src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Thu, 21 Mar 2013 09:27:54 +0100

author
roland
date
Thu, 21 Mar 2013 09:27:54 +0100
changeset 4860
46f6f063b272
parent 4318
cd3d6a6b95d9
child 5353
b800986664f4
permissions
-rw-r--r--

7153771: array bound check elimination for c1
Summary: when possible optimize out array bound checks, inserting predicates when needed.
Reviewed-by: never, kvn, twisti
Contributed-by: thomaswue <thomas.wuerthinger@oracle.com>

duke@435 1 /*
kvn@3760 2 * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@4318 26 #include "asm/macroAssembler.hpp"
twisti@4318 27 #include "asm/macroAssembler.inline.hpp"
stefank@2314 28 #include "c1/c1_Compilation.hpp"
stefank@2314 29 #include "c1/c1_LIRAssembler.hpp"
stefank@2314 30 #include "c1/c1_MacroAssembler.hpp"
stefank@2314 31 #include "c1/c1_Runtime1.hpp"
stefank@2314 32 #include "c1/c1_ValueStack.hpp"
stefank@2314 33 #include "ci/ciArrayKlass.hpp"
stefank@2314 34 #include "ci/ciInstance.hpp"
stefank@2314 35 #include "gc_interface/collectedHeap.hpp"
stefank@2314 36 #include "memory/barrierSet.hpp"
stefank@2314 37 #include "memory/cardTableModRefBS.hpp"
stefank@2314 38 #include "nativeInst_x86.hpp"
stefank@2314 39 #include "oops/objArrayKlass.hpp"
stefank@2314 40 #include "runtime/sharedRuntime.hpp"
duke@435 41
duke@435 42
duke@435 43 // These masks are used to provide 128-bit aligned bitmasks to the XMM
duke@435 44 // instructions, to allow sign-masking or sign-bit flipping. They allow
duke@435 45 // fast versions of NegF/NegD and AbsF/AbsD.
duke@435 46
duke@435 47 // Note: 'double' and 'long long' have 32-bits alignment on x86.
duke@435 48 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
duke@435 49 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
duke@435 50 // of 128-bits operands for SSE instructions.
iveresov@2932 51 jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
duke@435 52 // Store the value to a 128-bits operand.
duke@435 53 operand[0] = lo;
duke@435 54 operand[1] = hi;
duke@435 55 return operand;
duke@435 56 }
duke@435 57
duke@435 58 // Buffer for 128-bits masks used by SSE instructions.
duke@435 59 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
duke@435 60
duke@435 61 // Static initialization during VM startup.
duke@435 62 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
duke@435 63 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
duke@435 64 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
duke@435 65 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
duke@435 66
duke@435 67
duke@435 68
duke@435 69 NEEDS_CLEANUP // remove this definitions ?
duke@435 70 const Register IC_Klass = rax; // where the IC klass is cached
duke@435 71 const Register SYNC_header = rax; // synchronization header
duke@435 72 const Register SHIFT_count = rcx; // where count for shift operations must be
duke@435 73
duke@435 74 #define __ _masm->
duke@435 75
duke@435 76
duke@435 77 static void select_different_registers(Register preserve,
duke@435 78 Register extra,
duke@435 79 Register &tmp1,
duke@435 80 Register &tmp2) {
duke@435 81 if (tmp1 == preserve) {
duke@435 82 assert_different_registers(tmp1, tmp2, extra);
duke@435 83 tmp1 = extra;
duke@435 84 } else if (tmp2 == preserve) {
duke@435 85 assert_different_registers(tmp1, tmp2, extra);
duke@435 86 tmp2 = extra;
duke@435 87 }
duke@435 88 assert_different_registers(preserve, tmp1, tmp2);
duke@435 89 }
duke@435 90
duke@435 91
duke@435 92
duke@435 93 static void select_different_registers(Register preserve,
duke@435 94 Register extra,
duke@435 95 Register &tmp1,
duke@435 96 Register &tmp2,
duke@435 97 Register &tmp3) {
duke@435 98 if (tmp1 == preserve) {
duke@435 99 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 100 tmp1 = extra;
duke@435 101 } else if (tmp2 == preserve) {
duke@435 102 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 103 tmp2 = extra;
duke@435 104 } else if (tmp3 == preserve) {
duke@435 105 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 106 tmp3 = extra;
duke@435 107 }
duke@435 108 assert_different_registers(preserve, tmp1, tmp2, tmp3);
duke@435 109 }
duke@435 110
duke@435 111
duke@435 112
duke@435 113 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 114 if (opr->is_constant()) {
duke@435 115 LIR_Const* constant = opr->as_constant_ptr();
duke@435 116 switch (constant->type()) {
duke@435 117 case T_INT: {
duke@435 118 return true;
duke@435 119 }
duke@435 120
duke@435 121 default:
duke@435 122 return false;
duke@435 123 }
duke@435 124 }
duke@435 125 return false;
duke@435 126 }
duke@435 127
duke@435 128
duke@435 129 LIR_Opr LIR_Assembler::receiverOpr() {
never@739 130 return FrameMap::receiver_opr;
duke@435 131 }
duke@435 132
duke@435 133 LIR_Opr LIR_Assembler::osrBufferPointer() {
never@739 134 return FrameMap::as_pointer_opr(receiverOpr()->as_register());
duke@435 135 }
duke@435 136
duke@435 137 //--------------fpu register translations-----------------------
duke@435 138
duke@435 139
duke@435 140 address LIR_Assembler::float_constant(float f) {
duke@435 141 address const_addr = __ float_constant(f);
duke@435 142 if (const_addr == NULL) {
duke@435 143 bailout("const section overflow");
duke@435 144 return __ code()->consts()->start();
duke@435 145 } else {
duke@435 146 return const_addr;
duke@435 147 }
duke@435 148 }
duke@435 149
duke@435 150
duke@435 151 address LIR_Assembler::double_constant(double d) {
duke@435 152 address const_addr = __ double_constant(d);
duke@435 153 if (const_addr == NULL) {
duke@435 154 bailout("const section overflow");
duke@435 155 return __ code()->consts()->start();
duke@435 156 } else {
duke@435 157 return const_addr;
duke@435 158 }
duke@435 159 }
duke@435 160
duke@435 161
duke@435 162 void LIR_Assembler::set_24bit_FPU() {
duke@435 163 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
duke@435 164 }
duke@435 165
duke@435 166 void LIR_Assembler::reset_FPU() {
duke@435 167 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 168 }
duke@435 169
duke@435 170 void LIR_Assembler::fpop() {
duke@435 171 __ fpop();
duke@435 172 }
duke@435 173
duke@435 174 void LIR_Assembler::fxch(int i) {
duke@435 175 __ fxch(i);
duke@435 176 }
duke@435 177
duke@435 178 void LIR_Assembler::fld(int i) {
duke@435 179 __ fld_s(i);
duke@435 180 }
duke@435 181
duke@435 182 void LIR_Assembler::ffree(int i) {
duke@435 183 __ ffree(i);
duke@435 184 }
duke@435 185
duke@435 186 void LIR_Assembler::breakpoint() {
duke@435 187 __ int3();
duke@435 188 }
duke@435 189
duke@435 190 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 191 if (opr->is_single_cpu()) {
duke@435 192 __ push_reg(opr->as_register());
duke@435 193 } else if (opr->is_double_cpu()) {
never@739 194 NOT_LP64(__ push_reg(opr->as_register_hi()));
duke@435 195 __ push_reg(opr->as_register_lo());
duke@435 196 } else if (opr->is_stack()) {
duke@435 197 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
duke@435 198 } else if (opr->is_constant()) {
duke@435 199 LIR_Const* const_opr = opr->as_constant_ptr();
duke@435 200 if (const_opr->type() == T_OBJECT) {
duke@435 201 __ push_oop(const_opr->as_jobject());
duke@435 202 } else if (const_opr->type() == T_INT) {
duke@435 203 __ push_jint(const_opr->as_jint());
duke@435 204 } else {
duke@435 205 ShouldNotReachHere();
duke@435 206 }
duke@435 207
duke@435 208 } else {
duke@435 209 ShouldNotReachHere();
duke@435 210 }
duke@435 211 }
duke@435 212
duke@435 213 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 214 if (opr->is_single_cpu()) {
never@739 215 __ pop_reg(opr->as_register());
duke@435 216 } else {
duke@435 217 ShouldNotReachHere();
duke@435 218 }
duke@435 219 }
duke@435 220
never@739 221 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
never@739 222 return addr->base()->is_illegal() && addr->index()->is_illegal();
never@739 223 }
never@739 224
duke@435 225 //-------------------------------------------
never@739 226
duke@435 227 Address LIR_Assembler::as_Address(LIR_Address* addr) {
never@739 228 return as_Address(addr, rscratch1);
never@739 229 }
never@739 230
never@739 231 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
duke@435 232 if (addr->base()->is_illegal()) {
duke@435 233 assert(addr->index()->is_illegal(), "must be illegal too");
never@739 234 AddressLiteral laddr((address)addr->disp(), relocInfo::none);
never@739 235 if (! __ reachable(laddr)) {
never@739 236 __ movptr(tmp, laddr.addr());
never@739 237 Address res(tmp, 0);
never@739 238 return res;
never@739 239 } else {
never@739 240 return __ as_Address(laddr);
never@739 241 }
duke@435 242 }
duke@435 243
never@739 244 Register base = addr->base()->as_pointer_register();
duke@435 245
duke@435 246 if (addr->index()->is_illegal()) {
duke@435 247 return Address( base, addr->disp());
never@739 248 } else if (addr->index()->is_cpu_register()) {
never@739 249 Register index = addr->index()->as_pointer_register();
duke@435 250 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
duke@435 251 } else if (addr->index()->is_constant()) {
never@739 252 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
never@739 253 assert(Assembler::is_simm32(addr_offset), "must be");
duke@435 254
duke@435 255 return Address(base, addr_offset);
duke@435 256 } else {
duke@435 257 Unimplemented();
duke@435 258 return Address();
duke@435 259 }
duke@435 260 }
duke@435 261
duke@435 262
duke@435 263 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 264 Address base = as_Address(addr);
duke@435 265 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
duke@435 266 }
duke@435 267
duke@435 268
duke@435 269 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 270 return as_Address(addr);
duke@435 271 }
duke@435 272
duke@435 273
duke@435 274 void LIR_Assembler::osr_entry() {
duke@435 275 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 276 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 277 ValueStack* entry_state = osr_entry->state();
duke@435 278 int number_of_locks = entry_state->locks_size();
duke@435 279
duke@435 280 // we jump here if osr happens with the interpreter
duke@435 281 // state set up to continue at the beginning of the
duke@435 282 // loop that triggered osr - in particular, we have
duke@435 283 // the following registers setup:
duke@435 284 //
duke@435 285 // rcx: osr buffer
duke@435 286 //
duke@435 287
duke@435 288 // build frame
duke@435 289 ciMethod* m = compilation()->method();
duke@435 290 __ build_frame(initial_frame_size_in_bytes());
duke@435 291
duke@435 292 // OSR buffer is
duke@435 293 //
duke@435 294 // locals[nlocals-1..0]
duke@435 295 // monitors[0..number_of_locks]
duke@435 296 //
duke@435 297 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 298 // so first slot in the local array is the last local from the interpreter
duke@435 299 // and last slot is local[0] (receiver) from the interpreter
duke@435 300 //
duke@435 301 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 302 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 303 // in the interpreter frame (the method lock if a sync method)
duke@435 304
duke@435 305 // Initialize monitors in the compiled activation.
duke@435 306 // rcx: pointer to osr buffer
duke@435 307 //
duke@435 308 // All other registers are dead at this point and the locals will be
duke@435 309 // copied into place by code emitted in the IR.
duke@435 310
never@739 311 Register OSR_buf = osrBufferPointer()->as_pointer_register();
duke@435 312 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 313 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 314 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 315 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 316 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 317 // the oop.
duke@435 318 for (int i = 0; i < number_of_locks; i++) {
roland@1495 319 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 320 #ifdef ASSERT
duke@435 321 // verify the interpreter's monitor has a non-null object
duke@435 322 {
duke@435 323 Label L;
roland@1495 324 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
duke@435 325 __ jcc(Assembler::notZero, L);
duke@435 326 __ stop("locked object is NULL");
duke@435 327 __ bind(L);
duke@435 328 }
duke@435 329 #endif
roland@1495 330 __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
never@739 331 __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
roland@1495 332 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
never@739 333 __ movptr(frame_map()->address_for_monitor_object(i), rbx);
duke@435 334 }
duke@435 335 }
duke@435 336 }
duke@435 337
duke@435 338
duke@435 339 // inline cache check; done before the frame is built.
duke@435 340 int LIR_Assembler::check_icache() {
duke@435 341 Register receiver = FrameMap::receiver_opr->as_register();
duke@435 342 Register ic_klass = IC_Klass;
never@739 343 const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
roland@4159 344 const bool do_post_padding = VerifyOops || UseCompressedKlassPointers;
iveresov@2344 345 if (!do_post_padding) {
duke@435 346 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
never@739 347 while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
duke@435 348 __ nop();
duke@435 349 }
duke@435 350 }
duke@435 351 int offset = __ offset();
duke@435 352 __ inline_cache_check(receiver, IC_Klass);
iveresov@2344 353 assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
iveresov@2344 354 if (do_post_padding) {
duke@435 355 // force alignment after the cache check.
duke@435 356 // It's been verified to be aligned if !VerifyOops
duke@435 357 __ align(CodeEntryAlignment);
duke@435 358 }
duke@435 359 return offset;
duke@435 360 }
duke@435 361
duke@435 362
duke@435 363 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
duke@435 364 jobject o = NULL;
coleenp@4037 365 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_mirror_id);
duke@435 366 __ movoop(reg, o);
duke@435 367 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 368 }
duke@435 369
coleenp@4037 370 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
coleenp@4037 371 Metadata* o = NULL;
coleenp@4037 372 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
coleenp@4037 373 __ mov_metadata(reg, o);
coleenp@4037 374 patching_epilog(patch, lir_patch_normal, reg, info);
coleenp@4037 375 }
duke@435 376
duke@435 377 // This specifies the rsp decrement needed to build the frame
duke@435 378 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 379 // if rounding, must let FrameMap know!
never@739 380
never@739 381 // The frame_map records size in slots (32bit word)
never@739 382
never@739 383 // subtract two words to account for return address and link
never@739 384 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size;
duke@435 385 }
duke@435 386
duke@435 387
twisti@1639 388 int LIR_Assembler::emit_exception_handler() {
duke@435 389 // if the last instruction is a call (typically to do a throw which
duke@435 390 // is coming at the end after block reordering) the return address
duke@435 391 // must still point into the code area in order to avoid assertion
duke@435 392 // failures when searching for the corresponding bci => add a nop
duke@435 393 // (was bug 5/14/1999 - gri)
duke@435 394 __ nop();
duke@435 395
duke@435 396 // generate code for exception handler
duke@435 397 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 398 if (handler_base == NULL) {
duke@435 399 // not enough space left for the handler
duke@435 400 bailout("exception handler overflow");
twisti@1639 401 return -1;
duke@435 402 }
twisti@1639 403
duke@435 404 int offset = code_offset();
duke@435 405
twisti@1730 406 // the exception oop and pc are in rax, and rdx
duke@435 407 // no other registers need to be preserved, so invalidate them
twisti@1730 408 __ invalidate_registers(false, true, true, false, true, true);
duke@435 409
duke@435 410 // check that there is really an exception
duke@435 411 __ verify_not_null_oop(rax);
duke@435 412
twisti@1730 413 // search an exception handler (rax: exception oop, rdx: throwing pc)
twisti@2603 414 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
twisti@2603 415 __ should_not_reach_here();
iveresov@3435 416 guarantee(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 417 __ end_a_stub();
twisti@1639 418
twisti@1639 419 return offset;
duke@435 420 }
duke@435 421
twisti@1639 422
never@1813 423 // Emit the code to remove the frame from the stack in the exception
never@1813 424 // unwind path.
never@1813 425 int LIR_Assembler::emit_unwind_handler() {
never@1813 426 #ifndef PRODUCT
never@1813 427 if (CommentedAssembly) {
never@1813 428 _masm->block_comment("Unwind handler");
never@1813 429 }
never@1813 430 #endif
never@1813 431
never@1813 432 int offset = code_offset();
never@1813 433
never@1813 434 // Fetch the exception from TLS and clear out exception related thread state
never@1813 435 __ get_thread(rsi);
never@1813 436 __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
never@3156 437 __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
never@3156 438 __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
never@1813 439
never@1813 440 __ bind(_unwind_handler_entry);
never@1813 441 __ verify_not_null_oop(rax);
never@1813 442 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 443 __ mov(rsi, rax); // Preserve the exception
never@1813 444 }
never@1813 445
never@1813 446 // Preform needed unlocking
never@1813 447 MonitorExitStub* stub = NULL;
never@1813 448 if (method()->is_synchronized()) {
never@1813 449 monitor_address(0, FrameMap::rax_opr);
never@1813 450 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
never@1813 451 __ unlock_object(rdi, rbx, rax, *stub->entry());
never@1813 452 __ bind(*stub->continuation());
never@1813 453 }
never@1813 454
never@1813 455 if (compilation()->env()->dtrace_method_probes()) {
never@2185 456 __ get_thread(rax);
never@2185 457 __ movptr(Address(rsp, 0), rax);
coleenp@4037 458 __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
never@1813 459 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
never@1813 460 }
never@1813 461
never@1813 462 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 463 __ mov(rax, rsi); // Restore the exception
never@1813 464 }
never@1813 465
never@1813 466 // remove the activation and dispatch to the unwind handler
never@1813 467 __ remove_frame(initial_frame_size_in_bytes());
never@1813 468 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
never@1813 469
never@1813 470 // Emit the slow path assembly
never@1813 471 if (stub != NULL) {
never@1813 472 stub->emit_code(this);
never@1813 473 }
never@1813 474
never@1813 475 return offset;
never@1813 476 }
never@1813 477
never@1813 478
twisti@1639 479 int LIR_Assembler::emit_deopt_handler() {
duke@435 480 // if the last instruction is a call (typically to do a throw which
duke@435 481 // is coming at the end after block reordering) the return address
duke@435 482 // must still point into the code area in order to avoid assertion
duke@435 483 // failures when searching for the corresponding bci => add a nop
duke@435 484 // (was bug 5/14/1999 - gri)
duke@435 485 __ nop();
duke@435 486
duke@435 487 // generate code for exception handler
duke@435 488 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 489 if (handler_base == NULL) {
duke@435 490 // not enough space left for the handler
duke@435 491 bailout("deopt handler overflow");
twisti@1639 492 return -1;
duke@435 493 }
twisti@1639 494
duke@435 495 int offset = code_offset();
duke@435 496 InternalAddress here(__ pc());
twisti@1730 497
duke@435 498 __ pushptr(here.addr());
duke@435 499 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
iveresov@3435 500 guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 501 __ end_a_stub();
duke@435 502
twisti@1639 503 return offset;
duke@435 504 }
duke@435 505
duke@435 506
duke@435 507 // This is the fast version of java.lang.String.compare; it has not
duke@435 508 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 509 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
never@739 510 __ movptr (rbx, rcx); // receiver is in rcx
never@739 511 __ movptr (rax, arg1->as_register());
duke@435 512
duke@435 513 // Get addresses of first characters from both Strings
iveresov@2344 514 __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
kvn@3760 515 if (java_lang_String::has_offset_field()) {
kvn@3760 516 __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
kvn@3760 517 __ movl (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
kvn@3760 518 __ lea (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
kvn@3760 519 } else {
kvn@3760 520 __ movl (rax, Address(rsi, arrayOopDesc::length_offset_in_bytes()));
kvn@3760 521 __ lea (rsi, Address(rsi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
kvn@3760 522 }
duke@435 523
duke@435 524 // rbx, may be NULL
duke@435 525 add_debug_info_for_null_check_here(info);
iveresov@2344 526 __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
kvn@3760 527 if (java_lang_String::has_offset_field()) {
kvn@3760 528 __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
kvn@3760 529 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
kvn@3760 530 __ lea (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
kvn@3760 531 } else {
kvn@3760 532 __ movl (rbx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
kvn@3760 533 __ lea (rdi, Address(rdi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
kvn@3760 534 }
duke@435 535
duke@435 536 // compute minimum length (in rax) and difference of lengths (on top of stack)
twisti@2697 537 __ mov (rcx, rbx);
twisti@2697 538 __ subptr(rbx, rax); // subtract lengths
twisti@2697 539 __ push (rbx); // result
twisti@2697 540 __ cmov (Assembler::lessEqual, rax, rcx);
twisti@2697 541
duke@435 542 // is minimum length 0?
duke@435 543 Label noLoop, haveResult;
never@739 544 __ testptr (rax, rax);
duke@435 545 __ jcc (Assembler::zero, noLoop);
duke@435 546
duke@435 547 // compare first characters
jrose@1057 548 __ load_unsigned_short(rcx, Address(rdi, 0));
jrose@1057 549 __ load_unsigned_short(rbx, Address(rsi, 0));
duke@435 550 __ subl(rcx, rbx);
duke@435 551 __ jcc(Assembler::notZero, haveResult);
duke@435 552 // starting loop
duke@435 553 __ decrement(rax); // we already tested index: skip one
duke@435 554 __ jcc(Assembler::zero, noLoop);
duke@435 555
duke@435 556 // set rsi.edi to the end of the arrays (arrays have same length)
duke@435 557 // negate the index
duke@435 558
never@739 559 __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 560 __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 561 __ negptr(rax);
duke@435 562
duke@435 563 // compare the strings in a loop
duke@435 564
duke@435 565 Label loop;
duke@435 566 __ align(wordSize);
duke@435 567 __ bind(loop);
jrose@1057 568 __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
jrose@1057 569 __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
duke@435 570 __ subl(rcx, rbx);
duke@435 571 __ jcc(Assembler::notZero, haveResult);
duke@435 572 __ increment(rax);
duke@435 573 __ jcc(Assembler::notZero, loop);
duke@435 574
duke@435 575 // strings are equal up to min length
duke@435 576
duke@435 577 __ bind(noLoop);
never@739 578 __ pop(rax);
duke@435 579 return_op(LIR_OprFact::illegalOpr);
duke@435 580
duke@435 581 __ bind(haveResult);
duke@435 582 // leave instruction is going to discard the TOS value
never@739 583 __ mov (rax, rcx); // result of call is in rax,
duke@435 584 }
duke@435 585
duke@435 586
duke@435 587 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 588 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
duke@435 589 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
duke@435 590 assert(result->fpu() == 0, "result must already be on TOS");
duke@435 591 }
duke@435 592
duke@435 593 // Pop the stack before the safepoint code
twisti@1730 594 __ remove_frame(initial_frame_size_in_bytes());
duke@435 595
duke@435 596 bool result_is_oop = result->is_valid() ? result->is_oop() : false;
duke@435 597
duke@435 598 // Note: we do not need to round double result; float result has the right precision
duke@435 599 // the poll sets the condition code, but no data registers
duke@435 600 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 601 relocInfo::poll_return_type);
never@739 602
iveresov@2686 603 if (Assembler::is_polling_page_far()) {
iveresov@2686 604 __ lea(rscratch1, polling_page);
iveresov@2686 605 __ relocate(relocInfo::poll_return_type);
iveresov@2686 606 __ testl(rax, Address(rscratch1, 0));
iveresov@2686 607 } else {
iveresov@2686 608 __ testl(rax, polling_page);
iveresov@2686 609 }
duke@435 610 __ ret(0);
duke@435 611 }
duke@435 612
duke@435 613
duke@435 614 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 615 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 616 relocInfo::poll_type);
iveresov@2686 617 guarantee(info != NULL, "Shouldn't be NULL");
iveresov@2686 618 int offset = __ offset();
iveresov@2686 619 if (Assembler::is_polling_page_far()) {
iveresov@2686 620 __ lea(rscratch1, polling_page);
iveresov@2686 621 offset = __ offset();
duke@435 622 add_debug_info_for_branch(info);
iveresov@2686 623 __ testl(rax, Address(rscratch1, 0));
duke@435 624 } else {
iveresov@2686 625 add_debug_info_for_branch(info);
iveresov@2686 626 __ testl(rax, polling_page);
duke@435 627 }
duke@435 628 return offset;
duke@435 629 }
duke@435 630
duke@435 631
duke@435 632 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
never@739 633 if (from_reg != to_reg) __ mov(to_reg, from_reg);
duke@435 634 }
duke@435 635
duke@435 636 void LIR_Assembler::swap_reg(Register a, Register b) {
never@739 637 __ xchgptr(a, b);
duke@435 638 }
duke@435 639
duke@435 640
duke@435 641 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 642 assert(src->is_constant(), "should not call otherwise");
duke@435 643 assert(dest->is_register(), "should not call otherwise");
duke@435 644 LIR_Const* c = src->as_constant_ptr();
duke@435 645
duke@435 646 switch (c->type()) {
iveresov@2344 647 case T_INT: {
iveresov@2344 648 assert(patch_code == lir_patch_none, "no patching handled here");
iveresov@2344 649 __ movl(dest->as_register(), c->as_jint());
iveresov@2344 650 break;
iveresov@2344 651 }
iveresov@2344 652
roland@1732 653 case T_ADDRESS: {
duke@435 654 assert(patch_code == lir_patch_none, "no patching handled here");
iveresov@2344 655 __ movptr(dest->as_register(), c->as_jint());
duke@435 656 break;
duke@435 657 }
duke@435 658
duke@435 659 case T_LONG: {
duke@435 660 assert(patch_code == lir_patch_none, "no patching handled here");
never@739 661 #ifdef _LP64
never@739 662 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
never@739 663 #else
never@739 664 __ movptr(dest->as_register_lo(), c->as_jint_lo());
never@739 665 __ movptr(dest->as_register_hi(), c->as_jint_hi());
never@739 666 #endif // _LP64
duke@435 667 break;
duke@435 668 }
duke@435 669
duke@435 670 case T_OBJECT: {
duke@435 671 if (patch_code != lir_patch_none) {
duke@435 672 jobject2reg_with_patching(dest->as_register(), info);
duke@435 673 } else {
duke@435 674 __ movoop(dest->as_register(), c->as_jobject());
duke@435 675 }
duke@435 676 break;
duke@435 677 }
duke@435 678
coleenp@4037 679 case T_METADATA: {
coleenp@4037 680 if (patch_code != lir_patch_none) {
coleenp@4037 681 klass2reg_with_patching(dest->as_register(), info);
coleenp@4037 682 } else {
coleenp@4037 683 __ mov_metadata(dest->as_register(), c->as_metadata());
coleenp@4037 684 }
coleenp@4037 685 break;
coleenp@4037 686 }
coleenp@4037 687
duke@435 688 case T_FLOAT: {
duke@435 689 if (dest->is_single_xmm()) {
duke@435 690 if (c->is_zero_float()) {
duke@435 691 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
duke@435 692 } else {
duke@435 693 __ movflt(dest->as_xmm_float_reg(),
duke@435 694 InternalAddress(float_constant(c->as_jfloat())));
duke@435 695 }
duke@435 696 } else {
duke@435 697 assert(dest->is_single_fpu(), "must be");
duke@435 698 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 699 if (c->is_zero_float()) {
duke@435 700 __ fldz();
duke@435 701 } else if (c->is_one_float()) {
duke@435 702 __ fld1();
duke@435 703 } else {
duke@435 704 __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
duke@435 705 }
duke@435 706 }
duke@435 707 break;
duke@435 708 }
duke@435 709
duke@435 710 case T_DOUBLE: {
duke@435 711 if (dest->is_double_xmm()) {
duke@435 712 if (c->is_zero_double()) {
duke@435 713 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
duke@435 714 } else {
duke@435 715 __ movdbl(dest->as_xmm_double_reg(),
duke@435 716 InternalAddress(double_constant(c->as_jdouble())));
duke@435 717 }
duke@435 718 } else {
duke@435 719 assert(dest->is_double_fpu(), "must be");
duke@435 720 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 721 if (c->is_zero_double()) {
duke@435 722 __ fldz();
duke@435 723 } else if (c->is_one_double()) {
duke@435 724 __ fld1();
duke@435 725 } else {
duke@435 726 __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
duke@435 727 }
duke@435 728 }
duke@435 729 break;
duke@435 730 }
duke@435 731
duke@435 732 default:
duke@435 733 ShouldNotReachHere();
duke@435 734 }
duke@435 735 }
duke@435 736
duke@435 737 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 738 assert(src->is_constant(), "should not call otherwise");
duke@435 739 assert(dest->is_stack(), "should not call otherwise");
duke@435 740 LIR_Const* c = src->as_constant_ptr();
duke@435 741
duke@435 742 switch (c->type()) {
duke@435 743 case T_INT: // fall through
duke@435 744 case T_FLOAT:
iveresov@2344 745 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
iveresov@2344 746 break;
iveresov@2344 747
roland@1732 748 case T_ADDRESS:
iveresov@2344 749 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
duke@435 750 break;
duke@435 751
duke@435 752 case T_OBJECT:
duke@435 753 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
duke@435 754 break;
duke@435 755
duke@435 756 case T_LONG: // fall through
duke@435 757 case T_DOUBLE:
never@739 758 #ifdef _LP64
never@739 759 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 760 lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
never@739 761 #else
never@739 762 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 763 lo_word_offset_in_bytes), c->as_jint_lo_bits());
never@739 764 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 765 hi_word_offset_in_bytes), c->as_jint_hi_bits());
never@739 766 #endif // _LP64
duke@435 767 break;
duke@435 768
duke@435 769 default:
duke@435 770 ShouldNotReachHere();
duke@435 771 }
duke@435 772 }
duke@435 773
iveresov@2344 774 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
duke@435 775 assert(src->is_constant(), "should not call otherwise");
duke@435 776 assert(dest->is_address(), "should not call otherwise");
duke@435 777 LIR_Const* c = src->as_constant_ptr();
duke@435 778 LIR_Address* addr = dest->as_address_ptr();
duke@435 779
never@739 780 int null_check_here = code_offset();
duke@435 781 switch (type) {
duke@435 782 case T_INT: // fall through
duke@435 783 case T_FLOAT:
iveresov@2344 784 __ movl(as_Address(addr), c->as_jint_bits());
iveresov@2344 785 break;
iveresov@2344 786
roland@1732 787 case T_ADDRESS:
iveresov@2344 788 __ movptr(as_Address(addr), c->as_jint_bits());
duke@435 789 break;
duke@435 790
duke@435 791 case T_OBJECT: // fall through
duke@435 792 case T_ARRAY:
duke@435 793 if (c->as_jobject() == NULL) {
iveresov@2344 794 if (UseCompressedOops && !wide) {
iveresov@2344 795 __ movl(as_Address(addr), (int32_t)NULL_WORD);
iveresov@2344 796 } else {
iveresov@2344 797 __ movptr(as_Address(addr), NULL_WORD);
iveresov@2344 798 }
duke@435 799 } else {
never@739 800 if (is_literal_address(addr)) {
never@739 801 ShouldNotReachHere();
never@739 802 __ movoop(as_Address(addr, noreg), c->as_jobject());
never@739 803 } else {
roland@1495 804 #ifdef _LP64
roland@1495 805 __ movoop(rscratch1, c->as_jobject());
iveresov@2344 806 if (UseCompressedOops && !wide) {
iveresov@2344 807 __ encode_heap_oop(rscratch1);
iveresov@2344 808 null_check_here = code_offset();
iveresov@2344 809 __ movl(as_Address_lo(addr), rscratch1);
iveresov@2344 810 } else {
iveresov@2344 811 null_check_here = code_offset();
iveresov@2344 812 __ movptr(as_Address_lo(addr), rscratch1);
iveresov@2344 813 }
roland@1495 814 #else
never@739 815 __ movoop(as_Address(addr), c->as_jobject());
roland@1495 816 #endif
never@739 817 }
duke@435 818 }
duke@435 819 break;
duke@435 820
duke@435 821 case T_LONG: // fall through
duke@435 822 case T_DOUBLE:
never@739 823 #ifdef _LP64
never@739 824 if (is_literal_address(addr)) {
never@739 825 ShouldNotReachHere();
never@739 826 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
never@739 827 } else {
never@739 828 __ movptr(r10, (intptr_t)c->as_jlong_bits());
never@739 829 null_check_here = code_offset();
never@739 830 __ movptr(as_Address_lo(addr), r10);
never@739 831 }
never@739 832 #else
never@739 833 // Always reachable in 32bit so this doesn't produce useless move literal
never@739 834 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
never@739 835 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
never@739 836 #endif // _LP64
duke@435 837 break;
duke@435 838
duke@435 839 case T_BOOLEAN: // fall through
duke@435 840 case T_BYTE:
duke@435 841 __ movb(as_Address(addr), c->as_jint() & 0xFF);
duke@435 842 break;
duke@435 843
duke@435 844 case T_CHAR: // fall through
duke@435 845 case T_SHORT:
duke@435 846 __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
duke@435 847 break;
duke@435 848
duke@435 849 default:
duke@435 850 ShouldNotReachHere();
duke@435 851 };
never@739 852
never@739 853 if (info != NULL) {
never@739 854 add_debug_info_for_null_check(null_check_here, info);
never@739 855 }
duke@435 856 }
duke@435 857
duke@435 858
duke@435 859 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
duke@435 860 assert(src->is_register(), "should not call otherwise");
duke@435 861 assert(dest->is_register(), "should not call otherwise");
duke@435 862
duke@435 863 // move between cpu-registers
duke@435 864 if (dest->is_single_cpu()) {
never@739 865 #ifdef _LP64
never@739 866 if (src->type() == T_LONG) {
never@739 867 // Can do LONG -> OBJECT
never@739 868 move_regs(src->as_register_lo(), dest->as_register());
never@739 869 return;
never@739 870 }
never@739 871 #endif
duke@435 872 assert(src->is_single_cpu(), "must match");
duke@435 873 if (src->type() == T_OBJECT) {
duke@435 874 __ verify_oop(src->as_register());
duke@435 875 }
duke@435 876 move_regs(src->as_register(), dest->as_register());
duke@435 877
duke@435 878 } else if (dest->is_double_cpu()) {
never@739 879 #ifdef _LP64
never@739 880 if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
never@739 881 // Surprising to me but we can see move of a long to t_object
never@739 882 __ verify_oop(src->as_register());
never@739 883 move_regs(src->as_register(), dest->as_register_lo());
never@739 884 return;
never@739 885 }
never@739 886 #endif
duke@435 887 assert(src->is_double_cpu(), "must match");
duke@435 888 Register f_lo = src->as_register_lo();
duke@435 889 Register f_hi = src->as_register_hi();
duke@435 890 Register t_lo = dest->as_register_lo();
duke@435 891 Register t_hi = dest->as_register_hi();
never@739 892 #ifdef _LP64
never@739 893 assert(f_hi == f_lo, "must be same");
never@739 894 assert(t_hi == t_lo, "must be same");
never@739 895 move_regs(f_lo, t_lo);
never@739 896 #else
duke@435 897 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
duke@435 898
never@739 899
duke@435 900 if (f_lo == t_hi && f_hi == t_lo) {
duke@435 901 swap_reg(f_lo, f_hi);
duke@435 902 } else if (f_hi == t_lo) {
duke@435 903 assert(f_lo != t_hi, "overwriting register");
duke@435 904 move_regs(f_hi, t_hi);
duke@435 905 move_regs(f_lo, t_lo);
duke@435 906 } else {
duke@435 907 assert(f_hi != t_lo, "overwriting register");
duke@435 908 move_regs(f_lo, t_lo);
duke@435 909 move_regs(f_hi, t_hi);
duke@435 910 }
never@739 911 #endif // LP64
duke@435 912
duke@435 913 // special moves from fpu-register to xmm-register
duke@435 914 // necessary for method results
duke@435 915 } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
duke@435 916 __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
duke@435 917 __ fld_s(Address(rsp, 0));
duke@435 918 } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
duke@435 919 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
duke@435 920 __ fld_d(Address(rsp, 0));
duke@435 921 } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
duke@435 922 __ fstp_s(Address(rsp, 0));
duke@435 923 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
duke@435 924 } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
duke@435 925 __ fstp_d(Address(rsp, 0));
duke@435 926 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
duke@435 927
duke@435 928 // move between xmm-registers
duke@435 929 } else if (dest->is_single_xmm()) {
duke@435 930 assert(src->is_single_xmm(), "must match");
duke@435 931 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
duke@435 932 } else if (dest->is_double_xmm()) {
duke@435 933 assert(src->is_double_xmm(), "must match");
duke@435 934 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
duke@435 935
duke@435 936 // move between fpu-registers (no instruction necessary because of fpu-stack)
duke@435 937 } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
duke@435 938 assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
duke@435 939 assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
duke@435 940 } else {
duke@435 941 ShouldNotReachHere();
duke@435 942 }
duke@435 943 }
duke@435 944
duke@435 945 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 946 assert(src->is_register(), "should not call otherwise");
duke@435 947 assert(dest->is_stack(), "should not call otherwise");
duke@435 948
duke@435 949 if (src->is_single_cpu()) {
duke@435 950 Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 951 if (type == T_OBJECT || type == T_ARRAY) {
duke@435 952 __ verify_oop(src->as_register());
never@739 953 __ movptr (dst, src->as_register());
roland@4051 954 } else if (type == T_METADATA) {
roland@4051 955 __ movptr (dst, src->as_register());
never@739 956 } else {
never@739 957 __ movl (dst, src->as_register());
duke@435 958 }
duke@435 959
duke@435 960 } else if (src->is_double_cpu()) {
duke@435 961 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 962 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
never@739 963 __ movptr (dstLO, src->as_register_lo());
never@739 964 NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
duke@435 965
duke@435 966 } else if (src->is_single_xmm()) {
duke@435 967 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 968 __ movflt(dst_addr, src->as_xmm_float_reg());
duke@435 969
duke@435 970 } else if (src->is_double_xmm()) {
duke@435 971 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 972 __ movdbl(dst_addr, src->as_xmm_double_reg());
duke@435 973
duke@435 974 } else if (src->is_single_fpu()) {
duke@435 975 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 976 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 977 if (pop_fpu_stack) __ fstp_s (dst_addr);
duke@435 978 else __ fst_s (dst_addr);
duke@435 979
duke@435 980 } else if (src->is_double_fpu()) {
duke@435 981 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 982 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 983 if (pop_fpu_stack) __ fstp_d (dst_addr);
duke@435 984 else __ fst_d (dst_addr);
duke@435 985
duke@435 986 } else {
duke@435 987 ShouldNotReachHere();
duke@435 988 }
duke@435 989 }
duke@435 990
duke@435 991
iveresov@2344 992 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
duke@435 993 LIR_Address* to_addr = dest->as_address_ptr();
duke@435 994 PatchingStub* patch = NULL;
iveresov@2344 995 Register compressed_src = rscratch1;
duke@435 996
duke@435 997 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 998 __ verify_oop(src->as_register());
iveresov@2344 999 #ifdef _LP64
iveresov@2344 1000 if (UseCompressedOops && !wide) {
iveresov@2344 1001 __ movptr(compressed_src, src->as_register());
iveresov@2344 1002 __ encode_heap_oop(compressed_src);
iveresov@2344 1003 }
iveresov@2344 1004 #endif
duke@435 1005 }
iveresov@2344 1006
duke@435 1007 if (patch_code != lir_patch_none) {
duke@435 1008 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1009 Address toa = as_Address(to_addr);
never@739 1010 assert(toa.disp() != 0, "must have");
duke@435 1011 }
iveresov@2344 1012
iveresov@2344 1013 int null_check_here = code_offset();
duke@435 1014 switch (type) {
duke@435 1015 case T_FLOAT: {
duke@435 1016 if (src->is_single_xmm()) {
duke@435 1017 __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
duke@435 1018 } else {
duke@435 1019 assert(src->is_single_fpu(), "must be");
duke@435 1020 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 1021 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr));
duke@435 1022 else __ fst_s (as_Address(to_addr));
duke@435 1023 }
duke@435 1024 break;
duke@435 1025 }
duke@435 1026
duke@435 1027 case T_DOUBLE: {
duke@435 1028 if (src->is_double_xmm()) {
duke@435 1029 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
duke@435 1030 } else {
duke@435 1031 assert(src->is_double_fpu(), "must be");
duke@435 1032 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 1033 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr));
duke@435 1034 else __ fst_d (as_Address(to_addr));
duke@435 1035 }
duke@435 1036 break;
duke@435 1037 }
duke@435 1038
duke@435 1039 case T_ARRAY: // fall through
duke@435 1040 case T_OBJECT: // fall through
iveresov@2344 1041 if (UseCompressedOops && !wide) {
iveresov@2344 1042 __ movl(as_Address(to_addr), compressed_src);
iveresov@2344 1043 } else {
iveresov@2344 1044 __ movptr(as_Address(to_addr), src->as_register());
iveresov@2344 1045 }
iveresov@2344 1046 break;
roland@4051 1047 case T_METADATA:
roland@4051 1048 // We get here to store a method pointer to the stack to pass to
roland@4051 1049 // a dtrace runtime call. This can't work on 64 bit with
roland@4051 1050 // compressed klass ptrs: T_METADATA can be a compressed klass
roland@4051 1051 // ptr or a 64 bit method pointer.
roland@4051 1052 LP64_ONLY(ShouldNotReachHere());
roland@4051 1053 __ movptr(as_Address(to_addr), src->as_register());
roland@4051 1054 break;
iveresov@2344 1055 case T_ADDRESS:
never@739 1056 __ movptr(as_Address(to_addr), src->as_register());
never@739 1057 break;
duke@435 1058 case T_INT:
duke@435 1059 __ movl(as_Address(to_addr), src->as_register());
duke@435 1060 break;
duke@435 1061
duke@435 1062 case T_LONG: {
duke@435 1063 Register from_lo = src->as_register_lo();
duke@435 1064 Register from_hi = src->as_register_hi();
never@739 1065 #ifdef _LP64
never@739 1066 __ movptr(as_Address_lo(to_addr), from_lo);
never@739 1067 #else
duke@435 1068 Register base = to_addr->base()->as_register();
duke@435 1069 Register index = noreg;
duke@435 1070 if (to_addr->index()->is_register()) {
duke@435 1071 index = to_addr->index()->as_register();
duke@435 1072 }
duke@435 1073 if (base == from_lo || index == from_lo) {
duke@435 1074 assert(base != from_hi, "can't be");
duke@435 1075 assert(index == noreg || (index != base && index != from_hi), "can't handle this");
duke@435 1076 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1077 if (patch != NULL) {
duke@435 1078 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1079 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1080 patch_code = lir_patch_low;
duke@435 1081 }
duke@435 1082 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1083 } else {
duke@435 1084 assert(index == noreg || (index != base && index != from_lo), "can't handle this");
duke@435 1085 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1086 if (patch != NULL) {
duke@435 1087 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1088 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1089 patch_code = lir_patch_high;
duke@435 1090 }
duke@435 1091 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1092 }
never@739 1093 #endif // _LP64
duke@435 1094 break;
duke@435 1095 }
duke@435 1096
duke@435 1097 case T_BYTE: // fall through
duke@435 1098 case T_BOOLEAN: {
duke@435 1099 Register src_reg = src->as_register();
duke@435 1100 Address dst_addr = as_Address(to_addr);
duke@435 1101 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1102 __ movb(dst_addr, src_reg);
duke@435 1103 break;
duke@435 1104 }
duke@435 1105
duke@435 1106 case T_CHAR: // fall through
duke@435 1107 case T_SHORT:
duke@435 1108 __ movw(as_Address(to_addr), src->as_register());
duke@435 1109 break;
duke@435 1110
duke@435 1111 default:
duke@435 1112 ShouldNotReachHere();
duke@435 1113 }
iveresov@2344 1114 if (info != NULL) {
iveresov@2344 1115 add_debug_info_for_null_check(null_check_here, info);
iveresov@2344 1116 }
duke@435 1117
duke@435 1118 if (patch_code != lir_patch_none) {
duke@435 1119 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
duke@435 1120 }
duke@435 1121 }
duke@435 1122
duke@435 1123
duke@435 1124 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1125 assert(src->is_stack(), "should not call otherwise");
duke@435 1126 assert(dest->is_register(), "should not call otherwise");
duke@435 1127
duke@435 1128 if (dest->is_single_cpu()) {
duke@435 1129 if (type == T_ARRAY || type == T_OBJECT) {
never@739 1130 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1131 __ verify_oop(dest->as_register());
roland@4051 1132 } else if (type == T_METADATA) {
roland@4051 1133 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
never@739 1134 } else {
never@739 1135 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1136 }
duke@435 1137
duke@435 1138 } else if (dest->is_double_cpu()) {
duke@435 1139 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 1140 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
never@739 1141 __ movptr(dest->as_register_lo(), src_addr_LO);
never@739 1142 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
duke@435 1143
duke@435 1144 } else if (dest->is_single_xmm()) {
duke@435 1145 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1146 __ movflt(dest->as_xmm_float_reg(), src_addr);
duke@435 1147
duke@435 1148 } else if (dest->is_double_xmm()) {
duke@435 1149 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1150 __ movdbl(dest->as_xmm_double_reg(), src_addr);
duke@435 1151
duke@435 1152 } else if (dest->is_single_fpu()) {
duke@435 1153 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1154 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1155 __ fld_s(src_addr);
duke@435 1156
duke@435 1157 } else if (dest->is_double_fpu()) {
duke@435 1158 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1159 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1160 __ fld_d(src_addr);
duke@435 1161
duke@435 1162 } else {
duke@435 1163 ShouldNotReachHere();
duke@435 1164 }
duke@435 1165 }
duke@435 1166
duke@435 1167
duke@435 1168 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1169 if (src->is_single_stack()) {
never@739 1170 if (type == T_OBJECT || type == T_ARRAY) {
never@739 1171 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1172 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
never@739 1173 } else {
roland@1495 1174 #ifndef _LP64
never@739 1175 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1176 __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
roland@1495 1177 #else
roland@1495 1178 //no pushl on 64bits
roland@1495 1179 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
roland@1495 1180 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
roland@1495 1181 #endif
never@739 1182 }
duke@435 1183
duke@435 1184 } else if (src->is_double_stack()) {
never@739 1185 #ifdef _LP64
never@739 1186 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
never@739 1187 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
never@739 1188 #else
duke@435 1189 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
never@739 1190 // push and pop the part at src + wordSize, adding wordSize for the previous push
never@756 1191 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
never@756 1192 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
duke@435 1193 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
never@739 1194 #endif // _LP64
duke@435 1195
duke@435 1196 } else {
duke@435 1197 ShouldNotReachHere();
duke@435 1198 }
duke@435 1199 }
duke@435 1200
duke@435 1201
iveresov@2344 1202 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
duke@435 1203 assert(src->is_address(), "should not call otherwise");
duke@435 1204 assert(dest->is_register(), "should not call otherwise");
duke@435 1205
duke@435 1206 LIR_Address* addr = src->as_address_ptr();
duke@435 1207 Address from_addr = as_Address(addr);
duke@435 1208
duke@435 1209 switch (type) {
duke@435 1210 case T_BOOLEAN: // fall through
duke@435 1211 case T_BYTE: // fall through
duke@435 1212 case T_CHAR: // fall through
duke@435 1213 case T_SHORT:
duke@435 1214 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
duke@435 1215 // on pre P6 processors we may get partial register stalls
duke@435 1216 // so blow away the value of to_rinfo before loading a
duke@435 1217 // partial word into it. Do it here so that it precedes
duke@435 1218 // the potential patch point below.
never@739 1219 __ xorptr(dest->as_register(), dest->as_register());
duke@435 1220 }
duke@435 1221 break;
duke@435 1222 }
duke@435 1223
duke@435 1224 PatchingStub* patch = NULL;
duke@435 1225 if (patch_code != lir_patch_none) {
duke@435 1226 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1227 assert(from_addr.disp() != 0, "must have");
duke@435 1228 }
duke@435 1229 if (info != NULL) {
duke@435 1230 add_debug_info_for_null_check_here(info);
duke@435 1231 }
duke@435 1232
duke@435 1233 switch (type) {
duke@435 1234 case T_FLOAT: {
duke@435 1235 if (dest->is_single_xmm()) {
duke@435 1236 __ movflt(dest->as_xmm_float_reg(), from_addr);
duke@435 1237 } else {
duke@435 1238 assert(dest->is_single_fpu(), "must be");
duke@435 1239 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1240 __ fld_s(from_addr);
duke@435 1241 }
duke@435 1242 break;
duke@435 1243 }
duke@435 1244
duke@435 1245 case T_DOUBLE: {
duke@435 1246 if (dest->is_double_xmm()) {
duke@435 1247 __ movdbl(dest->as_xmm_double_reg(), from_addr);
duke@435 1248 } else {
duke@435 1249 assert(dest->is_double_fpu(), "must be");
duke@435 1250 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1251 __ fld_d(from_addr);
duke@435 1252 }
duke@435 1253 break;
duke@435 1254 }
duke@435 1255
duke@435 1256 case T_OBJECT: // fall through
duke@435 1257 case T_ARRAY: // fall through
iveresov@2344 1258 if (UseCompressedOops && !wide) {
iveresov@2344 1259 __ movl(dest->as_register(), from_addr);
iveresov@2344 1260 } else {
iveresov@2344 1261 __ movptr(dest->as_register(), from_addr);
iveresov@2344 1262 }
iveresov@2344 1263 break;
iveresov@2344 1264
iveresov@2344 1265 case T_ADDRESS:
roland@4159 1266 if (UseCompressedKlassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
roland@4159 1267 __ movl(dest->as_register(), from_addr);
roland@4159 1268 } else {
roland@4159 1269 __ movptr(dest->as_register(), from_addr);
roland@4159 1270 }
never@739 1271 break;
duke@435 1272 case T_INT:
iveresov@1833 1273 __ movl(dest->as_register(), from_addr);
duke@435 1274 break;
duke@435 1275
duke@435 1276 case T_LONG: {
duke@435 1277 Register to_lo = dest->as_register_lo();
duke@435 1278 Register to_hi = dest->as_register_hi();
never@739 1279 #ifdef _LP64
never@739 1280 __ movptr(to_lo, as_Address_lo(addr));
never@739 1281 #else
duke@435 1282 Register base = addr->base()->as_register();
duke@435 1283 Register index = noreg;
duke@435 1284 if (addr->index()->is_register()) {
duke@435 1285 index = addr->index()->as_register();
duke@435 1286 }
duke@435 1287 if ((base == to_lo && index == to_hi) ||
duke@435 1288 (base == to_hi && index == to_lo)) {
duke@435 1289 // addresses with 2 registers are only formed as a result of
duke@435 1290 // array access so this code will never have to deal with
duke@435 1291 // patches or null checks.
duke@435 1292 assert(info == NULL && patch == NULL, "must be");
never@739 1293 __ lea(to_hi, as_Address(addr));
duke@435 1294 __ movl(to_lo, Address(to_hi, 0));
duke@435 1295 __ movl(to_hi, Address(to_hi, BytesPerWord));
duke@435 1296 } else if (base == to_lo || index == to_lo) {
duke@435 1297 assert(base != to_hi, "can't be");
duke@435 1298 assert(index == noreg || (index != base && index != to_hi), "can't handle this");
duke@435 1299 __ movl(to_hi, as_Address_hi(addr));
duke@435 1300 if (patch != NULL) {
duke@435 1301 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1302 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1303 patch_code = lir_patch_low;
duke@435 1304 }
duke@435 1305 __ movl(to_lo, as_Address_lo(addr));
duke@435 1306 } else {
duke@435 1307 assert(index == noreg || (index != base && index != to_lo), "can't handle this");
duke@435 1308 __ movl(to_lo, as_Address_lo(addr));
duke@435 1309 if (patch != NULL) {
duke@435 1310 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1311 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1312 patch_code = lir_patch_high;
duke@435 1313 }
duke@435 1314 __ movl(to_hi, as_Address_hi(addr));
duke@435 1315 }
never@739 1316 #endif // _LP64
duke@435 1317 break;
duke@435 1318 }
duke@435 1319
duke@435 1320 case T_BOOLEAN: // fall through
duke@435 1321 case T_BYTE: {
duke@435 1322 Register dest_reg = dest->as_register();
duke@435 1323 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1324 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1325 __ movsbl(dest_reg, from_addr);
duke@435 1326 } else {
duke@435 1327 __ movb(dest_reg, from_addr);
duke@435 1328 __ shll(dest_reg, 24);
duke@435 1329 __ sarl(dest_reg, 24);
duke@435 1330 }
duke@435 1331 break;
duke@435 1332 }
duke@435 1333
duke@435 1334 case T_CHAR: {
duke@435 1335 Register dest_reg = dest->as_register();
duke@435 1336 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1337 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1338 __ movzwl(dest_reg, from_addr);
duke@435 1339 } else {
duke@435 1340 __ movw(dest_reg, from_addr);
duke@435 1341 }
duke@435 1342 break;
duke@435 1343 }
duke@435 1344
duke@435 1345 case T_SHORT: {
duke@435 1346 Register dest_reg = dest->as_register();
duke@435 1347 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1348 __ movswl(dest_reg, from_addr);
duke@435 1349 } else {
duke@435 1350 __ movw(dest_reg, from_addr);
duke@435 1351 __ shll(dest_reg, 16);
duke@435 1352 __ sarl(dest_reg, 16);
duke@435 1353 }
duke@435 1354 break;
duke@435 1355 }
duke@435 1356
duke@435 1357 default:
duke@435 1358 ShouldNotReachHere();
duke@435 1359 }
duke@435 1360
duke@435 1361 if (patch != NULL) {
duke@435 1362 patching_epilog(patch, patch_code, addr->base()->as_register(), info);
duke@435 1363 }
duke@435 1364
duke@435 1365 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 1366 #ifdef _LP64
iveresov@2344 1367 if (UseCompressedOops && !wide) {
iveresov@2344 1368 __ decode_heap_oop(dest->as_register());
iveresov@2344 1369 }
iveresov@2344 1370 #endif
duke@435 1371 __ verify_oop(dest->as_register());
roland@4159 1372 } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
roland@4159 1373 #ifdef _LP64
roland@4159 1374 if (UseCompressedKlassPointers) {
roland@4159 1375 __ decode_klass_not_null(dest->as_register());
roland@4159 1376 }
roland@4159 1377 #endif
duke@435 1378 }
duke@435 1379 }
duke@435 1380
duke@435 1381
duke@435 1382 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1383 LIR_Address* addr = src->as_address_ptr();
duke@435 1384 Address from_addr = as_Address(addr);
duke@435 1385
duke@435 1386 if (VM_Version::supports_sse()) {
duke@435 1387 switch (ReadPrefetchInstr) {
duke@435 1388 case 0:
duke@435 1389 __ prefetchnta(from_addr); break;
duke@435 1390 case 1:
duke@435 1391 __ prefetcht0(from_addr); break;
duke@435 1392 case 2:
duke@435 1393 __ prefetcht2(from_addr); break;
duke@435 1394 default:
duke@435 1395 ShouldNotReachHere(); break;
duke@435 1396 }
kvn@2761 1397 } else if (VM_Version::supports_3dnow_prefetch()) {
duke@435 1398 __ prefetchr(from_addr);
duke@435 1399 }
duke@435 1400 }
duke@435 1401
duke@435 1402
duke@435 1403 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1404 LIR_Address* addr = src->as_address_ptr();
duke@435 1405 Address from_addr = as_Address(addr);
duke@435 1406
duke@435 1407 if (VM_Version::supports_sse()) {
duke@435 1408 switch (AllocatePrefetchInstr) {
duke@435 1409 case 0:
duke@435 1410 __ prefetchnta(from_addr); break;
duke@435 1411 case 1:
duke@435 1412 __ prefetcht0(from_addr); break;
duke@435 1413 case 2:
duke@435 1414 __ prefetcht2(from_addr); break;
duke@435 1415 case 3:
duke@435 1416 __ prefetchw(from_addr); break;
duke@435 1417 default:
duke@435 1418 ShouldNotReachHere(); break;
duke@435 1419 }
kvn@2761 1420 } else if (VM_Version::supports_3dnow_prefetch()) {
duke@435 1421 __ prefetchw(from_addr);
duke@435 1422 }
duke@435 1423 }
duke@435 1424
duke@435 1425
duke@435 1426 NEEDS_CLEANUP; // This could be static?
duke@435 1427 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
kvn@464 1428 int elem_size = type2aelembytes(type);
duke@435 1429 switch (elem_size) {
duke@435 1430 case 1: return Address::times_1;
duke@435 1431 case 2: return Address::times_2;
duke@435 1432 case 4: return Address::times_4;
duke@435 1433 case 8: return Address::times_8;
duke@435 1434 }
duke@435 1435 ShouldNotReachHere();
duke@435 1436 return Address::no_scale;
duke@435 1437 }
duke@435 1438
duke@435 1439
duke@435 1440 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 1441 switch (op->code()) {
duke@435 1442 case lir_idiv:
duke@435 1443 case lir_irem:
duke@435 1444 arithmetic_idiv(op->code(),
duke@435 1445 op->in_opr1(),
duke@435 1446 op->in_opr2(),
duke@435 1447 op->in_opr3(),
duke@435 1448 op->result_opr(),
duke@435 1449 op->info());
duke@435 1450 break;
duke@435 1451 default: ShouldNotReachHere(); break;
duke@435 1452 }
duke@435 1453 }
duke@435 1454
duke@435 1455 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 1456 #ifdef ASSERT
duke@435 1457 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 1458 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 1459 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 1460 #endif
duke@435 1461
duke@435 1462 if (op->cond() == lir_cond_always) {
duke@435 1463 if (op->info() != NULL) add_debug_info_for_branch(op->info());
duke@435 1464 __ jmp (*(op->label()));
duke@435 1465 } else {
duke@435 1466 Assembler::Condition acond = Assembler::zero;
duke@435 1467 if (op->code() == lir_cond_float_branch) {
duke@435 1468 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 1469 __ jcc(Assembler::parity, *(op->ublock()->label()));
duke@435 1470 switch(op->cond()) {
duke@435 1471 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1472 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1473 case lir_cond_less: acond = Assembler::below; break;
duke@435 1474 case lir_cond_lessEqual: acond = Assembler::belowEqual; break;
duke@435 1475 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
duke@435 1476 case lir_cond_greater: acond = Assembler::above; break;
duke@435 1477 default: ShouldNotReachHere();
duke@435 1478 }
duke@435 1479 } else {
duke@435 1480 switch (op->cond()) {
duke@435 1481 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1482 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1483 case lir_cond_less: acond = Assembler::less; break;
duke@435 1484 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1485 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
duke@435 1486 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1487 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
duke@435 1488 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
duke@435 1489 default: ShouldNotReachHere();
duke@435 1490 }
duke@435 1491 }
duke@435 1492 __ jcc(acond,*(op->label()));
duke@435 1493 }
duke@435 1494 }
duke@435 1495
duke@435 1496 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 1497 LIR_Opr src = op->in_opr();
duke@435 1498 LIR_Opr dest = op->result_opr();
duke@435 1499
duke@435 1500 switch (op->bytecode()) {
duke@435 1501 case Bytecodes::_i2l:
never@739 1502 #ifdef _LP64
never@739 1503 __ movl2ptr(dest->as_register_lo(), src->as_register());
never@739 1504 #else
duke@435 1505 move_regs(src->as_register(), dest->as_register_lo());
duke@435 1506 move_regs(src->as_register(), dest->as_register_hi());
duke@435 1507 __ sarl(dest->as_register_hi(), 31);
never@739 1508 #endif // LP64
duke@435 1509 break;
duke@435 1510
duke@435 1511 case Bytecodes::_l2i:
iveresov@3744 1512 #ifdef _LP64
iveresov@3744 1513 __ movl(dest->as_register(), src->as_register_lo());
iveresov@3744 1514 #else
duke@435 1515 move_regs(src->as_register_lo(), dest->as_register());
iveresov@3744 1516 #endif
duke@435 1517 break;
duke@435 1518
duke@435 1519 case Bytecodes::_i2b:
duke@435 1520 move_regs(src->as_register(), dest->as_register());
duke@435 1521 __ sign_extend_byte(dest->as_register());
duke@435 1522 break;
duke@435 1523
duke@435 1524 case Bytecodes::_i2c:
duke@435 1525 move_regs(src->as_register(), dest->as_register());
duke@435 1526 __ andl(dest->as_register(), 0xFFFF);
duke@435 1527 break;
duke@435 1528
duke@435 1529 case Bytecodes::_i2s:
duke@435 1530 move_regs(src->as_register(), dest->as_register());
duke@435 1531 __ sign_extend_short(dest->as_register());
duke@435 1532 break;
duke@435 1533
duke@435 1534
duke@435 1535 case Bytecodes::_f2d:
duke@435 1536 case Bytecodes::_d2f:
duke@435 1537 if (dest->is_single_xmm()) {
duke@435 1538 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
duke@435 1539 } else if (dest->is_double_xmm()) {
duke@435 1540 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
duke@435 1541 } else {
duke@435 1542 assert(src->fpu() == dest->fpu(), "register must be equal");
duke@435 1543 // do nothing (float result is rounded later through spilling)
duke@435 1544 }
duke@435 1545 break;
duke@435 1546
duke@435 1547 case Bytecodes::_i2f:
duke@435 1548 case Bytecodes::_i2d:
duke@435 1549 if (dest->is_single_xmm()) {
never@739 1550 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
duke@435 1551 } else if (dest->is_double_xmm()) {
never@739 1552 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
duke@435 1553 } else {
duke@435 1554 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1555 __ movl(Address(rsp, 0), src->as_register());
duke@435 1556 __ fild_s(Address(rsp, 0));
duke@435 1557 }
duke@435 1558 break;
duke@435 1559
duke@435 1560 case Bytecodes::_f2i:
duke@435 1561 case Bytecodes::_d2i:
duke@435 1562 if (src->is_single_xmm()) {
never@739 1563 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
duke@435 1564 } else if (src->is_double_xmm()) {
never@739 1565 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
duke@435 1566 } else {
duke@435 1567 assert(src->fpu() == 0, "input must be on TOS");
duke@435 1568 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
duke@435 1569 __ fist_s(Address(rsp, 0));
duke@435 1570 __ movl(dest->as_register(), Address(rsp, 0));
duke@435 1571 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1572 }
duke@435 1573
duke@435 1574 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
duke@435 1575 assert(op->stub() != NULL, "stub required");
duke@435 1576 __ cmpl(dest->as_register(), 0x80000000);
duke@435 1577 __ jcc(Assembler::equal, *op->stub()->entry());
duke@435 1578 __ bind(*op->stub()->continuation());
duke@435 1579 break;
duke@435 1580
duke@435 1581 case Bytecodes::_l2f:
duke@435 1582 case Bytecodes::_l2d:
duke@435 1583 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
duke@435 1584 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1585
never@739 1586 __ movptr(Address(rsp, 0), src->as_register_lo());
never@739 1587 NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
duke@435 1588 __ fild_d(Address(rsp, 0));
duke@435 1589 // float result is rounded later through spilling
duke@435 1590 break;
duke@435 1591
duke@435 1592 case Bytecodes::_f2l:
duke@435 1593 case Bytecodes::_d2l:
duke@435 1594 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
duke@435 1595 assert(src->fpu() == 0, "input must be on TOS");
never@739 1596 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
duke@435 1597
duke@435 1598 // instruction sequence too long to inline it here
duke@435 1599 {
duke@435 1600 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
duke@435 1601 }
duke@435 1602 break;
duke@435 1603
duke@435 1604 default: ShouldNotReachHere();
duke@435 1605 }
duke@435 1606 }
duke@435 1607
duke@435 1608 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 1609 if (op->init_check()) {
coleenp@3368 1610 __ cmpb(Address(op->klass()->as_register(),
coleenp@4037 1611 InstanceKlass::init_state_offset()),
coleenp@4037 1612 InstanceKlass::fully_initialized);
duke@435 1613 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 1614 __ jcc(Assembler::notEqual, *op->stub()->entry());
duke@435 1615 }
duke@435 1616 __ allocate_object(op->obj()->as_register(),
duke@435 1617 op->tmp1()->as_register(),
duke@435 1618 op->tmp2()->as_register(),
duke@435 1619 op->header_size(),
duke@435 1620 op->object_size(),
duke@435 1621 op->klass()->as_register(),
duke@435 1622 *op->stub()->entry());
duke@435 1623 __ bind(*op->stub()->continuation());
duke@435 1624 }
duke@435 1625
duke@435 1626 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
iveresov@2432 1627 Register len = op->len()->as_register();
iveresov@2432 1628 LP64_ONLY( __ movslq(len, len); )
iveresov@2432 1629
duke@435 1630 if (UseSlowPath ||
duke@435 1631 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 1632 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
duke@435 1633 __ jmp(*op->stub()->entry());
duke@435 1634 } else {
duke@435 1635 Register tmp1 = op->tmp1()->as_register();
duke@435 1636 Register tmp2 = op->tmp2()->as_register();
duke@435 1637 Register tmp3 = op->tmp3()->as_register();
duke@435 1638 if (len == tmp1) {
duke@435 1639 tmp1 = tmp3;
duke@435 1640 } else if (len == tmp2) {
duke@435 1641 tmp2 = tmp3;
duke@435 1642 } else if (len == tmp3) {
duke@435 1643 // everything is ok
duke@435 1644 } else {
never@739 1645 __ mov(tmp3, len);
duke@435 1646 }
duke@435 1647 __ allocate_array(op->obj()->as_register(),
duke@435 1648 len,
duke@435 1649 tmp1,
duke@435 1650 tmp2,
duke@435 1651 arrayOopDesc::header_size(op->type()),
duke@435 1652 array_element_size(op->type()),
duke@435 1653 op->klass()->as_register(),
duke@435 1654 *op->stub()->entry());
duke@435 1655 }
duke@435 1656 __ bind(*op->stub()->continuation());
duke@435 1657 }
duke@435 1658
iveresov@2138 1659 void LIR_Assembler::type_profile_helper(Register mdo,
iveresov@2138 1660 ciMethodData *md, ciProfileData *data,
iveresov@2138 1661 Register recv, Label* update_done) {
iveresov@2163 1662 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
iveresov@2138 1663 Label next_test;
iveresov@2138 1664 // See if the receiver is receiver[n].
iveresov@2138 1665 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
iveresov@2138 1666 __ jccb(Assembler::notEqual, next_test);
iveresov@2138 1667 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
iveresov@2138 1668 __ addptr(data_addr, DataLayout::counter_increment);
iveresov@2146 1669 __ jmp(*update_done);
iveresov@2138 1670 __ bind(next_test);
iveresov@2138 1671 }
iveresov@2138 1672
iveresov@2138 1673 // Didn't find receiver; find next empty slot and fill it in
iveresov@2163 1674 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
iveresov@2138 1675 Label next_test;
iveresov@2138 1676 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
iveresov@2138 1677 __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
iveresov@2138 1678 __ jccb(Assembler::notEqual, next_test);
iveresov@2138 1679 __ movptr(recv_addr, recv);
iveresov@2138 1680 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
iveresov@2146 1681 __ jmp(*update_done);
iveresov@2138 1682 __ bind(next_test);
iveresov@2138 1683 }
iveresov@2138 1684 }
iveresov@2138 1685
iveresov@2146 1686 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
iveresov@2138 1687 // we always need a stub for the failure case.
iveresov@2138 1688 CodeStub* stub = op->stub();
iveresov@2138 1689 Register obj = op->object()->as_register();
iveresov@2138 1690 Register k_RInfo = op->tmp1()->as_register();
iveresov@2138 1691 Register klass_RInfo = op->tmp2()->as_register();
iveresov@2138 1692 Register dst = op->result_opr()->as_register();
iveresov@2138 1693 ciKlass* k = op->klass();
iveresov@2138 1694 Register Rtmp1 = noreg;
iveresov@2138 1695
iveresov@2138 1696 // check if it needs to be profiled
iveresov@2138 1697 ciMethodData* md;
iveresov@2138 1698 ciProfileData* data;
iveresov@2138 1699
iveresov@2138 1700 if (op->should_profile()) {
iveresov@2138 1701 ciMethod* method = op->profiled_method();
iveresov@2138 1702 assert(method != NULL, "Should have method");
iveresov@2138 1703 int bci = op->profiled_bci();
iveresov@2349 1704 md = method->method_data_or_null();
iveresov@2349 1705 assert(md != NULL, "Sanity");
iveresov@2138 1706 data = md->bci_to_data(bci);
iveresov@2146 1707 assert(data != NULL, "need data for type check");
iveresov@2146 1708 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2138 1709 }
iveresov@2146 1710 Label profile_cast_success, profile_cast_failure;
iveresov@2146 1711 Label *success_target = op->should_profile() ? &profile_cast_success : success;
iveresov@2146 1712 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
iveresov@2138 1713
iveresov@2138 1714 if (obj == k_RInfo) {
iveresov@2138 1715 k_RInfo = dst;
iveresov@2138 1716 } else if (obj == klass_RInfo) {
iveresov@2138 1717 klass_RInfo = dst;
iveresov@2138 1718 }
roland@4159 1719 if (k->is_loaded() && !UseCompressedKlassPointers) {
iveresov@2138 1720 select_different_registers(obj, dst, k_RInfo, klass_RInfo);
iveresov@2138 1721 } else {
iveresov@2138 1722 Rtmp1 = op->tmp3()->as_register();
iveresov@2138 1723 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
iveresov@2138 1724 }
iveresov@2138 1725
iveresov@2138 1726 assert_different_registers(obj, k_RInfo, klass_RInfo);
iveresov@2138 1727 if (!k->is_loaded()) {
coleenp@4037 1728 klass2reg_with_patching(k_RInfo, op->info_for_patch());
iveresov@2138 1729 } else {
iveresov@2138 1730 #ifdef _LP64
coleenp@4037 1731 __ mov_metadata(k_RInfo, k->constant_encoding());
iveresov@2138 1732 #endif // _LP64
iveresov@2138 1733 }
iveresov@2138 1734 assert(obj != k_RInfo, "must be different");
iveresov@2138 1735
iveresov@2138 1736 __ cmpptr(obj, (int32_t)NULL_WORD);
iveresov@2138 1737 if (op->should_profile()) {
iveresov@2146 1738 Label not_null;
iveresov@2146 1739 __ jccb(Assembler::notEqual, not_null);
iveresov@2146 1740 // Object is null; update MDO and exit
iveresov@2138 1741 Register mdo = klass_RInfo;
coleenp@4037 1742 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2138 1743 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
iveresov@2138 1744 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
iveresov@2138 1745 __ orl(data_addr, header_bits);
iveresov@2146 1746 __ jmp(*obj_is_null);
iveresov@2146 1747 __ bind(not_null);
iveresov@2138 1748 } else {
iveresov@2146 1749 __ jcc(Assembler::equal, *obj_is_null);
iveresov@2138 1750 }
iveresov@2138 1751 __ verify_oop(obj);
iveresov@2138 1752
iveresov@2138 1753 if (op->fast_check()) {
iveresov@2146 1754 // get object class
iveresov@2138 1755 // not a safepoint as obj null check happens earlier
iveresov@2138 1756 #ifdef _LP64
coleenp@4037 1757 if (UseCompressedKlassPointers) {
iveresov@2344 1758 __ load_klass(Rtmp1, obj);
iveresov@2344 1759 __ cmpptr(k_RInfo, Rtmp1);
iveresov@2138 1760 } else {
iveresov@2138 1761 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2138 1762 }
iveresov@2344 1763 #else
iveresov@2344 1764 if (k->is_loaded()) {
coleenp@4037 1765 __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
iveresov@2344 1766 } else {
iveresov@2344 1767 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2344 1768 }
iveresov@2344 1769 #endif
iveresov@2138 1770 __ jcc(Assembler::notEqual, *failure_target);
iveresov@2146 1771 // successful cast, fall through to profile or jump
iveresov@2138 1772 } else {
iveresov@2138 1773 // get object class
iveresov@2138 1774 // not a safepoint as obj null check happens earlier
iveresov@2344 1775 __ load_klass(klass_RInfo, obj);
iveresov@2138 1776 if (k->is_loaded()) {
iveresov@2138 1777 // See if we get an immediate positive hit
iveresov@2138 1778 #ifdef _LP64
iveresov@2138 1779 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
iveresov@2138 1780 #else
coleenp@4037 1781 __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
iveresov@2138 1782 #endif // _LP64
stefank@3391 1783 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
iveresov@2138 1784 __ jcc(Assembler::notEqual, *failure_target);
iveresov@2146 1785 // successful cast, fall through to profile or jump
iveresov@2138 1786 } else {
iveresov@2138 1787 // See if we get an immediate positive hit
iveresov@2146 1788 __ jcc(Assembler::equal, *success_target);
iveresov@2138 1789 // check for self
iveresov@2138 1790 #ifdef _LP64
iveresov@2138 1791 __ cmpptr(klass_RInfo, k_RInfo);
iveresov@2138 1792 #else
coleenp@4037 1793 __ cmpklass(klass_RInfo, k->constant_encoding());
iveresov@2138 1794 #endif // _LP64
iveresov@2146 1795 __ jcc(Assembler::equal, *success_target);
iveresov@2138 1796
iveresov@2138 1797 __ push(klass_RInfo);
iveresov@2138 1798 #ifdef _LP64
iveresov@2138 1799 __ push(k_RInfo);
iveresov@2138 1800 #else
coleenp@4037 1801 __ pushklass(k->constant_encoding());
iveresov@2138 1802 #endif // _LP64
iveresov@2138 1803 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
iveresov@2138 1804 __ pop(klass_RInfo);
iveresov@2138 1805 __ pop(klass_RInfo);
iveresov@2138 1806 // result is a boolean
iveresov@2138 1807 __ cmpl(klass_RInfo, 0);
iveresov@2138 1808 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1809 // successful cast, fall through to profile or jump
iveresov@2138 1810 }
iveresov@2138 1811 } else {
iveresov@2138 1812 // perform the fast part of the checking logic
iveresov@2146 1813 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
iveresov@2138 1814 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
iveresov@2138 1815 __ push(klass_RInfo);
iveresov@2138 1816 __ push(k_RInfo);
iveresov@2138 1817 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
iveresov@2138 1818 __ pop(klass_RInfo);
iveresov@2138 1819 __ pop(k_RInfo);
iveresov@2138 1820 // result is a boolean
iveresov@2138 1821 __ cmpl(k_RInfo, 0);
iveresov@2138 1822 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1823 // successful cast, fall through to profile or jump
iveresov@2138 1824 }
iveresov@2138 1825 }
iveresov@2138 1826 if (op->should_profile()) {
iveresov@2138 1827 Register mdo = klass_RInfo, recv = k_RInfo;
iveresov@2146 1828 __ bind(profile_cast_success);
coleenp@4037 1829 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2344 1830 __ load_klass(recv, obj);
iveresov@2138 1831 Label update_done;
iveresov@2146 1832 type_profile_helper(mdo, md, data, recv, success);
iveresov@2146 1833 __ jmp(*success);
iveresov@2138 1834
iveresov@2138 1835 __ bind(profile_cast_failure);
coleenp@4037 1836 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2138 1837 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
iveresov@2138 1838 __ subptr(counter_addr, DataLayout::counter_increment);
iveresov@2146 1839 __ jmp(*failure);
iveresov@2138 1840 }
iveresov@2146 1841 __ jmp(*success);
iveresov@2138 1842 }
duke@435 1843
iveresov@2146 1844
duke@435 1845 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 1846 LIR_Code code = op->code();
duke@435 1847 if (code == lir_store_check) {
duke@435 1848 Register value = op->object()->as_register();
duke@435 1849 Register array = op->array()->as_register();
duke@435 1850 Register k_RInfo = op->tmp1()->as_register();
duke@435 1851 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1852 Register Rtmp1 = op->tmp3()->as_register();
duke@435 1853
duke@435 1854 CodeStub* stub = op->stub();
iveresov@2146 1855
iveresov@2146 1856 // check if it needs to be profiled
iveresov@2146 1857 ciMethodData* md;
iveresov@2146 1858 ciProfileData* data;
iveresov@2146 1859
iveresov@2146 1860 if (op->should_profile()) {
iveresov@2146 1861 ciMethod* method = op->profiled_method();
iveresov@2146 1862 assert(method != NULL, "Should have method");
iveresov@2146 1863 int bci = op->profiled_bci();
iveresov@2349 1864 md = method->method_data_or_null();
iveresov@2349 1865 assert(md != NULL, "Sanity");
iveresov@2146 1866 data = md->bci_to_data(bci);
iveresov@2146 1867 assert(data != NULL, "need data for type check");
iveresov@2146 1868 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2146 1869 }
iveresov@2146 1870 Label profile_cast_success, profile_cast_failure, done;
iveresov@2146 1871 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
iveresov@2146 1872 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
iveresov@2146 1873
never@739 1874 __ cmpptr(value, (int32_t)NULL_WORD);
iveresov@2146 1875 if (op->should_profile()) {
iveresov@2146 1876 Label not_null;
iveresov@2146 1877 __ jccb(Assembler::notEqual, not_null);
iveresov@2146 1878 // Object is null; update MDO and exit
iveresov@2146 1879 Register mdo = klass_RInfo;
coleenp@4037 1880 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2146 1881 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
iveresov@2146 1882 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
iveresov@2146 1883 __ orl(data_addr, header_bits);
iveresov@2146 1884 __ jmp(done);
iveresov@2146 1885 __ bind(not_null);
iveresov@2146 1886 } else {
iveresov@2146 1887 __ jcc(Assembler::equal, done);
iveresov@2146 1888 }
iveresov@2146 1889
duke@435 1890 add_debug_info_for_null_check_here(op->info_for_exception());
iveresov@2344 1891 __ load_klass(k_RInfo, array);
iveresov@2344 1892 __ load_klass(klass_RInfo, value);
iveresov@2344 1893
iveresov@2344 1894 // get instance klass (it's already uncompressed)
coleenp@4142 1895 __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
jrose@1079 1896 // perform the fast part of the checking logic
iveresov@2146 1897 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
jrose@1079 1898 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1899 __ push(klass_RInfo);
never@739 1900 __ push(k_RInfo);
duke@435 1901 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1902 __ pop(klass_RInfo);
never@739 1903 __ pop(k_RInfo);
never@739 1904 // result is a boolean
duke@435 1905 __ cmpl(k_RInfo, 0);
iveresov@2146 1906 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1907 // fall through to the success case
iveresov@2146 1908
iveresov@2146 1909 if (op->should_profile()) {
iveresov@2146 1910 Register mdo = klass_RInfo, recv = k_RInfo;
iveresov@2146 1911 __ bind(profile_cast_success);
coleenp@4037 1912 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2344 1913 __ load_klass(recv, value);
iveresov@2146 1914 Label update_done;
iveresov@2146 1915 type_profile_helper(mdo, md, data, recv, &done);
iveresov@2146 1916 __ jmpb(done);
iveresov@2146 1917
iveresov@2146 1918 __ bind(profile_cast_failure);
coleenp@4037 1919 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2146 1920 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
iveresov@2146 1921 __ subptr(counter_addr, DataLayout::counter_increment);
iveresov@2146 1922 __ jmp(*stub->entry());
iveresov@2146 1923 }
iveresov@2146 1924
duke@435 1925 __ bind(done);
iveresov@2146 1926 } else
iveresov@2146 1927 if (code == lir_checkcast) {
iveresov@2146 1928 Register obj = op->object()->as_register();
iveresov@2146 1929 Register dst = op->result_opr()->as_register();
iveresov@2146 1930 Label success;
iveresov@2146 1931 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
iveresov@2146 1932 __ bind(success);
iveresov@2146 1933 if (dst != obj) {
iveresov@2146 1934 __ mov(dst, obj);
iveresov@2146 1935 }
iveresov@2146 1936 } else
iveresov@2146 1937 if (code == lir_instanceof) {
iveresov@2146 1938 Register obj = op->object()->as_register();
iveresov@2146 1939 Register dst = op->result_opr()->as_register();
iveresov@2146 1940 Label success, failure, done;
iveresov@2146 1941 emit_typecheck_helper(op, &success, &failure, &failure);
iveresov@2146 1942 __ bind(failure);
iveresov@2146 1943 __ xorptr(dst, dst);
iveresov@2146 1944 __ jmpb(done);
iveresov@2146 1945 __ bind(success);
iveresov@2146 1946 __ movptr(dst, 1);
iveresov@2146 1947 __ bind(done);
duke@435 1948 } else {
iveresov@2146 1949 ShouldNotReachHere();
duke@435 1950 }
duke@435 1951
duke@435 1952 }
duke@435 1953
duke@435 1954
duke@435 1955 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
never@739 1956 if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
duke@435 1957 assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
duke@435 1958 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
duke@435 1959 assert(op->new_value()->as_register_lo() == rbx, "wrong register");
duke@435 1960 assert(op->new_value()->as_register_hi() == rcx, "wrong register");
duke@435 1961 Register addr = op->addr()->as_register();
duke@435 1962 if (os::is_MP()) {
duke@435 1963 __ lock();
duke@435 1964 }
never@739 1965 NOT_LP64(__ cmpxchg8(Address(addr, 0)));
never@739 1966
never@739 1967 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
never@739 1968 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
never@739 1969 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
duke@435 1970 Register newval = op->new_value()->as_register();
duke@435 1971 Register cmpval = op->cmp_value()->as_register();
duke@435 1972 assert(cmpval == rax, "wrong register");
duke@435 1973 assert(newval != NULL, "new val must be register");
duke@435 1974 assert(cmpval != newval, "cmp and new values must be in different registers");
duke@435 1975 assert(cmpval != addr, "cmp and addr must be in different registers");
duke@435 1976 assert(newval != addr, "new value and addr must be in different registers");
iveresov@2344 1977
never@739 1978 if ( op->code() == lir_cas_obj) {
iveresov@2344 1979 #ifdef _LP64
iveresov@2344 1980 if (UseCompressedOops) {
iveresov@2344 1981 __ encode_heap_oop(cmpval);
iveresov@2355 1982 __ mov(rscratch1, newval);
iveresov@2355 1983 __ encode_heap_oop(rscratch1);
iveresov@2344 1984 if (os::is_MP()) {
iveresov@2344 1985 __ lock();
iveresov@2344 1986 }
iveresov@2355 1987 // cmpval (rax) is implicitly used by this instruction
iveresov@2355 1988 __ cmpxchgl(rscratch1, Address(addr, 0));
iveresov@2344 1989 } else
iveresov@2344 1990 #endif
iveresov@2344 1991 {
iveresov@2344 1992 if (os::is_MP()) {
iveresov@2344 1993 __ lock();
iveresov@2344 1994 }
iveresov@2344 1995 __ cmpxchgptr(newval, Address(addr, 0));
iveresov@2344 1996 }
iveresov@2344 1997 } else {
iveresov@2344 1998 assert(op->code() == lir_cas_int, "lir_cas_int expected");
iveresov@2344 1999 if (os::is_MP()) {
iveresov@2344 2000 __ lock();
iveresov@2344 2001 }
never@739 2002 __ cmpxchgl(newval, Address(addr, 0));
never@739 2003 }
never@739 2004 #ifdef _LP64
never@739 2005 } else if (op->code() == lir_cas_long) {
never@739 2006 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
never@739 2007 Register newval = op->new_value()->as_register_lo();
never@739 2008 Register cmpval = op->cmp_value()->as_register_lo();
never@739 2009 assert(cmpval == rax, "wrong register");
never@739 2010 assert(newval != NULL, "new val must be register");
never@739 2011 assert(cmpval != newval, "cmp and new values must be in different registers");
never@739 2012 assert(cmpval != addr, "cmp and addr must be in different registers");
never@739 2013 assert(newval != addr, "new value and addr must be in different registers");
never@739 2014 if (os::is_MP()) {
never@739 2015 __ lock();
never@739 2016 }
never@739 2017 __ cmpxchgq(newval, Address(addr, 0));
never@739 2018 #endif // _LP64
duke@435 2019 } else {
duke@435 2020 Unimplemented();
duke@435 2021 }
duke@435 2022 }
duke@435 2023
iveresov@2412 2024 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
duke@435 2025 Assembler::Condition acond, ncond;
duke@435 2026 switch (condition) {
duke@435 2027 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break;
duke@435 2028 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break;
duke@435 2029 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break;
duke@435 2030 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break;
duke@435 2031 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break;
duke@435 2032 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break;
duke@435 2033 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break;
duke@435 2034 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break;
duke@435 2035 default: ShouldNotReachHere();
duke@435 2036 }
duke@435 2037
duke@435 2038 if (opr1->is_cpu_register()) {
duke@435 2039 reg2reg(opr1, result);
duke@435 2040 } else if (opr1->is_stack()) {
duke@435 2041 stack2reg(opr1, result, result->type());
duke@435 2042 } else if (opr1->is_constant()) {
duke@435 2043 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 2044 } else {
duke@435 2045 ShouldNotReachHere();
duke@435 2046 }
duke@435 2047
duke@435 2048 if (VM_Version::supports_cmov() && !opr2->is_constant()) {
duke@435 2049 // optimized version that does not require a branch
duke@435 2050 if (opr2->is_single_cpu()) {
duke@435 2051 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
never@739 2052 __ cmov(ncond, result->as_register(), opr2->as_register());
duke@435 2053 } else if (opr2->is_double_cpu()) {
duke@435 2054 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
duke@435 2055 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
never@739 2056 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
never@739 2057 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
duke@435 2058 } else if (opr2->is_single_stack()) {
duke@435 2059 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2060 } else if (opr2->is_double_stack()) {
never@739 2061 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
never@739 2062 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
duke@435 2063 } else {
duke@435 2064 ShouldNotReachHere();
duke@435 2065 }
duke@435 2066
duke@435 2067 } else {
duke@435 2068 Label skip;
duke@435 2069 __ jcc (acond, skip);
duke@435 2070 if (opr2->is_cpu_register()) {
duke@435 2071 reg2reg(opr2, result);
duke@435 2072 } else if (opr2->is_stack()) {
duke@435 2073 stack2reg(opr2, result, result->type());
duke@435 2074 } else if (opr2->is_constant()) {
duke@435 2075 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 2076 } else {
duke@435 2077 ShouldNotReachHere();
duke@435 2078 }
duke@435 2079 __ bind(skip);
duke@435 2080 }
duke@435 2081 }
duke@435 2082
duke@435 2083
duke@435 2084 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 2085 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
duke@435 2086
duke@435 2087 if (left->is_single_cpu()) {
duke@435 2088 assert(left == dest, "left and dest must be equal");
duke@435 2089 Register lreg = left->as_register();
duke@435 2090
duke@435 2091 if (right->is_single_cpu()) {
duke@435 2092 // cpu register - cpu register
duke@435 2093 Register rreg = right->as_register();
duke@435 2094 switch (code) {
duke@435 2095 case lir_add: __ addl (lreg, rreg); break;
duke@435 2096 case lir_sub: __ subl (lreg, rreg); break;
duke@435 2097 case lir_mul: __ imull(lreg, rreg); break;
duke@435 2098 default: ShouldNotReachHere();
duke@435 2099 }
duke@435 2100
duke@435 2101 } else if (right->is_stack()) {
duke@435 2102 // cpu register - stack
duke@435 2103 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2104 switch (code) {
duke@435 2105 case lir_add: __ addl(lreg, raddr); break;
duke@435 2106 case lir_sub: __ subl(lreg, raddr); break;
duke@435 2107 default: ShouldNotReachHere();
duke@435 2108 }
duke@435 2109
duke@435 2110 } else if (right->is_constant()) {
duke@435 2111 // cpu register - constant
duke@435 2112 jint c = right->as_constant_ptr()->as_jint();
duke@435 2113 switch (code) {
duke@435 2114 case lir_add: {
iveresov@2145 2115 __ incrementl(lreg, c);
duke@435 2116 break;
duke@435 2117 }
duke@435 2118 case lir_sub: {
iveresov@2145 2119 __ decrementl(lreg, c);
duke@435 2120 break;
duke@435 2121 }
duke@435 2122 default: ShouldNotReachHere();
duke@435 2123 }
duke@435 2124
duke@435 2125 } else {
duke@435 2126 ShouldNotReachHere();
duke@435 2127 }
duke@435 2128
duke@435 2129 } else if (left->is_double_cpu()) {
duke@435 2130 assert(left == dest, "left and dest must be equal");
duke@435 2131 Register lreg_lo = left->as_register_lo();
duke@435 2132 Register lreg_hi = left->as_register_hi();
duke@435 2133
duke@435 2134 if (right->is_double_cpu()) {
duke@435 2135 // cpu register - cpu register
duke@435 2136 Register rreg_lo = right->as_register_lo();
duke@435 2137 Register rreg_hi = right->as_register_hi();
never@739 2138 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
never@739 2139 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
duke@435 2140 switch (code) {
duke@435 2141 case lir_add:
never@739 2142 __ addptr(lreg_lo, rreg_lo);
never@739 2143 NOT_LP64(__ adcl(lreg_hi, rreg_hi));
duke@435 2144 break;
duke@435 2145 case lir_sub:
never@739 2146 __ subptr(lreg_lo, rreg_lo);
never@739 2147 NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
duke@435 2148 break;
duke@435 2149 case lir_mul:
never@739 2150 #ifdef _LP64
never@739 2151 __ imulq(lreg_lo, rreg_lo);
never@739 2152 #else
duke@435 2153 assert(lreg_lo == rax && lreg_hi == rdx, "must be");
duke@435 2154 __ imull(lreg_hi, rreg_lo);
duke@435 2155 __ imull(rreg_hi, lreg_lo);
duke@435 2156 __ addl (rreg_hi, lreg_hi);
duke@435 2157 __ mull (rreg_lo);
duke@435 2158 __ addl (lreg_hi, rreg_hi);
never@739 2159 #endif // _LP64
duke@435 2160 break;
duke@435 2161 default:
duke@435 2162 ShouldNotReachHere();
duke@435 2163 }
duke@435 2164
duke@435 2165 } else if (right->is_constant()) {
duke@435 2166 // cpu register - constant
never@739 2167 #ifdef _LP64
never@739 2168 jlong c = right->as_constant_ptr()->as_jlong_bits();
never@739 2169 __ movptr(r10, (intptr_t) c);
never@739 2170 switch (code) {
never@739 2171 case lir_add:
never@739 2172 __ addptr(lreg_lo, r10);
never@739 2173 break;
never@739 2174 case lir_sub:
never@739 2175 __ subptr(lreg_lo, r10);
never@739 2176 break;
never@739 2177 default:
never@739 2178 ShouldNotReachHere();
never@739 2179 }
never@739 2180 #else
duke@435 2181 jint c_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2182 jint c_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2183 switch (code) {
duke@435 2184 case lir_add:
never@739 2185 __ addptr(lreg_lo, c_lo);
duke@435 2186 __ adcl(lreg_hi, c_hi);
duke@435 2187 break;
duke@435 2188 case lir_sub:
never@739 2189 __ subptr(lreg_lo, c_lo);
duke@435 2190 __ sbbl(lreg_hi, c_hi);
duke@435 2191 break;
duke@435 2192 default:
duke@435 2193 ShouldNotReachHere();
duke@435 2194 }
never@739 2195 #endif // _LP64
duke@435 2196
duke@435 2197 } else {
duke@435 2198 ShouldNotReachHere();
duke@435 2199 }
duke@435 2200
duke@435 2201 } else if (left->is_single_xmm()) {
duke@435 2202 assert(left == dest, "left and dest must be equal");
duke@435 2203 XMMRegister lreg = left->as_xmm_float_reg();
duke@435 2204
duke@435 2205 if (right->is_single_xmm()) {
duke@435 2206 XMMRegister rreg = right->as_xmm_float_reg();
duke@435 2207 switch (code) {
duke@435 2208 case lir_add: __ addss(lreg, rreg); break;
duke@435 2209 case lir_sub: __ subss(lreg, rreg); break;
duke@435 2210 case lir_mul_strictfp: // fall through
duke@435 2211 case lir_mul: __ mulss(lreg, rreg); break;
duke@435 2212 case lir_div_strictfp: // fall through
duke@435 2213 case lir_div: __ divss(lreg, rreg); break;
duke@435 2214 default: ShouldNotReachHere();
duke@435 2215 }
duke@435 2216 } else {
duke@435 2217 Address raddr;
duke@435 2218 if (right->is_single_stack()) {
duke@435 2219 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2220 } else if (right->is_constant()) {
duke@435 2221 // hack for now
duke@435 2222 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
duke@435 2223 } else {
duke@435 2224 ShouldNotReachHere();
duke@435 2225 }
duke@435 2226 switch (code) {
duke@435 2227 case lir_add: __ addss(lreg, raddr); break;
duke@435 2228 case lir_sub: __ subss(lreg, raddr); break;
duke@435 2229 case lir_mul_strictfp: // fall through
duke@435 2230 case lir_mul: __ mulss(lreg, raddr); break;
duke@435 2231 case lir_div_strictfp: // fall through
duke@435 2232 case lir_div: __ divss(lreg, raddr); break;
duke@435 2233 default: ShouldNotReachHere();
duke@435 2234 }
duke@435 2235 }
duke@435 2236
duke@435 2237 } else if (left->is_double_xmm()) {
duke@435 2238 assert(left == dest, "left and dest must be equal");
duke@435 2239
duke@435 2240 XMMRegister lreg = left->as_xmm_double_reg();
duke@435 2241 if (right->is_double_xmm()) {
duke@435 2242 XMMRegister rreg = right->as_xmm_double_reg();
duke@435 2243 switch (code) {
duke@435 2244 case lir_add: __ addsd(lreg, rreg); break;
duke@435 2245 case lir_sub: __ subsd(lreg, rreg); break;
duke@435 2246 case lir_mul_strictfp: // fall through
duke@435 2247 case lir_mul: __ mulsd(lreg, rreg); break;
duke@435 2248 case lir_div_strictfp: // fall through
duke@435 2249 case lir_div: __ divsd(lreg, rreg); break;
duke@435 2250 default: ShouldNotReachHere();
duke@435 2251 }
duke@435 2252 } else {
duke@435 2253 Address raddr;
duke@435 2254 if (right->is_double_stack()) {
duke@435 2255 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2256 } else if (right->is_constant()) {
duke@435 2257 // hack for now
duke@435 2258 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2259 } else {
duke@435 2260 ShouldNotReachHere();
duke@435 2261 }
duke@435 2262 switch (code) {
duke@435 2263 case lir_add: __ addsd(lreg, raddr); break;
duke@435 2264 case lir_sub: __ subsd(lreg, raddr); break;
duke@435 2265 case lir_mul_strictfp: // fall through
duke@435 2266 case lir_mul: __ mulsd(lreg, raddr); break;
duke@435 2267 case lir_div_strictfp: // fall through
duke@435 2268 case lir_div: __ divsd(lreg, raddr); break;
duke@435 2269 default: ShouldNotReachHere();
duke@435 2270 }
duke@435 2271 }
duke@435 2272
duke@435 2273 } else if (left->is_single_fpu()) {
duke@435 2274 assert(dest->is_single_fpu(), "fpu stack allocation required");
duke@435 2275
duke@435 2276 if (right->is_single_fpu()) {
duke@435 2277 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
duke@435 2278
duke@435 2279 } else {
duke@435 2280 assert(left->fpu_regnr() == 0, "left must be on TOS");
duke@435 2281 assert(dest->fpu_regnr() == 0, "dest must be on TOS");
duke@435 2282
duke@435 2283 Address raddr;
duke@435 2284 if (right->is_single_stack()) {
duke@435 2285 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2286 } else if (right->is_constant()) {
duke@435 2287 address const_addr = float_constant(right->as_jfloat());
duke@435 2288 assert(const_addr != NULL, "incorrect float/double constant maintainance");
duke@435 2289 // hack for now
duke@435 2290 raddr = __ as_Address(InternalAddress(const_addr));
duke@435 2291 } else {
duke@435 2292 ShouldNotReachHere();
duke@435 2293 }
duke@435 2294
duke@435 2295 switch (code) {
duke@435 2296 case lir_add: __ fadd_s(raddr); break;
duke@435 2297 case lir_sub: __ fsub_s(raddr); break;
duke@435 2298 case lir_mul_strictfp: // fall through
duke@435 2299 case lir_mul: __ fmul_s(raddr); break;
duke@435 2300 case lir_div_strictfp: // fall through
duke@435 2301 case lir_div: __ fdiv_s(raddr); break;
duke@435 2302 default: ShouldNotReachHere();
duke@435 2303 }
duke@435 2304 }
duke@435 2305
duke@435 2306 } else if (left->is_double_fpu()) {
duke@435 2307 assert(dest->is_double_fpu(), "fpu stack allocation required");
duke@435 2308
duke@435 2309 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2310 // Double values require special handling for strictfp mul/div on x86
duke@435 2311 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
duke@435 2312 __ fmulp(left->fpu_regnrLo() + 1);
duke@435 2313 }
duke@435 2314
duke@435 2315 if (right->is_double_fpu()) {
duke@435 2316 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
duke@435 2317
duke@435 2318 } else {
duke@435 2319 assert(left->fpu_regnrLo() == 0, "left must be on TOS");
duke@435 2320 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
duke@435 2321
duke@435 2322 Address raddr;
duke@435 2323 if (right->is_double_stack()) {
duke@435 2324 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2325 } else if (right->is_constant()) {
duke@435 2326 // hack for now
duke@435 2327 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2328 } else {
duke@435 2329 ShouldNotReachHere();
duke@435 2330 }
duke@435 2331
duke@435 2332 switch (code) {
duke@435 2333 case lir_add: __ fadd_d(raddr); break;
duke@435 2334 case lir_sub: __ fsub_d(raddr); break;
duke@435 2335 case lir_mul_strictfp: // fall through
duke@435 2336 case lir_mul: __ fmul_d(raddr); break;
duke@435 2337 case lir_div_strictfp: // fall through
duke@435 2338 case lir_div: __ fdiv_d(raddr); break;
duke@435 2339 default: ShouldNotReachHere();
duke@435 2340 }
duke@435 2341 }
duke@435 2342
duke@435 2343 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2344 // Double values require special handling for strictfp mul/div on x86
duke@435 2345 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
duke@435 2346 __ fmulp(dest->fpu_regnrLo() + 1);
duke@435 2347 }
duke@435 2348
duke@435 2349 } else if (left->is_single_stack() || left->is_address()) {
duke@435 2350 assert(left == dest, "left and dest must be equal");
duke@435 2351
duke@435 2352 Address laddr;
duke@435 2353 if (left->is_single_stack()) {
duke@435 2354 laddr = frame_map()->address_for_slot(left->single_stack_ix());
duke@435 2355 } else if (left->is_address()) {
duke@435 2356 laddr = as_Address(left->as_address_ptr());
duke@435 2357 } else {
duke@435 2358 ShouldNotReachHere();
duke@435 2359 }
duke@435 2360
duke@435 2361 if (right->is_single_cpu()) {
duke@435 2362 Register rreg = right->as_register();
duke@435 2363 switch (code) {
duke@435 2364 case lir_add: __ addl(laddr, rreg); break;
duke@435 2365 case lir_sub: __ subl(laddr, rreg); break;
duke@435 2366 default: ShouldNotReachHere();
duke@435 2367 }
duke@435 2368 } else if (right->is_constant()) {
duke@435 2369 jint c = right->as_constant_ptr()->as_jint();
duke@435 2370 switch (code) {
duke@435 2371 case lir_add: {
never@739 2372 __ incrementl(laddr, c);
duke@435 2373 break;
duke@435 2374 }
duke@435 2375 case lir_sub: {
never@739 2376 __ decrementl(laddr, c);
duke@435 2377 break;
duke@435 2378 }
duke@435 2379 default: ShouldNotReachHere();
duke@435 2380 }
duke@435 2381 } else {
duke@435 2382 ShouldNotReachHere();
duke@435 2383 }
duke@435 2384
duke@435 2385 } else {
duke@435 2386 ShouldNotReachHere();
duke@435 2387 }
duke@435 2388 }
duke@435 2389
duke@435 2390 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
duke@435 2391 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR");
duke@435 2392 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
duke@435 2393 assert(left_index == 0 || right_index == 0, "either must be on top of stack");
duke@435 2394
duke@435 2395 bool left_is_tos = (left_index == 0);
duke@435 2396 bool dest_is_tos = (dest_index == 0);
duke@435 2397 int non_tos_index = (left_is_tos ? right_index : left_index);
duke@435 2398
duke@435 2399 switch (code) {
duke@435 2400 case lir_add:
duke@435 2401 if (pop_fpu_stack) __ faddp(non_tos_index);
duke@435 2402 else if (dest_is_tos) __ fadd (non_tos_index);
duke@435 2403 else __ fadda(non_tos_index);
duke@435 2404 break;
duke@435 2405
duke@435 2406 case lir_sub:
duke@435 2407 if (left_is_tos) {
duke@435 2408 if (pop_fpu_stack) __ fsubrp(non_tos_index);
duke@435 2409 else if (dest_is_tos) __ fsub (non_tos_index);
duke@435 2410 else __ fsubra(non_tos_index);
duke@435 2411 } else {
duke@435 2412 if (pop_fpu_stack) __ fsubp (non_tos_index);
duke@435 2413 else if (dest_is_tos) __ fsubr (non_tos_index);
duke@435 2414 else __ fsuba (non_tos_index);
duke@435 2415 }
duke@435 2416 break;
duke@435 2417
duke@435 2418 case lir_mul_strictfp: // fall through
duke@435 2419 case lir_mul:
duke@435 2420 if (pop_fpu_stack) __ fmulp(non_tos_index);
duke@435 2421 else if (dest_is_tos) __ fmul (non_tos_index);
duke@435 2422 else __ fmula(non_tos_index);
duke@435 2423 break;
duke@435 2424
duke@435 2425 case lir_div_strictfp: // fall through
duke@435 2426 case lir_div:
duke@435 2427 if (left_is_tos) {
duke@435 2428 if (pop_fpu_stack) __ fdivrp(non_tos_index);
duke@435 2429 else if (dest_is_tos) __ fdiv (non_tos_index);
duke@435 2430 else __ fdivra(non_tos_index);
duke@435 2431 } else {
duke@435 2432 if (pop_fpu_stack) __ fdivp (non_tos_index);
duke@435 2433 else if (dest_is_tos) __ fdivr (non_tos_index);
duke@435 2434 else __ fdiva (non_tos_index);
duke@435 2435 }
duke@435 2436 break;
duke@435 2437
duke@435 2438 case lir_rem:
duke@435 2439 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
duke@435 2440 __ fremr(noreg);
duke@435 2441 break;
duke@435 2442
duke@435 2443 default:
duke@435 2444 ShouldNotReachHere();
duke@435 2445 }
duke@435 2446 }
duke@435 2447
duke@435 2448
duke@435 2449 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
duke@435 2450 if (value->is_double_xmm()) {
duke@435 2451 switch(code) {
duke@435 2452 case lir_abs :
duke@435 2453 {
duke@435 2454 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
duke@435 2455 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
duke@435 2456 }
duke@435 2457 __ andpd(dest->as_xmm_double_reg(),
duke@435 2458 ExternalAddress((address)double_signmask_pool));
duke@435 2459 }
duke@435 2460 break;
duke@435 2461
duke@435 2462 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
duke@435 2463 // all other intrinsics are not available in the SSE instruction set, so FPU is used
duke@435 2464 default : ShouldNotReachHere();
duke@435 2465 }
duke@435 2466
duke@435 2467 } else if (value->is_double_fpu()) {
duke@435 2468 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
duke@435 2469 switch(code) {
duke@435 2470 case lir_log : __ flog() ; break;
duke@435 2471 case lir_log10 : __ flog10() ; break;
duke@435 2472 case lir_abs : __ fabs() ; break;
duke@435 2473 case lir_sqrt : __ fsqrt(); break;
duke@435 2474 case lir_sin :
duke@435 2475 // Should consider not saving rbx, if not necessary
duke@435 2476 __ trigfunc('s', op->as_Op2()->fpu_stack_size());
duke@435 2477 break;
duke@435 2478 case lir_cos :
duke@435 2479 // Should consider not saving rbx, if not necessary
duke@435 2480 assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
duke@435 2481 __ trigfunc('c', op->as_Op2()->fpu_stack_size());
duke@435 2482 break;
duke@435 2483 case lir_tan :
duke@435 2484 // Should consider not saving rbx, if not necessary
duke@435 2485 __ trigfunc('t', op->as_Op2()->fpu_stack_size());
duke@435 2486 break;
roland@3787 2487 case lir_exp :
roland@3787 2488 __ exp_with_fallback(op->as_Op2()->fpu_stack_size());
roland@3787 2489 break;
roland@3787 2490 case lir_pow :
roland@3787 2491 __ pow_with_fallback(op->as_Op2()->fpu_stack_size());
roland@3787 2492 break;
duke@435 2493 default : ShouldNotReachHere();
duke@435 2494 }
duke@435 2495 } else {
duke@435 2496 Unimplemented();
duke@435 2497 }
duke@435 2498 }
duke@435 2499
duke@435 2500 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
duke@435 2501 // assert(left->destroys_register(), "check");
duke@435 2502 if (left->is_single_cpu()) {
duke@435 2503 Register reg = left->as_register();
duke@435 2504 if (right->is_constant()) {
duke@435 2505 int val = right->as_constant_ptr()->as_jint();
duke@435 2506 switch (code) {
duke@435 2507 case lir_logic_and: __ andl (reg, val); break;
duke@435 2508 case lir_logic_or: __ orl (reg, val); break;
duke@435 2509 case lir_logic_xor: __ xorl (reg, val); break;
duke@435 2510 default: ShouldNotReachHere();
duke@435 2511 }
duke@435 2512 } else if (right->is_stack()) {
duke@435 2513 // added support for stack operands
duke@435 2514 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2515 switch (code) {
duke@435 2516 case lir_logic_and: __ andl (reg, raddr); break;
duke@435 2517 case lir_logic_or: __ orl (reg, raddr); break;
duke@435 2518 case lir_logic_xor: __ xorl (reg, raddr); break;
duke@435 2519 default: ShouldNotReachHere();
duke@435 2520 }
duke@435 2521 } else {
duke@435 2522 Register rright = right->as_register();
duke@435 2523 switch (code) {
never@739 2524 case lir_logic_and: __ andptr (reg, rright); break;
never@739 2525 case lir_logic_or : __ orptr (reg, rright); break;
never@739 2526 case lir_logic_xor: __ xorptr (reg, rright); break;
duke@435 2527 default: ShouldNotReachHere();
duke@435 2528 }
duke@435 2529 }
duke@435 2530 move_regs(reg, dst->as_register());
duke@435 2531 } else {
duke@435 2532 Register l_lo = left->as_register_lo();
duke@435 2533 Register l_hi = left->as_register_hi();
duke@435 2534 if (right->is_constant()) {
never@739 2535 #ifdef _LP64
never@739 2536 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
never@739 2537 switch (code) {
never@739 2538 case lir_logic_and:
never@739 2539 __ andq(l_lo, rscratch1);
never@739 2540 break;
never@739 2541 case lir_logic_or:
never@739 2542 __ orq(l_lo, rscratch1);
never@739 2543 break;
never@739 2544 case lir_logic_xor:
never@739 2545 __ xorq(l_lo, rscratch1);
never@739 2546 break;
never@739 2547 default: ShouldNotReachHere();
never@739 2548 }
never@739 2549 #else
duke@435 2550 int r_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2551 int r_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2552 switch (code) {
duke@435 2553 case lir_logic_and:
duke@435 2554 __ andl(l_lo, r_lo);
duke@435 2555 __ andl(l_hi, r_hi);
duke@435 2556 break;
duke@435 2557 case lir_logic_or:
duke@435 2558 __ orl(l_lo, r_lo);
duke@435 2559 __ orl(l_hi, r_hi);
duke@435 2560 break;
duke@435 2561 case lir_logic_xor:
duke@435 2562 __ xorl(l_lo, r_lo);
duke@435 2563 __ xorl(l_hi, r_hi);
duke@435 2564 break;
duke@435 2565 default: ShouldNotReachHere();
duke@435 2566 }
never@739 2567 #endif // _LP64
duke@435 2568 } else {
iveresov@1927 2569 #ifdef _LP64
iveresov@1927 2570 Register r_lo;
iveresov@1927 2571 if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
iveresov@1927 2572 r_lo = right->as_register();
iveresov@1927 2573 } else {
iveresov@1927 2574 r_lo = right->as_register_lo();
iveresov@1927 2575 }
iveresov@1927 2576 #else
duke@435 2577 Register r_lo = right->as_register_lo();
duke@435 2578 Register r_hi = right->as_register_hi();
duke@435 2579 assert(l_lo != r_hi, "overwriting registers");
iveresov@1927 2580 #endif
duke@435 2581 switch (code) {
duke@435 2582 case lir_logic_and:
never@739 2583 __ andptr(l_lo, r_lo);
never@739 2584 NOT_LP64(__ andptr(l_hi, r_hi);)
duke@435 2585 break;
duke@435 2586 case lir_logic_or:
never@739 2587 __ orptr(l_lo, r_lo);
never@739 2588 NOT_LP64(__ orptr(l_hi, r_hi);)
duke@435 2589 break;
duke@435 2590 case lir_logic_xor:
never@739 2591 __ xorptr(l_lo, r_lo);
never@739 2592 NOT_LP64(__ xorptr(l_hi, r_hi);)
duke@435 2593 break;
duke@435 2594 default: ShouldNotReachHere();
duke@435 2595 }
duke@435 2596 }
duke@435 2597
duke@435 2598 Register dst_lo = dst->as_register_lo();
duke@435 2599 Register dst_hi = dst->as_register_hi();
duke@435 2600
never@739 2601 #ifdef _LP64
never@739 2602 move_regs(l_lo, dst_lo);
never@739 2603 #else
duke@435 2604 if (dst_lo == l_hi) {
duke@435 2605 assert(dst_hi != l_lo, "overwriting registers");
duke@435 2606 move_regs(l_hi, dst_hi);
duke@435 2607 move_regs(l_lo, dst_lo);
duke@435 2608 } else {
duke@435 2609 assert(dst_lo != l_hi, "overwriting registers");
duke@435 2610 move_regs(l_lo, dst_lo);
duke@435 2611 move_regs(l_hi, dst_hi);
duke@435 2612 }
never@739 2613 #endif // _LP64
duke@435 2614 }
duke@435 2615 }
duke@435 2616
duke@435 2617
duke@435 2618 // we assume that rax, and rdx can be overwritten
duke@435 2619 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
duke@435 2620
duke@435 2621 assert(left->is_single_cpu(), "left must be register");
duke@435 2622 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
duke@435 2623 assert(result->is_single_cpu(), "result must be register");
duke@435 2624
duke@435 2625 // assert(left->destroys_register(), "check");
duke@435 2626 // assert(right->destroys_register(), "check");
duke@435 2627
duke@435 2628 Register lreg = left->as_register();
duke@435 2629 Register dreg = result->as_register();
duke@435 2630
duke@435 2631 if (right->is_constant()) {
duke@435 2632 int divisor = right->as_constant_ptr()->as_jint();
duke@435 2633 assert(divisor > 0 && is_power_of_2(divisor), "must be");
duke@435 2634 if (code == lir_idiv) {
duke@435 2635 assert(lreg == rax, "must be rax,");
duke@435 2636 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2637 __ cdql(); // sign extend into rdx:rax
duke@435 2638 if (divisor == 2) {
duke@435 2639 __ subl(lreg, rdx);
duke@435 2640 } else {
duke@435 2641 __ andl(rdx, divisor - 1);
duke@435 2642 __ addl(lreg, rdx);
duke@435 2643 }
duke@435 2644 __ sarl(lreg, log2_intptr(divisor));
duke@435 2645 move_regs(lreg, dreg);
duke@435 2646 } else if (code == lir_irem) {
duke@435 2647 Label done;
never@739 2648 __ mov(dreg, lreg);
duke@435 2649 __ andl(dreg, 0x80000000 | (divisor - 1));
duke@435 2650 __ jcc(Assembler::positive, done);
duke@435 2651 __ decrement(dreg);
duke@435 2652 __ orl(dreg, ~(divisor - 1));
duke@435 2653 __ increment(dreg);
duke@435 2654 __ bind(done);
duke@435 2655 } else {
duke@435 2656 ShouldNotReachHere();
duke@435 2657 }
duke@435 2658 } else {
duke@435 2659 Register rreg = right->as_register();
duke@435 2660 assert(lreg == rax, "left register must be rax,");
duke@435 2661 assert(rreg != rdx, "right register must not be rdx");
duke@435 2662 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2663
duke@435 2664 move_regs(lreg, rax);
duke@435 2665
duke@435 2666 int idivl_offset = __ corrected_idivl(rreg);
duke@435 2667 add_debug_info_for_div0(idivl_offset, info);
duke@435 2668 if (code == lir_irem) {
duke@435 2669 move_regs(rdx, dreg); // result is in rdx
duke@435 2670 } else {
duke@435 2671 move_regs(rax, dreg);
duke@435 2672 }
duke@435 2673 }
duke@435 2674 }
duke@435 2675
duke@435 2676
duke@435 2677 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 2678 if (opr1->is_single_cpu()) {
duke@435 2679 Register reg1 = opr1->as_register();
duke@435 2680 if (opr2->is_single_cpu()) {
duke@435 2681 // cpu register - cpu register
never@739 2682 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2683 __ cmpptr(reg1, opr2->as_register());
never@739 2684 } else {
never@739 2685 assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
never@739 2686 __ cmpl(reg1, opr2->as_register());
never@739 2687 }
duke@435 2688 } else if (opr2->is_stack()) {
duke@435 2689 // cpu register - stack
never@739 2690 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2691 __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2692 } else {
never@739 2693 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2694 }
duke@435 2695 } else if (opr2->is_constant()) {
duke@435 2696 // cpu register - constant
duke@435 2697 LIR_Const* c = opr2->as_constant_ptr();
duke@435 2698 if (c->type() == T_INT) {
duke@435 2699 __ cmpl(reg1, c->as_jint());
never@739 2700 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2701 // In 64bit oops are single register
duke@435 2702 jobject o = c->as_jobject();
duke@435 2703 if (o == NULL) {
never@739 2704 __ cmpptr(reg1, (int32_t)NULL_WORD);
duke@435 2705 } else {
never@739 2706 #ifdef _LP64
never@739 2707 __ movoop(rscratch1, o);
never@739 2708 __ cmpptr(reg1, rscratch1);
never@739 2709 #else
duke@435 2710 __ cmpoop(reg1, c->as_jobject());
never@739 2711 #endif // _LP64
duke@435 2712 }
duke@435 2713 } else {
twisti@3848 2714 fatal(err_msg("unexpected type: %s", basictype_to_str(c->type())));
duke@435 2715 }
duke@435 2716 // cpu register - address
duke@435 2717 } else if (opr2->is_address()) {
duke@435 2718 if (op->info() != NULL) {
duke@435 2719 add_debug_info_for_null_check_here(op->info());
duke@435 2720 }
duke@435 2721 __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2722 } else {
duke@435 2723 ShouldNotReachHere();
duke@435 2724 }
duke@435 2725
duke@435 2726 } else if(opr1->is_double_cpu()) {
duke@435 2727 Register xlo = opr1->as_register_lo();
duke@435 2728 Register xhi = opr1->as_register_hi();
duke@435 2729 if (opr2->is_double_cpu()) {
never@739 2730 #ifdef _LP64
never@739 2731 __ cmpptr(xlo, opr2->as_register_lo());
never@739 2732 #else
duke@435 2733 // cpu register - cpu register
duke@435 2734 Register ylo = opr2->as_register_lo();
duke@435 2735 Register yhi = opr2->as_register_hi();
duke@435 2736 __ subl(xlo, ylo);
duke@435 2737 __ sbbl(xhi, yhi);
duke@435 2738 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 2739 __ orl(xhi, xlo);
duke@435 2740 }
never@739 2741 #endif // _LP64
duke@435 2742 } else if (opr2->is_constant()) {
duke@435 2743 // cpu register - constant 0
duke@435 2744 assert(opr2->as_jlong() == (jlong)0, "only handles zero");
never@739 2745 #ifdef _LP64
never@739 2746 __ cmpptr(xlo, (int32_t)opr2->as_jlong());
never@739 2747 #else
duke@435 2748 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
duke@435 2749 __ orl(xhi, xlo);
never@739 2750 #endif // _LP64
duke@435 2751 } else {
duke@435 2752 ShouldNotReachHere();
duke@435 2753 }
duke@435 2754
duke@435 2755 } else if (opr1->is_single_xmm()) {
duke@435 2756 XMMRegister reg1 = opr1->as_xmm_float_reg();
duke@435 2757 if (opr2->is_single_xmm()) {
duke@435 2758 // xmm register - xmm register
duke@435 2759 __ ucomiss(reg1, opr2->as_xmm_float_reg());
duke@435 2760 } else if (opr2->is_stack()) {
duke@435 2761 // xmm register - stack
duke@435 2762 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2763 } else if (opr2->is_constant()) {
duke@435 2764 // xmm register - constant
duke@435 2765 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
duke@435 2766 } else if (opr2->is_address()) {
duke@435 2767 // xmm register - address
duke@435 2768 if (op->info() != NULL) {
duke@435 2769 add_debug_info_for_null_check_here(op->info());
duke@435 2770 }
duke@435 2771 __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2772 } else {
duke@435 2773 ShouldNotReachHere();
duke@435 2774 }
duke@435 2775
duke@435 2776 } else if (opr1->is_double_xmm()) {
duke@435 2777 XMMRegister reg1 = opr1->as_xmm_double_reg();
duke@435 2778 if (opr2->is_double_xmm()) {
duke@435 2779 // xmm register - xmm register
duke@435 2780 __ ucomisd(reg1, opr2->as_xmm_double_reg());
duke@435 2781 } else if (opr2->is_stack()) {
duke@435 2782 // xmm register - stack
duke@435 2783 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
duke@435 2784 } else if (opr2->is_constant()) {
duke@435 2785 // xmm register - constant
duke@435 2786 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
duke@435 2787 } else if (opr2->is_address()) {
duke@435 2788 // xmm register - address
duke@435 2789 if (op->info() != NULL) {
duke@435 2790 add_debug_info_for_null_check_here(op->info());
duke@435 2791 }
duke@435 2792 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
duke@435 2793 } else {
duke@435 2794 ShouldNotReachHere();
duke@435 2795 }
duke@435 2796
duke@435 2797 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
duke@435 2798 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
duke@435 2799 assert(opr2->is_fpu_register(), "both must be registers");
duke@435 2800 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2801
duke@435 2802 } else if (opr1->is_address() && opr2->is_constant()) {
never@739 2803 LIR_Const* c = opr2->as_constant_ptr();
never@739 2804 #ifdef _LP64
never@739 2805 if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2806 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
never@739 2807 __ movoop(rscratch1, c->as_jobject());
never@739 2808 }
never@739 2809 #endif // LP64
duke@435 2810 if (op->info() != NULL) {
duke@435 2811 add_debug_info_for_null_check_here(op->info());
duke@435 2812 }
duke@435 2813 // special case: address - constant
duke@435 2814 LIR_Address* addr = opr1->as_address_ptr();
duke@435 2815 if (c->type() == T_INT) {
duke@435 2816 __ cmpl(as_Address(addr), c->as_jint());
never@739 2817 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2818 #ifdef _LP64
never@739 2819 // %%% Make this explode if addr isn't reachable until we figure out a
never@739 2820 // better strategy by giving noreg as the temp for as_Address
never@739 2821 __ cmpptr(rscratch1, as_Address(addr, noreg));
never@739 2822 #else
duke@435 2823 __ cmpoop(as_Address(addr), c->as_jobject());
never@739 2824 #endif // _LP64
duke@435 2825 } else {
duke@435 2826 ShouldNotReachHere();
duke@435 2827 }
duke@435 2828
duke@435 2829 } else {
duke@435 2830 ShouldNotReachHere();
duke@435 2831 }
duke@435 2832 }
duke@435 2833
duke@435 2834 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
duke@435 2835 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 2836 if (left->is_single_xmm()) {
duke@435 2837 assert(right->is_single_xmm(), "must match");
duke@435 2838 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2839 } else if (left->is_double_xmm()) {
duke@435 2840 assert(right->is_double_xmm(), "must match");
duke@435 2841 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2842
duke@435 2843 } else {
duke@435 2844 assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
duke@435 2845 assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
duke@435 2846
duke@435 2847 assert(left->fpu() == 0, "left must be on TOS");
duke@435 2848 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
duke@435 2849 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2850 }
duke@435 2851 } else {
duke@435 2852 assert(code == lir_cmp_l2i, "check");
never@739 2853 #ifdef _LP64
iveresov@1804 2854 Label done;
iveresov@1804 2855 Register dest = dst->as_register();
iveresov@1804 2856 __ cmpptr(left->as_register_lo(), right->as_register_lo());
iveresov@1804 2857 __ movl(dest, -1);
iveresov@1804 2858 __ jccb(Assembler::less, done);
iveresov@1804 2859 __ set_byte_if_not_zero(dest);
iveresov@1804 2860 __ movzbl(dest, dest);
iveresov@1804 2861 __ bind(done);
never@739 2862 #else
duke@435 2863 __ lcmp2int(left->as_register_hi(),
duke@435 2864 left->as_register_lo(),
duke@435 2865 right->as_register_hi(),
duke@435 2866 right->as_register_lo());
duke@435 2867 move_regs(left->as_register_hi(), dst->as_register());
never@739 2868 #endif // _LP64
duke@435 2869 }
duke@435 2870 }
duke@435 2871
duke@435 2872
duke@435 2873 void LIR_Assembler::align_call(LIR_Code code) {
duke@435 2874 if (os::is_MP()) {
duke@435 2875 // make sure that the displacement word of the call ends up word aligned
duke@435 2876 int offset = __ offset();
duke@435 2877 switch (code) {
duke@435 2878 case lir_static_call:
duke@435 2879 case lir_optvirtual_call:
twisti@1730 2880 case lir_dynamic_call:
duke@435 2881 offset += NativeCall::displacement_offset;
duke@435 2882 break;
duke@435 2883 case lir_icvirtual_call:
duke@435 2884 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
duke@435 2885 break;
duke@435 2886 case lir_virtual_call: // currently, sparc-specific for niagara
duke@435 2887 default: ShouldNotReachHere();
duke@435 2888 }
duke@435 2889 while (offset++ % BytesPerWord != 0) {
duke@435 2890 __ nop();
duke@435 2891 }
duke@435 2892 }
duke@435 2893 }
duke@435 2894
duke@435 2895
twisti@1730 2896 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
duke@435 2897 assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2898 "must be aligned");
twisti@1730 2899 __ call(AddressLiteral(op->addr(), rtype));
twisti@1919 2900 add_call_info(code_offset(), op->info());
duke@435 2901 }
duke@435 2902
duke@435 2903
twisti@1730 2904 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
coleenp@4037 2905 __ ic_call(op->addr());
coleenp@4037 2906 add_call_info(code_offset(), op->info());
duke@435 2907 assert(!os::is_MP() ||
coleenp@4037 2908 (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2909 "must be aligned");
duke@435 2910 }
duke@435 2911
duke@435 2912
duke@435 2913 /* Currently, vtable-dispatch is only enabled for sparc platforms */
twisti@1730 2914 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
duke@435 2915 ShouldNotReachHere();
duke@435 2916 }
duke@435 2917
twisti@1730 2918
duke@435 2919 void LIR_Assembler::emit_static_call_stub() {
duke@435 2920 address call_pc = __ pc();
duke@435 2921 address stub = __ start_a_stub(call_stub_size);
duke@435 2922 if (stub == NULL) {
duke@435 2923 bailout("static call stub overflow");
duke@435 2924 return;
duke@435 2925 }
duke@435 2926
duke@435 2927 int start = __ offset();
duke@435 2928 if (os::is_MP()) {
duke@435 2929 // make sure that the displacement word of the call ends up word aligned
duke@435 2930 int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
duke@435 2931 while (offset++ % BytesPerWord != 0) {
duke@435 2932 __ nop();
duke@435 2933 }
duke@435 2934 }
duke@435 2935 __ relocate(static_stub_Relocation::spec(call_pc));
coleenp@4037 2936 __ mov_metadata(rbx, (Metadata*)NULL);
duke@435 2937 // must be set to -1 at code generation time
duke@435 2938 assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
never@739 2939 // On 64bit this will die since it will take a movq & jmp, must be only a jmp
never@739 2940 __ jump(RuntimeAddress(__ pc()));
duke@435 2941
jcoomes@1844 2942 assert(__ offset() - start <= call_stub_size, "stub too big");
duke@435 2943 __ end_a_stub();
duke@435 2944 }
duke@435 2945
duke@435 2946
never@1813 2947 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
duke@435 2948 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2949 assert(exceptionPC->as_register() == rdx, "must match");
duke@435 2950
duke@435 2951 // exception object is not added to oop map by LinearScan
duke@435 2952 // (LinearScan assumes that no oops are in fixed registers)
duke@435 2953 info->add_register_oop(exceptionOop);
duke@435 2954 Runtime1::StubID unwind_id;
duke@435 2955
never@1813 2956 // get current pc information
never@1813 2957 // pc is only needed if the method has an exception handler, the unwind code does not need it.
never@1813 2958 int pc_for_athrow_offset = __ offset();
never@1813 2959 InternalAddress pc_for_athrow(__ pc());
never@1813 2960 __ lea(exceptionPC->as_register(), pc_for_athrow);
never@1813 2961 add_call_info(pc_for_athrow_offset, info); // for exception handler
never@1813 2962
never@1813 2963 __ verify_not_null_oop(rax);
never@1813 2964 // search an exception handler (rax: exception oop, rdx: throwing pc)
never@1813 2965 if (compilation()->has_fpu_code()) {
never@1813 2966 unwind_id = Runtime1::handle_exception_id;
duke@435 2967 } else {
never@1813 2968 unwind_id = Runtime1::handle_exception_nofpu_id;
duke@435 2969 }
never@1813 2970 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
duke@435 2971
duke@435 2972 // enough room for two byte trap
duke@435 2973 __ nop();
duke@435 2974 }
duke@435 2975
duke@435 2976
never@1813 2977 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
never@1813 2978 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2979
never@1813 2980 __ jmp(_unwind_handler_entry);
never@1813 2981 }
never@1813 2982
never@1813 2983
duke@435 2984 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2985
duke@435 2986 // optimized version for linear scan:
duke@435 2987 // * count must be already in ECX (guaranteed by LinearScan)
duke@435 2988 // * left and dest must be equal
duke@435 2989 // * tmp must be unused
duke@435 2990 assert(count->as_register() == SHIFT_count, "count must be in ECX");
duke@435 2991 assert(left == dest, "left and dest must be equal");
duke@435 2992 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
duke@435 2993
duke@435 2994 if (left->is_single_cpu()) {
duke@435 2995 Register value = left->as_register();
duke@435 2996 assert(value != SHIFT_count, "left cannot be ECX");
duke@435 2997
duke@435 2998 switch (code) {
duke@435 2999 case lir_shl: __ shll(value); break;
duke@435 3000 case lir_shr: __ sarl(value); break;
duke@435 3001 case lir_ushr: __ shrl(value); break;
duke@435 3002 default: ShouldNotReachHere();
duke@435 3003 }
duke@435 3004 } else if (left->is_double_cpu()) {
duke@435 3005 Register lo = left->as_register_lo();
duke@435 3006 Register hi = left->as_register_hi();
duke@435 3007 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
never@739 3008 #ifdef _LP64
never@739 3009 switch (code) {
never@739 3010 case lir_shl: __ shlptr(lo); break;
never@739 3011 case lir_shr: __ sarptr(lo); break;
never@739 3012 case lir_ushr: __ shrptr(lo); break;
never@739 3013 default: ShouldNotReachHere();
never@739 3014 }
never@739 3015 #else
duke@435 3016
duke@435 3017 switch (code) {
duke@435 3018 case lir_shl: __ lshl(hi, lo); break;
duke@435 3019 case lir_shr: __ lshr(hi, lo, true); break;
duke@435 3020 case lir_ushr: __ lshr(hi, lo, false); break;
duke@435 3021 default: ShouldNotReachHere();
duke@435 3022 }
never@739 3023 #endif // LP64
duke@435 3024 } else {
duke@435 3025 ShouldNotReachHere();
duke@435 3026 }
duke@435 3027 }
duke@435 3028
duke@435 3029
duke@435 3030 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 3031 if (dest->is_single_cpu()) {
duke@435 3032 // first move left into dest so that left is not destroyed by the shift
duke@435 3033 Register value = dest->as_register();
duke@435 3034 count = count & 0x1F; // Java spec
duke@435 3035
duke@435 3036 move_regs(left->as_register(), value);
duke@435 3037 switch (code) {
duke@435 3038 case lir_shl: __ shll(value, count); break;
duke@435 3039 case lir_shr: __ sarl(value, count); break;
duke@435 3040 case lir_ushr: __ shrl(value, count); break;
duke@435 3041 default: ShouldNotReachHere();
duke@435 3042 }
duke@435 3043 } else if (dest->is_double_cpu()) {
never@739 3044 #ifndef _LP64
duke@435 3045 Unimplemented();
never@739 3046 #else
never@739 3047 // first move left into dest so that left is not destroyed by the shift
never@739 3048 Register value = dest->as_register_lo();
never@739 3049 count = count & 0x1F; // Java spec
never@739 3050
never@739 3051 move_regs(left->as_register_lo(), value);
never@739 3052 switch (code) {
never@739 3053 case lir_shl: __ shlptr(value, count); break;
never@739 3054 case lir_shr: __ sarptr(value, count); break;
never@739 3055 case lir_ushr: __ shrptr(value, count); break;
never@739 3056 default: ShouldNotReachHere();
never@739 3057 }
never@739 3058 #endif // _LP64
duke@435 3059 } else {
duke@435 3060 ShouldNotReachHere();
duke@435 3061 }
duke@435 3062 }
duke@435 3063
duke@435 3064
duke@435 3065 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
duke@435 3066 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3067 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3068 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 3069 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
duke@435 3070 }
duke@435 3071
duke@435 3072
duke@435 3073 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
duke@435 3074 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3075 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3076 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 3077 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
duke@435 3078 }
duke@435 3079
duke@435 3080
duke@435 3081 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
duke@435 3082 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3083 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3084 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
duke@435 3085 __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
duke@435 3086 }
duke@435 3087
duke@435 3088
duke@435 3089 // This code replaces a call to arraycopy; no exception may
duke@435 3090 // be thrown in this code, they must be thrown in the System.arraycopy
duke@435 3091 // activation frame; we could save some checks if this would not be the case
duke@435 3092 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 3093 ciArrayKlass* default_type = op->expected_type();
duke@435 3094 Register src = op->src()->as_register();
duke@435 3095 Register dst = op->dst()->as_register();
duke@435 3096 Register src_pos = op->src_pos()->as_register();
duke@435 3097 Register dst_pos = op->dst_pos()->as_register();
duke@435 3098 Register length = op->length()->as_register();
duke@435 3099 Register tmp = op->tmp()->as_register();
duke@435 3100
duke@435 3101 CodeStub* stub = op->stub();
duke@435 3102 int flags = op->flags();
duke@435 3103 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 3104 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 3105
roland@2728 3106 // if we don't know anything, just go through the generic arraycopy
duke@435 3107 if (default_type == NULL) {
duke@435 3108 Label done;
duke@435 3109 // save outgoing arguments on stack in case call to System.arraycopy is needed
duke@435 3110 // HACK ALERT. This code used to push the parameters in a hardwired fashion
duke@435 3111 // for interpreter calling conventions. Now we have to do it in new style conventions.
duke@435 3112 // For the moment until C1 gets the new register allocator I just force all the
duke@435 3113 // args to the right place (except the register args) and then on the back side
duke@435 3114 // reload the register args properly if we go slow path. Yuck
duke@435 3115
duke@435 3116 // These are proper for the calling convention
duke@435 3117 store_parameter(length, 2);
duke@435 3118 store_parameter(dst_pos, 1);
duke@435 3119 store_parameter(dst, 0);
duke@435 3120
duke@435 3121 // these are just temporary placements until we need to reload
duke@435 3122 store_parameter(src_pos, 3);
duke@435 3123 store_parameter(src, 4);
never@739 3124 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
never@739 3125
roland@2728 3126 address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
roland@2728 3127
roland@2728 3128 address copyfunc_addr = StubRoutines::generic_arraycopy();
duke@435 3129
duke@435 3130 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
never@739 3131 #ifdef _LP64
never@739 3132 // The arguments are in java calling convention so we can trivially shift them to C
never@739 3133 // convention
never@739 3134 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3135 __ mov(c_rarg0, j_rarg0);
never@739 3136 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3137 __ mov(c_rarg1, j_rarg1);
never@739 3138 assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
never@739 3139 __ mov(c_rarg2, j_rarg2);
never@739 3140 assert_different_registers(c_rarg3, j_rarg4);
never@739 3141 __ mov(c_rarg3, j_rarg3);
never@739 3142 #ifdef _WIN64
never@739 3143 // Allocate abi space for args but be sure to keep stack aligned
never@739 3144 __ subptr(rsp, 6*wordSize);
never@739 3145 store_parameter(j_rarg4, 4);
roland@2728 3146 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 3147 __ call(RuntimeAddress(C_entry));
roland@2728 3148 } else {
roland@2728 3149 #ifndef PRODUCT
roland@2728 3150 if (PrintC1Statistics) {
roland@2728 3151 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
roland@2728 3152 }
roland@2728 3153 #endif
roland@2728 3154 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3155 }
never@739 3156 __ addptr(rsp, 6*wordSize);
never@739 3157 #else
never@739 3158 __ mov(c_rarg4, j_rarg4);
roland@2728 3159 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 3160 __ call(RuntimeAddress(C_entry));
roland@2728 3161 } else {
roland@2728 3162 #ifndef PRODUCT
roland@2728 3163 if (PrintC1Statistics) {
roland@2728 3164 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
roland@2728 3165 }
roland@2728 3166 #endif
roland@2728 3167 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3168 }
never@739 3169 #endif // _WIN64
never@739 3170 #else
never@739 3171 __ push(length);
never@739 3172 __ push(dst_pos);
never@739 3173 __ push(dst);
never@739 3174 __ push(src_pos);
never@739 3175 __ push(src);
roland@2728 3176
roland@2728 3177 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 3178 __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
roland@2728 3179 } else {
roland@2728 3180 #ifndef PRODUCT
roland@2728 3181 if (PrintC1Statistics) {
roland@2728 3182 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
roland@2728 3183 }
roland@2728 3184 #endif
roland@2728 3185 __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
roland@2728 3186 }
duke@435 3187
never@739 3188 #endif // _LP64
never@739 3189
duke@435 3190 __ cmpl(rax, 0);
duke@435 3191 __ jcc(Assembler::equal, *stub->continuation());
duke@435 3192
roland@2728 3193 if (copyfunc_addr != NULL) {
roland@2728 3194 __ mov(tmp, rax);
roland@2728 3195 __ xorl(tmp, -1);
roland@2728 3196 }
roland@2728 3197
duke@435 3198 // Reload values from the stack so they are where the stub
duke@435 3199 // expects them.
never@739 3200 __ movptr (dst, Address(rsp, 0*BytesPerWord));
never@739 3201 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
never@739 3202 __ movptr (length, Address(rsp, 2*BytesPerWord));
never@739 3203 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
never@739 3204 __ movptr (src, Address(rsp, 4*BytesPerWord));
roland@2728 3205
roland@2728 3206 if (copyfunc_addr != NULL) {
roland@2728 3207 __ subl(length, tmp);
roland@2728 3208 __ addl(src_pos, tmp);
roland@2728 3209 __ addl(dst_pos, tmp);
roland@2728 3210 }
duke@435 3211 __ jmp(*stub->entry());
duke@435 3212
duke@435 3213 __ bind(*stub->continuation());
duke@435 3214 return;
duke@435 3215 }
duke@435 3216
duke@435 3217 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
duke@435 3218
kvn@464 3219 int elem_size = type2aelembytes(basic_type);
duke@435 3220 int shift_amount;
duke@435 3221 Address::ScaleFactor scale;
duke@435 3222
duke@435 3223 switch (elem_size) {
duke@435 3224 case 1 :
duke@435 3225 shift_amount = 0;
duke@435 3226 scale = Address::times_1;
duke@435 3227 break;
duke@435 3228 case 2 :
duke@435 3229 shift_amount = 1;
duke@435 3230 scale = Address::times_2;
duke@435 3231 break;
duke@435 3232 case 4 :
duke@435 3233 shift_amount = 2;
duke@435 3234 scale = Address::times_4;
duke@435 3235 break;
duke@435 3236 case 8 :
duke@435 3237 shift_amount = 3;
duke@435 3238 scale = Address::times_8;
duke@435 3239 break;
duke@435 3240 default:
duke@435 3241 ShouldNotReachHere();
duke@435 3242 }
duke@435 3243
duke@435 3244 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
duke@435 3245 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
duke@435 3246 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
duke@435 3247 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
duke@435 3248
never@739 3249 // length and pos's are all sign extended at this point on 64bit
never@739 3250
duke@435 3251 // test for NULL
duke@435 3252 if (flags & LIR_OpArrayCopy::src_null_check) {
never@739 3253 __ testptr(src, src);
duke@435 3254 __ jcc(Assembler::zero, *stub->entry());
duke@435 3255 }
duke@435 3256 if (flags & LIR_OpArrayCopy::dst_null_check) {
never@739 3257 __ testptr(dst, dst);
duke@435 3258 __ jcc(Assembler::zero, *stub->entry());
duke@435 3259 }
duke@435 3260
duke@435 3261 // check if negative
duke@435 3262 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 3263 __ testl(src_pos, src_pos);
duke@435 3264 __ jcc(Assembler::less, *stub->entry());
duke@435 3265 }
duke@435 3266 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 3267 __ testl(dst_pos, dst_pos);
duke@435 3268 __ jcc(Assembler::less, *stub->entry());
duke@435 3269 }
duke@435 3270
duke@435 3271 if (flags & LIR_OpArrayCopy::src_range_check) {
never@739 3272 __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
duke@435 3273 __ cmpl(tmp, src_length_addr);
duke@435 3274 __ jcc(Assembler::above, *stub->entry());
duke@435 3275 }
duke@435 3276 if (flags & LIR_OpArrayCopy::dst_range_check) {
never@739 3277 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
duke@435 3278 __ cmpl(tmp, dst_length_addr);
duke@435 3279 __ jcc(Assembler::above, *stub->entry());
duke@435 3280 }
duke@435 3281
roland@2728 3282 if (flags & LIR_OpArrayCopy::length_positive_check) {
roland@2728 3283 __ testl(length, length);
roland@2728 3284 __ jcc(Assembler::less, *stub->entry());
roland@2728 3285 __ jcc(Assembler::zero, *stub->continuation());
roland@2728 3286 }
roland@2728 3287
roland@2728 3288 #ifdef _LP64
roland@2728 3289 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
roland@2728 3290 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
roland@2728 3291 #endif
roland@2728 3292
duke@435 3293 if (flags & LIR_OpArrayCopy::type_check) {
roland@2728 3294 // We don't know the array types are compatible
roland@2728 3295 if (basic_type != T_OBJECT) {
roland@2728 3296 // Simple test for basic type arrays
coleenp@4037 3297 if (UseCompressedKlassPointers) {
roland@2728 3298 __ movl(tmp, src_klass_addr);
roland@2728 3299 __ cmpl(tmp, dst_klass_addr);
roland@2728 3300 } else {
roland@2728 3301 __ movptr(tmp, src_klass_addr);
roland@2728 3302 __ cmpptr(tmp, dst_klass_addr);
roland@2728 3303 }
roland@2728 3304 __ jcc(Assembler::notEqual, *stub->entry());
iveresov@2344 3305 } else {
roland@2728 3306 // For object arrays, if src is a sub class of dst then we can
roland@2728 3307 // safely do the copy.
roland@2728 3308 Label cont, slow;
roland@2728 3309
roland@2728 3310 __ push(src);
roland@2728 3311 __ push(dst);
roland@2728 3312
roland@2728 3313 __ load_klass(src, src);
roland@2728 3314 __ load_klass(dst, dst);
roland@2728 3315
roland@2728 3316 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
roland@2728 3317
roland@2728 3318 __ push(src);
roland@2728 3319 __ push(dst);
roland@2728 3320 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
roland@2728 3321 __ pop(dst);
roland@2728 3322 __ pop(src);
roland@2728 3323
roland@2728 3324 __ cmpl(src, 0);
roland@2728 3325 __ jcc(Assembler::notEqual, cont);
roland@2728 3326
roland@2728 3327 __ bind(slow);
roland@2728 3328 __ pop(dst);
roland@2728 3329 __ pop(src);
roland@2728 3330
roland@2728 3331 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
roland@2728 3332 if (copyfunc_addr != NULL) { // use stub if available
roland@2728 3333 // src is not a sub class of dst so we have to do a
roland@2728 3334 // per-element check.
roland@2728 3335
roland@2728 3336 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
roland@2728 3337 if ((flags & mask) != mask) {
roland@2728 3338 // Check that at least both of them object arrays.
roland@2728 3339 assert(flags & mask, "one of the two should be known to be an object array");
roland@2728 3340
roland@2728 3341 if (!(flags & LIR_OpArrayCopy::src_objarray)) {
roland@2728 3342 __ load_klass(tmp, src);
roland@2728 3343 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
roland@2728 3344 __ load_klass(tmp, dst);
roland@2728 3345 }
stefank@3391 3346 int lh_offset = in_bytes(Klass::layout_helper_offset());
roland@2728 3347 Address klass_lh_addr(tmp, lh_offset);
roland@2728 3348 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
roland@2728 3349 __ cmpl(klass_lh_addr, objArray_lh);
roland@2728 3350 __ jcc(Assembler::notEqual, *stub->entry());
roland@2728 3351 }
roland@2728 3352
iveresov@2936 3353 // Spill because stubs can use any register they like and it's
iveresov@2936 3354 // easier to restore just those that we care about.
iveresov@2936 3355 store_parameter(dst, 0);
iveresov@2936 3356 store_parameter(dst_pos, 1);
iveresov@2936 3357 store_parameter(length, 2);
iveresov@2936 3358 store_parameter(src_pos, 3);
iveresov@2936 3359 store_parameter(src, 4);
iveresov@2936 3360
roland@2728 3361 #ifndef _LP64
roland@2728 3362 __ movptr(tmp, dst_klass_addr);
coleenp@4142 3363 __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
roland@2728 3364 __ push(tmp);
stefank@3391 3365 __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
roland@2728 3366 __ push(tmp);
roland@2728 3367 __ push(length);
roland@2728 3368 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3369 __ push(tmp);
roland@2728 3370 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3371 __ push(tmp);
roland@2728 3372
roland@2728 3373 __ call_VM_leaf(copyfunc_addr, 5);
roland@2728 3374 #else
roland@2728 3375 __ movl2ptr(length, length); //higher 32bits must be null
roland@2728 3376
roland@2728 3377 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3378 assert_different_registers(c_rarg0, dst, dst_pos, length);
roland@2728 3379 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3380 assert_different_registers(c_rarg1, dst, length);
roland@2728 3381
roland@2728 3382 __ mov(c_rarg2, length);
roland@2728 3383 assert_different_registers(c_rarg2, dst);
roland@2728 3384
roland@2728 3385 #ifdef _WIN64
roland@2728 3386 // Allocate abi space for args but be sure to keep stack aligned
roland@2728 3387 __ subptr(rsp, 6*wordSize);
roland@2728 3388 __ load_klass(c_rarg3, dst);
coleenp@4142 3389 __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
roland@2728 3390 store_parameter(c_rarg3, 4);
stefank@3391 3391 __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
roland@2728 3392 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3393 __ addptr(rsp, 6*wordSize);
roland@2728 3394 #else
roland@2728 3395 __ load_klass(c_rarg4, dst);
coleenp@4142 3396 __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
stefank@3391 3397 __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
roland@2728 3398 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3399 #endif
roland@2728 3400
roland@2728 3401 #endif
roland@2728 3402
roland@2728 3403 #ifndef PRODUCT
roland@2728 3404 if (PrintC1Statistics) {
roland@2728 3405 Label failed;
roland@2728 3406 __ testl(rax, rax);
roland@2728 3407 __ jcc(Assembler::notZero, failed);
roland@2728 3408 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
roland@2728 3409 __ bind(failed);
roland@2728 3410 }
roland@2728 3411 #endif
roland@2728 3412
roland@2728 3413 __ testl(rax, rax);
roland@2728 3414 __ jcc(Assembler::zero, *stub->continuation());
roland@2728 3415
roland@2728 3416 #ifndef PRODUCT
roland@2728 3417 if (PrintC1Statistics) {
roland@2728 3418 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
roland@2728 3419 }
roland@2728 3420 #endif
roland@2728 3421
roland@2728 3422 __ mov(tmp, rax);
roland@2728 3423
roland@2728 3424 __ xorl(tmp, -1);
roland@2728 3425
iveresov@2936 3426 // Restore previously spilled arguments
iveresov@2936 3427 __ movptr (dst, Address(rsp, 0*BytesPerWord));
iveresov@2936 3428 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
iveresov@2936 3429 __ movptr (length, Address(rsp, 2*BytesPerWord));
iveresov@2936 3430 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
iveresov@2936 3431 __ movptr (src, Address(rsp, 4*BytesPerWord));
iveresov@2936 3432
roland@2728 3433
roland@2728 3434 __ subl(length, tmp);
roland@2728 3435 __ addl(src_pos, tmp);
roland@2728 3436 __ addl(dst_pos, tmp);
roland@2728 3437 }
roland@2728 3438
roland@2728 3439 __ jmp(*stub->entry());
roland@2728 3440
roland@2728 3441 __ bind(cont);
roland@2728 3442 __ pop(dst);
roland@2728 3443 __ pop(src);
iveresov@2344 3444 }
duke@435 3445 }
duke@435 3446
duke@435 3447 #ifdef ASSERT
duke@435 3448 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 3449 // Sanity check the known type with the incoming class. For the
duke@435 3450 // primitive case the types must match exactly with src.klass and
duke@435 3451 // dst.klass each exactly matching the default type. For the
duke@435 3452 // object array case, if no type check is needed then either the
duke@435 3453 // dst type is exactly the expected type and the src type is a
duke@435 3454 // subtype which we can't check or src is the same array as dst
duke@435 3455 // but not necessarily exactly of type default_type.
duke@435 3456 Label known_ok, halt;
coleenp@4037 3457 __ mov_metadata(tmp, default_type->constant_encoding());
iveresov@2344 3458 #ifdef _LP64
coleenp@4037 3459 if (UseCompressedKlassPointers) {
roland@4159 3460 __ encode_klass_not_null(tmp);
iveresov@2344 3461 }
iveresov@2344 3462 #endif
iveresov@2344 3463
duke@435 3464 if (basic_type != T_OBJECT) {
iveresov@2344 3465
coleenp@4037 3466 if (UseCompressedKlassPointers) __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3467 else __ cmpptr(tmp, dst_klass_addr);
duke@435 3468 __ jcc(Assembler::notEqual, halt);
coleenp@4037 3469 if (UseCompressedKlassPointers) __ cmpl(tmp, src_klass_addr);
iveresov@2344 3470 else __ cmpptr(tmp, src_klass_addr);
duke@435 3471 __ jcc(Assembler::equal, known_ok);
duke@435 3472 } else {
coleenp@4037 3473 if (UseCompressedKlassPointers) __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3474 else __ cmpptr(tmp, dst_klass_addr);
duke@435 3475 __ jcc(Assembler::equal, known_ok);
never@739 3476 __ cmpptr(src, dst);
duke@435 3477 __ jcc(Assembler::equal, known_ok);
duke@435 3478 }
duke@435 3479 __ bind(halt);
duke@435 3480 __ stop("incorrect type information in arraycopy");
duke@435 3481 __ bind(known_ok);
duke@435 3482 }
duke@435 3483 #endif
duke@435 3484
roland@2728 3485 #ifndef PRODUCT
roland@2728 3486 if (PrintC1Statistics) {
roland@2728 3487 __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
never@739 3488 }
roland@2728 3489 #endif
never@739 3490
never@739 3491 #ifdef _LP64
never@739 3492 assert_different_registers(c_rarg0, dst, dst_pos, length);
never@739 3493 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3494 assert_different_registers(c_rarg1, length);
never@739 3495 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3496 __ mov(c_rarg2, length);
never@739 3497
never@739 3498 #else
never@739 3499 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3500 store_parameter(tmp, 0);
never@739 3501 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3502 store_parameter(tmp, 1);
duke@435 3503 store_parameter(length, 2);
never@739 3504 #endif // _LP64
roland@2728 3505
roland@2728 3506 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
roland@2728 3507 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
roland@2728 3508 const char *name;
roland@2728 3509 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
roland@2728 3510 __ call_VM_leaf(entry, 0);
duke@435 3511
duke@435 3512 __ bind(*stub->continuation());
duke@435 3513 }
duke@435 3514
duke@435 3515
duke@435 3516 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 3517 Register obj = op->obj_opr()->as_register(); // may not be an oop
duke@435 3518 Register hdr = op->hdr_opr()->as_register();
duke@435 3519 Register lock = op->lock_opr()->as_register();
duke@435 3520 if (!UseFastLocking) {
duke@435 3521 __ jmp(*op->stub()->entry());
duke@435 3522 } else if (op->code() == lir_lock) {
duke@435 3523 Register scratch = noreg;
duke@435 3524 if (UseBiasedLocking) {
duke@435 3525 scratch = op->scratch_opr()->as_register();
duke@435 3526 }
duke@435 3527 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3528 // add debug info for NullPointerException only if one is possible
duke@435 3529 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
duke@435 3530 if (op->info() != NULL) {
duke@435 3531 add_debug_info_for_null_check(null_check_offset, op->info());
duke@435 3532 }
duke@435 3533 // done
duke@435 3534 } else if (op->code() == lir_unlock) {
duke@435 3535 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3536 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 3537 } else {
duke@435 3538 Unimplemented();
duke@435 3539 }
duke@435 3540 __ bind(*op->stub()->continuation());
duke@435 3541 }
duke@435 3542
duke@435 3543
duke@435 3544 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 3545 ciMethod* method = op->profiled_method();
duke@435 3546 int bci = op->profiled_bci();
twisti@3969 3547 ciMethod* callee = op->profiled_callee();
duke@435 3548
duke@435 3549 // Update counter for all call types
iveresov@2349 3550 ciMethodData* md = method->method_data_or_null();
iveresov@2349 3551 assert(md != NULL, "Sanity");
duke@435 3552 ciProfileData* data = md->bci_to_data(bci);
duke@435 3553 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 3554 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
duke@435 3555 Register mdo = op->mdo()->as_register();
coleenp@4037 3556 __ mov_metadata(mdo, md->constant_encoding());
duke@435 3557 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
duke@435 3558 Bytecodes::Code bc = method->java_code_at_bci(bci);
twisti@3969 3559 const bool callee_is_static = callee->is_loaded() && callee->is_static();
duke@435 3560 // Perform additional virtual call profiling for invokevirtual and
duke@435 3561 // invokeinterface bytecodes
duke@435 3562 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
twisti@3969 3563 !callee_is_static && // required for optimized MH invokes
iveresov@2138 3564 C1ProfileVirtualCalls) {
duke@435 3565 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 3566 Register recv = op->recv()->as_register();
duke@435 3567 assert_different_registers(mdo, recv);
duke@435 3568 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 3569 ciKlass* known_klass = op->known_holder();
iveresov@2138 3570 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 3571 // We know the type that will be seen at this call site; we can
coleenp@4037 3572 // statically update the MethodData* rather than needing to do
duke@435 3573 // dynamic tests on the receiver type
duke@435 3574
duke@435 3575 // NOTE: we should probably put a lock around this search to
duke@435 3576 // avoid collisions by concurrent compilations
duke@435 3577 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 3578 uint i;
duke@435 3579 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3580 ciKlass* receiver = vc_data->receiver(i);
duke@435 3581 if (known_klass->equals(receiver)) {
duke@435 3582 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
iveresov@2138 3583 __ addptr(data_addr, DataLayout::counter_increment);
duke@435 3584 return;
duke@435 3585 }
duke@435 3586 }
duke@435 3587
duke@435 3588 // Receiver type not found in profile data; select an empty slot
duke@435 3589
duke@435 3590 // Note that this is less efficient than it should be because it
duke@435 3591 // always does a write to the receiver part of the
duke@435 3592 // VirtualCallData rather than just the first time
duke@435 3593 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3594 ciKlass* receiver = vc_data->receiver(i);
duke@435 3595 if (receiver == NULL) {
duke@435 3596 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
coleenp@4037 3597 __ mov_metadata(recv_addr, known_klass->constant_encoding());
duke@435 3598 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
iveresov@2138 3599 __ addptr(data_addr, DataLayout::counter_increment);
duke@435 3600 return;
duke@435 3601 }
duke@435 3602 }
duke@435 3603 } else {
iveresov@2344 3604 __ load_klass(recv, recv);
duke@435 3605 Label update_done;
iveresov@2138 3606 type_profile_helper(mdo, md, data, recv, &update_done);
kvn@1641 3607 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 3608 // Increment total counter to indicate polymorphic case.
iveresov@2138 3609 __ addptr(counter_addr, DataLayout::counter_increment);
duke@435 3610
duke@435 3611 __ bind(update_done);
duke@435 3612 }
kvn@1641 3613 } else {
kvn@1641 3614 // Static call
iveresov@2138 3615 __ addptr(counter_addr, DataLayout::counter_increment);
duke@435 3616 }
duke@435 3617 }
duke@435 3618
duke@435 3619 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
duke@435 3620 Unimplemented();
duke@435 3621 }
duke@435 3622
duke@435 3623
duke@435 3624 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
never@739 3625 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
duke@435 3626 }
duke@435 3627
duke@435 3628
duke@435 3629 void LIR_Assembler::align_backward_branch_target() {
duke@435 3630 __ align(BytesPerWord);
duke@435 3631 }
duke@435 3632
duke@435 3633
duke@435 3634 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3635 if (left->is_single_cpu()) {
duke@435 3636 __ negl(left->as_register());
duke@435 3637 move_regs(left->as_register(), dest->as_register());
duke@435 3638
duke@435 3639 } else if (left->is_double_cpu()) {
duke@435 3640 Register lo = left->as_register_lo();
never@739 3641 #ifdef _LP64
never@739 3642 Register dst = dest->as_register_lo();
never@739 3643 __ movptr(dst, lo);
never@739 3644 __ negptr(dst);
never@739 3645 #else
duke@435 3646 Register hi = left->as_register_hi();
duke@435 3647 __ lneg(hi, lo);
duke@435 3648 if (dest->as_register_lo() == hi) {
duke@435 3649 assert(dest->as_register_hi() != lo, "destroying register");
duke@435 3650 move_regs(hi, dest->as_register_hi());
duke@435 3651 move_regs(lo, dest->as_register_lo());
duke@435 3652 } else {
duke@435 3653 move_regs(lo, dest->as_register_lo());
duke@435 3654 move_regs(hi, dest->as_register_hi());
duke@435 3655 }
never@739 3656 #endif // _LP64
duke@435 3657
duke@435 3658 } else if (dest->is_single_xmm()) {
duke@435 3659 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
duke@435 3660 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
duke@435 3661 }
duke@435 3662 __ xorps(dest->as_xmm_float_reg(),
duke@435 3663 ExternalAddress((address)float_signflip_pool));
duke@435 3664
duke@435 3665 } else if (dest->is_double_xmm()) {
duke@435 3666 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
duke@435 3667 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
duke@435 3668 }
duke@435 3669 __ xorpd(dest->as_xmm_double_reg(),
duke@435 3670 ExternalAddress((address)double_signflip_pool));
duke@435 3671
duke@435 3672 } else if (left->is_single_fpu() || left->is_double_fpu()) {
duke@435 3673 assert(left->fpu() == 0, "arg must be on TOS");
duke@435 3674 assert(dest->fpu() == 0, "dest must be TOS");
duke@435 3675 __ fchs();
duke@435 3676
duke@435 3677 } else {
duke@435 3678 ShouldNotReachHere();
duke@435 3679 }
duke@435 3680 }
duke@435 3681
duke@435 3682
duke@435 3683 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
duke@435 3684 assert(addr->is_address() && dest->is_register(), "check");
never@739 3685 Register reg;
never@739 3686 reg = dest->as_pointer_register();
never@739 3687 __ lea(reg, as_Address(addr->as_address_ptr()));
duke@435 3688 }
duke@435 3689
duke@435 3690
duke@435 3691
duke@435 3692 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3693 assert(!tmp->is_valid(), "don't need temporary");
duke@435 3694 __ call(RuntimeAddress(dest));
duke@435 3695 if (info != NULL) {
duke@435 3696 add_call_info_here(info);
duke@435 3697 }
duke@435 3698 }
duke@435 3699
duke@435 3700
duke@435 3701 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3702 assert(type == T_LONG, "only for volatile long fields");
duke@435 3703
duke@435 3704 if (info != NULL) {
duke@435 3705 add_debug_info_for_null_check_here(info);
duke@435 3706 }
duke@435 3707
duke@435 3708 if (src->is_double_xmm()) {
duke@435 3709 if (dest->is_double_cpu()) {
never@739 3710 #ifdef _LP64
never@739 3711 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
never@739 3712 #else
never@739 3713 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
duke@435 3714 __ psrlq(src->as_xmm_double_reg(), 32);
never@739 3715 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
never@739 3716 #endif // _LP64
duke@435 3717 } else if (dest->is_double_stack()) {
duke@435 3718 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
duke@435 3719 } else if (dest->is_address()) {
duke@435 3720 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
duke@435 3721 } else {
duke@435 3722 ShouldNotReachHere();
duke@435 3723 }
duke@435 3724
duke@435 3725 } else if (dest->is_double_xmm()) {
duke@435 3726 if (src->is_double_stack()) {
duke@435 3727 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3728 } else if (src->is_address()) {
duke@435 3729 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
duke@435 3730 } else {
duke@435 3731 ShouldNotReachHere();
duke@435 3732 }
duke@435 3733
duke@435 3734 } else if (src->is_double_fpu()) {
duke@435 3735 assert(src->fpu_regnrLo() == 0, "must be TOS");
duke@435 3736 if (dest->is_double_stack()) {
duke@435 3737 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
duke@435 3738 } else if (dest->is_address()) {
duke@435 3739 __ fistp_d(as_Address(dest->as_address_ptr()));
duke@435 3740 } else {
duke@435 3741 ShouldNotReachHere();
duke@435 3742 }
duke@435 3743
duke@435 3744 } else if (dest->is_double_fpu()) {
duke@435 3745 assert(dest->fpu_regnrLo() == 0, "must be TOS");
duke@435 3746 if (src->is_double_stack()) {
duke@435 3747 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3748 } else if (src->is_address()) {
duke@435 3749 __ fild_d(as_Address(src->as_address_ptr()));
duke@435 3750 } else {
duke@435 3751 ShouldNotReachHere();
duke@435 3752 }
duke@435 3753 } else {
duke@435 3754 ShouldNotReachHere();
duke@435 3755 }
duke@435 3756 }
duke@435 3757
roland@4860 3758 #ifdef ASSERT
roland@4860 3759 // emit run-time assertion
roland@4860 3760 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
roland@4860 3761 assert(op->code() == lir_assert, "must be");
roland@4860 3762
roland@4860 3763 if (op->in_opr1()->is_valid()) {
roland@4860 3764 assert(op->in_opr2()->is_valid(), "both operands must be valid");
roland@4860 3765 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
roland@4860 3766 } else {
roland@4860 3767 assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
roland@4860 3768 assert(op->condition() == lir_cond_always, "no other conditions allowed");
roland@4860 3769 }
roland@4860 3770
roland@4860 3771 Label ok;
roland@4860 3772 if (op->condition() != lir_cond_always) {
roland@4860 3773 Assembler::Condition acond = Assembler::zero;
roland@4860 3774 switch (op->condition()) {
roland@4860 3775 case lir_cond_equal: acond = Assembler::equal; break;
roland@4860 3776 case lir_cond_notEqual: acond = Assembler::notEqual; break;
roland@4860 3777 case lir_cond_less: acond = Assembler::less; break;
roland@4860 3778 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
roland@4860 3779 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
roland@4860 3780 case lir_cond_greater: acond = Assembler::greater; break;
roland@4860 3781 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
roland@4860 3782 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
roland@4860 3783 default: ShouldNotReachHere();
roland@4860 3784 }
roland@4860 3785 __ jcc(acond, ok);
roland@4860 3786 }
roland@4860 3787 if (op->halt()) {
roland@4860 3788 const char* str = __ code_string(op->msg());
roland@4860 3789 __ stop(str);
roland@4860 3790 } else {
roland@4860 3791 breakpoint();
roland@4860 3792 }
roland@4860 3793 __ bind(ok);
roland@4860 3794 }
roland@4860 3795 #endif
duke@435 3796
duke@435 3797 void LIR_Assembler::membar() {
never@739 3798 // QQQ sparc TSO uses this,
never@739 3799 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
duke@435 3800 }
duke@435 3801
duke@435 3802 void LIR_Assembler::membar_acquire() {
duke@435 3803 // No x86 machines currently require load fences
duke@435 3804 // __ load_fence();
duke@435 3805 }
duke@435 3806
duke@435 3807 void LIR_Assembler::membar_release() {
duke@435 3808 // No x86 machines currently require store fences
duke@435 3809 // __ store_fence();
duke@435 3810 }
duke@435 3811
jiangli@3592 3812 void LIR_Assembler::membar_loadload() {
jiangli@3592 3813 // no-op
jiangli@3592 3814 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
jiangli@3592 3815 }
jiangli@3592 3816
jiangli@3592 3817 void LIR_Assembler::membar_storestore() {
jiangli@3592 3818 // no-op
jiangli@3592 3819 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
jiangli@3592 3820 }
jiangli@3592 3821
jiangli@3592 3822 void LIR_Assembler::membar_loadstore() {
jiangli@3592 3823 // no-op
jiangli@3592 3824 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
jiangli@3592 3825 }
jiangli@3592 3826
jiangli@3592 3827 void LIR_Assembler::membar_storeload() {
jiangli@3592 3828 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
jiangli@3592 3829 }
jiangli@3592 3830
duke@435 3831 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3832 assert(result_reg->is_register(), "check");
never@739 3833 #ifdef _LP64
never@739 3834 // __ get_thread(result_reg->as_register_lo());
never@739 3835 __ mov(result_reg->as_register(), r15_thread);
never@739 3836 #else
duke@435 3837 __ get_thread(result_reg->as_register());
never@739 3838 #endif // _LP64
duke@435 3839 }
duke@435 3840
duke@435 3841
duke@435 3842 void LIR_Assembler::peephole(LIR_List*) {
duke@435 3843 // do nothing for now
duke@435 3844 }
duke@435 3845
roland@4106 3846 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
roland@4106 3847 assert(data == dest, "xchg/xadd uses only 2 operands");
roland@4106 3848
roland@4106 3849 if (data->type() == T_INT) {
roland@4106 3850 if (code == lir_xadd) {
roland@4106 3851 if (os::is_MP()) {
roland@4106 3852 __ lock();
roland@4106 3853 }
roland@4106 3854 __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
roland@4106 3855 } else {
roland@4106 3856 __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
roland@4106 3857 }
roland@4106 3858 } else if (data->is_oop()) {
roland@4106 3859 assert (code == lir_xchg, "xadd for oops");
roland@4106 3860 Register obj = data->as_register();
roland@4106 3861 #ifdef _LP64
roland@4106 3862 if (UseCompressedOops) {
roland@4106 3863 __ encode_heap_oop(obj);
roland@4106 3864 __ xchgl(obj, as_Address(src->as_address_ptr()));
roland@4106 3865 __ decode_heap_oop(obj);
roland@4106 3866 } else {
roland@4106 3867 __ xchgptr(obj, as_Address(src->as_address_ptr()));
roland@4106 3868 }
roland@4106 3869 #else
roland@4106 3870 __ xchgl(obj, as_Address(src->as_address_ptr()));
roland@4106 3871 #endif
roland@4106 3872 } else if (data->type() == T_LONG) {
roland@4106 3873 #ifdef _LP64
roland@4106 3874 assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
roland@4106 3875 if (code == lir_xadd) {
roland@4106 3876 if (os::is_MP()) {
roland@4106 3877 __ lock();
roland@4106 3878 }
roland@4106 3879 __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
roland@4106 3880 } else {
roland@4106 3881 __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
roland@4106 3882 }
roland@4106 3883 #else
roland@4106 3884 ShouldNotReachHere();
roland@4106 3885 #endif
roland@4106 3886 } else {
roland@4106 3887 ShouldNotReachHere();
roland@4106 3888 }
roland@4106 3889 }
duke@435 3890
duke@435 3891 #undef __

mercurial