src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Fri, 18 Oct 2013 10:41:56 +0200

author
rbackman
date
Fri, 18 Oct 2013 10:41:56 +0200
changeset 5997
59e8ad757e19
parent 5994
9acbfe04b5c3
child 6278
12ad8db39f76
permissions
-rw-r--r--

8026844: Various Math functions needs intrinsification
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "c1/c1_Compilation.hpp"
    29 #include "c1/c1_LIRAssembler.hpp"
    30 #include "c1/c1_MacroAssembler.hpp"
    31 #include "c1/c1_Runtime1.hpp"
    32 #include "c1/c1_ValueStack.hpp"
    33 #include "ci/ciArrayKlass.hpp"
    34 #include "ci/ciInstance.hpp"
    35 #include "gc_interface/collectedHeap.hpp"
    36 #include "memory/barrierSet.hpp"
    37 #include "memory/cardTableModRefBS.hpp"
    38 #include "nativeInst_x86.hpp"
    39 #include "oops/objArrayKlass.hpp"
    40 #include "runtime/sharedRuntime.hpp"
    43 // These masks are used to provide 128-bit aligned bitmasks to the XMM
    44 // instructions, to allow sign-masking or sign-bit flipping.  They allow
    45 // fast versions of NegF/NegD and AbsF/AbsD.
    47 // Note: 'double' and 'long long' have 32-bits alignment on x86.
    48 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
    49   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
    50   // of 128-bits operands for SSE instructions.
    51   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
    52   // Store the value to a 128-bits operand.
    53   operand[0] = lo;
    54   operand[1] = hi;
    55   return operand;
    56 }
    58 // Buffer for 128-bits masks used by SSE instructions.
    59 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
    61 // Static initialization during VM startup.
    62 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
    63 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
    64 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
    65 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
    69 NEEDS_CLEANUP // remove this definitions ?
    70 const Register IC_Klass    = rax;   // where the IC klass is cached
    71 const Register SYNC_header = rax;   // synchronization header
    72 const Register SHIFT_count = rcx;   // where count for shift operations must be
    74 #define __ _masm->
    77 static void select_different_registers(Register preserve,
    78                                        Register extra,
    79                                        Register &tmp1,
    80                                        Register &tmp2) {
    81   if (tmp1 == preserve) {
    82     assert_different_registers(tmp1, tmp2, extra);
    83     tmp1 = extra;
    84   } else if (tmp2 == preserve) {
    85     assert_different_registers(tmp1, tmp2, extra);
    86     tmp2 = extra;
    87   }
    88   assert_different_registers(preserve, tmp1, tmp2);
    89 }
    93 static void select_different_registers(Register preserve,
    94                                        Register extra,
    95                                        Register &tmp1,
    96                                        Register &tmp2,
    97                                        Register &tmp3) {
    98   if (tmp1 == preserve) {
    99     assert_different_registers(tmp1, tmp2, tmp3, extra);
   100     tmp1 = extra;
   101   } else if (tmp2 == preserve) {
   102     assert_different_registers(tmp1, tmp2, tmp3, extra);
   103     tmp2 = extra;
   104   } else if (tmp3 == preserve) {
   105     assert_different_registers(tmp1, tmp2, tmp3, extra);
   106     tmp3 = extra;
   107   }
   108   assert_different_registers(preserve, tmp1, tmp2, tmp3);
   109 }
   113 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
   114   if (opr->is_constant()) {
   115     LIR_Const* constant = opr->as_constant_ptr();
   116     switch (constant->type()) {
   117       case T_INT: {
   118         return true;
   119       }
   121       default:
   122         return false;
   123     }
   124   }
   125   return false;
   126 }
   129 LIR_Opr LIR_Assembler::receiverOpr() {
   130   return FrameMap::receiver_opr;
   131 }
   133 LIR_Opr LIR_Assembler::osrBufferPointer() {
   134   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
   135 }
   137 //--------------fpu register translations-----------------------
   140 address LIR_Assembler::float_constant(float f) {
   141   address const_addr = __ float_constant(f);
   142   if (const_addr == NULL) {
   143     bailout("const section overflow");
   144     return __ code()->consts()->start();
   145   } else {
   146     return const_addr;
   147   }
   148 }
   151 address LIR_Assembler::double_constant(double d) {
   152   address const_addr = __ double_constant(d);
   153   if (const_addr == NULL) {
   154     bailout("const section overflow");
   155     return __ code()->consts()->start();
   156   } else {
   157     return const_addr;
   158   }
   159 }
   162 void LIR_Assembler::set_24bit_FPU() {
   163   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   164 }
   166 void LIR_Assembler::reset_FPU() {
   167   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   168 }
   170 void LIR_Assembler::fpop() {
   171   __ fpop();
   172 }
   174 void LIR_Assembler::fxch(int i) {
   175   __ fxch(i);
   176 }
   178 void LIR_Assembler::fld(int i) {
   179   __ fld_s(i);
   180 }
   182 void LIR_Assembler::ffree(int i) {
   183   __ ffree(i);
   184 }
   186 void LIR_Assembler::breakpoint() {
   187   __ int3();
   188 }
   190 void LIR_Assembler::push(LIR_Opr opr) {
   191   if (opr->is_single_cpu()) {
   192     __ push_reg(opr->as_register());
   193   } else if (opr->is_double_cpu()) {
   194     NOT_LP64(__ push_reg(opr->as_register_hi()));
   195     __ push_reg(opr->as_register_lo());
   196   } else if (opr->is_stack()) {
   197     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
   198   } else if (opr->is_constant()) {
   199     LIR_Const* const_opr = opr->as_constant_ptr();
   200     if (const_opr->type() == T_OBJECT) {
   201       __ push_oop(const_opr->as_jobject());
   202     } else if (const_opr->type() == T_INT) {
   203       __ push_jint(const_opr->as_jint());
   204     } else {
   205       ShouldNotReachHere();
   206     }
   208   } else {
   209     ShouldNotReachHere();
   210   }
   211 }
   213 void LIR_Assembler::pop(LIR_Opr opr) {
   214   if (opr->is_single_cpu()) {
   215     __ pop_reg(opr->as_register());
   216   } else {
   217     ShouldNotReachHere();
   218   }
   219 }
   221 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
   222   return addr->base()->is_illegal() && addr->index()->is_illegal();
   223 }
   225 //-------------------------------------------
   227 Address LIR_Assembler::as_Address(LIR_Address* addr) {
   228   return as_Address(addr, rscratch1);
   229 }
   231 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
   232   if (addr->base()->is_illegal()) {
   233     assert(addr->index()->is_illegal(), "must be illegal too");
   234     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
   235     if (! __ reachable(laddr)) {
   236       __ movptr(tmp, laddr.addr());
   237       Address res(tmp, 0);
   238       return res;
   239     } else {
   240       return __ as_Address(laddr);
   241     }
   242   }
   244   Register base = addr->base()->as_pointer_register();
   246   if (addr->index()->is_illegal()) {
   247     return Address( base, addr->disp());
   248   } else if (addr->index()->is_cpu_register()) {
   249     Register index = addr->index()->as_pointer_register();
   250     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
   251   } else if (addr->index()->is_constant()) {
   252     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
   253     assert(Assembler::is_simm32(addr_offset), "must be");
   255     return Address(base, addr_offset);
   256   } else {
   257     Unimplemented();
   258     return Address();
   259   }
   260 }
   263 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
   264   Address base = as_Address(addr);
   265   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
   266 }
   269 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
   270   return as_Address(addr);
   271 }
   274 void LIR_Assembler::osr_entry() {
   275   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   276   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   277   ValueStack* entry_state = osr_entry->state();
   278   int number_of_locks = entry_state->locks_size();
   280   // we jump here if osr happens with the interpreter
   281   // state set up to continue at the beginning of the
   282   // loop that triggered osr - in particular, we have
   283   // the following registers setup:
   284   //
   285   // rcx: osr buffer
   286   //
   288   // build frame
   289   ciMethod* m = compilation()->method();
   290   __ build_frame(initial_frame_size_in_bytes());
   292   // OSR buffer is
   293   //
   294   // locals[nlocals-1..0]
   295   // monitors[0..number_of_locks]
   296   //
   297   // locals is a direct copy of the interpreter frame so in the osr buffer
   298   // so first slot in the local array is the last local from the interpreter
   299   // and last slot is local[0] (receiver) from the interpreter
   300   //
   301   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   302   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   303   // in the interpreter frame (the method lock if a sync method)
   305   // Initialize monitors in the compiled activation.
   306   //   rcx: pointer to osr buffer
   307   //
   308   // All other registers are dead at this point and the locals will be
   309   // copied into place by code emitted in the IR.
   311   Register OSR_buf = osrBufferPointer()->as_pointer_register();
   312   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   313     int monitor_offset = BytesPerWord * method()->max_locals() +
   314       (2 * BytesPerWord) * (number_of_locks - 1);
   315     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   316     // the OSR buffer using 2 word entries: first the lock and then
   317     // the oop.
   318     for (int i = 0; i < number_of_locks; i++) {
   319       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   320 #ifdef ASSERT
   321       // verify the interpreter's monitor has a non-null object
   322       {
   323         Label L;
   324         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
   325         __ jcc(Assembler::notZero, L);
   326         __ stop("locked object is NULL");
   327         __ bind(L);
   328       }
   329 #endif
   330       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
   331       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
   332       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
   333       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
   334     }
   335   }
   336 }
   339 // inline cache check; done before the frame is built.
   340 int LIR_Assembler::check_icache() {
   341   Register receiver = FrameMap::receiver_opr->as_register();
   342   Register ic_klass = IC_Klass;
   343   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
   344   const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
   345   if (!do_post_padding) {
   346     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
   347     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
   348       __ nop();
   349     }
   350   }
   351   int offset = __ offset();
   352   __ inline_cache_check(receiver, IC_Klass);
   353   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
   354   if (do_post_padding) {
   355     // force alignment after the cache check.
   356     // It's been verified to be aligned if !VerifyOops
   357     __ align(CodeEntryAlignment);
   358   }
   359   return offset;
   360 }
   363 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
   364   jobject o = NULL;
   365   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
   366   __ movoop(reg, o);
   367   patching_epilog(patch, lir_patch_normal, reg, info);
   368 }
   370 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
   371   Metadata* o = NULL;
   372   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
   373   __ mov_metadata(reg, o);
   374   patching_epilog(patch, lir_patch_normal, reg, info);
   375 }
   377 // This specifies the rsp decrement needed to build the frame
   378 int LIR_Assembler::initial_frame_size_in_bytes() {
   379   // if rounding, must let FrameMap know!
   381   // The frame_map records size in slots (32bit word)
   383   // subtract two words to account for return address and link
   384   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
   385 }
   388 int LIR_Assembler::emit_exception_handler() {
   389   // if the last instruction is a call (typically to do a throw which
   390   // is coming at the end after block reordering) the return address
   391   // must still point into the code area in order to avoid assertion
   392   // failures when searching for the corresponding bci => add a nop
   393   // (was bug 5/14/1999 - gri)
   394   __ nop();
   396   // generate code for exception handler
   397   address handler_base = __ start_a_stub(exception_handler_size);
   398   if (handler_base == NULL) {
   399     // not enough space left for the handler
   400     bailout("exception handler overflow");
   401     return -1;
   402   }
   404   int offset = code_offset();
   406   // the exception oop and pc are in rax, and rdx
   407   // no other registers need to be preserved, so invalidate them
   408   __ invalidate_registers(false, true, true, false, true, true);
   410   // check that there is really an exception
   411   __ verify_not_null_oop(rax);
   413   // search an exception handler (rax: exception oop, rdx: throwing pc)
   414   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
   415   __ should_not_reach_here();
   416   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
   417   __ end_a_stub();
   419   return offset;
   420 }
   423 // Emit the code to remove the frame from the stack in the exception
   424 // unwind path.
   425 int LIR_Assembler::emit_unwind_handler() {
   426 #ifndef PRODUCT
   427   if (CommentedAssembly) {
   428     _masm->block_comment("Unwind handler");
   429   }
   430 #endif
   432   int offset = code_offset();
   434   // Fetch the exception from TLS and clear out exception related thread state
   435   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
   436   NOT_LP64(__ get_thread(rsi));
   437   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
   438   __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
   439   __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
   441   __ bind(_unwind_handler_entry);
   442   __ verify_not_null_oop(rax);
   443   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   444     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
   445   }
   447   // Preform needed unlocking
   448   MonitorExitStub* stub = NULL;
   449   if (method()->is_synchronized()) {
   450     monitor_address(0, FrameMap::rax_opr);
   451     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
   452     __ unlock_object(rdi, rsi, rax, *stub->entry());
   453     __ bind(*stub->continuation());
   454   }
   456   if (compilation()->env()->dtrace_method_probes()) {
   457 #ifdef _LP64
   458     __ mov(rdi, r15_thread);
   459     __ mov_metadata(rsi, method()->constant_encoding());
   460 #else
   461     __ get_thread(rax);
   462     __ movptr(Address(rsp, 0), rax);
   463     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
   464 #endif
   465     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
   466   }
   468   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   469     __ mov(rax, rbx);  // Restore the exception
   470   }
   472   // remove the activation and dispatch to the unwind handler
   473   __ remove_frame(initial_frame_size_in_bytes());
   474   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
   476   // Emit the slow path assembly
   477   if (stub != NULL) {
   478     stub->emit_code(this);
   479   }
   481   return offset;
   482 }
   485 int LIR_Assembler::emit_deopt_handler() {
   486   // if the last instruction is a call (typically to do a throw which
   487   // is coming at the end after block reordering) the return address
   488   // must still point into the code area in order to avoid assertion
   489   // failures when searching for the corresponding bci => add a nop
   490   // (was bug 5/14/1999 - gri)
   491   __ nop();
   493   // generate code for exception handler
   494   address handler_base = __ start_a_stub(deopt_handler_size);
   495   if (handler_base == NULL) {
   496     // not enough space left for the handler
   497     bailout("deopt handler overflow");
   498     return -1;
   499   }
   501   int offset = code_offset();
   502   InternalAddress here(__ pc());
   504   __ pushptr(here.addr());
   505   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
   506   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
   507   __ end_a_stub();
   509   return offset;
   510 }
   513 // This is the fast version of java.lang.String.compare; it has not
   514 // OSR-entry and therefore, we generate a slow version for OSR's
   515 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
   516   __ movptr (rbx, rcx); // receiver is in rcx
   517   __ movptr (rax, arg1->as_register());
   519   // Get addresses of first characters from both Strings
   520   __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
   521   if (java_lang_String::has_offset_field()) {
   522     __ movptr     (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
   523     __ movl       (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
   524     __ lea        (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   525   } else {
   526     __ movl       (rax, Address(rsi, arrayOopDesc::length_offset_in_bytes()));
   527     __ lea        (rsi, Address(rsi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   528   }
   530   // rbx, may be NULL
   531   add_debug_info_for_null_check_here(info);
   532   __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
   533   if (java_lang_String::has_offset_field()) {
   534     __ movptr     (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
   535     __ movl       (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   536     __ lea        (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   537   } else {
   538     __ movl       (rbx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
   539     __ lea        (rdi, Address(rdi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   540   }
   542   // compute minimum length (in rax) and difference of lengths (on top of stack)
   543   __ mov   (rcx, rbx);
   544   __ subptr(rbx, rax); // subtract lengths
   545   __ push  (rbx);      // result
   546   __ cmov  (Assembler::lessEqual, rax, rcx);
   548   // is minimum length 0?
   549   Label noLoop, haveResult;
   550   __ testptr (rax, rax);
   551   __ jcc (Assembler::zero, noLoop);
   553   // compare first characters
   554   __ load_unsigned_short(rcx, Address(rdi, 0));
   555   __ load_unsigned_short(rbx, Address(rsi, 0));
   556   __ subl(rcx, rbx);
   557   __ jcc(Assembler::notZero, haveResult);
   558   // starting loop
   559   __ decrement(rax); // we already tested index: skip one
   560   __ jcc(Assembler::zero, noLoop);
   562   // set rsi.edi to the end of the arrays (arrays have same length)
   563   // negate the index
   565   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   566   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   567   __ negptr(rax);
   569   // compare the strings in a loop
   571   Label loop;
   572   __ align(wordSize);
   573   __ bind(loop);
   574   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
   575   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
   576   __ subl(rcx, rbx);
   577   __ jcc(Assembler::notZero, haveResult);
   578   __ increment(rax);
   579   __ jcc(Assembler::notZero, loop);
   581   // strings are equal up to min length
   583   __ bind(noLoop);
   584   __ pop(rax);
   585   return_op(LIR_OprFact::illegalOpr);
   587   __ bind(haveResult);
   588   // leave instruction is going to discard the TOS value
   589   __ mov (rax, rcx); // result of call is in rax,
   590 }
   593 void LIR_Assembler::return_op(LIR_Opr result) {
   594   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
   595   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
   596     assert(result->fpu() == 0, "result must already be on TOS");
   597   }
   599   // Pop the stack before the safepoint code
   600   __ remove_frame(initial_frame_size_in_bytes());
   602   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
   604   // Note: we do not need to round double result; float result has the right precision
   605   // the poll sets the condition code, but no data registers
   606   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   607                               relocInfo::poll_return_type);
   609   if (Assembler::is_polling_page_far()) {
   610     __ lea(rscratch1, polling_page);
   611     __ relocate(relocInfo::poll_return_type);
   612     __ testl(rax, Address(rscratch1, 0));
   613   } else {
   614     __ testl(rax, polling_page);
   615   }
   616   __ ret(0);
   617 }
   620 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
   621   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   622                               relocInfo::poll_type);
   623   guarantee(info != NULL, "Shouldn't be NULL");
   624   int offset = __ offset();
   625   if (Assembler::is_polling_page_far()) {
   626     __ lea(rscratch1, polling_page);
   627     offset = __ offset();
   628     add_debug_info_for_branch(info);
   629     __ testl(rax, Address(rscratch1, 0));
   630   } else {
   631     add_debug_info_for_branch(info);
   632     __ testl(rax, polling_page);
   633   }
   634   return offset;
   635 }
   638 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
   639   if (from_reg != to_reg) __ mov(to_reg, from_reg);
   640 }
   642 void LIR_Assembler::swap_reg(Register a, Register b) {
   643   __ xchgptr(a, b);
   644 }
   647 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
   648   assert(src->is_constant(), "should not call otherwise");
   649   assert(dest->is_register(), "should not call otherwise");
   650   LIR_Const* c = src->as_constant_ptr();
   652   switch (c->type()) {
   653     case T_INT: {
   654       assert(patch_code == lir_patch_none, "no patching handled here");
   655       __ movl(dest->as_register(), c->as_jint());
   656       break;
   657     }
   659     case T_ADDRESS: {
   660       assert(patch_code == lir_patch_none, "no patching handled here");
   661       __ movptr(dest->as_register(), c->as_jint());
   662       break;
   663     }
   665     case T_LONG: {
   666       assert(patch_code == lir_patch_none, "no patching handled here");
   667 #ifdef _LP64
   668       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
   669 #else
   670       __ movptr(dest->as_register_lo(), c->as_jint_lo());
   671       __ movptr(dest->as_register_hi(), c->as_jint_hi());
   672 #endif // _LP64
   673       break;
   674     }
   676     case T_OBJECT: {
   677       if (patch_code != lir_patch_none) {
   678         jobject2reg_with_patching(dest->as_register(), info);
   679       } else {
   680         __ movoop(dest->as_register(), c->as_jobject());
   681       }
   682       break;
   683     }
   685     case T_METADATA: {
   686       if (patch_code != lir_patch_none) {
   687         klass2reg_with_patching(dest->as_register(), info);
   688       } else {
   689         __ mov_metadata(dest->as_register(), c->as_metadata());
   690       }
   691       break;
   692     }
   694     case T_FLOAT: {
   695       if (dest->is_single_xmm()) {
   696         if (c->is_zero_float()) {
   697           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
   698         } else {
   699           __ movflt(dest->as_xmm_float_reg(),
   700                    InternalAddress(float_constant(c->as_jfloat())));
   701         }
   702       } else {
   703         assert(dest->is_single_fpu(), "must be");
   704         assert(dest->fpu_regnr() == 0, "dest must be TOS");
   705         if (c->is_zero_float()) {
   706           __ fldz();
   707         } else if (c->is_one_float()) {
   708           __ fld1();
   709         } else {
   710           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
   711         }
   712       }
   713       break;
   714     }
   716     case T_DOUBLE: {
   717       if (dest->is_double_xmm()) {
   718         if (c->is_zero_double()) {
   719           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
   720         } else {
   721           __ movdbl(dest->as_xmm_double_reg(),
   722                     InternalAddress(double_constant(c->as_jdouble())));
   723         }
   724       } else {
   725         assert(dest->is_double_fpu(), "must be");
   726         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
   727         if (c->is_zero_double()) {
   728           __ fldz();
   729         } else if (c->is_one_double()) {
   730           __ fld1();
   731         } else {
   732           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
   733         }
   734       }
   735       break;
   736     }
   738     default:
   739       ShouldNotReachHere();
   740   }
   741 }
   743 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
   744   assert(src->is_constant(), "should not call otherwise");
   745   assert(dest->is_stack(), "should not call otherwise");
   746   LIR_Const* c = src->as_constant_ptr();
   748   switch (c->type()) {
   749     case T_INT:  // fall through
   750     case T_FLOAT:
   751       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   752       break;
   754     case T_ADDRESS:
   755       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   756       break;
   758     case T_OBJECT:
   759       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
   760       break;
   762     case T_LONG:  // fall through
   763     case T_DOUBLE:
   764 #ifdef _LP64
   765       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   766                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
   767 #else
   768       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   769                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
   770       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   771                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
   772 #endif // _LP64
   773       break;
   775     default:
   776       ShouldNotReachHere();
   777   }
   778 }
   780 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
   781   assert(src->is_constant(), "should not call otherwise");
   782   assert(dest->is_address(), "should not call otherwise");
   783   LIR_Const* c = src->as_constant_ptr();
   784   LIR_Address* addr = dest->as_address_ptr();
   786   int null_check_here = code_offset();
   787   switch (type) {
   788     case T_INT:    // fall through
   789     case T_FLOAT:
   790       __ movl(as_Address(addr), c->as_jint_bits());
   791       break;
   793     case T_ADDRESS:
   794       __ movptr(as_Address(addr), c->as_jint_bits());
   795       break;
   797     case T_OBJECT:  // fall through
   798     case T_ARRAY:
   799       if (c->as_jobject() == NULL) {
   800         if (UseCompressedOops && !wide) {
   801           __ movl(as_Address(addr), (int32_t)NULL_WORD);
   802         } else {
   803           __ movptr(as_Address(addr), NULL_WORD);
   804         }
   805       } else {
   806         if (is_literal_address(addr)) {
   807           ShouldNotReachHere();
   808           __ movoop(as_Address(addr, noreg), c->as_jobject());
   809         } else {
   810 #ifdef _LP64
   811           __ movoop(rscratch1, c->as_jobject());
   812           if (UseCompressedOops && !wide) {
   813             __ encode_heap_oop(rscratch1);
   814             null_check_here = code_offset();
   815             __ movl(as_Address_lo(addr), rscratch1);
   816           } else {
   817             null_check_here = code_offset();
   818             __ movptr(as_Address_lo(addr), rscratch1);
   819           }
   820 #else
   821           __ movoop(as_Address(addr), c->as_jobject());
   822 #endif
   823         }
   824       }
   825       break;
   827     case T_LONG:    // fall through
   828     case T_DOUBLE:
   829 #ifdef _LP64
   830       if (is_literal_address(addr)) {
   831         ShouldNotReachHere();
   832         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
   833       } else {
   834         __ movptr(r10, (intptr_t)c->as_jlong_bits());
   835         null_check_here = code_offset();
   836         __ movptr(as_Address_lo(addr), r10);
   837       }
   838 #else
   839       // Always reachable in 32bit so this doesn't produce useless move literal
   840       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
   841       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
   842 #endif // _LP64
   843       break;
   845     case T_BOOLEAN: // fall through
   846     case T_BYTE:
   847       __ movb(as_Address(addr), c->as_jint() & 0xFF);
   848       break;
   850     case T_CHAR:    // fall through
   851     case T_SHORT:
   852       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
   853       break;
   855     default:
   856       ShouldNotReachHere();
   857   };
   859   if (info != NULL) {
   860     add_debug_info_for_null_check(null_check_here, info);
   861   }
   862 }
   865 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
   866   assert(src->is_register(), "should not call otherwise");
   867   assert(dest->is_register(), "should not call otherwise");
   869   // move between cpu-registers
   870   if (dest->is_single_cpu()) {
   871 #ifdef _LP64
   872     if (src->type() == T_LONG) {
   873       // Can do LONG -> OBJECT
   874       move_regs(src->as_register_lo(), dest->as_register());
   875       return;
   876     }
   877 #endif
   878     assert(src->is_single_cpu(), "must match");
   879     if (src->type() == T_OBJECT) {
   880       __ verify_oop(src->as_register());
   881     }
   882     move_regs(src->as_register(), dest->as_register());
   884   } else if (dest->is_double_cpu()) {
   885 #ifdef _LP64
   886     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
   887       // Surprising to me but we can see move of a long to t_object
   888       __ verify_oop(src->as_register());
   889       move_regs(src->as_register(), dest->as_register_lo());
   890       return;
   891     }
   892 #endif
   893     assert(src->is_double_cpu(), "must match");
   894     Register f_lo = src->as_register_lo();
   895     Register f_hi = src->as_register_hi();
   896     Register t_lo = dest->as_register_lo();
   897     Register t_hi = dest->as_register_hi();
   898 #ifdef _LP64
   899     assert(f_hi == f_lo, "must be same");
   900     assert(t_hi == t_lo, "must be same");
   901     move_regs(f_lo, t_lo);
   902 #else
   903     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
   906     if (f_lo == t_hi && f_hi == t_lo) {
   907       swap_reg(f_lo, f_hi);
   908     } else if (f_hi == t_lo) {
   909       assert(f_lo != t_hi, "overwriting register");
   910       move_regs(f_hi, t_hi);
   911       move_regs(f_lo, t_lo);
   912     } else {
   913       assert(f_hi != t_lo, "overwriting register");
   914       move_regs(f_lo, t_lo);
   915       move_regs(f_hi, t_hi);
   916     }
   917 #endif // LP64
   919     // special moves from fpu-register to xmm-register
   920     // necessary for method results
   921   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
   922     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
   923     __ fld_s(Address(rsp, 0));
   924   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
   925     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
   926     __ fld_d(Address(rsp, 0));
   927   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
   928     __ fstp_s(Address(rsp, 0));
   929     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
   930   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
   931     __ fstp_d(Address(rsp, 0));
   932     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
   934     // move between xmm-registers
   935   } else if (dest->is_single_xmm()) {
   936     assert(src->is_single_xmm(), "must match");
   937     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
   938   } else if (dest->is_double_xmm()) {
   939     assert(src->is_double_xmm(), "must match");
   940     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
   942     // move between fpu-registers (no instruction necessary because of fpu-stack)
   943   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
   944     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
   945     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
   946   } else {
   947     ShouldNotReachHere();
   948   }
   949 }
   951 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
   952   assert(src->is_register(), "should not call otherwise");
   953   assert(dest->is_stack(), "should not call otherwise");
   955   if (src->is_single_cpu()) {
   956     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
   957     if (type == T_OBJECT || type == T_ARRAY) {
   958       __ verify_oop(src->as_register());
   959       __ movptr (dst, src->as_register());
   960     } else if (type == T_METADATA) {
   961       __ movptr (dst, src->as_register());
   962     } else {
   963       __ movl (dst, src->as_register());
   964     }
   966   } else if (src->is_double_cpu()) {
   967     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
   968     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
   969     __ movptr (dstLO, src->as_register_lo());
   970     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
   972   } else if (src->is_single_xmm()) {
   973     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   974     __ movflt(dst_addr, src->as_xmm_float_reg());
   976   } else if (src->is_double_xmm()) {
   977     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   978     __ movdbl(dst_addr, src->as_xmm_double_reg());
   980   } else if (src->is_single_fpu()) {
   981     assert(src->fpu_regnr() == 0, "argument must be on TOS");
   982     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   983     if (pop_fpu_stack)     __ fstp_s (dst_addr);
   984     else                   __ fst_s  (dst_addr);
   986   } else if (src->is_double_fpu()) {
   987     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
   988     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   989     if (pop_fpu_stack)     __ fstp_d (dst_addr);
   990     else                   __ fst_d  (dst_addr);
   992   } else {
   993     ShouldNotReachHere();
   994   }
   995 }
   998 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
   999   LIR_Address* to_addr = dest->as_address_ptr();
  1000   PatchingStub* patch = NULL;
  1001   Register compressed_src = rscratch1;
  1003   if (type == T_ARRAY || type == T_OBJECT) {
  1004     __ verify_oop(src->as_register());
  1005 #ifdef _LP64
  1006     if (UseCompressedOops && !wide) {
  1007       __ movptr(compressed_src, src->as_register());
  1008       __ encode_heap_oop(compressed_src);
  1010 #endif
  1013   if (patch_code != lir_patch_none) {
  1014     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1015     Address toa = as_Address(to_addr);
  1016     assert(toa.disp() != 0, "must have");
  1019   int null_check_here = code_offset();
  1020   switch (type) {
  1021     case T_FLOAT: {
  1022       if (src->is_single_xmm()) {
  1023         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
  1024       } else {
  1025         assert(src->is_single_fpu(), "must be");
  1026         assert(src->fpu_regnr() == 0, "argument must be on TOS");
  1027         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
  1028         else                    __ fst_s (as_Address(to_addr));
  1030       break;
  1033     case T_DOUBLE: {
  1034       if (src->is_double_xmm()) {
  1035         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
  1036       } else {
  1037         assert(src->is_double_fpu(), "must be");
  1038         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
  1039         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
  1040         else                    __ fst_d (as_Address(to_addr));
  1042       break;
  1045     case T_ARRAY:   // fall through
  1046     case T_OBJECT:  // fall through
  1047       if (UseCompressedOops && !wide) {
  1048         __ movl(as_Address(to_addr), compressed_src);
  1049       } else {
  1050         __ movptr(as_Address(to_addr), src->as_register());
  1052       break;
  1053     case T_METADATA:
  1054       // We get here to store a method pointer to the stack to pass to
  1055       // a dtrace runtime call. This can't work on 64 bit with
  1056       // compressed klass ptrs: T_METADATA can be a compressed klass
  1057       // ptr or a 64 bit method pointer.
  1058       LP64_ONLY(ShouldNotReachHere());
  1059       __ movptr(as_Address(to_addr), src->as_register());
  1060       break;
  1061     case T_ADDRESS:
  1062       __ movptr(as_Address(to_addr), src->as_register());
  1063       break;
  1064     case T_INT:
  1065       __ movl(as_Address(to_addr), src->as_register());
  1066       break;
  1068     case T_LONG: {
  1069       Register from_lo = src->as_register_lo();
  1070       Register from_hi = src->as_register_hi();
  1071 #ifdef _LP64
  1072       __ movptr(as_Address_lo(to_addr), from_lo);
  1073 #else
  1074       Register base = to_addr->base()->as_register();
  1075       Register index = noreg;
  1076       if (to_addr->index()->is_register()) {
  1077         index = to_addr->index()->as_register();
  1079       if (base == from_lo || index == from_lo) {
  1080         assert(base != from_hi, "can't be");
  1081         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
  1082         __ movl(as_Address_hi(to_addr), from_hi);
  1083         if (patch != NULL) {
  1084           patching_epilog(patch, lir_patch_high, base, info);
  1085           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1086           patch_code = lir_patch_low;
  1088         __ movl(as_Address_lo(to_addr), from_lo);
  1089       } else {
  1090         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
  1091         __ movl(as_Address_lo(to_addr), from_lo);
  1092         if (patch != NULL) {
  1093           patching_epilog(patch, lir_patch_low, base, info);
  1094           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1095           patch_code = lir_patch_high;
  1097         __ movl(as_Address_hi(to_addr), from_hi);
  1099 #endif // _LP64
  1100       break;
  1103     case T_BYTE:    // fall through
  1104     case T_BOOLEAN: {
  1105       Register src_reg = src->as_register();
  1106       Address dst_addr = as_Address(to_addr);
  1107       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
  1108       __ movb(dst_addr, src_reg);
  1109       break;
  1112     case T_CHAR:    // fall through
  1113     case T_SHORT:
  1114       __ movw(as_Address(to_addr), src->as_register());
  1115       break;
  1117     default:
  1118       ShouldNotReachHere();
  1120   if (info != NULL) {
  1121     add_debug_info_for_null_check(null_check_here, info);
  1124   if (patch_code != lir_patch_none) {
  1125     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
  1130 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1131   assert(src->is_stack(), "should not call otherwise");
  1132   assert(dest->is_register(), "should not call otherwise");
  1134   if (dest->is_single_cpu()) {
  1135     if (type == T_ARRAY || type == T_OBJECT) {
  1136       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1137       __ verify_oop(dest->as_register());
  1138     } else if (type == T_METADATA) {
  1139       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1140     } else {
  1141       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1144   } else if (dest->is_double_cpu()) {
  1145     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
  1146     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
  1147     __ movptr(dest->as_register_lo(), src_addr_LO);
  1148     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
  1150   } else if (dest->is_single_xmm()) {
  1151     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1152     __ movflt(dest->as_xmm_float_reg(), src_addr);
  1154   } else if (dest->is_double_xmm()) {
  1155     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1156     __ movdbl(dest->as_xmm_double_reg(), src_addr);
  1158   } else if (dest->is_single_fpu()) {
  1159     assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1160     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1161     __ fld_s(src_addr);
  1163   } else if (dest->is_double_fpu()) {
  1164     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1165     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1166     __ fld_d(src_addr);
  1168   } else {
  1169     ShouldNotReachHere();
  1174 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1175   if (src->is_single_stack()) {
  1176     if (type == T_OBJECT || type == T_ARRAY) {
  1177       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
  1178       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
  1179     } else {
  1180 #ifndef _LP64
  1181       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
  1182       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
  1183 #else
  1184       //no pushl on 64bits
  1185       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
  1186       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
  1187 #endif
  1190   } else if (src->is_double_stack()) {
  1191 #ifdef _LP64
  1192     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
  1193     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
  1194 #else
  1195     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
  1196     // push and pop the part at src + wordSize, adding wordSize for the previous push
  1197     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
  1198     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
  1199     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
  1200 #endif // _LP64
  1202   } else {
  1203     ShouldNotReachHere();
  1208 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
  1209   assert(src->is_address(), "should not call otherwise");
  1210   assert(dest->is_register(), "should not call otherwise");
  1212   LIR_Address* addr = src->as_address_ptr();
  1213   Address from_addr = as_Address(addr);
  1215   if (addr->base()->type() == T_OBJECT) {
  1216     __ verify_oop(addr->base()->as_pointer_register());
  1219   switch (type) {
  1220     case T_BOOLEAN: // fall through
  1221     case T_BYTE:    // fall through
  1222     case T_CHAR:    // fall through
  1223     case T_SHORT:
  1224       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
  1225         // on pre P6 processors we may get partial register stalls
  1226         // so blow away the value of to_rinfo before loading a
  1227         // partial word into it.  Do it here so that it precedes
  1228         // the potential patch point below.
  1229         __ xorptr(dest->as_register(), dest->as_register());
  1231       break;
  1234   PatchingStub* patch = NULL;
  1235   if (patch_code != lir_patch_none) {
  1236     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1237     assert(from_addr.disp() != 0, "must have");
  1239   if (info != NULL) {
  1240     add_debug_info_for_null_check_here(info);
  1243   switch (type) {
  1244     case T_FLOAT: {
  1245       if (dest->is_single_xmm()) {
  1246         __ movflt(dest->as_xmm_float_reg(), from_addr);
  1247       } else {
  1248         assert(dest->is_single_fpu(), "must be");
  1249         assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1250         __ fld_s(from_addr);
  1252       break;
  1255     case T_DOUBLE: {
  1256       if (dest->is_double_xmm()) {
  1257         __ movdbl(dest->as_xmm_double_reg(), from_addr);
  1258       } else {
  1259         assert(dest->is_double_fpu(), "must be");
  1260         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1261         __ fld_d(from_addr);
  1263       break;
  1266     case T_OBJECT:  // fall through
  1267     case T_ARRAY:   // fall through
  1268       if (UseCompressedOops && !wide) {
  1269         __ movl(dest->as_register(), from_addr);
  1270       } else {
  1271         __ movptr(dest->as_register(), from_addr);
  1273       break;
  1275     case T_ADDRESS:
  1276       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
  1277         __ movl(dest->as_register(), from_addr);
  1278       } else {
  1279         __ movptr(dest->as_register(), from_addr);
  1281       break;
  1282     case T_INT:
  1283       __ movl(dest->as_register(), from_addr);
  1284       break;
  1286     case T_LONG: {
  1287       Register to_lo = dest->as_register_lo();
  1288       Register to_hi = dest->as_register_hi();
  1289 #ifdef _LP64
  1290       __ movptr(to_lo, as_Address_lo(addr));
  1291 #else
  1292       Register base = addr->base()->as_register();
  1293       Register index = noreg;
  1294       if (addr->index()->is_register()) {
  1295         index = addr->index()->as_register();
  1297       if ((base == to_lo && index == to_hi) ||
  1298           (base == to_hi && index == to_lo)) {
  1299         // addresses with 2 registers are only formed as a result of
  1300         // array access so this code will never have to deal with
  1301         // patches or null checks.
  1302         assert(info == NULL && patch == NULL, "must be");
  1303         __ lea(to_hi, as_Address(addr));
  1304         __ movl(to_lo, Address(to_hi, 0));
  1305         __ movl(to_hi, Address(to_hi, BytesPerWord));
  1306       } else if (base == to_lo || index == to_lo) {
  1307         assert(base != to_hi, "can't be");
  1308         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
  1309         __ movl(to_hi, as_Address_hi(addr));
  1310         if (patch != NULL) {
  1311           patching_epilog(patch, lir_patch_high, base, info);
  1312           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1313           patch_code = lir_patch_low;
  1315         __ movl(to_lo, as_Address_lo(addr));
  1316       } else {
  1317         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
  1318         __ movl(to_lo, as_Address_lo(addr));
  1319         if (patch != NULL) {
  1320           patching_epilog(patch, lir_patch_low, base, info);
  1321           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1322           patch_code = lir_patch_high;
  1324         __ movl(to_hi, as_Address_hi(addr));
  1326 #endif // _LP64
  1327       break;
  1330     case T_BOOLEAN: // fall through
  1331     case T_BYTE: {
  1332       Register dest_reg = dest->as_register();
  1333       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1334       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1335         __ movsbl(dest_reg, from_addr);
  1336       } else {
  1337         __ movb(dest_reg, from_addr);
  1338         __ shll(dest_reg, 24);
  1339         __ sarl(dest_reg, 24);
  1341       break;
  1344     case T_CHAR: {
  1345       Register dest_reg = dest->as_register();
  1346       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1347       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1348         __ movzwl(dest_reg, from_addr);
  1349       } else {
  1350         __ movw(dest_reg, from_addr);
  1352       break;
  1355     case T_SHORT: {
  1356       Register dest_reg = dest->as_register();
  1357       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1358         __ movswl(dest_reg, from_addr);
  1359       } else {
  1360         __ movw(dest_reg, from_addr);
  1361         __ shll(dest_reg, 16);
  1362         __ sarl(dest_reg, 16);
  1364       break;
  1367     default:
  1368       ShouldNotReachHere();
  1371   if (patch != NULL) {
  1372     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
  1375   if (type == T_ARRAY || type == T_OBJECT) {
  1376 #ifdef _LP64
  1377     if (UseCompressedOops && !wide) {
  1378       __ decode_heap_oop(dest->as_register());
  1380 #endif
  1381     __ verify_oop(dest->as_register());
  1382   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
  1383 #ifdef _LP64
  1384     if (UseCompressedClassPointers) {
  1385       __ decode_klass_not_null(dest->as_register());
  1387 #endif
  1392 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1393   LIR_Address* addr = src->as_address_ptr();
  1394   Address from_addr = as_Address(addr);
  1396   if (VM_Version::supports_sse()) {
  1397     switch (ReadPrefetchInstr) {
  1398       case 0:
  1399         __ prefetchnta(from_addr); break;
  1400       case 1:
  1401         __ prefetcht0(from_addr); break;
  1402       case 2:
  1403         __ prefetcht2(from_addr); break;
  1404       default:
  1405         ShouldNotReachHere(); break;
  1407   } else if (VM_Version::supports_3dnow_prefetch()) {
  1408     __ prefetchr(from_addr);
  1413 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1414   LIR_Address* addr = src->as_address_ptr();
  1415   Address from_addr = as_Address(addr);
  1417   if (VM_Version::supports_sse()) {
  1418     switch (AllocatePrefetchInstr) {
  1419       case 0:
  1420         __ prefetchnta(from_addr); break;
  1421       case 1:
  1422         __ prefetcht0(from_addr); break;
  1423       case 2:
  1424         __ prefetcht2(from_addr); break;
  1425       case 3:
  1426         __ prefetchw(from_addr); break;
  1427       default:
  1428         ShouldNotReachHere(); break;
  1430   } else if (VM_Version::supports_3dnow_prefetch()) {
  1431     __ prefetchw(from_addr);
  1436 NEEDS_CLEANUP; // This could be static?
  1437 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
  1438   int elem_size = type2aelembytes(type);
  1439   switch (elem_size) {
  1440     case 1: return Address::times_1;
  1441     case 2: return Address::times_2;
  1442     case 4: return Address::times_4;
  1443     case 8: return Address::times_8;
  1445   ShouldNotReachHere();
  1446   return Address::no_scale;
  1450 void LIR_Assembler::emit_op3(LIR_Op3* op) {
  1451   switch (op->code()) {
  1452     case lir_idiv:
  1453     case lir_irem:
  1454       arithmetic_idiv(op->code(),
  1455                       op->in_opr1(),
  1456                       op->in_opr2(),
  1457                       op->in_opr3(),
  1458                       op->result_opr(),
  1459                       op->info());
  1460       break;
  1461     default:      ShouldNotReachHere(); break;
  1465 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
  1466 #ifdef ASSERT
  1467   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
  1468   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
  1469   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
  1470 #endif
  1472   if (op->cond() == lir_cond_always) {
  1473     if (op->info() != NULL) add_debug_info_for_branch(op->info());
  1474     __ jmp (*(op->label()));
  1475   } else {
  1476     Assembler::Condition acond = Assembler::zero;
  1477     if (op->code() == lir_cond_float_branch) {
  1478       assert(op->ublock() != NULL, "must have unordered successor");
  1479       __ jcc(Assembler::parity, *(op->ublock()->label()));
  1480       switch(op->cond()) {
  1481         case lir_cond_equal:        acond = Assembler::equal;      break;
  1482         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
  1483         case lir_cond_less:         acond = Assembler::below;      break;
  1484         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
  1485         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
  1486         case lir_cond_greater:      acond = Assembler::above;      break;
  1487         default:                         ShouldNotReachHere();
  1489     } else {
  1490       switch (op->cond()) {
  1491         case lir_cond_equal:        acond = Assembler::equal;       break;
  1492         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
  1493         case lir_cond_less:         acond = Assembler::less;        break;
  1494         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
  1495         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
  1496         case lir_cond_greater:      acond = Assembler::greater;     break;
  1497         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
  1498         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
  1499         default:                         ShouldNotReachHere();
  1502     __ jcc(acond,*(op->label()));
  1506 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
  1507   LIR_Opr src  = op->in_opr();
  1508   LIR_Opr dest = op->result_opr();
  1510   switch (op->bytecode()) {
  1511     case Bytecodes::_i2l:
  1512 #ifdef _LP64
  1513       __ movl2ptr(dest->as_register_lo(), src->as_register());
  1514 #else
  1515       move_regs(src->as_register(), dest->as_register_lo());
  1516       move_regs(src->as_register(), dest->as_register_hi());
  1517       __ sarl(dest->as_register_hi(), 31);
  1518 #endif // LP64
  1519       break;
  1521     case Bytecodes::_l2i:
  1522 #ifdef _LP64
  1523       __ movl(dest->as_register(), src->as_register_lo());
  1524 #else
  1525       move_regs(src->as_register_lo(), dest->as_register());
  1526 #endif
  1527       break;
  1529     case Bytecodes::_i2b:
  1530       move_regs(src->as_register(), dest->as_register());
  1531       __ sign_extend_byte(dest->as_register());
  1532       break;
  1534     case Bytecodes::_i2c:
  1535       move_regs(src->as_register(), dest->as_register());
  1536       __ andl(dest->as_register(), 0xFFFF);
  1537       break;
  1539     case Bytecodes::_i2s:
  1540       move_regs(src->as_register(), dest->as_register());
  1541       __ sign_extend_short(dest->as_register());
  1542       break;
  1545     case Bytecodes::_f2d:
  1546     case Bytecodes::_d2f:
  1547       if (dest->is_single_xmm()) {
  1548         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
  1549       } else if (dest->is_double_xmm()) {
  1550         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
  1551       } else {
  1552         assert(src->fpu() == dest->fpu(), "register must be equal");
  1553         // do nothing (float result is rounded later through spilling)
  1555       break;
  1557     case Bytecodes::_i2f:
  1558     case Bytecodes::_i2d:
  1559       if (dest->is_single_xmm()) {
  1560         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
  1561       } else if (dest->is_double_xmm()) {
  1562         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
  1563       } else {
  1564         assert(dest->fpu() == 0, "result must be on TOS");
  1565         __ movl(Address(rsp, 0), src->as_register());
  1566         __ fild_s(Address(rsp, 0));
  1568       break;
  1570     case Bytecodes::_f2i:
  1571     case Bytecodes::_d2i:
  1572       if (src->is_single_xmm()) {
  1573         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
  1574       } else if (src->is_double_xmm()) {
  1575         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
  1576       } else {
  1577         assert(src->fpu() == 0, "input must be on TOS");
  1578         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
  1579         __ fist_s(Address(rsp, 0));
  1580         __ movl(dest->as_register(), Address(rsp, 0));
  1581         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1584       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
  1585       assert(op->stub() != NULL, "stub required");
  1586       __ cmpl(dest->as_register(), 0x80000000);
  1587       __ jcc(Assembler::equal, *op->stub()->entry());
  1588       __ bind(*op->stub()->continuation());
  1589       break;
  1591     case Bytecodes::_l2f:
  1592     case Bytecodes::_l2d:
  1593       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
  1594       assert(dest->fpu() == 0, "result must be on TOS");
  1596       __ movptr(Address(rsp, 0),            src->as_register_lo());
  1597       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
  1598       __ fild_d(Address(rsp, 0));
  1599       // float result is rounded later through spilling
  1600       break;
  1602     case Bytecodes::_f2l:
  1603     case Bytecodes::_d2l:
  1604       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
  1605       assert(src->fpu() == 0, "input must be on TOS");
  1606       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
  1608       // instruction sequence too long to inline it here
  1610         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
  1612       break;
  1614     default: ShouldNotReachHere();
  1618 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  1619   if (op->init_check()) {
  1620     __ cmpb(Address(op->klass()->as_register(),
  1621                     InstanceKlass::init_state_offset()),
  1622                     InstanceKlass::fully_initialized);
  1623     add_debug_info_for_null_check_here(op->stub()->info());
  1624     __ jcc(Assembler::notEqual, *op->stub()->entry());
  1626   __ allocate_object(op->obj()->as_register(),
  1627                      op->tmp1()->as_register(),
  1628                      op->tmp2()->as_register(),
  1629                      op->header_size(),
  1630                      op->object_size(),
  1631                      op->klass()->as_register(),
  1632                      *op->stub()->entry());
  1633   __ bind(*op->stub()->continuation());
  1636 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  1637   Register len =  op->len()->as_register();
  1638   LP64_ONLY( __ movslq(len, len); )
  1640   if (UseSlowPath ||
  1641       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  1642       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  1643     __ jmp(*op->stub()->entry());
  1644   } else {
  1645     Register tmp1 = op->tmp1()->as_register();
  1646     Register tmp2 = op->tmp2()->as_register();
  1647     Register tmp3 = op->tmp3()->as_register();
  1648     if (len == tmp1) {
  1649       tmp1 = tmp3;
  1650     } else if (len == tmp2) {
  1651       tmp2 = tmp3;
  1652     } else if (len == tmp3) {
  1653       // everything is ok
  1654     } else {
  1655       __ mov(tmp3, len);
  1657     __ allocate_array(op->obj()->as_register(),
  1658                       len,
  1659                       tmp1,
  1660                       tmp2,
  1661                       arrayOopDesc::header_size(op->type()),
  1662                       array_element_size(op->type()),
  1663                       op->klass()->as_register(),
  1664                       *op->stub()->entry());
  1666   __ bind(*op->stub()->continuation());
  1669 void LIR_Assembler::type_profile_helper(Register mdo,
  1670                                         ciMethodData *md, ciProfileData *data,
  1671                                         Register recv, Label* update_done) {
  1672   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1673     Label next_test;
  1674     // See if the receiver is receiver[n].
  1675     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
  1676     __ jccb(Assembler::notEqual, next_test);
  1677     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
  1678     __ addptr(data_addr, DataLayout::counter_increment);
  1679     __ jmp(*update_done);
  1680     __ bind(next_test);
  1683   // Didn't find receiver; find next empty slot and fill it in
  1684   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1685     Label next_test;
  1686     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
  1687     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
  1688     __ jccb(Assembler::notEqual, next_test);
  1689     __ movptr(recv_addr, recv);
  1690     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
  1691     __ jmp(*update_done);
  1692     __ bind(next_test);
  1696 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  1697   // we always need a stub for the failure case.
  1698   CodeStub* stub = op->stub();
  1699   Register obj = op->object()->as_register();
  1700   Register k_RInfo = op->tmp1()->as_register();
  1701   Register klass_RInfo = op->tmp2()->as_register();
  1702   Register dst = op->result_opr()->as_register();
  1703   ciKlass* k = op->klass();
  1704   Register Rtmp1 = noreg;
  1706   // check if it needs to be profiled
  1707   ciMethodData* md;
  1708   ciProfileData* data;
  1710   if (op->should_profile()) {
  1711     ciMethod* method = op->profiled_method();
  1712     assert(method != NULL, "Should have method");
  1713     int bci = op->profiled_bci();
  1714     md = method->method_data_or_null();
  1715     assert(md != NULL, "Sanity");
  1716     data = md->bci_to_data(bci);
  1717     assert(data != NULL,                "need data for type check");
  1718     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1720   Label profile_cast_success, profile_cast_failure;
  1721   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  1722   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  1724   if (obj == k_RInfo) {
  1725     k_RInfo = dst;
  1726   } else if (obj == klass_RInfo) {
  1727     klass_RInfo = dst;
  1729   if (k->is_loaded() && !UseCompressedClassPointers) {
  1730     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
  1731   } else {
  1732     Rtmp1 = op->tmp3()->as_register();
  1733     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
  1736   assert_different_registers(obj, k_RInfo, klass_RInfo);
  1738   __ cmpptr(obj, (int32_t)NULL_WORD);
  1739   if (op->should_profile()) {
  1740     Label not_null;
  1741     __ jccb(Assembler::notEqual, not_null);
  1742     // Object is null; update MDO and exit
  1743     Register mdo  = klass_RInfo;
  1744     __ mov_metadata(mdo, md->constant_encoding());
  1745     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1746     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1747     __ orl(data_addr, header_bits);
  1748     __ jmp(*obj_is_null);
  1749     __ bind(not_null);
  1750   } else {
  1751     __ jcc(Assembler::equal, *obj_is_null);
  1754   if (!k->is_loaded()) {
  1755     klass2reg_with_patching(k_RInfo, op->info_for_patch());
  1756   } else {
  1757 #ifdef _LP64
  1758     __ mov_metadata(k_RInfo, k->constant_encoding());
  1759 #endif // _LP64
  1761   __ verify_oop(obj);
  1763   if (op->fast_check()) {
  1764     // get object class
  1765     // not a safepoint as obj null check happens earlier
  1766 #ifdef _LP64
  1767     if (UseCompressedClassPointers) {
  1768       __ load_klass(Rtmp1, obj);
  1769       __ cmpptr(k_RInfo, Rtmp1);
  1770     } else {
  1771       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1773 #else
  1774     if (k->is_loaded()) {
  1775       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
  1776     } else {
  1777       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1779 #endif
  1780     __ jcc(Assembler::notEqual, *failure_target);
  1781     // successful cast, fall through to profile or jump
  1782   } else {
  1783     // get object class
  1784     // not a safepoint as obj null check happens earlier
  1785     __ load_klass(klass_RInfo, obj);
  1786     if (k->is_loaded()) {
  1787       // See if we get an immediate positive hit
  1788 #ifdef _LP64
  1789       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
  1790 #else
  1791       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
  1792 #endif // _LP64
  1793       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
  1794         __ jcc(Assembler::notEqual, *failure_target);
  1795         // successful cast, fall through to profile or jump
  1796       } else {
  1797         // See if we get an immediate positive hit
  1798         __ jcc(Assembler::equal, *success_target);
  1799         // check for self
  1800 #ifdef _LP64
  1801         __ cmpptr(klass_RInfo, k_RInfo);
  1802 #else
  1803         __ cmpklass(klass_RInfo, k->constant_encoding());
  1804 #endif // _LP64
  1805         __ jcc(Assembler::equal, *success_target);
  1807         __ push(klass_RInfo);
  1808 #ifdef _LP64
  1809         __ push(k_RInfo);
  1810 #else
  1811         __ pushklass(k->constant_encoding());
  1812 #endif // _LP64
  1813         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1814         __ pop(klass_RInfo);
  1815         __ pop(klass_RInfo);
  1816         // result is a boolean
  1817         __ cmpl(klass_RInfo, 0);
  1818         __ jcc(Assembler::equal, *failure_target);
  1819         // successful cast, fall through to profile or jump
  1821     } else {
  1822       // perform the fast part of the checking logic
  1823       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1824       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1825       __ push(klass_RInfo);
  1826       __ push(k_RInfo);
  1827       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1828       __ pop(klass_RInfo);
  1829       __ pop(k_RInfo);
  1830       // result is a boolean
  1831       __ cmpl(k_RInfo, 0);
  1832       __ jcc(Assembler::equal, *failure_target);
  1833       // successful cast, fall through to profile or jump
  1836   if (op->should_profile()) {
  1837     Register mdo  = klass_RInfo, recv = k_RInfo;
  1838     __ bind(profile_cast_success);
  1839     __ mov_metadata(mdo, md->constant_encoding());
  1840     __ load_klass(recv, obj);
  1841     Label update_done;
  1842     type_profile_helper(mdo, md, data, recv, success);
  1843     __ jmp(*success);
  1845     __ bind(profile_cast_failure);
  1846     __ mov_metadata(mdo, md->constant_encoding());
  1847     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1848     __ subptr(counter_addr, DataLayout::counter_increment);
  1849     __ jmp(*failure);
  1851   __ jmp(*success);
  1855 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  1856   LIR_Code code = op->code();
  1857   if (code == lir_store_check) {
  1858     Register value = op->object()->as_register();
  1859     Register array = op->array()->as_register();
  1860     Register k_RInfo = op->tmp1()->as_register();
  1861     Register klass_RInfo = op->tmp2()->as_register();
  1862     Register Rtmp1 = op->tmp3()->as_register();
  1864     CodeStub* stub = op->stub();
  1866     // check if it needs to be profiled
  1867     ciMethodData* md;
  1868     ciProfileData* data;
  1870     if (op->should_profile()) {
  1871       ciMethod* method = op->profiled_method();
  1872       assert(method != NULL, "Should have method");
  1873       int bci = op->profiled_bci();
  1874       md = method->method_data_or_null();
  1875       assert(md != NULL, "Sanity");
  1876       data = md->bci_to_data(bci);
  1877       assert(data != NULL,                "need data for type check");
  1878       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1880     Label profile_cast_success, profile_cast_failure, done;
  1881     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  1882     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  1884     __ cmpptr(value, (int32_t)NULL_WORD);
  1885     if (op->should_profile()) {
  1886       Label not_null;
  1887       __ jccb(Assembler::notEqual, not_null);
  1888       // Object is null; update MDO and exit
  1889       Register mdo  = klass_RInfo;
  1890       __ mov_metadata(mdo, md->constant_encoding());
  1891       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1892       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1893       __ orl(data_addr, header_bits);
  1894       __ jmp(done);
  1895       __ bind(not_null);
  1896     } else {
  1897       __ jcc(Assembler::equal, done);
  1900     add_debug_info_for_null_check_here(op->info_for_exception());
  1901     __ load_klass(k_RInfo, array);
  1902     __ load_klass(klass_RInfo, value);
  1904     // get instance klass (it's already uncompressed)
  1905     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
  1906     // perform the fast part of the checking logic
  1907     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1908     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1909     __ push(klass_RInfo);
  1910     __ push(k_RInfo);
  1911     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1912     __ pop(klass_RInfo);
  1913     __ pop(k_RInfo);
  1914     // result is a boolean
  1915     __ cmpl(k_RInfo, 0);
  1916     __ jcc(Assembler::equal, *failure_target);
  1917     // fall through to the success case
  1919     if (op->should_profile()) {
  1920       Register mdo  = klass_RInfo, recv = k_RInfo;
  1921       __ bind(profile_cast_success);
  1922       __ mov_metadata(mdo, md->constant_encoding());
  1923       __ load_klass(recv, value);
  1924       Label update_done;
  1925       type_profile_helper(mdo, md, data, recv, &done);
  1926       __ jmpb(done);
  1928       __ bind(profile_cast_failure);
  1929       __ mov_metadata(mdo, md->constant_encoding());
  1930       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1931       __ subptr(counter_addr, DataLayout::counter_increment);
  1932       __ jmp(*stub->entry());
  1935     __ bind(done);
  1936   } else
  1937     if (code == lir_checkcast) {
  1938       Register obj = op->object()->as_register();
  1939       Register dst = op->result_opr()->as_register();
  1940       Label success;
  1941       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  1942       __ bind(success);
  1943       if (dst != obj) {
  1944         __ mov(dst, obj);
  1946     } else
  1947       if (code == lir_instanceof) {
  1948         Register obj = op->object()->as_register();
  1949         Register dst = op->result_opr()->as_register();
  1950         Label success, failure, done;
  1951         emit_typecheck_helper(op, &success, &failure, &failure);
  1952         __ bind(failure);
  1953         __ xorptr(dst, dst);
  1954         __ jmpb(done);
  1955         __ bind(success);
  1956         __ movptr(dst, 1);
  1957         __ bind(done);
  1958       } else {
  1959         ShouldNotReachHere();
  1965 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  1966   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
  1967     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
  1968     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
  1969     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
  1970     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
  1971     Register addr = op->addr()->as_register();
  1972     if (os::is_MP()) {
  1973       __ lock();
  1975     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
  1977   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
  1978     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
  1979     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1980     Register newval = op->new_value()->as_register();
  1981     Register cmpval = op->cmp_value()->as_register();
  1982     assert(cmpval == rax, "wrong register");
  1983     assert(newval != NULL, "new val must be register");
  1984     assert(cmpval != newval, "cmp and new values must be in different registers");
  1985     assert(cmpval != addr, "cmp and addr must be in different registers");
  1986     assert(newval != addr, "new value and addr must be in different registers");
  1988     if ( op->code() == lir_cas_obj) {
  1989 #ifdef _LP64
  1990       if (UseCompressedOops) {
  1991         __ encode_heap_oop(cmpval);
  1992         __ mov(rscratch1, newval);
  1993         __ encode_heap_oop(rscratch1);
  1994         if (os::is_MP()) {
  1995           __ lock();
  1997         // cmpval (rax) is implicitly used by this instruction
  1998         __ cmpxchgl(rscratch1, Address(addr, 0));
  1999       } else
  2000 #endif
  2002         if (os::is_MP()) {
  2003           __ lock();
  2005         __ cmpxchgptr(newval, Address(addr, 0));
  2007     } else {
  2008       assert(op->code() == lir_cas_int, "lir_cas_int expected");
  2009       if (os::is_MP()) {
  2010         __ lock();
  2012       __ cmpxchgl(newval, Address(addr, 0));
  2014 #ifdef _LP64
  2015   } else if (op->code() == lir_cas_long) {
  2016     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  2017     Register newval = op->new_value()->as_register_lo();
  2018     Register cmpval = op->cmp_value()->as_register_lo();
  2019     assert(cmpval == rax, "wrong register");
  2020     assert(newval != NULL, "new val must be register");
  2021     assert(cmpval != newval, "cmp and new values must be in different registers");
  2022     assert(cmpval != addr, "cmp and addr must be in different registers");
  2023     assert(newval != addr, "new value and addr must be in different registers");
  2024     if (os::is_MP()) {
  2025       __ lock();
  2027     __ cmpxchgq(newval, Address(addr, 0));
  2028 #endif // _LP64
  2029   } else {
  2030     Unimplemented();
  2034 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
  2035   Assembler::Condition acond, ncond;
  2036   switch (condition) {
  2037     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
  2038     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
  2039     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
  2040     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
  2041     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
  2042     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
  2043     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
  2044     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
  2045     default:                    ShouldNotReachHere();
  2048   if (opr1->is_cpu_register()) {
  2049     reg2reg(opr1, result);
  2050   } else if (opr1->is_stack()) {
  2051     stack2reg(opr1, result, result->type());
  2052   } else if (opr1->is_constant()) {
  2053     const2reg(opr1, result, lir_patch_none, NULL);
  2054   } else {
  2055     ShouldNotReachHere();
  2058   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
  2059     // optimized version that does not require a branch
  2060     if (opr2->is_single_cpu()) {
  2061       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
  2062       __ cmov(ncond, result->as_register(), opr2->as_register());
  2063     } else if (opr2->is_double_cpu()) {
  2064       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  2065       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  2066       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
  2067       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
  2068     } else if (opr2->is_single_stack()) {
  2069       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
  2070     } else if (opr2->is_double_stack()) {
  2071       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
  2072       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
  2073     } else {
  2074       ShouldNotReachHere();
  2077   } else {
  2078     Label skip;
  2079     __ jcc (acond, skip);
  2080     if (opr2->is_cpu_register()) {
  2081       reg2reg(opr2, result);
  2082     } else if (opr2->is_stack()) {
  2083       stack2reg(opr2, result, result->type());
  2084     } else if (opr2->is_constant()) {
  2085       const2reg(opr2, result, lir_patch_none, NULL);
  2086     } else {
  2087       ShouldNotReachHere();
  2089     __ bind(skip);
  2094 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  2095   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
  2097   if (left->is_single_cpu()) {
  2098     assert(left == dest, "left and dest must be equal");
  2099     Register lreg = left->as_register();
  2101     if (right->is_single_cpu()) {
  2102       // cpu register - cpu register
  2103       Register rreg = right->as_register();
  2104       switch (code) {
  2105         case lir_add: __ addl (lreg, rreg); break;
  2106         case lir_sub: __ subl (lreg, rreg); break;
  2107         case lir_mul: __ imull(lreg, rreg); break;
  2108         default:      ShouldNotReachHere();
  2111     } else if (right->is_stack()) {
  2112       // cpu register - stack
  2113       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2114       switch (code) {
  2115         case lir_add: __ addl(lreg, raddr); break;
  2116         case lir_sub: __ subl(lreg, raddr); break;
  2117         default:      ShouldNotReachHere();
  2120     } else if (right->is_constant()) {
  2121       // cpu register - constant
  2122       jint c = right->as_constant_ptr()->as_jint();
  2123       switch (code) {
  2124         case lir_add: {
  2125           __ incrementl(lreg, c);
  2126           break;
  2128         case lir_sub: {
  2129           __ decrementl(lreg, c);
  2130           break;
  2132         default: ShouldNotReachHere();
  2135     } else {
  2136       ShouldNotReachHere();
  2139   } else if (left->is_double_cpu()) {
  2140     assert(left == dest, "left and dest must be equal");
  2141     Register lreg_lo = left->as_register_lo();
  2142     Register lreg_hi = left->as_register_hi();
  2144     if (right->is_double_cpu()) {
  2145       // cpu register - cpu register
  2146       Register rreg_lo = right->as_register_lo();
  2147       Register rreg_hi = right->as_register_hi();
  2148       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
  2149       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
  2150       switch (code) {
  2151         case lir_add:
  2152           __ addptr(lreg_lo, rreg_lo);
  2153           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
  2154           break;
  2155         case lir_sub:
  2156           __ subptr(lreg_lo, rreg_lo);
  2157           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
  2158           break;
  2159         case lir_mul:
  2160 #ifdef _LP64
  2161           __ imulq(lreg_lo, rreg_lo);
  2162 #else
  2163           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
  2164           __ imull(lreg_hi, rreg_lo);
  2165           __ imull(rreg_hi, lreg_lo);
  2166           __ addl (rreg_hi, lreg_hi);
  2167           __ mull (rreg_lo);
  2168           __ addl (lreg_hi, rreg_hi);
  2169 #endif // _LP64
  2170           break;
  2171         default:
  2172           ShouldNotReachHere();
  2175     } else if (right->is_constant()) {
  2176       // cpu register - constant
  2177 #ifdef _LP64
  2178       jlong c = right->as_constant_ptr()->as_jlong_bits();
  2179       __ movptr(r10, (intptr_t) c);
  2180       switch (code) {
  2181         case lir_add:
  2182           __ addptr(lreg_lo, r10);
  2183           break;
  2184         case lir_sub:
  2185           __ subptr(lreg_lo, r10);
  2186           break;
  2187         default:
  2188           ShouldNotReachHere();
  2190 #else
  2191       jint c_lo = right->as_constant_ptr()->as_jint_lo();
  2192       jint c_hi = right->as_constant_ptr()->as_jint_hi();
  2193       switch (code) {
  2194         case lir_add:
  2195           __ addptr(lreg_lo, c_lo);
  2196           __ adcl(lreg_hi, c_hi);
  2197           break;
  2198         case lir_sub:
  2199           __ subptr(lreg_lo, c_lo);
  2200           __ sbbl(lreg_hi, c_hi);
  2201           break;
  2202         default:
  2203           ShouldNotReachHere();
  2205 #endif // _LP64
  2207     } else {
  2208       ShouldNotReachHere();
  2211   } else if (left->is_single_xmm()) {
  2212     assert(left == dest, "left and dest must be equal");
  2213     XMMRegister lreg = left->as_xmm_float_reg();
  2215     if (right->is_single_xmm()) {
  2216       XMMRegister rreg = right->as_xmm_float_reg();
  2217       switch (code) {
  2218         case lir_add: __ addss(lreg, rreg);  break;
  2219         case lir_sub: __ subss(lreg, rreg);  break;
  2220         case lir_mul_strictfp: // fall through
  2221         case lir_mul: __ mulss(lreg, rreg);  break;
  2222         case lir_div_strictfp: // fall through
  2223         case lir_div: __ divss(lreg, rreg);  break;
  2224         default: ShouldNotReachHere();
  2226     } else {
  2227       Address raddr;
  2228       if (right->is_single_stack()) {
  2229         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2230       } else if (right->is_constant()) {
  2231         // hack for now
  2232         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
  2233       } else {
  2234         ShouldNotReachHere();
  2236       switch (code) {
  2237         case lir_add: __ addss(lreg, raddr);  break;
  2238         case lir_sub: __ subss(lreg, raddr);  break;
  2239         case lir_mul_strictfp: // fall through
  2240         case lir_mul: __ mulss(lreg, raddr);  break;
  2241         case lir_div_strictfp: // fall through
  2242         case lir_div: __ divss(lreg, raddr);  break;
  2243         default: ShouldNotReachHere();
  2247   } else if (left->is_double_xmm()) {
  2248     assert(left == dest, "left and dest must be equal");
  2250     XMMRegister lreg = left->as_xmm_double_reg();
  2251     if (right->is_double_xmm()) {
  2252       XMMRegister rreg = right->as_xmm_double_reg();
  2253       switch (code) {
  2254         case lir_add: __ addsd(lreg, rreg);  break;
  2255         case lir_sub: __ subsd(lreg, rreg);  break;
  2256         case lir_mul_strictfp: // fall through
  2257         case lir_mul: __ mulsd(lreg, rreg);  break;
  2258         case lir_div_strictfp: // fall through
  2259         case lir_div: __ divsd(lreg, rreg);  break;
  2260         default: ShouldNotReachHere();
  2262     } else {
  2263       Address raddr;
  2264       if (right->is_double_stack()) {
  2265         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2266       } else if (right->is_constant()) {
  2267         // hack for now
  2268         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2269       } else {
  2270         ShouldNotReachHere();
  2272       switch (code) {
  2273         case lir_add: __ addsd(lreg, raddr);  break;
  2274         case lir_sub: __ subsd(lreg, raddr);  break;
  2275         case lir_mul_strictfp: // fall through
  2276         case lir_mul: __ mulsd(lreg, raddr);  break;
  2277         case lir_div_strictfp: // fall through
  2278         case lir_div: __ divsd(lreg, raddr);  break;
  2279         default: ShouldNotReachHere();
  2283   } else if (left->is_single_fpu()) {
  2284     assert(dest->is_single_fpu(),  "fpu stack allocation required");
  2286     if (right->is_single_fpu()) {
  2287       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
  2289     } else {
  2290       assert(left->fpu_regnr() == 0, "left must be on TOS");
  2291       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
  2293       Address raddr;
  2294       if (right->is_single_stack()) {
  2295         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2296       } else if (right->is_constant()) {
  2297         address const_addr = float_constant(right->as_jfloat());
  2298         assert(const_addr != NULL, "incorrect float/double constant maintainance");
  2299         // hack for now
  2300         raddr = __ as_Address(InternalAddress(const_addr));
  2301       } else {
  2302         ShouldNotReachHere();
  2305       switch (code) {
  2306         case lir_add: __ fadd_s(raddr); break;
  2307         case lir_sub: __ fsub_s(raddr); break;
  2308         case lir_mul_strictfp: // fall through
  2309         case lir_mul: __ fmul_s(raddr); break;
  2310         case lir_div_strictfp: // fall through
  2311         case lir_div: __ fdiv_s(raddr); break;
  2312         default:      ShouldNotReachHere();
  2316   } else if (left->is_double_fpu()) {
  2317     assert(dest->is_double_fpu(),  "fpu stack allocation required");
  2319     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2320       // Double values require special handling for strictfp mul/div on x86
  2321       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  2322       __ fmulp(left->fpu_regnrLo() + 1);
  2325     if (right->is_double_fpu()) {
  2326       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
  2328     } else {
  2329       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
  2330       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
  2332       Address raddr;
  2333       if (right->is_double_stack()) {
  2334         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2335       } else if (right->is_constant()) {
  2336         // hack for now
  2337         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2338       } else {
  2339         ShouldNotReachHere();
  2342       switch (code) {
  2343         case lir_add: __ fadd_d(raddr); break;
  2344         case lir_sub: __ fsub_d(raddr); break;
  2345         case lir_mul_strictfp: // fall through
  2346         case lir_mul: __ fmul_d(raddr); break;
  2347         case lir_div_strictfp: // fall through
  2348         case lir_div: __ fdiv_d(raddr); break;
  2349         default: ShouldNotReachHere();
  2353     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2354       // Double values require special handling for strictfp mul/div on x86
  2355       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  2356       __ fmulp(dest->fpu_regnrLo() + 1);
  2359   } else if (left->is_single_stack() || left->is_address()) {
  2360     assert(left == dest, "left and dest must be equal");
  2362     Address laddr;
  2363     if (left->is_single_stack()) {
  2364       laddr = frame_map()->address_for_slot(left->single_stack_ix());
  2365     } else if (left->is_address()) {
  2366       laddr = as_Address(left->as_address_ptr());
  2367     } else {
  2368       ShouldNotReachHere();
  2371     if (right->is_single_cpu()) {
  2372       Register rreg = right->as_register();
  2373       switch (code) {
  2374         case lir_add: __ addl(laddr, rreg); break;
  2375         case lir_sub: __ subl(laddr, rreg); break;
  2376         default:      ShouldNotReachHere();
  2378     } else if (right->is_constant()) {
  2379       jint c = right->as_constant_ptr()->as_jint();
  2380       switch (code) {
  2381         case lir_add: {
  2382           __ incrementl(laddr, c);
  2383           break;
  2385         case lir_sub: {
  2386           __ decrementl(laddr, c);
  2387           break;
  2389         default: ShouldNotReachHere();
  2391     } else {
  2392       ShouldNotReachHere();
  2395   } else {
  2396     ShouldNotReachHere();
  2400 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
  2401   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
  2402   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
  2403   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
  2405   bool left_is_tos = (left_index == 0);
  2406   bool dest_is_tos = (dest_index == 0);
  2407   int non_tos_index = (left_is_tos ? right_index : left_index);
  2409   switch (code) {
  2410     case lir_add:
  2411       if (pop_fpu_stack)       __ faddp(non_tos_index);
  2412       else if (dest_is_tos)    __ fadd (non_tos_index);
  2413       else                     __ fadda(non_tos_index);
  2414       break;
  2416     case lir_sub:
  2417       if (left_is_tos) {
  2418         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
  2419         else if (dest_is_tos)  __ fsub  (non_tos_index);
  2420         else                   __ fsubra(non_tos_index);
  2421       } else {
  2422         if (pop_fpu_stack)     __ fsubp (non_tos_index);
  2423         else if (dest_is_tos)  __ fsubr (non_tos_index);
  2424         else                   __ fsuba (non_tos_index);
  2426       break;
  2428     case lir_mul_strictfp: // fall through
  2429     case lir_mul:
  2430       if (pop_fpu_stack)       __ fmulp(non_tos_index);
  2431       else if (dest_is_tos)    __ fmul (non_tos_index);
  2432       else                     __ fmula(non_tos_index);
  2433       break;
  2435     case lir_div_strictfp: // fall through
  2436     case lir_div:
  2437       if (left_is_tos) {
  2438         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
  2439         else if (dest_is_tos)  __ fdiv  (non_tos_index);
  2440         else                   __ fdivra(non_tos_index);
  2441       } else {
  2442         if (pop_fpu_stack)     __ fdivp (non_tos_index);
  2443         else if (dest_is_tos)  __ fdivr (non_tos_index);
  2444         else                   __ fdiva (non_tos_index);
  2446       break;
  2448     case lir_rem:
  2449       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
  2450       __ fremr(noreg);
  2451       break;
  2453     default:
  2454       ShouldNotReachHere();
  2459 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
  2460   if (value->is_double_xmm()) {
  2461     switch(code) {
  2462       case lir_abs :
  2464           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
  2465             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
  2467           __ andpd(dest->as_xmm_double_reg(),
  2468                     ExternalAddress((address)double_signmask_pool));
  2470         break;
  2472       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
  2473       // all other intrinsics are not available in the SSE instruction set, so FPU is used
  2474       default      : ShouldNotReachHere();
  2477   } else if (value->is_double_fpu()) {
  2478     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
  2479     switch(code) {
  2480       case lir_log   : __ flog() ; break;
  2481       case lir_log10 : __ flog10() ; break;
  2482       case lir_abs   : __ fabs() ; break;
  2483       case lir_sqrt  : __ fsqrt(); break;
  2484       case lir_sin   :
  2485         // Should consider not saving rbx, if not necessary
  2486         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
  2487         break;
  2488       case lir_cos :
  2489         // Should consider not saving rbx, if not necessary
  2490         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
  2491         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
  2492         break;
  2493       case lir_tan :
  2494         // Should consider not saving rbx, if not necessary
  2495         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
  2496         break;
  2497       case lir_exp :
  2498         __ exp_with_fallback(op->as_Op2()->fpu_stack_size());
  2499         break;
  2500       case lir_pow :
  2501         __ pow_with_fallback(op->as_Op2()->fpu_stack_size());
  2502         break;
  2503       default      : ShouldNotReachHere();
  2505   } else {
  2506     Unimplemented();
  2510 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  2511   // assert(left->destroys_register(), "check");
  2512   if (left->is_single_cpu()) {
  2513     Register reg = left->as_register();
  2514     if (right->is_constant()) {
  2515       int val = right->as_constant_ptr()->as_jint();
  2516       switch (code) {
  2517         case lir_logic_and: __ andl (reg, val); break;
  2518         case lir_logic_or:  __ orl  (reg, val); break;
  2519         case lir_logic_xor: __ xorl (reg, val); break;
  2520         default: ShouldNotReachHere();
  2522     } else if (right->is_stack()) {
  2523       // added support for stack operands
  2524       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2525       switch (code) {
  2526         case lir_logic_and: __ andl (reg, raddr); break;
  2527         case lir_logic_or:  __ orl  (reg, raddr); break;
  2528         case lir_logic_xor: __ xorl (reg, raddr); break;
  2529         default: ShouldNotReachHere();
  2531     } else {
  2532       Register rright = right->as_register();
  2533       switch (code) {
  2534         case lir_logic_and: __ andptr (reg, rright); break;
  2535         case lir_logic_or : __ orptr  (reg, rright); break;
  2536         case lir_logic_xor: __ xorptr (reg, rright); break;
  2537         default: ShouldNotReachHere();
  2540     move_regs(reg, dst->as_register());
  2541   } else {
  2542     Register l_lo = left->as_register_lo();
  2543     Register l_hi = left->as_register_hi();
  2544     if (right->is_constant()) {
  2545 #ifdef _LP64
  2546       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
  2547       switch (code) {
  2548         case lir_logic_and:
  2549           __ andq(l_lo, rscratch1);
  2550           break;
  2551         case lir_logic_or:
  2552           __ orq(l_lo, rscratch1);
  2553           break;
  2554         case lir_logic_xor:
  2555           __ xorq(l_lo, rscratch1);
  2556           break;
  2557         default: ShouldNotReachHere();
  2559 #else
  2560       int r_lo = right->as_constant_ptr()->as_jint_lo();
  2561       int r_hi = right->as_constant_ptr()->as_jint_hi();
  2562       switch (code) {
  2563         case lir_logic_and:
  2564           __ andl(l_lo, r_lo);
  2565           __ andl(l_hi, r_hi);
  2566           break;
  2567         case lir_logic_or:
  2568           __ orl(l_lo, r_lo);
  2569           __ orl(l_hi, r_hi);
  2570           break;
  2571         case lir_logic_xor:
  2572           __ xorl(l_lo, r_lo);
  2573           __ xorl(l_hi, r_hi);
  2574           break;
  2575         default: ShouldNotReachHere();
  2577 #endif // _LP64
  2578     } else {
  2579 #ifdef _LP64
  2580       Register r_lo;
  2581       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
  2582         r_lo = right->as_register();
  2583       } else {
  2584         r_lo = right->as_register_lo();
  2586 #else
  2587       Register r_lo = right->as_register_lo();
  2588       Register r_hi = right->as_register_hi();
  2589       assert(l_lo != r_hi, "overwriting registers");
  2590 #endif
  2591       switch (code) {
  2592         case lir_logic_and:
  2593           __ andptr(l_lo, r_lo);
  2594           NOT_LP64(__ andptr(l_hi, r_hi);)
  2595           break;
  2596         case lir_logic_or:
  2597           __ orptr(l_lo, r_lo);
  2598           NOT_LP64(__ orptr(l_hi, r_hi);)
  2599           break;
  2600         case lir_logic_xor:
  2601           __ xorptr(l_lo, r_lo);
  2602           NOT_LP64(__ xorptr(l_hi, r_hi);)
  2603           break;
  2604         default: ShouldNotReachHere();
  2608     Register dst_lo = dst->as_register_lo();
  2609     Register dst_hi = dst->as_register_hi();
  2611 #ifdef _LP64
  2612     move_regs(l_lo, dst_lo);
  2613 #else
  2614     if (dst_lo == l_hi) {
  2615       assert(dst_hi != l_lo, "overwriting registers");
  2616       move_regs(l_hi, dst_hi);
  2617       move_regs(l_lo, dst_lo);
  2618     } else {
  2619       assert(dst_lo != l_hi, "overwriting registers");
  2620       move_regs(l_lo, dst_lo);
  2621       move_regs(l_hi, dst_hi);
  2623 #endif // _LP64
  2628 // we assume that rax, and rdx can be overwritten
  2629 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
  2631   assert(left->is_single_cpu(),   "left must be register");
  2632   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
  2633   assert(result->is_single_cpu(), "result must be register");
  2635   //  assert(left->destroys_register(), "check");
  2636   //  assert(right->destroys_register(), "check");
  2638   Register lreg = left->as_register();
  2639   Register dreg = result->as_register();
  2641   if (right->is_constant()) {
  2642     int divisor = right->as_constant_ptr()->as_jint();
  2643     assert(divisor > 0 && is_power_of_2(divisor), "must be");
  2644     if (code == lir_idiv) {
  2645       assert(lreg == rax, "must be rax,");
  2646       assert(temp->as_register() == rdx, "tmp register must be rdx");
  2647       __ cdql(); // sign extend into rdx:rax
  2648       if (divisor == 2) {
  2649         __ subl(lreg, rdx);
  2650       } else {
  2651         __ andl(rdx, divisor - 1);
  2652         __ addl(lreg, rdx);
  2654       __ sarl(lreg, log2_intptr(divisor));
  2655       move_regs(lreg, dreg);
  2656     } else if (code == lir_irem) {
  2657       Label done;
  2658       __ mov(dreg, lreg);
  2659       __ andl(dreg, 0x80000000 | (divisor - 1));
  2660       __ jcc(Assembler::positive, done);
  2661       __ decrement(dreg);
  2662       __ orl(dreg, ~(divisor - 1));
  2663       __ increment(dreg);
  2664       __ bind(done);
  2665     } else {
  2666       ShouldNotReachHere();
  2668   } else {
  2669     Register rreg = right->as_register();
  2670     assert(lreg == rax, "left register must be rax,");
  2671     assert(rreg != rdx, "right register must not be rdx");
  2672     assert(temp->as_register() == rdx, "tmp register must be rdx");
  2674     move_regs(lreg, rax);
  2676     int idivl_offset = __ corrected_idivl(rreg);
  2677     add_debug_info_for_div0(idivl_offset, info);
  2678     if (code == lir_irem) {
  2679       move_regs(rdx, dreg); // result is in rdx
  2680     } else {
  2681       move_regs(rax, dreg);
  2687 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  2688   if (opr1->is_single_cpu()) {
  2689     Register reg1 = opr1->as_register();
  2690     if (opr2->is_single_cpu()) {
  2691       // cpu register - cpu register
  2692       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2693         __ cmpptr(reg1, opr2->as_register());
  2694       } else {
  2695         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
  2696         __ cmpl(reg1, opr2->as_register());
  2698     } else if (opr2->is_stack()) {
  2699       // cpu register - stack
  2700       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2701         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2702       } else {
  2703         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2705     } else if (opr2->is_constant()) {
  2706       // cpu register - constant
  2707       LIR_Const* c = opr2->as_constant_ptr();
  2708       if (c->type() == T_INT) {
  2709         __ cmpl(reg1, c->as_jint());
  2710       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2711         // In 64bit oops are single register
  2712         jobject o = c->as_jobject();
  2713         if (o == NULL) {
  2714           __ cmpptr(reg1, (int32_t)NULL_WORD);
  2715         } else {
  2716 #ifdef _LP64
  2717           __ movoop(rscratch1, o);
  2718           __ cmpptr(reg1, rscratch1);
  2719 #else
  2720           __ cmpoop(reg1, c->as_jobject());
  2721 #endif // _LP64
  2723       } else {
  2724         fatal(err_msg("unexpected type: %s", basictype_to_str(c->type())));
  2726       // cpu register - address
  2727     } else if (opr2->is_address()) {
  2728       if (op->info() != NULL) {
  2729         add_debug_info_for_null_check_here(op->info());
  2731       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
  2732     } else {
  2733       ShouldNotReachHere();
  2736   } else if(opr1->is_double_cpu()) {
  2737     Register xlo = opr1->as_register_lo();
  2738     Register xhi = opr1->as_register_hi();
  2739     if (opr2->is_double_cpu()) {
  2740 #ifdef _LP64
  2741       __ cmpptr(xlo, opr2->as_register_lo());
  2742 #else
  2743       // cpu register - cpu register
  2744       Register ylo = opr2->as_register_lo();
  2745       Register yhi = opr2->as_register_hi();
  2746       __ subl(xlo, ylo);
  2747       __ sbbl(xhi, yhi);
  2748       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  2749         __ orl(xhi, xlo);
  2751 #endif // _LP64
  2752     } else if (opr2->is_constant()) {
  2753       // cpu register - constant 0
  2754       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
  2755 #ifdef _LP64
  2756       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
  2757 #else
  2758       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
  2759       __ orl(xhi, xlo);
  2760 #endif // _LP64
  2761     } else {
  2762       ShouldNotReachHere();
  2765   } else if (opr1->is_single_xmm()) {
  2766     XMMRegister reg1 = opr1->as_xmm_float_reg();
  2767     if (opr2->is_single_xmm()) {
  2768       // xmm register - xmm register
  2769       __ ucomiss(reg1, opr2->as_xmm_float_reg());
  2770     } else if (opr2->is_stack()) {
  2771       // xmm register - stack
  2772       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2773     } else if (opr2->is_constant()) {
  2774       // xmm register - constant
  2775       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
  2776     } else if (opr2->is_address()) {
  2777       // xmm register - address
  2778       if (op->info() != NULL) {
  2779         add_debug_info_for_null_check_here(op->info());
  2781       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
  2782     } else {
  2783       ShouldNotReachHere();
  2786   } else if (opr1->is_double_xmm()) {
  2787     XMMRegister reg1 = opr1->as_xmm_double_reg();
  2788     if (opr2->is_double_xmm()) {
  2789       // xmm register - xmm register
  2790       __ ucomisd(reg1, opr2->as_xmm_double_reg());
  2791     } else if (opr2->is_stack()) {
  2792       // xmm register - stack
  2793       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
  2794     } else if (opr2->is_constant()) {
  2795       // xmm register - constant
  2796       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
  2797     } else if (opr2->is_address()) {
  2798       // xmm register - address
  2799       if (op->info() != NULL) {
  2800         add_debug_info_for_null_check_here(op->info());
  2802       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
  2803     } else {
  2804       ShouldNotReachHere();
  2807   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
  2808     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
  2809     assert(opr2->is_fpu_register(), "both must be registers");
  2810     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2812   } else if (opr1->is_address() && opr2->is_constant()) {
  2813     LIR_Const* c = opr2->as_constant_ptr();
  2814 #ifdef _LP64
  2815     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2816       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
  2817       __ movoop(rscratch1, c->as_jobject());
  2819 #endif // LP64
  2820     if (op->info() != NULL) {
  2821       add_debug_info_for_null_check_here(op->info());
  2823     // special case: address - constant
  2824     LIR_Address* addr = opr1->as_address_ptr();
  2825     if (c->type() == T_INT) {
  2826       __ cmpl(as_Address(addr), c->as_jint());
  2827     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2828 #ifdef _LP64
  2829       // %%% Make this explode if addr isn't reachable until we figure out a
  2830       // better strategy by giving noreg as the temp for as_Address
  2831       __ cmpptr(rscratch1, as_Address(addr, noreg));
  2832 #else
  2833       __ cmpoop(as_Address(addr), c->as_jobject());
  2834 #endif // _LP64
  2835     } else {
  2836       ShouldNotReachHere();
  2839   } else {
  2840     ShouldNotReachHere();
  2844 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
  2845   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  2846     if (left->is_single_xmm()) {
  2847       assert(right->is_single_xmm(), "must match");
  2848       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2849     } else if (left->is_double_xmm()) {
  2850       assert(right->is_double_xmm(), "must match");
  2851       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2853     } else {
  2854       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
  2855       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
  2857       assert(left->fpu() == 0, "left must be on TOS");
  2858       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
  2859                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2861   } else {
  2862     assert(code == lir_cmp_l2i, "check");
  2863 #ifdef _LP64
  2864     Label done;
  2865     Register dest = dst->as_register();
  2866     __ cmpptr(left->as_register_lo(), right->as_register_lo());
  2867     __ movl(dest, -1);
  2868     __ jccb(Assembler::less, done);
  2869     __ set_byte_if_not_zero(dest);
  2870     __ movzbl(dest, dest);
  2871     __ bind(done);
  2872 #else
  2873     __ lcmp2int(left->as_register_hi(),
  2874                 left->as_register_lo(),
  2875                 right->as_register_hi(),
  2876                 right->as_register_lo());
  2877     move_regs(left->as_register_hi(), dst->as_register());
  2878 #endif // _LP64
  2883 void LIR_Assembler::align_call(LIR_Code code) {
  2884   if (os::is_MP()) {
  2885     // make sure that the displacement word of the call ends up word aligned
  2886     int offset = __ offset();
  2887     switch (code) {
  2888       case lir_static_call:
  2889       case lir_optvirtual_call:
  2890       case lir_dynamic_call:
  2891         offset += NativeCall::displacement_offset;
  2892         break;
  2893       case lir_icvirtual_call:
  2894         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
  2895       break;
  2896       case lir_virtual_call:  // currently, sparc-specific for niagara
  2897       default: ShouldNotReachHere();
  2899     while (offset++ % BytesPerWord != 0) {
  2900       __ nop();
  2906 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
  2907   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2908          "must be aligned");
  2909   __ call(AddressLiteral(op->addr(), rtype));
  2910   add_call_info(code_offset(), op->info());
  2914 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
  2915   __ ic_call(op->addr());
  2916   add_call_info(code_offset(), op->info());
  2917   assert(!os::is_MP() ||
  2918          (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
  2919          "must be aligned");
  2923 /* Currently, vtable-dispatch is only enabled for sparc platforms */
  2924 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
  2925   ShouldNotReachHere();
  2929 void LIR_Assembler::emit_static_call_stub() {
  2930   address call_pc = __ pc();
  2931   address stub = __ start_a_stub(call_stub_size);
  2932   if (stub == NULL) {
  2933     bailout("static call stub overflow");
  2934     return;
  2937   int start = __ offset();
  2938   if (os::is_MP()) {
  2939     // make sure that the displacement word of the call ends up word aligned
  2940     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
  2941     while (offset++ % BytesPerWord != 0) {
  2942       __ nop();
  2945   __ relocate(static_stub_Relocation::spec(call_pc));
  2946   __ mov_metadata(rbx, (Metadata*)NULL);
  2947   // must be set to -1 at code generation time
  2948   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
  2949   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
  2950   __ jump(RuntimeAddress(__ pc()));
  2952   assert(__ offset() - start <= call_stub_size, "stub too big");
  2953   __ end_a_stub();
  2957 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2958   assert(exceptionOop->as_register() == rax, "must match");
  2959   assert(exceptionPC->as_register() == rdx, "must match");
  2961   // exception object is not added to oop map by LinearScan
  2962   // (LinearScan assumes that no oops are in fixed registers)
  2963   info->add_register_oop(exceptionOop);
  2964   Runtime1::StubID unwind_id;
  2966   // get current pc information
  2967   // pc is only needed if the method has an exception handler, the unwind code does not need it.
  2968   int pc_for_athrow_offset = __ offset();
  2969   InternalAddress pc_for_athrow(__ pc());
  2970   __ lea(exceptionPC->as_register(), pc_for_athrow);
  2971   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2973   __ verify_not_null_oop(rax);
  2974   // search an exception handler (rax: exception oop, rdx: throwing pc)
  2975   if (compilation()->has_fpu_code()) {
  2976     unwind_id = Runtime1::handle_exception_id;
  2977   } else {
  2978     unwind_id = Runtime1::handle_exception_nofpu_id;
  2980   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
  2982   // enough room for two byte trap
  2983   __ nop();
  2987 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2988   assert(exceptionOop->as_register() == rax, "must match");
  2990   __ jmp(_unwind_handler_entry);
  2994 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2996   // optimized version for linear scan:
  2997   // * count must be already in ECX (guaranteed by LinearScan)
  2998   // * left and dest must be equal
  2999   // * tmp must be unused
  3000   assert(count->as_register() == SHIFT_count, "count must be in ECX");
  3001   assert(left == dest, "left and dest must be equal");
  3002   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
  3004   if (left->is_single_cpu()) {
  3005     Register value = left->as_register();
  3006     assert(value != SHIFT_count, "left cannot be ECX");
  3008     switch (code) {
  3009       case lir_shl:  __ shll(value); break;
  3010       case lir_shr:  __ sarl(value); break;
  3011       case lir_ushr: __ shrl(value); break;
  3012       default: ShouldNotReachHere();
  3014   } else if (left->is_double_cpu()) {
  3015     Register lo = left->as_register_lo();
  3016     Register hi = left->as_register_hi();
  3017     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
  3018 #ifdef _LP64
  3019     switch (code) {
  3020       case lir_shl:  __ shlptr(lo);        break;
  3021       case lir_shr:  __ sarptr(lo);        break;
  3022       case lir_ushr: __ shrptr(lo);        break;
  3023       default: ShouldNotReachHere();
  3025 #else
  3027     switch (code) {
  3028       case lir_shl:  __ lshl(hi, lo);        break;
  3029       case lir_shr:  __ lshr(hi, lo, true);  break;
  3030       case lir_ushr: __ lshr(hi, lo, false); break;
  3031       default: ShouldNotReachHere();
  3033 #endif // LP64
  3034   } else {
  3035     ShouldNotReachHere();
  3040 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  3041   if (dest->is_single_cpu()) {
  3042     // first move left into dest so that left is not destroyed by the shift
  3043     Register value = dest->as_register();
  3044     count = count & 0x1F; // Java spec
  3046     move_regs(left->as_register(), value);
  3047     switch (code) {
  3048       case lir_shl:  __ shll(value, count); break;
  3049       case lir_shr:  __ sarl(value, count); break;
  3050       case lir_ushr: __ shrl(value, count); break;
  3051       default: ShouldNotReachHere();
  3053   } else if (dest->is_double_cpu()) {
  3054 #ifndef _LP64
  3055     Unimplemented();
  3056 #else
  3057     // first move left into dest so that left is not destroyed by the shift
  3058     Register value = dest->as_register_lo();
  3059     count = count & 0x1F; // Java spec
  3061     move_regs(left->as_register_lo(), value);
  3062     switch (code) {
  3063       case lir_shl:  __ shlptr(value, count); break;
  3064       case lir_shr:  __ sarptr(value, count); break;
  3065       case lir_ushr: __ shrptr(value, count); break;
  3066       default: ShouldNotReachHere();
  3068 #endif // _LP64
  3069   } else {
  3070     ShouldNotReachHere();
  3075 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
  3076   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3077   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3078   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3079   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
  3083 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
  3084   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3085   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3086   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3087   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
  3091 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
  3092   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3093   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3094   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3095   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
  3099 // This code replaces a call to arraycopy; no exception may
  3100 // be thrown in this code, they must be thrown in the System.arraycopy
  3101 // activation frame; we could save some checks if this would not be the case
  3102 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  3103   ciArrayKlass* default_type = op->expected_type();
  3104   Register src = op->src()->as_register();
  3105   Register dst = op->dst()->as_register();
  3106   Register src_pos = op->src_pos()->as_register();
  3107   Register dst_pos = op->dst_pos()->as_register();
  3108   Register length  = op->length()->as_register();
  3109   Register tmp = op->tmp()->as_register();
  3111   CodeStub* stub = op->stub();
  3112   int flags = op->flags();
  3113   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  3114   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  3116   // if we don't know anything, just go through the generic arraycopy
  3117   if (default_type == NULL) {
  3118     Label done;
  3119     // save outgoing arguments on stack in case call to System.arraycopy is needed
  3120     // HACK ALERT. This code used to push the parameters in a hardwired fashion
  3121     // for interpreter calling conventions. Now we have to do it in new style conventions.
  3122     // For the moment until C1 gets the new register allocator I just force all the
  3123     // args to the right place (except the register args) and then on the back side
  3124     // reload the register args properly if we go slow path. Yuck
  3126     // These are proper for the calling convention
  3127     store_parameter(length, 2);
  3128     store_parameter(dst_pos, 1);
  3129     store_parameter(dst, 0);
  3131     // these are just temporary placements until we need to reload
  3132     store_parameter(src_pos, 3);
  3133     store_parameter(src, 4);
  3134     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
  3136     address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
  3138     address copyfunc_addr = StubRoutines::generic_arraycopy();
  3140     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
  3141 #ifdef _LP64
  3142     // The arguments are in java calling convention so we can trivially shift them to C
  3143     // convention
  3144     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3145     __ mov(c_rarg0, j_rarg0);
  3146     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3147     __ mov(c_rarg1, j_rarg1);
  3148     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
  3149     __ mov(c_rarg2, j_rarg2);
  3150     assert_different_registers(c_rarg3, j_rarg4);
  3151     __ mov(c_rarg3, j_rarg3);
  3152 #ifdef _WIN64
  3153     // Allocate abi space for args but be sure to keep stack aligned
  3154     __ subptr(rsp, 6*wordSize);
  3155     store_parameter(j_rarg4, 4);
  3156     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3157       __ call(RuntimeAddress(C_entry));
  3158     } else {
  3159 #ifndef PRODUCT
  3160       if (PrintC1Statistics) {
  3161         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3163 #endif
  3164       __ call(RuntimeAddress(copyfunc_addr));
  3166     __ addptr(rsp, 6*wordSize);
  3167 #else
  3168     __ mov(c_rarg4, j_rarg4);
  3169     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3170       __ call(RuntimeAddress(C_entry));
  3171     } else {
  3172 #ifndef PRODUCT
  3173       if (PrintC1Statistics) {
  3174         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3176 #endif
  3177       __ call(RuntimeAddress(copyfunc_addr));
  3179 #endif // _WIN64
  3180 #else
  3181     __ push(length);
  3182     __ push(dst_pos);
  3183     __ push(dst);
  3184     __ push(src_pos);
  3185     __ push(src);
  3187     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3188       __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
  3189     } else {
  3190 #ifndef PRODUCT
  3191       if (PrintC1Statistics) {
  3192         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3194 #endif
  3195       __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
  3198 #endif // _LP64
  3200     __ cmpl(rax, 0);
  3201     __ jcc(Assembler::equal, *stub->continuation());
  3203     if (copyfunc_addr != NULL) {
  3204       __ mov(tmp, rax);
  3205       __ xorl(tmp, -1);
  3208     // Reload values from the stack so they are where the stub
  3209     // expects them.
  3210     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3211     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3212     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3213     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3214     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3216     if (copyfunc_addr != NULL) {
  3217       __ subl(length, tmp);
  3218       __ addl(src_pos, tmp);
  3219       __ addl(dst_pos, tmp);
  3221     __ jmp(*stub->entry());
  3223     __ bind(*stub->continuation());
  3224     return;
  3227   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
  3229   int elem_size = type2aelembytes(basic_type);
  3230   int shift_amount;
  3231   Address::ScaleFactor scale;
  3233   switch (elem_size) {
  3234     case 1 :
  3235       shift_amount = 0;
  3236       scale = Address::times_1;
  3237       break;
  3238     case 2 :
  3239       shift_amount = 1;
  3240       scale = Address::times_2;
  3241       break;
  3242     case 4 :
  3243       shift_amount = 2;
  3244       scale = Address::times_4;
  3245       break;
  3246     case 8 :
  3247       shift_amount = 3;
  3248       scale = Address::times_8;
  3249       break;
  3250     default:
  3251       ShouldNotReachHere();
  3254   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
  3255   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
  3256   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
  3257   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
  3259   // length and pos's are all sign extended at this point on 64bit
  3261   // test for NULL
  3262   if (flags & LIR_OpArrayCopy::src_null_check) {
  3263     __ testptr(src, src);
  3264     __ jcc(Assembler::zero, *stub->entry());
  3266   if (flags & LIR_OpArrayCopy::dst_null_check) {
  3267     __ testptr(dst, dst);
  3268     __ jcc(Assembler::zero, *stub->entry());
  3271   // check if negative
  3272   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  3273     __ testl(src_pos, src_pos);
  3274     __ jcc(Assembler::less, *stub->entry());
  3276   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  3277     __ testl(dst_pos, dst_pos);
  3278     __ jcc(Assembler::less, *stub->entry());
  3281   if (flags & LIR_OpArrayCopy::src_range_check) {
  3282     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
  3283     __ cmpl(tmp, src_length_addr);
  3284     __ jcc(Assembler::above, *stub->entry());
  3286   if (flags & LIR_OpArrayCopy::dst_range_check) {
  3287     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
  3288     __ cmpl(tmp, dst_length_addr);
  3289     __ jcc(Assembler::above, *stub->entry());
  3292   if (flags & LIR_OpArrayCopy::length_positive_check) {
  3293     __ testl(length, length);
  3294     __ jcc(Assembler::less, *stub->entry());
  3295     __ jcc(Assembler::zero, *stub->continuation());
  3298 #ifdef _LP64
  3299   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
  3300   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
  3301 #endif
  3303   if (flags & LIR_OpArrayCopy::type_check) {
  3304     // We don't know the array types are compatible
  3305     if (basic_type != T_OBJECT) {
  3306       // Simple test for basic type arrays
  3307       if (UseCompressedClassPointers) {
  3308         __ movl(tmp, src_klass_addr);
  3309         __ cmpl(tmp, dst_klass_addr);
  3310       } else {
  3311         __ movptr(tmp, src_klass_addr);
  3312         __ cmpptr(tmp, dst_klass_addr);
  3314       __ jcc(Assembler::notEqual, *stub->entry());
  3315     } else {
  3316       // For object arrays, if src is a sub class of dst then we can
  3317       // safely do the copy.
  3318       Label cont, slow;
  3320       __ push(src);
  3321       __ push(dst);
  3323       __ load_klass(src, src);
  3324       __ load_klass(dst, dst);
  3326       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
  3328       __ push(src);
  3329       __ push(dst);
  3330       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  3331       __ pop(dst);
  3332       __ pop(src);
  3334       __ cmpl(src, 0);
  3335       __ jcc(Assembler::notEqual, cont);
  3337       __ bind(slow);
  3338       __ pop(dst);
  3339       __ pop(src);
  3341       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  3342       if (copyfunc_addr != NULL) { // use stub if available
  3343         // src is not a sub class of dst so we have to do a
  3344         // per-element check.
  3346         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
  3347         if ((flags & mask) != mask) {
  3348           // Check that at least both of them object arrays.
  3349           assert(flags & mask, "one of the two should be known to be an object array");
  3351           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
  3352             __ load_klass(tmp, src);
  3353           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
  3354             __ load_klass(tmp, dst);
  3356           int lh_offset = in_bytes(Klass::layout_helper_offset());
  3357           Address klass_lh_addr(tmp, lh_offset);
  3358           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  3359           __ cmpl(klass_lh_addr, objArray_lh);
  3360           __ jcc(Assembler::notEqual, *stub->entry());
  3363        // Spill because stubs can use any register they like and it's
  3364        // easier to restore just those that we care about.
  3365        store_parameter(dst, 0);
  3366        store_parameter(dst_pos, 1);
  3367        store_parameter(length, 2);
  3368        store_parameter(src_pos, 3);
  3369        store_parameter(src, 4);
  3371 #ifndef _LP64
  3372         __ movptr(tmp, dst_klass_addr);
  3373         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
  3374         __ push(tmp);
  3375         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
  3376         __ push(tmp);
  3377         __ push(length);
  3378         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3379         __ push(tmp);
  3380         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3381         __ push(tmp);
  3383         __ call_VM_leaf(copyfunc_addr, 5);
  3384 #else
  3385         __ movl2ptr(length, length); //higher 32bits must be null
  3387         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3388         assert_different_registers(c_rarg0, dst, dst_pos, length);
  3389         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3390         assert_different_registers(c_rarg1, dst, length);
  3392         __ mov(c_rarg2, length);
  3393         assert_different_registers(c_rarg2, dst);
  3395 #ifdef _WIN64
  3396         // Allocate abi space for args but be sure to keep stack aligned
  3397         __ subptr(rsp, 6*wordSize);
  3398         __ load_klass(c_rarg3, dst);
  3399         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
  3400         store_parameter(c_rarg3, 4);
  3401         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
  3402         __ call(RuntimeAddress(copyfunc_addr));
  3403         __ addptr(rsp, 6*wordSize);
  3404 #else
  3405         __ load_klass(c_rarg4, dst);
  3406         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
  3407         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
  3408         __ call(RuntimeAddress(copyfunc_addr));
  3409 #endif
  3411 #endif
  3413 #ifndef PRODUCT
  3414         if (PrintC1Statistics) {
  3415           Label failed;
  3416           __ testl(rax, rax);
  3417           __ jcc(Assembler::notZero, failed);
  3418           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
  3419           __ bind(failed);
  3421 #endif
  3423         __ testl(rax, rax);
  3424         __ jcc(Assembler::zero, *stub->continuation());
  3426 #ifndef PRODUCT
  3427         if (PrintC1Statistics) {
  3428           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
  3430 #endif
  3432         __ mov(tmp, rax);
  3434         __ xorl(tmp, -1);
  3436         // Restore previously spilled arguments
  3437         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3438         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3439         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3440         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3441         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3444         __ subl(length, tmp);
  3445         __ addl(src_pos, tmp);
  3446         __ addl(dst_pos, tmp);
  3449       __ jmp(*stub->entry());
  3451       __ bind(cont);
  3452       __ pop(dst);
  3453       __ pop(src);
  3457 #ifdef ASSERT
  3458   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  3459     // Sanity check the known type with the incoming class.  For the
  3460     // primitive case the types must match exactly with src.klass and
  3461     // dst.klass each exactly matching the default type.  For the
  3462     // object array case, if no type check is needed then either the
  3463     // dst type is exactly the expected type and the src type is a
  3464     // subtype which we can't check or src is the same array as dst
  3465     // but not necessarily exactly of type default_type.
  3466     Label known_ok, halt;
  3467     __ mov_metadata(tmp, default_type->constant_encoding());
  3468 #ifdef _LP64
  3469     if (UseCompressedClassPointers) {
  3470       __ encode_klass_not_null(tmp);
  3472 #endif
  3474     if (basic_type != T_OBJECT) {
  3476       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
  3477       else                   __ cmpptr(tmp, dst_klass_addr);
  3478       __ jcc(Assembler::notEqual, halt);
  3479       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
  3480       else                   __ cmpptr(tmp, src_klass_addr);
  3481       __ jcc(Assembler::equal, known_ok);
  3482     } else {
  3483       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
  3484       else                   __ cmpptr(tmp, dst_klass_addr);
  3485       __ jcc(Assembler::equal, known_ok);
  3486       __ cmpptr(src, dst);
  3487       __ jcc(Assembler::equal, known_ok);
  3489     __ bind(halt);
  3490     __ stop("incorrect type information in arraycopy");
  3491     __ bind(known_ok);
  3493 #endif
  3495 #ifndef PRODUCT
  3496   if (PrintC1Statistics) {
  3497     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
  3499 #endif
  3501 #ifdef _LP64
  3502   assert_different_registers(c_rarg0, dst, dst_pos, length);
  3503   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3504   assert_different_registers(c_rarg1, length);
  3505   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3506   __ mov(c_rarg2, length);
  3508 #else
  3509   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3510   store_parameter(tmp, 0);
  3511   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3512   store_parameter(tmp, 1);
  3513   store_parameter(length, 2);
  3514 #endif // _LP64
  3516   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
  3517   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
  3518   const char *name;
  3519   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
  3520   __ call_VM_leaf(entry, 0);
  3522   __ bind(*stub->continuation());
  3525 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
  3526   assert(op->crc()->is_single_cpu(),  "crc must be register");
  3527   assert(op->val()->is_single_cpu(),  "byte value must be register");
  3528   assert(op->result_opr()->is_single_cpu(), "result must be register");
  3529   Register crc = op->crc()->as_register();
  3530   Register val = op->val()->as_register();
  3531   Register res = op->result_opr()->as_register();
  3533   assert_different_registers(val, crc, res);
  3535   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
  3536   __ notl(crc); // ~crc
  3537   __ update_byte_crc32(crc, val, res);
  3538   __ notl(crc); // ~crc
  3539   __ mov(res, crc);
  3542 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  3543   Register obj = op->obj_opr()->as_register();  // may not be an oop
  3544   Register hdr = op->hdr_opr()->as_register();
  3545   Register lock = op->lock_opr()->as_register();
  3546   if (!UseFastLocking) {
  3547     __ jmp(*op->stub()->entry());
  3548   } else if (op->code() == lir_lock) {
  3549     Register scratch = noreg;
  3550     if (UseBiasedLocking) {
  3551       scratch = op->scratch_opr()->as_register();
  3553     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3554     // add debug info for NullPointerException only if one is possible
  3555     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
  3556     if (op->info() != NULL) {
  3557       add_debug_info_for_null_check(null_check_offset, op->info());
  3559     // done
  3560   } else if (op->code() == lir_unlock) {
  3561     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3562     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  3563   } else {
  3564     Unimplemented();
  3566   __ bind(*op->stub()->continuation());
  3570 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  3571   ciMethod* method = op->profiled_method();
  3572   int bci          = op->profiled_bci();
  3573   ciMethod* callee = op->profiled_callee();
  3575   // Update counter for all call types
  3576   ciMethodData* md = method->method_data_or_null();
  3577   assert(md != NULL, "Sanity");
  3578   ciProfileData* data = md->bci_to_data(bci);
  3579   assert(data->is_CounterData(), "need CounterData for calls");
  3580   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3581   Register mdo  = op->mdo()->as_register();
  3582   __ mov_metadata(mdo, md->constant_encoding());
  3583   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  3584   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3585   const bool callee_is_static = callee->is_loaded() && callee->is_static();
  3586   // Perform additional virtual call profiling for invokevirtual and
  3587   // invokeinterface bytecodes
  3588   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3589       !callee_is_static &&  // required for optimized MH invokes
  3590       C1ProfileVirtualCalls) {
  3591     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3592     Register recv = op->recv()->as_register();
  3593     assert_different_registers(mdo, recv);
  3594     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3595     ciKlass* known_klass = op->known_holder();
  3596     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3597       // We know the type that will be seen at this call site; we can
  3598       // statically update the MethodData* rather than needing to do
  3599       // dynamic tests on the receiver type
  3601       // NOTE: we should probably put a lock around this search to
  3602       // avoid collisions by concurrent compilations
  3603       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3604       uint i;
  3605       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3606         ciKlass* receiver = vc_data->receiver(i);
  3607         if (known_klass->equals(receiver)) {
  3608           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3609           __ addptr(data_addr, DataLayout::counter_increment);
  3610           return;
  3614       // Receiver type not found in profile data; select an empty slot
  3616       // Note that this is less efficient than it should be because it
  3617       // always does a write to the receiver part of the
  3618       // VirtualCallData rather than just the first time
  3619       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3620         ciKlass* receiver = vc_data->receiver(i);
  3621         if (receiver == NULL) {
  3622           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3623           __ mov_metadata(recv_addr, known_klass->constant_encoding());
  3624           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3625           __ addptr(data_addr, DataLayout::counter_increment);
  3626           return;
  3629     } else {
  3630       __ load_klass(recv, recv);
  3631       Label update_done;
  3632       type_profile_helper(mdo, md, data, recv, &update_done);
  3633       // Receiver did not match any saved receiver and there is no empty row for it.
  3634       // Increment total counter to indicate polymorphic case.
  3635       __ addptr(counter_addr, DataLayout::counter_increment);
  3637       __ bind(update_done);
  3639   } else {
  3640     // Static call
  3641     __ addptr(counter_addr, DataLayout::counter_increment);
  3645 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
  3646   Register obj = op->obj()->as_register();
  3647   Register tmp = op->tmp()->as_pointer_register();
  3648   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
  3649   ciKlass* exact_klass = op->exact_klass();
  3650   intptr_t current_klass = op->current_klass();
  3651   bool not_null = op->not_null();
  3652   bool no_conflict = op->no_conflict();
  3654   Label update, next, none;
  3656   bool do_null = !not_null;
  3657   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
  3658   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
  3660   assert(do_null || do_update, "why are we here?");
  3661   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
  3663   __ verify_oop(obj);
  3665   if (tmp != obj) {
  3666     __ mov(tmp, obj);
  3668   if (do_null) {
  3669     __ testptr(tmp, tmp);
  3670     __ jccb(Assembler::notZero, update);
  3671     if (!TypeEntries::was_null_seen(current_klass)) {
  3672       __ orptr(mdo_addr, TypeEntries::null_seen);
  3674     if (do_update) {
  3675 #ifndef ASSERT
  3676       __ jmpb(next);
  3678 #else
  3679       __ jmp(next);
  3681   } else {
  3682     __ testptr(tmp, tmp);
  3683     __ jccb(Assembler::notZero, update);
  3684     __ stop("unexpect null obj");
  3685 #endif
  3688   __ bind(update);
  3690   if (do_update) {
  3691 #ifdef ASSERT
  3692     if (exact_klass != NULL) {
  3693       Label ok;
  3694       __ load_klass(tmp, tmp);
  3695       __ push(tmp);
  3696       __ mov_metadata(tmp, exact_klass->constant_encoding());
  3697       __ cmpptr(tmp, Address(rsp, 0));
  3698       __ jccb(Assembler::equal, ok);
  3699       __ stop("exact klass and actual klass differ");
  3700       __ bind(ok);
  3701       __ pop(tmp);
  3703 #endif
  3704     if (!no_conflict) {
  3705       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
  3706         if (exact_klass != NULL) {
  3707           __ mov_metadata(tmp, exact_klass->constant_encoding());
  3708         } else {
  3709           __ load_klass(tmp, tmp);
  3712         __ xorptr(tmp, mdo_addr);
  3713         __ testptr(tmp, TypeEntries::type_klass_mask);
  3714         // klass seen before, nothing to do. The unknown bit may have been
  3715         // set already but no need to check.
  3716         __ jccb(Assembler::zero, next);
  3718         __ testptr(tmp, TypeEntries::type_unknown);
  3719         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
  3721         if (TypeEntries::is_type_none(current_klass)) {
  3722           __ cmpptr(mdo_addr, 0);
  3723           __ jccb(Assembler::equal, none);
  3724           __ cmpptr(mdo_addr, TypeEntries::null_seen);
  3725           __ jccb(Assembler::equal, none);
  3726           // There is a chance that the checks above (re-reading profiling
  3727           // data from memory) fail if another thread has just set the
  3728           // profiling to this obj's klass
  3729           __ xorptr(tmp, mdo_addr);
  3730           __ testptr(tmp, TypeEntries::type_klass_mask);
  3731           __ jccb(Assembler::zero, next);
  3733       } else {
  3734         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
  3735                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
  3737         __ movptr(tmp, mdo_addr);
  3738         __ testptr(tmp, TypeEntries::type_unknown);
  3739         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
  3742       // different than before. Cannot keep accurate profile.
  3743       __ orptr(mdo_addr, TypeEntries::type_unknown);
  3745       if (TypeEntries::is_type_none(current_klass)) {
  3746         __ jmpb(next);
  3748         __ bind(none);
  3749         // first time here. Set profile type.
  3750         __ movptr(mdo_addr, tmp);
  3752     } else {
  3753       // There's a single possible klass at this profile point
  3754       assert(exact_klass != NULL, "should be");
  3755       if (TypeEntries::is_type_none(current_klass)) {
  3756         __ mov_metadata(tmp, exact_klass->constant_encoding());
  3757         __ xorptr(tmp, mdo_addr);
  3758         __ testptr(tmp, TypeEntries::type_klass_mask);
  3759 #ifdef ASSERT
  3760         __ jcc(Assembler::zero, next);
  3763           Label ok;
  3764           __ push(tmp);
  3765           __ cmpptr(mdo_addr, 0);
  3766           __ jcc(Assembler::equal, ok);
  3767           __ cmpptr(mdo_addr, TypeEntries::null_seen);
  3768           __ jcc(Assembler::equal, ok);
  3769           // may have been set by another thread
  3770           __ mov_metadata(tmp, exact_klass->constant_encoding());
  3771           __ xorptr(tmp, mdo_addr);
  3772           __ testptr(tmp, TypeEntries::type_mask);
  3773           __ jcc(Assembler::zero, ok);
  3775           __ stop("unexpected profiling mismatch");
  3776           __ bind(ok);
  3777           __ pop(tmp);
  3779 #else
  3780         __ jccb(Assembler::zero, next);
  3781 #endif
  3782         // first time here. Set profile type.
  3783         __ movptr(mdo_addr, tmp);
  3784       } else {
  3785         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
  3786                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
  3788         __ movptr(tmp, mdo_addr);
  3789         __ testptr(tmp, TypeEntries::type_unknown);
  3790         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
  3792         __ orptr(mdo_addr, TypeEntries::type_unknown);
  3796     __ bind(next);
  3800 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
  3801   Unimplemented();
  3805 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
  3806   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
  3810 void LIR_Assembler::align_backward_branch_target() {
  3811   __ align(BytesPerWord);
  3815 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3816   if (left->is_single_cpu()) {
  3817     __ negl(left->as_register());
  3818     move_regs(left->as_register(), dest->as_register());
  3820   } else if (left->is_double_cpu()) {
  3821     Register lo = left->as_register_lo();
  3822 #ifdef _LP64
  3823     Register dst = dest->as_register_lo();
  3824     __ movptr(dst, lo);
  3825     __ negptr(dst);
  3826 #else
  3827     Register hi = left->as_register_hi();
  3828     __ lneg(hi, lo);
  3829     if (dest->as_register_lo() == hi) {
  3830       assert(dest->as_register_hi() != lo, "destroying register");
  3831       move_regs(hi, dest->as_register_hi());
  3832       move_regs(lo, dest->as_register_lo());
  3833     } else {
  3834       move_regs(lo, dest->as_register_lo());
  3835       move_regs(hi, dest->as_register_hi());
  3837 #endif // _LP64
  3839   } else if (dest->is_single_xmm()) {
  3840     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
  3841       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
  3843     __ xorps(dest->as_xmm_float_reg(),
  3844              ExternalAddress((address)float_signflip_pool));
  3846   } else if (dest->is_double_xmm()) {
  3847     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
  3848       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
  3850     __ xorpd(dest->as_xmm_double_reg(),
  3851              ExternalAddress((address)double_signflip_pool));
  3853   } else if (left->is_single_fpu() || left->is_double_fpu()) {
  3854     assert(left->fpu() == 0, "arg must be on TOS");
  3855     assert(dest->fpu() == 0, "dest must be TOS");
  3856     __ fchs();
  3858   } else {
  3859     ShouldNotReachHere();
  3864 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
  3865   assert(addr->is_address() && dest->is_register(), "check");
  3866   Register reg;
  3867   reg = dest->as_pointer_register();
  3868   __ lea(reg, as_Address(addr->as_address_ptr()));
  3873 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3874   assert(!tmp->is_valid(), "don't need temporary");
  3875   __ call(RuntimeAddress(dest));
  3876   if (info != NULL) {
  3877     add_call_info_here(info);
  3882 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3883   assert(type == T_LONG, "only for volatile long fields");
  3885   if (info != NULL) {
  3886     add_debug_info_for_null_check_here(info);
  3889   if (src->is_double_xmm()) {
  3890     if (dest->is_double_cpu()) {
  3891 #ifdef _LP64
  3892       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
  3893 #else
  3894       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
  3895       __ psrlq(src->as_xmm_double_reg(), 32);
  3896       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
  3897 #endif // _LP64
  3898     } else if (dest->is_double_stack()) {
  3899       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
  3900     } else if (dest->is_address()) {
  3901       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
  3902     } else {
  3903       ShouldNotReachHere();
  3906   } else if (dest->is_double_xmm()) {
  3907     if (src->is_double_stack()) {
  3908       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
  3909     } else if (src->is_address()) {
  3910       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
  3911     } else {
  3912       ShouldNotReachHere();
  3915   } else if (src->is_double_fpu()) {
  3916     assert(src->fpu_regnrLo() == 0, "must be TOS");
  3917     if (dest->is_double_stack()) {
  3918       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
  3919     } else if (dest->is_address()) {
  3920       __ fistp_d(as_Address(dest->as_address_ptr()));
  3921     } else {
  3922       ShouldNotReachHere();
  3925   } else if (dest->is_double_fpu()) {
  3926     assert(dest->fpu_regnrLo() == 0, "must be TOS");
  3927     if (src->is_double_stack()) {
  3928       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
  3929     } else if (src->is_address()) {
  3930       __ fild_d(as_Address(src->as_address_ptr()));
  3931     } else {
  3932       ShouldNotReachHere();
  3934   } else {
  3935     ShouldNotReachHere();
  3939 #ifdef ASSERT
  3940 // emit run-time assertion
  3941 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
  3942   assert(op->code() == lir_assert, "must be");
  3944   if (op->in_opr1()->is_valid()) {
  3945     assert(op->in_opr2()->is_valid(), "both operands must be valid");
  3946     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
  3947   } else {
  3948     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
  3949     assert(op->condition() == lir_cond_always, "no other conditions allowed");
  3952   Label ok;
  3953   if (op->condition() != lir_cond_always) {
  3954     Assembler::Condition acond = Assembler::zero;
  3955     switch (op->condition()) {
  3956       case lir_cond_equal:        acond = Assembler::equal;       break;
  3957       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
  3958       case lir_cond_less:         acond = Assembler::less;        break;
  3959       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
  3960       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
  3961       case lir_cond_greater:      acond = Assembler::greater;     break;
  3962       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
  3963       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
  3964       default:                    ShouldNotReachHere();
  3966     __ jcc(acond, ok);
  3968   if (op->halt()) {
  3969     const char* str = __ code_string(op->msg());
  3970     __ stop(str);
  3971   } else {
  3972     breakpoint();
  3974   __ bind(ok);
  3976 #endif
  3978 void LIR_Assembler::membar() {
  3979   // QQQ sparc TSO uses this,
  3980   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3983 void LIR_Assembler::membar_acquire() {
  3984   // No x86 machines currently require load fences
  3985   // __ load_fence();
  3988 void LIR_Assembler::membar_release() {
  3989   // No x86 machines currently require store fences
  3990   // __ store_fence();
  3993 void LIR_Assembler::membar_loadload() {
  3994   // no-op
  3995   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
  3998 void LIR_Assembler::membar_storestore() {
  3999   // no-op
  4000   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
  4003 void LIR_Assembler::membar_loadstore() {
  4004   // no-op
  4005   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
  4008 void LIR_Assembler::membar_storeload() {
  4009   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  4012 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  4013   assert(result_reg->is_register(), "check");
  4014 #ifdef _LP64
  4015   // __ get_thread(result_reg->as_register_lo());
  4016   __ mov(result_reg->as_register(), r15_thread);
  4017 #else
  4018   __ get_thread(result_reg->as_register());
  4019 #endif // _LP64
  4023 void LIR_Assembler::peephole(LIR_List*) {
  4024   // do nothing for now
  4027 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
  4028   assert(data == dest, "xchg/xadd uses only 2 operands");
  4030   if (data->type() == T_INT) {
  4031     if (code == lir_xadd) {
  4032       if (os::is_MP()) {
  4033         __ lock();
  4035       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
  4036     } else {
  4037       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
  4039   } else if (data->is_oop()) {
  4040     assert (code == lir_xchg, "xadd for oops");
  4041     Register obj = data->as_register();
  4042 #ifdef _LP64
  4043     if (UseCompressedOops) {
  4044       __ encode_heap_oop(obj);
  4045       __ xchgl(obj, as_Address(src->as_address_ptr()));
  4046       __ decode_heap_oop(obj);
  4047     } else {
  4048       __ xchgptr(obj, as_Address(src->as_address_ptr()));
  4050 #else
  4051     __ xchgl(obj, as_Address(src->as_address_ptr()));
  4052 #endif
  4053   } else if (data->type() == T_LONG) {
  4054 #ifdef _LP64
  4055     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
  4056     if (code == lir_xadd) {
  4057       if (os::is_MP()) {
  4058         __ lock();
  4060       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
  4061     } else {
  4062       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
  4064 #else
  4065     ShouldNotReachHere();
  4066 #endif
  4067   } else {
  4068     ShouldNotReachHere();
  4072 #undef __

mercurial