435 2839 } else {
duke@435 2840 ShouldNotReachHere();
duke@435 2841 }
duke@435 2842 }
duke@435 2843
duke@435 2844 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
duke@435 2845 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 2846 if (left->is_single_xmm()) {
duke@435 2847 assert(right->is_single_xmm(), "must match");
duke@435 2848 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2849 } else if (left->is_double_xmm()) {
duke@435 2850 assert(right->is_double_xmm(), "must match");
duke@435 2851 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2852
duke@435 2853 } else {
duke@435 2854 assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
duke@435 2855 assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
duke@435 2856
duke@435 2857 assert(left->fpu() == 0, "left must be on TOS");
duke@435 2858 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
duke@435 2859 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2860 }
duke@435 2861 } else {
duke@435 2862 assert(code == lir_cmp_l2i, "check");
never@739 2863 #ifdef _LP64
iveresov@1804 2864 Label done;
iveresov@1804 2865 Register dest = dst->as_register();
iveresov@1804 2866 __ cmpptr(left->as_register_lo(), right->as_register_lo());
iveresov@1804 2867 __ movl(dest, -1);
iveresov@1804 2868 __ jccb(Assembler::less, done);
iveresov@1804 2869 __ set_byte_if_not_zero(dest);
iveresov@1804 2870 __ movzbl(dest, dest);
iveresov@1804 2871 __ bind(done);
never@739 2872 #else
duke@435 2873 __ lcmp2int(left->as_register_hi(),
duke@435 2874 left->as_register_lo(),
duke@435 2875 right->as_register_hi(),
duke@435 2876 right->as_register_lo());
duke@435 2877 move_regs(left->as_register_hi(), dst->as_register());
never@739 2878 #endif // _LP64
duke@435 2879 }
duke@435 2880 }
duke@435 2881
duke@435 2882
duke@435 2883 void LIR_Assembler::align_call(LIR_Code code) {
duke@435 2884 if (os::is_MP()) {
duke@435 2885 // make sure that the displacement word of the call ends up word aligned
duke@435 2886 int offset = __ offset();
duke@435 2887 switch (code) {
duke@435 2888 case lir_static_call:
duke@435 2889 case lir_optvirtual_call:
twisti@1730 2890 case lir_dynamic_call:
duke@435 2891 offset += NativeCall::displacement_offset;
duke@435 2892 break;
duke@435 2893 case lir_icvirtual_call:
duke@435 2894 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
duke@435 2895 break;
duke@435 2896 case lir_virtual_call: // currently, sparc-specific for niagara
duke@435 2897 default: ShouldNotReachHere();
duke@435 2898 }
duke@435 2899 while (offset++ % BytesPerWord != 0) {
duke@435 2900 __ nop();
duke@435 2901 }
duke@435 2902 }
duke@435 2903 }
duke@435 2904
duke@435 2905
twisti@1730 2906 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
duke@435 2907 assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2908 "must be aligned");
twisti@1730 2909 __ call(AddressLiteral(op->addr(), rtype));
twisti@1919 2910 add_call_info(code_offset(), op->info());
duke@435 2911 }
duke@435 2912
duke@435 2913
twisti@1730 2914 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
coleenp@4037 2915 __ ic_call(op->addr());
coleenp@4037 2916 add_call_info(code_offset(), op->info());
duke@435 2917 assert(!os::is_MP() ||
coleenp@4037 2918 (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2919 "must be aligned");
duke@435 2920 }
duke@435 2921
duke@435 2922
duke@435 2923 /* Currently, vtable-dispatch is only enabled for sparc platforms */
twisti@1730 2924 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
duke@435 2925 ShouldNotReachHere();
duke@435 2926 }
duke@435 2927
twisti@1730 2928
duke@435 2929 void LIR_Assembler::emit_static_call_stub() {
duke@435 2930 address call_pc = __ pc();
duke@435 2931 address stub = __ start_a_stub(call_stub_size);
duke@435 2932 if (stub == NULL) {
duke@435 2933 bailout("static call stub overflow");
duke@435 2934 return;
duke@435 2935 }
duke@435 2936
duke@435 2937 int start = __ offset();
duke@435 2938 if (os::is_MP()) {
duke@435 2939 // make sure that the displacement word of the call ends up word aligned
duke@435 2940 int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
duke@435 2941 while (offset++ % BytesPerWord != 0) {
duke@435 2942 __ nop();
duke@435 2943 }
duke@435 2944 }
duke@435 2945 __ relocate(static_stub_Relocation::spec(call_pc));
coleenp@4037 2946 __ mov_metadata(rbx, (Metadata*)NULL);
duke@435 2947 // must be set to -1 at code generation time
duke@435 2948 assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
never@739 2949 // On 64bit this will die since it will take a movq & jmp, must be only a jmp
never@739 2950 __ jump(RuntimeAddress(__ pc()));
duke@435 2951
jcoomes@1844 2952 assert(__ offset() - start <= call_stub_size, "stub too big");
duke@435 2953 __ end_a_stub();
duke@435 2954 }
duke@435 2955
duke@435 2956
never@1813 2957 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
duke@435 2958 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2959 assert(exceptionPC->as_register() == rdx, "must match");
duke@435 2960
duke@435 2961 // exception object is not added to oop map by LinearScan
duke@435 2962 // (LinearScan assumes that no oops are in fixed registers)
duke@435 2963 info->add_register_oop(exceptionOop);
duke@435 2964 Runtime1::StubID unwind_id;
duke@435 2965
never@1813 2966 // get current pc information
never@1813 2967 // pc is only needed if the method has an exception handler, the unwind code does not need it.
never@1813 2968 int pc_for_athrow_offset = __ offset();
never@1813 2969 InternalAddress pc_for_athrow(__ pc());
never@1813 2970 __ lea(exceptionPC->as_register(), pc_for_athrow);
never@1813 2971 add_call_info(pc_for_athrow_offset, info); // for exception handler
never@1813 2972
never@1813 2973 __ verify_not_null_oop(rax);
never@1813 2974 // search an exception handler (rax: exception oop, rdx: throwing pc)
never@1813 2975 if (compilation()->has_fpu_code()) {
never@1813 2976 unwind_id = Runtime1::handle_exception_id;
duke@435 2977 } else {
never@1813 2978 unwind_id = Runtime1::handle_exception_nofpu_id;
duke@435 2979 }
never@1813 2980 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
duke@435 2981
duke@435 2982 // enough room for two byte trap
duke@435 2983 __ nop();
duke@435 2984 }
duke@435 2985
duke@435 2986
never@1813 2987 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
never@1813 2988 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2989
never@1813 2990 __ jmp(_unwind_handler_entry);
never@1813 2991 }
never@1813 2992
never@1813 2993
duke@435 2994 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2995
duke@435 2996 // optimized version for linear scan:
duke@435 2997 // * count must be already in ECX (guaranteed by LinearScan)
duke@435 2998 // * left and dest must be equal
duke@435 2999 // * tmp must be unused
duke@435 3000 assert(count->as_register() == SHIFT_count, "count must be in ECX");
duke@435 3001 assert(left == dest, "left and dest must be equal");
duke@435 3002 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
duke@435 3003
duke@435 3004 if (left->is_single_cpu()) {
duke@435 3005 Register value = left->as_register();
duke@435 3006 assert(value != SHIFT_count, "left cannot be ECX");
duke@435 3007
duke@435 3008 switch (code) {
duke@435 3009 case lir_shl: __ shll(value); break;
duke@435 3010 case lir_shr: __ sarl(value); break;
duke@435 3011 case lir_ushr: __ shrl(value); break;
duke@435 3012 default: ShouldNotReachHere();
duke@435 3013 }
duke@435 3014 } else if (left->is_double_cpu()) {
duke@435 3015 Register lo = left->as_register_lo();
duke@435 3016 Register hi = left->as_register_hi();
duke@435 3017 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
never@739 3018 #ifdef _LP64
never@739 3019 switch (code) {
never@739 3020 case lir_shl: __ shlptr(lo); break;
never@739 3021 case lir_shr: __ sarptr(lo); break;
never@739 3022 case lir_ushr: __ shrptr(lo); break;
never@739 3023 default: ShouldNotReachHere();
never@739 3024 }
never@739 3025 #else
duke@435 3026
duke@435 3027 switch (code) {
duke@435 3028 case lir_shl: __ lshl(hi, lo); break;
duke@435 3029 case lir_shr: __ lshr(hi, lo, true); break;
duke@435 3030 case lir_ushr: __ lshr(hi, lo, false); break;
duke@435 3031 default: ShouldNotReachHere();
duke@435 3032 }
never@739 3033 #endif // LP64
duke@435 3034 } else {
duke@435 3035 ShouldNotReachHere();
duke@435 3036 }
duke@435 3037 }
duke@435 3038
duke@435 3039
duke@435 3040 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 3041 if (dest->is_single_cpu()) {
duke@435 3042 // first move left into dest so that left is not destroyed by the shift
duke@435 3043 Register value = dest->as_register();
duke@435 3044 count = count & 0x1F; // Java spec
duke@435 3045
duke@435 3046 move_regs(left->as_register(), value);
duke@435 3047 switch (code) {
duke@435 3048 case lir_shl: __ shll(value, count); break;
duke@435 3049 case lir_shr: __ sarl(value, count); break;
duke@435 3050 case lir_ushr: __ shrl(value, count); break;
duke@435 3051 default: ShouldNotReachHere();
duke@435 3052 }
duke@435 3053 } else if (dest->is_double_cpu()) {
never@739 3054 #ifndef _LP64
duke@435 3055 Unimplemented();
never@739 3056 #else
never@739 3057 // first move left into dest so that left is not destroyed by the shift
never@739 3058 Register value = dest->as_register_lo();
never@739 3059 count = count & 0x1F; // Java spec
never@739 3060
never@739 3061 move_regs(left->as_register_lo(), value);
never@739 3062 switch (code) {
never@739 3063 case lir_shl: __ shlptr(value, count); break;
never@739 3064 case lir_shr: __ sarptr(value, count); break;
never@739 3065 case lir_ushr: __ shrptr(value, count); break;
never@739 3066 default: ShouldNotReachHere();
never@739 3067 }
never@739 3068 #endif // _LP64
duke@435 3069 } else {
duke@435 3070 ShouldNotReachHere();
duke@435 3071 }
duke@435 3072 }
duke@435 3073
duke@435 3074
duke@435 3075 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
duke@435 3076 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3077 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3078 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 3079 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
duke@435 3080 }
duke@435 3081
duke@435 3082
duke@435 3083 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
duke@435 3084 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3085 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3086 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 3087 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
duke@435 3088 }
duke@435 3089
duke@435 3090
duke@435 3091 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
duke@435 3092 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3093 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3094 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
duke@435 3095 __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
duke@435 3096 }
duke@435 3097
duke@435 3098
duke@435 3099 // This code replaces a call to arraycopy; no exception may
duke@435 3100 // be thrown in this code, they must be thrown in the System.arraycopy
duke@435 3101 // activation frame; we could save some checks if this would not be the case
duke@435 3102 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 3103 ciArrayKlass* default_type = op->expected_type();
duke@435 3104 Register src = op->src()->as_register();
duke@435 3105 Register dst = op->dst()->as_register();
duke@435 3106 Register src_pos = op->src_pos()->as_register();
duke@435 3107 Register dst_pos = op->dst_pos()->as_register();
duke@435 3108 Register length = op->length()->as_register();
duke@435 3109 Register tmp = op->tmp()->as_register();
duke@435 3110
duke@435 3111 CodeStub* stub = op->stub();
duke@435 3112 int flags = op->flags();
duke@435 3113 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 3114 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 3115
roland@2728 3116 // if we don't know anything, just go through the generic arraycopy
duke@435 3117 if (default_type == NULL) {
duke@435 3118 Label done;
duke@435 3119 // save outgoing arguments on stack in case call to System.arraycopy is needed
duke@435 3120 // HACK ALERT. This code used to push the parameters in a hardwired fashion
duke@435 3121 // for interpreter calling conventions. Now we have to do it in new style conventions.
duke@435 3122 // For the moment until C1 gets the new register allocator I just force all the
duke@435 3123 // args to the right place (except the register args) and then on the back side
duke@435 3124 // reload the register args properly if we go slow path. Yuck
duke@435 3125
duke@435 3126 // These are proper for the calling convention
duke@435 3127 store_parameter(length, 2);
duke@435 3128 store_parameter(dst_pos, 1);
duke@435 3129 store_parameter(dst, 0);
duke@435 3130
duke@435 3131 // these are just temporary placements until we need to reload
duke@435 3132 store_parameter(src_pos, 3);
duke@435 3133 store_parameter(src, 4);
never@739 3134 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
never@739 3135
roland@2728 3136 address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
roland@2728 3137
roland@2728 3138 address copyfunc_addr = StubRoutines::generic_arraycopy();
duke@435 3139
duke@435 3140 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
never@739 3141 #ifdef _LP64
never@739 3142 // The arguments are in java calling convention so we can trivially shift them to C
never@739 3143 // convention
never@739 3144 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3145 __ mov(c_rarg0, j_rarg0);
never@739 3146 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3147 __ mov(c_rarg1, j_rarg1);
never@739 3148 assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
never@739 3149 __ mov(c_rarg2, j_rarg2);
never@739 3150 assert_different_registers(c_rarg3, j_rarg4);
never@739 3151 __ mov(c_rarg3, j_rarg3);
never@739 3152 #ifdef _WIN64
never@739 3153 // Allocate abi space for args but be sure to keep stack aligned
never@739 3154 __ subptr(rsp, 6*wordSize);
never@739 3155 store_parameter(j_rarg4, 4);
roland@2728 3156 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 3157 __ call(RuntimeAddress(C_entry));
roland@2728 3158 } else {
roland@2728 3159 #ifndef PRODUCT
roland@2728 3160 if (PrintC1Statistics) {
roland@2728 3161 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
roland@2728 3162 }
roland@2728 3163 #endif
roland@2728 3164 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3165 }
never@739 3166 __ addptr(rsp, 6*wordSize);
never@739 3167 #else
never@739 3168 __ mov(c_rarg4, j_rarg4);
roland@2728 3169 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 3170 __ call(RuntimeAddress(C_entry));
roland@2728 3171 } else {
roland@2728 3172 #ifndef PRODUCT
roland@2728 3173 if (PrintC1Statistics) {
roland@2728 3174 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
roland@2728 3175 }
roland@2728 3176 #endif
roland@2728 3177 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3178 }
never@739 3179 #endif // _WIN64
never@739 3180 #else
never@739 3181 __ push(length);
never@739 3182 __ push(dst_pos);
never@739 3183 __ push(dst);
never@739 3184 __ push(src_pos);
never@739 3185 __ push(src);
roland@2728 3186
roland@2728 3187 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 3188 __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
roland@2728 3189 } else {
roland@2728 3190 #ifndef PRODUCT
roland@2728 3191 if (PrintC1Statistics) {
roland@2728 3192 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
roland@2728 3193 }
roland@2728 3194 #endif
roland@2728 3195 __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
roland@2728 3196 }
duke@435 3197
never@739 3198 #endif // _LP64
never@739 3199
duke@435 3200 __ cmpl(rax, 0);
duke@435 3201 __ jcc(Assembler::equal, *stub->continuation());
duke@435 3202
roland@2728 3203 if (copyfunc_addr != NULL) {
roland@2728 3204 __ mov(tmp, rax);
roland@2728 3205 __ xorl(tmp, -1);
roland@2728 3206 }
roland@2728 3207
duke@435 3208 // Reload values from the stack so they are where the stub
duke@435 3209 // expects them.
never@739 3210 __ movptr (dst, Address(rsp, 0*BytesPerWord));
never@739 3211 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
never@739 3212 __ movptr (length, Address(rsp, 2*BytesPerWord));
never@739 3213 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
never@739 3214 __ movptr (src, Address(rsp, 4*BytesPerWord));
roland@2728 3215
roland@2728 3216 if (copyfunc_addr != NULL) {
roland@2728 3217 __ subl(length, tmp);
roland@2728 3218 __ addl(src_pos, tmp);
roland@2728 3219 __ addl(dst_pos, tmp);
roland@2728 3220 }
duke@435 3221 __ jmp(*stub->entry());
duke@435 3222
duke@435 3223 __ bind(*stub->continuation());
duke@435 3224 return;
duke@435 3225 }
duke@435 3226
duke@435 3227 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
duke@435 3228
kvn@464 3229 int elem_size = type2aelembytes(basic_type);
duke@435 3230 int shift_amount;
duke@435 3231 Address::ScaleFactor scale;
duke@435 3232
duke@435 3233 switch (elem_size) {
duke@435 3234 case 1 :
duke@435 3235 shift_amount = 0;
duke@435 3236 scale = Address::times_1;
duke@435 3237 break;
duke@435 3238 case 2 :
duke@435 3239 shift_amount = 1;
duke@435 3240 scale = Address::times_2;
duke@435 3241 break;
duke@435 3242 case 4 :
duke@435 3243 shift_amount = 2;
duke@435 3244 scale = Address::times_4;
duke@435 3245 break;
duke@435 3246 case 8 :
duke@435 3247 shift_amount = 3;
duke@435 3248 scale = Address::times_8;
duke@435 3249 break;
duke@435 3250 default:
duke@435 3251 ShouldNotReachHere();
duke@435 3252 }
duke@435 3253
duke@435 3254 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
duke@435 3255 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
duke@435 3256 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
duke@435 3257 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
duke@435 3258
never@739 3259 // length and pos's are all sign extended at this point on 64bit
never@739 3260
duke@435 3261 // test for NULL
duke@435 3262 if (flags & LIR_OpArrayCopy::src_null_check) {
never@739 3263 __ testptr(src, src);
duke@435 3264 __ jcc(Assembler::zero, *stub->entry());
duke@435 3265 }
duke@435 3266 if (flags & LIR_OpArrayCopy::dst_null_check) {
never@739 3267 __ testptr(dst, dst);
duke@435 3268 __ jcc(Assembler::zero, *stub->entry());
duke@435 3269 }
duke@435 3270
duke@435 3271 // check if negative
duke@435 3272 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 3273 __ testl(src_pos, src_pos);
duke@435 3274 __ jcc(Assembler::less, *stub->entry());
duke@435 3275 }
duke@435 3276 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 3277 __ testl(dst_pos, dst_pos);
duke@435 3278 __ jcc(Assembler::less, *stub->entry());
duke@435 3279 }
duke@435 3280
duke@435 3281 if (flags & LIR_OpArrayCopy::src_range_check) {
never@739 3282 __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
duke@435 3283 __ cmpl(tmp, src_length_addr);
duke@435 3284 __ jcc(Assembler::above, *stub->entry());
duke@435 3285 }
duke@435 3286 if (flags & LIR_OpArrayCopy::dst_range_check) {
never@739 3287 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
duke@435 3288 __ cmpl(tmp, dst_length_addr);
duke@435 3289 __ jcc(Assembler::above, *stub->entry());
duke@435 3290 }
duke@435 3291
roland@2728 3292 if (flags & LIR_OpArrayCopy::length_positive_check) {
roland@2728 3293 __ testl(length, length);
roland@2728 3294 __ jcc(Assembler::less, *stub->entry());
roland@2728 3295 __ jcc(Assembler::zero, *stub->continuation());
roland@2728 3296 }
roland@2728 3297
roland@2728 3298 #ifdef _LP64
roland@2728 3299 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
roland@2728 3300 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
roland@2728 3301 #endif
roland@2728 3302
duke@435 3303 if (flags & LIR_OpArrayCopy::type_check) {
roland@2728 3304 // We don't know the array types are compatible
roland@2728 3305 if (basic_type != T_OBJECT) {
roland@2728 3306 // Simple test for basic type arrays
ehelin@5694 3307 if (UseCompressedClassPointers) {
roland@2728 3308 __ movl(tmp, src_klass_addr);
roland@2728 3309 __ cmpl(tmp, dst_klass_addr);
roland@2728 3310 } else {
roland@2728 3311 __ movptr(tmp, src_klass_addr);
roland@2728 3312 __ cmpptr(tmp, dst_klass_addr);
roland@2728 3313 }
roland@2728 3314 __ jcc(Assembler::notEqual, *stub->entry());
iveresov@2344 3315 } else {
roland@2728 3316 // For object arrays, if src is a sub class of dst then we can
roland@2728 3317 // safely do the copy.
roland@2728 3318 Label cont, slow;
roland@2728 3319
roland@2728 3320 __ push(src);
roland@2728 3321 __ push(dst);
roland@2728 3322
roland@2728 3323 __ load_klass(src, src);
roland@2728 3324 __ load_klass(dst, dst);
roland@2728 3325
roland@2728 3326 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
roland@2728 3327
roland@2728 3328 __ push(src);
roland@2728 3329 __ push(dst);
roland@2728 3330 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
roland@2728 3331 __ pop(dst);
roland@2728 3332 __ pop(src);
roland@2728 3333
roland@2728 3334 __ cmpl(src, 0);
roland@2728 3335 __ jcc(Assembler::notEqual, cont);
roland@2728 3336
roland@2728 3337 __ bind(slow);
roland@2728 3338 __ pop(dst);
roland@2728 3339 __ pop(src);
roland@2728 3340
roland@2728 3341 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
roland@2728 3342 if (copyfunc_addr != NULL) { // use stub if available
roland@2728 3343 // src is not a sub class of dst so we have to do a
roland@2728 3344 // per-element check.
roland@2728 3345
roland@2728 3346 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
roland@2728 3347 if ((flags & mask) != mask) {
roland@2728 3348 // Check that at least both of them object arrays.
roland@2728 3349 assert(flags & mask, "one of the two should be known to be an object array");
roland@2728 3350
roland@2728 3351 if (!(flags & LIR_OpArrayCopy::src_objarray)) {
roland@2728 3352 __ load_klass(tmp, src);
roland@2728 3353 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
roland@2728 3354 __ load_klass(tmp, dst);
roland@2728 3355 }
stefank@3391 3356 int lh_offset = in_bytes(Klass::layout_helper_offset());
roland@2728 3357 Address klass_lh_addr(tmp, lh_offset);
roland@2728 3358 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
roland@2728 3359 __ cmpl(klass_lh_addr, objArray_lh);
roland@2728 3360 __ jcc(Assembler::notEqual, *stub->entry());
roland@2728 3361 }
roland@2728 3362
iveresov@2936 3363 // Spill because stubs can use any register they like and it's
iveresov@2936 3364 // easier to restore just those that we care about.
iveresov@2936 3365 store_parameter(dst, 0);
iveresov@2936 3366 store_parameter(dst_pos, 1);
iveresov@2936 3367 store_parameter(length, 2);
iveresov@2936 3368 store_parameter(src_pos, 3);
iveresov@2936 3369 store_parameter(src, 4);
iveresov@2936 3370
roland@2728 3371 #ifndef _LP64
roland@2728 3372 __ movptr(tmp, dst_klass_addr);
coleenp@4142 3373 __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
roland@2728 3374 __ push(tmp);
stefank@3391 3375 __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
roland@2728 3376 __ push(tmp);
roland@2728 3377 __ push(length);
roland@2728 3378 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3379 __ push(tmp);
roland@2728 3380 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3381 __ push(tmp);
roland@2728 3382
roland@2728 3383 __ call_VM_leaf(copyfunc_addr, 5);
roland@2728 3384 #else
roland@2728 3385 __ movl2ptr(length, length); //higher 32bits must be null
roland@2728 3386
roland@2728 3387 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3388 assert_different_registers(c_rarg0, dst, dst_pos, length);
roland@2728 3389 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3390 assert_different_registers(c_rarg1, dst, length);
roland@2728 3391
roland@2728 3392 __ mov(c_rarg2, length);
roland@2728 3393 assert_different_registers(c_rarg2, dst);
roland@2728 3394
roland@2728 3395 #ifdef _WIN64
roland@2728 3396 // Allocate abi space for args but be sure to keep stack aligned
roland@2728 3397 __ subptr(rsp, 6*wordSize);
roland@2728 3398 __ load_klass(c_rarg3, dst);
coleenp@4142 3399 __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
roland@2728 3400 store_parameter(c_rarg3, 4);
stefank@3391 3401 __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
roland@2728 3402 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3403 __ addptr(rsp, 6*wordSize);
roland@2728 3404 #else
roland@2728 3405 __ load_klass(c_rarg4, dst);
coleenp@4142 3406 __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
stefank@3391 3407 __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
roland@2728 3408 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3409 #endif
roland@2728 3410
roland@2728 3411 #endif
roland@2728 3412
roland@2728 3413 #ifndef PRODUCT
roland@2728 3414 if (PrintC1Statistics) {
roland@2728 3415 Label failed;
roland@2728 3416 __ testl(rax, rax);
roland@2728 3417 __ jcc(Assembler::notZero, failed);
roland@2728 3418 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
roland@2728 3419 __ bind(failed);
roland@2728 3420 }
roland@2728 3421 #endif
roland@2728 3422
roland@2728 3423 __ testl(rax, rax);
roland@2728 3424 __ jcc(Assembler::zero, *stub->continuation());
roland@2728 3425
roland@2728 3426 #ifndef PRODUCT
roland@2728 3427 if (PrintC1Statistics) {
roland@2728 3428 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
roland@2728 3429 }
roland@2728 3430 #endif
roland@2728 3431
roland@2728 3432 __ mov(tmp, rax);
roland@2728 3433
roland@2728 3434 __ xorl(tmp, -1);
roland@2728 3435
iveresov@2936 3436 // Restore previously spilled arguments
iveresov@2936 3437 __ movptr (dst, Address(rsp, 0*BytesPerWord));
iveresov@2936 3438 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
iveresov@2936 3439 __ movptr (length, Address(rsp, 2*BytesPerWord));
iveresov@2936 3440 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
iveresov@2936 3441 __ movptr (src, Address(rsp, 4*BytesPerWord));
iveresov@2936 3442
roland@2728 3443
roland@2728 3444 __ subl(length, tmp);
roland@2728 3445 __ addl(src_pos, tmp);
roland@2728 3446 __ addl(dst_pos, tmp);
roland@2728 3447 }
roland@2728 3448
roland@2728 3449 __ jmp(*stub->entry());
roland@2728 3450
roland@2728 3451 __ bind(cont);
roland@2728 3452 __ pop(dst);
roland@2728 3453 __ pop(src);
iveresov@2344 3454 }
duke@435 3455 }
duke@435 3456
duke@435 3457 #ifdef ASSERT
duke@435 3458 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 3459 // Sanity check the known type with the incoming class. For the
duke@435 3460 // primitive case the types must match exactly with src.klass and
duke@435 3461 // dst.klass each exactly matching the default type. For the
duke@435 3462 // object array case, if no type check is needed then either the
duke@435 3463 // dst type is exactly the expected type and the src type is a
duke@435 3464 // subtype which we can't check or src is the same array as dst
duke@435 3465 // but not necessarily exactly of type default_type.
duke@435 3466 Label known_ok, halt;
coleenp@4037 3467 __ mov_metadata(tmp, default_type->constant_encoding());
iveresov@2344 3468 #ifdef _LP64
ehelin@5694 3469 if (UseCompressedClassPointers) {
roland@4159 3470 __ encode_klass_not_null(tmp);
iveresov@2344 3471 }
iveresov@2344 3472 #endif
iveresov@2344 3473
duke@435 3474 if (basic_type != T_OBJECT) {
iveresov@2344 3475
ehelin@5694 3476 if (UseCompressedClassPointers) __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3477 else __ cmpptr(tmp, dst_klass_addr);
duke@435 3478 __ jcc(Assembler::notEqual, halt);
ehelin@5694 3479 if (UseCompressedClassPointers) __ cmpl(tmp, src_klass_addr);
iveresov@2344 3480 else __ cmpptr(tmp, src_klass_addr);
duke@435 3481 __ jcc(Assembler::equal, known_ok);
duke@435 3482 } else {
ehelin@5694 3483 if (UseCompressedClassPointers) __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3484 else __ cmpptr(tmp, dst_klass_addr);
duke@435 3485 __ jcc(Assembler::equal, known_ok);
never@739 3486 __ cmpptr(src, dst);
duke@435 3487 __ jcc(Assembler::equal, known_ok);
duke@435 3488 }
duke@435 3489 __ bind(halt);
duke@435 3490 __ stop("incorrect type information in arraycopy");
duke@435 3491 __ bind(known_ok);
duke@435 3492 }
duke@435 3493 #endif
duke@435 3494
roland@2728 3495 #ifndef PRODUCT
roland@2728 3496 if (PrintC1Statistics) {
roland@2728 3497 __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
never@739 3498 }
roland@2728 3499 #endif
never@739 3500
never@739 3501 #ifdef _LP64
never@739 3502 assert_different_registers(c_rarg0, dst, dst_pos, length);
never@739 3503 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3504 assert_different_registers(c_rarg1, length);
never@739 3505 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3506 __ mov(c_rarg2, length);
never@739 3507
never@739 3508 #else
never@739 3509 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3510 store_parameter(tmp, 0);
never@739 3511 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3512 store_parameter(tmp, 1);
duke@435 3513 store_parameter(length, 2);
never@739 3514 #endif // _LP64
roland@2728 3515
roland@2728 3516 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
roland@2728 3517 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
roland@2728 3518 const char *name;
roland@2728 3519 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
roland@2728 3520 __ call_VM_leaf(entry, 0);
duke@435 3521
duke@435 3522 __ bind(*stub->continuation());
duke@435 3523 }
duke@435 3524
drchase@5353 3525 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
drchase@5353 3526 assert(op->crc()->is_single_cpu(), "crc must be register");
drchase@5353 3527 assert(op->val()->is_single_cpu(), "byte value must be register");
drchase@5353 3528 assert(op->result_opr()->is_single_cpu(), "result must be register");
drchase@5353 3529 Register crc = op->crc()->as_register();
drchase@5353 3530 Register val = op->val()->as_register();
drchase@5353 3531 Register res = op->result_opr()->as_register();
drchase@5353 3532
drchase@5353 3533 assert_different_registers(val, crc, res);
drchase@5353 3534
drchase@5353 3535 __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
drchase@5353 3536 __ notl(crc); // ~crc
drchase@5353 3537 __ update_byte_crc32(crc, val, res);
drchase@5353 3538 __ notl(crc); // ~crc
drchase@5353 3539 __ mov(res, crc);
drchase@5353 3540 }
duke@435 3541
duke@435 3542 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 3543 Register obj = op->obj_opr()->as_register(); // may not be an oop
duke@435 3544 Register hdr = op->hdr_opr()->as_register();
duke@435 3545 Register lock = op->lock_opr()->as_register();
duke@435 3546 if (!UseFastLocking) {
duke@435 3547 __ jmp(*op->stub()->entry());
duke@435 3548 } else if (op->code() == lir_lock) {
duke@435 3549 Register scratch = noreg;
duke@435 3550 if (UseBiasedLocking) {
duke@435 3551 scratch = op->scratch_opr()->as_register();
duke@435 3552 }
duke@435 3553 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3554 // add debug info for NullPointerException only if one is possible
duke@435 3555 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
duke@435 3556 if (op->info() != NULL) {
duke@435 3557 add_debug_info_for_null_check(null_check_offset, op->info());
duke@435 3558 }
duke@435 3559 // done
duke@435 3560 } else if (op->code() == lir_unlock) {
duke@435 3561 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3562 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 3563 } else {
duke@435 3564 Unimplemented();
duke@435 3565 }
duke@435 3566 __ bind(*op->stub()->continuation());
duke@435 3567 }
duke@435 3568
duke@435 3569
duke@435 3570 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 3571 ciMethod* method = op->profiled_method();
duke@435 3572 int bci = op->profiled_bci();
twisti@3969 3573 ciMethod* callee = op->profiled_callee();
duke@435 3574
duke@435 3575 // Update counter for all call types
iveresov@2349 3576 ciMethodData* md = method->method_data_or_null();
iveresov@2349 3577 assert(md != NULL, "Sanity");
duke@435 3578 ciProfileData* data = md->bci_to_data(bci);
duke@435 3579 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 3580 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
duke@435 3581 Register mdo = op->mdo()->as_register();
coleenp@4037 3582 __ mov_metadata(mdo, md->constant_encoding());
duke@435 3583 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
duke@435 3584 Bytecodes::Code bc = method->java_code_at_bci(bci);
twisti@3969 3585 const bool callee_is_static = callee->is_loaded() && callee->is_static();
duke@435 3586 // Perform additional virtual call profiling for invokevirtual and
duke@435 3587 // invokeinterface bytecodes
duke@435 3588 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
twisti@3969 3589 !callee_is_static && // required for optimized MH invokes
iveresov@2138 3590 C1ProfileVirtualCalls) {
duke@435 3591 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 3592 Register recv = op->recv()->as_register();
duke@435 3593 assert_different_registers(mdo, recv);
duke@435 3594 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 3595 ciKlass* known_klass = op->known_holder();
iveresov@2138 3596 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 3597 // We know the type that will be seen at this call site; we can
coleenp@4037 3598 // statically update the MethodData* rather than needing to do
duke@435 3599 // dynamic tests on the receiver type
duke@435 3600
duke@435 3601 // NOTE: we should probably put a lock around this search to
duke@435 3602 // avoid collisions by concurrent compilations
duke@435 3603 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 3604 uint i;
duke@435 3605 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3606 ciKlass* receiver = vc_data->receiver(i);
duke@435 3607 if (known_klass->equals(receiver)) {
duke@435 3608 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
iveresov@2138 3609 __ addptr(data_addr, DataLayout::counter_increment);
duke@435 3610 return;
duke@435 3611 }
duke@435 3612 }
duke@435 3613
duke@435 3614 // Receiver type not found in profile data; select an empty slot
duke@435 3615
duke@435 3616 // Note that this is less efficient than it should be because it
duke@435 3617 // always does a write to the receiver part of the
duke@435 3618 // VirtualCallData rather than just the first time
duke@435 3619 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3620 ciKlass* receiver = vc_data->receiver(i);
duke@435 3621 if (receiver == NULL) {
duke@435 3622 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
coleenp@4037 3623 __ mov_metadata(recv_addr, known_klass->constant_encoding());
duke@435 3624 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
iveresov@2138 3625 __ addptr(data_addr, DataLayout::counter_increment);
duke@435 3626 return;
duke@435 3627 }
duke@435 3628 }
duke@435 3629 } else {
iveresov@2344 3630 __ load_klass(recv, recv);
duke@435 3631 Label update_done;
iveresov@2138 3632 type_profile_helper(mdo, md, data, recv, &update_done);
kvn@1641 3633 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 3634 // Increment total counter to indicate polymorphic case.
iveresov@2138 3635 __ addptr(counter_addr, DataLayout::counter_increment);
duke@435 3636
duke@435 3637 __ bind(update_done);
duke@435 3638 }
kvn@1641 3639 } else {
kvn@1641 3640 // Static call
iveresov@2138 3641 __ addptr(counter_addr, DataLayout::counter_increment);
duke@435 3642 }
duke@435 3643 }
duke@435 3644
roland@5914 3645 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
roland@5914 3646 Register obj = op->obj()->as_register();
roland@5914 3647 Register tmp = op->tmp()->as_pointer_register();
roland@5914 3648 Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
roland@5914 3649 ciKlass* exact_klass = op->exact_klass();
roland@5914 3650 intptr_t current_klass = op->current_klass();
roland@5914 3651 bool not_null = op->not_null();
roland@5914 3652 bool no_conflict = op->no_conflict();
roland@5914 3653
roland@5914 3654 Label update, next, none;
roland@5914 3655
roland@5914 3656 bool do_null = !not_null;
roland@5914 3657 bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
roland@5914 3658 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
roland@5914 3659
roland@5914 3660 assert(do_null || do_update, "why are we here?");
roland@5914 3661 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
roland@5914 3662
roland@5914 3663 __ verify_oop(obj);
roland@5914 3664
roland@5914 3665 if (tmp != obj) {
roland@5914 3666 __ mov(tmp, obj);
roland@5914 3667 }
roland@5914 3668 if (do_null) {
roland@5914 3669 __ testptr(tmp, tmp);
roland@5914 3670 __ jccb(Assembler::notZero, update);
roland@5914 3671 if (!TypeEntries::was_null_seen(current_klass)) {
roland@5914 3672 __ orptr(mdo_addr, TypeEntries::null_seen);
roland@5914 3673 }
roland@5914 3674 if (do_update) {
roland@5914 3675 #ifndef ASSERT
roland@5914 3676 __ jmpb(next);
roland@5914 3677 }
roland@5914 3678 #else
roland@5914 3679 __ jmp(next);
roland@5914 3680 }
roland@5914 3681 } else {
roland@5914 3682 __ testptr(tmp, tmp);
roland@5914 3683 __ jccb(Assembler::notZero, update);
roland@5914 3684 __ stop("unexpect null obj");
roland@5914 3685 #endif
roland@5914 3686 }
roland@5914 3687
roland@5914 3688 __ bind(update);
roland@5914 3689
roland@5914 3690 if (do_update) {
roland@5914 3691 #ifdef ASSERT
roland@5914 3692 if (exact_klass != NULL) {
roland@5914 3693 Label ok;
roland@5914 3694 __ load_klass(tmp, tmp);
roland@5914 3695 __ push(tmp);
roland@5914 3696 __ mov_metadata(tmp, exact_klass->constant_encoding());
roland@5914 3697 __ cmpptr(tmp, Address(rsp, 0));
roland@5914 3698 __ jccb(Assembler::equal, ok);
roland@5914 3699 __ stop("exact klass and actual klass differ");
roland@5914 3700 __ bind(ok);
roland@5914 3701 __ pop(tmp);
roland@5914 3702 }
roland@5914 3703 #endif
roland@5914 3704 if (!no_conflict) {
roland@5914 3705 if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
roland@5914 3706 if (exact_klass != NULL) {
roland@5914 3707 __ mov_metadata(tmp, exact_klass->constant_encoding());
roland@5914 3708 } else {
roland@5914 3709 __ load_klass(tmp, tmp);
roland@5914 3710 }
roland@5914 3711
roland@5914 3712 __ xorptr(tmp, mdo_addr);
roland@5914 3713 __ testptr(tmp, TypeEntries::type_klass_mask);
roland@5914 3714 // klass seen before, nothing to do. The unknown bit may have been
roland@5914 3715 // set already but no need to check.
roland@5914 3716 __ jccb(Assembler::zero, next);
roland@5914 3717
roland@5914 3718 __ testptr(tmp, TypeEntries::type_unknown);
roland@5914 3719 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
roland@5914 3720
roland@5914 3721 if (TypeEntries::is_type_none(current_klass)) {
roland@5914 3722 __ cmpptr(mdo_addr, 0);
roland@5914 3723 __ jccb(Assembler::equal, none);
roland@5914 3724 __ cmpptr(mdo_addr, TypeEntries::null_seen);
roland@5914 3725 __ jccb(Assembler::equal, none);
roland@5914 3726 // There is a chance that the checks above (re-reading profiling
roland@5914 3727 // data from memory) fail if another thread has just set the
roland@5914 3728 // profiling to this obj's klass
roland@5914 3729 __ xorptr(tmp, mdo_addr);
roland@5914 3730 __ testptr(tmp, TypeEntries::type_klass_mask);
roland@5914 3731 __ jccb(Assembler::zero, next);
roland@5914 3732 }
roland@5914 3733 } else {
roland@5914 3734 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
roland@5914 3735 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
roland@5914 3736
roland@5914 3737 __ movptr(tmp, mdo_addr);
roland@5914 3738 __ testptr(tmp, TypeEntries::type_unknown);
roland@5914 3739 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
roland@5914 3740 }
roland@5914 3741
roland@5914 3742 // different than before. Cannot keep accurate profile.
roland@5914 3743 __ orptr(mdo_addr, TypeEntries::type_unknown);
roland@5914 3744
roland@5914 3745 if (TypeEntries::is_type_none(current_klass)) {
roland@5914 3746 __ jmpb(next);
roland@5914 3747
roland@5914 3748 __ bind(none);
roland@5914 3749 // first time here. Set profile type.
roland@5914 3750 __ movptr(mdo_addr, tmp);
roland@5914 3751 }
roland@5914 3752 } else {
roland@5914 3753 // There's a single possible klass at this profile point
roland@5914 3754 assert(exact_klass != NULL, "should be");
roland@5914 3755 if (TypeEntries::is_type_none(current_klass)) {
roland@5914 3756 __ mov_metadata(tmp, exact_klass->constant_encoding());
roland@5914 3757 __ xorptr(tmp, mdo_addr);
roland@5914 3758 __ testptr(tmp, TypeEntries::type_klass_mask);
roland@5914 3759 #ifdef ASSERT
roland@5914 3760 __ jcc(Assembler::zero, next);
roland@5914 3761
roland@5914 3762 {
roland@5914 3763 Label ok;
roland@5914 3764 __ push(tmp);
roland@5914 3765 __ cmpptr(mdo_addr, 0);
roland@5914 3766 __ jcc(Assembler::equal, ok);
roland@5914 3767 __ cmpptr(mdo_addr, TypeEntries::null_seen);
roland@5914 3768 __ jcc(Assembler::equal, ok);
roland@5914 3769 // may have been set by another thread
roland@5914 3770 __ mov_metadata(tmp, exact_klass->constant_encoding());
roland@5914 3771 __ xorptr(tmp, mdo_addr);
roland@5914 3772 __ testptr(tmp, TypeEntries::type_mask);
roland@5914 3773 __ jcc(Assembler::zero, ok);
roland@5914 3774
roland@5914 3775 __ stop("unexpected profiling mismatch");
roland@5914 3776 __ bind(ok);
roland@5914 3777 __ pop(tmp);
roland@5914 3778 }
roland@5914 3779 #else
roland@5914 3780 __ jccb(Assembler::zero, next);
roland@5914 3781 #endif
roland@5914 3782 // first time here. Set profile type.
roland@5914 3783 __ movptr(mdo_addr, tmp);
roland@5914 3784 } else {
roland@5914 3785 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
roland@5914 3786 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
roland@5914 3787
roland@5914 3788 __ movptr(tmp, mdo_addr);
roland@5914 3789 __ testptr(tmp, TypeEntries::type_unknown);
roland@5914 3790 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
roland@5914 3791
roland@5914 3792 __ orptr(mdo_addr, TypeEntries::type_unknown);
roland@5914 3793 }
roland@5914 3794 }
roland@5914 3795
roland@5914 3796 __ bind(next);
roland@5914 3797 }
roland@5914 3798 }
roland@5914 3799
duke@435 3800 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
duke@435 3801 Unimplemented();
duke@435 3802 }
duke@435 3803
duke@435 3804
duke@435 3805 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
never@739 3806 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
duke@435 3807 }
duke@435 3808
duke@435 3809
duke@435 3810 void LIR_Assembler::align_backward_branch_target() {
duke@435 3811 __ align(BytesPerWord);
duke@435 3812 }
duke@435 3813
duke@435 3814
duke@435 3815 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3816 if (left->is_single_cpu()) {
duke@435 3817 __ negl(left->as_register());
duke@435 3818 move_regs(left->as_register(), dest->as_register());
duke@435 3819
duke@435 3820 } else if (left->is_double_cpu()) {
duke@435 3821 Register lo = left->as_register_lo();
never@739 3822 #ifdef _LP64
never@739 3823 Register dst = dest->as_register_lo();
never@739 3824 __ movptr(dst, lo);
never@739 3825 __ negptr(dst);
never@739 3826 #else
duke@435 3827 Register hi = left->as_register_hi();
duke@435 3828 __ lneg(hi, lo);
duke@435 3829 if (dest->as_register_lo() == hi) {
duke@435 3830 assert(dest->as_register_hi() != lo, "destroying register");
duke@435 3831 move_regs(hi, dest->as_register_hi());
duke@435 3832 move_regs(lo, dest->as_register_lo());
duke@435 3833 } else {
duke@435 3834 move_regs(lo, dest->as_register_lo());
duke@435 3835 move_regs(hi, dest->as_register_hi());
duke@435 3836 }
never@739 3837 #endif // _LP64
duke@435 3838
duke@435 3839 } else if (dest->is_single_xmm()) {
duke@435 3840 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
duke@435 3841 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
duke@435 3842 }
duke@435 3843 __ xorps(dest->as_xmm_float_reg(),
duke@435 3844 ExternalAddress((address)float_signflip_pool));
duke@435 3845
duke@435 3846 } else if (dest->is_double_xmm()) {
duke@435 3847 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
duke@435 3848 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
duke@435 3849 }
duke@435 3850 __ xorpd(dest->as_xmm_double_reg(),
duke@435 3851 ExternalAddress((address)double_signflip_pool));
duke@435 3852
duke@435 3853 } else if (left->is_single_fpu() || left->is_double_fpu()) {
duke@435 3854 assert(left->fpu() == 0, "arg must be on TOS");
duke@435 3855 assert(dest->fpu() == 0, "dest must be TOS");
duke@435 3856 __ fchs();
duke@435 3857
duke@435 3858 } else {
duke@435 3859 ShouldNotReachHere();
duke@435 3860 }
duke@435 3861 }
duke@435 3862
duke@435 3863
duke@435 3864 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
duke@435 3865 assert(addr->is_address() && dest->is_register(), "check");
never@739 3866 Register reg;
never@739 3867 reg = dest->as_pointer_register();
never@739 3868 __ lea(reg, as_Address(addr->as_address_ptr()));
duke@435 3869 }
duke@435 3870
duke@435 3871
duke@435 3872
duke@435 3873 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3874 assert(!tmp->is_valid(), "don't need temporary");
duke@435 3875 __ call(RuntimeAddress(dest));
duke@435 3876 if (info != NULL) {
duke@435 3877 add_call_info_here(info);
duke@435 3878 }
duke@435 3879 }
duke@435 3880
duke@435 3881
duke@435 3882 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3883 assert(type == T_LONG, "only for volatile long fields");
duke@435 3884
duke@435 3885 if (info != NULL) {
duke@435 3886 add_debug_info_for_null_check_here(info);
duke@435 3887 }
duke@435 3888
duke@435 3889 if (src->is_double_xmm()) {
duke@435 3890 if (dest->is_double_cpu()) {
never@739 3891 #ifdef _LP64
never@739 3892 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
never@739 3893 #else
never@739 3894 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
duke@435 3895 __ psrlq(src->as_xmm_double_reg(), 32);
never@739 3896 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
never@739 3897 #endif // _LP64
duke@435 3898 } else if (dest->is_double_stack()) {
duke@435 3899 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
duke@435 3900 } else if (dest->is_address()) {
duke@435 3901 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
duke@435 3902 } else {
duke@435 3903 ShouldNotReachHere();
duke@435 3904 }
duke@435 3905
duke@435 3906 } else if (dest->is_double_xmm()) {
duke@435 3907 if (src->is_double_stack()) {
duke@435 3908 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3909 } else if (src->is_address()) {
duke@435 3910 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
duke@435 3911 } else {
duke@435 3912 ShouldNotReachHere();
duke@435 3913 }
duke@435 3914
duke@435 3915 } else if (src->is_double_fpu()) {
duke@435 3916 assert(src->fpu_regnrLo() == 0, "must be TOS");
duke@435 3917 if (dest->is_double_stack()) {
duke@435 3918 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
duke@435 3919 } else if (dest->is_address()) {
duke@435 3920 __ fistp_d(as_Address(dest->as_address_ptr()));
duke@435 3921 } else {
duke@435 3922 ShouldNotReachHere();
duke@435 3923 }
duke@435 3924
duke@435 3925 } else if (dest->is_double_fpu()) {
duke@435 3926 assert(dest->fpu_regnrLo() == 0, "must be TOS");
duke@435 3927 if (src->is_double_stack()) {
duke@435 3928 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3929 } else if (src->is_address()) {
duke@435 3930 __ fild_d(as_Address(src->as_address_ptr()));
duke@435 3931 } else {
duke@435 3932 ShouldNotReachHere();
duke@435 3933 }
duke@435 3934 } else {
duke@435 3935 ShouldNotReachHere();
duke@435 3936 }
duke@435 3937 }
duke@435 3938
roland@4860 3939 #ifdef ASSERT
roland@4860 3940 // emit run-time assertion
roland@4860 3941 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
roland@4860 3942 assert(op->code() == lir_assert, "must be");
roland@4860 3943
roland@4860 3944 if (op->in_opr1()->is_valid()) {
roland@4860 3945 assert(op->in_opr2()->is_valid(), "both operands must be valid");
roland@4860 3946 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
roland@4860 3947 } else {
roland@4860 3948 assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
roland@4860 3949 assert(op->condition() == lir_cond_always, "no other conditions allowed");
roland@4860 3950 }
roland@4860 3951
roland@4860 3952 Label ok;
roland@4860 3953 if (op->condition() != lir_cond_always) {
roland@4860 3954 Assembler::Condition acond = Assembler::zero;
roland@4860 3955 switch (op->condition()) {
roland@4860 3956 case lir_cond_equal: acond = Assembler::equal; break;
roland@4860 3957 case lir_cond_notEqual: acond = Assembler::notEqual; break;
roland@4860 3958 case lir_cond_less: acond = Assembler::less; break;
roland@4860 3959 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
roland@4860 3960 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
roland@4860 3961 case lir_cond_greater: acond = Assembler::greater; break;
roland@4860 3962 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
roland@4860 3963 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
roland@4860 3964 default: ShouldNotReachHere();
roland@4860 3965 }
roland@4860 3966 __ jcc(acond, ok);
roland@4860 3967 }
roland@4860 3968 if (op->halt()) {
roland@4860 3969 const char* str = __ code_string(op->msg());
roland@4860 3970 __ stop(str);
roland@4860 3971 } else {
roland@4860 3972 breakpoint();
roland@4860 3973 }
roland@4860 3974 __ bind(ok);
roland@4860 3975 }
roland@4860 3976 #endif
duke@435 3977
duke@435 3978 void LIR_Assembler::membar() {
never@739 3979 // QQQ sparc TSO uses this,
never@739 3980 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
duke@435 3981 }
duke@435 3982
duke@435 3983 void LIR_Assembler::membar_acquire() {
duke@435 3984 // No x86 machines currently require load fences
duke@435 3985 // __ load_fence();
duke@435 3986 }
duke@435 3987
duke@435 3988 void LIR_Assembler::membar_release() {
duke@435 3989 // No x86 machines currently require store fences
duke@435 3990 // __ store_fence();
duke@435 3991 }
duke@435 3992
jiangli@3592 3993 void LIR_Assembler::membar_loadload() {
jiangli@3592 3994 // no-op
jiangli@3592 3995 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
jiangli@3592 3996 }
jiangli@3592 3997
jiangli@3592 3998 void LIR_Assembler::membar_storestore() {
jiangli@3592 3999 // no-op
jiangli@3592 4000 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
jiangli@3592 4001 }
jiangli@3592 4002
jiangli@3592 4003 void LIR_Assembler::membar_loadstore() {
jiangli@3592 4004 // no-op
jiangli@3592 4005 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
jiangli@3592 4006 }
jiangli@3592 4007
jiangli@3592 4008 void LIR_Assembler::membar_storeload() {
jiangli@3592 4009 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
jiangli@3592 4010 }
jiangli@3592 4011
duke@435 4012 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 4013 assert(result_reg->is_register(), "check");
never@739 4014 #ifdef _LP64
never@739 4015 // __ get_thread(result_reg->as_register_lo());
never@739 4016 __ mov(result_reg->as_register(), r15_thread);
never@739 4017 #else
duke@435 4018 __ get_thread(result_reg->as_register());
never@739 4019 #endif // _LP64
duke@435 4020 }
duke@435 4021
duke@435 4022
duke@435 4023 void LIR_Assembler::peephole(LIR_List*) {
duke@435 4024 // do nothing for now
duke@435 4025 }
duke@435 4026
roland@4106 4027 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
roland@4106 4028 assert(data == dest, "xchg/xadd uses only 2 operands");
roland@4106 4029
roland@4106 4030 if (data->type() == T_INT) {
roland@4106 4031 if (code == lir_xadd) {
roland@4106 4032 if (os::is_MP()) {
roland@4106 4033 __ lock();
roland@4106 4034 }
roland@4106 4035 __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
roland@4106 4036 } else {
roland@4106 4037 __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
roland@4106 4038 }
roland@4106 4039 } else if (data->is_oop()) {
roland@4106 4040 assert (code == lir_xchg, "xadd for oops");
roland@4106 4041 Register obj = data->as_register();
roland@4106 4042 #ifdef _LP64
roland@4106 4043 if (UseCompressedOops) {
roland@4106 4044 __ encode_heap_oop(obj);
roland@4106 4045 __ xchgl(obj, as_Address(src->as_address_ptr()));
roland@4106 4046 __ decode_heap_oop(obj);
roland@4106 4047 } else {
roland@4106 4048 __ xchgptr(obj, as_Address(src->as_address_ptr()));
roland@4106 4049 }
roland@4106 4050 #else
roland@4106 4051 __ xchgl(obj, as_Address(src->as_address_ptr()));
roland@4106 4052 #endif
roland@4106 4053 } else if (data->type() == T_LONG) {
roland@4106 4054 #ifdef _LP64
roland@4106 4055 assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
roland@4106 4056 if (code == lir_xadd) {
roland@4106 4057 if (os::is_MP()) {
roland@4106 4058 __ lock();
roland@4106 4059 }
roland@4106 4060 __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
roland@4106 4061 } else {
roland@4106 4062 __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
roland@4106 4063 }
roland@4106 4064 #else
roland@4106 4065 ShouldNotReachHere();
roland@4106 4066 #endif
roland@4106 4067 } else {
roland@4106 4068 ShouldNotReachHere();
roland@4106 4069 }
roland@4106 4070 }
duke@435 4071
duke@435 4072 #undef __

mercurial