src/share/classes/com/sun/tools/javac/code/Types.java

Tue, 09 Oct 2012 19:31:58 -0700

author
jjg
date
Tue, 09 Oct 2012 19:31:58 -0700
changeset 1358
fc123bdeddb8
parent 1357
c75be5bc5283
child 1374
c002fdee76fd
permissions
-rw-r--r--

8000208: fix langtools javadoc comment issues
Reviewed-by: bpatel, mcimadamore

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.code;
    28 import java.lang.ref.SoftReference;
    29 import java.util.*;
    31 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
    32 import com.sun.tools.javac.code.Lint.LintCategory;
    33 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
    34 import com.sun.tools.javac.comp.Check;
    35 import com.sun.tools.javac.jvm.ClassReader;
    36 import com.sun.tools.javac.util.*;
    37 import com.sun.tools.javac.util.List;
    38 import static com.sun.tools.javac.code.BoundKind.*;
    39 import static com.sun.tools.javac.code.Flags.*;
    40 import static com.sun.tools.javac.code.Scope.*;
    41 import static com.sun.tools.javac.code.Symbol.*;
    42 import static com.sun.tools.javac.code.Type.*;
    43 import static com.sun.tools.javac.code.TypeTags.*;
    44 import static com.sun.tools.javac.util.ListBuffer.lb;
    46 /**
    47  * Utility class containing various operations on types.
    48  *
    49  * <p>Unless other names are more illustrative, the following naming
    50  * conventions should be observed in this file:
    51  *
    52  * <dl>
    53  * <dt>t</dt>
    54  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
    55  * <dt>s</dt>
    56  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
    57  * <dt>ts</dt>
    58  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
    59  * <dt>ss</dt>
    60  * <dd>A second list of types should be named ss.</dd>
    61  * </dl>
    62  *
    63  * <p><b>This is NOT part of any supported API.
    64  * If you write code that depends on this, you do so at your own risk.
    65  * This code and its internal interfaces are subject to change or
    66  * deletion without notice.</b>
    67  */
    68 public class Types {
    69     protected static final Context.Key<Types> typesKey =
    70         new Context.Key<Types>();
    72     final Symtab syms;
    73     final JavacMessages messages;
    74     final Names names;
    75     final boolean allowBoxing;
    76     final boolean allowCovariantReturns;
    77     final boolean allowObjectToPrimitiveCast;
    78     final ClassReader reader;
    79     final Check chk;
    80     JCDiagnostic.Factory diags;
    81     List<Warner> warnStack = List.nil();
    82     final Name capturedName;
    83     private final FunctionDescriptorLookupError functionDescriptorLookupError;
    85     // <editor-fold defaultstate="collapsed" desc="Instantiating">
    86     public static Types instance(Context context) {
    87         Types instance = context.get(typesKey);
    88         if (instance == null)
    89             instance = new Types(context);
    90         return instance;
    91     }
    93     protected Types(Context context) {
    94         context.put(typesKey, this);
    95         syms = Symtab.instance(context);
    96         names = Names.instance(context);
    97         Source source = Source.instance(context);
    98         allowBoxing = source.allowBoxing();
    99         allowCovariantReturns = source.allowCovariantReturns();
   100         allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
   101         reader = ClassReader.instance(context);
   102         chk = Check.instance(context);
   103         capturedName = names.fromString("<captured wildcard>");
   104         messages = JavacMessages.instance(context);
   105         diags = JCDiagnostic.Factory.instance(context);
   106         functionDescriptorLookupError = new FunctionDescriptorLookupError();
   107     }
   108     // </editor-fold>
   110     // <editor-fold defaultstate="collapsed" desc="upperBound">
   111     /**
   112      * The "rvalue conversion".<br>
   113      * The upper bound of most types is the type
   114      * itself.  Wildcards, on the other hand have upper
   115      * and lower bounds.
   116      * @param t a type
   117      * @return the upper bound of the given type
   118      */
   119     public Type upperBound(Type t) {
   120         return upperBound.visit(t);
   121     }
   122     // where
   123         private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
   125             @Override
   126             public Type visitWildcardType(WildcardType t, Void ignored) {
   127                 if (t.isSuperBound())
   128                     return t.bound == null ? syms.objectType : t.bound.bound;
   129                 else
   130                     return visit(t.type);
   131             }
   133             @Override
   134             public Type visitCapturedType(CapturedType t, Void ignored) {
   135                 return visit(t.bound);
   136             }
   137         };
   138     // </editor-fold>
   140     // <editor-fold defaultstate="collapsed" desc="lowerBound">
   141     /**
   142      * The "lvalue conversion".<br>
   143      * The lower bound of most types is the type
   144      * itself.  Wildcards, on the other hand have upper
   145      * and lower bounds.
   146      * @param t a type
   147      * @return the lower bound of the given type
   148      */
   149     public Type lowerBound(Type t) {
   150         return lowerBound.visit(t);
   151     }
   152     // where
   153         private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
   155             @Override
   156             public Type visitWildcardType(WildcardType t, Void ignored) {
   157                 return t.isExtendsBound() ? syms.botType : visit(t.type);
   158             }
   160             @Override
   161             public Type visitCapturedType(CapturedType t, Void ignored) {
   162                 return visit(t.getLowerBound());
   163             }
   164         };
   165     // </editor-fold>
   167     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
   168     /**
   169      * Checks that all the arguments to a class are unbounded
   170      * wildcards or something else that doesn't make any restrictions
   171      * on the arguments. If a class isUnbounded, a raw super- or
   172      * subclass can be cast to it without a warning.
   173      * @param t a type
   174      * @return true iff the given type is unbounded or raw
   175      */
   176     public boolean isUnbounded(Type t) {
   177         return isUnbounded.visit(t);
   178     }
   179     // where
   180         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
   182             public Boolean visitType(Type t, Void ignored) {
   183                 return true;
   184             }
   186             @Override
   187             public Boolean visitClassType(ClassType t, Void ignored) {
   188                 List<Type> parms = t.tsym.type.allparams();
   189                 List<Type> args = t.allparams();
   190                 while (parms.nonEmpty()) {
   191                     WildcardType unb = new WildcardType(syms.objectType,
   192                                                         BoundKind.UNBOUND,
   193                                                         syms.boundClass,
   194                                                         (TypeVar)parms.head);
   195                     if (!containsType(args.head, unb))
   196                         return false;
   197                     parms = parms.tail;
   198                     args = args.tail;
   199                 }
   200                 return true;
   201             }
   202         };
   203     // </editor-fold>
   205     // <editor-fold defaultstate="collapsed" desc="asSub">
   206     /**
   207      * Return the least specific subtype of t that starts with symbol
   208      * sym.  If none exists, return null.  The least specific subtype
   209      * is determined as follows:
   210      *
   211      * <p>If there is exactly one parameterized instance of sym that is a
   212      * subtype of t, that parameterized instance is returned.<br>
   213      * Otherwise, if the plain type or raw type `sym' is a subtype of
   214      * type t, the type `sym' itself is returned.  Otherwise, null is
   215      * returned.
   216      */
   217     public Type asSub(Type t, Symbol sym) {
   218         return asSub.visit(t, sym);
   219     }
   220     // where
   221         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
   223             public Type visitType(Type t, Symbol sym) {
   224                 return null;
   225             }
   227             @Override
   228             public Type visitClassType(ClassType t, Symbol sym) {
   229                 if (t.tsym == sym)
   230                     return t;
   231                 Type base = asSuper(sym.type, t.tsym);
   232                 if (base == null)
   233                     return null;
   234                 ListBuffer<Type> from = new ListBuffer<Type>();
   235                 ListBuffer<Type> to = new ListBuffer<Type>();
   236                 try {
   237                     adapt(base, t, from, to);
   238                 } catch (AdaptFailure ex) {
   239                     return null;
   240                 }
   241                 Type res = subst(sym.type, from.toList(), to.toList());
   242                 if (!isSubtype(res, t))
   243                     return null;
   244                 ListBuffer<Type> openVars = new ListBuffer<Type>();
   245                 for (List<Type> l = sym.type.allparams();
   246                      l.nonEmpty(); l = l.tail)
   247                     if (res.contains(l.head) && !t.contains(l.head))
   248                         openVars.append(l.head);
   249                 if (openVars.nonEmpty()) {
   250                     if (t.isRaw()) {
   251                         // The subtype of a raw type is raw
   252                         res = erasure(res);
   253                     } else {
   254                         // Unbound type arguments default to ?
   255                         List<Type> opens = openVars.toList();
   256                         ListBuffer<Type> qs = new ListBuffer<Type>();
   257                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
   258                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
   259                         }
   260                         res = subst(res, opens, qs.toList());
   261                     }
   262                 }
   263                 return res;
   264             }
   266             @Override
   267             public Type visitErrorType(ErrorType t, Symbol sym) {
   268                 return t;
   269             }
   270         };
   271     // </editor-fold>
   273     // <editor-fold defaultstate="collapsed" desc="isConvertible">
   274     /**
   275      * Is t a subtype of or convertible via boxing/unboxing
   276      * conversion to s?
   277      */
   278     public boolean isConvertible(Type t, Type s, Warner warn) {
   279         if (t.tag == ERROR)
   280             return true;
   281         boolean tPrimitive = t.isPrimitive();
   282         boolean sPrimitive = s.isPrimitive();
   283         if (tPrimitive == sPrimitive) {
   284             return isSubtypeUnchecked(t, s, warn);
   285         }
   286         if (!allowBoxing) return false;
   287         return tPrimitive
   288             ? isSubtype(boxedClass(t).type, s)
   289             : isSubtype(unboxedType(t), s);
   290     }
   292     /**
   293      * Is t a subtype of or convertiable via boxing/unboxing
   294      * convertions to s?
   295      */
   296     public boolean isConvertible(Type t, Type s) {
   297         return isConvertible(t, s, Warner.noWarnings);
   298     }
   299     // </editor-fold>
   301     // <editor-fold defaultstate="collapsed" desc="findSam">
   303     /**
   304      * Exception used to report a function descriptor lookup failure. The exception
   305      * wraps a diagnostic that can be used to generate more details error
   306      * messages.
   307      */
   308     public static class FunctionDescriptorLookupError extends RuntimeException {
   309         private static final long serialVersionUID = 0;
   311         JCDiagnostic diagnostic;
   313         FunctionDescriptorLookupError() {
   314             this.diagnostic = null;
   315         }
   317         FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
   318             this.diagnostic = diag;
   319             return this;
   320         }
   322         public JCDiagnostic getDiagnostic() {
   323             return diagnostic;
   324         }
   325     }
   327     /**
   328      * A cache that keeps track of function descriptors associated with given
   329      * functional interfaces.
   330      */
   331     class DescriptorCache {
   333         private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<TypeSymbol, Entry>();
   335         class FunctionDescriptor {
   336             Symbol descSym;
   338             FunctionDescriptor(Symbol descSym) {
   339                 this.descSym = descSym;
   340             }
   342             public Symbol getSymbol() {
   343                 return descSym;
   344             }
   346             public Type getType(Type origin) {
   347                 return memberType(origin, descSym);
   348             }
   349         }
   351         class Entry {
   352             final FunctionDescriptor cachedDescRes;
   353             final int prevMark;
   355             public Entry(FunctionDescriptor cachedDescRes,
   356                     int prevMark) {
   357                 this.cachedDescRes = cachedDescRes;
   358                 this.prevMark = prevMark;
   359             }
   361             boolean matches(int mark) {
   362                 return  this.prevMark == mark;
   363             }
   364         }
   366         FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
   367             Entry e = _map.get(origin);
   368             CompoundScope members = membersClosure(origin.type, false);
   369             if (e == null ||
   370                     !e.matches(members.getMark())) {
   371                 FunctionDescriptor descRes = findDescriptorInternal(origin, members);
   372                 _map.put(origin, new Entry(descRes, members.getMark()));
   373                 return descRes;
   374             }
   375             else {
   376                 return e.cachedDescRes;
   377             }
   378         }
   380         /**
   381          * Scope filter used to skip methods that should be ignored during
   382          * function interface conversion (such as methods overridden by
   383          * j.l.Object)
   384          */
   385         class DescriptorFilter implements Filter<Symbol> {
   387             TypeSymbol origin;
   389             DescriptorFilter(TypeSymbol origin) {
   390                 this.origin = origin;
   391             }
   393             @Override
   394             public boolean accepts(Symbol sym) {
   395                     return sym.kind == Kinds.MTH &&
   396                             (sym.flags() & ABSTRACT) != 0 &&
   397                             !overridesObjectMethod(origin, sym) &&
   398                             notOverridden(sym);
   399             }
   401             private boolean notOverridden(Symbol msym) {
   402                 Symbol impl = ((MethodSymbol)msym).implementation(origin, Types.this, false);
   403                 return impl == null || (impl.flags() & ABSTRACT) != 0;
   404             }
   405         };
   407         /**
   408          * Compute the function descriptor associated with a given functional interface
   409          */
   410         public FunctionDescriptor findDescriptorInternal(TypeSymbol origin, CompoundScope membersCache) throws FunctionDescriptorLookupError {
   411             if (!origin.isInterface()) {
   412                 //t must be an interface
   413                 throw failure("not.a.functional.intf");
   414             }
   416             final ListBuffer<Symbol> abstracts = ListBuffer.lb();
   417             for (Symbol sym : membersCache.getElements(new DescriptorFilter(origin))) {
   418                 Type mtype = memberType(origin.type, sym);
   419                 if (abstracts.isEmpty() ||
   420                         (sym.name == abstracts.first().name &&
   421                         overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
   422                     abstracts.append(sym);
   423                 } else {
   424                     //the target method(s) should be the only abstract members of t
   425                     throw failure("not.a.functional.intf.1",
   426                             diags.fragment("incompatible.abstracts", Kinds.kindName(origin), origin));
   427                 }
   428             }
   429             if (abstracts.isEmpty()) {
   430                 //t must define a suitable non-generic method
   431                 throw failure("not.a.functional.intf.1",
   432                             diags.fragment("no.abstracts", Kinds.kindName(origin), origin));
   433             } else if (abstracts.size() == 1) {
   434                 if (abstracts.first().type.tag == FORALL) {
   435                     throw failure("invalid.generic.desc.in.functional.intf",
   436                             abstracts.first(),
   437                             Kinds.kindName(origin),
   438                             origin);
   439                 } else {
   440                     return new FunctionDescriptor(abstracts.first());
   441                 }
   442             } else { // size > 1
   443                 for (Symbol msym : abstracts) {
   444                     if (msym.type.tag == FORALL) {
   445                         throw failure("invalid.generic.desc.in.functional.intf",
   446                                 abstracts.first(),
   447                                 Kinds.kindName(origin),
   448                                 origin);
   449                     }
   450                 }
   451                 FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
   452                 if (descRes == null) {
   453                     //we can get here if the functional interface is ill-formed
   454                     ListBuffer<JCDiagnostic> descriptors = ListBuffer.lb();
   455                     for (Symbol desc : abstracts) {
   456                         String key = desc.type.getThrownTypes().nonEmpty() ?
   457                                 "descriptor.throws" : "descriptor";
   458                         descriptors.append(diags.fragment(key, desc.name,
   459                                 desc.type.getParameterTypes(),
   460                                 desc.type.getReturnType(),
   461                                 desc.type.getThrownTypes()));
   462                     }
   463                     JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
   464                             new JCDiagnostic.MultilineDiagnostic(diags.fragment("incompatible.descs.in.functional.intf",
   465                             Kinds.kindName(origin), origin), descriptors.toList());
   466                     throw failure(incompatibleDescriptors);
   467                 }
   468                 return descRes;
   469             }
   470         }
   472         /**
   473          * Compute a synthetic type for the target descriptor given a list
   474          * of override-equivalent methods in the functional interface type.
   475          * The resulting method type is a method type that is override-equivalent
   476          * and return-type substitutable with each method in the original list.
   477          */
   478         private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
   479             //pick argument types - simply take the signature that is a
   480             //subsignature of all other signatures in the list (as per JLS 8.4.2)
   481             List<Symbol> mostSpecific = List.nil();
   482             outer: for (Symbol msym1 : methodSyms) {
   483                 Type mt1 = memberType(origin.type, msym1);
   484                 for (Symbol msym2 : methodSyms) {
   485                     Type mt2 = memberType(origin.type, msym2);
   486                     if (!isSubSignature(mt1, mt2)) {
   487                         continue outer;
   488                     }
   489                 }
   490                 mostSpecific = mostSpecific.prepend(msym1);
   491             }
   492             if (mostSpecific.isEmpty()) {
   493                 return null;
   494             }
   497             //pick return types - this is done in two phases: (i) first, the most
   498             //specific return type is chosen using strict subtyping; if this fails,
   499             //a second attempt is made using return type substitutability (see JLS 8.4.5)
   500             boolean phase2 = false;
   501             Symbol bestSoFar = null;
   502             while (bestSoFar == null) {
   503                 outer: for (Symbol msym1 : mostSpecific) {
   504                     Type mt1 = memberType(origin.type, msym1);
   505                     for (Symbol msym2 : methodSyms) {
   506                         Type mt2 = memberType(origin.type, msym2);
   507                         if (phase2 ?
   508                                 !returnTypeSubstitutable(mt1, mt2) :
   509                                 !isSubtypeInternal(mt1.getReturnType(), mt2.getReturnType())) {
   510                             continue outer;
   511                         }
   512                     }
   513                     bestSoFar = msym1;
   514                 }
   515                 if (phase2) {
   516                     break;
   517                 } else {
   518                     phase2 = true;
   519                 }
   520             }
   521             if (bestSoFar == null) return null;
   523             //merge thrown types - form the intersection of all the thrown types in
   524             //all the signatures in the list
   525             List<Type> thrown = null;
   526             for (Symbol msym1 : methodSyms) {
   527                 Type mt1 = memberType(origin.type, msym1);
   528                 thrown = (thrown == null) ?
   529                     mt1.getThrownTypes() :
   530                     chk.intersect(mt1.getThrownTypes(), thrown);
   531             }
   533             final List<Type> thrown1 = thrown;
   534             return new FunctionDescriptor(bestSoFar) {
   535                 @Override
   536                 public Type getType(Type origin) {
   537                     Type mt = memberType(origin, getSymbol());
   538                     return new MethodType(mt.getParameterTypes(), mt.getReturnType(), thrown1, syms.methodClass);
   539                 }
   540             };
   541         }
   543         boolean isSubtypeInternal(Type s, Type t) {
   544             return (s.isPrimitive() && t.isPrimitive()) ?
   545                     isSameType(t, s) :
   546                     isSubtype(s, t);
   547         }
   549         FunctionDescriptorLookupError failure(String msg, Object... args) {
   550             return failure(diags.fragment(msg, args));
   551         }
   553         FunctionDescriptorLookupError failure(JCDiagnostic diag) {
   554             return functionDescriptorLookupError.setMessage(diag);
   555         }
   556     }
   558     private DescriptorCache descCache = new DescriptorCache();
   560     /**
   561      * Find the method descriptor associated to this class symbol - if the
   562      * symbol 'origin' is not a functional interface, an exception is thrown.
   563      */
   564     public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
   565         return descCache.get(origin).getSymbol();
   566     }
   568     /**
   569      * Find the type of the method descriptor associated to this class symbol -
   570      * if the symbol 'origin' is not a functional interface, an exception is thrown.
   571      */
   572     public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
   573         return descCache.get(origin.tsym).getType(origin);
   574     }
   576     /**
   577      * Is given type a functional interface?
   578      */
   579     public boolean isFunctionalInterface(TypeSymbol tsym) {
   580         try {
   581             findDescriptorSymbol(tsym);
   582             return true;
   583         } catch (FunctionDescriptorLookupError ex) {
   584             return false;
   585         }
   586     }
   587     // </editor-fold>
   589     // <editor-fold defaultstate="collapsed" desc="isSubtype">
   590     /**
   591      * Is t an unchecked subtype of s?
   592      */
   593     public boolean isSubtypeUnchecked(Type t, Type s) {
   594         return isSubtypeUnchecked(t, s, Warner.noWarnings);
   595     }
   596     /**
   597      * Is t an unchecked subtype of s?
   598      */
   599     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
   600         boolean result = isSubtypeUncheckedInternal(t, s, warn);
   601         if (result) {
   602             checkUnsafeVarargsConversion(t, s, warn);
   603         }
   604         return result;
   605     }
   606     //where
   607         private boolean isSubtypeUncheckedInternal(Type t, Type s, Warner warn) {
   608             if (t.tag == ARRAY && s.tag == ARRAY) {
   609                 if (((ArrayType)t).elemtype.tag <= lastBaseTag) {
   610                     return isSameType(elemtype(t), elemtype(s));
   611                 } else {
   612                     return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
   613                 }
   614             } else if (isSubtype(t, s)) {
   615                 return true;
   616             }
   617             else if (t.tag == TYPEVAR) {
   618                 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
   619             }
   620             else if (!s.isRaw()) {
   621                 Type t2 = asSuper(t, s.tsym);
   622                 if (t2 != null && t2.isRaw()) {
   623                     if (isReifiable(s))
   624                         warn.silentWarn(LintCategory.UNCHECKED);
   625                     else
   626                         warn.warn(LintCategory.UNCHECKED);
   627                     return true;
   628                 }
   629             }
   630             return false;
   631         }
   633         private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
   634             if (t.tag != ARRAY || isReifiable(t)) return;
   635             ArrayType from = (ArrayType)t;
   636             boolean shouldWarn = false;
   637             switch (s.tag) {
   638                 case ARRAY:
   639                     ArrayType to = (ArrayType)s;
   640                     shouldWarn = from.isVarargs() &&
   641                             !to.isVarargs() &&
   642                             !isReifiable(from);
   643                     break;
   644                 case CLASS:
   645                     shouldWarn = from.isVarargs();
   646                     break;
   647             }
   648             if (shouldWarn) {
   649                 warn.warn(LintCategory.VARARGS);
   650             }
   651         }
   653     /**
   654      * Is t a subtype of s?<br>
   655      * (not defined for Method and ForAll types)
   656      */
   657     final public boolean isSubtype(Type t, Type s) {
   658         return isSubtype(t, s, true);
   659     }
   660     final public boolean isSubtypeNoCapture(Type t, Type s) {
   661         return isSubtype(t, s, false);
   662     }
   663     public boolean isSubtype(Type t, Type s, boolean capture) {
   664         if (t == s)
   665             return true;
   667         if (s.tag >= firstPartialTag)
   668             return isSuperType(s, t);
   670         if (s.isCompound()) {
   671             for (Type s2 : interfaces(s).prepend(supertype(s))) {
   672                 if (!isSubtype(t, s2, capture))
   673                     return false;
   674             }
   675             return true;
   676         }
   678         Type lower = lowerBound(s);
   679         if (s != lower)
   680             return isSubtype(capture ? capture(t) : t, lower, false);
   682         return isSubtype.visit(capture ? capture(t) : t, s);
   683     }
   684     // where
   685         private TypeRelation isSubtype = new TypeRelation()
   686         {
   687             public Boolean visitType(Type t, Type s) {
   688                 switch (t.tag) {
   689                 case BYTE: case CHAR:
   690                     return (t.tag == s.tag ||
   691                               t.tag + 2 <= s.tag && s.tag <= DOUBLE);
   692                 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
   693                     return t.tag <= s.tag && s.tag <= DOUBLE;
   694                 case BOOLEAN: case VOID:
   695                     return t.tag == s.tag;
   696                 case TYPEVAR:
   697                     return isSubtypeNoCapture(t.getUpperBound(), s);
   698                 case BOT:
   699                     return
   700                         s.tag == BOT || s.tag == CLASS ||
   701                         s.tag == ARRAY || s.tag == TYPEVAR;
   702                 case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
   703                 case NONE:
   704                     return false;
   705                 default:
   706                     throw new AssertionError("isSubtype " + t.tag);
   707                 }
   708             }
   710             private Set<TypePair> cache = new HashSet<TypePair>();
   712             private boolean containsTypeRecursive(Type t, Type s) {
   713                 TypePair pair = new TypePair(t, s);
   714                 if (cache.add(pair)) {
   715                     try {
   716                         return containsType(t.getTypeArguments(),
   717                                             s.getTypeArguments());
   718                     } finally {
   719                         cache.remove(pair);
   720                     }
   721                 } else {
   722                     return containsType(t.getTypeArguments(),
   723                                         rewriteSupers(s).getTypeArguments());
   724                 }
   725             }
   727             private Type rewriteSupers(Type t) {
   728                 if (!t.isParameterized())
   729                     return t;
   730                 ListBuffer<Type> from = lb();
   731                 ListBuffer<Type> to = lb();
   732                 adaptSelf(t, from, to);
   733                 if (from.isEmpty())
   734                     return t;
   735                 ListBuffer<Type> rewrite = lb();
   736                 boolean changed = false;
   737                 for (Type orig : to.toList()) {
   738                     Type s = rewriteSupers(orig);
   739                     if (s.isSuperBound() && !s.isExtendsBound()) {
   740                         s = new WildcardType(syms.objectType,
   741                                              BoundKind.UNBOUND,
   742                                              syms.boundClass);
   743                         changed = true;
   744                     } else if (s != orig) {
   745                         s = new WildcardType(upperBound(s),
   746                                              BoundKind.EXTENDS,
   747                                              syms.boundClass);
   748                         changed = true;
   749                     }
   750                     rewrite.append(s);
   751                 }
   752                 if (changed)
   753                     return subst(t.tsym.type, from.toList(), rewrite.toList());
   754                 else
   755                     return t;
   756             }
   758             @Override
   759             public Boolean visitClassType(ClassType t, Type s) {
   760                 Type sup = asSuper(t, s.tsym);
   761                 return sup != null
   762                     && sup.tsym == s.tsym
   763                     // You're not allowed to write
   764                     //     Vector<Object> vec = new Vector<String>();
   765                     // But with wildcards you can write
   766                     //     Vector<? extends Object> vec = new Vector<String>();
   767                     // which means that subtype checking must be done
   768                     // here instead of same-type checking (via containsType).
   769                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
   770                     && isSubtypeNoCapture(sup.getEnclosingType(),
   771                                           s.getEnclosingType());
   772             }
   774             @Override
   775             public Boolean visitArrayType(ArrayType t, Type s) {
   776                 if (s.tag == ARRAY) {
   777                     if (t.elemtype.tag <= lastBaseTag)
   778                         return isSameType(t.elemtype, elemtype(s));
   779                     else
   780                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
   781                 }
   783                 if (s.tag == CLASS) {
   784                     Name sname = s.tsym.getQualifiedName();
   785                     return sname == names.java_lang_Object
   786                         || sname == names.java_lang_Cloneable
   787                         || sname == names.java_io_Serializable;
   788                 }
   790                 return false;
   791             }
   793             @Override
   794             public Boolean visitUndetVar(UndetVar t, Type s) {
   795                 //todo: test against origin needed? or replace with substitution?
   796                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN) {
   797                     return true;
   798                 } else if (s.tag == BOT) {
   799                     //if 's' is 'null' there's no instantiated type U for which
   800                     //U <: s (but 'null' itself, which is not a valid type)
   801                     return false;
   802                 }
   804                 t.addBound(InferenceBound.UPPER, s, Types.this);
   805                 return true;
   806             }
   808             @Override
   809             public Boolean visitErrorType(ErrorType t, Type s) {
   810                 return true;
   811             }
   812         };
   814     /**
   815      * Is t a subtype of every type in given list `ts'?<br>
   816      * (not defined for Method and ForAll types)<br>
   817      * Allows unchecked conversions.
   818      */
   819     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
   820         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   821             if (!isSubtypeUnchecked(t, l.head, warn))
   822                 return false;
   823         return true;
   824     }
   826     /**
   827      * Are corresponding elements of ts subtypes of ss?  If lists are
   828      * of different length, return false.
   829      */
   830     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
   831         while (ts.tail != null && ss.tail != null
   832                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   833                isSubtype(ts.head, ss.head)) {
   834             ts = ts.tail;
   835             ss = ss.tail;
   836         }
   837         return ts.tail == null && ss.tail == null;
   838         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   839     }
   841     /**
   842      * Are corresponding elements of ts subtypes of ss, allowing
   843      * unchecked conversions?  If lists are of different length,
   844      * return false.
   845      **/
   846     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
   847         while (ts.tail != null && ss.tail != null
   848                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   849                isSubtypeUnchecked(ts.head, ss.head, warn)) {
   850             ts = ts.tail;
   851             ss = ss.tail;
   852         }
   853         return ts.tail == null && ss.tail == null;
   854         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   855     }
   856     // </editor-fold>
   858     // <editor-fold defaultstate="collapsed" desc="isSuperType">
   859     /**
   860      * Is t a supertype of s?
   861      */
   862     public boolean isSuperType(Type t, Type s) {
   863         switch (t.tag) {
   864         case ERROR:
   865             return true;
   866         case UNDETVAR: {
   867             UndetVar undet = (UndetVar)t;
   868             if (t == s ||
   869                 undet.qtype == s ||
   870                 s.tag == ERROR ||
   871                 s.tag == BOT) return true;
   872             undet.addBound(InferenceBound.LOWER, s, this);
   873             return true;
   874         }
   875         default:
   876             return isSubtype(s, t);
   877         }
   878     }
   879     // </editor-fold>
   881     // <editor-fold defaultstate="collapsed" desc="isSameType">
   882     /**
   883      * Are corresponding elements of the lists the same type?  If
   884      * lists are of different length, return false.
   885      */
   886     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
   887         while (ts.tail != null && ss.tail != null
   888                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   889                isSameType(ts.head, ss.head)) {
   890             ts = ts.tail;
   891             ss = ss.tail;
   892         }
   893         return ts.tail == null && ss.tail == null;
   894         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   895     }
   897     /**
   898      * Is t the same type as s?
   899      */
   900     public boolean isSameType(Type t, Type s) {
   901         return isSameType.visit(t, s);
   902     }
   903     // where
   904         private TypeRelation isSameType = new TypeRelation() {
   906             public Boolean visitType(Type t, Type s) {
   907                 if (t == s)
   908                     return true;
   910                 if (s.tag >= firstPartialTag)
   911                     return visit(s, t);
   913                 switch (t.tag) {
   914                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
   915                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
   916                     return t.tag == s.tag;
   917                 case TYPEVAR: {
   918                     if (s.tag == TYPEVAR) {
   919                         //type-substitution does not preserve type-var types
   920                         //check that type var symbols and bounds are indeed the same
   921                         return t.tsym == s.tsym &&
   922                                 visit(t.getUpperBound(), s.getUpperBound());
   923                     }
   924                     else {
   925                         //special case for s == ? super X, where upper(s) = u
   926                         //check that u == t, where u has been set by Type.withTypeVar
   927                         return s.isSuperBound() &&
   928                                 !s.isExtendsBound() &&
   929                                 visit(t, upperBound(s));
   930                     }
   931                 }
   932                 default:
   933                     throw new AssertionError("isSameType " + t.tag);
   934                 }
   935             }
   937             @Override
   938             public Boolean visitWildcardType(WildcardType t, Type s) {
   939                 if (s.tag >= firstPartialTag)
   940                     return visit(s, t);
   941                 else
   942                     return false;
   943             }
   945             @Override
   946             public Boolean visitClassType(ClassType t, Type s) {
   947                 if (t == s)
   948                     return true;
   950                 if (s.tag >= firstPartialTag)
   951                     return visit(s, t);
   953                 if (s.isSuperBound() && !s.isExtendsBound())
   954                     return visit(t, upperBound(s)) && visit(t, lowerBound(s));
   956                 if (t.isCompound() && s.isCompound()) {
   957                     if (!visit(supertype(t), supertype(s)))
   958                         return false;
   960                     HashSet<SingletonType> set = new HashSet<SingletonType>();
   961                     for (Type x : interfaces(t))
   962                         set.add(new SingletonType(x));
   963                     for (Type x : interfaces(s)) {
   964                         if (!set.remove(new SingletonType(x)))
   965                             return false;
   966                     }
   967                     return (set.isEmpty());
   968                 }
   969                 return t.tsym == s.tsym
   970                     && visit(t.getEnclosingType(), s.getEnclosingType())
   971                     && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
   972             }
   974             @Override
   975             public Boolean visitArrayType(ArrayType t, Type s) {
   976                 if (t == s)
   977                     return true;
   979                 if (s.tag >= firstPartialTag)
   980                     return visit(s, t);
   982                 return s.tag == ARRAY
   983                     && containsTypeEquivalent(t.elemtype, elemtype(s));
   984             }
   986             @Override
   987             public Boolean visitMethodType(MethodType t, Type s) {
   988                 // isSameType for methods does not take thrown
   989                 // exceptions into account!
   990                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
   991             }
   993             @Override
   994             public Boolean visitPackageType(PackageType t, Type s) {
   995                 return t == s;
   996             }
   998             @Override
   999             public Boolean visitForAll(ForAll t, Type s) {
  1000                 if (s.tag != FORALL)
  1001                     return false;
  1003                 ForAll forAll = (ForAll)s;
  1004                 return hasSameBounds(t, forAll)
  1005                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  1008             @Override
  1009             public Boolean visitUndetVar(UndetVar t, Type s) {
  1010                 if (s.tag == WILDCARD)
  1011                     // FIXME, this might be leftovers from before capture conversion
  1012                     return false;
  1014                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
  1015                     return true;
  1017                 t.addBound(InferenceBound.EQ, s, Types.this);
  1019                 return true;
  1022             @Override
  1023             public Boolean visitErrorType(ErrorType t, Type s) {
  1024                 return true;
  1026         };
  1027     // </editor-fold>
  1029     // <editor-fold defaultstate="collapsed" desc="Contains Type">
  1030     public boolean containedBy(Type t, Type s) {
  1031         switch (t.tag) {
  1032         case UNDETVAR:
  1033             if (s.tag == WILDCARD) {
  1034                 UndetVar undetvar = (UndetVar)t;
  1035                 WildcardType wt = (WildcardType)s;
  1036                 switch(wt.kind) {
  1037                     case UNBOUND: //similar to ? extends Object
  1038                     case EXTENDS: {
  1039                         Type bound = upperBound(s);
  1040                         undetvar.addBound(InferenceBound.UPPER, bound, this);
  1041                         break;
  1043                     case SUPER: {
  1044                         Type bound = lowerBound(s);
  1045                         undetvar.addBound(InferenceBound.LOWER, bound, this);
  1046                         break;
  1049                 return true;
  1050             } else {
  1051                 return isSameType(t, s);
  1053         case ERROR:
  1054             return true;
  1055         default:
  1056             return containsType(s, t);
  1060     boolean containsType(List<Type> ts, List<Type> ss) {
  1061         while (ts.nonEmpty() && ss.nonEmpty()
  1062                && containsType(ts.head, ss.head)) {
  1063             ts = ts.tail;
  1064             ss = ss.tail;
  1066         return ts.isEmpty() && ss.isEmpty();
  1069     /**
  1070      * Check if t contains s.
  1072      * <p>T contains S if:
  1074      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
  1076      * <p>This relation is only used by ClassType.isSubtype(), that
  1077      * is,
  1079      * <p>{@code C<S> <: C<T> if T contains S.}
  1081      * <p>Because of F-bounds, this relation can lead to infinite
  1082      * recursion.  Thus we must somehow break that recursion.  Notice
  1083      * that containsType() is only called from ClassType.isSubtype().
  1084      * Since the arguments have already been checked against their
  1085      * bounds, we know:
  1087      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
  1089      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
  1091      * @param t a type
  1092      * @param s a type
  1093      */
  1094     public boolean containsType(Type t, Type s) {
  1095         return containsType.visit(t, s);
  1097     // where
  1098         private TypeRelation containsType = new TypeRelation() {
  1100             private Type U(Type t) {
  1101                 while (t.tag == WILDCARD) {
  1102                     WildcardType w = (WildcardType)t;
  1103                     if (w.isSuperBound())
  1104                         return w.bound == null ? syms.objectType : w.bound.bound;
  1105                     else
  1106                         t = w.type;
  1108                 return t;
  1111             private Type L(Type t) {
  1112                 while (t.tag == WILDCARD) {
  1113                     WildcardType w = (WildcardType)t;
  1114                     if (w.isExtendsBound())
  1115                         return syms.botType;
  1116                     else
  1117                         t = w.type;
  1119                 return t;
  1122             public Boolean visitType(Type t, Type s) {
  1123                 if (s.tag >= firstPartialTag)
  1124                     return containedBy(s, t);
  1125                 else
  1126                     return isSameType(t, s);
  1129 //            void debugContainsType(WildcardType t, Type s) {
  1130 //                System.err.println();
  1131 //                System.err.format(" does %s contain %s?%n", t, s);
  1132 //                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
  1133 //                                  upperBound(s), s, t, U(t),
  1134 //                                  t.isSuperBound()
  1135 //                                  || isSubtypeNoCapture(upperBound(s), U(t)));
  1136 //                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
  1137 //                                  L(t), t, s, lowerBound(s),
  1138 //                                  t.isExtendsBound()
  1139 //                                  || isSubtypeNoCapture(L(t), lowerBound(s)));
  1140 //                System.err.println();
  1141 //            }
  1143             @Override
  1144             public Boolean visitWildcardType(WildcardType t, Type s) {
  1145                 if (s.tag >= firstPartialTag)
  1146                     return containedBy(s, t);
  1147                 else {
  1148 //                    debugContainsType(t, s);
  1149                     return isSameWildcard(t, s)
  1150                         || isCaptureOf(s, t)
  1151                         || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
  1152                             (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
  1156             @Override
  1157             public Boolean visitUndetVar(UndetVar t, Type s) {
  1158                 if (s.tag != WILDCARD)
  1159                     return isSameType(t, s);
  1160                 else
  1161                     return false;
  1164             @Override
  1165             public Boolean visitErrorType(ErrorType t, Type s) {
  1166                 return true;
  1168         };
  1170     public boolean isCaptureOf(Type s, WildcardType t) {
  1171         if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
  1172             return false;
  1173         return isSameWildcard(t, ((CapturedType)s).wildcard);
  1176     public boolean isSameWildcard(WildcardType t, Type s) {
  1177         if (s.tag != WILDCARD)
  1178             return false;
  1179         WildcardType w = (WildcardType)s;
  1180         return w.kind == t.kind && w.type == t.type;
  1183     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
  1184         while (ts.nonEmpty() && ss.nonEmpty()
  1185                && containsTypeEquivalent(ts.head, ss.head)) {
  1186             ts = ts.tail;
  1187             ss = ss.tail;
  1189         return ts.isEmpty() && ss.isEmpty();
  1191     // </editor-fold>
  1193     // <editor-fold defaultstate="collapsed" desc="isCastable">
  1194     public boolean isCastable(Type t, Type s) {
  1195         return isCastable(t, s, Warner.noWarnings);
  1198     /**
  1199      * Is t is castable to s?<br>
  1200      * s is assumed to be an erased type.<br>
  1201      * (not defined for Method and ForAll types).
  1202      */
  1203     public boolean isCastable(Type t, Type s, Warner warn) {
  1204         if (t == s)
  1205             return true;
  1207         if (t.isPrimitive() != s.isPrimitive())
  1208             return allowBoxing && (
  1209                     isConvertible(t, s, warn)
  1210                     || (allowObjectToPrimitiveCast &&
  1211                         s.isPrimitive() &&
  1212                         isSubtype(boxedClass(s).type, t)));
  1213         if (warn != warnStack.head) {
  1214             try {
  1215                 warnStack = warnStack.prepend(warn);
  1216                 checkUnsafeVarargsConversion(t, s, warn);
  1217                 return isCastable.visit(t,s);
  1218             } finally {
  1219                 warnStack = warnStack.tail;
  1221         } else {
  1222             return isCastable.visit(t,s);
  1225     // where
  1226         private TypeRelation isCastable = new TypeRelation() {
  1228             public Boolean visitType(Type t, Type s) {
  1229                 if (s.tag == ERROR)
  1230                     return true;
  1232                 switch (t.tag) {
  1233                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
  1234                 case DOUBLE:
  1235                     return s.tag <= DOUBLE;
  1236                 case BOOLEAN:
  1237                     return s.tag == BOOLEAN;
  1238                 case VOID:
  1239                     return false;
  1240                 case BOT:
  1241                     return isSubtype(t, s);
  1242                 default:
  1243                     throw new AssertionError();
  1247             @Override
  1248             public Boolean visitWildcardType(WildcardType t, Type s) {
  1249                 return isCastable(upperBound(t), s, warnStack.head);
  1252             @Override
  1253             public Boolean visitClassType(ClassType t, Type s) {
  1254                 if (s.tag == ERROR || s.tag == BOT)
  1255                     return true;
  1257                 if (s.tag == TYPEVAR) {
  1258                     if (isCastable(t, s.getUpperBound(), Warner.noWarnings)) {
  1259                         warnStack.head.warn(LintCategory.UNCHECKED);
  1260                         return true;
  1261                     } else {
  1262                         return false;
  1266                 if (t.isCompound()) {
  1267                     Warner oldWarner = warnStack.head;
  1268                     warnStack.head = Warner.noWarnings;
  1269                     if (!visit(supertype(t), s))
  1270                         return false;
  1271                     for (Type intf : interfaces(t)) {
  1272                         if (!visit(intf, s))
  1273                             return false;
  1275                     if (warnStack.head.hasLint(LintCategory.UNCHECKED))
  1276                         oldWarner.warn(LintCategory.UNCHECKED);
  1277                     return true;
  1280                 if (s.isCompound()) {
  1281                     // call recursively to reuse the above code
  1282                     return visitClassType((ClassType)s, t);
  1285                 if (s.tag == CLASS || s.tag == ARRAY) {
  1286                     boolean upcast;
  1287                     if ((upcast = isSubtype(erasure(t), erasure(s)))
  1288                         || isSubtype(erasure(s), erasure(t))) {
  1289                         if (!upcast && s.tag == ARRAY) {
  1290                             if (!isReifiable(s))
  1291                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1292                             return true;
  1293                         } else if (s.isRaw()) {
  1294                             return true;
  1295                         } else if (t.isRaw()) {
  1296                             if (!isUnbounded(s))
  1297                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1298                             return true;
  1300                         // Assume |a| <: |b|
  1301                         final Type a = upcast ? t : s;
  1302                         final Type b = upcast ? s : t;
  1303                         final boolean HIGH = true;
  1304                         final boolean LOW = false;
  1305                         final boolean DONT_REWRITE_TYPEVARS = false;
  1306                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
  1307                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
  1308                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
  1309                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
  1310                         Type lowSub = asSub(bLow, aLow.tsym);
  1311                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1312                         if (highSub == null) {
  1313                             final boolean REWRITE_TYPEVARS = true;
  1314                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
  1315                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
  1316                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
  1317                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
  1318                             lowSub = asSub(bLow, aLow.tsym);
  1319                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1321                         if (highSub != null) {
  1322                             if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
  1323                                 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
  1325                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
  1326                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
  1327                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
  1328                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
  1329                                 if (upcast ? giveWarning(a, b) :
  1330                                     giveWarning(b, a))
  1331                                     warnStack.head.warn(LintCategory.UNCHECKED);
  1332                                 return true;
  1335                         if (isReifiable(s))
  1336                             return isSubtypeUnchecked(a, b);
  1337                         else
  1338                             return isSubtypeUnchecked(a, b, warnStack.head);
  1341                     // Sidecast
  1342                     if (s.tag == CLASS) {
  1343                         if ((s.tsym.flags() & INTERFACE) != 0) {
  1344                             return ((t.tsym.flags() & FINAL) == 0)
  1345                                 ? sideCast(t, s, warnStack.head)
  1346                                 : sideCastFinal(t, s, warnStack.head);
  1347                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
  1348                             return ((s.tsym.flags() & FINAL) == 0)
  1349                                 ? sideCast(t, s, warnStack.head)
  1350                                 : sideCastFinal(t, s, warnStack.head);
  1351                         } else {
  1352                             // unrelated class types
  1353                             return false;
  1357                 return false;
  1360             @Override
  1361             public Boolean visitArrayType(ArrayType t, Type s) {
  1362                 switch (s.tag) {
  1363                 case ERROR:
  1364                 case BOT:
  1365                     return true;
  1366                 case TYPEVAR:
  1367                     if (isCastable(s, t, Warner.noWarnings)) {
  1368                         warnStack.head.warn(LintCategory.UNCHECKED);
  1369                         return true;
  1370                     } else {
  1371                         return false;
  1373                 case CLASS:
  1374                     return isSubtype(t, s);
  1375                 case ARRAY:
  1376                     if (elemtype(t).tag <= lastBaseTag ||
  1377                             elemtype(s).tag <= lastBaseTag) {
  1378                         return elemtype(t).tag == elemtype(s).tag;
  1379                     } else {
  1380                         return visit(elemtype(t), elemtype(s));
  1382                 default:
  1383                     return false;
  1387             @Override
  1388             public Boolean visitTypeVar(TypeVar t, Type s) {
  1389                 switch (s.tag) {
  1390                 case ERROR:
  1391                 case BOT:
  1392                     return true;
  1393                 case TYPEVAR:
  1394                     if (isSubtype(t, s)) {
  1395                         return true;
  1396                     } else if (isCastable(t.bound, s, Warner.noWarnings)) {
  1397                         warnStack.head.warn(LintCategory.UNCHECKED);
  1398                         return true;
  1399                     } else {
  1400                         return false;
  1402                 default:
  1403                     return isCastable(t.bound, s, warnStack.head);
  1407             @Override
  1408             public Boolean visitErrorType(ErrorType t, Type s) {
  1409                 return true;
  1411         };
  1412     // </editor-fold>
  1414     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
  1415     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
  1416         while (ts.tail != null && ss.tail != null) {
  1417             if (disjointType(ts.head, ss.head)) return true;
  1418             ts = ts.tail;
  1419             ss = ss.tail;
  1421         return false;
  1424     /**
  1425      * Two types or wildcards are considered disjoint if it can be
  1426      * proven that no type can be contained in both. It is
  1427      * conservative in that it is allowed to say that two types are
  1428      * not disjoint, even though they actually are.
  1430      * The type {@code C<X>} is castable to {@code C<Y>} exactly if
  1431      * {@code X} and {@code Y} are not disjoint.
  1432      */
  1433     public boolean disjointType(Type t, Type s) {
  1434         return disjointType.visit(t, s);
  1436     // where
  1437         private TypeRelation disjointType = new TypeRelation() {
  1439             private Set<TypePair> cache = new HashSet<TypePair>();
  1441             public Boolean visitType(Type t, Type s) {
  1442                 if (s.tag == WILDCARD)
  1443                     return visit(s, t);
  1444                 else
  1445                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
  1448             private boolean isCastableRecursive(Type t, Type s) {
  1449                 TypePair pair = new TypePair(t, s);
  1450                 if (cache.add(pair)) {
  1451                     try {
  1452                         return Types.this.isCastable(t, s);
  1453                     } finally {
  1454                         cache.remove(pair);
  1456                 } else {
  1457                     return true;
  1461             private boolean notSoftSubtypeRecursive(Type t, Type s) {
  1462                 TypePair pair = new TypePair(t, s);
  1463                 if (cache.add(pair)) {
  1464                     try {
  1465                         return Types.this.notSoftSubtype(t, s);
  1466                     } finally {
  1467                         cache.remove(pair);
  1469                 } else {
  1470                     return false;
  1474             @Override
  1475             public Boolean visitWildcardType(WildcardType t, Type s) {
  1476                 if (t.isUnbound())
  1477                     return false;
  1479                 if (s.tag != WILDCARD) {
  1480                     if (t.isExtendsBound())
  1481                         return notSoftSubtypeRecursive(s, t.type);
  1482                     else // isSuperBound()
  1483                         return notSoftSubtypeRecursive(t.type, s);
  1486                 if (s.isUnbound())
  1487                     return false;
  1489                 if (t.isExtendsBound()) {
  1490                     if (s.isExtendsBound())
  1491                         return !isCastableRecursive(t.type, upperBound(s));
  1492                     else if (s.isSuperBound())
  1493                         return notSoftSubtypeRecursive(lowerBound(s), t.type);
  1494                 } else if (t.isSuperBound()) {
  1495                     if (s.isExtendsBound())
  1496                         return notSoftSubtypeRecursive(t.type, upperBound(s));
  1498                 return false;
  1500         };
  1501     // </editor-fold>
  1503     // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
  1504     /**
  1505      * Returns the lower bounds of the formals of a method.
  1506      */
  1507     public List<Type> lowerBoundArgtypes(Type t) {
  1508         return lowerBounds(t.getParameterTypes());
  1510     public List<Type> lowerBounds(List<Type> ts) {
  1511         return map(ts, lowerBoundMapping);
  1513     private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
  1514             public Type apply(Type t) {
  1515                 return lowerBound(t);
  1517         };
  1518     // </editor-fold>
  1520     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
  1521     /**
  1522      * This relation answers the question: is impossible that
  1523      * something of type `t' can be a subtype of `s'? This is
  1524      * different from the question "is `t' not a subtype of `s'?"
  1525      * when type variables are involved: Integer is not a subtype of T
  1526      * where {@code <T extends Number>} but it is not true that Integer cannot
  1527      * possibly be a subtype of T.
  1528      */
  1529     public boolean notSoftSubtype(Type t, Type s) {
  1530         if (t == s) return false;
  1531         if (t.tag == TYPEVAR) {
  1532             TypeVar tv = (TypeVar) t;
  1533             return !isCastable(tv.bound,
  1534                                relaxBound(s),
  1535                                Warner.noWarnings);
  1537         if (s.tag != WILDCARD)
  1538             s = upperBound(s);
  1540         return !isSubtype(t, relaxBound(s));
  1543     private Type relaxBound(Type t) {
  1544         if (t.tag == TYPEVAR) {
  1545             while (t.tag == TYPEVAR)
  1546                 t = t.getUpperBound();
  1547             t = rewriteQuantifiers(t, true, true);
  1549         return t;
  1551     // </editor-fold>
  1553     // <editor-fold defaultstate="collapsed" desc="isReifiable">
  1554     public boolean isReifiable(Type t) {
  1555         return isReifiable.visit(t);
  1557     // where
  1558         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
  1560             public Boolean visitType(Type t, Void ignored) {
  1561                 return true;
  1564             @Override
  1565             public Boolean visitClassType(ClassType t, Void ignored) {
  1566                 if (t.isCompound())
  1567                     return false;
  1568                 else {
  1569                     if (!t.isParameterized())
  1570                         return true;
  1572                     for (Type param : t.allparams()) {
  1573                         if (!param.isUnbound())
  1574                             return false;
  1576                     return true;
  1580             @Override
  1581             public Boolean visitArrayType(ArrayType t, Void ignored) {
  1582                 return visit(t.elemtype);
  1585             @Override
  1586             public Boolean visitTypeVar(TypeVar t, Void ignored) {
  1587                 return false;
  1589         };
  1590     // </editor-fold>
  1592     // <editor-fold defaultstate="collapsed" desc="Array Utils">
  1593     public boolean isArray(Type t) {
  1594         while (t.tag == WILDCARD)
  1595             t = upperBound(t);
  1596         return t.tag == ARRAY;
  1599     /**
  1600      * The element type of an array.
  1601      */
  1602     public Type elemtype(Type t) {
  1603         switch (t.tag) {
  1604         case WILDCARD:
  1605             return elemtype(upperBound(t));
  1606         case ARRAY:
  1607             return ((ArrayType)t).elemtype;
  1608         case FORALL:
  1609             return elemtype(((ForAll)t).qtype);
  1610         case ERROR:
  1611             return t;
  1612         default:
  1613             return null;
  1617     public Type elemtypeOrType(Type t) {
  1618         Type elemtype = elemtype(t);
  1619         return elemtype != null ?
  1620             elemtype :
  1621             t;
  1624     /**
  1625      * Mapping to take element type of an arraytype
  1626      */
  1627     private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
  1628         public Type apply(Type t) { return elemtype(t); }
  1629     };
  1631     /**
  1632      * The number of dimensions of an array type.
  1633      */
  1634     public int dimensions(Type t) {
  1635         int result = 0;
  1636         while (t.tag == ARRAY) {
  1637             result++;
  1638             t = elemtype(t);
  1640         return result;
  1643     /**
  1644      * Returns an ArrayType with the component type t
  1646      * @param t The component type of the ArrayType
  1647      * @return the ArrayType for the given component
  1648      */
  1649     public ArrayType makeArrayType(Type t) {
  1650         if (t.tag == VOID ||
  1651             t.tag >= PACKAGE) {
  1652             Assert.error("Type t must not be a a VOID or PACKAGE type, " + t.toString());
  1654         return new ArrayType(t, syms.arrayClass);
  1656     // </editor-fold>
  1658     // <editor-fold defaultstate="collapsed" desc="asSuper">
  1659     /**
  1660      * Return the (most specific) base type of t that starts with the
  1661      * given symbol.  If none exists, return null.
  1663      * @param t a type
  1664      * @param sym a symbol
  1665      */
  1666     public Type asSuper(Type t, Symbol sym) {
  1667         return asSuper.visit(t, sym);
  1669     // where
  1670         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
  1672             public Type visitType(Type t, Symbol sym) {
  1673                 return null;
  1676             @Override
  1677             public Type visitClassType(ClassType t, Symbol sym) {
  1678                 if (t.tsym == sym)
  1679                     return t;
  1681                 Type st = supertype(t);
  1682                 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
  1683                     Type x = asSuper(st, sym);
  1684                     if (x != null)
  1685                         return x;
  1687                 if ((sym.flags() & INTERFACE) != 0) {
  1688                     for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  1689                         Type x = asSuper(l.head, sym);
  1690                         if (x != null)
  1691                             return x;
  1694                 return null;
  1697             @Override
  1698             public Type visitArrayType(ArrayType t, Symbol sym) {
  1699                 return isSubtype(t, sym.type) ? sym.type : null;
  1702             @Override
  1703             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1704                 if (t.tsym == sym)
  1705                     return t;
  1706                 else
  1707                     return asSuper(t.bound, sym);
  1710             @Override
  1711             public Type visitErrorType(ErrorType t, Symbol sym) {
  1712                 return t;
  1714         };
  1716     /**
  1717      * Return the base type of t or any of its outer types that starts
  1718      * with the given symbol.  If none exists, return null.
  1720      * @param t a type
  1721      * @param sym a symbol
  1722      */
  1723     public Type asOuterSuper(Type t, Symbol sym) {
  1724         switch (t.tag) {
  1725         case CLASS:
  1726             do {
  1727                 Type s = asSuper(t, sym);
  1728                 if (s != null) return s;
  1729                 t = t.getEnclosingType();
  1730             } while (t.tag == CLASS);
  1731             return null;
  1732         case ARRAY:
  1733             return isSubtype(t, sym.type) ? sym.type : null;
  1734         case TYPEVAR:
  1735             return asSuper(t, sym);
  1736         case ERROR:
  1737             return t;
  1738         default:
  1739             return null;
  1743     /**
  1744      * Return the base type of t or any of its enclosing types that
  1745      * starts with the given symbol.  If none exists, return null.
  1747      * @param t a type
  1748      * @param sym a symbol
  1749      */
  1750     public Type asEnclosingSuper(Type t, Symbol sym) {
  1751         switch (t.tag) {
  1752         case CLASS:
  1753             do {
  1754                 Type s = asSuper(t, sym);
  1755                 if (s != null) return s;
  1756                 Type outer = t.getEnclosingType();
  1757                 t = (outer.tag == CLASS) ? outer :
  1758                     (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
  1759                     Type.noType;
  1760             } while (t.tag == CLASS);
  1761             return null;
  1762         case ARRAY:
  1763             return isSubtype(t, sym.type) ? sym.type : null;
  1764         case TYPEVAR:
  1765             return asSuper(t, sym);
  1766         case ERROR:
  1767             return t;
  1768         default:
  1769             return null;
  1772     // </editor-fold>
  1774     // <editor-fold defaultstate="collapsed" desc="memberType">
  1775     /**
  1776      * The type of given symbol, seen as a member of t.
  1778      * @param t a type
  1779      * @param sym a symbol
  1780      */
  1781     public Type memberType(Type t, Symbol sym) {
  1782         return (sym.flags() & STATIC) != 0
  1783             ? sym.type
  1784             : memberType.visit(t, sym);
  1786     // where
  1787         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
  1789             public Type visitType(Type t, Symbol sym) {
  1790                 return sym.type;
  1793             @Override
  1794             public Type visitWildcardType(WildcardType t, Symbol sym) {
  1795                 return memberType(upperBound(t), sym);
  1798             @Override
  1799             public Type visitClassType(ClassType t, Symbol sym) {
  1800                 Symbol owner = sym.owner;
  1801                 long flags = sym.flags();
  1802                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
  1803                     Type base = asOuterSuper(t, owner);
  1804                     //if t is an intersection type T = CT & I1 & I2 ... & In
  1805                     //its supertypes CT, I1, ... In might contain wildcards
  1806                     //so we need to go through capture conversion
  1807                     base = t.isCompound() ? capture(base) : base;
  1808                     if (base != null) {
  1809                         List<Type> ownerParams = owner.type.allparams();
  1810                         List<Type> baseParams = base.allparams();
  1811                         if (ownerParams.nonEmpty()) {
  1812                             if (baseParams.isEmpty()) {
  1813                                 // then base is a raw type
  1814                                 return erasure(sym.type);
  1815                             } else {
  1816                                 return subst(sym.type, ownerParams, baseParams);
  1821                 return sym.type;
  1824             @Override
  1825             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1826                 return memberType(t.bound, sym);
  1829             @Override
  1830             public Type visitErrorType(ErrorType t, Symbol sym) {
  1831                 return t;
  1833         };
  1834     // </editor-fold>
  1836     // <editor-fold defaultstate="collapsed" desc="isAssignable">
  1837     public boolean isAssignable(Type t, Type s) {
  1838         return isAssignable(t, s, Warner.noWarnings);
  1841     /**
  1842      * Is t assignable to s?<br>
  1843      * Equivalent to subtype except for constant values and raw
  1844      * types.<br>
  1845      * (not defined for Method and ForAll types)
  1846      */
  1847     public boolean isAssignable(Type t, Type s, Warner warn) {
  1848         if (t.tag == ERROR)
  1849             return true;
  1850         if (t.tag <= INT && t.constValue() != null) {
  1851             int value = ((Number)t.constValue()).intValue();
  1852             switch (s.tag) {
  1853             case BYTE:
  1854                 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
  1855                     return true;
  1856                 break;
  1857             case CHAR:
  1858                 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
  1859                     return true;
  1860                 break;
  1861             case SHORT:
  1862                 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
  1863                     return true;
  1864                 break;
  1865             case INT:
  1866                 return true;
  1867             case CLASS:
  1868                 switch (unboxedType(s).tag) {
  1869                 case BYTE:
  1870                 case CHAR:
  1871                 case SHORT:
  1872                     return isAssignable(t, unboxedType(s), warn);
  1874                 break;
  1877         return isConvertible(t, s, warn);
  1879     // </editor-fold>
  1881     // <editor-fold defaultstate="collapsed" desc="erasure">
  1882     /**
  1883      * The erasure of t {@code |t|} -- the type that results when all
  1884      * type parameters in t are deleted.
  1885      */
  1886     public Type erasure(Type t) {
  1887         return eraseNotNeeded(t)? t : erasure(t, false);
  1889     //where
  1890     private boolean eraseNotNeeded(Type t) {
  1891         // We don't want to erase primitive types and String type as that
  1892         // operation is idempotent. Also, erasing these could result in loss
  1893         // of information such as constant values attached to such types.
  1894         return (t.tag <= lastBaseTag) || (syms.stringType.tsym == t.tsym);
  1897     private Type erasure(Type t, boolean recurse) {
  1898         if (t.tag <= lastBaseTag)
  1899             return t; /* fast special case */
  1900         else
  1901             return erasure.visit(t, recurse);
  1903     // where
  1904         private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
  1905             public Type visitType(Type t, Boolean recurse) {
  1906                 if (t.tag <= lastBaseTag)
  1907                     return t; /*fast special case*/
  1908                 else
  1909                     return t.map(recurse ? erasureRecFun : erasureFun);
  1912             @Override
  1913             public Type visitWildcardType(WildcardType t, Boolean recurse) {
  1914                 return erasure(upperBound(t), recurse);
  1917             @Override
  1918             public Type visitClassType(ClassType t, Boolean recurse) {
  1919                 Type erased = t.tsym.erasure(Types.this);
  1920                 if (recurse) {
  1921                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
  1923                 return erased;
  1926             @Override
  1927             public Type visitTypeVar(TypeVar t, Boolean recurse) {
  1928                 return erasure(t.bound, recurse);
  1931             @Override
  1932             public Type visitErrorType(ErrorType t, Boolean recurse) {
  1933                 return t;
  1935         };
  1937     private Mapping erasureFun = new Mapping ("erasure") {
  1938             public Type apply(Type t) { return erasure(t); }
  1939         };
  1941     private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
  1942         public Type apply(Type t) { return erasureRecursive(t); }
  1943     };
  1945     public List<Type> erasure(List<Type> ts) {
  1946         return Type.map(ts, erasureFun);
  1949     public Type erasureRecursive(Type t) {
  1950         return erasure(t, true);
  1953     public List<Type> erasureRecursive(List<Type> ts) {
  1954         return Type.map(ts, erasureRecFun);
  1956     // </editor-fold>
  1958     // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
  1959     /**
  1960      * Make a compound type from non-empty list of types
  1962      * @param bounds            the types from which the compound type is formed
  1963      * @param supertype         is objectType if all bounds are interfaces,
  1964      *                          null otherwise.
  1965      */
  1966     public Type makeCompoundType(List<Type> bounds,
  1967                                  Type supertype) {
  1968         ClassSymbol bc =
  1969             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
  1970                             Type.moreInfo
  1971                                 ? names.fromString(bounds.toString())
  1972                                 : names.empty,
  1973                             syms.noSymbol);
  1974         if (bounds.head.tag == TYPEVAR)
  1975             // error condition, recover
  1976                 bc.erasure_field = syms.objectType;
  1977             else
  1978                 bc.erasure_field = erasure(bounds.head);
  1979             bc.members_field = new Scope(bc);
  1980         ClassType bt = (ClassType)bc.type;
  1981         bt.allparams_field = List.nil();
  1982         if (supertype != null) {
  1983             bt.supertype_field = supertype;
  1984             bt.interfaces_field = bounds;
  1985         } else {
  1986             bt.supertype_field = bounds.head;
  1987             bt.interfaces_field = bounds.tail;
  1989         Assert.check(bt.supertype_field.tsym.completer != null
  1990                 || !bt.supertype_field.isInterface(),
  1991             bt.supertype_field);
  1992         return bt;
  1995     /**
  1996      * Same as {@link #makeCompoundType(List,Type)}, except that the
  1997      * second parameter is computed directly. Note that this might
  1998      * cause a symbol completion.  Hence, this version of
  1999      * makeCompoundType may not be called during a classfile read.
  2000      */
  2001     public Type makeCompoundType(List<Type> bounds) {
  2002         Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
  2003             supertype(bounds.head) : null;
  2004         return makeCompoundType(bounds, supertype);
  2007     /**
  2008      * A convenience wrapper for {@link #makeCompoundType(List)}; the
  2009      * arguments are converted to a list and passed to the other
  2010      * method.  Note that this might cause a symbol completion.
  2011      * Hence, this version of makeCompoundType may not be called
  2012      * during a classfile read.
  2013      */
  2014     public Type makeCompoundType(Type bound1, Type bound2) {
  2015         return makeCompoundType(List.of(bound1, bound2));
  2017     // </editor-fold>
  2019     // <editor-fold defaultstate="collapsed" desc="supertype">
  2020     public Type supertype(Type t) {
  2021         return supertype.visit(t);
  2023     // where
  2024         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
  2026             public Type visitType(Type t, Void ignored) {
  2027                 // A note on wildcards: there is no good way to
  2028                 // determine a supertype for a super bounded wildcard.
  2029                 return null;
  2032             @Override
  2033             public Type visitClassType(ClassType t, Void ignored) {
  2034                 if (t.supertype_field == null) {
  2035                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
  2036                     // An interface has no superclass; its supertype is Object.
  2037                     if (t.isInterface())
  2038                         supertype = ((ClassType)t.tsym.type).supertype_field;
  2039                     if (t.supertype_field == null) {
  2040                         List<Type> actuals = classBound(t).allparams();
  2041                         List<Type> formals = t.tsym.type.allparams();
  2042                         if (t.hasErasedSupertypes()) {
  2043                             t.supertype_field = erasureRecursive(supertype);
  2044                         } else if (formals.nonEmpty()) {
  2045                             t.supertype_field = subst(supertype, formals, actuals);
  2047                         else {
  2048                             t.supertype_field = supertype;
  2052                 return t.supertype_field;
  2055             /**
  2056              * The supertype is always a class type. If the type
  2057              * variable's bounds start with a class type, this is also
  2058              * the supertype.  Otherwise, the supertype is
  2059              * java.lang.Object.
  2060              */
  2061             @Override
  2062             public Type visitTypeVar(TypeVar t, Void ignored) {
  2063                 if (t.bound.tag == TYPEVAR ||
  2064                     (!t.bound.isCompound() && !t.bound.isInterface())) {
  2065                     return t.bound;
  2066                 } else {
  2067                     return supertype(t.bound);
  2071             @Override
  2072             public Type visitArrayType(ArrayType t, Void ignored) {
  2073                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
  2074                     return arraySuperType();
  2075                 else
  2076                     return new ArrayType(supertype(t.elemtype), t.tsym);
  2079             @Override
  2080             public Type visitErrorType(ErrorType t, Void ignored) {
  2081                 return t;
  2083         };
  2084     // </editor-fold>
  2086     // <editor-fold defaultstate="collapsed" desc="interfaces">
  2087     /**
  2088      * Return the interfaces implemented by this class.
  2089      */
  2090     public List<Type> interfaces(Type t) {
  2091         return interfaces.visit(t);
  2093     // where
  2094         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
  2096             public List<Type> visitType(Type t, Void ignored) {
  2097                 return List.nil();
  2100             @Override
  2101             public List<Type> visitClassType(ClassType t, Void ignored) {
  2102                 if (t.interfaces_field == null) {
  2103                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
  2104                     if (t.interfaces_field == null) {
  2105                         // If t.interfaces_field is null, then t must
  2106                         // be a parameterized type (not to be confused
  2107                         // with a generic type declaration).
  2108                         // Terminology:
  2109                         //    Parameterized type: List<String>
  2110                         //    Generic type declaration: class List<E> { ... }
  2111                         // So t corresponds to List<String> and
  2112                         // t.tsym.type corresponds to List<E>.
  2113                         // The reason t must be parameterized type is
  2114                         // that completion will happen as a side
  2115                         // effect of calling
  2116                         // ClassSymbol.getInterfaces.  Since
  2117                         // t.interfaces_field is null after
  2118                         // completion, we can assume that t is not the
  2119                         // type of a class/interface declaration.
  2120                         Assert.check(t != t.tsym.type, t);
  2121                         List<Type> actuals = t.allparams();
  2122                         List<Type> formals = t.tsym.type.allparams();
  2123                         if (t.hasErasedSupertypes()) {
  2124                             t.interfaces_field = erasureRecursive(interfaces);
  2125                         } else if (formals.nonEmpty()) {
  2126                             t.interfaces_field =
  2127                                 upperBounds(subst(interfaces, formals, actuals));
  2129                         else {
  2130                             t.interfaces_field = interfaces;
  2134                 return t.interfaces_field;
  2137             @Override
  2138             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
  2139                 if (t.bound.isCompound())
  2140                     return interfaces(t.bound);
  2142                 if (t.bound.isInterface())
  2143                     return List.of(t.bound);
  2145                 return List.nil();
  2147         };
  2148     // </editor-fold>
  2150     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
  2151     Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
  2153     public boolean isDerivedRaw(Type t) {
  2154         Boolean result = isDerivedRawCache.get(t);
  2155         if (result == null) {
  2156             result = isDerivedRawInternal(t);
  2157             isDerivedRawCache.put(t, result);
  2159         return result;
  2162     public boolean isDerivedRawInternal(Type t) {
  2163         if (t.isErroneous())
  2164             return false;
  2165         return
  2166             t.isRaw() ||
  2167             supertype(t) != null && isDerivedRaw(supertype(t)) ||
  2168             isDerivedRaw(interfaces(t));
  2171     public boolean isDerivedRaw(List<Type> ts) {
  2172         List<Type> l = ts;
  2173         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
  2174         return l.nonEmpty();
  2176     // </editor-fold>
  2178     // <editor-fold defaultstate="collapsed" desc="setBounds">
  2179     /**
  2180      * Set the bounds field of the given type variable to reflect a
  2181      * (possibly multiple) list of bounds.
  2182      * @param t                 a type variable
  2183      * @param bounds            the bounds, must be nonempty
  2184      * @param supertype         is objectType if all bounds are interfaces,
  2185      *                          null otherwise.
  2186      */
  2187     public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
  2188         if (bounds.tail.isEmpty())
  2189             t.bound = bounds.head;
  2190         else
  2191             t.bound = makeCompoundType(bounds, supertype);
  2192         t.rank_field = -1;
  2195     /**
  2196      * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
  2197      * third parameter is computed directly, as follows: if all
  2198      * all bounds are interface types, the computed supertype is Object,
  2199      * otherwise the supertype is simply left null (in this case, the supertype
  2200      * is assumed to be the head of the bound list passed as second argument).
  2201      * Note that this check might cause a symbol completion. Hence, this version of
  2202      * setBounds may not be called during a classfile read.
  2203      */
  2204     public void setBounds(TypeVar t, List<Type> bounds) {
  2205         Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
  2206             syms.objectType : null;
  2207         setBounds(t, bounds, supertype);
  2208         t.rank_field = -1;
  2210     // </editor-fold>
  2212     // <editor-fold defaultstate="collapsed" desc="getBounds">
  2213     /**
  2214      * Return list of bounds of the given type variable.
  2215      */
  2216     public List<Type> getBounds(TypeVar t) {
  2217         if (t.bound.isErroneous() || !t.bound.isCompound())
  2218             return List.of(t.bound);
  2219         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
  2220             return interfaces(t).prepend(supertype(t));
  2221         else
  2222             // No superclass was given in bounds.
  2223             // In this case, supertype is Object, erasure is first interface.
  2224             return interfaces(t);
  2226     // </editor-fold>
  2228     // <editor-fold defaultstate="collapsed" desc="classBound">
  2229     /**
  2230      * If the given type is a (possibly selected) type variable,
  2231      * return the bounding class of this type, otherwise return the
  2232      * type itself.
  2233      */
  2234     public Type classBound(Type t) {
  2235         return classBound.visit(t);
  2237     // where
  2238         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
  2240             public Type visitType(Type t, Void ignored) {
  2241                 return t;
  2244             @Override
  2245             public Type visitClassType(ClassType t, Void ignored) {
  2246                 Type outer1 = classBound(t.getEnclosingType());
  2247                 if (outer1 != t.getEnclosingType())
  2248                     return new ClassType(outer1, t.getTypeArguments(), t.tsym);
  2249                 else
  2250                     return t;
  2253             @Override
  2254             public Type visitTypeVar(TypeVar t, Void ignored) {
  2255                 return classBound(supertype(t));
  2258             @Override
  2259             public Type visitErrorType(ErrorType t, Void ignored) {
  2260                 return t;
  2262         };
  2263     // </editor-fold>
  2265     // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
  2266     /**
  2267      * Returns true iff the first signature is a <em>sub
  2268      * signature</em> of the other.  This is <b>not</b> an equivalence
  2269      * relation.
  2271      * @jls section 8.4.2.
  2272      * @see #overrideEquivalent(Type t, Type s)
  2273      * @param t first signature (possibly raw).
  2274      * @param s second signature (could be subjected to erasure).
  2275      * @return true if t is a sub signature of s.
  2276      */
  2277     public boolean isSubSignature(Type t, Type s) {
  2278         return isSubSignature(t, s, true);
  2281     public boolean isSubSignature(Type t, Type s, boolean strict) {
  2282         return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
  2285     /**
  2286      * Returns true iff these signatures are related by <em>override
  2287      * equivalence</em>.  This is the natural extension of
  2288      * isSubSignature to an equivalence relation.
  2290      * @jls section 8.4.2.
  2291      * @see #isSubSignature(Type t, Type s)
  2292      * @param t a signature (possible raw, could be subjected to
  2293      * erasure).
  2294      * @param s a signature (possible raw, could be subjected to
  2295      * erasure).
  2296      * @return true if either argument is a sub signature of the other.
  2297      */
  2298     public boolean overrideEquivalent(Type t, Type s) {
  2299         return hasSameArgs(t, s) ||
  2300             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
  2303     public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
  2304         for (Scope.Entry e = syms.objectType.tsym.members().lookup(msym.name) ; e.scope != null ; e = e.next()) {
  2305             if (msym.overrides(e.sym, origin, Types.this, true)) {
  2306                 return true;
  2309         return false;
  2312     // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
  2313     class ImplementationCache {
  2315         private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
  2316                 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
  2318         class Entry {
  2319             final MethodSymbol cachedImpl;
  2320             final Filter<Symbol> implFilter;
  2321             final boolean checkResult;
  2322             final int prevMark;
  2324             public Entry(MethodSymbol cachedImpl,
  2325                     Filter<Symbol> scopeFilter,
  2326                     boolean checkResult,
  2327                     int prevMark) {
  2328                 this.cachedImpl = cachedImpl;
  2329                 this.implFilter = scopeFilter;
  2330                 this.checkResult = checkResult;
  2331                 this.prevMark = prevMark;
  2334             boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
  2335                 return this.implFilter == scopeFilter &&
  2336                         this.checkResult == checkResult &&
  2337                         this.prevMark == mark;
  2341         MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2342             SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
  2343             Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
  2344             if (cache == null) {
  2345                 cache = new HashMap<TypeSymbol, Entry>();
  2346                 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
  2348             Entry e = cache.get(origin);
  2349             CompoundScope members = membersClosure(origin.type, true);
  2350             if (e == null ||
  2351                     !e.matches(implFilter, checkResult, members.getMark())) {
  2352                 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
  2353                 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
  2354                 return impl;
  2356             else {
  2357                 return e.cachedImpl;
  2361         private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2362             for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
  2363                 while (t.tag == TYPEVAR)
  2364                     t = t.getUpperBound();
  2365                 TypeSymbol c = t.tsym;
  2366                 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
  2367                      e.scope != null;
  2368                      e = e.next(implFilter)) {
  2369                     if (e.sym != null &&
  2370                              e.sym.overrides(ms, origin, Types.this, checkResult))
  2371                         return (MethodSymbol)e.sym;
  2374             return null;
  2378     private ImplementationCache implCache = new ImplementationCache();
  2380     public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2381         return implCache.get(ms, origin, checkResult, implFilter);
  2383     // </editor-fold>
  2385     // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
  2386     class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
  2388         private WeakHashMap<TypeSymbol, Entry> _map =
  2389                 new WeakHashMap<TypeSymbol, Entry>();
  2391         class Entry {
  2392             final boolean skipInterfaces;
  2393             final CompoundScope compoundScope;
  2395             public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
  2396                 this.skipInterfaces = skipInterfaces;
  2397                 this.compoundScope = compoundScope;
  2400             boolean matches(boolean skipInterfaces) {
  2401                 return this.skipInterfaces == skipInterfaces;
  2405         List<TypeSymbol> seenTypes = List.nil();
  2407         /** members closure visitor methods **/
  2409         public CompoundScope visitType(Type t, Boolean skipInterface) {
  2410             return null;
  2413         @Override
  2414         public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
  2415             if (seenTypes.contains(t.tsym)) {
  2416                 //this is possible when an interface is implemented in multiple
  2417                 //superclasses, or when a classs hierarchy is circular - in such
  2418                 //cases we don't need to recurse (empty scope is returned)
  2419                 return new CompoundScope(t.tsym);
  2421             try {
  2422                 seenTypes = seenTypes.prepend(t.tsym);
  2423                 ClassSymbol csym = (ClassSymbol)t.tsym;
  2424                 Entry e = _map.get(csym);
  2425                 if (e == null || !e.matches(skipInterface)) {
  2426                     CompoundScope membersClosure = new CompoundScope(csym);
  2427                     if (!skipInterface) {
  2428                         for (Type i : interfaces(t)) {
  2429                             membersClosure.addSubScope(visit(i, skipInterface));
  2432                     membersClosure.addSubScope(visit(supertype(t), skipInterface));
  2433                     membersClosure.addSubScope(csym.members());
  2434                     e = new Entry(skipInterface, membersClosure);
  2435                     _map.put(csym, e);
  2437                 return e.compoundScope;
  2439             finally {
  2440                 seenTypes = seenTypes.tail;
  2444         @Override
  2445         public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
  2446             return visit(t.getUpperBound(), skipInterface);
  2450     private MembersClosureCache membersCache = new MembersClosureCache();
  2452     public CompoundScope membersClosure(Type site, boolean skipInterface) {
  2453         return membersCache.visit(site, skipInterface);
  2455     // </editor-fold>
  2457     /**
  2458      * Does t have the same arguments as s?  It is assumed that both
  2459      * types are (possibly polymorphic) method types.  Monomorphic
  2460      * method types "have the same arguments", if their argument lists
  2461      * are equal.  Polymorphic method types "have the same arguments",
  2462      * if they have the same arguments after renaming all type
  2463      * variables of one to corresponding type variables in the other,
  2464      * where correspondence is by position in the type parameter list.
  2465      */
  2466     public boolean hasSameArgs(Type t, Type s) {
  2467         return hasSameArgs(t, s, true);
  2470     public boolean hasSameArgs(Type t, Type s, boolean strict) {
  2471         return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
  2474     private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
  2475         return hasSameArgs.visit(t, s);
  2477     // where
  2478         private class HasSameArgs extends TypeRelation {
  2480             boolean strict;
  2482             public HasSameArgs(boolean strict) {
  2483                 this.strict = strict;
  2486             public Boolean visitType(Type t, Type s) {
  2487                 throw new AssertionError();
  2490             @Override
  2491             public Boolean visitMethodType(MethodType t, Type s) {
  2492                 return s.tag == METHOD
  2493                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
  2496             @Override
  2497             public Boolean visitForAll(ForAll t, Type s) {
  2498                 if (s.tag != FORALL)
  2499                     return strict ? false : visitMethodType(t.asMethodType(), s);
  2501                 ForAll forAll = (ForAll)s;
  2502                 return hasSameBounds(t, forAll)
  2503                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  2506             @Override
  2507             public Boolean visitErrorType(ErrorType t, Type s) {
  2508                 return false;
  2510         };
  2512         TypeRelation hasSameArgs_strict = new HasSameArgs(true);
  2513         TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
  2515     // </editor-fold>
  2517     // <editor-fold defaultstate="collapsed" desc="subst">
  2518     public List<Type> subst(List<Type> ts,
  2519                             List<Type> from,
  2520                             List<Type> to) {
  2521         return new Subst(from, to).subst(ts);
  2524     /**
  2525      * Substitute all occurrences of a type in `from' with the
  2526      * corresponding type in `to' in 't'. Match lists `from' and `to'
  2527      * from the right: If lists have different length, discard leading
  2528      * elements of the longer list.
  2529      */
  2530     public Type subst(Type t, List<Type> from, List<Type> to) {
  2531         return new Subst(from, to).subst(t);
  2534     private class Subst extends UnaryVisitor<Type> {
  2535         List<Type> from;
  2536         List<Type> to;
  2538         public Subst(List<Type> from, List<Type> to) {
  2539             int fromLength = from.length();
  2540             int toLength = to.length();
  2541             while (fromLength > toLength) {
  2542                 fromLength--;
  2543                 from = from.tail;
  2545             while (fromLength < toLength) {
  2546                 toLength--;
  2547                 to = to.tail;
  2549             this.from = from;
  2550             this.to = to;
  2553         Type subst(Type t) {
  2554             if (from.tail == null)
  2555                 return t;
  2556             else
  2557                 return visit(t);
  2560         List<Type> subst(List<Type> ts) {
  2561             if (from.tail == null)
  2562                 return ts;
  2563             boolean wild = false;
  2564             if (ts.nonEmpty() && from.nonEmpty()) {
  2565                 Type head1 = subst(ts.head);
  2566                 List<Type> tail1 = subst(ts.tail);
  2567                 if (head1 != ts.head || tail1 != ts.tail)
  2568                     return tail1.prepend(head1);
  2570             return ts;
  2573         public Type visitType(Type t, Void ignored) {
  2574             return t;
  2577         @Override
  2578         public Type visitMethodType(MethodType t, Void ignored) {
  2579             List<Type> argtypes = subst(t.argtypes);
  2580             Type restype = subst(t.restype);
  2581             List<Type> thrown = subst(t.thrown);
  2582             if (argtypes == t.argtypes &&
  2583                 restype == t.restype &&
  2584                 thrown == t.thrown)
  2585                 return t;
  2586             else
  2587                 return new MethodType(argtypes, restype, thrown, t.tsym);
  2590         @Override
  2591         public Type visitTypeVar(TypeVar t, Void ignored) {
  2592             for (List<Type> from = this.from, to = this.to;
  2593                  from.nonEmpty();
  2594                  from = from.tail, to = to.tail) {
  2595                 if (t == from.head) {
  2596                     return to.head.withTypeVar(t);
  2599             return t;
  2602         @Override
  2603         public Type visitClassType(ClassType t, Void ignored) {
  2604             if (!t.isCompound()) {
  2605                 List<Type> typarams = t.getTypeArguments();
  2606                 List<Type> typarams1 = subst(typarams);
  2607                 Type outer = t.getEnclosingType();
  2608                 Type outer1 = subst(outer);
  2609                 if (typarams1 == typarams && outer1 == outer)
  2610                     return t;
  2611                 else
  2612                     return new ClassType(outer1, typarams1, t.tsym);
  2613             } else {
  2614                 Type st = subst(supertype(t));
  2615                 List<Type> is = upperBounds(subst(interfaces(t)));
  2616                 if (st == supertype(t) && is == interfaces(t))
  2617                     return t;
  2618                 else
  2619                     return makeCompoundType(is.prepend(st));
  2623         @Override
  2624         public Type visitWildcardType(WildcardType t, Void ignored) {
  2625             Type bound = t.type;
  2626             if (t.kind != BoundKind.UNBOUND)
  2627                 bound = subst(bound);
  2628             if (bound == t.type) {
  2629                 return t;
  2630             } else {
  2631                 if (t.isExtendsBound() && bound.isExtendsBound())
  2632                     bound = upperBound(bound);
  2633                 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
  2637         @Override
  2638         public Type visitArrayType(ArrayType t, Void ignored) {
  2639             Type elemtype = subst(t.elemtype);
  2640             if (elemtype == t.elemtype)
  2641                 return t;
  2642             else
  2643                 return new ArrayType(upperBound(elemtype), t.tsym);
  2646         @Override
  2647         public Type visitForAll(ForAll t, Void ignored) {
  2648             if (Type.containsAny(to, t.tvars)) {
  2649                 //perform alpha-renaming of free-variables in 't'
  2650                 //if 'to' types contain variables that are free in 't'
  2651                 List<Type> freevars = newInstances(t.tvars);
  2652                 t = new ForAll(freevars,
  2653                         Types.this.subst(t.qtype, t.tvars, freevars));
  2655             List<Type> tvars1 = substBounds(t.tvars, from, to);
  2656             Type qtype1 = subst(t.qtype);
  2657             if (tvars1 == t.tvars && qtype1 == t.qtype) {
  2658                 return t;
  2659             } else if (tvars1 == t.tvars) {
  2660                 return new ForAll(tvars1, qtype1);
  2661             } else {
  2662                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
  2666         @Override
  2667         public Type visitErrorType(ErrorType t, Void ignored) {
  2668             return t;
  2672     public List<Type> substBounds(List<Type> tvars,
  2673                                   List<Type> from,
  2674                                   List<Type> to) {
  2675         if (tvars.isEmpty())
  2676             return tvars;
  2677         ListBuffer<Type> newBoundsBuf = lb();
  2678         boolean changed = false;
  2679         // calculate new bounds
  2680         for (Type t : tvars) {
  2681             TypeVar tv = (TypeVar) t;
  2682             Type bound = subst(tv.bound, from, to);
  2683             if (bound != tv.bound)
  2684                 changed = true;
  2685             newBoundsBuf.append(bound);
  2687         if (!changed)
  2688             return tvars;
  2689         ListBuffer<Type> newTvars = lb();
  2690         // create new type variables without bounds
  2691         for (Type t : tvars) {
  2692             newTvars.append(new TypeVar(t.tsym, null, syms.botType));
  2694         // the new bounds should use the new type variables in place
  2695         // of the old
  2696         List<Type> newBounds = newBoundsBuf.toList();
  2697         from = tvars;
  2698         to = newTvars.toList();
  2699         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
  2700             newBounds.head = subst(newBounds.head, from, to);
  2702         newBounds = newBoundsBuf.toList();
  2703         // set the bounds of new type variables to the new bounds
  2704         for (Type t : newTvars.toList()) {
  2705             TypeVar tv = (TypeVar) t;
  2706             tv.bound = newBounds.head;
  2707             newBounds = newBounds.tail;
  2709         return newTvars.toList();
  2712     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
  2713         Type bound1 = subst(t.bound, from, to);
  2714         if (bound1 == t.bound)
  2715             return t;
  2716         else {
  2717             // create new type variable without bounds
  2718             TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
  2719             // the new bound should use the new type variable in place
  2720             // of the old
  2721             tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
  2722             return tv;
  2725     // </editor-fold>
  2727     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
  2728     /**
  2729      * Does t have the same bounds for quantified variables as s?
  2730      */
  2731     boolean hasSameBounds(ForAll t, ForAll s) {
  2732         List<Type> l1 = t.tvars;
  2733         List<Type> l2 = s.tvars;
  2734         while (l1.nonEmpty() && l2.nonEmpty() &&
  2735                isSameType(l1.head.getUpperBound(),
  2736                           subst(l2.head.getUpperBound(),
  2737                                 s.tvars,
  2738                                 t.tvars))) {
  2739             l1 = l1.tail;
  2740             l2 = l2.tail;
  2742         return l1.isEmpty() && l2.isEmpty();
  2744     // </editor-fold>
  2746     // <editor-fold defaultstate="collapsed" desc="newInstances">
  2747     /** Create new vector of type variables from list of variables
  2748      *  changing all recursive bounds from old to new list.
  2749      */
  2750     public List<Type> newInstances(List<Type> tvars) {
  2751         List<Type> tvars1 = Type.map(tvars, newInstanceFun);
  2752         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
  2753             TypeVar tv = (TypeVar) l.head;
  2754             tv.bound = subst(tv.bound, tvars, tvars1);
  2756         return tvars1;
  2758     static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
  2759             public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
  2760         };
  2761     // </editor-fold>
  2763     public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
  2764         return original.accept(methodWithParameters, newParams);
  2766     // where
  2767         private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
  2768             public Type visitType(Type t, List<Type> newParams) {
  2769                 throw new IllegalArgumentException("Not a method type: " + t);
  2771             public Type visitMethodType(MethodType t, List<Type> newParams) {
  2772                 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
  2774             public Type visitForAll(ForAll t, List<Type> newParams) {
  2775                 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
  2777         };
  2779     public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
  2780         return original.accept(methodWithThrown, newThrown);
  2782     // where
  2783         private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
  2784             public Type visitType(Type t, List<Type> newThrown) {
  2785                 throw new IllegalArgumentException("Not a method type: " + t);
  2787             public Type visitMethodType(MethodType t, List<Type> newThrown) {
  2788                 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
  2790             public Type visitForAll(ForAll t, List<Type> newThrown) {
  2791                 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
  2793         };
  2795     public Type createMethodTypeWithReturn(Type original, Type newReturn) {
  2796         return original.accept(methodWithReturn, newReturn);
  2798     // where
  2799         private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
  2800             public Type visitType(Type t, Type newReturn) {
  2801                 throw new IllegalArgumentException("Not a method type: " + t);
  2803             public Type visitMethodType(MethodType t, Type newReturn) {
  2804                 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
  2806             public Type visitForAll(ForAll t, Type newReturn) {
  2807                 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
  2809         };
  2811     // <editor-fold defaultstate="collapsed" desc="createErrorType">
  2812     public Type createErrorType(Type originalType) {
  2813         return new ErrorType(originalType, syms.errSymbol);
  2816     public Type createErrorType(ClassSymbol c, Type originalType) {
  2817         return new ErrorType(c, originalType);
  2820     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
  2821         return new ErrorType(name, container, originalType);
  2823     // </editor-fold>
  2825     // <editor-fold defaultstate="collapsed" desc="rank">
  2826     /**
  2827      * The rank of a class is the length of the longest path between
  2828      * the class and java.lang.Object in the class inheritance
  2829      * graph. Undefined for all but reference types.
  2830      */
  2831     public int rank(Type t) {
  2832         switch(t.tag) {
  2833         case CLASS: {
  2834             ClassType cls = (ClassType)t;
  2835             if (cls.rank_field < 0) {
  2836                 Name fullname = cls.tsym.getQualifiedName();
  2837                 if (fullname == names.java_lang_Object)
  2838                     cls.rank_field = 0;
  2839                 else {
  2840                     int r = rank(supertype(cls));
  2841                     for (List<Type> l = interfaces(cls);
  2842                          l.nonEmpty();
  2843                          l = l.tail) {
  2844                         if (rank(l.head) > r)
  2845                             r = rank(l.head);
  2847                     cls.rank_field = r + 1;
  2850             return cls.rank_field;
  2852         case TYPEVAR: {
  2853             TypeVar tvar = (TypeVar)t;
  2854             if (tvar.rank_field < 0) {
  2855                 int r = rank(supertype(tvar));
  2856                 for (List<Type> l = interfaces(tvar);
  2857                      l.nonEmpty();
  2858                      l = l.tail) {
  2859                     if (rank(l.head) > r) r = rank(l.head);
  2861                 tvar.rank_field = r + 1;
  2863             return tvar.rank_field;
  2865         case ERROR:
  2866             return 0;
  2867         default:
  2868             throw new AssertionError();
  2871     // </editor-fold>
  2873     /**
  2874      * Helper method for generating a string representation of a given type
  2875      * accordingly to a given locale
  2876      */
  2877     public String toString(Type t, Locale locale) {
  2878         return Printer.createStandardPrinter(messages).visit(t, locale);
  2881     /**
  2882      * Helper method for generating a string representation of a given type
  2883      * accordingly to a given locale
  2884      */
  2885     public String toString(Symbol t, Locale locale) {
  2886         return Printer.createStandardPrinter(messages).visit(t, locale);
  2889     // <editor-fold defaultstate="collapsed" desc="toString">
  2890     /**
  2891      * This toString is slightly more descriptive than the one on Type.
  2893      * @deprecated Types.toString(Type t, Locale l) provides better support
  2894      * for localization
  2895      */
  2896     @Deprecated
  2897     public String toString(Type t) {
  2898         if (t.tag == FORALL) {
  2899             ForAll forAll = (ForAll)t;
  2900             return typaramsString(forAll.tvars) + forAll.qtype;
  2902         return "" + t;
  2904     // where
  2905         private String typaramsString(List<Type> tvars) {
  2906             StringBuilder s = new StringBuilder();
  2907             s.append('<');
  2908             boolean first = true;
  2909             for (Type t : tvars) {
  2910                 if (!first) s.append(", ");
  2911                 first = false;
  2912                 appendTyparamString(((TypeVar)t), s);
  2914             s.append('>');
  2915             return s.toString();
  2917         private void appendTyparamString(TypeVar t, StringBuilder buf) {
  2918             buf.append(t);
  2919             if (t.bound == null ||
  2920                 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
  2921                 return;
  2922             buf.append(" extends "); // Java syntax; no need for i18n
  2923             Type bound = t.bound;
  2924             if (!bound.isCompound()) {
  2925                 buf.append(bound);
  2926             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
  2927                 buf.append(supertype(t));
  2928                 for (Type intf : interfaces(t)) {
  2929                     buf.append('&');
  2930                     buf.append(intf);
  2932             } else {
  2933                 // No superclass was given in bounds.
  2934                 // In this case, supertype is Object, erasure is first interface.
  2935                 boolean first = true;
  2936                 for (Type intf : interfaces(t)) {
  2937                     if (!first) buf.append('&');
  2938                     first = false;
  2939                     buf.append(intf);
  2943     // </editor-fold>
  2945     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
  2946     /**
  2947      * A cache for closures.
  2949      * <p>A closure is a list of all the supertypes and interfaces of
  2950      * a class or interface type, ordered by ClassSymbol.precedes
  2951      * (that is, subclasses come first, arbitrary but fixed
  2952      * otherwise).
  2953      */
  2954     private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
  2956     /**
  2957      * Returns the closure of a class or interface type.
  2958      */
  2959     public List<Type> closure(Type t) {
  2960         List<Type> cl = closureCache.get(t);
  2961         if (cl == null) {
  2962             Type st = supertype(t);
  2963             if (!t.isCompound()) {
  2964                 if (st.tag == CLASS) {
  2965                     cl = insert(closure(st), t);
  2966                 } else if (st.tag == TYPEVAR) {
  2967                     cl = closure(st).prepend(t);
  2968                 } else {
  2969                     cl = List.of(t);
  2971             } else {
  2972                 cl = closure(supertype(t));
  2974             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
  2975                 cl = union(cl, closure(l.head));
  2976             closureCache.put(t, cl);
  2978         return cl;
  2981     /**
  2982      * Insert a type in a closure
  2983      */
  2984     public List<Type> insert(List<Type> cl, Type t) {
  2985         if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
  2986             return cl.prepend(t);
  2987         } else if (cl.head.tsym.precedes(t.tsym, this)) {
  2988             return insert(cl.tail, t).prepend(cl.head);
  2989         } else {
  2990             return cl;
  2994     /**
  2995      * Form the union of two closures
  2996      */
  2997     public List<Type> union(List<Type> cl1, List<Type> cl2) {
  2998         if (cl1.isEmpty()) {
  2999             return cl2;
  3000         } else if (cl2.isEmpty()) {
  3001             return cl1;
  3002         } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
  3003             return union(cl1.tail, cl2).prepend(cl1.head);
  3004         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
  3005             return union(cl1, cl2.tail).prepend(cl2.head);
  3006         } else {
  3007             return union(cl1.tail, cl2.tail).prepend(cl1.head);
  3011     /**
  3012      * Intersect two closures
  3013      */
  3014     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
  3015         if (cl1 == cl2)
  3016             return cl1;
  3017         if (cl1.isEmpty() || cl2.isEmpty())
  3018             return List.nil();
  3019         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
  3020             return intersect(cl1.tail, cl2);
  3021         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
  3022             return intersect(cl1, cl2.tail);
  3023         if (isSameType(cl1.head, cl2.head))
  3024             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
  3025         if (cl1.head.tsym == cl2.head.tsym &&
  3026             cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
  3027             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
  3028                 Type merge = merge(cl1.head,cl2.head);
  3029                 return intersect(cl1.tail, cl2.tail).prepend(merge);
  3031             if (cl1.head.isRaw() || cl2.head.isRaw())
  3032                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
  3034         return intersect(cl1.tail, cl2.tail);
  3036     // where
  3037         class TypePair {
  3038             final Type t1;
  3039             final Type t2;
  3040             TypePair(Type t1, Type t2) {
  3041                 this.t1 = t1;
  3042                 this.t2 = t2;
  3044             @Override
  3045             public int hashCode() {
  3046                 return 127 * Types.hashCode(t1) + Types.hashCode(t2);
  3048             @Override
  3049             public boolean equals(Object obj) {
  3050                 if (!(obj instanceof TypePair))
  3051                     return false;
  3052                 TypePair typePair = (TypePair)obj;
  3053                 return isSameType(t1, typePair.t1)
  3054                     && isSameType(t2, typePair.t2);
  3057         Set<TypePair> mergeCache = new HashSet<TypePair>();
  3058         private Type merge(Type c1, Type c2) {
  3059             ClassType class1 = (ClassType) c1;
  3060             List<Type> act1 = class1.getTypeArguments();
  3061             ClassType class2 = (ClassType) c2;
  3062             List<Type> act2 = class2.getTypeArguments();
  3063             ListBuffer<Type> merged = new ListBuffer<Type>();
  3064             List<Type> typarams = class1.tsym.type.getTypeArguments();
  3066             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
  3067                 if (containsType(act1.head, act2.head)) {
  3068                     merged.append(act1.head);
  3069                 } else if (containsType(act2.head, act1.head)) {
  3070                     merged.append(act2.head);
  3071                 } else {
  3072                     TypePair pair = new TypePair(c1, c2);
  3073                     Type m;
  3074                     if (mergeCache.add(pair)) {
  3075                         m = new WildcardType(lub(upperBound(act1.head),
  3076                                                  upperBound(act2.head)),
  3077                                              BoundKind.EXTENDS,
  3078                                              syms.boundClass);
  3079                         mergeCache.remove(pair);
  3080                     } else {
  3081                         m = new WildcardType(syms.objectType,
  3082                                              BoundKind.UNBOUND,
  3083                                              syms.boundClass);
  3085                     merged.append(m.withTypeVar(typarams.head));
  3087                 act1 = act1.tail;
  3088                 act2 = act2.tail;
  3089                 typarams = typarams.tail;
  3091             Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
  3092             return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
  3095     /**
  3096      * Return the minimum type of a closure, a compound type if no
  3097      * unique minimum exists.
  3098      */
  3099     private Type compoundMin(List<Type> cl) {
  3100         if (cl.isEmpty()) return syms.objectType;
  3101         List<Type> compound = closureMin(cl);
  3102         if (compound.isEmpty())
  3103             return null;
  3104         else if (compound.tail.isEmpty())
  3105             return compound.head;
  3106         else
  3107             return makeCompoundType(compound);
  3110     /**
  3111      * Return the minimum types of a closure, suitable for computing
  3112      * compoundMin or glb.
  3113      */
  3114     private List<Type> closureMin(List<Type> cl) {
  3115         ListBuffer<Type> classes = lb();
  3116         ListBuffer<Type> interfaces = lb();
  3117         while (!cl.isEmpty()) {
  3118             Type current = cl.head;
  3119             if (current.isInterface())
  3120                 interfaces.append(current);
  3121             else
  3122                 classes.append(current);
  3123             ListBuffer<Type> candidates = lb();
  3124             for (Type t : cl.tail) {
  3125                 if (!isSubtypeNoCapture(current, t))
  3126                     candidates.append(t);
  3128             cl = candidates.toList();
  3130         return classes.appendList(interfaces).toList();
  3133     /**
  3134      * Return the least upper bound of pair of types.  if the lub does
  3135      * not exist return null.
  3136      */
  3137     public Type lub(Type t1, Type t2) {
  3138         return lub(List.of(t1, t2));
  3141     /**
  3142      * Return the least upper bound (lub) of set of types.  If the lub
  3143      * does not exist return the type of null (bottom).
  3144      */
  3145     public Type lub(List<Type> ts) {
  3146         final int ARRAY_BOUND = 1;
  3147         final int CLASS_BOUND = 2;
  3148         int boundkind = 0;
  3149         for (Type t : ts) {
  3150             switch (t.tag) {
  3151             case CLASS:
  3152                 boundkind |= CLASS_BOUND;
  3153                 break;
  3154             case ARRAY:
  3155                 boundkind |= ARRAY_BOUND;
  3156                 break;
  3157             case  TYPEVAR:
  3158                 do {
  3159                     t = t.getUpperBound();
  3160                 } while (t.tag == TYPEVAR);
  3161                 if (t.tag == ARRAY) {
  3162                     boundkind |= ARRAY_BOUND;
  3163                 } else {
  3164                     boundkind |= CLASS_BOUND;
  3166                 break;
  3167             default:
  3168                 if (t.isPrimitive())
  3169                     return syms.errType;
  3172         switch (boundkind) {
  3173         case 0:
  3174             return syms.botType;
  3176         case ARRAY_BOUND:
  3177             // calculate lub(A[], B[])
  3178             List<Type> elements = Type.map(ts, elemTypeFun);
  3179             for (Type t : elements) {
  3180                 if (t.isPrimitive()) {
  3181                     // if a primitive type is found, then return
  3182                     // arraySuperType unless all the types are the
  3183                     // same
  3184                     Type first = ts.head;
  3185                     for (Type s : ts.tail) {
  3186                         if (!isSameType(first, s)) {
  3187                              // lub(int[], B[]) is Cloneable & Serializable
  3188                             return arraySuperType();
  3191                     // all the array types are the same, return one
  3192                     // lub(int[], int[]) is int[]
  3193                     return first;
  3196             // lub(A[], B[]) is lub(A, B)[]
  3197             return new ArrayType(lub(elements), syms.arrayClass);
  3199         case CLASS_BOUND:
  3200             // calculate lub(A, B)
  3201             while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
  3202                 ts = ts.tail;
  3203             Assert.check(!ts.isEmpty());
  3204             //step 1 - compute erased candidate set (EC)
  3205             List<Type> cl = erasedSupertypes(ts.head);
  3206             for (Type t : ts.tail) {
  3207                 if (t.tag == CLASS || t.tag == TYPEVAR)
  3208                     cl = intersect(cl, erasedSupertypes(t));
  3210             //step 2 - compute minimal erased candidate set (MEC)
  3211             List<Type> mec = closureMin(cl);
  3212             //step 3 - for each element G in MEC, compute lci(Inv(G))
  3213             List<Type> candidates = List.nil();
  3214             for (Type erasedSupertype : mec) {
  3215                 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
  3216                 for (Type t : ts) {
  3217                     lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
  3219                 candidates = candidates.appendList(lci);
  3221             //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
  3222             //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
  3223             return compoundMin(candidates);
  3225         default:
  3226             // calculate lub(A, B[])
  3227             List<Type> classes = List.of(arraySuperType());
  3228             for (Type t : ts) {
  3229                 if (t.tag != ARRAY) // Filter out any arrays
  3230                     classes = classes.prepend(t);
  3232             // lub(A, B[]) is lub(A, arraySuperType)
  3233             return lub(classes);
  3236     // where
  3237         List<Type> erasedSupertypes(Type t) {
  3238             ListBuffer<Type> buf = lb();
  3239             for (Type sup : closure(t)) {
  3240                 if (sup.tag == TYPEVAR) {
  3241                     buf.append(sup);
  3242                 } else {
  3243                     buf.append(erasure(sup));
  3246             return buf.toList();
  3249         private Type arraySuperType = null;
  3250         private Type arraySuperType() {
  3251             // initialized lazily to avoid problems during compiler startup
  3252             if (arraySuperType == null) {
  3253                 synchronized (this) {
  3254                     if (arraySuperType == null) {
  3255                         // JLS 10.8: all arrays implement Cloneable and Serializable.
  3256                         arraySuperType = makeCompoundType(List.of(syms.serializableType,
  3257                                                                   syms.cloneableType),
  3258                                                           syms.objectType);
  3262             return arraySuperType;
  3264     // </editor-fold>
  3266     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
  3267     public Type glb(List<Type> ts) {
  3268         Type t1 = ts.head;
  3269         for (Type t2 : ts.tail) {
  3270             if (t1.isErroneous())
  3271                 return t1;
  3272             t1 = glb(t1, t2);
  3274         return t1;
  3276     //where
  3277     public Type glb(Type t, Type s) {
  3278         if (s == null)
  3279             return t;
  3280         else if (t.isPrimitive() || s.isPrimitive())
  3281             return syms.errType;
  3282         else if (isSubtypeNoCapture(t, s))
  3283             return t;
  3284         else if (isSubtypeNoCapture(s, t))
  3285             return s;
  3287         List<Type> closure = union(closure(t), closure(s));
  3288         List<Type> bounds = closureMin(closure);
  3290         if (bounds.isEmpty()) {             // length == 0
  3291             return syms.objectType;
  3292         } else if (bounds.tail.isEmpty()) { // length == 1
  3293             return bounds.head;
  3294         } else {                            // length > 1
  3295             int classCount = 0;
  3296             for (Type bound : bounds)
  3297                 if (!bound.isInterface())
  3298                     classCount++;
  3299             if (classCount > 1)
  3300                 return createErrorType(t);
  3302         return makeCompoundType(bounds);
  3304     // </editor-fold>
  3306     // <editor-fold defaultstate="collapsed" desc="hashCode">
  3307     /**
  3308      * Compute a hash code on a type.
  3309      */
  3310     public static int hashCode(Type t) {
  3311         return hashCode.visit(t);
  3313     // where
  3314         private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
  3316             public Integer visitType(Type t, Void ignored) {
  3317                 return t.tag;
  3320             @Override
  3321             public Integer visitClassType(ClassType t, Void ignored) {
  3322                 int result = visit(t.getEnclosingType());
  3323                 result *= 127;
  3324                 result += t.tsym.flatName().hashCode();
  3325                 for (Type s : t.getTypeArguments()) {
  3326                     result *= 127;
  3327                     result += visit(s);
  3329                 return result;
  3332             @Override
  3333             public Integer visitWildcardType(WildcardType t, Void ignored) {
  3334                 int result = t.kind.hashCode();
  3335                 if (t.type != null) {
  3336                     result *= 127;
  3337                     result += visit(t.type);
  3339                 return result;
  3342             @Override
  3343             public Integer visitArrayType(ArrayType t, Void ignored) {
  3344                 return visit(t.elemtype) + 12;
  3347             @Override
  3348             public Integer visitTypeVar(TypeVar t, Void ignored) {
  3349                 return System.identityHashCode(t.tsym);
  3352             @Override
  3353             public Integer visitUndetVar(UndetVar t, Void ignored) {
  3354                 return System.identityHashCode(t);
  3357             @Override
  3358             public Integer visitErrorType(ErrorType t, Void ignored) {
  3359                 return 0;
  3361         };
  3362     // </editor-fold>
  3364     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
  3365     /**
  3366      * Does t have a result that is a subtype of the result type of s,
  3367      * suitable for covariant returns?  It is assumed that both types
  3368      * are (possibly polymorphic) method types.  Monomorphic method
  3369      * types are handled in the obvious way.  Polymorphic method types
  3370      * require renaming all type variables of one to corresponding
  3371      * type variables in the other, where correspondence is by
  3372      * position in the type parameter list. */
  3373     public boolean resultSubtype(Type t, Type s, Warner warner) {
  3374         List<Type> tvars = t.getTypeArguments();
  3375         List<Type> svars = s.getTypeArguments();
  3376         Type tres = t.getReturnType();
  3377         Type sres = subst(s.getReturnType(), svars, tvars);
  3378         return covariantReturnType(tres, sres, warner);
  3381     /**
  3382      * Return-Type-Substitutable.
  3383      * @jls section 8.4.5
  3384      */
  3385     public boolean returnTypeSubstitutable(Type r1, Type r2) {
  3386         if (hasSameArgs(r1, r2))
  3387             return resultSubtype(r1, r2, Warner.noWarnings);
  3388         else
  3389             return covariantReturnType(r1.getReturnType(),
  3390                                        erasure(r2.getReturnType()),
  3391                                        Warner.noWarnings);
  3394     public boolean returnTypeSubstitutable(Type r1,
  3395                                            Type r2, Type r2res,
  3396                                            Warner warner) {
  3397         if (isSameType(r1.getReturnType(), r2res))
  3398             return true;
  3399         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
  3400             return false;
  3402         if (hasSameArgs(r1, r2))
  3403             return covariantReturnType(r1.getReturnType(), r2res, warner);
  3404         if (!allowCovariantReturns)
  3405             return false;
  3406         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
  3407             return true;
  3408         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
  3409             return false;
  3410         warner.warn(LintCategory.UNCHECKED);
  3411         return true;
  3414     /**
  3415      * Is t an appropriate return type in an overrider for a
  3416      * method that returns s?
  3417      */
  3418     public boolean covariantReturnType(Type t, Type s, Warner warner) {
  3419         return
  3420             isSameType(t, s) ||
  3421             allowCovariantReturns &&
  3422             !t.isPrimitive() &&
  3423             !s.isPrimitive() &&
  3424             isAssignable(t, s, warner);
  3426     // </editor-fold>
  3428     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
  3429     /**
  3430      * Return the class that boxes the given primitive.
  3431      */
  3432     public ClassSymbol boxedClass(Type t) {
  3433         return reader.enterClass(syms.boxedName[t.tag]);
  3436     /**
  3437      * Return the boxed type if 't' is primitive, otherwise return 't' itself.
  3438      */
  3439     public Type boxedTypeOrType(Type t) {
  3440         return t.isPrimitive() ?
  3441             boxedClass(t).type :
  3442             t;
  3445     /**
  3446      * Return the primitive type corresponding to a boxed type.
  3447      */
  3448     public Type unboxedType(Type t) {
  3449         if (allowBoxing) {
  3450             for (int i=0; i<syms.boxedName.length; i++) {
  3451                 Name box = syms.boxedName[i];
  3452                 if (box != null &&
  3453                     asSuper(t, reader.enterClass(box)) != null)
  3454                     return syms.typeOfTag[i];
  3457         return Type.noType;
  3460     /**
  3461      * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
  3462      */
  3463     public Type unboxedTypeOrType(Type t) {
  3464         Type unboxedType = unboxedType(t);
  3465         return unboxedType.tag == NONE ? t : unboxedType;
  3467     // </editor-fold>
  3469     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
  3470     /*
  3471      * JLS 5.1.10 Capture Conversion:
  3473      * Let G name a generic type declaration with n formal type
  3474      * parameters A1 ... An with corresponding bounds U1 ... Un. There
  3475      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
  3476      * where, for 1 <= i <= n:
  3478      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
  3479      *   Si is a fresh type variable whose upper bound is
  3480      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
  3481      *   type.
  3483      * + If Ti is a wildcard type argument of the form ? extends Bi,
  3484      *   then Si is a fresh type variable whose upper bound is
  3485      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
  3486      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
  3487      *   a compile-time error if for any two classes (not interfaces)
  3488      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
  3490      * + If Ti is a wildcard type argument of the form ? super Bi,
  3491      *   then Si is a fresh type variable whose upper bound is
  3492      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
  3494      * + Otherwise, Si = Ti.
  3496      * Capture conversion on any type other than a parameterized type
  3497      * (4.5) acts as an identity conversion (5.1.1). Capture
  3498      * conversions never require a special action at run time and
  3499      * therefore never throw an exception at run time.
  3501      * Capture conversion is not applied recursively.
  3502      */
  3503     /**
  3504      * Capture conversion as specified by the JLS.
  3505      */
  3507     public List<Type> capture(List<Type> ts) {
  3508         List<Type> buf = List.nil();
  3509         for (Type t : ts) {
  3510             buf = buf.prepend(capture(t));
  3512         return buf.reverse();
  3514     public Type capture(Type t) {
  3515         if (t.tag != CLASS)
  3516             return t;
  3517         if (t.getEnclosingType() != Type.noType) {
  3518             Type capturedEncl = capture(t.getEnclosingType());
  3519             if (capturedEncl != t.getEnclosingType()) {
  3520                 Type type1 = memberType(capturedEncl, t.tsym);
  3521                 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
  3524         ClassType cls = (ClassType)t;
  3525         if (cls.isRaw() || !cls.isParameterized())
  3526             return cls;
  3528         ClassType G = (ClassType)cls.asElement().asType();
  3529         List<Type> A = G.getTypeArguments();
  3530         List<Type> T = cls.getTypeArguments();
  3531         List<Type> S = freshTypeVariables(T);
  3533         List<Type> currentA = A;
  3534         List<Type> currentT = T;
  3535         List<Type> currentS = S;
  3536         boolean captured = false;
  3537         while (!currentA.isEmpty() &&
  3538                !currentT.isEmpty() &&
  3539                !currentS.isEmpty()) {
  3540             if (currentS.head != currentT.head) {
  3541                 captured = true;
  3542                 WildcardType Ti = (WildcardType)currentT.head;
  3543                 Type Ui = currentA.head.getUpperBound();
  3544                 CapturedType Si = (CapturedType)currentS.head;
  3545                 if (Ui == null)
  3546                     Ui = syms.objectType;
  3547                 switch (Ti.kind) {
  3548                 case UNBOUND:
  3549                     Si.bound = subst(Ui, A, S);
  3550                     Si.lower = syms.botType;
  3551                     break;
  3552                 case EXTENDS:
  3553                     Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
  3554                     Si.lower = syms.botType;
  3555                     break;
  3556                 case SUPER:
  3557                     Si.bound = subst(Ui, A, S);
  3558                     Si.lower = Ti.getSuperBound();
  3559                     break;
  3561                 if (Si.bound == Si.lower)
  3562                     currentS.head = Si.bound;
  3564             currentA = currentA.tail;
  3565             currentT = currentT.tail;
  3566             currentS = currentS.tail;
  3568         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
  3569             return erasure(t); // some "rare" type involved
  3571         if (captured)
  3572             return new ClassType(cls.getEnclosingType(), S, cls.tsym);
  3573         else
  3574             return t;
  3576     // where
  3577         public List<Type> freshTypeVariables(List<Type> types) {
  3578             ListBuffer<Type> result = lb();
  3579             for (Type t : types) {
  3580                 if (t.tag == WILDCARD) {
  3581                     Type bound = ((WildcardType)t).getExtendsBound();
  3582                     if (bound == null)
  3583                         bound = syms.objectType;
  3584                     result.append(new CapturedType(capturedName,
  3585                                                    syms.noSymbol,
  3586                                                    bound,
  3587                                                    syms.botType,
  3588                                                    (WildcardType)t));
  3589                 } else {
  3590                     result.append(t);
  3593             return result.toList();
  3595     // </editor-fold>
  3597     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
  3598     private List<Type> upperBounds(List<Type> ss) {
  3599         if (ss.isEmpty()) return ss;
  3600         Type head = upperBound(ss.head);
  3601         List<Type> tail = upperBounds(ss.tail);
  3602         if (head != ss.head || tail != ss.tail)
  3603             return tail.prepend(head);
  3604         else
  3605             return ss;
  3608     private boolean sideCast(Type from, Type to, Warner warn) {
  3609         // We are casting from type $from$ to type $to$, which are
  3610         // non-final unrelated types.  This method
  3611         // tries to reject a cast by transferring type parameters
  3612         // from $to$ to $from$ by common superinterfaces.
  3613         boolean reverse = false;
  3614         Type target = to;
  3615         if ((to.tsym.flags() & INTERFACE) == 0) {
  3616             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3617             reverse = true;
  3618             to = from;
  3619             from = target;
  3621         List<Type> commonSupers = superClosure(to, erasure(from));
  3622         boolean giveWarning = commonSupers.isEmpty();
  3623         // The arguments to the supers could be unified here to
  3624         // get a more accurate analysis
  3625         while (commonSupers.nonEmpty()) {
  3626             Type t1 = asSuper(from, commonSupers.head.tsym);
  3627             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
  3628             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3629                 return false;
  3630             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
  3631             commonSupers = commonSupers.tail;
  3633         if (giveWarning && !isReifiable(reverse ? from : to))
  3634             warn.warn(LintCategory.UNCHECKED);
  3635         if (!allowCovariantReturns)
  3636             // reject if there is a common method signature with
  3637             // incompatible return types.
  3638             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3639         return true;
  3642     private boolean sideCastFinal(Type from, Type to, Warner warn) {
  3643         // We are casting from type $from$ to type $to$, which are
  3644         // unrelated types one of which is final and the other of
  3645         // which is an interface.  This method
  3646         // tries to reject a cast by transferring type parameters
  3647         // from the final class to the interface.
  3648         boolean reverse = false;
  3649         Type target = to;
  3650         if ((to.tsym.flags() & INTERFACE) == 0) {
  3651             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3652             reverse = true;
  3653             to = from;
  3654             from = target;
  3656         Assert.check((from.tsym.flags() & FINAL) != 0);
  3657         Type t1 = asSuper(from, to.tsym);
  3658         if (t1 == null) return false;
  3659         Type t2 = to;
  3660         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3661             return false;
  3662         if (!allowCovariantReturns)
  3663             // reject if there is a common method signature with
  3664             // incompatible return types.
  3665             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3666         if (!isReifiable(target) &&
  3667             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
  3668             warn.warn(LintCategory.UNCHECKED);
  3669         return true;
  3672     private boolean giveWarning(Type from, Type to) {
  3673         Type subFrom = asSub(from, to.tsym);
  3674         return to.isParameterized() &&
  3675                 (!(isUnbounded(to) ||
  3676                 isSubtype(from, to) ||
  3677                 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
  3680     private List<Type> superClosure(Type t, Type s) {
  3681         List<Type> cl = List.nil();
  3682         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  3683             if (isSubtype(s, erasure(l.head))) {
  3684                 cl = insert(cl, l.head);
  3685             } else {
  3686                 cl = union(cl, superClosure(l.head, s));
  3689         return cl;
  3692     private boolean containsTypeEquivalent(Type t, Type s) {
  3693         return
  3694             isSameType(t, s) || // shortcut
  3695             containsType(t, s) && containsType(s, t);
  3698     // <editor-fold defaultstate="collapsed" desc="adapt">
  3699     /**
  3700      * Adapt a type by computing a substitution which maps a source
  3701      * type to a target type.
  3703      * @param source    the source type
  3704      * @param target    the target type
  3705      * @param from      the type variables of the computed substitution
  3706      * @param to        the types of the computed substitution.
  3707      */
  3708     public void adapt(Type source,
  3709                        Type target,
  3710                        ListBuffer<Type> from,
  3711                        ListBuffer<Type> to) throws AdaptFailure {
  3712         new Adapter(from, to).adapt(source, target);
  3715     class Adapter extends SimpleVisitor<Void, Type> {
  3717         ListBuffer<Type> from;
  3718         ListBuffer<Type> to;
  3719         Map<Symbol,Type> mapping;
  3721         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
  3722             this.from = from;
  3723             this.to = to;
  3724             mapping = new HashMap<Symbol,Type>();
  3727         public void adapt(Type source, Type target) throws AdaptFailure {
  3728             visit(source, target);
  3729             List<Type> fromList = from.toList();
  3730             List<Type> toList = to.toList();
  3731             while (!fromList.isEmpty()) {
  3732                 Type val = mapping.get(fromList.head.tsym);
  3733                 if (toList.head != val)
  3734                     toList.head = val;
  3735                 fromList = fromList.tail;
  3736                 toList = toList.tail;
  3740         @Override
  3741         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
  3742             if (target.tag == CLASS)
  3743                 adaptRecursive(source.allparams(), target.allparams());
  3744             return null;
  3747         @Override
  3748         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
  3749             if (target.tag == ARRAY)
  3750                 adaptRecursive(elemtype(source), elemtype(target));
  3751             return null;
  3754         @Override
  3755         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
  3756             if (source.isExtendsBound())
  3757                 adaptRecursive(upperBound(source), upperBound(target));
  3758             else if (source.isSuperBound())
  3759                 adaptRecursive(lowerBound(source), lowerBound(target));
  3760             return null;
  3763         @Override
  3764         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
  3765             // Check to see if there is
  3766             // already a mapping for $source$, in which case
  3767             // the old mapping will be merged with the new
  3768             Type val = mapping.get(source.tsym);
  3769             if (val != null) {
  3770                 if (val.isSuperBound() && target.isSuperBound()) {
  3771                     val = isSubtype(lowerBound(val), lowerBound(target))
  3772                         ? target : val;
  3773                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
  3774                     val = isSubtype(upperBound(val), upperBound(target))
  3775                         ? val : target;
  3776                 } else if (!isSameType(val, target)) {
  3777                     throw new AdaptFailure();
  3779             } else {
  3780                 val = target;
  3781                 from.append(source);
  3782                 to.append(target);
  3784             mapping.put(source.tsym, val);
  3785             return null;
  3788         @Override
  3789         public Void visitType(Type source, Type target) {
  3790             return null;
  3793         private Set<TypePair> cache = new HashSet<TypePair>();
  3795         private void adaptRecursive(Type source, Type target) {
  3796             TypePair pair = new TypePair(source, target);
  3797             if (cache.add(pair)) {
  3798                 try {
  3799                     visit(source, target);
  3800                 } finally {
  3801                     cache.remove(pair);
  3806         private void adaptRecursive(List<Type> source, List<Type> target) {
  3807             if (source.length() == target.length()) {
  3808                 while (source.nonEmpty()) {
  3809                     adaptRecursive(source.head, target.head);
  3810                     source = source.tail;
  3811                     target = target.tail;
  3817     public static class AdaptFailure extends RuntimeException {
  3818         static final long serialVersionUID = -7490231548272701566L;
  3821     private void adaptSelf(Type t,
  3822                            ListBuffer<Type> from,
  3823                            ListBuffer<Type> to) {
  3824         try {
  3825             //if (t.tsym.type != t)
  3826                 adapt(t.tsym.type, t, from, to);
  3827         } catch (AdaptFailure ex) {
  3828             // Adapt should never fail calculating a mapping from
  3829             // t.tsym.type to t as there can be no merge problem.
  3830             throw new AssertionError(ex);
  3833     // </editor-fold>
  3835     /**
  3836      * Rewrite all type variables (universal quantifiers) in the given
  3837      * type to wildcards (existential quantifiers).  This is used to
  3838      * determine if a cast is allowed.  For example, if high is true
  3839      * and {@code T <: Number}, then {@code List<T>} is rewritten to
  3840      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
  3841      * List<? extends Number>} a {@code List<T>} can be cast to {@code
  3842      * List<Integer>} with a warning.
  3843      * @param t a type
  3844      * @param high if true return an upper bound; otherwise a lower
  3845      * bound
  3846      * @param rewriteTypeVars only rewrite captured wildcards if false;
  3847      * otherwise rewrite all type variables
  3848      * @return the type rewritten with wildcards (existential
  3849      * quantifiers) only
  3850      */
  3851     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
  3852         return new Rewriter(high, rewriteTypeVars).visit(t);
  3855     class Rewriter extends UnaryVisitor<Type> {
  3857         boolean high;
  3858         boolean rewriteTypeVars;
  3860         Rewriter(boolean high, boolean rewriteTypeVars) {
  3861             this.high = high;
  3862             this.rewriteTypeVars = rewriteTypeVars;
  3865         @Override
  3866         public Type visitClassType(ClassType t, Void s) {
  3867             ListBuffer<Type> rewritten = new ListBuffer<Type>();
  3868             boolean changed = false;
  3869             for (Type arg : t.allparams()) {
  3870                 Type bound = visit(arg);
  3871                 if (arg != bound) {
  3872                     changed = true;
  3874                 rewritten.append(bound);
  3876             if (changed)
  3877                 return subst(t.tsym.type,
  3878                         t.tsym.type.allparams(),
  3879                         rewritten.toList());
  3880             else
  3881                 return t;
  3884         public Type visitType(Type t, Void s) {
  3885             return high ? upperBound(t) : lowerBound(t);
  3888         @Override
  3889         public Type visitCapturedType(CapturedType t, Void s) {
  3890             Type w_bound = t.wildcard.type;
  3891             Type bound = w_bound.contains(t) ?
  3892                         erasure(w_bound) :
  3893                         visit(w_bound);
  3894             return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
  3897         @Override
  3898         public Type visitTypeVar(TypeVar t, Void s) {
  3899             if (rewriteTypeVars) {
  3900                 Type bound = t.bound.contains(t) ?
  3901                         erasure(t.bound) :
  3902                         visit(t.bound);
  3903                 return rewriteAsWildcardType(bound, t, EXTENDS);
  3904             } else {
  3905                 return t;
  3909         @Override
  3910         public Type visitWildcardType(WildcardType t, Void s) {
  3911             Type bound2 = visit(t.type);
  3912             return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
  3915         private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
  3916             switch (bk) {
  3917                case EXTENDS: return high ?
  3918                        makeExtendsWildcard(B(bound), formal) :
  3919                        makeExtendsWildcard(syms.objectType, formal);
  3920                case SUPER: return high ?
  3921                        makeSuperWildcard(syms.botType, formal) :
  3922                        makeSuperWildcard(B(bound), formal);
  3923                case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
  3924                default:
  3925                    Assert.error("Invalid bound kind " + bk);
  3926                    return null;
  3930         Type B(Type t) {
  3931             while (t.tag == WILDCARD) {
  3932                 WildcardType w = (WildcardType)t;
  3933                 t = high ?
  3934                     w.getExtendsBound() :
  3935                     w.getSuperBound();
  3936                 if (t == null) {
  3937                     t = high ? syms.objectType : syms.botType;
  3940             return t;
  3945     /**
  3946      * Create a wildcard with the given upper (extends) bound; create
  3947      * an unbounded wildcard if bound is Object.
  3949      * @param bound the upper bound
  3950      * @param formal the formal type parameter that will be
  3951      * substituted by the wildcard
  3952      */
  3953     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
  3954         if (bound == syms.objectType) {
  3955             return new WildcardType(syms.objectType,
  3956                                     BoundKind.UNBOUND,
  3957                                     syms.boundClass,
  3958                                     formal);
  3959         } else {
  3960             return new WildcardType(bound,
  3961                                     BoundKind.EXTENDS,
  3962                                     syms.boundClass,
  3963                                     formal);
  3967     /**
  3968      * Create a wildcard with the given lower (super) bound; create an
  3969      * unbounded wildcard if bound is bottom (type of {@code null}).
  3971      * @param bound the lower bound
  3972      * @param formal the formal type parameter that will be
  3973      * substituted by the wildcard
  3974      */
  3975     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
  3976         if (bound.tag == BOT) {
  3977             return new WildcardType(syms.objectType,
  3978                                     BoundKind.UNBOUND,
  3979                                     syms.boundClass,
  3980                                     formal);
  3981         } else {
  3982             return new WildcardType(bound,
  3983                                     BoundKind.SUPER,
  3984                                     syms.boundClass,
  3985                                     formal);
  3989     /**
  3990      * A wrapper for a type that allows use in sets.
  3991      */
  3992     class SingletonType {
  3993         final Type t;
  3994         SingletonType(Type t) {
  3995             this.t = t;
  3997         public int hashCode() {
  3998             return Types.hashCode(t);
  4000         public boolean equals(Object obj) {
  4001             return (obj instanceof SingletonType) &&
  4002                 isSameType(t, ((SingletonType)obj).t);
  4004         public String toString() {
  4005             return t.toString();
  4008     // </editor-fold>
  4010     // <editor-fold defaultstate="collapsed" desc="Visitors">
  4011     /**
  4012      * A default visitor for types.  All visitor methods except
  4013      * visitType are implemented by delegating to visitType.  Concrete
  4014      * subclasses must provide an implementation of visitType and can
  4015      * override other methods as needed.
  4017      * @param <R> the return type of the operation implemented by this
  4018      * visitor; use Void if no return type is needed.
  4019      * @param <S> the type of the second argument (the first being the
  4020      * type itself) of the operation implemented by this visitor; use
  4021      * Void if a second argument is not needed.
  4022      */
  4023     public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
  4024         final public R visit(Type t, S s)               { return t.accept(this, s); }
  4025         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
  4026         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
  4027         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
  4028         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
  4029         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
  4030         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
  4031         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
  4032         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
  4033         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
  4034         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
  4037     /**
  4038      * A default visitor for symbols.  All visitor methods except
  4039      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
  4040      * subclasses must provide an implementation of visitSymbol and can
  4041      * override other methods as needed.
  4043      * @param <R> the return type of the operation implemented by this
  4044      * visitor; use Void if no return type is needed.
  4045      * @param <S> the type of the second argument (the first being the
  4046      * symbol itself) of the operation implemented by this visitor; use
  4047      * Void if a second argument is not needed.
  4048      */
  4049     public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
  4050         final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
  4051         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
  4052         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
  4053         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
  4054         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
  4055         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
  4056         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
  4059     /**
  4060      * A <em>simple</em> visitor for types.  This visitor is simple as
  4061      * captured wildcards, for-all types (generic methods), and
  4062      * undetermined type variables (part of inference) are hidden.
  4063      * Captured wildcards are hidden by treating them as type
  4064      * variables and the rest are hidden by visiting their qtypes.
  4066      * @param <R> the return type of the operation implemented by this
  4067      * visitor; use Void if no return type is needed.
  4068      * @param <S> the type of the second argument (the first being the
  4069      * type itself) of the operation implemented by this visitor; use
  4070      * Void if a second argument is not needed.
  4071      */
  4072     public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
  4073         @Override
  4074         public R visitCapturedType(CapturedType t, S s) {
  4075             return visitTypeVar(t, s);
  4077         @Override
  4078         public R visitForAll(ForAll t, S s) {
  4079             return visit(t.qtype, s);
  4081         @Override
  4082         public R visitUndetVar(UndetVar t, S s) {
  4083             return visit(t.qtype, s);
  4087     /**
  4088      * A plain relation on types.  That is a 2-ary function on the
  4089      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
  4090      * <!-- In plain text: Type x Type -> Boolean -->
  4091      */
  4092     public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
  4094     /**
  4095      * A convenience visitor for implementing operations that only
  4096      * require one argument (the type itself), that is, unary
  4097      * operations.
  4099      * @param <R> the return type of the operation implemented by this
  4100      * visitor; use Void if no return type is needed.
  4101      */
  4102     public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
  4103         final public R visit(Type t) { return t.accept(this, null); }
  4106     /**
  4107      * A visitor for implementing a mapping from types to types.  The
  4108      * default behavior of this class is to implement the identity
  4109      * mapping (mapping a type to itself).  This can be overridden in
  4110      * subclasses.
  4112      * @param <S> the type of the second argument (the first being the
  4113      * type itself) of this mapping; use Void if a second argument is
  4114      * not needed.
  4115      */
  4116     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
  4117         final public Type visit(Type t) { return t.accept(this, null); }
  4118         public Type visitType(Type t, S s) { return t; }
  4120     // </editor-fold>
  4123     // <editor-fold defaultstate="collapsed" desc="Annotation support">
  4125     public RetentionPolicy getRetention(Attribute.Compound a) {
  4126         return getRetention(a.type.tsym);
  4129     public RetentionPolicy getRetention(Symbol sym) {
  4130         RetentionPolicy vis = RetentionPolicy.CLASS; // the default
  4131         Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
  4132         if (c != null) {
  4133             Attribute value = c.member(names.value);
  4134             if (value != null && value instanceof Attribute.Enum) {
  4135                 Name levelName = ((Attribute.Enum)value).value.name;
  4136                 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
  4137                 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
  4138                 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
  4139                 else ;// /* fail soft */ throw new AssertionError(levelName);
  4142         return vis;
  4144     // </editor-fold>

mercurial