src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Mon, 27 Dec 2010 21:51:31 -0800

author
iveresov
date
Mon, 27 Dec 2010 21:51:31 -0800
changeset 2412
037c727f35fb
parent 2355
ec8c74742417
child 2432
55f868e91c3b
permissions
-rw-r--r--

7009231: C1: Incorrect CAS code for longs on SPARC 32bit
Summary: Fix CAS of longs on SPARC 32bit and cmove on SPARC 64bit.
Reviewed-by: kvn

duke@435 1 /*
trims@1907 2 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "c1/c1_Compilation.hpp"
stefank@2314 27 #include "c1/c1_LIRAssembler.hpp"
stefank@2314 28 #include "c1/c1_MacroAssembler.hpp"
stefank@2314 29 #include "c1/c1_Runtime1.hpp"
stefank@2314 30 #include "c1/c1_ValueStack.hpp"
stefank@2314 31 #include "ci/ciArrayKlass.hpp"
stefank@2314 32 #include "ci/ciInstance.hpp"
stefank@2314 33 #include "gc_interface/collectedHeap.hpp"
stefank@2314 34 #include "memory/barrierSet.hpp"
stefank@2314 35 #include "memory/cardTableModRefBS.hpp"
stefank@2314 36 #include "nativeInst_x86.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "runtime/sharedRuntime.hpp"
duke@435 39
duke@435 40
duke@435 41 // These masks are used to provide 128-bit aligned bitmasks to the XMM
duke@435 42 // instructions, to allow sign-masking or sign-bit flipping. They allow
duke@435 43 // fast versions of NegF/NegD and AbsF/AbsD.
duke@435 44
duke@435 45 // Note: 'double' and 'long long' have 32-bits alignment on x86.
duke@435 46 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
duke@435 47 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
duke@435 48 // of 128-bits operands for SSE instructions.
duke@435 49 jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
duke@435 50 // Store the value to a 128-bits operand.
duke@435 51 operand[0] = lo;
duke@435 52 operand[1] = hi;
duke@435 53 return operand;
duke@435 54 }
duke@435 55
duke@435 56 // Buffer for 128-bits masks used by SSE instructions.
duke@435 57 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
duke@435 58
duke@435 59 // Static initialization during VM startup.
duke@435 60 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
duke@435 61 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
duke@435 62 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
duke@435 63 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
duke@435 64
duke@435 65
duke@435 66
duke@435 67 NEEDS_CLEANUP // remove this definitions ?
duke@435 68 const Register IC_Klass = rax; // where the IC klass is cached
duke@435 69 const Register SYNC_header = rax; // synchronization header
duke@435 70 const Register SHIFT_count = rcx; // where count for shift operations must be
duke@435 71
duke@435 72 #define __ _masm->
duke@435 73
duke@435 74
duke@435 75 static void select_different_registers(Register preserve,
duke@435 76 Register extra,
duke@435 77 Register &tmp1,
duke@435 78 Register &tmp2) {
duke@435 79 if (tmp1 == preserve) {
duke@435 80 assert_different_registers(tmp1, tmp2, extra);
duke@435 81 tmp1 = extra;
duke@435 82 } else if (tmp2 == preserve) {
duke@435 83 assert_different_registers(tmp1, tmp2, extra);
duke@435 84 tmp2 = extra;
duke@435 85 }
duke@435 86 assert_different_registers(preserve, tmp1, tmp2);
duke@435 87 }
duke@435 88
duke@435 89
duke@435 90
duke@435 91 static void select_different_registers(Register preserve,
duke@435 92 Register extra,
duke@435 93 Register &tmp1,
duke@435 94 Register &tmp2,
duke@435 95 Register &tmp3) {
duke@435 96 if (tmp1 == preserve) {
duke@435 97 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 98 tmp1 = extra;
duke@435 99 } else if (tmp2 == preserve) {
duke@435 100 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 101 tmp2 = extra;
duke@435 102 } else if (tmp3 == preserve) {
duke@435 103 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 104 tmp3 = extra;
duke@435 105 }
duke@435 106 assert_different_registers(preserve, tmp1, tmp2, tmp3);
duke@435 107 }
duke@435 108
duke@435 109
duke@435 110
duke@435 111 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 112 if (opr->is_constant()) {
duke@435 113 LIR_Const* constant = opr->as_constant_ptr();
duke@435 114 switch (constant->type()) {
duke@435 115 case T_INT: {
duke@435 116 return true;
duke@435 117 }
duke@435 118
duke@435 119 default:
duke@435 120 return false;
duke@435 121 }
duke@435 122 }
duke@435 123 return false;
duke@435 124 }
duke@435 125
duke@435 126
duke@435 127 LIR_Opr LIR_Assembler::receiverOpr() {
never@739 128 return FrameMap::receiver_opr;
duke@435 129 }
duke@435 130
duke@435 131 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
duke@435 132 return receiverOpr();
duke@435 133 }
duke@435 134
duke@435 135 LIR_Opr LIR_Assembler::osrBufferPointer() {
never@739 136 return FrameMap::as_pointer_opr(receiverOpr()->as_register());
duke@435 137 }
duke@435 138
duke@435 139 //--------------fpu register translations-----------------------
duke@435 140
duke@435 141
duke@435 142 address LIR_Assembler::float_constant(float f) {
duke@435 143 address const_addr = __ float_constant(f);
duke@435 144 if (const_addr == NULL) {
duke@435 145 bailout("const section overflow");
duke@435 146 return __ code()->consts()->start();
duke@435 147 } else {
duke@435 148 return const_addr;
duke@435 149 }
duke@435 150 }
duke@435 151
duke@435 152
duke@435 153 address LIR_Assembler::double_constant(double d) {
duke@435 154 address const_addr = __ double_constant(d);
duke@435 155 if (const_addr == NULL) {
duke@435 156 bailout("const section overflow");
duke@435 157 return __ code()->consts()->start();
duke@435 158 } else {
duke@435 159 return const_addr;
duke@435 160 }
duke@435 161 }
duke@435 162
duke@435 163
duke@435 164 void LIR_Assembler::set_24bit_FPU() {
duke@435 165 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
duke@435 166 }
duke@435 167
duke@435 168 void LIR_Assembler::reset_FPU() {
duke@435 169 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 170 }
duke@435 171
duke@435 172 void LIR_Assembler::fpop() {
duke@435 173 __ fpop();
duke@435 174 }
duke@435 175
duke@435 176 void LIR_Assembler::fxch(int i) {
duke@435 177 __ fxch(i);
duke@435 178 }
duke@435 179
duke@435 180 void LIR_Assembler::fld(int i) {
duke@435 181 __ fld_s(i);
duke@435 182 }
duke@435 183
duke@435 184 void LIR_Assembler::ffree(int i) {
duke@435 185 __ ffree(i);
duke@435 186 }
duke@435 187
duke@435 188 void LIR_Assembler::breakpoint() {
duke@435 189 __ int3();
duke@435 190 }
duke@435 191
duke@435 192 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 193 if (opr->is_single_cpu()) {
duke@435 194 __ push_reg(opr->as_register());
duke@435 195 } else if (opr->is_double_cpu()) {
never@739 196 NOT_LP64(__ push_reg(opr->as_register_hi()));
duke@435 197 __ push_reg(opr->as_register_lo());
duke@435 198 } else if (opr->is_stack()) {
duke@435 199 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
duke@435 200 } else if (opr->is_constant()) {
duke@435 201 LIR_Const* const_opr = opr->as_constant_ptr();
duke@435 202 if (const_opr->type() == T_OBJECT) {
duke@435 203 __ push_oop(const_opr->as_jobject());
duke@435 204 } else if (const_opr->type() == T_INT) {
duke@435 205 __ push_jint(const_opr->as_jint());
duke@435 206 } else {
duke@435 207 ShouldNotReachHere();
duke@435 208 }
duke@435 209
duke@435 210 } else {
duke@435 211 ShouldNotReachHere();
duke@435 212 }
duke@435 213 }
duke@435 214
duke@435 215 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 216 if (opr->is_single_cpu()) {
never@739 217 __ pop_reg(opr->as_register());
duke@435 218 } else {
duke@435 219 ShouldNotReachHere();
duke@435 220 }
duke@435 221 }
duke@435 222
never@739 223 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
never@739 224 return addr->base()->is_illegal() && addr->index()->is_illegal();
never@739 225 }
never@739 226
duke@435 227 //-------------------------------------------
never@739 228
duke@435 229 Address LIR_Assembler::as_Address(LIR_Address* addr) {
never@739 230 return as_Address(addr, rscratch1);
never@739 231 }
never@739 232
never@739 233 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
duke@435 234 if (addr->base()->is_illegal()) {
duke@435 235 assert(addr->index()->is_illegal(), "must be illegal too");
never@739 236 AddressLiteral laddr((address)addr->disp(), relocInfo::none);
never@739 237 if (! __ reachable(laddr)) {
never@739 238 __ movptr(tmp, laddr.addr());
never@739 239 Address res(tmp, 0);
never@739 240 return res;
never@739 241 } else {
never@739 242 return __ as_Address(laddr);
never@739 243 }
duke@435 244 }
duke@435 245
never@739 246 Register base = addr->base()->as_pointer_register();
duke@435 247
duke@435 248 if (addr->index()->is_illegal()) {
duke@435 249 return Address( base, addr->disp());
never@739 250 } else if (addr->index()->is_cpu_register()) {
never@739 251 Register index = addr->index()->as_pointer_register();
duke@435 252 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
duke@435 253 } else if (addr->index()->is_constant()) {
never@739 254 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
never@739 255 assert(Assembler::is_simm32(addr_offset), "must be");
duke@435 256
duke@435 257 return Address(base, addr_offset);
duke@435 258 } else {
duke@435 259 Unimplemented();
duke@435 260 return Address();
duke@435 261 }
duke@435 262 }
duke@435 263
duke@435 264
duke@435 265 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 266 Address base = as_Address(addr);
duke@435 267 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
duke@435 268 }
duke@435 269
duke@435 270
duke@435 271 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 272 return as_Address(addr);
duke@435 273 }
duke@435 274
duke@435 275
duke@435 276 void LIR_Assembler::osr_entry() {
duke@435 277 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 278 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 279 ValueStack* entry_state = osr_entry->state();
duke@435 280 int number_of_locks = entry_state->locks_size();
duke@435 281
duke@435 282 // we jump here if osr happens with the interpreter
duke@435 283 // state set up to continue at the beginning of the
duke@435 284 // loop that triggered osr - in particular, we have
duke@435 285 // the following registers setup:
duke@435 286 //
duke@435 287 // rcx: osr buffer
duke@435 288 //
duke@435 289
duke@435 290 // build frame
duke@435 291 ciMethod* m = compilation()->method();
duke@435 292 __ build_frame(initial_frame_size_in_bytes());
duke@435 293
duke@435 294 // OSR buffer is
duke@435 295 //
duke@435 296 // locals[nlocals-1..0]
duke@435 297 // monitors[0..number_of_locks]
duke@435 298 //
duke@435 299 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 300 // so first slot in the local array is the last local from the interpreter
duke@435 301 // and last slot is local[0] (receiver) from the interpreter
duke@435 302 //
duke@435 303 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 304 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 305 // in the interpreter frame (the method lock if a sync method)
duke@435 306
duke@435 307 // Initialize monitors in the compiled activation.
duke@435 308 // rcx: pointer to osr buffer
duke@435 309 //
duke@435 310 // All other registers are dead at this point and the locals will be
duke@435 311 // copied into place by code emitted in the IR.
duke@435 312
never@739 313 Register OSR_buf = osrBufferPointer()->as_pointer_register();
duke@435 314 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 315 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 316 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 317 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 318 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 319 // the oop.
duke@435 320 for (int i = 0; i < number_of_locks; i++) {
roland@1495 321 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 322 #ifdef ASSERT
duke@435 323 // verify the interpreter's monitor has a non-null object
duke@435 324 {
duke@435 325 Label L;
roland@1495 326 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
duke@435 327 __ jcc(Assembler::notZero, L);
duke@435 328 __ stop("locked object is NULL");
duke@435 329 __ bind(L);
duke@435 330 }
duke@435 331 #endif
roland@1495 332 __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
never@739 333 __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
roland@1495 334 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
never@739 335 __ movptr(frame_map()->address_for_monitor_object(i), rbx);
duke@435 336 }
duke@435 337 }
duke@435 338 }
duke@435 339
duke@435 340
duke@435 341 // inline cache check; done before the frame is built.
duke@435 342 int LIR_Assembler::check_icache() {
duke@435 343 Register receiver = FrameMap::receiver_opr->as_register();
duke@435 344 Register ic_klass = IC_Klass;
never@739 345 const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
iveresov@2344 346 const bool do_post_padding = VerifyOops || UseCompressedOops;
iveresov@2344 347 if (!do_post_padding) {
duke@435 348 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
never@739 349 while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
duke@435 350 __ nop();
duke@435 351 }
duke@435 352 }
duke@435 353 int offset = __ offset();
duke@435 354 __ inline_cache_check(receiver, IC_Klass);
iveresov@2344 355 assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
iveresov@2344 356 if (do_post_padding) {
duke@435 357 // force alignment after the cache check.
duke@435 358 // It's been verified to be aligned if !VerifyOops
duke@435 359 __ align(CodeEntryAlignment);
duke@435 360 }
duke@435 361 return offset;
duke@435 362 }
duke@435 363
duke@435 364
duke@435 365 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
duke@435 366 jobject o = NULL;
duke@435 367 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
duke@435 368 __ movoop(reg, o);
duke@435 369 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 370 }
duke@435 371
duke@435 372
duke@435 373 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
duke@435 374 if (exception->is_valid()) {
duke@435 375 // preserve exception
duke@435 376 // note: the monitor_exit runtime call is a leaf routine
duke@435 377 // and cannot block => no GC can happen
duke@435 378 // The slow case (MonitorAccessStub) uses the first two stack slots
duke@435 379 // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
never@739 380 __ movptr (Address(rsp, 2*wordSize), exception);
duke@435 381 }
duke@435 382
duke@435 383 Register obj_reg = obj_opr->as_register();
duke@435 384 Register lock_reg = lock_opr->as_register();
duke@435 385
duke@435 386 // setup registers (lock_reg must be rax, for lock_object)
duke@435 387 assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
duke@435 388 Register hdr = lock_reg;
duke@435 389 assert(new_hdr == SYNC_header, "wrong register");
duke@435 390 lock_reg = new_hdr;
duke@435 391 // compute pointer to BasicLock
duke@435 392 Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
never@739 393 __ lea(lock_reg, lock_addr);
duke@435 394 // unlock object
duke@435 395 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
duke@435 396 // _slow_case_stubs->append(slow_case);
duke@435 397 // temporary fix: must be created after exceptionhandler, therefore as call stub
duke@435 398 _slow_case_stubs->append(slow_case);
duke@435 399 if (UseFastLocking) {
duke@435 400 // try inlined fast unlocking first, revert to slow locking if it fails
duke@435 401 // note: lock_reg points to the displaced header since the displaced header offset is 0!
duke@435 402 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 403 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
duke@435 404 } else {
duke@435 405 // always do slow unlocking
duke@435 406 // note: the slow unlocking code could be inlined here, however if we use
duke@435 407 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 408 // simpler and requires less duplicated code - additionally, the
duke@435 409 // slow unlocking code is the same in either case which simplifies
duke@435 410 // debugging
duke@435 411 __ jmp(*slow_case->entry());
duke@435 412 }
duke@435 413 // done
duke@435 414 __ bind(*slow_case->continuation());
duke@435 415
duke@435 416 if (exception->is_valid()) {
duke@435 417 // restore exception
never@739 418 __ movptr (exception, Address(rsp, 2 * wordSize));
duke@435 419 }
duke@435 420 }
duke@435 421
duke@435 422 // This specifies the rsp decrement needed to build the frame
duke@435 423 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 424 // if rounding, must let FrameMap know!
never@739 425
never@739 426 // The frame_map records size in slots (32bit word)
never@739 427
never@739 428 // subtract two words to account for return address and link
never@739 429 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size;
duke@435 430 }
duke@435 431
duke@435 432
twisti@1639 433 int LIR_Assembler::emit_exception_handler() {
duke@435 434 // if the last instruction is a call (typically to do a throw which
duke@435 435 // is coming at the end after block reordering) the return address
duke@435 436 // must still point into the code area in order to avoid assertion
duke@435 437 // failures when searching for the corresponding bci => add a nop
duke@435 438 // (was bug 5/14/1999 - gri)
duke@435 439 __ nop();
duke@435 440
duke@435 441 // generate code for exception handler
duke@435 442 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 443 if (handler_base == NULL) {
duke@435 444 // not enough space left for the handler
duke@435 445 bailout("exception handler overflow");
twisti@1639 446 return -1;
duke@435 447 }
twisti@1639 448
duke@435 449 int offset = code_offset();
duke@435 450
twisti@1730 451 // the exception oop and pc are in rax, and rdx
duke@435 452 // no other registers need to be preserved, so invalidate them
twisti@1730 453 __ invalidate_registers(false, true, true, false, true, true);
duke@435 454
duke@435 455 // check that there is really an exception
duke@435 456 __ verify_not_null_oop(rax);
duke@435 457
twisti@1730 458 // search an exception handler (rax: exception oop, rdx: throwing pc)
twisti@1730 459 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
twisti@1730 460
twisti@1730 461 __ stop("should not reach here");
twisti@1730 462
duke@435 463 assert(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 464 __ end_a_stub();
twisti@1639 465
twisti@1639 466 return offset;
duke@435 467 }
duke@435 468
twisti@1639 469
never@1813 470 // Emit the code to remove the frame from the stack in the exception
never@1813 471 // unwind path.
never@1813 472 int LIR_Assembler::emit_unwind_handler() {
never@1813 473 #ifndef PRODUCT
never@1813 474 if (CommentedAssembly) {
never@1813 475 _masm->block_comment("Unwind handler");
never@1813 476 }
never@1813 477 #endif
never@1813 478
never@1813 479 int offset = code_offset();
never@1813 480
never@1813 481 // Fetch the exception from TLS and clear out exception related thread state
never@1813 482 __ get_thread(rsi);
never@1813 483 __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
never@1813 484 __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
never@1813 485 __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
never@1813 486
never@1813 487 __ bind(_unwind_handler_entry);
never@1813 488 __ verify_not_null_oop(rax);
never@1813 489 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 490 __ mov(rsi, rax); // Preserve the exception
never@1813 491 }
never@1813 492
never@1813 493 // Preform needed unlocking
never@1813 494 MonitorExitStub* stub = NULL;
never@1813 495 if (method()->is_synchronized()) {
never@1813 496 monitor_address(0, FrameMap::rax_opr);
never@1813 497 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
never@1813 498 __ unlock_object(rdi, rbx, rax, *stub->entry());
never@1813 499 __ bind(*stub->continuation());
never@1813 500 }
never@1813 501
never@1813 502 if (compilation()->env()->dtrace_method_probes()) {
never@2185 503 __ get_thread(rax);
never@2185 504 __ movptr(Address(rsp, 0), rax);
never@2185 505 __ movoop(Address(rsp, sizeof(void*)), method()->constant_encoding());
never@1813 506 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
never@1813 507 }
never@1813 508
never@1813 509 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 510 __ mov(rax, rsi); // Restore the exception
never@1813 511 }
never@1813 512
never@1813 513 // remove the activation and dispatch to the unwind handler
never@1813 514 __ remove_frame(initial_frame_size_in_bytes());
never@1813 515 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
never@1813 516
never@1813 517 // Emit the slow path assembly
never@1813 518 if (stub != NULL) {
never@1813 519 stub->emit_code(this);
never@1813 520 }
never@1813 521
never@1813 522 return offset;
never@1813 523 }
never@1813 524
never@1813 525
twisti@1639 526 int LIR_Assembler::emit_deopt_handler() {
duke@435 527 // if the last instruction is a call (typically to do a throw which
duke@435 528 // is coming at the end after block reordering) the return address
duke@435 529 // must still point into the code area in order to avoid assertion
duke@435 530 // failures when searching for the corresponding bci => add a nop
duke@435 531 // (was bug 5/14/1999 - gri)
duke@435 532 __ nop();
duke@435 533
duke@435 534 // generate code for exception handler
duke@435 535 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 536 if (handler_base == NULL) {
duke@435 537 // not enough space left for the handler
duke@435 538 bailout("deopt handler overflow");
twisti@1639 539 return -1;
duke@435 540 }
twisti@1639 541
duke@435 542 int offset = code_offset();
duke@435 543 InternalAddress here(__ pc());
twisti@1730 544
duke@435 545 __ pushptr(here.addr());
duke@435 546 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
twisti@1730 547
duke@435 548 assert(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 549 __ end_a_stub();
duke@435 550
twisti@1639 551 return offset;
duke@435 552 }
duke@435 553
duke@435 554
duke@435 555 // This is the fast version of java.lang.String.compare; it has not
duke@435 556 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 557 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
never@739 558 __ movptr (rbx, rcx); // receiver is in rcx
never@739 559 __ movptr (rax, arg1->as_register());
duke@435 560
duke@435 561 // Get addresses of first characters from both Strings
iveresov@2344 562 __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
iveresov@2344 563 __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
iveresov@2344 564 __ lea (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 565
duke@435 566
duke@435 567 // rbx, may be NULL
duke@435 568 add_debug_info_for_null_check_here(info);
iveresov@2344 569 __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
iveresov@2344 570 __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
iveresov@2344 571 __ lea (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 572
duke@435 573 // compute minimum length (in rax) and difference of lengths (on top of stack)
duke@435 574 if (VM_Version::supports_cmov()) {
never@739 575 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
never@739 576 __ movl (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
never@739 577 __ mov (rcx, rbx);
never@739 578 __ subptr (rbx, rax); // subtract lengths
never@739 579 __ push (rbx); // result
never@739 580 __ cmov (Assembler::lessEqual, rax, rcx);
duke@435 581 } else {
duke@435 582 Label L;
never@739 583 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
never@739 584 __ movl (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
never@739 585 __ mov (rax, rbx);
never@739 586 __ subptr (rbx, rcx);
never@739 587 __ push (rbx);
never@739 588 __ jcc (Assembler::lessEqual, L);
never@739 589 __ mov (rax, rcx);
duke@435 590 __ bind (L);
duke@435 591 }
duke@435 592 // is minimum length 0?
duke@435 593 Label noLoop, haveResult;
never@739 594 __ testptr (rax, rax);
duke@435 595 __ jcc (Assembler::zero, noLoop);
duke@435 596
duke@435 597 // compare first characters
jrose@1057 598 __ load_unsigned_short(rcx, Address(rdi, 0));
jrose@1057 599 __ load_unsigned_short(rbx, Address(rsi, 0));
duke@435 600 __ subl(rcx, rbx);
duke@435 601 __ jcc(Assembler::notZero, haveResult);
duke@435 602 // starting loop
duke@435 603 __ decrement(rax); // we already tested index: skip one
duke@435 604 __ jcc(Assembler::zero, noLoop);
duke@435 605
duke@435 606 // set rsi.edi to the end of the arrays (arrays have same length)
duke@435 607 // negate the index
duke@435 608
never@739 609 __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 610 __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 611 __ negptr(rax);
duke@435 612
duke@435 613 // compare the strings in a loop
duke@435 614
duke@435 615 Label loop;
duke@435 616 __ align(wordSize);
duke@435 617 __ bind(loop);
jrose@1057 618 __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
jrose@1057 619 __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
duke@435 620 __ subl(rcx, rbx);
duke@435 621 __ jcc(Assembler::notZero, haveResult);
duke@435 622 __ increment(rax);
duke@435 623 __ jcc(Assembler::notZero, loop);
duke@435 624
duke@435 625 // strings are equal up to min length
duke@435 626
duke@435 627 __ bind(noLoop);
never@739 628 __ pop(rax);
duke@435 629 return_op(LIR_OprFact::illegalOpr);
duke@435 630
duke@435 631 __ bind(haveResult);
duke@435 632 // leave instruction is going to discard the TOS value
never@739 633 __ mov (rax, rcx); // result of call is in rax,
duke@435 634 }
duke@435 635
duke@435 636
duke@435 637 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 638 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
duke@435 639 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
duke@435 640 assert(result->fpu() == 0, "result must already be on TOS");
duke@435 641 }
duke@435 642
duke@435 643 // Pop the stack before the safepoint code
twisti@1730 644 __ remove_frame(initial_frame_size_in_bytes());
duke@435 645
duke@435 646 bool result_is_oop = result->is_valid() ? result->is_oop() : false;
duke@435 647
duke@435 648 // Note: we do not need to round double result; float result has the right precision
duke@435 649 // the poll sets the condition code, but no data registers
duke@435 650 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 651 relocInfo::poll_return_type);
never@739 652
never@739 653 // NOTE: the requires that the polling page be reachable else the reloc
never@739 654 // goes to the movq that loads the address and not the faulting instruction
never@739 655 // which breaks the signal handler code
never@739 656
duke@435 657 __ test32(rax, polling_page);
duke@435 658
duke@435 659 __ ret(0);
duke@435 660 }
duke@435 661
duke@435 662
duke@435 663 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 664 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 665 relocInfo::poll_type);
duke@435 666
duke@435 667 if (info != NULL) {
duke@435 668 add_debug_info_for_branch(info);
duke@435 669 } else {
duke@435 670 ShouldNotReachHere();
duke@435 671 }
duke@435 672
duke@435 673 int offset = __ offset();
never@739 674
never@739 675 // NOTE: the requires that the polling page be reachable else the reloc
never@739 676 // goes to the movq that loads the address and not the faulting instruction
never@739 677 // which breaks the signal handler code
never@739 678
duke@435 679 __ test32(rax, polling_page);
duke@435 680 return offset;
duke@435 681 }
duke@435 682
duke@435 683
duke@435 684 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
never@739 685 if (from_reg != to_reg) __ mov(to_reg, from_reg);
duke@435 686 }
duke@435 687
duke@435 688 void LIR_Assembler::swap_reg(Register a, Register b) {
never@739 689 __ xchgptr(a, b);
duke@435 690 }
duke@435 691
duke@435 692
duke@435 693 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 694 assert(src->is_constant(), "should not call otherwise");
duke@435 695 assert(dest->is_register(), "should not call otherwise");
duke@435 696 LIR_Const* c = src->as_constant_ptr();
duke@435 697
duke@435 698 switch (c->type()) {
iveresov@2344 699 case T_INT: {
iveresov@2344 700 assert(patch_code == lir_patch_none, "no patching handled here");
iveresov@2344 701 __ movl(dest->as_register(), c->as_jint());
iveresov@2344 702 break;
iveresov@2344 703 }
iveresov@2344 704
roland@1732 705 case T_ADDRESS: {
duke@435 706 assert(patch_code == lir_patch_none, "no patching handled here");
iveresov@2344 707 __ movptr(dest->as_register(), c->as_jint());
duke@435 708 break;
duke@435 709 }
duke@435 710
duke@435 711 case T_LONG: {
duke@435 712 assert(patch_code == lir_patch_none, "no patching handled here");
never@739 713 #ifdef _LP64
never@739 714 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
never@739 715 #else
never@739 716 __ movptr(dest->as_register_lo(), c->as_jint_lo());
never@739 717 __ movptr(dest->as_register_hi(), c->as_jint_hi());
never@739 718 #endif // _LP64
duke@435 719 break;
duke@435 720 }
duke@435 721
duke@435 722 case T_OBJECT: {
duke@435 723 if (patch_code != lir_patch_none) {
duke@435 724 jobject2reg_with_patching(dest->as_register(), info);
duke@435 725 } else {
duke@435 726 __ movoop(dest->as_register(), c->as_jobject());
duke@435 727 }
duke@435 728 break;
duke@435 729 }
duke@435 730
duke@435 731 case T_FLOAT: {
duke@435 732 if (dest->is_single_xmm()) {
duke@435 733 if (c->is_zero_float()) {
duke@435 734 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
duke@435 735 } else {
duke@435 736 __ movflt(dest->as_xmm_float_reg(),
duke@435 737 InternalAddress(float_constant(c->as_jfloat())));
duke@435 738 }
duke@435 739 } else {
duke@435 740 assert(dest->is_single_fpu(), "must be");
duke@435 741 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 742 if (c->is_zero_float()) {
duke@435 743 __ fldz();
duke@435 744 } else if (c->is_one_float()) {
duke@435 745 __ fld1();
duke@435 746 } else {
duke@435 747 __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
duke@435 748 }
duke@435 749 }
duke@435 750 break;
duke@435 751 }
duke@435 752
duke@435 753 case T_DOUBLE: {
duke@435 754 if (dest->is_double_xmm()) {
duke@435 755 if (c->is_zero_double()) {
duke@435 756 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
duke@435 757 } else {
duke@435 758 __ movdbl(dest->as_xmm_double_reg(),
duke@435 759 InternalAddress(double_constant(c->as_jdouble())));
duke@435 760 }
duke@435 761 } else {
duke@435 762 assert(dest->is_double_fpu(), "must be");
duke@435 763 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 764 if (c->is_zero_double()) {
duke@435 765 __ fldz();
duke@435 766 } else if (c->is_one_double()) {
duke@435 767 __ fld1();
duke@435 768 } else {
duke@435 769 __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
duke@435 770 }
duke@435 771 }
duke@435 772 break;
duke@435 773 }
duke@435 774
duke@435 775 default:
duke@435 776 ShouldNotReachHere();
duke@435 777 }
duke@435 778 }
duke@435 779
duke@435 780 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 781 assert(src->is_constant(), "should not call otherwise");
duke@435 782 assert(dest->is_stack(), "should not call otherwise");
duke@435 783 LIR_Const* c = src->as_constant_ptr();
duke@435 784
duke@435 785 switch (c->type()) {
duke@435 786 case T_INT: // fall through
duke@435 787 case T_FLOAT:
iveresov@2344 788 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
iveresov@2344 789 break;
iveresov@2344 790
roland@1732 791 case T_ADDRESS:
iveresov@2344 792 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
duke@435 793 break;
duke@435 794
duke@435 795 case T_OBJECT:
duke@435 796 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
duke@435 797 break;
duke@435 798
duke@435 799 case T_LONG: // fall through
duke@435 800 case T_DOUBLE:
never@739 801 #ifdef _LP64
never@739 802 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 803 lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
never@739 804 #else
never@739 805 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 806 lo_word_offset_in_bytes), c->as_jint_lo_bits());
never@739 807 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 808 hi_word_offset_in_bytes), c->as_jint_hi_bits());
never@739 809 #endif // _LP64
duke@435 810 break;
duke@435 811
duke@435 812 default:
duke@435 813 ShouldNotReachHere();
duke@435 814 }
duke@435 815 }
duke@435 816
iveresov@2344 817 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
duke@435 818 assert(src->is_constant(), "should not call otherwise");
duke@435 819 assert(dest->is_address(), "should not call otherwise");
duke@435 820 LIR_Const* c = src->as_constant_ptr();
duke@435 821 LIR_Address* addr = dest->as_address_ptr();
duke@435 822
never@739 823 int null_check_here = code_offset();
duke@435 824 switch (type) {
duke@435 825 case T_INT: // fall through
duke@435 826 case T_FLOAT:
iveresov@2344 827 __ movl(as_Address(addr), c->as_jint_bits());
iveresov@2344 828 break;
iveresov@2344 829
roland@1732 830 case T_ADDRESS:
iveresov@2344 831 __ movptr(as_Address(addr), c->as_jint_bits());
duke@435 832 break;
duke@435 833
duke@435 834 case T_OBJECT: // fall through
duke@435 835 case T_ARRAY:
duke@435 836 if (c->as_jobject() == NULL) {
iveresov@2344 837 if (UseCompressedOops && !wide) {
iveresov@2344 838 __ movl(as_Address(addr), (int32_t)NULL_WORD);
iveresov@2344 839 } else {
iveresov@2344 840 __ movptr(as_Address(addr), NULL_WORD);
iveresov@2344 841 }
duke@435 842 } else {
never@739 843 if (is_literal_address(addr)) {
never@739 844 ShouldNotReachHere();
never@739 845 __ movoop(as_Address(addr, noreg), c->as_jobject());
never@739 846 } else {
roland@1495 847 #ifdef _LP64
roland@1495 848 __ movoop(rscratch1, c->as_jobject());
iveresov@2344 849 if (UseCompressedOops && !wide) {
iveresov@2344 850 __ encode_heap_oop(rscratch1);
iveresov@2344 851 null_check_here = code_offset();
iveresov@2344 852 __ movl(as_Address_lo(addr), rscratch1);
iveresov@2344 853 } else {
iveresov@2344 854 null_check_here = code_offset();
iveresov@2344 855 __ movptr(as_Address_lo(addr), rscratch1);
iveresov@2344 856 }
roland@1495 857 #else
never@739 858 __ movoop(as_Address(addr), c->as_jobject());
roland@1495 859 #endif
never@739 860 }
duke@435 861 }
duke@435 862 break;
duke@435 863
duke@435 864 case T_LONG: // fall through
duke@435 865 case T_DOUBLE:
never@739 866 #ifdef _LP64
never@739 867 if (is_literal_address(addr)) {
never@739 868 ShouldNotReachHere();
never@739 869 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
never@739 870 } else {
never@739 871 __ movptr(r10, (intptr_t)c->as_jlong_bits());
never@739 872 null_check_here = code_offset();
never@739 873 __ movptr(as_Address_lo(addr), r10);
never@739 874 }
never@739 875 #else
never@739 876 // Always reachable in 32bit so this doesn't produce useless move literal
never@739 877 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
never@739 878 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
never@739 879 #endif // _LP64
duke@435 880 break;
duke@435 881
duke@435 882 case T_BOOLEAN: // fall through
duke@435 883 case T_BYTE:
duke@435 884 __ movb(as_Address(addr), c->as_jint() & 0xFF);
duke@435 885 break;
duke@435 886
duke@435 887 case T_CHAR: // fall through
duke@435 888 case T_SHORT:
duke@435 889 __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
duke@435 890 break;
duke@435 891
duke@435 892 default:
duke@435 893 ShouldNotReachHere();
duke@435 894 };
never@739 895
never@739 896 if (info != NULL) {
never@739 897 add_debug_info_for_null_check(null_check_here, info);
never@739 898 }
duke@435 899 }
duke@435 900
duke@435 901
duke@435 902 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
duke@435 903 assert(src->is_register(), "should not call otherwise");
duke@435 904 assert(dest->is_register(), "should not call otherwise");
duke@435 905
duke@435 906 // move between cpu-registers
duke@435 907 if (dest->is_single_cpu()) {
never@739 908 #ifdef _LP64
never@739 909 if (src->type() == T_LONG) {
never@739 910 // Can do LONG -> OBJECT
never@739 911 move_regs(src->as_register_lo(), dest->as_register());
never@739 912 return;
never@739 913 }
never@739 914 #endif
duke@435 915 assert(src->is_single_cpu(), "must match");
duke@435 916 if (src->type() == T_OBJECT) {
duke@435 917 __ verify_oop(src->as_register());
duke@435 918 }
duke@435 919 move_regs(src->as_register(), dest->as_register());
duke@435 920
duke@435 921 } else if (dest->is_double_cpu()) {
never@739 922 #ifdef _LP64
never@739 923 if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
never@739 924 // Surprising to me but we can see move of a long to t_object
never@739 925 __ verify_oop(src->as_register());
never@739 926 move_regs(src->as_register(), dest->as_register_lo());
never@739 927 return;
never@739 928 }
never@739 929 #endif
duke@435 930 assert(src->is_double_cpu(), "must match");
duke@435 931 Register f_lo = src->as_register_lo();
duke@435 932 Register f_hi = src->as_register_hi();
duke@435 933 Register t_lo = dest->as_register_lo();
duke@435 934 Register t_hi = dest->as_register_hi();
never@739 935 #ifdef _LP64
never@739 936 assert(f_hi == f_lo, "must be same");
never@739 937 assert(t_hi == t_lo, "must be same");
never@739 938 move_regs(f_lo, t_lo);
never@739 939 #else
duke@435 940 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
duke@435 941
never@739 942
duke@435 943 if (f_lo == t_hi && f_hi == t_lo) {
duke@435 944 swap_reg(f_lo, f_hi);
duke@435 945 } else if (f_hi == t_lo) {
duke@435 946 assert(f_lo != t_hi, "overwriting register");
duke@435 947 move_regs(f_hi, t_hi);
duke@435 948 move_regs(f_lo, t_lo);
duke@435 949 } else {
duke@435 950 assert(f_hi != t_lo, "overwriting register");
duke@435 951 move_regs(f_lo, t_lo);
duke@435 952 move_regs(f_hi, t_hi);
duke@435 953 }
never@739 954 #endif // LP64
duke@435 955
duke@435 956 // special moves from fpu-register to xmm-register
duke@435 957 // necessary for method results
duke@435 958 } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
duke@435 959 __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
duke@435 960 __ fld_s(Address(rsp, 0));
duke@435 961 } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
duke@435 962 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
duke@435 963 __ fld_d(Address(rsp, 0));
duke@435 964 } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
duke@435 965 __ fstp_s(Address(rsp, 0));
duke@435 966 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
duke@435 967 } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
duke@435 968 __ fstp_d(Address(rsp, 0));
duke@435 969 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
duke@435 970
duke@435 971 // move between xmm-registers
duke@435 972 } else if (dest->is_single_xmm()) {
duke@435 973 assert(src->is_single_xmm(), "must match");
duke@435 974 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
duke@435 975 } else if (dest->is_double_xmm()) {
duke@435 976 assert(src->is_double_xmm(), "must match");
duke@435 977 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
duke@435 978
duke@435 979 // move between fpu-registers (no instruction necessary because of fpu-stack)
duke@435 980 } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
duke@435 981 assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
duke@435 982 assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
duke@435 983 } else {
duke@435 984 ShouldNotReachHere();
duke@435 985 }
duke@435 986 }
duke@435 987
duke@435 988 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 989 assert(src->is_register(), "should not call otherwise");
duke@435 990 assert(dest->is_stack(), "should not call otherwise");
duke@435 991
duke@435 992 if (src->is_single_cpu()) {
duke@435 993 Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 994 if (type == T_OBJECT || type == T_ARRAY) {
duke@435 995 __ verify_oop(src->as_register());
never@739 996 __ movptr (dst, src->as_register());
never@739 997 } else {
never@739 998 __ movl (dst, src->as_register());
duke@435 999 }
duke@435 1000
duke@435 1001 } else if (src->is_double_cpu()) {
duke@435 1002 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 1003 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
never@739 1004 __ movptr (dstLO, src->as_register_lo());
never@739 1005 NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
duke@435 1006
duke@435 1007 } else if (src->is_single_xmm()) {
duke@435 1008 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1009 __ movflt(dst_addr, src->as_xmm_float_reg());
duke@435 1010
duke@435 1011 } else if (src->is_double_xmm()) {
duke@435 1012 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 1013 __ movdbl(dst_addr, src->as_xmm_double_reg());
duke@435 1014
duke@435 1015 } else if (src->is_single_fpu()) {
duke@435 1016 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 1017 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1018 if (pop_fpu_stack) __ fstp_s (dst_addr);
duke@435 1019 else __ fst_s (dst_addr);
duke@435 1020
duke@435 1021 } else if (src->is_double_fpu()) {
duke@435 1022 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 1023 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 1024 if (pop_fpu_stack) __ fstp_d (dst_addr);
duke@435 1025 else __ fst_d (dst_addr);
duke@435 1026
duke@435 1027 } else {
duke@435 1028 ShouldNotReachHere();
duke@435 1029 }
duke@435 1030 }
duke@435 1031
duke@435 1032
iveresov@2344 1033 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
duke@435 1034 LIR_Address* to_addr = dest->as_address_ptr();
duke@435 1035 PatchingStub* patch = NULL;
iveresov@2344 1036 Register compressed_src = rscratch1;
duke@435 1037
duke@435 1038 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 1039 __ verify_oop(src->as_register());
iveresov@2344 1040 #ifdef _LP64
iveresov@2344 1041 if (UseCompressedOops && !wide) {
iveresov@2344 1042 __ movptr(compressed_src, src->as_register());
iveresov@2344 1043 __ encode_heap_oop(compressed_src);
iveresov@2344 1044 }
iveresov@2344 1045 #endif
duke@435 1046 }
iveresov@2344 1047
duke@435 1048 if (patch_code != lir_patch_none) {
duke@435 1049 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1050 Address toa = as_Address(to_addr);
never@739 1051 assert(toa.disp() != 0, "must have");
duke@435 1052 }
iveresov@2344 1053
iveresov@2344 1054 int null_check_here = code_offset();
duke@435 1055 switch (type) {
duke@435 1056 case T_FLOAT: {
duke@435 1057 if (src->is_single_xmm()) {
duke@435 1058 __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
duke@435 1059 } else {
duke@435 1060 assert(src->is_single_fpu(), "must be");
duke@435 1061 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 1062 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr));
duke@435 1063 else __ fst_s (as_Address(to_addr));
duke@435 1064 }
duke@435 1065 break;
duke@435 1066 }
duke@435 1067
duke@435 1068 case T_DOUBLE: {
duke@435 1069 if (src->is_double_xmm()) {
duke@435 1070 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
duke@435 1071 } else {
duke@435 1072 assert(src->is_double_fpu(), "must be");
duke@435 1073 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 1074 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr));
duke@435 1075 else __ fst_d (as_Address(to_addr));
duke@435 1076 }
duke@435 1077 break;
duke@435 1078 }
duke@435 1079
duke@435 1080 case T_ARRAY: // fall through
duke@435 1081 case T_OBJECT: // fall through
iveresov@2344 1082 if (UseCompressedOops && !wide) {
iveresov@2344 1083 __ movl(as_Address(to_addr), compressed_src);
iveresov@2344 1084 } else {
iveresov@2344 1085 __ movptr(as_Address(to_addr), src->as_register());
iveresov@2344 1086 }
iveresov@2344 1087 break;
iveresov@2344 1088 case T_ADDRESS:
never@739 1089 __ movptr(as_Address(to_addr), src->as_register());
never@739 1090 break;
duke@435 1091 case T_INT:
duke@435 1092 __ movl(as_Address(to_addr), src->as_register());
duke@435 1093 break;
duke@435 1094
duke@435 1095 case T_LONG: {
duke@435 1096 Register from_lo = src->as_register_lo();
duke@435 1097 Register from_hi = src->as_register_hi();
never@739 1098 #ifdef _LP64
never@739 1099 __ movptr(as_Address_lo(to_addr), from_lo);
never@739 1100 #else
duke@435 1101 Register base = to_addr->base()->as_register();
duke@435 1102 Register index = noreg;
duke@435 1103 if (to_addr->index()->is_register()) {
duke@435 1104 index = to_addr->index()->as_register();
duke@435 1105 }
duke@435 1106 if (base == from_lo || index == from_lo) {
duke@435 1107 assert(base != from_hi, "can't be");
duke@435 1108 assert(index == noreg || (index != base && index != from_hi), "can't handle this");
duke@435 1109 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1110 if (patch != NULL) {
duke@435 1111 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1112 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1113 patch_code = lir_patch_low;
duke@435 1114 }
duke@435 1115 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1116 } else {
duke@435 1117 assert(index == noreg || (index != base && index != from_lo), "can't handle this");
duke@435 1118 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1119 if (patch != NULL) {
duke@435 1120 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1121 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1122 patch_code = lir_patch_high;
duke@435 1123 }
duke@435 1124 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1125 }
never@739 1126 #endif // _LP64
duke@435 1127 break;
duke@435 1128 }
duke@435 1129
duke@435 1130 case T_BYTE: // fall through
duke@435 1131 case T_BOOLEAN: {
duke@435 1132 Register src_reg = src->as_register();
duke@435 1133 Address dst_addr = as_Address(to_addr);
duke@435 1134 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1135 __ movb(dst_addr, src_reg);
duke@435 1136 break;
duke@435 1137 }
duke@435 1138
duke@435 1139 case T_CHAR: // fall through
duke@435 1140 case T_SHORT:
duke@435 1141 __ movw(as_Address(to_addr), src->as_register());
duke@435 1142 break;
duke@435 1143
duke@435 1144 default:
duke@435 1145 ShouldNotReachHere();
duke@435 1146 }
iveresov@2344 1147 if (info != NULL) {
iveresov@2344 1148 add_debug_info_for_null_check(null_check_here, info);
iveresov@2344 1149 }
duke@435 1150
duke@435 1151 if (patch_code != lir_patch_none) {
duke@435 1152 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
duke@435 1153 }
duke@435 1154 }
duke@435 1155
duke@435 1156
duke@435 1157 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1158 assert(src->is_stack(), "should not call otherwise");
duke@435 1159 assert(dest->is_register(), "should not call otherwise");
duke@435 1160
duke@435 1161 if (dest->is_single_cpu()) {
duke@435 1162 if (type == T_ARRAY || type == T_OBJECT) {
never@739 1163 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1164 __ verify_oop(dest->as_register());
never@739 1165 } else {
never@739 1166 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1167 }
duke@435 1168
duke@435 1169 } else if (dest->is_double_cpu()) {
duke@435 1170 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 1171 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
never@739 1172 __ movptr(dest->as_register_lo(), src_addr_LO);
never@739 1173 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
duke@435 1174
duke@435 1175 } else if (dest->is_single_xmm()) {
duke@435 1176 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1177 __ movflt(dest->as_xmm_float_reg(), src_addr);
duke@435 1178
duke@435 1179 } else if (dest->is_double_xmm()) {
duke@435 1180 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1181 __ movdbl(dest->as_xmm_double_reg(), src_addr);
duke@435 1182
duke@435 1183 } else if (dest->is_single_fpu()) {
duke@435 1184 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1185 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1186 __ fld_s(src_addr);
duke@435 1187
duke@435 1188 } else if (dest->is_double_fpu()) {
duke@435 1189 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1190 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1191 __ fld_d(src_addr);
duke@435 1192
duke@435 1193 } else {
duke@435 1194 ShouldNotReachHere();
duke@435 1195 }
duke@435 1196 }
duke@435 1197
duke@435 1198
duke@435 1199 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1200 if (src->is_single_stack()) {
never@739 1201 if (type == T_OBJECT || type == T_ARRAY) {
never@739 1202 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1203 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
never@739 1204 } else {
roland@1495 1205 #ifndef _LP64
never@739 1206 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1207 __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
roland@1495 1208 #else
roland@1495 1209 //no pushl on 64bits
roland@1495 1210 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
roland@1495 1211 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
roland@1495 1212 #endif
never@739 1213 }
duke@435 1214
duke@435 1215 } else if (src->is_double_stack()) {
never@739 1216 #ifdef _LP64
never@739 1217 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
never@739 1218 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
never@739 1219 #else
duke@435 1220 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
never@739 1221 // push and pop the part at src + wordSize, adding wordSize for the previous push
never@756 1222 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
never@756 1223 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
duke@435 1224 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
never@739 1225 #endif // _LP64
duke@435 1226
duke@435 1227 } else {
duke@435 1228 ShouldNotReachHere();
duke@435 1229 }
duke@435 1230 }
duke@435 1231
duke@435 1232
iveresov@2344 1233 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
duke@435 1234 assert(src->is_address(), "should not call otherwise");
duke@435 1235 assert(dest->is_register(), "should not call otherwise");
duke@435 1236
duke@435 1237 LIR_Address* addr = src->as_address_ptr();
duke@435 1238 Address from_addr = as_Address(addr);
duke@435 1239
duke@435 1240 switch (type) {
duke@435 1241 case T_BOOLEAN: // fall through
duke@435 1242 case T_BYTE: // fall through
duke@435 1243 case T_CHAR: // fall through
duke@435 1244 case T_SHORT:
duke@435 1245 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
duke@435 1246 // on pre P6 processors we may get partial register stalls
duke@435 1247 // so blow away the value of to_rinfo before loading a
duke@435 1248 // partial word into it. Do it here so that it precedes
duke@435 1249 // the potential patch point below.
never@739 1250 __ xorptr(dest->as_register(), dest->as_register());
duke@435 1251 }
duke@435 1252 break;
duke@435 1253 }
duke@435 1254
duke@435 1255 PatchingStub* patch = NULL;
duke@435 1256 if (patch_code != lir_patch_none) {
duke@435 1257 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1258 assert(from_addr.disp() != 0, "must have");
duke@435 1259 }
duke@435 1260 if (info != NULL) {
duke@435 1261 add_debug_info_for_null_check_here(info);
duke@435 1262 }
duke@435 1263
duke@435 1264 switch (type) {
duke@435 1265 case T_FLOAT: {
duke@435 1266 if (dest->is_single_xmm()) {
duke@435 1267 __ movflt(dest->as_xmm_float_reg(), from_addr);
duke@435 1268 } else {
duke@435 1269 assert(dest->is_single_fpu(), "must be");
duke@435 1270 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1271 __ fld_s(from_addr);
duke@435 1272 }
duke@435 1273 break;
duke@435 1274 }
duke@435 1275
duke@435 1276 case T_DOUBLE: {
duke@435 1277 if (dest->is_double_xmm()) {
duke@435 1278 __ movdbl(dest->as_xmm_double_reg(), from_addr);
duke@435 1279 } else {
duke@435 1280 assert(dest->is_double_fpu(), "must be");
duke@435 1281 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1282 __ fld_d(from_addr);
duke@435 1283 }
duke@435 1284 break;
duke@435 1285 }
duke@435 1286
duke@435 1287 case T_OBJECT: // fall through
duke@435 1288 case T_ARRAY: // fall through
iveresov@2344 1289 if (UseCompressedOops && !wide) {
iveresov@2344 1290 __ movl(dest->as_register(), from_addr);
iveresov@2344 1291 } else {
iveresov@2344 1292 __ movptr(dest->as_register(), from_addr);
iveresov@2344 1293 }
iveresov@2344 1294 break;
iveresov@2344 1295
iveresov@2344 1296 case T_ADDRESS:
never@739 1297 __ movptr(dest->as_register(), from_addr);
never@739 1298 break;
duke@435 1299 case T_INT:
iveresov@1833 1300 __ movl(dest->as_register(), from_addr);
duke@435 1301 break;
duke@435 1302
duke@435 1303 case T_LONG: {
duke@435 1304 Register to_lo = dest->as_register_lo();
duke@435 1305 Register to_hi = dest->as_register_hi();
never@739 1306 #ifdef _LP64
never@739 1307 __ movptr(to_lo, as_Address_lo(addr));
never@739 1308 #else
duke@435 1309 Register base = addr->base()->as_register();
duke@435 1310 Register index = noreg;
duke@435 1311 if (addr->index()->is_register()) {
duke@435 1312 index = addr->index()->as_register();
duke@435 1313 }
duke@435 1314 if ((base == to_lo && index == to_hi) ||
duke@435 1315 (base == to_hi && index == to_lo)) {
duke@435 1316 // addresses with 2 registers are only formed as a result of
duke@435 1317 // array access so this code will never have to deal with
duke@435 1318 // patches or null checks.
duke@435 1319 assert(info == NULL && patch == NULL, "must be");
never@739 1320 __ lea(to_hi, as_Address(addr));
duke@435 1321 __ movl(to_lo, Address(to_hi, 0));
duke@435 1322 __ movl(to_hi, Address(to_hi, BytesPerWord));
duke@435 1323 } else if (base == to_lo || index == to_lo) {
duke@435 1324 assert(base != to_hi, "can't be");
duke@435 1325 assert(index == noreg || (index != base && index != to_hi), "can't handle this");
duke@435 1326 __ movl(to_hi, as_Address_hi(addr));
duke@435 1327 if (patch != NULL) {
duke@435 1328 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1329 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1330 patch_code = lir_patch_low;
duke@435 1331 }
duke@435 1332 __ movl(to_lo, as_Address_lo(addr));
duke@435 1333 } else {
duke@435 1334 assert(index == noreg || (index != base && index != to_lo), "can't handle this");
duke@435 1335 __ movl(to_lo, as_Address_lo(addr));
duke@435 1336 if (patch != NULL) {
duke@435 1337 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1338 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1339 patch_code = lir_patch_high;
duke@435 1340 }
duke@435 1341 __ movl(to_hi, as_Address_hi(addr));
duke@435 1342 }
never@739 1343 #endif // _LP64
duke@435 1344 break;
duke@435 1345 }
duke@435 1346
duke@435 1347 case T_BOOLEAN: // fall through
duke@435 1348 case T_BYTE: {
duke@435 1349 Register dest_reg = dest->as_register();
duke@435 1350 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1351 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1352 __ movsbl(dest_reg, from_addr);
duke@435 1353 } else {
duke@435 1354 __ movb(dest_reg, from_addr);
duke@435 1355 __ shll(dest_reg, 24);
duke@435 1356 __ sarl(dest_reg, 24);
duke@435 1357 }
duke@435 1358 break;
duke@435 1359 }
duke@435 1360
duke@435 1361 case T_CHAR: {
duke@435 1362 Register dest_reg = dest->as_register();
duke@435 1363 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1364 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1365 __ movzwl(dest_reg, from_addr);
duke@435 1366 } else {
duke@435 1367 __ movw(dest_reg, from_addr);
duke@435 1368 }
duke@435 1369 break;
duke@435 1370 }
duke@435 1371
duke@435 1372 case T_SHORT: {
duke@435 1373 Register dest_reg = dest->as_register();
duke@435 1374 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1375 __ movswl(dest_reg, from_addr);
duke@435 1376 } else {
duke@435 1377 __ movw(dest_reg, from_addr);
duke@435 1378 __ shll(dest_reg, 16);
duke@435 1379 __ sarl(dest_reg, 16);
duke@435 1380 }
duke@435 1381 break;
duke@435 1382 }
duke@435 1383
duke@435 1384 default:
duke@435 1385 ShouldNotReachHere();
duke@435 1386 }
duke@435 1387
duke@435 1388 if (patch != NULL) {
duke@435 1389 patching_epilog(patch, patch_code, addr->base()->as_register(), info);
duke@435 1390 }
duke@435 1391
duke@435 1392 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 1393 #ifdef _LP64
iveresov@2344 1394 if (UseCompressedOops && !wide) {
iveresov@2344 1395 __ decode_heap_oop(dest->as_register());
iveresov@2344 1396 }
iveresov@2344 1397 #endif
duke@435 1398 __ verify_oop(dest->as_register());
duke@435 1399 }
duke@435 1400 }
duke@435 1401
duke@435 1402
duke@435 1403 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1404 LIR_Address* addr = src->as_address_ptr();
duke@435 1405 Address from_addr = as_Address(addr);
duke@435 1406
duke@435 1407 if (VM_Version::supports_sse()) {
duke@435 1408 switch (ReadPrefetchInstr) {
duke@435 1409 case 0:
duke@435 1410 __ prefetchnta(from_addr); break;
duke@435 1411 case 1:
duke@435 1412 __ prefetcht0(from_addr); break;
duke@435 1413 case 2:
duke@435 1414 __ prefetcht2(from_addr); break;
duke@435 1415 default:
duke@435 1416 ShouldNotReachHere(); break;
duke@435 1417 }
duke@435 1418 } else if (VM_Version::supports_3dnow()) {
duke@435 1419 __ prefetchr(from_addr);
duke@435 1420 }
duke@435 1421 }
duke@435 1422
duke@435 1423
duke@435 1424 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1425 LIR_Address* addr = src->as_address_ptr();
duke@435 1426 Address from_addr = as_Address(addr);
duke@435 1427
duke@435 1428 if (VM_Version::supports_sse()) {
duke@435 1429 switch (AllocatePrefetchInstr) {
duke@435 1430 case 0:
duke@435 1431 __ prefetchnta(from_addr); break;
duke@435 1432 case 1:
duke@435 1433 __ prefetcht0(from_addr); break;
duke@435 1434 case 2:
duke@435 1435 __ prefetcht2(from_addr); break;
duke@435 1436 case 3:
duke@435 1437 __ prefetchw(from_addr); break;
duke@435 1438 default:
duke@435 1439 ShouldNotReachHere(); break;
duke@435 1440 }
duke@435 1441 } else if (VM_Version::supports_3dnow()) {
duke@435 1442 __ prefetchw(from_addr);
duke@435 1443 }
duke@435 1444 }
duke@435 1445
duke@435 1446
duke@435 1447 NEEDS_CLEANUP; // This could be static?
duke@435 1448 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
kvn@464 1449 int elem_size = type2aelembytes(type);
duke@435 1450 switch (elem_size) {
duke@435 1451 case 1: return Address::times_1;
duke@435 1452 case 2: return Address::times_2;
duke@435 1453 case 4: return Address::times_4;
duke@435 1454 case 8: return Address::times_8;
duke@435 1455 }
duke@435 1456 ShouldNotReachHere();
duke@435 1457 return Address::no_scale;
duke@435 1458 }
duke@435 1459
duke@435 1460
duke@435 1461 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 1462 switch (op->code()) {
duke@435 1463 case lir_idiv:
duke@435 1464 case lir_irem:
duke@435 1465 arithmetic_idiv(op->code(),
duke@435 1466 op->in_opr1(),
duke@435 1467 op->in_opr2(),
duke@435 1468 op->in_opr3(),
duke@435 1469 op->result_opr(),
duke@435 1470 op->info());
duke@435 1471 break;
duke@435 1472 default: ShouldNotReachHere(); break;
duke@435 1473 }
duke@435 1474 }
duke@435 1475
duke@435 1476 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 1477 #ifdef ASSERT
duke@435 1478 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 1479 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 1480 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 1481 #endif
duke@435 1482
duke@435 1483 if (op->cond() == lir_cond_always) {
duke@435 1484 if (op->info() != NULL) add_debug_info_for_branch(op->info());
duke@435 1485 __ jmp (*(op->label()));
duke@435 1486 } else {
duke@435 1487 Assembler::Condition acond = Assembler::zero;
duke@435 1488 if (op->code() == lir_cond_float_branch) {
duke@435 1489 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 1490 __ jcc(Assembler::parity, *(op->ublock()->label()));
duke@435 1491 switch(op->cond()) {
duke@435 1492 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1493 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1494 case lir_cond_less: acond = Assembler::below; break;
duke@435 1495 case lir_cond_lessEqual: acond = Assembler::belowEqual; break;
duke@435 1496 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
duke@435 1497 case lir_cond_greater: acond = Assembler::above; break;
duke@435 1498 default: ShouldNotReachHere();
duke@435 1499 }
duke@435 1500 } else {
duke@435 1501 switch (op->cond()) {
duke@435 1502 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1503 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1504 case lir_cond_less: acond = Assembler::less; break;
duke@435 1505 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1506 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
duke@435 1507 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1508 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
duke@435 1509 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
duke@435 1510 default: ShouldNotReachHere();
duke@435 1511 }
duke@435 1512 }
duke@435 1513 __ jcc(acond,*(op->label()));
duke@435 1514 }
duke@435 1515 }
duke@435 1516
duke@435 1517 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 1518 LIR_Opr src = op->in_opr();
duke@435 1519 LIR_Opr dest = op->result_opr();
duke@435 1520
duke@435 1521 switch (op->bytecode()) {
duke@435 1522 case Bytecodes::_i2l:
never@739 1523 #ifdef _LP64
never@739 1524 __ movl2ptr(dest->as_register_lo(), src->as_register());
never@739 1525 #else
duke@435 1526 move_regs(src->as_register(), dest->as_register_lo());
duke@435 1527 move_regs(src->as_register(), dest->as_register_hi());
duke@435 1528 __ sarl(dest->as_register_hi(), 31);
never@739 1529 #endif // LP64
duke@435 1530 break;
duke@435 1531
duke@435 1532 case Bytecodes::_l2i:
duke@435 1533 move_regs(src->as_register_lo(), dest->as_register());
duke@435 1534 break;
duke@435 1535
duke@435 1536 case Bytecodes::_i2b:
duke@435 1537 move_regs(src->as_register(), dest->as_register());
duke@435 1538 __ sign_extend_byte(dest->as_register());
duke@435 1539 break;
duke@435 1540
duke@435 1541 case Bytecodes::_i2c:
duke@435 1542 move_regs(src->as_register(), dest->as_register());
duke@435 1543 __ andl(dest->as_register(), 0xFFFF);
duke@435 1544 break;
duke@435 1545
duke@435 1546 case Bytecodes::_i2s:
duke@435 1547 move_regs(src->as_register(), dest->as_register());
duke@435 1548 __ sign_extend_short(dest->as_register());
duke@435 1549 break;
duke@435 1550
duke@435 1551
duke@435 1552 case Bytecodes::_f2d:
duke@435 1553 case Bytecodes::_d2f:
duke@435 1554 if (dest->is_single_xmm()) {
duke@435 1555 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
duke@435 1556 } else if (dest->is_double_xmm()) {
duke@435 1557 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
duke@435 1558 } else {
duke@435 1559 assert(src->fpu() == dest->fpu(), "register must be equal");
duke@435 1560 // do nothing (float result is rounded later through spilling)
duke@435 1561 }
duke@435 1562 break;
duke@435 1563
duke@435 1564 case Bytecodes::_i2f:
duke@435 1565 case Bytecodes::_i2d:
duke@435 1566 if (dest->is_single_xmm()) {
never@739 1567 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
duke@435 1568 } else if (dest->is_double_xmm()) {
never@739 1569 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
duke@435 1570 } else {
duke@435 1571 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1572 __ movl(Address(rsp, 0), src->as_register());
duke@435 1573 __ fild_s(Address(rsp, 0));
duke@435 1574 }
duke@435 1575 break;
duke@435 1576
duke@435 1577 case Bytecodes::_f2i:
duke@435 1578 case Bytecodes::_d2i:
duke@435 1579 if (src->is_single_xmm()) {
never@739 1580 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
duke@435 1581 } else if (src->is_double_xmm()) {
never@739 1582 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
duke@435 1583 } else {
duke@435 1584 assert(src->fpu() == 0, "input must be on TOS");
duke@435 1585 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
duke@435 1586 __ fist_s(Address(rsp, 0));
duke@435 1587 __ movl(dest->as_register(), Address(rsp, 0));
duke@435 1588 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1589 }
duke@435 1590
duke@435 1591 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
duke@435 1592 assert(op->stub() != NULL, "stub required");
duke@435 1593 __ cmpl(dest->as_register(), 0x80000000);
duke@435 1594 __ jcc(Assembler::equal, *op->stub()->entry());
duke@435 1595 __ bind(*op->stub()->continuation());
duke@435 1596 break;
duke@435 1597
duke@435 1598 case Bytecodes::_l2f:
duke@435 1599 case Bytecodes::_l2d:
duke@435 1600 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
duke@435 1601 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1602
never@739 1603 __ movptr(Address(rsp, 0), src->as_register_lo());
never@739 1604 NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
duke@435 1605 __ fild_d(Address(rsp, 0));
duke@435 1606 // float result is rounded later through spilling
duke@435 1607 break;
duke@435 1608
duke@435 1609 case Bytecodes::_f2l:
duke@435 1610 case Bytecodes::_d2l:
duke@435 1611 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
duke@435 1612 assert(src->fpu() == 0, "input must be on TOS");
never@739 1613 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
duke@435 1614
duke@435 1615 // instruction sequence too long to inline it here
duke@435 1616 {
duke@435 1617 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
duke@435 1618 }
duke@435 1619 break;
duke@435 1620
duke@435 1621 default: ShouldNotReachHere();
duke@435 1622 }
duke@435 1623 }
duke@435 1624
duke@435 1625 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 1626 if (op->init_check()) {
duke@435 1627 __ cmpl(Address(op->klass()->as_register(),
duke@435 1628 instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
duke@435 1629 instanceKlass::fully_initialized);
duke@435 1630 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 1631 __ jcc(Assembler::notEqual, *op->stub()->entry());
duke@435 1632 }
duke@435 1633 __ allocate_object(op->obj()->as_register(),
duke@435 1634 op->tmp1()->as_register(),
duke@435 1635 op->tmp2()->as_register(),
duke@435 1636 op->header_size(),
duke@435 1637 op->object_size(),
duke@435 1638 op->klass()->as_register(),
duke@435 1639 *op->stub()->entry());
duke@435 1640 __ bind(*op->stub()->continuation());
duke@435 1641 }
duke@435 1642
duke@435 1643 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
duke@435 1644 if (UseSlowPath ||
duke@435 1645 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 1646 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
duke@435 1647 __ jmp(*op->stub()->entry());
duke@435 1648 } else {
duke@435 1649 Register len = op->len()->as_register();
duke@435 1650 Register tmp1 = op->tmp1()->as_register();
duke@435 1651 Register tmp2 = op->tmp2()->as_register();
duke@435 1652 Register tmp3 = op->tmp3()->as_register();
duke@435 1653 if (len == tmp1) {
duke@435 1654 tmp1 = tmp3;
duke@435 1655 } else if (len == tmp2) {
duke@435 1656 tmp2 = tmp3;
duke@435 1657 } else if (len == tmp3) {
duke@435 1658 // everything is ok
duke@435 1659 } else {
never@739 1660 __ mov(tmp3, len);
duke@435 1661 }
duke@435 1662 __ allocate_array(op->obj()->as_register(),
duke@435 1663 len,
duke@435 1664 tmp1,
duke@435 1665 tmp2,
duke@435 1666 arrayOopDesc::header_size(op->type()),
duke@435 1667 array_element_size(op->type()),
duke@435 1668 op->klass()->as_register(),
duke@435 1669 *op->stub()->entry());
duke@435 1670 }
duke@435 1671 __ bind(*op->stub()->continuation());
duke@435 1672 }
duke@435 1673
iveresov@2138 1674 void LIR_Assembler::type_profile_helper(Register mdo,
iveresov@2138 1675 ciMethodData *md, ciProfileData *data,
iveresov@2138 1676 Register recv, Label* update_done) {
iveresov@2163 1677 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
iveresov@2138 1678 Label next_test;
iveresov@2138 1679 // See if the receiver is receiver[n].
iveresov@2138 1680 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
iveresov@2138 1681 __ jccb(Assembler::notEqual, next_test);
iveresov@2138 1682 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
iveresov@2138 1683 __ addptr(data_addr, DataLayout::counter_increment);
iveresov@2146 1684 __ jmp(*update_done);
iveresov@2138 1685 __ bind(next_test);
iveresov@2138 1686 }
iveresov@2138 1687
iveresov@2138 1688 // Didn't find receiver; find next empty slot and fill it in
iveresov@2163 1689 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
iveresov@2138 1690 Label next_test;
iveresov@2138 1691 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
iveresov@2138 1692 __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
iveresov@2138 1693 __ jccb(Assembler::notEqual, next_test);
iveresov@2138 1694 __ movptr(recv_addr, recv);
iveresov@2138 1695 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
iveresov@2146 1696 __ jmp(*update_done);
iveresov@2138 1697 __ bind(next_test);
iveresov@2138 1698 }
iveresov@2138 1699 }
iveresov@2138 1700
iveresov@2146 1701 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
iveresov@2138 1702 // we always need a stub for the failure case.
iveresov@2138 1703 CodeStub* stub = op->stub();
iveresov@2138 1704 Register obj = op->object()->as_register();
iveresov@2138 1705 Register k_RInfo = op->tmp1()->as_register();
iveresov@2138 1706 Register klass_RInfo = op->tmp2()->as_register();
iveresov@2138 1707 Register dst = op->result_opr()->as_register();
iveresov@2138 1708 ciKlass* k = op->klass();
iveresov@2138 1709 Register Rtmp1 = noreg;
iveresov@2138 1710
iveresov@2138 1711 // check if it needs to be profiled
iveresov@2138 1712 ciMethodData* md;
iveresov@2138 1713 ciProfileData* data;
iveresov@2138 1714
iveresov@2138 1715 if (op->should_profile()) {
iveresov@2138 1716 ciMethod* method = op->profiled_method();
iveresov@2138 1717 assert(method != NULL, "Should have method");
iveresov@2138 1718 int bci = op->profiled_bci();
iveresov@2349 1719 md = method->method_data_or_null();
iveresov@2349 1720 assert(md != NULL, "Sanity");
iveresov@2138 1721 data = md->bci_to_data(bci);
iveresov@2146 1722 assert(data != NULL, "need data for type check");
iveresov@2146 1723 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2138 1724 }
iveresov@2146 1725 Label profile_cast_success, profile_cast_failure;
iveresov@2146 1726 Label *success_target = op->should_profile() ? &profile_cast_success : success;
iveresov@2146 1727 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
iveresov@2138 1728
iveresov@2138 1729 if (obj == k_RInfo) {
iveresov@2138 1730 k_RInfo = dst;
iveresov@2138 1731 } else if (obj == klass_RInfo) {
iveresov@2138 1732 klass_RInfo = dst;
iveresov@2138 1733 }
iveresov@2344 1734 if (k->is_loaded() && !UseCompressedOops) {
iveresov@2138 1735 select_different_registers(obj, dst, k_RInfo, klass_RInfo);
iveresov@2138 1736 } else {
iveresov@2138 1737 Rtmp1 = op->tmp3()->as_register();
iveresov@2138 1738 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
iveresov@2138 1739 }
iveresov@2138 1740
iveresov@2138 1741 assert_different_registers(obj, k_RInfo, klass_RInfo);
iveresov@2138 1742 if (!k->is_loaded()) {
iveresov@2138 1743 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
iveresov@2138 1744 } else {
iveresov@2138 1745 #ifdef _LP64
iveresov@2138 1746 __ movoop(k_RInfo, k->constant_encoding());
iveresov@2138 1747 #endif // _LP64
iveresov@2138 1748 }
iveresov@2138 1749 assert(obj != k_RInfo, "must be different");
iveresov@2138 1750
iveresov@2138 1751 __ cmpptr(obj, (int32_t)NULL_WORD);
iveresov@2138 1752 if (op->should_profile()) {
iveresov@2146 1753 Label not_null;
iveresov@2146 1754 __ jccb(Assembler::notEqual, not_null);
iveresov@2146 1755 // Object is null; update MDO and exit
iveresov@2138 1756 Register mdo = klass_RInfo;
iveresov@2138 1757 __ movoop(mdo, md->constant_encoding());
iveresov@2138 1758 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
iveresov@2138 1759 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
iveresov@2138 1760 __ orl(data_addr, header_bits);
iveresov@2146 1761 __ jmp(*obj_is_null);
iveresov@2146 1762 __ bind(not_null);
iveresov@2138 1763 } else {
iveresov@2146 1764 __ jcc(Assembler::equal, *obj_is_null);
iveresov@2138 1765 }
iveresov@2138 1766 __ verify_oop(obj);
iveresov@2138 1767
iveresov@2138 1768 if (op->fast_check()) {
iveresov@2146 1769 // get object class
iveresov@2138 1770 // not a safepoint as obj null check happens earlier
iveresov@2138 1771 #ifdef _LP64
iveresov@2344 1772 if (UseCompressedOops) {
iveresov@2344 1773 __ load_klass(Rtmp1, obj);
iveresov@2344 1774 __ cmpptr(k_RInfo, Rtmp1);
iveresov@2138 1775 } else {
iveresov@2138 1776 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2138 1777 }
iveresov@2344 1778 #else
iveresov@2344 1779 if (k->is_loaded()) {
iveresov@2344 1780 __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
iveresov@2344 1781 } else {
iveresov@2344 1782 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2344 1783 }
iveresov@2344 1784 #endif
iveresov@2138 1785 __ jcc(Assembler::notEqual, *failure_target);
iveresov@2146 1786 // successful cast, fall through to profile or jump
iveresov@2138 1787 } else {
iveresov@2138 1788 // get object class
iveresov@2138 1789 // not a safepoint as obj null check happens earlier
iveresov@2344 1790 __ load_klass(klass_RInfo, obj);
iveresov@2138 1791 if (k->is_loaded()) {
iveresov@2138 1792 // See if we get an immediate positive hit
iveresov@2138 1793 #ifdef _LP64
iveresov@2138 1794 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
iveresov@2138 1795 #else
iveresov@2138 1796 __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
iveresov@2138 1797 #endif // _LP64
iveresov@2138 1798 if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
iveresov@2138 1799 __ jcc(Assembler::notEqual, *failure_target);
iveresov@2146 1800 // successful cast, fall through to profile or jump
iveresov@2138 1801 } else {
iveresov@2138 1802 // See if we get an immediate positive hit
iveresov@2146 1803 __ jcc(Assembler::equal, *success_target);
iveresov@2138 1804 // check for self
iveresov@2138 1805 #ifdef _LP64
iveresov@2138 1806 __ cmpptr(klass_RInfo, k_RInfo);
iveresov@2138 1807 #else
iveresov@2138 1808 __ cmpoop(klass_RInfo, k->constant_encoding());
iveresov@2138 1809 #endif // _LP64
iveresov@2146 1810 __ jcc(Assembler::equal, *success_target);
iveresov@2138 1811
iveresov@2138 1812 __ push(klass_RInfo);
iveresov@2138 1813 #ifdef _LP64
iveresov@2138 1814 __ push(k_RInfo);
iveresov@2138 1815 #else
iveresov@2138 1816 __ pushoop(k->constant_encoding());
iveresov@2138 1817 #endif // _LP64
iveresov@2138 1818 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
iveresov@2138 1819 __ pop(klass_RInfo);
iveresov@2138 1820 __ pop(klass_RInfo);
iveresov@2138 1821 // result is a boolean
iveresov@2138 1822 __ cmpl(klass_RInfo, 0);
iveresov@2138 1823 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1824 // successful cast, fall through to profile or jump
iveresov@2138 1825 }
iveresov@2138 1826 } else {
iveresov@2138 1827 // perform the fast part of the checking logic
iveresov@2146 1828 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
iveresov@2138 1829 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
iveresov@2138 1830 __ push(klass_RInfo);
iveresov@2138 1831 __ push(k_RInfo);
iveresov@2138 1832 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
iveresov@2138 1833 __ pop(klass_RInfo);
iveresov@2138 1834 __ pop(k_RInfo);
iveresov@2138 1835 // result is a boolean
iveresov@2138 1836 __ cmpl(k_RInfo, 0);
iveresov@2138 1837 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1838 // successful cast, fall through to profile or jump
iveresov@2138 1839 }
iveresov@2138 1840 }
iveresov@2138 1841 if (op->should_profile()) {
iveresov@2138 1842 Register mdo = klass_RInfo, recv = k_RInfo;
iveresov@2146 1843 __ bind(profile_cast_success);
iveresov@2138 1844 __ movoop(mdo, md->constant_encoding());
iveresov@2344 1845 __ load_klass(recv, obj);
iveresov@2138 1846 Label update_done;
iveresov@2146 1847 type_profile_helper(mdo, md, data, recv, success);
iveresov@2146 1848 __ jmp(*success);
iveresov@2138 1849
iveresov@2138 1850 __ bind(profile_cast_failure);
iveresov@2138 1851 __ movoop(mdo, md->constant_encoding());
iveresov@2138 1852 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
iveresov@2138 1853 __ subptr(counter_addr, DataLayout::counter_increment);
iveresov@2146 1854 __ jmp(*failure);
iveresov@2138 1855 }
iveresov@2146 1856 __ jmp(*success);
iveresov@2138 1857 }
duke@435 1858
iveresov@2146 1859
duke@435 1860 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 1861 LIR_Code code = op->code();
duke@435 1862 if (code == lir_store_check) {
duke@435 1863 Register value = op->object()->as_register();
duke@435 1864 Register array = op->array()->as_register();
duke@435 1865 Register k_RInfo = op->tmp1()->as_register();
duke@435 1866 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1867 Register Rtmp1 = op->tmp3()->as_register();
duke@435 1868
duke@435 1869 CodeStub* stub = op->stub();
iveresov@2146 1870
iveresov@2146 1871 // check if it needs to be profiled
iveresov@2146 1872 ciMethodData* md;
iveresov@2146 1873 ciProfileData* data;
iveresov@2146 1874
iveresov@2146 1875 if (op->should_profile()) {
iveresov@2146 1876 ciMethod* method = op->profiled_method();
iveresov@2146 1877 assert(method != NULL, "Should have method");
iveresov@2146 1878 int bci = op->profiled_bci();
iveresov@2349 1879 md = method->method_data_or_null();
iveresov@2349 1880 assert(md != NULL, "Sanity");
iveresov@2146 1881 data = md->bci_to_data(bci);
iveresov@2146 1882 assert(data != NULL, "need data for type check");
iveresov@2146 1883 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2146 1884 }
iveresov@2146 1885 Label profile_cast_success, profile_cast_failure, done;
iveresov@2146 1886 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
iveresov@2146 1887 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
iveresov@2146 1888
never@739 1889 __ cmpptr(value, (int32_t)NULL_WORD);
iveresov@2146 1890 if (op->should_profile()) {
iveresov@2146 1891 Label not_null;
iveresov@2146 1892 __ jccb(Assembler::notEqual, not_null);
iveresov@2146 1893 // Object is null; update MDO and exit
iveresov@2146 1894 Register mdo = klass_RInfo;
iveresov@2146 1895 __ movoop(mdo, md->constant_encoding());
iveresov@2146 1896 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
iveresov@2146 1897 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
iveresov@2146 1898 __ orl(data_addr, header_bits);
iveresov@2146 1899 __ jmp(done);
iveresov@2146 1900 __ bind(not_null);
iveresov@2146 1901 } else {
iveresov@2146 1902 __ jcc(Assembler::equal, done);
iveresov@2146 1903 }
iveresov@2146 1904
duke@435 1905 add_debug_info_for_null_check_here(op->info_for_exception());
iveresov@2344 1906 __ load_klass(k_RInfo, array);
iveresov@2344 1907 __ load_klass(klass_RInfo, value);
iveresov@2344 1908
iveresov@2344 1909 // get instance klass (it's already uncompressed)
never@739 1910 __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
jrose@1079 1911 // perform the fast part of the checking logic
iveresov@2146 1912 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
jrose@1079 1913 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1914 __ push(klass_RInfo);
never@739 1915 __ push(k_RInfo);
duke@435 1916 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1917 __ pop(klass_RInfo);
never@739 1918 __ pop(k_RInfo);
never@739 1919 // result is a boolean
duke@435 1920 __ cmpl(k_RInfo, 0);
iveresov@2146 1921 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1922 // fall through to the success case
iveresov@2146 1923
iveresov@2146 1924 if (op->should_profile()) {
iveresov@2146 1925 Register mdo = klass_RInfo, recv = k_RInfo;
iveresov@2146 1926 __ bind(profile_cast_success);
iveresov@2146 1927 __ movoop(mdo, md->constant_encoding());
iveresov@2344 1928 __ load_klass(recv, value);
iveresov@2146 1929 Label update_done;
iveresov@2146 1930 type_profile_helper(mdo, md, data, recv, &done);
iveresov@2146 1931 __ jmpb(done);
iveresov@2146 1932
iveresov@2146 1933 __ bind(profile_cast_failure);
iveresov@2146 1934 __ movoop(mdo, md->constant_encoding());
iveresov@2146 1935 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
iveresov@2146 1936 __ subptr(counter_addr, DataLayout::counter_increment);
iveresov@2146 1937 __ jmp(*stub->entry());
iveresov@2146 1938 }
iveresov@2146 1939
duke@435 1940 __ bind(done);
iveresov@2146 1941 } else
iveresov@2146 1942 if (code == lir_checkcast) {
iveresov@2146 1943 Register obj = op->object()->as_register();
iveresov@2146 1944 Register dst = op->result_opr()->as_register();
iveresov@2146 1945 Label success;
iveresov@2146 1946 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
iveresov@2146 1947 __ bind(success);
iveresov@2146 1948 if (dst != obj) {
iveresov@2146 1949 __ mov(dst, obj);
iveresov@2146 1950 }
iveresov@2146 1951 } else
iveresov@2146 1952 if (code == lir_instanceof) {
iveresov@2146 1953 Register obj = op->object()->as_register();
iveresov@2146 1954 Register dst = op->result_opr()->as_register();
iveresov@2146 1955 Label success, failure, done;
iveresov@2146 1956 emit_typecheck_helper(op, &success, &failure, &failure);
iveresov@2146 1957 __ bind(failure);
iveresov@2146 1958 __ xorptr(dst, dst);
iveresov@2146 1959 __ jmpb(done);
iveresov@2146 1960 __ bind(success);
iveresov@2146 1961 __ movptr(dst, 1);
iveresov@2146 1962 __ bind(done);
duke@435 1963 } else {
iveresov@2146 1964 ShouldNotReachHere();
duke@435 1965 }
duke@435 1966
duke@435 1967 }
duke@435 1968
duke@435 1969
duke@435 1970 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
never@739 1971 if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
duke@435 1972 assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
duke@435 1973 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
duke@435 1974 assert(op->new_value()->as_register_lo() == rbx, "wrong register");
duke@435 1975 assert(op->new_value()->as_register_hi() == rcx, "wrong register");
duke@435 1976 Register addr = op->addr()->as_register();
duke@435 1977 if (os::is_MP()) {
duke@435 1978 __ lock();
duke@435 1979 }
never@739 1980 NOT_LP64(__ cmpxchg8(Address(addr, 0)));
never@739 1981
never@739 1982 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
never@739 1983 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
never@739 1984 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
duke@435 1985 Register newval = op->new_value()->as_register();
duke@435 1986 Register cmpval = op->cmp_value()->as_register();
duke@435 1987 assert(cmpval == rax, "wrong register");
duke@435 1988 assert(newval != NULL, "new val must be register");
duke@435 1989 assert(cmpval != newval, "cmp and new values must be in different registers");
duke@435 1990 assert(cmpval != addr, "cmp and addr must be in different registers");
duke@435 1991 assert(newval != addr, "new value and addr must be in different registers");
iveresov@2344 1992
never@739 1993 if ( op->code() == lir_cas_obj) {
iveresov@2344 1994 #ifdef _LP64
iveresov@2344 1995 if (UseCompressedOops) {
iveresov@2344 1996 __ encode_heap_oop(cmpval);
iveresov@2355 1997 __ mov(rscratch1, newval);
iveresov@2355 1998 __ encode_heap_oop(rscratch1);
iveresov@2344 1999 if (os::is_MP()) {
iveresov@2344 2000 __ lock();
iveresov@2344 2001 }
iveresov@2355 2002 // cmpval (rax) is implicitly used by this instruction
iveresov@2355 2003 __ cmpxchgl(rscratch1, Address(addr, 0));
iveresov@2344 2004 } else
iveresov@2344 2005 #endif
iveresov@2344 2006 {
iveresov@2344 2007 if (os::is_MP()) {
iveresov@2344 2008 __ lock();
iveresov@2344 2009 }
iveresov@2344 2010 __ cmpxchgptr(newval, Address(addr, 0));
iveresov@2344 2011 }
iveresov@2344 2012 } else {
iveresov@2344 2013 assert(op->code() == lir_cas_int, "lir_cas_int expected");
iveresov@2344 2014 if (os::is_MP()) {
iveresov@2344 2015 __ lock();
iveresov@2344 2016 }
never@739 2017 __ cmpxchgl(newval, Address(addr, 0));
never@739 2018 }
never@739 2019 #ifdef _LP64
never@739 2020 } else if (op->code() == lir_cas_long) {
never@739 2021 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
never@739 2022 Register newval = op->new_value()->as_register_lo();
never@739 2023 Register cmpval = op->cmp_value()->as_register_lo();
never@739 2024 assert(cmpval == rax, "wrong register");
never@739 2025 assert(newval != NULL, "new val must be register");
never@739 2026 assert(cmpval != newval, "cmp and new values must be in different registers");
never@739 2027 assert(cmpval != addr, "cmp and addr must be in different registers");
never@739 2028 assert(newval != addr, "new value and addr must be in different registers");
never@739 2029 if (os::is_MP()) {
never@739 2030 __ lock();
never@739 2031 }
never@739 2032 __ cmpxchgq(newval, Address(addr, 0));
never@739 2033 #endif // _LP64
duke@435 2034 } else {
duke@435 2035 Unimplemented();
duke@435 2036 }
duke@435 2037 }
duke@435 2038
iveresov@2412 2039 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
duke@435 2040 Assembler::Condition acond, ncond;
duke@435 2041 switch (condition) {
duke@435 2042 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break;
duke@435 2043 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break;
duke@435 2044 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break;
duke@435 2045 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break;
duke@435 2046 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break;
duke@435 2047 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break;
duke@435 2048 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break;
duke@435 2049 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break;
duke@435 2050 default: ShouldNotReachHere();
duke@435 2051 }
duke@435 2052
duke@435 2053 if (opr1->is_cpu_register()) {
duke@435 2054 reg2reg(opr1, result);
duke@435 2055 } else if (opr1->is_stack()) {
duke@435 2056 stack2reg(opr1, result, result->type());
duke@435 2057 } else if (opr1->is_constant()) {
duke@435 2058 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 2059 } else {
duke@435 2060 ShouldNotReachHere();
duke@435 2061 }
duke@435 2062
duke@435 2063 if (VM_Version::supports_cmov() && !opr2->is_constant()) {
duke@435 2064 // optimized version that does not require a branch
duke@435 2065 if (opr2->is_single_cpu()) {
duke@435 2066 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
never@739 2067 __ cmov(ncond, result->as_register(), opr2->as_register());
duke@435 2068 } else if (opr2->is_double_cpu()) {
duke@435 2069 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
duke@435 2070 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
never@739 2071 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
never@739 2072 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
duke@435 2073 } else if (opr2->is_single_stack()) {
duke@435 2074 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2075 } else if (opr2->is_double_stack()) {
never@739 2076 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
never@739 2077 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
duke@435 2078 } else {
duke@435 2079 ShouldNotReachHere();
duke@435 2080 }
duke@435 2081
duke@435 2082 } else {
duke@435 2083 Label skip;
duke@435 2084 __ jcc (acond, skip);
duke@435 2085 if (opr2->is_cpu_register()) {
duke@435 2086 reg2reg(opr2, result);
duke@435 2087 } else if (opr2->is_stack()) {
duke@435 2088 stack2reg(opr2, result, result->type());
duke@435 2089 } else if (opr2->is_constant()) {
duke@435 2090 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 2091 } else {
duke@435 2092 ShouldNotReachHere();
duke@435 2093 }
duke@435 2094 __ bind(skip);
duke@435 2095 }
duke@435 2096 }
duke@435 2097
duke@435 2098
duke@435 2099 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 2100 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
duke@435 2101
duke@435 2102 if (left->is_single_cpu()) {
duke@435 2103 assert(left == dest, "left and dest must be equal");
duke@435 2104 Register lreg = left->as_register();
duke@435 2105
duke@435 2106 if (right->is_single_cpu()) {
duke@435 2107 // cpu register - cpu register
duke@435 2108 Register rreg = right->as_register();
duke@435 2109 switch (code) {
duke@435 2110 case lir_add: __ addl (lreg, rreg); break;
duke@435 2111 case lir_sub: __ subl (lreg, rreg); break;
duke@435 2112 case lir_mul: __ imull(lreg, rreg); break;
duke@435 2113 default: ShouldNotReachHere();
duke@435 2114 }
duke@435 2115
duke@435 2116 } else if (right->is_stack()) {
duke@435 2117 // cpu register - stack
duke@435 2118 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2119 switch (code) {
duke@435 2120 case lir_add: __ addl(lreg, raddr); break;
duke@435 2121 case lir_sub: __ subl(lreg, raddr); break;
duke@435 2122 default: ShouldNotReachHere();
duke@435 2123 }
duke@435 2124
duke@435 2125 } else if (right->is_constant()) {
duke@435 2126 // cpu register - constant
duke@435 2127 jint c = right->as_constant_ptr()->as_jint();
duke@435 2128 switch (code) {
duke@435 2129 case lir_add: {
iveresov@2145 2130 __ incrementl(lreg, c);
duke@435 2131 break;
duke@435 2132 }
duke@435 2133 case lir_sub: {
iveresov@2145 2134 __ decrementl(lreg, c);
duke@435 2135 break;
duke@435 2136 }
duke@435 2137 default: ShouldNotReachHere();
duke@435 2138 }
duke@435 2139
duke@435 2140 } else {
duke@435 2141 ShouldNotReachHere();
duke@435 2142 }
duke@435 2143
duke@435 2144 } else if (left->is_double_cpu()) {
duke@435 2145 assert(left == dest, "left and dest must be equal");
duke@435 2146 Register lreg_lo = left->as_register_lo();
duke@435 2147 Register lreg_hi = left->as_register_hi();
duke@435 2148
duke@435 2149 if (right->is_double_cpu()) {
duke@435 2150 // cpu register - cpu register
duke@435 2151 Register rreg_lo = right->as_register_lo();
duke@435 2152 Register rreg_hi = right->as_register_hi();
never@739 2153 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
never@739 2154 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
duke@435 2155 switch (code) {
duke@435 2156 case lir_add:
never@739 2157 __ addptr(lreg_lo, rreg_lo);
never@739 2158 NOT_LP64(__ adcl(lreg_hi, rreg_hi));
duke@435 2159 break;
duke@435 2160 case lir_sub:
never@739 2161 __ subptr(lreg_lo, rreg_lo);
never@739 2162 NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
duke@435 2163 break;
duke@435 2164 case lir_mul:
never@739 2165 #ifdef _LP64
never@739 2166 __ imulq(lreg_lo, rreg_lo);
never@739 2167 #else
duke@435 2168 assert(lreg_lo == rax && lreg_hi == rdx, "must be");
duke@435 2169 __ imull(lreg_hi, rreg_lo);
duke@435 2170 __ imull(rreg_hi, lreg_lo);
duke@435 2171 __ addl (rreg_hi, lreg_hi);
duke@435 2172 __ mull (rreg_lo);
duke@435 2173 __ addl (lreg_hi, rreg_hi);
never@739 2174 #endif // _LP64
duke@435 2175 break;
duke@435 2176 default:
duke@435 2177 ShouldNotReachHere();
duke@435 2178 }
duke@435 2179
duke@435 2180 } else if (right->is_constant()) {
duke@435 2181 // cpu register - constant
never@739 2182 #ifdef _LP64
never@739 2183 jlong c = right->as_constant_ptr()->as_jlong_bits();
never@739 2184 __ movptr(r10, (intptr_t) c);
never@739 2185 switch (code) {
never@739 2186 case lir_add:
never@739 2187 __ addptr(lreg_lo, r10);
never@739 2188 break;
never@739 2189 case lir_sub:
never@739 2190 __ subptr(lreg_lo, r10);
never@739 2191 break;
never@739 2192 default:
never@739 2193 ShouldNotReachHere();
never@739 2194 }
never@739 2195 #else
duke@435 2196 jint c_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2197 jint c_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2198 switch (code) {
duke@435 2199 case lir_add:
never@739 2200 __ addptr(lreg_lo, c_lo);
duke@435 2201 __ adcl(lreg_hi, c_hi);
duke@435 2202 break;
duke@435 2203 case lir_sub:
never@739 2204 __ subptr(lreg_lo, c_lo);
duke@435 2205 __ sbbl(lreg_hi, c_hi);
duke@435 2206 break;
duke@435 2207 default:
duke@435 2208 ShouldNotReachHere();
duke@435 2209 }
never@739 2210 #endif // _LP64
duke@435 2211
duke@435 2212 } else {
duke@435 2213 ShouldNotReachHere();
duke@435 2214 }
duke@435 2215
duke@435 2216 } else if (left->is_single_xmm()) {
duke@435 2217 assert(left == dest, "left and dest must be equal");
duke@435 2218 XMMRegister lreg = left->as_xmm_float_reg();
duke@435 2219
duke@435 2220 if (right->is_single_xmm()) {
duke@435 2221 XMMRegister rreg = right->as_xmm_float_reg();
duke@435 2222 switch (code) {
duke@435 2223 case lir_add: __ addss(lreg, rreg); break;
duke@435 2224 case lir_sub: __ subss(lreg, rreg); break;
duke@435 2225 case lir_mul_strictfp: // fall through
duke@435 2226 case lir_mul: __ mulss(lreg, rreg); break;
duke@435 2227 case lir_div_strictfp: // fall through
duke@435 2228 case lir_div: __ divss(lreg, rreg); break;
duke@435 2229 default: ShouldNotReachHere();
duke@435 2230 }
duke@435 2231 } else {
duke@435 2232 Address raddr;
duke@435 2233 if (right->is_single_stack()) {
duke@435 2234 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2235 } else if (right->is_constant()) {
duke@435 2236 // hack for now
duke@435 2237 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
duke@435 2238 } else {
duke@435 2239 ShouldNotReachHere();
duke@435 2240 }
duke@435 2241 switch (code) {
duke@435 2242 case lir_add: __ addss(lreg, raddr); break;
duke@435 2243 case lir_sub: __ subss(lreg, raddr); break;
duke@435 2244 case lir_mul_strictfp: // fall through
duke@435 2245 case lir_mul: __ mulss(lreg, raddr); break;
duke@435 2246 case lir_div_strictfp: // fall through
duke@435 2247 case lir_div: __ divss(lreg, raddr); break;
duke@435 2248 default: ShouldNotReachHere();
duke@435 2249 }
duke@435 2250 }
duke@435 2251
duke@435 2252 } else if (left->is_double_xmm()) {
duke@435 2253 assert(left == dest, "left and dest must be equal");
duke@435 2254
duke@435 2255 XMMRegister lreg = left->as_xmm_double_reg();
duke@435 2256 if (right->is_double_xmm()) {
duke@435 2257 XMMRegister rreg = right->as_xmm_double_reg();
duke@435 2258 switch (code) {
duke@435 2259 case lir_add: __ addsd(lreg, rreg); break;
duke@435 2260 case lir_sub: __ subsd(lreg, rreg); break;
duke@435 2261 case lir_mul_strictfp: // fall through
duke@435 2262 case lir_mul: __ mulsd(lreg, rreg); break;
duke@435 2263 case lir_div_strictfp: // fall through
duke@435 2264 case lir_div: __ divsd(lreg, rreg); break;
duke@435 2265 default: ShouldNotReachHere();
duke@435 2266 }
duke@435 2267 } else {
duke@435 2268 Address raddr;
duke@435 2269 if (right->is_double_stack()) {
duke@435 2270 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2271 } else if (right->is_constant()) {
duke@435 2272 // hack for now
duke@435 2273 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2274 } else {
duke@435 2275 ShouldNotReachHere();
duke@435 2276 }
duke@435 2277 switch (code) {
duke@435 2278 case lir_add: __ addsd(lreg, raddr); break;
duke@435 2279 case lir_sub: __ subsd(lreg, raddr); break;
duke@435 2280 case lir_mul_strictfp: // fall through
duke@435 2281 case lir_mul: __ mulsd(lreg, raddr); break;
duke@435 2282 case lir_div_strictfp: // fall through
duke@435 2283 case lir_div: __ divsd(lreg, raddr); break;
duke@435 2284 default: ShouldNotReachHere();
duke@435 2285 }
duke@435 2286 }
duke@435 2287
duke@435 2288 } else if (left->is_single_fpu()) {
duke@435 2289 assert(dest->is_single_fpu(), "fpu stack allocation required");
duke@435 2290
duke@435 2291 if (right->is_single_fpu()) {
duke@435 2292 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
duke@435 2293
duke@435 2294 } else {
duke@435 2295 assert(left->fpu_regnr() == 0, "left must be on TOS");
duke@435 2296 assert(dest->fpu_regnr() == 0, "dest must be on TOS");
duke@435 2297
duke@435 2298 Address raddr;
duke@435 2299 if (right->is_single_stack()) {
duke@435 2300 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2301 } else if (right->is_constant()) {
duke@435 2302 address const_addr = float_constant(right->as_jfloat());
duke@435 2303 assert(const_addr != NULL, "incorrect float/double constant maintainance");
duke@435 2304 // hack for now
duke@435 2305 raddr = __ as_Address(InternalAddress(const_addr));
duke@435 2306 } else {
duke@435 2307 ShouldNotReachHere();
duke@435 2308 }
duke@435 2309
duke@435 2310 switch (code) {
duke@435 2311 case lir_add: __ fadd_s(raddr); break;
duke@435 2312 case lir_sub: __ fsub_s(raddr); break;
duke@435 2313 case lir_mul_strictfp: // fall through
duke@435 2314 case lir_mul: __ fmul_s(raddr); break;
duke@435 2315 case lir_div_strictfp: // fall through
duke@435 2316 case lir_div: __ fdiv_s(raddr); break;
duke@435 2317 default: ShouldNotReachHere();
duke@435 2318 }
duke@435 2319 }
duke@435 2320
duke@435 2321 } else if (left->is_double_fpu()) {
duke@435 2322 assert(dest->is_double_fpu(), "fpu stack allocation required");
duke@435 2323
duke@435 2324 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2325 // Double values require special handling for strictfp mul/div on x86
duke@435 2326 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
duke@435 2327 __ fmulp(left->fpu_regnrLo() + 1);
duke@435 2328 }
duke@435 2329
duke@435 2330 if (right->is_double_fpu()) {
duke@435 2331 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
duke@435 2332
duke@435 2333 } else {
duke@435 2334 assert(left->fpu_regnrLo() == 0, "left must be on TOS");
duke@435 2335 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
duke@435 2336
duke@435 2337 Address raddr;
duke@435 2338 if (right->is_double_stack()) {
duke@435 2339 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2340 } else if (right->is_constant()) {
duke@435 2341 // hack for now
duke@435 2342 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2343 } else {
duke@435 2344 ShouldNotReachHere();
duke@435 2345 }
duke@435 2346
duke@435 2347 switch (code) {
duke@435 2348 case lir_add: __ fadd_d(raddr); break;
duke@435 2349 case lir_sub: __ fsub_d(raddr); break;
duke@435 2350 case lir_mul_strictfp: // fall through
duke@435 2351 case lir_mul: __ fmul_d(raddr); break;
duke@435 2352 case lir_div_strictfp: // fall through
duke@435 2353 case lir_div: __ fdiv_d(raddr); break;
duke@435 2354 default: ShouldNotReachHere();
duke@435 2355 }
duke@435 2356 }
duke@435 2357
duke@435 2358 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2359 // Double values require special handling for strictfp mul/div on x86
duke@435 2360 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
duke@435 2361 __ fmulp(dest->fpu_regnrLo() + 1);
duke@435 2362 }
duke@435 2363
duke@435 2364 } else if (left->is_single_stack() || left->is_address()) {
duke@435 2365 assert(left == dest, "left and dest must be equal");
duke@435 2366
duke@435 2367 Address laddr;
duke@435 2368 if (left->is_single_stack()) {
duke@435 2369 laddr = frame_map()->address_for_slot(left->single_stack_ix());
duke@435 2370 } else if (left->is_address()) {
duke@435 2371 laddr = as_Address(left->as_address_ptr());
duke@435 2372 } else {
duke@435 2373 ShouldNotReachHere();
duke@435 2374 }
duke@435 2375
duke@435 2376 if (right->is_single_cpu()) {
duke@435 2377 Register rreg = right->as_register();
duke@435 2378 switch (code) {
duke@435 2379 case lir_add: __ addl(laddr, rreg); break;
duke@435 2380 case lir_sub: __ subl(laddr, rreg); break;
duke@435 2381 default: ShouldNotReachHere();
duke@435 2382 }
duke@435 2383 } else if (right->is_constant()) {
duke@435 2384 jint c = right->as_constant_ptr()->as_jint();
duke@435 2385 switch (code) {
duke@435 2386 case lir_add: {
never@739 2387 __ incrementl(laddr, c);
duke@435 2388 break;
duke@435 2389 }
duke@435 2390 case lir_sub: {
never@739 2391 __ decrementl(laddr, c);
duke@435 2392 break;
duke@435 2393 }
duke@435 2394 default: ShouldNotReachHere();
duke@435 2395 }
duke@435 2396 } else {
duke@435 2397 ShouldNotReachHere();
duke@435 2398 }
duke@435 2399
duke@435 2400 } else {
duke@435 2401 ShouldNotReachHere();
duke@435 2402 }
duke@435 2403 }
duke@435 2404
duke@435 2405 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
duke@435 2406 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR");
duke@435 2407 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
duke@435 2408 assert(left_index == 0 || right_index == 0, "either must be on top of stack");
duke@435 2409
duke@435 2410 bool left_is_tos = (left_index == 0);
duke@435 2411 bool dest_is_tos = (dest_index == 0);
duke@435 2412 int non_tos_index = (left_is_tos ? right_index : left_index);
duke@435 2413
duke@435 2414 switch (code) {
duke@435 2415 case lir_add:
duke@435 2416 if (pop_fpu_stack) __ faddp(non_tos_index);
duke@435 2417 else if (dest_is_tos) __ fadd (non_tos_index);
duke@435 2418 else __ fadda(non_tos_index);
duke@435 2419 break;
duke@435 2420
duke@435 2421 case lir_sub:
duke@435 2422 if (left_is_tos) {
duke@435 2423 if (pop_fpu_stack) __ fsubrp(non_tos_index);
duke@435 2424 else if (dest_is_tos) __ fsub (non_tos_index);
duke@435 2425 else __ fsubra(non_tos_index);
duke@435 2426 } else {
duke@435 2427 if (pop_fpu_stack) __ fsubp (non_tos_index);
duke@435 2428 else if (dest_is_tos) __ fsubr (non_tos_index);
duke@435 2429 else __ fsuba (non_tos_index);
duke@435 2430 }
duke@435 2431 break;
duke@435 2432
duke@435 2433 case lir_mul_strictfp: // fall through
duke@435 2434 case lir_mul:
duke@435 2435 if (pop_fpu_stack) __ fmulp(non_tos_index);
duke@435 2436 else if (dest_is_tos) __ fmul (non_tos_index);
duke@435 2437 else __ fmula(non_tos_index);
duke@435 2438 break;
duke@435 2439
duke@435 2440 case lir_div_strictfp: // fall through
duke@435 2441 case lir_div:
duke@435 2442 if (left_is_tos) {
duke@435 2443 if (pop_fpu_stack) __ fdivrp(non_tos_index);
duke@435 2444 else if (dest_is_tos) __ fdiv (non_tos_index);
duke@435 2445 else __ fdivra(non_tos_index);
duke@435 2446 } else {
duke@435 2447 if (pop_fpu_stack) __ fdivp (non_tos_index);
duke@435 2448 else if (dest_is_tos) __ fdivr (non_tos_index);
duke@435 2449 else __ fdiva (non_tos_index);
duke@435 2450 }
duke@435 2451 break;
duke@435 2452
duke@435 2453 case lir_rem:
duke@435 2454 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
duke@435 2455 __ fremr(noreg);
duke@435 2456 break;
duke@435 2457
duke@435 2458 default:
duke@435 2459 ShouldNotReachHere();
duke@435 2460 }
duke@435 2461 }
duke@435 2462
duke@435 2463
duke@435 2464 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
duke@435 2465 if (value->is_double_xmm()) {
duke@435 2466 switch(code) {
duke@435 2467 case lir_abs :
duke@435 2468 {
duke@435 2469 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
duke@435 2470 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
duke@435 2471 }
duke@435 2472 __ andpd(dest->as_xmm_double_reg(),
duke@435 2473 ExternalAddress((address)double_signmask_pool));
duke@435 2474 }
duke@435 2475 break;
duke@435 2476
duke@435 2477 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
duke@435 2478 // all other intrinsics are not available in the SSE instruction set, so FPU is used
duke@435 2479 default : ShouldNotReachHere();
duke@435 2480 }
duke@435 2481
duke@435 2482 } else if (value->is_double_fpu()) {
duke@435 2483 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
duke@435 2484 switch(code) {
duke@435 2485 case lir_log : __ flog() ; break;
duke@435 2486 case lir_log10 : __ flog10() ; break;
duke@435 2487 case lir_abs : __ fabs() ; break;
duke@435 2488 case lir_sqrt : __ fsqrt(); break;
duke@435 2489 case lir_sin :
duke@435 2490 // Should consider not saving rbx, if not necessary
duke@435 2491 __ trigfunc('s', op->as_Op2()->fpu_stack_size());
duke@435 2492 break;
duke@435 2493 case lir_cos :
duke@435 2494 // Should consider not saving rbx, if not necessary
duke@435 2495 assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
duke@435 2496 __ trigfunc('c', op->as_Op2()->fpu_stack_size());
duke@435 2497 break;
duke@435 2498 case lir_tan :
duke@435 2499 // Should consider not saving rbx, if not necessary
duke@435 2500 __ trigfunc('t', op->as_Op2()->fpu_stack_size());
duke@435 2501 break;
duke@435 2502 default : ShouldNotReachHere();
duke@435 2503 }
duke@435 2504 } else {
duke@435 2505 Unimplemented();
duke@435 2506 }
duke@435 2507 }
duke@435 2508
duke@435 2509 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
duke@435 2510 // assert(left->destroys_register(), "check");
duke@435 2511 if (left->is_single_cpu()) {
duke@435 2512 Register reg = left->as_register();
duke@435 2513 if (right->is_constant()) {
duke@435 2514 int val = right->as_constant_ptr()->as_jint();
duke@435 2515 switch (code) {
duke@435 2516 case lir_logic_and: __ andl (reg, val); break;
duke@435 2517 case lir_logic_or: __ orl (reg, val); break;
duke@435 2518 case lir_logic_xor: __ xorl (reg, val); break;
duke@435 2519 default: ShouldNotReachHere();
duke@435 2520 }
duke@435 2521 } else if (right->is_stack()) {
duke@435 2522 // added support for stack operands
duke@435 2523 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2524 switch (code) {
duke@435 2525 case lir_logic_and: __ andl (reg, raddr); break;
duke@435 2526 case lir_logic_or: __ orl (reg, raddr); break;
duke@435 2527 case lir_logic_xor: __ xorl (reg, raddr); break;
duke@435 2528 default: ShouldNotReachHere();
duke@435 2529 }
duke@435 2530 } else {
duke@435 2531 Register rright = right->as_register();
duke@435 2532 switch (code) {
never@739 2533 case lir_logic_and: __ andptr (reg, rright); break;
never@739 2534 case lir_logic_or : __ orptr (reg, rright); break;
never@739 2535 case lir_logic_xor: __ xorptr (reg, rright); break;
duke@435 2536 default: ShouldNotReachHere();
duke@435 2537 }
duke@435 2538 }
duke@435 2539 move_regs(reg, dst->as_register());
duke@435 2540 } else {
duke@435 2541 Register l_lo = left->as_register_lo();
duke@435 2542 Register l_hi = left->as_register_hi();
duke@435 2543 if (right->is_constant()) {
never@739 2544 #ifdef _LP64
never@739 2545 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
never@739 2546 switch (code) {
never@739 2547 case lir_logic_and:
never@739 2548 __ andq(l_lo, rscratch1);
never@739 2549 break;
never@739 2550 case lir_logic_or:
never@739 2551 __ orq(l_lo, rscratch1);
never@739 2552 break;
never@739 2553 case lir_logic_xor:
never@739 2554 __ xorq(l_lo, rscratch1);
never@739 2555 break;
never@739 2556 default: ShouldNotReachHere();
never@739 2557 }
never@739 2558 #else
duke@435 2559 int r_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2560 int r_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2561 switch (code) {
duke@435 2562 case lir_logic_and:
duke@435 2563 __ andl(l_lo, r_lo);
duke@435 2564 __ andl(l_hi, r_hi);
duke@435 2565 break;
duke@435 2566 case lir_logic_or:
duke@435 2567 __ orl(l_lo, r_lo);
duke@435 2568 __ orl(l_hi, r_hi);
duke@435 2569 break;
duke@435 2570 case lir_logic_xor:
duke@435 2571 __ xorl(l_lo, r_lo);
duke@435 2572 __ xorl(l_hi, r_hi);
duke@435 2573 break;
duke@435 2574 default: ShouldNotReachHere();
duke@435 2575 }
never@739 2576 #endif // _LP64
duke@435 2577 } else {
iveresov@1927 2578 #ifdef _LP64
iveresov@1927 2579 Register r_lo;
iveresov@1927 2580 if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
iveresov@1927 2581 r_lo = right->as_register();
iveresov@1927 2582 } else {
iveresov@1927 2583 r_lo = right->as_register_lo();
iveresov@1927 2584 }
iveresov@1927 2585 #else
duke@435 2586 Register r_lo = right->as_register_lo();
duke@435 2587 Register r_hi = right->as_register_hi();
duke@435 2588 assert(l_lo != r_hi, "overwriting registers");
iveresov@1927 2589 #endif
duke@435 2590 switch (code) {
duke@435 2591 case lir_logic_and:
never@739 2592 __ andptr(l_lo, r_lo);
never@739 2593 NOT_LP64(__ andptr(l_hi, r_hi);)
duke@435 2594 break;
duke@435 2595 case lir_logic_or:
never@739 2596 __ orptr(l_lo, r_lo);
never@739 2597 NOT_LP64(__ orptr(l_hi, r_hi);)
duke@435 2598 break;
duke@435 2599 case lir_logic_xor:
never@739 2600 __ xorptr(l_lo, r_lo);
never@739 2601 NOT_LP64(__ xorptr(l_hi, r_hi);)
duke@435 2602 break;
duke@435 2603 default: ShouldNotReachHere();
duke@435 2604 }
duke@435 2605 }
duke@435 2606
duke@435 2607 Register dst_lo = dst->as_register_lo();
duke@435 2608 Register dst_hi = dst->as_register_hi();
duke@435 2609
never@739 2610 #ifdef _LP64
never@739 2611 move_regs(l_lo, dst_lo);
never@739 2612 #else
duke@435 2613 if (dst_lo == l_hi) {
duke@435 2614 assert(dst_hi != l_lo, "overwriting registers");
duke@435 2615 move_regs(l_hi, dst_hi);
duke@435 2616 move_regs(l_lo, dst_lo);
duke@435 2617 } else {
duke@435 2618 assert(dst_lo != l_hi, "overwriting registers");
duke@435 2619 move_regs(l_lo, dst_lo);
duke@435 2620 move_regs(l_hi, dst_hi);
duke@435 2621 }
never@739 2622 #endif // _LP64
duke@435 2623 }
duke@435 2624 }
duke@435 2625
duke@435 2626
duke@435 2627 // we assume that rax, and rdx can be overwritten
duke@435 2628 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
duke@435 2629
duke@435 2630 assert(left->is_single_cpu(), "left must be register");
duke@435 2631 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
duke@435 2632 assert(result->is_single_cpu(), "result must be register");
duke@435 2633
duke@435 2634 // assert(left->destroys_register(), "check");
duke@435 2635 // assert(right->destroys_register(), "check");
duke@435 2636
duke@435 2637 Register lreg = left->as_register();
duke@435 2638 Register dreg = result->as_register();
duke@435 2639
duke@435 2640 if (right->is_constant()) {
duke@435 2641 int divisor = right->as_constant_ptr()->as_jint();
duke@435 2642 assert(divisor > 0 && is_power_of_2(divisor), "must be");
duke@435 2643 if (code == lir_idiv) {
duke@435 2644 assert(lreg == rax, "must be rax,");
duke@435 2645 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2646 __ cdql(); // sign extend into rdx:rax
duke@435 2647 if (divisor == 2) {
duke@435 2648 __ subl(lreg, rdx);
duke@435 2649 } else {
duke@435 2650 __ andl(rdx, divisor - 1);
duke@435 2651 __ addl(lreg, rdx);
duke@435 2652 }
duke@435 2653 __ sarl(lreg, log2_intptr(divisor));
duke@435 2654 move_regs(lreg, dreg);
duke@435 2655 } else if (code == lir_irem) {
duke@435 2656 Label done;
never@739 2657 __ mov(dreg, lreg);
duke@435 2658 __ andl(dreg, 0x80000000 | (divisor - 1));
duke@435 2659 __ jcc(Assembler::positive, done);
duke@435 2660 __ decrement(dreg);
duke@435 2661 __ orl(dreg, ~(divisor - 1));
duke@435 2662 __ increment(dreg);
duke@435 2663 __ bind(done);
duke@435 2664 } else {
duke@435 2665 ShouldNotReachHere();
duke@435 2666 }
duke@435 2667 } else {
duke@435 2668 Register rreg = right->as_register();
duke@435 2669 assert(lreg == rax, "left register must be rax,");
duke@435 2670 assert(rreg != rdx, "right register must not be rdx");
duke@435 2671 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2672
duke@435 2673 move_regs(lreg, rax);
duke@435 2674
duke@435 2675 int idivl_offset = __ corrected_idivl(rreg);
duke@435 2676 add_debug_info_for_div0(idivl_offset, info);
duke@435 2677 if (code == lir_irem) {
duke@435 2678 move_regs(rdx, dreg); // result is in rdx
duke@435 2679 } else {
duke@435 2680 move_regs(rax, dreg);
duke@435 2681 }
duke@435 2682 }
duke@435 2683 }
duke@435 2684
duke@435 2685
duke@435 2686 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 2687 if (opr1->is_single_cpu()) {
duke@435 2688 Register reg1 = opr1->as_register();
duke@435 2689 if (opr2->is_single_cpu()) {
duke@435 2690 // cpu register - cpu register
never@739 2691 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2692 __ cmpptr(reg1, opr2->as_register());
never@739 2693 } else {
never@739 2694 assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
never@739 2695 __ cmpl(reg1, opr2->as_register());
never@739 2696 }
duke@435 2697 } else if (opr2->is_stack()) {
duke@435 2698 // cpu register - stack
never@739 2699 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2700 __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2701 } else {
never@739 2702 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2703 }
duke@435 2704 } else if (opr2->is_constant()) {
duke@435 2705 // cpu register - constant
duke@435 2706 LIR_Const* c = opr2->as_constant_ptr();
duke@435 2707 if (c->type() == T_INT) {
duke@435 2708 __ cmpl(reg1, c->as_jint());
never@739 2709 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2710 // In 64bit oops are single register
duke@435 2711 jobject o = c->as_jobject();
duke@435 2712 if (o == NULL) {
never@739 2713 __ cmpptr(reg1, (int32_t)NULL_WORD);
duke@435 2714 } else {
never@739 2715 #ifdef _LP64
never@739 2716 __ movoop(rscratch1, o);
never@739 2717 __ cmpptr(reg1, rscratch1);
never@739 2718 #else
duke@435 2719 __ cmpoop(reg1, c->as_jobject());
never@739 2720 #endif // _LP64
duke@435 2721 }
duke@435 2722 } else {
duke@435 2723 ShouldNotReachHere();
duke@435 2724 }
duke@435 2725 // cpu register - address
duke@435 2726 } else if (opr2->is_address()) {
duke@435 2727 if (op->info() != NULL) {
duke@435 2728 add_debug_info_for_null_check_here(op->info());
duke@435 2729 }
duke@435 2730 __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2731 } else {
duke@435 2732 ShouldNotReachHere();
duke@435 2733 }
duke@435 2734
duke@435 2735 } else if(opr1->is_double_cpu()) {
duke@435 2736 Register xlo = opr1->as_register_lo();
duke@435 2737 Register xhi = opr1->as_register_hi();
duke@435 2738 if (opr2->is_double_cpu()) {
never@739 2739 #ifdef _LP64
never@739 2740 __ cmpptr(xlo, opr2->as_register_lo());
never@739 2741 #else
duke@435 2742 // cpu register - cpu register
duke@435 2743 Register ylo = opr2->as_register_lo();
duke@435 2744 Register yhi = opr2->as_register_hi();
duke@435 2745 __ subl(xlo, ylo);
duke@435 2746 __ sbbl(xhi, yhi);
duke@435 2747 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 2748 __ orl(xhi, xlo);
duke@435 2749 }
never@739 2750 #endif // _LP64
duke@435 2751 } else if (opr2->is_constant()) {
duke@435 2752 // cpu register - constant 0
duke@435 2753 assert(opr2->as_jlong() == (jlong)0, "only handles zero");
never@739 2754 #ifdef _LP64
never@739 2755 __ cmpptr(xlo, (int32_t)opr2->as_jlong());
never@739 2756 #else
duke@435 2757 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
duke@435 2758 __ orl(xhi, xlo);
never@739 2759 #endif // _LP64
duke@435 2760 } else {
duke@435 2761 ShouldNotReachHere();
duke@435 2762 }
duke@435 2763
duke@435 2764 } else if (opr1->is_single_xmm()) {
duke@435 2765 XMMRegister reg1 = opr1->as_xmm_float_reg();
duke@435 2766 if (opr2->is_single_xmm()) {
duke@435 2767 // xmm register - xmm register
duke@435 2768 __ ucomiss(reg1, opr2->as_xmm_float_reg());
duke@435 2769 } else if (opr2->is_stack()) {
duke@435 2770 // xmm register - stack
duke@435 2771 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2772 } else if (opr2->is_constant()) {
duke@435 2773 // xmm register - constant
duke@435 2774 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
duke@435 2775 } else if (opr2->is_address()) {
duke@435 2776 // xmm register - address
duke@435 2777 if (op->info() != NULL) {
duke@435 2778 add_debug_info_for_null_check_here(op->info());
duke@435 2779 }
duke@435 2780 __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2781 } else {
duke@435 2782 ShouldNotReachHere();
duke@435 2783 }
duke@435 2784
duke@435 2785 } else if (opr1->is_double_xmm()) {
duke@435 2786 XMMRegister reg1 = opr1->as_xmm_double_reg();
duke@435 2787 if (opr2->is_double_xmm()) {
duke@435 2788 // xmm register - xmm register
duke@435 2789 __ ucomisd(reg1, opr2->as_xmm_double_reg());
duke@435 2790 } else if (opr2->is_stack()) {
duke@435 2791 // xmm register - stack
duke@435 2792 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
duke@435 2793 } else if (opr2->is_constant()) {
duke@435 2794 // xmm register - constant
duke@435 2795 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
duke@435 2796 } else if (opr2->is_address()) {
duke@435 2797 // xmm register - address
duke@435 2798 if (op->info() != NULL) {
duke@435 2799 add_debug_info_for_null_check_here(op->info());
duke@435 2800 }
duke@435 2801 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
duke@435 2802 } else {
duke@435 2803 ShouldNotReachHere();
duke@435 2804 }
duke@435 2805
duke@435 2806 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
duke@435 2807 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
duke@435 2808 assert(opr2->is_fpu_register(), "both must be registers");
duke@435 2809 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2810
duke@435 2811 } else if (opr1->is_address() && opr2->is_constant()) {
never@739 2812 LIR_Const* c = opr2->as_constant_ptr();
never@739 2813 #ifdef _LP64
never@739 2814 if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2815 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
never@739 2816 __ movoop(rscratch1, c->as_jobject());
never@739 2817 }
never@739 2818 #endif // LP64
duke@435 2819 if (op->info() != NULL) {
duke@435 2820 add_debug_info_for_null_check_here(op->info());
duke@435 2821 }
duke@435 2822 // special case: address - constant
duke@435 2823 LIR_Address* addr = opr1->as_address_ptr();
duke@435 2824 if (c->type() == T_INT) {
duke@435 2825 __ cmpl(as_Address(addr), c->as_jint());
never@739 2826 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2827 #ifdef _LP64
never@739 2828 // %%% Make this explode if addr isn't reachable until we figure out a
never@739 2829 // better strategy by giving noreg as the temp for as_Address
never@739 2830 __ cmpptr(rscratch1, as_Address(addr, noreg));
never@739 2831 #else
duke@435 2832 __ cmpoop(as_Address(addr), c->as_jobject());
never@739 2833 #endif // _LP64
duke@435 2834 } else {
duke@435 2835 ShouldNotReachHere();
duke@435 2836 }
duke@435 2837
duke@435 2838 } else {
duke@435 2839 ShouldNotReachHere();
duke@435 2840 }
duke@435 2841 }
duke@435 2842
duke@435 2843 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
duke@435 2844 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 2845 if (left->is_single_xmm()) {
duke@435 2846 assert(right->is_single_xmm(), "must match");
duke@435 2847 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2848 } else if (left->is_double_xmm()) {
duke@435 2849 assert(right->is_double_xmm(), "must match");
duke@435 2850 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2851
duke@435 2852 } else {
duke@435 2853 assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
duke@435 2854 assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
duke@435 2855
duke@435 2856 assert(left->fpu() == 0, "left must be on TOS");
duke@435 2857 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
duke@435 2858 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2859 }
duke@435 2860 } else {
duke@435 2861 assert(code == lir_cmp_l2i, "check");
never@739 2862 #ifdef _LP64
iveresov@1804 2863 Label done;
iveresov@1804 2864 Register dest = dst->as_register();
iveresov@1804 2865 __ cmpptr(left->as_register_lo(), right->as_register_lo());
iveresov@1804 2866 __ movl(dest, -1);
iveresov@1804 2867 __ jccb(Assembler::less, done);
iveresov@1804 2868 __ set_byte_if_not_zero(dest);
iveresov@1804 2869 __ movzbl(dest, dest);
iveresov@1804 2870 __ bind(done);
never@739 2871 #else
duke@435 2872 __ lcmp2int(left->as_register_hi(),
duke@435 2873 left->as_register_lo(),
duke@435 2874 right->as_register_hi(),
duke@435 2875 right->as_register_lo());
duke@435 2876 move_regs(left->as_register_hi(), dst->as_register());
never@739 2877 #endif // _LP64
duke@435 2878 }
duke@435 2879 }
duke@435 2880
duke@435 2881
duke@435 2882 void LIR_Assembler::align_call(LIR_Code code) {
duke@435 2883 if (os::is_MP()) {
duke@435 2884 // make sure that the displacement word of the call ends up word aligned
duke@435 2885 int offset = __ offset();
duke@435 2886 switch (code) {
duke@435 2887 case lir_static_call:
duke@435 2888 case lir_optvirtual_call:
twisti@1730 2889 case lir_dynamic_call:
duke@435 2890 offset += NativeCall::displacement_offset;
duke@435 2891 break;
duke@435 2892 case lir_icvirtual_call:
duke@435 2893 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
duke@435 2894 break;
duke@435 2895 case lir_virtual_call: // currently, sparc-specific for niagara
duke@435 2896 default: ShouldNotReachHere();
duke@435 2897 }
duke@435 2898 while (offset++ % BytesPerWord != 0) {
duke@435 2899 __ nop();
duke@435 2900 }
duke@435 2901 }
duke@435 2902 }
duke@435 2903
duke@435 2904
twisti@1730 2905 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
duke@435 2906 assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2907 "must be aligned");
twisti@1730 2908 __ call(AddressLiteral(op->addr(), rtype));
twisti@1919 2909 add_call_info(code_offset(), op->info());
duke@435 2910 }
duke@435 2911
duke@435 2912
twisti@1730 2913 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
duke@435 2914 RelocationHolder rh = virtual_call_Relocation::spec(pc());
duke@435 2915 __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
duke@435 2916 assert(!os::is_MP() ||
duke@435 2917 (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2918 "must be aligned");
twisti@1730 2919 __ call(AddressLiteral(op->addr(), rh));
twisti@1919 2920 add_call_info(code_offset(), op->info());
duke@435 2921 }
duke@435 2922
duke@435 2923
duke@435 2924 /* Currently, vtable-dispatch is only enabled for sparc platforms */
twisti@1730 2925 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
duke@435 2926 ShouldNotReachHere();
duke@435 2927 }
duke@435 2928
twisti@1730 2929
duke@435 2930 void LIR_Assembler::emit_static_call_stub() {
duke@435 2931 address call_pc = __ pc();
duke@435 2932 address stub = __ start_a_stub(call_stub_size);
duke@435 2933 if (stub == NULL) {
duke@435 2934 bailout("static call stub overflow");
duke@435 2935 return;
duke@435 2936 }
duke@435 2937
duke@435 2938 int start = __ offset();
duke@435 2939 if (os::is_MP()) {
duke@435 2940 // make sure that the displacement word of the call ends up word aligned
duke@435 2941 int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
duke@435 2942 while (offset++ % BytesPerWord != 0) {
duke@435 2943 __ nop();
duke@435 2944 }
duke@435 2945 }
duke@435 2946 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 2947 __ movoop(rbx, (jobject)NULL);
duke@435 2948 // must be set to -1 at code generation time
duke@435 2949 assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
never@739 2950 // On 64bit this will die since it will take a movq & jmp, must be only a jmp
never@739 2951 __ jump(RuntimeAddress(__ pc()));
duke@435 2952
jcoomes@1844 2953 assert(__ offset() - start <= call_stub_size, "stub too big");
duke@435 2954 __ end_a_stub();
duke@435 2955 }
duke@435 2956
duke@435 2957
never@1813 2958 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
duke@435 2959 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2960 assert(exceptionPC->as_register() == rdx, "must match");
duke@435 2961
duke@435 2962 // exception object is not added to oop map by LinearScan
duke@435 2963 // (LinearScan assumes that no oops are in fixed registers)
duke@435 2964 info->add_register_oop(exceptionOop);
duke@435 2965 Runtime1::StubID unwind_id;
duke@435 2966
never@1813 2967 // get current pc information
never@1813 2968 // pc is only needed if the method has an exception handler, the unwind code does not need it.
never@1813 2969 int pc_for_athrow_offset = __ offset();
never@1813 2970 InternalAddress pc_for_athrow(__ pc());
never@1813 2971 __ lea(exceptionPC->as_register(), pc_for_athrow);
never@1813 2972 add_call_info(pc_for_athrow_offset, info); // for exception handler
never@1813 2973
never@1813 2974 __ verify_not_null_oop(rax);
never@1813 2975 // search an exception handler (rax: exception oop, rdx: throwing pc)
never@1813 2976 if (compilation()->has_fpu_code()) {
never@1813 2977 unwind_id = Runtime1::handle_exception_id;
duke@435 2978 } else {
never@1813 2979 unwind_id = Runtime1::handle_exception_nofpu_id;
duke@435 2980 }
never@1813 2981 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
duke@435 2982
duke@435 2983 // enough room for two byte trap
duke@435 2984 __ nop();
duke@435 2985 }
duke@435 2986
duke@435 2987
never@1813 2988 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
never@1813 2989 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2990
never@1813 2991 __ jmp(_unwind_handler_entry);
never@1813 2992 }
never@1813 2993
never@1813 2994
duke@435 2995 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2996
duke@435 2997 // optimized version for linear scan:
duke@435 2998 // * count must be already in ECX (guaranteed by LinearScan)
duke@435 2999 // * left and dest must be equal
duke@435 3000 // * tmp must be unused
duke@435 3001 assert(count->as_register() == SHIFT_count, "count must be in ECX");
duke@435 3002 assert(left == dest, "left and dest must be equal");
duke@435 3003 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
duke@435 3004
duke@435 3005 if (left->is_single_cpu()) {
duke@435 3006 Register value = left->as_register();
duke@435 3007 assert(value != SHIFT_count, "left cannot be ECX");
duke@435 3008
duke@435 3009 switch (code) {
duke@435 3010 case lir_shl: __ shll(value); break;
duke@435 3011 case lir_shr: __ sarl(value); break;
duke@435 3012 case lir_ushr: __ shrl(value); break;
duke@435 3013 default: ShouldNotReachHere();
duke@435 3014 }
duke@435 3015 } else if (left->is_double_cpu()) {
duke@435 3016 Register lo = left->as_register_lo();
duke@435 3017 Register hi = left->as_register_hi();
duke@435 3018 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
never@739 3019 #ifdef _LP64
never@739 3020 switch (code) {
never@739 3021 case lir_shl: __ shlptr(lo); break;
never@739 3022 case lir_shr: __ sarptr(lo); break;
never@739 3023 case lir_ushr: __ shrptr(lo); break;
never@739 3024 default: ShouldNotReachHere();
never@739 3025 }
never@739 3026 #else
duke@435 3027
duke@435 3028 switch (code) {
duke@435 3029 case lir_shl: __ lshl(hi, lo); break;
duke@435 3030 case lir_shr: __ lshr(hi, lo, true); break;
duke@435 3031 case lir_ushr: __ lshr(hi, lo, false); break;
duke@435 3032 default: ShouldNotReachHere();
duke@435 3033 }
never@739 3034 #endif // LP64
duke@435 3035 } else {
duke@435 3036 ShouldNotReachHere();
duke@435 3037 }
duke@435 3038 }
duke@435 3039
duke@435 3040
duke@435 3041 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 3042 if (dest->is_single_cpu()) {
duke@435 3043 // first move left into dest so that left is not destroyed by the shift
duke@435 3044 Register value = dest->as_register();
duke@435 3045 count = count & 0x1F; // Java spec
duke@435 3046
duke@435 3047 move_regs(left->as_register(), value);
duke@435 3048 switch (code) {
duke@435 3049 case lir_shl: __ shll(value, count); break;
duke@435 3050 case lir_shr: __ sarl(value, count); break;
duke@435 3051 case lir_ushr: __ shrl(value, count); break;
duke@435 3052 default: ShouldNotReachHere();
duke@435 3053 }
duke@435 3054 } else if (dest->is_double_cpu()) {
never@739 3055 #ifndef _LP64
duke@435 3056 Unimplemented();
never@739 3057 #else
never@739 3058 // first move left into dest so that left is not destroyed by the shift
never@739 3059 Register value = dest->as_register_lo();
never@739 3060 count = count & 0x1F; // Java spec
never@739 3061
never@739 3062 move_regs(left->as_register_lo(), value);
never@739 3063 switch (code) {
never@739 3064 case lir_shl: __ shlptr(value, count); break;
never@739 3065 case lir_shr: __ sarptr(value, count); break;
never@739 3066 case lir_ushr: __ shrptr(value, count); break;
never@739 3067 default: ShouldNotReachHere();
never@739 3068 }
never@739 3069 #endif // _LP64
duke@435 3070 } else {
duke@435 3071 ShouldNotReachHere();
duke@435 3072 }
duke@435 3073 }
duke@435 3074
duke@435 3075
duke@435 3076 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
duke@435 3077 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3078 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3079 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 3080 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
duke@435 3081 }
duke@435 3082
duke@435 3083
duke@435 3084 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
duke@435 3085 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3086 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3087 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 3088 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
duke@435 3089 }
duke@435 3090
duke@435 3091
duke@435 3092 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
duke@435 3093 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3094 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3095 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
duke@435 3096 __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
duke@435 3097 }
duke@435 3098
duke@435 3099
duke@435 3100 // This code replaces a call to arraycopy; no exception may
duke@435 3101 // be thrown in this code, they must be thrown in the System.arraycopy
duke@435 3102 // activation frame; we could save some checks if this would not be the case
duke@435 3103 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 3104 ciArrayKlass* default_type = op->expected_type();
duke@435 3105 Register src = op->src()->as_register();
duke@435 3106 Register dst = op->dst()->as_register();
duke@435 3107 Register src_pos = op->src_pos()->as_register();
duke@435 3108 Register dst_pos = op->dst_pos()->as_register();
duke@435 3109 Register length = op->length()->as_register();
duke@435 3110 Register tmp = op->tmp()->as_register();
duke@435 3111
duke@435 3112 CodeStub* stub = op->stub();
duke@435 3113 int flags = op->flags();
duke@435 3114 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 3115 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 3116
duke@435 3117 // if we don't know anything or it's an object array, just go through the generic arraycopy
duke@435 3118 if (default_type == NULL) {
duke@435 3119 Label done;
duke@435 3120 // save outgoing arguments on stack in case call to System.arraycopy is needed
duke@435 3121 // HACK ALERT. This code used to push the parameters in a hardwired fashion
duke@435 3122 // for interpreter calling conventions. Now we have to do it in new style conventions.
duke@435 3123 // For the moment until C1 gets the new register allocator I just force all the
duke@435 3124 // args to the right place (except the register args) and then on the back side
duke@435 3125 // reload the register args properly if we go slow path. Yuck
duke@435 3126
duke@435 3127 // These are proper for the calling convention
duke@435 3128
duke@435 3129 store_parameter(length, 2);
duke@435 3130 store_parameter(dst_pos, 1);
duke@435 3131 store_parameter(dst, 0);
duke@435 3132
duke@435 3133 // these are just temporary placements until we need to reload
duke@435 3134 store_parameter(src_pos, 3);
duke@435 3135 store_parameter(src, 4);
never@739 3136 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
never@739 3137
never@739 3138 address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
duke@435 3139
duke@435 3140 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
never@739 3141 #ifdef _LP64
never@739 3142 // The arguments are in java calling convention so we can trivially shift them to C
never@739 3143 // convention
never@739 3144 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3145 __ mov(c_rarg0, j_rarg0);
never@739 3146 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3147 __ mov(c_rarg1, j_rarg1);
never@739 3148 assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
never@739 3149 __ mov(c_rarg2, j_rarg2);
never@739 3150 assert_different_registers(c_rarg3, j_rarg4);
never@739 3151 __ mov(c_rarg3, j_rarg3);
never@739 3152 #ifdef _WIN64
never@739 3153 // Allocate abi space for args but be sure to keep stack aligned
never@739 3154 __ subptr(rsp, 6*wordSize);
never@739 3155 store_parameter(j_rarg4, 4);
never@739 3156 __ call(RuntimeAddress(entry));
never@739 3157 __ addptr(rsp, 6*wordSize);
never@739 3158 #else
never@739 3159 __ mov(c_rarg4, j_rarg4);
never@739 3160 __ call(RuntimeAddress(entry));
never@739 3161 #endif // _WIN64
never@739 3162 #else
never@739 3163 __ push(length);
never@739 3164 __ push(dst_pos);
never@739 3165 __ push(dst);
never@739 3166 __ push(src_pos);
never@739 3167 __ push(src);
duke@435 3168 __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
duke@435 3169
never@739 3170 #endif // _LP64
never@739 3171
duke@435 3172 __ cmpl(rax, 0);
duke@435 3173 __ jcc(Assembler::equal, *stub->continuation());
duke@435 3174
duke@435 3175 // Reload values from the stack so they are where the stub
duke@435 3176 // expects them.
never@739 3177 __ movptr (dst, Address(rsp, 0*BytesPerWord));
never@739 3178 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
never@739 3179 __ movptr (length, Address(rsp, 2*BytesPerWord));
never@739 3180 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
never@739 3181 __ movptr (src, Address(rsp, 4*BytesPerWord));
duke@435 3182 __ jmp(*stub->entry());
duke@435 3183
duke@435 3184 __ bind(*stub->continuation());
duke@435 3185 return;
duke@435 3186 }
duke@435 3187
duke@435 3188 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
duke@435 3189
kvn@464 3190 int elem_size = type2aelembytes(basic_type);
duke@435 3191 int shift_amount;
duke@435 3192 Address::ScaleFactor scale;
duke@435 3193
duke@435 3194 switch (elem_size) {
duke@435 3195 case 1 :
duke@435 3196 shift_amount = 0;
duke@435 3197 scale = Address::times_1;
duke@435 3198 break;
duke@435 3199 case 2 :
duke@435 3200 shift_amount = 1;
duke@435 3201 scale = Address::times_2;
duke@435 3202 break;
duke@435 3203 case 4 :
duke@435 3204 shift_amount = 2;
duke@435 3205 scale = Address::times_4;
duke@435 3206 break;
duke@435 3207 case 8 :
duke@435 3208 shift_amount = 3;
duke@435 3209 scale = Address::times_8;
duke@435 3210 break;
duke@435 3211 default:
duke@435 3212 ShouldNotReachHere();
duke@435 3213 }
duke@435 3214
duke@435 3215 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
duke@435 3216 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
duke@435 3217 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
duke@435 3218 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
duke@435 3219
never@739 3220 // length and pos's are all sign extended at this point on 64bit
never@739 3221
duke@435 3222 // test for NULL
duke@435 3223 if (flags & LIR_OpArrayCopy::src_null_check) {
never@739 3224 __ testptr(src, src);
duke@435 3225 __ jcc(Assembler::zero, *stub->entry());
duke@435 3226 }
duke@435 3227 if (flags & LIR_OpArrayCopy::dst_null_check) {
never@739 3228 __ testptr(dst, dst);
duke@435 3229 __ jcc(Assembler::zero, *stub->entry());
duke@435 3230 }
duke@435 3231
duke@435 3232 // check if negative
duke@435 3233 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 3234 __ testl(src_pos, src_pos);
duke@435 3235 __ jcc(Assembler::less, *stub->entry());
duke@435 3236 }
duke@435 3237 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 3238 __ testl(dst_pos, dst_pos);
duke@435 3239 __ jcc(Assembler::less, *stub->entry());
duke@435 3240 }
duke@435 3241 if (flags & LIR_OpArrayCopy::length_positive_check) {
duke@435 3242 __ testl(length, length);
duke@435 3243 __ jcc(Assembler::less, *stub->entry());
duke@435 3244 }
duke@435 3245
duke@435 3246 if (flags & LIR_OpArrayCopy::src_range_check) {
never@739 3247 __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
duke@435 3248 __ cmpl(tmp, src_length_addr);
duke@435 3249 __ jcc(Assembler::above, *stub->entry());
duke@435 3250 }
duke@435 3251 if (flags & LIR_OpArrayCopy::dst_range_check) {
never@739 3252 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
duke@435 3253 __ cmpl(tmp, dst_length_addr);
duke@435 3254 __ jcc(Assembler::above, *stub->entry());
duke@435 3255 }
duke@435 3256
duke@435 3257 if (flags & LIR_OpArrayCopy::type_check) {
iveresov@2344 3258 if (UseCompressedOops) {
iveresov@2344 3259 __ movl(tmp, src_klass_addr);
iveresov@2344 3260 __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3261 } else {
iveresov@2344 3262 __ movptr(tmp, src_klass_addr);
iveresov@2344 3263 __ cmpptr(tmp, dst_klass_addr);
iveresov@2344 3264 }
duke@435 3265 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 3266 }
duke@435 3267
duke@435 3268 #ifdef ASSERT
duke@435 3269 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 3270 // Sanity check the known type with the incoming class. For the
duke@435 3271 // primitive case the types must match exactly with src.klass and
duke@435 3272 // dst.klass each exactly matching the default type. For the
duke@435 3273 // object array case, if no type check is needed then either the
duke@435 3274 // dst type is exactly the expected type and the src type is a
duke@435 3275 // subtype which we can't check or src is the same array as dst
duke@435 3276 // but not necessarily exactly of type default_type.
duke@435 3277 Label known_ok, halt;
jrose@1424 3278 __ movoop(tmp, default_type->constant_encoding());
iveresov@2344 3279 #ifdef _LP64
iveresov@2344 3280 if (UseCompressedOops) {
iveresov@2344 3281 __ encode_heap_oop(tmp);
iveresov@2344 3282 }
iveresov@2344 3283 #endif
iveresov@2344 3284
duke@435 3285 if (basic_type != T_OBJECT) {
iveresov@2344 3286
iveresov@2344 3287 if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3288 else __ cmpptr(tmp, dst_klass_addr);
duke@435 3289 __ jcc(Assembler::notEqual, halt);
iveresov@2344 3290 if (UseCompressedOops) __ cmpl(tmp, src_klass_addr);
iveresov@2344 3291 else __ cmpptr(tmp, src_klass_addr);
duke@435 3292 __ jcc(Assembler::equal, known_ok);
duke@435 3293 } else {
iveresov@2344 3294 if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3295 else __ cmpptr(tmp, dst_klass_addr);
duke@435 3296 __ jcc(Assembler::equal, known_ok);
never@739 3297 __ cmpptr(src, dst);
duke@435 3298 __ jcc(Assembler::equal, known_ok);
duke@435 3299 }
duke@435 3300 __ bind(halt);
duke@435 3301 __ stop("incorrect type information in arraycopy");
duke@435 3302 __ bind(known_ok);
duke@435 3303 }
duke@435 3304 #endif
duke@435 3305
never@739 3306 if (shift_amount > 0 && basic_type != T_OBJECT) {
never@739 3307 __ shlptr(length, shift_amount);
never@739 3308 }
never@739 3309
never@739 3310 #ifdef _LP64
never@739 3311 assert_different_registers(c_rarg0, dst, dst_pos, length);
roland@1495 3312 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
never@739 3313 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3314 assert_different_registers(c_rarg1, length);
roland@1495 3315 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
never@739 3316 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3317 __ mov(c_rarg2, length);
never@739 3318
never@739 3319 #else
never@739 3320 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3321 store_parameter(tmp, 0);
never@739 3322 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3323 store_parameter(tmp, 1);
duke@435 3324 store_parameter(length, 2);
never@739 3325 #endif // _LP64
duke@435 3326 if (basic_type == T_OBJECT) {
duke@435 3327 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
duke@435 3328 } else {
duke@435 3329 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
duke@435 3330 }
duke@435 3331
duke@435 3332 __ bind(*stub->continuation());
duke@435 3333 }
duke@435 3334
duke@435 3335
duke@435 3336 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 3337 Register obj = op->obj_opr()->as_register(); // may not be an oop
duke@435 3338 Register hdr = op->hdr_opr()->as_register();
duke@435 3339 Register lock = op->lock_opr()->as_register();
duke@435 3340 if (!UseFastLocking) {
duke@435 3341 __ jmp(*op->stub()->entry());
duke@435 3342 } else if (op->code() == lir_lock) {
duke@435 3343 Register scratch = noreg;
duke@435 3344 if (UseBiasedLocking) {
duke@435 3345 scratch = op->scratch_opr()->as_register();
duke@435 3346 }
duke@435 3347 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3348 // add debug info for NullPointerException only if one is possible
duke@435 3349 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
duke@435 3350 if (op->info() != NULL) {
duke@435 3351 add_debug_info_for_null_check(null_check_offset, op->info());
duke@435 3352 }
duke@435 3353 // done
duke@435 3354 } else if (op->code() == lir_unlock) {
duke@435 3355 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3356 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 3357 } else {
duke@435 3358 Unimplemented();
duke@435 3359 }
duke@435 3360 __ bind(*op->stub()->continuation());
duke@435 3361 }
duke@435 3362
duke@435 3363
duke@435 3364 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 3365 ciMethod* method = op->profiled_method();
duke@435 3366 int bci = op->profiled_bci();
duke@435 3367
duke@435 3368 // Update counter for all call types
iveresov@2349 3369 ciMethodData* md = method->method_data_or_null();
iveresov@2349 3370 assert(md != NULL, "Sanity");
duke@435 3371 ciProfileData* data = md->bci_to_data(bci);
duke@435 3372 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 3373 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
duke@435 3374 Register mdo = op->mdo()->as_register();
jrose@1424 3375 __ movoop(mdo, md->constant_encoding());
duke@435 3376 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
duke@435 3377 Bytecodes::Code bc = method->java_code_at_bci(bci);
duke@435 3378 // Perform additional virtual call profiling for invokevirtual and
duke@435 3379 // invokeinterface bytecodes
duke@435 3380 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
iveresov@2138 3381 C1ProfileVirtualCalls) {
duke@435 3382 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 3383 Register recv = op->recv()->as_register();
duke@435 3384 assert_different_registers(mdo, recv);
duke@435 3385 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 3386 ciKlass* known_klass = op->known_holder();
iveresov@2138 3387 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 3388 // We know the type that will be seen at this call site; we can
duke@435 3389 // statically update the methodDataOop rather than needing to do
duke@435 3390 // dynamic tests on the receiver type
duke@435 3391
duke@435 3392 // NOTE: we should probably put a lock around this search to
duke@435 3393 // avoid collisions by concurrent compilations
duke@435 3394 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 3395 uint i;
duke@435 3396 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3397 ciKlass* receiver = vc_data->receiver(i);
duke@435 3398 if (known_klass->equals(receiver)) {
duke@435 3399 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
iveresov@2138 3400 __ addptr(data_addr, DataLayout::counter_increment);
duke@435 3401 return;
duke@435 3402 }
duke@435 3403 }
duke@435 3404
duke@435 3405 // Receiver type not found in profile data; select an empty slot
duke@435 3406
duke@435 3407 // Note that this is less efficient than it should be because it
duke@435 3408 // always does a write to the receiver part of the
duke@435 3409 // VirtualCallData rather than just the first time
duke@435 3410 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3411 ciKlass* receiver = vc_data->receiver(i);
duke@435 3412 if (receiver == NULL) {
duke@435 3413 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
jrose@1424 3414 __ movoop(recv_addr, known_klass->constant_encoding());
duke@435 3415 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
iveresov@2138 3416 __ addptr(data_addr, DataLayout::counter_increment);
duke@435 3417 return;
duke@435 3418 }
duke@435 3419 }
duke@435 3420 } else {
iveresov@2344 3421 __ load_klass(recv, recv);
duke@435 3422 Label update_done;
iveresov@2138 3423 type_profile_helper(mdo, md, data, recv, &update_done);
kvn@1641 3424 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 3425 // Increment total counter to indicate polymorphic case.
iveresov@2138 3426 __ addptr(counter_addr, DataLayout::counter_increment);
duke@435 3427
duke@435 3428 __ bind(update_done);
duke@435 3429 }
kvn@1641 3430 } else {
kvn@1641 3431 // Static call
iveresov@2138 3432 __ addptr(counter_addr, DataLayout::counter_increment);
duke@435 3433 }
duke@435 3434 }
duke@435 3435
duke@435 3436 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
duke@435 3437 Unimplemented();
duke@435 3438 }
duke@435 3439
duke@435 3440
duke@435 3441 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
never@739 3442 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
duke@435 3443 }
duke@435 3444
duke@435 3445
duke@435 3446 void LIR_Assembler::align_backward_branch_target() {
duke@435 3447 __ align(BytesPerWord);
duke@435 3448 }
duke@435 3449
duke@435 3450
duke@435 3451 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3452 if (left->is_single_cpu()) {
duke@435 3453 __ negl(left->as_register());
duke@435 3454 move_regs(left->as_register(), dest->as_register());
duke@435 3455
duke@435 3456 } else if (left->is_double_cpu()) {
duke@435 3457 Register lo = left->as_register_lo();
never@739 3458 #ifdef _LP64
never@739 3459 Register dst = dest->as_register_lo();
never@739 3460 __ movptr(dst, lo);
never@739 3461 __ negptr(dst);
never@739 3462 #else
duke@435 3463 Register hi = left->as_register_hi();
duke@435 3464 __ lneg(hi, lo);
duke@435 3465 if (dest->as_register_lo() == hi) {
duke@435 3466 assert(dest->as_register_hi() != lo, "destroying register");
duke@435 3467 move_regs(hi, dest->as_register_hi());
duke@435 3468 move_regs(lo, dest->as_register_lo());
duke@435 3469 } else {
duke@435 3470 move_regs(lo, dest->as_register_lo());
duke@435 3471 move_regs(hi, dest->as_register_hi());
duke@435 3472 }
never@739 3473 #endif // _LP64
duke@435 3474
duke@435 3475 } else if (dest->is_single_xmm()) {
duke@435 3476 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
duke@435 3477 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
duke@435 3478 }
duke@435 3479 __ xorps(dest->as_xmm_float_reg(),
duke@435 3480 ExternalAddress((address)float_signflip_pool));
duke@435 3481
duke@435 3482 } else if (dest->is_double_xmm()) {
duke@435 3483 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
duke@435 3484 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
duke@435 3485 }
duke@435 3486 __ xorpd(dest->as_xmm_double_reg(),
duke@435 3487 ExternalAddress((address)double_signflip_pool));
duke@435 3488
duke@435 3489 } else if (left->is_single_fpu() || left->is_double_fpu()) {
duke@435 3490 assert(left->fpu() == 0, "arg must be on TOS");
duke@435 3491 assert(dest->fpu() == 0, "dest must be TOS");
duke@435 3492 __ fchs();
duke@435 3493
duke@435 3494 } else {
duke@435 3495 ShouldNotReachHere();
duke@435 3496 }
duke@435 3497 }
duke@435 3498
duke@435 3499
duke@435 3500 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
duke@435 3501 assert(addr->is_address() && dest->is_register(), "check");
never@739 3502 Register reg;
never@739 3503 reg = dest->as_pointer_register();
never@739 3504 __ lea(reg, as_Address(addr->as_address_ptr()));
duke@435 3505 }
duke@435 3506
duke@435 3507
duke@435 3508
duke@435 3509 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3510 assert(!tmp->is_valid(), "don't need temporary");
duke@435 3511 __ call(RuntimeAddress(dest));
duke@435 3512 if (info != NULL) {
duke@435 3513 add_call_info_here(info);
duke@435 3514 }
duke@435 3515 }
duke@435 3516
duke@435 3517
duke@435 3518 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3519 assert(type == T_LONG, "only for volatile long fields");
duke@435 3520
duke@435 3521 if (info != NULL) {
duke@435 3522 add_debug_info_for_null_check_here(info);
duke@435 3523 }
duke@435 3524
duke@435 3525 if (src->is_double_xmm()) {
duke@435 3526 if (dest->is_double_cpu()) {
never@739 3527 #ifdef _LP64
never@739 3528 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
never@739 3529 #else
never@739 3530 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
duke@435 3531 __ psrlq(src->as_xmm_double_reg(), 32);
never@739 3532 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
never@739 3533 #endif // _LP64
duke@435 3534 } else if (dest->is_double_stack()) {
duke@435 3535 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
duke@435 3536 } else if (dest->is_address()) {
duke@435 3537 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
duke@435 3538 } else {
duke@435 3539 ShouldNotReachHere();
duke@435 3540 }
duke@435 3541
duke@435 3542 } else if (dest->is_double_xmm()) {
duke@435 3543 if (src->is_double_stack()) {
duke@435 3544 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3545 } else if (src->is_address()) {
duke@435 3546 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
duke@435 3547 } else {
duke@435 3548 ShouldNotReachHere();
duke@435 3549 }
duke@435 3550
duke@435 3551 } else if (src->is_double_fpu()) {
duke@435 3552 assert(src->fpu_regnrLo() == 0, "must be TOS");
duke@435 3553 if (dest->is_double_stack()) {
duke@435 3554 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
duke@435 3555 } else if (dest->is_address()) {
duke@435 3556 __ fistp_d(as_Address(dest->as_address_ptr()));
duke@435 3557 } else {
duke@435 3558 ShouldNotReachHere();
duke@435 3559 }
duke@435 3560
duke@435 3561 } else if (dest->is_double_fpu()) {
duke@435 3562 assert(dest->fpu_regnrLo() == 0, "must be TOS");
duke@435 3563 if (src->is_double_stack()) {
duke@435 3564 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3565 } else if (src->is_address()) {
duke@435 3566 __ fild_d(as_Address(src->as_address_ptr()));
duke@435 3567 } else {
duke@435 3568 ShouldNotReachHere();
duke@435 3569 }
duke@435 3570 } else {
duke@435 3571 ShouldNotReachHere();
duke@435 3572 }
duke@435 3573 }
duke@435 3574
duke@435 3575
duke@435 3576 void LIR_Assembler::membar() {
never@739 3577 // QQQ sparc TSO uses this,
never@739 3578 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
duke@435 3579 }
duke@435 3580
duke@435 3581 void LIR_Assembler::membar_acquire() {
duke@435 3582 // No x86 machines currently require load fences
duke@435 3583 // __ load_fence();
duke@435 3584 }
duke@435 3585
duke@435 3586 void LIR_Assembler::membar_release() {
duke@435 3587 // No x86 machines currently require store fences
duke@435 3588 // __ store_fence();
duke@435 3589 }
duke@435 3590
duke@435 3591 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3592 assert(result_reg->is_register(), "check");
never@739 3593 #ifdef _LP64
never@739 3594 // __ get_thread(result_reg->as_register_lo());
never@739 3595 __ mov(result_reg->as_register(), r15_thread);
never@739 3596 #else
duke@435 3597 __ get_thread(result_reg->as_register());
never@739 3598 #endif // _LP64
duke@435 3599 }
duke@435 3600
duke@435 3601
duke@435 3602 void LIR_Assembler::peephole(LIR_List*) {
duke@435 3603 // do nothing for now
duke@435 3604 }
duke@435 3605
duke@435 3606
duke@435 3607 #undef __

mercurial