src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Mon, 14 May 2012 09:36:00 -0700

author
kvn
date
Mon, 14 May 2012 09:36:00 -0700
changeset 3760
8f972594effc
parent 3744
3576af4cb939
child 3787
6759698e3140
permissions
-rw-r--r--

6924259: Remove String.count/String.offset
Summary: Allow a version of String class that doesn't have count and offset fields.
Reviewed-by: never, coleenp

duke@435 1 /*
kvn@3760 2 * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@2697 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "c1/c1_Compilation.hpp"
stefank@2314 28 #include "c1/c1_LIRAssembler.hpp"
stefank@2314 29 #include "c1/c1_MacroAssembler.hpp"
stefank@2314 30 #include "c1/c1_Runtime1.hpp"
stefank@2314 31 #include "c1/c1_ValueStack.hpp"
stefank@2314 32 #include "ci/ciArrayKlass.hpp"
stefank@2314 33 #include "ci/ciInstance.hpp"
stefank@2314 34 #include "gc_interface/collectedHeap.hpp"
stefank@2314 35 #include "memory/barrierSet.hpp"
stefank@2314 36 #include "memory/cardTableModRefBS.hpp"
stefank@2314 37 #include "nativeInst_x86.hpp"
stefank@2314 38 #include "oops/objArrayKlass.hpp"
stefank@2314 39 #include "runtime/sharedRuntime.hpp"
duke@435 40
duke@435 41
duke@435 42 // These masks are used to provide 128-bit aligned bitmasks to the XMM
duke@435 43 // instructions, to allow sign-masking or sign-bit flipping. They allow
duke@435 44 // fast versions of NegF/NegD and AbsF/AbsD.
duke@435 45
duke@435 46 // Note: 'double' and 'long long' have 32-bits alignment on x86.
duke@435 47 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
duke@435 48 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
duke@435 49 // of 128-bits operands for SSE instructions.
iveresov@2932 50 jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
duke@435 51 // Store the value to a 128-bits operand.
duke@435 52 operand[0] = lo;
duke@435 53 operand[1] = hi;
duke@435 54 return operand;
duke@435 55 }
duke@435 56
duke@435 57 // Buffer for 128-bits masks used by SSE instructions.
duke@435 58 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
duke@435 59
duke@435 60 // Static initialization during VM startup.
duke@435 61 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
duke@435 62 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
duke@435 63 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
duke@435 64 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
duke@435 65
duke@435 66
duke@435 67
duke@435 68 NEEDS_CLEANUP // remove this definitions ?
duke@435 69 const Register IC_Klass = rax; // where the IC klass is cached
duke@435 70 const Register SYNC_header = rax; // synchronization header
duke@435 71 const Register SHIFT_count = rcx; // where count for shift operations must be
duke@435 72
duke@435 73 #define __ _masm->
duke@435 74
duke@435 75
duke@435 76 static void select_different_registers(Register preserve,
duke@435 77 Register extra,
duke@435 78 Register &tmp1,
duke@435 79 Register &tmp2) {
duke@435 80 if (tmp1 == preserve) {
duke@435 81 assert_different_registers(tmp1, tmp2, extra);
duke@435 82 tmp1 = extra;
duke@435 83 } else if (tmp2 == preserve) {
duke@435 84 assert_different_registers(tmp1, tmp2, extra);
duke@435 85 tmp2 = extra;
duke@435 86 }
duke@435 87 assert_different_registers(preserve, tmp1, tmp2);
duke@435 88 }
duke@435 89
duke@435 90
duke@435 91
duke@435 92 static void select_different_registers(Register preserve,
duke@435 93 Register extra,
duke@435 94 Register &tmp1,
duke@435 95 Register &tmp2,
duke@435 96 Register &tmp3) {
duke@435 97 if (tmp1 == preserve) {
duke@435 98 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 99 tmp1 = extra;
duke@435 100 } else if (tmp2 == preserve) {
duke@435 101 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 102 tmp2 = extra;
duke@435 103 } else if (tmp3 == preserve) {
duke@435 104 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 105 tmp3 = extra;
duke@435 106 }
duke@435 107 assert_different_registers(preserve, tmp1, tmp2, tmp3);
duke@435 108 }
duke@435 109
duke@435 110
duke@435 111
duke@435 112 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 113 if (opr->is_constant()) {
duke@435 114 LIR_Const* constant = opr->as_constant_ptr();
duke@435 115 switch (constant->type()) {
duke@435 116 case T_INT: {
duke@435 117 return true;
duke@435 118 }
duke@435 119
duke@435 120 default:
duke@435 121 return false;
duke@435 122 }
duke@435 123 }
duke@435 124 return false;
duke@435 125 }
duke@435 126
duke@435 127
duke@435 128 LIR_Opr LIR_Assembler::receiverOpr() {
never@739 129 return FrameMap::receiver_opr;
duke@435 130 }
duke@435 131
duke@435 132 LIR_Opr LIR_Assembler::osrBufferPointer() {
never@739 133 return FrameMap::as_pointer_opr(receiverOpr()->as_register());
duke@435 134 }
duke@435 135
duke@435 136 //--------------fpu register translations-----------------------
duke@435 137
duke@435 138
duke@435 139 address LIR_Assembler::float_constant(float f) {
duke@435 140 address const_addr = __ float_constant(f);
duke@435 141 if (const_addr == NULL) {
duke@435 142 bailout("const section overflow");
duke@435 143 return __ code()->consts()->start();
duke@435 144 } else {
duke@435 145 return const_addr;
duke@435 146 }
duke@435 147 }
duke@435 148
duke@435 149
duke@435 150 address LIR_Assembler::double_constant(double d) {
duke@435 151 address const_addr = __ double_constant(d);
duke@435 152 if (const_addr == NULL) {
duke@435 153 bailout("const section overflow");
duke@435 154 return __ code()->consts()->start();
duke@435 155 } else {
duke@435 156 return const_addr;
duke@435 157 }
duke@435 158 }
duke@435 159
duke@435 160
duke@435 161 void LIR_Assembler::set_24bit_FPU() {
duke@435 162 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
duke@435 163 }
duke@435 164
duke@435 165 void LIR_Assembler::reset_FPU() {
duke@435 166 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 167 }
duke@435 168
duke@435 169 void LIR_Assembler::fpop() {
duke@435 170 __ fpop();
duke@435 171 }
duke@435 172
duke@435 173 void LIR_Assembler::fxch(int i) {
duke@435 174 __ fxch(i);
duke@435 175 }
duke@435 176
duke@435 177 void LIR_Assembler::fld(int i) {
duke@435 178 __ fld_s(i);
duke@435 179 }
duke@435 180
duke@435 181 void LIR_Assembler::ffree(int i) {
duke@435 182 __ ffree(i);
duke@435 183 }
duke@435 184
duke@435 185 void LIR_Assembler::breakpoint() {
duke@435 186 __ int3();
duke@435 187 }
duke@435 188
duke@435 189 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 190 if (opr->is_single_cpu()) {
duke@435 191 __ push_reg(opr->as_register());
duke@435 192 } else if (opr->is_double_cpu()) {
never@739 193 NOT_LP64(__ push_reg(opr->as_register_hi()));
duke@435 194 __ push_reg(opr->as_register_lo());
duke@435 195 } else if (opr->is_stack()) {
duke@435 196 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
duke@435 197 } else if (opr->is_constant()) {
duke@435 198 LIR_Const* const_opr = opr->as_constant_ptr();
duke@435 199 if (const_opr->type() == T_OBJECT) {
duke@435 200 __ push_oop(const_opr->as_jobject());
duke@435 201 } else if (const_opr->type() == T_INT) {
duke@435 202 __ push_jint(const_opr->as_jint());
duke@435 203 } else {
duke@435 204 ShouldNotReachHere();
duke@435 205 }
duke@435 206
duke@435 207 } else {
duke@435 208 ShouldNotReachHere();
duke@435 209 }
duke@435 210 }
duke@435 211
duke@435 212 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 213 if (opr->is_single_cpu()) {
never@739 214 __ pop_reg(opr->as_register());
duke@435 215 } else {
duke@435 216 ShouldNotReachHere();
duke@435 217 }
duke@435 218 }
duke@435 219
never@739 220 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
never@739 221 return addr->base()->is_illegal() && addr->index()->is_illegal();
never@739 222 }
never@739 223
duke@435 224 //-------------------------------------------
never@739 225
duke@435 226 Address LIR_Assembler::as_Address(LIR_Address* addr) {
never@739 227 return as_Address(addr, rscratch1);
never@739 228 }
never@739 229
never@739 230 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
duke@435 231 if (addr->base()->is_illegal()) {
duke@435 232 assert(addr->index()->is_illegal(), "must be illegal too");
never@739 233 AddressLiteral laddr((address)addr->disp(), relocInfo::none);
never@739 234 if (! __ reachable(laddr)) {
never@739 235 __ movptr(tmp, laddr.addr());
never@739 236 Address res(tmp, 0);
never@739 237 return res;
never@739 238 } else {
never@739 239 return __ as_Address(laddr);
never@739 240 }
duke@435 241 }
duke@435 242
never@739 243 Register base = addr->base()->as_pointer_register();
duke@435 244
duke@435 245 if (addr->index()->is_illegal()) {
duke@435 246 return Address( base, addr->disp());
never@739 247 } else if (addr->index()->is_cpu_register()) {
never@739 248 Register index = addr->index()->as_pointer_register();
duke@435 249 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
duke@435 250 } else if (addr->index()->is_constant()) {
never@739 251 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
never@739 252 assert(Assembler::is_simm32(addr_offset), "must be");
duke@435 253
duke@435 254 return Address(base, addr_offset);
duke@435 255 } else {
duke@435 256 Unimplemented();
duke@435 257 return Address();
duke@435 258 }
duke@435 259 }
duke@435 260
duke@435 261
duke@435 262 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 263 Address base = as_Address(addr);
duke@435 264 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
duke@435 265 }
duke@435 266
duke@435 267
duke@435 268 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 269 return as_Address(addr);
duke@435 270 }
duke@435 271
duke@435 272
duke@435 273 void LIR_Assembler::osr_entry() {
duke@435 274 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 275 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 276 ValueStack* entry_state = osr_entry->state();
duke@435 277 int number_of_locks = entry_state->locks_size();
duke@435 278
duke@435 279 // we jump here if osr happens with the interpreter
duke@435 280 // state set up to continue at the beginning of the
duke@435 281 // loop that triggered osr - in particular, we have
duke@435 282 // the following registers setup:
duke@435 283 //
duke@435 284 // rcx: osr buffer
duke@435 285 //
duke@435 286
duke@435 287 // build frame
duke@435 288 ciMethod* m = compilation()->method();
duke@435 289 __ build_frame(initial_frame_size_in_bytes());
duke@435 290
duke@435 291 // OSR buffer is
duke@435 292 //
duke@435 293 // locals[nlocals-1..0]
duke@435 294 // monitors[0..number_of_locks]
duke@435 295 //
duke@435 296 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 297 // so first slot in the local array is the last local from the interpreter
duke@435 298 // and last slot is local[0] (receiver) from the interpreter
duke@435 299 //
duke@435 300 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 301 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 302 // in the interpreter frame (the method lock if a sync method)
duke@435 303
duke@435 304 // Initialize monitors in the compiled activation.
duke@435 305 // rcx: pointer to osr buffer
duke@435 306 //
duke@435 307 // All other registers are dead at this point and the locals will be
duke@435 308 // copied into place by code emitted in the IR.
duke@435 309
never@739 310 Register OSR_buf = osrBufferPointer()->as_pointer_register();
duke@435 311 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 312 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 313 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 314 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 315 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 316 // the oop.
duke@435 317 for (int i = 0; i < number_of_locks; i++) {
roland@1495 318 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 319 #ifdef ASSERT
duke@435 320 // verify the interpreter's monitor has a non-null object
duke@435 321 {
duke@435 322 Label L;
roland@1495 323 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
duke@435 324 __ jcc(Assembler::notZero, L);
duke@435 325 __ stop("locked object is NULL");
duke@435 326 __ bind(L);
duke@435 327 }
duke@435 328 #endif
roland@1495 329 __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
never@739 330 __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
roland@1495 331 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
never@739 332 __ movptr(frame_map()->address_for_monitor_object(i), rbx);
duke@435 333 }
duke@435 334 }
duke@435 335 }
duke@435 336
duke@435 337
duke@435 338 // inline cache check; done before the frame is built.
duke@435 339 int LIR_Assembler::check_icache() {
duke@435 340 Register receiver = FrameMap::receiver_opr->as_register();
duke@435 341 Register ic_klass = IC_Klass;
never@739 342 const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
iveresov@2344 343 const bool do_post_padding = VerifyOops || UseCompressedOops;
iveresov@2344 344 if (!do_post_padding) {
duke@435 345 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
never@739 346 while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
duke@435 347 __ nop();
duke@435 348 }
duke@435 349 }
duke@435 350 int offset = __ offset();
duke@435 351 __ inline_cache_check(receiver, IC_Klass);
iveresov@2344 352 assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
iveresov@2344 353 if (do_post_padding) {
duke@435 354 // force alignment after the cache check.
duke@435 355 // It's been verified to be aligned if !VerifyOops
duke@435 356 __ align(CodeEntryAlignment);
duke@435 357 }
duke@435 358 return offset;
duke@435 359 }
duke@435 360
duke@435 361
duke@435 362 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
duke@435 363 jobject o = NULL;
duke@435 364 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
duke@435 365 __ movoop(reg, o);
duke@435 366 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 367 }
duke@435 368
duke@435 369
duke@435 370 // This specifies the rsp decrement needed to build the frame
duke@435 371 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 372 // if rounding, must let FrameMap know!
never@739 373
never@739 374 // The frame_map records size in slots (32bit word)
never@739 375
never@739 376 // subtract two words to account for return address and link
never@739 377 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size;
duke@435 378 }
duke@435 379
duke@435 380
twisti@1639 381 int LIR_Assembler::emit_exception_handler() {
duke@435 382 // if the last instruction is a call (typically to do a throw which
duke@435 383 // is coming at the end after block reordering) the return address
duke@435 384 // must still point into the code area in order to avoid assertion
duke@435 385 // failures when searching for the corresponding bci => add a nop
duke@435 386 // (was bug 5/14/1999 - gri)
duke@435 387 __ nop();
duke@435 388
duke@435 389 // generate code for exception handler
duke@435 390 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 391 if (handler_base == NULL) {
duke@435 392 // not enough space left for the handler
duke@435 393 bailout("exception handler overflow");
twisti@1639 394 return -1;
duke@435 395 }
twisti@1639 396
duke@435 397 int offset = code_offset();
duke@435 398
twisti@1730 399 // the exception oop and pc are in rax, and rdx
duke@435 400 // no other registers need to be preserved, so invalidate them
twisti@1730 401 __ invalidate_registers(false, true, true, false, true, true);
duke@435 402
duke@435 403 // check that there is really an exception
duke@435 404 __ verify_not_null_oop(rax);
duke@435 405
twisti@1730 406 // search an exception handler (rax: exception oop, rdx: throwing pc)
twisti@2603 407 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
twisti@2603 408 __ should_not_reach_here();
iveresov@3435 409 guarantee(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 410 __ end_a_stub();
twisti@1639 411
twisti@1639 412 return offset;
duke@435 413 }
duke@435 414
twisti@1639 415
never@1813 416 // Emit the code to remove the frame from the stack in the exception
never@1813 417 // unwind path.
never@1813 418 int LIR_Assembler::emit_unwind_handler() {
never@1813 419 #ifndef PRODUCT
never@1813 420 if (CommentedAssembly) {
never@1813 421 _masm->block_comment("Unwind handler");
never@1813 422 }
never@1813 423 #endif
never@1813 424
never@1813 425 int offset = code_offset();
never@1813 426
never@1813 427 // Fetch the exception from TLS and clear out exception related thread state
never@1813 428 __ get_thread(rsi);
never@1813 429 __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
never@3156 430 __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
never@3156 431 __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
never@1813 432
never@1813 433 __ bind(_unwind_handler_entry);
never@1813 434 __ verify_not_null_oop(rax);
never@1813 435 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 436 __ mov(rsi, rax); // Preserve the exception
never@1813 437 }
never@1813 438
never@1813 439 // Preform needed unlocking
never@1813 440 MonitorExitStub* stub = NULL;
never@1813 441 if (method()->is_synchronized()) {
never@1813 442 monitor_address(0, FrameMap::rax_opr);
never@1813 443 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
never@1813 444 __ unlock_object(rdi, rbx, rax, *stub->entry());
never@1813 445 __ bind(*stub->continuation());
never@1813 446 }
never@1813 447
never@1813 448 if (compilation()->env()->dtrace_method_probes()) {
never@2185 449 __ get_thread(rax);
never@2185 450 __ movptr(Address(rsp, 0), rax);
never@2185 451 __ movoop(Address(rsp, sizeof(void*)), method()->constant_encoding());
never@1813 452 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
never@1813 453 }
never@1813 454
never@1813 455 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 456 __ mov(rax, rsi); // Restore the exception
never@1813 457 }
never@1813 458
never@1813 459 // remove the activation and dispatch to the unwind handler
never@1813 460 __ remove_frame(initial_frame_size_in_bytes());
never@1813 461 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
never@1813 462
never@1813 463 // Emit the slow path assembly
never@1813 464 if (stub != NULL) {
never@1813 465 stub->emit_code(this);
never@1813 466 }
never@1813 467
never@1813 468 return offset;
never@1813 469 }
never@1813 470
never@1813 471
twisti@1639 472 int LIR_Assembler::emit_deopt_handler() {
duke@435 473 // if the last instruction is a call (typically to do a throw which
duke@435 474 // is coming at the end after block reordering) the return address
duke@435 475 // must still point into the code area in order to avoid assertion
duke@435 476 // failures when searching for the corresponding bci => add a nop
duke@435 477 // (was bug 5/14/1999 - gri)
duke@435 478 __ nop();
duke@435 479
duke@435 480 // generate code for exception handler
duke@435 481 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 482 if (handler_base == NULL) {
duke@435 483 // not enough space left for the handler
duke@435 484 bailout("deopt handler overflow");
twisti@1639 485 return -1;
duke@435 486 }
twisti@1639 487
duke@435 488 int offset = code_offset();
duke@435 489 InternalAddress here(__ pc());
twisti@1730 490
duke@435 491 __ pushptr(here.addr());
duke@435 492 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
iveresov@3435 493 guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 494 __ end_a_stub();
duke@435 495
twisti@1639 496 return offset;
duke@435 497 }
duke@435 498
duke@435 499
duke@435 500 // This is the fast version of java.lang.String.compare; it has not
duke@435 501 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 502 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
never@739 503 __ movptr (rbx, rcx); // receiver is in rcx
never@739 504 __ movptr (rax, arg1->as_register());
duke@435 505
duke@435 506 // Get addresses of first characters from both Strings
iveresov@2344 507 __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
kvn@3760 508 if (java_lang_String::has_offset_field()) {
kvn@3760 509 __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
kvn@3760 510 __ movl (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
kvn@3760 511 __ lea (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
kvn@3760 512 } else {
kvn@3760 513 __ movl (rax, Address(rsi, arrayOopDesc::length_offset_in_bytes()));
kvn@3760 514 __ lea (rsi, Address(rsi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
kvn@3760 515 }
duke@435 516
duke@435 517 // rbx, may be NULL
duke@435 518 add_debug_info_for_null_check_here(info);
iveresov@2344 519 __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
kvn@3760 520 if (java_lang_String::has_offset_field()) {
kvn@3760 521 __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
kvn@3760 522 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
kvn@3760 523 __ lea (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
kvn@3760 524 } else {
kvn@3760 525 __ movl (rbx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
kvn@3760 526 __ lea (rdi, Address(rdi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
kvn@3760 527 }
duke@435 528
duke@435 529 // compute minimum length (in rax) and difference of lengths (on top of stack)
twisti@2697 530 __ mov (rcx, rbx);
twisti@2697 531 __ subptr(rbx, rax); // subtract lengths
twisti@2697 532 __ push (rbx); // result
twisti@2697 533 __ cmov (Assembler::lessEqual, rax, rcx);
twisti@2697 534
duke@435 535 // is minimum length 0?
duke@435 536 Label noLoop, haveResult;
never@739 537 __ testptr (rax, rax);
duke@435 538 __ jcc (Assembler::zero, noLoop);
duke@435 539
duke@435 540 // compare first characters
jrose@1057 541 __ load_unsigned_short(rcx, Address(rdi, 0));
jrose@1057 542 __ load_unsigned_short(rbx, Address(rsi, 0));
duke@435 543 __ subl(rcx, rbx);
duke@435 544 __ jcc(Assembler::notZero, haveResult);
duke@435 545 // starting loop
duke@435 546 __ decrement(rax); // we already tested index: skip one
duke@435 547 __ jcc(Assembler::zero, noLoop);
duke@435 548
duke@435 549 // set rsi.edi to the end of the arrays (arrays have same length)
duke@435 550 // negate the index
duke@435 551
never@739 552 __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 553 __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 554 __ negptr(rax);
duke@435 555
duke@435 556 // compare the strings in a loop
duke@435 557
duke@435 558 Label loop;
duke@435 559 __ align(wordSize);
duke@435 560 __ bind(loop);
jrose@1057 561 __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
jrose@1057 562 __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
duke@435 563 __ subl(rcx, rbx);
duke@435 564 __ jcc(Assembler::notZero, haveResult);
duke@435 565 __ increment(rax);
duke@435 566 __ jcc(Assembler::notZero, loop);
duke@435 567
duke@435 568 // strings are equal up to min length
duke@435 569
duke@435 570 __ bind(noLoop);
never@739 571 __ pop(rax);
duke@435 572 return_op(LIR_OprFact::illegalOpr);
duke@435 573
duke@435 574 __ bind(haveResult);
duke@435 575 // leave instruction is going to discard the TOS value
never@739 576 __ mov (rax, rcx); // result of call is in rax,
duke@435 577 }
duke@435 578
duke@435 579
duke@435 580 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 581 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
duke@435 582 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
duke@435 583 assert(result->fpu() == 0, "result must already be on TOS");
duke@435 584 }
duke@435 585
duke@435 586 // Pop the stack before the safepoint code
twisti@1730 587 __ remove_frame(initial_frame_size_in_bytes());
duke@435 588
duke@435 589 bool result_is_oop = result->is_valid() ? result->is_oop() : false;
duke@435 590
duke@435 591 // Note: we do not need to round double result; float result has the right precision
duke@435 592 // the poll sets the condition code, but no data registers
duke@435 593 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 594 relocInfo::poll_return_type);
never@739 595
iveresov@2686 596 if (Assembler::is_polling_page_far()) {
iveresov@2686 597 __ lea(rscratch1, polling_page);
iveresov@2686 598 __ relocate(relocInfo::poll_return_type);
iveresov@2686 599 __ testl(rax, Address(rscratch1, 0));
iveresov@2686 600 } else {
iveresov@2686 601 __ testl(rax, polling_page);
iveresov@2686 602 }
duke@435 603 __ ret(0);
duke@435 604 }
duke@435 605
duke@435 606
duke@435 607 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 608 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 609 relocInfo::poll_type);
iveresov@2686 610 guarantee(info != NULL, "Shouldn't be NULL");
iveresov@2686 611 int offset = __ offset();
iveresov@2686 612 if (Assembler::is_polling_page_far()) {
iveresov@2686 613 __ lea(rscratch1, polling_page);
iveresov@2686 614 offset = __ offset();
duke@435 615 add_debug_info_for_branch(info);
iveresov@2686 616 __ testl(rax, Address(rscratch1, 0));
duke@435 617 } else {
iveresov@2686 618 add_debug_info_for_branch(info);
iveresov@2686 619 __ testl(rax, polling_page);
duke@435 620 }
duke@435 621 return offset;
duke@435 622 }
duke@435 623
duke@435 624
duke@435 625 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
never@739 626 if (from_reg != to_reg) __ mov(to_reg, from_reg);
duke@435 627 }
duke@435 628
duke@435 629 void LIR_Assembler::swap_reg(Register a, Register b) {
never@739 630 __ xchgptr(a, b);
duke@435 631 }
duke@435 632
duke@435 633
duke@435 634 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 635 assert(src->is_constant(), "should not call otherwise");
duke@435 636 assert(dest->is_register(), "should not call otherwise");
duke@435 637 LIR_Const* c = src->as_constant_ptr();
duke@435 638
duke@435 639 switch (c->type()) {
iveresov@2344 640 case T_INT: {
iveresov@2344 641 assert(patch_code == lir_patch_none, "no patching handled here");
iveresov@2344 642 __ movl(dest->as_register(), c->as_jint());
iveresov@2344 643 break;
iveresov@2344 644 }
iveresov@2344 645
roland@1732 646 case T_ADDRESS: {
duke@435 647 assert(patch_code == lir_patch_none, "no patching handled here");
iveresov@2344 648 __ movptr(dest->as_register(), c->as_jint());
duke@435 649 break;
duke@435 650 }
duke@435 651
duke@435 652 case T_LONG: {
duke@435 653 assert(patch_code == lir_patch_none, "no patching handled here");
never@739 654 #ifdef _LP64
never@739 655 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
never@739 656 #else
never@739 657 __ movptr(dest->as_register_lo(), c->as_jint_lo());
never@739 658 __ movptr(dest->as_register_hi(), c->as_jint_hi());
never@739 659 #endif // _LP64
duke@435 660 break;
duke@435 661 }
duke@435 662
duke@435 663 case T_OBJECT: {
duke@435 664 if (patch_code != lir_patch_none) {
duke@435 665 jobject2reg_with_patching(dest->as_register(), info);
duke@435 666 } else {
duke@435 667 __ movoop(dest->as_register(), c->as_jobject());
duke@435 668 }
duke@435 669 break;
duke@435 670 }
duke@435 671
duke@435 672 case T_FLOAT: {
duke@435 673 if (dest->is_single_xmm()) {
duke@435 674 if (c->is_zero_float()) {
duke@435 675 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
duke@435 676 } else {
duke@435 677 __ movflt(dest->as_xmm_float_reg(),
duke@435 678 InternalAddress(float_constant(c->as_jfloat())));
duke@435 679 }
duke@435 680 } else {
duke@435 681 assert(dest->is_single_fpu(), "must be");
duke@435 682 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 683 if (c->is_zero_float()) {
duke@435 684 __ fldz();
duke@435 685 } else if (c->is_one_float()) {
duke@435 686 __ fld1();
duke@435 687 } else {
duke@435 688 __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
duke@435 689 }
duke@435 690 }
duke@435 691 break;
duke@435 692 }
duke@435 693
duke@435 694 case T_DOUBLE: {
duke@435 695 if (dest->is_double_xmm()) {
duke@435 696 if (c->is_zero_double()) {
duke@435 697 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
duke@435 698 } else {
duke@435 699 __ movdbl(dest->as_xmm_double_reg(),
duke@435 700 InternalAddress(double_constant(c->as_jdouble())));
duke@435 701 }
duke@435 702 } else {
duke@435 703 assert(dest->is_double_fpu(), "must be");
duke@435 704 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 705 if (c->is_zero_double()) {
duke@435 706 __ fldz();
duke@435 707 } else if (c->is_one_double()) {
duke@435 708 __ fld1();
duke@435 709 } else {
duke@435 710 __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
duke@435 711 }
duke@435 712 }
duke@435 713 break;
duke@435 714 }
duke@435 715
duke@435 716 default:
duke@435 717 ShouldNotReachHere();
duke@435 718 }
duke@435 719 }
duke@435 720
duke@435 721 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 722 assert(src->is_constant(), "should not call otherwise");
duke@435 723 assert(dest->is_stack(), "should not call otherwise");
duke@435 724 LIR_Const* c = src->as_constant_ptr();
duke@435 725
duke@435 726 switch (c->type()) {
duke@435 727 case T_INT: // fall through
duke@435 728 case T_FLOAT:
iveresov@2344 729 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
iveresov@2344 730 break;
iveresov@2344 731
roland@1732 732 case T_ADDRESS:
iveresov@2344 733 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
duke@435 734 break;
duke@435 735
duke@435 736 case T_OBJECT:
duke@435 737 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
duke@435 738 break;
duke@435 739
duke@435 740 case T_LONG: // fall through
duke@435 741 case T_DOUBLE:
never@739 742 #ifdef _LP64
never@739 743 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 744 lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
never@739 745 #else
never@739 746 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 747 lo_word_offset_in_bytes), c->as_jint_lo_bits());
never@739 748 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 749 hi_word_offset_in_bytes), c->as_jint_hi_bits());
never@739 750 #endif // _LP64
duke@435 751 break;
duke@435 752
duke@435 753 default:
duke@435 754 ShouldNotReachHere();
duke@435 755 }
duke@435 756 }
duke@435 757
iveresov@2344 758 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
duke@435 759 assert(src->is_constant(), "should not call otherwise");
duke@435 760 assert(dest->is_address(), "should not call otherwise");
duke@435 761 LIR_Const* c = src->as_constant_ptr();
duke@435 762 LIR_Address* addr = dest->as_address_ptr();
duke@435 763
never@739 764 int null_check_here = code_offset();
duke@435 765 switch (type) {
duke@435 766 case T_INT: // fall through
duke@435 767 case T_FLOAT:
iveresov@2344 768 __ movl(as_Address(addr), c->as_jint_bits());
iveresov@2344 769 break;
iveresov@2344 770
roland@1732 771 case T_ADDRESS:
iveresov@2344 772 __ movptr(as_Address(addr), c->as_jint_bits());
duke@435 773 break;
duke@435 774
duke@435 775 case T_OBJECT: // fall through
duke@435 776 case T_ARRAY:
duke@435 777 if (c->as_jobject() == NULL) {
iveresov@2344 778 if (UseCompressedOops && !wide) {
iveresov@2344 779 __ movl(as_Address(addr), (int32_t)NULL_WORD);
iveresov@2344 780 } else {
iveresov@2344 781 __ movptr(as_Address(addr), NULL_WORD);
iveresov@2344 782 }
duke@435 783 } else {
never@739 784 if (is_literal_address(addr)) {
never@739 785 ShouldNotReachHere();
never@739 786 __ movoop(as_Address(addr, noreg), c->as_jobject());
never@739 787 } else {
roland@1495 788 #ifdef _LP64
roland@1495 789 __ movoop(rscratch1, c->as_jobject());
iveresov@2344 790 if (UseCompressedOops && !wide) {
iveresov@2344 791 __ encode_heap_oop(rscratch1);
iveresov@2344 792 null_check_here = code_offset();
iveresov@2344 793 __ movl(as_Address_lo(addr), rscratch1);
iveresov@2344 794 } else {
iveresov@2344 795 null_check_here = code_offset();
iveresov@2344 796 __ movptr(as_Address_lo(addr), rscratch1);
iveresov@2344 797 }
roland@1495 798 #else
never@739 799 __ movoop(as_Address(addr), c->as_jobject());
roland@1495 800 #endif
never@739 801 }
duke@435 802 }
duke@435 803 break;
duke@435 804
duke@435 805 case T_LONG: // fall through
duke@435 806 case T_DOUBLE:
never@739 807 #ifdef _LP64
never@739 808 if (is_literal_address(addr)) {
never@739 809 ShouldNotReachHere();
never@739 810 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
never@739 811 } else {
never@739 812 __ movptr(r10, (intptr_t)c->as_jlong_bits());
never@739 813 null_check_here = code_offset();
never@739 814 __ movptr(as_Address_lo(addr), r10);
never@739 815 }
never@739 816 #else
never@739 817 // Always reachable in 32bit so this doesn't produce useless move literal
never@739 818 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
never@739 819 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
never@739 820 #endif // _LP64
duke@435 821 break;
duke@435 822
duke@435 823 case T_BOOLEAN: // fall through
duke@435 824 case T_BYTE:
duke@435 825 __ movb(as_Address(addr), c->as_jint() & 0xFF);
duke@435 826 break;
duke@435 827
duke@435 828 case T_CHAR: // fall through
duke@435 829 case T_SHORT:
duke@435 830 __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
duke@435 831 break;
duke@435 832
duke@435 833 default:
duke@435 834 ShouldNotReachHere();
duke@435 835 };
never@739 836
never@739 837 if (info != NULL) {
never@739 838 add_debug_info_for_null_check(null_check_here, info);
never@739 839 }
duke@435 840 }
duke@435 841
duke@435 842
duke@435 843 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
duke@435 844 assert(src->is_register(), "should not call otherwise");
duke@435 845 assert(dest->is_register(), "should not call otherwise");
duke@435 846
duke@435 847 // move between cpu-registers
duke@435 848 if (dest->is_single_cpu()) {
never@739 849 #ifdef _LP64
never@739 850 if (src->type() == T_LONG) {
never@739 851 // Can do LONG -> OBJECT
never@739 852 move_regs(src->as_register_lo(), dest->as_register());
never@739 853 return;
never@739 854 }
never@739 855 #endif
duke@435 856 assert(src->is_single_cpu(), "must match");
duke@435 857 if (src->type() == T_OBJECT) {
duke@435 858 __ verify_oop(src->as_register());
duke@435 859 }
duke@435 860 move_regs(src->as_register(), dest->as_register());
duke@435 861
duke@435 862 } else if (dest->is_double_cpu()) {
never@739 863 #ifdef _LP64
never@739 864 if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
never@739 865 // Surprising to me but we can see move of a long to t_object
never@739 866 __ verify_oop(src->as_register());
never@739 867 move_regs(src->as_register(), dest->as_register_lo());
never@739 868 return;
never@739 869 }
never@739 870 #endif
duke@435 871 assert(src->is_double_cpu(), "must match");
duke@435 872 Register f_lo = src->as_register_lo();
duke@435 873 Register f_hi = src->as_register_hi();
duke@435 874 Register t_lo = dest->as_register_lo();
duke@435 875 Register t_hi = dest->as_register_hi();
never@739 876 #ifdef _LP64
never@739 877 assert(f_hi == f_lo, "must be same");
never@739 878 assert(t_hi == t_lo, "must be same");
never@739 879 move_regs(f_lo, t_lo);
never@739 880 #else
duke@435 881 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
duke@435 882
never@739 883
duke@435 884 if (f_lo == t_hi && f_hi == t_lo) {
duke@435 885 swap_reg(f_lo, f_hi);
duke@435 886 } else if (f_hi == t_lo) {
duke@435 887 assert(f_lo != t_hi, "overwriting register");
duke@435 888 move_regs(f_hi, t_hi);
duke@435 889 move_regs(f_lo, t_lo);
duke@435 890 } else {
duke@435 891 assert(f_hi != t_lo, "overwriting register");
duke@435 892 move_regs(f_lo, t_lo);
duke@435 893 move_regs(f_hi, t_hi);
duke@435 894 }
never@739 895 #endif // LP64
duke@435 896
duke@435 897 // special moves from fpu-register to xmm-register
duke@435 898 // necessary for method results
duke@435 899 } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
duke@435 900 __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
duke@435 901 __ fld_s(Address(rsp, 0));
duke@435 902 } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
duke@435 903 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
duke@435 904 __ fld_d(Address(rsp, 0));
duke@435 905 } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
duke@435 906 __ fstp_s(Address(rsp, 0));
duke@435 907 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
duke@435 908 } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
duke@435 909 __ fstp_d(Address(rsp, 0));
duke@435 910 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
duke@435 911
duke@435 912 // move between xmm-registers
duke@435 913 } else if (dest->is_single_xmm()) {
duke@435 914 assert(src->is_single_xmm(), "must match");
duke@435 915 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
duke@435 916 } else if (dest->is_double_xmm()) {
duke@435 917 assert(src->is_double_xmm(), "must match");
duke@435 918 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
duke@435 919
duke@435 920 // move between fpu-registers (no instruction necessary because of fpu-stack)
duke@435 921 } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
duke@435 922 assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
duke@435 923 assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
duke@435 924 } else {
duke@435 925 ShouldNotReachHere();
duke@435 926 }
duke@435 927 }
duke@435 928
duke@435 929 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 930 assert(src->is_register(), "should not call otherwise");
duke@435 931 assert(dest->is_stack(), "should not call otherwise");
duke@435 932
duke@435 933 if (src->is_single_cpu()) {
duke@435 934 Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 935 if (type == T_OBJECT || type == T_ARRAY) {
duke@435 936 __ verify_oop(src->as_register());
never@739 937 __ movptr (dst, src->as_register());
never@739 938 } else {
never@739 939 __ movl (dst, src->as_register());
duke@435 940 }
duke@435 941
duke@435 942 } else if (src->is_double_cpu()) {
duke@435 943 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 944 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
never@739 945 __ movptr (dstLO, src->as_register_lo());
never@739 946 NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
duke@435 947
duke@435 948 } else if (src->is_single_xmm()) {
duke@435 949 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 950 __ movflt(dst_addr, src->as_xmm_float_reg());
duke@435 951
duke@435 952 } else if (src->is_double_xmm()) {
duke@435 953 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 954 __ movdbl(dst_addr, src->as_xmm_double_reg());
duke@435 955
duke@435 956 } else if (src->is_single_fpu()) {
duke@435 957 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 958 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 959 if (pop_fpu_stack) __ fstp_s (dst_addr);
duke@435 960 else __ fst_s (dst_addr);
duke@435 961
duke@435 962 } else if (src->is_double_fpu()) {
duke@435 963 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 964 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 965 if (pop_fpu_stack) __ fstp_d (dst_addr);
duke@435 966 else __ fst_d (dst_addr);
duke@435 967
duke@435 968 } else {
duke@435 969 ShouldNotReachHere();
duke@435 970 }
duke@435 971 }
duke@435 972
duke@435 973
iveresov@2344 974 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
duke@435 975 LIR_Address* to_addr = dest->as_address_ptr();
duke@435 976 PatchingStub* patch = NULL;
iveresov@2344 977 Register compressed_src = rscratch1;
duke@435 978
duke@435 979 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 980 __ verify_oop(src->as_register());
iveresov@2344 981 #ifdef _LP64
iveresov@2344 982 if (UseCompressedOops && !wide) {
iveresov@2344 983 __ movptr(compressed_src, src->as_register());
iveresov@2344 984 __ encode_heap_oop(compressed_src);
iveresov@2344 985 }
iveresov@2344 986 #endif
duke@435 987 }
iveresov@2344 988
duke@435 989 if (patch_code != lir_patch_none) {
duke@435 990 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 991 Address toa = as_Address(to_addr);
never@739 992 assert(toa.disp() != 0, "must have");
duke@435 993 }
iveresov@2344 994
iveresov@2344 995 int null_check_here = code_offset();
duke@435 996 switch (type) {
duke@435 997 case T_FLOAT: {
duke@435 998 if (src->is_single_xmm()) {
duke@435 999 __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
duke@435 1000 } else {
duke@435 1001 assert(src->is_single_fpu(), "must be");
duke@435 1002 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 1003 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr));
duke@435 1004 else __ fst_s (as_Address(to_addr));
duke@435 1005 }
duke@435 1006 break;
duke@435 1007 }
duke@435 1008
duke@435 1009 case T_DOUBLE: {
duke@435 1010 if (src->is_double_xmm()) {
duke@435 1011 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
duke@435 1012 } else {
duke@435 1013 assert(src->is_double_fpu(), "must be");
duke@435 1014 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 1015 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr));
duke@435 1016 else __ fst_d (as_Address(to_addr));
duke@435 1017 }
duke@435 1018 break;
duke@435 1019 }
duke@435 1020
duke@435 1021 case T_ARRAY: // fall through
duke@435 1022 case T_OBJECT: // fall through
iveresov@2344 1023 if (UseCompressedOops && !wide) {
iveresov@2344 1024 __ movl(as_Address(to_addr), compressed_src);
iveresov@2344 1025 } else {
iveresov@2344 1026 __ movptr(as_Address(to_addr), src->as_register());
iveresov@2344 1027 }
iveresov@2344 1028 break;
iveresov@2344 1029 case T_ADDRESS:
never@739 1030 __ movptr(as_Address(to_addr), src->as_register());
never@739 1031 break;
duke@435 1032 case T_INT:
duke@435 1033 __ movl(as_Address(to_addr), src->as_register());
duke@435 1034 break;
duke@435 1035
duke@435 1036 case T_LONG: {
duke@435 1037 Register from_lo = src->as_register_lo();
duke@435 1038 Register from_hi = src->as_register_hi();
never@739 1039 #ifdef _LP64
never@739 1040 __ movptr(as_Address_lo(to_addr), from_lo);
never@739 1041 #else
duke@435 1042 Register base = to_addr->base()->as_register();
duke@435 1043 Register index = noreg;
duke@435 1044 if (to_addr->index()->is_register()) {
duke@435 1045 index = to_addr->index()->as_register();
duke@435 1046 }
duke@435 1047 if (base == from_lo || index == from_lo) {
duke@435 1048 assert(base != from_hi, "can't be");
duke@435 1049 assert(index == noreg || (index != base && index != from_hi), "can't handle this");
duke@435 1050 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1051 if (patch != NULL) {
duke@435 1052 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1053 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1054 patch_code = lir_patch_low;
duke@435 1055 }
duke@435 1056 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1057 } else {
duke@435 1058 assert(index == noreg || (index != base && index != from_lo), "can't handle this");
duke@435 1059 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1060 if (patch != NULL) {
duke@435 1061 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1062 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1063 patch_code = lir_patch_high;
duke@435 1064 }
duke@435 1065 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1066 }
never@739 1067 #endif // _LP64
duke@435 1068 break;
duke@435 1069 }
duke@435 1070
duke@435 1071 case T_BYTE: // fall through
duke@435 1072 case T_BOOLEAN: {
duke@435 1073 Register src_reg = src->as_register();
duke@435 1074 Address dst_addr = as_Address(to_addr);
duke@435 1075 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1076 __ movb(dst_addr, src_reg);
duke@435 1077 break;
duke@435 1078 }
duke@435 1079
duke@435 1080 case T_CHAR: // fall through
duke@435 1081 case T_SHORT:
duke@435 1082 __ movw(as_Address(to_addr), src->as_register());
duke@435 1083 break;
duke@435 1084
duke@435 1085 default:
duke@435 1086 ShouldNotReachHere();
duke@435 1087 }
iveresov@2344 1088 if (info != NULL) {
iveresov@2344 1089 add_debug_info_for_null_check(null_check_here, info);
iveresov@2344 1090 }
duke@435 1091
duke@435 1092 if (patch_code != lir_patch_none) {
duke@435 1093 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
duke@435 1094 }
duke@435 1095 }
duke@435 1096
duke@435 1097
duke@435 1098 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1099 assert(src->is_stack(), "should not call otherwise");
duke@435 1100 assert(dest->is_register(), "should not call otherwise");
duke@435 1101
duke@435 1102 if (dest->is_single_cpu()) {
duke@435 1103 if (type == T_ARRAY || type == T_OBJECT) {
never@739 1104 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1105 __ verify_oop(dest->as_register());
never@739 1106 } else {
never@739 1107 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1108 }
duke@435 1109
duke@435 1110 } else if (dest->is_double_cpu()) {
duke@435 1111 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 1112 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
never@739 1113 __ movptr(dest->as_register_lo(), src_addr_LO);
never@739 1114 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
duke@435 1115
duke@435 1116 } else if (dest->is_single_xmm()) {
duke@435 1117 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1118 __ movflt(dest->as_xmm_float_reg(), src_addr);
duke@435 1119
duke@435 1120 } else if (dest->is_double_xmm()) {
duke@435 1121 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1122 __ movdbl(dest->as_xmm_double_reg(), src_addr);
duke@435 1123
duke@435 1124 } else if (dest->is_single_fpu()) {
duke@435 1125 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1126 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1127 __ fld_s(src_addr);
duke@435 1128
duke@435 1129 } else if (dest->is_double_fpu()) {
duke@435 1130 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1131 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1132 __ fld_d(src_addr);
duke@435 1133
duke@435 1134 } else {
duke@435 1135 ShouldNotReachHere();
duke@435 1136 }
duke@435 1137 }
duke@435 1138
duke@435 1139
duke@435 1140 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1141 if (src->is_single_stack()) {
never@739 1142 if (type == T_OBJECT || type == T_ARRAY) {
never@739 1143 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1144 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
never@739 1145 } else {
roland@1495 1146 #ifndef _LP64
never@739 1147 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1148 __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
roland@1495 1149 #else
roland@1495 1150 //no pushl on 64bits
roland@1495 1151 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
roland@1495 1152 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
roland@1495 1153 #endif
never@739 1154 }
duke@435 1155
duke@435 1156 } else if (src->is_double_stack()) {
never@739 1157 #ifdef _LP64
never@739 1158 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
never@739 1159 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
never@739 1160 #else
duke@435 1161 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
never@739 1162 // push and pop the part at src + wordSize, adding wordSize for the previous push
never@756 1163 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
never@756 1164 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
duke@435 1165 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
never@739 1166 #endif // _LP64
duke@435 1167
duke@435 1168 } else {
duke@435 1169 ShouldNotReachHere();
duke@435 1170 }
duke@435 1171 }
duke@435 1172
duke@435 1173
iveresov@2344 1174 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
duke@435 1175 assert(src->is_address(), "should not call otherwise");
duke@435 1176 assert(dest->is_register(), "should not call otherwise");
duke@435 1177
duke@435 1178 LIR_Address* addr = src->as_address_ptr();
duke@435 1179 Address from_addr = as_Address(addr);
duke@435 1180
duke@435 1181 switch (type) {
duke@435 1182 case T_BOOLEAN: // fall through
duke@435 1183 case T_BYTE: // fall through
duke@435 1184 case T_CHAR: // fall through
duke@435 1185 case T_SHORT:
duke@435 1186 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
duke@435 1187 // on pre P6 processors we may get partial register stalls
duke@435 1188 // so blow away the value of to_rinfo before loading a
duke@435 1189 // partial word into it. Do it here so that it precedes
duke@435 1190 // the potential patch point below.
never@739 1191 __ xorptr(dest->as_register(), dest->as_register());
duke@435 1192 }
duke@435 1193 break;
duke@435 1194 }
duke@435 1195
duke@435 1196 PatchingStub* patch = NULL;
duke@435 1197 if (patch_code != lir_patch_none) {
duke@435 1198 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1199 assert(from_addr.disp() != 0, "must have");
duke@435 1200 }
duke@435 1201 if (info != NULL) {
duke@435 1202 add_debug_info_for_null_check_here(info);
duke@435 1203 }
duke@435 1204
duke@435 1205 switch (type) {
duke@435 1206 case T_FLOAT: {
duke@435 1207 if (dest->is_single_xmm()) {
duke@435 1208 __ movflt(dest->as_xmm_float_reg(), from_addr);
duke@435 1209 } else {
duke@435 1210 assert(dest->is_single_fpu(), "must be");
duke@435 1211 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1212 __ fld_s(from_addr);
duke@435 1213 }
duke@435 1214 break;
duke@435 1215 }
duke@435 1216
duke@435 1217 case T_DOUBLE: {
duke@435 1218 if (dest->is_double_xmm()) {
duke@435 1219 __ movdbl(dest->as_xmm_double_reg(), from_addr);
duke@435 1220 } else {
duke@435 1221 assert(dest->is_double_fpu(), "must be");
duke@435 1222 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1223 __ fld_d(from_addr);
duke@435 1224 }
duke@435 1225 break;
duke@435 1226 }
duke@435 1227
duke@435 1228 case T_OBJECT: // fall through
duke@435 1229 case T_ARRAY: // fall through
iveresov@2344 1230 if (UseCompressedOops && !wide) {
iveresov@2344 1231 __ movl(dest->as_register(), from_addr);
iveresov@2344 1232 } else {
iveresov@2344 1233 __ movptr(dest->as_register(), from_addr);
iveresov@2344 1234 }
iveresov@2344 1235 break;
iveresov@2344 1236
iveresov@2344 1237 case T_ADDRESS:
never@739 1238 __ movptr(dest->as_register(), from_addr);
never@739 1239 break;
duke@435 1240 case T_INT:
iveresov@1833 1241 __ movl(dest->as_register(), from_addr);
duke@435 1242 break;
duke@435 1243
duke@435 1244 case T_LONG: {
duke@435 1245 Register to_lo = dest->as_register_lo();
duke@435 1246 Register to_hi = dest->as_register_hi();
never@739 1247 #ifdef _LP64
never@739 1248 __ movptr(to_lo, as_Address_lo(addr));
never@739 1249 #else
duke@435 1250 Register base = addr->base()->as_register();
duke@435 1251 Register index = noreg;
duke@435 1252 if (addr->index()->is_register()) {
duke@435 1253 index = addr->index()->as_register();
duke@435 1254 }
duke@435 1255 if ((base == to_lo && index == to_hi) ||
duke@435 1256 (base == to_hi && index == to_lo)) {
duke@435 1257 // addresses with 2 registers are only formed as a result of
duke@435 1258 // array access so this code will never have to deal with
duke@435 1259 // patches or null checks.
duke@435 1260 assert(info == NULL && patch == NULL, "must be");
never@739 1261 __ lea(to_hi, as_Address(addr));
duke@435 1262 __ movl(to_lo, Address(to_hi, 0));
duke@435 1263 __ movl(to_hi, Address(to_hi, BytesPerWord));
duke@435 1264 } else if (base == to_lo || index == to_lo) {
duke@435 1265 assert(base != to_hi, "can't be");
duke@435 1266 assert(index == noreg || (index != base && index != to_hi), "can't handle this");
duke@435 1267 __ movl(to_hi, as_Address_hi(addr));
duke@435 1268 if (patch != NULL) {
duke@435 1269 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1270 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1271 patch_code = lir_patch_low;
duke@435 1272 }
duke@435 1273 __ movl(to_lo, as_Address_lo(addr));
duke@435 1274 } else {
duke@435 1275 assert(index == noreg || (index != base && index != to_lo), "can't handle this");
duke@435 1276 __ movl(to_lo, as_Address_lo(addr));
duke@435 1277 if (patch != NULL) {
duke@435 1278 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1279 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1280 patch_code = lir_patch_high;
duke@435 1281 }
duke@435 1282 __ movl(to_hi, as_Address_hi(addr));
duke@435 1283 }
never@739 1284 #endif // _LP64
duke@435 1285 break;
duke@435 1286 }
duke@435 1287
duke@435 1288 case T_BOOLEAN: // fall through
duke@435 1289 case T_BYTE: {
duke@435 1290 Register dest_reg = dest->as_register();
duke@435 1291 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1292 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1293 __ movsbl(dest_reg, from_addr);
duke@435 1294 } else {
duke@435 1295 __ movb(dest_reg, from_addr);
duke@435 1296 __ shll(dest_reg, 24);
duke@435 1297 __ sarl(dest_reg, 24);
duke@435 1298 }
duke@435 1299 break;
duke@435 1300 }
duke@435 1301
duke@435 1302 case T_CHAR: {
duke@435 1303 Register dest_reg = dest->as_register();
duke@435 1304 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1305 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1306 __ movzwl(dest_reg, from_addr);
duke@435 1307 } else {
duke@435 1308 __ movw(dest_reg, from_addr);
duke@435 1309 }
duke@435 1310 break;
duke@435 1311 }
duke@435 1312
duke@435 1313 case T_SHORT: {
duke@435 1314 Register dest_reg = dest->as_register();
duke@435 1315 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1316 __ movswl(dest_reg, from_addr);
duke@435 1317 } else {
duke@435 1318 __ movw(dest_reg, from_addr);
duke@435 1319 __ shll(dest_reg, 16);
duke@435 1320 __ sarl(dest_reg, 16);
duke@435 1321 }
duke@435 1322 break;
duke@435 1323 }
duke@435 1324
duke@435 1325 default:
duke@435 1326 ShouldNotReachHere();
duke@435 1327 }
duke@435 1328
duke@435 1329 if (patch != NULL) {
duke@435 1330 patching_epilog(patch, patch_code, addr->base()->as_register(), info);
duke@435 1331 }
duke@435 1332
duke@435 1333 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 1334 #ifdef _LP64
iveresov@2344 1335 if (UseCompressedOops && !wide) {
iveresov@2344 1336 __ decode_heap_oop(dest->as_register());
iveresov@2344 1337 }
iveresov@2344 1338 #endif
duke@435 1339 __ verify_oop(dest->as_register());
duke@435 1340 }
duke@435 1341 }
duke@435 1342
duke@435 1343
duke@435 1344 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1345 LIR_Address* addr = src->as_address_ptr();
duke@435 1346 Address from_addr = as_Address(addr);
duke@435 1347
duke@435 1348 if (VM_Version::supports_sse()) {
duke@435 1349 switch (ReadPrefetchInstr) {
duke@435 1350 case 0:
duke@435 1351 __ prefetchnta(from_addr); break;
duke@435 1352 case 1:
duke@435 1353 __ prefetcht0(from_addr); break;
duke@435 1354 case 2:
duke@435 1355 __ prefetcht2(from_addr); break;
duke@435 1356 default:
duke@435 1357 ShouldNotReachHere(); break;
duke@435 1358 }
kvn@2761 1359 } else if (VM_Version::supports_3dnow_prefetch()) {
duke@435 1360 __ prefetchr(from_addr);
duke@435 1361 }
duke@435 1362 }
duke@435 1363
duke@435 1364
duke@435 1365 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1366 LIR_Address* addr = src->as_address_ptr();
duke@435 1367 Address from_addr = as_Address(addr);
duke@435 1368
duke@435 1369 if (VM_Version::supports_sse()) {
duke@435 1370 switch (AllocatePrefetchInstr) {
duke@435 1371 case 0:
duke@435 1372 __ prefetchnta(from_addr); break;
duke@435 1373 case 1:
duke@435 1374 __ prefetcht0(from_addr); break;
duke@435 1375 case 2:
duke@435 1376 __ prefetcht2(from_addr); break;
duke@435 1377 case 3:
duke@435 1378 __ prefetchw(from_addr); break;
duke@435 1379 default:
duke@435 1380 ShouldNotReachHere(); break;
duke@435 1381 }
kvn@2761 1382 } else if (VM_Version::supports_3dnow_prefetch()) {
duke@435 1383 __ prefetchw(from_addr);
duke@435 1384 }
duke@435 1385 }
duke@435 1386
duke@435 1387
duke@435 1388 NEEDS_CLEANUP; // This could be static?
duke@435 1389 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
kvn@464 1390 int elem_size = type2aelembytes(type);
duke@435 1391 switch (elem_size) {
duke@435 1392 case 1: return Address::times_1;
duke@435 1393 case 2: return Address::times_2;
duke@435 1394 case 4: return Address::times_4;
duke@435 1395 case 8: return Address::times_8;
duke@435 1396 }
duke@435 1397 ShouldNotReachHere();
duke@435 1398 return Address::no_scale;
duke@435 1399 }
duke@435 1400
duke@435 1401
duke@435 1402 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 1403 switch (op->code()) {
duke@435 1404 case lir_idiv:
duke@435 1405 case lir_irem:
duke@435 1406 arithmetic_idiv(op->code(),
duke@435 1407 op->in_opr1(),
duke@435 1408 op->in_opr2(),
duke@435 1409 op->in_opr3(),
duke@435 1410 op->result_opr(),
duke@435 1411 op->info());
duke@435 1412 break;
duke@435 1413 default: ShouldNotReachHere(); break;
duke@435 1414 }
duke@435 1415 }
duke@435 1416
duke@435 1417 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 1418 #ifdef ASSERT
duke@435 1419 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 1420 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 1421 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 1422 #endif
duke@435 1423
duke@435 1424 if (op->cond() == lir_cond_always) {
duke@435 1425 if (op->info() != NULL) add_debug_info_for_branch(op->info());
duke@435 1426 __ jmp (*(op->label()));
duke@435 1427 } else {
duke@435 1428 Assembler::Condition acond = Assembler::zero;
duke@435 1429 if (op->code() == lir_cond_float_branch) {
duke@435 1430 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 1431 __ jcc(Assembler::parity, *(op->ublock()->label()));
duke@435 1432 switch(op->cond()) {
duke@435 1433 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1434 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1435 case lir_cond_less: acond = Assembler::below; break;
duke@435 1436 case lir_cond_lessEqual: acond = Assembler::belowEqual; break;
duke@435 1437 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
duke@435 1438 case lir_cond_greater: acond = Assembler::above; break;
duke@435 1439 default: ShouldNotReachHere();
duke@435 1440 }
duke@435 1441 } else {
duke@435 1442 switch (op->cond()) {
duke@435 1443 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1444 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1445 case lir_cond_less: acond = Assembler::less; break;
duke@435 1446 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1447 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
duke@435 1448 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1449 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
duke@435 1450 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
duke@435 1451 default: ShouldNotReachHere();
duke@435 1452 }
duke@435 1453 }
duke@435 1454 __ jcc(acond,*(op->label()));
duke@435 1455 }
duke@435 1456 }
duke@435 1457
duke@435 1458 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 1459 LIR_Opr src = op->in_opr();
duke@435 1460 LIR_Opr dest = op->result_opr();
duke@435 1461
duke@435 1462 switch (op->bytecode()) {
duke@435 1463 case Bytecodes::_i2l:
never@739 1464 #ifdef _LP64
never@739 1465 __ movl2ptr(dest->as_register_lo(), src->as_register());
never@739 1466 #else
duke@435 1467 move_regs(src->as_register(), dest->as_register_lo());
duke@435 1468 move_regs(src->as_register(), dest->as_register_hi());
duke@435 1469 __ sarl(dest->as_register_hi(), 31);
never@739 1470 #endif // LP64
duke@435 1471 break;
duke@435 1472
duke@435 1473 case Bytecodes::_l2i:
iveresov@3744 1474 #ifdef _LP64
iveresov@3744 1475 __ movl(dest->as_register(), src->as_register_lo());
iveresov@3744 1476 #else
duke@435 1477 move_regs(src->as_register_lo(), dest->as_register());
iveresov@3744 1478 #endif
duke@435 1479 break;
duke@435 1480
duke@435 1481 case Bytecodes::_i2b:
duke@435 1482 move_regs(src->as_register(), dest->as_register());
duke@435 1483 __ sign_extend_byte(dest->as_register());
duke@435 1484 break;
duke@435 1485
duke@435 1486 case Bytecodes::_i2c:
duke@435 1487 move_regs(src->as_register(), dest->as_register());
duke@435 1488 __ andl(dest->as_register(), 0xFFFF);
duke@435 1489 break;
duke@435 1490
duke@435 1491 case Bytecodes::_i2s:
duke@435 1492 move_regs(src->as_register(), dest->as_register());
duke@435 1493 __ sign_extend_short(dest->as_register());
duke@435 1494 break;
duke@435 1495
duke@435 1496
duke@435 1497 case Bytecodes::_f2d:
duke@435 1498 case Bytecodes::_d2f:
duke@435 1499 if (dest->is_single_xmm()) {
duke@435 1500 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
duke@435 1501 } else if (dest->is_double_xmm()) {
duke@435 1502 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
duke@435 1503 } else {
duke@435 1504 assert(src->fpu() == dest->fpu(), "register must be equal");
duke@435 1505 // do nothing (float result is rounded later through spilling)
duke@435 1506 }
duke@435 1507 break;
duke@435 1508
duke@435 1509 case Bytecodes::_i2f:
duke@435 1510 case Bytecodes::_i2d:
duke@435 1511 if (dest->is_single_xmm()) {
never@739 1512 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
duke@435 1513 } else if (dest->is_double_xmm()) {
never@739 1514 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
duke@435 1515 } else {
duke@435 1516 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1517 __ movl(Address(rsp, 0), src->as_register());
duke@435 1518 __ fild_s(Address(rsp, 0));
duke@435 1519 }
duke@435 1520 break;
duke@435 1521
duke@435 1522 case Bytecodes::_f2i:
duke@435 1523 case Bytecodes::_d2i:
duke@435 1524 if (src->is_single_xmm()) {
never@739 1525 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
duke@435 1526 } else if (src->is_double_xmm()) {
never@739 1527 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
duke@435 1528 } else {
duke@435 1529 assert(src->fpu() == 0, "input must be on TOS");
duke@435 1530 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
duke@435 1531 __ fist_s(Address(rsp, 0));
duke@435 1532 __ movl(dest->as_register(), Address(rsp, 0));
duke@435 1533 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1534 }
duke@435 1535
duke@435 1536 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
duke@435 1537 assert(op->stub() != NULL, "stub required");
duke@435 1538 __ cmpl(dest->as_register(), 0x80000000);
duke@435 1539 __ jcc(Assembler::equal, *op->stub()->entry());
duke@435 1540 __ bind(*op->stub()->continuation());
duke@435 1541 break;
duke@435 1542
duke@435 1543 case Bytecodes::_l2f:
duke@435 1544 case Bytecodes::_l2d:
duke@435 1545 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
duke@435 1546 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1547
never@739 1548 __ movptr(Address(rsp, 0), src->as_register_lo());
never@739 1549 NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
duke@435 1550 __ fild_d(Address(rsp, 0));
duke@435 1551 // float result is rounded later through spilling
duke@435 1552 break;
duke@435 1553
duke@435 1554 case Bytecodes::_f2l:
duke@435 1555 case Bytecodes::_d2l:
duke@435 1556 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
duke@435 1557 assert(src->fpu() == 0, "input must be on TOS");
never@739 1558 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
duke@435 1559
duke@435 1560 // instruction sequence too long to inline it here
duke@435 1561 {
duke@435 1562 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
duke@435 1563 }
duke@435 1564 break;
duke@435 1565
duke@435 1566 default: ShouldNotReachHere();
duke@435 1567 }
duke@435 1568 }
duke@435 1569
duke@435 1570 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 1571 if (op->init_check()) {
coleenp@3368 1572 __ cmpb(Address(op->klass()->as_register(),
stefank@3391 1573 instanceKlass::init_state_offset()),
duke@435 1574 instanceKlass::fully_initialized);
duke@435 1575 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 1576 __ jcc(Assembler::notEqual, *op->stub()->entry());
duke@435 1577 }
duke@435 1578 __ allocate_object(op->obj()->as_register(),
duke@435 1579 op->tmp1()->as_register(),
duke@435 1580 op->tmp2()->as_register(),
duke@435 1581 op->header_size(),
duke@435 1582 op->object_size(),
duke@435 1583 op->klass()->as_register(),
duke@435 1584 *op->stub()->entry());
duke@435 1585 __ bind(*op->stub()->continuation());
duke@435 1586 }
duke@435 1587
duke@435 1588 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
iveresov@2432 1589 Register len = op->len()->as_register();
iveresov@2432 1590 LP64_ONLY( __ movslq(len, len); )
iveresov@2432 1591
duke@435 1592 if (UseSlowPath ||
duke@435 1593 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 1594 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
duke@435 1595 __ jmp(*op->stub()->entry());
duke@435 1596 } else {
duke@435 1597 Register tmp1 = op->tmp1()->as_register();
duke@435 1598 Register tmp2 = op->tmp2()->as_register();
duke@435 1599 Register tmp3 = op->tmp3()->as_register();
duke@435 1600 if (len == tmp1) {
duke@435 1601 tmp1 = tmp3;
duke@435 1602 } else if (len == tmp2) {
duke@435 1603 tmp2 = tmp3;
duke@435 1604 } else if (len == tmp3) {
duke@435 1605 // everything is ok
duke@435 1606 } else {
never@739 1607 __ mov(tmp3, len);
duke@435 1608 }
duke@435 1609 __ allocate_array(op->obj()->as_register(),
duke@435 1610 len,
duke@435 1611 tmp1,
duke@435 1612 tmp2,
duke@435 1613 arrayOopDesc::header_size(op->type()),
duke@435 1614 array_element_size(op->type()),
duke@435 1615 op->klass()->as_register(),
duke@435 1616 *op->stub()->entry());
duke@435 1617 }
duke@435 1618 __ bind(*op->stub()->continuation());
duke@435 1619 }
duke@435 1620
iveresov@2138 1621 void LIR_Assembler::type_profile_helper(Register mdo,
iveresov@2138 1622 ciMethodData *md, ciProfileData *data,
iveresov@2138 1623 Register recv, Label* update_done) {
iveresov@2163 1624 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
iveresov@2138 1625 Label next_test;
iveresov@2138 1626 // See if the receiver is receiver[n].
iveresov@2138 1627 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
iveresov@2138 1628 __ jccb(Assembler::notEqual, next_test);
iveresov@2138 1629 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
iveresov@2138 1630 __ addptr(data_addr, DataLayout::counter_increment);
iveresov@2146 1631 __ jmp(*update_done);
iveresov@2138 1632 __ bind(next_test);
iveresov@2138 1633 }
iveresov@2138 1634
iveresov@2138 1635 // Didn't find receiver; find next empty slot and fill it in
iveresov@2163 1636 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
iveresov@2138 1637 Label next_test;
iveresov@2138 1638 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
iveresov@2138 1639 __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
iveresov@2138 1640 __ jccb(Assembler::notEqual, next_test);
iveresov@2138 1641 __ movptr(recv_addr, recv);
iveresov@2138 1642 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
iveresov@2146 1643 __ jmp(*update_done);
iveresov@2138 1644 __ bind(next_test);
iveresov@2138 1645 }
iveresov@2138 1646 }
iveresov@2138 1647
iveresov@2146 1648 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
iveresov@2138 1649 // we always need a stub for the failure case.
iveresov@2138 1650 CodeStub* stub = op->stub();
iveresov@2138 1651 Register obj = op->object()->as_register();
iveresov@2138 1652 Register k_RInfo = op->tmp1()->as_register();
iveresov@2138 1653 Register klass_RInfo = op->tmp2()->as_register();
iveresov@2138 1654 Register dst = op->result_opr()->as_register();
iveresov@2138 1655 ciKlass* k = op->klass();
iveresov@2138 1656 Register Rtmp1 = noreg;
iveresov@2138 1657
iveresov@2138 1658 // check if it needs to be profiled
iveresov@2138 1659 ciMethodData* md;
iveresov@2138 1660 ciProfileData* data;
iveresov@2138 1661
iveresov@2138 1662 if (op->should_profile()) {
iveresov@2138 1663 ciMethod* method = op->profiled_method();
iveresov@2138 1664 assert(method != NULL, "Should have method");
iveresov@2138 1665 int bci = op->profiled_bci();
iveresov@2349 1666 md = method->method_data_or_null();
iveresov@2349 1667 assert(md != NULL, "Sanity");
iveresov@2138 1668 data = md->bci_to_data(bci);
iveresov@2146 1669 assert(data != NULL, "need data for type check");
iveresov@2146 1670 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2138 1671 }
iveresov@2146 1672 Label profile_cast_success, profile_cast_failure;
iveresov@2146 1673 Label *success_target = op->should_profile() ? &profile_cast_success : success;
iveresov@2146 1674 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
iveresov@2138 1675
iveresov@2138 1676 if (obj == k_RInfo) {
iveresov@2138 1677 k_RInfo = dst;
iveresov@2138 1678 } else if (obj == klass_RInfo) {
iveresov@2138 1679 klass_RInfo = dst;
iveresov@2138 1680 }
iveresov@2344 1681 if (k->is_loaded() && !UseCompressedOops) {
iveresov@2138 1682 select_different_registers(obj, dst, k_RInfo, klass_RInfo);
iveresov@2138 1683 } else {
iveresov@2138 1684 Rtmp1 = op->tmp3()->as_register();
iveresov@2138 1685 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
iveresov@2138 1686 }
iveresov@2138 1687
iveresov@2138 1688 assert_different_registers(obj, k_RInfo, klass_RInfo);
iveresov@2138 1689 if (!k->is_loaded()) {
iveresov@2138 1690 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
iveresov@2138 1691 } else {
iveresov@2138 1692 #ifdef _LP64
iveresov@2138 1693 __ movoop(k_RInfo, k->constant_encoding());
iveresov@2138 1694 #endif // _LP64
iveresov@2138 1695 }
iveresov@2138 1696 assert(obj != k_RInfo, "must be different");
iveresov@2138 1697
iveresov@2138 1698 __ cmpptr(obj, (int32_t)NULL_WORD);
iveresov@2138 1699 if (op->should_profile()) {
iveresov@2146 1700 Label not_null;
iveresov@2146 1701 __ jccb(Assembler::notEqual, not_null);
iveresov@2146 1702 // Object is null; update MDO and exit
iveresov@2138 1703 Register mdo = klass_RInfo;
iveresov@2138 1704 __ movoop(mdo, md->constant_encoding());
iveresov@2138 1705 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
iveresov@2138 1706 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
iveresov@2138 1707 __ orl(data_addr, header_bits);
iveresov@2146 1708 __ jmp(*obj_is_null);
iveresov@2146 1709 __ bind(not_null);
iveresov@2138 1710 } else {
iveresov@2146 1711 __ jcc(Assembler::equal, *obj_is_null);
iveresov@2138 1712 }
iveresov@2138 1713 __ verify_oop(obj);
iveresov@2138 1714
iveresov@2138 1715 if (op->fast_check()) {
iveresov@2146 1716 // get object class
iveresov@2138 1717 // not a safepoint as obj null check happens earlier
iveresov@2138 1718 #ifdef _LP64
iveresov@2344 1719 if (UseCompressedOops) {
iveresov@2344 1720 __ load_klass(Rtmp1, obj);
iveresov@2344 1721 __ cmpptr(k_RInfo, Rtmp1);
iveresov@2138 1722 } else {
iveresov@2138 1723 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2138 1724 }
iveresov@2344 1725 #else
iveresov@2344 1726 if (k->is_loaded()) {
iveresov@2344 1727 __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
iveresov@2344 1728 } else {
iveresov@2344 1729 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2344 1730 }
iveresov@2344 1731 #endif
iveresov@2138 1732 __ jcc(Assembler::notEqual, *failure_target);
iveresov@2146 1733 // successful cast, fall through to profile or jump
iveresov@2138 1734 } else {
iveresov@2138 1735 // get object class
iveresov@2138 1736 // not a safepoint as obj null check happens earlier
iveresov@2344 1737 __ load_klass(klass_RInfo, obj);
iveresov@2138 1738 if (k->is_loaded()) {
iveresov@2138 1739 // See if we get an immediate positive hit
iveresov@2138 1740 #ifdef _LP64
iveresov@2138 1741 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
iveresov@2138 1742 #else
iveresov@2138 1743 __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
iveresov@2138 1744 #endif // _LP64
stefank@3391 1745 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
iveresov@2138 1746 __ jcc(Assembler::notEqual, *failure_target);
iveresov@2146 1747 // successful cast, fall through to profile or jump
iveresov@2138 1748 } else {
iveresov@2138 1749 // See if we get an immediate positive hit
iveresov@2146 1750 __ jcc(Assembler::equal, *success_target);
iveresov@2138 1751 // check for self
iveresov@2138 1752 #ifdef _LP64
iveresov@2138 1753 __ cmpptr(klass_RInfo, k_RInfo);
iveresov@2138 1754 #else
iveresov@2138 1755 __ cmpoop(klass_RInfo, k->constant_encoding());
iveresov@2138 1756 #endif // _LP64
iveresov@2146 1757 __ jcc(Assembler::equal, *success_target);
iveresov@2138 1758
iveresov@2138 1759 __ push(klass_RInfo);
iveresov@2138 1760 #ifdef _LP64
iveresov@2138 1761 __ push(k_RInfo);
iveresov@2138 1762 #else
iveresov@2138 1763 __ pushoop(k->constant_encoding());
iveresov@2138 1764 #endif // _LP64
iveresov@2138 1765 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
iveresov@2138 1766 __ pop(klass_RInfo);
iveresov@2138 1767 __ pop(klass_RInfo);
iveresov@2138 1768 // result is a boolean
iveresov@2138 1769 __ cmpl(klass_RInfo, 0);
iveresov@2138 1770 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1771 // successful cast, fall through to profile or jump
iveresov@2138 1772 }
iveresov@2138 1773 } else {
iveresov@2138 1774 // perform the fast part of the checking logic
iveresov@2146 1775 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
iveresov@2138 1776 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
iveresov@2138 1777 __ push(klass_RInfo);
iveresov@2138 1778 __ push(k_RInfo);
iveresov@2138 1779 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
iveresov@2138 1780 __ pop(klass_RInfo);
iveresov@2138 1781 __ pop(k_RInfo);
iveresov@2138 1782 // result is a boolean
iveresov@2138 1783 __ cmpl(k_RInfo, 0);
iveresov@2138 1784 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1785 // successful cast, fall through to profile or jump
iveresov@2138 1786 }
iveresov@2138 1787 }
iveresov@2138 1788 if (op->should_profile()) {
iveresov@2138 1789 Register mdo = klass_RInfo, recv = k_RInfo;
iveresov@2146 1790 __ bind(profile_cast_success);
iveresov@2138 1791 __ movoop(mdo, md->constant_encoding());
iveresov@2344 1792 __ load_klass(recv, obj);
iveresov@2138 1793 Label update_done;
iveresov@2146 1794 type_profile_helper(mdo, md, data, recv, success);
iveresov@2146 1795 __ jmp(*success);
iveresov@2138 1796
iveresov@2138 1797 __ bind(profile_cast_failure);
iveresov@2138 1798 __ movoop(mdo, md->constant_encoding());
iveresov@2138 1799 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
iveresov@2138 1800 __ subptr(counter_addr, DataLayout::counter_increment);
iveresov@2146 1801 __ jmp(*failure);
iveresov@2138 1802 }
iveresov@2146 1803 __ jmp(*success);
iveresov@2138 1804 }
duke@435 1805
iveresov@2146 1806
duke@435 1807 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 1808 LIR_Code code = op->code();
duke@435 1809 if (code == lir_store_check) {
duke@435 1810 Register value = op->object()->as_register();
duke@435 1811 Register array = op->array()->as_register();
duke@435 1812 Register k_RInfo = op->tmp1()->as_register();
duke@435 1813 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1814 Register Rtmp1 = op->tmp3()->as_register();
duke@435 1815
duke@435 1816 CodeStub* stub = op->stub();
iveresov@2146 1817
iveresov@2146 1818 // check if it needs to be profiled
iveresov@2146 1819 ciMethodData* md;
iveresov@2146 1820 ciProfileData* data;
iveresov@2146 1821
iveresov@2146 1822 if (op->should_profile()) {
iveresov@2146 1823 ciMethod* method = op->profiled_method();
iveresov@2146 1824 assert(method != NULL, "Should have method");
iveresov@2146 1825 int bci = op->profiled_bci();
iveresov@2349 1826 md = method->method_data_or_null();
iveresov@2349 1827 assert(md != NULL, "Sanity");
iveresov@2146 1828 data = md->bci_to_data(bci);
iveresov@2146 1829 assert(data != NULL, "need data for type check");
iveresov@2146 1830 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2146 1831 }
iveresov@2146 1832 Label profile_cast_success, profile_cast_failure, done;
iveresov@2146 1833 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
iveresov@2146 1834 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
iveresov@2146 1835
never@739 1836 __ cmpptr(value, (int32_t)NULL_WORD);
iveresov@2146 1837 if (op->should_profile()) {
iveresov@2146 1838 Label not_null;
iveresov@2146 1839 __ jccb(Assembler::notEqual, not_null);
iveresov@2146 1840 // Object is null; update MDO and exit
iveresov@2146 1841 Register mdo = klass_RInfo;
iveresov@2146 1842 __ movoop(mdo, md->constant_encoding());
iveresov@2146 1843 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
iveresov@2146 1844 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
iveresov@2146 1845 __ orl(data_addr, header_bits);
iveresov@2146 1846 __ jmp(done);
iveresov@2146 1847 __ bind(not_null);
iveresov@2146 1848 } else {
iveresov@2146 1849 __ jcc(Assembler::equal, done);
iveresov@2146 1850 }
iveresov@2146 1851
duke@435 1852 add_debug_info_for_null_check_here(op->info_for_exception());
iveresov@2344 1853 __ load_klass(k_RInfo, array);
iveresov@2344 1854 __ load_klass(klass_RInfo, value);
iveresov@2344 1855
iveresov@2344 1856 // get instance klass (it's already uncompressed)
stefank@3391 1857 __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset()));
jrose@1079 1858 // perform the fast part of the checking logic
iveresov@2146 1859 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
jrose@1079 1860 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1861 __ push(klass_RInfo);
never@739 1862 __ push(k_RInfo);
duke@435 1863 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1864 __ pop(klass_RInfo);
never@739 1865 __ pop(k_RInfo);
never@739 1866 // result is a boolean
duke@435 1867 __ cmpl(k_RInfo, 0);
iveresov@2146 1868 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1869 // fall through to the success case
iveresov@2146 1870
iveresov@2146 1871 if (op->should_profile()) {
iveresov@2146 1872 Register mdo = klass_RInfo, recv = k_RInfo;
iveresov@2146 1873 __ bind(profile_cast_success);
iveresov@2146 1874 __ movoop(mdo, md->constant_encoding());
iveresov@2344 1875 __ load_klass(recv, value);
iveresov@2146 1876 Label update_done;
iveresov@2146 1877 type_profile_helper(mdo, md, data, recv, &done);
iveresov@2146 1878 __ jmpb(done);
iveresov@2146 1879
iveresov@2146 1880 __ bind(profile_cast_failure);
iveresov@2146 1881 __ movoop(mdo, md->constant_encoding());
iveresov@2146 1882 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
iveresov@2146 1883 __ subptr(counter_addr, DataLayout::counter_increment);
iveresov@2146 1884 __ jmp(*stub->entry());
iveresov@2146 1885 }
iveresov@2146 1886
duke@435 1887 __ bind(done);
iveresov@2146 1888 } else
iveresov@2146 1889 if (code == lir_checkcast) {
iveresov@2146 1890 Register obj = op->object()->as_register();
iveresov@2146 1891 Register dst = op->result_opr()->as_register();
iveresov@2146 1892 Label success;
iveresov@2146 1893 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
iveresov@2146 1894 __ bind(success);
iveresov@2146 1895 if (dst != obj) {
iveresov@2146 1896 __ mov(dst, obj);
iveresov@2146 1897 }
iveresov@2146 1898 } else
iveresov@2146 1899 if (code == lir_instanceof) {
iveresov@2146 1900 Register obj = op->object()->as_register();
iveresov@2146 1901 Register dst = op->result_opr()->as_register();
iveresov@2146 1902 Label success, failure, done;
iveresov@2146 1903 emit_typecheck_helper(op, &success, &failure, &failure);
iveresov@2146 1904 __ bind(failure);
iveresov@2146 1905 __ xorptr(dst, dst);
iveresov@2146 1906 __ jmpb(done);
iveresov@2146 1907 __ bind(success);
iveresov@2146 1908 __ movptr(dst, 1);
iveresov@2146 1909 __ bind(done);
duke@435 1910 } else {
iveresov@2146 1911 ShouldNotReachHere();
duke@435 1912 }
duke@435 1913
duke@435 1914 }
duke@435 1915
duke@435 1916
duke@435 1917 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
never@739 1918 if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
duke@435 1919 assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
duke@435 1920 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
duke@435 1921 assert(op->new_value()->as_register_lo() == rbx, "wrong register");
duke@435 1922 assert(op->new_value()->as_register_hi() == rcx, "wrong register");
duke@435 1923 Register addr = op->addr()->as_register();
duke@435 1924 if (os::is_MP()) {
duke@435 1925 __ lock();
duke@435 1926 }
never@739 1927 NOT_LP64(__ cmpxchg8(Address(addr, 0)));
never@739 1928
never@739 1929 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
never@739 1930 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
never@739 1931 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
duke@435 1932 Register newval = op->new_value()->as_register();
duke@435 1933 Register cmpval = op->cmp_value()->as_register();
duke@435 1934 assert(cmpval == rax, "wrong register");
duke@435 1935 assert(newval != NULL, "new val must be register");
duke@435 1936 assert(cmpval != newval, "cmp and new values must be in different registers");
duke@435 1937 assert(cmpval != addr, "cmp and addr must be in different registers");
duke@435 1938 assert(newval != addr, "new value and addr must be in different registers");
iveresov@2344 1939
never@739 1940 if ( op->code() == lir_cas_obj) {
iveresov@2344 1941 #ifdef _LP64
iveresov@2344 1942 if (UseCompressedOops) {
iveresov@2344 1943 __ encode_heap_oop(cmpval);
iveresov@2355 1944 __ mov(rscratch1, newval);
iveresov@2355 1945 __ encode_heap_oop(rscratch1);
iveresov@2344 1946 if (os::is_MP()) {
iveresov@2344 1947 __ lock();
iveresov@2344 1948 }
iveresov@2355 1949 // cmpval (rax) is implicitly used by this instruction
iveresov@2355 1950 __ cmpxchgl(rscratch1, Address(addr, 0));
iveresov@2344 1951 } else
iveresov@2344 1952 #endif
iveresov@2344 1953 {
iveresov@2344 1954 if (os::is_MP()) {
iveresov@2344 1955 __ lock();
iveresov@2344 1956 }
iveresov@2344 1957 __ cmpxchgptr(newval, Address(addr, 0));
iveresov@2344 1958 }
iveresov@2344 1959 } else {
iveresov@2344 1960 assert(op->code() == lir_cas_int, "lir_cas_int expected");
iveresov@2344 1961 if (os::is_MP()) {
iveresov@2344 1962 __ lock();
iveresov@2344 1963 }
never@739 1964 __ cmpxchgl(newval, Address(addr, 0));
never@739 1965 }
never@739 1966 #ifdef _LP64
never@739 1967 } else if (op->code() == lir_cas_long) {
never@739 1968 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
never@739 1969 Register newval = op->new_value()->as_register_lo();
never@739 1970 Register cmpval = op->cmp_value()->as_register_lo();
never@739 1971 assert(cmpval == rax, "wrong register");
never@739 1972 assert(newval != NULL, "new val must be register");
never@739 1973 assert(cmpval != newval, "cmp and new values must be in different registers");
never@739 1974 assert(cmpval != addr, "cmp and addr must be in different registers");
never@739 1975 assert(newval != addr, "new value and addr must be in different registers");
never@739 1976 if (os::is_MP()) {
never@739 1977 __ lock();
never@739 1978 }
never@739 1979 __ cmpxchgq(newval, Address(addr, 0));
never@739 1980 #endif // _LP64
duke@435 1981 } else {
duke@435 1982 Unimplemented();
duke@435 1983 }
duke@435 1984 }
duke@435 1985
iveresov@2412 1986 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
duke@435 1987 Assembler::Condition acond, ncond;
duke@435 1988 switch (condition) {
duke@435 1989 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break;
duke@435 1990 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break;
duke@435 1991 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break;
duke@435 1992 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break;
duke@435 1993 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break;
duke@435 1994 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break;
duke@435 1995 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break;
duke@435 1996 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break;
duke@435 1997 default: ShouldNotReachHere();
duke@435 1998 }
duke@435 1999
duke@435 2000 if (opr1->is_cpu_register()) {
duke@435 2001 reg2reg(opr1, result);
duke@435 2002 } else if (opr1->is_stack()) {
duke@435 2003 stack2reg(opr1, result, result->type());
duke@435 2004 } else if (opr1->is_constant()) {
duke@435 2005 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 2006 } else {
duke@435 2007 ShouldNotReachHere();
duke@435 2008 }
duke@435 2009
duke@435 2010 if (VM_Version::supports_cmov() && !opr2->is_constant()) {
duke@435 2011 // optimized version that does not require a branch
duke@435 2012 if (opr2->is_single_cpu()) {
duke@435 2013 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
never@739 2014 __ cmov(ncond, result->as_register(), opr2->as_register());
duke@435 2015 } else if (opr2->is_double_cpu()) {
duke@435 2016 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
duke@435 2017 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
never@739 2018 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
never@739 2019 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
duke@435 2020 } else if (opr2->is_single_stack()) {
duke@435 2021 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2022 } else if (opr2->is_double_stack()) {
never@739 2023 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
never@739 2024 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
duke@435 2025 } else {
duke@435 2026 ShouldNotReachHere();
duke@435 2027 }
duke@435 2028
duke@435 2029 } else {
duke@435 2030 Label skip;
duke@435 2031 __ jcc (acond, skip);
duke@435 2032 if (opr2->is_cpu_register()) {
duke@435 2033 reg2reg(opr2, result);
duke@435 2034 } else if (opr2->is_stack()) {
duke@435 2035 stack2reg(opr2, result, result->type());
duke@435 2036 } else if (opr2->is_constant()) {
duke@435 2037 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 2038 } else {
duke@435 2039 ShouldNotReachHere();
duke@435 2040 }
duke@435 2041 __ bind(skip);
duke@435 2042 }
duke@435 2043 }
duke@435 2044
duke@435 2045
duke@435 2046 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 2047 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
duke@435 2048
duke@435 2049 if (left->is_single_cpu()) {
duke@435 2050 assert(left == dest, "left and dest must be equal");
duke@435 2051 Register lreg = left->as_register();
duke@435 2052
duke@435 2053 if (right->is_single_cpu()) {
duke@435 2054 // cpu register - cpu register
duke@435 2055 Register rreg = right->as_register();
duke@435 2056 switch (code) {
duke@435 2057 case lir_add: __ addl (lreg, rreg); break;
duke@435 2058 case lir_sub: __ subl (lreg, rreg); break;
duke@435 2059 case lir_mul: __ imull(lreg, rreg); break;
duke@435 2060 default: ShouldNotReachHere();
duke@435 2061 }
duke@435 2062
duke@435 2063 } else if (right->is_stack()) {
duke@435 2064 // cpu register - stack
duke@435 2065 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2066 switch (code) {
duke@435 2067 case lir_add: __ addl(lreg, raddr); break;
duke@435 2068 case lir_sub: __ subl(lreg, raddr); break;
duke@435 2069 default: ShouldNotReachHere();
duke@435 2070 }
duke@435 2071
duke@435 2072 } else if (right->is_constant()) {
duke@435 2073 // cpu register - constant
duke@435 2074 jint c = right->as_constant_ptr()->as_jint();
duke@435 2075 switch (code) {
duke@435 2076 case lir_add: {
iveresov@2145 2077 __ incrementl(lreg, c);
duke@435 2078 break;
duke@435 2079 }
duke@435 2080 case lir_sub: {
iveresov@2145 2081 __ decrementl(lreg, c);
duke@435 2082 break;
duke@435 2083 }
duke@435 2084 default: ShouldNotReachHere();
duke@435 2085 }
duke@435 2086
duke@435 2087 } else {
duke@435 2088 ShouldNotReachHere();
duke@435 2089 }
duke@435 2090
duke@435 2091 } else if (left->is_double_cpu()) {
duke@435 2092 assert(left == dest, "left and dest must be equal");
duke@435 2093 Register lreg_lo = left->as_register_lo();
duke@435 2094 Register lreg_hi = left->as_register_hi();
duke@435 2095
duke@435 2096 if (right->is_double_cpu()) {
duke@435 2097 // cpu register - cpu register
duke@435 2098 Register rreg_lo = right->as_register_lo();
duke@435 2099 Register rreg_hi = right->as_register_hi();
never@739 2100 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
never@739 2101 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
duke@435 2102 switch (code) {
duke@435 2103 case lir_add:
never@739 2104 __ addptr(lreg_lo, rreg_lo);
never@739 2105 NOT_LP64(__ adcl(lreg_hi, rreg_hi));
duke@435 2106 break;
duke@435 2107 case lir_sub:
never@739 2108 __ subptr(lreg_lo, rreg_lo);
never@739 2109 NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
duke@435 2110 break;
duke@435 2111 case lir_mul:
never@739 2112 #ifdef _LP64
never@739 2113 __ imulq(lreg_lo, rreg_lo);
never@739 2114 #else
duke@435 2115 assert(lreg_lo == rax && lreg_hi == rdx, "must be");
duke@435 2116 __ imull(lreg_hi, rreg_lo);
duke@435 2117 __ imull(rreg_hi, lreg_lo);
duke@435 2118 __ addl (rreg_hi, lreg_hi);
duke@435 2119 __ mull (rreg_lo);
duke@435 2120 __ addl (lreg_hi, rreg_hi);
never@739 2121 #endif // _LP64
duke@435 2122 break;
duke@435 2123 default:
duke@435 2124 ShouldNotReachHere();
duke@435 2125 }
duke@435 2126
duke@435 2127 } else if (right->is_constant()) {
duke@435 2128 // cpu register - constant
never@739 2129 #ifdef _LP64
never@739 2130 jlong c = right->as_constant_ptr()->as_jlong_bits();
never@739 2131 __ movptr(r10, (intptr_t) c);
never@739 2132 switch (code) {
never@739 2133 case lir_add:
never@739 2134 __ addptr(lreg_lo, r10);
never@739 2135 break;
never@739 2136 case lir_sub:
never@739 2137 __ subptr(lreg_lo, r10);
never@739 2138 break;
never@739 2139 default:
never@739 2140 ShouldNotReachHere();
never@739 2141 }
never@739 2142 #else
duke@435 2143 jint c_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2144 jint c_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2145 switch (code) {
duke@435 2146 case lir_add:
never@739 2147 __ addptr(lreg_lo, c_lo);
duke@435 2148 __ adcl(lreg_hi, c_hi);
duke@435 2149 break;
duke@435 2150 case lir_sub:
never@739 2151 __ subptr(lreg_lo, c_lo);
duke@435 2152 __ sbbl(lreg_hi, c_hi);
duke@435 2153 break;
duke@435 2154 default:
duke@435 2155 ShouldNotReachHere();
duke@435 2156 }
never@739 2157 #endif // _LP64
duke@435 2158
duke@435 2159 } else {
duke@435 2160 ShouldNotReachHere();
duke@435 2161 }
duke@435 2162
duke@435 2163 } else if (left->is_single_xmm()) {
duke@435 2164 assert(left == dest, "left and dest must be equal");
duke@435 2165 XMMRegister lreg = left->as_xmm_float_reg();
duke@435 2166
duke@435 2167 if (right->is_single_xmm()) {
duke@435 2168 XMMRegister rreg = right->as_xmm_float_reg();
duke@435 2169 switch (code) {
duke@435 2170 case lir_add: __ addss(lreg, rreg); break;
duke@435 2171 case lir_sub: __ subss(lreg, rreg); break;
duke@435 2172 case lir_mul_strictfp: // fall through
duke@435 2173 case lir_mul: __ mulss(lreg, rreg); break;
duke@435 2174 case lir_div_strictfp: // fall through
duke@435 2175 case lir_div: __ divss(lreg, rreg); break;
duke@435 2176 default: ShouldNotReachHere();
duke@435 2177 }
duke@435 2178 } else {
duke@435 2179 Address raddr;
duke@435 2180 if (right->is_single_stack()) {
duke@435 2181 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2182 } else if (right->is_constant()) {
duke@435 2183 // hack for now
duke@435 2184 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
duke@435 2185 } else {
duke@435 2186 ShouldNotReachHere();
duke@435 2187 }
duke@435 2188 switch (code) {
duke@435 2189 case lir_add: __ addss(lreg, raddr); break;
duke@435 2190 case lir_sub: __ subss(lreg, raddr); break;
duke@435 2191 case lir_mul_strictfp: // fall through
duke@435 2192 case lir_mul: __ mulss(lreg, raddr); break;
duke@435 2193 case lir_div_strictfp: // fall through
duke@435 2194 case lir_div: __ divss(lreg, raddr); break;
duke@435 2195 default: ShouldNotReachHere();
duke@435 2196 }
duke@435 2197 }
duke@435 2198
duke@435 2199 } else if (left->is_double_xmm()) {
duke@435 2200 assert(left == dest, "left and dest must be equal");
duke@435 2201
duke@435 2202 XMMRegister lreg = left->as_xmm_double_reg();
duke@435 2203 if (right->is_double_xmm()) {
duke@435 2204 XMMRegister rreg = right->as_xmm_double_reg();
duke@435 2205 switch (code) {
duke@435 2206 case lir_add: __ addsd(lreg, rreg); break;
duke@435 2207 case lir_sub: __ subsd(lreg, rreg); break;
duke@435 2208 case lir_mul_strictfp: // fall through
duke@435 2209 case lir_mul: __ mulsd(lreg, rreg); break;
duke@435 2210 case lir_div_strictfp: // fall through
duke@435 2211 case lir_div: __ divsd(lreg, rreg); break;
duke@435 2212 default: ShouldNotReachHere();
duke@435 2213 }
duke@435 2214 } else {
duke@435 2215 Address raddr;
duke@435 2216 if (right->is_double_stack()) {
duke@435 2217 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2218 } else if (right->is_constant()) {
duke@435 2219 // hack for now
duke@435 2220 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2221 } else {
duke@435 2222 ShouldNotReachHere();
duke@435 2223 }
duke@435 2224 switch (code) {
duke@435 2225 case lir_add: __ addsd(lreg, raddr); break;
duke@435 2226 case lir_sub: __ subsd(lreg, raddr); break;
duke@435 2227 case lir_mul_strictfp: // fall through
duke@435 2228 case lir_mul: __ mulsd(lreg, raddr); break;
duke@435 2229 case lir_div_strictfp: // fall through
duke@435 2230 case lir_div: __ divsd(lreg, raddr); break;
duke@435 2231 default: ShouldNotReachHere();
duke@435 2232 }
duke@435 2233 }
duke@435 2234
duke@435 2235 } else if (left->is_single_fpu()) {
duke@435 2236 assert(dest->is_single_fpu(), "fpu stack allocation required");
duke@435 2237
duke@435 2238 if (right->is_single_fpu()) {
duke@435 2239 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
duke@435 2240
duke@435 2241 } else {
duke@435 2242 assert(left->fpu_regnr() == 0, "left must be on TOS");
duke@435 2243 assert(dest->fpu_regnr() == 0, "dest must be on TOS");
duke@435 2244
duke@435 2245 Address raddr;
duke@435 2246 if (right->is_single_stack()) {
duke@435 2247 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2248 } else if (right->is_constant()) {
duke@435 2249 address const_addr = float_constant(right->as_jfloat());
duke@435 2250 assert(const_addr != NULL, "incorrect float/double constant maintainance");
duke@435 2251 // hack for now
duke@435 2252 raddr = __ as_Address(InternalAddress(const_addr));
duke@435 2253 } else {
duke@435 2254 ShouldNotReachHere();
duke@435 2255 }
duke@435 2256
duke@435 2257 switch (code) {
duke@435 2258 case lir_add: __ fadd_s(raddr); break;
duke@435 2259 case lir_sub: __ fsub_s(raddr); break;
duke@435 2260 case lir_mul_strictfp: // fall through
duke@435 2261 case lir_mul: __ fmul_s(raddr); break;
duke@435 2262 case lir_div_strictfp: // fall through
duke@435 2263 case lir_div: __ fdiv_s(raddr); break;
duke@435 2264 default: ShouldNotReachHere();
duke@435 2265 }
duke@435 2266 }
duke@435 2267
duke@435 2268 } else if (left->is_double_fpu()) {
duke@435 2269 assert(dest->is_double_fpu(), "fpu stack allocation required");
duke@435 2270
duke@435 2271 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2272 // Double values require special handling for strictfp mul/div on x86
duke@435 2273 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
duke@435 2274 __ fmulp(left->fpu_regnrLo() + 1);
duke@435 2275 }
duke@435 2276
duke@435 2277 if (right->is_double_fpu()) {
duke@435 2278 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
duke@435 2279
duke@435 2280 } else {
duke@435 2281 assert(left->fpu_regnrLo() == 0, "left must be on TOS");
duke@435 2282 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
duke@435 2283
duke@435 2284 Address raddr;
duke@435 2285 if (right->is_double_stack()) {
duke@435 2286 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2287 } else if (right->is_constant()) {
duke@435 2288 // hack for now
duke@435 2289 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2290 } else {
duke@435 2291 ShouldNotReachHere();
duke@435 2292 }
duke@435 2293
duke@435 2294 switch (code) {
duke@435 2295 case lir_add: __ fadd_d(raddr); break;
duke@435 2296 case lir_sub: __ fsub_d(raddr); break;
duke@435 2297 case lir_mul_strictfp: // fall through
duke@435 2298 case lir_mul: __ fmul_d(raddr); break;
duke@435 2299 case lir_div_strictfp: // fall through
duke@435 2300 case lir_div: __ fdiv_d(raddr); break;
duke@435 2301 default: ShouldNotReachHere();
duke@435 2302 }
duke@435 2303 }
duke@435 2304
duke@435 2305 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2306 // Double values require special handling for strictfp mul/div on x86
duke@435 2307 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
duke@435 2308 __ fmulp(dest->fpu_regnrLo() + 1);
duke@435 2309 }
duke@435 2310
duke@435 2311 } else if (left->is_single_stack() || left->is_address()) {
duke@435 2312 assert(left == dest, "left and dest must be equal");
duke@435 2313
duke@435 2314 Address laddr;
duke@435 2315 if (left->is_single_stack()) {
duke@435 2316 laddr = frame_map()->address_for_slot(left->single_stack_ix());
duke@435 2317 } else if (left->is_address()) {
duke@435 2318 laddr = as_Address(left->as_address_ptr());
duke@435 2319 } else {
duke@435 2320 ShouldNotReachHere();
duke@435 2321 }
duke@435 2322
duke@435 2323 if (right->is_single_cpu()) {
duke@435 2324 Register rreg = right->as_register();
duke@435 2325 switch (code) {
duke@435 2326 case lir_add: __ addl(laddr, rreg); break;
duke@435 2327 case lir_sub: __ subl(laddr, rreg); break;
duke@435 2328 default: ShouldNotReachHere();
duke@435 2329 }
duke@435 2330 } else if (right->is_constant()) {
duke@435 2331 jint c = right->as_constant_ptr()->as_jint();
duke@435 2332 switch (code) {
duke@435 2333 case lir_add: {
never@739 2334 __ incrementl(laddr, c);
duke@435 2335 break;
duke@435 2336 }
duke@435 2337 case lir_sub: {
never@739 2338 __ decrementl(laddr, c);
duke@435 2339 break;
duke@435 2340 }
duke@435 2341 default: ShouldNotReachHere();
duke@435 2342 }
duke@435 2343 } else {
duke@435 2344 ShouldNotReachHere();
duke@435 2345 }
duke@435 2346
duke@435 2347 } else {
duke@435 2348 ShouldNotReachHere();
duke@435 2349 }
duke@435 2350 }
duke@435 2351
duke@435 2352 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
duke@435 2353 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR");
duke@435 2354 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
duke@435 2355 assert(left_index == 0 || right_index == 0, "either must be on top of stack");
duke@435 2356
duke@435 2357 bool left_is_tos = (left_index == 0);
duke@435 2358 bool dest_is_tos = (dest_index == 0);
duke@435 2359 int non_tos_index = (left_is_tos ? right_index : left_index);
duke@435 2360
duke@435 2361 switch (code) {
duke@435 2362 case lir_add:
duke@435 2363 if (pop_fpu_stack) __ faddp(non_tos_index);
duke@435 2364 else if (dest_is_tos) __ fadd (non_tos_index);
duke@435 2365 else __ fadda(non_tos_index);
duke@435 2366 break;
duke@435 2367
duke@435 2368 case lir_sub:
duke@435 2369 if (left_is_tos) {
duke@435 2370 if (pop_fpu_stack) __ fsubrp(non_tos_index);
duke@435 2371 else if (dest_is_tos) __ fsub (non_tos_index);
duke@435 2372 else __ fsubra(non_tos_index);
duke@435 2373 } else {
duke@435 2374 if (pop_fpu_stack) __ fsubp (non_tos_index);
duke@435 2375 else if (dest_is_tos) __ fsubr (non_tos_index);
duke@435 2376 else __ fsuba (non_tos_index);
duke@435 2377 }
duke@435 2378 break;
duke@435 2379
duke@435 2380 case lir_mul_strictfp: // fall through
duke@435 2381 case lir_mul:
duke@435 2382 if (pop_fpu_stack) __ fmulp(non_tos_index);
duke@435 2383 else if (dest_is_tos) __ fmul (non_tos_index);
duke@435 2384 else __ fmula(non_tos_index);
duke@435 2385 break;
duke@435 2386
duke@435 2387 case lir_div_strictfp: // fall through
duke@435 2388 case lir_div:
duke@435 2389 if (left_is_tos) {
duke@435 2390 if (pop_fpu_stack) __ fdivrp(non_tos_index);
duke@435 2391 else if (dest_is_tos) __ fdiv (non_tos_index);
duke@435 2392 else __ fdivra(non_tos_index);
duke@435 2393 } else {
duke@435 2394 if (pop_fpu_stack) __ fdivp (non_tos_index);
duke@435 2395 else if (dest_is_tos) __ fdivr (non_tos_index);
duke@435 2396 else __ fdiva (non_tos_index);
duke@435 2397 }
duke@435 2398 break;
duke@435 2399
duke@435 2400 case lir_rem:
duke@435 2401 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
duke@435 2402 __ fremr(noreg);
duke@435 2403 break;
duke@435 2404
duke@435 2405 default:
duke@435 2406 ShouldNotReachHere();
duke@435 2407 }
duke@435 2408 }
duke@435 2409
duke@435 2410
duke@435 2411 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
duke@435 2412 if (value->is_double_xmm()) {
duke@435 2413 switch(code) {
duke@435 2414 case lir_abs :
duke@435 2415 {
duke@435 2416 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
duke@435 2417 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
duke@435 2418 }
duke@435 2419 __ andpd(dest->as_xmm_double_reg(),
duke@435 2420 ExternalAddress((address)double_signmask_pool));
duke@435 2421 }
duke@435 2422 break;
duke@435 2423
duke@435 2424 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
duke@435 2425 // all other intrinsics are not available in the SSE instruction set, so FPU is used
duke@435 2426 default : ShouldNotReachHere();
duke@435 2427 }
duke@435 2428
duke@435 2429 } else if (value->is_double_fpu()) {
duke@435 2430 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
duke@435 2431 switch(code) {
duke@435 2432 case lir_log : __ flog() ; break;
duke@435 2433 case lir_log10 : __ flog10() ; break;
duke@435 2434 case lir_abs : __ fabs() ; break;
duke@435 2435 case lir_sqrt : __ fsqrt(); break;
duke@435 2436 case lir_sin :
duke@435 2437 // Should consider not saving rbx, if not necessary
duke@435 2438 __ trigfunc('s', op->as_Op2()->fpu_stack_size());
duke@435 2439 break;
duke@435 2440 case lir_cos :
duke@435 2441 // Should consider not saving rbx, if not necessary
duke@435 2442 assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
duke@435 2443 __ trigfunc('c', op->as_Op2()->fpu_stack_size());
duke@435 2444 break;
duke@435 2445 case lir_tan :
duke@435 2446 // Should consider not saving rbx, if not necessary
duke@435 2447 __ trigfunc('t', op->as_Op2()->fpu_stack_size());
duke@435 2448 break;
duke@435 2449 default : ShouldNotReachHere();
duke@435 2450 }
duke@435 2451 } else {
duke@435 2452 Unimplemented();
duke@435 2453 }
duke@435 2454 }
duke@435 2455
duke@435 2456 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
duke@435 2457 // assert(left->destroys_register(), "check");
duke@435 2458 if (left->is_single_cpu()) {
duke@435 2459 Register reg = left->as_register();
duke@435 2460 if (right->is_constant()) {
duke@435 2461 int val = right->as_constant_ptr()->as_jint();
duke@435 2462 switch (code) {
duke@435 2463 case lir_logic_and: __ andl (reg, val); break;
duke@435 2464 case lir_logic_or: __ orl (reg, val); break;
duke@435 2465 case lir_logic_xor: __ xorl (reg, val); break;
duke@435 2466 default: ShouldNotReachHere();
duke@435 2467 }
duke@435 2468 } else if (right->is_stack()) {
duke@435 2469 // added support for stack operands
duke@435 2470 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2471 switch (code) {
duke@435 2472 case lir_logic_and: __ andl (reg, raddr); break;
duke@435 2473 case lir_logic_or: __ orl (reg, raddr); break;
duke@435 2474 case lir_logic_xor: __ xorl (reg, raddr); break;
duke@435 2475 default: ShouldNotReachHere();
duke@435 2476 }
duke@435 2477 } else {
duke@435 2478 Register rright = right->as_register();
duke@435 2479 switch (code) {
never@739 2480 case lir_logic_and: __ andptr (reg, rright); break;
never@739 2481 case lir_logic_or : __ orptr (reg, rright); break;
never@739 2482 case lir_logic_xor: __ xorptr (reg, rright); break;
duke@435 2483 default: ShouldNotReachHere();
duke@435 2484 }
duke@435 2485 }
duke@435 2486 move_regs(reg, dst->as_register());
duke@435 2487 } else {
duke@435 2488 Register l_lo = left->as_register_lo();
duke@435 2489 Register l_hi = left->as_register_hi();
duke@435 2490 if (right->is_constant()) {
never@739 2491 #ifdef _LP64
never@739 2492 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
never@739 2493 switch (code) {
never@739 2494 case lir_logic_and:
never@739 2495 __ andq(l_lo, rscratch1);
never@739 2496 break;
never@739 2497 case lir_logic_or:
never@739 2498 __ orq(l_lo, rscratch1);
never@739 2499 break;
never@739 2500 case lir_logic_xor:
never@739 2501 __ xorq(l_lo, rscratch1);
never@739 2502 break;
never@739 2503 default: ShouldNotReachHere();
never@739 2504 }
never@739 2505 #else
duke@435 2506 int r_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2507 int r_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2508 switch (code) {
duke@435 2509 case lir_logic_and:
duke@435 2510 __ andl(l_lo, r_lo);
duke@435 2511 __ andl(l_hi, r_hi);
duke@435 2512 break;
duke@435 2513 case lir_logic_or:
duke@435 2514 __ orl(l_lo, r_lo);
duke@435 2515 __ orl(l_hi, r_hi);
duke@435 2516 break;
duke@435 2517 case lir_logic_xor:
duke@435 2518 __ xorl(l_lo, r_lo);
duke@435 2519 __ xorl(l_hi, r_hi);
duke@435 2520 break;
duke@435 2521 default: ShouldNotReachHere();
duke@435 2522 }
never@739 2523 #endif // _LP64
duke@435 2524 } else {
iveresov@1927 2525 #ifdef _LP64
iveresov@1927 2526 Register r_lo;
iveresov@1927 2527 if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
iveresov@1927 2528 r_lo = right->as_register();
iveresov@1927 2529 } else {
iveresov@1927 2530 r_lo = right->as_register_lo();
iveresov@1927 2531 }
iveresov@1927 2532 #else
duke@435 2533 Register r_lo = right->as_register_lo();
duke@435 2534 Register r_hi = right->as_register_hi();
duke@435 2535 assert(l_lo != r_hi, "overwriting registers");
iveresov@1927 2536 #endif
duke@435 2537 switch (code) {
duke@435 2538 case lir_logic_and:
never@739 2539 __ andptr(l_lo, r_lo);
never@739 2540 NOT_LP64(__ andptr(l_hi, r_hi);)
duke@435 2541 break;
duke@435 2542 case lir_logic_or:
never@739 2543 __ orptr(l_lo, r_lo);
never@739 2544 NOT_LP64(__ orptr(l_hi, r_hi);)
duke@435 2545 break;
duke@435 2546 case lir_logic_xor:
never@739 2547 __ xorptr(l_lo, r_lo);
never@739 2548 NOT_LP64(__ xorptr(l_hi, r_hi);)
duke@435 2549 break;
duke@435 2550 default: ShouldNotReachHere();
duke@435 2551 }
duke@435 2552 }
duke@435 2553
duke@435 2554 Register dst_lo = dst->as_register_lo();
duke@435 2555 Register dst_hi = dst->as_register_hi();
duke@435 2556
never@739 2557 #ifdef _LP64
never@739 2558 move_regs(l_lo, dst_lo);
never@739 2559 #else
duke@435 2560 if (dst_lo == l_hi) {
duke@435 2561 assert(dst_hi != l_lo, "overwriting registers");
duke@435 2562 move_regs(l_hi, dst_hi);
duke@435 2563 move_regs(l_lo, dst_lo);
duke@435 2564 } else {
duke@435 2565 assert(dst_lo != l_hi, "overwriting registers");
duke@435 2566 move_regs(l_lo, dst_lo);
duke@435 2567 move_regs(l_hi, dst_hi);
duke@435 2568 }
never@739 2569 #endif // _LP64
duke@435 2570 }
duke@435 2571 }
duke@435 2572
duke@435 2573
duke@435 2574 // we assume that rax, and rdx can be overwritten
duke@435 2575 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
duke@435 2576
duke@435 2577 assert(left->is_single_cpu(), "left must be register");
duke@435 2578 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
duke@435 2579 assert(result->is_single_cpu(), "result must be register");
duke@435 2580
duke@435 2581 // assert(left->destroys_register(), "check");
duke@435 2582 // assert(right->destroys_register(), "check");
duke@435 2583
duke@435 2584 Register lreg = left->as_register();
duke@435 2585 Register dreg = result->as_register();
duke@435 2586
duke@435 2587 if (right->is_constant()) {
duke@435 2588 int divisor = right->as_constant_ptr()->as_jint();
duke@435 2589 assert(divisor > 0 && is_power_of_2(divisor), "must be");
duke@435 2590 if (code == lir_idiv) {
duke@435 2591 assert(lreg == rax, "must be rax,");
duke@435 2592 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2593 __ cdql(); // sign extend into rdx:rax
duke@435 2594 if (divisor == 2) {
duke@435 2595 __ subl(lreg, rdx);
duke@435 2596 } else {
duke@435 2597 __ andl(rdx, divisor - 1);
duke@435 2598 __ addl(lreg, rdx);
duke@435 2599 }
duke@435 2600 __ sarl(lreg, log2_intptr(divisor));
duke@435 2601 move_regs(lreg, dreg);
duke@435 2602 } else if (code == lir_irem) {
duke@435 2603 Label done;
never@739 2604 __ mov(dreg, lreg);
duke@435 2605 __ andl(dreg, 0x80000000 | (divisor - 1));
duke@435 2606 __ jcc(Assembler::positive, done);
duke@435 2607 __ decrement(dreg);
duke@435 2608 __ orl(dreg, ~(divisor - 1));
duke@435 2609 __ increment(dreg);
duke@435 2610 __ bind(done);
duke@435 2611 } else {
duke@435 2612 ShouldNotReachHere();
duke@435 2613 }
duke@435 2614 } else {
duke@435 2615 Register rreg = right->as_register();
duke@435 2616 assert(lreg == rax, "left register must be rax,");
duke@435 2617 assert(rreg != rdx, "right register must not be rdx");
duke@435 2618 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2619
duke@435 2620 move_regs(lreg, rax);
duke@435 2621
duke@435 2622 int idivl_offset = __ corrected_idivl(rreg);
duke@435 2623 add_debug_info_for_div0(idivl_offset, info);
duke@435 2624 if (code == lir_irem) {
duke@435 2625 move_regs(rdx, dreg); // result is in rdx
duke@435 2626 } else {
duke@435 2627 move_regs(rax, dreg);
duke@435 2628 }
duke@435 2629 }
duke@435 2630 }
duke@435 2631
duke@435 2632
duke@435 2633 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 2634 if (opr1->is_single_cpu()) {
duke@435 2635 Register reg1 = opr1->as_register();
duke@435 2636 if (opr2->is_single_cpu()) {
duke@435 2637 // cpu register - cpu register
never@739 2638 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2639 __ cmpptr(reg1, opr2->as_register());
never@739 2640 } else {
never@739 2641 assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
never@739 2642 __ cmpl(reg1, opr2->as_register());
never@739 2643 }
duke@435 2644 } else if (opr2->is_stack()) {
duke@435 2645 // cpu register - stack
never@739 2646 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2647 __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2648 } else {
never@739 2649 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2650 }
duke@435 2651 } else if (opr2->is_constant()) {
duke@435 2652 // cpu register - constant
duke@435 2653 LIR_Const* c = opr2->as_constant_ptr();
duke@435 2654 if (c->type() == T_INT) {
duke@435 2655 __ cmpl(reg1, c->as_jint());
never@739 2656 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2657 // In 64bit oops are single register
duke@435 2658 jobject o = c->as_jobject();
duke@435 2659 if (o == NULL) {
never@739 2660 __ cmpptr(reg1, (int32_t)NULL_WORD);
duke@435 2661 } else {
never@739 2662 #ifdef _LP64
never@739 2663 __ movoop(rscratch1, o);
never@739 2664 __ cmpptr(reg1, rscratch1);
never@739 2665 #else
duke@435 2666 __ cmpoop(reg1, c->as_jobject());
never@739 2667 #endif // _LP64
duke@435 2668 }
duke@435 2669 } else {
duke@435 2670 ShouldNotReachHere();
duke@435 2671 }
duke@435 2672 // cpu register - address
duke@435 2673 } else if (opr2->is_address()) {
duke@435 2674 if (op->info() != NULL) {
duke@435 2675 add_debug_info_for_null_check_here(op->info());
duke@435 2676 }
duke@435 2677 __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2678 } else {
duke@435 2679 ShouldNotReachHere();
duke@435 2680 }
duke@435 2681
duke@435 2682 } else if(opr1->is_double_cpu()) {
duke@435 2683 Register xlo = opr1->as_register_lo();
duke@435 2684 Register xhi = opr1->as_register_hi();
duke@435 2685 if (opr2->is_double_cpu()) {
never@739 2686 #ifdef _LP64
never@739 2687 __ cmpptr(xlo, opr2->as_register_lo());
never@739 2688 #else
duke@435 2689 // cpu register - cpu register
duke@435 2690 Register ylo = opr2->as_register_lo();
duke@435 2691 Register yhi = opr2->as_register_hi();
duke@435 2692 __ subl(xlo, ylo);
duke@435 2693 __ sbbl(xhi, yhi);
duke@435 2694 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 2695 __ orl(xhi, xlo);
duke@435 2696 }
never@739 2697 #endif // _LP64
duke@435 2698 } else if (opr2->is_constant()) {
duke@435 2699 // cpu register - constant 0
duke@435 2700 assert(opr2->as_jlong() == (jlong)0, "only handles zero");
never@739 2701 #ifdef _LP64
never@739 2702 __ cmpptr(xlo, (int32_t)opr2->as_jlong());
never@739 2703 #else
duke@435 2704 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
duke@435 2705 __ orl(xhi, xlo);
never@739 2706 #endif // _LP64
duke@435 2707 } else {
duke@435 2708 ShouldNotReachHere();
duke@435 2709 }
duke@435 2710
duke@435 2711 } else if (opr1->is_single_xmm()) {
duke@435 2712 XMMRegister reg1 = opr1->as_xmm_float_reg();
duke@435 2713 if (opr2->is_single_xmm()) {
duke@435 2714 // xmm register - xmm register
duke@435 2715 __ ucomiss(reg1, opr2->as_xmm_float_reg());
duke@435 2716 } else if (opr2->is_stack()) {
duke@435 2717 // xmm register - stack
duke@435 2718 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2719 } else if (opr2->is_constant()) {
duke@435 2720 // xmm register - constant
duke@435 2721 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
duke@435 2722 } else if (opr2->is_address()) {
duke@435 2723 // xmm register - address
duke@435 2724 if (op->info() != NULL) {
duke@435 2725 add_debug_info_for_null_check_here(op->info());
duke@435 2726 }
duke@435 2727 __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2728 } else {
duke@435 2729 ShouldNotReachHere();
duke@435 2730 }
duke@435 2731
duke@435 2732 } else if (opr1->is_double_xmm()) {
duke@435 2733 XMMRegister reg1 = opr1->as_xmm_double_reg();
duke@435 2734 if (opr2->is_double_xmm()) {
duke@435 2735 // xmm register - xmm register
duke@435 2736 __ ucomisd(reg1, opr2->as_xmm_double_reg());
duke@435 2737 } else if (opr2->is_stack()) {
duke@435 2738 // xmm register - stack
duke@435 2739 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
duke@435 2740 } else if (opr2->is_constant()) {
duke@435 2741 // xmm register - constant
duke@435 2742 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
duke@435 2743 } else if (opr2->is_address()) {
duke@435 2744 // xmm register - address
duke@435 2745 if (op->info() != NULL) {
duke@435 2746 add_debug_info_for_null_check_here(op->info());
duke@435 2747 }
duke@435 2748 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
duke@435 2749 } else {
duke@435 2750 ShouldNotReachHere();
duke@435 2751 }
duke@435 2752
duke@435 2753 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
duke@435 2754 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
duke@435 2755 assert(opr2->is_fpu_register(), "both must be registers");
duke@435 2756 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2757
duke@435 2758 } else if (opr1->is_address() && opr2->is_constant()) {
never@739 2759 LIR_Const* c = opr2->as_constant_ptr();
never@739 2760 #ifdef _LP64
never@739 2761 if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2762 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
never@739 2763 __ movoop(rscratch1, c->as_jobject());
never@739 2764 }
never@739 2765 #endif // LP64
duke@435 2766 if (op->info() != NULL) {
duke@435 2767 add_debug_info_for_null_check_here(op->info());
duke@435 2768 }
duke@435 2769 // special case: address - constant
duke@435 2770 LIR_Address* addr = opr1->as_address_ptr();
duke@435 2771 if (c->type() == T_INT) {
duke@435 2772 __ cmpl(as_Address(addr), c->as_jint());
never@739 2773 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2774 #ifdef _LP64
never@739 2775 // %%% Make this explode if addr isn't reachable until we figure out a
never@739 2776 // better strategy by giving noreg as the temp for as_Address
never@739 2777 __ cmpptr(rscratch1, as_Address(addr, noreg));
never@739 2778 #else
duke@435 2779 __ cmpoop(as_Address(addr), c->as_jobject());
never@739 2780 #endif // _LP64
duke@435 2781 } else {
duke@435 2782 ShouldNotReachHere();
duke@435 2783 }
duke@435 2784
duke@435 2785 } else {
duke@435 2786 ShouldNotReachHere();
duke@435 2787 }
duke@435 2788 }
duke@435 2789
duke@435 2790 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
duke@435 2791 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 2792 if (left->is_single_xmm()) {
duke@435 2793 assert(right->is_single_xmm(), "must match");
duke@435 2794 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2795 } else if (left->is_double_xmm()) {
duke@435 2796 assert(right->is_double_xmm(), "must match");
duke@435 2797 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2798
duke@435 2799 } else {
duke@435 2800 assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
duke@435 2801 assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
duke@435 2802
duke@435 2803 assert(left->fpu() == 0, "left must be on TOS");
duke@435 2804 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
duke@435 2805 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2806 }
duke@435 2807 } else {
duke@435 2808 assert(code == lir_cmp_l2i, "check");
never@739 2809 #ifdef _LP64
iveresov@1804 2810 Label done;
iveresov@1804 2811 Register dest = dst->as_register();
iveresov@1804 2812 __ cmpptr(left->as_register_lo(), right->as_register_lo());
iveresov@1804 2813 __ movl(dest, -1);
iveresov@1804 2814 __ jccb(Assembler::less, done);
iveresov@1804 2815 __ set_byte_if_not_zero(dest);
iveresov@1804 2816 __ movzbl(dest, dest);
iveresov@1804 2817 __ bind(done);
never@739 2818 #else
duke@435 2819 __ lcmp2int(left->as_register_hi(),
duke@435 2820 left->as_register_lo(),
duke@435 2821 right->as_register_hi(),
duke@435 2822 right->as_register_lo());
duke@435 2823 move_regs(left->as_register_hi(), dst->as_register());
never@739 2824 #endif // _LP64
duke@435 2825 }
duke@435 2826 }
duke@435 2827
duke@435 2828
duke@435 2829 void LIR_Assembler::align_call(LIR_Code code) {
duke@435 2830 if (os::is_MP()) {
duke@435 2831 // make sure that the displacement word of the call ends up word aligned
duke@435 2832 int offset = __ offset();
duke@435 2833 switch (code) {
duke@435 2834 case lir_static_call:
duke@435 2835 case lir_optvirtual_call:
twisti@1730 2836 case lir_dynamic_call:
duke@435 2837 offset += NativeCall::displacement_offset;
duke@435 2838 break;
duke@435 2839 case lir_icvirtual_call:
duke@435 2840 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
duke@435 2841 break;
duke@435 2842 case lir_virtual_call: // currently, sparc-specific for niagara
duke@435 2843 default: ShouldNotReachHere();
duke@435 2844 }
duke@435 2845 while (offset++ % BytesPerWord != 0) {
duke@435 2846 __ nop();
duke@435 2847 }
duke@435 2848 }
duke@435 2849 }
duke@435 2850
duke@435 2851
twisti@1730 2852 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
duke@435 2853 assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2854 "must be aligned");
twisti@1730 2855 __ call(AddressLiteral(op->addr(), rtype));
twisti@1919 2856 add_call_info(code_offset(), op->info());
duke@435 2857 }
duke@435 2858
duke@435 2859
twisti@1730 2860 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
duke@435 2861 RelocationHolder rh = virtual_call_Relocation::spec(pc());
duke@435 2862 __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
duke@435 2863 assert(!os::is_MP() ||
duke@435 2864 (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2865 "must be aligned");
twisti@1730 2866 __ call(AddressLiteral(op->addr(), rh));
twisti@1919 2867 add_call_info(code_offset(), op->info());
duke@435 2868 }
duke@435 2869
duke@435 2870
duke@435 2871 /* Currently, vtable-dispatch is only enabled for sparc platforms */
twisti@1730 2872 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
duke@435 2873 ShouldNotReachHere();
duke@435 2874 }
duke@435 2875
twisti@1730 2876
duke@435 2877 void LIR_Assembler::emit_static_call_stub() {
duke@435 2878 address call_pc = __ pc();
duke@435 2879 address stub = __ start_a_stub(call_stub_size);
duke@435 2880 if (stub == NULL) {
duke@435 2881 bailout("static call stub overflow");
duke@435 2882 return;
duke@435 2883 }
duke@435 2884
duke@435 2885 int start = __ offset();
duke@435 2886 if (os::is_MP()) {
duke@435 2887 // make sure that the displacement word of the call ends up word aligned
duke@435 2888 int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
duke@435 2889 while (offset++ % BytesPerWord != 0) {
duke@435 2890 __ nop();
duke@435 2891 }
duke@435 2892 }
duke@435 2893 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 2894 __ movoop(rbx, (jobject)NULL);
duke@435 2895 // must be set to -1 at code generation time
duke@435 2896 assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
never@739 2897 // On 64bit this will die since it will take a movq & jmp, must be only a jmp
never@739 2898 __ jump(RuntimeAddress(__ pc()));
duke@435 2899
jcoomes@1844 2900 assert(__ offset() - start <= call_stub_size, "stub too big");
duke@435 2901 __ end_a_stub();
duke@435 2902 }
duke@435 2903
duke@435 2904
never@1813 2905 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
duke@435 2906 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2907 assert(exceptionPC->as_register() == rdx, "must match");
duke@435 2908
duke@435 2909 // exception object is not added to oop map by LinearScan
duke@435 2910 // (LinearScan assumes that no oops are in fixed registers)
duke@435 2911 info->add_register_oop(exceptionOop);
duke@435 2912 Runtime1::StubID unwind_id;
duke@435 2913
never@1813 2914 // get current pc information
never@1813 2915 // pc is only needed if the method has an exception handler, the unwind code does not need it.
never@1813 2916 int pc_for_athrow_offset = __ offset();
never@1813 2917 InternalAddress pc_for_athrow(__ pc());
never@1813 2918 __ lea(exceptionPC->as_register(), pc_for_athrow);
never@1813 2919 add_call_info(pc_for_athrow_offset, info); // for exception handler
never@1813 2920
never@1813 2921 __ verify_not_null_oop(rax);
never@1813 2922 // search an exception handler (rax: exception oop, rdx: throwing pc)
never@1813 2923 if (compilation()->has_fpu_code()) {
never@1813 2924 unwind_id = Runtime1::handle_exception_id;
duke@435 2925 } else {
never@1813 2926 unwind_id = Runtime1::handle_exception_nofpu_id;
duke@435 2927 }
never@1813 2928 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
duke@435 2929
duke@435 2930 // enough room for two byte trap
duke@435 2931 __ nop();
duke@435 2932 }
duke@435 2933
duke@435 2934
never@1813 2935 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
never@1813 2936 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2937
never@1813 2938 __ jmp(_unwind_handler_entry);
never@1813 2939 }
never@1813 2940
never@1813 2941
duke@435 2942 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2943
duke@435 2944 // optimized version for linear scan:
duke@435 2945 // * count must be already in ECX (guaranteed by LinearScan)
duke@435 2946 // * left and dest must be equal
duke@435 2947 // * tmp must be unused
duke@435 2948 assert(count->as_register() == SHIFT_count, "count must be in ECX");
duke@435 2949 assert(left == dest, "left and dest must be equal");
duke@435 2950 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
duke@435 2951
duke@435 2952 if (left->is_single_cpu()) {
duke@435 2953 Register value = left->as_register();
duke@435 2954 assert(value != SHIFT_count, "left cannot be ECX");
duke@435 2955
duke@435 2956 switch (code) {
duke@435 2957 case lir_shl: __ shll(value); break;
duke@435 2958 case lir_shr: __ sarl(value); break;
duke@435 2959 case lir_ushr: __ shrl(value); break;
duke@435 2960 default: ShouldNotReachHere();
duke@435 2961 }
duke@435 2962 } else if (left->is_double_cpu()) {
duke@435 2963 Register lo = left->as_register_lo();
duke@435 2964 Register hi = left->as_register_hi();
duke@435 2965 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
never@739 2966 #ifdef _LP64
never@739 2967 switch (code) {
never@739 2968 case lir_shl: __ shlptr(lo); break;
never@739 2969 case lir_shr: __ sarptr(lo); break;
never@739 2970 case lir_ushr: __ shrptr(lo); break;
never@739 2971 default: ShouldNotReachHere();
never@739 2972 }
never@739 2973 #else
duke@435 2974
duke@435 2975 switch (code) {
duke@435 2976 case lir_shl: __ lshl(hi, lo); break;
duke@435 2977 case lir_shr: __ lshr(hi, lo, true); break;
duke@435 2978 case lir_ushr: __ lshr(hi, lo, false); break;
duke@435 2979 default: ShouldNotReachHere();
duke@435 2980 }
never@739 2981 #endif // LP64
duke@435 2982 } else {
duke@435 2983 ShouldNotReachHere();
duke@435 2984 }
duke@435 2985 }
duke@435 2986
duke@435 2987
duke@435 2988 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 2989 if (dest->is_single_cpu()) {
duke@435 2990 // first move left into dest so that left is not destroyed by the shift
duke@435 2991 Register value = dest->as_register();
duke@435 2992 count = count & 0x1F; // Java spec
duke@435 2993
duke@435 2994 move_regs(left->as_register(), value);
duke@435 2995 switch (code) {
duke@435 2996 case lir_shl: __ shll(value, count); break;
duke@435 2997 case lir_shr: __ sarl(value, count); break;
duke@435 2998 case lir_ushr: __ shrl(value, count); break;
duke@435 2999 default: ShouldNotReachHere();
duke@435 3000 }
duke@435 3001 } else if (dest->is_double_cpu()) {
never@739 3002 #ifndef _LP64
duke@435 3003 Unimplemented();
never@739 3004 #else
never@739 3005 // first move left into dest so that left is not destroyed by the shift
never@739 3006 Register value = dest->as_register_lo();
never@739 3007 count = count & 0x1F; // Java spec
never@739 3008
never@739 3009 move_regs(left->as_register_lo(), value);
never@739 3010 switch (code) {
never@739 3011 case lir_shl: __ shlptr(value, count); break;
never@739 3012 case lir_shr: __ sarptr(value, count); break;
never@739 3013 case lir_ushr: __ shrptr(value, count); break;
never@739 3014 default: ShouldNotReachHere();
never@739 3015 }
never@739 3016 #endif // _LP64
duke@435 3017 } else {
duke@435 3018 ShouldNotReachHere();
duke@435 3019 }
duke@435 3020 }
duke@435 3021
duke@435 3022
duke@435 3023 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
duke@435 3024 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3025 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3026 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 3027 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
duke@435 3028 }
duke@435 3029
duke@435 3030
duke@435 3031 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
duke@435 3032 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3033 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3034 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 3035 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
duke@435 3036 }
duke@435 3037
duke@435 3038
duke@435 3039 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
duke@435 3040 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3041 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3042 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
duke@435 3043 __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
duke@435 3044 }
duke@435 3045
duke@435 3046
duke@435 3047 // This code replaces a call to arraycopy; no exception may
duke@435 3048 // be thrown in this code, they must be thrown in the System.arraycopy
duke@435 3049 // activation frame; we could save some checks if this would not be the case
duke@435 3050 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 3051 ciArrayKlass* default_type = op->expected_type();
duke@435 3052 Register src = op->src()->as_register();
duke@435 3053 Register dst = op->dst()->as_register();
duke@435 3054 Register src_pos = op->src_pos()->as_register();
duke@435 3055 Register dst_pos = op->dst_pos()->as_register();
duke@435 3056 Register length = op->length()->as_register();
duke@435 3057 Register tmp = op->tmp()->as_register();
duke@435 3058
duke@435 3059 CodeStub* stub = op->stub();
duke@435 3060 int flags = op->flags();
duke@435 3061 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 3062 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 3063
roland@2728 3064 // if we don't know anything, just go through the generic arraycopy
duke@435 3065 if (default_type == NULL) {
duke@435 3066 Label done;
duke@435 3067 // save outgoing arguments on stack in case call to System.arraycopy is needed
duke@435 3068 // HACK ALERT. This code used to push the parameters in a hardwired fashion
duke@435 3069 // for interpreter calling conventions. Now we have to do it in new style conventions.
duke@435 3070 // For the moment until C1 gets the new register allocator I just force all the
duke@435 3071 // args to the right place (except the register args) and then on the back side
duke@435 3072 // reload the register args properly if we go slow path. Yuck
duke@435 3073
duke@435 3074 // These are proper for the calling convention
duke@435 3075 store_parameter(length, 2);
duke@435 3076 store_parameter(dst_pos, 1);
duke@435 3077 store_parameter(dst, 0);
duke@435 3078
duke@435 3079 // these are just temporary placements until we need to reload
duke@435 3080 store_parameter(src_pos, 3);
duke@435 3081 store_parameter(src, 4);
never@739 3082 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
never@739 3083
roland@2728 3084 address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
roland@2728 3085
roland@2728 3086 address copyfunc_addr = StubRoutines::generic_arraycopy();
duke@435 3087
duke@435 3088 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
never@739 3089 #ifdef _LP64
never@739 3090 // The arguments are in java calling convention so we can trivially shift them to C
never@739 3091 // convention
never@739 3092 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3093 __ mov(c_rarg0, j_rarg0);
never@739 3094 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3095 __ mov(c_rarg1, j_rarg1);
never@739 3096 assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
never@739 3097 __ mov(c_rarg2, j_rarg2);
never@739 3098 assert_different_registers(c_rarg3, j_rarg4);
never@739 3099 __ mov(c_rarg3, j_rarg3);
never@739 3100 #ifdef _WIN64
never@739 3101 // Allocate abi space for args but be sure to keep stack aligned
never@739 3102 __ subptr(rsp, 6*wordSize);
never@739 3103 store_parameter(j_rarg4, 4);
roland@2728 3104 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 3105 __ call(RuntimeAddress(C_entry));
roland@2728 3106 } else {
roland@2728 3107 #ifndef PRODUCT
roland@2728 3108 if (PrintC1Statistics) {
roland@2728 3109 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
roland@2728 3110 }
roland@2728 3111 #endif
roland@2728 3112 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3113 }
never@739 3114 __ addptr(rsp, 6*wordSize);
never@739 3115 #else
never@739 3116 __ mov(c_rarg4, j_rarg4);
roland@2728 3117 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 3118 __ call(RuntimeAddress(C_entry));
roland@2728 3119 } else {
roland@2728 3120 #ifndef PRODUCT
roland@2728 3121 if (PrintC1Statistics) {
roland@2728 3122 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
roland@2728 3123 }
roland@2728 3124 #endif
roland@2728 3125 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3126 }
never@739 3127 #endif // _WIN64
never@739 3128 #else
never@739 3129 __ push(length);
never@739 3130 __ push(dst_pos);
never@739 3131 __ push(dst);
never@739 3132 __ push(src_pos);
never@739 3133 __ push(src);
roland@2728 3134
roland@2728 3135 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 3136 __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
roland@2728 3137 } else {
roland@2728 3138 #ifndef PRODUCT
roland@2728 3139 if (PrintC1Statistics) {
roland@2728 3140 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
roland@2728 3141 }
roland@2728 3142 #endif
roland@2728 3143 __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
roland@2728 3144 }
duke@435 3145
never@739 3146 #endif // _LP64
never@739 3147
duke@435 3148 __ cmpl(rax, 0);
duke@435 3149 __ jcc(Assembler::equal, *stub->continuation());
duke@435 3150
roland@2728 3151 if (copyfunc_addr != NULL) {
roland@2728 3152 __ mov(tmp, rax);
roland@2728 3153 __ xorl(tmp, -1);
roland@2728 3154 }
roland@2728 3155
duke@435 3156 // Reload values from the stack so they are where the stub
duke@435 3157 // expects them.
never@739 3158 __ movptr (dst, Address(rsp, 0*BytesPerWord));
never@739 3159 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
never@739 3160 __ movptr (length, Address(rsp, 2*BytesPerWord));
never@739 3161 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
never@739 3162 __ movptr (src, Address(rsp, 4*BytesPerWord));
roland@2728 3163
roland@2728 3164 if (copyfunc_addr != NULL) {
roland@2728 3165 __ subl(length, tmp);
roland@2728 3166 __ addl(src_pos, tmp);
roland@2728 3167 __ addl(dst_pos, tmp);
roland@2728 3168 }
duke@435 3169 __ jmp(*stub->entry());
duke@435 3170
duke@435 3171 __ bind(*stub->continuation());
duke@435 3172 return;
duke@435 3173 }
duke@435 3174
duke@435 3175 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
duke@435 3176
kvn@464 3177 int elem_size = type2aelembytes(basic_type);
duke@435 3178 int shift_amount;
duke@435 3179 Address::ScaleFactor scale;
duke@435 3180
duke@435 3181 switch (elem_size) {
duke@435 3182 case 1 :
duke@435 3183 shift_amount = 0;
duke@435 3184 scale = Address::times_1;
duke@435 3185 break;
duke@435 3186 case 2 :
duke@435 3187 shift_amount = 1;
duke@435 3188 scale = Address::times_2;
duke@435 3189 break;
duke@435 3190 case 4 :
duke@435 3191 shift_amount = 2;
duke@435 3192 scale = Address::times_4;
duke@435 3193 break;
duke@435 3194 case 8 :
duke@435 3195 shift_amount = 3;
duke@435 3196 scale = Address::times_8;
duke@435 3197 break;
duke@435 3198 default:
duke@435 3199 ShouldNotReachHere();
duke@435 3200 }
duke@435 3201
duke@435 3202 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
duke@435 3203 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
duke@435 3204 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
duke@435 3205 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
duke@435 3206
never@739 3207 // length and pos's are all sign extended at this point on 64bit
never@739 3208
duke@435 3209 // test for NULL
duke@435 3210 if (flags & LIR_OpArrayCopy::src_null_check) {
never@739 3211 __ testptr(src, src);
duke@435 3212 __ jcc(Assembler::zero, *stub->entry());
duke@435 3213 }
duke@435 3214 if (flags & LIR_OpArrayCopy::dst_null_check) {
never@739 3215 __ testptr(dst, dst);
duke@435 3216 __ jcc(Assembler::zero, *stub->entry());
duke@435 3217 }
duke@435 3218
duke@435 3219 // check if negative
duke@435 3220 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 3221 __ testl(src_pos, src_pos);
duke@435 3222 __ jcc(Assembler::less, *stub->entry());
duke@435 3223 }
duke@435 3224 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 3225 __ testl(dst_pos, dst_pos);
duke@435 3226 __ jcc(Assembler::less, *stub->entry());
duke@435 3227 }
duke@435 3228
duke@435 3229 if (flags & LIR_OpArrayCopy::src_range_check) {
never@739 3230 __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
duke@435 3231 __ cmpl(tmp, src_length_addr);
duke@435 3232 __ jcc(Assembler::above, *stub->entry());
duke@435 3233 }
duke@435 3234 if (flags & LIR_OpArrayCopy::dst_range_check) {
never@739 3235 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
duke@435 3236 __ cmpl(tmp, dst_length_addr);
duke@435 3237 __ jcc(Assembler::above, *stub->entry());
duke@435 3238 }
duke@435 3239
roland@2728 3240 if (flags & LIR_OpArrayCopy::length_positive_check) {
roland@2728 3241 __ testl(length, length);
roland@2728 3242 __ jcc(Assembler::less, *stub->entry());
roland@2728 3243 __ jcc(Assembler::zero, *stub->continuation());
roland@2728 3244 }
roland@2728 3245
roland@2728 3246 #ifdef _LP64
roland@2728 3247 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
roland@2728 3248 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
roland@2728 3249 #endif
roland@2728 3250
duke@435 3251 if (flags & LIR_OpArrayCopy::type_check) {
roland@2728 3252 // We don't know the array types are compatible
roland@2728 3253 if (basic_type != T_OBJECT) {
roland@2728 3254 // Simple test for basic type arrays
roland@2728 3255 if (UseCompressedOops) {
roland@2728 3256 __ movl(tmp, src_klass_addr);
roland@2728 3257 __ cmpl(tmp, dst_klass_addr);
roland@2728 3258 } else {
roland@2728 3259 __ movptr(tmp, src_klass_addr);
roland@2728 3260 __ cmpptr(tmp, dst_klass_addr);
roland@2728 3261 }
roland@2728 3262 __ jcc(Assembler::notEqual, *stub->entry());
iveresov@2344 3263 } else {
roland@2728 3264 // For object arrays, if src is a sub class of dst then we can
roland@2728 3265 // safely do the copy.
roland@2728 3266 Label cont, slow;
roland@2728 3267
roland@2728 3268 __ push(src);
roland@2728 3269 __ push(dst);
roland@2728 3270
roland@2728 3271 __ load_klass(src, src);
roland@2728 3272 __ load_klass(dst, dst);
roland@2728 3273
roland@2728 3274 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
roland@2728 3275
roland@2728 3276 __ push(src);
roland@2728 3277 __ push(dst);
roland@2728 3278 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
roland@2728 3279 __ pop(dst);
roland@2728 3280 __ pop(src);
roland@2728 3281
roland@2728 3282 __ cmpl(src, 0);
roland@2728 3283 __ jcc(Assembler::notEqual, cont);
roland@2728 3284
roland@2728 3285 __ bind(slow);
roland@2728 3286 __ pop(dst);
roland@2728 3287 __ pop(src);
roland@2728 3288
roland@2728 3289 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
roland@2728 3290 if (copyfunc_addr != NULL) { // use stub if available
roland@2728 3291 // src is not a sub class of dst so we have to do a
roland@2728 3292 // per-element check.
roland@2728 3293
roland@2728 3294 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
roland@2728 3295 if ((flags & mask) != mask) {
roland@2728 3296 // Check that at least both of them object arrays.
roland@2728 3297 assert(flags & mask, "one of the two should be known to be an object array");
roland@2728 3298
roland@2728 3299 if (!(flags & LIR_OpArrayCopy::src_objarray)) {
roland@2728 3300 __ load_klass(tmp, src);
roland@2728 3301 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
roland@2728 3302 __ load_klass(tmp, dst);
roland@2728 3303 }
stefank@3391 3304 int lh_offset = in_bytes(Klass::layout_helper_offset());
roland@2728 3305 Address klass_lh_addr(tmp, lh_offset);
roland@2728 3306 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
roland@2728 3307 __ cmpl(klass_lh_addr, objArray_lh);
roland@2728 3308 __ jcc(Assembler::notEqual, *stub->entry());
roland@2728 3309 }
roland@2728 3310
iveresov@2936 3311 // Spill because stubs can use any register they like and it's
iveresov@2936 3312 // easier to restore just those that we care about.
iveresov@2936 3313 store_parameter(dst, 0);
iveresov@2936 3314 store_parameter(dst_pos, 1);
iveresov@2936 3315 store_parameter(length, 2);
iveresov@2936 3316 store_parameter(src_pos, 3);
iveresov@2936 3317 store_parameter(src, 4);
iveresov@2936 3318
roland@2728 3319 #ifndef _LP64
roland@2728 3320 __ movptr(tmp, dst_klass_addr);
stefank@3391 3321 __ movptr(tmp, Address(tmp, objArrayKlass::element_klass_offset()));
roland@2728 3322 __ push(tmp);
stefank@3391 3323 __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
roland@2728 3324 __ push(tmp);
roland@2728 3325 __ push(length);
roland@2728 3326 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3327 __ push(tmp);
roland@2728 3328 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3329 __ push(tmp);
roland@2728 3330
roland@2728 3331 __ call_VM_leaf(copyfunc_addr, 5);
roland@2728 3332 #else
roland@2728 3333 __ movl2ptr(length, length); //higher 32bits must be null
roland@2728 3334
roland@2728 3335 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3336 assert_different_registers(c_rarg0, dst, dst_pos, length);
roland@2728 3337 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3338 assert_different_registers(c_rarg1, dst, length);
roland@2728 3339
roland@2728 3340 __ mov(c_rarg2, length);
roland@2728 3341 assert_different_registers(c_rarg2, dst);
roland@2728 3342
roland@2728 3343 #ifdef _WIN64
roland@2728 3344 // Allocate abi space for args but be sure to keep stack aligned
roland@2728 3345 __ subptr(rsp, 6*wordSize);
roland@2728 3346 __ load_klass(c_rarg3, dst);
stefank@3391 3347 __ movptr(c_rarg3, Address(c_rarg3, objArrayKlass::element_klass_offset()));
roland@2728 3348 store_parameter(c_rarg3, 4);
stefank@3391 3349 __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
roland@2728 3350 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3351 __ addptr(rsp, 6*wordSize);
roland@2728 3352 #else
roland@2728 3353 __ load_klass(c_rarg4, dst);
stefank@3391 3354 __ movptr(c_rarg4, Address(c_rarg4, objArrayKlass::element_klass_offset()));
stefank@3391 3355 __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
roland@2728 3356 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3357 #endif
roland@2728 3358
roland@2728 3359 #endif
roland@2728 3360
roland@2728 3361 #ifndef PRODUCT
roland@2728 3362 if (PrintC1Statistics) {
roland@2728 3363 Label failed;
roland@2728 3364 __ testl(rax, rax);
roland@2728 3365 __ jcc(Assembler::notZero, failed);
roland@2728 3366 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
roland@2728 3367 __ bind(failed);
roland@2728 3368 }
roland@2728 3369 #endif
roland@2728 3370
roland@2728 3371 __ testl(rax, rax);
roland@2728 3372 __ jcc(Assembler::zero, *stub->continuation());
roland@2728 3373
roland@2728 3374 #ifndef PRODUCT
roland@2728 3375 if (PrintC1Statistics) {
roland@2728 3376 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
roland@2728 3377 }
roland@2728 3378 #endif
roland@2728 3379
roland@2728 3380 __ mov(tmp, rax);
roland@2728 3381
roland@2728 3382 __ xorl(tmp, -1);
roland@2728 3383
iveresov@2936 3384 // Restore previously spilled arguments
iveresov@2936 3385 __ movptr (dst, Address(rsp, 0*BytesPerWord));
iveresov@2936 3386 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
iveresov@2936 3387 __ movptr (length, Address(rsp, 2*BytesPerWord));
iveresov@2936 3388 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
iveresov@2936 3389 __ movptr (src, Address(rsp, 4*BytesPerWord));
iveresov@2936 3390
roland@2728 3391
roland@2728 3392 __ subl(length, tmp);
roland@2728 3393 __ addl(src_pos, tmp);
roland@2728 3394 __ addl(dst_pos, tmp);
roland@2728 3395 }
roland@2728 3396
roland@2728 3397 __ jmp(*stub->entry());
roland@2728 3398
roland@2728 3399 __ bind(cont);
roland@2728 3400 __ pop(dst);
roland@2728 3401 __ pop(src);
iveresov@2344 3402 }
duke@435 3403 }
duke@435 3404
duke@435 3405 #ifdef ASSERT
duke@435 3406 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 3407 // Sanity check the known type with the incoming class. For the
duke@435 3408 // primitive case the types must match exactly with src.klass and
duke@435 3409 // dst.klass each exactly matching the default type. For the
duke@435 3410 // object array case, if no type check is needed then either the
duke@435 3411 // dst type is exactly the expected type and the src type is a
duke@435 3412 // subtype which we can't check or src is the same array as dst
duke@435 3413 // but not necessarily exactly of type default_type.
duke@435 3414 Label known_ok, halt;
jrose@1424 3415 __ movoop(tmp, default_type->constant_encoding());
iveresov@2344 3416 #ifdef _LP64
iveresov@2344 3417 if (UseCompressedOops) {
iveresov@2344 3418 __ encode_heap_oop(tmp);
iveresov@2344 3419 }
iveresov@2344 3420 #endif
iveresov@2344 3421
duke@435 3422 if (basic_type != T_OBJECT) {
iveresov@2344 3423
iveresov@2344 3424 if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3425 else __ cmpptr(tmp, dst_klass_addr);
duke@435 3426 __ jcc(Assembler::notEqual, halt);
iveresov@2344 3427 if (UseCompressedOops) __ cmpl(tmp, src_klass_addr);
iveresov@2344 3428 else __ cmpptr(tmp, src_klass_addr);
duke@435 3429 __ jcc(Assembler::equal, known_ok);
duke@435 3430 } else {
iveresov@2344 3431 if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3432 else __ cmpptr(tmp, dst_klass_addr);
duke@435 3433 __ jcc(Assembler::equal, known_ok);
never@739 3434 __ cmpptr(src, dst);
duke@435 3435 __ jcc(Assembler::equal, known_ok);
duke@435 3436 }
duke@435 3437 __ bind(halt);
duke@435 3438 __ stop("incorrect type information in arraycopy");
duke@435 3439 __ bind(known_ok);
duke@435 3440 }
duke@435 3441 #endif
duke@435 3442
roland@2728 3443 #ifndef PRODUCT
roland@2728 3444 if (PrintC1Statistics) {
roland@2728 3445 __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
never@739 3446 }
roland@2728 3447 #endif
never@739 3448
never@739 3449 #ifdef _LP64
never@739 3450 assert_different_registers(c_rarg0, dst, dst_pos, length);
never@739 3451 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3452 assert_different_registers(c_rarg1, length);
never@739 3453 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3454 __ mov(c_rarg2, length);
never@739 3455
never@739 3456 #else
never@739 3457 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3458 store_parameter(tmp, 0);
never@739 3459 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3460 store_parameter(tmp, 1);
duke@435 3461 store_parameter(length, 2);
never@739 3462 #endif // _LP64
roland@2728 3463
roland@2728 3464 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
roland@2728 3465 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
roland@2728 3466 const char *name;
roland@2728 3467 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
roland@2728 3468 __ call_VM_leaf(entry, 0);
duke@435 3469
duke@435 3470 __ bind(*stub->continuation());
duke@435 3471 }
duke@435 3472
duke@435 3473
duke@435 3474 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 3475 Register obj = op->obj_opr()->as_register(); // may not be an oop
duke@435 3476 Register hdr = op->hdr_opr()->as_register();
duke@435 3477 Register lock = op->lock_opr()->as_register();
duke@435 3478 if (!UseFastLocking) {
duke@435 3479 __ jmp(*op->stub()->entry());
duke@435 3480 } else if (op->code() == lir_lock) {
duke@435 3481 Register scratch = noreg;
duke@435 3482 if (UseBiasedLocking) {
duke@435 3483 scratch = op->scratch_opr()->as_register();
duke@435 3484 }
duke@435 3485 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3486 // add debug info for NullPointerException only if one is possible
duke@435 3487 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
duke@435 3488 if (op->info() != NULL) {
duke@435 3489 add_debug_info_for_null_check(null_check_offset, op->info());
duke@435 3490 }
duke@435 3491 // done
duke@435 3492 } else if (op->code() == lir_unlock) {
duke@435 3493 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3494 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 3495 } else {
duke@435 3496 Unimplemented();
duke@435 3497 }
duke@435 3498 __ bind(*op->stub()->continuation());
duke@435 3499 }
duke@435 3500
duke@435 3501
duke@435 3502 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 3503 ciMethod* method = op->profiled_method();
duke@435 3504 int bci = op->profiled_bci();
duke@435 3505
duke@435 3506 // Update counter for all call types
iveresov@2349 3507 ciMethodData* md = method->method_data_or_null();
iveresov@2349 3508 assert(md != NULL, "Sanity");
duke@435 3509 ciProfileData* data = md->bci_to_data(bci);
duke@435 3510 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 3511 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
duke@435 3512 Register mdo = op->mdo()->as_register();
jrose@1424 3513 __ movoop(mdo, md->constant_encoding());
duke@435 3514 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
duke@435 3515 Bytecodes::Code bc = method->java_code_at_bci(bci);
duke@435 3516 // Perform additional virtual call profiling for invokevirtual and
duke@435 3517 // invokeinterface bytecodes
duke@435 3518 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
iveresov@2138 3519 C1ProfileVirtualCalls) {
duke@435 3520 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 3521 Register recv = op->recv()->as_register();
duke@435 3522 assert_different_registers(mdo, recv);
duke@435 3523 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 3524 ciKlass* known_klass = op->known_holder();
iveresov@2138 3525 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 3526 // We know the type that will be seen at this call site; we can
duke@435 3527 // statically update the methodDataOop rather than needing to do
duke@435 3528 // dynamic tests on the receiver type
duke@435 3529
duke@435 3530 // NOTE: we should probably put a lock around this search to
duke@435 3531 // avoid collisions by concurrent compilations
duke@435 3532 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 3533 uint i;
duke@435 3534 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3535 ciKlass* receiver = vc_data->receiver(i);
duke@435 3536 if (known_klass->equals(receiver)) {
duke@435 3537 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
iveresov@2138 3538 __ addptr(data_addr, DataLayout::counter_increment);
duke@435 3539 return;
duke@435 3540 }
duke@435 3541 }
duke@435 3542
duke@435 3543 // Receiver type not found in profile data; select an empty slot
duke@435 3544
duke@435 3545 // Note that this is less efficient than it should be because it
duke@435 3546 // always does a write to the receiver part of the
duke@435 3547 // VirtualCallData rather than just the first time
duke@435 3548 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3549 ciKlass* receiver = vc_data->receiver(i);
duke@435 3550 if (receiver == NULL) {
duke@435 3551 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
jrose@1424 3552 __ movoop(recv_addr, known_klass->constant_encoding());
duke@435 3553 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
iveresov@2138 3554 __ addptr(data_addr, DataLayout::counter_increment);
duke@435 3555 return;
duke@435 3556 }
duke@435 3557 }
duke@435 3558 } else {
iveresov@2344 3559 __ load_klass(recv, recv);
duke@435 3560 Label update_done;
iveresov@2138 3561 type_profile_helper(mdo, md, data, recv, &update_done);
kvn@1641 3562 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 3563 // Increment total counter to indicate polymorphic case.
iveresov@2138 3564 __ addptr(counter_addr, DataLayout::counter_increment);
duke@435 3565
duke@435 3566 __ bind(update_done);
duke@435 3567 }
kvn@1641 3568 } else {
kvn@1641 3569 // Static call
iveresov@2138 3570 __ addptr(counter_addr, DataLayout::counter_increment);
duke@435 3571 }
duke@435 3572 }
duke@435 3573
duke@435 3574 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
duke@435 3575 Unimplemented();
duke@435 3576 }
duke@435 3577
duke@435 3578
duke@435 3579 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
never@739 3580 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
duke@435 3581 }
duke@435 3582
duke@435 3583
duke@435 3584 void LIR_Assembler::align_backward_branch_target() {
duke@435 3585 __ align(BytesPerWord);
duke@435 3586 }
duke@435 3587
duke@435 3588
duke@435 3589 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3590 if (left->is_single_cpu()) {
duke@435 3591 __ negl(left->as_register());
duke@435 3592 move_regs(left->as_register(), dest->as_register());
duke@435 3593
duke@435 3594 } else if (left->is_double_cpu()) {
duke@435 3595 Register lo = left->as_register_lo();
never@739 3596 #ifdef _LP64
never@739 3597 Register dst = dest->as_register_lo();
never@739 3598 __ movptr(dst, lo);
never@739 3599 __ negptr(dst);
never@739 3600 #else
duke@435 3601 Register hi = left->as_register_hi();
duke@435 3602 __ lneg(hi, lo);
duke@435 3603 if (dest->as_register_lo() == hi) {
duke@435 3604 assert(dest->as_register_hi() != lo, "destroying register");
duke@435 3605 move_regs(hi, dest->as_register_hi());
duke@435 3606 move_regs(lo, dest->as_register_lo());
duke@435 3607 } else {
duke@435 3608 move_regs(lo, dest->as_register_lo());
duke@435 3609 move_regs(hi, dest->as_register_hi());
duke@435 3610 }
never@739 3611 #endif // _LP64
duke@435 3612
duke@435 3613 } else if (dest->is_single_xmm()) {
duke@435 3614 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
duke@435 3615 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
duke@435 3616 }
duke@435 3617 __ xorps(dest->as_xmm_float_reg(),
duke@435 3618 ExternalAddress((address)float_signflip_pool));
duke@435 3619
duke@435 3620 } else if (dest->is_double_xmm()) {
duke@435 3621 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
duke@435 3622 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
duke@435 3623 }
duke@435 3624 __ xorpd(dest->as_xmm_double_reg(),
duke@435 3625 ExternalAddress((address)double_signflip_pool));
duke@435 3626
duke@435 3627 } else if (left->is_single_fpu() || left->is_double_fpu()) {
duke@435 3628 assert(left->fpu() == 0, "arg must be on TOS");
duke@435 3629 assert(dest->fpu() == 0, "dest must be TOS");
duke@435 3630 __ fchs();
duke@435 3631
duke@435 3632 } else {
duke@435 3633 ShouldNotReachHere();
duke@435 3634 }
duke@435 3635 }
duke@435 3636
duke@435 3637
duke@435 3638 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
duke@435 3639 assert(addr->is_address() && dest->is_register(), "check");
never@739 3640 Register reg;
never@739 3641 reg = dest->as_pointer_register();
never@739 3642 __ lea(reg, as_Address(addr->as_address_ptr()));
duke@435 3643 }
duke@435 3644
duke@435 3645
duke@435 3646
duke@435 3647 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3648 assert(!tmp->is_valid(), "don't need temporary");
duke@435 3649 __ call(RuntimeAddress(dest));
duke@435 3650 if (info != NULL) {
duke@435 3651 add_call_info_here(info);
duke@435 3652 }
duke@435 3653 }
duke@435 3654
duke@435 3655
duke@435 3656 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3657 assert(type == T_LONG, "only for volatile long fields");
duke@435 3658
duke@435 3659 if (info != NULL) {
duke@435 3660 add_debug_info_for_null_check_here(info);
duke@435 3661 }
duke@435 3662
duke@435 3663 if (src->is_double_xmm()) {
duke@435 3664 if (dest->is_double_cpu()) {
never@739 3665 #ifdef _LP64
never@739 3666 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
never@739 3667 #else
never@739 3668 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
duke@435 3669 __ psrlq(src->as_xmm_double_reg(), 32);
never@739 3670 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
never@739 3671 #endif // _LP64
duke@435 3672 } else if (dest->is_double_stack()) {
duke@435 3673 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
duke@435 3674 } else if (dest->is_address()) {
duke@435 3675 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
duke@435 3676 } else {
duke@435 3677 ShouldNotReachHere();
duke@435 3678 }
duke@435 3679
duke@435 3680 } else if (dest->is_double_xmm()) {
duke@435 3681 if (src->is_double_stack()) {
duke@435 3682 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3683 } else if (src->is_address()) {
duke@435 3684 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
duke@435 3685 } else {
duke@435 3686 ShouldNotReachHere();
duke@435 3687 }
duke@435 3688
duke@435 3689 } else if (src->is_double_fpu()) {
duke@435 3690 assert(src->fpu_regnrLo() == 0, "must be TOS");
duke@435 3691 if (dest->is_double_stack()) {
duke@435 3692 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
duke@435 3693 } else if (dest->is_address()) {
duke@435 3694 __ fistp_d(as_Address(dest->as_address_ptr()));
duke@435 3695 } else {
duke@435 3696 ShouldNotReachHere();
duke@435 3697 }
duke@435 3698
duke@435 3699 } else if (dest->is_double_fpu()) {
duke@435 3700 assert(dest->fpu_regnrLo() == 0, "must be TOS");
duke@435 3701 if (src->is_double_stack()) {
duke@435 3702 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3703 } else if (src->is_address()) {
duke@435 3704 __ fild_d(as_Address(src->as_address_ptr()));
duke@435 3705 } else {
duke@435 3706 ShouldNotReachHere();
duke@435 3707 }
duke@435 3708 } else {
duke@435 3709 ShouldNotReachHere();
duke@435 3710 }
duke@435 3711 }
duke@435 3712
duke@435 3713
duke@435 3714 void LIR_Assembler::membar() {
never@739 3715 // QQQ sparc TSO uses this,
never@739 3716 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
duke@435 3717 }
duke@435 3718
duke@435 3719 void LIR_Assembler::membar_acquire() {
duke@435 3720 // No x86 machines currently require load fences
duke@435 3721 // __ load_fence();
duke@435 3722 }
duke@435 3723
duke@435 3724 void LIR_Assembler::membar_release() {
duke@435 3725 // No x86 machines currently require store fences
duke@435 3726 // __ store_fence();
duke@435 3727 }
duke@435 3728
jiangli@3592 3729 void LIR_Assembler::membar_loadload() {
jiangli@3592 3730 // no-op
jiangli@3592 3731 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
jiangli@3592 3732 }
jiangli@3592 3733
jiangli@3592 3734 void LIR_Assembler::membar_storestore() {
jiangli@3592 3735 // no-op
jiangli@3592 3736 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
jiangli@3592 3737 }
jiangli@3592 3738
jiangli@3592 3739 void LIR_Assembler::membar_loadstore() {
jiangli@3592 3740 // no-op
jiangli@3592 3741 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
jiangli@3592 3742 }
jiangli@3592 3743
jiangli@3592 3744 void LIR_Assembler::membar_storeload() {
jiangli@3592 3745 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
jiangli@3592 3746 }
jiangli@3592 3747
duke@435 3748 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3749 assert(result_reg->is_register(), "check");
never@739 3750 #ifdef _LP64
never@739 3751 // __ get_thread(result_reg->as_register_lo());
never@739 3752 __ mov(result_reg->as_register(), r15_thread);
never@739 3753 #else
duke@435 3754 __ get_thread(result_reg->as_register());
never@739 3755 #endif // _LP64
duke@435 3756 }
duke@435 3757
duke@435 3758
duke@435 3759 void LIR_Assembler::peephole(LIR_List*) {
duke@435 3760 // do nothing for now
duke@435 3761 }
duke@435 3762
duke@435 3763
duke@435 3764 #undef __

mercurial