src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Tue, 14 Jan 2014 09:44:45 +0100

author
roland
date
Tue, 14 Jan 2014 09:44:45 +0100
changeset 6278
12ad8db39f76
parent 5994
9acbfe04b5c3
child 6539
876390ee9b6f
permissions
-rw-r--r--

8028764: dtrace/hotspot_jni/ALL/ALL001 crashes the vm on Solaris-amd64, SIGSEGV in MarkSweep::follow_stack()+0x8a
Summary: C1 generates code to encode compressed oop into tmp register before runtime call for patching where GC may happen
Reviewed-by: iveresov, twisti, kvn
Contributed-by: mgerdin <mikael.gerdin@oracle.com>

duke@435 1 /*
drchase@5353 2 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@4318 26 #include "asm/macroAssembler.hpp"
twisti@4318 27 #include "asm/macroAssembler.inline.hpp"
stefank@2314 28 #include "c1/c1_Compilation.hpp"
stefank@2314 29 #include "c1/c1_LIRAssembler.hpp"
stefank@2314 30 #include "c1/c1_MacroAssembler.hpp"
stefank@2314 31 #include "c1/c1_Runtime1.hpp"
stefank@2314 32 #include "c1/c1_ValueStack.hpp"
stefank@2314 33 #include "ci/ciArrayKlass.hpp"
stefank@2314 34 #include "ci/ciInstance.hpp"
stefank@2314 35 #include "gc_interface/collectedHeap.hpp"
stefank@2314 36 #include "memory/barrierSet.hpp"
stefank@2314 37 #include "memory/cardTableModRefBS.hpp"
stefank@2314 38 #include "nativeInst_x86.hpp"
stefank@2314 39 #include "oops/objArrayKlass.hpp"
stefank@2314 40 #include "runtime/sharedRuntime.hpp"
roland@6278 41 #include "vmreg_x86.inline.hpp"
duke@435 42
duke@435 43
duke@435 44 // These masks are used to provide 128-bit aligned bitmasks to the XMM
duke@435 45 // instructions, to allow sign-masking or sign-bit flipping. They allow
duke@435 46 // fast versions of NegF/NegD and AbsF/AbsD.
duke@435 47
duke@435 48 // Note: 'double' and 'long long' have 32-bits alignment on x86.
duke@435 49 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
duke@435 50 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
duke@435 51 // of 128-bits operands for SSE instructions.
iveresov@2932 52 jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
duke@435 53 // Store the value to a 128-bits operand.
duke@435 54 operand[0] = lo;
duke@435 55 operand[1] = hi;
duke@435 56 return operand;
duke@435 57 }
duke@435 58
duke@435 59 // Buffer for 128-bits masks used by SSE instructions.
duke@435 60 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
duke@435 61
duke@435 62 // Static initialization during VM startup.
duke@435 63 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
duke@435 64 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
duke@435 65 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
duke@435 66 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
duke@435 67
duke@435 68
duke@435 69
duke@435 70 NEEDS_CLEANUP // remove this definitions ?
duke@435 71 const Register IC_Klass = rax; // where the IC klass is cached
duke@435 72 const Register SYNC_header = rax; // synchronization header
duke@435 73 const Register SHIFT_count = rcx; // where count for shift operations must be
duke@435 74
duke@435 75 #define __ _masm->
duke@435 76
duke@435 77
duke@435 78 static void select_different_registers(Register preserve,
duke@435 79 Register extra,
duke@435 80 Register &tmp1,
duke@435 81 Register &tmp2) {
duke@435 82 if (tmp1 == preserve) {
duke@435 83 assert_different_registers(tmp1, tmp2, extra);
duke@435 84 tmp1 = extra;
duke@435 85 } else if (tmp2 == preserve) {
duke@435 86 assert_different_registers(tmp1, tmp2, extra);
duke@435 87 tmp2 = extra;
duke@435 88 }
duke@435 89 assert_different_registers(preserve, tmp1, tmp2);
duke@435 90 }
duke@435 91
duke@435 92
duke@435 93
duke@435 94 static void select_different_registers(Register preserve,
duke@435 95 Register extra,
duke@435 96 Register &tmp1,
duke@435 97 Register &tmp2,
duke@435 98 Register &tmp3) {
duke@435 99 if (tmp1 == preserve) {
duke@435 100 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 101 tmp1 = extra;
duke@435 102 } else if (tmp2 == preserve) {
duke@435 103 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 104 tmp2 = extra;
duke@435 105 } else if (tmp3 == preserve) {
duke@435 106 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 107 tmp3 = extra;
duke@435 108 }
duke@435 109 assert_different_registers(preserve, tmp1, tmp2, tmp3);
duke@435 110 }
duke@435 111
duke@435 112
duke@435 113
duke@435 114 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 115 if (opr->is_constant()) {
duke@435 116 LIR_Const* constant = opr->as_constant_ptr();
duke@435 117 switch (constant->type()) {
duke@435 118 case T_INT: {
duke@435 119 return true;
duke@435 120 }
duke@435 121
duke@435 122 default:
duke@435 123 return false;
duke@435 124 }
duke@435 125 }
duke@435 126 return false;
duke@435 127 }
duke@435 128
duke@435 129
duke@435 130 LIR_Opr LIR_Assembler::receiverOpr() {
never@739 131 return FrameMap::receiver_opr;
duke@435 132 }
duke@435 133
duke@435 134 LIR_Opr LIR_Assembler::osrBufferPointer() {
never@739 135 return FrameMap::as_pointer_opr(receiverOpr()->as_register());
duke@435 136 }
duke@435 137
duke@435 138 //--------------fpu register translations-----------------------
duke@435 139
duke@435 140
duke@435 141 address LIR_Assembler::float_constant(float f) {
duke@435 142 address const_addr = __ float_constant(f);
duke@435 143 if (const_addr == NULL) {
duke@435 144 bailout("const section overflow");
duke@435 145 return __ code()->consts()->start();
duke@435 146 } else {
duke@435 147 return const_addr;
duke@435 148 }
duke@435 149 }
duke@435 150
duke@435 151
duke@435 152 address LIR_Assembler::double_constant(double d) {
duke@435 153 address const_addr = __ double_constant(d);
duke@435 154 if (const_addr == NULL) {
duke@435 155 bailout("const section overflow");
duke@435 156 return __ code()->consts()->start();
duke@435 157 } else {
duke@435 158 return const_addr;
duke@435 159 }
duke@435 160 }
duke@435 161
duke@435 162
duke@435 163 void LIR_Assembler::set_24bit_FPU() {
duke@435 164 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
duke@435 165 }
duke@435 166
duke@435 167 void LIR_Assembler::reset_FPU() {
duke@435 168 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 169 }
duke@435 170
duke@435 171 void LIR_Assembler::fpop() {
duke@435 172 __ fpop();
duke@435 173 }
duke@435 174
duke@435 175 void LIR_Assembler::fxch(int i) {
duke@435 176 __ fxch(i);
duke@435 177 }
duke@435 178
duke@435 179 void LIR_Assembler::fld(int i) {
duke@435 180 __ fld_s(i);
duke@435 181 }
duke@435 182
duke@435 183 void LIR_Assembler::ffree(int i) {
duke@435 184 __ ffree(i);
duke@435 185 }
duke@435 186
duke@435 187 void LIR_Assembler::breakpoint() {
duke@435 188 __ int3();
duke@435 189 }
duke@435 190
duke@435 191 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 192 if (opr->is_single_cpu()) {
duke@435 193 __ push_reg(opr->as_register());
duke@435 194 } else if (opr->is_double_cpu()) {
never@739 195 NOT_LP64(__ push_reg(opr->as_register_hi()));
duke@435 196 __ push_reg(opr->as_register_lo());
duke@435 197 } else if (opr->is_stack()) {
duke@435 198 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
duke@435 199 } else if (opr->is_constant()) {
duke@435 200 LIR_Const* const_opr = opr->as_constant_ptr();
duke@435 201 if (const_opr->type() == T_OBJECT) {
duke@435 202 __ push_oop(const_opr->as_jobject());
duke@435 203 } else if (const_opr->type() == T_INT) {
duke@435 204 __ push_jint(const_opr->as_jint());
duke@435 205 } else {
duke@435 206 ShouldNotReachHere();
duke@435 207 }
duke@435 208
duke@435 209 } else {
duke@435 210 ShouldNotReachHere();
duke@435 211 }
duke@435 212 }
duke@435 213
duke@435 214 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 215 if (opr->is_single_cpu()) {
never@739 216 __ pop_reg(opr->as_register());
duke@435 217 } else {
duke@435 218 ShouldNotReachHere();
duke@435 219 }
duke@435 220 }
duke@435 221
never@739 222 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
never@739 223 return addr->base()->is_illegal() && addr->index()->is_illegal();
never@739 224 }
never@739 225
duke@435 226 //-------------------------------------------
never@739 227
duke@435 228 Address LIR_Assembler::as_Address(LIR_Address* addr) {
never@739 229 return as_Address(addr, rscratch1);
never@739 230 }
never@739 231
never@739 232 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
duke@435 233 if (addr->base()->is_illegal()) {
duke@435 234 assert(addr->index()->is_illegal(), "must be illegal too");
never@739 235 AddressLiteral laddr((address)addr->disp(), relocInfo::none);
never@739 236 if (! __ reachable(laddr)) {
never@739 237 __ movptr(tmp, laddr.addr());
never@739 238 Address res(tmp, 0);
never@739 239 return res;
never@739 240 } else {
never@739 241 return __ as_Address(laddr);
never@739 242 }
duke@435 243 }
duke@435 244
never@739 245 Register base = addr->base()->as_pointer_register();
duke@435 246
duke@435 247 if (addr->index()->is_illegal()) {
duke@435 248 return Address( base, addr->disp());
never@739 249 } else if (addr->index()->is_cpu_register()) {
never@739 250 Register index = addr->index()->as_pointer_register();
duke@435 251 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
duke@435 252 } else if (addr->index()->is_constant()) {
never@739 253 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
never@739 254 assert(Assembler::is_simm32(addr_offset), "must be");
duke@435 255
duke@435 256 return Address(base, addr_offset);
duke@435 257 } else {
duke@435 258 Unimplemented();
duke@435 259 return Address();
duke@435 260 }
duke@435 261 }
duke@435 262
duke@435 263
duke@435 264 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 265 Address base = as_Address(addr);
duke@435 266 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
duke@435 267 }
duke@435 268
duke@435 269
duke@435 270 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 271 return as_Address(addr);
duke@435 272 }
duke@435 273
duke@435 274
duke@435 275 void LIR_Assembler::osr_entry() {
duke@435 276 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 277 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 278 ValueStack* entry_state = osr_entry->state();
duke@435 279 int number_of_locks = entry_state->locks_size();
duke@435 280
duke@435 281 // we jump here if osr happens with the interpreter
duke@435 282 // state set up to continue at the beginning of the
duke@435 283 // loop that triggered osr - in particular, we have
duke@435 284 // the following registers setup:
duke@435 285 //
duke@435 286 // rcx: osr buffer
duke@435 287 //
duke@435 288
duke@435 289 // build frame
duke@435 290 ciMethod* m = compilation()->method();
duke@435 291 __ build_frame(initial_frame_size_in_bytes());
duke@435 292
duke@435 293 // OSR buffer is
duke@435 294 //
duke@435 295 // locals[nlocals-1..0]
duke@435 296 // monitors[0..number_of_locks]
duke@435 297 //
duke@435 298 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 299 // so first slot in the local array is the last local from the interpreter
duke@435 300 // and last slot is local[0] (receiver) from the interpreter
duke@435 301 //
duke@435 302 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 303 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 304 // in the interpreter frame (the method lock if a sync method)
duke@435 305
duke@435 306 // Initialize monitors in the compiled activation.
duke@435 307 // rcx: pointer to osr buffer
duke@435 308 //
duke@435 309 // All other registers are dead at this point and the locals will be
duke@435 310 // copied into place by code emitted in the IR.
duke@435 311
never@739 312 Register OSR_buf = osrBufferPointer()->as_pointer_register();
duke@435 313 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 314 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 315 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 316 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 317 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 318 // the oop.
duke@435 319 for (int i = 0; i < number_of_locks; i++) {
roland@1495 320 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 321 #ifdef ASSERT
duke@435 322 // verify the interpreter's monitor has a non-null object
duke@435 323 {
duke@435 324 Label L;
roland@1495 325 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
duke@435 326 __ jcc(Assembler::notZero, L);
duke@435 327 __ stop("locked object is NULL");
duke@435 328 __ bind(L);
duke@435 329 }
duke@435 330 #endif
roland@1495 331 __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
never@739 332 __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
roland@1495 333 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
never@739 334 __ movptr(frame_map()->address_for_monitor_object(i), rbx);
duke@435 335 }
duke@435 336 }
duke@435 337 }
duke@435 338
duke@435 339
duke@435 340 // inline cache check; done before the frame is built.
duke@435 341 int LIR_Assembler::check_icache() {
duke@435 342 Register receiver = FrameMap::receiver_opr->as_register();
duke@435 343 Register ic_klass = IC_Klass;
never@739 344 const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
ehelin@5694 345 const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
iveresov@2344 346 if (!do_post_padding) {
duke@435 347 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
never@739 348 while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
duke@435 349 __ nop();
duke@435 350 }
duke@435 351 }
duke@435 352 int offset = __ offset();
duke@435 353 __ inline_cache_check(receiver, IC_Klass);
iveresov@2344 354 assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
iveresov@2344 355 if (do_post_padding) {
duke@435 356 // force alignment after the cache check.
duke@435 357 // It's been verified to be aligned if !VerifyOops
duke@435 358 __ align(CodeEntryAlignment);
duke@435 359 }
duke@435 360 return offset;
duke@435 361 }
duke@435 362
duke@435 363
duke@435 364 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
duke@435 365 jobject o = NULL;
roland@5628 366 PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
duke@435 367 __ movoop(reg, o);
duke@435 368 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 369 }
duke@435 370
coleenp@4037 371 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
coleenp@4037 372 Metadata* o = NULL;
coleenp@4037 373 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
coleenp@4037 374 __ mov_metadata(reg, o);
coleenp@4037 375 patching_epilog(patch, lir_patch_normal, reg, info);
coleenp@4037 376 }
duke@435 377
duke@435 378 // This specifies the rsp decrement needed to build the frame
duke@435 379 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 380 // if rounding, must let FrameMap know!
never@739 381
never@739 382 // The frame_map records size in slots (32bit word)
never@739 383
never@739 384 // subtract two words to account for return address and link
never@739 385 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size;
duke@435 386 }
duke@435 387
duke@435 388
twisti@1639 389 int LIR_Assembler::emit_exception_handler() {
duke@435 390 // if the last instruction is a call (typically to do a throw which
duke@435 391 // is coming at the end after block reordering) the return address
duke@435 392 // must still point into the code area in order to avoid assertion
duke@435 393 // failures when searching for the corresponding bci => add a nop
duke@435 394 // (was bug 5/14/1999 - gri)
duke@435 395 __ nop();
duke@435 396
duke@435 397 // generate code for exception handler
duke@435 398 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 399 if (handler_base == NULL) {
duke@435 400 // not enough space left for the handler
duke@435 401 bailout("exception handler overflow");
twisti@1639 402 return -1;
duke@435 403 }
twisti@1639 404
duke@435 405 int offset = code_offset();
duke@435 406
twisti@1730 407 // the exception oop and pc are in rax, and rdx
duke@435 408 // no other registers need to be preserved, so invalidate them
twisti@1730 409 __ invalidate_registers(false, true, true, false, true, true);
duke@435 410
duke@435 411 // check that there is really an exception
duke@435 412 __ verify_not_null_oop(rax);
duke@435 413
twisti@1730 414 // search an exception handler (rax: exception oop, rdx: throwing pc)
twisti@2603 415 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
twisti@2603 416 __ should_not_reach_here();
iveresov@3435 417 guarantee(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 418 __ end_a_stub();
twisti@1639 419
twisti@1639 420 return offset;
duke@435 421 }
duke@435 422
twisti@1639 423
never@1813 424 // Emit the code to remove the frame from the stack in the exception
never@1813 425 // unwind path.
never@1813 426 int LIR_Assembler::emit_unwind_handler() {
never@1813 427 #ifndef PRODUCT
never@1813 428 if (CommentedAssembly) {
never@1813 429 _masm->block_comment("Unwind handler");
never@1813 430 }
never@1813 431 #endif
never@1813 432
never@1813 433 int offset = code_offset();
never@1813 434
never@1813 435 // Fetch the exception from TLS and clear out exception related thread state
iveresov@5994 436 Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
iveresov@5994 437 NOT_LP64(__ get_thread(rsi));
iveresov@5994 438 __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
iveresov@5994 439 __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
iveresov@5994 440 __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
never@1813 441
never@1813 442 __ bind(_unwind_handler_entry);
never@1813 443 __ verify_not_null_oop(rax);
never@1813 444 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
iveresov@5994 445 __ mov(rbx, rax); // Preserve the exception (rbx is always callee-saved)
never@1813 446 }
never@1813 447
never@1813 448 // Preform needed unlocking
never@1813 449 MonitorExitStub* stub = NULL;
never@1813 450 if (method()->is_synchronized()) {
never@1813 451 monitor_address(0, FrameMap::rax_opr);
never@1813 452 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
iveresov@5994 453 __ unlock_object(rdi, rsi, rax, *stub->entry());
never@1813 454 __ bind(*stub->continuation());
never@1813 455 }
never@1813 456
never@1813 457 if (compilation()->env()->dtrace_method_probes()) {
iveresov@5994 458 #ifdef _LP64
iveresov@5994 459 __ mov(rdi, r15_thread);
iveresov@5994 460 __ mov_metadata(rsi, method()->constant_encoding());
iveresov@5994 461 #else
never@2185 462 __ get_thread(rax);
never@2185 463 __ movptr(Address(rsp, 0), rax);
coleenp@4037 464 __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
iveresov@5994 465 #endif
never@1813 466 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
never@1813 467 }
never@1813 468
never@1813 469 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
iveresov@5994 470 __ mov(rax, rbx); // Restore the exception
never@1813 471 }
never@1813 472
never@1813 473 // remove the activation and dispatch to the unwind handler
never@1813 474 __ remove_frame(initial_frame_size_in_bytes());
never@1813 475 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
never@1813 476
never@1813 477 // Emit the slow path assembly
never@1813 478 if (stub != NULL) {
never@1813 479 stub->emit_code(this);
never@1813 480 }
never@1813 481
never@1813 482 return offset;
never@1813 483 }
never@1813 484
never@1813 485
twisti@1639 486 int LIR_Assembler::emit_deopt_handler() {
duke@435 487 // if the last instruction is a call (typically to do a throw which
duke@435 488 // is coming at the end after block reordering) the return address
duke@435 489 // must still point into the code area in order to avoid assertion
duke@435 490 // failures when searching for the corresponding bci => add a nop
duke@435 491 // (was bug 5/14/1999 - gri)
duke@435 492 __ nop();
duke@435 493
duke@435 494 // generate code for exception handler
duke@435 495 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 496 if (handler_base == NULL) {
duke@435 497 // not enough space left for the handler
duke@435 498 bailout("deopt handler overflow");
twisti@1639 499 return -1;
duke@435 500 }
twisti@1639 501
duke@435 502 int offset = code_offset();
duke@435 503 InternalAddress here(__ pc());
twisti@1730 504
duke@435 505 __ pushptr(here.addr());
duke@435 506 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
iveresov@3435 507 guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 508 __ end_a_stub();
duke@435 509
twisti@1639 510 return offset;
duke@435 511 }
duke@435 512
duke@435 513
duke@435 514 // This is the fast version of java.lang.String.compare; it has not
duke@435 515 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 516 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
never@739 517 __ movptr (rbx, rcx); // receiver is in rcx
never@739 518 __ movptr (rax, arg1->as_register());
duke@435 519
duke@435 520 // Get addresses of first characters from both Strings
iveresov@2344 521 __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
kvn@3760 522 if (java_lang_String::has_offset_field()) {
kvn@3760 523 __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
kvn@3760 524 __ movl (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
kvn@3760 525 __ lea (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
kvn@3760 526 } else {
kvn@3760 527 __ movl (rax, Address(rsi, arrayOopDesc::length_offset_in_bytes()));
kvn@3760 528 __ lea (rsi, Address(rsi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
kvn@3760 529 }
duke@435 530
duke@435 531 // rbx, may be NULL
duke@435 532 add_debug_info_for_null_check_here(info);
iveresov@2344 533 __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
kvn@3760 534 if (java_lang_String::has_offset_field()) {
kvn@3760 535 __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
kvn@3760 536 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
kvn@3760 537 __ lea (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
kvn@3760 538 } else {
kvn@3760 539 __ movl (rbx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
kvn@3760 540 __ lea (rdi, Address(rdi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
kvn@3760 541 }
duke@435 542
duke@435 543 // compute minimum length (in rax) and difference of lengths (on top of stack)
twisti@2697 544 __ mov (rcx, rbx);
twisti@2697 545 __ subptr(rbx, rax); // subtract lengths
twisti@2697 546 __ push (rbx); // result
twisti@2697 547 __ cmov (Assembler::lessEqual, rax, rcx);
twisti@2697 548
duke@435 549 // is minimum length 0?
duke@435 550 Label noLoop, haveResult;
never@739 551 __ testptr (rax, rax);
duke@435 552 __ jcc (Assembler::zero, noLoop);
duke@435 553
duke@435 554 // compare first characters
jrose@1057 555 __ load_unsigned_short(rcx, Address(rdi, 0));
jrose@1057 556 __ load_unsigned_short(rbx, Address(rsi, 0));
duke@435 557 __ subl(rcx, rbx);
duke@435 558 __ jcc(Assembler::notZero, haveResult);
duke@435 559 // starting loop
duke@435 560 __ decrement(rax); // we already tested index: skip one
duke@435 561 __ jcc(Assembler::zero, noLoop);
duke@435 562
duke@435 563 // set rsi.edi to the end of the arrays (arrays have same length)
duke@435 564 // negate the index
duke@435 565
never@739 566 __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 567 __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 568 __ negptr(rax);
duke@435 569
duke@435 570 // compare the strings in a loop
duke@435 571
duke@435 572 Label loop;
duke@435 573 __ align(wordSize);
duke@435 574 __ bind(loop);
jrose@1057 575 __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
jrose@1057 576 __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
duke@435 577 __ subl(rcx, rbx);
duke@435 578 __ jcc(Assembler::notZero, haveResult);
duke@435 579 __ increment(rax);
duke@435 580 __ jcc(Assembler::notZero, loop);
duke@435 581
duke@435 582 // strings are equal up to min length
duke@435 583
duke@435 584 __ bind(noLoop);
never@739 585 __ pop(rax);
duke@435 586 return_op(LIR_OprFact::illegalOpr);
duke@435 587
duke@435 588 __ bind(haveResult);
duke@435 589 // leave instruction is going to discard the TOS value
never@739 590 __ mov (rax, rcx); // result of call is in rax,
duke@435 591 }
duke@435 592
duke@435 593
duke@435 594 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 595 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
duke@435 596 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
duke@435 597 assert(result->fpu() == 0, "result must already be on TOS");
duke@435 598 }
duke@435 599
duke@435 600 // Pop the stack before the safepoint code
twisti@1730 601 __ remove_frame(initial_frame_size_in_bytes());
duke@435 602
duke@435 603 bool result_is_oop = result->is_valid() ? result->is_oop() : false;
duke@435 604
duke@435 605 // Note: we do not need to round double result; float result has the right precision
duke@435 606 // the poll sets the condition code, but no data registers
duke@435 607 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 608 relocInfo::poll_return_type);
never@739 609
iveresov@2686 610 if (Assembler::is_polling_page_far()) {
iveresov@2686 611 __ lea(rscratch1, polling_page);
iveresov@2686 612 __ relocate(relocInfo::poll_return_type);
iveresov@2686 613 __ testl(rax, Address(rscratch1, 0));
iveresov@2686 614 } else {
iveresov@2686 615 __ testl(rax, polling_page);
iveresov@2686 616 }
duke@435 617 __ ret(0);
duke@435 618 }
duke@435 619
duke@435 620
duke@435 621 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 622 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 623 relocInfo::poll_type);
iveresov@2686 624 guarantee(info != NULL, "Shouldn't be NULL");
iveresov@2686 625 int offset = __ offset();
iveresov@2686 626 if (Assembler::is_polling_page_far()) {
iveresov@2686 627 __ lea(rscratch1, polling_page);
iveresov@2686 628 offset = __ offset();
duke@435 629 add_debug_info_for_branch(info);
iveresov@2686 630 __ testl(rax, Address(rscratch1, 0));
duke@435 631 } else {
iveresov@2686 632 add_debug_info_for_branch(info);
iveresov@2686 633 __ testl(rax, polling_page);
duke@435 634 }
duke@435 635 return offset;
duke@435 636 }
duke@435 637
duke@435 638
duke@435 639 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
never@739 640 if (from_reg != to_reg) __ mov(to_reg, from_reg);
duke@435 641 }
duke@435 642
duke@435 643 void LIR_Assembler::swap_reg(Register a, Register b) {
never@739 644 __ xchgptr(a, b);
duke@435 645 }
duke@435 646
duke@435 647
duke@435 648 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 649 assert(src->is_constant(), "should not call otherwise");
duke@435 650 assert(dest->is_register(), "should not call otherwise");
duke@435 651 LIR_Const* c = src->as_constant_ptr();
duke@435 652
duke@435 653 switch (c->type()) {
iveresov@2344 654 case T_INT: {
iveresov@2344 655 assert(patch_code == lir_patch_none, "no patching handled here");
iveresov@2344 656 __ movl(dest->as_register(), c->as_jint());
iveresov@2344 657 break;
iveresov@2344 658 }
iveresov@2344 659
roland@1732 660 case T_ADDRESS: {
duke@435 661 assert(patch_code == lir_patch_none, "no patching handled here");
iveresov@2344 662 __ movptr(dest->as_register(), c->as_jint());
duke@435 663 break;
duke@435 664 }
duke@435 665
duke@435 666 case T_LONG: {
duke@435 667 assert(patch_code == lir_patch_none, "no patching handled here");
never@739 668 #ifdef _LP64
never@739 669 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
never@739 670 #else
never@739 671 __ movptr(dest->as_register_lo(), c->as_jint_lo());
never@739 672 __ movptr(dest->as_register_hi(), c->as_jint_hi());
never@739 673 #endif // _LP64
duke@435 674 break;
duke@435 675 }
duke@435 676
duke@435 677 case T_OBJECT: {
duke@435 678 if (patch_code != lir_patch_none) {
duke@435 679 jobject2reg_with_patching(dest->as_register(), info);
duke@435 680 } else {
duke@435 681 __ movoop(dest->as_register(), c->as_jobject());
duke@435 682 }
duke@435 683 break;
duke@435 684 }
duke@435 685
coleenp@4037 686 case T_METADATA: {
coleenp@4037 687 if (patch_code != lir_patch_none) {
coleenp@4037 688 klass2reg_with_patching(dest->as_register(), info);
coleenp@4037 689 } else {
coleenp@4037 690 __ mov_metadata(dest->as_register(), c->as_metadata());
coleenp@4037 691 }
coleenp@4037 692 break;
coleenp@4037 693 }
coleenp@4037 694
duke@435 695 case T_FLOAT: {
duke@435 696 if (dest->is_single_xmm()) {
duke@435 697 if (c->is_zero_float()) {
duke@435 698 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
duke@435 699 } else {
duke@435 700 __ movflt(dest->as_xmm_float_reg(),
duke@435 701 InternalAddress(float_constant(c->as_jfloat())));
duke@435 702 }
duke@435 703 } else {
duke@435 704 assert(dest->is_single_fpu(), "must be");
duke@435 705 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 706 if (c->is_zero_float()) {
duke@435 707 __ fldz();
duke@435 708 } else if (c->is_one_float()) {
duke@435 709 __ fld1();
duke@435 710 } else {
duke@435 711 __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
duke@435 712 }
duke@435 713 }
duke@435 714 break;
duke@435 715 }
duke@435 716
duke@435 717 case T_DOUBLE: {
duke@435 718 if (dest->is_double_xmm()) {
duke@435 719 if (c->is_zero_double()) {
duke@435 720 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
duke@435 721 } else {
duke@435 722 __ movdbl(dest->as_xmm_double_reg(),
duke@435 723 InternalAddress(double_constant(c->as_jdouble())));
duke@435 724 }
duke@435 725 } else {
duke@435 726 assert(dest->is_double_fpu(), "must be");
duke@435 727 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 728 if (c->is_zero_double()) {
duke@435 729 __ fldz();
duke@435 730 } else if (c->is_one_double()) {
duke@435 731 __ fld1();
duke@435 732 } else {
duke@435 733 __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
duke@435 734 }
duke@435 735 }
duke@435 736 break;
duke@435 737 }
duke@435 738
duke@435 739 default:
duke@435 740 ShouldNotReachHere();
duke@435 741 }
duke@435 742 }
duke@435 743
duke@435 744 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 745 assert(src->is_constant(), "should not call otherwise");
duke@435 746 assert(dest->is_stack(), "should not call otherwise");
duke@435 747 LIR_Const* c = src->as_constant_ptr();
duke@435 748
duke@435 749 switch (c->type()) {
duke@435 750 case T_INT: // fall through
duke@435 751 case T_FLOAT:
iveresov@2344 752 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
iveresov@2344 753 break;
iveresov@2344 754
roland@1732 755 case T_ADDRESS:
iveresov@2344 756 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
duke@435 757 break;
duke@435 758
duke@435 759 case T_OBJECT:
duke@435 760 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
duke@435 761 break;
duke@435 762
duke@435 763 case T_LONG: // fall through
duke@435 764 case T_DOUBLE:
never@739 765 #ifdef _LP64
never@739 766 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 767 lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
never@739 768 #else
never@739 769 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 770 lo_word_offset_in_bytes), c->as_jint_lo_bits());
never@739 771 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 772 hi_word_offset_in_bytes), c->as_jint_hi_bits());
never@739 773 #endif // _LP64
duke@435 774 break;
duke@435 775
duke@435 776 default:
duke@435 777 ShouldNotReachHere();
duke@435 778 }
duke@435 779 }
duke@435 780
iveresov@2344 781 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
duke@435 782 assert(src->is_constant(), "should not call otherwise");
duke@435 783 assert(dest->is_address(), "should not call otherwise");
duke@435 784 LIR_Const* c = src->as_constant_ptr();
duke@435 785 LIR_Address* addr = dest->as_address_ptr();
duke@435 786
never@739 787 int null_check_here = code_offset();
duke@435 788 switch (type) {
duke@435 789 case T_INT: // fall through
duke@435 790 case T_FLOAT:
iveresov@2344 791 __ movl(as_Address(addr), c->as_jint_bits());
iveresov@2344 792 break;
iveresov@2344 793
roland@1732 794 case T_ADDRESS:
iveresov@2344 795 __ movptr(as_Address(addr), c->as_jint_bits());
duke@435 796 break;
duke@435 797
duke@435 798 case T_OBJECT: // fall through
duke@435 799 case T_ARRAY:
duke@435 800 if (c->as_jobject() == NULL) {
iveresov@2344 801 if (UseCompressedOops && !wide) {
iveresov@2344 802 __ movl(as_Address(addr), (int32_t)NULL_WORD);
iveresov@2344 803 } else {
iveresov@2344 804 __ movptr(as_Address(addr), NULL_WORD);
iveresov@2344 805 }
duke@435 806 } else {
never@739 807 if (is_literal_address(addr)) {
never@739 808 ShouldNotReachHere();
never@739 809 __ movoop(as_Address(addr, noreg), c->as_jobject());
never@739 810 } else {
roland@1495 811 #ifdef _LP64
roland@1495 812 __ movoop(rscratch1, c->as_jobject());
iveresov@2344 813 if (UseCompressedOops && !wide) {
iveresov@2344 814 __ encode_heap_oop(rscratch1);
iveresov@2344 815 null_check_here = code_offset();
iveresov@2344 816 __ movl(as_Address_lo(addr), rscratch1);
iveresov@2344 817 } else {
iveresov@2344 818 null_check_here = code_offset();
iveresov@2344 819 __ movptr(as_Address_lo(addr), rscratch1);
iveresov@2344 820 }
roland@1495 821 #else
never@739 822 __ movoop(as_Address(addr), c->as_jobject());
roland@1495 823 #endif
never@739 824 }
duke@435 825 }
duke@435 826 break;
duke@435 827
duke@435 828 case T_LONG: // fall through
duke@435 829 case T_DOUBLE:
never@739 830 #ifdef _LP64
never@739 831 if (is_literal_address(addr)) {
never@739 832 ShouldNotReachHere();
never@739 833 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
never@739 834 } else {
never@739 835 __ movptr(r10, (intptr_t)c->as_jlong_bits());
never@739 836 null_check_here = code_offset();
never@739 837 __ movptr(as_Address_lo(addr), r10);
never@739 838 }
never@739 839 #else
never@739 840 // Always reachable in 32bit so this doesn't produce useless move literal
never@739 841 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
never@739 842 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
never@739 843 #endif // _LP64
duke@435 844 break;
duke@435 845
duke@435 846 case T_BOOLEAN: // fall through
duke@435 847 case T_BYTE:
duke@435 848 __ movb(as_Address(addr), c->as_jint() & 0xFF);
duke@435 849 break;
duke@435 850
duke@435 851 case T_CHAR: // fall through
duke@435 852 case T_SHORT:
duke@435 853 __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
duke@435 854 break;
duke@435 855
duke@435 856 default:
duke@435 857 ShouldNotReachHere();
duke@435 858 };
never@739 859
never@739 860 if (info != NULL) {
never@739 861 add_debug_info_for_null_check(null_check_here, info);
never@739 862 }
duke@435 863 }
duke@435 864
duke@435 865
duke@435 866 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
duke@435 867 assert(src->is_register(), "should not call otherwise");
duke@435 868 assert(dest->is_register(), "should not call otherwise");
duke@435 869
duke@435 870 // move between cpu-registers
duke@435 871 if (dest->is_single_cpu()) {
never@739 872 #ifdef _LP64
never@739 873 if (src->type() == T_LONG) {
never@739 874 // Can do LONG -> OBJECT
never@739 875 move_regs(src->as_register_lo(), dest->as_register());
never@739 876 return;
never@739 877 }
never@739 878 #endif
duke@435 879 assert(src->is_single_cpu(), "must match");
duke@435 880 if (src->type() == T_OBJECT) {
duke@435 881 __ verify_oop(src->as_register());
duke@435 882 }
duke@435 883 move_regs(src->as_register(), dest->as_register());
duke@435 884
duke@435 885 } else if (dest->is_double_cpu()) {
never@739 886 #ifdef _LP64
never@739 887 if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
never@739 888 // Surprising to me but we can see move of a long to t_object
never@739 889 __ verify_oop(src->as_register());
never@739 890 move_regs(src->as_register(), dest->as_register_lo());
never@739 891 return;
never@739 892 }
never@739 893 #endif
duke@435 894 assert(src->is_double_cpu(), "must match");
duke@435 895 Register f_lo = src->as_register_lo();
duke@435 896 Register f_hi = src->as_register_hi();
duke@435 897 Register t_lo = dest->as_register_lo();
duke@435 898 Register t_hi = dest->as_register_hi();
never@739 899 #ifdef _LP64
never@739 900 assert(f_hi == f_lo, "must be same");
never@739 901 assert(t_hi == t_lo, "must be same");
never@739 902 move_regs(f_lo, t_lo);
never@739 903 #else
duke@435 904 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
duke@435 905
never@739 906
duke@435 907 if (f_lo == t_hi && f_hi == t_lo) {
duke@435 908 swap_reg(f_lo, f_hi);
duke@435 909 } else if (f_hi == t_lo) {
duke@435 910 assert(f_lo != t_hi, "overwriting register");
duke@435 911 move_regs(f_hi, t_hi);
duke@435 912 move_regs(f_lo, t_lo);
duke@435 913 } else {
duke@435 914 assert(f_hi != t_lo, "overwriting register");
duke@435 915 move_regs(f_lo, t_lo);
duke@435 916 move_regs(f_hi, t_hi);
duke@435 917 }
never@739 918 #endif // LP64
duke@435 919
duke@435 920 // special moves from fpu-register to xmm-register
duke@435 921 // necessary for method results
duke@435 922 } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
duke@435 923 __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
duke@435 924 __ fld_s(Address(rsp, 0));
duke@435 925 } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
duke@435 926 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
duke@435 927 __ fld_d(Address(rsp, 0));
duke@435 928 } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
duke@435 929 __ fstp_s(Address(rsp, 0));
duke@435 930 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
duke@435 931 } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
duke@435 932 __ fstp_d(Address(rsp, 0));
duke@435 933 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
duke@435 934
duke@435 935 // move between xmm-registers
duke@435 936 } else if (dest->is_single_xmm()) {
duke@435 937 assert(src->is_single_xmm(), "must match");
duke@435 938 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
duke@435 939 } else if (dest->is_double_xmm()) {
duke@435 940 assert(src->is_double_xmm(), "must match");
duke@435 941 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
duke@435 942
duke@435 943 // move between fpu-registers (no instruction necessary because of fpu-stack)
duke@435 944 } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
duke@435 945 assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
duke@435 946 assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
duke@435 947 } else {
duke@435 948 ShouldNotReachHere();
duke@435 949 }
duke@435 950 }
duke@435 951
duke@435 952 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 953 assert(src->is_register(), "should not call otherwise");
duke@435 954 assert(dest->is_stack(), "should not call otherwise");
duke@435 955
duke@435 956 if (src->is_single_cpu()) {
duke@435 957 Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 958 if (type == T_OBJECT || type == T_ARRAY) {
duke@435 959 __ verify_oop(src->as_register());
never@739 960 __ movptr (dst, src->as_register());
roland@4051 961 } else if (type == T_METADATA) {
roland@4051 962 __ movptr (dst, src->as_register());
never@739 963 } else {
never@739 964 __ movl (dst, src->as_register());
duke@435 965 }
duke@435 966
duke@435 967 } else if (src->is_double_cpu()) {
duke@435 968 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 969 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
never@739 970 __ movptr (dstLO, src->as_register_lo());
never@739 971 NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
duke@435 972
duke@435 973 } else if (src->is_single_xmm()) {
duke@435 974 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 975 __ movflt(dst_addr, src->as_xmm_float_reg());
duke@435 976
duke@435 977 } else if (src->is_double_xmm()) {
duke@435 978 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 979 __ movdbl(dst_addr, src->as_xmm_double_reg());
duke@435 980
duke@435 981 } else if (src->is_single_fpu()) {
duke@435 982 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 983 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 984 if (pop_fpu_stack) __ fstp_s (dst_addr);
duke@435 985 else __ fst_s (dst_addr);
duke@435 986
duke@435 987 } else if (src->is_double_fpu()) {
duke@435 988 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 989 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 990 if (pop_fpu_stack) __ fstp_d (dst_addr);
duke@435 991 else __ fst_d (dst_addr);
duke@435 992
duke@435 993 } else {
duke@435 994 ShouldNotReachHere();
duke@435 995 }
duke@435 996 }
duke@435 997
duke@435 998
iveresov@2344 999 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
duke@435 1000 LIR_Address* to_addr = dest->as_address_ptr();
duke@435 1001 PatchingStub* patch = NULL;
iveresov@2344 1002 Register compressed_src = rscratch1;
duke@435 1003
duke@435 1004 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 1005 __ verify_oop(src->as_register());
iveresov@2344 1006 #ifdef _LP64
iveresov@2344 1007 if (UseCompressedOops && !wide) {
iveresov@2344 1008 __ movptr(compressed_src, src->as_register());
iveresov@2344 1009 __ encode_heap_oop(compressed_src);
roland@6278 1010 if (patch_code != lir_patch_none) {
roland@6278 1011 info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
roland@6278 1012 }
iveresov@2344 1013 }
iveresov@2344 1014 #endif
duke@435 1015 }
iveresov@2344 1016
duke@435 1017 if (patch_code != lir_patch_none) {
duke@435 1018 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1019 Address toa = as_Address(to_addr);
never@739 1020 assert(toa.disp() != 0, "must have");
duke@435 1021 }
iveresov@2344 1022
iveresov@2344 1023 int null_check_here = code_offset();
duke@435 1024 switch (type) {
duke@435 1025 case T_FLOAT: {
duke@435 1026 if (src->is_single_xmm()) {
duke@435 1027 __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
duke@435 1028 } else {
duke@435 1029 assert(src->is_single_fpu(), "must be");
duke@435 1030 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 1031 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr));
duke@435 1032 else __ fst_s (as_Address(to_addr));
duke@435 1033 }
duke@435 1034 break;
duke@435 1035 }
duke@435 1036
duke@435 1037 case T_DOUBLE: {
duke@435 1038 if (src->is_double_xmm()) {
duke@435 1039 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
duke@435 1040 } else {
duke@435 1041 assert(src->is_double_fpu(), "must be");
duke@435 1042 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 1043 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr));
duke@435 1044 else __ fst_d (as_Address(to_addr));
duke@435 1045 }
duke@435 1046 break;
duke@435 1047 }
duke@435 1048
duke@435 1049 case T_ARRAY: // fall through
duke@435 1050 case T_OBJECT: // fall through
iveresov@2344 1051 if (UseCompressedOops && !wide) {
iveresov@2344 1052 __ movl(as_Address(to_addr), compressed_src);
iveresov@2344 1053 } else {
iveresov@2344 1054 __ movptr(as_Address(to_addr), src->as_register());
iveresov@2344 1055 }
iveresov@2344 1056 break;
roland@4051 1057 case T_METADATA:
roland@4051 1058 // We get here to store a method pointer to the stack to pass to
roland@4051 1059 // a dtrace runtime call. This can't work on 64 bit with
roland@4051 1060 // compressed klass ptrs: T_METADATA can be a compressed klass
roland@4051 1061 // ptr or a 64 bit method pointer.
roland@4051 1062 LP64_ONLY(ShouldNotReachHere());
roland@4051 1063 __ movptr(as_Address(to_addr), src->as_register());
roland@4051 1064 break;
iveresov@2344 1065 case T_ADDRESS:
never@739 1066 __ movptr(as_Address(to_addr), src->as_register());
never@739 1067 break;
duke@435 1068 case T_INT:
duke@435 1069 __ movl(as_Address(to_addr), src->as_register());
duke@435 1070 break;
duke@435 1071
duke@435 1072 case T_LONG: {
duke@435 1073 Register from_lo = src->as_register_lo();
duke@435 1074 Register from_hi = src->as_register_hi();
never@739 1075 #ifdef _LP64
never@739 1076 __ movptr(as_Address_lo(to_addr), from_lo);
never@739 1077 #else
duke@435 1078 Register base = to_addr->base()->as_register();
duke@435 1079 Register index = noreg;
duke@435 1080 if (to_addr->index()->is_register()) {
duke@435 1081 index = to_addr->index()->as_register();
duke@435 1082 }
duke@435 1083 if (base == from_lo || index == from_lo) {
duke@435 1084 assert(base != from_hi, "can't be");
duke@435 1085 assert(index == noreg || (index != base && index != from_hi), "can't handle this");
duke@435 1086 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1087 if (patch != NULL) {
duke@435 1088 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1089 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1090 patch_code = lir_patch_low;
duke@435 1091 }
duke@435 1092 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1093 } else {
duke@435 1094 assert(index == noreg || (index != base && index != from_lo), "can't handle this");
duke@435 1095 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1096 if (patch != NULL) {
duke@435 1097 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1098 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1099 patch_code = lir_patch_high;
duke@435 1100 }
duke@435 1101 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1102 }
never@739 1103 #endif // _LP64
duke@435 1104 break;
duke@435 1105 }
duke@435 1106
duke@435 1107 case T_BYTE: // fall through
duke@435 1108 case T_BOOLEAN: {
duke@435 1109 Register src_reg = src->as_register();
duke@435 1110 Address dst_addr = as_Address(to_addr);
duke@435 1111 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1112 __ movb(dst_addr, src_reg);
duke@435 1113 break;
duke@435 1114 }
duke@435 1115
duke@435 1116 case T_CHAR: // fall through
duke@435 1117 case T_SHORT:
duke@435 1118 __ movw(as_Address(to_addr), src->as_register());
duke@435 1119 break;
duke@435 1120
duke@435 1121 default:
duke@435 1122 ShouldNotReachHere();
duke@435 1123 }
iveresov@2344 1124 if (info != NULL) {
iveresov@2344 1125 add_debug_info_for_null_check(null_check_here, info);
iveresov@2344 1126 }
duke@435 1127
duke@435 1128 if (patch_code != lir_patch_none) {
duke@435 1129 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
duke@435 1130 }
duke@435 1131 }
duke@435 1132
duke@435 1133
duke@435 1134 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1135 assert(src->is_stack(), "should not call otherwise");
duke@435 1136 assert(dest->is_register(), "should not call otherwise");
duke@435 1137
duke@435 1138 if (dest->is_single_cpu()) {
duke@435 1139 if (type == T_ARRAY || type == T_OBJECT) {
never@739 1140 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1141 __ verify_oop(dest->as_register());
roland@4051 1142 } else if (type == T_METADATA) {
roland@4051 1143 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
never@739 1144 } else {
never@739 1145 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1146 }
duke@435 1147
duke@435 1148 } else if (dest->is_double_cpu()) {
duke@435 1149 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 1150 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
never@739 1151 __ movptr(dest->as_register_lo(), src_addr_LO);
never@739 1152 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
duke@435 1153
duke@435 1154 } else if (dest->is_single_xmm()) {
duke@435 1155 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1156 __ movflt(dest->as_xmm_float_reg(), src_addr);
duke@435 1157
duke@435 1158 } else if (dest->is_double_xmm()) {
duke@435 1159 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1160 __ movdbl(dest->as_xmm_double_reg(), src_addr);
duke@435 1161
duke@435 1162 } else if (dest->is_single_fpu()) {
duke@435 1163 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1164 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1165 __ fld_s(src_addr);
duke@435 1166
duke@435 1167 } else if (dest->is_double_fpu()) {
duke@435 1168 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1169 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1170 __ fld_d(src_addr);
duke@435 1171
duke@435 1172 } else {
duke@435 1173 ShouldNotReachHere();
duke@435 1174 }
duke@435 1175 }
duke@435 1176
duke@435 1177
duke@435 1178 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1179 if (src->is_single_stack()) {
never@739 1180 if (type == T_OBJECT || type == T_ARRAY) {
never@739 1181 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1182 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
never@739 1183 } else {
roland@1495 1184 #ifndef _LP64
never@739 1185 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1186 __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
roland@1495 1187 #else
roland@1495 1188 //no pushl on 64bits
roland@1495 1189 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
roland@1495 1190 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
roland@1495 1191 #endif
never@739 1192 }
duke@435 1193
duke@435 1194 } else if (src->is_double_stack()) {
never@739 1195 #ifdef _LP64
never@739 1196 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
never@739 1197 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
never@739 1198 #else
duke@435 1199 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
never@739 1200 // push and pop the part at src + wordSize, adding wordSize for the previous push
never@756 1201 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
never@756 1202 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
duke@435 1203 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
never@739 1204 #endif // _LP64
duke@435 1205
duke@435 1206 } else {
duke@435 1207 ShouldNotReachHere();
duke@435 1208 }
duke@435 1209 }
duke@435 1210
duke@435 1211
iveresov@2344 1212 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
duke@435 1213 assert(src->is_address(), "should not call otherwise");
duke@435 1214 assert(dest->is_register(), "should not call otherwise");
duke@435 1215
duke@435 1216 LIR_Address* addr = src->as_address_ptr();
duke@435 1217 Address from_addr = as_Address(addr);
duke@435 1218
morris@5980 1219 if (addr->base()->type() == T_OBJECT) {
morris@5980 1220 __ verify_oop(addr->base()->as_pointer_register());
morris@5980 1221 }
morris@5980 1222
duke@435 1223 switch (type) {
duke@435 1224 case T_BOOLEAN: // fall through
duke@435 1225 case T_BYTE: // fall through
duke@435 1226 case T_CHAR: // fall through
duke@435 1227 case T_SHORT:
duke@435 1228 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
duke@435 1229 // on pre P6 processors we may get partial register stalls
duke@435 1230 // so blow away the value of to_rinfo before loading a
duke@435 1231 // partial word into it. Do it here so that it precedes
duke@435 1232 // the potential patch point below.
never@739 1233 __ xorptr(dest->as_register(), dest->as_register());
duke@435 1234 }
duke@435 1235 break;
duke@435 1236 }
duke@435 1237
duke@435 1238 PatchingStub* patch = NULL;
duke@435 1239 if (patch_code != lir_patch_none) {
duke@435 1240 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1241 assert(from_addr.disp() != 0, "must have");
duke@435 1242 }
duke@435 1243 if (info != NULL) {
duke@435 1244 add_debug_info_for_null_check_here(info);
duke@435 1245 }
duke@435 1246
duke@435 1247 switch (type) {
duke@435 1248 case T_FLOAT: {
duke@435 1249 if (dest->is_single_xmm()) {
duke@435 1250 __ movflt(dest->as_xmm_float_reg(), from_addr);
duke@435 1251 } else {
duke@435 1252 assert(dest->is_single_fpu(), "must be");
duke@435 1253 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1254 __ fld_s(from_addr);
duke@435 1255 }
duke@435 1256 break;
duke@435 1257 }
duke@435 1258
duke@435 1259 case T_DOUBLE: {
duke@435 1260 if (dest->is_double_xmm()) {
duke@435 1261 __ movdbl(dest->as_xmm_double_reg(), from_addr);
duke@435 1262 } else {
duke@435 1263 assert(dest->is_double_fpu(), "must be");
duke@435 1264 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1265 __ fld_d(from_addr);
duke@435 1266 }
duke@435 1267 break;
duke@435 1268 }
duke@435 1269
duke@435 1270 case T_OBJECT: // fall through
duke@435 1271 case T_ARRAY: // fall through
iveresov@2344 1272 if (UseCompressedOops && !wide) {
iveresov@2344 1273 __ movl(dest->as_register(), from_addr);
iveresov@2344 1274 } else {
iveresov@2344 1275 __ movptr(dest->as_register(), from_addr);
iveresov@2344 1276 }
iveresov@2344 1277 break;
iveresov@2344 1278
iveresov@2344 1279 case T_ADDRESS:
ehelin@5694 1280 if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
roland@4159 1281 __ movl(dest->as_register(), from_addr);
roland@4159 1282 } else {
roland@4159 1283 __ movptr(dest->as_register(), from_addr);
roland@4159 1284 }
never@739 1285 break;
duke@435 1286 case T_INT:
iveresov@1833 1287 __ movl(dest->as_register(), from_addr);
duke@435 1288 break;
duke@435 1289
duke@435 1290 case T_LONG: {
duke@435 1291 Register to_lo = dest->as_register_lo();
duke@435 1292 Register to_hi = dest->as_register_hi();
never@739 1293 #ifdef _LP64
never@739 1294 __ movptr(to_lo, as_Address_lo(addr));
never@739 1295 #else
duke@435 1296 Register base = addr->base()->as_register();
duke@435 1297 Register index = noreg;
duke@435 1298 if (addr->index()->is_register()) {
duke@435 1299 index = addr->index()->as_register();
duke@435 1300 }
duke@435 1301 if ((base == to_lo && index == to_hi) ||
duke@435 1302 (base == to_hi && index == to_lo)) {
duke@435 1303 // addresses with 2 registers are only formed as a result of
duke@435 1304 // array access so this code will never have to deal with
duke@435 1305 // patches or null checks.
duke@435 1306 assert(info == NULL && patch == NULL, "must be");
never@739 1307 __ lea(to_hi, as_Address(addr));
duke@435 1308 __ movl(to_lo, Address(to_hi, 0));
duke@435 1309 __ movl(to_hi, Address(to_hi, BytesPerWord));
duke@435 1310 } else if (base == to_lo || index == to_lo) {
duke@435 1311 assert(base != to_hi, "can't be");
duke@435 1312 assert(index == noreg || (index != base && index != to_hi), "can't handle this");
duke@435 1313 __ movl(to_hi, as_Address_hi(addr));
duke@435 1314 if (patch != NULL) {
duke@435 1315 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1316 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1317 patch_code = lir_patch_low;
duke@435 1318 }
duke@435 1319 __ movl(to_lo, as_Address_lo(addr));
duke@435 1320 } else {
duke@435 1321 assert(index == noreg || (index != base && index != to_lo), "can't handle this");
duke@435 1322 __ movl(to_lo, as_Address_lo(addr));
duke@435 1323 if (patch != NULL) {
duke@435 1324 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1325 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1326 patch_code = lir_patch_high;
duke@435 1327 }
duke@435 1328 __ movl(to_hi, as_Address_hi(addr));
duke@435 1329 }
never@739 1330 #endif // _LP64
duke@435 1331 break;
duke@435 1332 }
duke@435 1333
duke@435 1334 case T_BOOLEAN: // fall through
duke@435 1335 case T_BYTE: {
duke@435 1336 Register dest_reg = dest->as_register();
duke@435 1337 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1338 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1339 __ movsbl(dest_reg, from_addr);
duke@435 1340 } else {
duke@435 1341 __ movb(dest_reg, from_addr);
duke@435 1342 __ shll(dest_reg, 24);
duke@435 1343 __ sarl(dest_reg, 24);
duke@435 1344 }
duke@435 1345 break;
duke@435 1346 }
duke@435 1347
duke@435 1348 case T_CHAR: {
duke@435 1349 Register dest_reg = dest->as_register();
duke@435 1350 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1351 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1352 __ movzwl(dest_reg, from_addr);
duke@435 1353 } else {
duke@435 1354 __ movw(dest_reg, from_addr);
duke@435 1355 }
duke@435 1356 break;
duke@435 1357 }
duke@435 1358
duke@435 1359 case T_SHORT: {
duke@435 1360 Register dest_reg = dest->as_register();
duke@435 1361 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1362 __ movswl(dest_reg, from_addr);
duke@435 1363 } else {
duke@435 1364 __ movw(dest_reg, from_addr);
duke@435 1365 __ shll(dest_reg, 16);
duke@435 1366 __ sarl(dest_reg, 16);
duke@435 1367 }
duke@435 1368 break;
duke@435 1369 }
duke@435 1370
duke@435 1371 default:
duke@435 1372 ShouldNotReachHere();
duke@435 1373 }
duke@435 1374
duke@435 1375 if (patch != NULL) {
duke@435 1376 patching_epilog(patch, patch_code, addr->base()->as_register(), info);
duke@435 1377 }
duke@435 1378
duke@435 1379 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 1380 #ifdef _LP64
iveresov@2344 1381 if (UseCompressedOops && !wide) {
iveresov@2344 1382 __ decode_heap_oop(dest->as_register());
iveresov@2344 1383 }
iveresov@2344 1384 #endif
duke@435 1385 __ verify_oop(dest->as_register());
roland@4159 1386 } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
roland@4159 1387 #ifdef _LP64
ehelin@5694 1388 if (UseCompressedClassPointers) {
roland@4159 1389 __ decode_klass_not_null(dest->as_register());
roland@4159 1390 }
roland@4159 1391 #endif
duke@435 1392 }
duke@435 1393 }
duke@435 1394
duke@435 1395
duke@435 1396 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1397 LIR_Address* addr = src->as_address_ptr();
duke@435 1398 Address from_addr = as_Address(addr);
duke@435 1399
duke@435 1400 if (VM_Version::supports_sse()) {
duke@435 1401 switch (ReadPrefetchInstr) {
duke@435 1402 case 0:
duke@435 1403 __ prefetchnta(from_addr); break;
duke@435 1404 case 1:
duke@435 1405 __ prefetcht0(from_addr); break;
duke@435 1406 case 2:
duke@435 1407 __ prefetcht2(from_addr); break;
duke@435 1408 default:
duke@435 1409 ShouldNotReachHere(); break;
duke@435 1410 }
kvn@2761 1411 } else if (VM_Version::supports_3dnow_prefetch()) {
duke@435 1412 __ prefetchr(from_addr);
duke@435 1413 }
duke@435 1414 }
duke@435 1415
duke@435 1416
duke@435 1417 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1418 LIR_Address* addr = src->as_address_ptr();
duke@435 1419 Address from_addr = as_Address(addr);
duke@435 1420
duke@435 1421 if (VM_Version::supports_sse()) {
duke@435 1422 switch (AllocatePrefetchInstr) {
duke@435 1423 case 0:
duke@435 1424 __ prefetchnta(from_addr); break;
duke@435 1425 case 1:
duke@435 1426 __ prefetcht0(from_addr); break;
duke@435 1427 case 2:
duke@435 1428 __ prefetcht2(from_addr); break;
duke@435 1429 case 3:
duke@435 1430 __ prefetchw(from_addr); break;
duke@435 1431 default:
duke@435 1432 ShouldNotReachHere(); break;
duke@435 1433 }
kvn@2761 1434 } else if (VM_Version::supports_3dnow_prefetch()) {
duke@435 1435 __ prefetchw(from_addr);
duke@435 1436 }
duke@435 1437 }
duke@435 1438
duke@435 1439
duke@435 1440 NEEDS_CLEANUP; // This could be static?
duke@435 1441 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
kvn@464 1442 int elem_size = type2aelembytes(type);
duke@435 1443 switch (elem_size) {
duke@435 1444 case 1: return Address::times_1;
duke@435 1445 case 2: return Address::times_2;
duke@435 1446 case 4: return Address::times_4;
duke@435 1447 case 8: return Address::times_8;
duke@435 1448 }
duke@435 1449 ShouldNotReachHere();
duke@435 1450 return Address::no_scale;
duke@435 1451 }
duke@435 1452
duke@435 1453
duke@435 1454 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 1455 switch (op->code()) {
duke@435 1456 case lir_idiv:
duke@435 1457 case lir_irem:
duke@435 1458 arithmetic_idiv(op->code(),
duke@435 1459 op->in_opr1(),
duke@435 1460 op->in_opr2(),
duke@435 1461 op->in_opr3(),
duke@435 1462 op->result_opr(),
duke@435 1463 op->info());
duke@435 1464 break;
duke@435 1465 default: ShouldNotReachHere(); break;
duke@435 1466 }
duke@435 1467 }
duke@435 1468
duke@435 1469 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 1470 #ifdef ASSERT
duke@435 1471 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 1472 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 1473 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 1474 #endif
duke@435 1475
duke@435 1476 if (op->cond() == lir_cond_always) {
duke@435 1477 if (op->info() != NULL) add_debug_info_for_branch(op->info());
duke@435 1478 __ jmp (*(op->label()));
duke@435 1479 } else {
duke@435 1480 Assembler::Condition acond = Assembler::zero;
duke@435 1481 if (op->code() == lir_cond_float_branch) {
duke@435 1482 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 1483 __ jcc(Assembler::parity, *(op->ublock()->label()));
duke@435 1484 switch(op->cond()) {
duke@435 1485 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1486 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1487 case lir_cond_less: acond = Assembler::below; break;
duke@435 1488 case lir_cond_lessEqual: acond = Assembler::belowEqual; break;
duke@435 1489 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
duke@435 1490 case lir_cond_greater: acond = Assembler::above; break;
duke@435 1491 default: ShouldNotReachHere();
duke@435 1492 }
duke@435 1493 } else {
duke@435 1494 switch (op->cond()) {
duke@435 1495 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1496 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1497 case lir_cond_less: acond = Assembler::less; break;
duke@435 1498 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1499 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
duke@435 1500 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1501 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
duke@435 1502 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
duke@435 1503 default: ShouldNotReachHere();
duke@435 1504 }
duke@435 1505 }
duke@435 1506 __ jcc(acond,*(op->label()));
duke@435 1507 }
duke@435 1508 }
duke@435 1509
duke@435 1510 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 1511 LIR_Opr src = op->in_opr();
duke@435 1512 LIR_Opr dest = op->result_opr();
duke@435 1513
duke@435 1514 switch (op->bytecode()) {
duke@435 1515 case Bytecodes::_i2l:
never@739 1516 #ifdef _LP64
never@739 1517 __ movl2ptr(dest->as_register_lo(), src->as_register());
never@739 1518 #else
duke@435 1519 move_regs(src->as_register(), dest->as_register_lo());
duke@435 1520 move_regs(src->as_register(), dest->as_register_hi());
duke@435 1521 __ sarl(dest->as_register_hi(), 31);
never@739 1522 #endif // LP64
duke@435 1523 break;
duke@435 1524
duke@435 1525 case Bytecodes::_l2i:
iveresov@3744 1526 #ifdef _LP64
iveresov@3744 1527 __ movl(dest->as_register(), src->as_register_lo());
iveresov@3744 1528 #else
duke@435 1529 move_regs(src->as_register_lo(), dest->as_register());
iveresov@3744 1530 #endif
duke@435 1531 break;
duke@435 1532
duke@435 1533 case Bytecodes::_i2b:
duke@435 1534 move_regs(src->as_register(), dest->as_register());
duke@435 1535 __ sign_extend_byte(dest->as_register());
duke@435 1536 break;
duke@435 1537
duke@435 1538 case Bytecodes::_i2c:
duke@435 1539 move_regs(src->as_register(), dest->as_register());
duke@435 1540 __ andl(dest->as_register(), 0xFFFF);
duke@435 1541 break;
duke@435 1542
duke@435 1543 case Bytecodes::_i2s:
duke@435 1544 move_regs(src->as_register(), dest->as_register());
duke@435 1545 __ sign_extend_short(dest->as_register());
duke@435 1546 break;
duke@435 1547
duke@435 1548
duke@435 1549 case Bytecodes::_f2d:
duke@435 1550 case Bytecodes::_d2f:
duke@435 1551 if (dest->is_single_xmm()) {
duke@435 1552 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
duke@435 1553 } else if (dest->is_double_xmm()) {
duke@435 1554 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
duke@435 1555 } else {
duke@435 1556 assert(src->fpu() == dest->fpu(), "register must be equal");
duke@435 1557 // do nothing (float result is rounded later through spilling)
duke@435 1558 }
duke@435 1559 break;
duke@435 1560
duke@435 1561 case Bytecodes::_i2f:
duke@435 1562 case Bytecodes::_i2d:
duke@435 1563 if (dest->is_single_xmm()) {
never@739 1564 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
duke@435 1565 } else if (dest->is_double_xmm()) {
never@739 1566 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
duke@435 1567 } else {
duke@435 1568 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1569 __ movl(Address(rsp, 0), src->as_register());
duke@435 1570 __ fild_s(Address(rsp, 0));
duke@435 1571 }
duke@435 1572 break;
duke@435 1573
duke@435 1574 case Bytecodes::_f2i:
duke@435 1575 case Bytecodes::_d2i:
duke@435 1576 if (src->is_single_xmm()) {
never@739 1577 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
duke@435 1578 } else if (src->is_double_xmm()) {
never@739 1579 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
duke@435 1580 } else {
duke@435 1581 assert(src->fpu() == 0, "input must be on TOS");
duke@435 1582 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
duke@435 1583 __ fist_s(Address(rsp, 0));
duke@435 1584 __ movl(dest->as_register(), Address(rsp, 0));
duke@435 1585 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1586 }
duke@435 1587
duke@435 1588 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
duke@435 1589 assert(op->stub() != NULL, "stub required");
duke@435 1590 __ cmpl(dest->as_register(), 0x80000000);
duke@435 1591 __ jcc(Assembler::equal, *op->stub()->entry());
duke@435 1592 __ bind(*op->stub()->continuation());
duke@435 1593 break;
duke@435 1594
duke@435 1595 case Bytecodes::_l2f:
duke@435 1596 case Bytecodes::_l2d:
duke@435 1597 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
duke@435 1598 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1599
never@739 1600 __ movptr(Address(rsp, 0), src->as_register_lo());
never@739 1601 NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
duke@435 1602 __ fild_d(Address(rsp, 0));
duke@435 1603 // float result is rounded later through spilling
duke@435 1604 break;
duke@435 1605
duke@435 1606 case Bytecodes::_f2l:
duke@435 1607 case Bytecodes::_d2l:
duke@435 1608 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
duke@435 1609 assert(src->fpu() == 0, "input must be on TOS");
never@739 1610 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
duke@435 1611
duke@435 1612 // instruction sequence too long to inline it here
duke@435 1613 {
duke@435 1614 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
duke@435 1615 }
duke@435 1616 break;
duke@435 1617
duke@435 1618 default: ShouldNotReachHere();
duke@435 1619 }
duke@435 1620 }
duke@435 1621
duke@435 1622 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 1623 if (op->init_check()) {
coleenp@3368 1624 __ cmpb(Address(op->klass()->as_register(),
coleenp@4037 1625 InstanceKlass::init_state_offset()),
coleenp@4037 1626 InstanceKlass::fully_initialized);
duke@435 1627 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 1628 __ jcc(Assembler::notEqual, *op->stub()->entry());
duke@435 1629 }
duke@435 1630 __ allocate_object(op->obj()->as_register(),
duke@435 1631 op->tmp1()->as_register(),
duke@435 1632 op->tmp2()->as_register(),
duke@435 1633 op->header_size(),
duke@435 1634 op->object_size(),
duke@435 1635 op->klass()->as_register(),
duke@435 1636 *op->stub()->entry());
duke@435 1637 __ bind(*op->stub()->continuation());
duke@435 1638 }
duke@435 1639
duke@435 1640 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
iveresov@2432 1641 Register len = op->len()->as_register();
iveresov@2432 1642 LP64_ONLY( __ movslq(len, len); )
iveresov@2432 1643
duke@435 1644 if (UseSlowPath ||
duke@435 1645 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 1646 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
duke@435 1647 __ jmp(*op->stub()->entry());
duke@435 1648 } else {
duke@435 1649 Register tmp1 = op->tmp1()->as_register();
duke@435 1650 Register tmp2 = op->tmp2()->as_register();
duke@435 1651 Register tmp3 = op->tmp3()->as_register();
duke@435 1652 if (len == tmp1) {
duke@435 1653 tmp1 = tmp3;
duke@435 1654 } else if (len == tmp2) {
duke@435 1655 tmp2 = tmp3;
duke@435 1656 } else if (len == tmp3) {
duke@435 1657 // everything is ok
duke@435 1658 } else {
never@739 1659 __ mov(tmp3, len);
duke@435 1660 }
duke@435 1661 __ allocate_array(op->obj()->as_register(),
duke@435 1662 len,
duke@435 1663 tmp1,
duke@435 1664 tmp2,
duke@435 1665 arrayOopDesc::header_size(op->type()),
duke@435 1666 array_element_size(op->type()),
duke@435 1667 op->klass()->as_register(),
duke@435 1668 *op->stub()->entry());
duke@435 1669 }
duke@435 1670 __ bind(*op->stub()->continuation());
duke@435 1671 }
duke@435 1672
iveresov@2138 1673 void LIR_Assembler::type_profile_helper(Register mdo,
iveresov@2138 1674 ciMethodData *md, ciProfileData *data,
iveresov@2138 1675 Register recv, Label* update_done) {
iveresov@2163 1676 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
iveresov@2138 1677 Label next_test;
iveresov@2138 1678 // See if the receiver is receiver[n].
iveresov@2138 1679 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
iveresov@2138 1680 __ jccb(Assembler::notEqual, next_test);
iveresov@2138 1681 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
iveresov@2138 1682 __ addptr(data_addr, DataLayout::counter_increment);
iveresov@2146 1683 __ jmp(*update_done);
iveresov@2138 1684 __ bind(next_test);
iveresov@2138 1685 }
iveresov@2138 1686
iveresov@2138 1687 // Didn't find receiver; find next empty slot and fill it in
iveresov@2163 1688 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
iveresov@2138 1689 Label next_test;
iveresov@2138 1690 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
iveresov@2138 1691 __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
iveresov@2138 1692 __ jccb(Assembler::notEqual, next_test);
iveresov@2138 1693 __ movptr(recv_addr, recv);
iveresov@2138 1694 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
iveresov@2146 1695 __ jmp(*update_done);
iveresov@2138 1696 __ bind(next_test);
iveresov@2138 1697 }
iveresov@2138 1698 }
iveresov@2138 1699
iveresov@2146 1700 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
iveresov@2138 1701 // we always need a stub for the failure case.
iveresov@2138 1702 CodeStub* stub = op->stub();
iveresov@2138 1703 Register obj = op->object()->as_register();
iveresov@2138 1704 Register k_RInfo = op->tmp1()->as_register();
iveresov@2138 1705 Register klass_RInfo = op->tmp2()->as_register();
iveresov@2138 1706 Register dst = op->result_opr()->as_register();
iveresov@2138 1707 ciKlass* k = op->klass();
iveresov@2138 1708 Register Rtmp1 = noreg;
iveresov@2138 1709
iveresov@2138 1710 // check if it needs to be profiled
iveresov@2138 1711 ciMethodData* md;
iveresov@2138 1712 ciProfileData* data;
iveresov@2138 1713
iveresov@2138 1714 if (op->should_profile()) {
iveresov@2138 1715 ciMethod* method = op->profiled_method();
iveresov@2138 1716 assert(method != NULL, "Should have method");
iveresov@2138 1717 int bci = op->profiled_bci();
iveresov@2349 1718 md = method->method_data_or_null();
iveresov@2349 1719 assert(md != NULL, "Sanity");
iveresov@2138 1720 data = md->bci_to_data(bci);
iveresov@2146 1721 assert(data != NULL, "need data for type check");
iveresov@2146 1722 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2138 1723 }
iveresov@2146 1724 Label profile_cast_success, profile_cast_failure;
iveresov@2146 1725 Label *success_target = op->should_profile() ? &profile_cast_success : success;
iveresov@2146 1726 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
iveresov@2138 1727
iveresov@2138 1728 if (obj == k_RInfo) {
iveresov@2138 1729 k_RInfo = dst;
iveresov@2138 1730 } else if (obj == klass_RInfo) {
iveresov@2138 1731 klass_RInfo = dst;
iveresov@2138 1732 }
ehelin@5694 1733 if (k->is_loaded() && !UseCompressedClassPointers) {
iveresov@2138 1734 select_different_registers(obj, dst, k_RInfo, klass_RInfo);
iveresov@2138 1735 } else {
iveresov@2138 1736 Rtmp1 = op->tmp3()->as_register();
iveresov@2138 1737 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
iveresov@2138 1738 }
iveresov@2138 1739
iveresov@2138 1740 assert_different_registers(obj, k_RInfo, klass_RInfo);
iveresov@2138 1741
iveresov@2138 1742 __ cmpptr(obj, (int32_t)NULL_WORD);
iveresov@2138 1743 if (op->should_profile()) {
iveresov@2146 1744 Label not_null;
iveresov@2146 1745 __ jccb(Assembler::notEqual, not_null);
iveresov@2146 1746 // Object is null; update MDO and exit
iveresov@2138 1747 Register mdo = klass_RInfo;
coleenp@4037 1748 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2138 1749 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
iveresov@2138 1750 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
iveresov@2138 1751 __ orl(data_addr, header_bits);
iveresov@2146 1752 __ jmp(*obj_is_null);
iveresov@2146 1753 __ bind(not_null);
iveresov@2138 1754 } else {
iveresov@2146 1755 __ jcc(Assembler::equal, *obj_is_null);
iveresov@2138 1756 }
iveresov@5736 1757
iveresov@5736 1758 if (!k->is_loaded()) {
iveresov@5736 1759 klass2reg_with_patching(k_RInfo, op->info_for_patch());
iveresov@5736 1760 } else {
iveresov@5736 1761 #ifdef _LP64
iveresov@5736 1762 __ mov_metadata(k_RInfo, k->constant_encoding());
iveresov@5736 1763 #endif // _LP64
iveresov@5736 1764 }
iveresov@2138 1765 __ verify_oop(obj);
iveresov@2138 1766
iveresov@2138 1767 if (op->fast_check()) {
iveresov@2146 1768 // get object class
iveresov@2138 1769 // not a safepoint as obj null check happens earlier
iveresov@2138 1770 #ifdef _LP64
ehelin@5694 1771 if (UseCompressedClassPointers) {
iveresov@2344 1772 __ load_klass(Rtmp1, obj);
iveresov@2344 1773 __ cmpptr(k_RInfo, Rtmp1);
iveresov@2138 1774 } else {
iveresov@2138 1775 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2138 1776 }
iveresov@2344 1777 #else
iveresov@2344 1778 if (k->is_loaded()) {
coleenp@4037 1779 __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
iveresov@2344 1780 } else {
iveresov@2344 1781 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2344 1782 }
iveresov@2344 1783 #endif
iveresov@2138 1784 __ jcc(Assembler::notEqual, *failure_target);
iveresov@2146 1785 // successful cast, fall through to profile or jump
iveresov@2138 1786 } else {
iveresov@2138 1787 // get object class
iveresov@2138 1788 // not a safepoint as obj null check happens earlier
iveresov@2344 1789 __ load_klass(klass_RInfo, obj);
iveresov@2138 1790 if (k->is_loaded()) {
iveresov@2138 1791 // See if we get an immediate positive hit
iveresov@2138 1792 #ifdef _LP64
iveresov@2138 1793 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
iveresov@2138 1794 #else
coleenp@4037 1795 __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
iveresov@2138 1796 #endif // _LP64
stefank@3391 1797 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
iveresov@2138 1798 __ jcc(Assembler::notEqual, *failure_target);
iveresov@2146 1799 // successful cast, fall through to profile or jump
iveresov@2138 1800 } else {
iveresov@2138 1801 // See if we get an immediate positive hit
iveresov@2146 1802 __ jcc(Assembler::equal, *success_target);
iveresov@2138 1803 // check for self
iveresov@2138 1804 #ifdef _LP64
iveresov@2138 1805 __ cmpptr(klass_RInfo, k_RInfo);
iveresov@2138 1806 #else
coleenp@4037 1807 __ cmpklass(klass_RInfo, k->constant_encoding());
iveresov@2138 1808 #endif // _LP64
iveresov@2146 1809 __ jcc(Assembler::equal, *success_target);
iveresov@2138 1810
iveresov@2138 1811 __ push(klass_RInfo);
iveresov@2138 1812 #ifdef _LP64
iveresov@2138 1813 __ push(k_RInfo);
iveresov@2138 1814 #else
coleenp@4037 1815 __ pushklass(k->constant_encoding());
iveresov@2138 1816 #endif // _LP64
iveresov@2138 1817 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
iveresov@2138 1818 __ pop(klass_RInfo);
iveresov@2138 1819 __ pop(klass_RInfo);
iveresov@2138 1820 // result is a boolean
iveresov@2138 1821 __ cmpl(klass_RInfo, 0);
iveresov@2138 1822 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1823 // successful cast, fall through to profile or jump
iveresov@2138 1824 }
iveresov@2138 1825 } else {
iveresov@2138 1826 // perform the fast part of the checking logic
iveresov@2146 1827 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
iveresov@2138 1828 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
iveresov@2138 1829 __ push(klass_RInfo);
iveresov@2138 1830 __ push(k_RInfo);
iveresov@2138 1831 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
iveresov@2138 1832 __ pop(klass_RInfo);
iveresov@2138 1833 __ pop(k_RInfo);
iveresov@2138 1834 // result is a boolean
iveresov@2138 1835 __ cmpl(k_RInfo, 0);
iveresov@2138 1836 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1837 // successful cast, fall through to profile or jump
iveresov@2138 1838 }
iveresov@2138 1839 }
iveresov@2138 1840 if (op->should_profile()) {
iveresov@2138 1841 Register mdo = klass_RInfo, recv = k_RInfo;
iveresov@2146 1842 __ bind(profile_cast_success);
coleenp@4037 1843 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2344 1844 __ load_klass(recv, obj);
iveresov@2138 1845 Label update_done;
iveresov@2146 1846 type_profile_helper(mdo, md, data, recv, success);
iveresov@2146 1847 __ jmp(*success);
iveresov@2138 1848
iveresov@2138 1849 __ bind(profile_cast_failure);
coleenp@4037 1850 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2138 1851 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
iveresov@2138 1852 __ subptr(counter_addr, DataLayout::counter_increment);
iveresov@2146 1853 __ jmp(*failure);
iveresov@2138 1854 }
iveresov@2146 1855 __ jmp(*success);
iveresov@2138 1856 }
duke@435 1857
iveresov@2146 1858
duke@435 1859 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 1860 LIR_Code code = op->code();
duke@435 1861 if (code == lir_store_check) {
duke@435 1862 Register value = op->object()->as_register();
duke@435 1863 Register array = op->array()->as_register();
duke@435 1864 Register k_RInfo = op->tmp1()->as_register();
duke@435 1865 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1866 Register Rtmp1 = op->tmp3()->as_register();
duke@435 1867
duke@435 1868 CodeStub* stub = op->stub();
iveresov@2146 1869
iveresov@2146 1870 // check if it needs to be profiled
iveresov@2146 1871 ciMethodData* md;
iveresov@2146 1872 ciProfileData* data;
iveresov@2146 1873
iveresov@2146 1874 if (op->should_profile()) {
iveresov@2146 1875 ciMethod* method = op->profiled_method();
iveresov@2146 1876 assert(method != NULL, "Should have method");
iveresov@2146 1877 int bci = op->profiled_bci();
iveresov@2349 1878 md = method->method_data_or_null();
iveresov@2349 1879 assert(md != NULL, "Sanity");
iveresov@2146 1880 data = md->bci_to_data(bci);
iveresov@2146 1881 assert(data != NULL, "need data for type check");
iveresov@2146 1882 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2146 1883 }
iveresov@2146 1884 Label profile_cast_success, profile_cast_failure, done;
iveresov@2146 1885 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
iveresov@2146 1886 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
iveresov@2146 1887
never@739 1888 __ cmpptr(value, (int32_t)NULL_WORD);
iveresov@2146 1889 if (op->should_profile()) {
iveresov@2146 1890 Label not_null;
iveresov@2146 1891 __ jccb(Assembler::notEqual, not_null);
iveresov@2146 1892 // Object is null; update MDO and exit
iveresov@2146 1893 Register mdo = klass_RInfo;
coleenp@4037 1894 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2146 1895 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
iveresov@2146 1896 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
iveresov@2146 1897 __ orl(data_addr, header_bits);
iveresov@2146 1898 __ jmp(done);
iveresov@2146 1899 __ bind(not_null);
iveresov@2146 1900 } else {
iveresov@2146 1901 __ jcc(Assembler::equal, done);
iveresov@2146 1902 }
iveresov@2146 1903
duke@435 1904 add_debug_info_for_null_check_here(op->info_for_exception());
iveresov@2344 1905 __ load_klass(k_RInfo, array);
iveresov@2344 1906 __ load_klass(klass_RInfo, value);
iveresov@2344 1907
iveresov@2344 1908 // get instance klass (it's already uncompressed)
coleenp@4142 1909 __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
jrose@1079 1910 // perform the fast part of the checking logic
iveresov@2146 1911 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
jrose@1079 1912 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1913 __ push(klass_RInfo);
never@739 1914 __ push(k_RInfo);
duke@435 1915 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1916 __ pop(klass_RInfo);
never@739 1917 __ pop(k_RInfo);
never@739 1918 // result is a boolean
duke@435 1919 __ cmpl(k_RInfo, 0);
iveresov@2146 1920 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1921 // fall through to the success case
iveresov@2146 1922
iveresov@2146 1923 if (op->should_profile()) {
iveresov@2146 1924 Register mdo = klass_RInfo, recv = k_RInfo;
iveresov@2146 1925 __ bind(profile_cast_success);
coleenp@4037 1926 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2344 1927 __ load_klass(recv, value);
iveresov@2146 1928 Label update_done;
iveresov@2146 1929 type_profile_helper(mdo, md, data, recv, &done);
iveresov@2146 1930 __ jmpb(done);
iveresov@2146 1931
iveresov@2146 1932 __ bind(profile_cast_failure);
coleenp@4037 1933 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2146 1934 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
iveresov@2146 1935 __ subptr(counter_addr, DataLayout::counter_increment);
iveresov@2146 1936 __ jmp(*stub->entry());
iveresov@2146 1937 }
iveresov@2146 1938
duke@435 1939 __ bind(done);
iveresov@2146 1940 } else
iveresov@2146 1941 if (code == lir_checkcast) {
iveresov@2146 1942 Register obj = op->object()->as_register();
iveresov@2146 1943 Register dst = op->result_opr()->as_register();
iveresov@2146 1944 Label success;
iveresov@2146 1945 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
iveresov@2146 1946 __ bind(success);
iveresov@2146 1947 if (dst != obj) {
iveresov@2146 1948 __ mov(dst, obj);
iveresov@2146 1949 }
iveresov@2146 1950 } else
iveresov@2146 1951 if (code == lir_instanceof) {
iveresov@2146 1952 Register obj = op->object()->as_register();
iveresov@2146 1953 Register dst = op->result_opr()->as_register();
iveresov@2146 1954 Label success, failure, done;
iveresov@2146 1955 emit_typecheck_helper(op, &success, &failure, &failure);
iveresov@2146 1956 __ bind(failure);
iveresov@2146 1957 __ xorptr(dst, dst);
iveresov@2146 1958 __ jmpb(done);
iveresov@2146 1959 __ bind(success);
iveresov@2146 1960 __ movptr(dst, 1);
iveresov@2146 1961 __ bind(done);
duke@435 1962 } else {
iveresov@2146 1963 ShouldNotReachHere();
duke@435 1964 }
duke@435 1965
duke@435 1966 }
duke@435 1967
duke@435 1968
duke@435 1969 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
never@739 1970 if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
duke@435 1971 assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
duke@435 1972 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
duke@435 1973 assert(op->new_value()->as_register_lo() == rbx, "wrong register");
duke@435 1974 assert(op->new_value()->as_register_hi() == rcx, "wrong register");
duke@435 1975 Register addr = op->addr()->as_register();
duke@435 1976 if (os::is_MP()) {
duke@435 1977 __ lock();
duke@435 1978 }
never@739 1979 NOT_LP64(__ cmpxchg8(Address(addr, 0)));
never@739 1980
never@739 1981 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
never@739 1982 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
never@739 1983 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
duke@435 1984 Register newval = op->new_value()->as_register();
duke@435 1985 Register cmpval = op->cmp_value()->as_register();
duke@435 1986 assert(cmpval == rax, "wrong register");
duke@435 1987 assert(newval != NULL, "new val must be register");
duke@435 1988 assert(cmpval != newval, "cmp and new values must be in different registers");
duke@435 1989 assert(cmpval != addr, "cmp and addr must be in different registers");
duke@435 1990 assert(newval != addr, "new value and addr must be in different registers");
iveresov@2344 1991
never@739 1992 if ( op->code() == lir_cas_obj) {
iveresov@2344 1993 #ifdef _LP64
iveresov@2344 1994 if (UseCompressedOops) {
iveresov@2344 1995 __ encode_heap_oop(cmpval);
iveresov@2355 1996 __ mov(rscratch1, newval);
iveresov@2355 1997 __ encode_heap_oop(rscratch1);
iveresov@2344 1998 if (os::is_MP()) {
iveresov@2344 1999 __ lock();
iveresov@2344 2000 }
iveresov@2355 2001 // cmpval (rax) is implicitly used by this instruction
iveresov@2355 2002 __ cmpxchgl(rscratch1, Address(addr, 0));
iveresov@2344 2003 } else
iveresov@2344 2004 #endif
iveresov@2344 2005 {
iveresov@2344 2006 if (os::is_MP()) {
iveresov@2344 2007 __ lock();
iveresov@2344 2008 }
iveresov@2344 2009 __ cmpxchgptr(newval, Address(addr, 0));
iveresov@2344 2010 }
iveresov@2344 2011 } else {
iveresov@2344 2012 assert(op->code() == lir_cas_int, "lir_cas_int expected");
iveresov@2344 2013 if (os::is_MP()) {
iveresov@2344 2014 __ lock();
iveresov@2344 2015 }
never@739 2016 __ cmpxchgl(newval, Address(addr, 0));
never@739 2017 }
never@739 2018 #ifdef _LP64
never@739 2019 } else if (op->code() == lir_cas_long) {
never@739 2020 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
never@739 2021 Register newval = op->new_value()->as_register_lo();
never@739 2022 Register cmpval = op->cmp_value()->as_register_lo();
never@739 2023 assert(cmpval == rax, "wrong register");
never@739 2024 assert(newval != NULL, "new val must be register");
never@739 2025 assert(cmpval != newval, "cmp and new values must be in different registers");
never@739 2026 assert(cmpval != addr, "cmp and addr must be in different registers");
never@739 2027 assert(newval != addr, "new value and addr must be in different registers");
never@739 2028 if (os::is_MP()) {
never@739 2029 __ lock();
never@739 2030 }
never@739 2031 __ cmpxchgq(newval, Address(addr, 0));
never@739 2032 #endif // _LP64
duke@435 2033 } else {
duke@435 2034 Unimplemented();
duke@435 2035 }
duke@435 2036 }
duke@435 2037
iveresov@2412 2038 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
duke@435 2039 Assembler::Condition acond, ncond;
duke@435 2040 switch (condition) {
duke@435 2041 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break;
duke@435 2042 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break;
duke@435 2043 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break;
duke@435 2044 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break;
duke@435 2045 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break;
duke@435 2046 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break;
duke@435 2047 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break;
duke@435 2048 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break;
duke@435 2049 default: ShouldNotReachHere();
duke@435 2050 }
duke@435 2051
duke@435 2052 if (opr1->is_cpu_register()) {
duke@435 2053 reg2reg(opr1, result);
duke@435 2054 } else if (opr1->is_stack()) {
duke@435 2055 stack2reg(opr1, result, result->type());
duke@435 2056 } else if (opr1->is_constant()) {
duke@435 2057 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 2058 } else {
duke@435 2059 ShouldNotReachHere();
duke@435 2060 }
duke@435 2061
duke@435 2062 if (VM_Version::supports_cmov() && !opr2->is_constant()) {
duke@435 2063 // optimized version that does not require a branch
duke@435 2064 if (opr2->is_single_cpu()) {
duke@435 2065 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
never@739 2066 __ cmov(ncond, result->as_register(), opr2->as_register());
duke@435 2067 } else if (opr2->is_double_cpu()) {
duke@435 2068 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
duke@435 2069 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
never@739 2070 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
never@739 2071 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
duke@435 2072 } else if (opr2->is_single_stack()) {
duke@435 2073 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2074 } else if (opr2->is_double_stack()) {
never@739 2075 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
never@739 2076 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
duke@435 2077 } else {
duke@435 2078 ShouldNotReachHere();
duke@435 2079 }
duke@435 2080
duke@435 2081 } else {
duke@435 2082 Label skip;
duke@435 2083 __ jcc (acond, skip);
duke@435 2084 if (opr2->is_cpu_register()) {
duke@435 2085 reg2reg(opr2, result);
duke@435 2086 } else if (opr2->is_stack()) {
duke@435 2087 stack2reg(opr2, result, result->type());
duke@435 2088 } else if (opr2->is_constant()) {
duke@435 2089 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 2090 } else {
duke@435 2091 ShouldNotReachHere();
duke@435 2092 }
duke@435 2093 __ bind(skip);
duke@435 2094 }
duke@435 2095 }
duke@435 2096
duke@435 2097
duke@435 2098 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 2099 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
duke@435 2100
duke@435 2101 if (left->is_single_cpu()) {
duke@435 2102 assert(left == dest, "left and dest must be equal");
duke@435 2103 Register lreg = left->as_register();
duke@435 2104
duke@435 2105 if (right->is_single_cpu()) {
duke@435 2106 // cpu register - cpu register
duke@435 2107 Register rreg = right->as_register();
duke@435 2108 switch (code) {
duke@435 2109 case lir_add: __ addl (lreg, rreg); break;
duke@435 2110 case lir_sub: __ subl (lreg, rreg); break;
duke@435 2111 case lir_mul: __ imull(lreg, rreg); break;
duke@435 2112 default: ShouldNotReachHere();
duke@435 2113 }
duke@435 2114
duke@435 2115 } else if (right->is_stack()) {
duke@435 2116 // cpu register - stack
duke@435 2117 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2118 switch (code) {
duke@435 2119 case lir_add: __ addl(lreg, raddr); break;
duke@435 2120 case lir_sub: __ subl(lreg, raddr); break;
duke@435 2121 default: ShouldNotReachHere();
duke@435 2122 }
duke@435 2123
duke@435 2124 } else if (right->is_constant()) {
duke@435 2125 // cpu register - constant
duke@435 2126 jint c = right->as_constant_ptr()->as_jint();
duke@435 2127 switch (code) {
duke@435 2128 case lir_add: {
iveresov@2145 2129 __ incrementl(lreg, c);
duke@435 2130 break;
duke@435 2131 }
duke@435 2132 case lir_sub: {
iveresov@2145 2133 __ decrementl(lreg, c);
duke@435 2134 break;
duke@435 2135 }
duke@435 2136 default: ShouldNotReachHere();
duke@435 2137 }
duke@435 2138
duke@435 2139 } else {
duke@435 2140 ShouldNotReachHere();
duke@435 2141 }
duke@435 2142
duke@435 2143 } else if (left->is_double_cpu()) {
duke@435 2144 assert(left == dest, "left and dest must be equal");
duke@435 2145 Register lreg_lo = left->as_register_lo();
duke@435 2146 Register lreg_hi = left->as_register_hi();
duke@435 2147
duke@435 2148 if (right->is_double_cpu()) {
duke@435 2149 // cpu register - cpu register
duke@435 2150 Register rreg_lo = right->as_register_lo();
duke@435 2151 Register rreg_hi = right->as_register_hi();
never@739 2152 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
never@739 2153 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
duke@435 2154 switch (code) {
duke@435 2155 case lir_add:
never@739 2156 __ addptr(lreg_lo, rreg_lo);
never@739 2157 NOT_LP64(__ adcl(lreg_hi, rreg_hi));
duke@435 2158 break;
duke@435 2159 case lir_sub:
never@739 2160 __ subptr(lreg_lo, rreg_lo);
never@739 2161 NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
duke@435 2162 break;
duke@435 2163 case lir_mul:
never@739 2164 #ifdef _LP64
never@739 2165 __ imulq(lreg_lo, rreg_lo);
never@739 2166 #else
duke@435 2167 assert(lreg_lo == rax && lreg_hi == rdx, "must be");
duke@435 2168 __ imull(lreg_hi, rreg_lo);
duke@435 2169 __ imull(rreg_hi, lreg_lo);
duke@435 2170 __ addl (rreg_hi, lreg_hi);
duke@435 2171 __ mull (rreg_lo);
duke@435 2172 __ addl (lreg_hi, rreg_hi);
never@739 2173 #endif // _LP64
duke@435 2174 break;
duke@435 2175 default:
duke@435 2176 ShouldNotReachHere();
duke@435 2177 }
duke@435 2178
duke@435 2179 } else if (right->is_constant()) {
duke@435 2180 // cpu register - constant
never@739 2181 #ifdef _LP64
never@739 2182 jlong c = right->as_constant_ptr()->as_jlong_bits();
never@739 2183 __ movptr(r10, (intptr_t) c);
never@739 2184 switch (code) {
never@739 2185 case lir_add:
never@739 2186 __ addptr(lreg_lo, r10);
never@739 2187 break;
never@739 2188 case lir_sub:
never@739 2189 __ subptr(lreg_lo, r10);
never@739 2190 break;
never@739 2191 default:
never@739 2192 ShouldNotReachHere();
never@739 2193 }
never@739 2194 #else
duke@435 2195 jint c_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2196 jint c_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2197 switch (code) {
duke@435 2198 case lir_add:
never@739 2199 __ addptr(lreg_lo, c_lo);
duke@435 2200 __ adcl(lreg_hi, c_hi);
duke@435 2201 break;
duke@435 2202 case lir_sub:
never@739 2203 __ subptr(lreg_lo, c_lo);
duke@435 2204 __ sbbl(lreg_hi, c_hi);
duke@435 2205 break;
duke@435 2206 default:
duke@435 2207 ShouldNotReachHere();
duke@435 2208 }
never@739 2209 #endif // _LP64
duke@435 2210
duke@435 2211 } else {
duke@435 2212 ShouldNotReachHere();
duke@435 2213 }
duke@435 2214
duke@435 2215 } else if (left->is_single_xmm()) {
duke@435 2216 assert(left == dest, "left and dest must be equal");
duke@435 2217 XMMRegister lreg = left->as_xmm_float_reg();
duke@435 2218
duke@435 2219 if (right->is_single_xmm()) {
duke@435 2220 XMMRegister rreg = right->as_xmm_float_reg();
duke@435 2221 switch (code) {
duke@435 2222 case lir_add: __ addss(lreg, rreg); break;
duke@435 2223 case lir_sub: __ subss(lreg, rreg); break;
duke@435 2224 case lir_mul_strictfp: // fall through
duke@435 2225 case lir_mul: __ mulss(lreg, rreg); break;
duke@435 2226 case lir_div_strictfp: // fall through
duke@435 2227 case lir_div: __ divss(lreg, rreg); break;
duke@435 2228 default: ShouldNotReachHere();
duke@435 2229 }
duke@435 2230 } else {
duke@435 2231 Address raddr;
duke@435 2232 if (right->is_single_stack()) {
duke@435 2233 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2234 } else if (right->is_constant()) {
duke@435 2235 // hack for now
duke@435 2236 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
duke@435 2237 } else {
duke@435 2238 ShouldNotReachHere();
duke@435 2239 }
duke@435 2240 switch (code) {
duke@435 2241 case lir_add: __ addss(lreg, raddr); break;
duke@435 2242 case lir_sub: __ subss(lreg, raddr); break;
duke@435 2243 case lir_mul_strictfp: // fall through
duke@435 2244 case lir_mul: __ mulss(lreg, raddr); break;
duke@435 2245 case lir_div_strictfp: // fall through
duke@435 2246 case lir_div: __ divss(lreg, raddr); break;
duke@435 2247 default: ShouldNotReachHere();
duke@435 2248 }
duke@435 2249 }
duke@435 2250
duke@435 2251 } else if (left->is_double_xmm()) {
duke@435 2252 assert(left == dest, "left and dest must be equal");
duke@435 2253
duke@435 2254 XMMRegister lreg = left->as_xmm_double_reg();
duke@435 2255 if (right->is_double_xmm()) {
duke@435 2256 XMMRegister rreg = right->as_xmm_double_reg();
duke@435 2257 switch (code) {
duke@435 2258 case lir_add: __ addsd(lreg, rreg); break;
duke@435 2259 case lir_sub: __ subsd(lreg, rreg); break;
duke@435 2260 case lir_mul_strictfp: // fall through
duke@435 2261 case lir_mul: __ mulsd(lreg, rreg); break;
duke@435 2262 case lir_div_strictfp: // fall through
duke@435 2263 case lir_div: __ divsd(lreg, rreg); break;
duke@435 2264 default: ShouldNotReachHere();
duke@435 2265 }
duke@435 2266 } else {
duke@435 2267 Address raddr;
duke@435 2268 if (right->is_double_stack()) {
duke@435 2269 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2270 } else if (right->is_constant()) {
duke@435 2271 // hack for now
duke@435 2272 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2273 } else {
duke@435 2274 ShouldNotReachHere();
duke@435 2275 }
duke@435 2276 switch (code) {
duke@435 2277 case lir_add: __ addsd(lreg, raddr); break;
duke@435 2278 case lir_sub: __ subsd(lreg, raddr); break;
duke@435 2279 case lir_mul_strictfp: // fall through
duke@435 2280 case lir_mul: __ mulsd(lreg, raddr); break;
duke@435 2281 case lir_div_strictfp: // fall through
duke@435 2282 case lir_div: __ divsd(lreg, raddr); break;
duke@435 2283 default: ShouldNotReachHere();
duke@435 2284 }
duke@435 2285 }
duke@435 2286
duke@435 2287 } else if (left->is_single_fpu()) {
duke@435 2288 assert(dest->is_single_fpu(), "fpu stack allocation required");
duke@435 2289
duke@435 2290 if (right->is_single_fpu()) {
duke@435 2291 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
duke@435 2292
duke@435 2293 } else {
duke@435 2294 assert(left->fpu_regnr() == 0, "left must be on TOS");
duke@435 2295 assert(dest->fpu_regnr() == 0, "dest must be on TOS");
duke@435 2296
duke@435 2297 Address raddr;
duke@435 2298 if (right->is_single_stack()) {
duke@435 2299 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2300 } else if (right->is_constant()) {
duke@435 2301 address const_addr = float_constant(right->as_jfloat());
duke@435 2302 assert(const_addr != NULL, "incorrect float/double constant maintainance");
duke@435 2303 // hack for now
duke@435 2304 raddr = __ as_Address(InternalAddress(const_addr));
duke@435 2305 } else {
duke@435 2306 ShouldNotReachHere();
duke@435 2307 }
duke@435 2308
duke@435 2309 switch (code) {
duke@435 2310 case lir_add: __ fadd_s(raddr); break;
duke@435 2311 case lir_sub: __ fsub_s(raddr); break;
duke@435 2312 case lir_mul_strictfp: // fall through
duke@435 2313 case lir_mul: __ fmul_s(raddr); break;
duke@435 2314 case lir_div_strictfp: // fall through
duke@435 2315 case lir_div: __ fdiv_s(raddr); break;
duke@435 2316 default: ShouldNotReachHere();
duke@435 2317 }
duke@435 2318 }
duke@435 2319
duke@435 2320 } else if (left->is_double_fpu()) {
duke@435 2321 assert(dest->is_double_fpu(), "fpu stack allocation required");
duke@435 2322
duke@435 2323 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2324 // Double values require special handling for strictfp mul/div on x86
duke@435 2325 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
duke@435 2326 __ fmulp(left->fpu_regnrLo() + 1);
duke@435 2327 }
duke@435 2328
duke@435 2329 if (right->is_double_fpu()) {
duke@435 2330 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
duke@435 2331
duke@435 2332 } else {
duke@435 2333 assert(left->fpu_regnrLo() == 0, "left must be on TOS");
duke@435 2334 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
duke@435 2335
duke@435 2336 Address raddr;
duke@435 2337 if (right->is_double_stack()) {
duke@435 2338 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2339 } else if (right->is_constant()) {
duke@435 2340 // hack for now
duke@435 2341 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2342 } else {
duke@435 2343 ShouldNotReachHere();
duke@435 2344 }
duke@435 2345
duke@435 2346 switch (code) {
duke@435 2347 case lir_add: __ fadd_d(raddr); break;
duke@435 2348 case lir_sub: __ fsub_d(raddr); break;
duke@435 2349 case lir_mul_strictfp: // fall through
duke@435 2350 case lir_mul: __ fmul_d(raddr); break;
duke@435 2351 case lir_div_strictfp: // fall through
duke@435 2352 case lir_div: __ fdiv_d(raddr); break;
duke@435 2353 default: ShouldNotReachHere();
duke@435 2354 }
duke@435 2355 }
duke@435 2356
duke@435 2357 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2358 // Double values require special handling for strictfp mul/div on x86
duke@435 2359 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
duke@435 2360 __ fmulp(dest->fpu_regnrLo() + 1);
duke@435 2361 }
duke@435 2362
duke@435 2363 } else if (left->is_single_stack() || left->is_address()) {
duke@435 2364 assert(left == dest, "left and dest must be equal");
duke@435 2365
duke@435 2366 Address laddr;
duke@435 2367 if (left->is_single_stack()) {
duke@435 2368 laddr = frame_map()->address_for_slot(left->single_stack_ix());
duke@435 2369 } else if (left->is_address()) {
duke@435 2370 laddr = as_Address(left->as_address_ptr());
duke@435 2371 } else {
duke@435 2372 ShouldNotReachHere();
duke@435 2373 }
duke@435 2374
duke@435 2375 if (right->is_single_cpu()) {
duke@435 2376 Register rreg = right->as_register();
duke@435 2377 switch (code) {
duke@435 2378 case lir_add: __ addl(laddr, rreg); break;
duke@435 2379 case lir_sub: __ subl(laddr, rreg); break;
duke@435 2380 default: ShouldNotReachHere();
duke@435 2381 }
duke@435 2382 } else if (right->is_constant()) {
duke@435 2383 jint c = right->as_constant_ptr()->as_jint();
duke@435 2384 switch (code) {
duke@435 2385 case lir_add: {
never@739 2386 __ incrementl(laddr, c);
duke@435 2387 break;
duke@435 2388 }
duke@435 2389 case lir_sub: {
never@739 2390 __ decrementl(laddr, c);
duke@435 2391 break;
duke@435 2392 }
duke@435 2393 default: ShouldNotReachHere();
duke@435 2394 }
duke@435 2395 } else {
duke@435 2396 ShouldNotReachHere();
duke@435 2397 }
duke@435 2398
duke@435 2399 } else {
duke@435 2400 ShouldNotReachHere();
duke@435 2401 }
duke@435 2402 }
duke@435 2403
duke@435 2404 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
duke@435 2405 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR");
duke@435 2406 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
duke@435 2407 assert(left_index == 0 || right_index == 0, "either must be on top of stack");
duke@435 2408
duke@435 2409 bool left_is_tos = (left_index == 0);
duke@435 2410 bool dest_is_tos = (dest_index == 0);
duke@435 2411 int non_tos_index = (left_is_tos ? right_index : left_index);
duke@435 2412
duke@435 2413 switch (code) {
duke@435 2414 case lir_add:
duke@435 2415 if (pop_fpu_stack) __ faddp(non_tos_index);
duke@435 2416 else if (dest_is_tos) __ fadd (non_tos_index);
duke@435 2417 else __ fadda(non_tos_index);
duke@435 2418 break;
duke@435 2419
duke@435 2420 case lir_sub:
duke@435 2421 if (left_is_tos) {
duke@435 2422 if (pop_fpu_stack) __ fsubrp(non_tos_index);
duke@435 2423 else if (dest_is_tos) __ fsub (non_tos_index);
duke@435 2424 else __ fsubra(non_tos_index);
duke@435 2425 } else {
duke@435 2426 if (pop_fpu_stack) __ fsubp (non_tos_index);
duke@435 2427 else if (dest_is_tos) __ fsubr (non_tos_index);
duke@435 2428 else __ fsuba (non_tos_index);
duke@435 2429 }
duke@435 2430 break;
duke@435 2431
duke@435 2432 case lir_mul_strictfp: // fall through
duke@435 2433 case lir_mul:
duke@435 2434 if (pop_fpu_stack) __ fmulp(non_tos_index);
duke@435 2435 else if (dest_is_tos) __ fmul (non_tos_index);
duke@435 2436 else __ fmula(non_tos_index);
duke@435 2437 break;
duke@435 2438
duke@435 2439 case lir_div_strictfp: // fall through
duke@435 2440 case lir_div:
duke@435 2441 if (left_is_tos) {
duke@435 2442 if (pop_fpu_stack) __ fdivrp(non_tos_index);
duke@435 2443 else if (dest_is_tos) __ fdiv (non_tos_index);
duke@435 2444 else __ fdivra(non_tos_index);
duke@435 2445 } else {
duke@435 2446 if (pop_fpu_stack) __ fdivp (non_tos_index);
duke@435 2447 else if (dest_is_tos) __ fdivr (non_tos_index);
duke@435 2448 else __ fdiva (non_tos_index);
duke@435 2449 }
duke@435 2450 break;
duke@435 2451
duke@435 2452 case lir_rem:
duke@435 2453 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
duke@435 2454 __ fremr(noreg);
duke@435 2455 break;
duke@435 2456
duke@435 2457 default:
duke@435 2458 ShouldNotReachHere();
duke@435 2459 }
duke@435 2460 }
duke@435 2461
duke@435 2462
duke@435 2463 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
duke@435 2464 if (value->is_double_xmm()) {
duke@435 2465 switch(code) {
duke@435 2466 case lir_abs :
duke@435 2467 {
duke@435 2468 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
duke@435 2469 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
duke@435 2470 }
duke@435 2471 __ andpd(dest->as_xmm_double_reg(),
duke@435 2472 ExternalAddress((address)double_signmask_pool));
duke@435 2473 }
duke@435 2474 break;
duke@435 2475
duke@435 2476 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
duke@435 2477 // all other intrinsics are not available in the SSE instruction set, so FPU is used
duke@435 2478 default : ShouldNotReachHere();
duke@435 2479 }
duke@435 2480
duke@435 2481 } else if (value->is_double_fpu()) {
duke@435 2482 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
duke@435 2483 switch(code) {
duke@435 2484 case lir_log : __ flog() ; break;
duke@435 2485 case lir_log10 : __ flog10() ; break;
duke@435 2486 case lir_abs : __ fabs() ; break;
duke@435 2487 case lir_sqrt : __ fsqrt(); break;
duke@435 2488 case lir_sin :
duke@435 2489 // Should consider not saving rbx, if not necessary
duke@435 2490 __ trigfunc('s', op->as_Op2()->fpu_stack_size());
duke@435 2491 break;
duke@435 2492 case lir_cos :
duke@435 2493 // Should consider not saving rbx, if not necessary
duke@435 2494 assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
duke@435 2495 __ trigfunc('c', op->as_Op2()->fpu_stack_size());
duke@435 2496 break;
duke@435 2497 case lir_tan :
duke@435 2498 // Should consider not saving rbx, if not necessary
duke@435 2499 __ trigfunc('t', op->as_Op2()->fpu_stack_size());
duke@435 2500 break;
roland@3787 2501 case lir_exp :
roland@3787 2502 __ exp_with_fallback(op->as_Op2()->fpu_stack_size());
roland@3787 2503 break;
roland@3787 2504 case lir_pow :
roland@3787 2505 __ pow_with_fallback(op->as_Op2()->fpu_stack_size());
roland@3787 2506 break;
duke@435 2507 default : ShouldNotReachHere();
duke@435 2508 }
duke@435 2509 } else {
duke@435 2510 Unimplemented();
duke@435 2511 }
duke@435 2512 }
duke@435 2513
duke@435 2514 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
duke@435 2515 // assert(left->destroys_register(), "check");
duke@435 2516 if (left->is_single_cpu()) {
duke@435 2517 Register reg = left->as_register();
duke@435 2518 if (right->is_constant()) {
duke@435 2519 int val = right->as_constant_ptr()->as_jint();
duke@435 2520 switch (code) {
duke@435 2521 case lir_logic_and: __ andl (reg, val); break;
duke@435 2522 case lir_logic_or: __ orl (reg, val); break;
duke@435 2523 case lir_logic_xor: __ xorl (reg, val); break;
duke@435 2524 default: ShouldNotReachHere();
duke@435 2525 }
duke@435 2526 } else if (right->is_stack()) {
duke@435 2527 // added support for stack operands
duke@435 2528 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2529 switch (code) {
duke@435 2530 case lir_logic_and: __ andl (reg, raddr); break;
duke@435 2531 case lir_logic_or: __ orl (reg, raddr); break;
duke@435 2532 case lir_logic_xor: __ xorl (reg, raddr); break;
duke@435 2533 default: ShouldNotReachHere();
duke@435 2534 }
duke@435 2535 } else {
duke@435 2536 Register rright = right->as_register();
duke@435 2537 switch (code) {
never@739 2538 case lir_logic_and: __ andptr (reg, rright); break;
never@739 2539 case lir_logic_or : __ orptr (reg, rright); break;
never@739 2540 case lir_logic_xor: __ xorptr (reg, rright); break;
duke@435 2541 default: ShouldNotReachHere();
duke@435 2542 }
duke@435 2543 }
duke@435 2544 move_regs(reg, dst->as_register());
duke@435 2545 } else {
duke@435 2546 Register l_lo = left->as_register_lo();
duke@435 2547 Register l_hi = left->as_register_hi();
duke@435 2548 if (right->is_constant()) {
never@739 2549 #ifdef _LP64
never@739 2550 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
never@739 2551 switch (code) {
never@739 2552 case lir_logic_and:
never@739 2553 __ andq(l_lo, rscratch1);
never@739 2554 break;
never@739 2555 case lir_logic_or:
never@739 2556 __ orq(l_lo, rscratch1);
never@739 2557 break;
never@739 2558 case lir_logic_xor:
never@739 2559 __ xorq(l_lo, rscratch1);
never@739 2560 break;
never@739 2561 default: ShouldNotReachHere();
never@739 2562 }
never@739 2563 #else
duke@435 2564 int r_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2565 int r_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2566 switch (code) {
duke@435 2567 case lir_logic_and:
duke@435 2568 __ andl(l_lo, r_lo);
duke@435 2569 __ andl(l_hi, r_hi);
duke@435 2570 break;
duke@435 2571 case lir_logic_or:
duke@435 2572 __ orl(l_lo, r_lo);
duke@435 2573 __ orl(l_hi, r_hi);
duke@435 2574 break;
duke@435 2575 case lir_logic_xor:
duke@435 2576 __ xorl(l_lo, r_lo);
duke@435 2577 __ xorl(l_hi, r_hi);
duke@435 2578 break;
duke@435 2579 default: ShouldNotReachHere();
duke@435 2580 }
never@739 2581 #endif // _LP64
duke@435 2582 } else {
iveresov@1927 2583 #ifdef _LP64
iveresov@1927 2584 Register r_lo;
iveresov@1927 2585 if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
iveresov@1927 2586 r_lo = right->as_register();
iveresov@1927 2587 } else {
iveresov@1927 2588 r_lo = right->as_register_lo();
iveresov@1927 2589 }
iveresov@1927 2590 #else
duke@435 2591 Register r_lo = right->as_register_lo();
duke@435 2592 Register r_hi = right->as_register_hi();
duke@435 2593 assert(l_lo != r_hi, "overwriting registers");
iveresov@1927 2594 #endif
duke@435 2595 switch (code) {
duke@435 2596 case lir_logic_and:
never@739 2597 __ andptr(l_lo, r_lo);
never@739 2598 NOT_LP64(__ andptr(l_hi, r_hi);)
duke@435 2599 break;
duke@435 2600 case lir_logic_or:
never@739 2601 __ orptr(l_lo, r_lo);
never@739 2602 NOT_LP64(__ orptr(l_hi, r_hi);)
duke@435 2603 break;
duke@435 2604 case lir_logic_xor:
never@739 2605 __ xorptr(l_lo, r_lo);
never@739 2606 NOT_LP64(__ xorptr(l_hi, r_hi);)
duke@435 2607 break;
duke@435 2608 default: ShouldNotReachHere();
duke@435 2609 }
duke@435 2610 }
duke@435 2611
duke@435 2612 Register dst_lo = dst->as_register_lo();
duke@435 2613 Register dst_hi = dst->as_register_hi();
duke@435 2614
never@739 2615 #ifdef _LP64
never@739 2616 move_regs(l_lo, dst_lo);
never@739 2617 #else
duke@435 2618 if (dst_lo == l_hi) {
duke@435 2619 assert(dst_hi != l_lo, "overwriting registers");
duke@435 2620 move_regs(l_hi, dst_hi);
duke@435 2621 move_regs(l_lo, dst_lo);
duke@435 2622 } else {
duke@435 2623 assert(dst_lo != l_hi, "overwriting registers");
duke@435 2624 move_regs(l_lo, dst_lo);
duke@435 2625 move_regs(l_hi, dst_hi);
duke@435 2626 }
never@739 2627 #endif // _LP64
duke@435 2628 }
duke@435 2629 }
duke@435 2630
duke@435 2631
duke@435 2632 // we assume that rax, and rdx can be overwritten
duke@435 2633 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
duke@435 2634
duke@435 2635 assert(left->is_single_cpu(), "left must be register");
duke@435 2636 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
duke@435 2637 assert(result->is_single_cpu(), "result must be register");
duke@435 2638
duke@435 2639 // assert(left->destroys_register(), "check");
duke@435 2640 // assert(right->destroys_register(), "check");
duke@435 2641
duke@435 2642 Register lreg = left->as_register();
duke@435 2643 Register dreg = result->as_register();
duke@435 2644
duke@435 2645 if (right->is_constant()) {
duke@435 2646 int divisor = right->as_constant_ptr()->as_jint();
duke@435 2647 assert(divisor > 0 && is_power_of_2(divisor), "must be");
duke@435 2648 if (code == lir_idiv) {
duke@435 2649 assert(lreg == rax, "must be rax,");
duke@435 2650 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2651 __ cdql(); // sign extend into rdx:rax
duke@435 2652 if (divisor == 2) {
duke@435 2653 __ subl(lreg, rdx);
duke@435 2654 } else {
duke@435 2655 __ andl(rdx, divisor - 1);
duke@435 2656 __ addl(lreg, rdx);
duke@435 2657 }
duke@435 2658 __ sarl(lreg, log2_intptr(divisor));
duke@435 2659 move_regs(lreg, dreg);
duke@435 2660 } else if (code == lir_irem) {
duke@435 2661 Label done;
never@739 2662 __ mov(dreg, lreg);
duke@435 2663 __ andl(dreg, 0x80000000 | (divisor - 1));
duke@435 2664 __ jcc(Assembler::positive, done);
duke@435 2665 __ decrement(dreg);
duke@435 2666 __ orl(dreg, ~(divisor - 1));
duke@435 2667 __ increment(dreg);
duke@435 2668 __ bind(done);
duke@435 2669 } else {
duke@435 2670 ShouldNotReachHere();
duke@435 2671 }
duke@435 2672 } else {
duke@435 2673 Register rreg = right->as_register();
duke@435 2674 assert(lreg == rax, "left register must be rax,");
duke@435 2675 assert(rreg != rdx, "right register must not be rdx");
duke@435 2676 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2677
duke@435 2678 move_regs(lreg, rax);
duke@435 2679
duke@435 2680 int idivl_offset = __ corrected_idivl(rreg);
duke@435 2681 add_debug_info_for_div0(idivl_offset, info);
duke@435 2682 if (code == lir_irem) {
duke@435 2683 move_regs(rdx, dreg); // result is in rdx
duke@435 2684 } else {
duke@435 2685 move_regs(rax, dreg);
duke@435 2686 }
duke@435 2687 }
duke@435 2688 }
duke@435 2689
duke@435 2690
duke@435 2691 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 2692 if (opr1->is_single_cpu()) {
duke@435 2693 Register reg1 = opr1->as_register();
duke@435 2694 if (opr2->is_single_cpu()) {
duke@435 2695 // cpu register - cpu register
never@739 2696 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2697 __ cmpptr(reg1, opr2->as_register());
never@739 2698 } else {
never@739 2699 assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
never@739 2700 __ cmpl(reg1, opr2->as_register());
never@739 2701 }
duke@435 2702 } else if (opr2->is_stack()) {
duke@435 2703 // cpu register - stack
never@739 2704 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2705 __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2706 } else {
never@739 2707 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2708 }
duke@435 2709 } else if (opr2->is_constant()) {
duke@435 2710 // cpu register - constant
duke@435 2711 LIR_Const* c = opr2->as_constant_ptr();
duke@435 2712 if (c->type() == T_INT) {
duke@435 2713 __ cmpl(reg1, c->as_jint());
never@739 2714 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2715 // In 64bit oops are single register
duke@435 2716 jobject o = c->as_jobject();
duke@435 2717 if (o == NULL) {
never@739 2718 __ cmpptr(reg1, (int32_t)NULL_WORD);
duke@435 2719 } else {
never@739 2720 #ifdef _LP64
never@739 2721 __ movoop(rscratch1, o);
never@739 2722 __ cmpptr(reg1, rscratch1);
never@739 2723 #else
duke@435 2724 __ cmpoop(reg1, c->as_jobject());
never@739 2725 #endif // _LP64
duke@435 2726 }
duke@435 2727 } else {
twisti@3848 2728 fatal(err_msg("unexpected type: %s", basictype_to_str(c->type())));
duke@435 2729 }
duke@435 2730 // cpu register - address
duke@435 2731 } else if (opr2->is_address()) {
duke@435 2732 if (op->info() != NULL) {
duke@435 2733 add_debug_info_for_null_check_here(op->info());
duke@435 2734 }
duke@435 2735 __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2736 } else {
duke@435 2737 ShouldNotReachHere();
duke@435 2738 }
duke@435 2739
duke@435 2740 } else if(opr1->is_double_cpu()) {
duke@435 2741 Register xlo = opr1->as_register_lo();
duke@435 2742 Register xhi = opr1->as_register_hi();
duke@435 2743 if (opr2->is_double_cpu()) {
never@739 2744 #ifdef _LP64
never@739 2745 __ cmpptr(xlo, opr2->as_register_lo());
never@739 2746 #else
duke@435 2747 // cpu register - cpu register
duke@435 2748 Register ylo = opr2->as_register_lo();
duke@435 2749 Register yhi = opr2->as_register_hi();
duke@435 2750 __ subl(xlo, ylo);
duke@435 2751 __ sbbl(xhi, yhi);
duke@435 2752 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 2753 __ orl(xhi, xlo);
duke@435 2754 }
never@739 2755 #endif // _LP64
duke@435 2756 } else if (opr2->is_constant()) {
duke@435 2757 // cpu register - constant 0
duke@435 2758 assert(opr2->as_jlong() == (jlong)0, "only handles zero");
never@739 2759 #ifdef _LP64
never@739 2760 __ cmpptr(xlo, (int32_t)opr2->as_jlong());
never@739 2761 #else
duke@435 2762 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
duke@435 2763 __ orl(xhi, xlo);
never@739 2764 #endif // _LP64
duke@435 2765 } else {
duke@435 2766 ShouldNotReachHere();
duke@435 2767 }
duke@435 2768
duke@435 2769 } else if (opr1->is_single_xmm()) {
duke@435 2770 XMMRegister reg1 = opr1->as_xmm_float_reg();
duke@435 2771 if (opr2->is_single_xmm()) {
duke@435 2772 // xmm register - xmm register
duke@435 2773 __ ucomiss(reg1, opr2->as_xmm_float_reg());
duke@435 2774 } else if (opr2->is_stack()) {
duke@435 2775 // xmm register - stack
duke@435 2776 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2777 } else if (opr2->is_constant()) {
duke@435 2778 // xmm register - constant
duke@435 2779 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
duke@435 2780 } else if (opr2->is_address()) {
duke@435 2781 // xmm register - address
duke@435 2782 if (op->info() != NULL) {
duke@435 2783 add_debug_info_for_null_check_here(op->info());
duke@435 2784 }
duke@435 2785 __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2786 } else {
duke@435 2787 ShouldNotReachHere();
duke@435 2788 }
duke@435 2789
duke@435 2790 } else if (opr1->is_double_xmm()) {
duke@435 2791 XMMRegister reg1 = opr1->as_xmm_double_reg();
duke@435 2792 if (opr2->is_double_xmm()) {
duke@435 2793 // xmm register - xmm register
duke@435 2794 __ ucomisd(reg1, opr2->as_xmm_double_reg());
duke@435 2795 } else if (opr2->is_stack()) {
duke@435 2796 // xmm register - stack
duke@435 2797 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
duke@435 2798 } else if (opr2->is_constant()) {
duke@435 2799 // xmm register - constant
duke@435 2800 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
duke@435 2801 } else if (opr2->is_address()) {
duke@435 2802 // xmm register - address
duke@435 2803 if (op->info() != NULL) {
duke@435 2804 add_debug_info_for_null_check_here(op->info());
duke@435 2805 }
duke@435 2806 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
duke@435 2807 } else {
duke@435 2808 ShouldNotReachHere();
duke@435 2809 }
duke@435 2810
duke@435 2811 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
duke@435 2812 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
duke@435 2813 assert(opr2->is_fpu_register(), "both must be registers");
duke@435 2814 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2815
duke@435 2816 } else if (opr1->is_address() && opr2->is_constant()) {
never@739 2817 LIR_Const* c = opr2->as_constant_ptr();
never@739 2818 #ifdef _LP64
never@739 2819 if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2820 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
never@739 2821 __ movoop(rscratch1, c->as_jobject());
never@739 2822 }
never@739 2823 #endif // LP64
duke@435 2824 if (op->info() != NULL) {
duke@435 2825 add_debug_info_for_null_check_here(op->info());
duke@435 2826 }
duke@435 2827 // special case: address - constant
duke@435 2828 LIR_Address* addr = opr1->as_address_ptr();
duke@435 2829 if (c->type() == T_INT) {
duke@435 2830 __ cmpl(as_Address(addr), c->as_jint());
never@739 2831 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2832 #ifdef _LP64
never@739 2833 // %%% Make this explode if addr isn't reachable until we figure out a
never@739 2834 // better strategy by giving noreg as the temp for as_Address
never@739 2835 __ cmpptr(rscratch1, as_Address(addr, noreg));
never@739 2836 #else
duke@435 2837 __ cmpoop(as_Address(addr), c->as_jobject());
never@739 2838 #endif // _LP64
duke@435 2839 } else {
duke@435 2840 ShouldNotReachHere();
duke@435 2841 }
duke@435 2842
duke@435 2843 } else {
duke@435 2844 ShouldNotReachHere();
duke@435 2845 }
duke@435 2846 }
duke@435 2847
duke@435 2848 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
duke@435 2849 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 2850 if (left->is_single_xmm()) {
duke@435 2851 assert(right->is_single_xmm(), "must match");
duke@435 2852 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2853 } else if (left->is_double_xmm()) {
duke@435 2854 assert(right->is_double_xmm(), "must match");
duke@435 2855 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2856
duke@435 2857 } else {
duke@435 2858 assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
duke@435 2859 assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
duke@435 2860
duke@435 2861 assert(left->fpu() == 0, "left must be on TOS");
duke@435 2862 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
duke@435 2863 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2864 }
duke@435 2865 } else {
duke@435 2866 assert(code == lir_cmp_l2i, "check");
never@739 2867 #ifdef _LP64
iveresov@1804 2868 Label done;
iveresov@1804 2869 Register dest = dst->as_register();
iveresov@1804 2870 __ cmpptr(left->as_register_lo(), right->as_register_lo());
iveresov@1804 2871 __ movl(dest, -1);
iveresov@1804 2872 __ jccb(Assembler::less, done);
iveresov@1804 2873 __ set_byte_if_not_zero(dest);
iveresov@1804 2874 __ movzbl(dest, dest);
iveresov@1804 2875 __ bind(done);
never@739 2876 #else
duke@435 2877 __ lcmp2int(left->as_register_hi(),
duke@435 2878 left->as_register_lo(),
duke@435 2879 right->as_register_hi(),
duke@435 2880 right->as_register_lo());
duke@435 2881 move_regs(left->as_register_hi(), dst->as_register());
never@739 2882 #endif // _LP64
duke@435 2883 }
duke@435 2884 }
duke@435 2885
duke@435 2886
duke@435 2887 void LIR_Assembler::align_call(LIR_Code code) {
duke@435 2888 if (os::is_MP()) {
duke@435 2889 // make sure that the displacement word of the call ends up word aligned
duke@435 2890 int offset = __ offset();
duke@435 2891 switch (code) {
duke@435 2892 case lir_static_call:
duke@435 2893 case lir_optvirtual_call:
twisti@1730 2894 case lir_dynamic_call:
duke@435 2895 offset += NativeCall::displacement_offset;
duke@435 2896 break;
duke@435 2897 case lir_icvirtual_call:
duke@435 2898 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
duke@435 2899 break;
duke@435 2900 case lir_virtual_call: // currently, sparc-specific for niagara
duke@435 2901 default: ShouldNotReachHere();
duke@435 2902 }
duke@435 2903 while (offset++ % BytesPerWord != 0) {
duke@435 2904 __ nop();
duke@435 2905 }
duke@435 2906 }
duke@435 2907 }
duke@435 2908
duke@435 2909
twisti@1730 2910 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
duke@435 2911 assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2912 "must be aligned");
twisti@1730 2913 __ call(AddressLiteral(op->addr(), rtype));
twisti@1919 2914 add_call_info(code_offset(), op->info());
duke@435 2915 }
duke@435 2916
duke@435 2917
twisti@1730 2918 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
coleenp@4037 2919 __ ic_call(op->addr());
coleenp@4037 2920 add_call_info(code_offset(), op->info());
duke@435 2921 assert(!os::is_MP() ||
coleenp@4037 2922 (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2923 "must be aligned");
duke@435 2924 }
duke@435 2925
duke@435 2926
duke@435 2927 /* Currently, vtable-dispatch is only enabled for sparc platforms */
twisti@1730 2928 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
duke@435 2929 ShouldNotReachHere();
duke@435 2930 }
duke@435 2931
twisti@1730 2932
duke@435 2933 void LIR_Assembler::emit_static_call_stub() {
duke@435 2934 address call_pc = __ pc();
duke@435 2935 address stub = __ start_a_stub(call_stub_size);
duke@435 2936 if (stub == NULL) {
duke@435 2937 bailout("static call stub overflow");
duke@435 2938 return;
duke@435 2939 }
duke@435 2940
duke@435 2941 int start = __ offset();
duke@435 2942 if (os::is_MP()) {
duke@435 2943 // make sure that the displacement word of the call ends up word aligned
duke@435 2944 int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
duke@435 2945 while (offset++ % BytesPerWord != 0) {
duke@435 2946 __ nop();
duke@435 2947 }
duke@435 2948 }
duke@435 2949 __ relocate(static_stub_Relocation::spec(call_pc));
coleenp@4037 2950 __ mov_metadata(rbx, (Metadata*)NULL);
duke@435 2951 // must be set to -1 at code generation time
duke@435 2952 assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
never@739 2953 // On 64bit this will die since it will take a movq & jmp, must be only a jmp
never@739 2954 __ jump(RuntimeAddress(__ pc()));
duke@435 2955
jcoomes@1844 2956 assert(__ offset() - start <= call_stub_size, "stub too big");
duke@435 2957 __ end_a_stub();
duke@435 2958 }
duke@435 2959
duke@435 2960
never@1813 2961 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
duke@435 2962 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2963 assert(exceptionPC->as_register() == rdx, "must match");
duke@435 2964
duke@435 2965 // exception object is not added to oop map by LinearScan
duke@435 2966 // (LinearScan assumes that no oops are in fixed registers)
duke@435 2967 info->add_register_oop(exceptionOop);
duke@435 2968 Runtime1::StubID unwind_id;
duke@435 2969
never@1813 2970 // get current pc information
never@1813 2971 // pc is only needed if the method has an exception handler, the unwind code does not need it.
never@1813 2972 int pc_for_athrow_offset = __ offset();
never@1813 2973 InternalAddress pc_for_athrow(__ pc());
never@1813 2974 __ lea(exceptionPC->as_register(), pc_for_athrow);
never@1813 2975 add_call_info(pc_for_athrow_offset, info); // for exception handler
never@1813 2976
never@1813 2977 __ verify_not_null_oop(rax);
never@1813 2978 // search an exception handler (rax: exception oop, rdx: throwing pc)
never@1813 2979 if (compilation()->has_fpu_code()) {
never@1813 2980 unwind_id = Runtime1::handle_exception_id;
duke@435 2981 } else {
never@1813 2982 unwind_id = Runtime1::handle_exception_nofpu_id;
duke@435 2983 }
never@1813 2984 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
duke@435 2985
duke@435 2986 // enough room for two byte trap
duke@435 2987 __ nop();
duke@435 2988 }
duke@435 2989
duke@435 2990
never@1813 2991 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
never@1813 2992 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2993
never@1813 2994 __ jmp(_unwind_handler_entry);
never@1813 2995 }
never@1813 2996
never@1813 2997
duke@435 2998 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2999
duke@435 3000 // optimized version for linear scan:
duke@435 3001 // * count must be already in ECX (guaranteed by LinearScan)
duke@435 3002 // * left and dest must be equal
duke@435 3003 // * tmp must be unused
duke@435 3004 assert(count->as_register() == SHIFT_count, "count must be in ECX");
duke@435 3005 assert(left == dest, "left and dest must be equal");
duke@435 3006 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
duke@435 3007
duke@435 3008 if (left->is_single_cpu()) {
duke@435 3009 Register value = left->as_register();
duke@435 3010 assert(value != SHIFT_count, "left cannot be ECX");
duke@435 3011
duke@435 3012 switch (code) {
duke@435 3013 case lir_shl: __ shll(value); break;
duke@435 3014 case lir_shr: __ sarl(value); break;
duke@435 3015 case lir_ushr: __ shrl(value); break;
duke@435 3016 default: ShouldNotReachHere();
duke@435 3017 }
duke@435 3018 } else if (left->is_double_cpu()) {
duke@435 3019 Register lo = left->as_register_lo();
duke@435 3020 Register hi = left->as_register_hi();
duke@435 3021 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
never@739 3022 #ifdef _LP64
never@739 3023 switch (code) {
never@739 3024 case lir_shl: __ shlptr(lo); break;
never@739 3025 case lir_shr: __ sarptr(lo); break;
never@739 3026 case lir_ushr: __ shrptr(lo); break;
never@739 3027 default: ShouldNotReachHere();
never@739 3028 }
never@739 3029 #else
duke@435 3030
duke@435 3031 switch (code) {
duke@435 3032 case lir_shl: __ lshl(hi, lo); break;
duke@435 3033 case lir_shr: __ lshr(hi, lo, true); break;
duke@435 3034 case lir_ushr: __ lshr(hi, lo, false); break;
duke@435 3035 default: ShouldNotReachHere();
duke@435 3036 }
never@739 3037 #endif // LP64
duke@435 3038 } else {
duke@435 3039 ShouldNotReachHere();
duke@435 3040 }
duke@435 3041 }
duke@435 3042
duke@435 3043
duke@435 3044 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 3045 if (dest->is_single_cpu()) {
duke@435 3046 // first move left into dest so that left is not destroyed by the shift
duke@435 3047 Register value = dest->as_register();
duke@435 3048 count = count & 0x1F; // Java spec
duke@435 3049
duke@435 3050 move_regs(left->as_register(), value);
duke@435 3051 switch (code) {
duke@435 3052 case lir_shl: __ shll(value, count); break;
duke@435 3053 case lir_shr: __ sarl(value, count); break;
duke@435 3054 case lir_ushr: __ shrl(value, count); break;
duke@435 3055 default: ShouldNotReachHere();
duke@435 3056 }
duke@435 3057 } else if (dest->is_double_cpu()) {
never@739 3058 #ifndef _LP64
duke@435 3059 Unimplemented();
never@739 3060 #else
never@739 3061 // first move left into dest so that left is not destroyed by the shift
never@739 3062 Register value = dest->as_register_lo();
never@739 3063 count = count & 0x1F; // Java spec
never@739 3064
never@739 3065 move_regs(left->as_register_lo(), value);
never@739 3066 switch (code) {
never@739 3067 case lir_shl: __ shlptr(value, count); break;
never@739 3068 case lir_shr: __ sarptr(value, count); break;
never@739 3069 case lir_ushr: __ shrptr(value, count); break;
never@739 3070 default: ShouldNotReachHere();
never@739 3071 }
never@739 3072 #endif // _LP64
duke@435 3073 } else {
duke@435 3074 ShouldNotReachHere();
duke@435 3075 }
duke@435 3076 }
duke@435 3077
duke@435 3078
duke@435 3079 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
duke@435 3080 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3081 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3082 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 3083 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
duke@435 3084 }
duke@435 3085
duke@435 3086
duke@435 3087 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
duke@435 3088 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3089 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3090 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 3091 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
duke@435 3092 }
duke@435 3093
duke@435 3094
duke@435 3095 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
duke@435 3096 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3097 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3098 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
duke@435 3099 __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
duke@435 3100 }
duke@435 3101
duke@435 3102
duke@435 3103 // This code replaces a call to arraycopy; no exception may
duke@435 3104 // be thrown in this code, they must be thrown in the System.arraycopy
duke@435 3105 // activation frame; we could save some checks if this would not be the case
duke@435 3106 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 3107 ciArrayKlass* default_type = op->expected_type();
duke@435 3108 Register src = op->src()->as_register();
duke@435 3109 Register dst = op->dst()->as_register();
duke@435 3110 Register src_pos = op->src_pos()->as_register();
duke@435 3111 Register dst_pos = op->dst_pos()->as_register();
duke@435 3112 Register length = op->length()->as_register();
duke@435 3113 Register tmp = op->tmp()->as_register();
duke@435 3114
duke@435 3115 CodeStub* stub = op->stub();
duke@435 3116 int flags = op->flags();
duke@435 3117 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 3118 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 3119
roland@2728 3120 // if we don't know anything, just go through the generic arraycopy
duke@435 3121 if (default_type == NULL) {
duke@435 3122 Label done;
duke@435 3123 // save outgoing arguments on stack in case call to System.arraycopy is needed
duke@435 3124 // HACK ALERT. This code used to push the parameters in a hardwired fashion
duke@435 3125 // for interpreter calling conventions. Now we have to do it in new style conventions.
duke@435 3126 // For the moment until C1 gets the new register allocator I just force all the
duke@435 3127 // args to the right place (except the register args) and then on the back side
duke@435 3128 // reload the register args properly if we go slow path. Yuck
duke@435 3129
duke@435 3130 // These are proper for the calling convention
duke@435 3131 store_parameter(length, 2);
duke@435 3132 store_parameter(dst_pos, 1);
duke@435 3133 store_parameter(dst, 0);
duke@435 3134
duke@435 3135 // these are just temporary placements until we need to reload
duke@435 3136 store_parameter(src_pos, 3);
duke@435 3137 store_parameter(src, 4);
never@739 3138 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
never@739 3139
roland@2728 3140 address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
roland@2728 3141
roland@2728 3142 address copyfunc_addr = StubRoutines::generic_arraycopy();
duke@435 3143
duke@435 3144 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
never@739 3145 #ifdef _LP64
never@739 3146 // The arguments are in java calling convention so we can trivially shift them to C
never@739 3147 // convention
never@739 3148 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3149 __ mov(c_rarg0, j_rarg0);
never@739 3150 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3151 __ mov(c_rarg1, j_rarg1);
never@739 3152 assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
never@739 3153 __ mov(c_rarg2, j_rarg2);
never@739 3154 assert_different_registers(c_rarg3, j_rarg4);
never@739 3155 __ mov(c_rarg3, j_rarg3);
never@739 3156 #ifdef _WIN64
never@739 3157 // Allocate abi space for args but be sure to keep stack aligned
never@739 3158 __ subptr(rsp, 6*wordSize);
never@739 3159 store_parameter(j_rarg4, 4);
roland@2728 3160 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 3161 __ call(RuntimeAddress(C_entry));
roland@2728 3162 } else {
roland@2728 3163 #ifndef PRODUCT
roland@2728 3164 if (PrintC1Statistics) {
roland@2728 3165 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
roland@2728 3166 }
roland@2728 3167 #endif
roland@2728 3168 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3169 }
never@739 3170 __ addptr(rsp, 6*wordSize);
never@739 3171 #else
never@739 3172 __ mov(c_rarg4, j_rarg4);
roland@2728 3173 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 3174 __ call(RuntimeAddress(C_entry));
roland@2728 3175 } else {
roland@2728 3176 #ifndef PRODUCT
roland@2728 3177 if (PrintC1Statistics) {
roland@2728 3178 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
roland@2728 3179 }
roland@2728 3180 #endif
roland@2728 3181 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3182 }
never@739 3183 #endif // _WIN64
never@739 3184 #else
never@739 3185 __ push(length);
never@739 3186 __ push(dst_pos);
never@739 3187 __ push(dst);
never@739 3188 __ push(src_pos);
never@739 3189 __ push(src);
roland@2728 3190
roland@2728 3191 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 3192 __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
roland@2728 3193 } else {
roland@2728 3194 #ifndef PRODUCT
roland@2728 3195 if (PrintC1Statistics) {
roland@2728 3196 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
roland@2728 3197 }
roland@2728 3198 #endif
roland@2728 3199 __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
roland@2728 3200 }
duke@435 3201
never@739 3202 #endif // _LP64
never@739 3203
duke@435 3204 __ cmpl(rax, 0);
duke@435 3205 __ jcc(Assembler::equal, *stub->continuation());
duke@435 3206
roland@2728 3207 if (copyfunc_addr != NULL) {
roland@2728 3208 __ mov(tmp, rax);
roland@2728 3209 __ xorl(tmp, -1);
roland@2728 3210 }
roland@2728 3211
duke@435 3212 // Reload values from the stack so they are where the stub
duke@435 3213 // expects them.
never@739 3214 __ movptr (dst, Address(rsp, 0*BytesPerWord));
never@739 3215 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
never@739 3216 __ movptr (length, Address(rsp, 2*BytesPerWord));
never@739 3217 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
never@739 3218 __ movptr (src, Address(rsp, 4*BytesPerWord));
roland@2728 3219
roland@2728 3220 if (copyfunc_addr != NULL) {
roland@2728 3221 __ subl(length, tmp);
roland@2728 3222 __ addl(src_pos, tmp);
roland@2728 3223 __ addl(dst_pos, tmp);
roland@2728 3224 }
duke@435 3225 __ jmp(*stub->entry());
duke@435 3226
duke@435 3227 __ bind(*stub->continuation());
duke@435 3228 return;
duke@435 3229 }
duke@435 3230
duke@435 3231 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
duke@435 3232
kvn@464 3233 int elem_size = type2aelembytes(basic_type);
duke@435 3234 int shift_amount;
duke@435 3235 Address::ScaleFactor scale;
duke@435 3236
duke@435 3237 switch (elem_size) {
duke@435 3238 case 1 :
duke@435 3239 shift_amount = 0;
duke@435 3240 scale = Address::times_1;
duke@435 3241 break;
duke@435 3242 case 2 :
duke@435 3243 shift_amount = 1;
duke@435 3244 scale = Address::times_2;
duke@435 3245 break;
duke@435 3246 case 4 :
duke@435 3247 shift_amount = 2;
duke@435 3248 scale = Address::times_4;
duke@435 3249 break;
duke@435 3250 case 8 :
duke@435 3251 shift_amount = 3;
duke@435 3252 scale = Address::times_8;
duke@435 3253 break;
duke@435 3254 default:
duke@435 3255 ShouldNotReachHere();
duke@435 3256 }
duke@435 3257
duke@435 3258 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
duke@435 3259 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
duke@435 3260 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
duke@435 3261 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
duke@435 3262
never@739 3263 // length and pos's are all sign extended at this point on 64bit
never@739 3264
duke@435 3265 // test for NULL
duke@435 3266 if (flags & LIR_OpArrayCopy::src_null_check) {
never@739 3267 __ testptr(src, src);
duke@435 3268 __ jcc(Assembler::zero, *stub->entry());
duke@435 3269 }
duke@435 3270 if (flags & LIR_OpArrayCopy::dst_null_check) {
never@739 3271 __ testptr(dst, dst);
duke@435 3272 __ jcc(Assembler::zero, *stub->entry());
duke@435 3273 }
duke@435 3274
duke@435 3275 // check if negative
duke@435 3276 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 3277 __ testl(src_pos, src_pos);
duke@435 3278 __ jcc(Assembler::less, *stub->entry());
duke@435 3279 }
duke@435 3280 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 3281 __ testl(dst_pos, dst_pos);
duke@435 3282 __ jcc(Assembler::less, *stub->entry());
duke@435 3283 }
duke@435 3284
duke@435 3285 if (flags & LIR_OpArrayCopy::src_range_check) {
never@739 3286 __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
duke@435 3287 __ cmpl(tmp, src_length_addr);
duke@435 3288 __ jcc(Assembler::above, *stub->entry());
duke@435 3289 }
duke@435 3290 if (flags & LIR_OpArrayCopy::dst_range_check) {
never@739 3291 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
duke@435 3292 __ cmpl(tmp, dst_length_addr);
duke@435 3293 __ jcc(Assembler::above, *stub->entry());
duke@435 3294 }
duke@435 3295
roland@2728 3296 if (flags & LIR_OpArrayCopy::length_positive_check) {
roland@2728 3297 __ testl(length, length);
roland@2728 3298 __ jcc(Assembler::less, *stub->entry());
roland@2728 3299 __ jcc(Assembler::zero, *stub->continuation());
roland@2728 3300 }
roland@2728 3301
roland@2728 3302 #ifdef _LP64
roland@2728 3303 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
roland@2728 3304 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
roland@2728 3305 #endif
roland@2728 3306
duke@435 3307 if (flags & LIR_OpArrayCopy::type_check) {
roland@2728 3308 // We don't know the array types are compatible
roland@2728 3309 if (basic_type != T_OBJECT) {
roland@2728 3310 // Simple test for basic type arrays
ehelin@5694 3311 if (UseCompressedClassPointers) {
roland@2728 3312 __ movl(tmp, src_klass_addr);
roland@2728 3313 __ cmpl(tmp, dst_klass_addr);
roland@2728 3314 } else {
roland@2728 3315 __ movptr(tmp, src_klass_addr);
roland@2728 3316 __ cmpptr(tmp, dst_klass_addr);
roland@2728 3317 }
roland@2728 3318 __ jcc(Assembler::notEqual, *stub->entry());
iveresov@2344 3319 } else {
roland@2728 3320 // For object arrays, if src is a sub class of dst then we can
roland@2728 3321 // safely do the copy.
roland@2728 3322 Label cont, slow;
roland@2728 3323
roland@2728 3324 __ push(src);
roland@2728 3325 __ push(dst);
roland@2728 3326
roland@2728 3327 __ load_klass(src, src);
roland@2728 3328 __ load_klass(dst, dst);
roland@2728 3329
roland@2728 3330 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
roland@2728 3331
roland@2728 3332 __ push(src);
roland@2728 3333 __ push(dst);
roland@2728 3334 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
roland@2728 3335 __ pop(dst);
roland@2728 3336 __ pop(src);
roland@2728 3337
roland@2728 3338 __ cmpl(src, 0);
roland@2728 3339 __ jcc(Assembler::notEqual, cont);
roland@2728 3340
roland@2728 3341 __ bind(slow);
roland@2728 3342 __ pop(dst);
roland@2728 3343 __ pop(src);
roland@2728 3344
roland@2728 3345 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
roland@2728 3346 if (copyfunc_addr != NULL) { // use stub if available
roland@2728 3347 // src is not a sub class of dst so we have to do a
roland@2728 3348 // per-element check.
roland@2728 3349
roland@2728 3350 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
roland@2728 3351 if ((flags & mask) != mask) {
roland@2728 3352 // Check that at least both of them object arrays.
roland@2728 3353 assert(flags & mask, "one of the two should be known to be an object array");
roland@2728 3354
roland@2728 3355 if (!(flags & LIR_OpArrayCopy::src_objarray)) {
roland@2728 3356 __ load_klass(tmp, src);
roland@2728 3357 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
roland@2728 3358 __ load_klass(tmp, dst);
roland@2728 3359 }
stefank@3391 3360 int lh_offset = in_bytes(Klass::layout_helper_offset());
roland@2728 3361 Address klass_lh_addr(tmp, lh_offset);
roland@2728 3362 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
roland@2728 3363 __ cmpl(klass_lh_addr, objArray_lh);
roland@2728 3364 __ jcc(Assembler::notEqual, *stub->entry());
roland@2728 3365 }
roland@2728 3366
iveresov@2936 3367 // Spill because stubs can use any register they like and it's
iveresov@2936 3368 // easier to restore just those that we care about.
iveresov@2936 3369 store_parameter(dst, 0);
iveresov@2936 3370 store_parameter(dst_pos, 1);
iveresov@2936 3371 store_parameter(length, 2);
iveresov@2936 3372 store_parameter(src_pos, 3);
iveresov@2936 3373 store_parameter(src, 4);
iveresov@2936 3374
roland@2728 3375 #ifndef _LP64
roland@2728 3376 __ movptr(tmp, dst_klass_addr);
coleenp@4142 3377 __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
roland@2728 3378 __ push(tmp);
stefank@3391 3379 __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
roland@2728 3380 __ push(tmp);
roland@2728 3381 __ push(length);
roland@2728 3382 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3383 __ push(tmp);
roland@2728 3384 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3385 __ push(tmp);
roland@2728 3386
roland@2728 3387 __ call_VM_leaf(copyfunc_addr, 5);
roland@2728 3388 #else
roland@2728 3389 __ movl2ptr(length, length); //higher 32bits must be null
roland@2728 3390
roland@2728 3391 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3392 assert_different_registers(c_rarg0, dst, dst_pos, length);
roland@2728 3393 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3394 assert_different_registers(c_rarg1, dst, length);
roland@2728 3395
roland@2728 3396 __ mov(c_rarg2, length);
roland@2728 3397 assert_different_registers(c_rarg2, dst);
roland@2728 3398
roland@2728 3399 #ifdef _WIN64
roland@2728 3400 // Allocate abi space for args but be sure to keep stack aligned
roland@2728 3401 __ subptr(rsp, 6*wordSize);
roland@2728 3402 __ load_klass(c_rarg3, dst);
coleenp@4142 3403 __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
roland@2728 3404 store_parameter(c_rarg3, 4);
stefank@3391 3405 __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
roland@2728 3406 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3407 __ addptr(rsp, 6*wordSize);
roland@2728 3408 #else
roland@2728 3409 __ load_klass(c_rarg4, dst);
coleenp@4142 3410 __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
stefank@3391 3411 __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
roland@2728 3412 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3413 #endif
roland@2728 3414
roland@2728 3415 #endif
roland@2728 3416
roland@2728 3417 #ifndef PRODUCT
roland@2728 3418 if (PrintC1Statistics) {
roland@2728 3419 Label failed;
roland@2728 3420 __ testl(rax, rax);
roland@2728 3421 __ jcc(Assembler::notZero, failed);
roland@2728 3422 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
roland@2728 3423 __ bind(failed);
roland@2728 3424 }
roland@2728 3425 #endif
roland@2728 3426
roland@2728 3427 __ testl(rax, rax);
roland@2728 3428 __ jcc(Assembler::zero, *stub->continuation());
roland@2728 3429
roland@2728 3430 #ifndef PRODUCT
roland@2728 3431 if (PrintC1Statistics) {
roland@2728 3432 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
roland@2728 3433 }
roland@2728 3434 #endif
roland@2728 3435
roland@2728 3436 __ mov(tmp, rax);
roland@2728 3437
roland@2728 3438 __ xorl(tmp, -1);
roland@2728 3439
iveresov@2936 3440 // Restore previously spilled arguments
iveresov@2936 3441 __ movptr (dst, Address(rsp, 0*BytesPerWord));
iveresov@2936 3442 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
iveresov@2936 3443 __ movptr (length, Address(rsp, 2*BytesPerWord));
iveresov@2936 3444 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
iveresov@2936 3445 __ movptr (src, Address(rsp, 4*BytesPerWord));
iveresov@2936 3446
roland@2728 3447
roland@2728 3448 __ subl(length, tmp);
roland@2728 3449 __ addl(src_pos, tmp);
roland@2728 3450 __ addl(dst_pos, tmp);
roland@2728 3451 }
roland@2728 3452
roland@2728 3453 __ jmp(*stub->entry());
roland@2728 3454
roland@2728 3455 __ bind(cont);
roland@2728 3456 __ pop(dst);
roland@2728 3457 __ pop(src);
iveresov@2344 3458 }
duke@435 3459 }
duke@435 3460
duke@435 3461 #ifdef ASSERT
duke@435 3462 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 3463 // Sanity check the known type with the incoming class. For the
duke@435 3464 // primitive case the types must match exactly with src.klass and
duke@435 3465 // dst.klass each exactly matching the default type. For the
duke@435 3466 // object array case, if no type check is needed then either the
duke@435 3467 // dst type is exactly the expected type and the src type is a
duke@435 3468 // subtype which we can't check or src is the same array as dst
duke@435 3469 // but not necessarily exactly of type default_type.
duke@435 3470 Label known_ok, halt;
coleenp@4037 3471 __ mov_metadata(tmp, default_type->constant_encoding());
iveresov@2344 3472 #ifdef _LP64
ehelin@5694 3473 if (UseCompressedClassPointers) {
roland@4159 3474 __ encode_klass_not_null(tmp);
iveresov@2344 3475 }
iveresov@2344 3476 #endif
iveresov@2344 3477
duke@435 3478 if (basic_type != T_OBJECT) {
iveresov@2344 3479
ehelin@5694 3480 if (UseCompressedClassPointers) __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3481 else __ cmpptr(tmp, dst_klass_addr);
duke@435 3482 __ jcc(Assembler::notEqual, halt);
ehelin@5694 3483 if (UseCompressedClassPointers) __ cmpl(tmp, src_klass_addr);
iveresov@2344 3484 else __ cmpptr(tmp, src_klass_addr);
duke@435 3485 __ jcc(Assembler::equal, known_ok);
duke@435 3486 } else {
ehelin@5694 3487 if (UseCompressedClassPointers) __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3488 else __ cmpptr(tmp, dst_klass_addr);
duke@435 3489 __ jcc(Assembler::equal, known_ok);
never@739 3490 __ cmpptr(src, dst);
duke@435 3491 __ jcc(Assembler::equal, known_ok);
duke@435 3492 }
duke@435 3493 __ bind(halt);
duke@435 3494 __ stop("incorrect type information in arraycopy");
duke@435 3495 __ bind(known_ok);
duke@435 3496 }
duke@435 3497 #endif
duke@435 3498
roland@2728 3499 #ifndef PRODUCT
roland@2728 3500 if (PrintC1Statistics) {
roland@2728 3501 __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
never@739 3502 }
roland@2728 3503 #endif
never@739 3504
never@739 3505 #ifdef _LP64
never@739 3506 assert_different_registers(c_rarg0, dst, dst_pos, length);
never@739 3507 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3508 assert_different_registers(c_rarg1, length);
never@739 3509 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3510 __ mov(c_rarg2, length);
never@739 3511
never@739 3512 #else
never@739 3513 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3514 store_parameter(tmp, 0);
never@739 3515 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3516 store_parameter(tmp, 1);
duke@435 3517 store_parameter(length, 2);
never@739 3518 #endif // _LP64
roland@2728 3519
roland@2728 3520 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
roland@2728 3521 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
roland@2728 3522 const char *name;
roland@2728 3523 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
roland@2728 3524 __ call_VM_leaf(entry, 0);
duke@435 3525
duke@435 3526 __ bind(*stub->continuation());
duke@435 3527 }
duke@435 3528
drchase@5353 3529 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
drchase@5353 3530 assert(op->crc()->is_single_cpu(), "crc must be register");
drchase@5353 3531 assert(op->val()->is_single_cpu(), "byte value must be register");
drchase@5353 3532 assert(op->result_opr()->is_single_cpu(), "result must be register");
drchase@5353 3533 Register crc = op->crc()->as_register();
drchase@5353 3534 Register val = op->val()->as_register();
drchase@5353 3535 Register res = op->result_opr()->as_register();
drchase@5353 3536
drchase@5353 3537 assert_different_registers(val, crc, res);
drchase@5353 3538
drchase@5353 3539 __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
drchase@5353 3540 __ notl(crc); // ~crc
drchase@5353 3541 __ update_byte_crc32(crc, val, res);
drchase@5353 3542 __ notl(crc); // ~crc
drchase@5353 3543 __ mov(res, crc);
drchase@5353 3544 }
duke@435 3545
duke@435 3546 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 3547 Register obj = op->obj_opr()->as_register(); // may not be an oop
duke@435 3548 Register hdr = op->hdr_opr()->as_register();
duke@435 3549 Register lock = op->lock_opr()->as_register();
duke@435 3550 if (!UseFastLocking) {
duke@435 3551 __ jmp(*op->stub()->entry());
duke@435 3552 } else if (op->code() == lir_lock) {
duke@435 3553 Register scratch = noreg;
duke@435 3554 if (UseBiasedLocking) {
duke@435 3555 scratch = op->scratch_opr()->as_register();
duke@435 3556 }
duke@435 3557 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3558 // add debug info for NullPointerException only if one is possible
duke@435 3559 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
duke@435 3560 if (op->info() != NULL) {
duke@435 3561 add_debug_info_for_null_check(null_check_offset, op->info());
duke@435 3562 }
duke@435 3563 // done
duke@435 3564 } else if (op->code() == lir_unlock) {
duke@435 3565 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3566 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 3567 } else {
duke@435 3568 Unimplemented();
duke@435 3569 }
duke@435 3570 __ bind(*op->stub()->continuation());
duke@435 3571 }
duke@435 3572
duke@435 3573
duke@435 3574 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 3575 ciMethod* method = op->profiled_method();
duke@435 3576 int bci = op->profiled_bci();
twisti@3969 3577 ciMethod* callee = op->profiled_callee();
duke@435 3578
duke@435 3579 // Update counter for all call types
iveresov@2349 3580 ciMethodData* md = method->method_data_or_null();
iveresov@2349 3581 assert(md != NULL, "Sanity");
duke@435 3582 ciProfileData* data = md->bci_to_data(bci);
duke@435 3583 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 3584 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
duke@435 3585 Register mdo = op->mdo()->as_register();
coleenp@4037 3586 __ mov_metadata(mdo, md->constant_encoding());
duke@435 3587 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
duke@435 3588 Bytecodes::Code bc = method->java_code_at_bci(bci);
twisti@3969 3589 const bool callee_is_static = callee->is_loaded() && callee->is_static();
duke@435 3590 // Perform additional virtual call profiling for invokevirtual and
duke@435 3591 // invokeinterface bytecodes
duke@435 3592 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
twisti@3969 3593 !callee_is_static && // required for optimized MH invokes
iveresov@2138 3594 C1ProfileVirtualCalls) {
duke@435 3595 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 3596 Register recv = op->recv()->as_register();
duke@435 3597 assert_different_registers(mdo, recv);
duke@435 3598 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 3599 ciKlass* known_klass = op->known_holder();
iveresov@2138 3600 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 3601 // We know the type that will be seen at this call site; we can
coleenp@4037 3602 // statically update the MethodData* rather than needing to do
duke@435 3603 // dynamic tests on the receiver type
duke@435 3604
duke@435 3605 // NOTE: we should probably put a lock around this search to
duke@435 3606 // avoid collisions by concurrent compilations
duke@435 3607 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 3608 uint i;
duke@435 3609 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3610 ciKlass* receiver = vc_data->receiver(i);
duke@435 3611 if (known_klass->equals(receiver)) {
duke@435 3612 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
iveresov@2138 3613 __ addptr(data_addr, DataLayout::counter_increment);
duke@435 3614 return;
duke@435 3615 }
duke@435 3616 }
duke@435 3617
duke@435 3618 // Receiver type not found in profile data; select an empty slot
duke@435 3619
duke@435 3620 // Note that this is less efficient than it should be because it
duke@435 3621 // always does a write to the receiver part of the
duke@435 3622 // VirtualCallData rather than just the first time
duke@435 3623 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3624 ciKlass* receiver = vc_data->receiver(i);
duke@435 3625 if (receiver == NULL) {
duke@435 3626 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
coleenp@4037 3627 __ mov_metadata(recv_addr, known_klass->constant_encoding());
duke@435 3628 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
iveresov@2138 3629 __ addptr(data_addr, DataLayout::counter_increment);
duke@435 3630 return;
duke@435 3631 }
duke@435 3632 }
duke@435 3633 } else {
iveresov@2344 3634 __ load_klass(recv, recv);
duke@435 3635 Label update_done;
iveresov@2138 3636 type_profile_helper(mdo, md, data, recv, &update_done);
kvn@1641 3637 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 3638 // Increment total counter to indicate polymorphic case.
iveresov@2138 3639 __ addptr(counter_addr, DataLayout::counter_increment);
duke@435 3640
duke@435 3641 __ bind(update_done);
duke@435 3642 }
kvn@1641 3643 } else {
kvn@1641 3644 // Static call
iveresov@2138 3645 __ addptr(counter_addr, DataLayout::counter_increment);
duke@435 3646 }
duke@435 3647 }
duke@435 3648
roland@5914 3649 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
roland@5914 3650 Register obj = op->obj()->as_register();
roland@5914 3651 Register tmp = op->tmp()->as_pointer_register();
roland@5914 3652 Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
roland@5914 3653 ciKlass* exact_klass = op->exact_klass();
roland@5914 3654 intptr_t current_klass = op->current_klass();
roland@5914 3655 bool not_null = op->not_null();
roland@5914 3656 bool no_conflict = op->no_conflict();
roland@5914 3657
roland@5914 3658 Label update, next, none;
roland@5914 3659
roland@5914 3660 bool do_null = !not_null;
roland@5914 3661 bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
roland@5914 3662 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
roland@5914 3663
roland@5914 3664 assert(do_null || do_update, "why are we here?");
roland@5914 3665 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
roland@5914 3666
roland@5914 3667 __ verify_oop(obj);
roland@5914 3668
roland@5914 3669 if (tmp != obj) {
roland@5914 3670 __ mov(tmp, obj);
roland@5914 3671 }
roland@5914 3672 if (do_null) {
roland@5914 3673 __ testptr(tmp, tmp);
roland@5914 3674 __ jccb(Assembler::notZero, update);
roland@5914 3675 if (!TypeEntries::was_null_seen(current_klass)) {
roland@5914 3676 __ orptr(mdo_addr, TypeEntries::null_seen);
roland@5914 3677 }
roland@5914 3678 if (do_update) {
roland@5914 3679 #ifndef ASSERT
roland@5914 3680 __ jmpb(next);
roland@5914 3681 }
roland@5914 3682 #else
roland@5914 3683 __ jmp(next);
roland@5914 3684 }
roland@5914 3685 } else {
roland@5914 3686 __ testptr(tmp, tmp);
roland@5914 3687 __ jccb(Assembler::notZero, update);
roland@5914 3688 __ stop("unexpect null obj");
roland@5914 3689 #endif
roland@5914 3690 }
roland@5914 3691
roland@5914 3692 __ bind(update);
roland@5914 3693
roland@5914 3694 if (do_update) {
roland@5914 3695 #ifdef ASSERT
roland@5914 3696 if (exact_klass != NULL) {
roland@5914 3697 Label ok;
roland@5914 3698 __ load_klass(tmp, tmp);
roland@5914 3699 __ push(tmp);
roland@5914 3700 __ mov_metadata(tmp, exact_klass->constant_encoding());
roland@5914 3701 __ cmpptr(tmp, Address(rsp, 0));
roland@5914 3702 __ jccb(Assembler::equal, ok);
roland@5914 3703 __ stop("exact klass and actual klass differ");
roland@5914 3704 __ bind(ok);
roland@5914 3705 __ pop(tmp);
roland@5914 3706 }
roland@5914 3707 #endif
roland@5914 3708 if (!no_conflict) {
roland@5914 3709 if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
roland@5914 3710 if (exact_klass != NULL) {
roland@5914 3711 __ mov_metadata(tmp, exact_klass->constant_encoding());
roland@5914 3712 } else {
roland@5914 3713 __ load_klass(tmp, tmp);
roland@5914 3714 }
roland@5914 3715
roland@5914 3716 __ xorptr(tmp, mdo_addr);
roland@5914 3717 __ testptr(tmp, TypeEntries::type_klass_mask);
roland@5914 3718 // klass seen before, nothing to do. The unknown bit may have been
roland@5914 3719 // set already but no need to check.
roland@5914 3720 __ jccb(Assembler::zero, next);
roland@5914 3721
roland@5914 3722 __ testptr(tmp, TypeEntries::type_unknown);
roland@5914 3723 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
roland@5914 3724
roland@5914 3725 if (TypeEntries::is_type_none(current_klass)) {
roland@5914 3726 __ cmpptr(mdo_addr, 0);
roland@5914 3727 __ jccb(Assembler::equal, none);
roland@5914 3728 __ cmpptr(mdo_addr, TypeEntries::null_seen);
roland@5914 3729 __ jccb(Assembler::equal, none);
roland@5914 3730 // There is a chance that the checks above (re-reading profiling
roland@5914 3731 // data from memory) fail if another thread has just set the
roland@5914 3732 // profiling to this obj's klass
roland@5914 3733 __ xorptr(tmp, mdo_addr);
roland@5914 3734 __ testptr(tmp, TypeEntries::type_klass_mask);
roland@5914 3735 __ jccb(Assembler::zero, next);
roland@5914 3736 }
roland@5914 3737 } else {
roland@5914 3738 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
roland@5914 3739 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
roland@5914 3740
roland@5914 3741 __ movptr(tmp, mdo_addr);
roland@5914 3742 __ testptr(tmp, TypeEntries::type_unknown);
roland@5914 3743 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
roland@5914 3744 }
roland@5914 3745
roland@5914 3746 // different than before. Cannot keep accurate profile.
roland@5914 3747 __ orptr(mdo_addr, TypeEntries::type_unknown);
roland@5914 3748
roland@5914 3749 if (TypeEntries::is_type_none(current_klass)) {
roland@5914 3750 __ jmpb(next);
roland@5914 3751
roland@5914 3752 __ bind(none);
roland@5914 3753 // first time here. Set profile type.
roland@5914 3754 __ movptr(mdo_addr, tmp);
roland@5914 3755 }
roland@5914 3756 } else {
roland@5914 3757 // There's a single possible klass at this profile point
roland@5914 3758 assert(exact_klass != NULL, "should be");
roland@5914 3759 if (TypeEntries::is_type_none(current_klass)) {
roland@5914 3760 __ mov_metadata(tmp, exact_klass->constant_encoding());
roland@5914 3761 __ xorptr(tmp, mdo_addr);
roland@5914 3762 __ testptr(tmp, TypeEntries::type_klass_mask);
roland@5914 3763 #ifdef ASSERT
roland@5914 3764 __ jcc(Assembler::zero, next);
roland@5914 3765
roland@5914 3766 {
roland@5914 3767 Label ok;
roland@5914 3768 __ push(tmp);
roland@5914 3769 __ cmpptr(mdo_addr, 0);
roland@5914 3770 __ jcc(Assembler::equal, ok);
roland@5914 3771 __ cmpptr(mdo_addr, TypeEntries::null_seen);
roland@5914 3772 __ jcc(Assembler::equal, ok);
roland@5914 3773 // may have been set by another thread
roland@5914 3774 __ mov_metadata(tmp, exact_klass->constant_encoding());
roland@5914 3775 __ xorptr(tmp, mdo_addr);
roland@5914 3776 __ testptr(tmp, TypeEntries::type_mask);
roland@5914 3777 __ jcc(Assembler::zero, ok);
roland@5914 3778
roland@5914 3779 __ stop("unexpected profiling mismatch");
roland@5914 3780 __ bind(ok);
roland@5914 3781 __ pop(tmp);
roland@5914 3782 }
roland@5914 3783 #else
roland@5914 3784 __ jccb(Assembler::zero, next);
roland@5914 3785 #endif
roland@5914 3786 // first time here. Set profile type.
roland@5914 3787 __ movptr(mdo_addr, tmp);
roland@5914 3788 } else {
roland@5914 3789 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
roland@5914 3790 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
roland@5914 3791
roland@5914 3792 __ movptr(tmp, mdo_addr);
roland@5914 3793 __ testptr(tmp, TypeEntries::type_unknown);
roland@5914 3794 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
roland@5914 3795
roland@5914 3796 __ orptr(mdo_addr, TypeEntries::type_unknown);
roland@5914 3797 }
roland@5914 3798 }
roland@5914 3799
roland@5914 3800 __ bind(next);
roland@5914 3801 }
roland@5914 3802 }
roland@5914 3803
duke@435 3804 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
duke@435 3805 Unimplemented();
duke@435 3806 }
duke@435 3807
duke@435 3808
duke@435 3809 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
never@739 3810 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
duke@435 3811 }
duke@435 3812
duke@435 3813
duke@435 3814 void LIR_Assembler::align_backward_branch_target() {
duke@435 3815 __ align(BytesPerWord);
duke@435 3816 }
duke@435 3817
duke@435 3818
duke@435 3819 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3820 if (left->is_single_cpu()) {
duke@435 3821 __ negl(left->as_register());
duke@435 3822 move_regs(left->as_register(), dest->as_register());
duke@435 3823
duke@435 3824 } else if (left->is_double_cpu()) {
duke@435 3825 Register lo = left->as_register_lo();
never@739 3826 #ifdef _LP64
never@739 3827 Register dst = dest->as_register_lo();
never@739 3828 __ movptr(dst, lo);
never@739 3829 __ negptr(dst);
never@739 3830 #else
duke@435 3831 Register hi = left->as_register_hi();
duke@435 3832 __ lneg(hi, lo);
duke@435 3833 if (dest->as_register_lo() == hi) {
duke@435 3834 assert(dest->as_register_hi() != lo, "destroying register");
duke@435 3835 move_regs(hi, dest->as_register_hi());
duke@435 3836 move_regs(lo, dest->as_register_lo());
duke@435 3837 } else {
duke@435 3838 move_regs(lo, dest->as_register_lo());
duke@435 3839 move_regs(hi, dest->as_register_hi());
duke@435 3840 }
never@739 3841 #endif // _LP64
duke@435 3842
duke@435 3843 } else if (dest->is_single_xmm()) {
duke@435 3844 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
duke@435 3845 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
duke@435 3846 }
duke@435 3847 __ xorps(dest->as_xmm_float_reg(),
duke@435 3848 ExternalAddress((address)float_signflip_pool));
duke@435 3849
duke@435 3850 } else if (dest->is_double_xmm()) {
duke@435 3851 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
duke@435 3852 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
duke@435 3853 }
duke@435 3854 __ xorpd(dest->as_xmm_double_reg(),
duke@435 3855 ExternalAddress((address)double_signflip_pool));
duke@435 3856
duke@435 3857 } else if (left->is_single_fpu() || left->is_double_fpu()) {
duke@435 3858 assert(left->fpu() == 0, "arg must be on TOS");
duke@435 3859 assert(dest->fpu() == 0, "dest must be TOS");
duke@435 3860 __ fchs();
duke@435 3861
duke@435 3862 } else {
duke@435 3863 ShouldNotReachHere();
duke@435 3864 }
duke@435 3865 }
duke@435 3866
duke@435 3867
duke@435 3868 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
duke@435 3869 assert(addr->is_address() && dest->is_register(), "check");
never@739 3870 Register reg;
never@739 3871 reg = dest->as_pointer_register();
never@739 3872 __ lea(reg, as_Address(addr->as_address_ptr()));
duke@435 3873 }
duke@435 3874
duke@435 3875
duke@435 3876
duke@435 3877 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3878 assert(!tmp->is_valid(), "don't need temporary");
duke@435 3879 __ call(RuntimeAddress(dest));
duke@435 3880 if (info != NULL) {
duke@435 3881 add_call_info_here(info);
duke@435 3882 }
duke@435 3883 }
duke@435 3884
duke@435 3885
duke@435 3886 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3887 assert(type == T_LONG, "only for volatile long fields");
duke@435 3888
duke@435 3889 if (info != NULL) {
duke@435 3890 add_debug_info_for_null_check_here(info);
duke@435 3891 }
duke@435 3892
duke@435 3893 if (src->is_double_xmm()) {
duke@435 3894 if (dest->is_double_cpu()) {
never@739 3895 #ifdef _LP64
never@739 3896 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
never@739 3897 #else
never@739 3898 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
duke@435 3899 __ psrlq(src->as_xmm_double_reg(), 32);
never@739 3900 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
never@739 3901 #endif // _LP64
duke@435 3902 } else if (dest->is_double_stack()) {
duke@435 3903 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
duke@435 3904 } else if (dest->is_address()) {
duke@435 3905 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
duke@435 3906 } else {
duke@435 3907 ShouldNotReachHere();
duke@435 3908 }
duke@435 3909
duke@435 3910 } else if (dest->is_double_xmm()) {
duke@435 3911 if (src->is_double_stack()) {
duke@435 3912 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3913 } else if (src->is_address()) {
duke@435 3914 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
duke@435 3915 } else {
duke@435 3916 ShouldNotReachHere();
duke@435 3917 }
duke@435 3918
duke@435 3919 } else if (src->is_double_fpu()) {
duke@435 3920 assert(src->fpu_regnrLo() == 0, "must be TOS");
duke@435 3921 if (dest->is_double_stack()) {
duke@435 3922 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
duke@435 3923 } else if (dest->is_address()) {
duke@435 3924 __ fistp_d(as_Address(dest->as_address_ptr()));
duke@435 3925 } else {
duke@435 3926 ShouldNotReachHere();
duke@435 3927 }
duke@435 3928
duke@435 3929 } else if (dest->is_double_fpu()) {
duke@435 3930 assert(dest->fpu_regnrLo() == 0, "must be TOS");
duke@435 3931 if (src->is_double_stack()) {
duke@435 3932 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3933 } else if (src->is_address()) {
duke@435 3934 __ fild_d(as_Address(src->as_address_ptr()));
duke@435 3935 } else {
duke@435 3936 ShouldNotReachHere();
duke@435 3937 }
duke@435 3938 } else {
duke@435 3939 ShouldNotReachHere();
duke@435 3940 }
duke@435 3941 }
duke@435 3942
roland@4860 3943 #ifdef ASSERT
roland@4860 3944 // emit run-time assertion
roland@4860 3945 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
roland@4860 3946 assert(op->code() == lir_assert, "must be");
roland@4860 3947
roland@4860 3948 if (op->in_opr1()->is_valid()) {
roland@4860 3949 assert(op->in_opr2()->is_valid(), "both operands must be valid");
roland@4860 3950 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
roland@4860 3951 } else {
roland@4860 3952 assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
roland@4860 3953 assert(op->condition() == lir_cond_always, "no other conditions allowed");
roland@4860 3954 }
roland@4860 3955
roland@4860 3956 Label ok;
roland@4860 3957 if (op->condition() != lir_cond_always) {
roland@4860 3958 Assembler::Condition acond = Assembler::zero;
roland@4860 3959 switch (op->condition()) {
roland@4860 3960 case lir_cond_equal: acond = Assembler::equal; break;
roland@4860 3961 case lir_cond_notEqual: acond = Assembler::notEqual; break;
roland@4860 3962 case lir_cond_less: acond = Assembler::less; break;
roland@4860 3963 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
roland@4860 3964 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
roland@4860 3965 case lir_cond_greater: acond = Assembler::greater; break;
roland@4860 3966 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
roland@4860 3967 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
roland@4860 3968 default: ShouldNotReachHere();
roland@4860 3969 }
roland@4860 3970 __ jcc(acond, ok);
roland@4860 3971 }
roland@4860 3972 if (op->halt()) {
roland@4860 3973 const char* str = __ code_string(op->msg());
roland@4860 3974 __ stop(str);
roland@4860 3975 } else {
roland@4860 3976 breakpoint();
roland@4860 3977 }
roland@4860 3978 __ bind(ok);
roland@4860 3979 }
roland@4860 3980 #endif
duke@435 3981
duke@435 3982 void LIR_Assembler::membar() {
never@739 3983 // QQQ sparc TSO uses this,
never@739 3984 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
duke@435 3985 }
duke@435 3986
duke@435 3987 void LIR_Assembler::membar_acquire() {
duke@435 3988 // No x86 machines currently require load fences
duke@435 3989 // __ load_fence();
duke@435 3990 }
duke@435 3991
duke@435 3992 void LIR_Assembler::membar_release() {
duke@435 3993 // No x86 machines currently require store fences
duke@435 3994 // __ store_fence();
duke@435 3995 }
duke@435 3996
jiangli@3592 3997 void LIR_Assembler::membar_loadload() {
jiangli@3592 3998 // no-op
jiangli@3592 3999 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
jiangli@3592 4000 }
jiangli@3592 4001
jiangli@3592 4002 void LIR_Assembler::membar_storestore() {
jiangli@3592 4003 // no-op
jiangli@3592 4004 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
jiangli@3592 4005 }
jiangli@3592 4006
jiangli@3592 4007 void LIR_Assembler::membar_loadstore() {
jiangli@3592 4008 // no-op
jiangli@3592 4009 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
jiangli@3592 4010 }
jiangli@3592 4011
jiangli@3592 4012 void LIR_Assembler::membar_storeload() {
jiangli@3592 4013 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
jiangli@3592 4014 }
jiangli@3592 4015
duke@435 4016 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 4017 assert(result_reg->is_register(), "check");
never@739 4018 #ifdef _LP64
never@739 4019 // __ get_thread(result_reg->as_register_lo());
never@739 4020 __ mov(result_reg->as_register(), r15_thread);
never@739 4021 #else
duke@435 4022 __ get_thread(result_reg->as_register());
never@739 4023 #endif // _LP64
duke@435 4024 }
duke@435 4025
duke@435 4026
duke@435 4027 void LIR_Assembler::peephole(LIR_List*) {
duke@435 4028 // do nothing for now
duke@435 4029 }
duke@435 4030
roland@4106 4031 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
roland@4106 4032 assert(data == dest, "xchg/xadd uses only 2 operands");
roland@4106 4033
roland@4106 4034 if (data->type() == T_INT) {
roland@4106 4035 if (code == lir_xadd) {
roland@4106 4036 if (os::is_MP()) {
roland@4106 4037 __ lock();
roland@4106 4038 }
roland@4106 4039 __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
roland@4106 4040 } else {
roland@4106 4041 __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
roland@4106 4042 }
roland@4106 4043 } else if (data->is_oop()) {
roland@4106 4044 assert (code == lir_xchg, "xadd for oops");
roland@4106 4045 Register obj = data->as_register();
roland@4106 4046 #ifdef _LP64
roland@4106 4047 if (UseCompressedOops) {
roland@4106 4048 __ encode_heap_oop(obj);
roland@4106 4049 __ xchgl(obj, as_Address(src->as_address_ptr()));
roland@4106 4050 __ decode_heap_oop(obj);
roland@4106 4051 } else {
roland@4106 4052 __ xchgptr(obj, as_Address(src->as_address_ptr()));
roland@4106 4053 }
roland@4106 4054 #else
roland@4106 4055 __ xchgl(obj, as_Address(src->as_address_ptr()));
roland@4106 4056 #endif
roland@4106 4057 } else if (data->type() == T_LONG) {
roland@4106 4058 #ifdef _LP64
roland@4106 4059 assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
roland@4106 4060 if (code == lir_xadd) {
roland@4106 4061 if (os::is_MP()) {
roland@4106 4062 __ lock();
roland@4106 4063 }
roland@4106 4064 __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
roland@4106 4065 } else {
roland@4106 4066 __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
roland@4106 4067 }
roland@4106 4068 #else
roland@4106 4069 ShouldNotReachHere();
roland@4106 4070 #endif
roland@4106 4071 } else {
roland@4106 4072 ShouldNotReachHere();
roland@4106 4073 }
roland@4106 4074 }
duke@435 4075
duke@435 4076 #undef __

mercurial