src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Tue, 14 Jan 2014 09:44:45 +0100

author
roland
date
Tue, 14 Jan 2014 09:44:45 +0100
changeset 6278
12ad8db39f76
parent 5994
9acbfe04b5c3
child 6539
876390ee9b6f
permissions
-rw-r--r--

8028764: dtrace/hotspot_jni/ALL/ALL001 crashes the vm on Solaris-amd64, SIGSEGV in MarkSweep::follow_stack()+0x8a
Summary: C1 generates code to encode compressed oop into tmp register before runtime call for patching where GC may happen
Reviewed-by: iveresov, twisti, kvn
Contributed-by: mgerdin <mikael.gerdin@oracle.com>

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "c1/c1_Compilation.hpp"
    29 #include "c1/c1_LIRAssembler.hpp"
    30 #include "c1/c1_MacroAssembler.hpp"
    31 #include "c1/c1_Runtime1.hpp"
    32 #include "c1/c1_ValueStack.hpp"
    33 #include "ci/ciArrayKlass.hpp"
    34 #include "ci/ciInstance.hpp"
    35 #include "gc_interface/collectedHeap.hpp"
    36 #include "memory/barrierSet.hpp"
    37 #include "memory/cardTableModRefBS.hpp"
    38 #include "nativeInst_x86.hpp"
    39 #include "oops/objArrayKlass.hpp"
    40 #include "runtime/sharedRuntime.hpp"
    41 #include "vmreg_x86.inline.hpp"
    44 // These masks are used to provide 128-bit aligned bitmasks to the XMM
    45 // instructions, to allow sign-masking or sign-bit flipping.  They allow
    46 // fast versions of NegF/NegD and AbsF/AbsD.
    48 // Note: 'double' and 'long long' have 32-bits alignment on x86.
    49 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
    50   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
    51   // of 128-bits operands for SSE instructions.
    52   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
    53   // Store the value to a 128-bits operand.
    54   operand[0] = lo;
    55   operand[1] = hi;
    56   return operand;
    57 }
    59 // Buffer for 128-bits masks used by SSE instructions.
    60 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
    62 // Static initialization during VM startup.
    63 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
    64 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
    65 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
    66 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
    70 NEEDS_CLEANUP // remove this definitions ?
    71 const Register IC_Klass    = rax;   // where the IC klass is cached
    72 const Register SYNC_header = rax;   // synchronization header
    73 const Register SHIFT_count = rcx;   // where count for shift operations must be
    75 #define __ _masm->
    78 static void select_different_registers(Register preserve,
    79                                        Register extra,
    80                                        Register &tmp1,
    81                                        Register &tmp2) {
    82   if (tmp1 == preserve) {
    83     assert_different_registers(tmp1, tmp2, extra);
    84     tmp1 = extra;
    85   } else if (tmp2 == preserve) {
    86     assert_different_registers(tmp1, tmp2, extra);
    87     tmp2 = extra;
    88   }
    89   assert_different_registers(preserve, tmp1, tmp2);
    90 }
    94 static void select_different_registers(Register preserve,
    95                                        Register extra,
    96                                        Register &tmp1,
    97                                        Register &tmp2,
    98                                        Register &tmp3) {
    99   if (tmp1 == preserve) {
   100     assert_different_registers(tmp1, tmp2, tmp3, extra);
   101     tmp1 = extra;
   102   } else if (tmp2 == preserve) {
   103     assert_different_registers(tmp1, tmp2, tmp3, extra);
   104     tmp2 = extra;
   105   } else if (tmp3 == preserve) {
   106     assert_different_registers(tmp1, tmp2, tmp3, extra);
   107     tmp3 = extra;
   108   }
   109   assert_different_registers(preserve, tmp1, tmp2, tmp3);
   110 }
   114 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
   115   if (opr->is_constant()) {
   116     LIR_Const* constant = opr->as_constant_ptr();
   117     switch (constant->type()) {
   118       case T_INT: {
   119         return true;
   120       }
   122       default:
   123         return false;
   124     }
   125   }
   126   return false;
   127 }
   130 LIR_Opr LIR_Assembler::receiverOpr() {
   131   return FrameMap::receiver_opr;
   132 }
   134 LIR_Opr LIR_Assembler::osrBufferPointer() {
   135   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
   136 }
   138 //--------------fpu register translations-----------------------
   141 address LIR_Assembler::float_constant(float f) {
   142   address const_addr = __ float_constant(f);
   143   if (const_addr == NULL) {
   144     bailout("const section overflow");
   145     return __ code()->consts()->start();
   146   } else {
   147     return const_addr;
   148   }
   149 }
   152 address LIR_Assembler::double_constant(double d) {
   153   address const_addr = __ double_constant(d);
   154   if (const_addr == NULL) {
   155     bailout("const section overflow");
   156     return __ code()->consts()->start();
   157   } else {
   158     return const_addr;
   159   }
   160 }
   163 void LIR_Assembler::set_24bit_FPU() {
   164   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   165 }
   167 void LIR_Assembler::reset_FPU() {
   168   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   169 }
   171 void LIR_Assembler::fpop() {
   172   __ fpop();
   173 }
   175 void LIR_Assembler::fxch(int i) {
   176   __ fxch(i);
   177 }
   179 void LIR_Assembler::fld(int i) {
   180   __ fld_s(i);
   181 }
   183 void LIR_Assembler::ffree(int i) {
   184   __ ffree(i);
   185 }
   187 void LIR_Assembler::breakpoint() {
   188   __ int3();
   189 }
   191 void LIR_Assembler::push(LIR_Opr opr) {
   192   if (opr->is_single_cpu()) {
   193     __ push_reg(opr->as_register());
   194   } else if (opr->is_double_cpu()) {
   195     NOT_LP64(__ push_reg(opr->as_register_hi()));
   196     __ push_reg(opr->as_register_lo());
   197   } else if (opr->is_stack()) {
   198     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
   199   } else if (opr->is_constant()) {
   200     LIR_Const* const_opr = opr->as_constant_ptr();
   201     if (const_opr->type() == T_OBJECT) {
   202       __ push_oop(const_opr->as_jobject());
   203     } else if (const_opr->type() == T_INT) {
   204       __ push_jint(const_opr->as_jint());
   205     } else {
   206       ShouldNotReachHere();
   207     }
   209   } else {
   210     ShouldNotReachHere();
   211   }
   212 }
   214 void LIR_Assembler::pop(LIR_Opr opr) {
   215   if (opr->is_single_cpu()) {
   216     __ pop_reg(opr->as_register());
   217   } else {
   218     ShouldNotReachHere();
   219   }
   220 }
   222 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
   223   return addr->base()->is_illegal() && addr->index()->is_illegal();
   224 }
   226 //-------------------------------------------
   228 Address LIR_Assembler::as_Address(LIR_Address* addr) {
   229   return as_Address(addr, rscratch1);
   230 }
   232 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
   233   if (addr->base()->is_illegal()) {
   234     assert(addr->index()->is_illegal(), "must be illegal too");
   235     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
   236     if (! __ reachable(laddr)) {
   237       __ movptr(tmp, laddr.addr());
   238       Address res(tmp, 0);
   239       return res;
   240     } else {
   241       return __ as_Address(laddr);
   242     }
   243   }
   245   Register base = addr->base()->as_pointer_register();
   247   if (addr->index()->is_illegal()) {
   248     return Address( base, addr->disp());
   249   } else if (addr->index()->is_cpu_register()) {
   250     Register index = addr->index()->as_pointer_register();
   251     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
   252   } else if (addr->index()->is_constant()) {
   253     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
   254     assert(Assembler::is_simm32(addr_offset), "must be");
   256     return Address(base, addr_offset);
   257   } else {
   258     Unimplemented();
   259     return Address();
   260   }
   261 }
   264 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
   265   Address base = as_Address(addr);
   266   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
   267 }
   270 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
   271   return as_Address(addr);
   272 }
   275 void LIR_Assembler::osr_entry() {
   276   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   277   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   278   ValueStack* entry_state = osr_entry->state();
   279   int number_of_locks = entry_state->locks_size();
   281   // we jump here if osr happens with the interpreter
   282   // state set up to continue at the beginning of the
   283   // loop that triggered osr - in particular, we have
   284   // the following registers setup:
   285   //
   286   // rcx: osr buffer
   287   //
   289   // build frame
   290   ciMethod* m = compilation()->method();
   291   __ build_frame(initial_frame_size_in_bytes());
   293   // OSR buffer is
   294   //
   295   // locals[nlocals-1..0]
   296   // monitors[0..number_of_locks]
   297   //
   298   // locals is a direct copy of the interpreter frame so in the osr buffer
   299   // so first slot in the local array is the last local from the interpreter
   300   // and last slot is local[0] (receiver) from the interpreter
   301   //
   302   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   303   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   304   // in the interpreter frame (the method lock if a sync method)
   306   // Initialize monitors in the compiled activation.
   307   //   rcx: pointer to osr buffer
   308   //
   309   // All other registers are dead at this point and the locals will be
   310   // copied into place by code emitted in the IR.
   312   Register OSR_buf = osrBufferPointer()->as_pointer_register();
   313   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   314     int monitor_offset = BytesPerWord * method()->max_locals() +
   315       (2 * BytesPerWord) * (number_of_locks - 1);
   316     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   317     // the OSR buffer using 2 word entries: first the lock and then
   318     // the oop.
   319     for (int i = 0; i < number_of_locks; i++) {
   320       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   321 #ifdef ASSERT
   322       // verify the interpreter's monitor has a non-null object
   323       {
   324         Label L;
   325         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
   326         __ jcc(Assembler::notZero, L);
   327         __ stop("locked object is NULL");
   328         __ bind(L);
   329       }
   330 #endif
   331       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
   332       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
   333       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
   334       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
   335     }
   336   }
   337 }
   340 // inline cache check; done before the frame is built.
   341 int LIR_Assembler::check_icache() {
   342   Register receiver = FrameMap::receiver_opr->as_register();
   343   Register ic_klass = IC_Klass;
   344   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
   345   const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
   346   if (!do_post_padding) {
   347     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
   348     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
   349       __ nop();
   350     }
   351   }
   352   int offset = __ offset();
   353   __ inline_cache_check(receiver, IC_Klass);
   354   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
   355   if (do_post_padding) {
   356     // force alignment after the cache check.
   357     // It's been verified to be aligned if !VerifyOops
   358     __ align(CodeEntryAlignment);
   359   }
   360   return offset;
   361 }
   364 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
   365   jobject o = NULL;
   366   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
   367   __ movoop(reg, o);
   368   patching_epilog(patch, lir_patch_normal, reg, info);
   369 }
   371 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
   372   Metadata* o = NULL;
   373   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
   374   __ mov_metadata(reg, o);
   375   patching_epilog(patch, lir_patch_normal, reg, info);
   376 }
   378 // This specifies the rsp decrement needed to build the frame
   379 int LIR_Assembler::initial_frame_size_in_bytes() {
   380   // if rounding, must let FrameMap know!
   382   // The frame_map records size in slots (32bit word)
   384   // subtract two words to account for return address and link
   385   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
   386 }
   389 int LIR_Assembler::emit_exception_handler() {
   390   // if the last instruction is a call (typically to do a throw which
   391   // is coming at the end after block reordering) the return address
   392   // must still point into the code area in order to avoid assertion
   393   // failures when searching for the corresponding bci => add a nop
   394   // (was bug 5/14/1999 - gri)
   395   __ nop();
   397   // generate code for exception handler
   398   address handler_base = __ start_a_stub(exception_handler_size);
   399   if (handler_base == NULL) {
   400     // not enough space left for the handler
   401     bailout("exception handler overflow");
   402     return -1;
   403   }
   405   int offset = code_offset();
   407   // the exception oop and pc are in rax, and rdx
   408   // no other registers need to be preserved, so invalidate them
   409   __ invalidate_registers(false, true, true, false, true, true);
   411   // check that there is really an exception
   412   __ verify_not_null_oop(rax);
   414   // search an exception handler (rax: exception oop, rdx: throwing pc)
   415   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
   416   __ should_not_reach_here();
   417   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
   418   __ end_a_stub();
   420   return offset;
   421 }
   424 // Emit the code to remove the frame from the stack in the exception
   425 // unwind path.
   426 int LIR_Assembler::emit_unwind_handler() {
   427 #ifndef PRODUCT
   428   if (CommentedAssembly) {
   429     _masm->block_comment("Unwind handler");
   430   }
   431 #endif
   433   int offset = code_offset();
   435   // Fetch the exception from TLS and clear out exception related thread state
   436   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
   437   NOT_LP64(__ get_thread(rsi));
   438   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
   439   __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
   440   __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
   442   __ bind(_unwind_handler_entry);
   443   __ verify_not_null_oop(rax);
   444   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   445     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
   446   }
   448   // Preform needed unlocking
   449   MonitorExitStub* stub = NULL;
   450   if (method()->is_synchronized()) {
   451     monitor_address(0, FrameMap::rax_opr);
   452     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
   453     __ unlock_object(rdi, rsi, rax, *stub->entry());
   454     __ bind(*stub->continuation());
   455   }
   457   if (compilation()->env()->dtrace_method_probes()) {
   458 #ifdef _LP64
   459     __ mov(rdi, r15_thread);
   460     __ mov_metadata(rsi, method()->constant_encoding());
   461 #else
   462     __ get_thread(rax);
   463     __ movptr(Address(rsp, 0), rax);
   464     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
   465 #endif
   466     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
   467   }
   469   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   470     __ mov(rax, rbx);  // Restore the exception
   471   }
   473   // remove the activation and dispatch to the unwind handler
   474   __ remove_frame(initial_frame_size_in_bytes());
   475   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
   477   // Emit the slow path assembly
   478   if (stub != NULL) {
   479     stub->emit_code(this);
   480   }
   482   return offset;
   483 }
   486 int LIR_Assembler::emit_deopt_handler() {
   487   // if the last instruction is a call (typically to do a throw which
   488   // is coming at the end after block reordering) the return address
   489   // must still point into the code area in order to avoid assertion
   490   // failures when searching for the corresponding bci => add a nop
   491   // (was bug 5/14/1999 - gri)
   492   __ nop();
   494   // generate code for exception handler
   495   address handler_base = __ start_a_stub(deopt_handler_size);
   496   if (handler_base == NULL) {
   497     // not enough space left for the handler
   498     bailout("deopt handler overflow");
   499     return -1;
   500   }
   502   int offset = code_offset();
   503   InternalAddress here(__ pc());
   505   __ pushptr(here.addr());
   506   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
   507   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
   508   __ end_a_stub();
   510   return offset;
   511 }
   514 // This is the fast version of java.lang.String.compare; it has not
   515 // OSR-entry and therefore, we generate a slow version for OSR's
   516 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
   517   __ movptr (rbx, rcx); // receiver is in rcx
   518   __ movptr (rax, arg1->as_register());
   520   // Get addresses of first characters from both Strings
   521   __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
   522   if (java_lang_String::has_offset_field()) {
   523     __ movptr     (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
   524     __ movl       (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
   525     __ lea        (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   526   } else {
   527     __ movl       (rax, Address(rsi, arrayOopDesc::length_offset_in_bytes()));
   528     __ lea        (rsi, Address(rsi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   529   }
   531   // rbx, may be NULL
   532   add_debug_info_for_null_check_here(info);
   533   __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
   534   if (java_lang_String::has_offset_field()) {
   535     __ movptr     (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
   536     __ movl       (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   537     __ lea        (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   538   } else {
   539     __ movl       (rbx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
   540     __ lea        (rdi, Address(rdi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   541   }
   543   // compute minimum length (in rax) and difference of lengths (on top of stack)
   544   __ mov   (rcx, rbx);
   545   __ subptr(rbx, rax); // subtract lengths
   546   __ push  (rbx);      // result
   547   __ cmov  (Assembler::lessEqual, rax, rcx);
   549   // is minimum length 0?
   550   Label noLoop, haveResult;
   551   __ testptr (rax, rax);
   552   __ jcc (Assembler::zero, noLoop);
   554   // compare first characters
   555   __ load_unsigned_short(rcx, Address(rdi, 0));
   556   __ load_unsigned_short(rbx, Address(rsi, 0));
   557   __ subl(rcx, rbx);
   558   __ jcc(Assembler::notZero, haveResult);
   559   // starting loop
   560   __ decrement(rax); // we already tested index: skip one
   561   __ jcc(Assembler::zero, noLoop);
   563   // set rsi.edi to the end of the arrays (arrays have same length)
   564   // negate the index
   566   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   567   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   568   __ negptr(rax);
   570   // compare the strings in a loop
   572   Label loop;
   573   __ align(wordSize);
   574   __ bind(loop);
   575   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
   576   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
   577   __ subl(rcx, rbx);
   578   __ jcc(Assembler::notZero, haveResult);
   579   __ increment(rax);
   580   __ jcc(Assembler::notZero, loop);
   582   // strings are equal up to min length
   584   __ bind(noLoop);
   585   __ pop(rax);
   586   return_op(LIR_OprFact::illegalOpr);
   588   __ bind(haveResult);
   589   // leave instruction is going to discard the TOS value
   590   __ mov (rax, rcx); // result of call is in rax,
   591 }
   594 void LIR_Assembler::return_op(LIR_Opr result) {
   595   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
   596   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
   597     assert(result->fpu() == 0, "result must already be on TOS");
   598   }
   600   // Pop the stack before the safepoint code
   601   __ remove_frame(initial_frame_size_in_bytes());
   603   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
   605   // Note: we do not need to round double result; float result has the right precision
   606   // the poll sets the condition code, but no data registers
   607   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   608                               relocInfo::poll_return_type);
   610   if (Assembler::is_polling_page_far()) {
   611     __ lea(rscratch1, polling_page);
   612     __ relocate(relocInfo::poll_return_type);
   613     __ testl(rax, Address(rscratch1, 0));
   614   } else {
   615     __ testl(rax, polling_page);
   616   }
   617   __ ret(0);
   618 }
   621 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
   622   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   623                               relocInfo::poll_type);
   624   guarantee(info != NULL, "Shouldn't be NULL");
   625   int offset = __ offset();
   626   if (Assembler::is_polling_page_far()) {
   627     __ lea(rscratch1, polling_page);
   628     offset = __ offset();
   629     add_debug_info_for_branch(info);
   630     __ testl(rax, Address(rscratch1, 0));
   631   } else {
   632     add_debug_info_for_branch(info);
   633     __ testl(rax, polling_page);
   634   }
   635   return offset;
   636 }
   639 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
   640   if (from_reg != to_reg) __ mov(to_reg, from_reg);
   641 }
   643 void LIR_Assembler::swap_reg(Register a, Register b) {
   644   __ xchgptr(a, b);
   645 }
   648 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
   649   assert(src->is_constant(), "should not call otherwise");
   650   assert(dest->is_register(), "should not call otherwise");
   651   LIR_Const* c = src->as_constant_ptr();
   653   switch (c->type()) {
   654     case T_INT: {
   655       assert(patch_code == lir_patch_none, "no patching handled here");
   656       __ movl(dest->as_register(), c->as_jint());
   657       break;
   658     }
   660     case T_ADDRESS: {
   661       assert(patch_code == lir_patch_none, "no patching handled here");
   662       __ movptr(dest->as_register(), c->as_jint());
   663       break;
   664     }
   666     case T_LONG: {
   667       assert(patch_code == lir_patch_none, "no patching handled here");
   668 #ifdef _LP64
   669       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
   670 #else
   671       __ movptr(dest->as_register_lo(), c->as_jint_lo());
   672       __ movptr(dest->as_register_hi(), c->as_jint_hi());
   673 #endif // _LP64
   674       break;
   675     }
   677     case T_OBJECT: {
   678       if (patch_code != lir_patch_none) {
   679         jobject2reg_with_patching(dest->as_register(), info);
   680       } else {
   681         __ movoop(dest->as_register(), c->as_jobject());
   682       }
   683       break;
   684     }
   686     case T_METADATA: {
   687       if (patch_code != lir_patch_none) {
   688         klass2reg_with_patching(dest->as_register(), info);
   689       } else {
   690         __ mov_metadata(dest->as_register(), c->as_metadata());
   691       }
   692       break;
   693     }
   695     case T_FLOAT: {
   696       if (dest->is_single_xmm()) {
   697         if (c->is_zero_float()) {
   698           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
   699         } else {
   700           __ movflt(dest->as_xmm_float_reg(),
   701                    InternalAddress(float_constant(c->as_jfloat())));
   702         }
   703       } else {
   704         assert(dest->is_single_fpu(), "must be");
   705         assert(dest->fpu_regnr() == 0, "dest must be TOS");
   706         if (c->is_zero_float()) {
   707           __ fldz();
   708         } else if (c->is_one_float()) {
   709           __ fld1();
   710         } else {
   711           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
   712         }
   713       }
   714       break;
   715     }
   717     case T_DOUBLE: {
   718       if (dest->is_double_xmm()) {
   719         if (c->is_zero_double()) {
   720           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
   721         } else {
   722           __ movdbl(dest->as_xmm_double_reg(),
   723                     InternalAddress(double_constant(c->as_jdouble())));
   724         }
   725       } else {
   726         assert(dest->is_double_fpu(), "must be");
   727         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
   728         if (c->is_zero_double()) {
   729           __ fldz();
   730         } else if (c->is_one_double()) {
   731           __ fld1();
   732         } else {
   733           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
   734         }
   735       }
   736       break;
   737     }
   739     default:
   740       ShouldNotReachHere();
   741   }
   742 }
   744 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
   745   assert(src->is_constant(), "should not call otherwise");
   746   assert(dest->is_stack(), "should not call otherwise");
   747   LIR_Const* c = src->as_constant_ptr();
   749   switch (c->type()) {
   750     case T_INT:  // fall through
   751     case T_FLOAT:
   752       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   753       break;
   755     case T_ADDRESS:
   756       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   757       break;
   759     case T_OBJECT:
   760       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
   761       break;
   763     case T_LONG:  // fall through
   764     case T_DOUBLE:
   765 #ifdef _LP64
   766       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   767                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
   768 #else
   769       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   770                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
   771       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   772                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
   773 #endif // _LP64
   774       break;
   776     default:
   777       ShouldNotReachHere();
   778   }
   779 }
   781 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
   782   assert(src->is_constant(), "should not call otherwise");
   783   assert(dest->is_address(), "should not call otherwise");
   784   LIR_Const* c = src->as_constant_ptr();
   785   LIR_Address* addr = dest->as_address_ptr();
   787   int null_check_here = code_offset();
   788   switch (type) {
   789     case T_INT:    // fall through
   790     case T_FLOAT:
   791       __ movl(as_Address(addr), c->as_jint_bits());
   792       break;
   794     case T_ADDRESS:
   795       __ movptr(as_Address(addr), c->as_jint_bits());
   796       break;
   798     case T_OBJECT:  // fall through
   799     case T_ARRAY:
   800       if (c->as_jobject() == NULL) {
   801         if (UseCompressedOops && !wide) {
   802           __ movl(as_Address(addr), (int32_t)NULL_WORD);
   803         } else {
   804           __ movptr(as_Address(addr), NULL_WORD);
   805         }
   806       } else {
   807         if (is_literal_address(addr)) {
   808           ShouldNotReachHere();
   809           __ movoop(as_Address(addr, noreg), c->as_jobject());
   810         } else {
   811 #ifdef _LP64
   812           __ movoop(rscratch1, c->as_jobject());
   813           if (UseCompressedOops && !wide) {
   814             __ encode_heap_oop(rscratch1);
   815             null_check_here = code_offset();
   816             __ movl(as_Address_lo(addr), rscratch1);
   817           } else {
   818             null_check_here = code_offset();
   819             __ movptr(as_Address_lo(addr), rscratch1);
   820           }
   821 #else
   822           __ movoop(as_Address(addr), c->as_jobject());
   823 #endif
   824         }
   825       }
   826       break;
   828     case T_LONG:    // fall through
   829     case T_DOUBLE:
   830 #ifdef _LP64
   831       if (is_literal_address(addr)) {
   832         ShouldNotReachHere();
   833         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
   834       } else {
   835         __ movptr(r10, (intptr_t)c->as_jlong_bits());
   836         null_check_here = code_offset();
   837         __ movptr(as_Address_lo(addr), r10);
   838       }
   839 #else
   840       // Always reachable in 32bit so this doesn't produce useless move literal
   841       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
   842       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
   843 #endif // _LP64
   844       break;
   846     case T_BOOLEAN: // fall through
   847     case T_BYTE:
   848       __ movb(as_Address(addr), c->as_jint() & 0xFF);
   849       break;
   851     case T_CHAR:    // fall through
   852     case T_SHORT:
   853       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
   854       break;
   856     default:
   857       ShouldNotReachHere();
   858   };
   860   if (info != NULL) {
   861     add_debug_info_for_null_check(null_check_here, info);
   862   }
   863 }
   866 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
   867   assert(src->is_register(), "should not call otherwise");
   868   assert(dest->is_register(), "should not call otherwise");
   870   // move between cpu-registers
   871   if (dest->is_single_cpu()) {
   872 #ifdef _LP64
   873     if (src->type() == T_LONG) {
   874       // Can do LONG -> OBJECT
   875       move_regs(src->as_register_lo(), dest->as_register());
   876       return;
   877     }
   878 #endif
   879     assert(src->is_single_cpu(), "must match");
   880     if (src->type() == T_OBJECT) {
   881       __ verify_oop(src->as_register());
   882     }
   883     move_regs(src->as_register(), dest->as_register());
   885   } else if (dest->is_double_cpu()) {
   886 #ifdef _LP64
   887     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
   888       // Surprising to me but we can see move of a long to t_object
   889       __ verify_oop(src->as_register());
   890       move_regs(src->as_register(), dest->as_register_lo());
   891       return;
   892     }
   893 #endif
   894     assert(src->is_double_cpu(), "must match");
   895     Register f_lo = src->as_register_lo();
   896     Register f_hi = src->as_register_hi();
   897     Register t_lo = dest->as_register_lo();
   898     Register t_hi = dest->as_register_hi();
   899 #ifdef _LP64
   900     assert(f_hi == f_lo, "must be same");
   901     assert(t_hi == t_lo, "must be same");
   902     move_regs(f_lo, t_lo);
   903 #else
   904     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
   907     if (f_lo == t_hi && f_hi == t_lo) {
   908       swap_reg(f_lo, f_hi);
   909     } else if (f_hi == t_lo) {
   910       assert(f_lo != t_hi, "overwriting register");
   911       move_regs(f_hi, t_hi);
   912       move_regs(f_lo, t_lo);
   913     } else {
   914       assert(f_hi != t_lo, "overwriting register");
   915       move_regs(f_lo, t_lo);
   916       move_regs(f_hi, t_hi);
   917     }
   918 #endif // LP64
   920     // special moves from fpu-register to xmm-register
   921     // necessary for method results
   922   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
   923     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
   924     __ fld_s(Address(rsp, 0));
   925   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
   926     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
   927     __ fld_d(Address(rsp, 0));
   928   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
   929     __ fstp_s(Address(rsp, 0));
   930     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
   931   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
   932     __ fstp_d(Address(rsp, 0));
   933     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
   935     // move between xmm-registers
   936   } else if (dest->is_single_xmm()) {
   937     assert(src->is_single_xmm(), "must match");
   938     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
   939   } else if (dest->is_double_xmm()) {
   940     assert(src->is_double_xmm(), "must match");
   941     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
   943     // move between fpu-registers (no instruction necessary because of fpu-stack)
   944   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
   945     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
   946     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
   947   } else {
   948     ShouldNotReachHere();
   949   }
   950 }
   952 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
   953   assert(src->is_register(), "should not call otherwise");
   954   assert(dest->is_stack(), "should not call otherwise");
   956   if (src->is_single_cpu()) {
   957     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
   958     if (type == T_OBJECT || type == T_ARRAY) {
   959       __ verify_oop(src->as_register());
   960       __ movptr (dst, src->as_register());
   961     } else if (type == T_METADATA) {
   962       __ movptr (dst, src->as_register());
   963     } else {
   964       __ movl (dst, src->as_register());
   965     }
   967   } else if (src->is_double_cpu()) {
   968     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
   969     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
   970     __ movptr (dstLO, src->as_register_lo());
   971     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
   973   } else if (src->is_single_xmm()) {
   974     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   975     __ movflt(dst_addr, src->as_xmm_float_reg());
   977   } else if (src->is_double_xmm()) {
   978     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   979     __ movdbl(dst_addr, src->as_xmm_double_reg());
   981   } else if (src->is_single_fpu()) {
   982     assert(src->fpu_regnr() == 0, "argument must be on TOS");
   983     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   984     if (pop_fpu_stack)     __ fstp_s (dst_addr);
   985     else                   __ fst_s  (dst_addr);
   987   } else if (src->is_double_fpu()) {
   988     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
   989     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   990     if (pop_fpu_stack)     __ fstp_d (dst_addr);
   991     else                   __ fst_d  (dst_addr);
   993   } else {
   994     ShouldNotReachHere();
   995   }
   996 }
   999 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
  1000   LIR_Address* to_addr = dest->as_address_ptr();
  1001   PatchingStub* patch = NULL;
  1002   Register compressed_src = rscratch1;
  1004   if (type == T_ARRAY || type == T_OBJECT) {
  1005     __ verify_oop(src->as_register());
  1006 #ifdef _LP64
  1007     if (UseCompressedOops && !wide) {
  1008       __ movptr(compressed_src, src->as_register());
  1009       __ encode_heap_oop(compressed_src);
  1010       if (patch_code != lir_patch_none) {
  1011         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
  1014 #endif
  1017   if (patch_code != lir_patch_none) {
  1018     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1019     Address toa = as_Address(to_addr);
  1020     assert(toa.disp() != 0, "must have");
  1023   int null_check_here = code_offset();
  1024   switch (type) {
  1025     case T_FLOAT: {
  1026       if (src->is_single_xmm()) {
  1027         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
  1028       } else {
  1029         assert(src->is_single_fpu(), "must be");
  1030         assert(src->fpu_regnr() == 0, "argument must be on TOS");
  1031         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
  1032         else                    __ fst_s (as_Address(to_addr));
  1034       break;
  1037     case T_DOUBLE: {
  1038       if (src->is_double_xmm()) {
  1039         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
  1040       } else {
  1041         assert(src->is_double_fpu(), "must be");
  1042         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
  1043         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
  1044         else                    __ fst_d (as_Address(to_addr));
  1046       break;
  1049     case T_ARRAY:   // fall through
  1050     case T_OBJECT:  // fall through
  1051       if (UseCompressedOops && !wide) {
  1052         __ movl(as_Address(to_addr), compressed_src);
  1053       } else {
  1054         __ movptr(as_Address(to_addr), src->as_register());
  1056       break;
  1057     case T_METADATA:
  1058       // We get here to store a method pointer to the stack to pass to
  1059       // a dtrace runtime call. This can't work on 64 bit with
  1060       // compressed klass ptrs: T_METADATA can be a compressed klass
  1061       // ptr or a 64 bit method pointer.
  1062       LP64_ONLY(ShouldNotReachHere());
  1063       __ movptr(as_Address(to_addr), src->as_register());
  1064       break;
  1065     case T_ADDRESS:
  1066       __ movptr(as_Address(to_addr), src->as_register());
  1067       break;
  1068     case T_INT:
  1069       __ movl(as_Address(to_addr), src->as_register());
  1070       break;
  1072     case T_LONG: {
  1073       Register from_lo = src->as_register_lo();
  1074       Register from_hi = src->as_register_hi();
  1075 #ifdef _LP64
  1076       __ movptr(as_Address_lo(to_addr), from_lo);
  1077 #else
  1078       Register base = to_addr->base()->as_register();
  1079       Register index = noreg;
  1080       if (to_addr->index()->is_register()) {
  1081         index = to_addr->index()->as_register();
  1083       if (base == from_lo || index == from_lo) {
  1084         assert(base != from_hi, "can't be");
  1085         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
  1086         __ movl(as_Address_hi(to_addr), from_hi);
  1087         if (patch != NULL) {
  1088           patching_epilog(patch, lir_patch_high, base, info);
  1089           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1090           patch_code = lir_patch_low;
  1092         __ movl(as_Address_lo(to_addr), from_lo);
  1093       } else {
  1094         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
  1095         __ movl(as_Address_lo(to_addr), from_lo);
  1096         if (patch != NULL) {
  1097           patching_epilog(patch, lir_patch_low, base, info);
  1098           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1099           patch_code = lir_patch_high;
  1101         __ movl(as_Address_hi(to_addr), from_hi);
  1103 #endif // _LP64
  1104       break;
  1107     case T_BYTE:    // fall through
  1108     case T_BOOLEAN: {
  1109       Register src_reg = src->as_register();
  1110       Address dst_addr = as_Address(to_addr);
  1111       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
  1112       __ movb(dst_addr, src_reg);
  1113       break;
  1116     case T_CHAR:    // fall through
  1117     case T_SHORT:
  1118       __ movw(as_Address(to_addr), src->as_register());
  1119       break;
  1121     default:
  1122       ShouldNotReachHere();
  1124   if (info != NULL) {
  1125     add_debug_info_for_null_check(null_check_here, info);
  1128   if (patch_code != lir_patch_none) {
  1129     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
  1134 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1135   assert(src->is_stack(), "should not call otherwise");
  1136   assert(dest->is_register(), "should not call otherwise");
  1138   if (dest->is_single_cpu()) {
  1139     if (type == T_ARRAY || type == T_OBJECT) {
  1140       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1141       __ verify_oop(dest->as_register());
  1142     } else if (type == T_METADATA) {
  1143       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1144     } else {
  1145       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1148   } else if (dest->is_double_cpu()) {
  1149     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
  1150     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
  1151     __ movptr(dest->as_register_lo(), src_addr_LO);
  1152     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
  1154   } else if (dest->is_single_xmm()) {
  1155     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1156     __ movflt(dest->as_xmm_float_reg(), src_addr);
  1158   } else if (dest->is_double_xmm()) {
  1159     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1160     __ movdbl(dest->as_xmm_double_reg(), src_addr);
  1162   } else if (dest->is_single_fpu()) {
  1163     assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1164     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1165     __ fld_s(src_addr);
  1167   } else if (dest->is_double_fpu()) {
  1168     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1169     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1170     __ fld_d(src_addr);
  1172   } else {
  1173     ShouldNotReachHere();
  1178 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1179   if (src->is_single_stack()) {
  1180     if (type == T_OBJECT || type == T_ARRAY) {
  1181       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
  1182       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
  1183     } else {
  1184 #ifndef _LP64
  1185       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
  1186       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
  1187 #else
  1188       //no pushl on 64bits
  1189       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
  1190       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
  1191 #endif
  1194   } else if (src->is_double_stack()) {
  1195 #ifdef _LP64
  1196     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
  1197     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
  1198 #else
  1199     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
  1200     // push and pop the part at src + wordSize, adding wordSize for the previous push
  1201     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
  1202     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
  1203     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
  1204 #endif // _LP64
  1206   } else {
  1207     ShouldNotReachHere();
  1212 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
  1213   assert(src->is_address(), "should not call otherwise");
  1214   assert(dest->is_register(), "should not call otherwise");
  1216   LIR_Address* addr = src->as_address_ptr();
  1217   Address from_addr = as_Address(addr);
  1219   if (addr->base()->type() == T_OBJECT) {
  1220     __ verify_oop(addr->base()->as_pointer_register());
  1223   switch (type) {
  1224     case T_BOOLEAN: // fall through
  1225     case T_BYTE:    // fall through
  1226     case T_CHAR:    // fall through
  1227     case T_SHORT:
  1228       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
  1229         // on pre P6 processors we may get partial register stalls
  1230         // so blow away the value of to_rinfo before loading a
  1231         // partial word into it.  Do it here so that it precedes
  1232         // the potential patch point below.
  1233         __ xorptr(dest->as_register(), dest->as_register());
  1235       break;
  1238   PatchingStub* patch = NULL;
  1239   if (patch_code != lir_patch_none) {
  1240     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1241     assert(from_addr.disp() != 0, "must have");
  1243   if (info != NULL) {
  1244     add_debug_info_for_null_check_here(info);
  1247   switch (type) {
  1248     case T_FLOAT: {
  1249       if (dest->is_single_xmm()) {
  1250         __ movflt(dest->as_xmm_float_reg(), from_addr);
  1251       } else {
  1252         assert(dest->is_single_fpu(), "must be");
  1253         assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1254         __ fld_s(from_addr);
  1256       break;
  1259     case T_DOUBLE: {
  1260       if (dest->is_double_xmm()) {
  1261         __ movdbl(dest->as_xmm_double_reg(), from_addr);
  1262       } else {
  1263         assert(dest->is_double_fpu(), "must be");
  1264         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1265         __ fld_d(from_addr);
  1267       break;
  1270     case T_OBJECT:  // fall through
  1271     case T_ARRAY:   // fall through
  1272       if (UseCompressedOops && !wide) {
  1273         __ movl(dest->as_register(), from_addr);
  1274       } else {
  1275         __ movptr(dest->as_register(), from_addr);
  1277       break;
  1279     case T_ADDRESS:
  1280       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
  1281         __ movl(dest->as_register(), from_addr);
  1282       } else {
  1283         __ movptr(dest->as_register(), from_addr);
  1285       break;
  1286     case T_INT:
  1287       __ movl(dest->as_register(), from_addr);
  1288       break;
  1290     case T_LONG: {
  1291       Register to_lo = dest->as_register_lo();
  1292       Register to_hi = dest->as_register_hi();
  1293 #ifdef _LP64
  1294       __ movptr(to_lo, as_Address_lo(addr));
  1295 #else
  1296       Register base = addr->base()->as_register();
  1297       Register index = noreg;
  1298       if (addr->index()->is_register()) {
  1299         index = addr->index()->as_register();
  1301       if ((base == to_lo && index == to_hi) ||
  1302           (base == to_hi && index == to_lo)) {
  1303         // addresses with 2 registers are only formed as a result of
  1304         // array access so this code will never have to deal with
  1305         // patches or null checks.
  1306         assert(info == NULL && patch == NULL, "must be");
  1307         __ lea(to_hi, as_Address(addr));
  1308         __ movl(to_lo, Address(to_hi, 0));
  1309         __ movl(to_hi, Address(to_hi, BytesPerWord));
  1310       } else if (base == to_lo || index == to_lo) {
  1311         assert(base != to_hi, "can't be");
  1312         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
  1313         __ movl(to_hi, as_Address_hi(addr));
  1314         if (patch != NULL) {
  1315           patching_epilog(patch, lir_patch_high, base, info);
  1316           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1317           patch_code = lir_patch_low;
  1319         __ movl(to_lo, as_Address_lo(addr));
  1320       } else {
  1321         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
  1322         __ movl(to_lo, as_Address_lo(addr));
  1323         if (patch != NULL) {
  1324           patching_epilog(patch, lir_patch_low, base, info);
  1325           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1326           patch_code = lir_patch_high;
  1328         __ movl(to_hi, as_Address_hi(addr));
  1330 #endif // _LP64
  1331       break;
  1334     case T_BOOLEAN: // fall through
  1335     case T_BYTE: {
  1336       Register dest_reg = dest->as_register();
  1337       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1338       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1339         __ movsbl(dest_reg, from_addr);
  1340       } else {
  1341         __ movb(dest_reg, from_addr);
  1342         __ shll(dest_reg, 24);
  1343         __ sarl(dest_reg, 24);
  1345       break;
  1348     case T_CHAR: {
  1349       Register dest_reg = dest->as_register();
  1350       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1351       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1352         __ movzwl(dest_reg, from_addr);
  1353       } else {
  1354         __ movw(dest_reg, from_addr);
  1356       break;
  1359     case T_SHORT: {
  1360       Register dest_reg = dest->as_register();
  1361       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1362         __ movswl(dest_reg, from_addr);
  1363       } else {
  1364         __ movw(dest_reg, from_addr);
  1365         __ shll(dest_reg, 16);
  1366         __ sarl(dest_reg, 16);
  1368       break;
  1371     default:
  1372       ShouldNotReachHere();
  1375   if (patch != NULL) {
  1376     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
  1379   if (type == T_ARRAY || type == T_OBJECT) {
  1380 #ifdef _LP64
  1381     if (UseCompressedOops && !wide) {
  1382       __ decode_heap_oop(dest->as_register());
  1384 #endif
  1385     __ verify_oop(dest->as_register());
  1386   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
  1387 #ifdef _LP64
  1388     if (UseCompressedClassPointers) {
  1389       __ decode_klass_not_null(dest->as_register());
  1391 #endif
  1396 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1397   LIR_Address* addr = src->as_address_ptr();
  1398   Address from_addr = as_Address(addr);
  1400   if (VM_Version::supports_sse()) {
  1401     switch (ReadPrefetchInstr) {
  1402       case 0:
  1403         __ prefetchnta(from_addr); break;
  1404       case 1:
  1405         __ prefetcht0(from_addr); break;
  1406       case 2:
  1407         __ prefetcht2(from_addr); break;
  1408       default:
  1409         ShouldNotReachHere(); break;
  1411   } else if (VM_Version::supports_3dnow_prefetch()) {
  1412     __ prefetchr(from_addr);
  1417 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1418   LIR_Address* addr = src->as_address_ptr();
  1419   Address from_addr = as_Address(addr);
  1421   if (VM_Version::supports_sse()) {
  1422     switch (AllocatePrefetchInstr) {
  1423       case 0:
  1424         __ prefetchnta(from_addr); break;
  1425       case 1:
  1426         __ prefetcht0(from_addr); break;
  1427       case 2:
  1428         __ prefetcht2(from_addr); break;
  1429       case 3:
  1430         __ prefetchw(from_addr); break;
  1431       default:
  1432         ShouldNotReachHere(); break;
  1434   } else if (VM_Version::supports_3dnow_prefetch()) {
  1435     __ prefetchw(from_addr);
  1440 NEEDS_CLEANUP; // This could be static?
  1441 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
  1442   int elem_size = type2aelembytes(type);
  1443   switch (elem_size) {
  1444     case 1: return Address::times_1;
  1445     case 2: return Address::times_2;
  1446     case 4: return Address::times_4;
  1447     case 8: return Address::times_8;
  1449   ShouldNotReachHere();
  1450   return Address::no_scale;
  1454 void LIR_Assembler::emit_op3(LIR_Op3* op) {
  1455   switch (op->code()) {
  1456     case lir_idiv:
  1457     case lir_irem:
  1458       arithmetic_idiv(op->code(),
  1459                       op->in_opr1(),
  1460                       op->in_opr2(),
  1461                       op->in_opr3(),
  1462                       op->result_opr(),
  1463                       op->info());
  1464       break;
  1465     default:      ShouldNotReachHere(); break;
  1469 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
  1470 #ifdef ASSERT
  1471   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
  1472   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
  1473   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
  1474 #endif
  1476   if (op->cond() == lir_cond_always) {
  1477     if (op->info() != NULL) add_debug_info_for_branch(op->info());
  1478     __ jmp (*(op->label()));
  1479   } else {
  1480     Assembler::Condition acond = Assembler::zero;
  1481     if (op->code() == lir_cond_float_branch) {
  1482       assert(op->ublock() != NULL, "must have unordered successor");
  1483       __ jcc(Assembler::parity, *(op->ublock()->label()));
  1484       switch(op->cond()) {
  1485         case lir_cond_equal:        acond = Assembler::equal;      break;
  1486         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
  1487         case lir_cond_less:         acond = Assembler::below;      break;
  1488         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
  1489         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
  1490         case lir_cond_greater:      acond = Assembler::above;      break;
  1491         default:                         ShouldNotReachHere();
  1493     } else {
  1494       switch (op->cond()) {
  1495         case lir_cond_equal:        acond = Assembler::equal;       break;
  1496         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
  1497         case lir_cond_less:         acond = Assembler::less;        break;
  1498         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
  1499         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
  1500         case lir_cond_greater:      acond = Assembler::greater;     break;
  1501         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
  1502         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
  1503         default:                         ShouldNotReachHere();
  1506     __ jcc(acond,*(op->label()));
  1510 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
  1511   LIR_Opr src  = op->in_opr();
  1512   LIR_Opr dest = op->result_opr();
  1514   switch (op->bytecode()) {
  1515     case Bytecodes::_i2l:
  1516 #ifdef _LP64
  1517       __ movl2ptr(dest->as_register_lo(), src->as_register());
  1518 #else
  1519       move_regs(src->as_register(), dest->as_register_lo());
  1520       move_regs(src->as_register(), dest->as_register_hi());
  1521       __ sarl(dest->as_register_hi(), 31);
  1522 #endif // LP64
  1523       break;
  1525     case Bytecodes::_l2i:
  1526 #ifdef _LP64
  1527       __ movl(dest->as_register(), src->as_register_lo());
  1528 #else
  1529       move_regs(src->as_register_lo(), dest->as_register());
  1530 #endif
  1531       break;
  1533     case Bytecodes::_i2b:
  1534       move_regs(src->as_register(), dest->as_register());
  1535       __ sign_extend_byte(dest->as_register());
  1536       break;
  1538     case Bytecodes::_i2c:
  1539       move_regs(src->as_register(), dest->as_register());
  1540       __ andl(dest->as_register(), 0xFFFF);
  1541       break;
  1543     case Bytecodes::_i2s:
  1544       move_regs(src->as_register(), dest->as_register());
  1545       __ sign_extend_short(dest->as_register());
  1546       break;
  1549     case Bytecodes::_f2d:
  1550     case Bytecodes::_d2f:
  1551       if (dest->is_single_xmm()) {
  1552         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
  1553       } else if (dest->is_double_xmm()) {
  1554         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
  1555       } else {
  1556         assert(src->fpu() == dest->fpu(), "register must be equal");
  1557         // do nothing (float result is rounded later through spilling)
  1559       break;
  1561     case Bytecodes::_i2f:
  1562     case Bytecodes::_i2d:
  1563       if (dest->is_single_xmm()) {
  1564         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
  1565       } else if (dest->is_double_xmm()) {
  1566         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
  1567       } else {
  1568         assert(dest->fpu() == 0, "result must be on TOS");
  1569         __ movl(Address(rsp, 0), src->as_register());
  1570         __ fild_s(Address(rsp, 0));
  1572       break;
  1574     case Bytecodes::_f2i:
  1575     case Bytecodes::_d2i:
  1576       if (src->is_single_xmm()) {
  1577         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
  1578       } else if (src->is_double_xmm()) {
  1579         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
  1580       } else {
  1581         assert(src->fpu() == 0, "input must be on TOS");
  1582         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
  1583         __ fist_s(Address(rsp, 0));
  1584         __ movl(dest->as_register(), Address(rsp, 0));
  1585         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1588       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
  1589       assert(op->stub() != NULL, "stub required");
  1590       __ cmpl(dest->as_register(), 0x80000000);
  1591       __ jcc(Assembler::equal, *op->stub()->entry());
  1592       __ bind(*op->stub()->continuation());
  1593       break;
  1595     case Bytecodes::_l2f:
  1596     case Bytecodes::_l2d:
  1597       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
  1598       assert(dest->fpu() == 0, "result must be on TOS");
  1600       __ movptr(Address(rsp, 0),            src->as_register_lo());
  1601       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
  1602       __ fild_d(Address(rsp, 0));
  1603       // float result is rounded later through spilling
  1604       break;
  1606     case Bytecodes::_f2l:
  1607     case Bytecodes::_d2l:
  1608       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
  1609       assert(src->fpu() == 0, "input must be on TOS");
  1610       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
  1612       // instruction sequence too long to inline it here
  1614         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
  1616       break;
  1618     default: ShouldNotReachHere();
  1622 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  1623   if (op->init_check()) {
  1624     __ cmpb(Address(op->klass()->as_register(),
  1625                     InstanceKlass::init_state_offset()),
  1626                     InstanceKlass::fully_initialized);
  1627     add_debug_info_for_null_check_here(op->stub()->info());
  1628     __ jcc(Assembler::notEqual, *op->stub()->entry());
  1630   __ allocate_object(op->obj()->as_register(),
  1631                      op->tmp1()->as_register(),
  1632                      op->tmp2()->as_register(),
  1633                      op->header_size(),
  1634                      op->object_size(),
  1635                      op->klass()->as_register(),
  1636                      *op->stub()->entry());
  1637   __ bind(*op->stub()->continuation());
  1640 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  1641   Register len =  op->len()->as_register();
  1642   LP64_ONLY( __ movslq(len, len); )
  1644   if (UseSlowPath ||
  1645       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  1646       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  1647     __ jmp(*op->stub()->entry());
  1648   } else {
  1649     Register tmp1 = op->tmp1()->as_register();
  1650     Register tmp2 = op->tmp2()->as_register();
  1651     Register tmp3 = op->tmp3()->as_register();
  1652     if (len == tmp1) {
  1653       tmp1 = tmp3;
  1654     } else if (len == tmp2) {
  1655       tmp2 = tmp3;
  1656     } else if (len == tmp3) {
  1657       // everything is ok
  1658     } else {
  1659       __ mov(tmp3, len);
  1661     __ allocate_array(op->obj()->as_register(),
  1662                       len,
  1663                       tmp1,
  1664                       tmp2,
  1665                       arrayOopDesc::header_size(op->type()),
  1666                       array_element_size(op->type()),
  1667                       op->klass()->as_register(),
  1668                       *op->stub()->entry());
  1670   __ bind(*op->stub()->continuation());
  1673 void LIR_Assembler::type_profile_helper(Register mdo,
  1674                                         ciMethodData *md, ciProfileData *data,
  1675                                         Register recv, Label* update_done) {
  1676   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1677     Label next_test;
  1678     // See if the receiver is receiver[n].
  1679     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
  1680     __ jccb(Assembler::notEqual, next_test);
  1681     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
  1682     __ addptr(data_addr, DataLayout::counter_increment);
  1683     __ jmp(*update_done);
  1684     __ bind(next_test);
  1687   // Didn't find receiver; find next empty slot and fill it in
  1688   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1689     Label next_test;
  1690     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
  1691     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
  1692     __ jccb(Assembler::notEqual, next_test);
  1693     __ movptr(recv_addr, recv);
  1694     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
  1695     __ jmp(*update_done);
  1696     __ bind(next_test);
  1700 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  1701   // we always need a stub for the failure case.
  1702   CodeStub* stub = op->stub();
  1703   Register obj = op->object()->as_register();
  1704   Register k_RInfo = op->tmp1()->as_register();
  1705   Register klass_RInfo = op->tmp2()->as_register();
  1706   Register dst = op->result_opr()->as_register();
  1707   ciKlass* k = op->klass();
  1708   Register Rtmp1 = noreg;
  1710   // check if it needs to be profiled
  1711   ciMethodData* md;
  1712   ciProfileData* data;
  1714   if (op->should_profile()) {
  1715     ciMethod* method = op->profiled_method();
  1716     assert(method != NULL, "Should have method");
  1717     int bci = op->profiled_bci();
  1718     md = method->method_data_or_null();
  1719     assert(md != NULL, "Sanity");
  1720     data = md->bci_to_data(bci);
  1721     assert(data != NULL,                "need data for type check");
  1722     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1724   Label profile_cast_success, profile_cast_failure;
  1725   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  1726   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  1728   if (obj == k_RInfo) {
  1729     k_RInfo = dst;
  1730   } else if (obj == klass_RInfo) {
  1731     klass_RInfo = dst;
  1733   if (k->is_loaded() && !UseCompressedClassPointers) {
  1734     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
  1735   } else {
  1736     Rtmp1 = op->tmp3()->as_register();
  1737     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
  1740   assert_different_registers(obj, k_RInfo, klass_RInfo);
  1742   __ cmpptr(obj, (int32_t)NULL_WORD);
  1743   if (op->should_profile()) {
  1744     Label not_null;
  1745     __ jccb(Assembler::notEqual, not_null);
  1746     // Object is null; update MDO and exit
  1747     Register mdo  = klass_RInfo;
  1748     __ mov_metadata(mdo, md->constant_encoding());
  1749     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1750     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1751     __ orl(data_addr, header_bits);
  1752     __ jmp(*obj_is_null);
  1753     __ bind(not_null);
  1754   } else {
  1755     __ jcc(Assembler::equal, *obj_is_null);
  1758   if (!k->is_loaded()) {
  1759     klass2reg_with_patching(k_RInfo, op->info_for_patch());
  1760   } else {
  1761 #ifdef _LP64
  1762     __ mov_metadata(k_RInfo, k->constant_encoding());
  1763 #endif // _LP64
  1765   __ verify_oop(obj);
  1767   if (op->fast_check()) {
  1768     // get object class
  1769     // not a safepoint as obj null check happens earlier
  1770 #ifdef _LP64
  1771     if (UseCompressedClassPointers) {
  1772       __ load_klass(Rtmp1, obj);
  1773       __ cmpptr(k_RInfo, Rtmp1);
  1774     } else {
  1775       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1777 #else
  1778     if (k->is_loaded()) {
  1779       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
  1780     } else {
  1781       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1783 #endif
  1784     __ jcc(Assembler::notEqual, *failure_target);
  1785     // successful cast, fall through to profile or jump
  1786   } else {
  1787     // get object class
  1788     // not a safepoint as obj null check happens earlier
  1789     __ load_klass(klass_RInfo, obj);
  1790     if (k->is_loaded()) {
  1791       // See if we get an immediate positive hit
  1792 #ifdef _LP64
  1793       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
  1794 #else
  1795       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
  1796 #endif // _LP64
  1797       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
  1798         __ jcc(Assembler::notEqual, *failure_target);
  1799         // successful cast, fall through to profile or jump
  1800       } else {
  1801         // See if we get an immediate positive hit
  1802         __ jcc(Assembler::equal, *success_target);
  1803         // check for self
  1804 #ifdef _LP64
  1805         __ cmpptr(klass_RInfo, k_RInfo);
  1806 #else
  1807         __ cmpklass(klass_RInfo, k->constant_encoding());
  1808 #endif // _LP64
  1809         __ jcc(Assembler::equal, *success_target);
  1811         __ push(klass_RInfo);
  1812 #ifdef _LP64
  1813         __ push(k_RInfo);
  1814 #else
  1815         __ pushklass(k->constant_encoding());
  1816 #endif // _LP64
  1817         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1818         __ pop(klass_RInfo);
  1819         __ pop(klass_RInfo);
  1820         // result is a boolean
  1821         __ cmpl(klass_RInfo, 0);
  1822         __ jcc(Assembler::equal, *failure_target);
  1823         // successful cast, fall through to profile or jump
  1825     } else {
  1826       // perform the fast part of the checking logic
  1827       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1828       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1829       __ push(klass_RInfo);
  1830       __ push(k_RInfo);
  1831       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1832       __ pop(klass_RInfo);
  1833       __ pop(k_RInfo);
  1834       // result is a boolean
  1835       __ cmpl(k_RInfo, 0);
  1836       __ jcc(Assembler::equal, *failure_target);
  1837       // successful cast, fall through to profile or jump
  1840   if (op->should_profile()) {
  1841     Register mdo  = klass_RInfo, recv = k_RInfo;
  1842     __ bind(profile_cast_success);
  1843     __ mov_metadata(mdo, md->constant_encoding());
  1844     __ load_klass(recv, obj);
  1845     Label update_done;
  1846     type_profile_helper(mdo, md, data, recv, success);
  1847     __ jmp(*success);
  1849     __ bind(profile_cast_failure);
  1850     __ mov_metadata(mdo, md->constant_encoding());
  1851     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1852     __ subptr(counter_addr, DataLayout::counter_increment);
  1853     __ jmp(*failure);
  1855   __ jmp(*success);
  1859 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  1860   LIR_Code code = op->code();
  1861   if (code == lir_store_check) {
  1862     Register value = op->object()->as_register();
  1863     Register array = op->array()->as_register();
  1864     Register k_RInfo = op->tmp1()->as_register();
  1865     Register klass_RInfo = op->tmp2()->as_register();
  1866     Register Rtmp1 = op->tmp3()->as_register();
  1868     CodeStub* stub = op->stub();
  1870     // check if it needs to be profiled
  1871     ciMethodData* md;
  1872     ciProfileData* data;
  1874     if (op->should_profile()) {
  1875       ciMethod* method = op->profiled_method();
  1876       assert(method != NULL, "Should have method");
  1877       int bci = op->profiled_bci();
  1878       md = method->method_data_or_null();
  1879       assert(md != NULL, "Sanity");
  1880       data = md->bci_to_data(bci);
  1881       assert(data != NULL,                "need data for type check");
  1882       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1884     Label profile_cast_success, profile_cast_failure, done;
  1885     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  1886     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  1888     __ cmpptr(value, (int32_t)NULL_WORD);
  1889     if (op->should_profile()) {
  1890       Label not_null;
  1891       __ jccb(Assembler::notEqual, not_null);
  1892       // Object is null; update MDO and exit
  1893       Register mdo  = klass_RInfo;
  1894       __ mov_metadata(mdo, md->constant_encoding());
  1895       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1896       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1897       __ orl(data_addr, header_bits);
  1898       __ jmp(done);
  1899       __ bind(not_null);
  1900     } else {
  1901       __ jcc(Assembler::equal, done);
  1904     add_debug_info_for_null_check_here(op->info_for_exception());
  1905     __ load_klass(k_RInfo, array);
  1906     __ load_klass(klass_RInfo, value);
  1908     // get instance klass (it's already uncompressed)
  1909     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
  1910     // perform the fast part of the checking logic
  1911     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1912     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1913     __ push(klass_RInfo);
  1914     __ push(k_RInfo);
  1915     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1916     __ pop(klass_RInfo);
  1917     __ pop(k_RInfo);
  1918     // result is a boolean
  1919     __ cmpl(k_RInfo, 0);
  1920     __ jcc(Assembler::equal, *failure_target);
  1921     // fall through to the success case
  1923     if (op->should_profile()) {
  1924       Register mdo  = klass_RInfo, recv = k_RInfo;
  1925       __ bind(profile_cast_success);
  1926       __ mov_metadata(mdo, md->constant_encoding());
  1927       __ load_klass(recv, value);
  1928       Label update_done;
  1929       type_profile_helper(mdo, md, data, recv, &done);
  1930       __ jmpb(done);
  1932       __ bind(profile_cast_failure);
  1933       __ mov_metadata(mdo, md->constant_encoding());
  1934       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1935       __ subptr(counter_addr, DataLayout::counter_increment);
  1936       __ jmp(*stub->entry());
  1939     __ bind(done);
  1940   } else
  1941     if (code == lir_checkcast) {
  1942       Register obj = op->object()->as_register();
  1943       Register dst = op->result_opr()->as_register();
  1944       Label success;
  1945       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  1946       __ bind(success);
  1947       if (dst != obj) {
  1948         __ mov(dst, obj);
  1950     } else
  1951       if (code == lir_instanceof) {
  1952         Register obj = op->object()->as_register();
  1953         Register dst = op->result_opr()->as_register();
  1954         Label success, failure, done;
  1955         emit_typecheck_helper(op, &success, &failure, &failure);
  1956         __ bind(failure);
  1957         __ xorptr(dst, dst);
  1958         __ jmpb(done);
  1959         __ bind(success);
  1960         __ movptr(dst, 1);
  1961         __ bind(done);
  1962       } else {
  1963         ShouldNotReachHere();
  1969 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  1970   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
  1971     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
  1972     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
  1973     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
  1974     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
  1975     Register addr = op->addr()->as_register();
  1976     if (os::is_MP()) {
  1977       __ lock();
  1979     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
  1981   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
  1982     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
  1983     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1984     Register newval = op->new_value()->as_register();
  1985     Register cmpval = op->cmp_value()->as_register();
  1986     assert(cmpval == rax, "wrong register");
  1987     assert(newval != NULL, "new val must be register");
  1988     assert(cmpval != newval, "cmp and new values must be in different registers");
  1989     assert(cmpval != addr, "cmp and addr must be in different registers");
  1990     assert(newval != addr, "new value and addr must be in different registers");
  1992     if ( op->code() == lir_cas_obj) {
  1993 #ifdef _LP64
  1994       if (UseCompressedOops) {
  1995         __ encode_heap_oop(cmpval);
  1996         __ mov(rscratch1, newval);
  1997         __ encode_heap_oop(rscratch1);
  1998         if (os::is_MP()) {
  1999           __ lock();
  2001         // cmpval (rax) is implicitly used by this instruction
  2002         __ cmpxchgl(rscratch1, Address(addr, 0));
  2003       } else
  2004 #endif
  2006         if (os::is_MP()) {
  2007           __ lock();
  2009         __ cmpxchgptr(newval, Address(addr, 0));
  2011     } else {
  2012       assert(op->code() == lir_cas_int, "lir_cas_int expected");
  2013       if (os::is_MP()) {
  2014         __ lock();
  2016       __ cmpxchgl(newval, Address(addr, 0));
  2018 #ifdef _LP64
  2019   } else if (op->code() == lir_cas_long) {
  2020     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  2021     Register newval = op->new_value()->as_register_lo();
  2022     Register cmpval = op->cmp_value()->as_register_lo();
  2023     assert(cmpval == rax, "wrong register");
  2024     assert(newval != NULL, "new val must be register");
  2025     assert(cmpval != newval, "cmp and new values must be in different registers");
  2026     assert(cmpval != addr, "cmp and addr must be in different registers");
  2027     assert(newval != addr, "new value and addr must be in different registers");
  2028     if (os::is_MP()) {
  2029       __ lock();
  2031     __ cmpxchgq(newval, Address(addr, 0));
  2032 #endif // _LP64
  2033   } else {
  2034     Unimplemented();
  2038 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
  2039   Assembler::Condition acond, ncond;
  2040   switch (condition) {
  2041     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
  2042     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
  2043     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
  2044     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
  2045     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
  2046     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
  2047     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
  2048     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
  2049     default:                    ShouldNotReachHere();
  2052   if (opr1->is_cpu_register()) {
  2053     reg2reg(opr1, result);
  2054   } else if (opr1->is_stack()) {
  2055     stack2reg(opr1, result, result->type());
  2056   } else if (opr1->is_constant()) {
  2057     const2reg(opr1, result, lir_patch_none, NULL);
  2058   } else {
  2059     ShouldNotReachHere();
  2062   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
  2063     // optimized version that does not require a branch
  2064     if (opr2->is_single_cpu()) {
  2065       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
  2066       __ cmov(ncond, result->as_register(), opr2->as_register());
  2067     } else if (opr2->is_double_cpu()) {
  2068       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  2069       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  2070       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
  2071       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
  2072     } else if (opr2->is_single_stack()) {
  2073       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
  2074     } else if (opr2->is_double_stack()) {
  2075       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
  2076       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
  2077     } else {
  2078       ShouldNotReachHere();
  2081   } else {
  2082     Label skip;
  2083     __ jcc (acond, skip);
  2084     if (opr2->is_cpu_register()) {
  2085       reg2reg(opr2, result);
  2086     } else if (opr2->is_stack()) {
  2087       stack2reg(opr2, result, result->type());
  2088     } else if (opr2->is_constant()) {
  2089       const2reg(opr2, result, lir_patch_none, NULL);
  2090     } else {
  2091       ShouldNotReachHere();
  2093     __ bind(skip);
  2098 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  2099   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
  2101   if (left->is_single_cpu()) {
  2102     assert(left == dest, "left and dest must be equal");
  2103     Register lreg = left->as_register();
  2105     if (right->is_single_cpu()) {
  2106       // cpu register - cpu register
  2107       Register rreg = right->as_register();
  2108       switch (code) {
  2109         case lir_add: __ addl (lreg, rreg); break;
  2110         case lir_sub: __ subl (lreg, rreg); break;
  2111         case lir_mul: __ imull(lreg, rreg); break;
  2112         default:      ShouldNotReachHere();
  2115     } else if (right->is_stack()) {
  2116       // cpu register - stack
  2117       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2118       switch (code) {
  2119         case lir_add: __ addl(lreg, raddr); break;
  2120         case lir_sub: __ subl(lreg, raddr); break;
  2121         default:      ShouldNotReachHere();
  2124     } else if (right->is_constant()) {
  2125       // cpu register - constant
  2126       jint c = right->as_constant_ptr()->as_jint();
  2127       switch (code) {
  2128         case lir_add: {
  2129           __ incrementl(lreg, c);
  2130           break;
  2132         case lir_sub: {
  2133           __ decrementl(lreg, c);
  2134           break;
  2136         default: ShouldNotReachHere();
  2139     } else {
  2140       ShouldNotReachHere();
  2143   } else if (left->is_double_cpu()) {
  2144     assert(left == dest, "left and dest must be equal");
  2145     Register lreg_lo = left->as_register_lo();
  2146     Register lreg_hi = left->as_register_hi();
  2148     if (right->is_double_cpu()) {
  2149       // cpu register - cpu register
  2150       Register rreg_lo = right->as_register_lo();
  2151       Register rreg_hi = right->as_register_hi();
  2152       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
  2153       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
  2154       switch (code) {
  2155         case lir_add:
  2156           __ addptr(lreg_lo, rreg_lo);
  2157           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
  2158           break;
  2159         case lir_sub:
  2160           __ subptr(lreg_lo, rreg_lo);
  2161           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
  2162           break;
  2163         case lir_mul:
  2164 #ifdef _LP64
  2165           __ imulq(lreg_lo, rreg_lo);
  2166 #else
  2167           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
  2168           __ imull(lreg_hi, rreg_lo);
  2169           __ imull(rreg_hi, lreg_lo);
  2170           __ addl (rreg_hi, lreg_hi);
  2171           __ mull (rreg_lo);
  2172           __ addl (lreg_hi, rreg_hi);
  2173 #endif // _LP64
  2174           break;
  2175         default:
  2176           ShouldNotReachHere();
  2179     } else if (right->is_constant()) {
  2180       // cpu register - constant
  2181 #ifdef _LP64
  2182       jlong c = right->as_constant_ptr()->as_jlong_bits();
  2183       __ movptr(r10, (intptr_t) c);
  2184       switch (code) {
  2185         case lir_add:
  2186           __ addptr(lreg_lo, r10);
  2187           break;
  2188         case lir_sub:
  2189           __ subptr(lreg_lo, r10);
  2190           break;
  2191         default:
  2192           ShouldNotReachHere();
  2194 #else
  2195       jint c_lo = right->as_constant_ptr()->as_jint_lo();
  2196       jint c_hi = right->as_constant_ptr()->as_jint_hi();
  2197       switch (code) {
  2198         case lir_add:
  2199           __ addptr(lreg_lo, c_lo);
  2200           __ adcl(lreg_hi, c_hi);
  2201           break;
  2202         case lir_sub:
  2203           __ subptr(lreg_lo, c_lo);
  2204           __ sbbl(lreg_hi, c_hi);
  2205           break;
  2206         default:
  2207           ShouldNotReachHere();
  2209 #endif // _LP64
  2211     } else {
  2212       ShouldNotReachHere();
  2215   } else if (left->is_single_xmm()) {
  2216     assert(left == dest, "left and dest must be equal");
  2217     XMMRegister lreg = left->as_xmm_float_reg();
  2219     if (right->is_single_xmm()) {
  2220       XMMRegister rreg = right->as_xmm_float_reg();
  2221       switch (code) {
  2222         case lir_add: __ addss(lreg, rreg);  break;
  2223         case lir_sub: __ subss(lreg, rreg);  break;
  2224         case lir_mul_strictfp: // fall through
  2225         case lir_mul: __ mulss(lreg, rreg);  break;
  2226         case lir_div_strictfp: // fall through
  2227         case lir_div: __ divss(lreg, rreg);  break;
  2228         default: ShouldNotReachHere();
  2230     } else {
  2231       Address raddr;
  2232       if (right->is_single_stack()) {
  2233         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2234       } else if (right->is_constant()) {
  2235         // hack for now
  2236         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
  2237       } else {
  2238         ShouldNotReachHere();
  2240       switch (code) {
  2241         case lir_add: __ addss(lreg, raddr);  break;
  2242         case lir_sub: __ subss(lreg, raddr);  break;
  2243         case lir_mul_strictfp: // fall through
  2244         case lir_mul: __ mulss(lreg, raddr);  break;
  2245         case lir_div_strictfp: // fall through
  2246         case lir_div: __ divss(lreg, raddr);  break;
  2247         default: ShouldNotReachHere();
  2251   } else if (left->is_double_xmm()) {
  2252     assert(left == dest, "left and dest must be equal");
  2254     XMMRegister lreg = left->as_xmm_double_reg();
  2255     if (right->is_double_xmm()) {
  2256       XMMRegister rreg = right->as_xmm_double_reg();
  2257       switch (code) {
  2258         case lir_add: __ addsd(lreg, rreg);  break;
  2259         case lir_sub: __ subsd(lreg, rreg);  break;
  2260         case lir_mul_strictfp: // fall through
  2261         case lir_mul: __ mulsd(lreg, rreg);  break;
  2262         case lir_div_strictfp: // fall through
  2263         case lir_div: __ divsd(lreg, rreg);  break;
  2264         default: ShouldNotReachHere();
  2266     } else {
  2267       Address raddr;
  2268       if (right->is_double_stack()) {
  2269         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2270       } else if (right->is_constant()) {
  2271         // hack for now
  2272         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2273       } else {
  2274         ShouldNotReachHere();
  2276       switch (code) {
  2277         case lir_add: __ addsd(lreg, raddr);  break;
  2278         case lir_sub: __ subsd(lreg, raddr);  break;
  2279         case lir_mul_strictfp: // fall through
  2280         case lir_mul: __ mulsd(lreg, raddr);  break;
  2281         case lir_div_strictfp: // fall through
  2282         case lir_div: __ divsd(lreg, raddr);  break;
  2283         default: ShouldNotReachHere();
  2287   } else if (left->is_single_fpu()) {
  2288     assert(dest->is_single_fpu(),  "fpu stack allocation required");
  2290     if (right->is_single_fpu()) {
  2291       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
  2293     } else {
  2294       assert(left->fpu_regnr() == 0, "left must be on TOS");
  2295       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
  2297       Address raddr;
  2298       if (right->is_single_stack()) {
  2299         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2300       } else if (right->is_constant()) {
  2301         address const_addr = float_constant(right->as_jfloat());
  2302         assert(const_addr != NULL, "incorrect float/double constant maintainance");
  2303         // hack for now
  2304         raddr = __ as_Address(InternalAddress(const_addr));
  2305       } else {
  2306         ShouldNotReachHere();
  2309       switch (code) {
  2310         case lir_add: __ fadd_s(raddr); break;
  2311         case lir_sub: __ fsub_s(raddr); break;
  2312         case lir_mul_strictfp: // fall through
  2313         case lir_mul: __ fmul_s(raddr); break;
  2314         case lir_div_strictfp: // fall through
  2315         case lir_div: __ fdiv_s(raddr); break;
  2316         default:      ShouldNotReachHere();
  2320   } else if (left->is_double_fpu()) {
  2321     assert(dest->is_double_fpu(),  "fpu stack allocation required");
  2323     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2324       // Double values require special handling for strictfp mul/div on x86
  2325       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  2326       __ fmulp(left->fpu_regnrLo() + 1);
  2329     if (right->is_double_fpu()) {
  2330       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
  2332     } else {
  2333       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
  2334       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
  2336       Address raddr;
  2337       if (right->is_double_stack()) {
  2338         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2339       } else if (right->is_constant()) {
  2340         // hack for now
  2341         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2342       } else {
  2343         ShouldNotReachHere();
  2346       switch (code) {
  2347         case lir_add: __ fadd_d(raddr); break;
  2348         case lir_sub: __ fsub_d(raddr); break;
  2349         case lir_mul_strictfp: // fall through
  2350         case lir_mul: __ fmul_d(raddr); break;
  2351         case lir_div_strictfp: // fall through
  2352         case lir_div: __ fdiv_d(raddr); break;
  2353         default: ShouldNotReachHere();
  2357     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2358       // Double values require special handling for strictfp mul/div on x86
  2359       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  2360       __ fmulp(dest->fpu_regnrLo() + 1);
  2363   } else if (left->is_single_stack() || left->is_address()) {
  2364     assert(left == dest, "left and dest must be equal");
  2366     Address laddr;
  2367     if (left->is_single_stack()) {
  2368       laddr = frame_map()->address_for_slot(left->single_stack_ix());
  2369     } else if (left->is_address()) {
  2370       laddr = as_Address(left->as_address_ptr());
  2371     } else {
  2372       ShouldNotReachHere();
  2375     if (right->is_single_cpu()) {
  2376       Register rreg = right->as_register();
  2377       switch (code) {
  2378         case lir_add: __ addl(laddr, rreg); break;
  2379         case lir_sub: __ subl(laddr, rreg); break;
  2380         default:      ShouldNotReachHere();
  2382     } else if (right->is_constant()) {
  2383       jint c = right->as_constant_ptr()->as_jint();
  2384       switch (code) {
  2385         case lir_add: {
  2386           __ incrementl(laddr, c);
  2387           break;
  2389         case lir_sub: {
  2390           __ decrementl(laddr, c);
  2391           break;
  2393         default: ShouldNotReachHere();
  2395     } else {
  2396       ShouldNotReachHere();
  2399   } else {
  2400     ShouldNotReachHere();
  2404 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
  2405   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
  2406   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
  2407   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
  2409   bool left_is_tos = (left_index == 0);
  2410   bool dest_is_tos = (dest_index == 0);
  2411   int non_tos_index = (left_is_tos ? right_index : left_index);
  2413   switch (code) {
  2414     case lir_add:
  2415       if (pop_fpu_stack)       __ faddp(non_tos_index);
  2416       else if (dest_is_tos)    __ fadd (non_tos_index);
  2417       else                     __ fadda(non_tos_index);
  2418       break;
  2420     case lir_sub:
  2421       if (left_is_tos) {
  2422         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
  2423         else if (dest_is_tos)  __ fsub  (non_tos_index);
  2424         else                   __ fsubra(non_tos_index);
  2425       } else {
  2426         if (pop_fpu_stack)     __ fsubp (non_tos_index);
  2427         else if (dest_is_tos)  __ fsubr (non_tos_index);
  2428         else                   __ fsuba (non_tos_index);
  2430       break;
  2432     case lir_mul_strictfp: // fall through
  2433     case lir_mul:
  2434       if (pop_fpu_stack)       __ fmulp(non_tos_index);
  2435       else if (dest_is_tos)    __ fmul (non_tos_index);
  2436       else                     __ fmula(non_tos_index);
  2437       break;
  2439     case lir_div_strictfp: // fall through
  2440     case lir_div:
  2441       if (left_is_tos) {
  2442         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
  2443         else if (dest_is_tos)  __ fdiv  (non_tos_index);
  2444         else                   __ fdivra(non_tos_index);
  2445       } else {
  2446         if (pop_fpu_stack)     __ fdivp (non_tos_index);
  2447         else if (dest_is_tos)  __ fdivr (non_tos_index);
  2448         else                   __ fdiva (non_tos_index);
  2450       break;
  2452     case lir_rem:
  2453       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
  2454       __ fremr(noreg);
  2455       break;
  2457     default:
  2458       ShouldNotReachHere();
  2463 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
  2464   if (value->is_double_xmm()) {
  2465     switch(code) {
  2466       case lir_abs :
  2468           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
  2469             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
  2471           __ andpd(dest->as_xmm_double_reg(),
  2472                     ExternalAddress((address)double_signmask_pool));
  2474         break;
  2476       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
  2477       // all other intrinsics are not available in the SSE instruction set, so FPU is used
  2478       default      : ShouldNotReachHere();
  2481   } else if (value->is_double_fpu()) {
  2482     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
  2483     switch(code) {
  2484       case lir_log   : __ flog() ; break;
  2485       case lir_log10 : __ flog10() ; break;
  2486       case lir_abs   : __ fabs() ; break;
  2487       case lir_sqrt  : __ fsqrt(); break;
  2488       case lir_sin   :
  2489         // Should consider not saving rbx, if not necessary
  2490         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
  2491         break;
  2492       case lir_cos :
  2493         // Should consider not saving rbx, if not necessary
  2494         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
  2495         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
  2496         break;
  2497       case lir_tan :
  2498         // Should consider not saving rbx, if not necessary
  2499         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
  2500         break;
  2501       case lir_exp :
  2502         __ exp_with_fallback(op->as_Op2()->fpu_stack_size());
  2503         break;
  2504       case lir_pow :
  2505         __ pow_with_fallback(op->as_Op2()->fpu_stack_size());
  2506         break;
  2507       default      : ShouldNotReachHere();
  2509   } else {
  2510     Unimplemented();
  2514 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  2515   // assert(left->destroys_register(), "check");
  2516   if (left->is_single_cpu()) {
  2517     Register reg = left->as_register();
  2518     if (right->is_constant()) {
  2519       int val = right->as_constant_ptr()->as_jint();
  2520       switch (code) {
  2521         case lir_logic_and: __ andl (reg, val); break;
  2522         case lir_logic_or:  __ orl  (reg, val); break;
  2523         case lir_logic_xor: __ xorl (reg, val); break;
  2524         default: ShouldNotReachHere();
  2526     } else if (right->is_stack()) {
  2527       // added support for stack operands
  2528       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2529       switch (code) {
  2530         case lir_logic_and: __ andl (reg, raddr); break;
  2531         case lir_logic_or:  __ orl  (reg, raddr); break;
  2532         case lir_logic_xor: __ xorl (reg, raddr); break;
  2533         default: ShouldNotReachHere();
  2535     } else {
  2536       Register rright = right->as_register();
  2537       switch (code) {
  2538         case lir_logic_and: __ andptr (reg, rright); break;
  2539         case lir_logic_or : __ orptr  (reg, rright); break;
  2540         case lir_logic_xor: __ xorptr (reg, rright); break;
  2541         default: ShouldNotReachHere();
  2544     move_regs(reg, dst->as_register());
  2545   } else {
  2546     Register l_lo = left->as_register_lo();
  2547     Register l_hi = left->as_register_hi();
  2548     if (right->is_constant()) {
  2549 #ifdef _LP64
  2550       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
  2551       switch (code) {
  2552         case lir_logic_and:
  2553           __ andq(l_lo, rscratch1);
  2554           break;
  2555         case lir_logic_or:
  2556           __ orq(l_lo, rscratch1);
  2557           break;
  2558         case lir_logic_xor:
  2559           __ xorq(l_lo, rscratch1);
  2560           break;
  2561         default: ShouldNotReachHere();
  2563 #else
  2564       int r_lo = right->as_constant_ptr()->as_jint_lo();
  2565       int r_hi = right->as_constant_ptr()->as_jint_hi();
  2566       switch (code) {
  2567         case lir_logic_and:
  2568           __ andl(l_lo, r_lo);
  2569           __ andl(l_hi, r_hi);
  2570           break;
  2571         case lir_logic_or:
  2572           __ orl(l_lo, r_lo);
  2573           __ orl(l_hi, r_hi);
  2574           break;
  2575         case lir_logic_xor:
  2576           __ xorl(l_lo, r_lo);
  2577           __ xorl(l_hi, r_hi);
  2578           break;
  2579         default: ShouldNotReachHere();
  2581 #endif // _LP64
  2582     } else {
  2583 #ifdef _LP64
  2584       Register r_lo;
  2585       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
  2586         r_lo = right->as_register();
  2587       } else {
  2588         r_lo = right->as_register_lo();
  2590 #else
  2591       Register r_lo = right->as_register_lo();
  2592       Register r_hi = right->as_register_hi();
  2593       assert(l_lo != r_hi, "overwriting registers");
  2594 #endif
  2595       switch (code) {
  2596         case lir_logic_and:
  2597           __ andptr(l_lo, r_lo);
  2598           NOT_LP64(__ andptr(l_hi, r_hi);)
  2599           break;
  2600         case lir_logic_or:
  2601           __ orptr(l_lo, r_lo);
  2602           NOT_LP64(__ orptr(l_hi, r_hi);)
  2603           break;
  2604         case lir_logic_xor:
  2605           __ xorptr(l_lo, r_lo);
  2606           NOT_LP64(__ xorptr(l_hi, r_hi);)
  2607           break;
  2608         default: ShouldNotReachHere();
  2612     Register dst_lo = dst->as_register_lo();
  2613     Register dst_hi = dst->as_register_hi();
  2615 #ifdef _LP64
  2616     move_regs(l_lo, dst_lo);
  2617 #else
  2618     if (dst_lo == l_hi) {
  2619       assert(dst_hi != l_lo, "overwriting registers");
  2620       move_regs(l_hi, dst_hi);
  2621       move_regs(l_lo, dst_lo);
  2622     } else {
  2623       assert(dst_lo != l_hi, "overwriting registers");
  2624       move_regs(l_lo, dst_lo);
  2625       move_regs(l_hi, dst_hi);
  2627 #endif // _LP64
  2632 // we assume that rax, and rdx can be overwritten
  2633 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
  2635   assert(left->is_single_cpu(),   "left must be register");
  2636   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
  2637   assert(result->is_single_cpu(), "result must be register");
  2639   //  assert(left->destroys_register(), "check");
  2640   //  assert(right->destroys_register(), "check");
  2642   Register lreg = left->as_register();
  2643   Register dreg = result->as_register();
  2645   if (right->is_constant()) {
  2646     int divisor = right->as_constant_ptr()->as_jint();
  2647     assert(divisor > 0 && is_power_of_2(divisor), "must be");
  2648     if (code == lir_idiv) {
  2649       assert(lreg == rax, "must be rax,");
  2650       assert(temp->as_register() == rdx, "tmp register must be rdx");
  2651       __ cdql(); // sign extend into rdx:rax
  2652       if (divisor == 2) {
  2653         __ subl(lreg, rdx);
  2654       } else {
  2655         __ andl(rdx, divisor - 1);
  2656         __ addl(lreg, rdx);
  2658       __ sarl(lreg, log2_intptr(divisor));
  2659       move_regs(lreg, dreg);
  2660     } else if (code == lir_irem) {
  2661       Label done;
  2662       __ mov(dreg, lreg);
  2663       __ andl(dreg, 0x80000000 | (divisor - 1));
  2664       __ jcc(Assembler::positive, done);
  2665       __ decrement(dreg);
  2666       __ orl(dreg, ~(divisor - 1));
  2667       __ increment(dreg);
  2668       __ bind(done);
  2669     } else {
  2670       ShouldNotReachHere();
  2672   } else {
  2673     Register rreg = right->as_register();
  2674     assert(lreg == rax, "left register must be rax,");
  2675     assert(rreg != rdx, "right register must not be rdx");
  2676     assert(temp->as_register() == rdx, "tmp register must be rdx");
  2678     move_regs(lreg, rax);
  2680     int idivl_offset = __ corrected_idivl(rreg);
  2681     add_debug_info_for_div0(idivl_offset, info);
  2682     if (code == lir_irem) {
  2683       move_regs(rdx, dreg); // result is in rdx
  2684     } else {
  2685       move_regs(rax, dreg);
  2691 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  2692   if (opr1->is_single_cpu()) {
  2693     Register reg1 = opr1->as_register();
  2694     if (opr2->is_single_cpu()) {
  2695       // cpu register - cpu register
  2696       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2697         __ cmpptr(reg1, opr2->as_register());
  2698       } else {
  2699         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
  2700         __ cmpl(reg1, opr2->as_register());
  2702     } else if (opr2->is_stack()) {
  2703       // cpu register - stack
  2704       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2705         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2706       } else {
  2707         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2709     } else if (opr2->is_constant()) {
  2710       // cpu register - constant
  2711       LIR_Const* c = opr2->as_constant_ptr();
  2712       if (c->type() == T_INT) {
  2713         __ cmpl(reg1, c->as_jint());
  2714       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2715         // In 64bit oops are single register
  2716         jobject o = c->as_jobject();
  2717         if (o == NULL) {
  2718           __ cmpptr(reg1, (int32_t)NULL_WORD);
  2719         } else {
  2720 #ifdef _LP64
  2721           __ movoop(rscratch1, o);
  2722           __ cmpptr(reg1, rscratch1);
  2723 #else
  2724           __ cmpoop(reg1, c->as_jobject());
  2725 #endif // _LP64
  2727       } else {
  2728         fatal(err_msg("unexpected type: %s", basictype_to_str(c->type())));
  2730       // cpu register - address
  2731     } else if (opr2->is_address()) {
  2732       if (op->info() != NULL) {
  2733         add_debug_info_for_null_check_here(op->info());
  2735       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
  2736     } else {
  2737       ShouldNotReachHere();
  2740   } else if(opr1->is_double_cpu()) {
  2741     Register xlo = opr1->as_register_lo();
  2742     Register xhi = opr1->as_register_hi();
  2743     if (opr2->is_double_cpu()) {
  2744 #ifdef _LP64
  2745       __ cmpptr(xlo, opr2->as_register_lo());
  2746 #else
  2747       // cpu register - cpu register
  2748       Register ylo = opr2->as_register_lo();
  2749       Register yhi = opr2->as_register_hi();
  2750       __ subl(xlo, ylo);
  2751       __ sbbl(xhi, yhi);
  2752       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  2753         __ orl(xhi, xlo);
  2755 #endif // _LP64
  2756     } else if (opr2->is_constant()) {
  2757       // cpu register - constant 0
  2758       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
  2759 #ifdef _LP64
  2760       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
  2761 #else
  2762       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
  2763       __ orl(xhi, xlo);
  2764 #endif // _LP64
  2765     } else {
  2766       ShouldNotReachHere();
  2769   } else if (opr1->is_single_xmm()) {
  2770     XMMRegister reg1 = opr1->as_xmm_float_reg();
  2771     if (opr2->is_single_xmm()) {
  2772       // xmm register - xmm register
  2773       __ ucomiss(reg1, opr2->as_xmm_float_reg());
  2774     } else if (opr2->is_stack()) {
  2775       // xmm register - stack
  2776       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2777     } else if (opr2->is_constant()) {
  2778       // xmm register - constant
  2779       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
  2780     } else if (opr2->is_address()) {
  2781       // xmm register - address
  2782       if (op->info() != NULL) {
  2783         add_debug_info_for_null_check_here(op->info());
  2785       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
  2786     } else {
  2787       ShouldNotReachHere();
  2790   } else if (opr1->is_double_xmm()) {
  2791     XMMRegister reg1 = opr1->as_xmm_double_reg();
  2792     if (opr2->is_double_xmm()) {
  2793       // xmm register - xmm register
  2794       __ ucomisd(reg1, opr2->as_xmm_double_reg());
  2795     } else if (opr2->is_stack()) {
  2796       // xmm register - stack
  2797       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
  2798     } else if (opr2->is_constant()) {
  2799       // xmm register - constant
  2800       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
  2801     } else if (opr2->is_address()) {
  2802       // xmm register - address
  2803       if (op->info() != NULL) {
  2804         add_debug_info_for_null_check_here(op->info());
  2806       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
  2807     } else {
  2808       ShouldNotReachHere();
  2811   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
  2812     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
  2813     assert(opr2->is_fpu_register(), "both must be registers");
  2814     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2816   } else if (opr1->is_address() && opr2->is_constant()) {
  2817     LIR_Const* c = opr2->as_constant_ptr();
  2818 #ifdef _LP64
  2819     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2820       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
  2821       __ movoop(rscratch1, c->as_jobject());
  2823 #endif // LP64
  2824     if (op->info() != NULL) {
  2825       add_debug_info_for_null_check_here(op->info());
  2827     // special case: address - constant
  2828     LIR_Address* addr = opr1->as_address_ptr();
  2829     if (c->type() == T_INT) {
  2830       __ cmpl(as_Address(addr), c->as_jint());
  2831     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2832 #ifdef _LP64
  2833       // %%% Make this explode if addr isn't reachable until we figure out a
  2834       // better strategy by giving noreg as the temp for as_Address
  2835       __ cmpptr(rscratch1, as_Address(addr, noreg));
  2836 #else
  2837       __ cmpoop(as_Address(addr), c->as_jobject());
  2838 #endif // _LP64
  2839     } else {
  2840       ShouldNotReachHere();
  2843   } else {
  2844     ShouldNotReachHere();
  2848 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
  2849   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  2850     if (left->is_single_xmm()) {
  2851       assert(right->is_single_xmm(), "must match");
  2852       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2853     } else if (left->is_double_xmm()) {
  2854       assert(right->is_double_xmm(), "must match");
  2855       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2857     } else {
  2858       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
  2859       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
  2861       assert(left->fpu() == 0, "left must be on TOS");
  2862       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
  2863                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2865   } else {
  2866     assert(code == lir_cmp_l2i, "check");
  2867 #ifdef _LP64
  2868     Label done;
  2869     Register dest = dst->as_register();
  2870     __ cmpptr(left->as_register_lo(), right->as_register_lo());
  2871     __ movl(dest, -1);
  2872     __ jccb(Assembler::less, done);
  2873     __ set_byte_if_not_zero(dest);
  2874     __ movzbl(dest, dest);
  2875     __ bind(done);
  2876 #else
  2877     __ lcmp2int(left->as_register_hi(),
  2878                 left->as_register_lo(),
  2879                 right->as_register_hi(),
  2880                 right->as_register_lo());
  2881     move_regs(left->as_register_hi(), dst->as_register());
  2882 #endif // _LP64
  2887 void LIR_Assembler::align_call(LIR_Code code) {
  2888   if (os::is_MP()) {
  2889     // make sure that the displacement word of the call ends up word aligned
  2890     int offset = __ offset();
  2891     switch (code) {
  2892       case lir_static_call:
  2893       case lir_optvirtual_call:
  2894       case lir_dynamic_call:
  2895         offset += NativeCall::displacement_offset;
  2896         break;
  2897       case lir_icvirtual_call:
  2898         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
  2899       break;
  2900       case lir_virtual_call:  // currently, sparc-specific for niagara
  2901       default: ShouldNotReachHere();
  2903     while (offset++ % BytesPerWord != 0) {
  2904       __ nop();
  2910 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
  2911   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2912          "must be aligned");
  2913   __ call(AddressLiteral(op->addr(), rtype));
  2914   add_call_info(code_offset(), op->info());
  2918 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
  2919   __ ic_call(op->addr());
  2920   add_call_info(code_offset(), op->info());
  2921   assert(!os::is_MP() ||
  2922          (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
  2923          "must be aligned");
  2927 /* Currently, vtable-dispatch is only enabled for sparc platforms */
  2928 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
  2929   ShouldNotReachHere();
  2933 void LIR_Assembler::emit_static_call_stub() {
  2934   address call_pc = __ pc();
  2935   address stub = __ start_a_stub(call_stub_size);
  2936   if (stub == NULL) {
  2937     bailout("static call stub overflow");
  2938     return;
  2941   int start = __ offset();
  2942   if (os::is_MP()) {
  2943     // make sure that the displacement word of the call ends up word aligned
  2944     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
  2945     while (offset++ % BytesPerWord != 0) {
  2946       __ nop();
  2949   __ relocate(static_stub_Relocation::spec(call_pc));
  2950   __ mov_metadata(rbx, (Metadata*)NULL);
  2951   // must be set to -1 at code generation time
  2952   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
  2953   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
  2954   __ jump(RuntimeAddress(__ pc()));
  2956   assert(__ offset() - start <= call_stub_size, "stub too big");
  2957   __ end_a_stub();
  2961 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2962   assert(exceptionOop->as_register() == rax, "must match");
  2963   assert(exceptionPC->as_register() == rdx, "must match");
  2965   // exception object is not added to oop map by LinearScan
  2966   // (LinearScan assumes that no oops are in fixed registers)
  2967   info->add_register_oop(exceptionOop);
  2968   Runtime1::StubID unwind_id;
  2970   // get current pc information
  2971   // pc is only needed if the method has an exception handler, the unwind code does not need it.
  2972   int pc_for_athrow_offset = __ offset();
  2973   InternalAddress pc_for_athrow(__ pc());
  2974   __ lea(exceptionPC->as_register(), pc_for_athrow);
  2975   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2977   __ verify_not_null_oop(rax);
  2978   // search an exception handler (rax: exception oop, rdx: throwing pc)
  2979   if (compilation()->has_fpu_code()) {
  2980     unwind_id = Runtime1::handle_exception_id;
  2981   } else {
  2982     unwind_id = Runtime1::handle_exception_nofpu_id;
  2984   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
  2986   // enough room for two byte trap
  2987   __ nop();
  2991 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2992   assert(exceptionOop->as_register() == rax, "must match");
  2994   __ jmp(_unwind_handler_entry);
  2998 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  3000   // optimized version for linear scan:
  3001   // * count must be already in ECX (guaranteed by LinearScan)
  3002   // * left and dest must be equal
  3003   // * tmp must be unused
  3004   assert(count->as_register() == SHIFT_count, "count must be in ECX");
  3005   assert(left == dest, "left and dest must be equal");
  3006   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
  3008   if (left->is_single_cpu()) {
  3009     Register value = left->as_register();
  3010     assert(value != SHIFT_count, "left cannot be ECX");
  3012     switch (code) {
  3013       case lir_shl:  __ shll(value); break;
  3014       case lir_shr:  __ sarl(value); break;
  3015       case lir_ushr: __ shrl(value); break;
  3016       default: ShouldNotReachHere();
  3018   } else if (left->is_double_cpu()) {
  3019     Register lo = left->as_register_lo();
  3020     Register hi = left->as_register_hi();
  3021     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
  3022 #ifdef _LP64
  3023     switch (code) {
  3024       case lir_shl:  __ shlptr(lo);        break;
  3025       case lir_shr:  __ sarptr(lo);        break;
  3026       case lir_ushr: __ shrptr(lo);        break;
  3027       default: ShouldNotReachHere();
  3029 #else
  3031     switch (code) {
  3032       case lir_shl:  __ lshl(hi, lo);        break;
  3033       case lir_shr:  __ lshr(hi, lo, true);  break;
  3034       case lir_ushr: __ lshr(hi, lo, false); break;
  3035       default: ShouldNotReachHere();
  3037 #endif // LP64
  3038   } else {
  3039     ShouldNotReachHere();
  3044 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  3045   if (dest->is_single_cpu()) {
  3046     // first move left into dest so that left is not destroyed by the shift
  3047     Register value = dest->as_register();
  3048     count = count & 0x1F; // Java spec
  3050     move_regs(left->as_register(), value);
  3051     switch (code) {
  3052       case lir_shl:  __ shll(value, count); break;
  3053       case lir_shr:  __ sarl(value, count); break;
  3054       case lir_ushr: __ shrl(value, count); break;
  3055       default: ShouldNotReachHere();
  3057   } else if (dest->is_double_cpu()) {
  3058 #ifndef _LP64
  3059     Unimplemented();
  3060 #else
  3061     // first move left into dest so that left is not destroyed by the shift
  3062     Register value = dest->as_register_lo();
  3063     count = count & 0x1F; // Java spec
  3065     move_regs(left->as_register_lo(), value);
  3066     switch (code) {
  3067       case lir_shl:  __ shlptr(value, count); break;
  3068       case lir_shr:  __ sarptr(value, count); break;
  3069       case lir_ushr: __ shrptr(value, count); break;
  3070       default: ShouldNotReachHere();
  3072 #endif // _LP64
  3073   } else {
  3074     ShouldNotReachHere();
  3079 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
  3080   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3081   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3082   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3083   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
  3087 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
  3088   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3089   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3090   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3091   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
  3095 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
  3096   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3097   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3098   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3099   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
  3103 // This code replaces a call to arraycopy; no exception may
  3104 // be thrown in this code, they must be thrown in the System.arraycopy
  3105 // activation frame; we could save some checks if this would not be the case
  3106 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  3107   ciArrayKlass* default_type = op->expected_type();
  3108   Register src = op->src()->as_register();
  3109   Register dst = op->dst()->as_register();
  3110   Register src_pos = op->src_pos()->as_register();
  3111   Register dst_pos = op->dst_pos()->as_register();
  3112   Register length  = op->length()->as_register();
  3113   Register tmp = op->tmp()->as_register();
  3115   CodeStub* stub = op->stub();
  3116   int flags = op->flags();
  3117   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  3118   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  3120   // if we don't know anything, just go through the generic arraycopy
  3121   if (default_type == NULL) {
  3122     Label done;
  3123     // save outgoing arguments on stack in case call to System.arraycopy is needed
  3124     // HACK ALERT. This code used to push the parameters in a hardwired fashion
  3125     // for interpreter calling conventions. Now we have to do it in new style conventions.
  3126     // For the moment until C1 gets the new register allocator I just force all the
  3127     // args to the right place (except the register args) and then on the back side
  3128     // reload the register args properly if we go slow path. Yuck
  3130     // These are proper for the calling convention
  3131     store_parameter(length, 2);
  3132     store_parameter(dst_pos, 1);
  3133     store_parameter(dst, 0);
  3135     // these are just temporary placements until we need to reload
  3136     store_parameter(src_pos, 3);
  3137     store_parameter(src, 4);
  3138     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
  3140     address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
  3142     address copyfunc_addr = StubRoutines::generic_arraycopy();
  3144     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
  3145 #ifdef _LP64
  3146     // The arguments are in java calling convention so we can trivially shift them to C
  3147     // convention
  3148     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3149     __ mov(c_rarg0, j_rarg0);
  3150     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3151     __ mov(c_rarg1, j_rarg1);
  3152     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
  3153     __ mov(c_rarg2, j_rarg2);
  3154     assert_different_registers(c_rarg3, j_rarg4);
  3155     __ mov(c_rarg3, j_rarg3);
  3156 #ifdef _WIN64
  3157     // Allocate abi space for args but be sure to keep stack aligned
  3158     __ subptr(rsp, 6*wordSize);
  3159     store_parameter(j_rarg4, 4);
  3160     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3161       __ call(RuntimeAddress(C_entry));
  3162     } else {
  3163 #ifndef PRODUCT
  3164       if (PrintC1Statistics) {
  3165         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3167 #endif
  3168       __ call(RuntimeAddress(copyfunc_addr));
  3170     __ addptr(rsp, 6*wordSize);
  3171 #else
  3172     __ mov(c_rarg4, j_rarg4);
  3173     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3174       __ call(RuntimeAddress(C_entry));
  3175     } else {
  3176 #ifndef PRODUCT
  3177       if (PrintC1Statistics) {
  3178         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3180 #endif
  3181       __ call(RuntimeAddress(copyfunc_addr));
  3183 #endif // _WIN64
  3184 #else
  3185     __ push(length);
  3186     __ push(dst_pos);
  3187     __ push(dst);
  3188     __ push(src_pos);
  3189     __ push(src);
  3191     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3192       __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
  3193     } else {
  3194 #ifndef PRODUCT
  3195       if (PrintC1Statistics) {
  3196         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3198 #endif
  3199       __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
  3202 #endif // _LP64
  3204     __ cmpl(rax, 0);
  3205     __ jcc(Assembler::equal, *stub->continuation());
  3207     if (copyfunc_addr != NULL) {
  3208       __ mov(tmp, rax);
  3209       __ xorl(tmp, -1);
  3212     // Reload values from the stack so they are where the stub
  3213     // expects them.
  3214     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3215     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3216     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3217     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3218     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3220     if (copyfunc_addr != NULL) {
  3221       __ subl(length, tmp);
  3222       __ addl(src_pos, tmp);
  3223       __ addl(dst_pos, tmp);
  3225     __ jmp(*stub->entry());
  3227     __ bind(*stub->continuation());
  3228     return;
  3231   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
  3233   int elem_size = type2aelembytes(basic_type);
  3234   int shift_amount;
  3235   Address::ScaleFactor scale;
  3237   switch (elem_size) {
  3238     case 1 :
  3239       shift_amount = 0;
  3240       scale = Address::times_1;
  3241       break;
  3242     case 2 :
  3243       shift_amount = 1;
  3244       scale = Address::times_2;
  3245       break;
  3246     case 4 :
  3247       shift_amount = 2;
  3248       scale = Address::times_4;
  3249       break;
  3250     case 8 :
  3251       shift_amount = 3;
  3252       scale = Address::times_8;
  3253       break;
  3254     default:
  3255       ShouldNotReachHere();
  3258   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
  3259   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
  3260   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
  3261   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
  3263   // length and pos's are all sign extended at this point on 64bit
  3265   // test for NULL
  3266   if (flags & LIR_OpArrayCopy::src_null_check) {
  3267     __ testptr(src, src);
  3268     __ jcc(Assembler::zero, *stub->entry());
  3270   if (flags & LIR_OpArrayCopy::dst_null_check) {
  3271     __ testptr(dst, dst);
  3272     __ jcc(Assembler::zero, *stub->entry());
  3275   // check if negative
  3276   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  3277     __ testl(src_pos, src_pos);
  3278     __ jcc(Assembler::less, *stub->entry());
  3280   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  3281     __ testl(dst_pos, dst_pos);
  3282     __ jcc(Assembler::less, *stub->entry());
  3285   if (flags & LIR_OpArrayCopy::src_range_check) {
  3286     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
  3287     __ cmpl(tmp, src_length_addr);
  3288     __ jcc(Assembler::above, *stub->entry());
  3290   if (flags & LIR_OpArrayCopy::dst_range_check) {
  3291     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
  3292     __ cmpl(tmp, dst_length_addr);
  3293     __ jcc(Assembler::above, *stub->entry());
  3296   if (flags & LIR_OpArrayCopy::length_positive_check) {
  3297     __ testl(length, length);
  3298     __ jcc(Assembler::less, *stub->entry());
  3299     __ jcc(Assembler::zero, *stub->continuation());
  3302 #ifdef _LP64
  3303   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
  3304   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
  3305 #endif
  3307   if (flags & LIR_OpArrayCopy::type_check) {
  3308     // We don't know the array types are compatible
  3309     if (basic_type != T_OBJECT) {
  3310       // Simple test for basic type arrays
  3311       if (UseCompressedClassPointers) {
  3312         __ movl(tmp, src_klass_addr);
  3313         __ cmpl(tmp, dst_klass_addr);
  3314       } else {
  3315         __ movptr(tmp, src_klass_addr);
  3316         __ cmpptr(tmp, dst_klass_addr);
  3318       __ jcc(Assembler::notEqual, *stub->entry());
  3319     } else {
  3320       // For object arrays, if src is a sub class of dst then we can
  3321       // safely do the copy.
  3322       Label cont, slow;
  3324       __ push(src);
  3325       __ push(dst);
  3327       __ load_klass(src, src);
  3328       __ load_klass(dst, dst);
  3330       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
  3332       __ push(src);
  3333       __ push(dst);
  3334       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  3335       __ pop(dst);
  3336       __ pop(src);
  3338       __ cmpl(src, 0);
  3339       __ jcc(Assembler::notEqual, cont);
  3341       __ bind(slow);
  3342       __ pop(dst);
  3343       __ pop(src);
  3345       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  3346       if (copyfunc_addr != NULL) { // use stub if available
  3347         // src is not a sub class of dst so we have to do a
  3348         // per-element check.
  3350         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
  3351         if ((flags & mask) != mask) {
  3352           // Check that at least both of them object arrays.
  3353           assert(flags & mask, "one of the two should be known to be an object array");
  3355           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
  3356             __ load_klass(tmp, src);
  3357           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
  3358             __ load_klass(tmp, dst);
  3360           int lh_offset = in_bytes(Klass::layout_helper_offset());
  3361           Address klass_lh_addr(tmp, lh_offset);
  3362           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  3363           __ cmpl(klass_lh_addr, objArray_lh);
  3364           __ jcc(Assembler::notEqual, *stub->entry());
  3367        // Spill because stubs can use any register they like and it's
  3368        // easier to restore just those that we care about.
  3369        store_parameter(dst, 0);
  3370        store_parameter(dst_pos, 1);
  3371        store_parameter(length, 2);
  3372        store_parameter(src_pos, 3);
  3373        store_parameter(src, 4);
  3375 #ifndef _LP64
  3376         __ movptr(tmp, dst_klass_addr);
  3377         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
  3378         __ push(tmp);
  3379         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
  3380         __ push(tmp);
  3381         __ push(length);
  3382         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3383         __ push(tmp);
  3384         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3385         __ push(tmp);
  3387         __ call_VM_leaf(copyfunc_addr, 5);
  3388 #else
  3389         __ movl2ptr(length, length); //higher 32bits must be null
  3391         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3392         assert_different_registers(c_rarg0, dst, dst_pos, length);
  3393         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3394         assert_different_registers(c_rarg1, dst, length);
  3396         __ mov(c_rarg2, length);
  3397         assert_different_registers(c_rarg2, dst);
  3399 #ifdef _WIN64
  3400         // Allocate abi space for args but be sure to keep stack aligned
  3401         __ subptr(rsp, 6*wordSize);
  3402         __ load_klass(c_rarg3, dst);
  3403         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
  3404         store_parameter(c_rarg3, 4);
  3405         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
  3406         __ call(RuntimeAddress(copyfunc_addr));
  3407         __ addptr(rsp, 6*wordSize);
  3408 #else
  3409         __ load_klass(c_rarg4, dst);
  3410         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
  3411         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
  3412         __ call(RuntimeAddress(copyfunc_addr));
  3413 #endif
  3415 #endif
  3417 #ifndef PRODUCT
  3418         if (PrintC1Statistics) {
  3419           Label failed;
  3420           __ testl(rax, rax);
  3421           __ jcc(Assembler::notZero, failed);
  3422           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
  3423           __ bind(failed);
  3425 #endif
  3427         __ testl(rax, rax);
  3428         __ jcc(Assembler::zero, *stub->continuation());
  3430 #ifndef PRODUCT
  3431         if (PrintC1Statistics) {
  3432           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
  3434 #endif
  3436         __ mov(tmp, rax);
  3438         __ xorl(tmp, -1);
  3440         // Restore previously spilled arguments
  3441         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3442         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3443         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3444         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3445         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3448         __ subl(length, tmp);
  3449         __ addl(src_pos, tmp);
  3450         __ addl(dst_pos, tmp);
  3453       __ jmp(*stub->entry());
  3455       __ bind(cont);
  3456       __ pop(dst);
  3457       __ pop(src);
  3461 #ifdef ASSERT
  3462   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  3463     // Sanity check the known type with the incoming class.  For the
  3464     // primitive case the types must match exactly with src.klass and
  3465     // dst.klass each exactly matching the default type.  For the
  3466     // object array case, if no type check is needed then either the
  3467     // dst type is exactly the expected type and the src type is a
  3468     // subtype which we can't check or src is the same array as dst
  3469     // but not necessarily exactly of type default_type.
  3470     Label known_ok, halt;
  3471     __ mov_metadata(tmp, default_type->constant_encoding());
  3472 #ifdef _LP64
  3473     if (UseCompressedClassPointers) {
  3474       __ encode_klass_not_null(tmp);
  3476 #endif
  3478     if (basic_type != T_OBJECT) {
  3480       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
  3481       else                   __ cmpptr(tmp, dst_klass_addr);
  3482       __ jcc(Assembler::notEqual, halt);
  3483       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
  3484       else                   __ cmpptr(tmp, src_klass_addr);
  3485       __ jcc(Assembler::equal, known_ok);
  3486     } else {
  3487       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
  3488       else                   __ cmpptr(tmp, dst_klass_addr);
  3489       __ jcc(Assembler::equal, known_ok);
  3490       __ cmpptr(src, dst);
  3491       __ jcc(Assembler::equal, known_ok);
  3493     __ bind(halt);
  3494     __ stop("incorrect type information in arraycopy");
  3495     __ bind(known_ok);
  3497 #endif
  3499 #ifndef PRODUCT
  3500   if (PrintC1Statistics) {
  3501     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
  3503 #endif
  3505 #ifdef _LP64
  3506   assert_different_registers(c_rarg0, dst, dst_pos, length);
  3507   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3508   assert_different_registers(c_rarg1, length);
  3509   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3510   __ mov(c_rarg2, length);
  3512 #else
  3513   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3514   store_parameter(tmp, 0);
  3515   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3516   store_parameter(tmp, 1);
  3517   store_parameter(length, 2);
  3518 #endif // _LP64
  3520   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
  3521   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
  3522   const char *name;
  3523   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
  3524   __ call_VM_leaf(entry, 0);
  3526   __ bind(*stub->continuation());
  3529 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
  3530   assert(op->crc()->is_single_cpu(),  "crc must be register");
  3531   assert(op->val()->is_single_cpu(),  "byte value must be register");
  3532   assert(op->result_opr()->is_single_cpu(), "result must be register");
  3533   Register crc = op->crc()->as_register();
  3534   Register val = op->val()->as_register();
  3535   Register res = op->result_opr()->as_register();
  3537   assert_different_registers(val, crc, res);
  3539   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
  3540   __ notl(crc); // ~crc
  3541   __ update_byte_crc32(crc, val, res);
  3542   __ notl(crc); // ~crc
  3543   __ mov(res, crc);
  3546 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  3547   Register obj = op->obj_opr()->as_register();  // may not be an oop
  3548   Register hdr = op->hdr_opr()->as_register();
  3549   Register lock = op->lock_opr()->as_register();
  3550   if (!UseFastLocking) {
  3551     __ jmp(*op->stub()->entry());
  3552   } else if (op->code() == lir_lock) {
  3553     Register scratch = noreg;
  3554     if (UseBiasedLocking) {
  3555       scratch = op->scratch_opr()->as_register();
  3557     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3558     // add debug info for NullPointerException only if one is possible
  3559     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
  3560     if (op->info() != NULL) {
  3561       add_debug_info_for_null_check(null_check_offset, op->info());
  3563     // done
  3564   } else if (op->code() == lir_unlock) {
  3565     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3566     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  3567   } else {
  3568     Unimplemented();
  3570   __ bind(*op->stub()->continuation());
  3574 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  3575   ciMethod* method = op->profiled_method();
  3576   int bci          = op->profiled_bci();
  3577   ciMethod* callee = op->profiled_callee();
  3579   // Update counter for all call types
  3580   ciMethodData* md = method->method_data_or_null();
  3581   assert(md != NULL, "Sanity");
  3582   ciProfileData* data = md->bci_to_data(bci);
  3583   assert(data->is_CounterData(), "need CounterData for calls");
  3584   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3585   Register mdo  = op->mdo()->as_register();
  3586   __ mov_metadata(mdo, md->constant_encoding());
  3587   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  3588   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3589   const bool callee_is_static = callee->is_loaded() && callee->is_static();
  3590   // Perform additional virtual call profiling for invokevirtual and
  3591   // invokeinterface bytecodes
  3592   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3593       !callee_is_static &&  // required for optimized MH invokes
  3594       C1ProfileVirtualCalls) {
  3595     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3596     Register recv = op->recv()->as_register();
  3597     assert_different_registers(mdo, recv);
  3598     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3599     ciKlass* known_klass = op->known_holder();
  3600     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3601       // We know the type that will be seen at this call site; we can
  3602       // statically update the MethodData* rather than needing to do
  3603       // dynamic tests on the receiver type
  3605       // NOTE: we should probably put a lock around this search to
  3606       // avoid collisions by concurrent compilations
  3607       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3608       uint i;
  3609       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3610         ciKlass* receiver = vc_data->receiver(i);
  3611         if (known_klass->equals(receiver)) {
  3612           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3613           __ addptr(data_addr, DataLayout::counter_increment);
  3614           return;
  3618       // Receiver type not found in profile data; select an empty slot
  3620       // Note that this is less efficient than it should be because it
  3621       // always does a write to the receiver part of the
  3622       // VirtualCallData rather than just the first time
  3623       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3624         ciKlass* receiver = vc_data->receiver(i);
  3625         if (receiver == NULL) {
  3626           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3627           __ mov_metadata(recv_addr, known_klass->constant_encoding());
  3628           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3629           __ addptr(data_addr, DataLayout::counter_increment);
  3630           return;
  3633     } else {
  3634       __ load_klass(recv, recv);
  3635       Label update_done;
  3636       type_profile_helper(mdo, md, data, recv, &update_done);
  3637       // Receiver did not match any saved receiver and there is no empty row for it.
  3638       // Increment total counter to indicate polymorphic case.
  3639       __ addptr(counter_addr, DataLayout::counter_increment);
  3641       __ bind(update_done);
  3643   } else {
  3644     // Static call
  3645     __ addptr(counter_addr, DataLayout::counter_increment);
  3649 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
  3650   Register obj = op->obj()->as_register();
  3651   Register tmp = op->tmp()->as_pointer_register();
  3652   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
  3653   ciKlass* exact_klass = op->exact_klass();
  3654   intptr_t current_klass = op->current_klass();
  3655   bool not_null = op->not_null();
  3656   bool no_conflict = op->no_conflict();
  3658   Label update, next, none;
  3660   bool do_null = !not_null;
  3661   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
  3662   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
  3664   assert(do_null || do_update, "why are we here?");
  3665   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
  3667   __ verify_oop(obj);
  3669   if (tmp != obj) {
  3670     __ mov(tmp, obj);
  3672   if (do_null) {
  3673     __ testptr(tmp, tmp);
  3674     __ jccb(Assembler::notZero, update);
  3675     if (!TypeEntries::was_null_seen(current_klass)) {
  3676       __ orptr(mdo_addr, TypeEntries::null_seen);
  3678     if (do_update) {
  3679 #ifndef ASSERT
  3680       __ jmpb(next);
  3682 #else
  3683       __ jmp(next);
  3685   } else {
  3686     __ testptr(tmp, tmp);
  3687     __ jccb(Assembler::notZero, update);
  3688     __ stop("unexpect null obj");
  3689 #endif
  3692   __ bind(update);
  3694   if (do_update) {
  3695 #ifdef ASSERT
  3696     if (exact_klass != NULL) {
  3697       Label ok;
  3698       __ load_klass(tmp, tmp);
  3699       __ push(tmp);
  3700       __ mov_metadata(tmp, exact_klass->constant_encoding());
  3701       __ cmpptr(tmp, Address(rsp, 0));
  3702       __ jccb(Assembler::equal, ok);
  3703       __ stop("exact klass and actual klass differ");
  3704       __ bind(ok);
  3705       __ pop(tmp);
  3707 #endif
  3708     if (!no_conflict) {
  3709       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
  3710         if (exact_klass != NULL) {
  3711           __ mov_metadata(tmp, exact_klass->constant_encoding());
  3712         } else {
  3713           __ load_klass(tmp, tmp);
  3716         __ xorptr(tmp, mdo_addr);
  3717         __ testptr(tmp, TypeEntries::type_klass_mask);
  3718         // klass seen before, nothing to do. The unknown bit may have been
  3719         // set already but no need to check.
  3720         __ jccb(Assembler::zero, next);
  3722         __ testptr(tmp, TypeEntries::type_unknown);
  3723         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
  3725         if (TypeEntries::is_type_none(current_klass)) {
  3726           __ cmpptr(mdo_addr, 0);
  3727           __ jccb(Assembler::equal, none);
  3728           __ cmpptr(mdo_addr, TypeEntries::null_seen);
  3729           __ jccb(Assembler::equal, none);
  3730           // There is a chance that the checks above (re-reading profiling
  3731           // data from memory) fail if another thread has just set the
  3732           // profiling to this obj's klass
  3733           __ xorptr(tmp, mdo_addr);
  3734           __ testptr(tmp, TypeEntries::type_klass_mask);
  3735           __ jccb(Assembler::zero, next);
  3737       } else {
  3738         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
  3739                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
  3741         __ movptr(tmp, mdo_addr);
  3742         __ testptr(tmp, TypeEntries::type_unknown);
  3743         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
  3746       // different than before. Cannot keep accurate profile.
  3747       __ orptr(mdo_addr, TypeEntries::type_unknown);
  3749       if (TypeEntries::is_type_none(current_klass)) {
  3750         __ jmpb(next);
  3752         __ bind(none);
  3753         // first time here. Set profile type.
  3754         __ movptr(mdo_addr, tmp);
  3756     } else {
  3757       // There's a single possible klass at this profile point
  3758       assert(exact_klass != NULL, "should be");
  3759       if (TypeEntries::is_type_none(current_klass)) {
  3760         __ mov_metadata(tmp, exact_klass->constant_encoding());
  3761         __ xorptr(tmp, mdo_addr);
  3762         __ testptr(tmp, TypeEntries::type_klass_mask);
  3763 #ifdef ASSERT
  3764         __ jcc(Assembler::zero, next);
  3767           Label ok;
  3768           __ push(tmp);
  3769           __ cmpptr(mdo_addr, 0);
  3770           __ jcc(Assembler::equal, ok);
  3771           __ cmpptr(mdo_addr, TypeEntries::null_seen);
  3772           __ jcc(Assembler::equal, ok);
  3773           // may have been set by another thread
  3774           __ mov_metadata(tmp, exact_klass->constant_encoding());
  3775           __ xorptr(tmp, mdo_addr);
  3776           __ testptr(tmp, TypeEntries::type_mask);
  3777           __ jcc(Assembler::zero, ok);
  3779           __ stop("unexpected profiling mismatch");
  3780           __ bind(ok);
  3781           __ pop(tmp);
  3783 #else
  3784         __ jccb(Assembler::zero, next);
  3785 #endif
  3786         // first time here. Set profile type.
  3787         __ movptr(mdo_addr, tmp);
  3788       } else {
  3789         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
  3790                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
  3792         __ movptr(tmp, mdo_addr);
  3793         __ testptr(tmp, TypeEntries::type_unknown);
  3794         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
  3796         __ orptr(mdo_addr, TypeEntries::type_unknown);
  3800     __ bind(next);
  3804 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
  3805   Unimplemented();
  3809 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
  3810   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
  3814 void LIR_Assembler::align_backward_branch_target() {
  3815   __ align(BytesPerWord);
  3819 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3820   if (left->is_single_cpu()) {
  3821     __ negl(left->as_register());
  3822     move_regs(left->as_register(), dest->as_register());
  3824   } else if (left->is_double_cpu()) {
  3825     Register lo = left->as_register_lo();
  3826 #ifdef _LP64
  3827     Register dst = dest->as_register_lo();
  3828     __ movptr(dst, lo);
  3829     __ negptr(dst);
  3830 #else
  3831     Register hi = left->as_register_hi();
  3832     __ lneg(hi, lo);
  3833     if (dest->as_register_lo() == hi) {
  3834       assert(dest->as_register_hi() != lo, "destroying register");
  3835       move_regs(hi, dest->as_register_hi());
  3836       move_regs(lo, dest->as_register_lo());
  3837     } else {
  3838       move_regs(lo, dest->as_register_lo());
  3839       move_regs(hi, dest->as_register_hi());
  3841 #endif // _LP64
  3843   } else if (dest->is_single_xmm()) {
  3844     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
  3845       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
  3847     __ xorps(dest->as_xmm_float_reg(),
  3848              ExternalAddress((address)float_signflip_pool));
  3850   } else if (dest->is_double_xmm()) {
  3851     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
  3852       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
  3854     __ xorpd(dest->as_xmm_double_reg(),
  3855              ExternalAddress((address)double_signflip_pool));
  3857   } else if (left->is_single_fpu() || left->is_double_fpu()) {
  3858     assert(left->fpu() == 0, "arg must be on TOS");
  3859     assert(dest->fpu() == 0, "dest must be TOS");
  3860     __ fchs();
  3862   } else {
  3863     ShouldNotReachHere();
  3868 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
  3869   assert(addr->is_address() && dest->is_register(), "check");
  3870   Register reg;
  3871   reg = dest->as_pointer_register();
  3872   __ lea(reg, as_Address(addr->as_address_ptr()));
  3877 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3878   assert(!tmp->is_valid(), "don't need temporary");
  3879   __ call(RuntimeAddress(dest));
  3880   if (info != NULL) {
  3881     add_call_info_here(info);
  3886 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3887   assert(type == T_LONG, "only for volatile long fields");
  3889   if (info != NULL) {
  3890     add_debug_info_for_null_check_here(info);
  3893   if (src->is_double_xmm()) {
  3894     if (dest->is_double_cpu()) {
  3895 #ifdef _LP64
  3896       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
  3897 #else
  3898       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
  3899       __ psrlq(src->as_xmm_double_reg(), 32);
  3900       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
  3901 #endif // _LP64
  3902     } else if (dest->is_double_stack()) {
  3903       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
  3904     } else if (dest->is_address()) {
  3905       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
  3906     } else {
  3907       ShouldNotReachHere();
  3910   } else if (dest->is_double_xmm()) {
  3911     if (src->is_double_stack()) {
  3912       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
  3913     } else if (src->is_address()) {
  3914       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
  3915     } else {
  3916       ShouldNotReachHere();
  3919   } else if (src->is_double_fpu()) {
  3920     assert(src->fpu_regnrLo() == 0, "must be TOS");
  3921     if (dest->is_double_stack()) {
  3922       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
  3923     } else if (dest->is_address()) {
  3924       __ fistp_d(as_Address(dest->as_address_ptr()));
  3925     } else {
  3926       ShouldNotReachHere();
  3929   } else if (dest->is_double_fpu()) {
  3930     assert(dest->fpu_regnrLo() == 0, "must be TOS");
  3931     if (src->is_double_stack()) {
  3932       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
  3933     } else if (src->is_address()) {
  3934       __ fild_d(as_Address(src->as_address_ptr()));
  3935     } else {
  3936       ShouldNotReachHere();
  3938   } else {
  3939     ShouldNotReachHere();
  3943 #ifdef ASSERT
  3944 // emit run-time assertion
  3945 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
  3946   assert(op->code() == lir_assert, "must be");
  3948   if (op->in_opr1()->is_valid()) {
  3949     assert(op->in_opr2()->is_valid(), "both operands must be valid");
  3950     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
  3951   } else {
  3952     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
  3953     assert(op->condition() == lir_cond_always, "no other conditions allowed");
  3956   Label ok;
  3957   if (op->condition() != lir_cond_always) {
  3958     Assembler::Condition acond = Assembler::zero;
  3959     switch (op->condition()) {
  3960       case lir_cond_equal:        acond = Assembler::equal;       break;
  3961       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
  3962       case lir_cond_less:         acond = Assembler::less;        break;
  3963       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
  3964       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
  3965       case lir_cond_greater:      acond = Assembler::greater;     break;
  3966       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
  3967       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
  3968       default:                    ShouldNotReachHere();
  3970     __ jcc(acond, ok);
  3972   if (op->halt()) {
  3973     const char* str = __ code_string(op->msg());
  3974     __ stop(str);
  3975   } else {
  3976     breakpoint();
  3978   __ bind(ok);
  3980 #endif
  3982 void LIR_Assembler::membar() {
  3983   // QQQ sparc TSO uses this,
  3984   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3987 void LIR_Assembler::membar_acquire() {
  3988   // No x86 machines currently require load fences
  3989   // __ load_fence();
  3992 void LIR_Assembler::membar_release() {
  3993   // No x86 machines currently require store fences
  3994   // __ store_fence();
  3997 void LIR_Assembler::membar_loadload() {
  3998   // no-op
  3999   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
  4002 void LIR_Assembler::membar_storestore() {
  4003   // no-op
  4004   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
  4007 void LIR_Assembler::membar_loadstore() {
  4008   // no-op
  4009   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
  4012 void LIR_Assembler::membar_storeload() {
  4013   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  4016 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  4017   assert(result_reg->is_register(), "check");
  4018 #ifdef _LP64
  4019   // __ get_thread(result_reg->as_register_lo());
  4020   __ mov(result_reg->as_register(), r15_thread);
  4021 #else
  4022   __ get_thread(result_reg->as_register());
  4023 #endif // _LP64
  4027 void LIR_Assembler::peephole(LIR_List*) {
  4028   // do nothing for now
  4031 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
  4032   assert(data == dest, "xchg/xadd uses only 2 operands");
  4034   if (data->type() == T_INT) {
  4035     if (code == lir_xadd) {
  4036       if (os::is_MP()) {
  4037         __ lock();
  4039       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
  4040     } else {
  4041       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
  4043   } else if (data->is_oop()) {
  4044     assert (code == lir_xchg, "xadd for oops");
  4045     Register obj = data->as_register();
  4046 #ifdef _LP64
  4047     if (UseCompressedOops) {
  4048       __ encode_heap_oop(obj);
  4049       __ xchgl(obj, as_Address(src->as_address_ptr()));
  4050       __ decode_heap_oop(obj);
  4051     } else {
  4052       __ xchgptr(obj, as_Address(src->as_address_ptr()));
  4054 #else
  4055     __ xchgl(obj, as_Address(src->as_address_ptr()));
  4056 #endif
  4057   } else if (data->type() == T_LONG) {
  4058 #ifdef _LP64
  4059     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
  4060     if (code == lir_xadd) {
  4061       if (os::is_MP()) {
  4062         __ lock();
  4064       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
  4065     } else {
  4066       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
  4068 #else
  4069     ShouldNotReachHere();
  4070 #endif
  4071   } else {
  4072     ShouldNotReachHere();
  4076 #undef __

mercurial