src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Mon, 01 Feb 2010 16:49:49 -0800

author
kvn
date
Mon, 01 Feb 2010 16:49:49 -0800
changeset 1641
87684f1a88b5
parent 1639
18a389214829
child 1651
7f8790caccb0
child 1686
576e77447e3c
permissions
-rw-r--r--

6614597: Performance variability in jvm2008 xml.validation
Summary: Fix incorrect marking of methods as not compilable.
Reviewed-by: never

duke@435 1 /*
twisti@1639 2 * Copyright 2000-2010 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_c1_LIRAssembler_x86.cpp.incl"
duke@435 27
duke@435 28
duke@435 29 // These masks are used to provide 128-bit aligned bitmasks to the XMM
duke@435 30 // instructions, to allow sign-masking or sign-bit flipping. They allow
duke@435 31 // fast versions of NegF/NegD and AbsF/AbsD.
duke@435 32
duke@435 33 // Note: 'double' and 'long long' have 32-bits alignment on x86.
duke@435 34 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
duke@435 35 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
duke@435 36 // of 128-bits operands for SSE instructions.
duke@435 37 jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
duke@435 38 // Store the value to a 128-bits operand.
duke@435 39 operand[0] = lo;
duke@435 40 operand[1] = hi;
duke@435 41 return operand;
duke@435 42 }
duke@435 43
duke@435 44 // Buffer for 128-bits masks used by SSE instructions.
duke@435 45 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
duke@435 46
duke@435 47 // Static initialization during VM startup.
duke@435 48 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
duke@435 49 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
duke@435 50 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
duke@435 51 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
duke@435 52
duke@435 53
duke@435 54
duke@435 55 NEEDS_CLEANUP // remove this definitions ?
duke@435 56 const Register IC_Klass = rax; // where the IC klass is cached
duke@435 57 const Register SYNC_header = rax; // synchronization header
duke@435 58 const Register SHIFT_count = rcx; // where count for shift operations must be
duke@435 59
duke@435 60 #define __ _masm->
duke@435 61
duke@435 62
duke@435 63 static void select_different_registers(Register preserve,
duke@435 64 Register extra,
duke@435 65 Register &tmp1,
duke@435 66 Register &tmp2) {
duke@435 67 if (tmp1 == preserve) {
duke@435 68 assert_different_registers(tmp1, tmp2, extra);
duke@435 69 tmp1 = extra;
duke@435 70 } else if (tmp2 == preserve) {
duke@435 71 assert_different_registers(tmp1, tmp2, extra);
duke@435 72 tmp2 = extra;
duke@435 73 }
duke@435 74 assert_different_registers(preserve, tmp1, tmp2);
duke@435 75 }
duke@435 76
duke@435 77
duke@435 78
duke@435 79 static void select_different_registers(Register preserve,
duke@435 80 Register extra,
duke@435 81 Register &tmp1,
duke@435 82 Register &tmp2,
duke@435 83 Register &tmp3) {
duke@435 84 if (tmp1 == preserve) {
duke@435 85 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 86 tmp1 = extra;
duke@435 87 } else if (tmp2 == preserve) {
duke@435 88 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 89 tmp2 = extra;
duke@435 90 } else if (tmp3 == preserve) {
duke@435 91 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 92 tmp3 = extra;
duke@435 93 }
duke@435 94 assert_different_registers(preserve, tmp1, tmp2, tmp3);
duke@435 95 }
duke@435 96
duke@435 97
duke@435 98
duke@435 99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 100 if (opr->is_constant()) {
duke@435 101 LIR_Const* constant = opr->as_constant_ptr();
duke@435 102 switch (constant->type()) {
duke@435 103 case T_INT: {
duke@435 104 return true;
duke@435 105 }
duke@435 106
duke@435 107 default:
duke@435 108 return false;
duke@435 109 }
duke@435 110 }
duke@435 111 return false;
duke@435 112 }
duke@435 113
duke@435 114
duke@435 115 LIR_Opr LIR_Assembler::receiverOpr() {
never@739 116 return FrameMap::receiver_opr;
duke@435 117 }
duke@435 118
duke@435 119 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
duke@435 120 return receiverOpr();
duke@435 121 }
duke@435 122
duke@435 123 LIR_Opr LIR_Assembler::osrBufferPointer() {
never@739 124 return FrameMap::as_pointer_opr(receiverOpr()->as_register());
duke@435 125 }
duke@435 126
duke@435 127 //--------------fpu register translations-----------------------
duke@435 128
duke@435 129
duke@435 130 address LIR_Assembler::float_constant(float f) {
duke@435 131 address const_addr = __ float_constant(f);
duke@435 132 if (const_addr == NULL) {
duke@435 133 bailout("const section overflow");
duke@435 134 return __ code()->consts()->start();
duke@435 135 } else {
duke@435 136 return const_addr;
duke@435 137 }
duke@435 138 }
duke@435 139
duke@435 140
duke@435 141 address LIR_Assembler::double_constant(double d) {
duke@435 142 address const_addr = __ double_constant(d);
duke@435 143 if (const_addr == NULL) {
duke@435 144 bailout("const section overflow");
duke@435 145 return __ code()->consts()->start();
duke@435 146 } else {
duke@435 147 return const_addr;
duke@435 148 }
duke@435 149 }
duke@435 150
duke@435 151
duke@435 152 void LIR_Assembler::set_24bit_FPU() {
duke@435 153 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
duke@435 154 }
duke@435 155
duke@435 156 void LIR_Assembler::reset_FPU() {
duke@435 157 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 158 }
duke@435 159
duke@435 160 void LIR_Assembler::fpop() {
duke@435 161 __ fpop();
duke@435 162 }
duke@435 163
duke@435 164 void LIR_Assembler::fxch(int i) {
duke@435 165 __ fxch(i);
duke@435 166 }
duke@435 167
duke@435 168 void LIR_Assembler::fld(int i) {
duke@435 169 __ fld_s(i);
duke@435 170 }
duke@435 171
duke@435 172 void LIR_Assembler::ffree(int i) {
duke@435 173 __ ffree(i);
duke@435 174 }
duke@435 175
duke@435 176 void LIR_Assembler::breakpoint() {
duke@435 177 __ int3();
duke@435 178 }
duke@435 179
duke@435 180 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 181 if (opr->is_single_cpu()) {
duke@435 182 __ push_reg(opr->as_register());
duke@435 183 } else if (opr->is_double_cpu()) {
never@739 184 NOT_LP64(__ push_reg(opr->as_register_hi()));
duke@435 185 __ push_reg(opr->as_register_lo());
duke@435 186 } else if (opr->is_stack()) {
duke@435 187 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
duke@435 188 } else if (opr->is_constant()) {
duke@435 189 LIR_Const* const_opr = opr->as_constant_ptr();
duke@435 190 if (const_opr->type() == T_OBJECT) {
duke@435 191 __ push_oop(const_opr->as_jobject());
duke@435 192 } else if (const_opr->type() == T_INT) {
duke@435 193 __ push_jint(const_opr->as_jint());
duke@435 194 } else {
duke@435 195 ShouldNotReachHere();
duke@435 196 }
duke@435 197
duke@435 198 } else {
duke@435 199 ShouldNotReachHere();
duke@435 200 }
duke@435 201 }
duke@435 202
duke@435 203 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 204 if (opr->is_single_cpu()) {
never@739 205 __ pop_reg(opr->as_register());
duke@435 206 } else {
duke@435 207 ShouldNotReachHere();
duke@435 208 }
duke@435 209 }
duke@435 210
never@739 211 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
never@739 212 return addr->base()->is_illegal() && addr->index()->is_illegal();
never@739 213 }
never@739 214
duke@435 215 //-------------------------------------------
never@739 216
duke@435 217 Address LIR_Assembler::as_Address(LIR_Address* addr) {
never@739 218 return as_Address(addr, rscratch1);
never@739 219 }
never@739 220
never@739 221 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
duke@435 222 if (addr->base()->is_illegal()) {
duke@435 223 assert(addr->index()->is_illegal(), "must be illegal too");
never@739 224 AddressLiteral laddr((address)addr->disp(), relocInfo::none);
never@739 225 if (! __ reachable(laddr)) {
never@739 226 __ movptr(tmp, laddr.addr());
never@739 227 Address res(tmp, 0);
never@739 228 return res;
never@739 229 } else {
never@739 230 return __ as_Address(laddr);
never@739 231 }
duke@435 232 }
duke@435 233
never@739 234 Register base = addr->base()->as_pointer_register();
duke@435 235
duke@435 236 if (addr->index()->is_illegal()) {
duke@435 237 return Address( base, addr->disp());
never@739 238 } else if (addr->index()->is_cpu_register()) {
never@739 239 Register index = addr->index()->as_pointer_register();
duke@435 240 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
duke@435 241 } else if (addr->index()->is_constant()) {
never@739 242 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
never@739 243 assert(Assembler::is_simm32(addr_offset), "must be");
duke@435 244
duke@435 245 return Address(base, addr_offset);
duke@435 246 } else {
duke@435 247 Unimplemented();
duke@435 248 return Address();
duke@435 249 }
duke@435 250 }
duke@435 251
duke@435 252
duke@435 253 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 254 Address base = as_Address(addr);
duke@435 255 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
duke@435 256 }
duke@435 257
duke@435 258
duke@435 259 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 260 return as_Address(addr);
duke@435 261 }
duke@435 262
duke@435 263
duke@435 264 void LIR_Assembler::osr_entry() {
duke@435 265 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 266 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 267 ValueStack* entry_state = osr_entry->state();
duke@435 268 int number_of_locks = entry_state->locks_size();
duke@435 269
duke@435 270 // we jump here if osr happens with the interpreter
duke@435 271 // state set up to continue at the beginning of the
duke@435 272 // loop that triggered osr - in particular, we have
duke@435 273 // the following registers setup:
duke@435 274 //
duke@435 275 // rcx: osr buffer
duke@435 276 //
duke@435 277
duke@435 278 // build frame
duke@435 279 ciMethod* m = compilation()->method();
duke@435 280 __ build_frame(initial_frame_size_in_bytes());
duke@435 281
duke@435 282 // OSR buffer is
duke@435 283 //
duke@435 284 // locals[nlocals-1..0]
duke@435 285 // monitors[0..number_of_locks]
duke@435 286 //
duke@435 287 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 288 // so first slot in the local array is the last local from the interpreter
duke@435 289 // and last slot is local[0] (receiver) from the interpreter
duke@435 290 //
duke@435 291 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 292 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 293 // in the interpreter frame (the method lock if a sync method)
duke@435 294
duke@435 295 // Initialize monitors in the compiled activation.
duke@435 296 // rcx: pointer to osr buffer
duke@435 297 //
duke@435 298 // All other registers are dead at this point and the locals will be
duke@435 299 // copied into place by code emitted in the IR.
duke@435 300
never@739 301 Register OSR_buf = osrBufferPointer()->as_pointer_register();
duke@435 302 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 303 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 304 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 305 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 306 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 307 // the oop.
duke@435 308 for (int i = 0; i < number_of_locks; i++) {
roland@1495 309 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 310 #ifdef ASSERT
duke@435 311 // verify the interpreter's monitor has a non-null object
duke@435 312 {
duke@435 313 Label L;
roland@1495 314 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
duke@435 315 __ jcc(Assembler::notZero, L);
duke@435 316 __ stop("locked object is NULL");
duke@435 317 __ bind(L);
duke@435 318 }
duke@435 319 #endif
roland@1495 320 __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
never@739 321 __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
roland@1495 322 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
never@739 323 __ movptr(frame_map()->address_for_monitor_object(i), rbx);
duke@435 324 }
duke@435 325 }
duke@435 326 }
duke@435 327
duke@435 328
duke@435 329 // inline cache check; done before the frame is built.
duke@435 330 int LIR_Assembler::check_icache() {
duke@435 331 Register receiver = FrameMap::receiver_opr->as_register();
duke@435 332 Register ic_klass = IC_Klass;
never@739 333 const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
duke@435 334
duke@435 335 if (!VerifyOops) {
duke@435 336 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
never@739 337 while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
duke@435 338 __ nop();
duke@435 339 }
duke@435 340 }
duke@435 341 int offset = __ offset();
duke@435 342 __ inline_cache_check(receiver, IC_Klass);
duke@435 343 assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct");
duke@435 344 if (VerifyOops) {
duke@435 345 // force alignment after the cache check.
duke@435 346 // It's been verified to be aligned if !VerifyOops
duke@435 347 __ align(CodeEntryAlignment);
duke@435 348 }
duke@435 349 return offset;
duke@435 350 }
duke@435 351
duke@435 352
duke@435 353 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
duke@435 354 jobject o = NULL;
duke@435 355 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
duke@435 356 __ movoop(reg, o);
duke@435 357 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 358 }
duke@435 359
duke@435 360
duke@435 361 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
duke@435 362 if (exception->is_valid()) {
duke@435 363 // preserve exception
duke@435 364 // note: the monitor_exit runtime call is a leaf routine
duke@435 365 // and cannot block => no GC can happen
duke@435 366 // The slow case (MonitorAccessStub) uses the first two stack slots
duke@435 367 // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
never@739 368 __ movptr (Address(rsp, 2*wordSize), exception);
duke@435 369 }
duke@435 370
duke@435 371 Register obj_reg = obj_opr->as_register();
duke@435 372 Register lock_reg = lock_opr->as_register();
duke@435 373
duke@435 374 // setup registers (lock_reg must be rax, for lock_object)
duke@435 375 assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
duke@435 376 Register hdr = lock_reg;
duke@435 377 assert(new_hdr == SYNC_header, "wrong register");
duke@435 378 lock_reg = new_hdr;
duke@435 379 // compute pointer to BasicLock
duke@435 380 Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
never@739 381 __ lea(lock_reg, lock_addr);
duke@435 382 // unlock object
duke@435 383 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
duke@435 384 // _slow_case_stubs->append(slow_case);
duke@435 385 // temporary fix: must be created after exceptionhandler, therefore as call stub
duke@435 386 _slow_case_stubs->append(slow_case);
duke@435 387 if (UseFastLocking) {
duke@435 388 // try inlined fast unlocking first, revert to slow locking if it fails
duke@435 389 // note: lock_reg points to the displaced header since the displaced header offset is 0!
duke@435 390 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 391 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
duke@435 392 } else {
duke@435 393 // always do slow unlocking
duke@435 394 // note: the slow unlocking code could be inlined here, however if we use
duke@435 395 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 396 // simpler and requires less duplicated code - additionally, the
duke@435 397 // slow unlocking code is the same in either case which simplifies
duke@435 398 // debugging
duke@435 399 __ jmp(*slow_case->entry());
duke@435 400 }
duke@435 401 // done
duke@435 402 __ bind(*slow_case->continuation());
duke@435 403
duke@435 404 if (exception->is_valid()) {
duke@435 405 // restore exception
never@739 406 __ movptr (exception, Address(rsp, 2 * wordSize));
duke@435 407 }
duke@435 408 }
duke@435 409
duke@435 410 // This specifies the rsp decrement needed to build the frame
duke@435 411 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 412 // if rounding, must let FrameMap know!
never@739 413
never@739 414 // The frame_map records size in slots (32bit word)
never@739 415
never@739 416 // subtract two words to account for return address and link
never@739 417 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size;
duke@435 418 }
duke@435 419
duke@435 420
twisti@1639 421 int LIR_Assembler::emit_exception_handler() {
duke@435 422 // if the last instruction is a call (typically to do a throw which
duke@435 423 // is coming at the end after block reordering) the return address
duke@435 424 // must still point into the code area in order to avoid assertion
duke@435 425 // failures when searching for the corresponding bci => add a nop
duke@435 426 // (was bug 5/14/1999 - gri)
duke@435 427 __ nop();
duke@435 428
duke@435 429 // generate code for exception handler
duke@435 430 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 431 if (handler_base == NULL) {
duke@435 432 // not enough space left for the handler
duke@435 433 bailout("exception handler overflow");
twisti@1639 434 return -1;
duke@435 435 }
twisti@1639 436
duke@435 437 int offset = code_offset();
duke@435 438
duke@435 439 // if the method does not have an exception handler, then there is
duke@435 440 // no reason to search for one
kvn@1215 441 if (compilation()->has_exception_handlers() || compilation()->env()->jvmti_can_post_exceptions()) {
duke@435 442 // the exception oop and pc are in rax, and rdx
duke@435 443 // no other registers need to be preserved, so invalidate them
duke@435 444 __ invalidate_registers(false, true, true, false, true, true);
duke@435 445
duke@435 446 // check that there is really an exception
duke@435 447 __ verify_not_null_oop(rax);
duke@435 448
duke@435 449 // search an exception handler (rax: exception oop, rdx: throwing pc)
duke@435 450 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
duke@435 451
duke@435 452 // if the call returns here, then the exception handler for particular
duke@435 453 // exception doesn't exist -> unwind activation and forward exception to caller
duke@435 454 }
duke@435 455
duke@435 456 // the exception oop is in rax,
duke@435 457 // no other registers need to be preserved, so invalidate them
duke@435 458 __ invalidate_registers(false, true, true, true, true, true);
duke@435 459
duke@435 460 // check that there is really an exception
duke@435 461 __ verify_not_null_oop(rax);
duke@435 462
duke@435 463 // unlock the receiver/klass if necessary
duke@435 464 // rax,: exception
duke@435 465 ciMethod* method = compilation()->method();
duke@435 466 if (method->is_synchronized() && GenerateSynchronizationCode) {
duke@435 467 monitorexit(FrameMap::rbx_oop_opr, FrameMap::rcx_opr, SYNC_header, 0, rax);
duke@435 468 }
duke@435 469
duke@435 470 // unwind activation and forward exception to caller
duke@435 471 // rax,: exception
duke@435 472 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
duke@435 473 assert(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 474 __ end_a_stub();
twisti@1639 475
twisti@1639 476 return offset;
duke@435 477 }
duke@435 478
twisti@1639 479
twisti@1639 480 int LIR_Assembler::emit_deopt_handler() {
duke@435 481 // if the last instruction is a call (typically to do a throw which
duke@435 482 // is coming at the end after block reordering) the return address
duke@435 483 // must still point into the code area in order to avoid assertion
duke@435 484 // failures when searching for the corresponding bci => add a nop
duke@435 485 // (was bug 5/14/1999 - gri)
duke@435 486 __ nop();
duke@435 487
duke@435 488 // generate code for exception handler
duke@435 489 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 490 if (handler_base == NULL) {
duke@435 491 // not enough space left for the handler
duke@435 492 bailout("deopt handler overflow");
twisti@1639 493 return -1;
duke@435 494 }
twisti@1639 495
duke@435 496 int offset = code_offset();
duke@435 497 InternalAddress here(__ pc());
duke@435 498 __ pushptr(here.addr());
duke@435 499 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
duke@435 500 assert(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 501 __ end_a_stub();
duke@435 502
twisti@1639 503 return offset;
duke@435 504 }
duke@435 505
duke@435 506
duke@435 507 // This is the fast version of java.lang.String.compare; it has not
duke@435 508 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 509 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
never@739 510 __ movptr (rbx, rcx); // receiver is in rcx
never@739 511 __ movptr (rax, arg1->as_register());
duke@435 512
duke@435 513 // Get addresses of first characters from both Strings
never@739 514 __ movptr (rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
never@739 515 __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
never@739 516 __ lea (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 517
duke@435 518
duke@435 519 // rbx, may be NULL
duke@435 520 add_debug_info_for_null_check_here(info);
never@739 521 __ movptr (rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
never@739 522 __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
never@739 523 __ lea (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 524
duke@435 525 // compute minimum length (in rax) and difference of lengths (on top of stack)
duke@435 526 if (VM_Version::supports_cmov()) {
never@739 527 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
never@739 528 __ movl (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
never@739 529 __ mov (rcx, rbx);
never@739 530 __ subptr (rbx, rax); // subtract lengths
never@739 531 __ push (rbx); // result
never@739 532 __ cmov (Assembler::lessEqual, rax, rcx);
duke@435 533 } else {
duke@435 534 Label L;
never@739 535 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
never@739 536 __ movl (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
never@739 537 __ mov (rax, rbx);
never@739 538 __ subptr (rbx, rcx);
never@739 539 __ push (rbx);
never@739 540 __ jcc (Assembler::lessEqual, L);
never@739 541 __ mov (rax, rcx);
duke@435 542 __ bind (L);
duke@435 543 }
duke@435 544 // is minimum length 0?
duke@435 545 Label noLoop, haveResult;
never@739 546 __ testptr (rax, rax);
duke@435 547 __ jcc (Assembler::zero, noLoop);
duke@435 548
duke@435 549 // compare first characters
jrose@1057 550 __ load_unsigned_short(rcx, Address(rdi, 0));
jrose@1057 551 __ load_unsigned_short(rbx, Address(rsi, 0));
duke@435 552 __ subl(rcx, rbx);
duke@435 553 __ jcc(Assembler::notZero, haveResult);
duke@435 554 // starting loop
duke@435 555 __ decrement(rax); // we already tested index: skip one
duke@435 556 __ jcc(Assembler::zero, noLoop);
duke@435 557
duke@435 558 // set rsi.edi to the end of the arrays (arrays have same length)
duke@435 559 // negate the index
duke@435 560
never@739 561 __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 562 __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 563 __ negptr(rax);
duke@435 564
duke@435 565 // compare the strings in a loop
duke@435 566
duke@435 567 Label loop;
duke@435 568 __ align(wordSize);
duke@435 569 __ bind(loop);
jrose@1057 570 __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
jrose@1057 571 __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
duke@435 572 __ subl(rcx, rbx);
duke@435 573 __ jcc(Assembler::notZero, haveResult);
duke@435 574 __ increment(rax);
duke@435 575 __ jcc(Assembler::notZero, loop);
duke@435 576
duke@435 577 // strings are equal up to min length
duke@435 578
duke@435 579 __ bind(noLoop);
never@739 580 __ pop(rax);
duke@435 581 return_op(LIR_OprFact::illegalOpr);
duke@435 582
duke@435 583 __ bind(haveResult);
duke@435 584 // leave instruction is going to discard the TOS value
never@739 585 __ mov (rax, rcx); // result of call is in rax,
duke@435 586 }
duke@435 587
duke@435 588
duke@435 589 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 590 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
duke@435 591 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
duke@435 592 assert(result->fpu() == 0, "result must already be on TOS");
duke@435 593 }
duke@435 594
duke@435 595 // Pop the stack before the safepoint code
duke@435 596 __ leave();
duke@435 597
duke@435 598 bool result_is_oop = result->is_valid() ? result->is_oop() : false;
duke@435 599
duke@435 600 // Note: we do not need to round double result; float result has the right precision
duke@435 601 // the poll sets the condition code, but no data registers
duke@435 602 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 603 relocInfo::poll_return_type);
never@739 604
never@739 605 // NOTE: the requires that the polling page be reachable else the reloc
never@739 606 // goes to the movq that loads the address and not the faulting instruction
never@739 607 // which breaks the signal handler code
never@739 608
duke@435 609 __ test32(rax, polling_page);
duke@435 610
duke@435 611 __ ret(0);
duke@435 612 }
duke@435 613
duke@435 614
duke@435 615 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 616 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 617 relocInfo::poll_type);
duke@435 618
duke@435 619 if (info != NULL) {
duke@435 620 add_debug_info_for_branch(info);
duke@435 621 } else {
duke@435 622 ShouldNotReachHere();
duke@435 623 }
duke@435 624
duke@435 625 int offset = __ offset();
never@739 626
never@739 627 // NOTE: the requires that the polling page be reachable else the reloc
never@739 628 // goes to the movq that loads the address and not the faulting instruction
never@739 629 // which breaks the signal handler code
never@739 630
duke@435 631 __ test32(rax, polling_page);
duke@435 632 return offset;
duke@435 633 }
duke@435 634
duke@435 635
duke@435 636 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
never@739 637 if (from_reg != to_reg) __ mov(to_reg, from_reg);
duke@435 638 }
duke@435 639
duke@435 640 void LIR_Assembler::swap_reg(Register a, Register b) {
never@739 641 __ xchgptr(a, b);
duke@435 642 }
duke@435 643
duke@435 644
duke@435 645 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 646 assert(src->is_constant(), "should not call otherwise");
duke@435 647 assert(dest->is_register(), "should not call otherwise");
duke@435 648 LIR_Const* c = src->as_constant_ptr();
duke@435 649
duke@435 650 switch (c->type()) {
duke@435 651 case T_INT: {
duke@435 652 assert(patch_code == lir_patch_none, "no patching handled here");
duke@435 653 __ movl(dest->as_register(), c->as_jint());
duke@435 654 break;
duke@435 655 }
duke@435 656
duke@435 657 case T_LONG: {
duke@435 658 assert(patch_code == lir_patch_none, "no patching handled here");
never@739 659 #ifdef _LP64
never@739 660 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
never@739 661 #else
never@739 662 __ movptr(dest->as_register_lo(), c->as_jint_lo());
never@739 663 __ movptr(dest->as_register_hi(), c->as_jint_hi());
never@739 664 #endif // _LP64
duke@435 665 break;
duke@435 666 }
duke@435 667
duke@435 668 case T_OBJECT: {
duke@435 669 if (patch_code != lir_patch_none) {
duke@435 670 jobject2reg_with_patching(dest->as_register(), info);
duke@435 671 } else {
duke@435 672 __ movoop(dest->as_register(), c->as_jobject());
duke@435 673 }
duke@435 674 break;
duke@435 675 }
duke@435 676
duke@435 677 case T_FLOAT: {
duke@435 678 if (dest->is_single_xmm()) {
duke@435 679 if (c->is_zero_float()) {
duke@435 680 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
duke@435 681 } else {
duke@435 682 __ movflt(dest->as_xmm_float_reg(),
duke@435 683 InternalAddress(float_constant(c->as_jfloat())));
duke@435 684 }
duke@435 685 } else {
duke@435 686 assert(dest->is_single_fpu(), "must be");
duke@435 687 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 688 if (c->is_zero_float()) {
duke@435 689 __ fldz();
duke@435 690 } else if (c->is_one_float()) {
duke@435 691 __ fld1();
duke@435 692 } else {
duke@435 693 __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
duke@435 694 }
duke@435 695 }
duke@435 696 break;
duke@435 697 }
duke@435 698
duke@435 699 case T_DOUBLE: {
duke@435 700 if (dest->is_double_xmm()) {
duke@435 701 if (c->is_zero_double()) {
duke@435 702 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
duke@435 703 } else {
duke@435 704 __ movdbl(dest->as_xmm_double_reg(),
duke@435 705 InternalAddress(double_constant(c->as_jdouble())));
duke@435 706 }
duke@435 707 } else {
duke@435 708 assert(dest->is_double_fpu(), "must be");
duke@435 709 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 710 if (c->is_zero_double()) {
duke@435 711 __ fldz();
duke@435 712 } else if (c->is_one_double()) {
duke@435 713 __ fld1();
duke@435 714 } else {
duke@435 715 __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
duke@435 716 }
duke@435 717 }
duke@435 718 break;
duke@435 719 }
duke@435 720
duke@435 721 default:
duke@435 722 ShouldNotReachHere();
duke@435 723 }
duke@435 724 }
duke@435 725
duke@435 726 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 727 assert(src->is_constant(), "should not call otherwise");
duke@435 728 assert(dest->is_stack(), "should not call otherwise");
duke@435 729 LIR_Const* c = src->as_constant_ptr();
duke@435 730
duke@435 731 switch (c->type()) {
duke@435 732 case T_INT: // fall through
duke@435 733 case T_FLOAT:
duke@435 734 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
duke@435 735 break;
duke@435 736
duke@435 737 case T_OBJECT:
duke@435 738 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
duke@435 739 break;
duke@435 740
duke@435 741 case T_LONG: // fall through
duke@435 742 case T_DOUBLE:
never@739 743 #ifdef _LP64
never@739 744 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 745 lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
never@739 746 #else
never@739 747 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 748 lo_word_offset_in_bytes), c->as_jint_lo_bits());
never@739 749 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 750 hi_word_offset_in_bytes), c->as_jint_hi_bits());
never@739 751 #endif // _LP64
duke@435 752 break;
duke@435 753
duke@435 754 default:
duke@435 755 ShouldNotReachHere();
duke@435 756 }
duke@435 757 }
duke@435 758
duke@435 759 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
duke@435 760 assert(src->is_constant(), "should not call otherwise");
duke@435 761 assert(dest->is_address(), "should not call otherwise");
duke@435 762 LIR_Const* c = src->as_constant_ptr();
duke@435 763 LIR_Address* addr = dest->as_address_ptr();
duke@435 764
never@739 765 int null_check_here = code_offset();
duke@435 766 switch (type) {
duke@435 767 case T_INT: // fall through
duke@435 768 case T_FLOAT:
duke@435 769 __ movl(as_Address(addr), c->as_jint_bits());
duke@435 770 break;
duke@435 771
duke@435 772 case T_OBJECT: // fall through
duke@435 773 case T_ARRAY:
duke@435 774 if (c->as_jobject() == NULL) {
xlu@947 775 __ movptr(as_Address(addr), NULL_WORD);
duke@435 776 } else {
never@739 777 if (is_literal_address(addr)) {
never@739 778 ShouldNotReachHere();
never@739 779 __ movoop(as_Address(addr, noreg), c->as_jobject());
never@739 780 } else {
roland@1495 781 #ifdef _LP64
roland@1495 782 __ movoop(rscratch1, c->as_jobject());
roland@1495 783 null_check_here = code_offset();
roland@1495 784 __ movptr(as_Address_lo(addr), rscratch1);
roland@1495 785 #else
never@739 786 __ movoop(as_Address(addr), c->as_jobject());
roland@1495 787 #endif
never@739 788 }
duke@435 789 }
duke@435 790 break;
duke@435 791
duke@435 792 case T_LONG: // fall through
duke@435 793 case T_DOUBLE:
never@739 794 #ifdef _LP64
never@739 795 if (is_literal_address(addr)) {
never@739 796 ShouldNotReachHere();
never@739 797 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
never@739 798 } else {
never@739 799 __ movptr(r10, (intptr_t)c->as_jlong_bits());
never@739 800 null_check_here = code_offset();
never@739 801 __ movptr(as_Address_lo(addr), r10);
never@739 802 }
never@739 803 #else
never@739 804 // Always reachable in 32bit so this doesn't produce useless move literal
never@739 805 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
never@739 806 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
never@739 807 #endif // _LP64
duke@435 808 break;
duke@435 809
duke@435 810 case T_BOOLEAN: // fall through
duke@435 811 case T_BYTE:
duke@435 812 __ movb(as_Address(addr), c->as_jint() & 0xFF);
duke@435 813 break;
duke@435 814
duke@435 815 case T_CHAR: // fall through
duke@435 816 case T_SHORT:
duke@435 817 __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
duke@435 818 break;
duke@435 819
duke@435 820 default:
duke@435 821 ShouldNotReachHere();
duke@435 822 };
never@739 823
never@739 824 if (info != NULL) {
never@739 825 add_debug_info_for_null_check(null_check_here, info);
never@739 826 }
duke@435 827 }
duke@435 828
duke@435 829
duke@435 830 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
duke@435 831 assert(src->is_register(), "should not call otherwise");
duke@435 832 assert(dest->is_register(), "should not call otherwise");
duke@435 833
duke@435 834 // move between cpu-registers
duke@435 835 if (dest->is_single_cpu()) {
never@739 836 #ifdef _LP64
never@739 837 if (src->type() == T_LONG) {
never@739 838 // Can do LONG -> OBJECT
never@739 839 move_regs(src->as_register_lo(), dest->as_register());
never@739 840 return;
never@739 841 }
never@739 842 #endif
duke@435 843 assert(src->is_single_cpu(), "must match");
duke@435 844 if (src->type() == T_OBJECT) {
duke@435 845 __ verify_oop(src->as_register());
duke@435 846 }
duke@435 847 move_regs(src->as_register(), dest->as_register());
duke@435 848
duke@435 849 } else if (dest->is_double_cpu()) {
never@739 850 #ifdef _LP64
never@739 851 if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
never@739 852 // Surprising to me but we can see move of a long to t_object
never@739 853 __ verify_oop(src->as_register());
never@739 854 move_regs(src->as_register(), dest->as_register_lo());
never@739 855 return;
never@739 856 }
never@739 857 #endif
duke@435 858 assert(src->is_double_cpu(), "must match");
duke@435 859 Register f_lo = src->as_register_lo();
duke@435 860 Register f_hi = src->as_register_hi();
duke@435 861 Register t_lo = dest->as_register_lo();
duke@435 862 Register t_hi = dest->as_register_hi();
never@739 863 #ifdef _LP64
never@739 864 assert(f_hi == f_lo, "must be same");
never@739 865 assert(t_hi == t_lo, "must be same");
never@739 866 move_regs(f_lo, t_lo);
never@739 867 #else
duke@435 868 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
duke@435 869
never@739 870
duke@435 871 if (f_lo == t_hi && f_hi == t_lo) {
duke@435 872 swap_reg(f_lo, f_hi);
duke@435 873 } else if (f_hi == t_lo) {
duke@435 874 assert(f_lo != t_hi, "overwriting register");
duke@435 875 move_regs(f_hi, t_hi);
duke@435 876 move_regs(f_lo, t_lo);
duke@435 877 } else {
duke@435 878 assert(f_hi != t_lo, "overwriting register");
duke@435 879 move_regs(f_lo, t_lo);
duke@435 880 move_regs(f_hi, t_hi);
duke@435 881 }
never@739 882 #endif // LP64
duke@435 883
duke@435 884 // special moves from fpu-register to xmm-register
duke@435 885 // necessary for method results
duke@435 886 } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
duke@435 887 __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
duke@435 888 __ fld_s(Address(rsp, 0));
duke@435 889 } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
duke@435 890 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
duke@435 891 __ fld_d(Address(rsp, 0));
duke@435 892 } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
duke@435 893 __ fstp_s(Address(rsp, 0));
duke@435 894 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
duke@435 895 } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
duke@435 896 __ fstp_d(Address(rsp, 0));
duke@435 897 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
duke@435 898
duke@435 899 // move between xmm-registers
duke@435 900 } else if (dest->is_single_xmm()) {
duke@435 901 assert(src->is_single_xmm(), "must match");
duke@435 902 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
duke@435 903 } else if (dest->is_double_xmm()) {
duke@435 904 assert(src->is_double_xmm(), "must match");
duke@435 905 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
duke@435 906
duke@435 907 // move between fpu-registers (no instruction necessary because of fpu-stack)
duke@435 908 } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
duke@435 909 assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
duke@435 910 assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
duke@435 911 } else {
duke@435 912 ShouldNotReachHere();
duke@435 913 }
duke@435 914 }
duke@435 915
duke@435 916 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 917 assert(src->is_register(), "should not call otherwise");
duke@435 918 assert(dest->is_stack(), "should not call otherwise");
duke@435 919
duke@435 920 if (src->is_single_cpu()) {
duke@435 921 Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 922 if (type == T_OBJECT || type == T_ARRAY) {
duke@435 923 __ verify_oop(src->as_register());
never@739 924 __ movptr (dst, src->as_register());
never@739 925 } else {
never@739 926 __ movl (dst, src->as_register());
duke@435 927 }
duke@435 928
duke@435 929 } else if (src->is_double_cpu()) {
duke@435 930 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 931 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
never@739 932 __ movptr (dstLO, src->as_register_lo());
never@739 933 NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
duke@435 934
duke@435 935 } else if (src->is_single_xmm()) {
duke@435 936 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 937 __ movflt(dst_addr, src->as_xmm_float_reg());
duke@435 938
duke@435 939 } else if (src->is_double_xmm()) {
duke@435 940 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 941 __ movdbl(dst_addr, src->as_xmm_double_reg());
duke@435 942
duke@435 943 } else if (src->is_single_fpu()) {
duke@435 944 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 945 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 946 if (pop_fpu_stack) __ fstp_s (dst_addr);
duke@435 947 else __ fst_s (dst_addr);
duke@435 948
duke@435 949 } else if (src->is_double_fpu()) {
duke@435 950 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 951 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 952 if (pop_fpu_stack) __ fstp_d (dst_addr);
duke@435 953 else __ fst_d (dst_addr);
duke@435 954
duke@435 955 } else {
duke@435 956 ShouldNotReachHere();
duke@435 957 }
duke@435 958 }
duke@435 959
duke@435 960
duke@435 961 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) {
duke@435 962 LIR_Address* to_addr = dest->as_address_ptr();
duke@435 963 PatchingStub* patch = NULL;
duke@435 964
duke@435 965 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 966 __ verify_oop(src->as_register());
duke@435 967 }
duke@435 968 if (patch_code != lir_patch_none) {
duke@435 969 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 970 Address toa = as_Address(to_addr);
never@739 971 assert(toa.disp() != 0, "must have");
duke@435 972 }
duke@435 973 if (info != NULL) {
duke@435 974 add_debug_info_for_null_check_here(info);
duke@435 975 }
duke@435 976
duke@435 977 switch (type) {
duke@435 978 case T_FLOAT: {
duke@435 979 if (src->is_single_xmm()) {
duke@435 980 __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
duke@435 981 } else {
duke@435 982 assert(src->is_single_fpu(), "must be");
duke@435 983 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 984 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr));
duke@435 985 else __ fst_s (as_Address(to_addr));
duke@435 986 }
duke@435 987 break;
duke@435 988 }
duke@435 989
duke@435 990 case T_DOUBLE: {
duke@435 991 if (src->is_double_xmm()) {
duke@435 992 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
duke@435 993 } else {
duke@435 994 assert(src->is_double_fpu(), "must be");
duke@435 995 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 996 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr));
duke@435 997 else __ fst_d (as_Address(to_addr));
duke@435 998 }
duke@435 999 break;
duke@435 1000 }
duke@435 1001
duke@435 1002 case T_ADDRESS: // fall through
duke@435 1003 case T_ARRAY: // fall through
duke@435 1004 case T_OBJECT: // fall through
never@739 1005 #ifdef _LP64
never@739 1006 __ movptr(as_Address(to_addr), src->as_register());
never@739 1007 break;
never@739 1008 #endif // _LP64
duke@435 1009 case T_INT:
duke@435 1010 __ movl(as_Address(to_addr), src->as_register());
duke@435 1011 break;
duke@435 1012
duke@435 1013 case T_LONG: {
duke@435 1014 Register from_lo = src->as_register_lo();
duke@435 1015 Register from_hi = src->as_register_hi();
never@739 1016 #ifdef _LP64
never@739 1017 __ movptr(as_Address_lo(to_addr), from_lo);
never@739 1018 #else
duke@435 1019 Register base = to_addr->base()->as_register();
duke@435 1020 Register index = noreg;
duke@435 1021 if (to_addr->index()->is_register()) {
duke@435 1022 index = to_addr->index()->as_register();
duke@435 1023 }
duke@435 1024 if (base == from_lo || index == from_lo) {
duke@435 1025 assert(base != from_hi, "can't be");
duke@435 1026 assert(index == noreg || (index != base && index != from_hi), "can't handle this");
duke@435 1027 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1028 if (patch != NULL) {
duke@435 1029 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1030 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1031 patch_code = lir_patch_low;
duke@435 1032 }
duke@435 1033 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1034 } else {
duke@435 1035 assert(index == noreg || (index != base && index != from_lo), "can't handle this");
duke@435 1036 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1037 if (patch != NULL) {
duke@435 1038 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1039 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1040 patch_code = lir_patch_high;
duke@435 1041 }
duke@435 1042 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1043 }
never@739 1044 #endif // _LP64
duke@435 1045 break;
duke@435 1046 }
duke@435 1047
duke@435 1048 case T_BYTE: // fall through
duke@435 1049 case T_BOOLEAN: {
duke@435 1050 Register src_reg = src->as_register();
duke@435 1051 Address dst_addr = as_Address(to_addr);
duke@435 1052 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1053 __ movb(dst_addr, src_reg);
duke@435 1054 break;
duke@435 1055 }
duke@435 1056
duke@435 1057 case T_CHAR: // fall through
duke@435 1058 case T_SHORT:
duke@435 1059 __ movw(as_Address(to_addr), src->as_register());
duke@435 1060 break;
duke@435 1061
duke@435 1062 default:
duke@435 1063 ShouldNotReachHere();
duke@435 1064 }
duke@435 1065
duke@435 1066 if (patch_code != lir_patch_none) {
duke@435 1067 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
duke@435 1068 }
duke@435 1069 }
duke@435 1070
duke@435 1071
duke@435 1072 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1073 assert(src->is_stack(), "should not call otherwise");
duke@435 1074 assert(dest->is_register(), "should not call otherwise");
duke@435 1075
duke@435 1076 if (dest->is_single_cpu()) {
duke@435 1077 if (type == T_ARRAY || type == T_OBJECT) {
never@739 1078 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1079 __ verify_oop(dest->as_register());
never@739 1080 } else {
never@739 1081 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1082 }
duke@435 1083
duke@435 1084 } else if (dest->is_double_cpu()) {
duke@435 1085 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 1086 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
never@739 1087 __ movptr(dest->as_register_lo(), src_addr_LO);
never@739 1088 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
duke@435 1089
duke@435 1090 } else if (dest->is_single_xmm()) {
duke@435 1091 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1092 __ movflt(dest->as_xmm_float_reg(), src_addr);
duke@435 1093
duke@435 1094 } else if (dest->is_double_xmm()) {
duke@435 1095 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1096 __ movdbl(dest->as_xmm_double_reg(), src_addr);
duke@435 1097
duke@435 1098 } else if (dest->is_single_fpu()) {
duke@435 1099 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1100 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1101 __ fld_s(src_addr);
duke@435 1102
duke@435 1103 } else if (dest->is_double_fpu()) {
duke@435 1104 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1105 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1106 __ fld_d(src_addr);
duke@435 1107
duke@435 1108 } else {
duke@435 1109 ShouldNotReachHere();
duke@435 1110 }
duke@435 1111 }
duke@435 1112
duke@435 1113
duke@435 1114 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1115 if (src->is_single_stack()) {
never@739 1116 if (type == T_OBJECT || type == T_ARRAY) {
never@739 1117 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1118 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
never@739 1119 } else {
roland@1495 1120 #ifndef _LP64
never@739 1121 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1122 __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
roland@1495 1123 #else
roland@1495 1124 //no pushl on 64bits
roland@1495 1125 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
roland@1495 1126 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
roland@1495 1127 #endif
never@739 1128 }
duke@435 1129
duke@435 1130 } else if (src->is_double_stack()) {
never@739 1131 #ifdef _LP64
never@739 1132 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
never@739 1133 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
never@739 1134 #else
duke@435 1135 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
never@739 1136 // push and pop the part at src + wordSize, adding wordSize for the previous push
never@756 1137 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
never@756 1138 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
duke@435 1139 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
never@739 1140 #endif // _LP64
duke@435 1141
duke@435 1142 } else {
duke@435 1143 ShouldNotReachHere();
duke@435 1144 }
duke@435 1145 }
duke@435 1146
duke@435 1147
duke@435 1148 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) {
duke@435 1149 assert(src->is_address(), "should not call otherwise");
duke@435 1150 assert(dest->is_register(), "should not call otherwise");
duke@435 1151
duke@435 1152 LIR_Address* addr = src->as_address_ptr();
duke@435 1153 Address from_addr = as_Address(addr);
duke@435 1154
duke@435 1155 switch (type) {
duke@435 1156 case T_BOOLEAN: // fall through
duke@435 1157 case T_BYTE: // fall through
duke@435 1158 case T_CHAR: // fall through
duke@435 1159 case T_SHORT:
duke@435 1160 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
duke@435 1161 // on pre P6 processors we may get partial register stalls
duke@435 1162 // so blow away the value of to_rinfo before loading a
duke@435 1163 // partial word into it. Do it here so that it precedes
duke@435 1164 // the potential patch point below.
never@739 1165 __ xorptr(dest->as_register(), dest->as_register());
duke@435 1166 }
duke@435 1167 break;
duke@435 1168 }
duke@435 1169
duke@435 1170 PatchingStub* patch = NULL;
duke@435 1171 if (patch_code != lir_patch_none) {
duke@435 1172 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1173 assert(from_addr.disp() != 0, "must have");
duke@435 1174 }
duke@435 1175 if (info != NULL) {
duke@435 1176 add_debug_info_for_null_check_here(info);
duke@435 1177 }
duke@435 1178
duke@435 1179 switch (type) {
duke@435 1180 case T_FLOAT: {
duke@435 1181 if (dest->is_single_xmm()) {
duke@435 1182 __ movflt(dest->as_xmm_float_reg(), from_addr);
duke@435 1183 } else {
duke@435 1184 assert(dest->is_single_fpu(), "must be");
duke@435 1185 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1186 __ fld_s(from_addr);
duke@435 1187 }
duke@435 1188 break;
duke@435 1189 }
duke@435 1190
duke@435 1191 case T_DOUBLE: {
duke@435 1192 if (dest->is_double_xmm()) {
duke@435 1193 __ movdbl(dest->as_xmm_double_reg(), from_addr);
duke@435 1194 } else {
duke@435 1195 assert(dest->is_double_fpu(), "must be");
duke@435 1196 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1197 __ fld_d(from_addr);
duke@435 1198 }
duke@435 1199 break;
duke@435 1200 }
duke@435 1201
duke@435 1202 case T_ADDRESS: // fall through
duke@435 1203 case T_OBJECT: // fall through
duke@435 1204 case T_ARRAY: // fall through
never@739 1205 #ifdef _LP64
never@739 1206 __ movptr(dest->as_register(), from_addr);
never@739 1207 break;
never@739 1208 #endif // _L64
duke@435 1209 case T_INT:
never@739 1210 // %%% could this be a movl? this is safer but longer instruction
never@739 1211 __ movl2ptr(dest->as_register(), from_addr);
duke@435 1212 break;
duke@435 1213
duke@435 1214 case T_LONG: {
duke@435 1215 Register to_lo = dest->as_register_lo();
duke@435 1216 Register to_hi = dest->as_register_hi();
never@739 1217 #ifdef _LP64
never@739 1218 __ movptr(to_lo, as_Address_lo(addr));
never@739 1219 #else
duke@435 1220 Register base = addr->base()->as_register();
duke@435 1221 Register index = noreg;
duke@435 1222 if (addr->index()->is_register()) {
duke@435 1223 index = addr->index()->as_register();
duke@435 1224 }
duke@435 1225 if ((base == to_lo && index == to_hi) ||
duke@435 1226 (base == to_hi && index == to_lo)) {
duke@435 1227 // addresses with 2 registers are only formed as a result of
duke@435 1228 // array access so this code will never have to deal with
duke@435 1229 // patches or null checks.
duke@435 1230 assert(info == NULL && patch == NULL, "must be");
never@739 1231 __ lea(to_hi, as_Address(addr));
duke@435 1232 __ movl(to_lo, Address(to_hi, 0));
duke@435 1233 __ movl(to_hi, Address(to_hi, BytesPerWord));
duke@435 1234 } else if (base == to_lo || index == to_lo) {
duke@435 1235 assert(base != to_hi, "can't be");
duke@435 1236 assert(index == noreg || (index != base && index != to_hi), "can't handle this");
duke@435 1237 __ movl(to_hi, as_Address_hi(addr));
duke@435 1238 if (patch != NULL) {
duke@435 1239 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1240 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1241 patch_code = lir_patch_low;
duke@435 1242 }
duke@435 1243 __ movl(to_lo, as_Address_lo(addr));
duke@435 1244 } else {
duke@435 1245 assert(index == noreg || (index != base && index != to_lo), "can't handle this");
duke@435 1246 __ movl(to_lo, as_Address_lo(addr));
duke@435 1247 if (patch != NULL) {
duke@435 1248 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1249 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1250 patch_code = lir_patch_high;
duke@435 1251 }
duke@435 1252 __ movl(to_hi, as_Address_hi(addr));
duke@435 1253 }
never@739 1254 #endif // _LP64
duke@435 1255 break;
duke@435 1256 }
duke@435 1257
duke@435 1258 case T_BOOLEAN: // fall through
duke@435 1259 case T_BYTE: {
duke@435 1260 Register dest_reg = dest->as_register();
duke@435 1261 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1262 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1263 __ movsbl(dest_reg, from_addr);
duke@435 1264 } else {
duke@435 1265 __ movb(dest_reg, from_addr);
duke@435 1266 __ shll(dest_reg, 24);
duke@435 1267 __ sarl(dest_reg, 24);
duke@435 1268 }
never@739 1269 // These are unsigned so the zero extension on 64bit is just what we need
duke@435 1270 break;
duke@435 1271 }
duke@435 1272
duke@435 1273 case T_CHAR: {
duke@435 1274 Register dest_reg = dest->as_register();
duke@435 1275 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1276 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1277 __ movzwl(dest_reg, from_addr);
duke@435 1278 } else {
duke@435 1279 __ movw(dest_reg, from_addr);
duke@435 1280 }
never@739 1281 // This is unsigned so the zero extension on 64bit is just what we need
never@739 1282 // __ movl2ptr(dest_reg, dest_reg);
duke@435 1283 break;
duke@435 1284 }
duke@435 1285
duke@435 1286 case T_SHORT: {
duke@435 1287 Register dest_reg = dest->as_register();
duke@435 1288 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1289 __ movswl(dest_reg, from_addr);
duke@435 1290 } else {
duke@435 1291 __ movw(dest_reg, from_addr);
duke@435 1292 __ shll(dest_reg, 16);
duke@435 1293 __ sarl(dest_reg, 16);
duke@435 1294 }
never@739 1295 // Might not be needed in 64bit but certainly doesn't hurt (except for code size)
never@739 1296 __ movl2ptr(dest_reg, dest_reg);
duke@435 1297 break;
duke@435 1298 }
duke@435 1299
duke@435 1300 default:
duke@435 1301 ShouldNotReachHere();
duke@435 1302 }
duke@435 1303
duke@435 1304 if (patch != NULL) {
duke@435 1305 patching_epilog(patch, patch_code, addr->base()->as_register(), info);
duke@435 1306 }
duke@435 1307
duke@435 1308 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 1309 __ verify_oop(dest->as_register());
duke@435 1310 }
duke@435 1311 }
duke@435 1312
duke@435 1313
duke@435 1314 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1315 LIR_Address* addr = src->as_address_ptr();
duke@435 1316 Address from_addr = as_Address(addr);
duke@435 1317
duke@435 1318 if (VM_Version::supports_sse()) {
duke@435 1319 switch (ReadPrefetchInstr) {
duke@435 1320 case 0:
duke@435 1321 __ prefetchnta(from_addr); break;
duke@435 1322 case 1:
duke@435 1323 __ prefetcht0(from_addr); break;
duke@435 1324 case 2:
duke@435 1325 __ prefetcht2(from_addr); break;
duke@435 1326 default:
duke@435 1327 ShouldNotReachHere(); break;
duke@435 1328 }
duke@435 1329 } else if (VM_Version::supports_3dnow()) {
duke@435 1330 __ prefetchr(from_addr);
duke@435 1331 }
duke@435 1332 }
duke@435 1333
duke@435 1334
duke@435 1335 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1336 LIR_Address* addr = src->as_address_ptr();
duke@435 1337 Address from_addr = as_Address(addr);
duke@435 1338
duke@435 1339 if (VM_Version::supports_sse()) {
duke@435 1340 switch (AllocatePrefetchInstr) {
duke@435 1341 case 0:
duke@435 1342 __ prefetchnta(from_addr); break;
duke@435 1343 case 1:
duke@435 1344 __ prefetcht0(from_addr); break;
duke@435 1345 case 2:
duke@435 1346 __ prefetcht2(from_addr); break;
duke@435 1347 case 3:
duke@435 1348 __ prefetchw(from_addr); break;
duke@435 1349 default:
duke@435 1350 ShouldNotReachHere(); break;
duke@435 1351 }
duke@435 1352 } else if (VM_Version::supports_3dnow()) {
duke@435 1353 __ prefetchw(from_addr);
duke@435 1354 }
duke@435 1355 }
duke@435 1356
duke@435 1357
duke@435 1358 NEEDS_CLEANUP; // This could be static?
duke@435 1359 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
kvn@464 1360 int elem_size = type2aelembytes(type);
duke@435 1361 switch (elem_size) {
duke@435 1362 case 1: return Address::times_1;
duke@435 1363 case 2: return Address::times_2;
duke@435 1364 case 4: return Address::times_4;
duke@435 1365 case 8: return Address::times_8;
duke@435 1366 }
duke@435 1367 ShouldNotReachHere();
duke@435 1368 return Address::no_scale;
duke@435 1369 }
duke@435 1370
duke@435 1371
duke@435 1372 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 1373 switch (op->code()) {
duke@435 1374 case lir_idiv:
duke@435 1375 case lir_irem:
duke@435 1376 arithmetic_idiv(op->code(),
duke@435 1377 op->in_opr1(),
duke@435 1378 op->in_opr2(),
duke@435 1379 op->in_opr3(),
duke@435 1380 op->result_opr(),
duke@435 1381 op->info());
duke@435 1382 break;
duke@435 1383 default: ShouldNotReachHere(); break;
duke@435 1384 }
duke@435 1385 }
duke@435 1386
duke@435 1387 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 1388 #ifdef ASSERT
duke@435 1389 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 1390 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 1391 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 1392 #endif
duke@435 1393
duke@435 1394 if (op->cond() == lir_cond_always) {
duke@435 1395 if (op->info() != NULL) add_debug_info_for_branch(op->info());
duke@435 1396 __ jmp (*(op->label()));
duke@435 1397 } else {
duke@435 1398 Assembler::Condition acond = Assembler::zero;
duke@435 1399 if (op->code() == lir_cond_float_branch) {
duke@435 1400 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 1401 __ jcc(Assembler::parity, *(op->ublock()->label()));
duke@435 1402 switch(op->cond()) {
duke@435 1403 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1404 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1405 case lir_cond_less: acond = Assembler::below; break;
duke@435 1406 case lir_cond_lessEqual: acond = Assembler::belowEqual; break;
duke@435 1407 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
duke@435 1408 case lir_cond_greater: acond = Assembler::above; break;
duke@435 1409 default: ShouldNotReachHere();
duke@435 1410 }
duke@435 1411 } else {
duke@435 1412 switch (op->cond()) {
duke@435 1413 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1414 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1415 case lir_cond_less: acond = Assembler::less; break;
duke@435 1416 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1417 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
duke@435 1418 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1419 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
duke@435 1420 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
duke@435 1421 default: ShouldNotReachHere();
duke@435 1422 }
duke@435 1423 }
duke@435 1424 __ jcc(acond,*(op->label()));
duke@435 1425 }
duke@435 1426 }
duke@435 1427
duke@435 1428 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 1429 LIR_Opr src = op->in_opr();
duke@435 1430 LIR_Opr dest = op->result_opr();
duke@435 1431
duke@435 1432 switch (op->bytecode()) {
duke@435 1433 case Bytecodes::_i2l:
never@739 1434 #ifdef _LP64
never@739 1435 __ movl2ptr(dest->as_register_lo(), src->as_register());
never@739 1436 #else
duke@435 1437 move_regs(src->as_register(), dest->as_register_lo());
duke@435 1438 move_regs(src->as_register(), dest->as_register_hi());
duke@435 1439 __ sarl(dest->as_register_hi(), 31);
never@739 1440 #endif // LP64
duke@435 1441 break;
duke@435 1442
duke@435 1443 case Bytecodes::_l2i:
duke@435 1444 move_regs(src->as_register_lo(), dest->as_register());
duke@435 1445 break;
duke@435 1446
duke@435 1447 case Bytecodes::_i2b:
duke@435 1448 move_regs(src->as_register(), dest->as_register());
duke@435 1449 __ sign_extend_byte(dest->as_register());
duke@435 1450 break;
duke@435 1451
duke@435 1452 case Bytecodes::_i2c:
duke@435 1453 move_regs(src->as_register(), dest->as_register());
duke@435 1454 __ andl(dest->as_register(), 0xFFFF);
duke@435 1455 break;
duke@435 1456
duke@435 1457 case Bytecodes::_i2s:
duke@435 1458 move_regs(src->as_register(), dest->as_register());
duke@435 1459 __ sign_extend_short(dest->as_register());
duke@435 1460 break;
duke@435 1461
duke@435 1462
duke@435 1463 case Bytecodes::_f2d:
duke@435 1464 case Bytecodes::_d2f:
duke@435 1465 if (dest->is_single_xmm()) {
duke@435 1466 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
duke@435 1467 } else if (dest->is_double_xmm()) {
duke@435 1468 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
duke@435 1469 } else {
duke@435 1470 assert(src->fpu() == dest->fpu(), "register must be equal");
duke@435 1471 // do nothing (float result is rounded later through spilling)
duke@435 1472 }
duke@435 1473 break;
duke@435 1474
duke@435 1475 case Bytecodes::_i2f:
duke@435 1476 case Bytecodes::_i2d:
duke@435 1477 if (dest->is_single_xmm()) {
never@739 1478 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
duke@435 1479 } else if (dest->is_double_xmm()) {
never@739 1480 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
duke@435 1481 } else {
duke@435 1482 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1483 __ movl(Address(rsp, 0), src->as_register());
duke@435 1484 __ fild_s(Address(rsp, 0));
duke@435 1485 }
duke@435 1486 break;
duke@435 1487
duke@435 1488 case Bytecodes::_f2i:
duke@435 1489 case Bytecodes::_d2i:
duke@435 1490 if (src->is_single_xmm()) {
never@739 1491 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
duke@435 1492 } else if (src->is_double_xmm()) {
never@739 1493 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
duke@435 1494 } else {
duke@435 1495 assert(src->fpu() == 0, "input must be on TOS");
duke@435 1496 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
duke@435 1497 __ fist_s(Address(rsp, 0));
duke@435 1498 __ movl(dest->as_register(), Address(rsp, 0));
duke@435 1499 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1500 }
duke@435 1501
duke@435 1502 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
duke@435 1503 assert(op->stub() != NULL, "stub required");
duke@435 1504 __ cmpl(dest->as_register(), 0x80000000);
duke@435 1505 __ jcc(Assembler::equal, *op->stub()->entry());
duke@435 1506 __ bind(*op->stub()->continuation());
duke@435 1507 break;
duke@435 1508
duke@435 1509 case Bytecodes::_l2f:
duke@435 1510 case Bytecodes::_l2d:
duke@435 1511 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
duke@435 1512 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1513
never@739 1514 __ movptr(Address(rsp, 0), src->as_register_lo());
never@739 1515 NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
duke@435 1516 __ fild_d(Address(rsp, 0));
duke@435 1517 // float result is rounded later through spilling
duke@435 1518 break;
duke@435 1519
duke@435 1520 case Bytecodes::_f2l:
duke@435 1521 case Bytecodes::_d2l:
duke@435 1522 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
duke@435 1523 assert(src->fpu() == 0, "input must be on TOS");
never@739 1524 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
duke@435 1525
duke@435 1526 // instruction sequence too long to inline it here
duke@435 1527 {
duke@435 1528 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
duke@435 1529 }
duke@435 1530 break;
duke@435 1531
duke@435 1532 default: ShouldNotReachHere();
duke@435 1533 }
duke@435 1534 }
duke@435 1535
duke@435 1536 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 1537 if (op->init_check()) {
duke@435 1538 __ cmpl(Address(op->klass()->as_register(),
duke@435 1539 instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
duke@435 1540 instanceKlass::fully_initialized);
duke@435 1541 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 1542 __ jcc(Assembler::notEqual, *op->stub()->entry());
duke@435 1543 }
duke@435 1544 __ allocate_object(op->obj()->as_register(),
duke@435 1545 op->tmp1()->as_register(),
duke@435 1546 op->tmp2()->as_register(),
duke@435 1547 op->header_size(),
duke@435 1548 op->object_size(),
duke@435 1549 op->klass()->as_register(),
duke@435 1550 *op->stub()->entry());
duke@435 1551 __ bind(*op->stub()->continuation());
duke@435 1552 }
duke@435 1553
duke@435 1554 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
duke@435 1555 if (UseSlowPath ||
duke@435 1556 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 1557 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
duke@435 1558 __ jmp(*op->stub()->entry());
duke@435 1559 } else {
duke@435 1560 Register len = op->len()->as_register();
duke@435 1561 Register tmp1 = op->tmp1()->as_register();
duke@435 1562 Register tmp2 = op->tmp2()->as_register();
duke@435 1563 Register tmp3 = op->tmp3()->as_register();
duke@435 1564 if (len == tmp1) {
duke@435 1565 tmp1 = tmp3;
duke@435 1566 } else if (len == tmp2) {
duke@435 1567 tmp2 = tmp3;
duke@435 1568 } else if (len == tmp3) {
duke@435 1569 // everything is ok
duke@435 1570 } else {
never@739 1571 __ mov(tmp3, len);
duke@435 1572 }
duke@435 1573 __ allocate_array(op->obj()->as_register(),
duke@435 1574 len,
duke@435 1575 tmp1,
duke@435 1576 tmp2,
duke@435 1577 arrayOopDesc::header_size(op->type()),
duke@435 1578 array_element_size(op->type()),
duke@435 1579 op->klass()->as_register(),
duke@435 1580 *op->stub()->entry());
duke@435 1581 }
duke@435 1582 __ bind(*op->stub()->continuation());
duke@435 1583 }
duke@435 1584
duke@435 1585
duke@435 1586
duke@435 1587 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 1588 LIR_Code code = op->code();
duke@435 1589 if (code == lir_store_check) {
duke@435 1590 Register value = op->object()->as_register();
duke@435 1591 Register array = op->array()->as_register();
duke@435 1592 Register k_RInfo = op->tmp1()->as_register();
duke@435 1593 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1594 Register Rtmp1 = op->tmp3()->as_register();
duke@435 1595
duke@435 1596 CodeStub* stub = op->stub();
duke@435 1597 Label done;
never@739 1598 __ cmpptr(value, (int32_t)NULL_WORD);
duke@435 1599 __ jcc(Assembler::equal, done);
duke@435 1600 add_debug_info_for_null_check_here(op->info_for_exception());
never@739 1601 __ movptr(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes()));
never@739 1602 __ movptr(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes()));
duke@435 1603
duke@435 1604 // get instance klass
never@739 1605 __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
jrose@1079 1606 // perform the fast part of the checking logic
jrose@1079 1607 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
jrose@1079 1608 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1609 __ push(klass_RInfo);
never@739 1610 __ push(k_RInfo);
duke@435 1611 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1612 __ pop(klass_RInfo);
never@739 1613 __ pop(k_RInfo);
never@739 1614 // result is a boolean
duke@435 1615 __ cmpl(k_RInfo, 0);
duke@435 1616 __ jcc(Assembler::equal, *stub->entry());
duke@435 1617 __ bind(done);
duke@435 1618 } else if (op->code() == lir_checkcast) {
duke@435 1619 // we always need a stub for the failure case.
duke@435 1620 CodeStub* stub = op->stub();
duke@435 1621 Register obj = op->object()->as_register();
duke@435 1622 Register k_RInfo = op->tmp1()->as_register();
duke@435 1623 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1624 Register dst = op->result_opr()->as_register();
duke@435 1625 ciKlass* k = op->klass();
duke@435 1626 Register Rtmp1 = noreg;
duke@435 1627
duke@435 1628 Label done;
duke@435 1629 if (obj == k_RInfo) {
duke@435 1630 k_RInfo = dst;
duke@435 1631 } else if (obj == klass_RInfo) {
duke@435 1632 klass_RInfo = dst;
duke@435 1633 }
duke@435 1634 if (k->is_loaded()) {
duke@435 1635 select_different_registers(obj, dst, k_RInfo, klass_RInfo);
duke@435 1636 } else {
duke@435 1637 Rtmp1 = op->tmp3()->as_register();
duke@435 1638 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
duke@435 1639 }
duke@435 1640
duke@435 1641 assert_different_registers(obj, k_RInfo, klass_RInfo);
duke@435 1642 if (!k->is_loaded()) {
duke@435 1643 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
duke@435 1644 } else {
never@739 1645 #ifdef _LP64
jrose@1424 1646 __ movoop(k_RInfo, k->constant_encoding());
never@739 1647 #else
duke@435 1648 k_RInfo = noreg;
never@739 1649 #endif // _LP64
duke@435 1650 }
duke@435 1651 assert(obj != k_RInfo, "must be different");
never@739 1652 __ cmpptr(obj, (int32_t)NULL_WORD);
duke@435 1653 if (op->profiled_method() != NULL) {
duke@435 1654 ciMethod* method = op->profiled_method();
duke@435 1655 int bci = op->profiled_bci();
duke@435 1656
duke@435 1657 Label profile_done;
duke@435 1658 __ jcc(Assembler::notEqual, profile_done);
duke@435 1659 // Object is null; update methodDataOop
duke@435 1660 ciMethodData* md = method->method_data();
duke@435 1661 if (md == NULL) {
duke@435 1662 bailout("out of memory building methodDataOop");
duke@435 1663 return;
duke@435 1664 }
duke@435 1665 ciProfileData* data = md->bci_to_data(bci);
duke@435 1666 assert(data != NULL, "need data for checkcast");
duke@435 1667 assert(data->is_BitData(), "need BitData for checkcast");
duke@435 1668 Register mdo = klass_RInfo;
jrose@1424 1669 __ movoop(mdo, md->constant_encoding());
duke@435 1670 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
duke@435 1671 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
duke@435 1672 __ orl(data_addr, header_bits);
duke@435 1673 __ jmp(done);
duke@435 1674 __ bind(profile_done);
duke@435 1675 } else {
duke@435 1676 __ jcc(Assembler::equal, done);
duke@435 1677 }
duke@435 1678 __ verify_oop(obj);
duke@435 1679
duke@435 1680 if (op->fast_check()) {
duke@435 1681 // get object classo
duke@435 1682 // not a safepoint as obj null check happens earlier
duke@435 1683 if (k->is_loaded()) {
never@739 1684 #ifdef _LP64
never@739 1685 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
never@739 1686 #else
jrose@1424 1687 __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
never@739 1688 #endif // _LP64
duke@435 1689 } else {
never@739 1690 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
duke@435 1691
duke@435 1692 }
duke@435 1693 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 1694 __ bind(done);
duke@435 1695 } else {
duke@435 1696 // get object class
duke@435 1697 // not a safepoint as obj null check happens earlier
never@739 1698 __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
duke@435 1699 if (k->is_loaded()) {
duke@435 1700 // See if we get an immediate positive hit
never@739 1701 #ifdef _LP64
never@739 1702 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
never@739 1703 #else
jrose@1424 1704 __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
never@739 1705 #endif // _LP64
duke@435 1706 if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
duke@435 1707 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 1708 } else {
duke@435 1709 // See if we get an immediate positive hit
duke@435 1710 __ jcc(Assembler::equal, done);
duke@435 1711 // check for self
never@739 1712 #ifdef _LP64
never@739 1713 __ cmpptr(klass_RInfo, k_RInfo);
never@739 1714 #else
jrose@1424 1715 __ cmpoop(klass_RInfo, k->constant_encoding());
never@739 1716 #endif // _LP64
duke@435 1717 __ jcc(Assembler::equal, done);
duke@435 1718
never@739 1719 __ push(klass_RInfo);
never@739 1720 #ifdef _LP64
never@739 1721 __ push(k_RInfo);
never@739 1722 #else
jrose@1424 1723 __ pushoop(k->constant_encoding());
never@739 1724 #endif // _LP64
duke@435 1725 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1726 __ pop(klass_RInfo);
never@739 1727 __ pop(klass_RInfo);
never@739 1728 // result is a boolean
duke@435 1729 __ cmpl(klass_RInfo, 0);
duke@435 1730 __ jcc(Assembler::equal, *stub->entry());
duke@435 1731 }
duke@435 1732 __ bind(done);
duke@435 1733 } else {
jrose@1079 1734 // perform the fast part of the checking logic
jrose@1079 1735 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
jrose@1079 1736 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1737 __ push(klass_RInfo);
never@739 1738 __ push(k_RInfo);
duke@435 1739 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1740 __ pop(klass_RInfo);
never@739 1741 __ pop(k_RInfo);
never@739 1742 // result is a boolean
duke@435 1743 __ cmpl(k_RInfo, 0);
duke@435 1744 __ jcc(Assembler::equal, *stub->entry());
duke@435 1745 __ bind(done);
duke@435 1746 }
duke@435 1747
duke@435 1748 }
duke@435 1749 if (dst != obj) {
never@739 1750 __ mov(dst, obj);
duke@435 1751 }
duke@435 1752 } else if (code == lir_instanceof) {
duke@435 1753 Register obj = op->object()->as_register();
duke@435 1754 Register k_RInfo = op->tmp1()->as_register();
duke@435 1755 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1756 Register dst = op->result_opr()->as_register();
duke@435 1757 ciKlass* k = op->klass();
duke@435 1758
duke@435 1759 Label done;
duke@435 1760 Label zero;
duke@435 1761 Label one;
duke@435 1762 if (obj == k_RInfo) {
duke@435 1763 k_RInfo = klass_RInfo;
duke@435 1764 klass_RInfo = obj;
duke@435 1765 }
duke@435 1766 // patching may screw with our temporaries on sparc,
duke@435 1767 // so let's do it before loading the class
duke@435 1768 if (!k->is_loaded()) {
duke@435 1769 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
never@739 1770 } else {
jrose@1424 1771 LP64_ONLY(__ movoop(k_RInfo, k->constant_encoding()));
duke@435 1772 }
duke@435 1773 assert(obj != k_RInfo, "must be different");
duke@435 1774
duke@435 1775 __ verify_oop(obj);
duke@435 1776 if (op->fast_check()) {
never@739 1777 __ cmpptr(obj, (int32_t)NULL_WORD);
duke@435 1778 __ jcc(Assembler::equal, zero);
duke@435 1779 // get object class
duke@435 1780 // not a safepoint as obj null check happens earlier
never@739 1781 if (LP64_ONLY(false &&) k->is_loaded()) {
jrose@1424 1782 NOT_LP64(__ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding()));
duke@435 1783 k_RInfo = noreg;
duke@435 1784 } else {
never@739 1785 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
duke@435 1786
duke@435 1787 }
duke@435 1788 __ jcc(Assembler::equal, one);
duke@435 1789 } else {
duke@435 1790 // get object class
duke@435 1791 // not a safepoint as obj null check happens earlier
never@739 1792 __ cmpptr(obj, (int32_t)NULL_WORD);
duke@435 1793 __ jcc(Assembler::equal, zero);
never@739 1794 __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
never@739 1795
never@739 1796 #ifndef _LP64
duke@435 1797 if (k->is_loaded()) {
duke@435 1798 // See if we get an immediate positive hit
jrose@1424 1799 __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
duke@435 1800 __ jcc(Assembler::equal, one);
duke@435 1801 if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() == k->super_check_offset()) {
duke@435 1802 // check for self
jrose@1424 1803 __ cmpoop(klass_RInfo, k->constant_encoding());
duke@435 1804 __ jcc(Assembler::equal, one);
never@739 1805 __ push(klass_RInfo);
jrose@1424 1806 __ pushoop(k->constant_encoding());
duke@435 1807 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1808 __ pop(klass_RInfo);
never@739 1809 __ pop(dst);
duke@435 1810 __ jmp(done);
duke@435 1811 }
jrose@1079 1812 }
jrose@1079 1813 else // next block is unconditional if LP64:
never@739 1814 #endif // LP64
jrose@1079 1815 {
duke@435 1816 assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
duke@435 1817
jrose@1079 1818 // perform the fast part of the checking logic
jrose@1079 1819 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, dst, &one, &zero, NULL);
jrose@1079 1820 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1821 __ push(klass_RInfo);
never@739 1822 __ push(k_RInfo);
duke@435 1823 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1824 __ pop(klass_RInfo);
never@739 1825 __ pop(dst);
duke@435 1826 __ jmp(done);
duke@435 1827 }
duke@435 1828 }
duke@435 1829 __ bind(zero);
never@739 1830 __ xorptr(dst, dst);
duke@435 1831 __ jmp(done);
duke@435 1832 __ bind(one);
never@739 1833 __ movptr(dst, 1);
duke@435 1834 __ bind(done);
duke@435 1835 } else {
duke@435 1836 ShouldNotReachHere();
duke@435 1837 }
duke@435 1838
duke@435 1839 }
duke@435 1840
duke@435 1841
duke@435 1842 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
never@739 1843 if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
duke@435 1844 assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
duke@435 1845 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
duke@435 1846 assert(op->new_value()->as_register_lo() == rbx, "wrong register");
duke@435 1847 assert(op->new_value()->as_register_hi() == rcx, "wrong register");
duke@435 1848 Register addr = op->addr()->as_register();
duke@435 1849 if (os::is_MP()) {
duke@435 1850 __ lock();
duke@435 1851 }
never@739 1852 NOT_LP64(__ cmpxchg8(Address(addr, 0)));
never@739 1853
never@739 1854 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
never@739 1855 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
never@739 1856 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
duke@435 1857 Register newval = op->new_value()->as_register();
duke@435 1858 Register cmpval = op->cmp_value()->as_register();
duke@435 1859 assert(cmpval == rax, "wrong register");
duke@435 1860 assert(newval != NULL, "new val must be register");
duke@435 1861 assert(cmpval != newval, "cmp and new values must be in different registers");
duke@435 1862 assert(cmpval != addr, "cmp and addr must be in different registers");
duke@435 1863 assert(newval != addr, "new value and addr must be in different registers");
duke@435 1864 if (os::is_MP()) {
duke@435 1865 __ lock();
duke@435 1866 }
never@739 1867 if ( op->code() == lir_cas_obj) {
never@739 1868 __ cmpxchgptr(newval, Address(addr, 0));
never@739 1869 } else if (op->code() == lir_cas_int) {
never@739 1870 __ cmpxchgl(newval, Address(addr, 0));
never@739 1871 } else {
never@739 1872 LP64_ONLY(__ cmpxchgq(newval, Address(addr, 0)));
never@739 1873 }
never@739 1874 #ifdef _LP64
never@739 1875 } else if (op->code() == lir_cas_long) {
never@739 1876 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
never@739 1877 Register newval = op->new_value()->as_register_lo();
never@739 1878 Register cmpval = op->cmp_value()->as_register_lo();
never@739 1879 assert(cmpval == rax, "wrong register");
never@739 1880 assert(newval != NULL, "new val must be register");
never@739 1881 assert(cmpval != newval, "cmp and new values must be in different registers");
never@739 1882 assert(cmpval != addr, "cmp and addr must be in different registers");
never@739 1883 assert(newval != addr, "new value and addr must be in different registers");
never@739 1884 if (os::is_MP()) {
never@739 1885 __ lock();
never@739 1886 }
never@739 1887 __ cmpxchgq(newval, Address(addr, 0));
never@739 1888 #endif // _LP64
duke@435 1889 } else {
duke@435 1890 Unimplemented();
duke@435 1891 }
duke@435 1892 }
duke@435 1893
duke@435 1894
duke@435 1895 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
duke@435 1896 Assembler::Condition acond, ncond;
duke@435 1897 switch (condition) {
duke@435 1898 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break;
duke@435 1899 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break;
duke@435 1900 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break;
duke@435 1901 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break;
duke@435 1902 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break;
duke@435 1903 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break;
duke@435 1904 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break;
duke@435 1905 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break;
duke@435 1906 default: ShouldNotReachHere();
duke@435 1907 }
duke@435 1908
duke@435 1909 if (opr1->is_cpu_register()) {
duke@435 1910 reg2reg(opr1, result);
duke@435 1911 } else if (opr1->is_stack()) {
duke@435 1912 stack2reg(opr1, result, result->type());
duke@435 1913 } else if (opr1->is_constant()) {
duke@435 1914 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 1915 } else {
duke@435 1916 ShouldNotReachHere();
duke@435 1917 }
duke@435 1918
duke@435 1919 if (VM_Version::supports_cmov() && !opr2->is_constant()) {
duke@435 1920 // optimized version that does not require a branch
duke@435 1921 if (opr2->is_single_cpu()) {
duke@435 1922 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
never@739 1923 __ cmov(ncond, result->as_register(), opr2->as_register());
duke@435 1924 } else if (opr2->is_double_cpu()) {
duke@435 1925 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
duke@435 1926 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
never@739 1927 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
never@739 1928 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
duke@435 1929 } else if (opr2->is_single_stack()) {
duke@435 1930 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 1931 } else if (opr2->is_double_stack()) {
never@739 1932 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
never@739 1933 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
duke@435 1934 } else {
duke@435 1935 ShouldNotReachHere();
duke@435 1936 }
duke@435 1937
duke@435 1938 } else {
duke@435 1939 Label skip;
duke@435 1940 __ jcc (acond, skip);
duke@435 1941 if (opr2->is_cpu_register()) {
duke@435 1942 reg2reg(opr2, result);
duke@435 1943 } else if (opr2->is_stack()) {
duke@435 1944 stack2reg(opr2, result, result->type());
duke@435 1945 } else if (opr2->is_constant()) {
duke@435 1946 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 1947 } else {
duke@435 1948 ShouldNotReachHere();
duke@435 1949 }
duke@435 1950 __ bind(skip);
duke@435 1951 }
duke@435 1952 }
duke@435 1953
duke@435 1954
duke@435 1955 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 1956 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
duke@435 1957
duke@435 1958 if (left->is_single_cpu()) {
duke@435 1959 assert(left == dest, "left and dest must be equal");
duke@435 1960 Register lreg = left->as_register();
duke@435 1961
duke@435 1962 if (right->is_single_cpu()) {
duke@435 1963 // cpu register - cpu register
duke@435 1964 Register rreg = right->as_register();
duke@435 1965 switch (code) {
duke@435 1966 case lir_add: __ addl (lreg, rreg); break;
duke@435 1967 case lir_sub: __ subl (lreg, rreg); break;
duke@435 1968 case lir_mul: __ imull(lreg, rreg); break;
duke@435 1969 default: ShouldNotReachHere();
duke@435 1970 }
duke@435 1971
duke@435 1972 } else if (right->is_stack()) {
duke@435 1973 // cpu register - stack
duke@435 1974 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 1975 switch (code) {
duke@435 1976 case lir_add: __ addl(lreg, raddr); break;
duke@435 1977 case lir_sub: __ subl(lreg, raddr); break;
duke@435 1978 default: ShouldNotReachHere();
duke@435 1979 }
duke@435 1980
duke@435 1981 } else if (right->is_constant()) {
duke@435 1982 // cpu register - constant
duke@435 1983 jint c = right->as_constant_ptr()->as_jint();
duke@435 1984 switch (code) {
duke@435 1985 case lir_add: {
duke@435 1986 __ increment(lreg, c);
duke@435 1987 break;
duke@435 1988 }
duke@435 1989 case lir_sub: {
duke@435 1990 __ decrement(lreg, c);
duke@435 1991 break;
duke@435 1992 }
duke@435 1993 default: ShouldNotReachHere();
duke@435 1994 }
duke@435 1995
duke@435 1996 } else {
duke@435 1997 ShouldNotReachHere();
duke@435 1998 }
duke@435 1999
duke@435 2000 } else if (left->is_double_cpu()) {
duke@435 2001 assert(left == dest, "left and dest must be equal");
duke@435 2002 Register lreg_lo = left->as_register_lo();
duke@435 2003 Register lreg_hi = left->as_register_hi();
duke@435 2004
duke@435 2005 if (right->is_double_cpu()) {
duke@435 2006 // cpu register - cpu register
duke@435 2007 Register rreg_lo = right->as_register_lo();
duke@435 2008 Register rreg_hi = right->as_register_hi();
never@739 2009 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
never@739 2010 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
duke@435 2011 switch (code) {
duke@435 2012 case lir_add:
never@739 2013 __ addptr(lreg_lo, rreg_lo);
never@739 2014 NOT_LP64(__ adcl(lreg_hi, rreg_hi));
duke@435 2015 break;
duke@435 2016 case lir_sub:
never@739 2017 __ subptr(lreg_lo, rreg_lo);
never@739 2018 NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
duke@435 2019 break;
duke@435 2020 case lir_mul:
never@739 2021 #ifdef _LP64
never@739 2022 __ imulq(lreg_lo, rreg_lo);
never@739 2023 #else
duke@435 2024 assert(lreg_lo == rax && lreg_hi == rdx, "must be");
duke@435 2025 __ imull(lreg_hi, rreg_lo);
duke@435 2026 __ imull(rreg_hi, lreg_lo);
duke@435 2027 __ addl (rreg_hi, lreg_hi);
duke@435 2028 __ mull (rreg_lo);
duke@435 2029 __ addl (lreg_hi, rreg_hi);
never@739 2030 #endif // _LP64
duke@435 2031 break;
duke@435 2032 default:
duke@435 2033 ShouldNotReachHere();
duke@435 2034 }
duke@435 2035
duke@435 2036 } else if (right->is_constant()) {
duke@435 2037 // cpu register - constant
never@739 2038 #ifdef _LP64
never@739 2039 jlong c = right->as_constant_ptr()->as_jlong_bits();
never@739 2040 __ movptr(r10, (intptr_t) c);
never@739 2041 switch (code) {
never@739 2042 case lir_add:
never@739 2043 __ addptr(lreg_lo, r10);
never@739 2044 break;
never@739 2045 case lir_sub:
never@739 2046 __ subptr(lreg_lo, r10);
never@739 2047 break;
never@739 2048 default:
never@739 2049 ShouldNotReachHere();
never@739 2050 }
never@739 2051 #else
duke@435 2052 jint c_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2053 jint c_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2054 switch (code) {
duke@435 2055 case lir_add:
never@739 2056 __ addptr(lreg_lo, c_lo);
duke@435 2057 __ adcl(lreg_hi, c_hi);
duke@435 2058 break;
duke@435 2059 case lir_sub:
never@739 2060 __ subptr(lreg_lo, c_lo);
duke@435 2061 __ sbbl(lreg_hi, c_hi);
duke@435 2062 break;
duke@435 2063 default:
duke@435 2064 ShouldNotReachHere();
duke@435 2065 }
never@739 2066 #endif // _LP64
duke@435 2067
duke@435 2068 } else {
duke@435 2069 ShouldNotReachHere();
duke@435 2070 }
duke@435 2071
duke@435 2072 } else if (left->is_single_xmm()) {
duke@435 2073 assert(left == dest, "left and dest must be equal");
duke@435 2074 XMMRegister lreg = left->as_xmm_float_reg();
duke@435 2075
duke@435 2076 if (right->is_single_xmm()) {
duke@435 2077 XMMRegister rreg = right->as_xmm_float_reg();
duke@435 2078 switch (code) {
duke@435 2079 case lir_add: __ addss(lreg, rreg); break;
duke@435 2080 case lir_sub: __ subss(lreg, rreg); break;
duke@435 2081 case lir_mul_strictfp: // fall through
duke@435 2082 case lir_mul: __ mulss(lreg, rreg); break;
duke@435 2083 case lir_div_strictfp: // fall through
duke@435 2084 case lir_div: __ divss(lreg, rreg); break;
duke@435 2085 default: ShouldNotReachHere();
duke@435 2086 }
duke@435 2087 } else {
duke@435 2088 Address raddr;
duke@435 2089 if (right->is_single_stack()) {
duke@435 2090 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2091 } else if (right->is_constant()) {
duke@435 2092 // hack for now
duke@435 2093 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
duke@435 2094 } else {
duke@435 2095 ShouldNotReachHere();
duke@435 2096 }
duke@435 2097 switch (code) {
duke@435 2098 case lir_add: __ addss(lreg, raddr); break;
duke@435 2099 case lir_sub: __ subss(lreg, raddr); break;
duke@435 2100 case lir_mul_strictfp: // fall through
duke@435 2101 case lir_mul: __ mulss(lreg, raddr); break;
duke@435 2102 case lir_div_strictfp: // fall through
duke@435 2103 case lir_div: __ divss(lreg, raddr); break;
duke@435 2104 default: ShouldNotReachHere();
duke@435 2105 }
duke@435 2106 }
duke@435 2107
duke@435 2108 } else if (left->is_double_xmm()) {
duke@435 2109 assert(left == dest, "left and dest must be equal");
duke@435 2110
duke@435 2111 XMMRegister lreg = left->as_xmm_double_reg();
duke@435 2112 if (right->is_double_xmm()) {
duke@435 2113 XMMRegister rreg = right->as_xmm_double_reg();
duke@435 2114 switch (code) {
duke@435 2115 case lir_add: __ addsd(lreg, rreg); break;
duke@435 2116 case lir_sub: __ subsd(lreg, rreg); break;
duke@435 2117 case lir_mul_strictfp: // fall through
duke@435 2118 case lir_mul: __ mulsd(lreg, rreg); break;
duke@435 2119 case lir_div_strictfp: // fall through
duke@435 2120 case lir_div: __ divsd(lreg, rreg); break;
duke@435 2121 default: ShouldNotReachHere();
duke@435 2122 }
duke@435 2123 } else {
duke@435 2124 Address raddr;
duke@435 2125 if (right->is_double_stack()) {
duke@435 2126 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2127 } else if (right->is_constant()) {
duke@435 2128 // hack for now
duke@435 2129 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2130 } else {
duke@435 2131 ShouldNotReachHere();
duke@435 2132 }
duke@435 2133 switch (code) {
duke@435 2134 case lir_add: __ addsd(lreg, raddr); break;
duke@435 2135 case lir_sub: __ subsd(lreg, raddr); break;
duke@435 2136 case lir_mul_strictfp: // fall through
duke@435 2137 case lir_mul: __ mulsd(lreg, raddr); break;
duke@435 2138 case lir_div_strictfp: // fall through
duke@435 2139 case lir_div: __ divsd(lreg, raddr); break;
duke@435 2140 default: ShouldNotReachHere();
duke@435 2141 }
duke@435 2142 }
duke@435 2143
duke@435 2144 } else if (left->is_single_fpu()) {
duke@435 2145 assert(dest->is_single_fpu(), "fpu stack allocation required");
duke@435 2146
duke@435 2147 if (right->is_single_fpu()) {
duke@435 2148 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
duke@435 2149
duke@435 2150 } else {
duke@435 2151 assert(left->fpu_regnr() == 0, "left must be on TOS");
duke@435 2152 assert(dest->fpu_regnr() == 0, "dest must be on TOS");
duke@435 2153
duke@435 2154 Address raddr;
duke@435 2155 if (right->is_single_stack()) {
duke@435 2156 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2157 } else if (right->is_constant()) {
duke@435 2158 address const_addr = float_constant(right->as_jfloat());
duke@435 2159 assert(const_addr != NULL, "incorrect float/double constant maintainance");
duke@435 2160 // hack for now
duke@435 2161 raddr = __ as_Address(InternalAddress(const_addr));
duke@435 2162 } else {
duke@435 2163 ShouldNotReachHere();
duke@435 2164 }
duke@435 2165
duke@435 2166 switch (code) {
duke@435 2167 case lir_add: __ fadd_s(raddr); break;
duke@435 2168 case lir_sub: __ fsub_s(raddr); break;
duke@435 2169 case lir_mul_strictfp: // fall through
duke@435 2170 case lir_mul: __ fmul_s(raddr); break;
duke@435 2171 case lir_div_strictfp: // fall through
duke@435 2172 case lir_div: __ fdiv_s(raddr); break;
duke@435 2173 default: ShouldNotReachHere();
duke@435 2174 }
duke@435 2175 }
duke@435 2176
duke@435 2177 } else if (left->is_double_fpu()) {
duke@435 2178 assert(dest->is_double_fpu(), "fpu stack allocation required");
duke@435 2179
duke@435 2180 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2181 // Double values require special handling for strictfp mul/div on x86
duke@435 2182 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
duke@435 2183 __ fmulp(left->fpu_regnrLo() + 1);
duke@435 2184 }
duke@435 2185
duke@435 2186 if (right->is_double_fpu()) {
duke@435 2187 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
duke@435 2188
duke@435 2189 } else {
duke@435 2190 assert(left->fpu_regnrLo() == 0, "left must be on TOS");
duke@435 2191 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
duke@435 2192
duke@435 2193 Address raddr;
duke@435 2194 if (right->is_double_stack()) {
duke@435 2195 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2196 } else if (right->is_constant()) {
duke@435 2197 // hack for now
duke@435 2198 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2199 } else {
duke@435 2200 ShouldNotReachHere();
duke@435 2201 }
duke@435 2202
duke@435 2203 switch (code) {
duke@435 2204 case lir_add: __ fadd_d(raddr); break;
duke@435 2205 case lir_sub: __ fsub_d(raddr); break;
duke@435 2206 case lir_mul_strictfp: // fall through
duke@435 2207 case lir_mul: __ fmul_d(raddr); break;
duke@435 2208 case lir_div_strictfp: // fall through
duke@435 2209 case lir_div: __ fdiv_d(raddr); break;
duke@435 2210 default: ShouldNotReachHere();
duke@435 2211 }
duke@435 2212 }
duke@435 2213
duke@435 2214 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2215 // Double values require special handling for strictfp mul/div on x86
duke@435 2216 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
duke@435 2217 __ fmulp(dest->fpu_regnrLo() + 1);
duke@435 2218 }
duke@435 2219
duke@435 2220 } else if (left->is_single_stack() || left->is_address()) {
duke@435 2221 assert(left == dest, "left and dest must be equal");
duke@435 2222
duke@435 2223 Address laddr;
duke@435 2224 if (left->is_single_stack()) {
duke@435 2225 laddr = frame_map()->address_for_slot(left->single_stack_ix());
duke@435 2226 } else if (left->is_address()) {
duke@435 2227 laddr = as_Address(left->as_address_ptr());
duke@435 2228 } else {
duke@435 2229 ShouldNotReachHere();
duke@435 2230 }
duke@435 2231
duke@435 2232 if (right->is_single_cpu()) {
duke@435 2233 Register rreg = right->as_register();
duke@435 2234 switch (code) {
duke@435 2235 case lir_add: __ addl(laddr, rreg); break;
duke@435 2236 case lir_sub: __ subl(laddr, rreg); break;
duke@435 2237 default: ShouldNotReachHere();
duke@435 2238 }
duke@435 2239 } else if (right->is_constant()) {
duke@435 2240 jint c = right->as_constant_ptr()->as_jint();
duke@435 2241 switch (code) {
duke@435 2242 case lir_add: {
never@739 2243 __ incrementl(laddr, c);
duke@435 2244 break;
duke@435 2245 }
duke@435 2246 case lir_sub: {
never@739 2247 __ decrementl(laddr, c);
duke@435 2248 break;
duke@435 2249 }
duke@435 2250 default: ShouldNotReachHere();
duke@435 2251 }
duke@435 2252 } else {
duke@435 2253 ShouldNotReachHere();
duke@435 2254 }
duke@435 2255
duke@435 2256 } else {
duke@435 2257 ShouldNotReachHere();
duke@435 2258 }
duke@435 2259 }
duke@435 2260
duke@435 2261 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
duke@435 2262 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR");
duke@435 2263 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
duke@435 2264 assert(left_index == 0 || right_index == 0, "either must be on top of stack");
duke@435 2265
duke@435 2266 bool left_is_tos = (left_index == 0);
duke@435 2267 bool dest_is_tos = (dest_index == 0);
duke@435 2268 int non_tos_index = (left_is_tos ? right_index : left_index);
duke@435 2269
duke@435 2270 switch (code) {
duke@435 2271 case lir_add:
duke@435 2272 if (pop_fpu_stack) __ faddp(non_tos_index);
duke@435 2273 else if (dest_is_tos) __ fadd (non_tos_index);
duke@435 2274 else __ fadda(non_tos_index);
duke@435 2275 break;
duke@435 2276
duke@435 2277 case lir_sub:
duke@435 2278 if (left_is_tos) {
duke@435 2279 if (pop_fpu_stack) __ fsubrp(non_tos_index);
duke@435 2280 else if (dest_is_tos) __ fsub (non_tos_index);
duke@435 2281 else __ fsubra(non_tos_index);
duke@435 2282 } else {
duke@435 2283 if (pop_fpu_stack) __ fsubp (non_tos_index);
duke@435 2284 else if (dest_is_tos) __ fsubr (non_tos_index);
duke@435 2285 else __ fsuba (non_tos_index);
duke@435 2286 }
duke@435 2287 break;
duke@435 2288
duke@435 2289 case lir_mul_strictfp: // fall through
duke@435 2290 case lir_mul:
duke@435 2291 if (pop_fpu_stack) __ fmulp(non_tos_index);
duke@435 2292 else if (dest_is_tos) __ fmul (non_tos_index);
duke@435 2293 else __ fmula(non_tos_index);
duke@435 2294 break;
duke@435 2295
duke@435 2296 case lir_div_strictfp: // fall through
duke@435 2297 case lir_div:
duke@435 2298 if (left_is_tos) {
duke@435 2299 if (pop_fpu_stack) __ fdivrp(non_tos_index);
duke@435 2300 else if (dest_is_tos) __ fdiv (non_tos_index);
duke@435 2301 else __ fdivra(non_tos_index);
duke@435 2302 } else {
duke@435 2303 if (pop_fpu_stack) __ fdivp (non_tos_index);
duke@435 2304 else if (dest_is_tos) __ fdivr (non_tos_index);
duke@435 2305 else __ fdiva (non_tos_index);
duke@435 2306 }
duke@435 2307 break;
duke@435 2308
duke@435 2309 case lir_rem:
duke@435 2310 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
duke@435 2311 __ fremr(noreg);
duke@435 2312 break;
duke@435 2313
duke@435 2314 default:
duke@435 2315 ShouldNotReachHere();
duke@435 2316 }
duke@435 2317 }
duke@435 2318
duke@435 2319
duke@435 2320 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
duke@435 2321 if (value->is_double_xmm()) {
duke@435 2322 switch(code) {
duke@435 2323 case lir_abs :
duke@435 2324 {
duke@435 2325 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
duke@435 2326 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
duke@435 2327 }
duke@435 2328 __ andpd(dest->as_xmm_double_reg(),
duke@435 2329 ExternalAddress((address)double_signmask_pool));
duke@435 2330 }
duke@435 2331 break;
duke@435 2332
duke@435 2333 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
duke@435 2334 // all other intrinsics are not available in the SSE instruction set, so FPU is used
duke@435 2335 default : ShouldNotReachHere();
duke@435 2336 }
duke@435 2337
duke@435 2338 } else if (value->is_double_fpu()) {
duke@435 2339 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
duke@435 2340 switch(code) {
duke@435 2341 case lir_log : __ flog() ; break;
duke@435 2342 case lir_log10 : __ flog10() ; break;
duke@435 2343 case lir_abs : __ fabs() ; break;
duke@435 2344 case lir_sqrt : __ fsqrt(); break;
duke@435 2345 case lir_sin :
duke@435 2346 // Should consider not saving rbx, if not necessary
duke@435 2347 __ trigfunc('s', op->as_Op2()->fpu_stack_size());
duke@435 2348 break;
duke@435 2349 case lir_cos :
duke@435 2350 // Should consider not saving rbx, if not necessary
duke@435 2351 assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
duke@435 2352 __ trigfunc('c', op->as_Op2()->fpu_stack_size());
duke@435 2353 break;
duke@435 2354 case lir_tan :
duke@435 2355 // Should consider not saving rbx, if not necessary
duke@435 2356 __ trigfunc('t', op->as_Op2()->fpu_stack_size());
duke@435 2357 break;
duke@435 2358 default : ShouldNotReachHere();
duke@435 2359 }
duke@435 2360 } else {
duke@435 2361 Unimplemented();
duke@435 2362 }
duke@435 2363 }
duke@435 2364
duke@435 2365 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
duke@435 2366 // assert(left->destroys_register(), "check");
duke@435 2367 if (left->is_single_cpu()) {
duke@435 2368 Register reg = left->as_register();
duke@435 2369 if (right->is_constant()) {
duke@435 2370 int val = right->as_constant_ptr()->as_jint();
duke@435 2371 switch (code) {
duke@435 2372 case lir_logic_and: __ andl (reg, val); break;
duke@435 2373 case lir_logic_or: __ orl (reg, val); break;
duke@435 2374 case lir_logic_xor: __ xorl (reg, val); break;
duke@435 2375 default: ShouldNotReachHere();
duke@435 2376 }
duke@435 2377 } else if (right->is_stack()) {
duke@435 2378 // added support for stack operands
duke@435 2379 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2380 switch (code) {
duke@435 2381 case lir_logic_and: __ andl (reg, raddr); break;
duke@435 2382 case lir_logic_or: __ orl (reg, raddr); break;
duke@435 2383 case lir_logic_xor: __ xorl (reg, raddr); break;
duke@435 2384 default: ShouldNotReachHere();
duke@435 2385 }
duke@435 2386 } else {
duke@435 2387 Register rright = right->as_register();
duke@435 2388 switch (code) {
never@739 2389 case lir_logic_and: __ andptr (reg, rright); break;
never@739 2390 case lir_logic_or : __ orptr (reg, rright); break;
never@739 2391 case lir_logic_xor: __ xorptr (reg, rright); break;
duke@435 2392 default: ShouldNotReachHere();
duke@435 2393 }
duke@435 2394 }
duke@435 2395 move_regs(reg, dst->as_register());
duke@435 2396 } else {
duke@435 2397 Register l_lo = left->as_register_lo();
duke@435 2398 Register l_hi = left->as_register_hi();
duke@435 2399 if (right->is_constant()) {
never@739 2400 #ifdef _LP64
never@739 2401 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
never@739 2402 switch (code) {
never@739 2403 case lir_logic_and:
never@739 2404 __ andq(l_lo, rscratch1);
never@739 2405 break;
never@739 2406 case lir_logic_or:
never@739 2407 __ orq(l_lo, rscratch1);
never@739 2408 break;
never@739 2409 case lir_logic_xor:
never@739 2410 __ xorq(l_lo, rscratch1);
never@739 2411 break;
never@739 2412 default: ShouldNotReachHere();
never@739 2413 }
never@739 2414 #else
duke@435 2415 int r_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2416 int r_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2417 switch (code) {
duke@435 2418 case lir_logic_and:
duke@435 2419 __ andl(l_lo, r_lo);
duke@435 2420 __ andl(l_hi, r_hi);
duke@435 2421 break;
duke@435 2422 case lir_logic_or:
duke@435 2423 __ orl(l_lo, r_lo);
duke@435 2424 __ orl(l_hi, r_hi);
duke@435 2425 break;
duke@435 2426 case lir_logic_xor:
duke@435 2427 __ xorl(l_lo, r_lo);
duke@435 2428 __ xorl(l_hi, r_hi);
duke@435 2429 break;
duke@435 2430 default: ShouldNotReachHere();
duke@435 2431 }
never@739 2432 #endif // _LP64
duke@435 2433 } else {
duke@435 2434 Register r_lo = right->as_register_lo();
duke@435 2435 Register r_hi = right->as_register_hi();
duke@435 2436 assert(l_lo != r_hi, "overwriting registers");
duke@435 2437 switch (code) {
duke@435 2438 case lir_logic_and:
never@739 2439 __ andptr(l_lo, r_lo);
never@739 2440 NOT_LP64(__ andptr(l_hi, r_hi);)
duke@435 2441 break;
duke@435 2442 case lir_logic_or:
never@739 2443 __ orptr(l_lo, r_lo);
never@739 2444 NOT_LP64(__ orptr(l_hi, r_hi);)
duke@435 2445 break;
duke@435 2446 case lir_logic_xor:
never@739 2447 __ xorptr(l_lo, r_lo);
never@739 2448 NOT_LP64(__ xorptr(l_hi, r_hi);)
duke@435 2449 break;
duke@435 2450 default: ShouldNotReachHere();
duke@435 2451 }
duke@435 2452 }
duke@435 2453
duke@435 2454 Register dst_lo = dst->as_register_lo();
duke@435 2455 Register dst_hi = dst->as_register_hi();
duke@435 2456
never@739 2457 #ifdef _LP64
never@739 2458 move_regs(l_lo, dst_lo);
never@739 2459 #else
duke@435 2460 if (dst_lo == l_hi) {
duke@435 2461 assert(dst_hi != l_lo, "overwriting registers");
duke@435 2462 move_regs(l_hi, dst_hi);
duke@435 2463 move_regs(l_lo, dst_lo);
duke@435 2464 } else {
duke@435 2465 assert(dst_lo != l_hi, "overwriting registers");
duke@435 2466 move_regs(l_lo, dst_lo);
duke@435 2467 move_regs(l_hi, dst_hi);
duke@435 2468 }
never@739 2469 #endif // _LP64
duke@435 2470 }
duke@435 2471 }
duke@435 2472
duke@435 2473
duke@435 2474 // we assume that rax, and rdx can be overwritten
duke@435 2475 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
duke@435 2476
duke@435 2477 assert(left->is_single_cpu(), "left must be register");
duke@435 2478 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
duke@435 2479 assert(result->is_single_cpu(), "result must be register");
duke@435 2480
duke@435 2481 // assert(left->destroys_register(), "check");
duke@435 2482 // assert(right->destroys_register(), "check");
duke@435 2483
duke@435 2484 Register lreg = left->as_register();
duke@435 2485 Register dreg = result->as_register();
duke@435 2486
duke@435 2487 if (right->is_constant()) {
duke@435 2488 int divisor = right->as_constant_ptr()->as_jint();
duke@435 2489 assert(divisor > 0 && is_power_of_2(divisor), "must be");
duke@435 2490 if (code == lir_idiv) {
duke@435 2491 assert(lreg == rax, "must be rax,");
duke@435 2492 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2493 __ cdql(); // sign extend into rdx:rax
duke@435 2494 if (divisor == 2) {
duke@435 2495 __ subl(lreg, rdx);
duke@435 2496 } else {
duke@435 2497 __ andl(rdx, divisor - 1);
duke@435 2498 __ addl(lreg, rdx);
duke@435 2499 }
duke@435 2500 __ sarl(lreg, log2_intptr(divisor));
duke@435 2501 move_regs(lreg, dreg);
duke@435 2502 } else if (code == lir_irem) {
duke@435 2503 Label done;
never@739 2504 __ mov(dreg, lreg);
duke@435 2505 __ andl(dreg, 0x80000000 | (divisor - 1));
duke@435 2506 __ jcc(Assembler::positive, done);
duke@435 2507 __ decrement(dreg);
duke@435 2508 __ orl(dreg, ~(divisor - 1));
duke@435 2509 __ increment(dreg);
duke@435 2510 __ bind(done);
duke@435 2511 } else {
duke@435 2512 ShouldNotReachHere();
duke@435 2513 }
duke@435 2514 } else {
duke@435 2515 Register rreg = right->as_register();
duke@435 2516 assert(lreg == rax, "left register must be rax,");
duke@435 2517 assert(rreg != rdx, "right register must not be rdx");
duke@435 2518 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2519
duke@435 2520 move_regs(lreg, rax);
duke@435 2521
duke@435 2522 int idivl_offset = __ corrected_idivl(rreg);
duke@435 2523 add_debug_info_for_div0(idivl_offset, info);
duke@435 2524 if (code == lir_irem) {
duke@435 2525 move_regs(rdx, dreg); // result is in rdx
duke@435 2526 } else {
duke@435 2527 move_regs(rax, dreg);
duke@435 2528 }
duke@435 2529 }
duke@435 2530 }
duke@435 2531
duke@435 2532
duke@435 2533 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 2534 if (opr1->is_single_cpu()) {
duke@435 2535 Register reg1 = opr1->as_register();
duke@435 2536 if (opr2->is_single_cpu()) {
duke@435 2537 // cpu register - cpu register
never@739 2538 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2539 __ cmpptr(reg1, opr2->as_register());
never@739 2540 } else {
never@739 2541 assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
never@739 2542 __ cmpl(reg1, opr2->as_register());
never@739 2543 }
duke@435 2544 } else if (opr2->is_stack()) {
duke@435 2545 // cpu register - stack
never@739 2546 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2547 __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2548 } else {
never@739 2549 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2550 }
duke@435 2551 } else if (opr2->is_constant()) {
duke@435 2552 // cpu register - constant
duke@435 2553 LIR_Const* c = opr2->as_constant_ptr();
duke@435 2554 if (c->type() == T_INT) {
duke@435 2555 __ cmpl(reg1, c->as_jint());
never@739 2556 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2557 // In 64bit oops are single register
duke@435 2558 jobject o = c->as_jobject();
duke@435 2559 if (o == NULL) {
never@739 2560 __ cmpptr(reg1, (int32_t)NULL_WORD);
duke@435 2561 } else {
never@739 2562 #ifdef _LP64
never@739 2563 __ movoop(rscratch1, o);
never@739 2564 __ cmpptr(reg1, rscratch1);
never@739 2565 #else
duke@435 2566 __ cmpoop(reg1, c->as_jobject());
never@739 2567 #endif // _LP64
duke@435 2568 }
duke@435 2569 } else {
duke@435 2570 ShouldNotReachHere();
duke@435 2571 }
duke@435 2572 // cpu register - address
duke@435 2573 } else if (opr2->is_address()) {
duke@435 2574 if (op->info() != NULL) {
duke@435 2575 add_debug_info_for_null_check_here(op->info());
duke@435 2576 }
duke@435 2577 __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2578 } else {
duke@435 2579 ShouldNotReachHere();
duke@435 2580 }
duke@435 2581
duke@435 2582 } else if(opr1->is_double_cpu()) {
duke@435 2583 Register xlo = opr1->as_register_lo();
duke@435 2584 Register xhi = opr1->as_register_hi();
duke@435 2585 if (opr2->is_double_cpu()) {
never@739 2586 #ifdef _LP64
never@739 2587 __ cmpptr(xlo, opr2->as_register_lo());
never@739 2588 #else
duke@435 2589 // cpu register - cpu register
duke@435 2590 Register ylo = opr2->as_register_lo();
duke@435 2591 Register yhi = opr2->as_register_hi();
duke@435 2592 __ subl(xlo, ylo);
duke@435 2593 __ sbbl(xhi, yhi);
duke@435 2594 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 2595 __ orl(xhi, xlo);
duke@435 2596 }
never@739 2597 #endif // _LP64
duke@435 2598 } else if (opr2->is_constant()) {
duke@435 2599 // cpu register - constant 0
duke@435 2600 assert(opr2->as_jlong() == (jlong)0, "only handles zero");
never@739 2601 #ifdef _LP64
never@739 2602 __ cmpptr(xlo, (int32_t)opr2->as_jlong());
never@739 2603 #else
duke@435 2604 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
duke@435 2605 __ orl(xhi, xlo);
never@739 2606 #endif // _LP64
duke@435 2607 } else {
duke@435 2608 ShouldNotReachHere();
duke@435 2609 }
duke@435 2610
duke@435 2611 } else if (opr1->is_single_xmm()) {
duke@435 2612 XMMRegister reg1 = opr1->as_xmm_float_reg();
duke@435 2613 if (opr2->is_single_xmm()) {
duke@435 2614 // xmm register - xmm register
duke@435 2615 __ ucomiss(reg1, opr2->as_xmm_float_reg());
duke@435 2616 } else if (opr2->is_stack()) {
duke@435 2617 // xmm register - stack
duke@435 2618 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2619 } else if (opr2->is_constant()) {
duke@435 2620 // xmm register - constant
duke@435 2621 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
duke@435 2622 } else if (opr2->is_address()) {
duke@435 2623 // xmm register - address
duke@435 2624 if (op->info() != NULL) {
duke@435 2625 add_debug_info_for_null_check_here(op->info());
duke@435 2626 }
duke@435 2627 __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2628 } else {
duke@435 2629 ShouldNotReachHere();
duke@435 2630 }
duke@435 2631
duke@435 2632 } else if (opr1->is_double_xmm()) {
duke@435 2633 XMMRegister reg1 = opr1->as_xmm_double_reg();
duke@435 2634 if (opr2->is_double_xmm()) {
duke@435 2635 // xmm register - xmm register
duke@435 2636 __ ucomisd(reg1, opr2->as_xmm_double_reg());
duke@435 2637 } else if (opr2->is_stack()) {
duke@435 2638 // xmm register - stack
duke@435 2639 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
duke@435 2640 } else if (opr2->is_constant()) {
duke@435 2641 // xmm register - constant
duke@435 2642 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
duke@435 2643 } else if (opr2->is_address()) {
duke@435 2644 // xmm register - address
duke@435 2645 if (op->info() != NULL) {
duke@435 2646 add_debug_info_for_null_check_here(op->info());
duke@435 2647 }
duke@435 2648 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
duke@435 2649 } else {
duke@435 2650 ShouldNotReachHere();
duke@435 2651 }
duke@435 2652
duke@435 2653 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
duke@435 2654 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
duke@435 2655 assert(opr2->is_fpu_register(), "both must be registers");
duke@435 2656 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2657
duke@435 2658 } else if (opr1->is_address() && opr2->is_constant()) {
never@739 2659 LIR_Const* c = opr2->as_constant_ptr();
never@739 2660 #ifdef _LP64
never@739 2661 if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2662 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
never@739 2663 __ movoop(rscratch1, c->as_jobject());
never@739 2664 }
never@739 2665 #endif // LP64
duke@435 2666 if (op->info() != NULL) {
duke@435 2667 add_debug_info_for_null_check_here(op->info());
duke@435 2668 }
duke@435 2669 // special case: address - constant
duke@435 2670 LIR_Address* addr = opr1->as_address_ptr();
duke@435 2671 if (c->type() == T_INT) {
duke@435 2672 __ cmpl(as_Address(addr), c->as_jint());
never@739 2673 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2674 #ifdef _LP64
never@739 2675 // %%% Make this explode if addr isn't reachable until we figure out a
never@739 2676 // better strategy by giving noreg as the temp for as_Address
never@739 2677 __ cmpptr(rscratch1, as_Address(addr, noreg));
never@739 2678 #else
duke@435 2679 __ cmpoop(as_Address(addr), c->as_jobject());
never@739 2680 #endif // _LP64
duke@435 2681 } else {
duke@435 2682 ShouldNotReachHere();
duke@435 2683 }
duke@435 2684
duke@435 2685 } else {
duke@435 2686 ShouldNotReachHere();
duke@435 2687 }
duke@435 2688 }
duke@435 2689
duke@435 2690 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
duke@435 2691 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 2692 if (left->is_single_xmm()) {
duke@435 2693 assert(right->is_single_xmm(), "must match");
duke@435 2694 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2695 } else if (left->is_double_xmm()) {
duke@435 2696 assert(right->is_double_xmm(), "must match");
duke@435 2697 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2698
duke@435 2699 } else {
duke@435 2700 assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
duke@435 2701 assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
duke@435 2702
duke@435 2703 assert(left->fpu() == 0, "left must be on TOS");
duke@435 2704 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
duke@435 2705 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2706 }
duke@435 2707 } else {
duke@435 2708 assert(code == lir_cmp_l2i, "check");
never@739 2709 #ifdef _LP64
never@739 2710 Register dest = dst->as_register();
never@739 2711 __ xorptr(dest, dest);
never@739 2712 Label high, done;
never@739 2713 __ cmpptr(left->as_register_lo(), right->as_register_lo());
never@739 2714 __ jcc(Assembler::equal, done);
never@739 2715 __ jcc(Assembler::greater, high);
never@739 2716 __ decrement(dest);
never@739 2717 __ jmp(done);
never@739 2718 __ bind(high);
never@739 2719 __ increment(dest);
never@739 2720
never@739 2721 __ bind(done);
never@739 2722
never@739 2723 #else
duke@435 2724 __ lcmp2int(left->as_register_hi(),
duke@435 2725 left->as_register_lo(),
duke@435 2726 right->as_register_hi(),
duke@435 2727 right->as_register_lo());
duke@435 2728 move_regs(left->as_register_hi(), dst->as_register());
never@739 2729 #endif // _LP64
duke@435 2730 }
duke@435 2731 }
duke@435 2732
duke@435 2733
duke@435 2734 void LIR_Assembler::align_call(LIR_Code code) {
duke@435 2735 if (os::is_MP()) {
duke@435 2736 // make sure that the displacement word of the call ends up word aligned
duke@435 2737 int offset = __ offset();
duke@435 2738 switch (code) {
duke@435 2739 case lir_static_call:
duke@435 2740 case lir_optvirtual_call:
duke@435 2741 offset += NativeCall::displacement_offset;
duke@435 2742 break;
duke@435 2743 case lir_icvirtual_call:
duke@435 2744 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
duke@435 2745 break;
duke@435 2746 case lir_virtual_call: // currently, sparc-specific for niagara
duke@435 2747 default: ShouldNotReachHere();
duke@435 2748 }
duke@435 2749 while (offset++ % BytesPerWord != 0) {
duke@435 2750 __ nop();
duke@435 2751 }
duke@435 2752 }
duke@435 2753 }
duke@435 2754
duke@435 2755
duke@435 2756 void LIR_Assembler::call(address entry, relocInfo::relocType rtype, CodeEmitInfo* info) {
duke@435 2757 assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2758 "must be aligned");
duke@435 2759 __ call(AddressLiteral(entry, rtype));
duke@435 2760 add_call_info(code_offset(), info);
duke@435 2761 }
duke@435 2762
duke@435 2763
duke@435 2764 void LIR_Assembler::ic_call(address entry, CodeEmitInfo* info) {
duke@435 2765 RelocationHolder rh = virtual_call_Relocation::spec(pc());
duke@435 2766 __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
duke@435 2767 assert(!os::is_MP() ||
duke@435 2768 (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2769 "must be aligned");
duke@435 2770 __ call(AddressLiteral(entry, rh));
duke@435 2771 add_call_info(code_offset(), info);
duke@435 2772 }
duke@435 2773
duke@435 2774
duke@435 2775 /* Currently, vtable-dispatch is only enabled for sparc platforms */
duke@435 2776 void LIR_Assembler::vtable_call(int vtable_offset, CodeEmitInfo* info) {
duke@435 2777 ShouldNotReachHere();
duke@435 2778 }
duke@435 2779
duke@435 2780 void LIR_Assembler::emit_static_call_stub() {
duke@435 2781 address call_pc = __ pc();
duke@435 2782 address stub = __ start_a_stub(call_stub_size);
duke@435 2783 if (stub == NULL) {
duke@435 2784 bailout("static call stub overflow");
duke@435 2785 return;
duke@435 2786 }
duke@435 2787
duke@435 2788 int start = __ offset();
duke@435 2789 if (os::is_MP()) {
duke@435 2790 // make sure that the displacement word of the call ends up word aligned
duke@435 2791 int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
duke@435 2792 while (offset++ % BytesPerWord != 0) {
duke@435 2793 __ nop();
duke@435 2794 }
duke@435 2795 }
duke@435 2796 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 2797 __ movoop(rbx, (jobject)NULL);
duke@435 2798 // must be set to -1 at code generation time
duke@435 2799 assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
never@739 2800 // On 64bit this will die since it will take a movq & jmp, must be only a jmp
never@739 2801 __ jump(RuntimeAddress(__ pc()));
duke@435 2802
duke@435 2803 assert(__ offset() - start <= call_stub_size, "stub too big")
duke@435 2804 __ end_a_stub();
duke@435 2805 }
duke@435 2806
duke@435 2807
duke@435 2808 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
duke@435 2809 assert(exceptionOop->as_register() == rax, "must match");
duke@435 2810 assert(unwind || exceptionPC->as_register() == rdx, "must match");
duke@435 2811
duke@435 2812 // exception object is not added to oop map by LinearScan
duke@435 2813 // (LinearScan assumes that no oops are in fixed registers)
duke@435 2814 info->add_register_oop(exceptionOop);
duke@435 2815 Runtime1::StubID unwind_id;
duke@435 2816
duke@435 2817 if (!unwind) {
duke@435 2818 // get current pc information
duke@435 2819 // pc is only needed if the method has an exception handler, the unwind code does not need it.
duke@435 2820 int pc_for_athrow_offset = __ offset();
duke@435 2821 InternalAddress pc_for_athrow(__ pc());
duke@435 2822 __ lea(exceptionPC->as_register(), pc_for_athrow);
duke@435 2823 add_call_info(pc_for_athrow_offset, info); // for exception handler
duke@435 2824
duke@435 2825 __ verify_not_null_oop(rax);
duke@435 2826 // search an exception handler (rax: exception oop, rdx: throwing pc)
duke@435 2827 if (compilation()->has_fpu_code()) {
duke@435 2828 unwind_id = Runtime1::handle_exception_id;
duke@435 2829 } else {
duke@435 2830 unwind_id = Runtime1::handle_exception_nofpu_id;
duke@435 2831 }
duke@435 2832 } else {
duke@435 2833 unwind_id = Runtime1::unwind_exception_id;
duke@435 2834 }
duke@435 2835 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
duke@435 2836
duke@435 2837 // enough room for two byte trap
duke@435 2838 __ nop();
duke@435 2839 }
duke@435 2840
duke@435 2841
duke@435 2842 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2843
duke@435 2844 // optimized version for linear scan:
duke@435 2845 // * count must be already in ECX (guaranteed by LinearScan)
duke@435 2846 // * left and dest must be equal
duke@435 2847 // * tmp must be unused
duke@435 2848 assert(count->as_register() == SHIFT_count, "count must be in ECX");
duke@435 2849 assert(left == dest, "left and dest must be equal");
duke@435 2850 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
duke@435 2851
duke@435 2852 if (left->is_single_cpu()) {
duke@435 2853 Register value = left->as_register();
duke@435 2854 assert(value != SHIFT_count, "left cannot be ECX");
duke@435 2855
duke@435 2856 switch (code) {
duke@435 2857 case lir_shl: __ shll(value); break;
duke@435 2858 case lir_shr: __ sarl(value); break;
duke@435 2859 case lir_ushr: __ shrl(value); break;
duke@435 2860 default: ShouldNotReachHere();
duke@435 2861 }
duke@435 2862 } else if (left->is_double_cpu()) {
duke@435 2863 Register lo = left->as_register_lo();
duke@435 2864 Register hi = left->as_register_hi();
duke@435 2865 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
never@739 2866 #ifdef _LP64
never@739 2867 switch (code) {
never@739 2868 case lir_shl: __ shlptr(lo); break;
never@739 2869 case lir_shr: __ sarptr(lo); break;
never@739 2870 case lir_ushr: __ shrptr(lo); break;
never@739 2871 default: ShouldNotReachHere();
never@739 2872 }
never@739 2873 #else
duke@435 2874
duke@435 2875 switch (code) {
duke@435 2876 case lir_shl: __ lshl(hi, lo); break;
duke@435 2877 case lir_shr: __ lshr(hi, lo, true); break;
duke@435 2878 case lir_ushr: __ lshr(hi, lo, false); break;
duke@435 2879 default: ShouldNotReachHere();
duke@435 2880 }
never@739 2881 #endif // LP64
duke@435 2882 } else {
duke@435 2883 ShouldNotReachHere();
duke@435 2884 }
duke@435 2885 }
duke@435 2886
duke@435 2887
duke@435 2888 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 2889 if (dest->is_single_cpu()) {
duke@435 2890 // first move left into dest so that left is not destroyed by the shift
duke@435 2891 Register value = dest->as_register();
duke@435 2892 count = count & 0x1F; // Java spec
duke@435 2893
duke@435 2894 move_regs(left->as_register(), value);
duke@435 2895 switch (code) {
duke@435 2896 case lir_shl: __ shll(value, count); break;
duke@435 2897 case lir_shr: __ sarl(value, count); break;
duke@435 2898 case lir_ushr: __ shrl(value, count); break;
duke@435 2899 default: ShouldNotReachHere();
duke@435 2900 }
duke@435 2901 } else if (dest->is_double_cpu()) {
never@739 2902 #ifndef _LP64
duke@435 2903 Unimplemented();
never@739 2904 #else
never@739 2905 // first move left into dest so that left is not destroyed by the shift
never@739 2906 Register value = dest->as_register_lo();
never@739 2907 count = count & 0x1F; // Java spec
never@739 2908
never@739 2909 move_regs(left->as_register_lo(), value);
never@739 2910 switch (code) {
never@739 2911 case lir_shl: __ shlptr(value, count); break;
never@739 2912 case lir_shr: __ sarptr(value, count); break;
never@739 2913 case lir_ushr: __ shrptr(value, count); break;
never@739 2914 default: ShouldNotReachHere();
never@739 2915 }
never@739 2916 #endif // _LP64
duke@435 2917 } else {
duke@435 2918 ShouldNotReachHere();
duke@435 2919 }
duke@435 2920 }
duke@435 2921
duke@435 2922
duke@435 2923 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
duke@435 2924 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 2925 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 2926 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 2927 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
duke@435 2928 }
duke@435 2929
duke@435 2930
duke@435 2931 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
duke@435 2932 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 2933 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 2934 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 2935 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
duke@435 2936 }
duke@435 2937
duke@435 2938
duke@435 2939 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
duke@435 2940 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 2941 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 2942 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
duke@435 2943 __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
duke@435 2944 }
duke@435 2945
duke@435 2946
duke@435 2947 // This code replaces a call to arraycopy; no exception may
duke@435 2948 // be thrown in this code, they must be thrown in the System.arraycopy
duke@435 2949 // activation frame; we could save some checks if this would not be the case
duke@435 2950 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 2951 ciArrayKlass* default_type = op->expected_type();
duke@435 2952 Register src = op->src()->as_register();
duke@435 2953 Register dst = op->dst()->as_register();
duke@435 2954 Register src_pos = op->src_pos()->as_register();
duke@435 2955 Register dst_pos = op->dst_pos()->as_register();
duke@435 2956 Register length = op->length()->as_register();
duke@435 2957 Register tmp = op->tmp()->as_register();
duke@435 2958
duke@435 2959 CodeStub* stub = op->stub();
duke@435 2960 int flags = op->flags();
duke@435 2961 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 2962 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 2963
duke@435 2964 // if we don't know anything or it's an object array, just go through the generic arraycopy
duke@435 2965 if (default_type == NULL) {
duke@435 2966 Label done;
duke@435 2967 // save outgoing arguments on stack in case call to System.arraycopy is needed
duke@435 2968 // HACK ALERT. This code used to push the parameters in a hardwired fashion
duke@435 2969 // for interpreter calling conventions. Now we have to do it in new style conventions.
duke@435 2970 // For the moment until C1 gets the new register allocator I just force all the
duke@435 2971 // args to the right place (except the register args) and then on the back side
duke@435 2972 // reload the register args properly if we go slow path. Yuck
duke@435 2973
duke@435 2974 // These are proper for the calling convention
duke@435 2975
duke@435 2976 store_parameter(length, 2);
duke@435 2977 store_parameter(dst_pos, 1);
duke@435 2978 store_parameter(dst, 0);
duke@435 2979
duke@435 2980 // these are just temporary placements until we need to reload
duke@435 2981 store_parameter(src_pos, 3);
duke@435 2982 store_parameter(src, 4);
never@739 2983 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
never@739 2984
never@739 2985 address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
duke@435 2986
duke@435 2987 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
never@739 2988 #ifdef _LP64
never@739 2989 // The arguments are in java calling convention so we can trivially shift them to C
never@739 2990 // convention
never@739 2991 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 2992 __ mov(c_rarg0, j_rarg0);
never@739 2993 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 2994 __ mov(c_rarg1, j_rarg1);
never@739 2995 assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
never@739 2996 __ mov(c_rarg2, j_rarg2);
never@739 2997 assert_different_registers(c_rarg3, j_rarg4);
never@739 2998 __ mov(c_rarg3, j_rarg3);
never@739 2999 #ifdef _WIN64
never@739 3000 // Allocate abi space for args but be sure to keep stack aligned
never@739 3001 __ subptr(rsp, 6*wordSize);
never@739 3002 store_parameter(j_rarg4, 4);
never@739 3003 __ call(RuntimeAddress(entry));
never@739 3004 __ addptr(rsp, 6*wordSize);
never@739 3005 #else
never@739 3006 __ mov(c_rarg4, j_rarg4);
never@739 3007 __ call(RuntimeAddress(entry));
never@739 3008 #endif // _WIN64
never@739 3009 #else
never@739 3010 __ push(length);
never@739 3011 __ push(dst_pos);
never@739 3012 __ push(dst);
never@739 3013 __ push(src_pos);
never@739 3014 __ push(src);
duke@435 3015 __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
duke@435 3016
never@739 3017 #endif // _LP64
never@739 3018
duke@435 3019 __ cmpl(rax, 0);
duke@435 3020 __ jcc(Assembler::equal, *stub->continuation());
duke@435 3021
duke@435 3022 // Reload values from the stack so they are where the stub
duke@435 3023 // expects them.
never@739 3024 __ movptr (dst, Address(rsp, 0*BytesPerWord));
never@739 3025 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
never@739 3026 __ movptr (length, Address(rsp, 2*BytesPerWord));
never@739 3027 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
never@739 3028 __ movptr (src, Address(rsp, 4*BytesPerWord));
duke@435 3029 __ jmp(*stub->entry());
duke@435 3030
duke@435 3031 __ bind(*stub->continuation());
duke@435 3032 return;
duke@435 3033 }
duke@435 3034
duke@435 3035 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
duke@435 3036
kvn@464 3037 int elem_size = type2aelembytes(basic_type);
duke@435 3038 int shift_amount;
duke@435 3039 Address::ScaleFactor scale;
duke@435 3040
duke@435 3041 switch (elem_size) {
duke@435 3042 case 1 :
duke@435 3043 shift_amount = 0;
duke@435 3044 scale = Address::times_1;
duke@435 3045 break;
duke@435 3046 case 2 :
duke@435 3047 shift_amount = 1;
duke@435 3048 scale = Address::times_2;
duke@435 3049 break;
duke@435 3050 case 4 :
duke@435 3051 shift_amount = 2;
duke@435 3052 scale = Address::times_4;
duke@435 3053 break;
duke@435 3054 case 8 :
duke@435 3055 shift_amount = 3;
duke@435 3056 scale = Address::times_8;
duke@435 3057 break;
duke@435 3058 default:
duke@435 3059 ShouldNotReachHere();
duke@435 3060 }
duke@435 3061
duke@435 3062 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
duke@435 3063 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
duke@435 3064 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
duke@435 3065 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
duke@435 3066
never@739 3067 // length and pos's are all sign extended at this point on 64bit
never@739 3068
duke@435 3069 // test for NULL
duke@435 3070 if (flags & LIR_OpArrayCopy::src_null_check) {
never@739 3071 __ testptr(src, src);
duke@435 3072 __ jcc(Assembler::zero, *stub->entry());
duke@435 3073 }
duke@435 3074 if (flags & LIR_OpArrayCopy::dst_null_check) {
never@739 3075 __ testptr(dst, dst);
duke@435 3076 __ jcc(Assembler::zero, *stub->entry());
duke@435 3077 }
duke@435 3078
duke@435 3079 // check if negative
duke@435 3080 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 3081 __ testl(src_pos, src_pos);
duke@435 3082 __ jcc(Assembler::less, *stub->entry());
duke@435 3083 }
duke@435 3084 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 3085 __ testl(dst_pos, dst_pos);
duke@435 3086 __ jcc(Assembler::less, *stub->entry());
duke@435 3087 }
duke@435 3088 if (flags & LIR_OpArrayCopy::length_positive_check) {
duke@435 3089 __ testl(length, length);
duke@435 3090 __ jcc(Assembler::less, *stub->entry());
duke@435 3091 }
duke@435 3092
duke@435 3093 if (flags & LIR_OpArrayCopy::src_range_check) {
never@739 3094 __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
duke@435 3095 __ cmpl(tmp, src_length_addr);
duke@435 3096 __ jcc(Assembler::above, *stub->entry());
duke@435 3097 }
duke@435 3098 if (flags & LIR_OpArrayCopy::dst_range_check) {
never@739 3099 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
duke@435 3100 __ cmpl(tmp, dst_length_addr);
duke@435 3101 __ jcc(Assembler::above, *stub->entry());
duke@435 3102 }
duke@435 3103
duke@435 3104 if (flags & LIR_OpArrayCopy::type_check) {
never@739 3105 __ movptr(tmp, src_klass_addr);
never@739 3106 __ cmpptr(tmp, dst_klass_addr);
duke@435 3107 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 3108 }
duke@435 3109
duke@435 3110 #ifdef ASSERT
duke@435 3111 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 3112 // Sanity check the known type with the incoming class. For the
duke@435 3113 // primitive case the types must match exactly with src.klass and
duke@435 3114 // dst.klass each exactly matching the default type. For the
duke@435 3115 // object array case, if no type check is needed then either the
duke@435 3116 // dst type is exactly the expected type and the src type is a
duke@435 3117 // subtype which we can't check or src is the same array as dst
duke@435 3118 // but not necessarily exactly of type default_type.
duke@435 3119 Label known_ok, halt;
jrose@1424 3120 __ movoop(tmp, default_type->constant_encoding());
duke@435 3121 if (basic_type != T_OBJECT) {
never@739 3122 __ cmpptr(tmp, dst_klass_addr);
duke@435 3123 __ jcc(Assembler::notEqual, halt);
never@739 3124 __ cmpptr(tmp, src_klass_addr);
duke@435 3125 __ jcc(Assembler::equal, known_ok);
duke@435 3126 } else {
never@739 3127 __ cmpptr(tmp, dst_klass_addr);
duke@435 3128 __ jcc(Assembler::equal, known_ok);
never@739 3129 __ cmpptr(src, dst);
duke@435 3130 __ jcc(Assembler::equal, known_ok);
duke@435 3131 }
duke@435 3132 __ bind(halt);
duke@435 3133 __ stop("incorrect type information in arraycopy");
duke@435 3134 __ bind(known_ok);
duke@435 3135 }
duke@435 3136 #endif
duke@435 3137
never@739 3138 if (shift_amount > 0 && basic_type != T_OBJECT) {
never@739 3139 __ shlptr(length, shift_amount);
never@739 3140 }
never@739 3141
never@739 3142 #ifdef _LP64
never@739 3143 assert_different_registers(c_rarg0, dst, dst_pos, length);
roland@1495 3144 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
never@739 3145 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3146 assert_different_registers(c_rarg1, length);
roland@1495 3147 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
never@739 3148 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3149 __ mov(c_rarg2, length);
never@739 3150
never@739 3151 #else
never@739 3152 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3153 store_parameter(tmp, 0);
never@739 3154 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3155 store_parameter(tmp, 1);
duke@435 3156 store_parameter(length, 2);
never@739 3157 #endif // _LP64
duke@435 3158 if (basic_type == T_OBJECT) {
duke@435 3159 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
duke@435 3160 } else {
duke@435 3161 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
duke@435 3162 }
duke@435 3163
duke@435 3164 __ bind(*stub->continuation());
duke@435 3165 }
duke@435 3166
duke@435 3167
duke@435 3168 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 3169 Register obj = op->obj_opr()->as_register(); // may not be an oop
duke@435 3170 Register hdr = op->hdr_opr()->as_register();
duke@435 3171 Register lock = op->lock_opr()->as_register();
duke@435 3172 if (!UseFastLocking) {
duke@435 3173 __ jmp(*op->stub()->entry());
duke@435 3174 } else if (op->code() == lir_lock) {
duke@435 3175 Register scratch = noreg;
duke@435 3176 if (UseBiasedLocking) {
duke@435 3177 scratch = op->scratch_opr()->as_register();
duke@435 3178 }
duke@435 3179 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3180 // add debug info for NullPointerException only if one is possible
duke@435 3181 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
duke@435 3182 if (op->info() != NULL) {
duke@435 3183 add_debug_info_for_null_check(null_check_offset, op->info());
duke@435 3184 }
duke@435 3185 // done
duke@435 3186 } else if (op->code() == lir_unlock) {
duke@435 3187 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3188 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 3189 } else {
duke@435 3190 Unimplemented();
duke@435 3191 }
duke@435 3192 __ bind(*op->stub()->continuation());
duke@435 3193 }
duke@435 3194
duke@435 3195
duke@435 3196 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 3197 ciMethod* method = op->profiled_method();
duke@435 3198 int bci = op->profiled_bci();
duke@435 3199
duke@435 3200 // Update counter for all call types
duke@435 3201 ciMethodData* md = method->method_data();
duke@435 3202 if (md == NULL) {
duke@435 3203 bailout("out of memory building methodDataOop");
duke@435 3204 return;
duke@435 3205 }
duke@435 3206 ciProfileData* data = md->bci_to_data(bci);
duke@435 3207 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 3208 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
duke@435 3209 Register mdo = op->mdo()->as_register();
jrose@1424 3210 __ movoop(mdo, md->constant_encoding());
duke@435 3211 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
duke@435 3212 Bytecodes::Code bc = method->java_code_at_bci(bci);
duke@435 3213 // Perform additional virtual call profiling for invokevirtual and
duke@435 3214 // invokeinterface bytecodes
duke@435 3215 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
duke@435 3216 Tier1ProfileVirtualCalls) {
duke@435 3217 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 3218 Register recv = op->recv()->as_register();
duke@435 3219 assert_different_registers(mdo, recv);
duke@435 3220 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 3221 ciKlass* known_klass = op->known_holder();
duke@435 3222 if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 3223 // We know the type that will be seen at this call site; we can
duke@435 3224 // statically update the methodDataOop rather than needing to do
duke@435 3225 // dynamic tests on the receiver type
duke@435 3226
duke@435 3227 // NOTE: we should probably put a lock around this search to
duke@435 3228 // avoid collisions by concurrent compilations
duke@435 3229 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 3230 uint i;
duke@435 3231 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3232 ciKlass* receiver = vc_data->receiver(i);
duke@435 3233 if (known_klass->equals(receiver)) {
duke@435 3234 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
duke@435 3235 __ addl(data_addr, DataLayout::counter_increment);
duke@435 3236 return;
duke@435 3237 }
duke@435 3238 }
duke@435 3239
duke@435 3240 // Receiver type not found in profile data; select an empty slot
duke@435 3241
duke@435 3242 // Note that this is less efficient than it should be because it
duke@435 3243 // always does a write to the receiver part of the
duke@435 3244 // VirtualCallData rather than just the first time
duke@435 3245 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3246 ciKlass* receiver = vc_data->receiver(i);
duke@435 3247 if (receiver == NULL) {
duke@435 3248 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
jrose@1424 3249 __ movoop(recv_addr, known_klass->constant_encoding());
duke@435 3250 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
duke@435 3251 __ addl(data_addr, DataLayout::counter_increment);
duke@435 3252 return;
duke@435 3253 }
duke@435 3254 }
duke@435 3255 } else {
never@739 3256 __ movptr(recv, Address(recv, oopDesc::klass_offset_in_bytes()));
duke@435 3257 Label update_done;
duke@435 3258 uint i;
duke@435 3259 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3260 Label next_test;
duke@435 3261 // See if the receiver is receiver[n].
never@739 3262 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))));
duke@435 3263 __ jcc(Assembler::notEqual, next_test);
duke@435 3264 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
duke@435 3265 __ addl(data_addr, DataLayout::counter_increment);
duke@435 3266 __ jmp(update_done);
duke@435 3267 __ bind(next_test);
duke@435 3268 }
duke@435 3269
duke@435 3270 // Didn't find receiver; find next empty slot and fill it in
duke@435 3271 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3272 Label next_test;
duke@435 3273 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
never@739 3274 __ cmpptr(recv_addr, (int32_t)NULL_WORD);
duke@435 3275 __ jcc(Assembler::notEqual, next_test);
never@739 3276 __ movptr(recv_addr, recv);
duke@435 3277 __ movl(Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))), DataLayout::counter_increment);
kvn@1641 3278 __ jmp(update_done);
duke@435 3279 __ bind(next_test);
duke@435 3280 }
kvn@1641 3281 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1641 3282 // Increment total counter to indicate polimorphic case.
kvn@1641 3283 __ addl(counter_addr, DataLayout::counter_increment);
duke@435 3284
duke@435 3285 __ bind(update_done);
duke@435 3286 }
kvn@1641 3287 } else {
kvn@1641 3288 // Static call
kvn@1641 3289 __ addl(counter_addr, DataLayout::counter_increment);
duke@435 3290 }
duke@435 3291 }
duke@435 3292
duke@435 3293
duke@435 3294 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
duke@435 3295 Unimplemented();
duke@435 3296 }
duke@435 3297
duke@435 3298
duke@435 3299 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
never@739 3300 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
duke@435 3301 }
duke@435 3302
duke@435 3303
duke@435 3304 void LIR_Assembler::align_backward_branch_target() {
duke@435 3305 __ align(BytesPerWord);
duke@435 3306 }
duke@435 3307
duke@435 3308
duke@435 3309 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3310 if (left->is_single_cpu()) {
duke@435 3311 __ negl(left->as_register());
duke@435 3312 move_regs(left->as_register(), dest->as_register());
duke@435 3313
duke@435 3314 } else if (left->is_double_cpu()) {
duke@435 3315 Register lo = left->as_register_lo();
never@739 3316 #ifdef _LP64
never@739 3317 Register dst = dest->as_register_lo();
never@739 3318 __ movptr(dst, lo);
never@739 3319 __ negptr(dst);
never@739 3320 #else
duke@435 3321 Register hi = left->as_register_hi();
duke@435 3322 __ lneg(hi, lo);
duke@435 3323 if (dest->as_register_lo() == hi) {
duke@435 3324 assert(dest->as_register_hi() != lo, "destroying register");
duke@435 3325 move_regs(hi, dest->as_register_hi());
duke@435 3326 move_regs(lo, dest->as_register_lo());
duke@435 3327 } else {
duke@435 3328 move_regs(lo, dest->as_register_lo());
duke@435 3329 move_regs(hi, dest->as_register_hi());
duke@435 3330 }
never@739 3331 #endif // _LP64
duke@435 3332
duke@435 3333 } else if (dest->is_single_xmm()) {
duke@435 3334 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
duke@435 3335 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
duke@435 3336 }
duke@435 3337 __ xorps(dest->as_xmm_float_reg(),
duke@435 3338 ExternalAddress((address)float_signflip_pool));
duke@435 3339
duke@435 3340 } else if (dest->is_double_xmm()) {
duke@435 3341 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
duke@435 3342 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
duke@435 3343 }
duke@435 3344 __ xorpd(dest->as_xmm_double_reg(),
duke@435 3345 ExternalAddress((address)double_signflip_pool));
duke@435 3346
duke@435 3347 } else if (left->is_single_fpu() || left->is_double_fpu()) {
duke@435 3348 assert(left->fpu() == 0, "arg must be on TOS");
duke@435 3349 assert(dest->fpu() == 0, "dest must be TOS");
duke@435 3350 __ fchs();
duke@435 3351
duke@435 3352 } else {
duke@435 3353 ShouldNotReachHere();
duke@435 3354 }
duke@435 3355 }
duke@435 3356
duke@435 3357
duke@435 3358 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
duke@435 3359 assert(addr->is_address() && dest->is_register(), "check");
never@739 3360 Register reg;
never@739 3361 reg = dest->as_pointer_register();
never@739 3362 __ lea(reg, as_Address(addr->as_address_ptr()));
duke@435 3363 }
duke@435 3364
duke@435 3365
duke@435 3366
duke@435 3367 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3368 assert(!tmp->is_valid(), "don't need temporary");
duke@435 3369 __ call(RuntimeAddress(dest));
duke@435 3370 if (info != NULL) {
duke@435 3371 add_call_info_here(info);
duke@435 3372 }
duke@435 3373 }
duke@435 3374
duke@435 3375
duke@435 3376 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3377 assert(type == T_LONG, "only for volatile long fields");
duke@435 3378
duke@435 3379 if (info != NULL) {
duke@435 3380 add_debug_info_for_null_check_here(info);
duke@435 3381 }
duke@435 3382
duke@435 3383 if (src->is_double_xmm()) {
duke@435 3384 if (dest->is_double_cpu()) {
never@739 3385 #ifdef _LP64
never@739 3386 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
never@739 3387 #else
never@739 3388 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
duke@435 3389 __ psrlq(src->as_xmm_double_reg(), 32);
never@739 3390 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
never@739 3391 #endif // _LP64
duke@435 3392 } else if (dest->is_double_stack()) {
duke@435 3393 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
duke@435 3394 } else if (dest->is_address()) {
duke@435 3395 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
duke@435 3396 } else {
duke@435 3397 ShouldNotReachHere();
duke@435 3398 }
duke@435 3399
duke@435 3400 } else if (dest->is_double_xmm()) {
duke@435 3401 if (src->is_double_stack()) {
duke@435 3402 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3403 } else if (src->is_address()) {
duke@435 3404 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
duke@435 3405 } else {
duke@435 3406 ShouldNotReachHere();
duke@435 3407 }
duke@435 3408
duke@435 3409 } else if (src->is_double_fpu()) {
duke@435 3410 assert(src->fpu_regnrLo() == 0, "must be TOS");
duke@435 3411 if (dest->is_double_stack()) {
duke@435 3412 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
duke@435 3413 } else if (dest->is_address()) {
duke@435 3414 __ fistp_d(as_Address(dest->as_address_ptr()));
duke@435 3415 } else {
duke@435 3416 ShouldNotReachHere();
duke@435 3417 }
duke@435 3418
duke@435 3419 } else if (dest->is_double_fpu()) {
duke@435 3420 assert(dest->fpu_regnrLo() == 0, "must be TOS");
duke@435 3421 if (src->is_double_stack()) {
duke@435 3422 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3423 } else if (src->is_address()) {
duke@435 3424 __ fild_d(as_Address(src->as_address_ptr()));
duke@435 3425 } else {
duke@435 3426 ShouldNotReachHere();
duke@435 3427 }
duke@435 3428 } else {
duke@435 3429 ShouldNotReachHere();
duke@435 3430 }
duke@435 3431 }
duke@435 3432
duke@435 3433
duke@435 3434 void LIR_Assembler::membar() {
never@739 3435 // QQQ sparc TSO uses this,
never@739 3436 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
duke@435 3437 }
duke@435 3438
duke@435 3439 void LIR_Assembler::membar_acquire() {
duke@435 3440 // No x86 machines currently require load fences
duke@435 3441 // __ load_fence();
duke@435 3442 }
duke@435 3443
duke@435 3444 void LIR_Assembler::membar_release() {
duke@435 3445 // No x86 machines currently require store fences
duke@435 3446 // __ store_fence();
duke@435 3447 }
duke@435 3448
duke@435 3449 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3450 assert(result_reg->is_register(), "check");
never@739 3451 #ifdef _LP64
never@739 3452 // __ get_thread(result_reg->as_register_lo());
never@739 3453 __ mov(result_reg->as_register(), r15_thread);
never@739 3454 #else
duke@435 3455 __ get_thread(result_reg->as_register());
never@739 3456 #endif // _LP64
duke@435 3457 }
duke@435 3458
duke@435 3459
duke@435 3460 void LIR_Assembler::peephole(LIR_List*) {
duke@435 3461 // do nothing for now
duke@435 3462 }
duke@435 3463
duke@435 3464
duke@435 3465 #undef __

mercurial