src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Tue, 30 Nov 2010 23:23:40 -0800

author
iveresov
date
Tue, 30 Nov 2010 23:23:40 -0800
changeset 2344
ac637b7220d1
parent 2314
f95d63e2154a
child 2349
5ddfcf4b079e
permissions
-rw-r--r--

6985015: C1 needs to support compressed oops
Summary: This change implements compressed oops for C1 for x64 and sparc. The changes are mostly on the codegen level, with a few exceptions when we do access things outside of the heap that are uncompressed from the IR. Compressed oops are now also enabled with tiered.
Reviewed-by: twisti, kvn, never, phh

duke@435 1 /*
trims@1907 2 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "c1/c1_Compilation.hpp"
stefank@2314 27 #include "c1/c1_LIRAssembler.hpp"
stefank@2314 28 #include "c1/c1_MacroAssembler.hpp"
stefank@2314 29 #include "c1/c1_Runtime1.hpp"
stefank@2314 30 #include "c1/c1_ValueStack.hpp"
stefank@2314 31 #include "ci/ciArrayKlass.hpp"
stefank@2314 32 #include "ci/ciInstance.hpp"
stefank@2314 33 #include "gc_interface/collectedHeap.hpp"
stefank@2314 34 #include "memory/barrierSet.hpp"
stefank@2314 35 #include "memory/cardTableModRefBS.hpp"
stefank@2314 36 #include "nativeInst_x86.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "runtime/sharedRuntime.hpp"
duke@435 39
duke@435 40
duke@435 41 // These masks are used to provide 128-bit aligned bitmasks to the XMM
duke@435 42 // instructions, to allow sign-masking or sign-bit flipping. They allow
duke@435 43 // fast versions of NegF/NegD and AbsF/AbsD.
duke@435 44
duke@435 45 // Note: 'double' and 'long long' have 32-bits alignment on x86.
duke@435 46 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
duke@435 47 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
duke@435 48 // of 128-bits operands for SSE instructions.
duke@435 49 jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
duke@435 50 // Store the value to a 128-bits operand.
duke@435 51 operand[0] = lo;
duke@435 52 operand[1] = hi;
duke@435 53 return operand;
duke@435 54 }
duke@435 55
duke@435 56 // Buffer for 128-bits masks used by SSE instructions.
duke@435 57 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
duke@435 58
duke@435 59 // Static initialization during VM startup.
duke@435 60 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
duke@435 61 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
duke@435 62 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
duke@435 63 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
duke@435 64
duke@435 65
duke@435 66
duke@435 67 NEEDS_CLEANUP // remove this definitions ?
duke@435 68 const Register IC_Klass = rax; // where the IC klass is cached
duke@435 69 const Register SYNC_header = rax; // synchronization header
duke@435 70 const Register SHIFT_count = rcx; // where count for shift operations must be
duke@435 71
duke@435 72 #define __ _masm->
duke@435 73
duke@435 74
duke@435 75 static void select_different_registers(Register preserve,
duke@435 76 Register extra,
duke@435 77 Register &tmp1,
duke@435 78 Register &tmp2) {
duke@435 79 if (tmp1 == preserve) {
duke@435 80 assert_different_registers(tmp1, tmp2, extra);
duke@435 81 tmp1 = extra;
duke@435 82 } else if (tmp2 == preserve) {
duke@435 83 assert_different_registers(tmp1, tmp2, extra);
duke@435 84 tmp2 = extra;
duke@435 85 }
duke@435 86 assert_different_registers(preserve, tmp1, tmp2);
duke@435 87 }
duke@435 88
duke@435 89
duke@435 90
duke@435 91 static void select_different_registers(Register preserve,
duke@435 92 Register extra,
duke@435 93 Register &tmp1,
duke@435 94 Register &tmp2,
duke@435 95 Register &tmp3) {
duke@435 96 if (tmp1 == preserve) {
duke@435 97 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 98 tmp1 = extra;
duke@435 99 } else if (tmp2 == preserve) {
duke@435 100 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 101 tmp2 = extra;
duke@435 102 } else if (tmp3 == preserve) {
duke@435 103 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 104 tmp3 = extra;
duke@435 105 }
duke@435 106 assert_different_registers(preserve, tmp1, tmp2, tmp3);
duke@435 107 }
duke@435 108
duke@435 109
duke@435 110
duke@435 111 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 112 if (opr->is_constant()) {
duke@435 113 LIR_Const* constant = opr->as_constant_ptr();
duke@435 114 switch (constant->type()) {
duke@435 115 case T_INT: {
duke@435 116 return true;
duke@435 117 }
duke@435 118
duke@435 119 default:
duke@435 120 return false;
duke@435 121 }
duke@435 122 }
duke@435 123 return false;
duke@435 124 }
duke@435 125
duke@435 126
duke@435 127 LIR_Opr LIR_Assembler::receiverOpr() {
never@739 128 return FrameMap::receiver_opr;
duke@435 129 }
duke@435 130
duke@435 131 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
duke@435 132 return receiverOpr();
duke@435 133 }
duke@435 134
duke@435 135 LIR_Opr LIR_Assembler::osrBufferPointer() {
never@739 136 return FrameMap::as_pointer_opr(receiverOpr()->as_register());
duke@435 137 }
duke@435 138
duke@435 139 //--------------fpu register translations-----------------------
duke@435 140
duke@435 141
duke@435 142 address LIR_Assembler::float_constant(float f) {
duke@435 143 address const_addr = __ float_constant(f);
duke@435 144 if (const_addr == NULL) {
duke@435 145 bailout("const section overflow");
duke@435 146 return __ code()->consts()->start();
duke@435 147 } else {
duke@435 148 return const_addr;
duke@435 149 }
duke@435 150 }
duke@435 151
duke@435 152
duke@435 153 address LIR_Assembler::double_constant(double d) {
duke@435 154 address const_addr = __ double_constant(d);
duke@435 155 if (const_addr == NULL) {
duke@435 156 bailout("const section overflow");
duke@435 157 return __ code()->consts()->start();
duke@435 158 } else {
duke@435 159 return const_addr;
duke@435 160 }
duke@435 161 }
duke@435 162
duke@435 163
duke@435 164 void LIR_Assembler::set_24bit_FPU() {
duke@435 165 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
duke@435 166 }
duke@435 167
duke@435 168 void LIR_Assembler::reset_FPU() {
duke@435 169 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 170 }
duke@435 171
duke@435 172 void LIR_Assembler::fpop() {
duke@435 173 __ fpop();
duke@435 174 }
duke@435 175
duke@435 176 void LIR_Assembler::fxch(int i) {
duke@435 177 __ fxch(i);
duke@435 178 }
duke@435 179
duke@435 180 void LIR_Assembler::fld(int i) {
duke@435 181 __ fld_s(i);
duke@435 182 }
duke@435 183
duke@435 184 void LIR_Assembler::ffree(int i) {
duke@435 185 __ ffree(i);
duke@435 186 }
duke@435 187
duke@435 188 void LIR_Assembler::breakpoint() {
duke@435 189 __ int3();
duke@435 190 }
duke@435 191
duke@435 192 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 193 if (opr->is_single_cpu()) {
duke@435 194 __ push_reg(opr->as_register());
duke@435 195 } else if (opr->is_double_cpu()) {
never@739 196 NOT_LP64(__ push_reg(opr->as_register_hi()));
duke@435 197 __ push_reg(opr->as_register_lo());
duke@435 198 } else if (opr->is_stack()) {
duke@435 199 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
duke@435 200 } else if (opr->is_constant()) {
duke@435 201 LIR_Const* const_opr = opr->as_constant_ptr();
duke@435 202 if (const_opr->type() == T_OBJECT) {
duke@435 203 __ push_oop(const_opr->as_jobject());
duke@435 204 } else if (const_opr->type() == T_INT) {
duke@435 205 __ push_jint(const_opr->as_jint());
duke@435 206 } else {
duke@435 207 ShouldNotReachHere();
duke@435 208 }
duke@435 209
duke@435 210 } else {
duke@435 211 ShouldNotReachHere();
duke@435 212 }
duke@435 213 }
duke@435 214
duke@435 215 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 216 if (opr->is_single_cpu()) {
never@739 217 __ pop_reg(opr->as_register());
duke@435 218 } else {
duke@435 219 ShouldNotReachHere();
duke@435 220 }
duke@435 221 }
duke@435 222
never@739 223 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
never@739 224 return addr->base()->is_illegal() && addr->index()->is_illegal();
never@739 225 }
never@739 226
duke@435 227 //-------------------------------------------
never@739 228
duke@435 229 Address LIR_Assembler::as_Address(LIR_Address* addr) {
never@739 230 return as_Address(addr, rscratch1);
never@739 231 }
never@739 232
never@739 233 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
duke@435 234 if (addr->base()->is_illegal()) {
duke@435 235 assert(addr->index()->is_illegal(), "must be illegal too");
never@739 236 AddressLiteral laddr((address)addr->disp(), relocInfo::none);
never@739 237 if (! __ reachable(laddr)) {
never@739 238 __ movptr(tmp, laddr.addr());
never@739 239 Address res(tmp, 0);
never@739 240 return res;
never@739 241 } else {
never@739 242 return __ as_Address(laddr);
never@739 243 }
duke@435 244 }
duke@435 245
never@739 246 Register base = addr->base()->as_pointer_register();
duke@435 247
duke@435 248 if (addr->index()->is_illegal()) {
duke@435 249 return Address( base, addr->disp());
never@739 250 } else if (addr->index()->is_cpu_register()) {
never@739 251 Register index = addr->index()->as_pointer_register();
duke@435 252 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
duke@435 253 } else if (addr->index()->is_constant()) {
never@739 254 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
never@739 255 assert(Assembler::is_simm32(addr_offset), "must be");
duke@435 256
duke@435 257 return Address(base, addr_offset);
duke@435 258 } else {
duke@435 259 Unimplemented();
duke@435 260 return Address();
duke@435 261 }
duke@435 262 }
duke@435 263
duke@435 264
duke@435 265 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 266 Address base = as_Address(addr);
duke@435 267 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
duke@435 268 }
duke@435 269
duke@435 270
duke@435 271 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 272 return as_Address(addr);
duke@435 273 }
duke@435 274
duke@435 275
duke@435 276 void LIR_Assembler::osr_entry() {
duke@435 277 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 278 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 279 ValueStack* entry_state = osr_entry->state();
duke@435 280 int number_of_locks = entry_state->locks_size();
duke@435 281
duke@435 282 // we jump here if osr happens with the interpreter
duke@435 283 // state set up to continue at the beginning of the
duke@435 284 // loop that triggered osr - in particular, we have
duke@435 285 // the following registers setup:
duke@435 286 //
duke@435 287 // rcx: osr buffer
duke@435 288 //
duke@435 289
duke@435 290 // build frame
duke@435 291 ciMethod* m = compilation()->method();
duke@435 292 __ build_frame(initial_frame_size_in_bytes());
duke@435 293
duke@435 294 // OSR buffer is
duke@435 295 //
duke@435 296 // locals[nlocals-1..0]
duke@435 297 // monitors[0..number_of_locks]
duke@435 298 //
duke@435 299 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 300 // so first slot in the local array is the last local from the interpreter
duke@435 301 // and last slot is local[0] (receiver) from the interpreter
duke@435 302 //
duke@435 303 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 304 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 305 // in the interpreter frame (the method lock if a sync method)
duke@435 306
duke@435 307 // Initialize monitors in the compiled activation.
duke@435 308 // rcx: pointer to osr buffer
duke@435 309 //
duke@435 310 // All other registers are dead at this point and the locals will be
duke@435 311 // copied into place by code emitted in the IR.
duke@435 312
never@739 313 Register OSR_buf = osrBufferPointer()->as_pointer_register();
duke@435 314 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 315 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 316 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 317 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 318 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 319 // the oop.
duke@435 320 for (int i = 0; i < number_of_locks; i++) {
roland@1495 321 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 322 #ifdef ASSERT
duke@435 323 // verify the interpreter's monitor has a non-null object
duke@435 324 {
duke@435 325 Label L;
roland@1495 326 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
duke@435 327 __ jcc(Assembler::notZero, L);
duke@435 328 __ stop("locked object is NULL");
duke@435 329 __ bind(L);
duke@435 330 }
duke@435 331 #endif
roland@1495 332 __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
never@739 333 __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
roland@1495 334 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
never@739 335 __ movptr(frame_map()->address_for_monitor_object(i), rbx);
duke@435 336 }
duke@435 337 }
duke@435 338 }
duke@435 339
duke@435 340
duke@435 341 // inline cache check; done before the frame is built.
duke@435 342 int LIR_Assembler::check_icache() {
duke@435 343 Register receiver = FrameMap::receiver_opr->as_register();
duke@435 344 Register ic_klass = IC_Klass;
never@739 345 const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
iveresov@2344 346 const bool do_post_padding = VerifyOops || UseCompressedOops;
iveresov@2344 347 if (!do_post_padding) {
duke@435 348 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
never@739 349 while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
duke@435 350 __ nop();
duke@435 351 }
duke@435 352 }
duke@435 353 int offset = __ offset();
duke@435 354 __ inline_cache_check(receiver, IC_Klass);
iveresov@2344 355 assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
iveresov@2344 356 if (do_post_padding) {
duke@435 357 // force alignment after the cache check.
duke@435 358 // It's been verified to be aligned if !VerifyOops
duke@435 359 __ align(CodeEntryAlignment);
duke@435 360 }
duke@435 361 return offset;
duke@435 362 }
duke@435 363
duke@435 364
duke@435 365 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
duke@435 366 jobject o = NULL;
duke@435 367 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
duke@435 368 __ movoop(reg, o);
duke@435 369 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 370 }
duke@435 371
duke@435 372
duke@435 373 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
duke@435 374 if (exception->is_valid()) {
duke@435 375 // preserve exception
duke@435 376 // note: the monitor_exit runtime call is a leaf routine
duke@435 377 // and cannot block => no GC can happen
duke@435 378 // The slow case (MonitorAccessStub) uses the first two stack slots
duke@435 379 // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
never@739 380 __ movptr (Address(rsp, 2*wordSize), exception);
duke@435 381 }
duke@435 382
duke@435 383 Register obj_reg = obj_opr->as_register();
duke@435 384 Register lock_reg = lock_opr->as_register();
duke@435 385
duke@435 386 // setup registers (lock_reg must be rax, for lock_object)
duke@435 387 assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
duke@435 388 Register hdr = lock_reg;
duke@435 389 assert(new_hdr == SYNC_header, "wrong register");
duke@435 390 lock_reg = new_hdr;
duke@435 391 // compute pointer to BasicLock
duke@435 392 Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
never@739 393 __ lea(lock_reg, lock_addr);
duke@435 394 // unlock object
duke@435 395 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
duke@435 396 // _slow_case_stubs->append(slow_case);
duke@435 397 // temporary fix: must be created after exceptionhandler, therefore as call stub
duke@435 398 _slow_case_stubs->append(slow_case);
duke@435 399 if (UseFastLocking) {
duke@435 400 // try inlined fast unlocking first, revert to slow locking if it fails
duke@435 401 // note: lock_reg points to the displaced header since the displaced header offset is 0!
duke@435 402 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 403 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
duke@435 404 } else {
duke@435 405 // always do slow unlocking
duke@435 406 // note: the slow unlocking code could be inlined here, however if we use
duke@435 407 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 408 // simpler and requires less duplicated code - additionally, the
duke@435 409 // slow unlocking code is the same in either case which simplifies
duke@435 410 // debugging
duke@435 411 __ jmp(*slow_case->entry());
duke@435 412 }
duke@435 413 // done
duke@435 414 __ bind(*slow_case->continuation());
duke@435 415
duke@435 416 if (exception->is_valid()) {
duke@435 417 // restore exception
never@739 418 __ movptr (exception, Address(rsp, 2 * wordSize));
duke@435 419 }
duke@435 420 }
duke@435 421
duke@435 422 // This specifies the rsp decrement needed to build the frame
duke@435 423 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 424 // if rounding, must let FrameMap know!
never@739 425
never@739 426 // The frame_map records size in slots (32bit word)
never@739 427
never@739 428 // subtract two words to account for return address and link
never@739 429 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size;
duke@435 430 }
duke@435 431
duke@435 432
twisti@1639 433 int LIR_Assembler::emit_exception_handler() {
duke@435 434 // if the last instruction is a call (typically to do a throw which
duke@435 435 // is coming at the end after block reordering) the return address
duke@435 436 // must still point into the code area in order to avoid assertion
duke@435 437 // failures when searching for the corresponding bci => add a nop
duke@435 438 // (was bug 5/14/1999 - gri)
duke@435 439 __ nop();
duke@435 440
duke@435 441 // generate code for exception handler
duke@435 442 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 443 if (handler_base == NULL) {
duke@435 444 // not enough space left for the handler
duke@435 445 bailout("exception handler overflow");
twisti@1639 446 return -1;
duke@435 447 }
twisti@1639 448
duke@435 449 int offset = code_offset();
duke@435 450
twisti@1730 451 // the exception oop and pc are in rax, and rdx
duke@435 452 // no other registers need to be preserved, so invalidate them
twisti@1730 453 __ invalidate_registers(false, true, true, false, true, true);
duke@435 454
duke@435 455 // check that there is really an exception
duke@435 456 __ verify_not_null_oop(rax);
duke@435 457
twisti@1730 458 // search an exception handler (rax: exception oop, rdx: throwing pc)
twisti@1730 459 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
twisti@1730 460
twisti@1730 461 __ stop("should not reach here");
twisti@1730 462
duke@435 463 assert(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 464 __ end_a_stub();
twisti@1639 465
twisti@1639 466 return offset;
duke@435 467 }
duke@435 468
twisti@1639 469
never@1813 470 // Emit the code to remove the frame from the stack in the exception
never@1813 471 // unwind path.
never@1813 472 int LIR_Assembler::emit_unwind_handler() {
never@1813 473 #ifndef PRODUCT
never@1813 474 if (CommentedAssembly) {
never@1813 475 _masm->block_comment("Unwind handler");
never@1813 476 }
never@1813 477 #endif
never@1813 478
never@1813 479 int offset = code_offset();
never@1813 480
never@1813 481 // Fetch the exception from TLS and clear out exception related thread state
never@1813 482 __ get_thread(rsi);
never@1813 483 __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
never@1813 484 __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
never@1813 485 __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
never@1813 486
never@1813 487 __ bind(_unwind_handler_entry);
never@1813 488 __ verify_not_null_oop(rax);
never@1813 489 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 490 __ mov(rsi, rax); // Preserve the exception
never@1813 491 }
never@1813 492
never@1813 493 // Preform needed unlocking
never@1813 494 MonitorExitStub* stub = NULL;
never@1813 495 if (method()->is_synchronized()) {
never@1813 496 monitor_address(0, FrameMap::rax_opr);
never@1813 497 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
never@1813 498 __ unlock_object(rdi, rbx, rax, *stub->entry());
never@1813 499 __ bind(*stub->continuation());
never@1813 500 }
never@1813 501
never@1813 502 if (compilation()->env()->dtrace_method_probes()) {
never@2185 503 __ get_thread(rax);
never@2185 504 __ movptr(Address(rsp, 0), rax);
never@2185 505 __ movoop(Address(rsp, sizeof(void*)), method()->constant_encoding());
never@1813 506 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
never@1813 507 }
never@1813 508
never@1813 509 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 510 __ mov(rax, rsi); // Restore the exception
never@1813 511 }
never@1813 512
never@1813 513 // remove the activation and dispatch to the unwind handler
never@1813 514 __ remove_frame(initial_frame_size_in_bytes());
never@1813 515 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
never@1813 516
never@1813 517 // Emit the slow path assembly
never@1813 518 if (stub != NULL) {
never@1813 519 stub->emit_code(this);
never@1813 520 }
never@1813 521
never@1813 522 return offset;
never@1813 523 }
never@1813 524
never@1813 525
twisti@1639 526 int LIR_Assembler::emit_deopt_handler() {
duke@435 527 // if the last instruction is a call (typically to do a throw which
duke@435 528 // is coming at the end after block reordering) the return address
duke@435 529 // must still point into the code area in order to avoid assertion
duke@435 530 // failures when searching for the corresponding bci => add a nop
duke@435 531 // (was bug 5/14/1999 - gri)
duke@435 532 __ nop();
duke@435 533
duke@435 534 // generate code for exception handler
duke@435 535 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 536 if (handler_base == NULL) {
duke@435 537 // not enough space left for the handler
duke@435 538 bailout("deopt handler overflow");
twisti@1639 539 return -1;
duke@435 540 }
twisti@1639 541
duke@435 542 int offset = code_offset();
duke@435 543 InternalAddress here(__ pc());
twisti@1730 544
duke@435 545 __ pushptr(here.addr());
duke@435 546 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
twisti@1730 547
duke@435 548 assert(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 549 __ end_a_stub();
duke@435 550
twisti@1639 551 return offset;
duke@435 552 }
duke@435 553
duke@435 554
duke@435 555 // This is the fast version of java.lang.String.compare; it has not
duke@435 556 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 557 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
never@739 558 __ movptr (rbx, rcx); // receiver is in rcx
never@739 559 __ movptr (rax, arg1->as_register());
duke@435 560
duke@435 561 // Get addresses of first characters from both Strings
iveresov@2344 562 __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
iveresov@2344 563 __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
iveresov@2344 564 __ lea (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 565
duke@435 566
duke@435 567 // rbx, may be NULL
duke@435 568 add_debug_info_for_null_check_here(info);
iveresov@2344 569 __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
iveresov@2344 570 __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
iveresov@2344 571 __ lea (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 572
duke@435 573 // compute minimum length (in rax) and difference of lengths (on top of stack)
duke@435 574 if (VM_Version::supports_cmov()) {
never@739 575 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
never@739 576 __ movl (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
never@739 577 __ mov (rcx, rbx);
never@739 578 __ subptr (rbx, rax); // subtract lengths
never@739 579 __ push (rbx); // result
never@739 580 __ cmov (Assembler::lessEqual, rax, rcx);
duke@435 581 } else {
duke@435 582 Label L;
never@739 583 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
never@739 584 __ movl (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
never@739 585 __ mov (rax, rbx);
never@739 586 __ subptr (rbx, rcx);
never@739 587 __ push (rbx);
never@739 588 __ jcc (Assembler::lessEqual, L);
never@739 589 __ mov (rax, rcx);
duke@435 590 __ bind (L);
duke@435 591 }
duke@435 592 // is minimum length 0?
duke@435 593 Label noLoop, haveResult;
never@739 594 __ testptr (rax, rax);
duke@435 595 __ jcc (Assembler::zero, noLoop);
duke@435 596
duke@435 597 // compare first characters
jrose@1057 598 __ load_unsigned_short(rcx, Address(rdi, 0));
jrose@1057 599 __ load_unsigned_short(rbx, Address(rsi, 0));
duke@435 600 __ subl(rcx, rbx);
duke@435 601 __ jcc(Assembler::notZero, haveResult);
duke@435 602 // starting loop
duke@435 603 __ decrement(rax); // we already tested index: skip one
duke@435 604 __ jcc(Assembler::zero, noLoop);
duke@435 605
duke@435 606 // set rsi.edi to the end of the arrays (arrays have same length)
duke@435 607 // negate the index
duke@435 608
never@739 609 __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 610 __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 611 __ negptr(rax);
duke@435 612
duke@435 613 // compare the strings in a loop
duke@435 614
duke@435 615 Label loop;
duke@435 616 __ align(wordSize);
duke@435 617 __ bind(loop);
jrose@1057 618 __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
jrose@1057 619 __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
duke@435 620 __ subl(rcx, rbx);
duke@435 621 __ jcc(Assembler::notZero, haveResult);
duke@435 622 __ increment(rax);
duke@435 623 __ jcc(Assembler::notZero, loop);
duke@435 624
duke@435 625 // strings are equal up to min length
duke@435 626
duke@435 627 __ bind(noLoop);
never@739 628 __ pop(rax);
duke@435 629 return_op(LIR_OprFact::illegalOpr);
duke@435 630
duke@435 631 __ bind(haveResult);
duke@435 632 // leave instruction is going to discard the TOS value
never@739 633 __ mov (rax, rcx); // result of call is in rax,
duke@435 634 }
duke@435 635
duke@435 636
duke@435 637 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 638 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
duke@435 639 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
duke@435 640 assert(result->fpu() == 0, "result must already be on TOS");
duke@435 641 }
duke@435 642
duke@435 643 // Pop the stack before the safepoint code
twisti@1730 644 __ remove_frame(initial_frame_size_in_bytes());
duke@435 645
duke@435 646 bool result_is_oop = result->is_valid() ? result->is_oop() : false;
duke@435 647
duke@435 648 // Note: we do not need to round double result; float result has the right precision
duke@435 649 // the poll sets the condition code, but no data registers
duke@435 650 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 651 relocInfo::poll_return_type);
never@739 652
never@739 653 // NOTE: the requires that the polling page be reachable else the reloc
never@739 654 // goes to the movq that loads the address and not the faulting instruction
never@739 655 // which breaks the signal handler code
never@739 656
duke@435 657 __ test32(rax, polling_page);
duke@435 658
duke@435 659 __ ret(0);
duke@435 660 }
duke@435 661
duke@435 662
duke@435 663 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 664 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 665 relocInfo::poll_type);
duke@435 666
duke@435 667 if (info != NULL) {
duke@435 668 add_debug_info_for_branch(info);
duke@435 669 } else {
duke@435 670 ShouldNotReachHere();
duke@435 671 }
duke@435 672
duke@435 673 int offset = __ offset();
never@739 674
never@739 675 // NOTE: the requires that the polling page be reachable else the reloc
never@739 676 // goes to the movq that loads the address and not the faulting instruction
never@739 677 // which breaks the signal handler code
never@739 678
duke@435 679 __ test32(rax, polling_page);
duke@435 680 return offset;
duke@435 681 }
duke@435 682
duke@435 683
duke@435 684 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
never@739 685 if (from_reg != to_reg) __ mov(to_reg, from_reg);
duke@435 686 }
duke@435 687
duke@435 688 void LIR_Assembler::swap_reg(Register a, Register b) {
never@739 689 __ xchgptr(a, b);
duke@435 690 }
duke@435 691
duke@435 692
duke@435 693 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 694 assert(src->is_constant(), "should not call otherwise");
duke@435 695 assert(dest->is_register(), "should not call otherwise");
duke@435 696 LIR_Const* c = src->as_constant_ptr();
duke@435 697
duke@435 698 switch (c->type()) {
iveresov@2344 699 case T_INT: {
iveresov@2344 700 assert(patch_code == lir_patch_none, "no patching handled here");
iveresov@2344 701 __ movl(dest->as_register(), c->as_jint());
iveresov@2344 702 break;
iveresov@2344 703 }
iveresov@2344 704
roland@1732 705 case T_ADDRESS: {
duke@435 706 assert(patch_code == lir_patch_none, "no patching handled here");
iveresov@2344 707 __ movptr(dest->as_register(), c->as_jint());
duke@435 708 break;
duke@435 709 }
duke@435 710
duke@435 711 case T_LONG: {
duke@435 712 assert(patch_code == lir_patch_none, "no patching handled here");
never@739 713 #ifdef _LP64
never@739 714 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
never@739 715 #else
never@739 716 __ movptr(dest->as_register_lo(), c->as_jint_lo());
never@739 717 __ movptr(dest->as_register_hi(), c->as_jint_hi());
never@739 718 #endif // _LP64
duke@435 719 break;
duke@435 720 }
duke@435 721
duke@435 722 case T_OBJECT: {
duke@435 723 if (patch_code != lir_patch_none) {
duke@435 724 jobject2reg_with_patching(dest->as_register(), info);
duke@435 725 } else {
duke@435 726 __ movoop(dest->as_register(), c->as_jobject());
duke@435 727 }
duke@435 728 break;
duke@435 729 }
duke@435 730
duke@435 731 case T_FLOAT: {
duke@435 732 if (dest->is_single_xmm()) {
duke@435 733 if (c->is_zero_float()) {
duke@435 734 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
duke@435 735 } else {
duke@435 736 __ movflt(dest->as_xmm_float_reg(),
duke@435 737 InternalAddress(float_constant(c->as_jfloat())));
duke@435 738 }
duke@435 739 } else {
duke@435 740 assert(dest->is_single_fpu(), "must be");
duke@435 741 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 742 if (c->is_zero_float()) {
duke@435 743 __ fldz();
duke@435 744 } else if (c->is_one_float()) {
duke@435 745 __ fld1();
duke@435 746 } else {
duke@435 747 __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
duke@435 748 }
duke@435 749 }
duke@435 750 break;
duke@435 751 }
duke@435 752
duke@435 753 case T_DOUBLE: {
duke@435 754 if (dest->is_double_xmm()) {
duke@435 755 if (c->is_zero_double()) {
duke@435 756 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
duke@435 757 } else {
duke@435 758 __ movdbl(dest->as_xmm_double_reg(),
duke@435 759 InternalAddress(double_constant(c->as_jdouble())));
duke@435 760 }
duke@435 761 } else {
duke@435 762 assert(dest->is_double_fpu(), "must be");
duke@435 763 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 764 if (c->is_zero_double()) {
duke@435 765 __ fldz();
duke@435 766 } else if (c->is_one_double()) {
duke@435 767 __ fld1();
duke@435 768 } else {
duke@435 769 __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
duke@435 770 }
duke@435 771 }
duke@435 772 break;
duke@435 773 }
duke@435 774
duke@435 775 default:
duke@435 776 ShouldNotReachHere();
duke@435 777 }
duke@435 778 }
duke@435 779
duke@435 780 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 781 assert(src->is_constant(), "should not call otherwise");
duke@435 782 assert(dest->is_stack(), "should not call otherwise");
duke@435 783 LIR_Const* c = src->as_constant_ptr();
duke@435 784
duke@435 785 switch (c->type()) {
duke@435 786 case T_INT: // fall through
duke@435 787 case T_FLOAT:
iveresov@2344 788 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
iveresov@2344 789 break;
iveresov@2344 790
roland@1732 791 case T_ADDRESS:
iveresov@2344 792 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
duke@435 793 break;
duke@435 794
duke@435 795 case T_OBJECT:
duke@435 796 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
duke@435 797 break;
duke@435 798
duke@435 799 case T_LONG: // fall through
duke@435 800 case T_DOUBLE:
never@739 801 #ifdef _LP64
never@739 802 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 803 lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
never@739 804 #else
never@739 805 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 806 lo_word_offset_in_bytes), c->as_jint_lo_bits());
never@739 807 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 808 hi_word_offset_in_bytes), c->as_jint_hi_bits());
never@739 809 #endif // _LP64
duke@435 810 break;
duke@435 811
duke@435 812 default:
duke@435 813 ShouldNotReachHere();
duke@435 814 }
duke@435 815 }
duke@435 816
iveresov@2344 817 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
duke@435 818 assert(src->is_constant(), "should not call otherwise");
duke@435 819 assert(dest->is_address(), "should not call otherwise");
duke@435 820 LIR_Const* c = src->as_constant_ptr();
duke@435 821 LIR_Address* addr = dest->as_address_ptr();
duke@435 822
never@739 823 int null_check_here = code_offset();
duke@435 824 switch (type) {
duke@435 825 case T_INT: // fall through
duke@435 826 case T_FLOAT:
iveresov@2344 827 __ movl(as_Address(addr), c->as_jint_bits());
iveresov@2344 828 break;
iveresov@2344 829
roland@1732 830 case T_ADDRESS:
iveresov@2344 831 __ movptr(as_Address(addr), c->as_jint_bits());
duke@435 832 break;
duke@435 833
duke@435 834 case T_OBJECT: // fall through
duke@435 835 case T_ARRAY:
duke@435 836 if (c->as_jobject() == NULL) {
iveresov@2344 837 if (UseCompressedOops && !wide) {
iveresov@2344 838 __ movl(as_Address(addr), (int32_t)NULL_WORD);
iveresov@2344 839 } else {
iveresov@2344 840 __ movptr(as_Address(addr), NULL_WORD);
iveresov@2344 841 }
duke@435 842 } else {
never@739 843 if (is_literal_address(addr)) {
never@739 844 ShouldNotReachHere();
never@739 845 __ movoop(as_Address(addr, noreg), c->as_jobject());
never@739 846 } else {
roland@1495 847 #ifdef _LP64
roland@1495 848 __ movoop(rscratch1, c->as_jobject());
iveresov@2344 849 if (UseCompressedOops && !wide) {
iveresov@2344 850 __ encode_heap_oop(rscratch1);
iveresov@2344 851 null_check_here = code_offset();
iveresov@2344 852 __ movl(as_Address_lo(addr), rscratch1);
iveresov@2344 853 } else {
iveresov@2344 854 null_check_here = code_offset();
iveresov@2344 855 __ movptr(as_Address_lo(addr), rscratch1);
iveresov@2344 856 }
roland@1495 857 #else
never@739 858 __ movoop(as_Address(addr), c->as_jobject());
roland@1495 859 #endif
never@739 860 }
duke@435 861 }
duke@435 862 break;
duke@435 863
duke@435 864 case T_LONG: // fall through
duke@435 865 case T_DOUBLE:
never@739 866 #ifdef _LP64
never@739 867 if (is_literal_address(addr)) {
never@739 868 ShouldNotReachHere();
never@739 869 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
never@739 870 } else {
never@739 871 __ movptr(r10, (intptr_t)c->as_jlong_bits());
never@739 872 null_check_here = code_offset();
never@739 873 __ movptr(as_Address_lo(addr), r10);
never@739 874 }
never@739 875 #else
never@739 876 // Always reachable in 32bit so this doesn't produce useless move literal
never@739 877 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
never@739 878 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
never@739 879 #endif // _LP64
duke@435 880 break;
duke@435 881
duke@435 882 case T_BOOLEAN: // fall through
duke@435 883 case T_BYTE:
duke@435 884 __ movb(as_Address(addr), c->as_jint() & 0xFF);
duke@435 885 break;
duke@435 886
duke@435 887 case T_CHAR: // fall through
duke@435 888 case T_SHORT:
duke@435 889 __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
duke@435 890 break;
duke@435 891
duke@435 892 default:
duke@435 893 ShouldNotReachHere();
duke@435 894 };
never@739 895
never@739 896 if (info != NULL) {
never@739 897 add_debug_info_for_null_check(null_check_here, info);
never@739 898 }
duke@435 899 }
duke@435 900
duke@435 901
duke@435 902 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
duke@435 903 assert(src->is_register(), "should not call otherwise");
duke@435 904 assert(dest->is_register(), "should not call otherwise");
duke@435 905
duke@435 906 // move between cpu-registers
duke@435 907 if (dest->is_single_cpu()) {
never@739 908 #ifdef _LP64
never@739 909 if (src->type() == T_LONG) {
never@739 910 // Can do LONG -> OBJECT
never@739 911 move_regs(src->as_register_lo(), dest->as_register());
never@739 912 return;
never@739 913 }
never@739 914 #endif
duke@435 915 assert(src->is_single_cpu(), "must match");
duke@435 916 if (src->type() == T_OBJECT) {
duke@435 917 __ verify_oop(src->as_register());
duke@435 918 }
duke@435 919 move_regs(src->as_register(), dest->as_register());
duke@435 920
duke@435 921 } else if (dest->is_double_cpu()) {
never@739 922 #ifdef _LP64
never@739 923 if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
never@739 924 // Surprising to me but we can see move of a long to t_object
never@739 925 __ verify_oop(src->as_register());
never@739 926 move_regs(src->as_register(), dest->as_register_lo());
never@739 927 return;
never@739 928 }
never@739 929 #endif
duke@435 930 assert(src->is_double_cpu(), "must match");
duke@435 931 Register f_lo = src->as_register_lo();
duke@435 932 Register f_hi = src->as_register_hi();
duke@435 933 Register t_lo = dest->as_register_lo();
duke@435 934 Register t_hi = dest->as_register_hi();
never@739 935 #ifdef _LP64
never@739 936 assert(f_hi == f_lo, "must be same");
never@739 937 assert(t_hi == t_lo, "must be same");
never@739 938 move_regs(f_lo, t_lo);
never@739 939 #else
duke@435 940 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
duke@435 941
never@739 942
duke@435 943 if (f_lo == t_hi && f_hi == t_lo) {
duke@435 944 swap_reg(f_lo, f_hi);
duke@435 945 } else if (f_hi == t_lo) {
duke@435 946 assert(f_lo != t_hi, "overwriting register");
duke@435 947 move_regs(f_hi, t_hi);
duke@435 948 move_regs(f_lo, t_lo);
duke@435 949 } else {
duke@435 950 assert(f_hi != t_lo, "overwriting register");
duke@435 951 move_regs(f_lo, t_lo);
duke@435 952 move_regs(f_hi, t_hi);
duke@435 953 }
never@739 954 #endif // LP64
duke@435 955
duke@435 956 // special moves from fpu-register to xmm-register
duke@435 957 // necessary for method results
duke@435 958 } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
duke@435 959 __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
duke@435 960 __ fld_s(Address(rsp, 0));
duke@435 961 } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
duke@435 962 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
duke@435 963 __ fld_d(Address(rsp, 0));
duke@435 964 } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
duke@435 965 __ fstp_s(Address(rsp, 0));
duke@435 966 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
duke@435 967 } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
duke@435 968 __ fstp_d(Address(rsp, 0));
duke@435 969 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
duke@435 970
duke@435 971 // move between xmm-registers
duke@435 972 } else if (dest->is_single_xmm()) {
duke@435 973 assert(src->is_single_xmm(), "must match");
duke@435 974 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
duke@435 975 } else if (dest->is_double_xmm()) {
duke@435 976 assert(src->is_double_xmm(), "must match");
duke@435 977 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
duke@435 978
duke@435 979 // move between fpu-registers (no instruction necessary because of fpu-stack)
duke@435 980 } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
duke@435 981 assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
duke@435 982 assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
duke@435 983 } else {
duke@435 984 ShouldNotReachHere();
duke@435 985 }
duke@435 986 }
duke@435 987
duke@435 988 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 989 assert(src->is_register(), "should not call otherwise");
duke@435 990 assert(dest->is_stack(), "should not call otherwise");
duke@435 991
duke@435 992 if (src->is_single_cpu()) {
duke@435 993 Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 994 if (type == T_OBJECT || type == T_ARRAY) {
duke@435 995 __ verify_oop(src->as_register());
never@739 996 __ movptr (dst, src->as_register());
never@739 997 } else {
never@739 998 __ movl (dst, src->as_register());
duke@435 999 }
duke@435 1000
duke@435 1001 } else if (src->is_double_cpu()) {
duke@435 1002 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 1003 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
never@739 1004 __ movptr (dstLO, src->as_register_lo());
never@739 1005 NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
duke@435 1006
duke@435 1007 } else if (src->is_single_xmm()) {
duke@435 1008 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1009 __ movflt(dst_addr, src->as_xmm_float_reg());
duke@435 1010
duke@435 1011 } else if (src->is_double_xmm()) {
duke@435 1012 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 1013 __ movdbl(dst_addr, src->as_xmm_double_reg());
duke@435 1014
duke@435 1015 } else if (src->is_single_fpu()) {
duke@435 1016 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 1017 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1018 if (pop_fpu_stack) __ fstp_s (dst_addr);
duke@435 1019 else __ fst_s (dst_addr);
duke@435 1020
duke@435 1021 } else if (src->is_double_fpu()) {
duke@435 1022 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 1023 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 1024 if (pop_fpu_stack) __ fstp_d (dst_addr);
duke@435 1025 else __ fst_d (dst_addr);
duke@435 1026
duke@435 1027 } else {
duke@435 1028 ShouldNotReachHere();
duke@435 1029 }
duke@435 1030 }
duke@435 1031
duke@435 1032
iveresov@2344 1033 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
duke@435 1034 LIR_Address* to_addr = dest->as_address_ptr();
duke@435 1035 PatchingStub* patch = NULL;
iveresov@2344 1036 Register compressed_src = rscratch1;
duke@435 1037
duke@435 1038 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 1039 __ verify_oop(src->as_register());
iveresov@2344 1040 #ifdef _LP64
iveresov@2344 1041 if (UseCompressedOops && !wide) {
iveresov@2344 1042 __ movptr(compressed_src, src->as_register());
iveresov@2344 1043 __ encode_heap_oop(compressed_src);
iveresov@2344 1044 }
iveresov@2344 1045 #endif
duke@435 1046 }
iveresov@2344 1047
duke@435 1048 if (patch_code != lir_patch_none) {
duke@435 1049 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1050 Address toa = as_Address(to_addr);
never@739 1051 assert(toa.disp() != 0, "must have");
duke@435 1052 }
iveresov@2344 1053
iveresov@2344 1054 int null_check_here = code_offset();
duke@435 1055 switch (type) {
duke@435 1056 case T_FLOAT: {
duke@435 1057 if (src->is_single_xmm()) {
duke@435 1058 __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
duke@435 1059 } else {
duke@435 1060 assert(src->is_single_fpu(), "must be");
duke@435 1061 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 1062 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr));
duke@435 1063 else __ fst_s (as_Address(to_addr));
duke@435 1064 }
duke@435 1065 break;
duke@435 1066 }
duke@435 1067
duke@435 1068 case T_DOUBLE: {
duke@435 1069 if (src->is_double_xmm()) {
duke@435 1070 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
duke@435 1071 } else {
duke@435 1072 assert(src->is_double_fpu(), "must be");
duke@435 1073 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 1074 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr));
duke@435 1075 else __ fst_d (as_Address(to_addr));
duke@435 1076 }
duke@435 1077 break;
duke@435 1078 }
duke@435 1079
duke@435 1080 case T_ARRAY: // fall through
duke@435 1081 case T_OBJECT: // fall through
iveresov@2344 1082 if (UseCompressedOops && !wide) {
iveresov@2344 1083 __ movl(as_Address(to_addr), compressed_src);
iveresov@2344 1084 } else {
iveresov@2344 1085 __ movptr(as_Address(to_addr), src->as_register());
iveresov@2344 1086 }
iveresov@2344 1087 break;
iveresov@2344 1088 case T_ADDRESS:
never@739 1089 __ movptr(as_Address(to_addr), src->as_register());
never@739 1090 break;
duke@435 1091 case T_INT:
duke@435 1092 __ movl(as_Address(to_addr), src->as_register());
duke@435 1093 break;
duke@435 1094
duke@435 1095 case T_LONG: {
duke@435 1096 Register from_lo = src->as_register_lo();
duke@435 1097 Register from_hi = src->as_register_hi();
never@739 1098 #ifdef _LP64
never@739 1099 __ movptr(as_Address_lo(to_addr), from_lo);
never@739 1100 #else
duke@435 1101 Register base = to_addr->base()->as_register();
duke@435 1102 Register index = noreg;
duke@435 1103 if (to_addr->index()->is_register()) {
duke@435 1104 index = to_addr->index()->as_register();
duke@435 1105 }
duke@435 1106 if (base == from_lo || index == from_lo) {
duke@435 1107 assert(base != from_hi, "can't be");
duke@435 1108 assert(index == noreg || (index != base && index != from_hi), "can't handle this");
duke@435 1109 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1110 if (patch != NULL) {
duke@435 1111 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1112 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1113 patch_code = lir_patch_low;
duke@435 1114 }
duke@435 1115 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1116 } else {
duke@435 1117 assert(index == noreg || (index != base && index != from_lo), "can't handle this");
duke@435 1118 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1119 if (patch != NULL) {
duke@435 1120 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1121 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1122 patch_code = lir_patch_high;
duke@435 1123 }
duke@435 1124 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1125 }
never@739 1126 #endif // _LP64
duke@435 1127 break;
duke@435 1128 }
duke@435 1129
duke@435 1130 case T_BYTE: // fall through
duke@435 1131 case T_BOOLEAN: {
duke@435 1132 Register src_reg = src->as_register();
duke@435 1133 Address dst_addr = as_Address(to_addr);
duke@435 1134 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1135 __ movb(dst_addr, src_reg);
duke@435 1136 break;
duke@435 1137 }
duke@435 1138
duke@435 1139 case T_CHAR: // fall through
duke@435 1140 case T_SHORT:
duke@435 1141 __ movw(as_Address(to_addr), src->as_register());
duke@435 1142 break;
duke@435 1143
duke@435 1144 default:
duke@435 1145 ShouldNotReachHere();
duke@435 1146 }
iveresov@2344 1147 if (info != NULL) {
iveresov@2344 1148 add_debug_info_for_null_check(null_check_here, info);
iveresov@2344 1149 }
duke@435 1150
duke@435 1151 if (patch_code != lir_patch_none) {
duke@435 1152 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
duke@435 1153 }
duke@435 1154 }
duke@435 1155
duke@435 1156
duke@435 1157 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1158 assert(src->is_stack(), "should not call otherwise");
duke@435 1159 assert(dest->is_register(), "should not call otherwise");
duke@435 1160
duke@435 1161 if (dest->is_single_cpu()) {
duke@435 1162 if (type == T_ARRAY || type == T_OBJECT) {
never@739 1163 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1164 __ verify_oop(dest->as_register());
never@739 1165 } else {
never@739 1166 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1167 }
duke@435 1168
duke@435 1169 } else if (dest->is_double_cpu()) {
duke@435 1170 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 1171 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
never@739 1172 __ movptr(dest->as_register_lo(), src_addr_LO);
never@739 1173 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
duke@435 1174
duke@435 1175 } else if (dest->is_single_xmm()) {
duke@435 1176 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1177 __ movflt(dest->as_xmm_float_reg(), src_addr);
duke@435 1178
duke@435 1179 } else if (dest->is_double_xmm()) {
duke@435 1180 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1181 __ movdbl(dest->as_xmm_double_reg(), src_addr);
duke@435 1182
duke@435 1183 } else if (dest->is_single_fpu()) {
duke@435 1184 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1185 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1186 __ fld_s(src_addr);
duke@435 1187
duke@435 1188 } else if (dest->is_double_fpu()) {
duke@435 1189 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1190 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1191 __ fld_d(src_addr);
duke@435 1192
duke@435 1193 } else {
duke@435 1194 ShouldNotReachHere();
duke@435 1195 }
duke@435 1196 }
duke@435 1197
duke@435 1198
duke@435 1199 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1200 if (src->is_single_stack()) {
never@739 1201 if (type == T_OBJECT || type == T_ARRAY) {
never@739 1202 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1203 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
never@739 1204 } else {
roland@1495 1205 #ifndef _LP64
never@739 1206 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1207 __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
roland@1495 1208 #else
roland@1495 1209 //no pushl on 64bits
roland@1495 1210 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
roland@1495 1211 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
roland@1495 1212 #endif
never@739 1213 }
duke@435 1214
duke@435 1215 } else if (src->is_double_stack()) {
never@739 1216 #ifdef _LP64
never@739 1217 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
never@739 1218 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
never@739 1219 #else
duke@435 1220 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
never@739 1221 // push and pop the part at src + wordSize, adding wordSize for the previous push
never@756 1222 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
never@756 1223 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
duke@435 1224 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
never@739 1225 #endif // _LP64
duke@435 1226
duke@435 1227 } else {
duke@435 1228 ShouldNotReachHere();
duke@435 1229 }
duke@435 1230 }
duke@435 1231
duke@435 1232
iveresov@2344 1233 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
duke@435 1234 assert(src->is_address(), "should not call otherwise");
duke@435 1235 assert(dest->is_register(), "should not call otherwise");
duke@435 1236
duke@435 1237 LIR_Address* addr = src->as_address_ptr();
duke@435 1238 Address from_addr = as_Address(addr);
duke@435 1239
duke@435 1240 switch (type) {
duke@435 1241 case T_BOOLEAN: // fall through
duke@435 1242 case T_BYTE: // fall through
duke@435 1243 case T_CHAR: // fall through
duke@435 1244 case T_SHORT:
duke@435 1245 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
duke@435 1246 // on pre P6 processors we may get partial register stalls
duke@435 1247 // so blow away the value of to_rinfo before loading a
duke@435 1248 // partial word into it. Do it here so that it precedes
duke@435 1249 // the potential patch point below.
never@739 1250 __ xorptr(dest->as_register(), dest->as_register());
duke@435 1251 }
duke@435 1252 break;
duke@435 1253 }
duke@435 1254
duke@435 1255 PatchingStub* patch = NULL;
duke@435 1256 if (patch_code != lir_patch_none) {
duke@435 1257 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1258 assert(from_addr.disp() != 0, "must have");
duke@435 1259 }
duke@435 1260 if (info != NULL) {
duke@435 1261 add_debug_info_for_null_check_here(info);
duke@435 1262 }
duke@435 1263
duke@435 1264 switch (type) {
duke@435 1265 case T_FLOAT: {
duke@435 1266 if (dest->is_single_xmm()) {
duke@435 1267 __ movflt(dest->as_xmm_float_reg(), from_addr);
duke@435 1268 } else {
duke@435 1269 assert(dest->is_single_fpu(), "must be");
duke@435 1270 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1271 __ fld_s(from_addr);
duke@435 1272 }
duke@435 1273 break;
duke@435 1274 }
duke@435 1275
duke@435 1276 case T_DOUBLE: {
duke@435 1277 if (dest->is_double_xmm()) {
duke@435 1278 __ movdbl(dest->as_xmm_double_reg(), from_addr);
duke@435 1279 } else {
duke@435 1280 assert(dest->is_double_fpu(), "must be");
duke@435 1281 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1282 __ fld_d(from_addr);
duke@435 1283 }
duke@435 1284 break;
duke@435 1285 }
duke@435 1286
duke@435 1287 case T_OBJECT: // fall through
duke@435 1288 case T_ARRAY: // fall through
iveresov@2344 1289 if (UseCompressedOops && !wide) {
iveresov@2344 1290 __ movl(dest->as_register(), from_addr);
iveresov@2344 1291 } else {
iveresov@2344 1292 __ movptr(dest->as_register(), from_addr);
iveresov@2344 1293 }
iveresov@2344 1294 break;
iveresov@2344 1295
iveresov@2344 1296 case T_ADDRESS:
never@739 1297 __ movptr(dest->as_register(), from_addr);
never@739 1298 break;
duke@435 1299 case T_INT:
iveresov@1833 1300 __ movl(dest->as_register(), from_addr);
duke@435 1301 break;
duke@435 1302
duke@435 1303 case T_LONG: {
duke@435 1304 Register to_lo = dest->as_register_lo();
duke@435 1305 Register to_hi = dest->as_register_hi();
never@739 1306 #ifdef _LP64
never@739 1307 __ movptr(to_lo, as_Address_lo(addr));
never@739 1308 #else
duke@435 1309 Register base = addr->base()->as_register();
duke@435 1310 Register index = noreg;
duke@435 1311 if (addr->index()->is_register()) {
duke@435 1312 index = addr->index()->as_register();
duke@435 1313 }
duke@435 1314 if ((base == to_lo && index == to_hi) ||
duke@435 1315 (base == to_hi && index == to_lo)) {
duke@435 1316 // addresses with 2 registers are only formed as a result of
duke@435 1317 // array access so this code will never have to deal with
duke@435 1318 // patches or null checks.
duke@435 1319 assert(info == NULL && patch == NULL, "must be");
never@739 1320 __ lea(to_hi, as_Address(addr));
duke@435 1321 __ movl(to_lo, Address(to_hi, 0));
duke@435 1322 __ movl(to_hi, Address(to_hi, BytesPerWord));
duke@435 1323 } else if (base == to_lo || index == to_lo) {
duke@435 1324 assert(base != to_hi, "can't be");
duke@435 1325 assert(index == noreg || (index != base && index != to_hi), "can't handle this");
duke@435 1326 __ movl(to_hi, as_Address_hi(addr));
duke@435 1327 if (patch != NULL) {
duke@435 1328 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1329 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1330 patch_code = lir_patch_low;
duke@435 1331 }
duke@435 1332 __ movl(to_lo, as_Address_lo(addr));
duke@435 1333 } else {
duke@435 1334 assert(index == noreg || (index != base && index != to_lo), "can't handle this");
duke@435 1335 __ movl(to_lo, as_Address_lo(addr));
duke@435 1336 if (patch != NULL) {
duke@435 1337 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1338 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1339 patch_code = lir_patch_high;
duke@435 1340 }
duke@435 1341 __ movl(to_hi, as_Address_hi(addr));
duke@435 1342 }
never@739 1343 #endif // _LP64
duke@435 1344 break;
duke@435 1345 }
duke@435 1346
duke@435 1347 case T_BOOLEAN: // fall through
duke@435 1348 case T_BYTE: {
duke@435 1349 Register dest_reg = dest->as_register();
duke@435 1350 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1351 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1352 __ movsbl(dest_reg, from_addr);
duke@435 1353 } else {
duke@435 1354 __ movb(dest_reg, from_addr);
duke@435 1355 __ shll(dest_reg, 24);
duke@435 1356 __ sarl(dest_reg, 24);
duke@435 1357 }
duke@435 1358 break;
duke@435 1359 }
duke@435 1360
duke@435 1361 case T_CHAR: {
duke@435 1362 Register dest_reg = dest->as_register();
duke@435 1363 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1364 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1365 __ movzwl(dest_reg, from_addr);
duke@435 1366 } else {
duke@435 1367 __ movw(dest_reg, from_addr);
duke@435 1368 }
duke@435 1369 break;
duke@435 1370 }
duke@435 1371
duke@435 1372 case T_SHORT: {
duke@435 1373 Register dest_reg = dest->as_register();
duke@435 1374 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1375 __ movswl(dest_reg, from_addr);
duke@435 1376 } else {
duke@435 1377 __ movw(dest_reg, from_addr);
duke@435 1378 __ shll(dest_reg, 16);
duke@435 1379 __ sarl(dest_reg, 16);
duke@435 1380 }
duke@435 1381 break;
duke@435 1382 }
duke@435 1383
duke@435 1384 default:
duke@435 1385 ShouldNotReachHere();
duke@435 1386 }
duke@435 1387
duke@435 1388 if (patch != NULL) {
duke@435 1389 patching_epilog(patch, patch_code, addr->base()->as_register(), info);
duke@435 1390 }
duke@435 1391
duke@435 1392 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 1393 #ifdef _LP64
iveresov@2344 1394 if (UseCompressedOops && !wide) {
iveresov@2344 1395 __ decode_heap_oop(dest->as_register());
iveresov@2344 1396 }
iveresov@2344 1397 #endif
duke@435 1398 __ verify_oop(dest->as_register());
duke@435 1399 }
duke@435 1400 }
duke@435 1401
duke@435 1402
duke@435 1403 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1404 LIR_Address* addr = src->as_address_ptr();
duke@435 1405 Address from_addr = as_Address(addr);
duke@435 1406
duke@435 1407 if (VM_Version::supports_sse()) {
duke@435 1408 switch (ReadPrefetchInstr) {
duke@435 1409 case 0:
duke@435 1410 __ prefetchnta(from_addr); break;
duke@435 1411 case 1:
duke@435 1412 __ prefetcht0(from_addr); break;
duke@435 1413 case 2:
duke@435 1414 __ prefetcht2(from_addr); break;
duke@435 1415 default:
duke@435 1416 ShouldNotReachHere(); break;
duke@435 1417 }
duke@435 1418 } else if (VM_Version::supports_3dnow()) {
duke@435 1419 __ prefetchr(from_addr);
duke@435 1420 }
duke@435 1421 }
duke@435 1422
duke@435 1423
duke@435 1424 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1425 LIR_Address* addr = src->as_address_ptr();
duke@435 1426 Address from_addr = as_Address(addr);
duke@435 1427
duke@435 1428 if (VM_Version::supports_sse()) {
duke@435 1429 switch (AllocatePrefetchInstr) {
duke@435 1430 case 0:
duke@435 1431 __ prefetchnta(from_addr); break;
duke@435 1432 case 1:
duke@435 1433 __ prefetcht0(from_addr); break;
duke@435 1434 case 2:
duke@435 1435 __ prefetcht2(from_addr); break;
duke@435 1436 case 3:
duke@435 1437 __ prefetchw(from_addr); break;
duke@435 1438 default:
duke@435 1439 ShouldNotReachHere(); break;
duke@435 1440 }
duke@435 1441 } else if (VM_Version::supports_3dnow()) {
duke@435 1442 __ prefetchw(from_addr);
duke@435 1443 }
duke@435 1444 }
duke@435 1445
duke@435 1446
duke@435 1447 NEEDS_CLEANUP; // This could be static?
duke@435 1448 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
kvn@464 1449 int elem_size = type2aelembytes(type);
duke@435 1450 switch (elem_size) {
duke@435 1451 case 1: return Address::times_1;
duke@435 1452 case 2: return Address::times_2;
duke@435 1453 case 4: return Address::times_4;
duke@435 1454 case 8: return Address::times_8;
duke@435 1455 }
duke@435 1456 ShouldNotReachHere();
duke@435 1457 return Address::no_scale;
duke@435 1458 }
duke@435 1459
duke@435 1460
duke@435 1461 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 1462 switch (op->code()) {
duke@435 1463 case lir_idiv:
duke@435 1464 case lir_irem:
duke@435 1465 arithmetic_idiv(op->code(),
duke@435 1466 op->in_opr1(),
duke@435 1467 op->in_opr2(),
duke@435 1468 op->in_opr3(),
duke@435 1469 op->result_opr(),
duke@435 1470 op->info());
duke@435 1471 break;
duke@435 1472 default: ShouldNotReachHere(); break;
duke@435 1473 }
duke@435 1474 }
duke@435 1475
duke@435 1476 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 1477 #ifdef ASSERT
duke@435 1478 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 1479 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 1480 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 1481 #endif
duke@435 1482
duke@435 1483 if (op->cond() == lir_cond_always) {
duke@435 1484 if (op->info() != NULL) add_debug_info_for_branch(op->info());
duke@435 1485 __ jmp (*(op->label()));
duke@435 1486 } else {
duke@435 1487 Assembler::Condition acond = Assembler::zero;
duke@435 1488 if (op->code() == lir_cond_float_branch) {
duke@435 1489 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 1490 __ jcc(Assembler::parity, *(op->ublock()->label()));
duke@435 1491 switch(op->cond()) {
duke@435 1492 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1493 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1494 case lir_cond_less: acond = Assembler::below; break;
duke@435 1495 case lir_cond_lessEqual: acond = Assembler::belowEqual; break;
duke@435 1496 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
duke@435 1497 case lir_cond_greater: acond = Assembler::above; break;
duke@435 1498 default: ShouldNotReachHere();
duke@435 1499 }
duke@435 1500 } else {
duke@435 1501 switch (op->cond()) {
duke@435 1502 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1503 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1504 case lir_cond_less: acond = Assembler::less; break;
duke@435 1505 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1506 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
duke@435 1507 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1508 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
duke@435 1509 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
duke@435 1510 default: ShouldNotReachHere();
duke@435 1511 }
duke@435 1512 }
duke@435 1513 __ jcc(acond,*(op->label()));
duke@435 1514 }
duke@435 1515 }
duke@435 1516
duke@435 1517 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 1518 LIR_Opr src = op->in_opr();
duke@435 1519 LIR_Opr dest = op->result_opr();
duke@435 1520
duke@435 1521 switch (op->bytecode()) {
duke@435 1522 case Bytecodes::_i2l:
never@739 1523 #ifdef _LP64
never@739 1524 __ movl2ptr(dest->as_register_lo(), src->as_register());
never@739 1525 #else
duke@435 1526 move_regs(src->as_register(), dest->as_register_lo());
duke@435 1527 move_regs(src->as_register(), dest->as_register_hi());
duke@435 1528 __ sarl(dest->as_register_hi(), 31);
never@739 1529 #endif // LP64
duke@435 1530 break;
duke@435 1531
duke@435 1532 case Bytecodes::_l2i:
duke@435 1533 move_regs(src->as_register_lo(), dest->as_register());
duke@435 1534 break;
duke@435 1535
duke@435 1536 case Bytecodes::_i2b:
duke@435 1537 move_regs(src->as_register(), dest->as_register());
duke@435 1538 __ sign_extend_byte(dest->as_register());
duke@435 1539 break;
duke@435 1540
duke@435 1541 case Bytecodes::_i2c:
duke@435 1542 move_regs(src->as_register(), dest->as_register());
duke@435 1543 __ andl(dest->as_register(), 0xFFFF);
duke@435 1544 break;
duke@435 1545
duke@435 1546 case Bytecodes::_i2s:
duke@435 1547 move_regs(src->as_register(), dest->as_register());
duke@435 1548 __ sign_extend_short(dest->as_register());
duke@435 1549 break;
duke@435 1550
duke@435 1551
duke@435 1552 case Bytecodes::_f2d:
duke@435 1553 case Bytecodes::_d2f:
duke@435 1554 if (dest->is_single_xmm()) {
duke@435 1555 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
duke@435 1556 } else if (dest->is_double_xmm()) {
duke@435 1557 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
duke@435 1558 } else {
duke@435 1559 assert(src->fpu() == dest->fpu(), "register must be equal");
duke@435 1560 // do nothing (float result is rounded later through spilling)
duke@435 1561 }
duke@435 1562 break;
duke@435 1563
duke@435 1564 case Bytecodes::_i2f:
duke@435 1565 case Bytecodes::_i2d:
duke@435 1566 if (dest->is_single_xmm()) {
never@739 1567 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
duke@435 1568 } else if (dest->is_double_xmm()) {
never@739 1569 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
duke@435 1570 } else {
duke@435 1571 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1572 __ movl(Address(rsp, 0), src->as_register());
duke@435 1573 __ fild_s(Address(rsp, 0));
duke@435 1574 }
duke@435 1575 break;
duke@435 1576
duke@435 1577 case Bytecodes::_f2i:
duke@435 1578 case Bytecodes::_d2i:
duke@435 1579 if (src->is_single_xmm()) {
never@739 1580 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
duke@435 1581 } else if (src->is_double_xmm()) {
never@739 1582 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
duke@435 1583 } else {
duke@435 1584 assert(src->fpu() == 0, "input must be on TOS");
duke@435 1585 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
duke@435 1586 __ fist_s(Address(rsp, 0));
duke@435 1587 __ movl(dest->as_register(), Address(rsp, 0));
duke@435 1588 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1589 }
duke@435 1590
duke@435 1591 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
duke@435 1592 assert(op->stub() != NULL, "stub required");
duke@435 1593 __ cmpl(dest->as_register(), 0x80000000);
duke@435 1594 __ jcc(Assembler::equal, *op->stub()->entry());
duke@435 1595 __ bind(*op->stub()->continuation());
duke@435 1596 break;
duke@435 1597
duke@435 1598 case Bytecodes::_l2f:
duke@435 1599 case Bytecodes::_l2d:
duke@435 1600 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
duke@435 1601 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1602
never@739 1603 __ movptr(Address(rsp, 0), src->as_register_lo());
never@739 1604 NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
duke@435 1605 __ fild_d(Address(rsp, 0));
duke@435 1606 // float result is rounded later through spilling
duke@435 1607 break;
duke@435 1608
duke@435 1609 case Bytecodes::_f2l:
duke@435 1610 case Bytecodes::_d2l:
duke@435 1611 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
duke@435 1612 assert(src->fpu() == 0, "input must be on TOS");
never@739 1613 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
duke@435 1614
duke@435 1615 // instruction sequence too long to inline it here
duke@435 1616 {
duke@435 1617 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
duke@435 1618 }
duke@435 1619 break;
duke@435 1620
duke@435 1621 default: ShouldNotReachHere();
duke@435 1622 }
duke@435 1623 }
duke@435 1624
duke@435 1625 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 1626 if (op->init_check()) {
duke@435 1627 __ cmpl(Address(op->klass()->as_register(),
duke@435 1628 instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
duke@435 1629 instanceKlass::fully_initialized);
duke@435 1630 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 1631 __ jcc(Assembler::notEqual, *op->stub()->entry());
duke@435 1632 }
duke@435 1633 __ allocate_object(op->obj()->as_register(),
duke@435 1634 op->tmp1()->as_register(),
duke@435 1635 op->tmp2()->as_register(),
duke@435 1636 op->header_size(),
duke@435 1637 op->object_size(),
duke@435 1638 op->klass()->as_register(),
duke@435 1639 *op->stub()->entry());
duke@435 1640 __ bind(*op->stub()->continuation());
duke@435 1641 }
duke@435 1642
duke@435 1643 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
duke@435 1644 if (UseSlowPath ||
duke@435 1645 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 1646 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
duke@435 1647 __ jmp(*op->stub()->entry());
duke@435 1648 } else {
duke@435 1649 Register len = op->len()->as_register();
duke@435 1650 Register tmp1 = op->tmp1()->as_register();
duke@435 1651 Register tmp2 = op->tmp2()->as_register();
duke@435 1652 Register tmp3 = op->tmp3()->as_register();
duke@435 1653 if (len == tmp1) {
duke@435 1654 tmp1 = tmp3;
duke@435 1655 } else if (len == tmp2) {
duke@435 1656 tmp2 = tmp3;
duke@435 1657 } else if (len == tmp3) {
duke@435 1658 // everything is ok
duke@435 1659 } else {
never@739 1660 __ mov(tmp3, len);
duke@435 1661 }
duke@435 1662 __ allocate_array(op->obj()->as_register(),
duke@435 1663 len,
duke@435 1664 tmp1,
duke@435 1665 tmp2,
duke@435 1666 arrayOopDesc::header_size(op->type()),
duke@435 1667 array_element_size(op->type()),
duke@435 1668 op->klass()->as_register(),
duke@435 1669 *op->stub()->entry());
duke@435 1670 }
duke@435 1671 __ bind(*op->stub()->continuation());
duke@435 1672 }
duke@435 1673
iveresov@2138 1674 void LIR_Assembler::type_profile_helper(Register mdo,
iveresov@2138 1675 ciMethodData *md, ciProfileData *data,
iveresov@2138 1676 Register recv, Label* update_done) {
iveresov@2163 1677 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
iveresov@2138 1678 Label next_test;
iveresov@2138 1679 // See if the receiver is receiver[n].
iveresov@2138 1680 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
iveresov@2138 1681 __ jccb(Assembler::notEqual, next_test);
iveresov@2138 1682 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
iveresov@2138 1683 __ addptr(data_addr, DataLayout::counter_increment);
iveresov@2146 1684 __ jmp(*update_done);
iveresov@2138 1685 __ bind(next_test);
iveresov@2138 1686 }
iveresov@2138 1687
iveresov@2138 1688 // Didn't find receiver; find next empty slot and fill it in
iveresov@2163 1689 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
iveresov@2138 1690 Label next_test;
iveresov@2138 1691 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
iveresov@2138 1692 __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
iveresov@2138 1693 __ jccb(Assembler::notEqual, next_test);
iveresov@2138 1694 __ movptr(recv_addr, recv);
iveresov@2138 1695 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
iveresov@2146 1696 __ jmp(*update_done);
iveresov@2138 1697 __ bind(next_test);
iveresov@2138 1698 }
iveresov@2138 1699 }
iveresov@2138 1700
iveresov@2146 1701 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
iveresov@2138 1702 // we always need a stub for the failure case.
iveresov@2138 1703 CodeStub* stub = op->stub();
iveresov@2138 1704 Register obj = op->object()->as_register();
iveresov@2138 1705 Register k_RInfo = op->tmp1()->as_register();
iveresov@2138 1706 Register klass_RInfo = op->tmp2()->as_register();
iveresov@2138 1707 Register dst = op->result_opr()->as_register();
iveresov@2138 1708 ciKlass* k = op->klass();
iveresov@2138 1709 Register Rtmp1 = noreg;
iveresov@2138 1710
iveresov@2138 1711 // check if it needs to be profiled
iveresov@2138 1712 ciMethodData* md;
iveresov@2138 1713 ciProfileData* data;
iveresov@2138 1714
iveresov@2138 1715 if (op->should_profile()) {
iveresov@2138 1716 ciMethod* method = op->profiled_method();
iveresov@2138 1717 assert(method != NULL, "Should have method");
iveresov@2138 1718 int bci = op->profiled_bci();
iveresov@2138 1719 md = method->method_data();
iveresov@2138 1720 if (md == NULL) {
iveresov@2138 1721 bailout("out of memory building methodDataOop");
iveresov@2138 1722 return;
iveresov@2138 1723 }
iveresov@2138 1724 data = md->bci_to_data(bci);
iveresov@2146 1725 assert(data != NULL, "need data for type check");
iveresov@2146 1726 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2138 1727 }
iveresov@2146 1728 Label profile_cast_success, profile_cast_failure;
iveresov@2146 1729 Label *success_target = op->should_profile() ? &profile_cast_success : success;
iveresov@2146 1730 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
iveresov@2138 1731
iveresov@2138 1732 if (obj == k_RInfo) {
iveresov@2138 1733 k_RInfo = dst;
iveresov@2138 1734 } else if (obj == klass_RInfo) {
iveresov@2138 1735 klass_RInfo = dst;
iveresov@2138 1736 }
iveresov@2344 1737 if (k->is_loaded() && !UseCompressedOops) {
iveresov@2138 1738 select_different_registers(obj, dst, k_RInfo, klass_RInfo);
iveresov@2138 1739 } else {
iveresov@2138 1740 Rtmp1 = op->tmp3()->as_register();
iveresov@2138 1741 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
iveresov@2138 1742 }
iveresov@2138 1743
iveresov@2138 1744 assert_different_registers(obj, k_RInfo, klass_RInfo);
iveresov@2138 1745 if (!k->is_loaded()) {
iveresov@2138 1746 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
iveresov@2138 1747 } else {
iveresov@2138 1748 #ifdef _LP64
iveresov@2138 1749 __ movoop(k_RInfo, k->constant_encoding());
iveresov@2138 1750 #endif // _LP64
iveresov@2138 1751 }
iveresov@2138 1752 assert(obj != k_RInfo, "must be different");
iveresov@2138 1753
iveresov@2138 1754 __ cmpptr(obj, (int32_t)NULL_WORD);
iveresov@2138 1755 if (op->should_profile()) {
iveresov@2146 1756 Label not_null;
iveresov@2146 1757 __ jccb(Assembler::notEqual, not_null);
iveresov@2146 1758 // Object is null; update MDO and exit
iveresov@2138 1759 Register mdo = klass_RInfo;
iveresov@2138 1760 __ movoop(mdo, md->constant_encoding());
iveresov@2138 1761 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
iveresov@2138 1762 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
iveresov@2138 1763 __ orl(data_addr, header_bits);
iveresov@2146 1764 __ jmp(*obj_is_null);
iveresov@2146 1765 __ bind(not_null);
iveresov@2138 1766 } else {
iveresov@2146 1767 __ jcc(Assembler::equal, *obj_is_null);
iveresov@2138 1768 }
iveresov@2138 1769 __ verify_oop(obj);
iveresov@2138 1770
iveresov@2138 1771 if (op->fast_check()) {
iveresov@2146 1772 // get object class
iveresov@2138 1773 // not a safepoint as obj null check happens earlier
iveresov@2138 1774 #ifdef _LP64
iveresov@2344 1775 if (UseCompressedOops) {
iveresov@2344 1776 __ load_klass(Rtmp1, obj);
iveresov@2344 1777 __ cmpptr(k_RInfo, Rtmp1);
iveresov@2138 1778 } else {
iveresov@2138 1779 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2138 1780 }
iveresov@2344 1781 #else
iveresov@2344 1782 if (k->is_loaded()) {
iveresov@2344 1783 __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
iveresov@2344 1784 } else {
iveresov@2344 1785 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2344 1786 }
iveresov@2344 1787 #endif
iveresov@2138 1788 __ jcc(Assembler::notEqual, *failure_target);
iveresov@2146 1789 // successful cast, fall through to profile or jump
iveresov@2138 1790 } else {
iveresov@2138 1791 // get object class
iveresov@2138 1792 // not a safepoint as obj null check happens earlier
iveresov@2344 1793 __ load_klass(klass_RInfo, obj);
iveresov@2138 1794 if (k->is_loaded()) {
iveresov@2138 1795 // See if we get an immediate positive hit
iveresov@2138 1796 #ifdef _LP64
iveresov@2138 1797 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
iveresov@2138 1798 #else
iveresov@2138 1799 __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
iveresov@2138 1800 #endif // _LP64
iveresov@2138 1801 if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
iveresov@2138 1802 __ jcc(Assembler::notEqual, *failure_target);
iveresov@2146 1803 // successful cast, fall through to profile or jump
iveresov@2138 1804 } else {
iveresov@2138 1805 // See if we get an immediate positive hit
iveresov@2146 1806 __ jcc(Assembler::equal, *success_target);
iveresov@2138 1807 // check for self
iveresov@2138 1808 #ifdef _LP64
iveresov@2138 1809 __ cmpptr(klass_RInfo, k_RInfo);
iveresov@2138 1810 #else
iveresov@2138 1811 __ cmpoop(klass_RInfo, k->constant_encoding());
iveresov@2138 1812 #endif // _LP64
iveresov@2146 1813 __ jcc(Assembler::equal, *success_target);
iveresov@2138 1814
iveresov@2138 1815 __ push(klass_RInfo);
iveresov@2138 1816 #ifdef _LP64
iveresov@2138 1817 __ push(k_RInfo);
iveresov@2138 1818 #else
iveresov@2138 1819 __ pushoop(k->constant_encoding());
iveresov@2138 1820 #endif // _LP64
iveresov@2138 1821 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
iveresov@2138 1822 __ pop(klass_RInfo);
iveresov@2138 1823 __ pop(klass_RInfo);
iveresov@2138 1824 // result is a boolean
iveresov@2138 1825 __ cmpl(klass_RInfo, 0);
iveresov@2138 1826 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1827 // successful cast, fall through to profile or jump
iveresov@2138 1828 }
iveresov@2138 1829 } else {
iveresov@2138 1830 // perform the fast part of the checking logic
iveresov@2146 1831 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
iveresov@2138 1832 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
iveresov@2138 1833 __ push(klass_RInfo);
iveresov@2138 1834 __ push(k_RInfo);
iveresov@2138 1835 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
iveresov@2138 1836 __ pop(klass_RInfo);
iveresov@2138 1837 __ pop(k_RInfo);
iveresov@2138 1838 // result is a boolean
iveresov@2138 1839 __ cmpl(k_RInfo, 0);
iveresov@2138 1840 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1841 // successful cast, fall through to profile or jump
iveresov@2138 1842 }
iveresov@2138 1843 }
iveresov@2138 1844 if (op->should_profile()) {
iveresov@2138 1845 Register mdo = klass_RInfo, recv = k_RInfo;
iveresov@2146 1846 __ bind(profile_cast_success);
iveresov@2138 1847 __ movoop(mdo, md->constant_encoding());
iveresov@2344 1848 __ load_klass(recv, obj);
iveresov@2138 1849 Label update_done;
iveresov@2146 1850 type_profile_helper(mdo, md, data, recv, success);
iveresov@2146 1851 __ jmp(*success);
iveresov@2138 1852
iveresov@2138 1853 __ bind(profile_cast_failure);
iveresov@2138 1854 __ movoop(mdo, md->constant_encoding());
iveresov@2138 1855 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
iveresov@2138 1856 __ subptr(counter_addr, DataLayout::counter_increment);
iveresov@2146 1857 __ jmp(*failure);
iveresov@2138 1858 }
iveresov@2146 1859 __ jmp(*success);
iveresov@2138 1860 }
duke@435 1861
iveresov@2146 1862
duke@435 1863 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 1864 LIR_Code code = op->code();
duke@435 1865 if (code == lir_store_check) {
duke@435 1866 Register value = op->object()->as_register();
duke@435 1867 Register array = op->array()->as_register();
duke@435 1868 Register k_RInfo = op->tmp1()->as_register();
duke@435 1869 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1870 Register Rtmp1 = op->tmp3()->as_register();
duke@435 1871
duke@435 1872 CodeStub* stub = op->stub();
iveresov@2146 1873
iveresov@2146 1874 // check if it needs to be profiled
iveresov@2146 1875 ciMethodData* md;
iveresov@2146 1876 ciProfileData* data;
iveresov@2146 1877
iveresov@2146 1878 if (op->should_profile()) {
iveresov@2146 1879 ciMethod* method = op->profiled_method();
iveresov@2146 1880 assert(method != NULL, "Should have method");
iveresov@2146 1881 int bci = op->profiled_bci();
iveresov@2146 1882 md = method->method_data();
iveresov@2146 1883 if (md == NULL) {
iveresov@2146 1884 bailout("out of memory building methodDataOop");
iveresov@2146 1885 return;
iveresov@2146 1886 }
iveresov@2146 1887 data = md->bci_to_data(bci);
iveresov@2146 1888 assert(data != NULL, "need data for type check");
iveresov@2146 1889 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2146 1890 }
iveresov@2146 1891 Label profile_cast_success, profile_cast_failure, done;
iveresov@2146 1892 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
iveresov@2146 1893 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
iveresov@2146 1894
never@739 1895 __ cmpptr(value, (int32_t)NULL_WORD);
iveresov@2146 1896 if (op->should_profile()) {
iveresov@2146 1897 Label not_null;
iveresov@2146 1898 __ jccb(Assembler::notEqual, not_null);
iveresov@2146 1899 // Object is null; update MDO and exit
iveresov@2146 1900 Register mdo = klass_RInfo;
iveresov@2146 1901 __ movoop(mdo, md->constant_encoding());
iveresov@2146 1902 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
iveresov@2146 1903 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
iveresov@2146 1904 __ orl(data_addr, header_bits);
iveresov@2146 1905 __ jmp(done);
iveresov@2146 1906 __ bind(not_null);
iveresov@2146 1907 } else {
iveresov@2146 1908 __ jcc(Assembler::equal, done);
iveresov@2146 1909 }
iveresov@2146 1910
duke@435 1911 add_debug_info_for_null_check_here(op->info_for_exception());
iveresov@2344 1912 __ load_klass(k_RInfo, array);
iveresov@2344 1913 __ load_klass(klass_RInfo, value);
iveresov@2344 1914
iveresov@2344 1915 // get instance klass (it's already uncompressed)
never@739 1916 __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
jrose@1079 1917 // perform the fast part of the checking logic
iveresov@2146 1918 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
jrose@1079 1919 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1920 __ push(klass_RInfo);
never@739 1921 __ push(k_RInfo);
duke@435 1922 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1923 __ pop(klass_RInfo);
never@739 1924 __ pop(k_RInfo);
never@739 1925 // result is a boolean
duke@435 1926 __ cmpl(k_RInfo, 0);
iveresov@2146 1927 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1928 // fall through to the success case
iveresov@2146 1929
iveresov@2146 1930 if (op->should_profile()) {
iveresov@2146 1931 Register mdo = klass_RInfo, recv = k_RInfo;
iveresov@2146 1932 __ bind(profile_cast_success);
iveresov@2146 1933 __ movoop(mdo, md->constant_encoding());
iveresov@2344 1934 __ load_klass(recv, value);
iveresov@2146 1935 Label update_done;
iveresov@2146 1936 type_profile_helper(mdo, md, data, recv, &done);
iveresov@2146 1937 __ jmpb(done);
iveresov@2146 1938
iveresov@2146 1939 __ bind(profile_cast_failure);
iveresov@2146 1940 __ movoop(mdo, md->constant_encoding());
iveresov@2146 1941 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
iveresov@2146 1942 __ subptr(counter_addr, DataLayout::counter_increment);
iveresov@2146 1943 __ jmp(*stub->entry());
iveresov@2146 1944 }
iveresov@2146 1945
duke@435 1946 __ bind(done);
iveresov@2146 1947 } else
iveresov@2146 1948 if (code == lir_checkcast) {
iveresov@2146 1949 Register obj = op->object()->as_register();
iveresov@2146 1950 Register dst = op->result_opr()->as_register();
iveresov@2146 1951 Label success;
iveresov@2146 1952 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
iveresov@2146 1953 __ bind(success);
iveresov@2146 1954 if (dst != obj) {
iveresov@2146 1955 __ mov(dst, obj);
iveresov@2146 1956 }
iveresov@2146 1957 } else
iveresov@2146 1958 if (code == lir_instanceof) {
iveresov@2146 1959 Register obj = op->object()->as_register();
iveresov@2146 1960 Register dst = op->result_opr()->as_register();
iveresov@2146 1961 Label success, failure, done;
iveresov@2146 1962 emit_typecheck_helper(op, &success, &failure, &failure);
iveresov@2146 1963 __ bind(failure);
iveresov@2146 1964 __ xorptr(dst, dst);
iveresov@2146 1965 __ jmpb(done);
iveresov@2146 1966 __ bind(success);
iveresov@2146 1967 __ movptr(dst, 1);
iveresov@2146 1968 __ bind(done);
duke@435 1969 } else {
iveresov@2146 1970 ShouldNotReachHere();
duke@435 1971 }
duke@435 1972
duke@435 1973 }
duke@435 1974
duke@435 1975
duke@435 1976 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
never@739 1977 if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
duke@435 1978 assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
duke@435 1979 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
duke@435 1980 assert(op->new_value()->as_register_lo() == rbx, "wrong register");
duke@435 1981 assert(op->new_value()->as_register_hi() == rcx, "wrong register");
duke@435 1982 Register addr = op->addr()->as_register();
duke@435 1983 if (os::is_MP()) {
duke@435 1984 __ lock();
duke@435 1985 }
never@739 1986 NOT_LP64(__ cmpxchg8(Address(addr, 0)));
never@739 1987
never@739 1988 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
never@739 1989 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
never@739 1990 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
duke@435 1991 Register newval = op->new_value()->as_register();
duke@435 1992 Register cmpval = op->cmp_value()->as_register();
duke@435 1993 assert(cmpval == rax, "wrong register");
duke@435 1994 assert(newval != NULL, "new val must be register");
duke@435 1995 assert(cmpval != newval, "cmp and new values must be in different registers");
duke@435 1996 assert(cmpval != addr, "cmp and addr must be in different registers");
duke@435 1997 assert(newval != addr, "new value and addr must be in different registers");
iveresov@2344 1998
never@739 1999 if ( op->code() == lir_cas_obj) {
iveresov@2344 2000 #ifdef _LP64
iveresov@2344 2001 if (UseCompressedOops) {
iveresov@2344 2002 __ mov(rscratch1, cmpval);
iveresov@2344 2003 __ encode_heap_oop(cmpval);
iveresov@2344 2004 __ mov(rscratch2, newval);
iveresov@2344 2005 __ encode_heap_oop(rscratch2);
iveresov@2344 2006 if (os::is_MP()) {
iveresov@2344 2007 __ lock();
iveresov@2344 2008 }
iveresov@2344 2009 __ cmpxchgl(rscratch2, Address(addr, 0));
iveresov@2344 2010 __ mov(cmpval, rscratch1);
iveresov@2344 2011 } else
iveresov@2344 2012 #endif
iveresov@2344 2013 {
iveresov@2344 2014 if (os::is_MP()) {
iveresov@2344 2015 __ lock();
iveresov@2344 2016 }
iveresov@2344 2017 __ cmpxchgptr(newval, Address(addr, 0));
iveresov@2344 2018 }
iveresov@2344 2019 } else {
iveresov@2344 2020 assert(op->code() == lir_cas_int, "lir_cas_int expected");
iveresov@2344 2021 if (os::is_MP()) {
iveresov@2344 2022 __ lock();
iveresov@2344 2023 }
never@739 2024 __ cmpxchgl(newval, Address(addr, 0));
never@739 2025 }
never@739 2026 #ifdef _LP64
never@739 2027 } else if (op->code() == lir_cas_long) {
never@739 2028 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
never@739 2029 Register newval = op->new_value()->as_register_lo();
never@739 2030 Register cmpval = op->cmp_value()->as_register_lo();
never@739 2031 assert(cmpval == rax, "wrong register");
never@739 2032 assert(newval != NULL, "new val must be register");
never@739 2033 assert(cmpval != newval, "cmp and new values must be in different registers");
never@739 2034 assert(cmpval != addr, "cmp and addr must be in different registers");
never@739 2035 assert(newval != addr, "new value and addr must be in different registers");
never@739 2036 if (os::is_MP()) {
never@739 2037 __ lock();
never@739 2038 }
never@739 2039 __ cmpxchgq(newval, Address(addr, 0));
never@739 2040 #endif // _LP64
duke@435 2041 } else {
duke@435 2042 Unimplemented();
duke@435 2043 }
duke@435 2044 }
duke@435 2045
duke@435 2046 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
duke@435 2047 Assembler::Condition acond, ncond;
duke@435 2048 switch (condition) {
duke@435 2049 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break;
duke@435 2050 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break;
duke@435 2051 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break;
duke@435 2052 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break;
duke@435 2053 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break;
duke@435 2054 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break;
duke@435 2055 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break;
duke@435 2056 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break;
duke@435 2057 default: ShouldNotReachHere();
duke@435 2058 }
duke@435 2059
duke@435 2060 if (opr1->is_cpu_register()) {
duke@435 2061 reg2reg(opr1, result);
duke@435 2062 } else if (opr1->is_stack()) {
duke@435 2063 stack2reg(opr1, result, result->type());
duke@435 2064 } else if (opr1->is_constant()) {
duke@435 2065 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 2066 } else {
duke@435 2067 ShouldNotReachHere();
duke@435 2068 }
duke@435 2069
duke@435 2070 if (VM_Version::supports_cmov() && !opr2->is_constant()) {
duke@435 2071 // optimized version that does not require a branch
duke@435 2072 if (opr2->is_single_cpu()) {
duke@435 2073 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
never@739 2074 __ cmov(ncond, result->as_register(), opr2->as_register());
duke@435 2075 } else if (opr2->is_double_cpu()) {
duke@435 2076 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
duke@435 2077 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
never@739 2078 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
never@739 2079 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
duke@435 2080 } else if (opr2->is_single_stack()) {
duke@435 2081 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2082 } else if (opr2->is_double_stack()) {
never@739 2083 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
never@739 2084 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
duke@435 2085 } else {
duke@435 2086 ShouldNotReachHere();
duke@435 2087 }
duke@435 2088
duke@435 2089 } else {
duke@435 2090 Label skip;
duke@435 2091 __ jcc (acond, skip);
duke@435 2092 if (opr2->is_cpu_register()) {
duke@435 2093 reg2reg(opr2, result);
duke@435 2094 } else if (opr2->is_stack()) {
duke@435 2095 stack2reg(opr2, result, result->type());
duke@435 2096 } else if (opr2->is_constant()) {
duke@435 2097 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 2098 } else {
duke@435 2099 ShouldNotReachHere();
duke@435 2100 }
duke@435 2101 __ bind(skip);
duke@435 2102 }
duke@435 2103 }
duke@435 2104
duke@435 2105
duke@435 2106 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 2107 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
duke@435 2108
duke@435 2109 if (left->is_single_cpu()) {
duke@435 2110 assert(left == dest, "left and dest must be equal");
duke@435 2111 Register lreg = left->as_register();
duke@435 2112
duke@435 2113 if (right->is_single_cpu()) {
duke@435 2114 // cpu register - cpu register
duke@435 2115 Register rreg = right->as_register();
duke@435 2116 switch (code) {
duke@435 2117 case lir_add: __ addl (lreg, rreg); break;
duke@435 2118 case lir_sub: __ subl (lreg, rreg); break;
duke@435 2119 case lir_mul: __ imull(lreg, rreg); break;
duke@435 2120 default: ShouldNotReachHere();
duke@435 2121 }
duke@435 2122
duke@435 2123 } else if (right->is_stack()) {
duke@435 2124 // cpu register - stack
duke@435 2125 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2126 switch (code) {
duke@435 2127 case lir_add: __ addl(lreg, raddr); break;
duke@435 2128 case lir_sub: __ subl(lreg, raddr); break;
duke@435 2129 default: ShouldNotReachHere();
duke@435 2130 }
duke@435 2131
duke@435 2132 } else if (right->is_constant()) {
duke@435 2133 // cpu register - constant
duke@435 2134 jint c = right->as_constant_ptr()->as_jint();
duke@435 2135 switch (code) {
duke@435 2136 case lir_add: {
iveresov@2145 2137 __ incrementl(lreg, c);
duke@435 2138 break;
duke@435 2139 }
duke@435 2140 case lir_sub: {
iveresov@2145 2141 __ decrementl(lreg, c);
duke@435 2142 break;
duke@435 2143 }
duke@435 2144 default: ShouldNotReachHere();
duke@435 2145 }
duke@435 2146
duke@435 2147 } else {
duke@435 2148 ShouldNotReachHere();
duke@435 2149 }
duke@435 2150
duke@435 2151 } else if (left->is_double_cpu()) {
duke@435 2152 assert(left == dest, "left and dest must be equal");
duke@435 2153 Register lreg_lo = left->as_register_lo();
duke@435 2154 Register lreg_hi = left->as_register_hi();
duke@435 2155
duke@435 2156 if (right->is_double_cpu()) {
duke@435 2157 // cpu register - cpu register
duke@435 2158 Register rreg_lo = right->as_register_lo();
duke@435 2159 Register rreg_hi = right->as_register_hi();
never@739 2160 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
never@739 2161 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
duke@435 2162 switch (code) {
duke@435 2163 case lir_add:
never@739 2164 __ addptr(lreg_lo, rreg_lo);
never@739 2165 NOT_LP64(__ adcl(lreg_hi, rreg_hi));
duke@435 2166 break;
duke@435 2167 case lir_sub:
never@739 2168 __ subptr(lreg_lo, rreg_lo);
never@739 2169 NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
duke@435 2170 break;
duke@435 2171 case lir_mul:
never@739 2172 #ifdef _LP64
never@739 2173 __ imulq(lreg_lo, rreg_lo);
never@739 2174 #else
duke@435 2175 assert(lreg_lo == rax && lreg_hi == rdx, "must be");
duke@435 2176 __ imull(lreg_hi, rreg_lo);
duke@435 2177 __ imull(rreg_hi, lreg_lo);
duke@435 2178 __ addl (rreg_hi, lreg_hi);
duke@435 2179 __ mull (rreg_lo);
duke@435 2180 __ addl (lreg_hi, rreg_hi);
never@739 2181 #endif // _LP64
duke@435 2182 break;
duke@435 2183 default:
duke@435 2184 ShouldNotReachHere();
duke@435 2185 }
duke@435 2186
duke@435 2187 } else if (right->is_constant()) {
duke@435 2188 // cpu register - constant
never@739 2189 #ifdef _LP64
never@739 2190 jlong c = right->as_constant_ptr()->as_jlong_bits();
never@739 2191 __ movptr(r10, (intptr_t) c);
never@739 2192 switch (code) {
never@739 2193 case lir_add:
never@739 2194 __ addptr(lreg_lo, r10);
never@739 2195 break;
never@739 2196 case lir_sub:
never@739 2197 __ subptr(lreg_lo, r10);
never@739 2198 break;
never@739 2199 default:
never@739 2200 ShouldNotReachHere();
never@739 2201 }
never@739 2202 #else
duke@435 2203 jint c_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2204 jint c_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2205 switch (code) {
duke@435 2206 case lir_add:
never@739 2207 __ addptr(lreg_lo, c_lo);
duke@435 2208 __ adcl(lreg_hi, c_hi);
duke@435 2209 break;
duke@435 2210 case lir_sub:
never@739 2211 __ subptr(lreg_lo, c_lo);
duke@435 2212 __ sbbl(lreg_hi, c_hi);
duke@435 2213 break;
duke@435 2214 default:
duke@435 2215 ShouldNotReachHere();
duke@435 2216 }
never@739 2217 #endif // _LP64
duke@435 2218
duke@435 2219 } else {
duke@435 2220 ShouldNotReachHere();
duke@435 2221 }
duke@435 2222
duke@435 2223 } else if (left->is_single_xmm()) {
duke@435 2224 assert(left == dest, "left and dest must be equal");
duke@435 2225 XMMRegister lreg = left->as_xmm_float_reg();
duke@435 2226
duke@435 2227 if (right->is_single_xmm()) {
duke@435 2228 XMMRegister rreg = right->as_xmm_float_reg();
duke@435 2229 switch (code) {
duke@435 2230 case lir_add: __ addss(lreg, rreg); break;
duke@435 2231 case lir_sub: __ subss(lreg, rreg); break;
duke@435 2232 case lir_mul_strictfp: // fall through
duke@435 2233 case lir_mul: __ mulss(lreg, rreg); break;
duke@435 2234 case lir_div_strictfp: // fall through
duke@435 2235 case lir_div: __ divss(lreg, rreg); break;
duke@435 2236 default: ShouldNotReachHere();
duke@435 2237 }
duke@435 2238 } else {
duke@435 2239 Address raddr;
duke@435 2240 if (right->is_single_stack()) {
duke@435 2241 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2242 } else if (right->is_constant()) {
duke@435 2243 // hack for now
duke@435 2244 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
duke@435 2245 } else {
duke@435 2246 ShouldNotReachHere();
duke@435 2247 }
duke@435 2248 switch (code) {
duke@435 2249 case lir_add: __ addss(lreg, raddr); break;
duke@435 2250 case lir_sub: __ subss(lreg, raddr); break;
duke@435 2251 case lir_mul_strictfp: // fall through
duke@435 2252 case lir_mul: __ mulss(lreg, raddr); break;
duke@435 2253 case lir_div_strictfp: // fall through
duke@435 2254 case lir_div: __ divss(lreg, raddr); break;
duke@435 2255 default: ShouldNotReachHere();
duke@435 2256 }
duke@435 2257 }
duke@435 2258
duke@435 2259 } else if (left->is_double_xmm()) {
duke@435 2260 assert(left == dest, "left and dest must be equal");
duke@435 2261
duke@435 2262 XMMRegister lreg = left->as_xmm_double_reg();
duke@435 2263 if (right->is_double_xmm()) {
duke@435 2264 XMMRegister rreg = right->as_xmm_double_reg();
duke@435 2265 switch (code) {
duke@435 2266 case lir_add: __ addsd(lreg, rreg); break;
duke@435 2267 case lir_sub: __ subsd(lreg, rreg); break;
duke@435 2268 case lir_mul_strictfp: // fall through
duke@435 2269 case lir_mul: __ mulsd(lreg, rreg); break;
duke@435 2270 case lir_div_strictfp: // fall through
duke@435 2271 case lir_div: __ divsd(lreg, rreg); break;
duke@435 2272 default: ShouldNotReachHere();
duke@435 2273 }
duke@435 2274 } else {
duke@435 2275 Address raddr;
duke@435 2276 if (right->is_double_stack()) {
duke@435 2277 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2278 } else if (right->is_constant()) {
duke@435 2279 // hack for now
duke@435 2280 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2281 } else {
duke@435 2282 ShouldNotReachHere();
duke@435 2283 }
duke@435 2284 switch (code) {
duke@435 2285 case lir_add: __ addsd(lreg, raddr); break;
duke@435 2286 case lir_sub: __ subsd(lreg, raddr); break;
duke@435 2287 case lir_mul_strictfp: // fall through
duke@435 2288 case lir_mul: __ mulsd(lreg, raddr); break;
duke@435 2289 case lir_div_strictfp: // fall through
duke@435 2290 case lir_div: __ divsd(lreg, raddr); break;
duke@435 2291 default: ShouldNotReachHere();
duke@435 2292 }
duke@435 2293 }
duke@435 2294
duke@435 2295 } else if (left->is_single_fpu()) {
duke@435 2296 assert(dest->is_single_fpu(), "fpu stack allocation required");
duke@435 2297
duke@435 2298 if (right->is_single_fpu()) {
duke@435 2299 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
duke@435 2300
duke@435 2301 } else {
duke@435 2302 assert(left->fpu_regnr() == 0, "left must be on TOS");
duke@435 2303 assert(dest->fpu_regnr() == 0, "dest must be on TOS");
duke@435 2304
duke@435 2305 Address raddr;
duke@435 2306 if (right->is_single_stack()) {
duke@435 2307 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2308 } else if (right->is_constant()) {
duke@435 2309 address const_addr = float_constant(right->as_jfloat());
duke@435 2310 assert(const_addr != NULL, "incorrect float/double constant maintainance");
duke@435 2311 // hack for now
duke@435 2312 raddr = __ as_Address(InternalAddress(const_addr));
duke@435 2313 } else {
duke@435 2314 ShouldNotReachHere();
duke@435 2315 }
duke@435 2316
duke@435 2317 switch (code) {
duke@435 2318 case lir_add: __ fadd_s(raddr); break;
duke@435 2319 case lir_sub: __ fsub_s(raddr); break;
duke@435 2320 case lir_mul_strictfp: // fall through
duke@435 2321 case lir_mul: __ fmul_s(raddr); break;
duke@435 2322 case lir_div_strictfp: // fall through
duke@435 2323 case lir_div: __ fdiv_s(raddr); break;
duke@435 2324 default: ShouldNotReachHere();
duke@435 2325 }
duke@435 2326 }
duke@435 2327
duke@435 2328 } else if (left->is_double_fpu()) {
duke@435 2329 assert(dest->is_double_fpu(), "fpu stack allocation required");
duke@435 2330
duke@435 2331 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2332 // Double values require special handling for strictfp mul/div on x86
duke@435 2333 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
duke@435 2334 __ fmulp(left->fpu_regnrLo() + 1);
duke@435 2335 }
duke@435 2336
duke@435 2337 if (right->is_double_fpu()) {
duke@435 2338 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
duke@435 2339
duke@435 2340 } else {
duke@435 2341 assert(left->fpu_regnrLo() == 0, "left must be on TOS");
duke@435 2342 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
duke@435 2343
duke@435 2344 Address raddr;
duke@435 2345 if (right->is_double_stack()) {
duke@435 2346 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2347 } else if (right->is_constant()) {
duke@435 2348 // hack for now
duke@435 2349 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2350 } else {
duke@435 2351 ShouldNotReachHere();
duke@435 2352 }
duke@435 2353
duke@435 2354 switch (code) {
duke@435 2355 case lir_add: __ fadd_d(raddr); break;
duke@435 2356 case lir_sub: __ fsub_d(raddr); break;
duke@435 2357 case lir_mul_strictfp: // fall through
duke@435 2358 case lir_mul: __ fmul_d(raddr); break;
duke@435 2359 case lir_div_strictfp: // fall through
duke@435 2360 case lir_div: __ fdiv_d(raddr); break;
duke@435 2361 default: ShouldNotReachHere();
duke@435 2362 }
duke@435 2363 }
duke@435 2364
duke@435 2365 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2366 // Double values require special handling for strictfp mul/div on x86
duke@435 2367 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
duke@435 2368 __ fmulp(dest->fpu_regnrLo() + 1);
duke@435 2369 }
duke@435 2370
duke@435 2371 } else if (left->is_single_stack() || left->is_address()) {
duke@435 2372 assert(left == dest, "left and dest must be equal");
duke@435 2373
duke@435 2374 Address laddr;
duke@435 2375 if (left->is_single_stack()) {
duke@435 2376 laddr = frame_map()->address_for_slot(left->single_stack_ix());
duke@435 2377 } else if (left->is_address()) {
duke@435 2378 laddr = as_Address(left->as_address_ptr());
duke@435 2379 } else {
duke@435 2380 ShouldNotReachHere();
duke@435 2381 }
duke@435 2382
duke@435 2383 if (right->is_single_cpu()) {
duke@435 2384 Register rreg = right->as_register();
duke@435 2385 switch (code) {
duke@435 2386 case lir_add: __ addl(laddr, rreg); break;
duke@435 2387 case lir_sub: __ subl(laddr, rreg); break;
duke@435 2388 default: ShouldNotReachHere();
duke@435 2389 }
duke@435 2390 } else if (right->is_constant()) {
duke@435 2391 jint c = right->as_constant_ptr()->as_jint();
duke@435 2392 switch (code) {
duke@435 2393 case lir_add: {
never@739 2394 __ incrementl(laddr, c);
duke@435 2395 break;
duke@435 2396 }
duke@435 2397 case lir_sub: {
never@739 2398 __ decrementl(laddr, c);
duke@435 2399 break;
duke@435 2400 }
duke@435 2401 default: ShouldNotReachHere();
duke@435 2402 }
duke@435 2403 } else {
duke@435 2404 ShouldNotReachHere();
duke@435 2405 }
duke@435 2406
duke@435 2407 } else {
duke@435 2408 ShouldNotReachHere();
duke@435 2409 }
duke@435 2410 }
duke@435 2411
duke@435 2412 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
duke@435 2413 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR");
duke@435 2414 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
duke@435 2415 assert(left_index == 0 || right_index == 0, "either must be on top of stack");
duke@435 2416
duke@435 2417 bool left_is_tos = (left_index == 0);
duke@435 2418 bool dest_is_tos = (dest_index == 0);
duke@435 2419 int non_tos_index = (left_is_tos ? right_index : left_index);
duke@435 2420
duke@435 2421 switch (code) {
duke@435 2422 case lir_add:
duke@435 2423 if (pop_fpu_stack) __ faddp(non_tos_index);
duke@435 2424 else if (dest_is_tos) __ fadd (non_tos_index);
duke@435 2425 else __ fadda(non_tos_index);
duke@435 2426 break;
duke@435 2427
duke@435 2428 case lir_sub:
duke@435 2429 if (left_is_tos) {
duke@435 2430 if (pop_fpu_stack) __ fsubrp(non_tos_index);
duke@435 2431 else if (dest_is_tos) __ fsub (non_tos_index);
duke@435 2432 else __ fsubra(non_tos_index);
duke@435 2433 } else {
duke@435 2434 if (pop_fpu_stack) __ fsubp (non_tos_index);
duke@435 2435 else if (dest_is_tos) __ fsubr (non_tos_index);
duke@435 2436 else __ fsuba (non_tos_index);
duke@435 2437 }
duke@435 2438 break;
duke@435 2439
duke@435 2440 case lir_mul_strictfp: // fall through
duke@435 2441 case lir_mul:
duke@435 2442 if (pop_fpu_stack) __ fmulp(non_tos_index);
duke@435 2443 else if (dest_is_tos) __ fmul (non_tos_index);
duke@435 2444 else __ fmula(non_tos_index);
duke@435 2445 break;
duke@435 2446
duke@435 2447 case lir_div_strictfp: // fall through
duke@435 2448 case lir_div:
duke@435 2449 if (left_is_tos) {
duke@435 2450 if (pop_fpu_stack) __ fdivrp(non_tos_index);
duke@435 2451 else if (dest_is_tos) __ fdiv (non_tos_index);
duke@435 2452 else __ fdivra(non_tos_index);
duke@435 2453 } else {
duke@435 2454 if (pop_fpu_stack) __ fdivp (non_tos_index);
duke@435 2455 else if (dest_is_tos) __ fdivr (non_tos_index);
duke@435 2456 else __ fdiva (non_tos_index);
duke@435 2457 }
duke@435 2458 break;
duke@435 2459
duke@435 2460 case lir_rem:
duke@435 2461 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
duke@435 2462 __ fremr(noreg);
duke@435 2463 break;
duke@435 2464
duke@435 2465 default:
duke@435 2466 ShouldNotReachHere();
duke@435 2467 }
duke@435 2468 }
duke@435 2469
duke@435 2470
duke@435 2471 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
duke@435 2472 if (value->is_double_xmm()) {
duke@435 2473 switch(code) {
duke@435 2474 case lir_abs :
duke@435 2475 {
duke@435 2476 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
duke@435 2477 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
duke@435 2478 }
duke@435 2479 __ andpd(dest->as_xmm_double_reg(),
duke@435 2480 ExternalAddress((address)double_signmask_pool));
duke@435 2481 }
duke@435 2482 break;
duke@435 2483
duke@435 2484 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
duke@435 2485 // all other intrinsics are not available in the SSE instruction set, so FPU is used
duke@435 2486 default : ShouldNotReachHere();
duke@435 2487 }
duke@435 2488
duke@435 2489 } else if (value->is_double_fpu()) {
duke@435 2490 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
duke@435 2491 switch(code) {
duke@435 2492 case lir_log : __ flog() ; break;
duke@435 2493 case lir_log10 : __ flog10() ; break;
duke@435 2494 case lir_abs : __ fabs() ; break;
duke@435 2495 case lir_sqrt : __ fsqrt(); break;
duke@435 2496 case lir_sin :
duke@435 2497 // Should consider not saving rbx, if not necessary
duke@435 2498 __ trigfunc('s', op->as_Op2()->fpu_stack_size());
duke@435 2499 break;
duke@435 2500 case lir_cos :
duke@435 2501 // Should consider not saving rbx, if not necessary
duke@435 2502 assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
duke@435 2503 __ trigfunc('c', op->as_Op2()->fpu_stack_size());
duke@435 2504 break;
duke@435 2505 case lir_tan :
duke@435 2506 // Should consider not saving rbx, if not necessary
duke@435 2507 __ trigfunc('t', op->as_Op2()->fpu_stack_size());
duke@435 2508 break;
duke@435 2509 default : ShouldNotReachHere();
duke@435 2510 }
duke@435 2511 } else {
duke@435 2512 Unimplemented();
duke@435 2513 }
duke@435 2514 }
duke@435 2515
duke@435 2516 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
duke@435 2517 // assert(left->destroys_register(), "check");
duke@435 2518 if (left->is_single_cpu()) {
duke@435 2519 Register reg = left->as_register();
duke@435 2520 if (right->is_constant()) {
duke@435 2521 int val = right->as_constant_ptr()->as_jint();
duke@435 2522 switch (code) {
duke@435 2523 case lir_logic_and: __ andl (reg, val); break;
duke@435 2524 case lir_logic_or: __ orl (reg, val); break;
duke@435 2525 case lir_logic_xor: __ xorl (reg, val); break;
duke@435 2526 default: ShouldNotReachHere();
duke@435 2527 }
duke@435 2528 } else if (right->is_stack()) {
duke@435 2529 // added support for stack operands
duke@435 2530 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2531 switch (code) {
duke@435 2532 case lir_logic_and: __ andl (reg, raddr); break;
duke@435 2533 case lir_logic_or: __ orl (reg, raddr); break;
duke@435 2534 case lir_logic_xor: __ xorl (reg, raddr); break;
duke@435 2535 default: ShouldNotReachHere();
duke@435 2536 }
duke@435 2537 } else {
duke@435 2538 Register rright = right->as_register();
duke@435 2539 switch (code) {
never@739 2540 case lir_logic_and: __ andptr (reg, rright); break;
never@739 2541 case lir_logic_or : __ orptr (reg, rright); break;
never@739 2542 case lir_logic_xor: __ xorptr (reg, rright); break;
duke@435 2543 default: ShouldNotReachHere();
duke@435 2544 }
duke@435 2545 }
duke@435 2546 move_regs(reg, dst->as_register());
duke@435 2547 } else {
duke@435 2548 Register l_lo = left->as_register_lo();
duke@435 2549 Register l_hi = left->as_register_hi();
duke@435 2550 if (right->is_constant()) {
never@739 2551 #ifdef _LP64
never@739 2552 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
never@739 2553 switch (code) {
never@739 2554 case lir_logic_and:
never@739 2555 __ andq(l_lo, rscratch1);
never@739 2556 break;
never@739 2557 case lir_logic_or:
never@739 2558 __ orq(l_lo, rscratch1);
never@739 2559 break;
never@739 2560 case lir_logic_xor:
never@739 2561 __ xorq(l_lo, rscratch1);
never@739 2562 break;
never@739 2563 default: ShouldNotReachHere();
never@739 2564 }
never@739 2565 #else
duke@435 2566 int r_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2567 int r_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2568 switch (code) {
duke@435 2569 case lir_logic_and:
duke@435 2570 __ andl(l_lo, r_lo);
duke@435 2571 __ andl(l_hi, r_hi);
duke@435 2572 break;
duke@435 2573 case lir_logic_or:
duke@435 2574 __ orl(l_lo, r_lo);
duke@435 2575 __ orl(l_hi, r_hi);
duke@435 2576 break;
duke@435 2577 case lir_logic_xor:
duke@435 2578 __ xorl(l_lo, r_lo);
duke@435 2579 __ xorl(l_hi, r_hi);
duke@435 2580 break;
duke@435 2581 default: ShouldNotReachHere();
duke@435 2582 }
never@739 2583 #endif // _LP64
duke@435 2584 } else {
iveresov@1927 2585 #ifdef _LP64
iveresov@1927 2586 Register r_lo;
iveresov@1927 2587 if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
iveresov@1927 2588 r_lo = right->as_register();
iveresov@1927 2589 } else {
iveresov@1927 2590 r_lo = right->as_register_lo();
iveresov@1927 2591 }
iveresov@1927 2592 #else
duke@435 2593 Register r_lo = right->as_register_lo();
duke@435 2594 Register r_hi = right->as_register_hi();
duke@435 2595 assert(l_lo != r_hi, "overwriting registers");
iveresov@1927 2596 #endif
duke@435 2597 switch (code) {
duke@435 2598 case lir_logic_and:
never@739 2599 __ andptr(l_lo, r_lo);
never@739 2600 NOT_LP64(__ andptr(l_hi, r_hi);)
duke@435 2601 break;
duke@435 2602 case lir_logic_or:
never@739 2603 __ orptr(l_lo, r_lo);
never@739 2604 NOT_LP64(__ orptr(l_hi, r_hi);)
duke@435 2605 break;
duke@435 2606 case lir_logic_xor:
never@739 2607 __ xorptr(l_lo, r_lo);
never@739 2608 NOT_LP64(__ xorptr(l_hi, r_hi);)
duke@435 2609 break;
duke@435 2610 default: ShouldNotReachHere();
duke@435 2611 }
duke@435 2612 }
duke@435 2613
duke@435 2614 Register dst_lo = dst->as_register_lo();
duke@435 2615 Register dst_hi = dst->as_register_hi();
duke@435 2616
never@739 2617 #ifdef _LP64
never@739 2618 move_regs(l_lo, dst_lo);
never@739 2619 #else
duke@435 2620 if (dst_lo == l_hi) {
duke@435 2621 assert(dst_hi != l_lo, "overwriting registers");
duke@435 2622 move_regs(l_hi, dst_hi);
duke@435 2623 move_regs(l_lo, dst_lo);
duke@435 2624 } else {
duke@435 2625 assert(dst_lo != l_hi, "overwriting registers");
duke@435 2626 move_regs(l_lo, dst_lo);
duke@435 2627 move_regs(l_hi, dst_hi);
duke@435 2628 }
never@739 2629 #endif // _LP64
duke@435 2630 }
duke@435 2631 }
duke@435 2632
duke@435 2633
duke@435 2634 // we assume that rax, and rdx can be overwritten
duke@435 2635 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
duke@435 2636
duke@435 2637 assert(left->is_single_cpu(), "left must be register");
duke@435 2638 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
duke@435 2639 assert(result->is_single_cpu(), "result must be register");
duke@435 2640
duke@435 2641 // assert(left->destroys_register(), "check");
duke@435 2642 // assert(right->destroys_register(), "check");
duke@435 2643
duke@435 2644 Register lreg = left->as_register();
duke@435 2645 Register dreg = result->as_register();
duke@435 2646
duke@435 2647 if (right->is_constant()) {
duke@435 2648 int divisor = right->as_constant_ptr()->as_jint();
duke@435 2649 assert(divisor > 0 && is_power_of_2(divisor), "must be");
duke@435 2650 if (code == lir_idiv) {
duke@435 2651 assert(lreg == rax, "must be rax,");
duke@435 2652 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2653 __ cdql(); // sign extend into rdx:rax
duke@435 2654 if (divisor == 2) {
duke@435 2655 __ subl(lreg, rdx);
duke@435 2656 } else {
duke@435 2657 __ andl(rdx, divisor - 1);
duke@435 2658 __ addl(lreg, rdx);
duke@435 2659 }
duke@435 2660 __ sarl(lreg, log2_intptr(divisor));
duke@435 2661 move_regs(lreg, dreg);
duke@435 2662 } else if (code == lir_irem) {
duke@435 2663 Label done;
never@739 2664 __ mov(dreg, lreg);
duke@435 2665 __ andl(dreg, 0x80000000 | (divisor - 1));
duke@435 2666 __ jcc(Assembler::positive, done);
duke@435 2667 __ decrement(dreg);
duke@435 2668 __ orl(dreg, ~(divisor - 1));
duke@435 2669 __ increment(dreg);
duke@435 2670 __ bind(done);
duke@435 2671 } else {
duke@435 2672 ShouldNotReachHere();
duke@435 2673 }
duke@435 2674 } else {
duke@435 2675 Register rreg = right->as_register();
duke@435 2676 assert(lreg == rax, "left register must be rax,");
duke@435 2677 assert(rreg != rdx, "right register must not be rdx");
duke@435 2678 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2679
duke@435 2680 move_regs(lreg, rax);
duke@435 2681
duke@435 2682 int idivl_offset = __ corrected_idivl(rreg);
duke@435 2683 add_debug_info_for_div0(idivl_offset, info);
duke@435 2684 if (code == lir_irem) {
duke@435 2685 move_regs(rdx, dreg); // result is in rdx
duke@435 2686 } else {
duke@435 2687 move_regs(rax, dreg);
duke@435 2688 }
duke@435 2689 }
duke@435 2690 }
duke@435 2691
duke@435 2692
duke@435 2693 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 2694 if (opr1->is_single_cpu()) {
duke@435 2695 Register reg1 = opr1->as_register();
duke@435 2696 if (opr2->is_single_cpu()) {
duke@435 2697 // cpu register - cpu register
never@739 2698 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2699 __ cmpptr(reg1, opr2->as_register());
never@739 2700 } else {
never@739 2701 assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
never@739 2702 __ cmpl(reg1, opr2->as_register());
never@739 2703 }
duke@435 2704 } else if (opr2->is_stack()) {
duke@435 2705 // cpu register - stack
never@739 2706 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2707 __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2708 } else {
never@739 2709 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2710 }
duke@435 2711 } else if (opr2->is_constant()) {
duke@435 2712 // cpu register - constant
duke@435 2713 LIR_Const* c = opr2->as_constant_ptr();
duke@435 2714 if (c->type() == T_INT) {
duke@435 2715 __ cmpl(reg1, c->as_jint());
never@739 2716 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2717 // In 64bit oops are single register
duke@435 2718 jobject o = c->as_jobject();
duke@435 2719 if (o == NULL) {
never@739 2720 __ cmpptr(reg1, (int32_t)NULL_WORD);
duke@435 2721 } else {
never@739 2722 #ifdef _LP64
never@739 2723 __ movoop(rscratch1, o);
never@739 2724 __ cmpptr(reg1, rscratch1);
never@739 2725 #else
duke@435 2726 __ cmpoop(reg1, c->as_jobject());
never@739 2727 #endif // _LP64
duke@435 2728 }
duke@435 2729 } else {
duke@435 2730 ShouldNotReachHere();
duke@435 2731 }
duke@435 2732 // cpu register - address
duke@435 2733 } else if (opr2->is_address()) {
duke@435 2734 if (op->info() != NULL) {
duke@435 2735 add_debug_info_for_null_check_here(op->info());
duke@435 2736 }
duke@435 2737 __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2738 } else {
duke@435 2739 ShouldNotReachHere();
duke@435 2740 }
duke@435 2741
duke@435 2742 } else if(opr1->is_double_cpu()) {
duke@435 2743 Register xlo = opr1->as_register_lo();
duke@435 2744 Register xhi = opr1->as_register_hi();
duke@435 2745 if (opr2->is_double_cpu()) {
never@739 2746 #ifdef _LP64
never@739 2747 __ cmpptr(xlo, opr2->as_register_lo());
never@739 2748 #else
duke@435 2749 // cpu register - cpu register
duke@435 2750 Register ylo = opr2->as_register_lo();
duke@435 2751 Register yhi = opr2->as_register_hi();
duke@435 2752 __ subl(xlo, ylo);
duke@435 2753 __ sbbl(xhi, yhi);
duke@435 2754 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 2755 __ orl(xhi, xlo);
duke@435 2756 }
never@739 2757 #endif // _LP64
duke@435 2758 } else if (opr2->is_constant()) {
duke@435 2759 // cpu register - constant 0
duke@435 2760 assert(opr2->as_jlong() == (jlong)0, "only handles zero");
never@739 2761 #ifdef _LP64
never@739 2762 __ cmpptr(xlo, (int32_t)opr2->as_jlong());
never@739 2763 #else
duke@435 2764 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
duke@435 2765 __ orl(xhi, xlo);
never@739 2766 #endif // _LP64
duke@435 2767 } else {
duke@435 2768 ShouldNotReachHere();
duke@435 2769 }
duke@435 2770
duke@435 2771 } else if (opr1->is_single_xmm()) {
duke@435 2772 XMMRegister reg1 = opr1->as_xmm_float_reg();
duke@435 2773 if (opr2->is_single_xmm()) {
duke@435 2774 // xmm register - xmm register
duke@435 2775 __ ucomiss(reg1, opr2->as_xmm_float_reg());
duke@435 2776 } else if (opr2->is_stack()) {
duke@435 2777 // xmm register - stack
duke@435 2778 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2779 } else if (opr2->is_constant()) {
duke@435 2780 // xmm register - constant
duke@435 2781 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
duke@435 2782 } else if (opr2->is_address()) {
duke@435 2783 // xmm register - address
duke@435 2784 if (op->info() != NULL) {
duke@435 2785 add_debug_info_for_null_check_here(op->info());
duke@435 2786 }
duke@435 2787 __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2788 } else {
duke@435 2789 ShouldNotReachHere();
duke@435 2790 }
duke@435 2791
duke@435 2792 } else if (opr1->is_double_xmm()) {
duke@435 2793 XMMRegister reg1 = opr1->as_xmm_double_reg();
duke@435 2794 if (opr2->is_double_xmm()) {
duke@435 2795 // xmm register - xmm register
duke@435 2796 __ ucomisd(reg1, opr2->as_xmm_double_reg());
duke@435 2797 } else if (opr2->is_stack()) {
duke@435 2798 // xmm register - stack
duke@435 2799 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
duke@435 2800 } else if (opr2->is_constant()) {
duke@435 2801 // xmm register - constant
duke@435 2802 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
duke@435 2803 } else if (opr2->is_address()) {
duke@435 2804 // xmm register - address
duke@435 2805 if (op->info() != NULL) {
duke@435 2806 add_debug_info_for_null_check_here(op->info());
duke@435 2807 }
duke@435 2808 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
duke@435 2809 } else {
duke@435 2810 ShouldNotReachHere();
duke@435 2811 }
duke@435 2812
duke@435 2813 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
duke@435 2814 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
duke@435 2815 assert(opr2->is_fpu_register(), "both must be registers");
duke@435 2816 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2817
duke@435 2818 } else if (opr1->is_address() && opr2->is_constant()) {
never@739 2819 LIR_Const* c = opr2->as_constant_ptr();
never@739 2820 #ifdef _LP64
never@739 2821 if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2822 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
never@739 2823 __ movoop(rscratch1, c->as_jobject());
never@739 2824 }
never@739 2825 #endif // LP64
duke@435 2826 if (op->info() != NULL) {
duke@435 2827 add_debug_info_for_null_check_here(op->info());
duke@435 2828 }
duke@435 2829 // special case: address - constant
duke@435 2830 LIR_Address* addr = opr1->as_address_ptr();
duke@435 2831 if (c->type() == T_INT) {
duke@435 2832 __ cmpl(as_Address(addr), c->as_jint());
never@739 2833 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2834 #ifdef _LP64
never@739 2835 // %%% Make this explode if addr isn't reachable until we figure out a
never@739 2836 // better strategy by giving noreg as the temp for as_Address
never@739 2837 __ cmpptr(rscratch1, as_Address(addr, noreg));
never@739 2838 #else
duke@435 2839 __ cmpoop(as_Address(addr), c->as_jobject());
never@739 2840 #endif // _LP64
duke@435 2841 } else {
duke@435 2842 ShouldNotReachHere();
duke@435 2843 }
duke@435 2844
duke@435 2845 } else {
duke@435 2846 ShouldNotReachHere();
duke@435 2847 }
duke@435 2848 }
duke@435 2849
duke@435 2850 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
duke@435 2851 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 2852 if (left->is_single_xmm()) {
duke@435 2853 assert(right->is_single_xmm(), "must match");
duke@435 2854 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2855 } else if (left->is_double_xmm()) {
duke@435 2856 assert(right->is_double_xmm(), "must match");
duke@435 2857 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2858
duke@435 2859 } else {
duke@435 2860 assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
duke@435 2861 assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
duke@435 2862
duke@435 2863 assert(left->fpu() == 0, "left must be on TOS");
duke@435 2864 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
duke@435 2865 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2866 }
duke@435 2867 } else {
duke@435 2868 assert(code == lir_cmp_l2i, "check");
never@739 2869 #ifdef _LP64
iveresov@1804 2870 Label done;
iveresov@1804 2871 Register dest = dst->as_register();
iveresov@1804 2872 __ cmpptr(left->as_register_lo(), right->as_register_lo());
iveresov@1804 2873 __ movl(dest, -1);
iveresov@1804 2874 __ jccb(Assembler::less, done);
iveresov@1804 2875 __ set_byte_if_not_zero(dest);
iveresov@1804 2876 __ movzbl(dest, dest);
iveresov@1804 2877 __ bind(done);
never@739 2878 #else
duke@435 2879 __ lcmp2int(left->as_register_hi(),
duke@435 2880 left->as_register_lo(),
duke@435 2881 right->as_register_hi(),
duke@435 2882 right->as_register_lo());
duke@435 2883 move_regs(left->as_register_hi(), dst->as_register());
never@739 2884 #endif // _LP64
duke@435 2885 }
duke@435 2886 }
duke@435 2887
duke@435 2888
duke@435 2889 void LIR_Assembler::align_call(LIR_Code code) {
duke@435 2890 if (os::is_MP()) {
duke@435 2891 // make sure that the displacement word of the call ends up word aligned
duke@435 2892 int offset = __ offset();
duke@435 2893 switch (code) {
duke@435 2894 case lir_static_call:
duke@435 2895 case lir_optvirtual_call:
twisti@1730 2896 case lir_dynamic_call:
duke@435 2897 offset += NativeCall::displacement_offset;
duke@435 2898 break;
duke@435 2899 case lir_icvirtual_call:
duke@435 2900 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
duke@435 2901 break;
duke@435 2902 case lir_virtual_call: // currently, sparc-specific for niagara
duke@435 2903 default: ShouldNotReachHere();
duke@435 2904 }
duke@435 2905 while (offset++ % BytesPerWord != 0) {
duke@435 2906 __ nop();
duke@435 2907 }
duke@435 2908 }
duke@435 2909 }
duke@435 2910
duke@435 2911
twisti@1730 2912 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
duke@435 2913 assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2914 "must be aligned");
twisti@1730 2915 __ call(AddressLiteral(op->addr(), rtype));
twisti@1919 2916 add_call_info(code_offset(), op->info());
duke@435 2917 }
duke@435 2918
duke@435 2919
twisti@1730 2920 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
duke@435 2921 RelocationHolder rh = virtual_call_Relocation::spec(pc());
duke@435 2922 __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
duke@435 2923 assert(!os::is_MP() ||
duke@435 2924 (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2925 "must be aligned");
twisti@1730 2926 __ call(AddressLiteral(op->addr(), rh));
twisti@1919 2927 add_call_info(code_offset(), op->info());
duke@435 2928 }
duke@435 2929
duke@435 2930
duke@435 2931 /* Currently, vtable-dispatch is only enabled for sparc platforms */
twisti@1730 2932 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
duke@435 2933 ShouldNotReachHere();
duke@435 2934 }
duke@435 2935
twisti@1730 2936
duke@435 2937 void LIR_Assembler::emit_static_call_stub() {
duke@435 2938 address call_pc = __ pc();
duke@435 2939 address stub = __ start_a_stub(call_stub_size);
duke@435 2940 if (stub == NULL) {
duke@435 2941 bailout("static call stub overflow");
duke@435 2942 return;
duke@435 2943 }
duke@435 2944
duke@435 2945 int start = __ offset();
duke@435 2946 if (os::is_MP()) {
duke@435 2947 // make sure that the displacement word of the call ends up word aligned
duke@435 2948 int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
duke@435 2949 while (offset++ % BytesPerWord != 0) {
duke@435 2950 __ nop();
duke@435 2951 }
duke@435 2952 }
duke@435 2953 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 2954 __ movoop(rbx, (jobject)NULL);
duke@435 2955 // must be set to -1 at code generation time
duke@435 2956 assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
never@739 2957 // On 64bit this will die since it will take a movq & jmp, must be only a jmp
never@739 2958 __ jump(RuntimeAddress(__ pc()));
duke@435 2959
jcoomes@1844 2960 assert(__ offset() - start <= call_stub_size, "stub too big");
duke@435 2961 __ end_a_stub();
duke@435 2962 }
duke@435 2963
duke@435 2964
never@1813 2965 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
duke@435 2966 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2967 assert(exceptionPC->as_register() == rdx, "must match");
duke@435 2968
duke@435 2969 // exception object is not added to oop map by LinearScan
duke@435 2970 // (LinearScan assumes that no oops are in fixed registers)
duke@435 2971 info->add_register_oop(exceptionOop);
duke@435 2972 Runtime1::StubID unwind_id;
duke@435 2973
never@1813 2974 // get current pc information
never@1813 2975 // pc is only needed if the method has an exception handler, the unwind code does not need it.
never@1813 2976 int pc_for_athrow_offset = __ offset();
never@1813 2977 InternalAddress pc_for_athrow(__ pc());
never@1813 2978 __ lea(exceptionPC->as_register(), pc_for_athrow);
never@1813 2979 add_call_info(pc_for_athrow_offset, info); // for exception handler
never@1813 2980
never@1813 2981 __ verify_not_null_oop(rax);
never@1813 2982 // search an exception handler (rax: exception oop, rdx: throwing pc)
never@1813 2983 if (compilation()->has_fpu_code()) {
never@1813 2984 unwind_id = Runtime1::handle_exception_id;
duke@435 2985 } else {
never@1813 2986 unwind_id = Runtime1::handle_exception_nofpu_id;
duke@435 2987 }
never@1813 2988 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
duke@435 2989
duke@435 2990 // enough room for two byte trap
duke@435 2991 __ nop();
duke@435 2992 }
duke@435 2993
duke@435 2994
never@1813 2995 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
never@1813 2996 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2997
never@1813 2998 __ jmp(_unwind_handler_entry);
never@1813 2999 }
never@1813 3000
never@1813 3001
duke@435 3002 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 3003
duke@435 3004 // optimized version for linear scan:
duke@435 3005 // * count must be already in ECX (guaranteed by LinearScan)
duke@435 3006 // * left and dest must be equal
duke@435 3007 // * tmp must be unused
duke@435 3008 assert(count->as_register() == SHIFT_count, "count must be in ECX");
duke@435 3009 assert(left == dest, "left and dest must be equal");
duke@435 3010 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
duke@435 3011
duke@435 3012 if (left->is_single_cpu()) {
duke@435 3013 Register value = left->as_register();
duke@435 3014 assert(value != SHIFT_count, "left cannot be ECX");
duke@435 3015
duke@435 3016 switch (code) {
duke@435 3017 case lir_shl: __ shll(value); break;
duke@435 3018 case lir_shr: __ sarl(value); break;
duke@435 3019 case lir_ushr: __ shrl(value); break;
duke@435 3020 default: ShouldNotReachHere();
duke@435 3021 }
duke@435 3022 } else if (left->is_double_cpu()) {
duke@435 3023 Register lo = left->as_register_lo();
duke@435 3024 Register hi = left->as_register_hi();
duke@435 3025 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
never@739 3026 #ifdef _LP64
never@739 3027 switch (code) {
never@739 3028 case lir_shl: __ shlptr(lo); break;
never@739 3029 case lir_shr: __ sarptr(lo); break;
never@739 3030 case lir_ushr: __ shrptr(lo); break;
never@739 3031 default: ShouldNotReachHere();
never@739 3032 }
never@739 3033 #else
duke@435 3034
duke@435 3035 switch (code) {
duke@435 3036 case lir_shl: __ lshl(hi, lo); break;
duke@435 3037 case lir_shr: __ lshr(hi, lo, true); break;
duke@435 3038 case lir_ushr: __ lshr(hi, lo, false); break;
duke@435 3039 default: ShouldNotReachHere();
duke@435 3040 }
never@739 3041 #endif // LP64
duke@435 3042 } else {
duke@435 3043 ShouldNotReachHere();
duke@435 3044 }
duke@435 3045 }
duke@435 3046
duke@435 3047
duke@435 3048 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 3049 if (dest->is_single_cpu()) {
duke@435 3050 // first move left into dest so that left is not destroyed by the shift
duke@435 3051 Register value = dest->as_register();
duke@435 3052 count = count & 0x1F; // Java spec
duke@435 3053
duke@435 3054 move_regs(left->as_register(), value);
duke@435 3055 switch (code) {
duke@435 3056 case lir_shl: __ shll(value, count); break;
duke@435 3057 case lir_shr: __ sarl(value, count); break;
duke@435 3058 case lir_ushr: __ shrl(value, count); break;
duke@435 3059 default: ShouldNotReachHere();
duke@435 3060 }
duke@435 3061 } else if (dest->is_double_cpu()) {
never@739 3062 #ifndef _LP64
duke@435 3063 Unimplemented();
never@739 3064 #else
never@739 3065 // first move left into dest so that left is not destroyed by the shift
never@739 3066 Register value = dest->as_register_lo();
never@739 3067 count = count & 0x1F; // Java spec
never@739 3068
never@739 3069 move_regs(left->as_register_lo(), value);
never@739 3070 switch (code) {
never@739 3071 case lir_shl: __ shlptr(value, count); break;
never@739 3072 case lir_shr: __ sarptr(value, count); break;
never@739 3073 case lir_ushr: __ shrptr(value, count); break;
never@739 3074 default: ShouldNotReachHere();
never@739 3075 }
never@739 3076 #endif // _LP64
duke@435 3077 } else {
duke@435 3078 ShouldNotReachHere();
duke@435 3079 }
duke@435 3080 }
duke@435 3081
duke@435 3082
duke@435 3083 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
duke@435 3084 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3085 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3086 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 3087 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
duke@435 3088 }
duke@435 3089
duke@435 3090
duke@435 3091 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
duke@435 3092 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3093 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3094 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 3095 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
duke@435 3096 }
duke@435 3097
duke@435 3098
duke@435 3099 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
duke@435 3100 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3101 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3102 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
duke@435 3103 __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
duke@435 3104 }
duke@435 3105
duke@435 3106
duke@435 3107 // This code replaces a call to arraycopy; no exception may
duke@435 3108 // be thrown in this code, they must be thrown in the System.arraycopy
duke@435 3109 // activation frame; we could save some checks if this would not be the case
duke@435 3110 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 3111 ciArrayKlass* default_type = op->expected_type();
duke@435 3112 Register src = op->src()->as_register();
duke@435 3113 Register dst = op->dst()->as_register();
duke@435 3114 Register src_pos = op->src_pos()->as_register();
duke@435 3115 Register dst_pos = op->dst_pos()->as_register();
duke@435 3116 Register length = op->length()->as_register();
duke@435 3117 Register tmp = op->tmp()->as_register();
duke@435 3118
duke@435 3119 CodeStub* stub = op->stub();
duke@435 3120 int flags = op->flags();
duke@435 3121 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 3122 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 3123
duke@435 3124 // if we don't know anything or it's an object array, just go through the generic arraycopy
duke@435 3125 if (default_type == NULL) {
duke@435 3126 Label done;
duke@435 3127 // save outgoing arguments on stack in case call to System.arraycopy is needed
duke@435 3128 // HACK ALERT. This code used to push the parameters in a hardwired fashion
duke@435 3129 // for interpreter calling conventions. Now we have to do it in new style conventions.
duke@435 3130 // For the moment until C1 gets the new register allocator I just force all the
duke@435 3131 // args to the right place (except the register args) and then on the back side
duke@435 3132 // reload the register args properly if we go slow path. Yuck
duke@435 3133
duke@435 3134 // These are proper for the calling convention
duke@435 3135
duke@435 3136 store_parameter(length, 2);
duke@435 3137 store_parameter(dst_pos, 1);
duke@435 3138 store_parameter(dst, 0);
duke@435 3139
duke@435 3140 // these are just temporary placements until we need to reload
duke@435 3141 store_parameter(src_pos, 3);
duke@435 3142 store_parameter(src, 4);
never@739 3143 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
never@739 3144
never@739 3145 address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
duke@435 3146
duke@435 3147 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
never@739 3148 #ifdef _LP64
never@739 3149 // The arguments are in java calling convention so we can trivially shift them to C
never@739 3150 // convention
never@739 3151 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3152 __ mov(c_rarg0, j_rarg0);
never@739 3153 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3154 __ mov(c_rarg1, j_rarg1);
never@739 3155 assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
never@739 3156 __ mov(c_rarg2, j_rarg2);
never@739 3157 assert_different_registers(c_rarg3, j_rarg4);
never@739 3158 __ mov(c_rarg3, j_rarg3);
never@739 3159 #ifdef _WIN64
never@739 3160 // Allocate abi space for args but be sure to keep stack aligned
never@739 3161 __ subptr(rsp, 6*wordSize);
never@739 3162 store_parameter(j_rarg4, 4);
never@739 3163 __ call(RuntimeAddress(entry));
never@739 3164 __ addptr(rsp, 6*wordSize);
never@739 3165 #else
never@739 3166 __ mov(c_rarg4, j_rarg4);
never@739 3167 __ call(RuntimeAddress(entry));
never@739 3168 #endif // _WIN64
never@739 3169 #else
never@739 3170 __ push(length);
never@739 3171 __ push(dst_pos);
never@739 3172 __ push(dst);
never@739 3173 __ push(src_pos);
never@739 3174 __ push(src);
duke@435 3175 __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
duke@435 3176
never@739 3177 #endif // _LP64
never@739 3178
duke@435 3179 __ cmpl(rax, 0);
duke@435 3180 __ jcc(Assembler::equal, *stub->continuation());
duke@435 3181
duke@435 3182 // Reload values from the stack so they are where the stub
duke@435 3183 // expects them.
never@739 3184 __ movptr (dst, Address(rsp, 0*BytesPerWord));
never@739 3185 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
never@739 3186 __ movptr (length, Address(rsp, 2*BytesPerWord));
never@739 3187 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
never@739 3188 __ movptr (src, Address(rsp, 4*BytesPerWord));
duke@435 3189 __ jmp(*stub->entry());
duke@435 3190
duke@435 3191 __ bind(*stub->continuation());
duke@435 3192 return;
duke@435 3193 }
duke@435 3194
duke@435 3195 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
duke@435 3196
kvn@464 3197 int elem_size = type2aelembytes(basic_type);
duke@435 3198 int shift_amount;
duke@435 3199 Address::ScaleFactor scale;
duke@435 3200
duke@435 3201 switch (elem_size) {
duke@435 3202 case 1 :
duke@435 3203 shift_amount = 0;
duke@435 3204 scale = Address::times_1;
duke@435 3205 break;
duke@435 3206 case 2 :
duke@435 3207 shift_amount = 1;
duke@435 3208 scale = Address::times_2;
duke@435 3209 break;
duke@435 3210 case 4 :
duke@435 3211 shift_amount = 2;
duke@435 3212 scale = Address::times_4;
duke@435 3213 break;
duke@435 3214 case 8 :
duke@435 3215 shift_amount = 3;
duke@435 3216 scale = Address::times_8;
duke@435 3217 break;
duke@435 3218 default:
duke@435 3219 ShouldNotReachHere();
duke@435 3220 }
duke@435 3221
duke@435 3222 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
duke@435 3223 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
duke@435 3224 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
duke@435 3225 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
duke@435 3226
never@739 3227 // length and pos's are all sign extended at this point on 64bit
never@739 3228
duke@435 3229 // test for NULL
duke@435 3230 if (flags & LIR_OpArrayCopy::src_null_check) {
never@739 3231 __ testptr(src, src);
duke@435 3232 __ jcc(Assembler::zero, *stub->entry());
duke@435 3233 }
duke@435 3234 if (flags & LIR_OpArrayCopy::dst_null_check) {
never@739 3235 __ testptr(dst, dst);
duke@435 3236 __ jcc(Assembler::zero, *stub->entry());
duke@435 3237 }
duke@435 3238
duke@435 3239 // check if negative
duke@435 3240 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 3241 __ testl(src_pos, src_pos);
duke@435 3242 __ jcc(Assembler::less, *stub->entry());
duke@435 3243 }
duke@435 3244 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 3245 __ testl(dst_pos, dst_pos);
duke@435 3246 __ jcc(Assembler::less, *stub->entry());
duke@435 3247 }
duke@435 3248 if (flags & LIR_OpArrayCopy::length_positive_check) {
duke@435 3249 __ testl(length, length);
duke@435 3250 __ jcc(Assembler::less, *stub->entry());
duke@435 3251 }
duke@435 3252
duke@435 3253 if (flags & LIR_OpArrayCopy::src_range_check) {
never@739 3254 __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
duke@435 3255 __ cmpl(tmp, src_length_addr);
duke@435 3256 __ jcc(Assembler::above, *stub->entry());
duke@435 3257 }
duke@435 3258 if (flags & LIR_OpArrayCopy::dst_range_check) {
never@739 3259 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
duke@435 3260 __ cmpl(tmp, dst_length_addr);
duke@435 3261 __ jcc(Assembler::above, *stub->entry());
duke@435 3262 }
duke@435 3263
duke@435 3264 if (flags & LIR_OpArrayCopy::type_check) {
iveresov@2344 3265 if (UseCompressedOops) {
iveresov@2344 3266 __ movl(tmp, src_klass_addr);
iveresov@2344 3267 __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3268 } else {
iveresov@2344 3269 __ movptr(tmp, src_klass_addr);
iveresov@2344 3270 __ cmpptr(tmp, dst_klass_addr);
iveresov@2344 3271 }
duke@435 3272 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 3273 }
duke@435 3274
duke@435 3275 #ifdef ASSERT
duke@435 3276 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 3277 // Sanity check the known type with the incoming class. For the
duke@435 3278 // primitive case the types must match exactly with src.klass and
duke@435 3279 // dst.klass each exactly matching the default type. For the
duke@435 3280 // object array case, if no type check is needed then either the
duke@435 3281 // dst type is exactly the expected type and the src type is a
duke@435 3282 // subtype which we can't check or src is the same array as dst
duke@435 3283 // but not necessarily exactly of type default_type.
duke@435 3284 Label known_ok, halt;
jrose@1424 3285 __ movoop(tmp, default_type->constant_encoding());
iveresov@2344 3286 #ifdef _LP64
iveresov@2344 3287 if (UseCompressedOops) {
iveresov@2344 3288 __ encode_heap_oop(tmp);
iveresov@2344 3289 }
iveresov@2344 3290 #endif
iveresov@2344 3291
duke@435 3292 if (basic_type != T_OBJECT) {
iveresov@2344 3293
iveresov@2344 3294 if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3295 else __ cmpptr(tmp, dst_klass_addr);
duke@435 3296 __ jcc(Assembler::notEqual, halt);
iveresov@2344 3297 if (UseCompressedOops) __ cmpl(tmp, src_klass_addr);
iveresov@2344 3298 else __ cmpptr(tmp, src_klass_addr);
duke@435 3299 __ jcc(Assembler::equal, known_ok);
duke@435 3300 } else {
iveresov@2344 3301 if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3302 else __ cmpptr(tmp, dst_klass_addr);
duke@435 3303 __ jcc(Assembler::equal, known_ok);
never@739 3304 __ cmpptr(src, dst);
duke@435 3305 __ jcc(Assembler::equal, known_ok);
duke@435 3306 }
duke@435 3307 __ bind(halt);
duke@435 3308 __ stop("incorrect type information in arraycopy");
duke@435 3309 __ bind(known_ok);
duke@435 3310 }
duke@435 3311 #endif
duke@435 3312
never@739 3313 if (shift_amount > 0 && basic_type != T_OBJECT) {
never@739 3314 __ shlptr(length, shift_amount);
never@739 3315 }
never@739 3316
never@739 3317 #ifdef _LP64
never@739 3318 assert_different_registers(c_rarg0, dst, dst_pos, length);
roland@1495 3319 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
never@739 3320 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3321 assert_different_registers(c_rarg1, length);
roland@1495 3322 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
never@739 3323 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3324 __ mov(c_rarg2, length);
never@739 3325
never@739 3326 #else
never@739 3327 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3328 store_parameter(tmp, 0);
never@739 3329 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3330 store_parameter(tmp, 1);
duke@435 3331 store_parameter(length, 2);
never@739 3332 #endif // _LP64
duke@435 3333 if (basic_type == T_OBJECT) {
duke@435 3334 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
duke@435 3335 } else {
duke@435 3336 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
duke@435 3337 }
duke@435 3338
duke@435 3339 __ bind(*stub->continuation());
duke@435 3340 }
duke@435 3341
duke@435 3342
duke@435 3343 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 3344 Register obj = op->obj_opr()->as_register(); // may not be an oop
duke@435 3345 Register hdr = op->hdr_opr()->as_register();
duke@435 3346 Register lock = op->lock_opr()->as_register();
duke@435 3347 if (!UseFastLocking) {
duke@435 3348 __ jmp(*op->stub()->entry());
duke@435 3349 } else if (op->code() == lir_lock) {
duke@435 3350 Register scratch = noreg;
duke@435 3351 if (UseBiasedLocking) {
duke@435 3352 scratch = op->scratch_opr()->as_register();
duke@435 3353 }
duke@435 3354 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3355 // add debug info for NullPointerException only if one is possible
duke@435 3356 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
duke@435 3357 if (op->info() != NULL) {
duke@435 3358 add_debug_info_for_null_check(null_check_offset, op->info());
duke@435 3359 }
duke@435 3360 // done
duke@435 3361 } else if (op->code() == lir_unlock) {
duke@435 3362 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3363 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 3364 } else {
duke@435 3365 Unimplemented();
duke@435 3366 }
duke@435 3367 __ bind(*op->stub()->continuation());
duke@435 3368 }
duke@435 3369
duke@435 3370
duke@435 3371 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 3372 ciMethod* method = op->profiled_method();
duke@435 3373 int bci = op->profiled_bci();
duke@435 3374
duke@435 3375 // Update counter for all call types
duke@435 3376 ciMethodData* md = method->method_data();
duke@435 3377 if (md == NULL) {
duke@435 3378 bailout("out of memory building methodDataOop");
duke@435 3379 return;
duke@435 3380 }
duke@435 3381 ciProfileData* data = md->bci_to_data(bci);
duke@435 3382 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 3383 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
duke@435 3384 Register mdo = op->mdo()->as_register();
jrose@1424 3385 __ movoop(mdo, md->constant_encoding());
duke@435 3386 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
duke@435 3387 Bytecodes::Code bc = method->java_code_at_bci(bci);
duke@435 3388 // Perform additional virtual call profiling for invokevirtual and
duke@435 3389 // invokeinterface bytecodes
duke@435 3390 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
iveresov@2138 3391 C1ProfileVirtualCalls) {
duke@435 3392 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 3393 Register recv = op->recv()->as_register();
duke@435 3394 assert_different_registers(mdo, recv);
duke@435 3395 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 3396 ciKlass* known_klass = op->known_holder();
iveresov@2138 3397 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 3398 // We know the type that will be seen at this call site; we can
duke@435 3399 // statically update the methodDataOop rather than needing to do
duke@435 3400 // dynamic tests on the receiver type
duke@435 3401
duke@435 3402 // NOTE: we should probably put a lock around this search to
duke@435 3403 // avoid collisions by concurrent compilations
duke@435 3404 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 3405 uint i;
duke@435 3406 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3407 ciKlass* receiver = vc_data->receiver(i);
duke@435 3408 if (known_klass->equals(receiver)) {
duke@435 3409 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
iveresov@2138 3410 __ addptr(data_addr, DataLayout::counter_increment);
duke@435 3411 return;
duke@435 3412 }
duke@435 3413 }
duke@435 3414
duke@435 3415 // Receiver type not found in profile data; select an empty slot
duke@435 3416
duke@435 3417 // Note that this is less efficient than it should be because it
duke@435 3418 // always does a write to the receiver part of the
duke@435 3419 // VirtualCallData rather than just the first time
duke@435 3420 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3421 ciKlass* receiver = vc_data->receiver(i);
duke@435 3422 if (receiver == NULL) {
duke@435 3423 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
jrose@1424 3424 __ movoop(recv_addr, known_klass->constant_encoding());
duke@435 3425 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
iveresov@2138 3426 __ addptr(data_addr, DataLayout::counter_increment);
duke@435 3427 return;
duke@435 3428 }
duke@435 3429 }
duke@435 3430 } else {
iveresov@2344 3431 __ load_klass(recv, recv);
duke@435 3432 Label update_done;
iveresov@2138 3433 type_profile_helper(mdo, md, data, recv, &update_done);
kvn@1641 3434 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 3435 // Increment total counter to indicate polymorphic case.
iveresov@2138 3436 __ addptr(counter_addr, DataLayout::counter_increment);
duke@435 3437
duke@435 3438 __ bind(update_done);
duke@435 3439 }
kvn@1641 3440 } else {
kvn@1641 3441 // Static call
iveresov@2138 3442 __ addptr(counter_addr, DataLayout::counter_increment);
duke@435 3443 }
duke@435 3444 }
duke@435 3445
duke@435 3446 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
duke@435 3447 Unimplemented();
duke@435 3448 }
duke@435 3449
duke@435 3450
duke@435 3451 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
never@739 3452 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
duke@435 3453 }
duke@435 3454
duke@435 3455
duke@435 3456 void LIR_Assembler::align_backward_branch_target() {
duke@435 3457 __ align(BytesPerWord);
duke@435 3458 }
duke@435 3459
duke@435 3460
duke@435 3461 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3462 if (left->is_single_cpu()) {
duke@435 3463 __ negl(left->as_register());
duke@435 3464 move_regs(left->as_register(), dest->as_register());
duke@435 3465
duke@435 3466 } else if (left->is_double_cpu()) {
duke@435 3467 Register lo = left->as_register_lo();
never@739 3468 #ifdef _LP64
never@739 3469 Register dst = dest->as_register_lo();
never@739 3470 __ movptr(dst, lo);
never@739 3471 __ negptr(dst);
never@739 3472 #else
duke@435 3473 Register hi = left->as_register_hi();
duke@435 3474 __ lneg(hi, lo);
duke@435 3475 if (dest->as_register_lo() == hi) {
duke@435 3476 assert(dest->as_register_hi() != lo, "destroying register");
duke@435 3477 move_regs(hi, dest->as_register_hi());
duke@435 3478 move_regs(lo, dest->as_register_lo());
duke@435 3479 } else {
duke@435 3480 move_regs(lo, dest->as_register_lo());
duke@435 3481 move_regs(hi, dest->as_register_hi());
duke@435 3482 }
never@739 3483 #endif // _LP64
duke@435 3484
duke@435 3485 } else if (dest->is_single_xmm()) {
duke@435 3486 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
duke@435 3487 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
duke@435 3488 }
duke@435 3489 __ xorps(dest->as_xmm_float_reg(),
duke@435 3490 ExternalAddress((address)float_signflip_pool));
duke@435 3491
duke@435 3492 } else if (dest->is_double_xmm()) {
duke@435 3493 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
duke@435 3494 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
duke@435 3495 }
duke@435 3496 __ xorpd(dest->as_xmm_double_reg(),
duke@435 3497 ExternalAddress((address)double_signflip_pool));
duke@435 3498
duke@435 3499 } else if (left->is_single_fpu() || left->is_double_fpu()) {
duke@435 3500 assert(left->fpu() == 0, "arg must be on TOS");
duke@435 3501 assert(dest->fpu() == 0, "dest must be TOS");
duke@435 3502 __ fchs();
duke@435 3503
duke@435 3504 } else {
duke@435 3505 ShouldNotReachHere();
duke@435 3506 }
duke@435 3507 }
duke@435 3508
duke@435 3509
duke@435 3510 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
duke@435 3511 assert(addr->is_address() && dest->is_register(), "check");
never@739 3512 Register reg;
never@739 3513 reg = dest->as_pointer_register();
never@739 3514 __ lea(reg, as_Address(addr->as_address_ptr()));
duke@435 3515 }
duke@435 3516
duke@435 3517
duke@435 3518
duke@435 3519 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3520 assert(!tmp->is_valid(), "don't need temporary");
duke@435 3521 __ call(RuntimeAddress(dest));
duke@435 3522 if (info != NULL) {
duke@435 3523 add_call_info_here(info);
duke@435 3524 }
duke@435 3525 }
duke@435 3526
duke@435 3527
duke@435 3528 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3529 assert(type == T_LONG, "only for volatile long fields");
duke@435 3530
duke@435 3531 if (info != NULL) {
duke@435 3532 add_debug_info_for_null_check_here(info);
duke@435 3533 }
duke@435 3534
duke@435 3535 if (src->is_double_xmm()) {
duke@435 3536 if (dest->is_double_cpu()) {
never@739 3537 #ifdef _LP64
never@739 3538 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
never@739 3539 #else
never@739 3540 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
duke@435 3541 __ psrlq(src->as_xmm_double_reg(), 32);
never@739 3542 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
never@739 3543 #endif // _LP64
duke@435 3544 } else if (dest->is_double_stack()) {
duke@435 3545 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
duke@435 3546 } else if (dest->is_address()) {
duke@435 3547 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
duke@435 3548 } else {
duke@435 3549 ShouldNotReachHere();
duke@435 3550 }
duke@435 3551
duke@435 3552 } else if (dest->is_double_xmm()) {
duke@435 3553 if (src->is_double_stack()) {
duke@435 3554 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3555 } else if (src->is_address()) {
duke@435 3556 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
duke@435 3557 } else {
duke@435 3558 ShouldNotReachHere();
duke@435 3559 }
duke@435 3560
duke@435 3561 } else if (src->is_double_fpu()) {
duke@435 3562 assert(src->fpu_regnrLo() == 0, "must be TOS");
duke@435 3563 if (dest->is_double_stack()) {
duke@435 3564 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
duke@435 3565 } else if (dest->is_address()) {
duke@435 3566 __ fistp_d(as_Address(dest->as_address_ptr()));
duke@435 3567 } else {
duke@435 3568 ShouldNotReachHere();
duke@435 3569 }
duke@435 3570
duke@435 3571 } else if (dest->is_double_fpu()) {
duke@435 3572 assert(dest->fpu_regnrLo() == 0, "must be TOS");
duke@435 3573 if (src->is_double_stack()) {
duke@435 3574 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3575 } else if (src->is_address()) {
duke@435 3576 __ fild_d(as_Address(src->as_address_ptr()));
duke@435 3577 } else {
duke@435 3578 ShouldNotReachHere();
duke@435 3579 }
duke@435 3580 } else {
duke@435 3581 ShouldNotReachHere();
duke@435 3582 }
duke@435 3583 }
duke@435 3584
duke@435 3585
duke@435 3586 void LIR_Assembler::membar() {
never@739 3587 // QQQ sparc TSO uses this,
never@739 3588 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
duke@435 3589 }
duke@435 3590
duke@435 3591 void LIR_Assembler::membar_acquire() {
duke@435 3592 // No x86 machines currently require load fences
duke@435 3593 // __ load_fence();
duke@435 3594 }
duke@435 3595
duke@435 3596 void LIR_Assembler::membar_release() {
duke@435 3597 // No x86 machines currently require store fences
duke@435 3598 // __ store_fence();
duke@435 3599 }
duke@435 3600
duke@435 3601 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3602 assert(result_reg->is_register(), "check");
never@739 3603 #ifdef _LP64
never@739 3604 // __ get_thread(result_reg->as_register_lo());
never@739 3605 __ mov(result_reg->as_register(), r15_thread);
never@739 3606 #else
duke@435 3607 __ get_thread(result_reg->as_register());
never@739 3608 #endif // _LP64
duke@435 3609 }
duke@435 3610
duke@435 3611
duke@435 3612 void LIR_Assembler::peephole(LIR_List*) {
duke@435 3613 // do nothing for now
duke@435 3614 }
duke@435 3615
duke@435 3616
duke@435 3617 #undef __

mercurial