src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Sat, 29 Sep 2012 06:40:00 -0400

author
coleenp
date
Sat, 29 Sep 2012 06:40:00 -0400
changeset 4142
d8ce2825b193
parent 4106
7eca5de9e0b6
child 4164
d804e148cff8
permissions
-rw-r--r--

8000213: NPG: Should have renamed arrayKlass and typeArrayKlass
Summary: Capitalize these metadata types (and objArrayKlass)
Reviewed-by: stefank, twisti, kvn

duke@435 1 /*
kvn@3760 2 * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@2697 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "c1/c1_Compilation.hpp"
stefank@2314 28 #include "c1/c1_LIRAssembler.hpp"
stefank@2314 29 #include "c1/c1_MacroAssembler.hpp"
stefank@2314 30 #include "c1/c1_Runtime1.hpp"
stefank@2314 31 #include "c1/c1_ValueStack.hpp"
stefank@2314 32 #include "ci/ciArrayKlass.hpp"
stefank@2314 33 #include "ci/ciInstance.hpp"
stefank@2314 34 #include "gc_interface/collectedHeap.hpp"
stefank@2314 35 #include "memory/barrierSet.hpp"
stefank@2314 36 #include "memory/cardTableModRefBS.hpp"
stefank@2314 37 #include "nativeInst_x86.hpp"
stefank@2314 38 #include "oops/objArrayKlass.hpp"
stefank@2314 39 #include "runtime/sharedRuntime.hpp"
duke@435 40
duke@435 41
duke@435 42 // These masks are used to provide 128-bit aligned bitmasks to the XMM
duke@435 43 // instructions, to allow sign-masking or sign-bit flipping. They allow
duke@435 44 // fast versions of NegF/NegD and AbsF/AbsD.
duke@435 45
duke@435 46 // Note: 'double' and 'long long' have 32-bits alignment on x86.
duke@435 47 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
duke@435 48 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
duke@435 49 // of 128-bits operands for SSE instructions.
iveresov@2932 50 jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
duke@435 51 // Store the value to a 128-bits operand.
duke@435 52 operand[0] = lo;
duke@435 53 operand[1] = hi;
duke@435 54 return operand;
duke@435 55 }
duke@435 56
duke@435 57 // Buffer for 128-bits masks used by SSE instructions.
duke@435 58 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
duke@435 59
duke@435 60 // Static initialization during VM startup.
duke@435 61 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
duke@435 62 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
duke@435 63 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
duke@435 64 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
duke@435 65
duke@435 66
duke@435 67
duke@435 68 NEEDS_CLEANUP // remove this definitions ?
duke@435 69 const Register IC_Klass = rax; // where the IC klass is cached
duke@435 70 const Register SYNC_header = rax; // synchronization header
duke@435 71 const Register SHIFT_count = rcx; // where count for shift operations must be
duke@435 72
duke@435 73 #define __ _masm->
duke@435 74
duke@435 75
duke@435 76 static void select_different_registers(Register preserve,
duke@435 77 Register extra,
duke@435 78 Register &tmp1,
duke@435 79 Register &tmp2) {
duke@435 80 if (tmp1 == preserve) {
duke@435 81 assert_different_registers(tmp1, tmp2, extra);
duke@435 82 tmp1 = extra;
duke@435 83 } else if (tmp2 == preserve) {
duke@435 84 assert_different_registers(tmp1, tmp2, extra);
duke@435 85 tmp2 = extra;
duke@435 86 }
duke@435 87 assert_different_registers(preserve, tmp1, tmp2);
duke@435 88 }
duke@435 89
duke@435 90
duke@435 91
duke@435 92 static void select_different_registers(Register preserve,
duke@435 93 Register extra,
duke@435 94 Register &tmp1,
duke@435 95 Register &tmp2,
duke@435 96 Register &tmp3) {
duke@435 97 if (tmp1 == preserve) {
duke@435 98 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 99 tmp1 = extra;
duke@435 100 } else if (tmp2 == preserve) {
duke@435 101 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 102 tmp2 = extra;
duke@435 103 } else if (tmp3 == preserve) {
duke@435 104 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 105 tmp3 = extra;
duke@435 106 }
duke@435 107 assert_different_registers(preserve, tmp1, tmp2, tmp3);
duke@435 108 }
duke@435 109
duke@435 110
duke@435 111
duke@435 112 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 113 if (opr->is_constant()) {
duke@435 114 LIR_Const* constant = opr->as_constant_ptr();
duke@435 115 switch (constant->type()) {
duke@435 116 case T_INT: {
duke@435 117 return true;
duke@435 118 }
duke@435 119
duke@435 120 default:
duke@435 121 return false;
duke@435 122 }
duke@435 123 }
duke@435 124 return false;
duke@435 125 }
duke@435 126
duke@435 127
duke@435 128 LIR_Opr LIR_Assembler::receiverOpr() {
never@739 129 return FrameMap::receiver_opr;
duke@435 130 }
duke@435 131
duke@435 132 LIR_Opr LIR_Assembler::osrBufferPointer() {
never@739 133 return FrameMap::as_pointer_opr(receiverOpr()->as_register());
duke@435 134 }
duke@435 135
duke@435 136 //--------------fpu register translations-----------------------
duke@435 137
duke@435 138
duke@435 139 address LIR_Assembler::float_constant(float f) {
duke@435 140 address const_addr = __ float_constant(f);
duke@435 141 if (const_addr == NULL) {
duke@435 142 bailout("const section overflow");
duke@435 143 return __ code()->consts()->start();
duke@435 144 } else {
duke@435 145 return const_addr;
duke@435 146 }
duke@435 147 }
duke@435 148
duke@435 149
duke@435 150 address LIR_Assembler::double_constant(double d) {
duke@435 151 address const_addr = __ double_constant(d);
duke@435 152 if (const_addr == NULL) {
duke@435 153 bailout("const section overflow");
duke@435 154 return __ code()->consts()->start();
duke@435 155 } else {
duke@435 156 return const_addr;
duke@435 157 }
duke@435 158 }
duke@435 159
duke@435 160
duke@435 161 void LIR_Assembler::set_24bit_FPU() {
duke@435 162 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
duke@435 163 }
duke@435 164
duke@435 165 void LIR_Assembler::reset_FPU() {
duke@435 166 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 167 }
duke@435 168
duke@435 169 void LIR_Assembler::fpop() {
duke@435 170 __ fpop();
duke@435 171 }
duke@435 172
duke@435 173 void LIR_Assembler::fxch(int i) {
duke@435 174 __ fxch(i);
duke@435 175 }
duke@435 176
duke@435 177 void LIR_Assembler::fld(int i) {
duke@435 178 __ fld_s(i);
duke@435 179 }
duke@435 180
duke@435 181 void LIR_Assembler::ffree(int i) {
duke@435 182 __ ffree(i);
duke@435 183 }
duke@435 184
duke@435 185 void LIR_Assembler::breakpoint() {
duke@435 186 __ int3();
duke@435 187 }
duke@435 188
duke@435 189 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 190 if (opr->is_single_cpu()) {
duke@435 191 __ push_reg(opr->as_register());
duke@435 192 } else if (opr->is_double_cpu()) {
never@739 193 NOT_LP64(__ push_reg(opr->as_register_hi()));
duke@435 194 __ push_reg(opr->as_register_lo());
duke@435 195 } else if (opr->is_stack()) {
duke@435 196 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
duke@435 197 } else if (opr->is_constant()) {
duke@435 198 LIR_Const* const_opr = opr->as_constant_ptr();
duke@435 199 if (const_opr->type() == T_OBJECT) {
duke@435 200 __ push_oop(const_opr->as_jobject());
duke@435 201 } else if (const_opr->type() == T_INT) {
duke@435 202 __ push_jint(const_opr->as_jint());
duke@435 203 } else {
duke@435 204 ShouldNotReachHere();
duke@435 205 }
duke@435 206
duke@435 207 } else {
duke@435 208 ShouldNotReachHere();
duke@435 209 }
duke@435 210 }
duke@435 211
duke@435 212 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 213 if (opr->is_single_cpu()) {
never@739 214 __ pop_reg(opr->as_register());
duke@435 215 } else {
duke@435 216 ShouldNotReachHere();
duke@435 217 }
duke@435 218 }
duke@435 219
never@739 220 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
never@739 221 return addr->base()->is_illegal() && addr->index()->is_illegal();
never@739 222 }
never@739 223
duke@435 224 //-------------------------------------------
never@739 225
duke@435 226 Address LIR_Assembler::as_Address(LIR_Address* addr) {
never@739 227 return as_Address(addr, rscratch1);
never@739 228 }
never@739 229
never@739 230 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
duke@435 231 if (addr->base()->is_illegal()) {
duke@435 232 assert(addr->index()->is_illegal(), "must be illegal too");
never@739 233 AddressLiteral laddr((address)addr->disp(), relocInfo::none);
never@739 234 if (! __ reachable(laddr)) {
never@739 235 __ movptr(tmp, laddr.addr());
never@739 236 Address res(tmp, 0);
never@739 237 return res;
never@739 238 } else {
never@739 239 return __ as_Address(laddr);
never@739 240 }
duke@435 241 }
duke@435 242
never@739 243 Register base = addr->base()->as_pointer_register();
duke@435 244
duke@435 245 if (addr->index()->is_illegal()) {
duke@435 246 return Address( base, addr->disp());
never@739 247 } else if (addr->index()->is_cpu_register()) {
never@739 248 Register index = addr->index()->as_pointer_register();
duke@435 249 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
duke@435 250 } else if (addr->index()->is_constant()) {
never@739 251 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
never@739 252 assert(Assembler::is_simm32(addr_offset), "must be");
duke@435 253
duke@435 254 return Address(base, addr_offset);
duke@435 255 } else {
duke@435 256 Unimplemented();
duke@435 257 return Address();
duke@435 258 }
duke@435 259 }
duke@435 260
duke@435 261
duke@435 262 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 263 Address base = as_Address(addr);
duke@435 264 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
duke@435 265 }
duke@435 266
duke@435 267
duke@435 268 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 269 return as_Address(addr);
duke@435 270 }
duke@435 271
duke@435 272
duke@435 273 void LIR_Assembler::osr_entry() {
duke@435 274 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 275 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 276 ValueStack* entry_state = osr_entry->state();
duke@435 277 int number_of_locks = entry_state->locks_size();
duke@435 278
duke@435 279 // we jump here if osr happens with the interpreter
duke@435 280 // state set up to continue at the beginning of the
duke@435 281 // loop that triggered osr - in particular, we have
duke@435 282 // the following registers setup:
duke@435 283 //
duke@435 284 // rcx: osr buffer
duke@435 285 //
duke@435 286
duke@435 287 // build frame
duke@435 288 ciMethod* m = compilation()->method();
duke@435 289 __ build_frame(initial_frame_size_in_bytes());
duke@435 290
duke@435 291 // OSR buffer is
duke@435 292 //
duke@435 293 // locals[nlocals-1..0]
duke@435 294 // monitors[0..number_of_locks]
duke@435 295 //
duke@435 296 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 297 // so first slot in the local array is the last local from the interpreter
duke@435 298 // and last slot is local[0] (receiver) from the interpreter
duke@435 299 //
duke@435 300 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 301 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 302 // in the interpreter frame (the method lock if a sync method)
duke@435 303
duke@435 304 // Initialize monitors in the compiled activation.
duke@435 305 // rcx: pointer to osr buffer
duke@435 306 //
duke@435 307 // All other registers are dead at this point and the locals will be
duke@435 308 // copied into place by code emitted in the IR.
duke@435 309
never@739 310 Register OSR_buf = osrBufferPointer()->as_pointer_register();
duke@435 311 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 312 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 313 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 314 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 315 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 316 // the oop.
duke@435 317 for (int i = 0; i < number_of_locks; i++) {
roland@1495 318 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 319 #ifdef ASSERT
duke@435 320 // verify the interpreter's monitor has a non-null object
duke@435 321 {
duke@435 322 Label L;
roland@1495 323 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
duke@435 324 __ jcc(Assembler::notZero, L);
duke@435 325 __ stop("locked object is NULL");
duke@435 326 __ bind(L);
duke@435 327 }
duke@435 328 #endif
roland@1495 329 __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
never@739 330 __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
roland@1495 331 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
never@739 332 __ movptr(frame_map()->address_for_monitor_object(i), rbx);
duke@435 333 }
duke@435 334 }
duke@435 335 }
duke@435 336
duke@435 337
duke@435 338 // inline cache check; done before the frame is built.
duke@435 339 int LIR_Assembler::check_icache() {
duke@435 340 Register receiver = FrameMap::receiver_opr->as_register();
duke@435 341 Register ic_klass = IC_Klass;
never@739 342 const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
iveresov@2344 343 const bool do_post_padding = VerifyOops || UseCompressedOops;
iveresov@2344 344 if (!do_post_padding) {
duke@435 345 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
never@739 346 while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
duke@435 347 __ nop();
duke@435 348 }
duke@435 349 }
duke@435 350 int offset = __ offset();
duke@435 351 __ inline_cache_check(receiver, IC_Klass);
iveresov@2344 352 assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
iveresov@2344 353 if (do_post_padding) {
duke@435 354 // force alignment after the cache check.
duke@435 355 // It's been verified to be aligned if !VerifyOops
duke@435 356 __ align(CodeEntryAlignment);
duke@435 357 }
duke@435 358 return offset;
duke@435 359 }
duke@435 360
duke@435 361
duke@435 362 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
duke@435 363 jobject o = NULL;
coleenp@4037 364 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_mirror_id);
duke@435 365 __ movoop(reg, o);
duke@435 366 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 367 }
duke@435 368
coleenp@4037 369 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
coleenp@4037 370 Metadata* o = NULL;
coleenp@4037 371 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
coleenp@4037 372 __ mov_metadata(reg, o);
coleenp@4037 373 patching_epilog(patch, lir_patch_normal, reg, info);
coleenp@4037 374 }
duke@435 375
duke@435 376 // This specifies the rsp decrement needed to build the frame
duke@435 377 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 378 // if rounding, must let FrameMap know!
never@739 379
never@739 380 // The frame_map records size in slots (32bit word)
never@739 381
never@739 382 // subtract two words to account for return address and link
never@739 383 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size;
duke@435 384 }
duke@435 385
duke@435 386
twisti@1639 387 int LIR_Assembler::emit_exception_handler() {
duke@435 388 // if the last instruction is a call (typically to do a throw which
duke@435 389 // is coming at the end after block reordering) the return address
duke@435 390 // must still point into the code area in order to avoid assertion
duke@435 391 // failures when searching for the corresponding bci => add a nop
duke@435 392 // (was bug 5/14/1999 - gri)
duke@435 393 __ nop();
duke@435 394
duke@435 395 // generate code for exception handler
duke@435 396 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 397 if (handler_base == NULL) {
duke@435 398 // not enough space left for the handler
duke@435 399 bailout("exception handler overflow");
twisti@1639 400 return -1;
duke@435 401 }
twisti@1639 402
duke@435 403 int offset = code_offset();
duke@435 404
twisti@1730 405 // the exception oop and pc are in rax, and rdx
duke@435 406 // no other registers need to be preserved, so invalidate them
twisti@1730 407 __ invalidate_registers(false, true, true, false, true, true);
duke@435 408
duke@435 409 // check that there is really an exception
duke@435 410 __ verify_not_null_oop(rax);
duke@435 411
twisti@1730 412 // search an exception handler (rax: exception oop, rdx: throwing pc)
twisti@2603 413 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
twisti@2603 414 __ should_not_reach_here();
iveresov@3435 415 guarantee(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 416 __ end_a_stub();
twisti@1639 417
twisti@1639 418 return offset;
duke@435 419 }
duke@435 420
twisti@1639 421
never@1813 422 // Emit the code to remove the frame from the stack in the exception
never@1813 423 // unwind path.
never@1813 424 int LIR_Assembler::emit_unwind_handler() {
never@1813 425 #ifndef PRODUCT
never@1813 426 if (CommentedAssembly) {
never@1813 427 _masm->block_comment("Unwind handler");
never@1813 428 }
never@1813 429 #endif
never@1813 430
never@1813 431 int offset = code_offset();
never@1813 432
never@1813 433 // Fetch the exception from TLS and clear out exception related thread state
never@1813 434 __ get_thread(rsi);
never@1813 435 __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
never@3156 436 __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
never@3156 437 __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
never@1813 438
never@1813 439 __ bind(_unwind_handler_entry);
never@1813 440 __ verify_not_null_oop(rax);
never@1813 441 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 442 __ mov(rsi, rax); // Preserve the exception
never@1813 443 }
never@1813 444
never@1813 445 // Preform needed unlocking
never@1813 446 MonitorExitStub* stub = NULL;
never@1813 447 if (method()->is_synchronized()) {
never@1813 448 monitor_address(0, FrameMap::rax_opr);
never@1813 449 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
never@1813 450 __ unlock_object(rdi, rbx, rax, *stub->entry());
never@1813 451 __ bind(*stub->continuation());
never@1813 452 }
never@1813 453
never@1813 454 if (compilation()->env()->dtrace_method_probes()) {
never@2185 455 __ get_thread(rax);
never@2185 456 __ movptr(Address(rsp, 0), rax);
coleenp@4037 457 __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
never@1813 458 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
never@1813 459 }
never@1813 460
never@1813 461 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 462 __ mov(rax, rsi); // Restore the exception
never@1813 463 }
never@1813 464
never@1813 465 // remove the activation and dispatch to the unwind handler
never@1813 466 __ remove_frame(initial_frame_size_in_bytes());
never@1813 467 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
never@1813 468
never@1813 469 // Emit the slow path assembly
never@1813 470 if (stub != NULL) {
never@1813 471 stub->emit_code(this);
never@1813 472 }
never@1813 473
never@1813 474 return offset;
never@1813 475 }
never@1813 476
never@1813 477
twisti@1639 478 int LIR_Assembler::emit_deopt_handler() {
duke@435 479 // if the last instruction is a call (typically to do a throw which
duke@435 480 // is coming at the end after block reordering) the return address
duke@435 481 // must still point into the code area in order to avoid assertion
duke@435 482 // failures when searching for the corresponding bci => add a nop
duke@435 483 // (was bug 5/14/1999 - gri)
duke@435 484 __ nop();
duke@435 485
duke@435 486 // generate code for exception handler
duke@435 487 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 488 if (handler_base == NULL) {
duke@435 489 // not enough space left for the handler
duke@435 490 bailout("deopt handler overflow");
twisti@1639 491 return -1;
duke@435 492 }
twisti@1639 493
duke@435 494 int offset = code_offset();
duke@435 495 InternalAddress here(__ pc());
twisti@1730 496
duke@435 497 __ pushptr(here.addr());
duke@435 498 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
iveresov@3435 499 guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 500 __ end_a_stub();
duke@435 501
twisti@1639 502 return offset;
duke@435 503 }
duke@435 504
duke@435 505
duke@435 506 // This is the fast version of java.lang.String.compare; it has not
duke@435 507 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 508 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
never@739 509 __ movptr (rbx, rcx); // receiver is in rcx
never@739 510 __ movptr (rax, arg1->as_register());
duke@435 511
duke@435 512 // Get addresses of first characters from both Strings
iveresov@2344 513 __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
kvn@3760 514 if (java_lang_String::has_offset_field()) {
kvn@3760 515 __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
kvn@3760 516 __ movl (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
kvn@3760 517 __ lea (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
kvn@3760 518 } else {
kvn@3760 519 __ movl (rax, Address(rsi, arrayOopDesc::length_offset_in_bytes()));
kvn@3760 520 __ lea (rsi, Address(rsi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
kvn@3760 521 }
duke@435 522
duke@435 523 // rbx, may be NULL
duke@435 524 add_debug_info_for_null_check_here(info);
iveresov@2344 525 __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
kvn@3760 526 if (java_lang_String::has_offset_field()) {
kvn@3760 527 __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
kvn@3760 528 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
kvn@3760 529 __ lea (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
kvn@3760 530 } else {
kvn@3760 531 __ movl (rbx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
kvn@3760 532 __ lea (rdi, Address(rdi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
kvn@3760 533 }
duke@435 534
duke@435 535 // compute minimum length (in rax) and difference of lengths (on top of stack)
twisti@2697 536 __ mov (rcx, rbx);
twisti@2697 537 __ subptr(rbx, rax); // subtract lengths
twisti@2697 538 __ push (rbx); // result
twisti@2697 539 __ cmov (Assembler::lessEqual, rax, rcx);
twisti@2697 540
duke@435 541 // is minimum length 0?
duke@435 542 Label noLoop, haveResult;
never@739 543 __ testptr (rax, rax);
duke@435 544 __ jcc (Assembler::zero, noLoop);
duke@435 545
duke@435 546 // compare first characters
jrose@1057 547 __ load_unsigned_short(rcx, Address(rdi, 0));
jrose@1057 548 __ load_unsigned_short(rbx, Address(rsi, 0));
duke@435 549 __ subl(rcx, rbx);
duke@435 550 __ jcc(Assembler::notZero, haveResult);
duke@435 551 // starting loop
duke@435 552 __ decrement(rax); // we already tested index: skip one
duke@435 553 __ jcc(Assembler::zero, noLoop);
duke@435 554
duke@435 555 // set rsi.edi to the end of the arrays (arrays have same length)
duke@435 556 // negate the index
duke@435 557
never@739 558 __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 559 __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 560 __ negptr(rax);
duke@435 561
duke@435 562 // compare the strings in a loop
duke@435 563
duke@435 564 Label loop;
duke@435 565 __ align(wordSize);
duke@435 566 __ bind(loop);
jrose@1057 567 __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
jrose@1057 568 __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
duke@435 569 __ subl(rcx, rbx);
duke@435 570 __ jcc(Assembler::notZero, haveResult);
duke@435 571 __ increment(rax);
duke@435 572 __ jcc(Assembler::notZero, loop);
duke@435 573
duke@435 574 // strings are equal up to min length
duke@435 575
duke@435 576 __ bind(noLoop);
never@739 577 __ pop(rax);
duke@435 578 return_op(LIR_OprFact::illegalOpr);
duke@435 579
duke@435 580 __ bind(haveResult);
duke@435 581 // leave instruction is going to discard the TOS value
never@739 582 __ mov (rax, rcx); // result of call is in rax,
duke@435 583 }
duke@435 584
duke@435 585
duke@435 586 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 587 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
duke@435 588 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
duke@435 589 assert(result->fpu() == 0, "result must already be on TOS");
duke@435 590 }
duke@435 591
duke@435 592 // Pop the stack before the safepoint code
twisti@1730 593 __ remove_frame(initial_frame_size_in_bytes());
duke@435 594
duke@435 595 bool result_is_oop = result->is_valid() ? result->is_oop() : false;
duke@435 596
duke@435 597 // Note: we do not need to round double result; float result has the right precision
duke@435 598 // the poll sets the condition code, but no data registers
duke@435 599 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 600 relocInfo::poll_return_type);
never@739 601
iveresov@2686 602 if (Assembler::is_polling_page_far()) {
iveresov@2686 603 __ lea(rscratch1, polling_page);
iveresov@2686 604 __ relocate(relocInfo::poll_return_type);
iveresov@2686 605 __ testl(rax, Address(rscratch1, 0));
iveresov@2686 606 } else {
iveresov@2686 607 __ testl(rax, polling_page);
iveresov@2686 608 }
duke@435 609 __ ret(0);
duke@435 610 }
duke@435 611
duke@435 612
duke@435 613 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 614 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 615 relocInfo::poll_type);
iveresov@2686 616 guarantee(info != NULL, "Shouldn't be NULL");
iveresov@2686 617 int offset = __ offset();
iveresov@2686 618 if (Assembler::is_polling_page_far()) {
iveresov@2686 619 __ lea(rscratch1, polling_page);
iveresov@2686 620 offset = __ offset();
duke@435 621 add_debug_info_for_branch(info);
iveresov@2686 622 __ testl(rax, Address(rscratch1, 0));
duke@435 623 } else {
iveresov@2686 624 add_debug_info_for_branch(info);
iveresov@2686 625 __ testl(rax, polling_page);
duke@435 626 }
duke@435 627 return offset;
duke@435 628 }
duke@435 629
duke@435 630
duke@435 631 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
never@739 632 if (from_reg != to_reg) __ mov(to_reg, from_reg);
duke@435 633 }
duke@435 634
duke@435 635 void LIR_Assembler::swap_reg(Register a, Register b) {
never@739 636 __ xchgptr(a, b);
duke@435 637 }
duke@435 638
duke@435 639
duke@435 640 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 641 assert(src->is_constant(), "should not call otherwise");
duke@435 642 assert(dest->is_register(), "should not call otherwise");
duke@435 643 LIR_Const* c = src->as_constant_ptr();
duke@435 644
duke@435 645 switch (c->type()) {
iveresov@2344 646 case T_INT: {
iveresov@2344 647 assert(patch_code == lir_patch_none, "no patching handled here");
iveresov@2344 648 __ movl(dest->as_register(), c->as_jint());
iveresov@2344 649 break;
iveresov@2344 650 }
iveresov@2344 651
roland@1732 652 case T_ADDRESS: {
duke@435 653 assert(patch_code == lir_patch_none, "no patching handled here");
iveresov@2344 654 __ movptr(dest->as_register(), c->as_jint());
duke@435 655 break;
duke@435 656 }
duke@435 657
duke@435 658 case T_LONG: {
duke@435 659 assert(patch_code == lir_patch_none, "no patching handled here");
never@739 660 #ifdef _LP64
never@739 661 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
never@739 662 #else
never@739 663 __ movptr(dest->as_register_lo(), c->as_jint_lo());
never@739 664 __ movptr(dest->as_register_hi(), c->as_jint_hi());
never@739 665 #endif // _LP64
duke@435 666 break;
duke@435 667 }
duke@435 668
duke@435 669 case T_OBJECT: {
duke@435 670 if (patch_code != lir_patch_none) {
duke@435 671 jobject2reg_with_patching(dest->as_register(), info);
duke@435 672 } else {
duke@435 673 __ movoop(dest->as_register(), c->as_jobject());
duke@435 674 }
duke@435 675 break;
duke@435 676 }
duke@435 677
coleenp@4037 678 case T_METADATA: {
coleenp@4037 679 if (patch_code != lir_patch_none) {
coleenp@4037 680 klass2reg_with_patching(dest->as_register(), info);
coleenp@4037 681 } else {
coleenp@4037 682 __ mov_metadata(dest->as_register(), c->as_metadata());
coleenp@4037 683 }
coleenp@4037 684 break;
coleenp@4037 685 }
coleenp@4037 686
duke@435 687 case T_FLOAT: {
duke@435 688 if (dest->is_single_xmm()) {
duke@435 689 if (c->is_zero_float()) {
duke@435 690 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
duke@435 691 } else {
duke@435 692 __ movflt(dest->as_xmm_float_reg(),
duke@435 693 InternalAddress(float_constant(c->as_jfloat())));
duke@435 694 }
duke@435 695 } else {
duke@435 696 assert(dest->is_single_fpu(), "must be");
duke@435 697 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 698 if (c->is_zero_float()) {
duke@435 699 __ fldz();
duke@435 700 } else if (c->is_one_float()) {
duke@435 701 __ fld1();
duke@435 702 } else {
duke@435 703 __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
duke@435 704 }
duke@435 705 }
duke@435 706 break;
duke@435 707 }
duke@435 708
duke@435 709 case T_DOUBLE: {
duke@435 710 if (dest->is_double_xmm()) {
duke@435 711 if (c->is_zero_double()) {
duke@435 712 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
duke@435 713 } else {
duke@435 714 __ movdbl(dest->as_xmm_double_reg(),
duke@435 715 InternalAddress(double_constant(c->as_jdouble())));
duke@435 716 }
duke@435 717 } else {
duke@435 718 assert(dest->is_double_fpu(), "must be");
duke@435 719 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 720 if (c->is_zero_double()) {
duke@435 721 __ fldz();
duke@435 722 } else if (c->is_one_double()) {
duke@435 723 __ fld1();
duke@435 724 } else {
duke@435 725 __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
duke@435 726 }
duke@435 727 }
duke@435 728 break;
duke@435 729 }
duke@435 730
duke@435 731 default:
duke@435 732 ShouldNotReachHere();
duke@435 733 }
duke@435 734 }
duke@435 735
duke@435 736 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 737 assert(src->is_constant(), "should not call otherwise");
duke@435 738 assert(dest->is_stack(), "should not call otherwise");
duke@435 739 LIR_Const* c = src->as_constant_ptr();
duke@435 740
duke@435 741 switch (c->type()) {
duke@435 742 case T_INT: // fall through
duke@435 743 case T_FLOAT:
iveresov@2344 744 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
iveresov@2344 745 break;
iveresov@2344 746
roland@1732 747 case T_ADDRESS:
iveresov@2344 748 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
duke@435 749 break;
duke@435 750
duke@435 751 case T_OBJECT:
duke@435 752 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
duke@435 753 break;
duke@435 754
duke@435 755 case T_LONG: // fall through
duke@435 756 case T_DOUBLE:
never@739 757 #ifdef _LP64
never@739 758 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 759 lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
never@739 760 #else
never@739 761 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 762 lo_word_offset_in_bytes), c->as_jint_lo_bits());
never@739 763 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 764 hi_word_offset_in_bytes), c->as_jint_hi_bits());
never@739 765 #endif // _LP64
duke@435 766 break;
duke@435 767
duke@435 768 default:
duke@435 769 ShouldNotReachHere();
duke@435 770 }
duke@435 771 }
duke@435 772
iveresov@2344 773 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
duke@435 774 assert(src->is_constant(), "should not call otherwise");
duke@435 775 assert(dest->is_address(), "should not call otherwise");
duke@435 776 LIR_Const* c = src->as_constant_ptr();
duke@435 777 LIR_Address* addr = dest->as_address_ptr();
duke@435 778
never@739 779 int null_check_here = code_offset();
duke@435 780 switch (type) {
duke@435 781 case T_INT: // fall through
duke@435 782 case T_FLOAT:
iveresov@2344 783 __ movl(as_Address(addr), c->as_jint_bits());
iveresov@2344 784 break;
iveresov@2344 785
roland@1732 786 case T_ADDRESS:
iveresov@2344 787 __ movptr(as_Address(addr), c->as_jint_bits());
duke@435 788 break;
duke@435 789
duke@435 790 case T_OBJECT: // fall through
duke@435 791 case T_ARRAY:
duke@435 792 if (c->as_jobject() == NULL) {
iveresov@2344 793 if (UseCompressedOops && !wide) {
iveresov@2344 794 __ movl(as_Address(addr), (int32_t)NULL_WORD);
iveresov@2344 795 } else {
iveresov@2344 796 __ movptr(as_Address(addr), NULL_WORD);
iveresov@2344 797 }
duke@435 798 } else {
never@739 799 if (is_literal_address(addr)) {
never@739 800 ShouldNotReachHere();
never@739 801 __ movoop(as_Address(addr, noreg), c->as_jobject());
never@739 802 } else {
roland@1495 803 #ifdef _LP64
roland@1495 804 __ movoop(rscratch1, c->as_jobject());
iveresov@2344 805 if (UseCompressedOops && !wide) {
iveresov@2344 806 __ encode_heap_oop(rscratch1);
iveresov@2344 807 null_check_here = code_offset();
iveresov@2344 808 __ movl(as_Address_lo(addr), rscratch1);
iveresov@2344 809 } else {
iveresov@2344 810 null_check_here = code_offset();
iveresov@2344 811 __ movptr(as_Address_lo(addr), rscratch1);
iveresov@2344 812 }
roland@1495 813 #else
never@739 814 __ movoop(as_Address(addr), c->as_jobject());
roland@1495 815 #endif
never@739 816 }
duke@435 817 }
duke@435 818 break;
duke@435 819
duke@435 820 case T_LONG: // fall through
duke@435 821 case T_DOUBLE:
never@739 822 #ifdef _LP64
never@739 823 if (is_literal_address(addr)) {
never@739 824 ShouldNotReachHere();
never@739 825 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
never@739 826 } else {
never@739 827 __ movptr(r10, (intptr_t)c->as_jlong_bits());
never@739 828 null_check_here = code_offset();
never@739 829 __ movptr(as_Address_lo(addr), r10);
never@739 830 }
never@739 831 #else
never@739 832 // Always reachable in 32bit so this doesn't produce useless move literal
never@739 833 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
never@739 834 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
never@739 835 #endif // _LP64
duke@435 836 break;
duke@435 837
duke@435 838 case T_BOOLEAN: // fall through
duke@435 839 case T_BYTE:
duke@435 840 __ movb(as_Address(addr), c->as_jint() & 0xFF);
duke@435 841 break;
duke@435 842
duke@435 843 case T_CHAR: // fall through
duke@435 844 case T_SHORT:
duke@435 845 __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
duke@435 846 break;
duke@435 847
duke@435 848 default:
duke@435 849 ShouldNotReachHere();
duke@435 850 };
never@739 851
never@739 852 if (info != NULL) {
never@739 853 add_debug_info_for_null_check(null_check_here, info);
never@739 854 }
duke@435 855 }
duke@435 856
duke@435 857
duke@435 858 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
duke@435 859 assert(src->is_register(), "should not call otherwise");
duke@435 860 assert(dest->is_register(), "should not call otherwise");
duke@435 861
duke@435 862 // move between cpu-registers
duke@435 863 if (dest->is_single_cpu()) {
never@739 864 #ifdef _LP64
never@739 865 if (src->type() == T_LONG) {
never@739 866 // Can do LONG -> OBJECT
never@739 867 move_regs(src->as_register_lo(), dest->as_register());
never@739 868 return;
never@739 869 }
never@739 870 #endif
duke@435 871 assert(src->is_single_cpu(), "must match");
duke@435 872 if (src->type() == T_OBJECT) {
duke@435 873 __ verify_oop(src->as_register());
duke@435 874 }
duke@435 875 move_regs(src->as_register(), dest->as_register());
duke@435 876
duke@435 877 } else if (dest->is_double_cpu()) {
never@739 878 #ifdef _LP64
never@739 879 if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
never@739 880 // Surprising to me but we can see move of a long to t_object
never@739 881 __ verify_oop(src->as_register());
never@739 882 move_regs(src->as_register(), dest->as_register_lo());
never@739 883 return;
never@739 884 }
never@739 885 #endif
duke@435 886 assert(src->is_double_cpu(), "must match");
duke@435 887 Register f_lo = src->as_register_lo();
duke@435 888 Register f_hi = src->as_register_hi();
duke@435 889 Register t_lo = dest->as_register_lo();
duke@435 890 Register t_hi = dest->as_register_hi();
never@739 891 #ifdef _LP64
never@739 892 assert(f_hi == f_lo, "must be same");
never@739 893 assert(t_hi == t_lo, "must be same");
never@739 894 move_regs(f_lo, t_lo);
never@739 895 #else
duke@435 896 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
duke@435 897
never@739 898
duke@435 899 if (f_lo == t_hi && f_hi == t_lo) {
duke@435 900 swap_reg(f_lo, f_hi);
duke@435 901 } else if (f_hi == t_lo) {
duke@435 902 assert(f_lo != t_hi, "overwriting register");
duke@435 903 move_regs(f_hi, t_hi);
duke@435 904 move_regs(f_lo, t_lo);
duke@435 905 } else {
duke@435 906 assert(f_hi != t_lo, "overwriting register");
duke@435 907 move_regs(f_lo, t_lo);
duke@435 908 move_regs(f_hi, t_hi);
duke@435 909 }
never@739 910 #endif // LP64
duke@435 911
duke@435 912 // special moves from fpu-register to xmm-register
duke@435 913 // necessary for method results
duke@435 914 } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
duke@435 915 __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
duke@435 916 __ fld_s(Address(rsp, 0));
duke@435 917 } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
duke@435 918 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
duke@435 919 __ fld_d(Address(rsp, 0));
duke@435 920 } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
duke@435 921 __ fstp_s(Address(rsp, 0));
duke@435 922 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
duke@435 923 } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
duke@435 924 __ fstp_d(Address(rsp, 0));
duke@435 925 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
duke@435 926
duke@435 927 // move between xmm-registers
duke@435 928 } else if (dest->is_single_xmm()) {
duke@435 929 assert(src->is_single_xmm(), "must match");
duke@435 930 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
duke@435 931 } else if (dest->is_double_xmm()) {
duke@435 932 assert(src->is_double_xmm(), "must match");
duke@435 933 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
duke@435 934
duke@435 935 // move between fpu-registers (no instruction necessary because of fpu-stack)
duke@435 936 } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
duke@435 937 assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
duke@435 938 assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
duke@435 939 } else {
duke@435 940 ShouldNotReachHere();
duke@435 941 }
duke@435 942 }
duke@435 943
duke@435 944 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 945 assert(src->is_register(), "should not call otherwise");
duke@435 946 assert(dest->is_stack(), "should not call otherwise");
duke@435 947
duke@435 948 if (src->is_single_cpu()) {
duke@435 949 Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 950 if (type == T_OBJECT || type == T_ARRAY) {
duke@435 951 __ verify_oop(src->as_register());
never@739 952 __ movptr (dst, src->as_register());
roland@4051 953 } else if (type == T_METADATA) {
roland@4051 954 __ movptr (dst, src->as_register());
never@739 955 } else {
never@739 956 __ movl (dst, src->as_register());
duke@435 957 }
duke@435 958
duke@435 959 } else if (src->is_double_cpu()) {
duke@435 960 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 961 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
never@739 962 __ movptr (dstLO, src->as_register_lo());
never@739 963 NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
duke@435 964
duke@435 965 } else if (src->is_single_xmm()) {
duke@435 966 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 967 __ movflt(dst_addr, src->as_xmm_float_reg());
duke@435 968
duke@435 969 } else if (src->is_double_xmm()) {
duke@435 970 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 971 __ movdbl(dst_addr, src->as_xmm_double_reg());
duke@435 972
duke@435 973 } else if (src->is_single_fpu()) {
duke@435 974 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 975 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 976 if (pop_fpu_stack) __ fstp_s (dst_addr);
duke@435 977 else __ fst_s (dst_addr);
duke@435 978
duke@435 979 } else if (src->is_double_fpu()) {
duke@435 980 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 981 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 982 if (pop_fpu_stack) __ fstp_d (dst_addr);
duke@435 983 else __ fst_d (dst_addr);
duke@435 984
duke@435 985 } else {
duke@435 986 ShouldNotReachHere();
duke@435 987 }
duke@435 988 }
duke@435 989
duke@435 990
iveresov@2344 991 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
duke@435 992 LIR_Address* to_addr = dest->as_address_ptr();
duke@435 993 PatchingStub* patch = NULL;
iveresov@2344 994 Register compressed_src = rscratch1;
duke@435 995
duke@435 996 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 997 __ verify_oop(src->as_register());
iveresov@2344 998 #ifdef _LP64
iveresov@2344 999 if (UseCompressedOops && !wide) {
iveresov@2344 1000 __ movptr(compressed_src, src->as_register());
iveresov@2344 1001 __ encode_heap_oop(compressed_src);
iveresov@2344 1002 }
iveresov@2344 1003 #endif
duke@435 1004 }
iveresov@2344 1005
duke@435 1006 if (patch_code != lir_patch_none) {
duke@435 1007 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1008 Address toa = as_Address(to_addr);
never@739 1009 assert(toa.disp() != 0, "must have");
duke@435 1010 }
iveresov@2344 1011
iveresov@2344 1012 int null_check_here = code_offset();
duke@435 1013 switch (type) {
duke@435 1014 case T_FLOAT: {
duke@435 1015 if (src->is_single_xmm()) {
duke@435 1016 __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
duke@435 1017 } else {
duke@435 1018 assert(src->is_single_fpu(), "must be");
duke@435 1019 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 1020 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr));
duke@435 1021 else __ fst_s (as_Address(to_addr));
duke@435 1022 }
duke@435 1023 break;
duke@435 1024 }
duke@435 1025
duke@435 1026 case T_DOUBLE: {
duke@435 1027 if (src->is_double_xmm()) {
duke@435 1028 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
duke@435 1029 } else {
duke@435 1030 assert(src->is_double_fpu(), "must be");
duke@435 1031 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 1032 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr));
duke@435 1033 else __ fst_d (as_Address(to_addr));
duke@435 1034 }
duke@435 1035 break;
duke@435 1036 }
duke@435 1037
duke@435 1038 case T_ARRAY: // fall through
duke@435 1039 case T_OBJECT: // fall through
iveresov@2344 1040 if (UseCompressedOops && !wide) {
iveresov@2344 1041 __ movl(as_Address(to_addr), compressed_src);
iveresov@2344 1042 } else {
iveresov@2344 1043 __ movptr(as_Address(to_addr), src->as_register());
iveresov@2344 1044 }
iveresov@2344 1045 break;
roland@4051 1046 case T_METADATA:
roland@4051 1047 // We get here to store a method pointer to the stack to pass to
roland@4051 1048 // a dtrace runtime call. This can't work on 64 bit with
roland@4051 1049 // compressed klass ptrs: T_METADATA can be a compressed klass
roland@4051 1050 // ptr or a 64 bit method pointer.
roland@4051 1051 LP64_ONLY(ShouldNotReachHere());
roland@4051 1052 __ movptr(as_Address(to_addr), src->as_register());
roland@4051 1053 break;
iveresov@2344 1054 case T_ADDRESS:
never@739 1055 __ movptr(as_Address(to_addr), src->as_register());
never@739 1056 break;
duke@435 1057 case T_INT:
duke@435 1058 __ movl(as_Address(to_addr), src->as_register());
duke@435 1059 break;
duke@435 1060
duke@435 1061 case T_LONG: {
duke@435 1062 Register from_lo = src->as_register_lo();
duke@435 1063 Register from_hi = src->as_register_hi();
never@739 1064 #ifdef _LP64
never@739 1065 __ movptr(as_Address_lo(to_addr), from_lo);
never@739 1066 #else
duke@435 1067 Register base = to_addr->base()->as_register();
duke@435 1068 Register index = noreg;
duke@435 1069 if (to_addr->index()->is_register()) {
duke@435 1070 index = to_addr->index()->as_register();
duke@435 1071 }
duke@435 1072 if (base == from_lo || index == from_lo) {
duke@435 1073 assert(base != from_hi, "can't be");
duke@435 1074 assert(index == noreg || (index != base && index != from_hi), "can't handle this");
duke@435 1075 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1076 if (patch != NULL) {
duke@435 1077 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1078 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1079 patch_code = lir_patch_low;
duke@435 1080 }
duke@435 1081 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1082 } else {
duke@435 1083 assert(index == noreg || (index != base && index != from_lo), "can't handle this");
duke@435 1084 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1085 if (patch != NULL) {
duke@435 1086 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1087 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1088 patch_code = lir_patch_high;
duke@435 1089 }
duke@435 1090 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1091 }
never@739 1092 #endif // _LP64
duke@435 1093 break;
duke@435 1094 }
duke@435 1095
duke@435 1096 case T_BYTE: // fall through
duke@435 1097 case T_BOOLEAN: {
duke@435 1098 Register src_reg = src->as_register();
duke@435 1099 Address dst_addr = as_Address(to_addr);
duke@435 1100 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1101 __ movb(dst_addr, src_reg);
duke@435 1102 break;
duke@435 1103 }
duke@435 1104
duke@435 1105 case T_CHAR: // fall through
duke@435 1106 case T_SHORT:
duke@435 1107 __ movw(as_Address(to_addr), src->as_register());
duke@435 1108 break;
duke@435 1109
duke@435 1110 default:
duke@435 1111 ShouldNotReachHere();
duke@435 1112 }
iveresov@2344 1113 if (info != NULL) {
iveresov@2344 1114 add_debug_info_for_null_check(null_check_here, info);
iveresov@2344 1115 }
duke@435 1116
duke@435 1117 if (patch_code != lir_patch_none) {
duke@435 1118 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
duke@435 1119 }
duke@435 1120 }
duke@435 1121
duke@435 1122
duke@435 1123 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1124 assert(src->is_stack(), "should not call otherwise");
duke@435 1125 assert(dest->is_register(), "should not call otherwise");
duke@435 1126
duke@435 1127 if (dest->is_single_cpu()) {
duke@435 1128 if (type == T_ARRAY || type == T_OBJECT) {
never@739 1129 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1130 __ verify_oop(dest->as_register());
roland@4051 1131 } else if (type == T_METADATA) {
roland@4051 1132 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
never@739 1133 } else {
never@739 1134 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1135 }
duke@435 1136
duke@435 1137 } else if (dest->is_double_cpu()) {
duke@435 1138 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 1139 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
never@739 1140 __ movptr(dest->as_register_lo(), src_addr_LO);
never@739 1141 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
duke@435 1142
duke@435 1143 } else if (dest->is_single_xmm()) {
duke@435 1144 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1145 __ movflt(dest->as_xmm_float_reg(), src_addr);
duke@435 1146
duke@435 1147 } else if (dest->is_double_xmm()) {
duke@435 1148 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1149 __ movdbl(dest->as_xmm_double_reg(), src_addr);
duke@435 1150
duke@435 1151 } else if (dest->is_single_fpu()) {
duke@435 1152 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1153 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1154 __ fld_s(src_addr);
duke@435 1155
duke@435 1156 } else if (dest->is_double_fpu()) {
duke@435 1157 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1158 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1159 __ fld_d(src_addr);
duke@435 1160
duke@435 1161 } else {
duke@435 1162 ShouldNotReachHere();
duke@435 1163 }
duke@435 1164 }
duke@435 1165
duke@435 1166
duke@435 1167 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1168 if (src->is_single_stack()) {
never@739 1169 if (type == T_OBJECT || type == T_ARRAY) {
never@739 1170 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1171 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
never@739 1172 } else {
roland@1495 1173 #ifndef _LP64
never@739 1174 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1175 __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
roland@1495 1176 #else
roland@1495 1177 //no pushl on 64bits
roland@1495 1178 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
roland@1495 1179 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
roland@1495 1180 #endif
never@739 1181 }
duke@435 1182
duke@435 1183 } else if (src->is_double_stack()) {
never@739 1184 #ifdef _LP64
never@739 1185 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
never@739 1186 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
never@739 1187 #else
duke@435 1188 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
never@739 1189 // push and pop the part at src + wordSize, adding wordSize for the previous push
never@756 1190 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
never@756 1191 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
duke@435 1192 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
never@739 1193 #endif // _LP64
duke@435 1194
duke@435 1195 } else {
duke@435 1196 ShouldNotReachHere();
duke@435 1197 }
duke@435 1198 }
duke@435 1199
duke@435 1200
iveresov@2344 1201 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
duke@435 1202 assert(src->is_address(), "should not call otherwise");
duke@435 1203 assert(dest->is_register(), "should not call otherwise");
duke@435 1204
duke@435 1205 LIR_Address* addr = src->as_address_ptr();
duke@435 1206 Address from_addr = as_Address(addr);
duke@435 1207
duke@435 1208 switch (type) {
duke@435 1209 case T_BOOLEAN: // fall through
duke@435 1210 case T_BYTE: // fall through
duke@435 1211 case T_CHAR: // fall through
duke@435 1212 case T_SHORT:
duke@435 1213 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
duke@435 1214 // on pre P6 processors we may get partial register stalls
duke@435 1215 // so blow away the value of to_rinfo before loading a
duke@435 1216 // partial word into it. Do it here so that it precedes
duke@435 1217 // the potential patch point below.
never@739 1218 __ xorptr(dest->as_register(), dest->as_register());
duke@435 1219 }
duke@435 1220 break;
duke@435 1221 }
duke@435 1222
duke@435 1223 PatchingStub* patch = NULL;
duke@435 1224 if (patch_code != lir_patch_none) {
duke@435 1225 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1226 assert(from_addr.disp() != 0, "must have");
duke@435 1227 }
duke@435 1228 if (info != NULL) {
duke@435 1229 add_debug_info_for_null_check_here(info);
duke@435 1230 }
duke@435 1231
duke@435 1232 switch (type) {
duke@435 1233 case T_FLOAT: {
duke@435 1234 if (dest->is_single_xmm()) {
duke@435 1235 __ movflt(dest->as_xmm_float_reg(), from_addr);
duke@435 1236 } else {
duke@435 1237 assert(dest->is_single_fpu(), "must be");
duke@435 1238 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1239 __ fld_s(from_addr);
duke@435 1240 }
duke@435 1241 break;
duke@435 1242 }
duke@435 1243
duke@435 1244 case T_DOUBLE: {
duke@435 1245 if (dest->is_double_xmm()) {
duke@435 1246 __ movdbl(dest->as_xmm_double_reg(), from_addr);
duke@435 1247 } else {
duke@435 1248 assert(dest->is_double_fpu(), "must be");
duke@435 1249 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1250 __ fld_d(from_addr);
duke@435 1251 }
duke@435 1252 break;
duke@435 1253 }
duke@435 1254
duke@435 1255 case T_OBJECT: // fall through
duke@435 1256 case T_ARRAY: // fall through
iveresov@2344 1257 if (UseCompressedOops && !wide) {
iveresov@2344 1258 __ movl(dest->as_register(), from_addr);
iveresov@2344 1259 } else {
iveresov@2344 1260 __ movptr(dest->as_register(), from_addr);
iveresov@2344 1261 }
iveresov@2344 1262 break;
iveresov@2344 1263
iveresov@2344 1264 case T_ADDRESS:
never@739 1265 __ movptr(dest->as_register(), from_addr);
never@739 1266 break;
duke@435 1267 case T_INT:
iveresov@1833 1268 __ movl(dest->as_register(), from_addr);
duke@435 1269 break;
duke@435 1270
duke@435 1271 case T_LONG: {
duke@435 1272 Register to_lo = dest->as_register_lo();
duke@435 1273 Register to_hi = dest->as_register_hi();
never@739 1274 #ifdef _LP64
never@739 1275 __ movptr(to_lo, as_Address_lo(addr));
never@739 1276 #else
duke@435 1277 Register base = addr->base()->as_register();
duke@435 1278 Register index = noreg;
duke@435 1279 if (addr->index()->is_register()) {
duke@435 1280 index = addr->index()->as_register();
duke@435 1281 }
duke@435 1282 if ((base == to_lo && index == to_hi) ||
duke@435 1283 (base == to_hi && index == to_lo)) {
duke@435 1284 // addresses with 2 registers are only formed as a result of
duke@435 1285 // array access so this code will never have to deal with
duke@435 1286 // patches or null checks.
duke@435 1287 assert(info == NULL && patch == NULL, "must be");
never@739 1288 __ lea(to_hi, as_Address(addr));
duke@435 1289 __ movl(to_lo, Address(to_hi, 0));
duke@435 1290 __ movl(to_hi, Address(to_hi, BytesPerWord));
duke@435 1291 } else if (base == to_lo || index == to_lo) {
duke@435 1292 assert(base != to_hi, "can't be");
duke@435 1293 assert(index == noreg || (index != base && index != to_hi), "can't handle this");
duke@435 1294 __ movl(to_hi, as_Address_hi(addr));
duke@435 1295 if (patch != NULL) {
duke@435 1296 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1297 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1298 patch_code = lir_patch_low;
duke@435 1299 }
duke@435 1300 __ movl(to_lo, as_Address_lo(addr));
duke@435 1301 } else {
duke@435 1302 assert(index == noreg || (index != base && index != to_lo), "can't handle this");
duke@435 1303 __ movl(to_lo, as_Address_lo(addr));
duke@435 1304 if (patch != NULL) {
duke@435 1305 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1306 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1307 patch_code = lir_patch_high;
duke@435 1308 }
duke@435 1309 __ movl(to_hi, as_Address_hi(addr));
duke@435 1310 }
never@739 1311 #endif // _LP64
duke@435 1312 break;
duke@435 1313 }
duke@435 1314
duke@435 1315 case T_BOOLEAN: // fall through
duke@435 1316 case T_BYTE: {
duke@435 1317 Register dest_reg = dest->as_register();
duke@435 1318 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1319 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1320 __ movsbl(dest_reg, from_addr);
duke@435 1321 } else {
duke@435 1322 __ movb(dest_reg, from_addr);
duke@435 1323 __ shll(dest_reg, 24);
duke@435 1324 __ sarl(dest_reg, 24);
duke@435 1325 }
duke@435 1326 break;
duke@435 1327 }
duke@435 1328
duke@435 1329 case T_CHAR: {
duke@435 1330 Register dest_reg = dest->as_register();
duke@435 1331 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1332 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1333 __ movzwl(dest_reg, from_addr);
duke@435 1334 } else {
duke@435 1335 __ movw(dest_reg, from_addr);
duke@435 1336 }
duke@435 1337 break;
duke@435 1338 }
duke@435 1339
duke@435 1340 case T_SHORT: {
duke@435 1341 Register dest_reg = dest->as_register();
duke@435 1342 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1343 __ movswl(dest_reg, from_addr);
duke@435 1344 } else {
duke@435 1345 __ movw(dest_reg, from_addr);
duke@435 1346 __ shll(dest_reg, 16);
duke@435 1347 __ sarl(dest_reg, 16);
duke@435 1348 }
duke@435 1349 break;
duke@435 1350 }
duke@435 1351
duke@435 1352 default:
duke@435 1353 ShouldNotReachHere();
duke@435 1354 }
duke@435 1355
duke@435 1356 if (patch != NULL) {
duke@435 1357 patching_epilog(patch, patch_code, addr->base()->as_register(), info);
duke@435 1358 }
duke@435 1359
duke@435 1360 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 1361 #ifdef _LP64
iveresov@2344 1362 if (UseCompressedOops && !wide) {
iveresov@2344 1363 __ decode_heap_oop(dest->as_register());
iveresov@2344 1364 }
iveresov@2344 1365 #endif
duke@435 1366 __ verify_oop(dest->as_register());
duke@435 1367 }
duke@435 1368 }
duke@435 1369
duke@435 1370
duke@435 1371 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1372 LIR_Address* addr = src->as_address_ptr();
duke@435 1373 Address from_addr = as_Address(addr);
duke@435 1374
duke@435 1375 if (VM_Version::supports_sse()) {
duke@435 1376 switch (ReadPrefetchInstr) {
duke@435 1377 case 0:
duke@435 1378 __ prefetchnta(from_addr); break;
duke@435 1379 case 1:
duke@435 1380 __ prefetcht0(from_addr); break;
duke@435 1381 case 2:
duke@435 1382 __ prefetcht2(from_addr); break;
duke@435 1383 default:
duke@435 1384 ShouldNotReachHere(); break;
duke@435 1385 }
kvn@2761 1386 } else if (VM_Version::supports_3dnow_prefetch()) {
duke@435 1387 __ prefetchr(from_addr);
duke@435 1388 }
duke@435 1389 }
duke@435 1390
duke@435 1391
duke@435 1392 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1393 LIR_Address* addr = src->as_address_ptr();
duke@435 1394 Address from_addr = as_Address(addr);
duke@435 1395
duke@435 1396 if (VM_Version::supports_sse()) {
duke@435 1397 switch (AllocatePrefetchInstr) {
duke@435 1398 case 0:
duke@435 1399 __ prefetchnta(from_addr); break;
duke@435 1400 case 1:
duke@435 1401 __ prefetcht0(from_addr); break;
duke@435 1402 case 2:
duke@435 1403 __ prefetcht2(from_addr); break;
duke@435 1404 case 3:
duke@435 1405 __ prefetchw(from_addr); break;
duke@435 1406 default:
duke@435 1407 ShouldNotReachHere(); break;
duke@435 1408 }
kvn@2761 1409 } else if (VM_Version::supports_3dnow_prefetch()) {
duke@435 1410 __ prefetchw(from_addr);
duke@435 1411 }
duke@435 1412 }
duke@435 1413
duke@435 1414
duke@435 1415 NEEDS_CLEANUP; // This could be static?
duke@435 1416 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
kvn@464 1417 int elem_size = type2aelembytes(type);
duke@435 1418 switch (elem_size) {
duke@435 1419 case 1: return Address::times_1;
duke@435 1420 case 2: return Address::times_2;
duke@435 1421 case 4: return Address::times_4;
duke@435 1422 case 8: return Address::times_8;
duke@435 1423 }
duke@435 1424 ShouldNotReachHere();
duke@435 1425 return Address::no_scale;
duke@435 1426 }
duke@435 1427
duke@435 1428
duke@435 1429 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 1430 switch (op->code()) {
duke@435 1431 case lir_idiv:
duke@435 1432 case lir_irem:
duke@435 1433 arithmetic_idiv(op->code(),
duke@435 1434 op->in_opr1(),
duke@435 1435 op->in_opr2(),
duke@435 1436 op->in_opr3(),
duke@435 1437 op->result_opr(),
duke@435 1438 op->info());
duke@435 1439 break;
duke@435 1440 default: ShouldNotReachHere(); break;
duke@435 1441 }
duke@435 1442 }
duke@435 1443
duke@435 1444 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 1445 #ifdef ASSERT
duke@435 1446 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 1447 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 1448 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 1449 #endif
duke@435 1450
duke@435 1451 if (op->cond() == lir_cond_always) {
duke@435 1452 if (op->info() != NULL) add_debug_info_for_branch(op->info());
duke@435 1453 __ jmp (*(op->label()));
duke@435 1454 } else {
duke@435 1455 Assembler::Condition acond = Assembler::zero;
duke@435 1456 if (op->code() == lir_cond_float_branch) {
duke@435 1457 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 1458 __ jcc(Assembler::parity, *(op->ublock()->label()));
duke@435 1459 switch(op->cond()) {
duke@435 1460 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1461 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1462 case lir_cond_less: acond = Assembler::below; break;
duke@435 1463 case lir_cond_lessEqual: acond = Assembler::belowEqual; break;
duke@435 1464 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
duke@435 1465 case lir_cond_greater: acond = Assembler::above; break;
duke@435 1466 default: ShouldNotReachHere();
duke@435 1467 }
duke@435 1468 } else {
duke@435 1469 switch (op->cond()) {
duke@435 1470 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1471 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1472 case lir_cond_less: acond = Assembler::less; break;
duke@435 1473 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1474 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
duke@435 1475 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1476 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
duke@435 1477 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
duke@435 1478 default: ShouldNotReachHere();
duke@435 1479 }
duke@435 1480 }
duke@435 1481 __ jcc(acond,*(op->label()));
duke@435 1482 }
duke@435 1483 }
duke@435 1484
duke@435 1485 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 1486 LIR_Opr src = op->in_opr();
duke@435 1487 LIR_Opr dest = op->result_opr();
duke@435 1488
duke@435 1489 switch (op->bytecode()) {
duke@435 1490 case Bytecodes::_i2l:
never@739 1491 #ifdef _LP64
never@739 1492 __ movl2ptr(dest->as_register_lo(), src->as_register());
never@739 1493 #else
duke@435 1494 move_regs(src->as_register(), dest->as_register_lo());
duke@435 1495 move_regs(src->as_register(), dest->as_register_hi());
duke@435 1496 __ sarl(dest->as_register_hi(), 31);
never@739 1497 #endif // LP64
duke@435 1498 break;
duke@435 1499
duke@435 1500 case Bytecodes::_l2i:
iveresov@3744 1501 #ifdef _LP64
iveresov@3744 1502 __ movl(dest->as_register(), src->as_register_lo());
iveresov@3744 1503 #else
duke@435 1504 move_regs(src->as_register_lo(), dest->as_register());
iveresov@3744 1505 #endif
duke@435 1506 break;
duke@435 1507
duke@435 1508 case Bytecodes::_i2b:
duke@435 1509 move_regs(src->as_register(), dest->as_register());
duke@435 1510 __ sign_extend_byte(dest->as_register());
duke@435 1511 break;
duke@435 1512
duke@435 1513 case Bytecodes::_i2c:
duke@435 1514 move_regs(src->as_register(), dest->as_register());
duke@435 1515 __ andl(dest->as_register(), 0xFFFF);
duke@435 1516 break;
duke@435 1517
duke@435 1518 case Bytecodes::_i2s:
duke@435 1519 move_regs(src->as_register(), dest->as_register());
duke@435 1520 __ sign_extend_short(dest->as_register());
duke@435 1521 break;
duke@435 1522
duke@435 1523
duke@435 1524 case Bytecodes::_f2d:
duke@435 1525 case Bytecodes::_d2f:
duke@435 1526 if (dest->is_single_xmm()) {
duke@435 1527 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
duke@435 1528 } else if (dest->is_double_xmm()) {
duke@435 1529 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
duke@435 1530 } else {
duke@435 1531 assert(src->fpu() == dest->fpu(), "register must be equal");
duke@435 1532 // do nothing (float result is rounded later through spilling)
duke@435 1533 }
duke@435 1534 break;
duke@435 1535
duke@435 1536 case Bytecodes::_i2f:
duke@435 1537 case Bytecodes::_i2d:
duke@435 1538 if (dest->is_single_xmm()) {
never@739 1539 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
duke@435 1540 } else if (dest->is_double_xmm()) {
never@739 1541 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
duke@435 1542 } else {
duke@435 1543 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1544 __ movl(Address(rsp, 0), src->as_register());
duke@435 1545 __ fild_s(Address(rsp, 0));
duke@435 1546 }
duke@435 1547 break;
duke@435 1548
duke@435 1549 case Bytecodes::_f2i:
duke@435 1550 case Bytecodes::_d2i:
duke@435 1551 if (src->is_single_xmm()) {
never@739 1552 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
duke@435 1553 } else if (src->is_double_xmm()) {
never@739 1554 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
duke@435 1555 } else {
duke@435 1556 assert(src->fpu() == 0, "input must be on TOS");
duke@435 1557 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
duke@435 1558 __ fist_s(Address(rsp, 0));
duke@435 1559 __ movl(dest->as_register(), Address(rsp, 0));
duke@435 1560 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1561 }
duke@435 1562
duke@435 1563 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
duke@435 1564 assert(op->stub() != NULL, "stub required");
duke@435 1565 __ cmpl(dest->as_register(), 0x80000000);
duke@435 1566 __ jcc(Assembler::equal, *op->stub()->entry());
duke@435 1567 __ bind(*op->stub()->continuation());
duke@435 1568 break;
duke@435 1569
duke@435 1570 case Bytecodes::_l2f:
duke@435 1571 case Bytecodes::_l2d:
duke@435 1572 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
duke@435 1573 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1574
never@739 1575 __ movptr(Address(rsp, 0), src->as_register_lo());
never@739 1576 NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
duke@435 1577 __ fild_d(Address(rsp, 0));
duke@435 1578 // float result is rounded later through spilling
duke@435 1579 break;
duke@435 1580
duke@435 1581 case Bytecodes::_f2l:
duke@435 1582 case Bytecodes::_d2l:
duke@435 1583 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
duke@435 1584 assert(src->fpu() == 0, "input must be on TOS");
never@739 1585 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
duke@435 1586
duke@435 1587 // instruction sequence too long to inline it here
duke@435 1588 {
duke@435 1589 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
duke@435 1590 }
duke@435 1591 break;
duke@435 1592
duke@435 1593 default: ShouldNotReachHere();
duke@435 1594 }
duke@435 1595 }
duke@435 1596
duke@435 1597 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 1598 if (op->init_check()) {
coleenp@3368 1599 __ cmpb(Address(op->klass()->as_register(),
coleenp@4037 1600 InstanceKlass::init_state_offset()),
coleenp@4037 1601 InstanceKlass::fully_initialized);
duke@435 1602 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 1603 __ jcc(Assembler::notEqual, *op->stub()->entry());
duke@435 1604 }
duke@435 1605 __ allocate_object(op->obj()->as_register(),
duke@435 1606 op->tmp1()->as_register(),
duke@435 1607 op->tmp2()->as_register(),
duke@435 1608 op->header_size(),
duke@435 1609 op->object_size(),
duke@435 1610 op->klass()->as_register(),
duke@435 1611 *op->stub()->entry());
duke@435 1612 __ bind(*op->stub()->continuation());
duke@435 1613 }
duke@435 1614
duke@435 1615 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
iveresov@2432 1616 Register len = op->len()->as_register();
iveresov@2432 1617 LP64_ONLY( __ movslq(len, len); )
iveresov@2432 1618
duke@435 1619 if (UseSlowPath ||
duke@435 1620 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 1621 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
duke@435 1622 __ jmp(*op->stub()->entry());
duke@435 1623 } else {
duke@435 1624 Register tmp1 = op->tmp1()->as_register();
duke@435 1625 Register tmp2 = op->tmp2()->as_register();
duke@435 1626 Register tmp3 = op->tmp3()->as_register();
duke@435 1627 if (len == tmp1) {
duke@435 1628 tmp1 = tmp3;
duke@435 1629 } else if (len == tmp2) {
duke@435 1630 tmp2 = tmp3;
duke@435 1631 } else if (len == tmp3) {
duke@435 1632 // everything is ok
duke@435 1633 } else {
never@739 1634 __ mov(tmp3, len);
duke@435 1635 }
duke@435 1636 __ allocate_array(op->obj()->as_register(),
duke@435 1637 len,
duke@435 1638 tmp1,
duke@435 1639 tmp2,
duke@435 1640 arrayOopDesc::header_size(op->type()),
duke@435 1641 array_element_size(op->type()),
duke@435 1642 op->klass()->as_register(),
duke@435 1643 *op->stub()->entry());
duke@435 1644 }
duke@435 1645 __ bind(*op->stub()->continuation());
duke@435 1646 }
duke@435 1647
iveresov@2138 1648 void LIR_Assembler::type_profile_helper(Register mdo,
iveresov@2138 1649 ciMethodData *md, ciProfileData *data,
iveresov@2138 1650 Register recv, Label* update_done) {
iveresov@2163 1651 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
iveresov@2138 1652 Label next_test;
iveresov@2138 1653 // See if the receiver is receiver[n].
iveresov@2138 1654 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
iveresov@2138 1655 __ jccb(Assembler::notEqual, next_test);
iveresov@2138 1656 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
iveresov@2138 1657 __ addptr(data_addr, DataLayout::counter_increment);
iveresov@2146 1658 __ jmp(*update_done);
iveresov@2138 1659 __ bind(next_test);
iveresov@2138 1660 }
iveresov@2138 1661
iveresov@2138 1662 // Didn't find receiver; find next empty slot and fill it in
iveresov@2163 1663 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
iveresov@2138 1664 Label next_test;
iveresov@2138 1665 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
iveresov@2138 1666 __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
iveresov@2138 1667 __ jccb(Assembler::notEqual, next_test);
iveresov@2138 1668 __ movptr(recv_addr, recv);
iveresov@2138 1669 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
iveresov@2146 1670 __ jmp(*update_done);
iveresov@2138 1671 __ bind(next_test);
iveresov@2138 1672 }
iveresov@2138 1673 }
iveresov@2138 1674
iveresov@2146 1675 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
iveresov@2138 1676 // we always need a stub for the failure case.
iveresov@2138 1677 CodeStub* stub = op->stub();
iveresov@2138 1678 Register obj = op->object()->as_register();
iveresov@2138 1679 Register k_RInfo = op->tmp1()->as_register();
iveresov@2138 1680 Register klass_RInfo = op->tmp2()->as_register();
iveresov@2138 1681 Register dst = op->result_opr()->as_register();
iveresov@2138 1682 ciKlass* k = op->klass();
iveresov@2138 1683 Register Rtmp1 = noreg;
iveresov@2138 1684
iveresov@2138 1685 // check if it needs to be profiled
iveresov@2138 1686 ciMethodData* md;
iveresov@2138 1687 ciProfileData* data;
iveresov@2138 1688
iveresov@2138 1689 if (op->should_profile()) {
iveresov@2138 1690 ciMethod* method = op->profiled_method();
iveresov@2138 1691 assert(method != NULL, "Should have method");
iveresov@2138 1692 int bci = op->profiled_bci();
iveresov@2349 1693 md = method->method_data_or_null();
iveresov@2349 1694 assert(md != NULL, "Sanity");
iveresov@2138 1695 data = md->bci_to_data(bci);
iveresov@2146 1696 assert(data != NULL, "need data for type check");
iveresov@2146 1697 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2138 1698 }
iveresov@2146 1699 Label profile_cast_success, profile_cast_failure;
iveresov@2146 1700 Label *success_target = op->should_profile() ? &profile_cast_success : success;
iveresov@2146 1701 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
iveresov@2138 1702
iveresov@2138 1703 if (obj == k_RInfo) {
iveresov@2138 1704 k_RInfo = dst;
iveresov@2138 1705 } else if (obj == klass_RInfo) {
iveresov@2138 1706 klass_RInfo = dst;
iveresov@2138 1707 }
iveresov@2344 1708 if (k->is_loaded() && !UseCompressedOops) {
iveresov@2138 1709 select_different_registers(obj, dst, k_RInfo, klass_RInfo);
iveresov@2138 1710 } else {
iveresov@2138 1711 Rtmp1 = op->tmp3()->as_register();
iveresov@2138 1712 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
iveresov@2138 1713 }
iveresov@2138 1714
iveresov@2138 1715 assert_different_registers(obj, k_RInfo, klass_RInfo);
iveresov@2138 1716 if (!k->is_loaded()) {
coleenp@4037 1717 klass2reg_with_patching(k_RInfo, op->info_for_patch());
iveresov@2138 1718 } else {
iveresov@2138 1719 #ifdef _LP64
coleenp@4037 1720 __ mov_metadata(k_RInfo, k->constant_encoding());
iveresov@2138 1721 #endif // _LP64
iveresov@2138 1722 }
iveresov@2138 1723 assert(obj != k_RInfo, "must be different");
iveresov@2138 1724
iveresov@2138 1725 __ cmpptr(obj, (int32_t)NULL_WORD);
iveresov@2138 1726 if (op->should_profile()) {
iveresov@2146 1727 Label not_null;
iveresov@2146 1728 __ jccb(Assembler::notEqual, not_null);
iveresov@2146 1729 // Object is null; update MDO and exit
iveresov@2138 1730 Register mdo = klass_RInfo;
coleenp@4037 1731 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2138 1732 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
iveresov@2138 1733 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
iveresov@2138 1734 __ orl(data_addr, header_bits);
iveresov@2146 1735 __ jmp(*obj_is_null);
iveresov@2146 1736 __ bind(not_null);
iveresov@2138 1737 } else {
iveresov@2146 1738 __ jcc(Assembler::equal, *obj_is_null);
iveresov@2138 1739 }
iveresov@2138 1740 __ verify_oop(obj);
iveresov@2138 1741
iveresov@2138 1742 if (op->fast_check()) {
iveresov@2146 1743 // get object class
iveresov@2138 1744 // not a safepoint as obj null check happens earlier
iveresov@2138 1745 #ifdef _LP64
coleenp@4037 1746 if (UseCompressedKlassPointers) {
iveresov@2344 1747 __ load_klass(Rtmp1, obj);
iveresov@2344 1748 __ cmpptr(k_RInfo, Rtmp1);
iveresov@2138 1749 } else {
iveresov@2138 1750 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2138 1751 }
iveresov@2344 1752 #else
iveresov@2344 1753 if (k->is_loaded()) {
coleenp@4037 1754 __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
iveresov@2344 1755 } else {
iveresov@2344 1756 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2344 1757 }
iveresov@2344 1758 #endif
iveresov@2138 1759 __ jcc(Assembler::notEqual, *failure_target);
iveresov@2146 1760 // successful cast, fall through to profile or jump
iveresov@2138 1761 } else {
iveresov@2138 1762 // get object class
iveresov@2138 1763 // not a safepoint as obj null check happens earlier
iveresov@2344 1764 __ load_klass(klass_RInfo, obj);
iveresov@2138 1765 if (k->is_loaded()) {
iveresov@2138 1766 // See if we get an immediate positive hit
iveresov@2138 1767 #ifdef _LP64
iveresov@2138 1768 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
iveresov@2138 1769 #else
coleenp@4037 1770 __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
iveresov@2138 1771 #endif // _LP64
stefank@3391 1772 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
iveresov@2138 1773 __ jcc(Assembler::notEqual, *failure_target);
iveresov@2146 1774 // successful cast, fall through to profile or jump
iveresov@2138 1775 } else {
iveresov@2138 1776 // See if we get an immediate positive hit
iveresov@2146 1777 __ jcc(Assembler::equal, *success_target);
iveresov@2138 1778 // check for self
iveresov@2138 1779 #ifdef _LP64
iveresov@2138 1780 __ cmpptr(klass_RInfo, k_RInfo);
iveresov@2138 1781 #else
coleenp@4037 1782 __ cmpklass(klass_RInfo, k->constant_encoding());
iveresov@2138 1783 #endif // _LP64
iveresov@2146 1784 __ jcc(Assembler::equal, *success_target);
iveresov@2138 1785
iveresov@2138 1786 __ push(klass_RInfo);
iveresov@2138 1787 #ifdef _LP64
iveresov@2138 1788 __ push(k_RInfo);
iveresov@2138 1789 #else
coleenp@4037 1790 __ pushklass(k->constant_encoding());
iveresov@2138 1791 #endif // _LP64
iveresov@2138 1792 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
iveresov@2138 1793 __ pop(klass_RInfo);
iveresov@2138 1794 __ pop(klass_RInfo);
iveresov@2138 1795 // result is a boolean
iveresov@2138 1796 __ cmpl(klass_RInfo, 0);
iveresov@2138 1797 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1798 // successful cast, fall through to profile or jump
iveresov@2138 1799 }
iveresov@2138 1800 } else {
iveresov@2138 1801 // perform the fast part of the checking logic
iveresov@2146 1802 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
iveresov@2138 1803 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
iveresov@2138 1804 __ push(klass_RInfo);
iveresov@2138 1805 __ push(k_RInfo);
iveresov@2138 1806 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
iveresov@2138 1807 __ pop(klass_RInfo);
iveresov@2138 1808 __ pop(k_RInfo);
iveresov@2138 1809 // result is a boolean
iveresov@2138 1810 __ cmpl(k_RInfo, 0);
iveresov@2138 1811 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1812 // successful cast, fall through to profile or jump
iveresov@2138 1813 }
iveresov@2138 1814 }
iveresov@2138 1815 if (op->should_profile()) {
iveresov@2138 1816 Register mdo = klass_RInfo, recv = k_RInfo;
iveresov@2146 1817 __ bind(profile_cast_success);
coleenp@4037 1818 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2344 1819 __ load_klass(recv, obj);
iveresov@2138 1820 Label update_done;
iveresov@2146 1821 type_profile_helper(mdo, md, data, recv, success);
iveresov@2146 1822 __ jmp(*success);
iveresov@2138 1823
iveresov@2138 1824 __ bind(profile_cast_failure);
coleenp@4037 1825 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2138 1826 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
iveresov@2138 1827 __ subptr(counter_addr, DataLayout::counter_increment);
iveresov@2146 1828 __ jmp(*failure);
iveresov@2138 1829 }
iveresov@2146 1830 __ jmp(*success);
iveresov@2138 1831 }
duke@435 1832
iveresov@2146 1833
duke@435 1834 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 1835 LIR_Code code = op->code();
duke@435 1836 if (code == lir_store_check) {
duke@435 1837 Register value = op->object()->as_register();
duke@435 1838 Register array = op->array()->as_register();
duke@435 1839 Register k_RInfo = op->tmp1()->as_register();
duke@435 1840 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1841 Register Rtmp1 = op->tmp3()->as_register();
duke@435 1842
duke@435 1843 CodeStub* stub = op->stub();
iveresov@2146 1844
iveresov@2146 1845 // check if it needs to be profiled
iveresov@2146 1846 ciMethodData* md;
iveresov@2146 1847 ciProfileData* data;
iveresov@2146 1848
iveresov@2146 1849 if (op->should_profile()) {
iveresov@2146 1850 ciMethod* method = op->profiled_method();
iveresov@2146 1851 assert(method != NULL, "Should have method");
iveresov@2146 1852 int bci = op->profiled_bci();
iveresov@2349 1853 md = method->method_data_or_null();
iveresov@2349 1854 assert(md != NULL, "Sanity");
iveresov@2146 1855 data = md->bci_to_data(bci);
iveresov@2146 1856 assert(data != NULL, "need data for type check");
iveresov@2146 1857 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2146 1858 }
iveresov@2146 1859 Label profile_cast_success, profile_cast_failure, done;
iveresov@2146 1860 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
iveresov@2146 1861 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
iveresov@2146 1862
never@739 1863 __ cmpptr(value, (int32_t)NULL_WORD);
iveresov@2146 1864 if (op->should_profile()) {
iveresov@2146 1865 Label not_null;
iveresov@2146 1866 __ jccb(Assembler::notEqual, not_null);
iveresov@2146 1867 // Object is null; update MDO and exit
iveresov@2146 1868 Register mdo = klass_RInfo;
coleenp@4037 1869 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2146 1870 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
iveresov@2146 1871 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
iveresov@2146 1872 __ orl(data_addr, header_bits);
iveresov@2146 1873 __ jmp(done);
iveresov@2146 1874 __ bind(not_null);
iveresov@2146 1875 } else {
iveresov@2146 1876 __ jcc(Assembler::equal, done);
iveresov@2146 1877 }
iveresov@2146 1878
duke@435 1879 add_debug_info_for_null_check_here(op->info_for_exception());
iveresov@2344 1880 __ load_klass(k_RInfo, array);
iveresov@2344 1881 __ load_klass(klass_RInfo, value);
iveresov@2344 1882
iveresov@2344 1883 // get instance klass (it's already uncompressed)
coleenp@4142 1884 __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
jrose@1079 1885 // perform the fast part of the checking logic
iveresov@2146 1886 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
jrose@1079 1887 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1888 __ push(klass_RInfo);
never@739 1889 __ push(k_RInfo);
duke@435 1890 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1891 __ pop(klass_RInfo);
never@739 1892 __ pop(k_RInfo);
never@739 1893 // result is a boolean
duke@435 1894 __ cmpl(k_RInfo, 0);
iveresov@2146 1895 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1896 // fall through to the success case
iveresov@2146 1897
iveresov@2146 1898 if (op->should_profile()) {
iveresov@2146 1899 Register mdo = klass_RInfo, recv = k_RInfo;
iveresov@2146 1900 __ bind(profile_cast_success);
coleenp@4037 1901 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2344 1902 __ load_klass(recv, value);
iveresov@2146 1903 Label update_done;
iveresov@2146 1904 type_profile_helper(mdo, md, data, recv, &done);
iveresov@2146 1905 __ jmpb(done);
iveresov@2146 1906
iveresov@2146 1907 __ bind(profile_cast_failure);
coleenp@4037 1908 __ mov_metadata(mdo, md->constant_encoding());
iveresov@2146 1909 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
iveresov@2146 1910 __ subptr(counter_addr, DataLayout::counter_increment);
iveresov@2146 1911 __ jmp(*stub->entry());
iveresov@2146 1912 }
iveresov@2146 1913
duke@435 1914 __ bind(done);
iveresov@2146 1915 } else
iveresov@2146 1916 if (code == lir_checkcast) {
iveresov@2146 1917 Register obj = op->object()->as_register();
iveresov@2146 1918 Register dst = op->result_opr()->as_register();
iveresov@2146 1919 Label success;
iveresov@2146 1920 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
iveresov@2146 1921 __ bind(success);
iveresov@2146 1922 if (dst != obj) {
iveresov@2146 1923 __ mov(dst, obj);
iveresov@2146 1924 }
iveresov@2146 1925 } else
iveresov@2146 1926 if (code == lir_instanceof) {
iveresov@2146 1927 Register obj = op->object()->as_register();
iveresov@2146 1928 Register dst = op->result_opr()->as_register();
iveresov@2146 1929 Label success, failure, done;
iveresov@2146 1930 emit_typecheck_helper(op, &success, &failure, &failure);
iveresov@2146 1931 __ bind(failure);
iveresov@2146 1932 __ xorptr(dst, dst);
iveresov@2146 1933 __ jmpb(done);
iveresov@2146 1934 __ bind(success);
iveresov@2146 1935 __ movptr(dst, 1);
iveresov@2146 1936 __ bind(done);
duke@435 1937 } else {
iveresov@2146 1938 ShouldNotReachHere();
duke@435 1939 }
duke@435 1940
duke@435 1941 }
duke@435 1942
duke@435 1943
duke@435 1944 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
never@739 1945 if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
duke@435 1946 assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
duke@435 1947 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
duke@435 1948 assert(op->new_value()->as_register_lo() == rbx, "wrong register");
duke@435 1949 assert(op->new_value()->as_register_hi() == rcx, "wrong register");
duke@435 1950 Register addr = op->addr()->as_register();
duke@435 1951 if (os::is_MP()) {
duke@435 1952 __ lock();
duke@435 1953 }
never@739 1954 NOT_LP64(__ cmpxchg8(Address(addr, 0)));
never@739 1955
never@739 1956 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
never@739 1957 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
never@739 1958 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
duke@435 1959 Register newval = op->new_value()->as_register();
duke@435 1960 Register cmpval = op->cmp_value()->as_register();
duke@435 1961 assert(cmpval == rax, "wrong register");
duke@435 1962 assert(newval != NULL, "new val must be register");
duke@435 1963 assert(cmpval != newval, "cmp and new values must be in different registers");
duke@435 1964 assert(cmpval != addr, "cmp and addr must be in different registers");
duke@435 1965 assert(newval != addr, "new value and addr must be in different registers");
iveresov@2344 1966
never@739 1967 if ( op->code() == lir_cas_obj) {
iveresov@2344 1968 #ifdef _LP64
iveresov@2344 1969 if (UseCompressedOops) {
iveresov@2344 1970 __ encode_heap_oop(cmpval);
iveresov@2355 1971 __ mov(rscratch1, newval);
iveresov@2355 1972 __ encode_heap_oop(rscratch1);
iveresov@2344 1973 if (os::is_MP()) {
iveresov@2344 1974 __ lock();
iveresov@2344 1975 }
iveresov@2355 1976 // cmpval (rax) is implicitly used by this instruction
iveresov@2355 1977 __ cmpxchgl(rscratch1, Address(addr, 0));
iveresov@2344 1978 } else
iveresov@2344 1979 #endif
iveresov@2344 1980 {
iveresov@2344 1981 if (os::is_MP()) {
iveresov@2344 1982 __ lock();
iveresov@2344 1983 }
iveresov@2344 1984 __ cmpxchgptr(newval, Address(addr, 0));
iveresov@2344 1985 }
iveresov@2344 1986 } else {
iveresov@2344 1987 assert(op->code() == lir_cas_int, "lir_cas_int expected");
iveresov@2344 1988 if (os::is_MP()) {
iveresov@2344 1989 __ lock();
iveresov@2344 1990 }
never@739 1991 __ cmpxchgl(newval, Address(addr, 0));
never@739 1992 }
never@739 1993 #ifdef _LP64
never@739 1994 } else if (op->code() == lir_cas_long) {
never@739 1995 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
never@739 1996 Register newval = op->new_value()->as_register_lo();
never@739 1997 Register cmpval = op->cmp_value()->as_register_lo();
never@739 1998 assert(cmpval == rax, "wrong register");
never@739 1999 assert(newval != NULL, "new val must be register");
never@739 2000 assert(cmpval != newval, "cmp and new values must be in different registers");
never@739 2001 assert(cmpval != addr, "cmp and addr must be in different registers");
never@739 2002 assert(newval != addr, "new value and addr must be in different registers");
never@739 2003 if (os::is_MP()) {
never@739 2004 __ lock();
never@739 2005 }
never@739 2006 __ cmpxchgq(newval, Address(addr, 0));
never@739 2007 #endif // _LP64
duke@435 2008 } else {
duke@435 2009 Unimplemented();
duke@435 2010 }
duke@435 2011 }
duke@435 2012
iveresov@2412 2013 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
duke@435 2014 Assembler::Condition acond, ncond;
duke@435 2015 switch (condition) {
duke@435 2016 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break;
duke@435 2017 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break;
duke@435 2018 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break;
duke@435 2019 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break;
duke@435 2020 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break;
duke@435 2021 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break;
duke@435 2022 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break;
duke@435 2023 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break;
duke@435 2024 default: ShouldNotReachHere();
duke@435 2025 }
duke@435 2026
duke@435 2027 if (opr1->is_cpu_register()) {
duke@435 2028 reg2reg(opr1, result);
duke@435 2029 } else if (opr1->is_stack()) {
duke@435 2030 stack2reg(opr1, result, result->type());
duke@435 2031 } else if (opr1->is_constant()) {
duke@435 2032 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 2033 } else {
duke@435 2034 ShouldNotReachHere();
duke@435 2035 }
duke@435 2036
duke@435 2037 if (VM_Version::supports_cmov() && !opr2->is_constant()) {
duke@435 2038 // optimized version that does not require a branch
duke@435 2039 if (opr2->is_single_cpu()) {
duke@435 2040 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
never@739 2041 __ cmov(ncond, result->as_register(), opr2->as_register());
duke@435 2042 } else if (opr2->is_double_cpu()) {
duke@435 2043 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
duke@435 2044 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
never@739 2045 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
never@739 2046 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
duke@435 2047 } else if (opr2->is_single_stack()) {
duke@435 2048 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2049 } else if (opr2->is_double_stack()) {
never@739 2050 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
never@739 2051 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
duke@435 2052 } else {
duke@435 2053 ShouldNotReachHere();
duke@435 2054 }
duke@435 2055
duke@435 2056 } else {
duke@435 2057 Label skip;
duke@435 2058 __ jcc (acond, skip);
duke@435 2059 if (opr2->is_cpu_register()) {
duke@435 2060 reg2reg(opr2, result);
duke@435 2061 } else if (opr2->is_stack()) {
duke@435 2062 stack2reg(opr2, result, result->type());
duke@435 2063 } else if (opr2->is_constant()) {
duke@435 2064 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 2065 } else {
duke@435 2066 ShouldNotReachHere();
duke@435 2067 }
duke@435 2068 __ bind(skip);
duke@435 2069 }
duke@435 2070 }
duke@435 2071
duke@435 2072
duke@435 2073 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 2074 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
duke@435 2075
duke@435 2076 if (left->is_single_cpu()) {
duke@435 2077 assert(left == dest, "left and dest must be equal");
duke@435 2078 Register lreg = left->as_register();
duke@435 2079
duke@435 2080 if (right->is_single_cpu()) {
duke@435 2081 // cpu register - cpu register
duke@435 2082 Register rreg = right->as_register();
duke@435 2083 switch (code) {
duke@435 2084 case lir_add: __ addl (lreg, rreg); break;
duke@435 2085 case lir_sub: __ subl (lreg, rreg); break;
duke@435 2086 case lir_mul: __ imull(lreg, rreg); break;
duke@435 2087 default: ShouldNotReachHere();
duke@435 2088 }
duke@435 2089
duke@435 2090 } else if (right->is_stack()) {
duke@435 2091 // cpu register - stack
duke@435 2092 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2093 switch (code) {
duke@435 2094 case lir_add: __ addl(lreg, raddr); break;
duke@435 2095 case lir_sub: __ subl(lreg, raddr); break;
duke@435 2096 default: ShouldNotReachHere();
duke@435 2097 }
duke@435 2098
duke@435 2099 } else if (right->is_constant()) {
duke@435 2100 // cpu register - constant
duke@435 2101 jint c = right->as_constant_ptr()->as_jint();
duke@435 2102 switch (code) {
duke@435 2103 case lir_add: {
iveresov@2145 2104 __ incrementl(lreg, c);
duke@435 2105 break;
duke@435 2106 }
duke@435 2107 case lir_sub: {
iveresov@2145 2108 __ decrementl(lreg, c);
duke@435 2109 break;
duke@435 2110 }
duke@435 2111 default: ShouldNotReachHere();
duke@435 2112 }
duke@435 2113
duke@435 2114 } else {
duke@435 2115 ShouldNotReachHere();
duke@435 2116 }
duke@435 2117
duke@435 2118 } else if (left->is_double_cpu()) {
duke@435 2119 assert(left == dest, "left and dest must be equal");
duke@435 2120 Register lreg_lo = left->as_register_lo();
duke@435 2121 Register lreg_hi = left->as_register_hi();
duke@435 2122
duke@435 2123 if (right->is_double_cpu()) {
duke@435 2124 // cpu register - cpu register
duke@435 2125 Register rreg_lo = right->as_register_lo();
duke@435 2126 Register rreg_hi = right->as_register_hi();
never@739 2127 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
never@739 2128 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
duke@435 2129 switch (code) {
duke@435 2130 case lir_add:
never@739 2131 __ addptr(lreg_lo, rreg_lo);
never@739 2132 NOT_LP64(__ adcl(lreg_hi, rreg_hi));
duke@435 2133 break;
duke@435 2134 case lir_sub:
never@739 2135 __ subptr(lreg_lo, rreg_lo);
never@739 2136 NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
duke@435 2137 break;
duke@435 2138 case lir_mul:
never@739 2139 #ifdef _LP64
never@739 2140 __ imulq(lreg_lo, rreg_lo);
never@739 2141 #else
duke@435 2142 assert(lreg_lo == rax && lreg_hi == rdx, "must be");
duke@435 2143 __ imull(lreg_hi, rreg_lo);
duke@435 2144 __ imull(rreg_hi, lreg_lo);
duke@435 2145 __ addl (rreg_hi, lreg_hi);
duke@435 2146 __ mull (rreg_lo);
duke@435 2147 __ addl (lreg_hi, rreg_hi);
never@739 2148 #endif // _LP64
duke@435 2149 break;
duke@435 2150 default:
duke@435 2151 ShouldNotReachHere();
duke@435 2152 }
duke@435 2153
duke@435 2154 } else if (right->is_constant()) {
duke@435 2155 // cpu register - constant
never@739 2156 #ifdef _LP64
never@739 2157 jlong c = right->as_constant_ptr()->as_jlong_bits();
never@739 2158 __ movptr(r10, (intptr_t) c);
never@739 2159 switch (code) {
never@739 2160 case lir_add:
never@739 2161 __ addptr(lreg_lo, r10);
never@739 2162 break;
never@739 2163 case lir_sub:
never@739 2164 __ subptr(lreg_lo, r10);
never@739 2165 break;
never@739 2166 default:
never@739 2167 ShouldNotReachHere();
never@739 2168 }
never@739 2169 #else
duke@435 2170 jint c_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2171 jint c_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2172 switch (code) {
duke@435 2173 case lir_add:
never@739 2174 __ addptr(lreg_lo, c_lo);
duke@435 2175 __ adcl(lreg_hi, c_hi);
duke@435 2176 break;
duke@435 2177 case lir_sub:
never@739 2178 __ subptr(lreg_lo, c_lo);
duke@435 2179 __ sbbl(lreg_hi, c_hi);
duke@435 2180 break;
duke@435 2181 default:
duke@435 2182 ShouldNotReachHere();
duke@435 2183 }
never@739 2184 #endif // _LP64
duke@435 2185
duke@435 2186 } else {
duke@435 2187 ShouldNotReachHere();
duke@435 2188 }
duke@435 2189
duke@435 2190 } else if (left->is_single_xmm()) {
duke@435 2191 assert(left == dest, "left and dest must be equal");
duke@435 2192 XMMRegister lreg = left->as_xmm_float_reg();
duke@435 2193
duke@435 2194 if (right->is_single_xmm()) {
duke@435 2195 XMMRegister rreg = right->as_xmm_float_reg();
duke@435 2196 switch (code) {
duke@435 2197 case lir_add: __ addss(lreg, rreg); break;
duke@435 2198 case lir_sub: __ subss(lreg, rreg); break;
duke@435 2199 case lir_mul_strictfp: // fall through
duke@435 2200 case lir_mul: __ mulss(lreg, rreg); break;
duke@435 2201 case lir_div_strictfp: // fall through
duke@435 2202 case lir_div: __ divss(lreg, rreg); break;
duke@435 2203 default: ShouldNotReachHere();
duke@435 2204 }
duke@435 2205 } else {
duke@435 2206 Address raddr;
duke@435 2207 if (right->is_single_stack()) {
duke@435 2208 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2209 } else if (right->is_constant()) {
duke@435 2210 // hack for now
duke@435 2211 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
duke@435 2212 } else {
duke@435 2213 ShouldNotReachHere();
duke@435 2214 }
duke@435 2215 switch (code) {
duke@435 2216 case lir_add: __ addss(lreg, raddr); break;
duke@435 2217 case lir_sub: __ subss(lreg, raddr); break;
duke@435 2218 case lir_mul_strictfp: // fall through
duke@435 2219 case lir_mul: __ mulss(lreg, raddr); break;
duke@435 2220 case lir_div_strictfp: // fall through
duke@435 2221 case lir_div: __ divss(lreg, raddr); break;
duke@435 2222 default: ShouldNotReachHere();
duke@435 2223 }
duke@435 2224 }
duke@435 2225
duke@435 2226 } else if (left->is_double_xmm()) {
duke@435 2227 assert(left == dest, "left and dest must be equal");
duke@435 2228
duke@435 2229 XMMRegister lreg = left->as_xmm_double_reg();
duke@435 2230 if (right->is_double_xmm()) {
duke@435 2231 XMMRegister rreg = right->as_xmm_double_reg();
duke@435 2232 switch (code) {
duke@435 2233 case lir_add: __ addsd(lreg, rreg); break;
duke@435 2234 case lir_sub: __ subsd(lreg, rreg); break;
duke@435 2235 case lir_mul_strictfp: // fall through
duke@435 2236 case lir_mul: __ mulsd(lreg, rreg); break;
duke@435 2237 case lir_div_strictfp: // fall through
duke@435 2238 case lir_div: __ divsd(lreg, rreg); break;
duke@435 2239 default: ShouldNotReachHere();
duke@435 2240 }
duke@435 2241 } else {
duke@435 2242 Address raddr;
duke@435 2243 if (right->is_double_stack()) {
duke@435 2244 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2245 } else if (right->is_constant()) {
duke@435 2246 // hack for now
duke@435 2247 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2248 } else {
duke@435 2249 ShouldNotReachHere();
duke@435 2250 }
duke@435 2251 switch (code) {
duke@435 2252 case lir_add: __ addsd(lreg, raddr); break;
duke@435 2253 case lir_sub: __ subsd(lreg, raddr); break;
duke@435 2254 case lir_mul_strictfp: // fall through
duke@435 2255 case lir_mul: __ mulsd(lreg, raddr); break;
duke@435 2256 case lir_div_strictfp: // fall through
duke@435 2257 case lir_div: __ divsd(lreg, raddr); break;
duke@435 2258 default: ShouldNotReachHere();
duke@435 2259 }
duke@435 2260 }
duke@435 2261
duke@435 2262 } else if (left->is_single_fpu()) {
duke@435 2263 assert(dest->is_single_fpu(), "fpu stack allocation required");
duke@435 2264
duke@435 2265 if (right->is_single_fpu()) {
duke@435 2266 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
duke@435 2267
duke@435 2268 } else {
duke@435 2269 assert(left->fpu_regnr() == 0, "left must be on TOS");
duke@435 2270 assert(dest->fpu_regnr() == 0, "dest must be on TOS");
duke@435 2271
duke@435 2272 Address raddr;
duke@435 2273 if (right->is_single_stack()) {
duke@435 2274 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2275 } else if (right->is_constant()) {
duke@435 2276 address const_addr = float_constant(right->as_jfloat());
duke@435 2277 assert(const_addr != NULL, "incorrect float/double constant maintainance");
duke@435 2278 // hack for now
duke@435 2279 raddr = __ as_Address(InternalAddress(const_addr));
duke@435 2280 } else {
duke@435 2281 ShouldNotReachHere();
duke@435 2282 }
duke@435 2283
duke@435 2284 switch (code) {
duke@435 2285 case lir_add: __ fadd_s(raddr); break;
duke@435 2286 case lir_sub: __ fsub_s(raddr); break;
duke@435 2287 case lir_mul_strictfp: // fall through
duke@435 2288 case lir_mul: __ fmul_s(raddr); break;
duke@435 2289 case lir_div_strictfp: // fall through
duke@435 2290 case lir_div: __ fdiv_s(raddr); break;
duke@435 2291 default: ShouldNotReachHere();
duke@435 2292 }
duke@435 2293 }
duke@435 2294
duke@435 2295 } else if (left->is_double_fpu()) {
duke@435 2296 assert(dest->is_double_fpu(), "fpu stack allocation required");
duke@435 2297
duke@435 2298 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2299 // Double values require special handling for strictfp mul/div on x86
duke@435 2300 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
duke@435 2301 __ fmulp(left->fpu_regnrLo() + 1);
duke@435 2302 }
duke@435 2303
duke@435 2304 if (right->is_double_fpu()) {
duke@435 2305 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
duke@435 2306
duke@435 2307 } else {
duke@435 2308 assert(left->fpu_regnrLo() == 0, "left must be on TOS");
duke@435 2309 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
duke@435 2310
duke@435 2311 Address raddr;
duke@435 2312 if (right->is_double_stack()) {
duke@435 2313 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2314 } else if (right->is_constant()) {
duke@435 2315 // hack for now
duke@435 2316 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2317 } else {
duke@435 2318 ShouldNotReachHere();
duke@435 2319 }
duke@435 2320
duke@435 2321 switch (code) {
duke@435 2322 case lir_add: __ fadd_d(raddr); break;
duke@435 2323 case lir_sub: __ fsub_d(raddr); break;
duke@435 2324 case lir_mul_strictfp: // fall through
duke@435 2325 case lir_mul: __ fmul_d(raddr); break;
duke@435 2326 case lir_div_strictfp: // fall through
duke@435 2327 case lir_div: __ fdiv_d(raddr); break;
duke@435 2328 default: ShouldNotReachHere();
duke@435 2329 }
duke@435 2330 }
duke@435 2331
duke@435 2332 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2333 // Double values require special handling for strictfp mul/div on x86
duke@435 2334 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
duke@435 2335 __ fmulp(dest->fpu_regnrLo() + 1);
duke@435 2336 }
duke@435 2337
duke@435 2338 } else if (left->is_single_stack() || left->is_address()) {
duke@435 2339 assert(left == dest, "left and dest must be equal");
duke@435 2340
duke@435 2341 Address laddr;
duke@435 2342 if (left->is_single_stack()) {
duke@435 2343 laddr = frame_map()->address_for_slot(left->single_stack_ix());
duke@435 2344 } else if (left->is_address()) {
duke@435 2345 laddr = as_Address(left->as_address_ptr());
duke@435 2346 } else {
duke@435 2347 ShouldNotReachHere();
duke@435 2348 }
duke@435 2349
duke@435 2350 if (right->is_single_cpu()) {
duke@435 2351 Register rreg = right->as_register();
duke@435 2352 switch (code) {
duke@435 2353 case lir_add: __ addl(laddr, rreg); break;
duke@435 2354 case lir_sub: __ subl(laddr, rreg); break;
duke@435 2355 default: ShouldNotReachHere();
duke@435 2356 }
duke@435 2357 } else if (right->is_constant()) {
duke@435 2358 jint c = right->as_constant_ptr()->as_jint();
duke@435 2359 switch (code) {
duke@435 2360 case lir_add: {
never@739 2361 __ incrementl(laddr, c);
duke@435 2362 break;
duke@435 2363 }
duke@435 2364 case lir_sub: {
never@739 2365 __ decrementl(laddr, c);
duke@435 2366 break;
duke@435 2367 }
duke@435 2368 default: ShouldNotReachHere();
duke@435 2369 }
duke@435 2370 } else {
duke@435 2371 ShouldNotReachHere();
duke@435 2372 }
duke@435 2373
duke@435 2374 } else {
duke@435 2375 ShouldNotReachHere();
duke@435 2376 }
duke@435 2377 }
duke@435 2378
duke@435 2379 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
duke@435 2380 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR");
duke@435 2381 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
duke@435 2382 assert(left_index == 0 || right_index == 0, "either must be on top of stack");
duke@435 2383
duke@435 2384 bool left_is_tos = (left_index == 0);
duke@435 2385 bool dest_is_tos = (dest_index == 0);
duke@435 2386 int non_tos_index = (left_is_tos ? right_index : left_index);
duke@435 2387
duke@435 2388 switch (code) {
duke@435 2389 case lir_add:
duke@435 2390 if (pop_fpu_stack) __ faddp(non_tos_index);
duke@435 2391 else if (dest_is_tos) __ fadd (non_tos_index);
duke@435 2392 else __ fadda(non_tos_index);
duke@435 2393 break;
duke@435 2394
duke@435 2395 case lir_sub:
duke@435 2396 if (left_is_tos) {
duke@435 2397 if (pop_fpu_stack) __ fsubrp(non_tos_index);
duke@435 2398 else if (dest_is_tos) __ fsub (non_tos_index);
duke@435 2399 else __ fsubra(non_tos_index);
duke@435 2400 } else {
duke@435 2401 if (pop_fpu_stack) __ fsubp (non_tos_index);
duke@435 2402 else if (dest_is_tos) __ fsubr (non_tos_index);
duke@435 2403 else __ fsuba (non_tos_index);
duke@435 2404 }
duke@435 2405 break;
duke@435 2406
duke@435 2407 case lir_mul_strictfp: // fall through
duke@435 2408 case lir_mul:
duke@435 2409 if (pop_fpu_stack) __ fmulp(non_tos_index);
duke@435 2410 else if (dest_is_tos) __ fmul (non_tos_index);
duke@435 2411 else __ fmula(non_tos_index);
duke@435 2412 break;
duke@435 2413
duke@435 2414 case lir_div_strictfp: // fall through
duke@435 2415 case lir_div:
duke@435 2416 if (left_is_tos) {
duke@435 2417 if (pop_fpu_stack) __ fdivrp(non_tos_index);
duke@435 2418 else if (dest_is_tos) __ fdiv (non_tos_index);
duke@435 2419 else __ fdivra(non_tos_index);
duke@435 2420 } else {
duke@435 2421 if (pop_fpu_stack) __ fdivp (non_tos_index);
duke@435 2422 else if (dest_is_tos) __ fdivr (non_tos_index);
duke@435 2423 else __ fdiva (non_tos_index);
duke@435 2424 }
duke@435 2425 break;
duke@435 2426
duke@435 2427 case lir_rem:
duke@435 2428 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
duke@435 2429 __ fremr(noreg);
duke@435 2430 break;
duke@435 2431
duke@435 2432 default:
duke@435 2433 ShouldNotReachHere();
duke@435 2434 }
duke@435 2435 }
duke@435 2436
duke@435 2437
duke@435 2438 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
duke@435 2439 if (value->is_double_xmm()) {
duke@435 2440 switch(code) {
duke@435 2441 case lir_abs :
duke@435 2442 {
duke@435 2443 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
duke@435 2444 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
duke@435 2445 }
duke@435 2446 __ andpd(dest->as_xmm_double_reg(),
duke@435 2447 ExternalAddress((address)double_signmask_pool));
duke@435 2448 }
duke@435 2449 break;
duke@435 2450
duke@435 2451 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
duke@435 2452 // all other intrinsics are not available in the SSE instruction set, so FPU is used
duke@435 2453 default : ShouldNotReachHere();
duke@435 2454 }
duke@435 2455
duke@435 2456 } else if (value->is_double_fpu()) {
duke@435 2457 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
duke@435 2458 switch(code) {
duke@435 2459 case lir_log : __ flog() ; break;
duke@435 2460 case lir_log10 : __ flog10() ; break;
duke@435 2461 case lir_abs : __ fabs() ; break;
duke@435 2462 case lir_sqrt : __ fsqrt(); break;
duke@435 2463 case lir_sin :
duke@435 2464 // Should consider not saving rbx, if not necessary
duke@435 2465 __ trigfunc('s', op->as_Op2()->fpu_stack_size());
duke@435 2466 break;
duke@435 2467 case lir_cos :
duke@435 2468 // Should consider not saving rbx, if not necessary
duke@435 2469 assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
duke@435 2470 __ trigfunc('c', op->as_Op2()->fpu_stack_size());
duke@435 2471 break;
duke@435 2472 case lir_tan :
duke@435 2473 // Should consider not saving rbx, if not necessary
duke@435 2474 __ trigfunc('t', op->as_Op2()->fpu_stack_size());
duke@435 2475 break;
roland@3787 2476 case lir_exp :
roland@3787 2477 __ exp_with_fallback(op->as_Op2()->fpu_stack_size());
roland@3787 2478 break;
roland@3787 2479 case lir_pow :
roland@3787 2480 __ pow_with_fallback(op->as_Op2()->fpu_stack_size());
roland@3787 2481 break;
duke@435 2482 default : ShouldNotReachHere();
duke@435 2483 }
duke@435 2484 } else {
duke@435 2485 Unimplemented();
duke@435 2486 }
duke@435 2487 }
duke@435 2488
duke@435 2489 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
duke@435 2490 // assert(left->destroys_register(), "check");
duke@435 2491 if (left->is_single_cpu()) {
duke@435 2492 Register reg = left->as_register();
duke@435 2493 if (right->is_constant()) {
duke@435 2494 int val = right->as_constant_ptr()->as_jint();
duke@435 2495 switch (code) {
duke@435 2496 case lir_logic_and: __ andl (reg, val); break;
duke@435 2497 case lir_logic_or: __ orl (reg, val); break;
duke@435 2498 case lir_logic_xor: __ xorl (reg, val); break;
duke@435 2499 default: ShouldNotReachHere();
duke@435 2500 }
duke@435 2501 } else if (right->is_stack()) {
duke@435 2502 // added support for stack operands
duke@435 2503 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2504 switch (code) {
duke@435 2505 case lir_logic_and: __ andl (reg, raddr); break;
duke@435 2506 case lir_logic_or: __ orl (reg, raddr); break;
duke@435 2507 case lir_logic_xor: __ xorl (reg, raddr); break;
duke@435 2508 default: ShouldNotReachHere();
duke@435 2509 }
duke@435 2510 } else {
duke@435 2511 Register rright = right->as_register();
duke@435 2512 switch (code) {
never@739 2513 case lir_logic_and: __ andptr (reg, rright); break;
never@739 2514 case lir_logic_or : __ orptr (reg, rright); break;
never@739 2515 case lir_logic_xor: __ xorptr (reg, rright); break;
duke@435 2516 default: ShouldNotReachHere();
duke@435 2517 }
duke@435 2518 }
duke@435 2519 move_regs(reg, dst->as_register());
duke@435 2520 } else {
duke@435 2521 Register l_lo = left->as_register_lo();
duke@435 2522 Register l_hi = left->as_register_hi();
duke@435 2523 if (right->is_constant()) {
never@739 2524 #ifdef _LP64
never@739 2525 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
never@739 2526 switch (code) {
never@739 2527 case lir_logic_and:
never@739 2528 __ andq(l_lo, rscratch1);
never@739 2529 break;
never@739 2530 case lir_logic_or:
never@739 2531 __ orq(l_lo, rscratch1);
never@739 2532 break;
never@739 2533 case lir_logic_xor:
never@739 2534 __ xorq(l_lo, rscratch1);
never@739 2535 break;
never@739 2536 default: ShouldNotReachHere();
never@739 2537 }
never@739 2538 #else
duke@435 2539 int r_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2540 int r_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2541 switch (code) {
duke@435 2542 case lir_logic_and:
duke@435 2543 __ andl(l_lo, r_lo);
duke@435 2544 __ andl(l_hi, r_hi);
duke@435 2545 break;
duke@435 2546 case lir_logic_or:
duke@435 2547 __ orl(l_lo, r_lo);
duke@435 2548 __ orl(l_hi, r_hi);
duke@435 2549 break;
duke@435 2550 case lir_logic_xor:
duke@435 2551 __ xorl(l_lo, r_lo);
duke@435 2552 __ xorl(l_hi, r_hi);
duke@435 2553 break;
duke@435 2554 default: ShouldNotReachHere();
duke@435 2555 }
never@739 2556 #endif // _LP64
duke@435 2557 } else {
iveresov@1927 2558 #ifdef _LP64
iveresov@1927 2559 Register r_lo;
iveresov@1927 2560 if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
iveresov@1927 2561 r_lo = right->as_register();
iveresov@1927 2562 } else {
iveresov@1927 2563 r_lo = right->as_register_lo();
iveresov@1927 2564 }
iveresov@1927 2565 #else
duke@435 2566 Register r_lo = right->as_register_lo();
duke@435 2567 Register r_hi = right->as_register_hi();
duke@435 2568 assert(l_lo != r_hi, "overwriting registers");
iveresov@1927 2569 #endif
duke@435 2570 switch (code) {
duke@435 2571 case lir_logic_and:
never@739 2572 __ andptr(l_lo, r_lo);
never@739 2573 NOT_LP64(__ andptr(l_hi, r_hi);)
duke@435 2574 break;
duke@435 2575 case lir_logic_or:
never@739 2576 __ orptr(l_lo, r_lo);
never@739 2577 NOT_LP64(__ orptr(l_hi, r_hi);)
duke@435 2578 break;
duke@435 2579 case lir_logic_xor:
never@739 2580 __ xorptr(l_lo, r_lo);
never@739 2581 NOT_LP64(__ xorptr(l_hi, r_hi);)
duke@435 2582 break;
duke@435 2583 default: ShouldNotReachHere();
duke@435 2584 }
duke@435 2585 }
duke@435 2586
duke@435 2587 Register dst_lo = dst->as_register_lo();
duke@435 2588 Register dst_hi = dst->as_register_hi();
duke@435 2589
never@739 2590 #ifdef _LP64
never@739 2591 move_regs(l_lo, dst_lo);
never@739 2592 #else
duke@435 2593 if (dst_lo == l_hi) {
duke@435 2594 assert(dst_hi != l_lo, "overwriting registers");
duke@435 2595 move_regs(l_hi, dst_hi);
duke@435 2596 move_regs(l_lo, dst_lo);
duke@435 2597 } else {
duke@435 2598 assert(dst_lo != l_hi, "overwriting registers");
duke@435 2599 move_regs(l_lo, dst_lo);
duke@435 2600 move_regs(l_hi, dst_hi);
duke@435 2601 }
never@739 2602 #endif // _LP64
duke@435 2603 }
duke@435 2604 }
duke@435 2605
duke@435 2606
duke@435 2607 // we assume that rax, and rdx can be overwritten
duke@435 2608 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
duke@435 2609
duke@435 2610 assert(left->is_single_cpu(), "left must be register");
duke@435 2611 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
duke@435 2612 assert(result->is_single_cpu(), "result must be register");
duke@435 2613
duke@435 2614 // assert(left->destroys_register(), "check");
duke@435 2615 // assert(right->destroys_register(), "check");
duke@435 2616
duke@435 2617 Register lreg = left->as_register();
duke@435 2618 Register dreg = result->as_register();
duke@435 2619
duke@435 2620 if (right->is_constant()) {
duke@435 2621 int divisor = right->as_constant_ptr()->as_jint();
duke@435 2622 assert(divisor > 0 && is_power_of_2(divisor), "must be");
duke@435 2623 if (code == lir_idiv) {
duke@435 2624 assert(lreg == rax, "must be rax,");
duke@435 2625 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2626 __ cdql(); // sign extend into rdx:rax
duke@435 2627 if (divisor == 2) {
duke@435 2628 __ subl(lreg, rdx);
duke@435 2629 } else {
duke@435 2630 __ andl(rdx, divisor - 1);
duke@435 2631 __ addl(lreg, rdx);
duke@435 2632 }
duke@435 2633 __ sarl(lreg, log2_intptr(divisor));
duke@435 2634 move_regs(lreg, dreg);
duke@435 2635 } else if (code == lir_irem) {
duke@435 2636 Label done;
never@739 2637 __ mov(dreg, lreg);
duke@435 2638 __ andl(dreg, 0x80000000 | (divisor - 1));
duke@435 2639 __ jcc(Assembler::positive, done);
duke@435 2640 __ decrement(dreg);
duke@435 2641 __ orl(dreg, ~(divisor - 1));
duke@435 2642 __ increment(dreg);
duke@435 2643 __ bind(done);
duke@435 2644 } else {
duke@435 2645 ShouldNotReachHere();
duke@435 2646 }
duke@435 2647 } else {
duke@435 2648 Register rreg = right->as_register();
duke@435 2649 assert(lreg == rax, "left register must be rax,");
duke@435 2650 assert(rreg != rdx, "right register must not be rdx");
duke@435 2651 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2652
duke@435 2653 move_regs(lreg, rax);
duke@435 2654
duke@435 2655 int idivl_offset = __ corrected_idivl(rreg);
duke@435 2656 add_debug_info_for_div0(idivl_offset, info);
duke@435 2657 if (code == lir_irem) {
duke@435 2658 move_regs(rdx, dreg); // result is in rdx
duke@435 2659 } else {
duke@435 2660 move_regs(rax, dreg);
duke@435 2661 }
duke@435 2662 }
duke@435 2663 }
duke@435 2664
duke@435 2665
duke@435 2666 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 2667 if (opr1->is_single_cpu()) {
duke@435 2668 Register reg1 = opr1->as_register();
duke@435 2669 if (opr2->is_single_cpu()) {
duke@435 2670 // cpu register - cpu register
never@739 2671 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2672 __ cmpptr(reg1, opr2->as_register());
never@739 2673 } else {
never@739 2674 assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
never@739 2675 __ cmpl(reg1, opr2->as_register());
never@739 2676 }
duke@435 2677 } else if (opr2->is_stack()) {
duke@435 2678 // cpu register - stack
never@739 2679 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2680 __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2681 } else {
never@739 2682 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2683 }
duke@435 2684 } else if (opr2->is_constant()) {
duke@435 2685 // cpu register - constant
duke@435 2686 LIR_Const* c = opr2->as_constant_ptr();
duke@435 2687 if (c->type() == T_INT) {
duke@435 2688 __ cmpl(reg1, c->as_jint());
never@739 2689 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2690 // In 64bit oops are single register
duke@435 2691 jobject o = c->as_jobject();
duke@435 2692 if (o == NULL) {
never@739 2693 __ cmpptr(reg1, (int32_t)NULL_WORD);
duke@435 2694 } else {
never@739 2695 #ifdef _LP64
never@739 2696 __ movoop(rscratch1, o);
never@739 2697 __ cmpptr(reg1, rscratch1);
never@739 2698 #else
duke@435 2699 __ cmpoop(reg1, c->as_jobject());
never@739 2700 #endif // _LP64
duke@435 2701 }
duke@435 2702 } else {
twisti@3848 2703 fatal(err_msg("unexpected type: %s", basictype_to_str(c->type())));
duke@435 2704 }
duke@435 2705 // cpu register - address
duke@435 2706 } else if (opr2->is_address()) {
duke@435 2707 if (op->info() != NULL) {
duke@435 2708 add_debug_info_for_null_check_here(op->info());
duke@435 2709 }
duke@435 2710 __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2711 } else {
duke@435 2712 ShouldNotReachHere();
duke@435 2713 }
duke@435 2714
duke@435 2715 } else if(opr1->is_double_cpu()) {
duke@435 2716 Register xlo = opr1->as_register_lo();
duke@435 2717 Register xhi = opr1->as_register_hi();
duke@435 2718 if (opr2->is_double_cpu()) {
never@739 2719 #ifdef _LP64
never@739 2720 __ cmpptr(xlo, opr2->as_register_lo());
never@739 2721 #else
duke@435 2722 // cpu register - cpu register
duke@435 2723 Register ylo = opr2->as_register_lo();
duke@435 2724 Register yhi = opr2->as_register_hi();
duke@435 2725 __ subl(xlo, ylo);
duke@435 2726 __ sbbl(xhi, yhi);
duke@435 2727 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 2728 __ orl(xhi, xlo);
duke@435 2729 }
never@739 2730 #endif // _LP64
duke@435 2731 } else if (opr2->is_constant()) {
duke@435 2732 // cpu register - constant 0
duke@435 2733 assert(opr2->as_jlong() == (jlong)0, "only handles zero");
never@739 2734 #ifdef _LP64
never@739 2735 __ cmpptr(xlo, (int32_t)opr2->as_jlong());
never@739 2736 #else
duke@435 2737 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
duke@435 2738 __ orl(xhi, xlo);
never@739 2739 #endif // _LP64
duke@435 2740 } else {
duke@435 2741 ShouldNotReachHere();
duke@435 2742 }
duke@435 2743
duke@435 2744 } else if (opr1->is_single_xmm()) {
duke@435 2745 XMMRegister reg1 = opr1->as_xmm_float_reg();
duke@435 2746 if (opr2->is_single_xmm()) {
duke@435 2747 // xmm register - xmm register
duke@435 2748 __ ucomiss(reg1, opr2->as_xmm_float_reg());
duke@435 2749 } else if (opr2->is_stack()) {
duke@435 2750 // xmm register - stack
duke@435 2751 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2752 } else if (opr2->is_constant()) {
duke@435 2753 // xmm register - constant
duke@435 2754 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
duke@435 2755 } else if (opr2->is_address()) {
duke@435 2756 // xmm register - address
duke@435 2757 if (op->info() != NULL) {
duke@435 2758 add_debug_info_for_null_check_here(op->info());
duke@435 2759 }
duke@435 2760 __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2761 } else {
duke@435 2762 ShouldNotReachHere();
duke@435 2763 }
duke@435 2764
duke@435 2765 } else if (opr1->is_double_xmm()) {
duke@435 2766 XMMRegister reg1 = opr1->as_xmm_double_reg();
duke@435 2767 if (opr2->is_double_xmm()) {
duke@435 2768 // xmm register - xmm register
duke@435 2769 __ ucomisd(reg1, opr2->as_xmm_double_reg());
duke@435 2770 } else if (opr2->is_stack()) {
duke@435 2771 // xmm register - stack
duke@435 2772 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
duke@435 2773 } else if (opr2->is_constant()) {
duke@435 2774 // xmm register - constant
duke@435 2775 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
duke@435 2776 } else if (opr2->is_address()) {
duke@435 2777 // xmm register - address
duke@435 2778 if (op->info() != NULL) {
duke@435 2779 add_debug_info_for_null_check_here(op->info());
duke@435 2780 }
duke@435 2781 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
duke@435 2782 } else {
duke@435 2783 ShouldNotReachHere();
duke@435 2784 }
duke@435 2785
duke@435 2786 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
duke@435 2787 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
duke@435 2788 assert(opr2->is_fpu_register(), "both must be registers");
duke@435 2789 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2790
duke@435 2791 } else if (opr1->is_address() && opr2->is_constant()) {
never@739 2792 LIR_Const* c = opr2->as_constant_ptr();
never@739 2793 #ifdef _LP64
never@739 2794 if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2795 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
never@739 2796 __ movoop(rscratch1, c->as_jobject());
never@739 2797 }
never@739 2798 #endif // LP64
duke@435 2799 if (op->info() != NULL) {
duke@435 2800 add_debug_info_for_null_check_here(op->info());
duke@435 2801 }
duke@435 2802 // special case: address - constant
duke@435 2803 LIR_Address* addr = opr1->as_address_ptr();
duke@435 2804 if (c->type() == T_INT) {
duke@435 2805 __ cmpl(as_Address(addr), c->as_jint());
never@739 2806 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2807 #ifdef _LP64
never@739 2808 // %%% Make this explode if addr isn't reachable until we figure out a
never@739 2809 // better strategy by giving noreg as the temp for as_Address
never@739 2810 __ cmpptr(rscratch1, as_Address(addr, noreg));
never@739 2811 #else
duke@435 2812 __ cmpoop(as_Address(addr), c->as_jobject());
never@739 2813 #endif // _LP64
duke@435 2814 } else {
duke@435 2815 ShouldNotReachHere();
duke@435 2816 }
duke@435 2817
duke@435 2818 } else {
duke@435 2819 ShouldNotReachHere();
duke@435 2820 }
duke@435 2821 }
duke@435 2822
duke@435 2823 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
duke@435 2824 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 2825 if (left->is_single_xmm()) {
duke@435 2826 assert(right->is_single_xmm(), "must match");
duke@435 2827 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2828 } else if (left->is_double_xmm()) {
duke@435 2829 assert(right->is_double_xmm(), "must match");
duke@435 2830 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2831
duke@435 2832 } else {
duke@435 2833 assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
duke@435 2834 assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
duke@435 2835
duke@435 2836 assert(left->fpu() == 0, "left must be on TOS");
duke@435 2837 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
duke@435 2838 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2839 }
duke@435 2840 } else {
duke@435 2841 assert(code == lir_cmp_l2i, "check");
never@739 2842 #ifdef _LP64
iveresov@1804 2843 Label done;
iveresov@1804 2844 Register dest = dst->as_register();
iveresov@1804 2845 __ cmpptr(left->as_register_lo(), right->as_register_lo());
iveresov@1804 2846 __ movl(dest, -1);
iveresov@1804 2847 __ jccb(Assembler::less, done);
iveresov@1804 2848 __ set_byte_if_not_zero(dest);
iveresov@1804 2849 __ movzbl(dest, dest);
iveresov@1804 2850 __ bind(done);
never@739 2851 #else
duke@435 2852 __ lcmp2int(left->as_register_hi(),
duke@435 2853 left->as_register_lo(),
duke@435 2854 right->as_register_hi(),
duke@435 2855 right->as_register_lo());
duke@435 2856 move_regs(left->as_register_hi(), dst->as_register());
never@739 2857 #endif // _LP64
duke@435 2858 }
duke@435 2859 }
duke@435 2860
duke@435 2861
duke@435 2862 void LIR_Assembler::align_call(LIR_Code code) {
duke@435 2863 if (os::is_MP()) {
duke@435 2864 // make sure that the displacement word of the call ends up word aligned
duke@435 2865 int offset = __ offset();
duke@435 2866 switch (code) {
duke@435 2867 case lir_static_call:
duke@435 2868 case lir_optvirtual_call:
twisti@1730 2869 case lir_dynamic_call:
duke@435 2870 offset += NativeCall::displacement_offset;
duke@435 2871 break;
duke@435 2872 case lir_icvirtual_call:
duke@435 2873 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
duke@435 2874 break;
duke@435 2875 case lir_virtual_call: // currently, sparc-specific for niagara
duke@435 2876 default: ShouldNotReachHere();
duke@435 2877 }
duke@435 2878 while (offset++ % BytesPerWord != 0) {
duke@435 2879 __ nop();
duke@435 2880 }
duke@435 2881 }
duke@435 2882 }
duke@435 2883
duke@435 2884
twisti@1730 2885 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
duke@435 2886 assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2887 "must be aligned");
twisti@1730 2888 __ call(AddressLiteral(op->addr(), rtype));
twisti@1919 2889 add_call_info(code_offset(), op->info());
duke@435 2890 }
duke@435 2891
duke@435 2892
twisti@1730 2893 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
coleenp@4037 2894 __ ic_call(op->addr());
coleenp@4037 2895 add_call_info(code_offset(), op->info());
duke@435 2896 assert(!os::is_MP() ||
coleenp@4037 2897 (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2898 "must be aligned");
duke@435 2899 }
duke@435 2900
duke@435 2901
duke@435 2902 /* Currently, vtable-dispatch is only enabled for sparc platforms */
twisti@1730 2903 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
duke@435 2904 ShouldNotReachHere();
duke@435 2905 }
duke@435 2906
twisti@1730 2907
duke@435 2908 void LIR_Assembler::emit_static_call_stub() {
duke@435 2909 address call_pc = __ pc();
duke@435 2910 address stub = __ start_a_stub(call_stub_size);
duke@435 2911 if (stub == NULL) {
duke@435 2912 bailout("static call stub overflow");
duke@435 2913 return;
duke@435 2914 }
duke@435 2915
duke@435 2916 int start = __ offset();
duke@435 2917 if (os::is_MP()) {
duke@435 2918 // make sure that the displacement word of the call ends up word aligned
duke@435 2919 int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
duke@435 2920 while (offset++ % BytesPerWord != 0) {
duke@435 2921 __ nop();
duke@435 2922 }
duke@435 2923 }
duke@435 2924 __ relocate(static_stub_Relocation::spec(call_pc));
coleenp@4037 2925 __ mov_metadata(rbx, (Metadata*)NULL);
duke@435 2926 // must be set to -1 at code generation time
duke@435 2927 assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
never@739 2928 // On 64bit this will die since it will take a movq & jmp, must be only a jmp
never@739 2929 __ jump(RuntimeAddress(__ pc()));
duke@435 2930
jcoomes@1844 2931 assert(__ offset() - start <= call_stub_size, "stub too big");
duke@435 2932 __ end_a_stub();
duke@435 2933 }
duke@435 2934
duke@435 2935
never@1813 2936 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
duke@435 2937 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2938 assert(exceptionPC->as_register() == rdx, "must match");
duke@435 2939
duke@435 2940 // exception object is not added to oop map by LinearScan
duke@435 2941 // (LinearScan assumes that no oops are in fixed registers)
duke@435 2942 info->add_register_oop(exceptionOop);
duke@435 2943 Runtime1::StubID unwind_id;
duke@435 2944
never@1813 2945 // get current pc information
never@1813 2946 // pc is only needed if the method has an exception handler, the unwind code does not need it.
never@1813 2947 int pc_for_athrow_offset = __ offset();
never@1813 2948 InternalAddress pc_for_athrow(__ pc());
never@1813 2949 __ lea(exceptionPC->as_register(), pc_for_athrow);
never@1813 2950 add_call_info(pc_for_athrow_offset, info); // for exception handler
never@1813 2951
never@1813 2952 __ verify_not_null_oop(rax);
never@1813 2953 // search an exception handler (rax: exception oop, rdx: throwing pc)
never@1813 2954 if (compilation()->has_fpu_code()) {
never@1813 2955 unwind_id = Runtime1::handle_exception_id;
duke@435 2956 } else {
never@1813 2957 unwind_id = Runtime1::handle_exception_nofpu_id;
duke@435 2958 }
never@1813 2959 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
duke@435 2960
duke@435 2961 // enough room for two byte trap
duke@435 2962 __ nop();
duke@435 2963 }
duke@435 2964
duke@435 2965
never@1813 2966 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
never@1813 2967 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2968
never@1813 2969 __ jmp(_unwind_handler_entry);
never@1813 2970 }
never@1813 2971
never@1813 2972
duke@435 2973 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2974
duke@435 2975 // optimized version for linear scan:
duke@435 2976 // * count must be already in ECX (guaranteed by LinearScan)
duke@435 2977 // * left and dest must be equal
duke@435 2978 // * tmp must be unused
duke@435 2979 assert(count->as_register() == SHIFT_count, "count must be in ECX");
duke@435 2980 assert(left == dest, "left and dest must be equal");
duke@435 2981 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
duke@435 2982
duke@435 2983 if (left->is_single_cpu()) {
duke@435 2984 Register value = left->as_register();
duke@435 2985 assert(value != SHIFT_count, "left cannot be ECX");
duke@435 2986
duke@435 2987 switch (code) {
duke@435 2988 case lir_shl: __ shll(value); break;
duke@435 2989 case lir_shr: __ sarl(value); break;
duke@435 2990 case lir_ushr: __ shrl(value); break;
duke@435 2991 default: ShouldNotReachHere();
duke@435 2992 }
duke@435 2993 } else if (left->is_double_cpu()) {
duke@435 2994 Register lo = left->as_register_lo();
duke@435 2995 Register hi = left->as_register_hi();
duke@435 2996 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
never@739 2997 #ifdef _LP64
never@739 2998 switch (code) {
never@739 2999 case lir_shl: __ shlptr(lo); break;
never@739 3000 case lir_shr: __ sarptr(lo); break;
never@739 3001 case lir_ushr: __ shrptr(lo); break;
never@739 3002 default: ShouldNotReachHere();
never@739 3003 }
never@739 3004 #else
duke@435 3005
duke@435 3006 switch (code) {
duke@435 3007 case lir_shl: __ lshl(hi, lo); break;
duke@435 3008 case lir_shr: __ lshr(hi, lo, true); break;
duke@435 3009 case lir_ushr: __ lshr(hi, lo, false); break;
duke@435 3010 default: ShouldNotReachHere();
duke@435 3011 }
never@739 3012 #endif // LP64
duke@435 3013 } else {
duke@435 3014 ShouldNotReachHere();
duke@435 3015 }
duke@435 3016 }
duke@435 3017
duke@435 3018
duke@435 3019 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 3020 if (dest->is_single_cpu()) {
duke@435 3021 // first move left into dest so that left is not destroyed by the shift
duke@435 3022 Register value = dest->as_register();
duke@435 3023 count = count & 0x1F; // Java spec
duke@435 3024
duke@435 3025 move_regs(left->as_register(), value);
duke@435 3026 switch (code) {
duke@435 3027 case lir_shl: __ shll(value, count); break;
duke@435 3028 case lir_shr: __ sarl(value, count); break;
duke@435 3029 case lir_ushr: __ shrl(value, count); break;
duke@435 3030 default: ShouldNotReachHere();
duke@435 3031 }
duke@435 3032 } else if (dest->is_double_cpu()) {
never@739 3033 #ifndef _LP64
duke@435 3034 Unimplemented();
never@739 3035 #else
never@739 3036 // first move left into dest so that left is not destroyed by the shift
never@739 3037 Register value = dest->as_register_lo();
never@739 3038 count = count & 0x1F; // Java spec
never@739 3039
never@739 3040 move_regs(left->as_register_lo(), value);
never@739 3041 switch (code) {
never@739 3042 case lir_shl: __ shlptr(value, count); break;
never@739 3043 case lir_shr: __ sarptr(value, count); break;
never@739 3044 case lir_ushr: __ shrptr(value, count); break;
never@739 3045 default: ShouldNotReachHere();
never@739 3046 }
never@739 3047 #endif // _LP64
duke@435 3048 } else {
duke@435 3049 ShouldNotReachHere();
duke@435 3050 }
duke@435 3051 }
duke@435 3052
duke@435 3053
duke@435 3054 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
duke@435 3055 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3056 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3057 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 3058 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
duke@435 3059 }
duke@435 3060
duke@435 3061
duke@435 3062 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
duke@435 3063 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3064 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3065 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 3066 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
duke@435 3067 }
duke@435 3068
duke@435 3069
duke@435 3070 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
duke@435 3071 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3072 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3073 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
duke@435 3074 __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
duke@435 3075 }
duke@435 3076
duke@435 3077
duke@435 3078 // This code replaces a call to arraycopy; no exception may
duke@435 3079 // be thrown in this code, they must be thrown in the System.arraycopy
duke@435 3080 // activation frame; we could save some checks if this would not be the case
duke@435 3081 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 3082 ciArrayKlass* default_type = op->expected_type();
duke@435 3083 Register src = op->src()->as_register();
duke@435 3084 Register dst = op->dst()->as_register();
duke@435 3085 Register src_pos = op->src_pos()->as_register();
duke@435 3086 Register dst_pos = op->dst_pos()->as_register();
duke@435 3087 Register length = op->length()->as_register();
duke@435 3088 Register tmp = op->tmp()->as_register();
duke@435 3089
duke@435 3090 CodeStub* stub = op->stub();
duke@435 3091 int flags = op->flags();
duke@435 3092 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 3093 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 3094
roland@2728 3095 // if we don't know anything, just go through the generic arraycopy
duke@435 3096 if (default_type == NULL) {
duke@435 3097 Label done;
duke@435 3098 // save outgoing arguments on stack in case call to System.arraycopy is needed
duke@435 3099 // HACK ALERT. This code used to push the parameters in a hardwired fashion
duke@435 3100 // for interpreter calling conventions. Now we have to do it in new style conventions.
duke@435 3101 // For the moment until C1 gets the new register allocator I just force all the
duke@435 3102 // args to the right place (except the register args) and then on the back side
duke@435 3103 // reload the register args properly if we go slow path. Yuck
duke@435 3104
duke@435 3105 // These are proper for the calling convention
duke@435 3106 store_parameter(length, 2);
duke@435 3107 store_parameter(dst_pos, 1);
duke@435 3108 store_parameter(dst, 0);
duke@435 3109
duke@435 3110 // these are just temporary placements until we need to reload
duke@435 3111 store_parameter(src_pos, 3);
duke@435 3112 store_parameter(src, 4);
never@739 3113 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
never@739 3114
roland@2728 3115 address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
roland@2728 3116
roland@2728 3117 address copyfunc_addr = StubRoutines::generic_arraycopy();
duke@435 3118
duke@435 3119 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
never@739 3120 #ifdef _LP64
never@739 3121 // The arguments are in java calling convention so we can trivially shift them to C
never@739 3122 // convention
never@739 3123 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3124 __ mov(c_rarg0, j_rarg0);
never@739 3125 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3126 __ mov(c_rarg1, j_rarg1);
never@739 3127 assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
never@739 3128 __ mov(c_rarg2, j_rarg2);
never@739 3129 assert_different_registers(c_rarg3, j_rarg4);
never@739 3130 __ mov(c_rarg3, j_rarg3);
never@739 3131 #ifdef _WIN64
never@739 3132 // Allocate abi space for args but be sure to keep stack aligned
never@739 3133 __ subptr(rsp, 6*wordSize);
never@739 3134 store_parameter(j_rarg4, 4);
roland@2728 3135 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 3136 __ call(RuntimeAddress(C_entry));
roland@2728 3137 } else {
roland@2728 3138 #ifndef PRODUCT
roland@2728 3139 if (PrintC1Statistics) {
roland@2728 3140 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
roland@2728 3141 }
roland@2728 3142 #endif
roland@2728 3143 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3144 }
never@739 3145 __ addptr(rsp, 6*wordSize);
never@739 3146 #else
never@739 3147 __ mov(c_rarg4, j_rarg4);
roland@2728 3148 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 3149 __ call(RuntimeAddress(C_entry));
roland@2728 3150 } else {
roland@2728 3151 #ifndef PRODUCT
roland@2728 3152 if (PrintC1Statistics) {
roland@2728 3153 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
roland@2728 3154 }
roland@2728 3155 #endif
roland@2728 3156 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3157 }
never@739 3158 #endif // _WIN64
never@739 3159 #else
never@739 3160 __ push(length);
never@739 3161 __ push(dst_pos);
never@739 3162 __ push(dst);
never@739 3163 __ push(src_pos);
never@739 3164 __ push(src);
roland@2728 3165
roland@2728 3166 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 3167 __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
roland@2728 3168 } else {
roland@2728 3169 #ifndef PRODUCT
roland@2728 3170 if (PrintC1Statistics) {
roland@2728 3171 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
roland@2728 3172 }
roland@2728 3173 #endif
roland@2728 3174 __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
roland@2728 3175 }
duke@435 3176
never@739 3177 #endif // _LP64
never@739 3178
duke@435 3179 __ cmpl(rax, 0);
duke@435 3180 __ jcc(Assembler::equal, *stub->continuation());
duke@435 3181
roland@2728 3182 if (copyfunc_addr != NULL) {
roland@2728 3183 __ mov(tmp, rax);
roland@2728 3184 __ xorl(tmp, -1);
roland@2728 3185 }
roland@2728 3186
duke@435 3187 // Reload values from the stack so they are where the stub
duke@435 3188 // expects them.
never@739 3189 __ movptr (dst, Address(rsp, 0*BytesPerWord));
never@739 3190 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
never@739 3191 __ movptr (length, Address(rsp, 2*BytesPerWord));
never@739 3192 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
never@739 3193 __ movptr (src, Address(rsp, 4*BytesPerWord));
roland@2728 3194
roland@2728 3195 if (copyfunc_addr != NULL) {
roland@2728 3196 __ subl(length, tmp);
roland@2728 3197 __ addl(src_pos, tmp);
roland@2728 3198 __ addl(dst_pos, tmp);
roland@2728 3199 }
duke@435 3200 __ jmp(*stub->entry());
duke@435 3201
duke@435 3202 __ bind(*stub->continuation());
duke@435 3203 return;
duke@435 3204 }
duke@435 3205
duke@435 3206 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
duke@435 3207
kvn@464 3208 int elem_size = type2aelembytes(basic_type);
duke@435 3209 int shift_amount;
duke@435 3210 Address::ScaleFactor scale;
duke@435 3211
duke@435 3212 switch (elem_size) {
duke@435 3213 case 1 :
duke@435 3214 shift_amount = 0;
duke@435 3215 scale = Address::times_1;
duke@435 3216 break;
duke@435 3217 case 2 :
duke@435 3218 shift_amount = 1;
duke@435 3219 scale = Address::times_2;
duke@435 3220 break;
duke@435 3221 case 4 :
duke@435 3222 shift_amount = 2;
duke@435 3223 scale = Address::times_4;
duke@435 3224 break;
duke@435 3225 case 8 :
duke@435 3226 shift_amount = 3;
duke@435 3227 scale = Address::times_8;
duke@435 3228 break;
duke@435 3229 default:
duke@435 3230 ShouldNotReachHere();
duke@435 3231 }
duke@435 3232
duke@435 3233 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
duke@435 3234 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
duke@435 3235 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
duke@435 3236 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
duke@435 3237
never@739 3238 // length and pos's are all sign extended at this point on 64bit
never@739 3239
duke@435 3240 // test for NULL
duke@435 3241 if (flags & LIR_OpArrayCopy::src_null_check) {
never@739 3242 __ testptr(src, src);
duke@435 3243 __ jcc(Assembler::zero, *stub->entry());
duke@435 3244 }
duke@435 3245 if (flags & LIR_OpArrayCopy::dst_null_check) {
never@739 3246 __ testptr(dst, dst);
duke@435 3247 __ jcc(Assembler::zero, *stub->entry());
duke@435 3248 }
duke@435 3249
duke@435 3250 // check if negative
duke@435 3251 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 3252 __ testl(src_pos, src_pos);
duke@435 3253 __ jcc(Assembler::less, *stub->entry());
duke@435 3254 }
duke@435 3255 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 3256 __ testl(dst_pos, dst_pos);
duke@435 3257 __ jcc(Assembler::less, *stub->entry());
duke@435 3258 }
duke@435 3259
duke@435 3260 if (flags & LIR_OpArrayCopy::src_range_check) {
never@739 3261 __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
duke@435 3262 __ cmpl(tmp, src_length_addr);
duke@435 3263 __ jcc(Assembler::above, *stub->entry());
duke@435 3264 }
duke@435 3265 if (flags & LIR_OpArrayCopy::dst_range_check) {
never@739 3266 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
duke@435 3267 __ cmpl(tmp, dst_length_addr);
duke@435 3268 __ jcc(Assembler::above, *stub->entry());
duke@435 3269 }
duke@435 3270
roland@2728 3271 if (flags & LIR_OpArrayCopy::length_positive_check) {
roland@2728 3272 __ testl(length, length);
roland@2728 3273 __ jcc(Assembler::less, *stub->entry());
roland@2728 3274 __ jcc(Assembler::zero, *stub->continuation());
roland@2728 3275 }
roland@2728 3276
roland@2728 3277 #ifdef _LP64
roland@2728 3278 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
roland@2728 3279 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
roland@2728 3280 #endif
roland@2728 3281
duke@435 3282 if (flags & LIR_OpArrayCopy::type_check) {
roland@2728 3283 // We don't know the array types are compatible
roland@2728 3284 if (basic_type != T_OBJECT) {
roland@2728 3285 // Simple test for basic type arrays
coleenp@4037 3286 if (UseCompressedKlassPointers) {
roland@2728 3287 __ movl(tmp, src_klass_addr);
roland@2728 3288 __ cmpl(tmp, dst_klass_addr);
roland@2728 3289 } else {
roland@2728 3290 __ movptr(tmp, src_klass_addr);
roland@2728 3291 __ cmpptr(tmp, dst_klass_addr);
roland@2728 3292 }
roland@2728 3293 __ jcc(Assembler::notEqual, *stub->entry());
iveresov@2344 3294 } else {
roland@2728 3295 // For object arrays, if src is a sub class of dst then we can
roland@2728 3296 // safely do the copy.
roland@2728 3297 Label cont, slow;
roland@2728 3298
roland@2728 3299 __ push(src);
roland@2728 3300 __ push(dst);
roland@2728 3301
roland@2728 3302 __ load_klass(src, src);
roland@2728 3303 __ load_klass(dst, dst);
roland@2728 3304
roland@2728 3305 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
roland@2728 3306
roland@2728 3307 __ push(src);
roland@2728 3308 __ push(dst);
roland@2728 3309 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
roland@2728 3310 __ pop(dst);
roland@2728 3311 __ pop(src);
roland@2728 3312
roland@2728 3313 __ cmpl(src, 0);
roland@2728 3314 __ jcc(Assembler::notEqual, cont);
roland@2728 3315
roland@2728 3316 __ bind(slow);
roland@2728 3317 __ pop(dst);
roland@2728 3318 __ pop(src);
roland@2728 3319
roland@2728 3320 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
roland@2728 3321 if (copyfunc_addr != NULL) { // use stub if available
roland@2728 3322 // src is not a sub class of dst so we have to do a
roland@2728 3323 // per-element check.
roland@2728 3324
roland@2728 3325 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
roland@2728 3326 if ((flags & mask) != mask) {
roland@2728 3327 // Check that at least both of them object arrays.
roland@2728 3328 assert(flags & mask, "one of the two should be known to be an object array");
roland@2728 3329
roland@2728 3330 if (!(flags & LIR_OpArrayCopy::src_objarray)) {
roland@2728 3331 __ load_klass(tmp, src);
roland@2728 3332 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
roland@2728 3333 __ load_klass(tmp, dst);
roland@2728 3334 }
stefank@3391 3335 int lh_offset = in_bytes(Klass::layout_helper_offset());
roland@2728 3336 Address klass_lh_addr(tmp, lh_offset);
roland@2728 3337 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
roland@2728 3338 __ cmpl(klass_lh_addr, objArray_lh);
roland@2728 3339 __ jcc(Assembler::notEqual, *stub->entry());
roland@2728 3340 }
roland@2728 3341
iveresov@2936 3342 // Spill because stubs can use any register they like and it's
iveresov@2936 3343 // easier to restore just those that we care about.
iveresov@2936 3344 store_parameter(dst, 0);
iveresov@2936 3345 store_parameter(dst_pos, 1);
iveresov@2936 3346 store_parameter(length, 2);
iveresov@2936 3347 store_parameter(src_pos, 3);
iveresov@2936 3348 store_parameter(src, 4);
iveresov@2936 3349
roland@2728 3350 #ifndef _LP64
roland@2728 3351 __ movptr(tmp, dst_klass_addr);
coleenp@4142 3352 __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
roland@2728 3353 __ push(tmp);
stefank@3391 3354 __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
roland@2728 3355 __ push(tmp);
roland@2728 3356 __ push(length);
roland@2728 3357 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3358 __ push(tmp);
roland@2728 3359 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3360 __ push(tmp);
roland@2728 3361
roland@2728 3362 __ call_VM_leaf(copyfunc_addr, 5);
roland@2728 3363 #else
roland@2728 3364 __ movl2ptr(length, length); //higher 32bits must be null
roland@2728 3365
roland@2728 3366 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3367 assert_different_registers(c_rarg0, dst, dst_pos, length);
roland@2728 3368 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3369 assert_different_registers(c_rarg1, dst, length);
roland@2728 3370
roland@2728 3371 __ mov(c_rarg2, length);
roland@2728 3372 assert_different_registers(c_rarg2, dst);
roland@2728 3373
roland@2728 3374 #ifdef _WIN64
roland@2728 3375 // Allocate abi space for args but be sure to keep stack aligned
roland@2728 3376 __ subptr(rsp, 6*wordSize);
roland@2728 3377 __ load_klass(c_rarg3, dst);
coleenp@4142 3378 __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
roland@2728 3379 store_parameter(c_rarg3, 4);
stefank@3391 3380 __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
roland@2728 3381 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3382 __ addptr(rsp, 6*wordSize);
roland@2728 3383 #else
roland@2728 3384 __ load_klass(c_rarg4, dst);
coleenp@4142 3385 __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
stefank@3391 3386 __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
roland@2728 3387 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3388 #endif
roland@2728 3389
roland@2728 3390 #endif
roland@2728 3391
roland@2728 3392 #ifndef PRODUCT
roland@2728 3393 if (PrintC1Statistics) {
roland@2728 3394 Label failed;
roland@2728 3395 __ testl(rax, rax);
roland@2728 3396 __ jcc(Assembler::notZero, failed);
roland@2728 3397 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
roland@2728 3398 __ bind(failed);
roland@2728 3399 }
roland@2728 3400 #endif
roland@2728 3401
roland@2728 3402 __ testl(rax, rax);
roland@2728 3403 __ jcc(Assembler::zero, *stub->continuation());
roland@2728 3404
roland@2728 3405 #ifndef PRODUCT
roland@2728 3406 if (PrintC1Statistics) {
roland@2728 3407 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
roland@2728 3408 }
roland@2728 3409 #endif
roland@2728 3410
roland@2728 3411 __ mov(tmp, rax);
roland@2728 3412
roland@2728 3413 __ xorl(tmp, -1);
roland@2728 3414
iveresov@2936 3415 // Restore previously spilled arguments
iveresov@2936 3416 __ movptr (dst, Address(rsp, 0*BytesPerWord));
iveresov@2936 3417 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
iveresov@2936 3418 __ movptr (length, Address(rsp, 2*BytesPerWord));
iveresov@2936 3419 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
iveresov@2936 3420 __ movptr (src, Address(rsp, 4*BytesPerWord));
iveresov@2936 3421
roland@2728 3422
roland@2728 3423 __ subl(length, tmp);
roland@2728 3424 __ addl(src_pos, tmp);
roland@2728 3425 __ addl(dst_pos, tmp);
roland@2728 3426 }
roland@2728 3427
roland@2728 3428 __ jmp(*stub->entry());
roland@2728 3429
roland@2728 3430 __ bind(cont);
roland@2728 3431 __ pop(dst);
roland@2728 3432 __ pop(src);
iveresov@2344 3433 }
duke@435 3434 }
duke@435 3435
duke@435 3436 #ifdef ASSERT
duke@435 3437 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 3438 // Sanity check the known type with the incoming class. For the
duke@435 3439 // primitive case the types must match exactly with src.klass and
duke@435 3440 // dst.klass each exactly matching the default type. For the
duke@435 3441 // object array case, if no type check is needed then either the
duke@435 3442 // dst type is exactly the expected type and the src type is a
duke@435 3443 // subtype which we can't check or src is the same array as dst
duke@435 3444 // but not necessarily exactly of type default_type.
duke@435 3445 Label known_ok, halt;
coleenp@4037 3446 __ mov_metadata(tmp, default_type->constant_encoding());
iveresov@2344 3447 #ifdef _LP64
coleenp@4037 3448 if (UseCompressedKlassPointers) {
iveresov@2344 3449 __ encode_heap_oop(tmp);
iveresov@2344 3450 }
iveresov@2344 3451 #endif
iveresov@2344 3452
duke@435 3453 if (basic_type != T_OBJECT) {
iveresov@2344 3454
coleenp@4037 3455 if (UseCompressedKlassPointers) __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3456 else __ cmpptr(tmp, dst_klass_addr);
duke@435 3457 __ jcc(Assembler::notEqual, halt);
coleenp@4037 3458 if (UseCompressedKlassPointers) __ cmpl(tmp, src_klass_addr);
iveresov@2344 3459 else __ cmpptr(tmp, src_klass_addr);
duke@435 3460 __ jcc(Assembler::equal, known_ok);
duke@435 3461 } else {
coleenp@4037 3462 if (UseCompressedKlassPointers) __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3463 else __ cmpptr(tmp, dst_klass_addr);
duke@435 3464 __ jcc(Assembler::equal, known_ok);
never@739 3465 __ cmpptr(src, dst);
duke@435 3466 __ jcc(Assembler::equal, known_ok);
duke@435 3467 }
duke@435 3468 __ bind(halt);
duke@435 3469 __ stop("incorrect type information in arraycopy");
duke@435 3470 __ bind(known_ok);
duke@435 3471 }
duke@435 3472 #endif
duke@435 3473
roland@2728 3474 #ifndef PRODUCT
roland@2728 3475 if (PrintC1Statistics) {
roland@2728 3476 __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
never@739 3477 }
roland@2728 3478 #endif
never@739 3479
never@739 3480 #ifdef _LP64
never@739 3481 assert_different_registers(c_rarg0, dst, dst_pos, length);
never@739 3482 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3483 assert_different_registers(c_rarg1, length);
never@739 3484 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3485 __ mov(c_rarg2, length);
never@739 3486
never@739 3487 #else
never@739 3488 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3489 store_parameter(tmp, 0);
never@739 3490 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3491 store_parameter(tmp, 1);
duke@435 3492 store_parameter(length, 2);
never@739 3493 #endif // _LP64
roland@2728 3494
roland@2728 3495 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
roland@2728 3496 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
roland@2728 3497 const char *name;
roland@2728 3498 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
roland@2728 3499 __ call_VM_leaf(entry, 0);
duke@435 3500
duke@435 3501 __ bind(*stub->continuation());
duke@435 3502 }
duke@435 3503
duke@435 3504
duke@435 3505 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 3506 Register obj = op->obj_opr()->as_register(); // may not be an oop
duke@435 3507 Register hdr = op->hdr_opr()->as_register();
duke@435 3508 Register lock = op->lock_opr()->as_register();
duke@435 3509 if (!UseFastLocking) {
duke@435 3510 __ jmp(*op->stub()->entry());
duke@435 3511 } else if (op->code() == lir_lock) {
duke@435 3512 Register scratch = noreg;
duke@435 3513 if (UseBiasedLocking) {
duke@435 3514 scratch = op->scratch_opr()->as_register();
duke@435 3515 }
duke@435 3516 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3517 // add debug info for NullPointerException only if one is possible
duke@435 3518 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
duke@435 3519 if (op->info() != NULL) {
duke@435 3520 add_debug_info_for_null_check(null_check_offset, op->info());
duke@435 3521 }
duke@435 3522 // done
duke@435 3523 } else if (op->code() == lir_unlock) {
duke@435 3524 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3525 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 3526 } else {
duke@435 3527 Unimplemented();
duke@435 3528 }
duke@435 3529 __ bind(*op->stub()->continuation());
duke@435 3530 }
duke@435 3531
duke@435 3532
duke@435 3533 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 3534 ciMethod* method = op->profiled_method();
duke@435 3535 int bci = op->profiled_bci();
twisti@3969 3536 ciMethod* callee = op->profiled_callee();
duke@435 3537
duke@435 3538 // Update counter for all call types
iveresov@2349 3539 ciMethodData* md = method->method_data_or_null();
iveresov@2349 3540 assert(md != NULL, "Sanity");
duke@435 3541 ciProfileData* data = md->bci_to_data(bci);
duke@435 3542 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 3543 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
duke@435 3544 Register mdo = op->mdo()->as_register();
coleenp@4037 3545 __ mov_metadata(mdo, md->constant_encoding());
duke@435 3546 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
duke@435 3547 Bytecodes::Code bc = method->java_code_at_bci(bci);
twisti@3969 3548 const bool callee_is_static = callee->is_loaded() && callee->is_static();
duke@435 3549 // Perform additional virtual call profiling for invokevirtual and
duke@435 3550 // invokeinterface bytecodes
duke@435 3551 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
twisti@3969 3552 !callee_is_static && // required for optimized MH invokes
iveresov@2138 3553 C1ProfileVirtualCalls) {
duke@435 3554 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 3555 Register recv = op->recv()->as_register();
duke@435 3556 assert_different_registers(mdo, recv);
duke@435 3557 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 3558 ciKlass* known_klass = op->known_holder();
iveresov@2138 3559 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 3560 // We know the type that will be seen at this call site; we can
coleenp@4037 3561 // statically update the MethodData* rather than needing to do
duke@435 3562 // dynamic tests on the receiver type
duke@435 3563
duke@435 3564 // NOTE: we should probably put a lock around this search to
duke@435 3565 // avoid collisions by concurrent compilations
duke@435 3566 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 3567 uint i;
duke@435 3568 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3569 ciKlass* receiver = vc_data->receiver(i);
duke@435 3570 if (known_klass->equals(receiver)) {
duke@435 3571 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
iveresov@2138 3572 __ addptr(data_addr, DataLayout::counter_increment);
duke@435 3573 return;
duke@435 3574 }
duke@435 3575 }
duke@435 3576
duke@435 3577 // Receiver type not found in profile data; select an empty slot
duke@435 3578
duke@435 3579 // Note that this is less efficient than it should be because it
duke@435 3580 // always does a write to the receiver part of the
duke@435 3581 // VirtualCallData rather than just the first time
duke@435 3582 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3583 ciKlass* receiver = vc_data->receiver(i);
duke@435 3584 if (receiver == NULL) {
duke@435 3585 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
coleenp@4037 3586 __ mov_metadata(recv_addr, known_klass->constant_encoding());
duke@435 3587 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
iveresov@2138 3588 __ addptr(data_addr, DataLayout::counter_increment);
duke@435 3589 return;
duke@435 3590 }
duke@435 3591 }
duke@435 3592 } else {
iveresov@2344 3593 __ load_klass(recv, recv);
duke@435 3594 Label update_done;
iveresov@2138 3595 type_profile_helper(mdo, md, data, recv, &update_done);
kvn@1641 3596 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 3597 // Increment total counter to indicate polymorphic case.
iveresov@2138 3598 __ addptr(counter_addr, DataLayout::counter_increment);
duke@435 3599
duke@435 3600 __ bind(update_done);
duke@435 3601 }
kvn@1641 3602 } else {
kvn@1641 3603 // Static call
iveresov@2138 3604 __ addptr(counter_addr, DataLayout::counter_increment);
duke@435 3605 }
duke@435 3606 }
duke@435 3607
duke@435 3608 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
duke@435 3609 Unimplemented();
duke@435 3610 }
duke@435 3611
duke@435 3612
duke@435 3613 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
never@739 3614 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
duke@435 3615 }
duke@435 3616
duke@435 3617
duke@435 3618 void LIR_Assembler::align_backward_branch_target() {
duke@435 3619 __ align(BytesPerWord);
duke@435 3620 }
duke@435 3621
duke@435 3622
duke@435 3623 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3624 if (left->is_single_cpu()) {
duke@435 3625 __ negl(left->as_register());
duke@435 3626 move_regs(left->as_register(), dest->as_register());
duke@435 3627
duke@435 3628 } else if (left->is_double_cpu()) {
duke@435 3629 Register lo = left->as_register_lo();
never@739 3630 #ifdef _LP64
never@739 3631 Register dst = dest->as_register_lo();
never@739 3632 __ movptr(dst, lo);
never@739 3633 __ negptr(dst);
never@739 3634 #else
duke@435 3635 Register hi = left->as_register_hi();
duke@435 3636 __ lneg(hi, lo);
duke@435 3637 if (dest->as_register_lo() == hi) {
duke@435 3638 assert(dest->as_register_hi() != lo, "destroying register");
duke@435 3639 move_regs(hi, dest->as_register_hi());
duke@435 3640 move_regs(lo, dest->as_register_lo());
duke@435 3641 } else {
duke@435 3642 move_regs(lo, dest->as_register_lo());
duke@435 3643 move_regs(hi, dest->as_register_hi());
duke@435 3644 }
never@739 3645 #endif // _LP64
duke@435 3646
duke@435 3647 } else if (dest->is_single_xmm()) {
duke@435 3648 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
duke@435 3649 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
duke@435 3650 }
duke@435 3651 __ xorps(dest->as_xmm_float_reg(),
duke@435 3652 ExternalAddress((address)float_signflip_pool));
duke@435 3653
duke@435 3654 } else if (dest->is_double_xmm()) {
duke@435 3655 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
duke@435 3656 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
duke@435 3657 }
duke@435 3658 __ xorpd(dest->as_xmm_double_reg(),
duke@435 3659 ExternalAddress((address)double_signflip_pool));
duke@435 3660
duke@435 3661 } else if (left->is_single_fpu() || left->is_double_fpu()) {
duke@435 3662 assert(left->fpu() == 0, "arg must be on TOS");
duke@435 3663 assert(dest->fpu() == 0, "dest must be TOS");
duke@435 3664 __ fchs();
duke@435 3665
duke@435 3666 } else {
duke@435 3667 ShouldNotReachHere();
duke@435 3668 }
duke@435 3669 }
duke@435 3670
duke@435 3671
duke@435 3672 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
duke@435 3673 assert(addr->is_address() && dest->is_register(), "check");
never@739 3674 Register reg;
never@739 3675 reg = dest->as_pointer_register();
never@739 3676 __ lea(reg, as_Address(addr->as_address_ptr()));
duke@435 3677 }
duke@435 3678
duke@435 3679
duke@435 3680
duke@435 3681 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3682 assert(!tmp->is_valid(), "don't need temporary");
duke@435 3683 __ call(RuntimeAddress(dest));
duke@435 3684 if (info != NULL) {
duke@435 3685 add_call_info_here(info);
duke@435 3686 }
duke@435 3687 }
duke@435 3688
duke@435 3689
duke@435 3690 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3691 assert(type == T_LONG, "only for volatile long fields");
duke@435 3692
duke@435 3693 if (info != NULL) {
duke@435 3694 add_debug_info_for_null_check_here(info);
duke@435 3695 }
duke@435 3696
duke@435 3697 if (src->is_double_xmm()) {
duke@435 3698 if (dest->is_double_cpu()) {
never@739 3699 #ifdef _LP64
never@739 3700 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
never@739 3701 #else
never@739 3702 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
duke@435 3703 __ psrlq(src->as_xmm_double_reg(), 32);
never@739 3704 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
never@739 3705 #endif // _LP64
duke@435 3706 } else if (dest->is_double_stack()) {
duke@435 3707 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
duke@435 3708 } else if (dest->is_address()) {
duke@435 3709 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
duke@435 3710 } else {
duke@435 3711 ShouldNotReachHere();
duke@435 3712 }
duke@435 3713
duke@435 3714 } else if (dest->is_double_xmm()) {
duke@435 3715 if (src->is_double_stack()) {
duke@435 3716 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3717 } else if (src->is_address()) {
duke@435 3718 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
duke@435 3719 } else {
duke@435 3720 ShouldNotReachHere();
duke@435 3721 }
duke@435 3722
duke@435 3723 } else if (src->is_double_fpu()) {
duke@435 3724 assert(src->fpu_regnrLo() == 0, "must be TOS");
duke@435 3725 if (dest->is_double_stack()) {
duke@435 3726 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
duke@435 3727 } else if (dest->is_address()) {
duke@435 3728 __ fistp_d(as_Address(dest->as_address_ptr()));
duke@435 3729 } else {
duke@435 3730 ShouldNotReachHere();
duke@435 3731 }
duke@435 3732
duke@435 3733 } else if (dest->is_double_fpu()) {
duke@435 3734 assert(dest->fpu_regnrLo() == 0, "must be TOS");
duke@435 3735 if (src->is_double_stack()) {
duke@435 3736 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3737 } else if (src->is_address()) {
duke@435 3738 __ fild_d(as_Address(src->as_address_ptr()));
duke@435 3739 } else {
duke@435 3740 ShouldNotReachHere();
duke@435 3741 }
duke@435 3742 } else {
duke@435 3743 ShouldNotReachHere();
duke@435 3744 }
duke@435 3745 }
duke@435 3746
duke@435 3747
duke@435 3748 void LIR_Assembler::membar() {
never@739 3749 // QQQ sparc TSO uses this,
never@739 3750 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
duke@435 3751 }
duke@435 3752
duke@435 3753 void LIR_Assembler::membar_acquire() {
duke@435 3754 // No x86 machines currently require load fences
duke@435 3755 // __ load_fence();
duke@435 3756 }
duke@435 3757
duke@435 3758 void LIR_Assembler::membar_release() {
duke@435 3759 // No x86 machines currently require store fences
duke@435 3760 // __ store_fence();
duke@435 3761 }
duke@435 3762
jiangli@3592 3763 void LIR_Assembler::membar_loadload() {
jiangli@3592 3764 // no-op
jiangli@3592 3765 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
jiangli@3592 3766 }
jiangli@3592 3767
jiangli@3592 3768 void LIR_Assembler::membar_storestore() {
jiangli@3592 3769 // no-op
jiangli@3592 3770 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
jiangli@3592 3771 }
jiangli@3592 3772
jiangli@3592 3773 void LIR_Assembler::membar_loadstore() {
jiangli@3592 3774 // no-op
jiangli@3592 3775 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
jiangli@3592 3776 }
jiangli@3592 3777
jiangli@3592 3778 void LIR_Assembler::membar_storeload() {
jiangli@3592 3779 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
jiangli@3592 3780 }
jiangli@3592 3781
duke@435 3782 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3783 assert(result_reg->is_register(), "check");
never@739 3784 #ifdef _LP64
never@739 3785 // __ get_thread(result_reg->as_register_lo());
never@739 3786 __ mov(result_reg->as_register(), r15_thread);
never@739 3787 #else
duke@435 3788 __ get_thread(result_reg->as_register());
never@739 3789 #endif // _LP64
duke@435 3790 }
duke@435 3791
duke@435 3792
duke@435 3793 void LIR_Assembler::peephole(LIR_List*) {
duke@435 3794 // do nothing for now
duke@435 3795 }
duke@435 3796
roland@4106 3797 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
roland@4106 3798 assert(data == dest, "xchg/xadd uses only 2 operands");
roland@4106 3799
roland@4106 3800 if (data->type() == T_INT) {
roland@4106 3801 if (code == lir_xadd) {
roland@4106 3802 if (os::is_MP()) {
roland@4106 3803 __ lock();
roland@4106 3804 }
roland@4106 3805 __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
roland@4106 3806 } else {
roland@4106 3807 __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
roland@4106 3808 }
roland@4106 3809 } else if (data->is_oop()) {
roland@4106 3810 assert (code == lir_xchg, "xadd for oops");
roland@4106 3811 Register obj = data->as_register();
roland@4106 3812 #ifdef _LP64
roland@4106 3813 if (UseCompressedOops) {
roland@4106 3814 __ encode_heap_oop(obj);
roland@4106 3815 __ xchgl(obj, as_Address(src->as_address_ptr()));
roland@4106 3816 __ decode_heap_oop(obj);
roland@4106 3817 } else {
roland@4106 3818 __ xchgptr(obj, as_Address(src->as_address_ptr()));
roland@4106 3819 }
roland@4106 3820 #else
roland@4106 3821 __ xchgl(obj, as_Address(src->as_address_ptr()));
roland@4106 3822 #endif
roland@4106 3823 } else if (data->type() == T_LONG) {
roland@4106 3824 #ifdef _LP64
roland@4106 3825 assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
roland@4106 3826 if (code == lir_xadd) {
roland@4106 3827 if (os::is_MP()) {
roland@4106 3828 __ lock();
roland@4106 3829 }
roland@4106 3830 __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
roland@4106 3831 } else {
roland@4106 3832 __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
roland@4106 3833 }
roland@4106 3834 #else
roland@4106 3835 ShouldNotReachHere();
roland@4106 3836 #endif
roland@4106 3837 } else {
roland@4106 3838 ShouldNotReachHere();
roland@4106 3839 }
roland@4106 3840 }
duke@435 3841
duke@435 3842 #undef __

mercurial