src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Sun, 27 Mar 2011 13:17:37 -0700

author
iveresov
date
Sun, 27 Mar 2011 13:17:37 -0700
changeset 2686
b40d4fa697bf
parent 2603
1b4e6a5d98e0
child 2697
09f96c3ff1ad
permissions
-rw-r--r--

6964776: c2 should ensure the polling page is reachable on 64 bit
Summary: Materialize the pointer to the polling page in a register instead of using rip-relative addressing when the distance from the code cache is larger than disp32.
Reviewed-by: never, kvn

duke@435 1 /*
iveresov@2432 2 * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "c1/c1_Compilation.hpp"
stefank@2314 27 #include "c1/c1_LIRAssembler.hpp"
stefank@2314 28 #include "c1/c1_MacroAssembler.hpp"
stefank@2314 29 #include "c1/c1_Runtime1.hpp"
stefank@2314 30 #include "c1/c1_ValueStack.hpp"
stefank@2314 31 #include "ci/ciArrayKlass.hpp"
stefank@2314 32 #include "ci/ciInstance.hpp"
stefank@2314 33 #include "gc_interface/collectedHeap.hpp"
stefank@2314 34 #include "memory/barrierSet.hpp"
stefank@2314 35 #include "memory/cardTableModRefBS.hpp"
stefank@2314 36 #include "nativeInst_x86.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "runtime/sharedRuntime.hpp"
duke@435 39
duke@435 40
duke@435 41 // These masks are used to provide 128-bit aligned bitmasks to the XMM
duke@435 42 // instructions, to allow sign-masking or sign-bit flipping. They allow
duke@435 43 // fast versions of NegF/NegD and AbsF/AbsD.
duke@435 44
duke@435 45 // Note: 'double' and 'long long' have 32-bits alignment on x86.
duke@435 46 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
duke@435 47 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
duke@435 48 // of 128-bits operands for SSE instructions.
duke@435 49 jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
duke@435 50 // Store the value to a 128-bits operand.
duke@435 51 operand[0] = lo;
duke@435 52 operand[1] = hi;
duke@435 53 return operand;
duke@435 54 }
duke@435 55
duke@435 56 // Buffer for 128-bits masks used by SSE instructions.
duke@435 57 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
duke@435 58
duke@435 59 // Static initialization during VM startup.
duke@435 60 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
duke@435 61 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
duke@435 62 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
duke@435 63 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
duke@435 64
duke@435 65
duke@435 66
duke@435 67 NEEDS_CLEANUP // remove this definitions ?
duke@435 68 const Register IC_Klass = rax; // where the IC klass is cached
duke@435 69 const Register SYNC_header = rax; // synchronization header
duke@435 70 const Register SHIFT_count = rcx; // where count for shift operations must be
duke@435 71
duke@435 72 #define __ _masm->
duke@435 73
duke@435 74
duke@435 75 static void select_different_registers(Register preserve,
duke@435 76 Register extra,
duke@435 77 Register &tmp1,
duke@435 78 Register &tmp2) {
duke@435 79 if (tmp1 == preserve) {
duke@435 80 assert_different_registers(tmp1, tmp2, extra);
duke@435 81 tmp1 = extra;
duke@435 82 } else if (tmp2 == preserve) {
duke@435 83 assert_different_registers(tmp1, tmp2, extra);
duke@435 84 tmp2 = extra;
duke@435 85 }
duke@435 86 assert_different_registers(preserve, tmp1, tmp2);
duke@435 87 }
duke@435 88
duke@435 89
duke@435 90
duke@435 91 static void select_different_registers(Register preserve,
duke@435 92 Register extra,
duke@435 93 Register &tmp1,
duke@435 94 Register &tmp2,
duke@435 95 Register &tmp3) {
duke@435 96 if (tmp1 == preserve) {
duke@435 97 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 98 tmp1 = extra;
duke@435 99 } else if (tmp2 == preserve) {
duke@435 100 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 101 tmp2 = extra;
duke@435 102 } else if (tmp3 == preserve) {
duke@435 103 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 104 tmp3 = extra;
duke@435 105 }
duke@435 106 assert_different_registers(preserve, tmp1, tmp2, tmp3);
duke@435 107 }
duke@435 108
duke@435 109
duke@435 110
duke@435 111 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 112 if (opr->is_constant()) {
duke@435 113 LIR_Const* constant = opr->as_constant_ptr();
duke@435 114 switch (constant->type()) {
duke@435 115 case T_INT: {
duke@435 116 return true;
duke@435 117 }
duke@435 118
duke@435 119 default:
duke@435 120 return false;
duke@435 121 }
duke@435 122 }
duke@435 123 return false;
duke@435 124 }
duke@435 125
duke@435 126
duke@435 127 LIR_Opr LIR_Assembler::receiverOpr() {
never@739 128 return FrameMap::receiver_opr;
duke@435 129 }
duke@435 130
duke@435 131 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
duke@435 132 return receiverOpr();
duke@435 133 }
duke@435 134
duke@435 135 LIR_Opr LIR_Assembler::osrBufferPointer() {
never@739 136 return FrameMap::as_pointer_opr(receiverOpr()->as_register());
duke@435 137 }
duke@435 138
duke@435 139 //--------------fpu register translations-----------------------
duke@435 140
duke@435 141
duke@435 142 address LIR_Assembler::float_constant(float f) {
duke@435 143 address const_addr = __ float_constant(f);
duke@435 144 if (const_addr == NULL) {
duke@435 145 bailout("const section overflow");
duke@435 146 return __ code()->consts()->start();
duke@435 147 } else {
duke@435 148 return const_addr;
duke@435 149 }
duke@435 150 }
duke@435 151
duke@435 152
duke@435 153 address LIR_Assembler::double_constant(double d) {
duke@435 154 address const_addr = __ double_constant(d);
duke@435 155 if (const_addr == NULL) {
duke@435 156 bailout("const section overflow");
duke@435 157 return __ code()->consts()->start();
duke@435 158 } else {
duke@435 159 return const_addr;
duke@435 160 }
duke@435 161 }
duke@435 162
duke@435 163
duke@435 164 void LIR_Assembler::set_24bit_FPU() {
duke@435 165 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
duke@435 166 }
duke@435 167
duke@435 168 void LIR_Assembler::reset_FPU() {
duke@435 169 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 170 }
duke@435 171
duke@435 172 void LIR_Assembler::fpop() {
duke@435 173 __ fpop();
duke@435 174 }
duke@435 175
duke@435 176 void LIR_Assembler::fxch(int i) {
duke@435 177 __ fxch(i);
duke@435 178 }
duke@435 179
duke@435 180 void LIR_Assembler::fld(int i) {
duke@435 181 __ fld_s(i);
duke@435 182 }
duke@435 183
duke@435 184 void LIR_Assembler::ffree(int i) {
duke@435 185 __ ffree(i);
duke@435 186 }
duke@435 187
duke@435 188 void LIR_Assembler::breakpoint() {
duke@435 189 __ int3();
duke@435 190 }
duke@435 191
duke@435 192 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 193 if (opr->is_single_cpu()) {
duke@435 194 __ push_reg(opr->as_register());
duke@435 195 } else if (opr->is_double_cpu()) {
never@739 196 NOT_LP64(__ push_reg(opr->as_register_hi()));
duke@435 197 __ push_reg(opr->as_register_lo());
duke@435 198 } else if (opr->is_stack()) {
duke@435 199 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
duke@435 200 } else if (opr->is_constant()) {
duke@435 201 LIR_Const* const_opr = opr->as_constant_ptr();
duke@435 202 if (const_opr->type() == T_OBJECT) {
duke@435 203 __ push_oop(const_opr->as_jobject());
duke@435 204 } else if (const_opr->type() == T_INT) {
duke@435 205 __ push_jint(const_opr->as_jint());
duke@435 206 } else {
duke@435 207 ShouldNotReachHere();
duke@435 208 }
duke@435 209
duke@435 210 } else {
duke@435 211 ShouldNotReachHere();
duke@435 212 }
duke@435 213 }
duke@435 214
duke@435 215 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 216 if (opr->is_single_cpu()) {
never@739 217 __ pop_reg(opr->as_register());
duke@435 218 } else {
duke@435 219 ShouldNotReachHere();
duke@435 220 }
duke@435 221 }
duke@435 222
never@739 223 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
never@739 224 return addr->base()->is_illegal() && addr->index()->is_illegal();
never@739 225 }
never@739 226
duke@435 227 //-------------------------------------------
never@739 228
duke@435 229 Address LIR_Assembler::as_Address(LIR_Address* addr) {
never@739 230 return as_Address(addr, rscratch1);
never@739 231 }
never@739 232
never@739 233 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
duke@435 234 if (addr->base()->is_illegal()) {
duke@435 235 assert(addr->index()->is_illegal(), "must be illegal too");
never@739 236 AddressLiteral laddr((address)addr->disp(), relocInfo::none);
never@739 237 if (! __ reachable(laddr)) {
never@739 238 __ movptr(tmp, laddr.addr());
never@739 239 Address res(tmp, 0);
never@739 240 return res;
never@739 241 } else {
never@739 242 return __ as_Address(laddr);
never@739 243 }
duke@435 244 }
duke@435 245
never@739 246 Register base = addr->base()->as_pointer_register();
duke@435 247
duke@435 248 if (addr->index()->is_illegal()) {
duke@435 249 return Address( base, addr->disp());
never@739 250 } else if (addr->index()->is_cpu_register()) {
never@739 251 Register index = addr->index()->as_pointer_register();
duke@435 252 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
duke@435 253 } else if (addr->index()->is_constant()) {
never@739 254 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
never@739 255 assert(Assembler::is_simm32(addr_offset), "must be");
duke@435 256
duke@435 257 return Address(base, addr_offset);
duke@435 258 } else {
duke@435 259 Unimplemented();
duke@435 260 return Address();
duke@435 261 }
duke@435 262 }
duke@435 263
duke@435 264
duke@435 265 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 266 Address base = as_Address(addr);
duke@435 267 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
duke@435 268 }
duke@435 269
duke@435 270
duke@435 271 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 272 return as_Address(addr);
duke@435 273 }
duke@435 274
duke@435 275
duke@435 276 void LIR_Assembler::osr_entry() {
duke@435 277 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 278 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 279 ValueStack* entry_state = osr_entry->state();
duke@435 280 int number_of_locks = entry_state->locks_size();
duke@435 281
duke@435 282 // we jump here if osr happens with the interpreter
duke@435 283 // state set up to continue at the beginning of the
duke@435 284 // loop that triggered osr - in particular, we have
duke@435 285 // the following registers setup:
duke@435 286 //
duke@435 287 // rcx: osr buffer
duke@435 288 //
duke@435 289
duke@435 290 // build frame
duke@435 291 ciMethod* m = compilation()->method();
duke@435 292 __ build_frame(initial_frame_size_in_bytes());
duke@435 293
duke@435 294 // OSR buffer is
duke@435 295 //
duke@435 296 // locals[nlocals-1..0]
duke@435 297 // monitors[0..number_of_locks]
duke@435 298 //
duke@435 299 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 300 // so first slot in the local array is the last local from the interpreter
duke@435 301 // and last slot is local[0] (receiver) from the interpreter
duke@435 302 //
duke@435 303 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 304 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 305 // in the interpreter frame (the method lock if a sync method)
duke@435 306
duke@435 307 // Initialize monitors in the compiled activation.
duke@435 308 // rcx: pointer to osr buffer
duke@435 309 //
duke@435 310 // All other registers are dead at this point and the locals will be
duke@435 311 // copied into place by code emitted in the IR.
duke@435 312
never@739 313 Register OSR_buf = osrBufferPointer()->as_pointer_register();
duke@435 314 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 315 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 316 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 317 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 318 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 319 // the oop.
duke@435 320 for (int i = 0; i < number_of_locks; i++) {
roland@1495 321 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 322 #ifdef ASSERT
duke@435 323 // verify the interpreter's monitor has a non-null object
duke@435 324 {
duke@435 325 Label L;
roland@1495 326 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
duke@435 327 __ jcc(Assembler::notZero, L);
duke@435 328 __ stop("locked object is NULL");
duke@435 329 __ bind(L);
duke@435 330 }
duke@435 331 #endif
roland@1495 332 __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
never@739 333 __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
roland@1495 334 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
never@739 335 __ movptr(frame_map()->address_for_monitor_object(i), rbx);
duke@435 336 }
duke@435 337 }
duke@435 338 }
duke@435 339
duke@435 340
duke@435 341 // inline cache check; done before the frame is built.
duke@435 342 int LIR_Assembler::check_icache() {
duke@435 343 Register receiver = FrameMap::receiver_opr->as_register();
duke@435 344 Register ic_klass = IC_Klass;
never@739 345 const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
iveresov@2344 346 const bool do_post_padding = VerifyOops || UseCompressedOops;
iveresov@2344 347 if (!do_post_padding) {
duke@435 348 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
never@739 349 while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
duke@435 350 __ nop();
duke@435 351 }
duke@435 352 }
duke@435 353 int offset = __ offset();
duke@435 354 __ inline_cache_check(receiver, IC_Klass);
iveresov@2344 355 assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
iveresov@2344 356 if (do_post_padding) {
duke@435 357 // force alignment after the cache check.
duke@435 358 // It's been verified to be aligned if !VerifyOops
duke@435 359 __ align(CodeEntryAlignment);
duke@435 360 }
duke@435 361 return offset;
duke@435 362 }
duke@435 363
duke@435 364
duke@435 365 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
duke@435 366 jobject o = NULL;
duke@435 367 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
duke@435 368 __ movoop(reg, o);
duke@435 369 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 370 }
duke@435 371
duke@435 372
duke@435 373 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
duke@435 374 if (exception->is_valid()) {
duke@435 375 // preserve exception
duke@435 376 // note: the monitor_exit runtime call is a leaf routine
duke@435 377 // and cannot block => no GC can happen
duke@435 378 // The slow case (MonitorAccessStub) uses the first two stack slots
duke@435 379 // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
never@739 380 __ movptr (Address(rsp, 2*wordSize), exception);
duke@435 381 }
duke@435 382
duke@435 383 Register obj_reg = obj_opr->as_register();
duke@435 384 Register lock_reg = lock_opr->as_register();
duke@435 385
duke@435 386 // setup registers (lock_reg must be rax, for lock_object)
duke@435 387 assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
duke@435 388 Register hdr = lock_reg;
duke@435 389 assert(new_hdr == SYNC_header, "wrong register");
duke@435 390 lock_reg = new_hdr;
duke@435 391 // compute pointer to BasicLock
duke@435 392 Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
never@739 393 __ lea(lock_reg, lock_addr);
duke@435 394 // unlock object
duke@435 395 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
duke@435 396 // _slow_case_stubs->append(slow_case);
duke@435 397 // temporary fix: must be created after exceptionhandler, therefore as call stub
duke@435 398 _slow_case_stubs->append(slow_case);
duke@435 399 if (UseFastLocking) {
duke@435 400 // try inlined fast unlocking first, revert to slow locking if it fails
duke@435 401 // note: lock_reg points to the displaced header since the displaced header offset is 0!
duke@435 402 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 403 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
duke@435 404 } else {
duke@435 405 // always do slow unlocking
duke@435 406 // note: the slow unlocking code could be inlined here, however if we use
duke@435 407 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 408 // simpler and requires less duplicated code - additionally, the
duke@435 409 // slow unlocking code is the same in either case which simplifies
duke@435 410 // debugging
duke@435 411 __ jmp(*slow_case->entry());
duke@435 412 }
duke@435 413 // done
duke@435 414 __ bind(*slow_case->continuation());
duke@435 415
duke@435 416 if (exception->is_valid()) {
duke@435 417 // restore exception
never@739 418 __ movptr (exception, Address(rsp, 2 * wordSize));
duke@435 419 }
duke@435 420 }
duke@435 421
duke@435 422 // This specifies the rsp decrement needed to build the frame
duke@435 423 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 424 // if rounding, must let FrameMap know!
never@739 425
never@739 426 // The frame_map records size in slots (32bit word)
never@739 427
never@739 428 // subtract two words to account for return address and link
never@739 429 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size;
duke@435 430 }
duke@435 431
duke@435 432
twisti@1639 433 int LIR_Assembler::emit_exception_handler() {
duke@435 434 // if the last instruction is a call (typically to do a throw which
duke@435 435 // is coming at the end after block reordering) the return address
duke@435 436 // must still point into the code area in order to avoid assertion
duke@435 437 // failures when searching for the corresponding bci => add a nop
duke@435 438 // (was bug 5/14/1999 - gri)
duke@435 439 __ nop();
duke@435 440
duke@435 441 // generate code for exception handler
duke@435 442 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 443 if (handler_base == NULL) {
duke@435 444 // not enough space left for the handler
duke@435 445 bailout("exception handler overflow");
twisti@1639 446 return -1;
duke@435 447 }
twisti@1639 448
duke@435 449 int offset = code_offset();
duke@435 450
twisti@1730 451 // the exception oop and pc are in rax, and rdx
duke@435 452 // no other registers need to be preserved, so invalidate them
twisti@1730 453 __ invalidate_registers(false, true, true, false, true, true);
duke@435 454
duke@435 455 // check that there is really an exception
duke@435 456 __ verify_not_null_oop(rax);
duke@435 457
twisti@1730 458 // search an exception handler (rax: exception oop, rdx: throwing pc)
twisti@2603 459 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
twisti@2603 460 __ should_not_reach_here();
duke@435 461 assert(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 462 __ end_a_stub();
twisti@1639 463
twisti@1639 464 return offset;
duke@435 465 }
duke@435 466
twisti@1639 467
never@1813 468 // Emit the code to remove the frame from the stack in the exception
never@1813 469 // unwind path.
never@1813 470 int LIR_Assembler::emit_unwind_handler() {
never@1813 471 #ifndef PRODUCT
never@1813 472 if (CommentedAssembly) {
never@1813 473 _masm->block_comment("Unwind handler");
never@1813 474 }
never@1813 475 #endif
never@1813 476
never@1813 477 int offset = code_offset();
never@1813 478
never@1813 479 // Fetch the exception from TLS and clear out exception related thread state
never@1813 480 __ get_thread(rsi);
never@1813 481 __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
never@1813 482 __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
never@1813 483 __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
never@1813 484
never@1813 485 __ bind(_unwind_handler_entry);
never@1813 486 __ verify_not_null_oop(rax);
never@1813 487 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 488 __ mov(rsi, rax); // Preserve the exception
never@1813 489 }
never@1813 490
never@1813 491 // Preform needed unlocking
never@1813 492 MonitorExitStub* stub = NULL;
never@1813 493 if (method()->is_synchronized()) {
never@1813 494 monitor_address(0, FrameMap::rax_opr);
never@1813 495 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
never@1813 496 __ unlock_object(rdi, rbx, rax, *stub->entry());
never@1813 497 __ bind(*stub->continuation());
never@1813 498 }
never@1813 499
never@1813 500 if (compilation()->env()->dtrace_method_probes()) {
never@2185 501 __ get_thread(rax);
never@2185 502 __ movptr(Address(rsp, 0), rax);
never@2185 503 __ movoop(Address(rsp, sizeof(void*)), method()->constant_encoding());
never@1813 504 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
never@1813 505 }
never@1813 506
never@1813 507 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 508 __ mov(rax, rsi); // Restore the exception
never@1813 509 }
never@1813 510
never@1813 511 // remove the activation and dispatch to the unwind handler
never@1813 512 __ remove_frame(initial_frame_size_in_bytes());
never@1813 513 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
never@1813 514
never@1813 515 // Emit the slow path assembly
never@1813 516 if (stub != NULL) {
never@1813 517 stub->emit_code(this);
never@1813 518 }
never@1813 519
never@1813 520 return offset;
never@1813 521 }
never@1813 522
never@1813 523
twisti@1639 524 int LIR_Assembler::emit_deopt_handler() {
duke@435 525 // if the last instruction is a call (typically to do a throw which
duke@435 526 // is coming at the end after block reordering) the return address
duke@435 527 // must still point into the code area in order to avoid assertion
duke@435 528 // failures when searching for the corresponding bci => add a nop
duke@435 529 // (was bug 5/14/1999 - gri)
duke@435 530 __ nop();
duke@435 531
duke@435 532 // generate code for exception handler
duke@435 533 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 534 if (handler_base == NULL) {
duke@435 535 // not enough space left for the handler
duke@435 536 bailout("deopt handler overflow");
twisti@1639 537 return -1;
duke@435 538 }
twisti@1639 539
duke@435 540 int offset = code_offset();
duke@435 541 InternalAddress here(__ pc());
twisti@1730 542
duke@435 543 __ pushptr(here.addr());
duke@435 544 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
twisti@1730 545
duke@435 546 assert(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 547 __ end_a_stub();
duke@435 548
twisti@1639 549 return offset;
duke@435 550 }
duke@435 551
duke@435 552
duke@435 553 // This is the fast version of java.lang.String.compare; it has not
duke@435 554 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 555 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
never@739 556 __ movptr (rbx, rcx); // receiver is in rcx
never@739 557 __ movptr (rax, arg1->as_register());
duke@435 558
duke@435 559 // Get addresses of first characters from both Strings
iveresov@2344 560 __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
iveresov@2344 561 __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
iveresov@2344 562 __ lea (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 563
duke@435 564
duke@435 565 // rbx, may be NULL
duke@435 566 add_debug_info_for_null_check_here(info);
iveresov@2344 567 __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
iveresov@2344 568 __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
iveresov@2344 569 __ lea (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 570
duke@435 571 // compute minimum length (in rax) and difference of lengths (on top of stack)
duke@435 572 if (VM_Version::supports_cmov()) {
never@739 573 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
never@739 574 __ movl (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
never@739 575 __ mov (rcx, rbx);
never@739 576 __ subptr (rbx, rax); // subtract lengths
never@739 577 __ push (rbx); // result
never@739 578 __ cmov (Assembler::lessEqual, rax, rcx);
duke@435 579 } else {
duke@435 580 Label L;
never@739 581 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
never@739 582 __ movl (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
never@739 583 __ mov (rax, rbx);
never@739 584 __ subptr (rbx, rcx);
never@739 585 __ push (rbx);
never@739 586 __ jcc (Assembler::lessEqual, L);
never@739 587 __ mov (rax, rcx);
duke@435 588 __ bind (L);
duke@435 589 }
duke@435 590 // is minimum length 0?
duke@435 591 Label noLoop, haveResult;
never@739 592 __ testptr (rax, rax);
duke@435 593 __ jcc (Assembler::zero, noLoop);
duke@435 594
duke@435 595 // compare first characters
jrose@1057 596 __ load_unsigned_short(rcx, Address(rdi, 0));
jrose@1057 597 __ load_unsigned_short(rbx, Address(rsi, 0));
duke@435 598 __ subl(rcx, rbx);
duke@435 599 __ jcc(Assembler::notZero, haveResult);
duke@435 600 // starting loop
duke@435 601 __ decrement(rax); // we already tested index: skip one
duke@435 602 __ jcc(Assembler::zero, noLoop);
duke@435 603
duke@435 604 // set rsi.edi to the end of the arrays (arrays have same length)
duke@435 605 // negate the index
duke@435 606
never@739 607 __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 608 __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 609 __ negptr(rax);
duke@435 610
duke@435 611 // compare the strings in a loop
duke@435 612
duke@435 613 Label loop;
duke@435 614 __ align(wordSize);
duke@435 615 __ bind(loop);
jrose@1057 616 __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
jrose@1057 617 __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
duke@435 618 __ subl(rcx, rbx);
duke@435 619 __ jcc(Assembler::notZero, haveResult);
duke@435 620 __ increment(rax);
duke@435 621 __ jcc(Assembler::notZero, loop);
duke@435 622
duke@435 623 // strings are equal up to min length
duke@435 624
duke@435 625 __ bind(noLoop);
never@739 626 __ pop(rax);
duke@435 627 return_op(LIR_OprFact::illegalOpr);
duke@435 628
duke@435 629 __ bind(haveResult);
duke@435 630 // leave instruction is going to discard the TOS value
never@739 631 __ mov (rax, rcx); // result of call is in rax,
duke@435 632 }
duke@435 633
duke@435 634
duke@435 635 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 636 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
duke@435 637 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
duke@435 638 assert(result->fpu() == 0, "result must already be on TOS");
duke@435 639 }
duke@435 640
duke@435 641 // Pop the stack before the safepoint code
twisti@1730 642 __ remove_frame(initial_frame_size_in_bytes());
duke@435 643
duke@435 644 bool result_is_oop = result->is_valid() ? result->is_oop() : false;
duke@435 645
duke@435 646 // Note: we do not need to round double result; float result has the right precision
duke@435 647 // the poll sets the condition code, but no data registers
duke@435 648 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 649 relocInfo::poll_return_type);
never@739 650
iveresov@2686 651 if (Assembler::is_polling_page_far()) {
iveresov@2686 652 __ lea(rscratch1, polling_page);
iveresov@2686 653 __ relocate(relocInfo::poll_return_type);
iveresov@2686 654 __ testl(rax, Address(rscratch1, 0));
iveresov@2686 655 } else {
iveresov@2686 656 __ testl(rax, polling_page);
iveresov@2686 657 }
duke@435 658 __ ret(0);
duke@435 659 }
duke@435 660
duke@435 661
duke@435 662 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 663 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 664 relocInfo::poll_type);
iveresov@2686 665 guarantee(info != NULL, "Shouldn't be NULL");
iveresov@2686 666 int offset = __ offset();
iveresov@2686 667 if (Assembler::is_polling_page_far()) {
iveresov@2686 668 __ lea(rscratch1, polling_page);
iveresov@2686 669 offset = __ offset();
duke@435 670 add_debug_info_for_branch(info);
iveresov@2686 671 __ testl(rax, Address(rscratch1, 0));
duke@435 672 } else {
iveresov@2686 673 add_debug_info_for_branch(info);
iveresov@2686 674 __ testl(rax, polling_page);
duke@435 675 }
duke@435 676 return offset;
duke@435 677 }
duke@435 678
duke@435 679
duke@435 680 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
never@739 681 if (from_reg != to_reg) __ mov(to_reg, from_reg);
duke@435 682 }
duke@435 683
duke@435 684 void LIR_Assembler::swap_reg(Register a, Register b) {
never@739 685 __ xchgptr(a, b);
duke@435 686 }
duke@435 687
duke@435 688
duke@435 689 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 690 assert(src->is_constant(), "should not call otherwise");
duke@435 691 assert(dest->is_register(), "should not call otherwise");
duke@435 692 LIR_Const* c = src->as_constant_ptr();
duke@435 693
duke@435 694 switch (c->type()) {
iveresov@2344 695 case T_INT: {
iveresov@2344 696 assert(patch_code == lir_patch_none, "no patching handled here");
iveresov@2344 697 __ movl(dest->as_register(), c->as_jint());
iveresov@2344 698 break;
iveresov@2344 699 }
iveresov@2344 700
roland@1732 701 case T_ADDRESS: {
duke@435 702 assert(patch_code == lir_patch_none, "no patching handled here");
iveresov@2344 703 __ movptr(dest->as_register(), c->as_jint());
duke@435 704 break;
duke@435 705 }
duke@435 706
duke@435 707 case T_LONG: {
duke@435 708 assert(patch_code == lir_patch_none, "no patching handled here");
never@739 709 #ifdef _LP64
never@739 710 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
never@739 711 #else
never@739 712 __ movptr(dest->as_register_lo(), c->as_jint_lo());
never@739 713 __ movptr(dest->as_register_hi(), c->as_jint_hi());
never@739 714 #endif // _LP64
duke@435 715 break;
duke@435 716 }
duke@435 717
duke@435 718 case T_OBJECT: {
duke@435 719 if (patch_code != lir_patch_none) {
duke@435 720 jobject2reg_with_patching(dest->as_register(), info);
duke@435 721 } else {
duke@435 722 __ movoop(dest->as_register(), c->as_jobject());
duke@435 723 }
duke@435 724 break;
duke@435 725 }
duke@435 726
duke@435 727 case T_FLOAT: {
duke@435 728 if (dest->is_single_xmm()) {
duke@435 729 if (c->is_zero_float()) {
duke@435 730 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
duke@435 731 } else {
duke@435 732 __ movflt(dest->as_xmm_float_reg(),
duke@435 733 InternalAddress(float_constant(c->as_jfloat())));
duke@435 734 }
duke@435 735 } else {
duke@435 736 assert(dest->is_single_fpu(), "must be");
duke@435 737 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 738 if (c->is_zero_float()) {
duke@435 739 __ fldz();
duke@435 740 } else if (c->is_one_float()) {
duke@435 741 __ fld1();
duke@435 742 } else {
duke@435 743 __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
duke@435 744 }
duke@435 745 }
duke@435 746 break;
duke@435 747 }
duke@435 748
duke@435 749 case T_DOUBLE: {
duke@435 750 if (dest->is_double_xmm()) {
duke@435 751 if (c->is_zero_double()) {
duke@435 752 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
duke@435 753 } else {
duke@435 754 __ movdbl(dest->as_xmm_double_reg(),
duke@435 755 InternalAddress(double_constant(c->as_jdouble())));
duke@435 756 }
duke@435 757 } else {
duke@435 758 assert(dest->is_double_fpu(), "must be");
duke@435 759 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 760 if (c->is_zero_double()) {
duke@435 761 __ fldz();
duke@435 762 } else if (c->is_one_double()) {
duke@435 763 __ fld1();
duke@435 764 } else {
duke@435 765 __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
duke@435 766 }
duke@435 767 }
duke@435 768 break;
duke@435 769 }
duke@435 770
duke@435 771 default:
duke@435 772 ShouldNotReachHere();
duke@435 773 }
duke@435 774 }
duke@435 775
duke@435 776 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 777 assert(src->is_constant(), "should not call otherwise");
duke@435 778 assert(dest->is_stack(), "should not call otherwise");
duke@435 779 LIR_Const* c = src->as_constant_ptr();
duke@435 780
duke@435 781 switch (c->type()) {
duke@435 782 case T_INT: // fall through
duke@435 783 case T_FLOAT:
iveresov@2344 784 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
iveresov@2344 785 break;
iveresov@2344 786
roland@1732 787 case T_ADDRESS:
iveresov@2344 788 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
duke@435 789 break;
duke@435 790
duke@435 791 case T_OBJECT:
duke@435 792 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
duke@435 793 break;
duke@435 794
duke@435 795 case T_LONG: // fall through
duke@435 796 case T_DOUBLE:
never@739 797 #ifdef _LP64
never@739 798 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 799 lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
never@739 800 #else
never@739 801 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 802 lo_word_offset_in_bytes), c->as_jint_lo_bits());
never@739 803 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 804 hi_word_offset_in_bytes), c->as_jint_hi_bits());
never@739 805 #endif // _LP64
duke@435 806 break;
duke@435 807
duke@435 808 default:
duke@435 809 ShouldNotReachHere();
duke@435 810 }
duke@435 811 }
duke@435 812
iveresov@2344 813 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
duke@435 814 assert(src->is_constant(), "should not call otherwise");
duke@435 815 assert(dest->is_address(), "should not call otherwise");
duke@435 816 LIR_Const* c = src->as_constant_ptr();
duke@435 817 LIR_Address* addr = dest->as_address_ptr();
duke@435 818
never@739 819 int null_check_here = code_offset();
duke@435 820 switch (type) {
duke@435 821 case T_INT: // fall through
duke@435 822 case T_FLOAT:
iveresov@2344 823 __ movl(as_Address(addr), c->as_jint_bits());
iveresov@2344 824 break;
iveresov@2344 825
roland@1732 826 case T_ADDRESS:
iveresov@2344 827 __ movptr(as_Address(addr), c->as_jint_bits());
duke@435 828 break;
duke@435 829
duke@435 830 case T_OBJECT: // fall through
duke@435 831 case T_ARRAY:
duke@435 832 if (c->as_jobject() == NULL) {
iveresov@2344 833 if (UseCompressedOops && !wide) {
iveresov@2344 834 __ movl(as_Address(addr), (int32_t)NULL_WORD);
iveresov@2344 835 } else {
iveresov@2344 836 __ movptr(as_Address(addr), NULL_WORD);
iveresov@2344 837 }
duke@435 838 } else {
never@739 839 if (is_literal_address(addr)) {
never@739 840 ShouldNotReachHere();
never@739 841 __ movoop(as_Address(addr, noreg), c->as_jobject());
never@739 842 } else {
roland@1495 843 #ifdef _LP64
roland@1495 844 __ movoop(rscratch1, c->as_jobject());
iveresov@2344 845 if (UseCompressedOops && !wide) {
iveresov@2344 846 __ encode_heap_oop(rscratch1);
iveresov@2344 847 null_check_here = code_offset();
iveresov@2344 848 __ movl(as_Address_lo(addr), rscratch1);
iveresov@2344 849 } else {
iveresov@2344 850 null_check_here = code_offset();
iveresov@2344 851 __ movptr(as_Address_lo(addr), rscratch1);
iveresov@2344 852 }
roland@1495 853 #else
never@739 854 __ movoop(as_Address(addr), c->as_jobject());
roland@1495 855 #endif
never@739 856 }
duke@435 857 }
duke@435 858 break;
duke@435 859
duke@435 860 case T_LONG: // fall through
duke@435 861 case T_DOUBLE:
never@739 862 #ifdef _LP64
never@739 863 if (is_literal_address(addr)) {
never@739 864 ShouldNotReachHere();
never@739 865 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
never@739 866 } else {
never@739 867 __ movptr(r10, (intptr_t)c->as_jlong_bits());
never@739 868 null_check_here = code_offset();
never@739 869 __ movptr(as_Address_lo(addr), r10);
never@739 870 }
never@739 871 #else
never@739 872 // Always reachable in 32bit so this doesn't produce useless move literal
never@739 873 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
never@739 874 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
never@739 875 #endif // _LP64
duke@435 876 break;
duke@435 877
duke@435 878 case T_BOOLEAN: // fall through
duke@435 879 case T_BYTE:
duke@435 880 __ movb(as_Address(addr), c->as_jint() & 0xFF);
duke@435 881 break;
duke@435 882
duke@435 883 case T_CHAR: // fall through
duke@435 884 case T_SHORT:
duke@435 885 __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
duke@435 886 break;
duke@435 887
duke@435 888 default:
duke@435 889 ShouldNotReachHere();
duke@435 890 };
never@739 891
never@739 892 if (info != NULL) {
never@739 893 add_debug_info_for_null_check(null_check_here, info);
never@739 894 }
duke@435 895 }
duke@435 896
duke@435 897
duke@435 898 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
duke@435 899 assert(src->is_register(), "should not call otherwise");
duke@435 900 assert(dest->is_register(), "should not call otherwise");
duke@435 901
duke@435 902 // move between cpu-registers
duke@435 903 if (dest->is_single_cpu()) {
never@739 904 #ifdef _LP64
never@739 905 if (src->type() == T_LONG) {
never@739 906 // Can do LONG -> OBJECT
never@739 907 move_regs(src->as_register_lo(), dest->as_register());
never@739 908 return;
never@739 909 }
never@739 910 #endif
duke@435 911 assert(src->is_single_cpu(), "must match");
duke@435 912 if (src->type() == T_OBJECT) {
duke@435 913 __ verify_oop(src->as_register());
duke@435 914 }
duke@435 915 move_regs(src->as_register(), dest->as_register());
duke@435 916
duke@435 917 } else if (dest->is_double_cpu()) {
never@739 918 #ifdef _LP64
never@739 919 if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
never@739 920 // Surprising to me but we can see move of a long to t_object
never@739 921 __ verify_oop(src->as_register());
never@739 922 move_regs(src->as_register(), dest->as_register_lo());
never@739 923 return;
never@739 924 }
never@739 925 #endif
duke@435 926 assert(src->is_double_cpu(), "must match");
duke@435 927 Register f_lo = src->as_register_lo();
duke@435 928 Register f_hi = src->as_register_hi();
duke@435 929 Register t_lo = dest->as_register_lo();
duke@435 930 Register t_hi = dest->as_register_hi();
never@739 931 #ifdef _LP64
never@739 932 assert(f_hi == f_lo, "must be same");
never@739 933 assert(t_hi == t_lo, "must be same");
never@739 934 move_regs(f_lo, t_lo);
never@739 935 #else
duke@435 936 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
duke@435 937
never@739 938
duke@435 939 if (f_lo == t_hi && f_hi == t_lo) {
duke@435 940 swap_reg(f_lo, f_hi);
duke@435 941 } else if (f_hi == t_lo) {
duke@435 942 assert(f_lo != t_hi, "overwriting register");
duke@435 943 move_regs(f_hi, t_hi);
duke@435 944 move_regs(f_lo, t_lo);
duke@435 945 } else {
duke@435 946 assert(f_hi != t_lo, "overwriting register");
duke@435 947 move_regs(f_lo, t_lo);
duke@435 948 move_regs(f_hi, t_hi);
duke@435 949 }
never@739 950 #endif // LP64
duke@435 951
duke@435 952 // special moves from fpu-register to xmm-register
duke@435 953 // necessary for method results
duke@435 954 } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
duke@435 955 __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
duke@435 956 __ fld_s(Address(rsp, 0));
duke@435 957 } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
duke@435 958 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
duke@435 959 __ fld_d(Address(rsp, 0));
duke@435 960 } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
duke@435 961 __ fstp_s(Address(rsp, 0));
duke@435 962 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
duke@435 963 } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
duke@435 964 __ fstp_d(Address(rsp, 0));
duke@435 965 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
duke@435 966
duke@435 967 // move between xmm-registers
duke@435 968 } else if (dest->is_single_xmm()) {
duke@435 969 assert(src->is_single_xmm(), "must match");
duke@435 970 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
duke@435 971 } else if (dest->is_double_xmm()) {
duke@435 972 assert(src->is_double_xmm(), "must match");
duke@435 973 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
duke@435 974
duke@435 975 // move between fpu-registers (no instruction necessary because of fpu-stack)
duke@435 976 } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
duke@435 977 assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
duke@435 978 assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
duke@435 979 } else {
duke@435 980 ShouldNotReachHere();
duke@435 981 }
duke@435 982 }
duke@435 983
duke@435 984 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 985 assert(src->is_register(), "should not call otherwise");
duke@435 986 assert(dest->is_stack(), "should not call otherwise");
duke@435 987
duke@435 988 if (src->is_single_cpu()) {
duke@435 989 Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 990 if (type == T_OBJECT || type == T_ARRAY) {
duke@435 991 __ verify_oop(src->as_register());
never@739 992 __ movptr (dst, src->as_register());
never@739 993 } else {
never@739 994 __ movl (dst, src->as_register());
duke@435 995 }
duke@435 996
duke@435 997 } else if (src->is_double_cpu()) {
duke@435 998 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 999 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
never@739 1000 __ movptr (dstLO, src->as_register_lo());
never@739 1001 NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
duke@435 1002
duke@435 1003 } else if (src->is_single_xmm()) {
duke@435 1004 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1005 __ movflt(dst_addr, src->as_xmm_float_reg());
duke@435 1006
duke@435 1007 } else if (src->is_double_xmm()) {
duke@435 1008 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 1009 __ movdbl(dst_addr, src->as_xmm_double_reg());
duke@435 1010
duke@435 1011 } else if (src->is_single_fpu()) {
duke@435 1012 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 1013 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1014 if (pop_fpu_stack) __ fstp_s (dst_addr);
duke@435 1015 else __ fst_s (dst_addr);
duke@435 1016
duke@435 1017 } else if (src->is_double_fpu()) {
duke@435 1018 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 1019 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 1020 if (pop_fpu_stack) __ fstp_d (dst_addr);
duke@435 1021 else __ fst_d (dst_addr);
duke@435 1022
duke@435 1023 } else {
duke@435 1024 ShouldNotReachHere();
duke@435 1025 }
duke@435 1026 }
duke@435 1027
duke@435 1028
iveresov@2344 1029 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
duke@435 1030 LIR_Address* to_addr = dest->as_address_ptr();
duke@435 1031 PatchingStub* patch = NULL;
iveresov@2344 1032 Register compressed_src = rscratch1;
duke@435 1033
duke@435 1034 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 1035 __ verify_oop(src->as_register());
iveresov@2344 1036 #ifdef _LP64
iveresov@2344 1037 if (UseCompressedOops && !wide) {
iveresov@2344 1038 __ movptr(compressed_src, src->as_register());
iveresov@2344 1039 __ encode_heap_oop(compressed_src);
iveresov@2344 1040 }
iveresov@2344 1041 #endif
duke@435 1042 }
iveresov@2344 1043
duke@435 1044 if (patch_code != lir_patch_none) {
duke@435 1045 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1046 Address toa = as_Address(to_addr);
never@739 1047 assert(toa.disp() != 0, "must have");
duke@435 1048 }
iveresov@2344 1049
iveresov@2344 1050 int null_check_here = code_offset();
duke@435 1051 switch (type) {
duke@435 1052 case T_FLOAT: {
duke@435 1053 if (src->is_single_xmm()) {
duke@435 1054 __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
duke@435 1055 } else {
duke@435 1056 assert(src->is_single_fpu(), "must be");
duke@435 1057 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 1058 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr));
duke@435 1059 else __ fst_s (as_Address(to_addr));
duke@435 1060 }
duke@435 1061 break;
duke@435 1062 }
duke@435 1063
duke@435 1064 case T_DOUBLE: {
duke@435 1065 if (src->is_double_xmm()) {
duke@435 1066 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
duke@435 1067 } else {
duke@435 1068 assert(src->is_double_fpu(), "must be");
duke@435 1069 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 1070 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr));
duke@435 1071 else __ fst_d (as_Address(to_addr));
duke@435 1072 }
duke@435 1073 break;
duke@435 1074 }
duke@435 1075
duke@435 1076 case T_ARRAY: // fall through
duke@435 1077 case T_OBJECT: // fall through
iveresov@2344 1078 if (UseCompressedOops && !wide) {
iveresov@2344 1079 __ movl(as_Address(to_addr), compressed_src);
iveresov@2344 1080 } else {
iveresov@2344 1081 __ movptr(as_Address(to_addr), src->as_register());
iveresov@2344 1082 }
iveresov@2344 1083 break;
iveresov@2344 1084 case T_ADDRESS:
never@739 1085 __ movptr(as_Address(to_addr), src->as_register());
never@739 1086 break;
duke@435 1087 case T_INT:
duke@435 1088 __ movl(as_Address(to_addr), src->as_register());
duke@435 1089 break;
duke@435 1090
duke@435 1091 case T_LONG: {
duke@435 1092 Register from_lo = src->as_register_lo();
duke@435 1093 Register from_hi = src->as_register_hi();
never@739 1094 #ifdef _LP64
never@739 1095 __ movptr(as_Address_lo(to_addr), from_lo);
never@739 1096 #else
duke@435 1097 Register base = to_addr->base()->as_register();
duke@435 1098 Register index = noreg;
duke@435 1099 if (to_addr->index()->is_register()) {
duke@435 1100 index = to_addr->index()->as_register();
duke@435 1101 }
duke@435 1102 if (base == from_lo || index == from_lo) {
duke@435 1103 assert(base != from_hi, "can't be");
duke@435 1104 assert(index == noreg || (index != base && index != from_hi), "can't handle this");
duke@435 1105 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1106 if (patch != NULL) {
duke@435 1107 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1108 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1109 patch_code = lir_patch_low;
duke@435 1110 }
duke@435 1111 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1112 } else {
duke@435 1113 assert(index == noreg || (index != base && index != from_lo), "can't handle this");
duke@435 1114 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1115 if (patch != NULL) {
duke@435 1116 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1117 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1118 patch_code = lir_patch_high;
duke@435 1119 }
duke@435 1120 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1121 }
never@739 1122 #endif // _LP64
duke@435 1123 break;
duke@435 1124 }
duke@435 1125
duke@435 1126 case T_BYTE: // fall through
duke@435 1127 case T_BOOLEAN: {
duke@435 1128 Register src_reg = src->as_register();
duke@435 1129 Address dst_addr = as_Address(to_addr);
duke@435 1130 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1131 __ movb(dst_addr, src_reg);
duke@435 1132 break;
duke@435 1133 }
duke@435 1134
duke@435 1135 case T_CHAR: // fall through
duke@435 1136 case T_SHORT:
duke@435 1137 __ movw(as_Address(to_addr), src->as_register());
duke@435 1138 break;
duke@435 1139
duke@435 1140 default:
duke@435 1141 ShouldNotReachHere();
duke@435 1142 }
iveresov@2344 1143 if (info != NULL) {
iveresov@2344 1144 add_debug_info_for_null_check(null_check_here, info);
iveresov@2344 1145 }
duke@435 1146
duke@435 1147 if (patch_code != lir_patch_none) {
duke@435 1148 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
duke@435 1149 }
duke@435 1150 }
duke@435 1151
duke@435 1152
duke@435 1153 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1154 assert(src->is_stack(), "should not call otherwise");
duke@435 1155 assert(dest->is_register(), "should not call otherwise");
duke@435 1156
duke@435 1157 if (dest->is_single_cpu()) {
duke@435 1158 if (type == T_ARRAY || type == T_OBJECT) {
never@739 1159 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1160 __ verify_oop(dest->as_register());
never@739 1161 } else {
never@739 1162 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1163 }
duke@435 1164
duke@435 1165 } else if (dest->is_double_cpu()) {
duke@435 1166 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 1167 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
never@739 1168 __ movptr(dest->as_register_lo(), src_addr_LO);
never@739 1169 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
duke@435 1170
duke@435 1171 } else if (dest->is_single_xmm()) {
duke@435 1172 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1173 __ movflt(dest->as_xmm_float_reg(), src_addr);
duke@435 1174
duke@435 1175 } else if (dest->is_double_xmm()) {
duke@435 1176 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1177 __ movdbl(dest->as_xmm_double_reg(), src_addr);
duke@435 1178
duke@435 1179 } else if (dest->is_single_fpu()) {
duke@435 1180 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1181 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1182 __ fld_s(src_addr);
duke@435 1183
duke@435 1184 } else if (dest->is_double_fpu()) {
duke@435 1185 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1186 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1187 __ fld_d(src_addr);
duke@435 1188
duke@435 1189 } else {
duke@435 1190 ShouldNotReachHere();
duke@435 1191 }
duke@435 1192 }
duke@435 1193
duke@435 1194
duke@435 1195 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1196 if (src->is_single_stack()) {
never@739 1197 if (type == T_OBJECT || type == T_ARRAY) {
never@739 1198 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1199 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
never@739 1200 } else {
roland@1495 1201 #ifndef _LP64
never@739 1202 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1203 __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
roland@1495 1204 #else
roland@1495 1205 //no pushl on 64bits
roland@1495 1206 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
roland@1495 1207 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
roland@1495 1208 #endif
never@739 1209 }
duke@435 1210
duke@435 1211 } else if (src->is_double_stack()) {
never@739 1212 #ifdef _LP64
never@739 1213 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
never@739 1214 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
never@739 1215 #else
duke@435 1216 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
never@739 1217 // push and pop the part at src + wordSize, adding wordSize for the previous push
never@756 1218 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
never@756 1219 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
duke@435 1220 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
never@739 1221 #endif // _LP64
duke@435 1222
duke@435 1223 } else {
duke@435 1224 ShouldNotReachHere();
duke@435 1225 }
duke@435 1226 }
duke@435 1227
duke@435 1228
iveresov@2344 1229 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
duke@435 1230 assert(src->is_address(), "should not call otherwise");
duke@435 1231 assert(dest->is_register(), "should not call otherwise");
duke@435 1232
duke@435 1233 LIR_Address* addr = src->as_address_ptr();
duke@435 1234 Address from_addr = as_Address(addr);
duke@435 1235
duke@435 1236 switch (type) {
duke@435 1237 case T_BOOLEAN: // fall through
duke@435 1238 case T_BYTE: // fall through
duke@435 1239 case T_CHAR: // fall through
duke@435 1240 case T_SHORT:
duke@435 1241 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
duke@435 1242 // on pre P6 processors we may get partial register stalls
duke@435 1243 // so blow away the value of to_rinfo before loading a
duke@435 1244 // partial word into it. Do it here so that it precedes
duke@435 1245 // the potential patch point below.
never@739 1246 __ xorptr(dest->as_register(), dest->as_register());
duke@435 1247 }
duke@435 1248 break;
duke@435 1249 }
duke@435 1250
duke@435 1251 PatchingStub* patch = NULL;
duke@435 1252 if (patch_code != lir_patch_none) {
duke@435 1253 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1254 assert(from_addr.disp() != 0, "must have");
duke@435 1255 }
duke@435 1256 if (info != NULL) {
duke@435 1257 add_debug_info_for_null_check_here(info);
duke@435 1258 }
duke@435 1259
duke@435 1260 switch (type) {
duke@435 1261 case T_FLOAT: {
duke@435 1262 if (dest->is_single_xmm()) {
duke@435 1263 __ movflt(dest->as_xmm_float_reg(), from_addr);
duke@435 1264 } else {
duke@435 1265 assert(dest->is_single_fpu(), "must be");
duke@435 1266 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1267 __ fld_s(from_addr);
duke@435 1268 }
duke@435 1269 break;
duke@435 1270 }
duke@435 1271
duke@435 1272 case T_DOUBLE: {
duke@435 1273 if (dest->is_double_xmm()) {
duke@435 1274 __ movdbl(dest->as_xmm_double_reg(), from_addr);
duke@435 1275 } else {
duke@435 1276 assert(dest->is_double_fpu(), "must be");
duke@435 1277 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1278 __ fld_d(from_addr);
duke@435 1279 }
duke@435 1280 break;
duke@435 1281 }
duke@435 1282
duke@435 1283 case T_OBJECT: // fall through
duke@435 1284 case T_ARRAY: // fall through
iveresov@2344 1285 if (UseCompressedOops && !wide) {
iveresov@2344 1286 __ movl(dest->as_register(), from_addr);
iveresov@2344 1287 } else {
iveresov@2344 1288 __ movptr(dest->as_register(), from_addr);
iveresov@2344 1289 }
iveresov@2344 1290 break;
iveresov@2344 1291
iveresov@2344 1292 case T_ADDRESS:
never@739 1293 __ movptr(dest->as_register(), from_addr);
never@739 1294 break;
duke@435 1295 case T_INT:
iveresov@1833 1296 __ movl(dest->as_register(), from_addr);
duke@435 1297 break;
duke@435 1298
duke@435 1299 case T_LONG: {
duke@435 1300 Register to_lo = dest->as_register_lo();
duke@435 1301 Register to_hi = dest->as_register_hi();
never@739 1302 #ifdef _LP64
never@739 1303 __ movptr(to_lo, as_Address_lo(addr));
never@739 1304 #else
duke@435 1305 Register base = addr->base()->as_register();
duke@435 1306 Register index = noreg;
duke@435 1307 if (addr->index()->is_register()) {
duke@435 1308 index = addr->index()->as_register();
duke@435 1309 }
duke@435 1310 if ((base == to_lo && index == to_hi) ||
duke@435 1311 (base == to_hi && index == to_lo)) {
duke@435 1312 // addresses with 2 registers are only formed as a result of
duke@435 1313 // array access so this code will never have to deal with
duke@435 1314 // patches or null checks.
duke@435 1315 assert(info == NULL && patch == NULL, "must be");
never@739 1316 __ lea(to_hi, as_Address(addr));
duke@435 1317 __ movl(to_lo, Address(to_hi, 0));
duke@435 1318 __ movl(to_hi, Address(to_hi, BytesPerWord));
duke@435 1319 } else if (base == to_lo || index == to_lo) {
duke@435 1320 assert(base != to_hi, "can't be");
duke@435 1321 assert(index == noreg || (index != base && index != to_hi), "can't handle this");
duke@435 1322 __ movl(to_hi, as_Address_hi(addr));
duke@435 1323 if (patch != NULL) {
duke@435 1324 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1325 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1326 patch_code = lir_patch_low;
duke@435 1327 }
duke@435 1328 __ movl(to_lo, as_Address_lo(addr));
duke@435 1329 } else {
duke@435 1330 assert(index == noreg || (index != base && index != to_lo), "can't handle this");
duke@435 1331 __ movl(to_lo, as_Address_lo(addr));
duke@435 1332 if (patch != NULL) {
duke@435 1333 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1334 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1335 patch_code = lir_patch_high;
duke@435 1336 }
duke@435 1337 __ movl(to_hi, as_Address_hi(addr));
duke@435 1338 }
never@739 1339 #endif // _LP64
duke@435 1340 break;
duke@435 1341 }
duke@435 1342
duke@435 1343 case T_BOOLEAN: // fall through
duke@435 1344 case T_BYTE: {
duke@435 1345 Register dest_reg = dest->as_register();
duke@435 1346 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1347 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1348 __ movsbl(dest_reg, from_addr);
duke@435 1349 } else {
duke@435 1350 __ movb(dest_reg, from_addr);
duke@435 1351 __ shll(dest_reg, 24);
duke@435 1352 __ sarl(dest_reg, 24);
duke@435 1353 }
duke@435 1354 break;
duke@435 1355 }
duke@435 1356
duke@435 1357 case T_CHAR: {
duke@435 1358 Register dest_reg = dest->as_register();
duke@435 1359 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1360 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1361 __ movzwl(dest_reg, from_addr);
duke@435 1362 } else {
duke@435 1363 __ movw(dest_reg, from_addr);
duke@435 1364 }
duke@435 1365 break;
duke@435 1366 }
duke@435 1367
duke@435 1368 case T_SHORT: {
duke@435 1369 Register dest_reg = dest->as_register();
duke@435 1370 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1371 __ movswl(dest_reg, from_addr);
duke@435 1372 } else {
duke@435 1373 __ movw(dest_reg, from_addr);
duke@435 1374 __ shll(dest_reg, 16);
duke@435 1375 __ sarl(dest_reg, 16);
duke@435 1376 }
duke@435 1377 break;
duke@435 1378 }
duke@435 1379
duke@435 1380 default:
duke@435 1381 ShouldNotReachHere();
duke@435 1382 }
duke@435 1383
duke@435 1384 if (patch != NULL) {
duke@435 1385 patching_epilog(patch, patch_code, addr->base()->as_register(), info);
duke@435 1386 }
duke@435 1387
duke@435 1388 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 1389 #ifdef _LP64
iveresov@2344 1390 if (UseCompressedOops && !wide) {
iveresov@2344 1391 __ decode_heap_oop(dest->as_register());
iveresov@2344 1392 }
iveresov@2344 1393 #endif
duke@435 1394 __ verify_oop(dest->as_register());
duke@435 1395 }
duke@435 1396 }
duke@435 1397
duke@435 1398
duke@435 1399 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1400 LIR_Address* addr = src->as_address_ptr();
duke@435 1401 Address from_addr = as_Address(addr);
duke@435 1402
duke@435 1403 if (VM_Version::supports_sse()) {
duke@435 1404 switch (ReadPrefetchInstr) {
duke@435 1405 case 0:
duke@435 1406 __ prefetchnta(from_addr); break;
duke@435 1407 case 1:
duke@435 1408 __ prefetcht0(from_addr); break;
duke@435 1409 case 2:
duke@435 1410 __ prefetcht2(from_addr); break;
duke@435 1411 default:
duke@435 1412 ShouldNotReachHere(); break;
duke@435 1413 }
duke@435 1414 } else if (VM_Version::supports_3dnow()) {
duke@435 1415 __ prefetchr(from_addr);
duke@435 1416 }
duke@435 1417 }
duke@435 1418
duke@435 1419
duke@435 1420 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1421 LIR_Address* addr = src->as_address_ptr();
duke@435 1422 Address from_addr = as_Address(addr);
duke@435 1423
duke@435 1424 if (VM_Version::supports_sse()) {
duke@435 1425 switch (AllocatePrefetchInstr) {
duke@435 1426 case 0:
duke@435 1427 __ prefetchnta(from_addr); break;
duke@435 1428 case 1:
duke@435 1429 __ prefetcht0(from_addr); break;
duke@435 1430 case 2:
duke@435 1431 __ prefetcht2(from_addr); break;
duke@435 1432 case 3:
duke@435 1433 __ prefetchw(from_addr); break;
duke@435 1434 default:
duke@435 1435 ShouldNotReachHere(); break;
duke@435 1436 }
duke@435 1437 } else if (VM_Version::supports_3dnow()) {
duke@435 1438 __ prefetchw(from_addr);
duke@435 1439 }
duke@435 1440 }
duke@435 1441
duke@435 1442
duke@435 1443 NEEDS_CLEANUP; // This could be static?
duke@435 1444 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
kvn@464 1445 int elem_size = type2aelembytes(type);
duke@435 1446 switch (elem_size) {
duke@435 1447 case 1: return Address::times_1;
duke@435 1448 case 2: return Address::times_2;
duke@435 1449 case 4: return Address::times_4;
duke@435 1450 case 8: return Address::times_8;
duke@435 1451 }
duke@435 1452 ShouldNotReachHere();
duke@435 1453 return Address::no_scale;
duke@435 1454 }
duke@435 1455
duke@435 1456
duke@435 1457 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 1458 switch (op->code()) {
duke@435 1459 case lir_idiv:
duke@435 1460 case lir_irem:
duke@435 1461 arithmetic_idiv(op->code(),
duke@435 1462 op->in_opr1(),
duke@435 1463 op->in_opr2(),
duke@435 1464 op->in_opr3(),
duke@435 1465 op->result_opr(),
duke@435 1466 op->info());
duke@435 1467 break;
duke@435 1468 default: ShouldNotReachHere(); break;
duke@435 1469 }
duke@435 1470 }
duke@435 1471
duke@435 1472 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 1473 #ifdef ASSERT
duke@435 1474 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 1475 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 1476 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 1477 #endif
duke@435 1478
duke@435 1479 if (op->cond() == lir_cond_always) {
duke@435 1480 if (op->info() != NULL) add_debug_info_for_branch(op->info());
duke@435 1481 __ jmp (*(op->label()));
duke@435 1482 } else {
duke@435 1483 Assembler::Condition acond = Assembler::zero;
duke@435 1484 if (op->code() == lir_cond_float_branch) {
duke@435 1485 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 1486 __ jcc(Assembler::parity, *(op->ublock()->label()));
duke@435 1487 switch(op->cond()) {
duke@435 1488 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1489 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1490 case lir_cond_less: acond = Assembler::below; break;
duke@435 1491 case lir_cond_lessEqual: acond = Assembler::belowEqual; break;
duke@435 1492 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
duke@435 1493 case lir_cond_greater: acond = Assembler::above; break;
duke@435 1494 default: ShouldNotReachHere();
duke@435 1495 }
duke@435 1496 } else {
duke@435 1497 switch (op->cond()) {
duke@435 1498 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1499 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1500 case lir_cond_less: acond = Assembler::less; break;
duke@435 1501 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1502 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
duke@435 1503 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1504 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
duke@435 1505 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
duke@435 1506 default: ShouldNotReachHere();
duke@435 1507 }
duke@435 1508 }
duke@435 1509 __ jcc(acond,*(op->label()));
duke@435 1510 }
duke@435 1511 }
duke@435 1512
duke@435 1513 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 1514 LIR_Opr src = op->in_opr();
duke@435 1515 LIR_Opr dest = op->result_opr();
duke@435 1516
duke@435 1517 switch (op->bytecode()) {
duke@435 1518 case Bytecodes::_i2l:
never@739 1519 #ifdef _LP64
never@739 1520 __ movl2ptr(dest->as_register_lo(), src->as_register());
never@739 1521 #else
duke@435 1522 move_regs(src->as_register(), dest->as_register_lo());
duke@435 1523 move_regs(src->as_register(), dest->as_register_hi());
duke@435 1524 __ sarl(dest->as_register_hi(), 31);
never@739 1525 #endif // LP64
duke@435 1526 break;
duke@435 1527
duke@435 1528 case Bytecodes::_l2i:
duke@435 1529 move_regs(src->as_register_lo(), dest->as_register());
duke@435 1530 break;
duke@435 1531
duke@435 1532 case Bytecodes::_i2b:
duke@435 1533 move_regs(src->as_register(), dest->as_register());
duke@435 1534 __ sign_extend_byte(dest->as_register());
duke@435 1535 break;
duke@435 1536
duke@435 1537 case Bytecodes::_i2c:
duke@435 1538 move_regs(src->as_register(), dest->as_register());
duke@435 1539 __ andl(dest->as_register(), 0xFFFF);
duke@435 1540 break;
duke@435 1541
duke@435 1542 case Bytecodes::_i2s:
duke@435 1543 move_regs(src->as_register(), dest->as_register());
duke@435 1544 __ sign_extend_short(dest->as_register());
duke@435 1545 break;
duke@435 1546
duke@435 1547
duke@435 1548 case Bytecodes::_f2d:
duke@435 1549 case Bytecodes::_d2f:
duke@435 1550 if (dest->is_single_xmm()) {
duke@435 1551 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
duke@435 1552 } else if (dest->is_double_xmm()) {
duke@435 1553 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
duke@435 1554 } else {
duke@435 1555 assert(src->fpu() == dest->fpu(), "register must be equal");
duke@435 1556 // do nothing (float result is rounded later through spilling)
duke@435 1557 }
duke@435 1558 break;
duke@435 1559
duke@435 1560 case Bytecodes::_i2f:
duke@435 1561 case Bytecodes::_i2d:
duke@435 1562 if (dest->is_single_xmm()) {
never@739 1563 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
duke@435 1564 } else if (dest->is_double_xmm()) {
never@739 1565 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
duke@435 1566 } else {
duke@435 1567 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1568 __ movl(Address(rsp, 0), src->as_register());
duke@435 1569 __ fild_s(Address(rsp, 0));
duke@435 1570 }
duke@435 1571 break;
duke@435 1572
duke@435 1573 case Bytecodes::_f2i:
duke@435 1574 case Bytecodes::_d2i:
duke@435 1575 if (src->is_single_xmm()) {
never@739 1576 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
duke@435 1577 } else if (src->is_double_xmm()) {
never@739 1578 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
duke@435 1579 } else {
duke@435 1580 assert(src->fpu() == 0, "input must be on TOS");
duke@435 1581 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
duke@435 1582 __ fist_s(Address(rsp, 0));
duke@435 1583 __ movl(dest->as_register(), Address(rsp, 0));
duke@435 1584 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1585 }
duke@435 1586
duke@435 1587 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
duke@435 1588 assert(op->stub() != NULL, "stub required");
duke@435 1589 __ cmpl(dest->as_register(), 0x80000000);
duke@435 1590 __ jcc(Assembler::equal, *op->stub()->entry());
duke@435 1591 __ bind(*op->stub()->continuation());
duke@435 1592 break;
duke@435 1593
duke@435 1594 case Bytecodes::_l2f:
duke@435 1595 case Bytecodes::_l2d:
duke@435 1596 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
duke@435 1597 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1598
never@739 1599 __ movptr(Address(rsp, 0), src->as_register_lo());
never@739 1600 NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
duke@435 1601 __ fild_d(Address(rsp, 0));
duke@435 1602 // float result is rounded later through spilling
duke@435 1603 break;
duke@435 1604
duke@435 1605 case Bytecodes::_f2l:
duke@435 1606 case Bytecodes::_d2l:
duke@435 1607 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
duke@435 1608 assert(src->fpu() == 0, "input must be on TOS");
never@739 1609 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
duke@435 1610
duke@435 1611 // instruction sequence too long to inline it here
duke@435 1612 {
duke@435 1613 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
duke@435 1614 }
duke@435 1615 break;
duke@435 1616
duke@435 1617 default: ShouldNotReachHere();
duke@435 1618 }
duke@435 1619 }
duke@435 1620
duke@435 1621 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 1622 if (op->init_check()) {
duke@435 1623 __ cmpl(Address(op->klass()->as_register(),
duke@435 1624 instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
duke@435 1625 instanceKlass::fully_initialized);
duke@435 1626 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 1627 __ jcc(Assembler::notEqual, *op->stub()->entry());
duke@435 1628 }
duke@435 1629 __ allocate_object(op->obj()->as_register(),
duke@435 1630 op->tmp1()->as_register(),
duke@435 1631 op->tmp2()->as_register(),
duke@435 1632 op->header_size(),
duke@435 1633 op->object_size(),
duke@435 1634 op->klass()->as_register(),
duke@435 1635 *op->stub()->entry());
duke@435 1636 __ bind(*op->stub()->continuation());
duke@435 1637 }
duke@435 1638
duke@435 1639 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
iveresov@2432 1640 Register len = op->len()->as_register();
iveresov@2432 1641 LP64_ONLY( __ movslq(len, len); )
iveresov@2432 1642
duke@435 1643 if (UseSlowPath ||
duke@435 1644 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 1645 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
duke@435 1646 __ jmp(*op->stub()->entry());
duke@435 1647 } else {
duke@435 1648 Register tmp1 = op->tmp1()->as_register();
duke@435 1649 Register tmp2 = op->tmp2()->as_register();
duke@435 1650 Register tmp3 = op->tmp3()->as_register();
duke@435 1651 if (len == tmp1) {
duke@435 1652 tmp1 = tmp3;
duke@435 1653 } else if (len == tmp2) {
duke@435 1654 tmp2 = tmp3;
duke@435 1655 } else if (len == tmp3) {
duke@435 1656 // everything is ok
duke@435 1657 } else {
never@739 1658 __ mov(tmp3, len);
duke@435 1659 }
duke@435 1660 __ allocate_array(op->obj()->as_register(),
duke@435 1661 len,
duke@435 1662 tmp1,
duke@435 1663 tmp2,
duke@435 1664 arrayOopDesc::header_size(op->type()),
duke@435 1665 array_element_size(op->type()),
duke@435 1666 op->klass()->as_register(),
duke@435 1667 *op->stub()->entry());
duke@435 1668 }
duke@435 1669 __ bind(*op->stub()->continuation());
duke@435 1670 }
duke@435 1671
iveresov@2138 1672 void LIR_Assembler::type_profile_helper(Register mdo,
iveresov@2138 1673 ciMethodData *md, ciProfileData *data,
iveresov@2138 1674 Register recv, Label* update_done) {
iveresov@2163 1675 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
iveresov@2138 1676 Label next_test;
iveresov@2138 1677 // See if the receiver is receiver[n].
iveresov@2138 1678 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
iveresov@2138 1679 __ jccb(Assembler::notEqual, next_test);
iveresov@2138 1680 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
iveresov@2138 1681 __ addptr(data_addr, DataLayout::counter_increment);
iveresov@2146 1682 __ jmp(*update_done);
iveresov@2138 1683 __ bind(next_test);
iveresov@2138 1684 }
iveresov@2138 1685
iveresov@2138 1686 // Didn't find receiver; find next empty slot and fill it in
iveresov@2163 1687 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
iveresov@2138 1688 Label next_test;
iveresov@2138 1689 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
iveresov@2138 1690 __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
iveresov@2138 1691 __ jccb(Assembler::notEqual, next_test);
iveresov@2138 1692 __ movptr(recv_addr, recv);
iveresov@2138 1693 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
iveresov@2146 1694 __ jmp(*update_done);
iveresov@2138 1695 __ bind(next_test);
iveresov@2138 1696 }
iveresov@2138 1697 }
iveresov@2138 1698
iveresov@2146 1699 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
iveresov@2138 1700 // we always need a stub for the failure case.
iveresov@2138 1701 CodeStub* stub = op->stub();
iveresov@2138 1702 Register obj = op->object()->as_register();
iveresov@2138 1703 Register k_RInfo = op->tmp1()->as_register();
iveresov@2138 1704 Register klass_RInfo = op->tmp2()->as_register();
iveresov@2138 1705 Register dst = op->result_opr()->as_register();
iveresov@2138 1706 ciKlass* k = op->klass();
iveresov@2138 1707 Register Rtmp1 = noreg;
iveresov@2138 1708
iveresov@2138 1709 // check if it needs to be profiled
iveresov@2138 1710 ciMethodData* md;
iveresov@2138 1711 ciProfileData* data;
iveresov@2138 1712
iveresov@2138 1713 if (op->should_profile()) {
iveresov@2138 1714 ciMethod* method = op->profiled_method();
iveresov@2138 1715 assert(method != NULL, "Should have method");
iveresov@2138 1716 int bci = op->profiled_bci();
iveresov@2349 1717 md = method->method_data_or_null();
iveresov@2349 1718 assert(md != NULL, "Sanity");
iveresov@2138 1719 data = md->bci_to_data(bci);
iveresov@2146 1720 assert(data != NULL, "need data for type check");
iveresov@2146 1721 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2138 1722 }
iveresov@2146 1723 Label profile_cast_success, profile_cast_failure;
iveresov@2146 1724 Label *success_target = op->should_profile() ? &profile_cast_success : success;
iveresov@2146 1725 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
iveresov@2138 1726
iveresov@2138 1727 if (obj == k_RInfo) {
iveresov@2138 1728 k_RInfo = dst;
iveresov@2138 1729 } else if (obj == klass_RInfo) {
iveresov@2138 1730 klass_RInfo = dst;
iveresov@2138 1731 }
iveresov@2344 1732 if (k->is_loaded() && !UseCompressedOops) {
iveresov@2138 1733 select_different_registers(obj, dst, k_RInfo, klass_RInfo);
iveresov@2138 1734 } else {
iveresov@2138 1735 Rtmp1 = op->tmp3()->as_register();
iveresov@2138 1736 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
iveresov@2138 1737 }
iveresov@2138 1738
iveresov@2138 1739 assert_different_registers(obj, k_RInfo, klass_RInfo);
iveresov@2138 1740 if (!k->is_loaded()) {
iveresov@2138 1741 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
iveresov@2138 1742 } else {
iveresov@2138 1743 #ifdef _LP64
iveresov@2138 1744 __ movoop(k_RInfo, k->constant_encoding());
iveresov@2138 1745 #endif // _LP64
iveresov@2138 1746 }
iveresov@2138 1747 assert(obj != k_RInfo, "must be different");
iveresov@2138 1748
iveresov@2138 1749 __ cmpptr(obj, (int32_t)NULL_WORD);
iveresov@2138 1750 if (op->should_profile()) {
iveresov@2146 1751 Label not_null;
iveresov@2146 1752 __ jccb(Assembler::notEqual, not_null);
iveresov@2146 1753 // Object is null; update MDO and exit
iveresov@2138 1754 Register mdo = klass_RInfo;
iveresov@2138 1755 __ movoop(mdo, md->constant_encoding());
iveresov@2138 1756 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
iveresov@2138 1757 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
iveresov@2138 1758 __ orl(data_addr, header_bits);
iveresov@2146 1759 __ jmp(*obj_is_null);
iveresov@2146 1760 __ bind(not_null);
iveresov@2138 1761 } else {
iveresov@2146 1762 __ jcc(Assembler::equal, *obj_is_null);
iveresov@2138 1763 }
iveresov@2138 1764 __ verify_oop(obj);
iveresov@2138 1765
iveresov@2138 1766 if (op->fast_check()) {
iveresov@2146 1767 // get object class
iveresov@2138 1768 // not a safepoint as obj null check happens earlier
iveresov@2138 1769 #ifdef _LP64
iveresov@2344 1770 if (UseCompressedOops) {
iveresov@2344 1771 __ load_klass(Rtmp1, obj);
iveresov@2344 1772 __ cmpptr(k_RInfo, Rtmp1);
iveresov@2138 1773 } else {
iveresov@2138 1774 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2138 1775 }
iveresov@2344 1776 #else
iveresov@2344 1777 if (k->is_loaded()) {
iveresov@2344 1778 __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
iveresov@2344 1779 } else {
iveresov@2344 1780 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2344 1781 }
iveresov@2344 1782 #endif
iveresov@2138 1783 __ jcc(Assembler::notEqual, *failure_target);
iveresov@2146 1784 // successful cast, fall through to profile or jump
iveresov@2138 1785 } else {
iveresov@2138 1786 // get object class
iveresov@2138 1787 // not a safepoint as obj null check happens earlier
iveresov@2344 1788 __ load_klass(klass_RInfo, obj);
iveresov@2138 1789 if (k->is_loaded()) {
iveresov@2138 1790 // See if we get an immediate positive hit
iveresov@2138 1791 #ifdef _LP64
iveresov@2138 1792 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
iveresov@2138 1793 #else
iveresov@2138 1794 __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
iveresov@2138 1795 #endif // _LP64
iveresov@2138 1796 if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
iveresov@2138 1797 __ jcc(Assembler::notEqual, *failure_target);
iveresov@2146 1798 // successful cast, fall through to profile or jump
iveresov@2138 1799 } else {
iveresov@2138 1800 // See if we get an immediate positive hit
iveresov@2146 1801 __ jcc(Assembler::equal, *success_target);
iveresov@2138 1802 // check for self
iveresov@2138 1803 #ifdef _LP64
iveresov@2138 1804 __ cmpptr(klass_RInfo, k_RInfo);
iveresov@2138 1805 #else
iveresov@2138 1806 __ cmpoop(klass_RInfo, k->constant_encoding());
iveresov@2138 1807 #endif // _LP64
iveresov@2146 1808 __ jcc(Assembler::equal, *success_target);
iveresov@2138 1809
iveresov@2138 1810 __ push(klass_RInfo);
iveresov@2138 1811 #ifdef _LP64
iveresov@2138 1812 __ push(k_RInfo);
iveresov@2138 1813 #else
iveresov@2138 1814 __ pushoop(k->constant_encoding());
iveresov@2138 1815 #endif // _LP64
iveresov@2138 1816 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
iveresov@2138 1817 __ pop(klass_RInfo);
iveresov@2138 1818 __ pop(klass_RInfo);
iveresov@2138 1819 // result is a boolean
iveresov@2138 1820 __ cmpl(klass_RInfo, 0);
iveresov@2138 1821 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1822 // successful cast, fall through to profile or jump
iveresov@2138 1823 }
iveresov@2138 1824 } else {
iveresov@2138 1825 // perform the fast part of the checking logic
iveresov@2146 1826 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
iveresov@2138 1827 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
iveresov@2138 1828 __ push(klass_RInfo);
iveresov@2138 1829 __ push(k_RInfo);
iveresov@2138 1830 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
iveresov@2138 1831 __ pop(klass_RInfo);
iveresov@2138 1832 __ pop(k_RInfo);
iveresov@2138 1833 // result is a boolean
iveresov@2138 1834 __ cmpl(k_RInfo, 0);
iveresov@2138 1835 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1836 // successful cast, fall through to profile or jump
iveresov@2138 1837 }
iveresov@2138 1838 }
iveresov@2138 1839 if (op->should_profile()) {
iveresov@2138 1840 Register mdo = klass_RInfo, recv = k_RInfo;
iveresov@2146 1841 __ bind(profile_cast_success);
iveresov@2138 1842 __ movoop(mdo, md->constant_encoding());
iveresov@2344 1843 __ load_klass(recv, obj);
iveresov@2138 1844 Label update_done;
iveresov@2146 1845 type_profile_helper(mdo, md, data, recv, success);
iveresov@2146 1846 __ jmp(*success);
iveresov@2138 1847
iveresov@2138 1848 __ bind(profile_cast_failure);
iveresov@2138 1849 __ movoop(mdo, md->constant_encoding());
iveresov@2138 1850 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
iveresov@2138 1851 __ subptr(counter_addr, DataLayout::counter_increment);
iveresov@2146 1852 __ jmp(*failure);
iveresov@2138 1853 }
iveresov@2146 1854 __ jmp(*success);
iveresov@2138 1855 }
duke@435 1856
iveresov@2146 1857
duke@435 1858 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 1859 LIR_Code code = op->code();
duke@435 1860 if (code == lir_store_check) {
duke@435 1861 Register value = op->object()->as_register();
duke@435 1862 Register array = op->array()->as_register();
duke@435 1863 Register k_RInfo = op->tmp1()->as_register();
duke@435 1864 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1865 Register Rtmp1 = op->tmp3()->as_register();
duke@435 1866
duke@435 1867 CodeStub* stub = op->stub();
iveresov@2146 1868
iveresov@2146 1869 // check if it needs to be profiled
iveresov@2146 1870 ciMethodData* md;
iveresov@2146 1871 ciProfileData* data;
iveresov@2146 1872
iveresov@2146 1873 if (op->should_profile()) {
iveresov@2146 1874 ciMethod* method = op->profiled_method();
iveresov@2146 1875 assert(method != NULL, "Should have method");
iveresov@2146 1876 int bci = op->profiled_bci();
iveresov@2349 1877 md = method->method_data_or_null();
iveresov@2349 1878 assert(md != NULL, "Sanity");
iveresov@2146 1879 data = md->bci_to_data(bci);
iveresov@2146 1880 assert(data != NULL, "need data for type check");
iveresov@2146 1881 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2146 1882 }
iveresov@2146 1883 Label profile_cast_success, profile_cast_failure, done;
iveresov@2146 1884 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
iveresov@2146 1885 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
iveresov@2146 1886
never@739 1887 __ cmpptr(value, (int32_t)NULL_WORD);
iveresov@2146 1888 if (op->should_profile()) {
iveresov@2146 1889 Label not_null;
iveresov@2146 1890 __ jccb(Assembler::notEqual, not_null);
iveresov@2146 1891 // Object is null; update MDO and exit
iveresov@2146 1892 Register mdo = klass_RInfo;
iveresov@2146 1893 __ movoop(mdo, md->constant_encoding());
iveresov@2146 1894 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
iveresov@2146 1895 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
iveresov@2146 1896 __ orl(data_addr, header_bits);
iveresov@2146 1897 __ jmp(done);
iveresov@2146 1898 __ bind(not_null);
iveresov@2146 1899 } else {
iveresov@2146 1900 __ jcc(Assembler::equal, done);
iveresov@2146 1901 }
iveresov@2146 1902
duke@435 1903 add_debug_info_for_null_check_here(op->info_for_exception());
iveresov@2344 1904 __ load_klass(k_RInfo, array);
iveresov@2344 1905 __ load_klass(klass_RInfo, value);
iveresov@2344 1906
iveresov@2344 1907 // get instance klass (it's already uncompressed)
never@739 1908 __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
jrose@1079 1909 // perform the fast part of the checking logic
iveresov@2146 1910 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
jrose@1079 1911 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1912 __ push(klass_RInfo);
never@739 1913 __ push(k_RInfo);
duke@435 1914 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1915 __ pop(klass_RInfo);
never@739 1916 __ pop(k_RInfo);
never@739 1917 // result is a boolean
duke@435 1918 __ cmpl(k_RInfo, 0);
iveresov@2146 1919 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1920 // fall through to the success case
iveresov@2146 1921
iveresov@2146 1922 if (op->should_profile()) {
iveresov@2146 1923 Register mdo = klass_RInfo, recv = k_RInfo;
iveresov@2146 1924 __ bind(profile_cast_success);
iveresov@2146 1925 __ movoop(mdo, md->constant_encoding());
iveresov@2344 1926 __ load_klass(recv, value);
iveresov@2146 1927 Label update_done;
iveresov@2146 1928 type_profile_helper(mdo, md, data, recv, &done);
iveresov@2146 1929 __ jmpb(done);
iveresov@2146 1930
iveresov@2146 1931 __ bind(profile_cast_failure);
iveresov@2146 1932 __ movoop(mdo, md->constant_encoding());
iveresov@2146 1933 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
iveresov@2146 1934 __ subptr(counter_addr, DataLayout::counter_increment);
iveresov@2146 1935 __ jmp(*stub->entry());
iveresov@2146 1936 }
iveresov@2146 1937
duke@435 1938 __ bind(done);
iveresov@2146 1939 } else
iveresov@2146 1940 if (code == lir_checkcast) {
iveresov@2146 1941 Register obj = op->object()->as_register();
iveresov@2146 1942 Register dst = op->result_opr()->as_register();
iveresov@2146 1943 Label success;
iveresov@2146 1944 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
iveresov@2146 1945 __ bind(success);
iveresov@2146 1946 if (dst != obj) {
iveresov@2146 1947 __ mov(dst, obj);
iveresov@2146 1948 }
iveresov@2146 1949 } else
iveresov@2146 1950 if (code == lir_instanceof) {
iveresov@2146 1951 Register obj = op->object()->as_register();
iveresov@2146 1952 Register dst = op->result_opr()->as_register();
iveresov@2146 1953 Label success, failure, done;
iveresov@2146 1954 emit_typecheck_helper(op, &success, &failure, &failure);
iveresov@2146 1955 __ bind(failure);
iveresov@2146 1956 __ xorptr(dst, dst);
iveresov@2146 1957 __ jmpb(done);
iveresov@2146 1958 __ bind(success);
iveresov@2146 1959 __ movptr(dst, 1);
iveresov@2146 1960 __ bind(done);
duke@435 1961 } else {
iveresov@2146 1962 ShouldNotReachHere();
duke@435 1963 }
duke@435 1964
duke@435 1965 }
duke@435 1966
duke@435 1967
duke@435 1968 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
never@739 1969 if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
duke@435 1970 assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
duke@435 1971 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
duke@435 1972 assert(op->new_value()->as_register_lo() == rbx, "wrong register");
duke@435 1973 assert(op->new_value()->as_register_hi() == rcx, "wrong register");
duke@435 1974 Register addr = op->addr()->as_register();
duke@435 1975 if (os::is_MP()) {
duke@435 1976 __ lock();
duke@435 1977 }
never@739 1978 NOT_LP64(__ cmpxchg8(Address(addr, 0)));
never@739 1979
never@739 1980 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
never@739 1981 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
never@739 1982 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
duke@435 1983 Register newval = op->new_value()->as_register();
duke@435 1984 Register cmpval = op->cmp_value()->as_register();
duke@435 1985 assert(cmpval == rax, "wrong register");
duke@435 1986 assert(newval != NULL, "new val must be register");
duke@435 1987 assert(cmpval != newval, "cmp and new values must be in different registers");
duke@435 1988 assert(cmpval != addr, "cmp and addr must be in different registers");
duke@435 1989 assert(newval != addr, "new value and addr must be in different registers");
iveresov@2344 1990
never@739 1991 if ( op->code() == lir_cas_obj) {
iveresov@2344 1992 #ifdef _LP64
iveresov@2344 1993 if (UseCompressedOops) {
iveresov@2344 1994 __ encode_heap_oop(cmpval);
iveresov@2355 1995 __ mov(rscratch1, newval);
iveresov@2355 1996 __ encode_heap_oop(rscratch1);
iveresov@2344 1997 if (os::is_MP()) {
iveresov@2344 1998 __ lock();
iveresov@2344 1999 }
iveresov@2355 2000 // cmpval (rax) is implicitly used by this instruction
iveresov@2355 2001 __ cmpxchgl(rscratch1, Address(addr, 0));
iveresov@2344 2002 } else
iveresov@2344 2003 #endif
iveresov@2344 2004 {
iveresov@2344 2005 if (os::is_MP()) {
iveresov@2344 2006 __ lock();
iveresov@2344 2007 }
iveresov@2344 2008 __ cmpxchgptr(newval, Address(addr, 0));
iveresov@2344 2009 }
iveresov@2344 2010 } else {
iveresov@2344 2011 assert(op->code() == lir_cas_int, "lir_cas_int expected");
iveresov@2344 2012 if (os::is_MP()) {
iveresov@2344 2013 __ lock();
iveresov@2344 2014 }
never@739 2015 __ cmpxchgl(newval, Address(addr, 0));
never@739 2016 }
never@739 2017 #ifdef _LP64
never@739 2018 } else if (op->code() == lir_cas_long) {
never@739 2019 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
never@739 2020 Register newval = op->new_value()->as_register_lo();
never@739 2021 Register cmpval = op->cmp_value()->as_register_lo();
never@739 2022 assert(cmpval == rax, "wrong register");
never@739 2023 assert(newval != NULL, "new val must be register");
never@739 2024 assert(cmpval != newval, "cmp and new values must be in different registers");
never@739 2025 assert(cmpval != addr, "cmp and addr must be in different registers");
never@739 2026 assert(newval != addr, "new value and addr must be in different registers");
never@739 2027 if (os::is_MP()) {
never@739 2028 __ lock();
never@739 2029 }
never@739 2030 __ cmpxchgq(newval, Address(addr, 0));
never@739 2031 #endif // _LP64
duke@435 2032 } else {
duke@435 2033 Unimplemented();
duke@435 2034 }
duke@435 2035 }
duke@435 2036
iveresov@2412 2037 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
duke@435 2038 Assembler::Condition acond, ncond;
duke@435 2039 switch (condition) {
duke@435 2040 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break;
duke@435 2041 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break;
duke@435 2042 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break;
duke@435 2043 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break;
duke@435 2044 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break;
duke@435 2045 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break;
duke@435 2046 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break;
duke@435 2047 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break;
duke@435 2048 default: ShouldNotReachHere();
duke@435 2049 }
duke@435 2050
duke@435 2051 if (opr1->is_cpu_register()) {
duke@435 2052 reg2reg(opr1, result);
duke@435 2053 } else if (opr1->is_stack()) {
duke@435 2054 stack2reg(opr1, result, result->type());
duke@435 2055 } else if (opr1->is_constant()) {
duke@435 2056 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 2057 } else {
duke@435 2058 ShouldNotReachHere();
duke@435 2059 }
duke@435 2060
duke@435 2061 if (VM_Version::supports_cmov() && !opr2->is_constant()) {
duke@435 2062 // optimized version that does not require a branch
duke@435 2063 if (opr2->is_single_cpu()) {
duke@435 2064 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
never@739 2065 __ cmov(ncond, result->as_register(), opr2->as_register());
duke@435 2066 } else if (opr2->is_double_cpu()) {
duke@435 2067 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
duke@435 2068 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
never@739 2069 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
never@739 2070 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
duke@435 2071 } else if (opr2->is_single_stack()) {
duke@435 2072 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2073 } else if (opr2->is_double_stack()) {
never@739 2074 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
never@739 2075 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
duke@435 2076 } else {
duke@435 2077 ShouldNotReachHere();
duke@435 2078 }
duke@435 2079
duke@435 2080 } else {
duke@435 2081 Label skip;
duke@435 2082 __ jcc (acond, skip);
duke@435 2083 if (opr2->is_cpu_register()) {
duke@435 2084 reg2reg(opr2, result);
duke@435 2085 } else if (opr2->is_stack()) {
duke@435 2086 stack2reg(opr2, result, result->type());
duke@435 2087 } else if (opr2->is_constant()) {
duke@435 2088 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 2089 } else {
duke@435 2090 ShouldNotReachHere();
duke@435 2091 }
duke@435 2092 __ bind(skip);
duke@435 2093 }
duke@435 2094 }
duke@435 2095
duke@435 2096
duke@435 2097 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 2098 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
duke@435 2099
duke@435 2100 if (left->is_single_cpu()) {
duke@435 2101 assert(left == dest, "left and dest must be equal");
duke@435 2102 Register lreg = left->as_register();
duke@435 2103
duke@435 2104 if (right->is_single_cpu()) {
duke@435 2105 // cpu register - cpu register
duke@435 2106 Register rreg = right->as_register();
duke@435 2107 switch (code) {
duke@435 2108 case lir_add: __ addl (lreg, rreg); break;
duke@435 2109 case lir_sub: __ subl (lreg, rreg); break;
duke@435 2110 case lir_mul: __ imull(lreg, rreg); break;
duke@435 2111 default: ShouldNotReachHere();
duke@435 2112 }
duke@435 2113
duke@435 2114 } else if (right->is_stack()) {
duke@435 2115 // cpu register - stack
duke@435 2116 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2117 switch (code) {
duke@435 2118 case lir_add: __ addl(lreg, raddr); break;
duke@435 2119 case lir_sub: __ subl(lreg, raddr); break;
duke@435 2120 default: ShouldNotReachHere();
duke@435 2121 }
duke@435 2122
duke@435 2123 } else if (right->is_constant()) {
duke@435 2124 // cpu register - constant
duke@435 2125 jint c = right->as_constant_ptr()->as_jint();
duke@435 2126 switch (code) {
duke@435 2127 case lir_add: {
iveresov@2145 2128 __ incrementl(lreg, c);
duke@435 2129 break;
duke@435 2130 }
duke@435 2131 case lir_sub: {
iveresov@2145 2132 __ decrementl(lreg, c);
duke@435 2133 break;
duke@435 2134 }
duke@435 2135 default: ShouldNotReachHere();
duke@435 2136 }
duke@435 2137
duke@435 2138 } else {
duke@435 2139 ShouldNotReachHere();
duke@435 2140 }
duke@435 2141
duke@435 2142 } else if (left->is_double_cpu()) {
duke@435 2143 assert(left == dest, "left and dest must be equal");
duke@435 2144 Register lreg_lo = left->as_register_lo();
duke@435 2145 Register lreg_hi = left->as_register_hi();
duke@435 2146
duke@435 2147 if (right->is_double_cpu()) {
duke@435 2148 // cpu register - cpu register
duke@435 2149 Register rreg_lo = right->as_register_lo();
duke@435 2150 Register rreg_hi = right->as_register_hi();
never@739 2151 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
never@739 2152 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
duke@435 2153 switch (code) {
duke@435 2154 case lir_add:
never@739 2155 __ addptr(lreg_lo, rreg_lo);
never@739 2156 NOT_LP64(__ adcl(lreg_hi, rreg_hi));
duke@435 2157 break;
duke@435 2158 case lir_sub:
never@739 2159 __ subptr(lreg_lo, rreg_lo);
never@739 2160 NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
duke@435 2161 break;
duke@435 2162 case lir_mul:
never@739 2163 #ifdef _LP64
never@739 2164 __ imulq(lreg_lo, rreg_lo);
never@739 2165 #else
duke@435 2166 assert(lreg_lo == rax && lreg_hi == rdx, "must be");
duke@435 2167 __ imull(lreg_hi, rreg_lo);
duke@435 2168 __ imull(rreg_hi, lreg_lo);
duke@435 2169 __ addl (rreg_hi, lreg_hi);
duke@435 2170 __ mull (rreg_lo);
duke@435 2171 __ addl (lreg_hi, rreg_hi);
never@739 2172 #endif // _LP64
duke@435 2173 break;
duke@435 2174 default:
duke@435 2175 ShouldNotReachHere();
duke@435 2176 }
duke@435 2177
duke@435 2178 } else if (right->is_constant()) {
duke@435 2179 // cpu register - constant
never@739 2180 #ifdef _LP64
never@739 2181 jlong c = right->as_constant_ptr()->as_jlong_bits();
never@739 2182 __ movptr(r10, (intptr_t) c);
never@739 2183 switch (code) {
never@739 2184 case lir_add:
never@739 2185 __ addptr(lreg_lo, r10);
never@739 2186 break;
never@739 2187 case lir_sub:
never@739 2188 __ subptr(lreg_lo, r10);
never@739 2189 break;
never@739 2190 default:
never@739 2191 ShouldNotReachHere();
never@739 2192 }
never@739 2193 #else
duke@435 2194 jint c_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2195 jint c_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2196 switch (code) {
duke@435 2197 case lir_add:
never@739 2198 __ addptr(lreg_lo, c_lo);
duke@435 2199 __ adcl(lreg_hi, c_hi);
duke@435 2200 break;
duke@435 2201 case lir_sub:
never@739 2202 __ subptr(lreg_lo, c_lo);
duke@435 2203 __ sbbl(lreg_hi, c_hi);
duke@435 2204 break;
duke@435 2205 default:
duke@435 2206 ShouldNotReachHere();
duke@435 2207 }
never@739 2208 #endif // _LP64
duke@435 2209
duke@435 2210 } else {
duke@435 2211 ShouldNotReachHere();
duke@435 2212 }
duke@435 2213
duke@435 2214 } else if (left->is_single_xmm()) {
duke@435 2215 assert(left == dest, "left and dest must be equal");
duke@435 2216 XMMRegister lreg = left->as_xmm_float_reg();
duke@435 2217
duke@435 2218 if (right->is_single_xmm()) {
duke@435 2219 XMMRegister rreg = right->as_xmm_float_reg();
duke@435 2220 switch (code) {
duke@435 2221 case lir_add: __ addss(lreg, rreg); break;
duke@435 2222 case lir_sub: __ subss(lreg, rreg); break;
duke@435 2223 case lir_mul_strictfp: // fall through
duke@435 2224 case lir_mul: __ mulss(lreg, rreg); break;
duke@435 2225 case lir_div_strictfp: // fall through
duke@435 2226 case lir_div: __ divss(lreg, rreg); break;
duke@435 2227 default: ShouldNotReachHere();
duke@435 2228 }
duke@435 2229 } else {
duke@435 2230 Address raddr;
duke@435 2231 if (right->is_single_stack()) {
duke@435 2232 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2233 } else if (right->is_constant()) {
duke@435 2234 // hack for now
duke@435 2235 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
duke@435 2236 } else {
duke@435 2237 ShouldNotReachHere();
duke@435 2238 }
duke@435 2239 switch (code) {
duke@435 2240 case lir_add: __ addss(lreg, raddr); break;
duke@435 2241 case lir_sub: __ subss(lreg, raddr); break;
duke@435 2242 case lir_mul_strictfp: // fall through
duke@435 2243 case lir_mul: __ mulss(lreg, raddr); break;
duke@435 2244 case lir_div_strictfp: // fall through
duke@435 2245 case lir_div: __ divss(lreg, raddr); break;
duke@435 2246 default: ShouldNotReachHere();
duke@435 2247 }
duke@435 2248 }
duke@435 2249
duke@435 2250 } else if (left->is_double_xmm()) {
duke@435 2251 assert(left == dest, "left and dest must be equal");
duke@435 2252
duke@435 2253 XMMRegister lreg = left->as_xmm_double_reg();
duke@435 2254 if (right->is_double_xmm()) {
duke@435 2255 XMMRegister rreg = right->as_xmm_double_reg();
duke@435 2256 switch (code) {
duke@435 2257 case lir_add: __ addsd(lreg, rreg); break;
duke@435 2258 case lir_sub: __ subsd(lreg, rreg); break;
duke@435 2259 case lir_mul_strictfp: // fall through
duke@435 2260 case lir_mul: __ mulsd(lreg, rreg); break;
duke@435 2261 case lir_div_strictfp: // fall through
duke@435 2262 case lir_div: __ divsd(lreg, rreg); break;
duke@435 2263 default: ShouldNotReachHere();
duke@435 2264 }
duke@435 2265 } else {
duke@435 2266 Address raddr;
duke@435 2267 if (right->is_double_stack()) {
duke@435 2268 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2269 } else if (right->is_constant()) {
duke@435 2270 // hack for now
duke@435 2271 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2272 } else {
duke@435 2273 ShouldNotReachHere();
duke@435 2274 }
duke@435 2275 switch (code) {
duke@435 2276 case lir_add: __ addsd(lreg, raddr); break;
duke@435 2277 case lir_sub: __ subsd(lreg, raddr); break;
duke@435 2278 case lir_mul_strictfp: // fall through
duke@435 2279 case lir_mul: __ mulsd(lreg, raddr); break;
duke@435 2280 case lir_div_strictfp: // fall through
duke@435 2281 case lir_div: __ divsd(lreg, raddr); break;
duke@435 2282 default: ShouldNotReachHere();
duke@435 2283 }
duke@435 2284 }
duke@435 2285
duke@435 2286 } else if (left->is_single_fpu()) {
duke@435 2287 assert(dest->is_single_fpu(), "fpu stack allocation required");
duke@435 2288
duke@435 2289 if (right->is_single_fpu()) {
duke@435 2290 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
duke@435 2291
duke@435 2292 } else {
duke@435 2293 assert(left->fpu_regnr() == 0, "left must be on TOS");
duke@435 2294 assert(dest->fpu_regnr() == 0, "dest must be on TOS");
duke@435 2295
duke@435 2296 Address raddr;
duke@435 2297 if (right->is_single_stack()) {
duke@435 2298 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2299 } else if (right->is_constant()) {
duke@435 2300 address const_addr = float_constant(right->as_jfloat());
duke@435 2301 assert(const_addr != NULL, "incorrect float/double constant maintainance");
duke@435 2302 // hack for now
duke@435 2303 raddr = __ as_Address(InternalAddress(const_addr));
duke@435 2304 } else {
duke@435 2305 ShouldNotReachHere();
duke@435 2306 }
duke@435 2307
duke@435 2308 switch (code) {
duke@435 2309 case lir_add: __ fadd_s(raddr); break;
duke@435 2310 case lir_sub: __ fsub_s(raddr); break;
duke@435 2311 case lir_mul_strictfp: // fall through
duke@435 2312 case lir_mul: __ fmul_s(raddr); break;
duke@435 2313 case lir_div_strictfp: // fall through
duke@435 2314 case lir_div: __ fdiv_s(raddr); break;
duke@435 2315 default: ShouldNotReachHere();
duke@435 2316 }
duke@435 2317 }
duke@435 2318
duke@435 2319 } else if (left->is_double_fpu()) {
duke@435 2320 assert(dest->is_double_fpu(), "fpu stack allocation required");
duke@435 2321
duke@435 2322 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2323 // Double values require special handling for strictfp mul/div on x86
duke@435 2324 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
duke@435 2325 __ fmulp(left->fpu_regnrLo() + 1);
duke@435 2326 }
duke@435 2327
duke@435 2328 if (right->is_double_fpu()) {
duke@435 2329 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
duke@435 2330
duke@435 2331 } else {
duke@435 2332 assert(left->fpu_regnrLo() == 0, "left must be on TOS");
duke@435 2333 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
duke@435 2334
duke@435 2335 Address raddr;
duke@435 2336 if (right->is_double_stack()) {
duke@435 2337 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2338 } else if (right->is_constant()) {
duke@435 2339 // hack for now
duke@435 2340 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2341 } else {
duke@435 2342 ShouldNotReachHere();
duke@435 2343 }
duke@435 2344
duke@435 2345 switch (code) {
duke@435 2346 case lir_add: __ fadd_d(raddr); break;
duke@435 2347 case lir_sub: __ fsub_d(raddr); break;
duke@435 2348 case lir_mul_strictfp: // fall through
duke@435 2349 case lir_mul: __ fmul_d(raddr); break;
duke@435 2350 case lir_div_strictfp: // fall through
duke@435 2351 case lir_div: __ fdiv_d(raddr); break;
duke@435 2352 default: ShouldNotReachHere();
duke@435 2353 }
duke@435 2354 }
duke@435 2355
duke@435 2356 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2357 // Double values require special handling for strictfp mul/div on x86
duke@435 2358 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
duke@435 2359 __ fmulp(dest->fpu_regnrLo() + 1);
duke@435 2360 }
duke@435 2361
duke@435 2362 } else if (left->is_single_stack() || left->is_address()) {
duke@435 2363 assert(left == dest, "left and dest must be equal");
duke@435 2364
duke@435 2365 Address laddr;
duke@435 2366 if (left->is_single_stack()) {
duke@435 2367 laddr = frame_map()->address_for_slot(left->single_stack_ix());
duke@435 2368 } else if (left->is_address()) {
duke@435 2369 laddr = as_Address(left->as_address_ptr());
duke@435 2370 } else {
duke@435 2371 ShouldNotReachHere();
duke@435 2372 }
duke@435 2373
duke@435 2374 if (right->is_single_cpu()) {
duke@435 2375 Register rreg = right->as_register();
duke@435 2376 switch (code) {
duke@435 2377 case lir_add: __ addl(laddr, rreg); break;
duke@435 2378 case lir_sub: __ subl(laddr, rreg); break;
duke@435 2379 default: ShouldNotReachHere();
duke@435 2380 }
duke@435 2381 } else if (right->is_constant()) {
duke@435 2382 jint c = right->as_constant_ptr()->as_jint();
duke@435 2383 switch (code) {
duke@435 2384 case lir_add: {
never@739 2385 __ incrementl(laddr, c);
duke@435 2386 break;
duke@435 2387 }
duke@435 2388 case lir_sub: {
never@739 2389 __ decrementl(laddr, c);
duke@435 2390 break;
duke@435 2391 }
duke@435 2392 default: ShouldNotReachHere();
duke@435 2393 }
duke@435 2394 } else {
duke@435 2395 ShouldNotReachHere();
duke@435 2396 }
duke@435 2397
duke@435 2398 } else {
duke@435 2399 ShouldNotReachHere();
duke@435 2400 }
duke@435 2401 }
duke@435 2402
duke@435 2403 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
duke@435 2404 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR");
duke@435 2405 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
duke@435 2406 assert(left_index == 0 || right_index == 0, "either must be on top of stack");
duke@435 2407
duke@435 2408 bool left_is_tos = (left_index == 0);
duke@435 2409 bool dest_is_tos = (dest_index == 0);
duke@435 2410 int non_tos_index = (left_is_tos ? right_index : left_index);
duke@435 2411
duke@435 2412 switch (code) {
duke@435 2413 case lir_add:
duke@435 2414 if (pop_fpu_stack) __ faddp(non_tos_index);
duke@435 2415 else if (dest_is_tos) __ fadd (non_tos_index);
duke@435 2416 else __ fadda(non_tos_index);
duke@435 2417 break;
duke@435 2418
duke@435 2419 case lir_sub:
duke@435 2420 if (left_is_tos) {
duke@435 2421 if (pop_fpu_stack) __ fsubrp(non_tos_index);
duke@435 2422 else if (dest_is_tos) __ fsub (non_tos_index);
duke@435 2423 else __ fsubra(non_tos_index);
duke@435 2424 } else {
duke@435 2425 if (pop_fpu_stack) __ fsubp (non_tos_index);
duke@435 2426 else if (dest_is_tos) __ fsubr (non_tos_index);
duke@435 2427 else __ fsuba (non_tos_index);
duke@435 2428 }
duke@435 2429 break;
duke@435 2430
duke@435 2431 case lir_mul_strictfp: // fall through
duke@435 2432 case lir_mul:
duke@435 2433 if (pop_fpu_stack) __ fmulp(non_tos_index);
duke@435 2434 else if (dest_is_tos) __ fmul (non_tos_index);
duke@435 2435 else __ fmula(non_tos_index);
duke@435 2436 break;
duke@435 2437
duke@435 2438 case lir_div_strictfp: // fall through
duke@435 2439 case lir_div:
duke@435 2440 if (left_is_tos) {
duke@435 2441 if (pop_fpu_stack) __ fdivrp(non_tos_index);
duke@435 2442 else if (dest_is_tos) __ fdiv (non_tos_index);
duke@435 2443 else __ fdivra(non_tos_index);
duke@435 2444 } else {
duke@435 2445 if (pop_fpu_stack) __ fdivp (non_tos_index);
duke@435 2446 else if (dest_is_tos) __ fdivr (non_tos_index);
duke@435 2447 else __ fdiva (non_tos_index);
duke@435 2448 }
duke@435 2449 break;
duke@435 2450
duke@435 2451 case lir_rem:
duke@435 2452 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
duke@435 2453 __ fremr(noreg);
duke@435 2454 break;
duke@435 2455
duke@435 2456 default:
duke@435 2457 ShouldNotReachHere();
duke@435 2458 }
duke@435 2459 }
duke@435 2460
duke@435 2461
duke@435 2462 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
duke@435 2463 if (value->is_double_xmm()) {
duke@435 2464 switch(code) {
duke@435 2465 case lir_abs :
duke@435 2466 {
duke@435 2467 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
duke@435 2468 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
duke@435 2469 }
duke@435 2470 __ andpd(dest->as_xmm_double_reg(),
duke@435 2471 ExternalAddress((address)double_signmask_pool));
duke@435 2472 }
duke@435 2473 break;
duke@435 2474
duke@435 2475 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
duke@435 2476 // all other intrinsics are not available in the SSE instruction set, so FPU is used
duke@435 2477 default : ShouldNotReachHere();
duke@435 2478 }
duke@435 2479
duke@435 2480 } else if (value->is_double_fpu()) {
duke@435 2481 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
duke@435 2482 switch(code) {
duke@435 2483 case lir_log : __ flog() ; break;
duke@435 2484 case lir_log10 : __ flog10() ; break;
duke@435 2485 case lir_abs : __ fabs() ; break;
duke@435 2486 case lir_sqrt : __ fsqrt(); break;
duke@435 2487 case lir_sin :
duke@435 2488 // Should consider not saving rbx, if not necessary
duke@435 2489 __ trigfunc('s', op->as_Op2()->fpu_stack_size());
duke@435 2490 break;
duke@435 2491 case lir_cos :
duke@435 2492 // Should consider not saving rbx, if not necessary
duke@435 2493 assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
duke@435 2494 __ trigfunc('c', op->as_Op2()->fpu_stack_size());
duke@435 2495 break;
duke@435 2496 case lir_tan :
duke@435 2497 // Should consider not saving rbx, if not necessary
duke@435 2498 __ trigfunc('t', op->as_Op2()->fpu_stack_size());
duke@435 2499 break;
duke@435 2500 default : ShouldNotReachHere();
duke@435 2501 }
duke@435 2502 } else {
duke@435 2503 Unimplemented();
duke@435 2504 }
duke@435 2505 }
duke@435 2506
duke@435 2507 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
duke@435 2508 // assert(left->destroys_register(), "check");
duke@435 2509 if (left->is_single_cpu()) {
duke@435 2510 Register reg = left->as_register();
duke@435 2511 if (right->is_constant()) {
duke@435 2512 int val = right->as_constant_ptr()->as_jint();
duke@435 2513 switch (code) {
duke@435 2514 case lir_logic_and: __ andl (reg, val); break;
duke@435 2515 case lir_logic_or: __ orl (reg, val); break;
duke@435 2516 case lir_logic_xor: __ xorl (reg, val); break;
duke@435 2517 default: ShouldNotReachHere();
duke@435 2518 }
duke@435 2519 } else if (right->is_stack()) {
duke@435 2520 // added support for stack operands
duke@435 2521 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2522 switch (code) {
duke@435 2523 case lir_logic_and: __ andl (reg, raddr); break;
duke@435 2524 case lir_logic_or: __ orl (reg, raddr); break;
duke@435 2525 case lir_logic_xor: __ xorl (reg, raddr); break;
duke@435 2526 default: ShouldNotReachHere();
duke@435 2527 }
duke@435 2528 } else {
duke@435 2529 Register rright = right->as_register();
duke@435 2530 switch (code) {
never@739 2531 case lir_logic_and: __ andptr (reg, rright); break;
never@739 2532 case lir_logic_or : __ orptr (reg, rright); break;
never@739 2533 case lir_logic_xor: __ xorptr (reg, rright); break;
duke@435 2534 default: ShouldNotReachHere();
duke@435 2535 }
duke@435 2536 }
duke@435 2537 move_regs(reg, dst->as_register());
duke@435 2538 } else {
duke@435 2539 Register l_lo = left->as_register_lo();
duke@435 2540 Register l_hi = left->as_register_hi();
duke@435 2541 if (right->is_constant()) {
never@739 2542 #ifdef _LP64
never@739 2543 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
never@739 2544 switch (code) {
never@739 2545 case lir_logic_and:
never@739 2546 __ andq(l_lo, rscratch1);
never@739 2547 break;
never@739 2548 case lir_logic_or:
never@739 2549 __ orq(l_lo, rscratch1);
never@739 2550 break;
never@739 2551 case lir_logic_xor:
never@739 2552 __ xorq(l_lo, rscratch1);
never@739 2553 break;
never@739 2554 default: ShouldNotReachHere();
never@739 2555 }
never@739 2556 #else
duke@435 2557 int r_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2558 int r_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2559 switch (code) {
duke@435 2560 case lir_logic_and:
duke@435 2561 __ andl(l_lo, r_lo);
duke@435 2562 __ andl(l_hi, r_hi);
duke@435 2563 break;
duke@435 2564 case lir_logic_or:
duke@435 2565 __ orl(l_lo, r_lo);
duke@435 2566 __ orl(l_hi, r_hi);
duke@435 2567 break;
duke@435 2568 case lir_logic_xor:
duke@435 2569 __ xorl(l_lo, r_lo);
duke@435 2570 __ xorl(l_hi, r_hi);
duke@435 2571 break;
duke@435 2572 default: ShouldNotReachHere();
duke@435 2573 }
never@739 2574 #endif // _LP64
duke@435 2575 } else {
iveresov@1927 2576 #ifdef _LP64
iveresov@1927 2577 Register r_lo;
iveresov@1927 2578 if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
iveresov@1927 2579 r_lo = right->as_register();
iveresov@1927 2580 } else {
iveresov@1927 2581 r_lo = right->as_register_lo();
iveresov@1927 2582 }
iveresov@1927 2583 #else
duke@435 2584 Register r_lo = right->as_register_lo();
duke@435 2585 Register r_hi = right->as_register_hi();
duke@435 2586 assert(l_lo != r_hi, "overwriting registers");
iveresov@1927 2587 #endif
duke@435 2588 switch (code) {
duke@435 2589 case lir_logic_and:
never@739 2590 __ andptr(l_lo, r_lo);
never@739 2591 NOT_LP64(__ andptr(l_hi, r_hi);)
duke@435 2592 break;
duke@435 2593 case lir_logic_or:
never@739 2594 __ orptr(l_lo, r_lo);
never@739 2595 NOT_LP64(__ orptr(l_hi, r_hi);)
duke@435 2596 break;
duke@435 2597 case lir_logic_xor:
never@739 2598 __ xorptr(l_lo, r_lo);
never@739 2599 NOT_LP64(__ xorptr(l_hi, r_hi);)
duke@435 2600 break;
duke@435 2601 default: ShouldNotReachHere();
duke@435 2602 }
duke@435 2603 }
duke@435 2604
duke@435 2605 Register dst_lo = dst->as_register_lo();
duke@435 2606 Register dst_hi = dst->as_register_hi();
duke@435 2607
never@739 2608 #ifdef _LP64
never@739 2609 move_regs(l_lo, dst_lo);
never@739 2610 #else
duke@435 2611 if (dst_lo == l_hi) {
duke@435 2612 assert(dst_hi != l_lo, "overwriting registers");
duke@435 2613 move_regs(l_hi, dst_hi);
duke@435 2614 move_regs(l_lo, dst_lo);
duke@435 2615 } else {
duke@435 2616 assert(dst_lo != l_hi, "overwriting registers");
duke@435 2617 move_regs(l_lo, dst_lo);
duke@435 2618 move_regs(l_hi, dst_hi);
duke@435 2619 }
never@739 2620 #endif // _LP64
duke@435 2621 }
duke@435 2622 }
duke@435 2623
duke@435 2624
duke@435 2625 // we assume that rax, and rdx can be overwritten
duke@435 2626 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
duke@435 2627
duke@435 2628 assert(left->is_single_cpu(), "left must be register");
duke@435 2629 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
duke@435 2630 assert(result->is_single_cpu(), "result must be register");
duke@435 2631
duke@435 2632 // assert(left->destroys_register(), "check");
duke@435 2633 // assert(right->destroys_register(), "check");
duke@435 2634
duke@435 2635 Register lreg = left->as_register();
duke@435 2636 Register dreg = result->as_register();
duke@435 2637
duke@435 2638 if (right->is_constant()) {
duke@435 2639 int divisor = right->as_constant_ptr()->as_jint();
duke@435 2640 assert(divisor > 0 && is_power_of_2(divisor), "must be");
duke@435 2641 if (code == lir_idiv) {
duke@435 2642 assert(lreg == rax, "must be rax,");
duke@435 2643 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2644 __ cdql(); // sign extend into rdx:rax
duke@435 2645 if (divisor == 2) {
duke@435 2646 __ subl(lreg, rdx);
duke@435 2647 } else {
duke@435 2648 __ andl(rdx, divisor - 1);
duke@435 2649 __ addl(lreg, rdx);
duke@435 2650 }
duke@435 2651 __ sarl(lreg, log2_intptr(divisor));
duke@435 2652 move_regs(lreg, dreg);
duke@435 2653 } else if (code == lir_irem) {
duke@435 2654 Label done;
never@739 2655 __ mov(dreg, lreg);
duke@435 2656 __ andl(dreg, 0x80000000 | (divisor - 1));
duke@435 2657 __ jcc(Assembler::positive, done);
duke@435 2658 __ decrement(dreg);
duke@435 2659 __ orl(dreg, ~(divisor - 1));
duke@435 2660 __ increment(dreg);
duke@435 2661 __ bind(done);
duke@435 2662 } else {
duke@435 2663 ShouldNotReachHere();
duke@435 2664 }
duke@435 2665 } else {
duke@435 2666 Register rreg = right->as_register();
duke@435 2667 assert(lreg == rax, "left register must be rax,");
duke@435 2668 assert(rreg != rdx, "right register must not be rdx");
duke@435 2669 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2670
duke@435 2671 move_regs(lreg, rax);
duke@435 2672
duke@435 2673 int idivl_offset = __ corrected_idivl(rreg);
duke@435 2674 add_debug_info_for_div0(idivl_offset, info);
duke@435 2675 if (code == lir_irem) {
duke@435 2676 move_regs(rdx, dreg); // result is in rdx
duke@435 2677 } else {
duke@435 2678 move_regs(rax, dreg);
duke@435 2679 }
duke@435 2680 }
duke@435 2681 }
duke@435 2682
duke@435 2683
duke@435 2684 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 2685 if (opr1->is_single_cpu()) {
duke@435 2686 Register reg1 = opr1->as_register();
duke@435 2687 if (opr2->is_single_cpu()) {
duke@435 2688 // cpu register - cpu register
never@739 2689 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2690 __ cmpptr(reg1, opr2->as_register());
never@739 2691 } else {
never@739 2692 assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
never@739 2693 __ cmpl(reg1, opr2->as_register());
never@739 2694 }
duke@435 2695 } else if (opr2->is_stack()) {
duke@435 2696 // cpu register - stack
never@739 2697 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2698 __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2699 } else {
never@739 2700 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2701 }
duke@435 2702 } else if (opr2->is_constant()) {
duke@435 2703 // cpu register - constant
duke@435 2704 LIR_Const* c = opr2->as_constant_ptr();
duke@435 2705 if (c->type() == T_INT) {
duke@435 2706 __ cmpl(reg1, c->as_jint());
never@739 2707 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2708 // In 64bit oops are single register
duke@435 2709 jobject o = c->as_jobject();
duke@435 2710 if (o == NULL) {
never@739 2711 __ cmpptr(reg1, (int32_t)NULL_WORD);
duke@435 2712 } else {
never@739 2713 #ifdef _LP64
never@739 2714 __ movoop(rscratch1, o);
never@739 2715 __ cmpptr(reg1, rscratch1);
never@739 2716 #else
duke@435 2717 __ cmpoop(reg1, c->as_jobject());
never@739 2718 #endif // _LP64
duke@435 2719 }
duke@435 2720 } else {
duke@435 2721 ShouldNotReachHere();
duke@435 2722 }
duke@435 2723 // cpu register - address
duke@435 2724 } else if (opr2->is_address()) {
duke@435 2725 if (op->info() != NULL) {
duke@435 2726 add_debug_info_for_null_check_here(op->info());
duke@435 2727 }
duke@435 2728 __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2729 } else {
duke@435 2730 ShouldNotReachHere();
duke@435 2731 }
duke@435 2732
duke@435 2733 } else if(opr1->is_double_cpu()) {
duke@435 2734 Register xlo = opr1->as_register_lo();
duke@435 2735 Register xhi = opr1->as_register_hi();
duke@435 2736 if (opr2->is_double_cpu()) {
never@739 2737 #ifdef _LP64
never@739 2738 __ cmpptr(xlo, opr2->as_register_lo());
never@739 2739 #else
duke@435 2740 // cpu register - cpu register
duke@435 2741 Register ylo = opr2->as_register_lo();
duke@435 2742 Register yhi = opr2->as_register_hi();
duke@435 2743 __ subl(xlo, ylo);
duke@435 2744 __ sbbl(xhi, yhi);
duke@435 2745 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 2746 __ orl(xhi, xlo);
duke@435 2747 }
never@739 2748 #endif // _LP64
duke@435 2749 } else if (opr2->is_constant()) {
duke@435 2750 // cpu register - constant 0
duke@435 2751 assert(opr2->as_jlong() == (jlong)0, "only handles zero");
never@739 2752 #ifdef _LP64
never@739 2753 __ cmpptr(xlo, (int32_t)opr2->as_jlong());
never@739 2754 #else
duke@435 2755 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
duke@435 2756 __ orl(xhi, xlo);
never@739 2757 #endif // _LP64
duke@435 2758 } else {
duke@435 2759 ShouldNotReachHere();
duke@435 2760 }
duke@435 2761
duke@435 2762 } else if (opr1->is_single_xmm()) {
duke@435 2763 XMMRegister reg1 = opr1->as_xmm_float_reg();
duke@435 2764 if (opr2->is_single_xmm()) {
duke@435 2765 // xmm register - xmm register
duke@435 2766 __ ucomiss(reg1, opr2->as_xmm_float_reg());
duke@435 2767 } else if (opr2->is_stack()) {
duke@435 2768 // xmm register - stack
duke@435 2769 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2770 } else if (opr2->is_constant()) {
duke@435 2771 // xmm register - constant
duke@435 2772 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
duke@435 2773 } else if (opr2->is_address()) {
duke@435 2774 // xmm register - address
duke@435 2775 if (op->info() != NULL) {
duke@435 2776 add_debug_info_for_null_check_here(op->info());
duke@435 2777 }
duke@435 2778 __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2779 } else {
duke@435 2780 ShouldNotReachHere();
duke@435 2781 }
duke@435 2782
duke@435 2783 } else if (opr1->is_double_xmm()) {
duke@435 2784 XMMRegister reg1 = opr1->as_xmm_double_reg();
duke@435 2785 if (opr2->is_double_xmm()) {
duke@435 2786 // xmm register - xmm register
duke@435 2787 __ ucomisd(reg1, opr2->as_xmm_double_reg());
duke@435 2788 } else if (opr2->is_stack()) {
duke@435 2789 // xmm register - stack
duke@435 2790 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
duke@435 2791 } else if (opr2->is_constant()) {
duke@435 2792 // xmm register - constant
duke@435 2793 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
duke@435 2794 } else if (opr2->is_address()) {
duke@435 2795 // xmm register - address
duke@435 2796 if (op->info() != NULL) {
duke@435 2797 add_debug_info_for_null_check_here(op->info());
duke@435 2798 }
duke@435 2799 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
duke@435 2800 } else {
duke@435 2801 ShouldNotReachHere();
duke@435 2802 }
duke@435 2803
duke@435 2804 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
duke@435 2805 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
duke@435 2806 assert(opr2->is_fpu_register(), "both must be registers");
duke@435 2807 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2808
duke@435 2809 } else if (opr1->is_address() && opr2->is_constant()) {
never@739 2810 LIR_Const* c = opr2->as_constant_ptr();
never@739 2811 #ifdef _LP64
never@739 2812 if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2813 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
never@739 2814 __ movoop(rscratch1, c->as_jobject());
never@739 2815 }
never@739 2816 #endif // LP64
duke@435 2817 if (op->info() != NULL) {
duke@435 2818 add_debug_info_for_null_check_here(op->info());
duke@435 2819 }
duke@435 2820 // special case: address - constant
duke@435 2821 LIR_Address* addr = opr1->as_address_ptr();
duke@435 2822 if (c->type() == T_INT) {
duke@435 2823 __ cmpl(as_Address(addr), c->as_jint());
never@739 2824 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2825 #ifdef _LP64
never@739 2826 // %%% Make this explode if addr isn't reachable until we figure out a
never@739 2827 // better strategy by giving noreg as the temp for as_Address
never@739 2828 __ cmpptr(rscratch1, as_Address(addr, noreg));
never@739 2829 #else
duke@435 2830 __ cmpoop(as_Address(addr), c->as_jobject());
never@739 2831 #endif // _LP64
duke@435 2832 } else {
duke@435 2833 ShouldNotReachHere();
duke@435 2834 }
duke@435 2835
duke@435 2836 } else {
duke@435 2837 ShouldNotReachHere();
duke@435 2838 }
duke@435 2839 }
duke@435 2840
duke@435 2841 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
duke@435 2842 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 2843 if (left->is_single_xmm()) {
duke@435 2844 assert(right->is_single_xmm(), "must match");
duke@435 2845 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2846 } else if (left->is_double_xmm()) {
duke@435 2847 assert(right->is_double_xmm(), "must match");
duke@435 2848 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2849
duke@435 2850 } else {
duke@435 2851 assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
duke@435 2852 assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
duke@435 2853
duke@435 2854 assert(left->fpu() == 0, "left must be on TOS");
duke@435 2855 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
duke@435 2856 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2857 }
duke@435 2858 } else {
duke@435 2859 assert(code == lir_cmp_l2i, "check");
never@739 2860 #ifdef _LP64
iveresov@1804 2861 Label done;
iveresov@1804 2862 Register dest = dst->as_register();
iveresov@1804 2863 __ cmpptr(left->as_register_lo(), right->as_register_lo());
iveresov@1804 2864 __ movl(dest, -1);
iveresov@1804 2865 __ jccb(Assembler::less, done);
iveresov@1804 2866 __ set_byte_if_not_zero(dest);
iveresov@1804 2867 __ movzbl(dest, dest);
iveresov@1804 2868 __ bind(done);
never@739 2869 #else
duke@435 2870 __ lcmp2int(left->as_register_hi(),
duke@435 2871 left->as_register_lo(),
duke@435 2872 right->as_register_hi(),
duke@435 2873 right->as_register_lo());
duke@435 2874 move_regs(left->as_register_hi(), dst->as_register());
never@739 2875 #endif // _LP64
duke@435 2876 }
duke@435 2877 }
duke@435 2878
duke@435 2879
duke@435 2880 void LIR_Assembler::align_call(LIR_Code code) {
duke@435 2881 if (os::is_MP()) {
duke@435 2882 // make sure that the displacement word of the call ends up word aligned
duke@435 2883 int offset = __ offset();
duke@435 2884 switch (code) {
duke@435 2885 case lir_static_call:
duke@435 2886 case lir_optvirtual_call:
twisti@1730 2887 case lir_dynamic_call:
duke@435 2888 offset += NativeCall::displacement_offset;
duke@435 2889 break;
duke@435 2890 case lir_icvirtual_call:
duke@435 2891 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
duke@435 2892 break;
duke@435 2893 case lir_virtual_call: // currently, sparc-specific for niagara
duke@435 2894 default: ShouldNotReachHere();
duke@435 2895 }
duke@435 2896 while (offset++ % BytesPerWord != 0) {
duke@435 2897 __ nop();
duke@435 2898 }
duke@435 2899 }
duke@435 2900 }
duke@435 2901
duke@435 2902
twisti@1730 2903 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
duke@435 2904 assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2905 "must be aligned");
twisti@1730 2906 __ call(AddressLiteral(op->addr(), rtype));
twisti@1919 2907 add_call_info(code_offset(), op->info());
duke@435 2908 }
duke@435 2909
duke@435 2910
twisti@1730 2911 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
duke@435 2912 RelocationHolder rh = virtual_call_Relocation::spec(pc());
duke@435 2913 __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
duke@435 2914 assert(!os::is_MP() ||
duke@435 2915 (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2916 "must be aligned");
twisti@1730 2917 __ call(AddressLiteral(op->addr(), rh));
twisti@1919 2918 add_call_info(code_offset(), op->info());
duke@435 2919 }
duke@435 2920
duke@435 2921
duke@435 2922 /* Currently, vtable-dispatch is only enabled for sparc platforms */
twisti@1730 2923 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
duke@435 2924 ShouldNotReachHere();
duke@435 2925 }
duke@435 2926
twisti@1730 2927
duke@435 2928 void LIR_Assembler::emit_static_call_stub() {
duke@435 2929 address call_pc = __ pc();
duke@435 2930 address stub = __ start_a_stub(call_stub_size);
duke@435 2931 if (stub == NULL) {
duke@435 2932 bailout("static call stub overflow");
duke@435 2933 return;
duke@435 2934 }
duke@435 2935
duke@435 2936 int start = __ offset();
duke@435 2937 if (os::is_MP()) {
duke@435 2938 // make sure that the displacement word of the call ends up word aligned
duke@435 2939 int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
duke@435 2940 while (offset++ % BytesPerWord != 0) {
duke@435 2941 __ nop();
duke@435 2942 }
duke@435 2943 }
duke@435 2944 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 2945 __ movoop(rbx, (jobject)NULL);
duke@435 2946 // must be set to -1 at code generation time
duke@435 2947 assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
never@739 2948 // On 64bit this will die since it will take a movq & jmp, must be only a jmp
never@739 2949 __ jump(RuntimeAddress(__ pc()));
duke@435 2950
jcoomes@1844 2951 assert(__ offset() - start <= call_stub_size, "stub too big");
duke@435 2952 __ end_a_stub();
duke@435 2953 }
duke@435 2954
duke@435 2955
never@1813 2956 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
duke@435 2957 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2958 assert(exceptionPC->as_register() == rdx, "must match");
duke@435 2959
duke@435 2960 // exception object is not added to oop map by LinearScan
duke@435 2961 // (LinearScan assumes that no oops are in fixed registers)
duke@435 2962 info->add_register_oop(exceptionOop);
duke@435 2963 Runtime1::StubID unwind_id;
duke@435 2964
never@1813 2965 // get current pc information
never@1813 2966 // pc is only needed if the method has an exception handler, the unwind code does not need it.
never@1813 2967 int pc_for_athrow_offset = __ offset();
never@1813 2968 InternalAddress pc_for_athrow(__ pc());
never@1813 2969 __ lea(exceptionPC->as_register(), pc_for_athrow);
never@1813 2970 add_call_info(pc_for_athrow_offset, info); // for exception handler
never@1813 2971
never@1813 2972 __ verify_not_null_oop(rax);
never@1813 2973 // search an exception handler (rax: exception oop, rdx: throwing pc)
never@1813 2974 if (compilation()->has_fpu_code()) {
never@1813 2975 unwind_id = Runtime1::handle_exception_id;
duke@435 2976 } else {
never@1813 2977 unwind_id = Runtime1::handle_exception_nofpu_id;
duke@435 2978 }
never@1813 2979 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
duke@435 2980
duke@435 2981 // enough room for two byte trap
duke@435 2982 __ nop();
duke@435 2983 }
duke@435 2984
duke@435 2985
never@1813 2986 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
never@1813 2987 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2988
never@1813 2989 __ jmp(_unwind_handler_entry);
never@1813 2990 }
never@1813 2991
never@1813 2992
duke@435 2993 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2994
duke@435 2995 // optimized version for linear scan:
duke@435 2996 // * count must be already in ECX (guaranteed by LinearScan)
duke@435 2997 // * left and dest must be equal
duke@435 2998 // * tmp must be unused
duke@435 2999 assert(count->as_register() == SHIFT_count, "count must be in ECX");
duke@435 3000 assert(left == dest, "left and dest must be equal");
duke@435 3001 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
duke@435 3002
duke@435 3003 if (left->is_single_cpu()) {
duke@435 3004 Register value = left->as_register();
duke@435 3005 assert(value != SHIFT_count, "left cannot be ECX");
duke@435 3006
duke@435 3007 switch (code) {
duke@435 3008 case lir_shl: __ shll(value); break;
duke@435 3009 case lir_shr: __ sarl(value); break;
duke@435 3010 case lir_ushr: __ shrl(value); break;
duke@435 3011 default: ShouldNotReachHere();
duke@435 3012 }
duke@435 3013 } else if (left->is_double_cpu()) {
duke@435 3014 Register lo = left->as_register_lo();
duke@435 3015 Register hi = left->as_register_hi();
duke@435 3016 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
never@739 3017 #ifdef _LP64
never@739 3018 switch (code) {
never@739 3019 case lir_shl: __ shlptr(lo); break;
never@739 3020 case lir_shr: __ sarptr(lo); break;
never@739 3021 case lir_ushr: __ shrptr(lo); break;
never@739 3022 default: ShouldNotReachHere();
never@739 3023 }
never@739 3024 #else
duke@435 3025
duke@435 3026 switch (code) {
duke@435 3027 case lir_shl: __ lshl(hi, lo); break;
duke@435 3028 case lir_shr: __ lshr(hi, lo, true); break;
duke@435 3029 case lir_ushr: __ lshr(hi, lo, false); break;
duke@435 3030 default: ShouldNotReachHere();
duke@435 3031 }
never@739 3032 #endif // LP64
duke@435 3033 } else {
duke@435 3034 ShouldNotReachHere();
duke@435 3035 }
duke@435 3036 }
duke@435 3037
duke@435 3038
duke@435 3039 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 3040 if (dest->is_single_cpu()) {
duke@435 3041 // first move left into dest so that left is not destroyed by the shift
duke@435 3042 Register value = dest->as_register();
duke@435 3043 count = count & 0x1F; // Java spec
duke@435 3044
duke@435 3045 move_regs(left->as_register(), value);
duke@435 3046 switch (code) {
duke@435 3047 case lir_shl: __ shll(value, count); break;
duke@435 3048 case lir_shr: __ sarl(value, count); break;
duke@435 3049 case lir_ushr: __ shrl(value, count); break;
duke@435 3050 default: ShouldNotReachHere();
duke@435 3051 }
duke@435 3052 } else if (dest->is_double_cpu()) {
never@739 3053 #ifndef _LP64
duke@435 3054 Unimplemented();
never@739 3055 #else
never@739 3056 // first move left into dest so that left is not destroyed by the shift
never@739 3057 Register value = dest->as_register_lo();
never@739 3058 count = count & 0x1F; // Java spec
never@739 3059
never@739 3060 move_regs(left->as_register_lo(), value);
never@739 3061 switch (code) {
never@739 3062 case lir_shl: __ shlptr(value, count); break;
never@739 3063 case lir_shr: __ sarptr(value, count); break;
never@739 3064 case lir_ushr: __ shrptr(value, count); break;
never@739 3065 default: ShouldNotReachHere();
never@739 3066 }
never@739 3067 #endif // _LP64
duke@435 3068 } else {
duke@435 3069 ShouldNotReachHere();
duke@435 3070 }
duke@435 3071 }
duke@435 3072
duke@435 3073
duke@435 3074 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
duke@435 3075 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3076 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3077 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 3078 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
duke@435 3079 }
duke@435 3080
duke@435 3081
duke@435 3082 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
duke@435 3083 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3084 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3085 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 3086 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
duke@435 3087 }
duke@435 3088
duke@435 3089
duke@435 3090 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
duke@435 3091 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3092 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3093 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
duke@435 3094 __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
duke@435 3095 }
duke@435 3096
duke@435 3097
duke@435 3098 // This code replaces a call to arraycopy; no exception may
duke@435 3099 // be thrown in this code, they must be thrown in the System.arraycopy
duke@435 3100 // activation frame; we could save some checks if this would not be the case
duke@435 3101 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 3102 ciArrayKlass* default_type = op->expected_type();
duke@435 3103 Register src = op->src()->as_register();
duke@435 3104 Register dst = op->dst()->as_register();
duke@435 3105 Register src_pos = op->src_pos()->as_register();
duke@435 3106 Register dst_pos = op->dst_pos()->as_register();
duke@435 3107 Register length = op->length()->as_register();
duke@435 3108 Register tmp = op->tmp()->as_register();
duke@435 3109
duke@435 3110 CodeStub* stub = op->stub();
duke@435 3111 int flags = op->flags();
duke@435 3112 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 3113 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 3114
duke@435 3115 // if we don't know anything or it's an object array, just go through the generic arraycopy
duke@435 3116 if (default_type == NULL) {
duke@435 3117 Label done;
duke@435 3118 // save outgoing arguments on stack in case call to System.arraycopy is needed
duke@435 3119 // HACK ALERT. This code used to push the parameters in a hardwired fashion
duke@435 3120 // for interpreter calling conventions. Now we have to do it in new style conventions.
duke@435 3121 // For the moment until C1 gets the new register allocator I just force all the
duke@435 3122 // args to the right place (except the register args) and then on the back side
duke@435 3123 // reload the register args properly if we go slow path. Yuck
duke@435 3124
duke@435 3125 // These are proper for the calling convention
duke@435 3126
duke@435 3127 store_parameter(length, 2);
duke@435 3128 store_parameter(dst_pos, 1);
duke@435 3129 store_parameter(dst, 0);
duke@435 3130
duke@435 3131 // these are just temporary placements until we need to reload
duke@435 3132 store_parameter(src_pos, 3);
duke@435 3133 store_parameter(src, 4);
never@739 3134 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
never@739 3135
never@739 3136 address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
duke@435 3137
duke@435 3138 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
never@739 3139 #ifdef _LP64
never@739 3140 // The arguments are in java calling convention so we can trivially shift them to C
never@739 3141 // convention
never@739 3142 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3143 __ mov(c_rarg0, j_rarg0);
never@739 3144 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3145 __ mov(c_rarg1, j_rarg1);
never@739 3146 assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
never@739 3147 __ mov(c_rarg2, j_rarg2);
never@739 3148 assert_different_registers(c_rarg3, j_rarg4);
never@739 3149 __ mov(c_rarg3, j_rarg3);
never@739 3150 #ifdef _WIN64
never@739 3151 // Allocate abi space for args but be sure to keep stack aligned
never@739 3152 __ subptr(rsp, 6*wordSize);
never@739 3153 store_parameter(j_rarg4, 4);
never@739 3154 __ call(RuntimeAddress(entry));
never@739 3155 __ addptr(rsp, 6*wordSize);
never@739 3156 #else
never@739 3157 __ mov(c_rarg4, j_rarg4);
never@739 3158 __ call(RuntimeAddress(entry));
never@739 3159 #endif // _WIN64
never@739 3160 #else
never@739 3161 __ push(length);
never@739 3162 __ push(dst_pos);
never@739 3163 __ push(dst);
never@739 3164 __ push(src_pos);
never@739 3165 __ push(src);
duke@435 3166 __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
duke@435 3167
never@739 3168 #endif // _LP64
never@739 3169
duke@435 3170 __ cmpl(rax, 0);
duke@435 3171 __ jcc(Assembler::equal, *stub->continuation());
duke@435 3172
duke@435 3173 // Reload values from the stack so they are where the stub
duke@435 3174 // expects them.
never@739 3175 __ movptr (dst, Address(rsp, 0*BytesPerWord));
never@739 3176 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
never@739 3177 __ movptr (length, Address(rsp, 2*BytesPerWord));
never@739 3178 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
never@739 3179 __ movptr (src, Address(rsp, 4*BytesPerWord));
duke@435 3180 __ jmp(*stub->entry());
duke@435 3181
duke@435 3182 __ bind(*stub->continuation());
duke@435 3183 return;
duke@435 3184 }
duke@435 3185
duke@435 3186 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
duke@435 3187
kvn@464 3188 int elem_size = type2aelembytes(basic_type);
duke@435 3189 int shift_amount;
duke@435 3190 Address::ScaleFactor scale;
duke@435 3191
duke@435 3192 switch (elem_size) {
duke@435 3193 case 1 :
duke@435 3194 shift_amount = 0;
duke@435 3195 scale = Address::times_1;
duke@435 3196 break;
duke@435 3197 case 2 :
duke@435 3198 shift_amount = 1;
duke@435 3199 scale = Address::times_2;
duke@435 3200 break;
duke@435 3201 case 4 :
duke@435 3202 shift_amount = 2;
duke@435 3203 scale = Address::times_4;
duke@435 3204 break;
duke@435 3205 case 8 :
duke@435 3206 shift_amount = 3;
duke@435 3207 scale = Address::times_8;
duke@435 3208 break;
duke@435 3209 default:
duke@435 3210 ShouldNotReachHere();
duke@435 3211 }
duke@435 3212
duke@435 3213 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
duke@435 3214 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
duke@435 3215 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
duke@435 3216 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
duke@435 3217
never@739 3218 // length and pos's are all sign extended at this point on 64bit
never@739 3219
duke@435 3220 // test for NULL
duke@435 3221 if (flags & LIR_OpArrayCopy::src_null_check) {
never@739 3222 __ testptr(src, src);
duke@435 3223 __ jcc(Assembler::zero, *stub->entry());
duke@435 3224 }
duke@435 3225 if (flags & LIR_OpArrayCopy::dst_null_check) {
never@739 3226 __ testptr(dst, dst);
duke@435 3227 __ jcc(Assembler::zero, *stub->entry());
duke@435 3228 }
duke@435 3229
duke@435 3230 // check if negative
duke@435 3231 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 3232 __ testl(src_pos, src_pos);
duke@435 3233 __ jcc(Assembler::less, *stub->entry());
duke@435 3234 }
duke@435 3235 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 3236 __ testl(dst_pos, dst_pos);
duke@435 3237 __ jcc(Assembler::less, *stub->entry());
duke@435 3238 }
duke@435 3239 if (flags & LIR_OpArrayCopy::length_positive_check) {
duke@435 3240 __ testl(length, length);
duke@435 3241 __ jcc(Assembler::less, *stub->entry());
duke@435 3242 }
duke@435 3243
duke@435 3244 if (flags & LIR_OpArrayCopy::src_range_check) {
never@739 3245 __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
duke@435 3246 __ cmpl(tmp, src_length_addr);
duke@435 3247 __ jcc(Assembler::above, *stub->entry());
duke@435 3248 }
duke@435 3249 if (flags & LIR_OpArrayCopy::dst_range_check) {
never@739 3250 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
duke@435 3251 __ cmpl(tmp, dst_length_addr);
duke@435 3252 __ jcc(Assembler::above, *stub->entry());
duke@435 3253 }
duke@435 3254
duke@435 3255 if (flags & LIR_OpArrayCopy::type_check) {
iveresov@2344 3256 if (UseCompressedOops) {
iveresov@2344 3257 __ movl(tmp, src_klass_addr);
iveresov@2344 3258 __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3259 } else {
iveresov@2344 3260 __ movptr(tmp, src_klass_addr);
iveresov@2344 3261 __ cmpptr(tmp, dst_klass_addr);
iveresov@2344 3262 }
duke@435 3263 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 3264 }
duke@435 3265
duke@435 3266 #ifdef ASSERT
duke@435 3267 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 3268 // Sanity check the known type with the incoming class. For the
duke@435 3269 // primitive case the types must match exactly with src.klass and
duke@435 3270 // dst.klass each exactly matching the default type. For the
duke@435 3271 // object array case, if no type check is needed then either the
duke@435 3272 // dst type is exactly the expected type and the src type is a
duke@435 3273 // subtype which we can't check or src is the same array as dst
duke@435 3274 // but not necessarily exactly of type default_type.
duke@435 3275 Label known_ok, halt;
jrose@1424 3276 __ movoop(tmp, default_type->constant_encoding());
iveresov@2344 3277 #ifdef _LP64
iveresov@2344 3278 if (UseCompressedOops) {
iveresov@2344 3279 __ encode_heap_oop(tmp);
iveresov@2344 3280 }
iveresov@2344 3281 #endif
iveresov@2344 3282
duke@435 3283 if (basic_type != T_OBJECT) {
iveresov@2344 3284
iveresov@2344 3285 if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3286 else __ cmpptr(tmp, dst_klass_addr);
duke@435 3287 __ jcc(Assembler::notEqual, halt);
iveresov@2344 3288 if (UseCompressedOops) __ cmpl(tmp, src_klass_addr);
iveresov@2344 3289 else __ cmpptr(tmp, src_klass_addr);
duke@435 3290 __ jcc(Assembler::equal, known_ok);
duke@435 3291 } else {
iveresov@2344 3292 if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3293 else __ cmpptr(tmp, dst_klass_addr);
duke@435 3294 __ jcc(Assembler::equal, known_ok);
never@739 3295 __ cmpptr(src, dst);
duke@435 3296 __ jcc(Assembler::equal, known_ok);
duke@435 3297 }
duke@435 3298 __ bind(halt);
duke@435 3299 __ stop("incorrect type information in arraycopy");
duke@435 3300 __ bind(known_ok);
duke@435 3301 }
duke@435 3302 #endif
duke@435 3303
never@739 3304 if (shift_amount > 0 && basic_type != T_OBJECT) {
never@739 3305 __ shlptr(length, shift_amount);
never@739 3306 }
never@739 3307
never@739 3308 #ifdef _LP64
never@739 3309 assert_different_registers(c_rarg0, dst, dst_pos, length);
roland@1495 3310 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
never@739 3311 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3312 assert_different_registers(c_rarg1, length);
roland@1495 3313 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
never@739 3314 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3315 __ mov(c_rarg2, length);
never@739 3316
never@739 3317 #else
never@739 3318 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3319 store_parameter(tmp, 0);
never@739 3320 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3321 store_parameter(tmp, 1);
duke@435 3322 store_parameter(length, 2);
never@739 3323 #endif // _LP64
duke@435 3324 if (basic_type == T_OBJECT) {
duke@435 3325 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
duke@435 3326 } else {
duke@435 3327 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
duke@435 3328 }
duke@435 3329
duke@435 3330 __ bind(*stub->continuation());
duke@435 3331 }
duke@435 3332
duke@435 3333
duke@435 3334 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 3335 Register obj = op->obj_opr()->as_register(); // may not be an oop
duke@435 3336 Register hdr = op->hdr_opr()->as_register();
duke@435 3337 Register lock = op->lock_opr()->as_register();
duke@435 3338 if (!UseFastLocking) {
duke@435 3339 __ jmp(*op->stub()->entry());
duke@435 3340 } else if (op->code() == lir_lock) {
duke@435 3341 Register scratch = noreg;
duke@435 3342 if (UseBiasedLocking) {
duke@435 3343 scratch = op->scratch_opr()->as_register();
duke@435 3344 }
duke@435 3345 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3346 // add debug info for NullPointerException only if one is possible
duke@435 3347 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
duke@435 3348 if (op->info() != NULL) {
duke@435 3349 add_debug_info_for_null_check(null_check_offset, op->info());
duke@435 3350 }
duke@435 3351 // done
duke@435 3352 } else if (op->code() == lir_unlock) {
duke@435 3353 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3354 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 3355 } else {
duke@435 3356 Unimplemented();
duke@435 3357 }
duke@435 3358 __ bind(*op->stub()->continuation());
duke@435 3359 }
duke@435 3360
duke@435 3361
duke@435 3362 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 3363 ciMethod* method = op->profiled_method();
duke@435 3364 int bci = op->profiled_bci();
duke@435 3365
duke@435 3366 // Update counter for all call types
iveresov@2349 3367 ciMethodData* md = method->method_data_or_null();
iveresov@2349 3368 assert(md != NULL, "Sanity");
duke@435 3369 ciProfileData* data = md->bci_to_data(bci);
duke@435 3370 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 3371 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
duke@435 3372 Register mdo = op->mdo()->as_register();
jrose@1424 3373 __ movoop(mdo, md->constant_encoding());
duke@435 3374 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
duke@435 3375 Bytecodes::Code bc = method->java_code_at_bci(bci);
duke@435 3376 // Perform additional virtual call profiling for invokevirtual and
duke@435 3377 // invokeinterface bytecodes
duke@435 3378 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
iveresov@2138 3379 C1ProfileVirtualCalls) {
duke@435 3380 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 3381 Register recv = op->recv()->as_register();
duke@435 3382 assert_different_registers(mdo, recv);
duke@435 3383 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 3384 ciKlass* known_klass = op->known_holder();
iveresov@2138 3385 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 3386 // We know the type that will be seen at this call site; we can
duke@435 3387 // statically update the methodDataOop rather than needing to do
duke@435 3388 // dynamic tests on the receiver type
duke@435 3389
duke@435 3390 // NOTE: we should probably put a lock around this search to
duke@435 3391 // avoid collisions by concurrent compilations
duke@435 3392 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 3393 uint i;
duke@435 3394 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3395 ciKlass* receiver = vc_data->receiver(i);
duke@435 3396 if (known_klass->equals(receiver)) {
duke@435 3397 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
iveresov@2138 3398 __ addptr(data_addr, DataLayout::counter_increment);
duke@435 3399 return;
duke@435 3400 }
duke@435 3401 }
duke@435 3402
duke@435 3403 // Receiver type not found in profile data; select an empty slot
duke@435 3404
duke@435 3405 // Note that this is less efficient than it should be because it
duke@435 3406 // always does a write to the receiver part of the
duke@435 3407 // VirtualCallData rather than just the first time
duke@435 3408 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3409 ciKlass* receiver = vc_data->receiver(i);
duke@435 3410 if (receiver == NULL) {
duke@435 3411 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
jrose@1424 3412 __ movoop(recv_addr, known_klass->constant_encoding());
duke@435 3413 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
iveresov@2138 3414 __ addptr(data_addr, DataLayout::counter_increment);
duke@435 3415 return;
duke@435 3416 }
duke@435 3417 }
duke@435 3418 } else {
iveresov@2344 3419 __ load_klass(recv, recv);
duke@435 3420 Label update_done;
iveresov@2138 3421 type_profile_helper(mdo, md, data, recv, &update_done);
kvn@1641 3422 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 3423 // Increment total counter to indicate polymorphic case.
iveresov@2138 3424 __ addptr(counter_addr, DataLayout::counter_increment);
duke@435 3425
duke@435 3426 __ bind(update_done);
duke@435 3427 }
kvn@1641 3428 } else {
kvn@1641 3429 // Static call
iveresov@2138 3430 __ addptr(counter_addr, DataLayout::counter_increment);
duke@435 3431 }
duke@435 3432 }
duke@435 3433
duke@435 3434 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
duke@435 3435 Unimplemented();
duke@435 3436 }
duke@435 3437
duke@435 3438
duke@435 3439 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
never@739 3440 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
duke@435 3441 }
duke@435 3442
duke@435 3443
duke@435 3444 void LIR_Assembler::align_backward_branch_target() {
duke@435 3445 __ align(BytesPerWord);
duke@435 3446 }
duke@435 3447
duke@435 3448
duke@435 3449 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3450 if (left->is_single_cpu()) {
duke@435 3451 __ negl(left->as_register());
duke@435 3452 move_regs(left->as_register(), dest->as_register());
duke@435 3453
duke@435 3454 } else if (left->is_double_cpu()) {
duke@435 3455 Register lo = left->as_register_lo();
never@739 3456 #ifdef _LP64
never@739 3457 Register dst = dest->as_register_lo();
never@739 3458 __ movptr(dst, lo);
never@739 3459 __ negptr(dst);
never@739 3460 #else
duke@435 3461 Register hi = left->as_register_hi();
duke@435 3462 __ lneg(hi, lo);
duke@435 3463 if (dest->as_register_lo() == hi) {
duke@435 3464 assert(dest->as_register_hi() != lo, "destroying register");
duke@435 3465 move_regs(hi, dest->as_register_hi());
duke@435 3466 move_regs(lo, dest->as_register_lo());
duke@435 3467 } else {
duke@435 3468 move_regs(lo, dest->as_register_lo());
duke@435 3469 move_regs(hi, dest->as_register_hi());
duke@435 3470 }
never@739 3471 #endif // _LP64
duke@435 3472
duke@435 3473 } else if (dest->is_single_xmm()) {
duke@435 3474 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
duke@435 3475 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
duke@435 3476 }
duke@435 3477 __ xorps(dest->as_xmm_float_reg(),
duke@435 3478 ExternalAddress((address)float_signflip_pool));
duke@435 3479
duke@435 3480 } else if (dest->is_double_xmm()) {
duke@435 3481 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
duke@435 3482 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
duke@435 3483 }
duke@435 3484 __ xorpd(dest->as_xmm_double_reg(),
duke@435 3485 ExternalAddress((address)double_signflip_pool));
duke@435 3486
duke@435 3487 } else if (left->is_single_fpu() || left->is_double_fpu()) {
duke@435 3488 assert(left->fpu() == 0, "arg must be on TOS");
duke@435 3489 assert(dest->fpu() == 0, "dest must be TOS");
duke@435 3490 __ fchs();
duke@435 3491
duke@435 3492 } else {
duke@435 3493 ShouldNotReachHere();
duke@435 3494 }
duke@435 3495 }
duke@435 3496
duke@435 3497
duke@435 3498 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
duke@435 3499 assert(addr->is_address() && dest->is_register(), "check");
never@739 3500 Register reg;
never@739 3501 reg = dest->as_pointer_register();
never@739 3502 __ lea(reg, as_Address(addr->as_address_ptr()));
duke@435 3503 }
duke@435 3504
duke@435 3505
duke@435 3506
duke@435 3507 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3508 assert(!tmp->is_valid(), "don't need temporary");
duke@435 3509 __ call(RuntimeAddress(dest));
duke@435 3510 if (info != NULL) {
duke@435 3511 add_call_info_here(info);
duke@435 3512 }
duke@435 3513 }
duke@435 3514
duke@435 3515
duke@435 3516 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3517 assert(type == T_LONG, "only for volatile long fields");
duke@435 3518
duke@435 3519 if (info != NULL) {
duke@435 3520 add_debug_info_for_null_check_here(info);
duke@435 3521 }
duke@435 3522
duke@435 3523 if (src->is_double_xmm()) {
duke@435 3524 if (dest->is_double_cpu()) {
never@739 3525 #ifdef _LP64
never@739 3526 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
never@739 3527 #else
never@739 3528 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
duke@435 3529 __ psrlq(src->as_xmm_double_reg(), 32);
never@739 3530 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
never@739 3531 #endif // _LP64
duke@435 3532 } else if (dest->is_double_stack()) {
duke@435 3533 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
duke@435 3534 } else if (dest->is_address()) {
duke@435 3535 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
duke@435 3536 } else {
duke@435 3537 ShouldNotReachHere();
duke@435 3538 }
duke@435 3539
duke@435 3540 } else if (dest->is_double_xmm()) {
duke@435 3541 if (src->is_double_stack()) {
duke@435 3542 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3543 } else if (src->is_address()) {
duke@435 3544 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
duke@435 3545 } else {
duke@435 3546 ShouldNotReachHere();
duke@435 3547 }
duke@435 3548
duke@435 3549 } else if (src->is_double_fpu()) {
duke@435 3550 assert(src->fpu_regnrLo() == 0, "must be TOS");
duke@435 3551 if (dest->is_double_stack()) {
duke@435 3552 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
duke@435 3553 } else if (dest->is_address()) {
duke@435 3554 __ fistp_d(as_Address(dest->as_address_ptr()));
duke@435 3555 } else {
duke@435 3556 ShouldNotReachHere();
duke@435 3557 }
duke@435 3558
duke@435 3559 } else if (dest->is_double_fpu()) {
duke@435 3560 assert(dest->fpu_regnrLo() == 0, "must be TOS");
duke@435 3561 if (src->is_double_stack()) {
duke@435 3562 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3563 } else if (src->is_address()) {
duke@435 3564 __ fild_d(as_Address(src->as_address_ptr()));
duke@435 3565 } else {
duke@435 3566 ShouldNotReachHere();
duke@435 3567 }
duke@435 3568 } else {
duke@435 3569 ShouldNotReachHere();
duke@435 3570 }
duke@435 3571 }
duke@435 3572
duke@435 3573
duke@435 3574 void LIR_Assembler::membar() {
never@739 3575 // QQQ sparc TSO uses this,
never@739 3576 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
duke@435 3577 }
duke@435 3578
duke@435 3579 void LIR_Assembler::membar_acquire() {
duke@435 3580 // No x86 machines currently require load fences
duke@435 3581 // __ load_fence();
duke@435 3582 }
duke@435 3583
duke@435 3584 void LIR_Assembler::membar_release() {
duke@435 3585 // No x86 machines currently require store fences
duke@435 3586 // __ store_fence();
duke@435 3587 }
duke@435 3588
duke@435 3589 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3590 assert(result_reg->is_register(), "check");
never@739 3591 #ifdef _LP64
never@739 3592 // __ get_thread(result_reg->as_register_lo());
never@739 3593 __ mov(result_reg->as_register(), r15_thread);
never@739 3594 #else
duke@435 3595 __ get_thread(result_reg->as_register());
never@739 3596 #endif // _LP64
duke@435 3597 }
duke@435 3598
duke@435 3599
duke@435 3600 void LIR_Assembler::peephole(LIR_List*) {
duke@435 3601 // do nothing for now
duke@435 3602 }
duke@435 3603
duke@435 3604
duke@435 3605 #undef __

mercurial