src/share/classes/com/sun/tools/javac/comp/Check.java

Mon, 16 Aug 2010 14:56:23 +0100

author
mcimadamore
date
Mon, 16 Aug 2010 14:56:23 +0100
changeset 634
27bae58329d5
parent 632
ea1930f4b789
child 638
d6fe0ea070aa
permissions
-rw-r--r--

6976649: javac does not enforce required annotation elements in arrays
Summary: type annotation should take advantage of recursive annotation checking
Reviewed-by: jjg

duke@1 1 /*
ohair@554 2 * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
mcimadamore@634 28 import com.sun.source.tree.AssignmentTree;
duke@1 29 import java.util.*;
duke@1 30 import java.util.Set;
duke@1 31
duke@1 32 import com.sun.tools.javac.code.*;
duke@1 33 import com.sun.tools.javac.jvm.*;
duke@1 34 import com.sun.tools.javac.tree.*;
duke@1 35 import com.sun.tools.javac.util.*;
duke@1 36 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 37 import com.sun.tools.javac.util.List;
duke@1 38
duke@1 39 import com.sun.tools.javac.tree.JCTree.*;
duke@1 40 import com.sun.tools.javac.code.Lint;
duke@1 41 import com.sun.tools.javac.code.Lint.LintCategory;
duke@1 42 import com.sun.tools.javac.code.Type.*;
duke@1 43 import com.sun.tools.javac.code.Symbol.*;
duke@1 44
duke@1 45 import static com.sun.tools.javac.code.Flags.*;
duke@1 46 import static com.sun.tools.javac.code.Kinds.*;
duke@1 47 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 48
duke@1 49 /** Type checking helper class for the attribution phase.
duke@1 50 *
jjg@581 51 * <p><b>This is NOT part of any supported API.
jjg@581 52 * If you write code that depends on this, you do so at your own risk.
duke@1 53 * This code and its internal interfaces are subject to change or
duke@1 54 * deletion without notice.</b>
duke@1 55 */
duke@1 56 public class Check {
duke@1 57 protected static final Context.Key<Check> checkKey =
duke@1 58 new Context.Key<Check>();
duke@1 59
jjg@113 60 private final Names names;
duke@1 61 private final Log log;
duke@1 62 private final Symtab syms;
duke@1 63 private final Infer infer;
duke@1 64 private final Types types;
mcimadamore@89 65 private final JCDiagnostic.Factory diags;
duke@1 66 private final boolean skipAnnotations;
mcimadamore@359 67 private boolean warnOnSyntheticConflicts;
jjg@576 68 private boolean suppressAbortOnBadClassFile;
duke@1 69 private final TreeInfo treeinfo;
duke@1 70
duke@1 71 // The set of lint options currently in effect. It is initialized
duke@1 72 // from the context, and then is set/reset as needed by Attr as it
duke@1 73 // visits all the various parts of the trees during attribution.
duke@1 74 private Lint lint;
duke@1 75
duke@1 76 public static Check instance(Context context) {
duke@1 77 Check instance = context.get(checkKey);
duke@1 78 if (instance == null)
duke@1 79 instance = new Check(context);
duke@1 80 return instance;
duke@1 81 }
duke@1 82
duke@1 83 protected Check(Context context) {
duke@1 84 context.put(checkKey, this);
duke@1 85
jjg@113 86 names = Names.instance(context);
duke@1 87 log = Log.instance(context);
duke@1 88 syms = Symtab.instance(context);
duke@1 89 infer = Infer.instance(context);
duke@1 90 this.types = Types.instance(context);
mcimadamore@89 91 diags = JCDiagnostic.Factory.instance(context);
duke@1 92 Options options = Options.instance(context);
duke@1 93 lint = Lint.instance(context);
duke@1 94 treeinfo = TreeInfo.instance(context);
duke@1 95
duke@1 96 Source source = Source.instance(context);
duke@1 97 allowGenerics = source.allowGenerics();
duke@1 98 allowAnnotations = source.allowAnnotations();
jjg@398 99 allowCovariantReturns = source.allowCovariantReturns();
duke@1 100 complexInference = options.get("-complexinference") != null;
duke@1 101 skipAnnotations = options.get("skipAnnotations") != null;
mcimadamore@359 102 warnOnSyntheticConflicts = options.get("warnOnSyntheticConflicts") != null;
jjg@576 103 suppressAbortOnBadClassFile = options.get("suppressAbortOnBadClassFile") != null;
duke@1 104
jjg@398 105 Target target = Target.instance(context);
jjg@398 106 syntheticNameChar = target.syntheticNameChar();
jjg@398 107
duke@1 108 boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
duke@1 109 boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
mcimadamore@580 110 boolean verboseVarargs = lint.isEnabled(LintCategory.VARARGS);
jjg@377 111 boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
jjg@60 112 boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
duke@1 113
jjg@60 114 deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
jjg@612 115 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
jjg@60 116 uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
jjg@612 117 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
mcimadamore@580 118 unsafeVarargsHandler = new MandatoryWarningHandler(log, verboseVarargs,
jjg@612 119 enforceMandatoryWarnings, "varargs", LintCategory.VARARGS);
jjg@377 120 sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
jjg@612 121 enforceMandatoryWarnings, "sunapi", null);
duke@1 122 }
duke@1 123
duke@1 124 /** Switch: generics enabled?
duke@1 125 */
duke@1 126 boolean allowGenerics;
duke@1 127
duke@1 128 /** Switch: annotations enabled?
duke@1 129 */
duke@1 130 boolean allowAnnotations;
duke@1 131
jjg@398 132 /** Switch: covariant returns enabled?
jjg@398 133 */
jjg@398 134 boolean allowCovariantReturns;
jjg@398 135
duke@1 136 /** Switch: -complexinference option set?
duke@1 137 */
duke@1 138 boolean complexInference;
duke@1 139
jjg@398 140 /** Character for synthetic names
jjg@398 141 */
jjg@398 142 char syntheticNameChar;
jjg@398 143
duke@1 144 /** A table mapping flat names of all compiled classes in this run to their
duke@1 145 * symbols; maintained from outside.
duke@1 146 */
duke@1 147 public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
duke@1 148
duke@1 149 /** A handler for messages about deprecated usage.
duke@1 150 */
duke@1 151 private MandatoryWarningHandler deprecationHandler;
duke@1 152
duke@1 153 /** A handler for messages about unchecked or unsafe usage.
duke@1 154 */
duke@1 155 private MandatoryWarningHandler uncheckedHandler;
duke@1 156
mcimadamore@580 157 /** A handler for messages about unchecked or unsafe vararg method decl.
mcimadamore@580 158 */
mcimadamore@580 159 private MandatoryWarningHandler unsafeVarargsHandler;
mcimadamore@580 160
jjg@582 161 /** A handler for messages about using proprietary API.
jjg@377 162 */
jjg@377 163 private MandatoryWarningHandler sunApiHandler;
duke@1 164
duke@1 165 /* *************************************************************************
duke@1 166 * Errors and Warnings
duke@1 167 **************************************************************************/
duke@1 168
duke@1 169 Lint setLint(Lint newLint) {
duke@1 170 Lint prev = lint;
duke@1 171 lint = newLint;
duke@1 172 return prev;
duke@1 173 }
duke@1 174
duke@1 175 /** Warn about deprecated symbol.
duke@1 176 * @param pos Position to be used for error reporting.
duke@1 177 * @param sym The deprecated symbol.
duke@1 178 */
duke@1 179 void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
duke@1 180 if (!lint.isSuppressed(LintCategory.DEPRECATION))
duke@1 181 deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
duke@1 182 }
duke@1 183
duke@1 184 /** Warn about unchecked operation.
duke@1 185 * @param pos Position to be used for error reporting.
duke@1 186 * @param msg A string describing the problem.
duke@1 187 */
duke@1 188 public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
duke@1 189 if (!lint.isSuppressed(LintCategory.UNCHECKED))
duke@1 190 uncheckedHandler.report(pos, msg, args);
duke@1 191 }
duke@1 192
mcimadamore@580 193 /** Warn about unsafe vararg method decl.
mcimadamore@580 194 * @param pos Position to be used for error reporting.
mcimadamore@580 195 * @param sym The deprecated symbol.
mcimadamore@580 196 */
mcimadamore@580 197 void warnUnsafeVararg(DiagnosticPosition pos, Type elemType) {
mcimadamore@580 198 if (!lint.isSuppressed(LintCategory.VARARGS))
mcimadamore@580 199 unsafeVarargsHandler.report(pos, "varargs.non.reifiable.type", elemType);
mcimadamore@580 200 }
mcimadamore@580 201
jjg@582 202 /** Warn about using proprietary API.
jjg@377 203 * @param pos Position to be used for error reporting.
jjg@377 204 * @param msg A string describing the problem.
jjg@377 205 */
jjg@377 206 public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
jjg@377 207 if (!lint.isSuppressed(LintCategory.SUNAPI))
jjg@377 208 sunApiHandler.report(pos, msg, args);
jjg@377 209 }
jjg@377 210
jjg@505 211 public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
jjg@505 212 if (lint.isEnabled(LintCategory.STATIC))
jjg@612 213 log.warning(LintCategory.STATIC, pos, msg, args);
jjg@505 214 }
jjg@505 215
duke@1 216 /**
duke@1 217 * Report any deferred diagnostics.
duke@1 218 */
duke@1 219 public void reportDeferredDiagnostics() {
duke@1 220 deprecationHandler.reportDeferredDiagnostic();
duke@1 221 uncheckedHandler.reportDeferredDiagnostic();
mcimadamore@580 222 unsafeVarargsHandler.reportDeferredDiagnostic();
jjg@377 223 sunApiHandler.reportDeferredDiagnostic();
duke@1 224 }
duke@1 225
duke@1 226
duke@1 227 /** Report a failure to complete a class.
duke@1 228 * @param pos Position to be used for error reporting.
duke@1 229 * @param ex The failure to report.
duke@1 230 */
duke@1 231 public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
jjg@12 232 log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
jjg@576 233 if (ex instanceof ClassReader.BadClassFile
jjg@576 234 && !suppressAbortOnBadClassFile) throw new Abort();
duke@1 235 else return syms.errType;
duke@1 236 }
duke@1 237
duke@1 238 /** Report a type error.
duke@1 239 * @param pos Position to be used for error reporting.
duke@1 240 * @param problem A string describing the error.
duke@1 241 * @param found The type that was found.
duke@1 242 * @param req The type that was required.
duke@1 243 */
duke@1 244 Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
duke@1 245 log.error(pos, "prob.found.req",
duke@1 246 problem, found, req);
jjg@110 247 return types.createErrorType(found);
duke@1 248 }
duke@1 249
duke@1 250 Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
duke@1 251 log.error(pos, "prob.found.req.1", problem, found, req, explanation);
jjg@110 252 return types.createErrorType(found);
duke@1 253 }
duke@1 254
duke@1 255 /** Report an error that wrong type tag was found.
duke@1 256 * @param pos Position to be used for error reporting.
duke@1 257 * @param required An internationalized string describing the type tag
duke@1 258 * required.
duke@1 259 * @param found The type that was found.
duke@1 260 */
duke@1 261 Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
jrose@267 262 // this error used to be raised by the parser,
jrose@267 263 // but has been delayed to this point:
jrose@267 264 if (found instanceof Type && ((Type)found).tag == VOID) {
jrose@267 265 log.error(pos, "illegal.start.of.type");
jrose@267 266 return syms.errType;
jrose@267 267 }
duke@1 268 log.error(pos, "type.found.req", found, required);
jjg@110 269 return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
duke@1 270 }
duke@1 271
duke@1 272 /** Report an error that symbol cannot be referenced before super
duke@1 273 * has been called.
duke@1 274 * @param pos Position to be used for error reporting.
duke@1 275 * @param sym The referenced symbol.
duke@1 276 */
duke@1 277 void earlyRefError(DiagnosticPosition pos, Symbol sym) {
duke@1 278 log.error(pos, "cant.ref.before.ctor.called", sym);
duke@1 279 }
duke@1 280
duke@1 281 /** Report duplicate declaration error.
duke@1 282 */
duke@1 283 void duplicateError(DiagnosticPosition pos, Symbol sym) {
duke@1 284 if (!sym.type.isErroneous()) {
duke@1 285 log.error(pos, "already.defined", sym, sym.location());
duke@1 286 }
duke@1 287 }
duke@1 288
duke@1 289 /** Report array/varargs duplicate declaration
duke@1 290 */
duke@1 291 void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
duke@1 292 if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
duke@1 293 log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
duke@1 294 }
duke@1 295 }
duke@1 296
duke@1 297 /* ************************************************************************
duke@1 298 * duplicate declaration checking
duke@1 299 *************************************************************************/
duke@1 300
duke@1 301 /** Check that variable does not hide variable with same name in
duke@1 302 * immediately enclosing local scope.
duke@1 303 * @param pos Position for error reporting.
duke@1 304 * @param v The symbol.
duke@1 305 * @param s The scope.
duke@1 306 */
duke@1 307 void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
duke@1 308 if (s.next != null) {
duke@1 309 for (Scope.Entry e = s.next.lookup(v.name);
duke@1 310 e.scope != null && e.sym.owner == v.owner;
duke@1 311 e = e.next()) {
duke@1 312 if (e.sym.kind == VAR &&
duke@1 313 (e.sym.owner.kind & (VAR | MTH)) != 0 &&
duke@1 314 v.name != names.error) {
duke@1 315 duplicateError(pos, e.sym);
duke@1 316 return;
duke@1 317 }
duke@1 318 }
duke@1 319 }
duke@1 320 }
duke@1 321
duke@1 322 /** Check that a class or interface does not hide a class or
duke@1 323 * interface with same name in immediately enclosing local scope.
duke@1 324 * @param pos Position for error reporting.
duke@1 325 * @param c The symbol.
duke@1 326 * @param s The scope.
duke@1 327 */
duke@1 328 void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
duke@1 329 if (s.next != null) {
duke@1 330 for (Scope.Entry e = s.next.lookup(c.name);
duke@1 331 e.scope != null && e.sym.owner == c.owner;
duke@1 332 e = e.next()) {
duke@1 333 if (e.sym.kind == TYP &&
duke@1 334 (e.sym.owner.kind & (VAR | MTH)) != 0 &&
duke@1 335 c.name != names.error) {
duke@1 336 duplicateError(pos, e.sym);
duke@1 337 return;
duke@1 338 }
duke@1 339 }
duke@1 340 }
duke@1 341 }
duke@1 342
duke@1 343 /** Check that class does not have the same name as one of
duke@1 344 * its enclosing classes, or as a class defined in its enclosing scope.
duke@1 345 * return true if class is unique in its enclosing scope.
duke@1 346 * @param pos Position for error reporting.
duke@1 347 * @param name The class name.
duke@1 348 * @param s The enclosing scope.
duke@1 349 */
duke@1 350 boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
duke@1 351 for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
duke@1 352 if (e.sym.kind == TYP && e.sym.name != names.error) {
duke@1 353 duplicateError(pos, e.sym);
duke@1 354 return false;
duke@1 355 }
duke@1 356 }
duke@1 357 for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
duke@1 358 if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
duke@1 359 duplicateError(pos, sym);
duke@1 360 return true;
duke@1 361 }
duke@1 362 }
duke@1 363 return true;
duke@1 364 }
duke@1 365
duke@1 366 /* *************************************************************************
duke@1 367 * Class name generation
duke@1 368 **************************************************************************/
duke@1 369
duke@1 370 /** Return name of local class.
duke@1 371 * This is of the form <enclClass> $ n <classname>
duke@1 372 * where
duke@1 373 * enclClass is the flat name of the enclosing class,
duke@1 374 * classname is the simple name of the local class
duke@1 375 */
duke@1 376 Name localClassName(ClassSymbol c) {
duke@1 377 for (int i=1; ; i++) {
duke@1 378 Name flatname = names.
duke@1 379 fromString("" + c.owner.enclClass().flatname +
jjg@398 380 syntheticNameChar + i +
duke@1 381 c.name);
duke@1 382 if (compiled.get(flatname) == null) return flatname;
duke@1 383 }
duke@1 384 }
duke@1 385
duke@1 386 /* *************************************************************************
duke@1 387 * Type Checking
duke@1 388 **************************************************************************/
duke@1 389
duke@1 390 /** Check that a given type is assignable to a given proto-type.
duke@1 391 * If it is, return the type, otherwise return errType.
duke@1 392 * @param pos Position to be used for error reporting.
duke@1 393 * @param found The type that was found.
duke@1 394 * @param req The type that was required.
duke@1 395 */
duke@1 396 Type checkType(DiagnosticPosition pos, Type found, Type req) {
darcy@609 397 return checkType(pos, found, req, "incompatible.types");
darcy@609 398 }
darcy@609 399
darcy@609 400 Type checkType(DiagnosticPosition pos, Type found, Type req, String errKey) {
duke@1 401 if (req.tag == ERROR)
duke@1 402 return req;
mcimadamore@536 403 if (found.tag == FORALL)
mcimadamore@536 404 return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
duke@1 405 if (req.tag == NONE)
duke@1 406 return found;
duke@1 407 if (types.isAssignable(found, req, convertWarner(pos, found, req)))
duke@1 408 return found;
duke@1 409 if (found.tag <= DOUBLE && req.tag <= DOUBLE)
mcimadamore@89 410 return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
duke@1 411 if (found.isSuperBound()) {
duke@1 412 log.error(pos, "assignment.from.super-bound", found);
jjg@110 413 return types.createErrorType(found);
duke@1 414 }
duke@1 415 if (req.isExtendsBound()) {
duke@1 416 log.error(pos, "assignment.to.extends-bound", req);
jjg@110 417 return types.createErrorType(found);
duke@1 418 }
darcy@609 419 return typeError(pos, diags.fragment(errKey), found, req);
duke@1 420 }
duke@1 421
duke@1 422 /** Instantiate polymorphic type to some prototype, unless
duke@1 423 * prototype is `anyPoly' in which case polymorphic type
duke@1 424 * is returned unchanged.
duke@1 425 */
mcimadamore@383 426 Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) throws Infer.NoInstanceException {
duke@1 427 if (pt == Infer.anyPoly && complexInference) {
duke@1 428 return t;
duke@1 429 } else if (pt == Infer.anyPoly || pt.tag == NONE) {
duke@1 430 Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
duke@1 431 return instantiatePoly(pos, t, newpt, warn);
duke@1 432 } else if (pt.tag == ERROR) {
duke@1 433 return pt;
duke@1 434 } else {
mcimadamore@536 435 try {
mcimadamore@536 436 return infer.instantiateExpr(t, pt, warn);
mcimadamore@536 437 } catch (Infer.NoInstanceException ex) {
mcimadamore@536 438 if (ex.isAmbiguous) {
mcimadamore@536 439 JCDiagnostic d = ex.getDiagnostic();
mcimadamore@536 440 log.error(pos,
mcimadamore@536 441 "undetermined.type" + (d!=null ? ".1" : ""),
mcimadamore@536 442 t, d);
mcimadamore@536 443 return types.createErrorType(pt);
mcimadamore@536 444 } else {
mcimadamore@536 445 JCDiagnostic d = ex.getDiagnostic();
mcimadamore@536 446 return typeError(pos,
mcimadamore@536 447 diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
mcimadamore@536 448 t, pt);
mcimadamore@536 449 }
mcimadamore@536 450 } catch (Infer.InvalidInstanceException ex) {
mcimadamore@536 451 JCDiagnostic d = ex.getDiagnostic();
mcimadamore@536 452 log.error(pos, "invalid.inferred.types", t.tvars, d);
mcimadamore@536 453 return types.createErrorType(pt);
mcimadamore@536 454 }
duke@1 455 }
mcimadamore@536 456 }
duke@1 457
duke@1 458 /** Check that a given type can be cast to a given target type.
duke@1 459 * Return the result of the cast.
duke@1 460 * @param pos Position to be used for error reporting.
duke@1 461 * @param found The type that is being cast.
duke@1 462 * @param req The target type of the cast.
duke@1 463 */
duke@1 464 Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
duke@1 465 if (found.tag == FORALL) {
duke@1 466 instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
duke@1 467 return req;
duke@1 468 } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
duke@1 469 return req;
duke@1 470 } else {
duke@1 471 return typeError(pos,
mcimadamore@89 472 diags.fragment("inconvertible.types"),
duke@1 473 found, req);
duke@1 474 }
duke@1 475 }
duke@1 476 //where
duke@1 477 /** Is type a type variable, or a (possibly multi-dimensional) array of
duke@1 478 * type variables?
duke@1 479 */
duke@1 480 boolean isTypeVar(Type t) {
duke@1 481 return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
duke@1 482 }
duke@1 483
duke@1 484 /** Check that a type is within some bounds.
duke@1 485 *
duke@1 486 * Used in TypeApply to verify that, e.g., X in V<X> is a valid
duke@1 487 * type argument.
duke@1 488 * @param pos Position to be used for error reporting.
duke@1 489 * @param a The type that should be bounded by bs.
duke@1 490 * @param bs The bound.
duke@1 491 */
duke@1 492 private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
mcimadamore@154 493 if (a.isUnbound()) {
mcimadamore@154 494 return;
mcimadamore@154 495 } else if (a.tag != WILDCARD) {
mcimadamore@154 496 a = types.upperBound(a);
mcimadamore@154 497 for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
mcimadamore@154 498 if (!types.isSubtype(a, l.head)) {
mcimadamore@154 499 log.error(pos, "not.within.bounds", a);
mcimadamore@154 500 return;
mcimadamore@154 501 }
mcimadamore@154 502 }
mcimadamore@154 503 } else if (a.isExtendsBound()) {
mcimadamore@154 504 if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
mcimadamore@154 505 log.error(pos, "not.within.bounds", a);
mcimadamore@154 506 } else if (a.isSuperBound()) {
mcimadamore@154 507 if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
mcimadamore@154 508 log.error(pos, "not.within.bounds", a);
mcimadamore@154 509 }
mcimadamore@154 510 }
mcimadamore@154 511
mcimadamore@154 512 /** Check that a type is within some bounds.
mcimadamore@154 513 *
mcimadamore@154 514 * Used in TypeApply to verify that, e.g., X in V<X> is a valid
mcimadamore@154 515 * type argument.
mcimadamore@154 516 * @param pos Position to be used for error reporting.
mcimadamore@154 517 * @param a The type that should be bounded by bs.
mcimadamore@154 518 * @param bs The bound.
mcimadamore@154 519 */
mcimadamore@154 520 private void checkCapture(JCTypeApply tree) {
mcimadamore@154 521 List<JCExpression> args = tree.getTypeArguments();
mcimadamore@154 522 for (Type arg : types.capture(tree.type).getTypeArguments()) {
mcimadamore@154 523 if (arg.tag == TYPEVAR && arg.getUpperBound().isErroneous()) {
mcimadamore@154 524 log.error(args.head.pos, "not.within.bounds", args.head.type);
mcimadamore@154 525 break;
mcimadamore@79 526 }
mcimadamore@154 527 args = args.tail;
mcimadamore@79 528 }
mcimadamore@154 529 }
duke@1 530
duke@1 531 /** Check that type is different from 'void'.
duke@1 532 * @param pos Position to be used for error reporting.
duke@1 533 * @param t The type to be checked.
duke@1 534 */
duke@1 535 Type checkNonVoid(DiagnosticPosition pos, Type t) {
duke@1 536 if (t.tag == VOID) {
duke@1 537 log.error(pos, "void.not.allowed.here");
jjg@110 538 return types.createErrorType(t);
duke@1 539 } else {
duke@1 540 return t;
duke@1 541 }
duke@1 542 }
duke@1 543
duke@1 544 /** Check that type is a class or interface type.
duke@1 545 * @param pos Position to be used for error reporting.
duke@1 546 * @param t The type to be checked.
duke@1 547 */
duke@1 548 Type checkClassType(DiagnosticPosition pos, Type t) {
duke@1 549 if (t.tag != CLASS && t.tag != ERROR)
duke@1 550 return typeTagError(pos,
mcimadamore@89 551 diags.fragment("type.req.class"),
duke@1 552 (t.tag == TYPEVAR)
mcimadamore@89 553 ? diags.fragment("type.parameter", t)
duke@1 554 : t);
duke@1 555 else
duke@1 556 return t;
duke@1 557 }
duke@1 558
duke@1 559 /** Check that type is a class or interface type.
duke@1 560 * @param pos Position to be used for error reporting.
duke@1 561 * @param t The type to be checked.
duke@1 562 * @param noBounds True if type bounds are illegal here.
duke@1 563 */
duke@1 564 Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
duke@1 565 t = checkClassType(pos, t);
duke@1 566 if (noBounds && t.isParameterized()) {
duke@1 567 List<Type> args = t.getTypeArguments();
duke@1 568 while (args.nonEmpty()) {
duke@1 569 if (args.head.tag == WILDCARD)
duke@1 570 return typeTagError(pos,
jjg@598 571 diags.fragment("type.req.exact"),
duke@1 572 args.head);
duke@1 573 args = args.tail;
duke@1 574 }
duke@1 575 }
duke@1 576 return t;
duke@1 577 }
duke@1 578
duke@1 579 /** Check that type is a reifiable class, interface or array type.
duke@1 580 * @param pos Position to be used for error reporting.
duke@1 581 * @param t The type to be checked.
duke@1 582 */
duke@1 583 Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
duke@1 584 if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
duke@1 585 return typeTagError(pos,
mcimadamore@89 586 diags.fragment("type.req.class.array"),
duke@1 587 t);
duke@1 588 } else if (!types.isReifiable(t)) {
duke@1 589 log.error(pos, "illegal.generic.type.for.instof");
jjg@110 590 return types.createErrorType(t);
duke@1 591 } else {
duke@1 592 return t;
duke@1 593 }
duke@1 594 }
duke@1 595
duke@1 596 /** Check that type is a reference type, i.e. a class, interface or array type
duke@1 597 * or a type variable.
duke@1 598 * @param pos Position to be used for error reporting.
duke@1 599 * @param t The type to be checked.
duke@1 600 */
duke@1 601 Type checkRefType(DiagnosticPosition pos, Type t) {
duke@1 602 switch (t.tag) {
duke@1 603 case CLASS:
duke@1 604 case ARRAY:
duke@1 605 case TYPEVAR:
duke@1 606 case WILDCARD:
duke@1 607 case ERROR:
duke@1 608 return t;
duke@1 609 default:
duke@1 610 return typeTagError(pos,
mcimadamore@89 611 diags.fragment("type.req.ref"),
duke@1 612 t);
duke@1 613 }
duke@1 614 }
duke@1 615
jrose@267 616 /** Check that each type is a reference type, i.e. a class, interface or array type
jrose@267 617 * or a type variable.
jrose@267 618 * @param trees Original trees, used for error reporting.
jrose@267 619 * @param types The types to be checked.
jrose@267 620 */
jrose@267 621 List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
jrose@267 622 List<JCExpression> tl = trees;
jrose@267 623 for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
jrose@267 624 l.head = checkRefType(tl.head.pos(), l.head);
jrose@267 625 tl = tl.tail;
jrose@267 626 }
jrose@267 627 return types;
jrose@267 628 }
jrose@267 629
duke@1 630 /** Check that type is a null or reference type.
duke@1 631 * @param pos Position to be used for error reporting.
duke@1 632 * @param t The type to be checked.
duke@1 633 */
duke@1 634 Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
duke@1 635 switch (t.tag) {
duke@1 636 case CLASS:
duke@1 637 case ARRAY:
duke@1 638 case TYPEVAR:
duke@1 639 case WILDCARD:
duke@1 640 case BOT:
duke@1 641 case ERROR:
duke@1 642 return t;
duke@1 643 default:
duke@1 644 return typeTagError(pos,
mcimadamore@89 645 diags.fragment("type.req.ref"),
duke@1 646 t);
duke@1 647 }
duke@1 648 }
duke@1 649
duke@1 650 /** Check that flag set does not contain elements of two conflicting sets. s
duke@1 651 * Return true if it doesn't.
duke@1 652 * @param pos Position to be used for error reporting.
duke@1 653 * @param flags The set of flags to be checked.
duke@1 654 * @param set1 Conflicting flags set #1.
duke@1 655 * @param set2 Conflicting flags set #2.
duke@1 656 */
duke@1 657 boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
duke@1 658 if ((flags & set1) != 0 && (flags & set2) != 0) {
duke@1 659 log.error(pos,
duke@1 660 "illegal.combination.of.modifiers",
mcimadamore@80 661 asFlagSet(TreeInfo.firstFlag(flags & set1)),
mcimadamore@80 662 asFlagSet(TreeInfo.firstFlag(flags & set2)));
duke@1 663 return false;
duke@1 664 } else
duke@1 665 return true;
duke@1 666 }
duke@1 667
mcimadamore@537 668 /** Check that the type inferred using the diamond operator does not contain
mcimadamore@537 669 * non-denotable types such as captured types or intersection types.
mcimadamore@537 670 * @param t the type inferred using the diamond operator
mcimadamore@537 671 */
mcimadamore@537 672 List<Type> checkDiamond(ClassType t) {
mcimadamore@537 673 DiamondTypeChecker dtc = new DiamondTypeChecker();
mcimadamore@537 674 ListBuffer<Type> buf = ListBuffer.lb();
mcimadamore@537 675 for (Type arg : t.getTypeArguments()) {
mcimadamore@537 676 if (!dtc.visit(arg, null)) {
mcimadamore@537 677 buf.append(arg);
mcimadamore@537 678 }
mcimadamore@537 679 }
mcimadamore@537 680 return buf.toList();
mcimadamore@537 681 }
mcimadamore@537 682
mcimadamore@537 683 static class DiamondTypeChecker extends Types.SimpleVisitor<Boolean, Void> {
mcimadamore@537 684 public Boolean visitType(Type t, Void s) {
mcimadamore@537 685 return true;
mcimadamore@537 686 }
mcimadamore@537 687 @Override
mcimadamore@537 688 public Boolean visitClassType(ClassType t, Void s) {
mcimadamore@537 689 if (t.isCompound()) {
mcimadamore@537 690 return false;
mcimadamore@537 691 }
mcimadamore@537 692 for (Type targ : t.getTypeArguments()) {
mcimadamore@537 693 if (!visit(targ, s)) {
mcimadamore@537 694 return false;
mcimadamore@537 695 }
mcimadamore@537 696 }
mcimadamore@537 697 return true;
mcimadamore@537 698 }
mcimadamore@537 699 @Override
mcimadamore@537 700 public Boolean visitCapturedType(CapturedType t, Void s) {
mcimadamore@537 701 return false;
mcimadamore@537 702 }
mcimadamore@537 703 }
mcimadamore@537 704
mcimadamore@580 705 void checkVarargMethodDecl(JCMethodDecl tree) {
mcimadamore@580 706 MethodSymbol m = tree.sym;
mcimadamore@580 707 //check the element type of the vararg
mcimadamore@580 708 if (m.isVarArgs()) {
mcimadamore@580 709 Type varargElemType = types.elemtype(tree.params.last().type);
mcimadamore@580 710 if (!types.isReifiable(varargElemType)) {
mcimadamore@580 711 warnUnsafeVararg(tree.params.head.pos(), varargElemType);
mcimadamore@580 712 }
mcimadamore@580 713 }
mcimadamore@580 714 }
mcimadamore@580 715
mcimadamore@547 716 /**
mcimadamore@547 717 * Check that vararg method call is sound
mcimadamore@547 718 * @param pos Position to be used for error reporting.
mcimadamore@547 719 * @param argtypes Actual arguments supplied to vararg method.
mcimadamore@547 720 */
mcimadamore@580 721 void checkVararg(DiagnosticPosition pos, List<Type> argtypes, Symbol msym, Env<AttrContext> env) {
mcimadamore@580 722 Env<AttrContext> calleeLintEnv = env;
mcimadamore@580 723 while (calleeLintEnv.info.lint == null)
mcimadamore@580 724 calleeLintEnv = calleeLintEnv.next;
mcimadamore@580 725 Lint calleeLint = calleeLintEnv.info.lint.augment(msym.attributes_field, msym.flags());
mcimadamore@547 726 Type argtype = argtypes.last();
mcimadamore@580 727 if (!types.isReifiable(argtype) && !calleeLint.isSuppressed(Lint.LintCategory.VARARGS)) {
mcimadamore@547 728 warnUnchecked(pos,
mcimadamore@547 729 "unchecked.generic.array.creation",
mcimadamore@547 730 argtype);
mcimadamore@580 731 }
mcimadamore@547 732 }
mcimadamore@547 733
duke@1 734 /** Check that given modifiers are legal for given symbol and
duke@1 735 * return modifiers together with any implicit modififiers for that symbol.
duke@1 736 * Warning: we can't use flags() here since this method
duke@1 737 * is called during class enter, when flags() would cause a premature
duke@1 738 * completion.
duke@1 739 * @param pos Position to be used for error reporting.
duke@1 740 * @param flags The set of modifiers given in a definition.
duke@1 741 * @param sym The defined symbol.
duke@1 742 */
duke@1 743 long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
duke@1 744 long mask;
duke@1 745 long implicit = 0;
duke@1 746 switch (sym.kind) {
duke@1 747 case VAR:
duke@1 748 if (sym.owner.kind != TYP)
duke@1 749 mask = LocalVarFlags;
duke@1 750 else if ((sym.owner.flags_field & INTERFACE) != 0)
duke@1 751 mask = implicit = InterfaceVarFlags;
duke@1 752 else
duke@1 753 mask = VarFlags;
duke@1 754 break;
duke@1 755 case MTH:
duke@1 756 if (sym.name == names.init) {
duke@1 757 if ((sym.owner.flags_field & ENUM) != 0) {
duke@1 758 // enum constructors cannot be declared public or
duke@1 759 // protected and must be implicitly or explicitly
duke@1 760 // private
duke@1 761 implicit = PRIVATE;
duke@1 762 mask = PRIVATE;
duke@1 763 } else
duke@1 764 mask = ConstructorFlags;
duke@1 765 } else if ((sym.owner.flags_field & INTERFACE) != 0)
duke@1 766 mask = implicit = InterfaceMethodFlags;
duke@1 767 else {
duke@1 768 mask = MethodFlags;
duke@1 769 }
duke@1 770 // Imply STRICTFP if owner has STRICTFP set.
duke@1 771 if (((flags|implicit) & Flags.ABSTRACT) == 0)
duke@1 772 implicit |= sym.owner.flags_field & STRICTFP;
duke@1 773 break;
duke@1 774 case TYP:
duke@1 775 if (sym.isLocal()) {
duke@1 776 mask = LocalClassFlags;
jjg@113 777 if (sym.name.isEmpty()) { // Anonymous class
duke@1 778 // Anonymous classes in static methods are themselves static;
duke@1 779 // that's why we admit STATIC here.
duke@1 780 mask |= STATIC;
duke@1 781 // JLS: Anonymous classes are final.
duke@1 782 implicit |= FINAL;
duke@1 783 }
duke@1 784 if ((sym.owner.flags_field & STATIC) == 0 &&
duke@1 785 (flags & ENUM) != 0)
duke@1 786 log.error(pos, "enums.must.be.static");
duke@1 787 } else if (sym.owner.kind == TYP) {
duke@1 788 mask = MemberClassFlags;
duke@1 789 if (sym.owner.owner.kind == PCK ||
duke@1 790 (sym.owner.flags_field & STATIC) != 0)
duke@1 791 mask |= STATIC;
duke@1 792 else if ((flags & ENUM) != 0)
duke@1 793 log.error(pos, "enums.must.be.static");
duke@1 794 // Nested interfaces and enums are always STATIC (Spec ???)
duke@1 795 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
duke@1 796 } else {
duke@1 797 mask = ClassFlags;
duke@1 798 }
duke@1 799 // Interfaces are always ABSTRACT
duke@1 800 if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
duke@1 801
duke@1 802 if ((flags & ENUM) != 0) {
duke@1 803 // enums can't be declared abstract or final
duke@1 804 mask &= ~(ABSTRACT | FINAL);
duke@1 805 implicit |= implicitEnumFinalFlag(tree);
duke@1 806 }
duke@1 807 // Imply STRICTFP if owner has STRICTFP set.
duke@1 808 implicit |= sym.owner.flags_field & STRICTFP;
duke@1 809 break;
duke@1 810 default:
duke@1 811 throw new AssertionError();
duke@1 812 }
duke@1 813 long illegal = flags & StandardFlags & ~mask;
duke@1 814 if (illegal != 0) {
duke@1 815 if ((illegal & INTERFACE) != 0) {
duke@1 816 log.error(pos, "intf.not.allowed.here");
duke@1 817 mask |= INTERFACE;
duke@1 818 }
duke@1 819 else {
duke@1 820 log.error(pos,
mcimadamore@80 821 "mod.not.allowed.here", asFlagSet(illegal));
duke@1 822 }
duke@1 823 }
duke@1 824 else if ((sym.kind == TYP ||
duke@1 825 // ISSUE: Disallowing abstract&private is no longer appropriate
duke@1 826 // in the presence of inner classes. Should it be deleted here?
duke@1 827 checkDisjoint(pos, flags,
duke@1 828 ABSTRACT,
duke@1 829 PRIVATE | STATIC))
duke@1 830 &&
duke@1 831 checkDisjoint(pos, flags,
duke@1 832 ABSTRACT | INTERFACE,
duke@1 833 FINAL | NATIVE | SYNCHRONIZED)
duke@1 834 &&
duke@1 835 checkDisjoint(pos, flags,
duke@1 836 PUBLIC,
duke@1 837 PRIVATE | PROTECTED)
duke@1 838 &&
duke@1 839 checkDisjoint(pos, flags,
duke@1 840 PRIVATE,
duke@1 841 PUBLIC | PROTECTED)
duke@1 842 &&
duke@1 843 checkDisjoint(pos, flags,
duke@1 844 FINAL,
duke@1 845 VOLATILE)
duke@1 846 &&
duke@1 847 (sym.kind == TYP ||
duke@1 848 checkDisjoint(pos, flags,
duke@1 849 ABSTRACT | NATIVE,
duke@1 850 STRICTFP))) {
duke@1 851 // skip
duke@1 852 }
duke@1 853 return flags & (mask | ~StandardFlags) | implicit;
duke@1 854 }
duke@1 855
duke@1 856
duke@1 857 /** Determine if this enum should be implicitly final.
duke@1 858 *
duke@1 859 * If the enum has no specialized enum contants, it is final.
duke@1 860 *
duke@1 861 * If the enum does have specialized enum contants, it is
duke@1 862 * <i>not</i> final.
duke@1 863 */
duke@1 864 private long implicitEnumFinalFlag(JCTree tree) {
duke@1 865 if (tree.getTag() != JCTree.CLASSDEF) return 0;
duke@1 866 class SpecialTreeVisitor extends JCTree.Visitor {
duke@1 867 boolean specialized;
duke@1 868 SpecialTreeVisitor() {
duke@1 869 this.specialized = false;
duke@1 870 };
duke@1 871
jjg@398 872 @Override
duke@1 873 public void visitTree(JCTree tree) { /* no-op */ }
duke@1 874
jjg@398 875 @Override
duke@1 876 public void visitVarDef(JCVariableDecl tree) {
duke@1 877 if ((tree.mods.flags & ENUM) != 0) {
duke@1 878 if (tree.init instanceof JCNewClass &&
duke@1 879 ((JCNewClass) tree.init).def != null) {
duke@1 880 specialized = true;
duke@1 881 }
duke@1 882 }
duke@1 883 }
duke@1 884 }
duke@1 885
duke@1 886 SpecialTreeVisitor sts = new SpecialTreeVisitor();
duke@1 887 JCClassDecl cdef = (JCClassDecl) tree;
duke@1 888 for (JCTree defs: cdef.defs) {
duke@1 889 defs.accept(sts);
duke@1 890 if (sts.specialized) return 0;
duke@1 891 }
duke@1 892 return FINAL;
duke@1 893 }
duke@1 894
duke@1 895 /* *************************************************************************
duke@1 896 * Type Validation
duke@1 897 **************************************************************************/
duke@1 898
duke@1 899 /** Validate a type expression. That is,
duke@1 900 * check that all type arguments of a parametric type are within
duke@1 901 * their bounds. This must be done in a second phase after type attributon
duke@1 902 * since a class might have a subclass as type parameter bound. E.g:
duke@1 903 *
duke@1 904 * class B<A extends C> { ... }
duke@1 905 * class C extends B<C> { ... }
duke@1 906 *
duke@1 907 * and we can't make sure that the bound is already attributed because
duke@1 908 * of possible cycles.
duke@1 909 */
duke@1 910 private Validator validator = new Validator();
duke@1 911
duke@1 912 /** Visitor method: Validate a type expression, if it is not null, catching
duke@1 913 * and reporting any completion failures.
duke@1 914 */
mcimadamore@122 915 void validate(JCTree tree, Env<AttrContext> env) {
duke@1 916 try {
mcimadamore@122 917 if (tree != null) {
mcimadamore@122 918 validator.env = env;
mcimadamore@122 919 tree.accept(validator);
mcimadamore@122 920 checkRaw(tree, env);
mcimadamore@122 921 }
duke@1 922 } catch (CompletionFailure ex) {
duke@1 923 completionError(tree.pos(), ex);
duke@1 924 }
duke@1 925 }
mcimadamore@122 926 //where
mcimadamore@122 927 void checkRaw(JCTree tree, Env<AttrContext> env) {
mcimadamore@122 928 if (lint.isEnabled(Lint.LintCategory.RAW) &&
mcimadamore@122 929 tree.type.tag == CLASS &&
mcimadamore@564 930 !TreeInfo.isDiamond(tree) &&
mcimadamore@122 931 !env.enclClass.name.isEmpty() && //anonymous or intersection
mcimadamore@122 932 tree.type.isRaw()) {
jjg@612 933 log.warning(Lint.LintCategory.RAW,
jjg@612 934 tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
mcimadamore@122 935 }
mcimadamore@122 936 }
duke@1 937
duke@1 938 /** Visitor method: Validate a list of type expressions.
duke@1 939 */
mcimadamore@122 940 void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
duke@1 941 for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
mcimadamore@122 942 validate(l.head, env);
duke@1 943 }
duke@1 944
duke@1 945 /** A visitor class for type validation.
duke@1 946 */
duke@1 947 class Validator extends JCTree.Visitor {
duke@1 948
jjg@398 949 @Override
duke@1 950 public void visitTypeArray(JCArrayTypeTree tree) {
mcimadamore@122 951 validate(tree.elemtype, env);
duke@1 952 }
duke@1 953
jjg@398 954 @Override
duke@1 955 public void visitTypeApply(JCTypeApply tree) {
duke@1 956 if (tree.type.tag == CLASS) {
mcimadamore@158 957 List<Type> formals = tree.type.tsym.type.allparams();
mcimadamore@158 958 List<Type> actuals = tree.type.allparams();
duke@1 959 List<JCExpression> args = tree.arguments;
mcimadamore@158 960 List<Type> forms = tree.type.tsym.type.getTypeArguments();
mcimadamore@561 961 ListBuffer<Type> tvars_buf = new ListBuffer<Type>();
duke@1 962
duke@1 963 // For matching pairs of actual argument types `a' and
duke@1 964 // formal type parameters with declared bound `b' ...
duke@1 965 while (args.nonEmpty() && forms.nonEmpty()) {
mcimadamore@122 966 validate(args.head, env);
duke@1 967
duke@1 968 // exact type arguments needs to know their
duke@1 969 // bounds (for upper and lower bound
duke@1 970 // calculations). So we create new TypeVars with
duke@1 971 // bounds substed with actuals.
duke@1 972 tvars_buf.append(types.substBound(((TypeVar)forms.head),
duke@1 973 formals,
mcimadamore@78 974 actuals));
duke@1 975
duke@1 976 args = args.tail;
duke@1 977 forms = forms.tail;
duke@1 978 }
duke@1 979
duke@1 980 args = tree.arguments;
mcimadamore@154 981 List<Type> tvars_cap = types.substBounds(formals,
mcimadamore@154 982 formals,
mcimadamore@158 983 types.capture(tree.type).allparams());
mcimadamore@154 984 while (args.nonEmpty() && tvars_cap.nonEmpty()) {
mcimadamore@154 985 // Let the actual arguments know their bound
mcimadamore@154 986 args.head.type.withTypeVar((TypeVar)tvars_cap.head);
mcimadamore@154 987 args = args.tail;
mcimadamore@154 988 tvars_cap = tvars_cap.tail;
mcimadamore@154 989 }
mcimadamore@154 990
mcimadamore@154 991 args = tree.arguments;
mcimadamore@561 992 List<Type> tvars = tvars_buf.toList();
mcimadamore@154 993
duke@1 994 while (args.nonEmpty() && tvars.nonEmpty()) {
mcimadamore@561 995 Type actual = types.subst(args.head.type,
mcimadamore@561 996 tree.type.tsym.type.getTypeArguments(),
mcimadamore@561 997 tvars_buf.toList());
mcimadamore@154 998 checkExtends(args.head.pos(),
mcimadamore@561 999 actual,
mcimadamore@561 1000 (TypeVar)tvars.head);
duke@1 1001 args = args.tail;
duke@1 1002 tvars = tvars.tail;
duke@1 1003 }
duke@1 1004
mcimadamore@154 1005 checkCapture(tree);
mcimadamore@536 1006
duke@1 1007 // Check that this type is either fully parameterized, or
duke@1 1008 // not parameterized at all.
duke@1 1009 if (tree.type.getEnclosingType().isRaw())
duke@1 1010 log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
duke@1 1011 if (tree.clazz.getTag() == JCTree.SELECT)
duke@1 1012 visitSelectInternal((JCFieldAccess)tree.clazz);
duke@1 1013 }
duke@1 1014 }
duke@1 1015
jjg@398 1016 @Override
duke@1 1017 public void visitTypeParameter(JCTypeParameter tree) {
mcimadamore@122 1018 validate(tree.bounds, env);
duke@1 1019 checkClassBounds(tree.pos(), tree.type);
duke@1 1020 }
duke@1 1021
duke@1 1022 @Override
duke@1 1023 public void visitWildcard(JCWildcard tree) {
duke@1 1024 if (tree.inner != null)
mcimadamore@122 1025 validate(tree.inner, env);
duke@1 1026 }
duke@1 1027
jjg@398 1028 @Override
duke@1 1029 public void visitSelect(JCFieldAccess tree) {
duke@1 1030 if (tree.type.tag == CLASS) {
duke@1 1031 visitSelectInternal(tree);
duke@1 1032
duke@1 1033 // Check that this type is either fully parameterized, or
duke@1 1034 // not parameterized at all.
duke@1 1035 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
duke@1 1036 log.error(tree.pos(), "improperly.formed.type.param.missing");
duke@1 1037 }
duke@1 1038 }
duke@1 1039 public void visitSelectInternal(JCFieldAccess tree) {
mcimadamore@122 1040 if (tree.type.tsym.isStatic() &&
duke@1 1041 tree.selected.type.isParameterized()) {
duke@1 1042 // The enclosing type is not a class, so we are
duke@1 1043 // looking at a static member type. However, the
duke@1 1044 // qualifying expression is parameterized.
duke@1 1045 log.error(tree.pos(), "cant.select.static.class.from.param.type");
duke@1 1046 } else {
duke@1 1047 // otherwise validate the rest of the expression
mcimadamore@122 1048 tree.selected.accept(this);
duke@1 1049 }
duke@1 1050 }
duke@1 1051
jjg@398 1052 @Override
jjg@308 1053 public void visitAnnotatedType(JCAnnotatedType tree) {
jjg@308 1054 tree.underlyingType.accept(this);
jjg@308 1055 }
jjg@308 1056
duke@1 1057 /** Default visitor method: do nothing.
duke@1 1058 */
jjg@398 1059 @Override
duke@1 1060 public void visitTree(JCTree tree) {
duke@1 1061 }
mcimadamore@122 1062
mcimadamore@122 1063 Env<AttrContext> env;
duke@1 1064 }
duke@1 1065
duke@1 1066 /* *************************************************************************
duke@1 1067 * Exception checking
duke@1 1068 **************************************************************************/
duke@1 1069
duke@1 1070 /* The following methods treat classes as sets that contain
duke@1 1071 * the class itself and all their subclasses
duke@1 1072 */
duke@1 1073
duke@1 1074 /** Is given type a subtype of some of the types in given list?
duke@1 1075 */
duke@1 1076 boolean subset(Type t, List<Type> ts) {
duke@1 1077 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 1078 if (types.isSubtype(t, l.head)) return true;
duke@1 1079 return false;
duke@1 1080 }
duke@1 1081
duke@1 1082 /** Is given type a subtype or supertype of
duke@1 1083 * some of the types in given list?
duke@1 1084 */
duke@1 1085 boolean intersects(Type t, List<Type> ts) {
duke@1 1086 for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
duke@1 1087 if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
duke@1 1088 return false;
duke@1 1089 }
duke@1 1090
duke@1 1091 /** Add type set to given type list, unless it is a subclass of some class
duke@1 1092 * in the list.
duke@1 1093 */
duke@1 1094 List<Type> incl(Type t, List<Type> ts) {
duke@1 1095 return subset(t, ts) ? ts : excl(t, ts).prepend(t);
duke@1 1096 }
duke@1 1097
duke@1 1098 /** Remove type set from type set list.
duke@1 1099 */
duke@1 1100 List<Type> excl(Type t, List<Type> ts) {
duke@1 1101 if (ts.isEmpty()) {
duke@1 1102 return ts;
duke@1 1103 } else {
duke@1 1104 List<Type> ts1 = excl(t, ts.tail);
duke@1 1105 if (types.isSubtype(ts.head, t)) return ts1;
duke@1 1106 else if (ts1 == ts.tail) return ts;
duke@1 1107 else return ts1.prepend(ts.head);
duke@1 1108 }
duke@1 1109 }
duke@1 1110
duke@1 1111 /** Form the union of two type set lists.
duke@1 1112 */
duke@1 1113 List<Type> union(List<Type> ts1, List<Type> ts2) {
duke@1 1114 List<Type> ts = ts1;
duke@1 1115 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 1116 ts = incl(l.head, ts);
duke@1 1117 return ts;
duke@1 1118 }
duke@1 1119
duke@1 1120 /** Form the difference of two type lists.
duke@1 1121 */
duke@1 1122 List<Type> diff(List<Type> ts1, List<Type> ts2) {
duke@1 1123 List<Type> ts = ts1;
duke@1 1124 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 1125 ts = excl(l.head, ts);
duke@1 1126 return ts;
duke@1 1127 }
duke@1 1128
duke@1 1129 /** Form the intersection of two type lists.
duke@1 1130 */
duke@1 1131 public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
duke@1 1132 List<Type> ts = List.nil();
duke@1 1133 for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
duke@1 1134 if (subset(l.head, ts2)) ts = incl(l.head, ts);
duke@1 1135 for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
duke@1 1136 if (subset(l.head, ts1)) ts = incl(l.head, ts);
duke@1 1137 return ts;
duke@1 1138 }
duke@1 1139
duke@1 1140 /** Is exc an exception symbol that need not be declared?
duke@1 1141 */
duke@1 1142 boolean isUnchecked(ClassSymbol exc) {
duke@1 1143 return
duke@1 1144 exc.kind == ERR ||
duke@1 1145 exc.isSubClass(syms.errorType.tsym, types) ||
duke@1 1146 exc.isSubClass(syms.runtimeExceptionType.tsym, types);
duke@1 1147 }
duke@1 1148
duke@1 1149 /** Is exc an exception type that need not be declared?
duke@1 1150 */
duke@1 1151 boolean isUnchecked(Type exc) {
duke@1 1152 return
duke@1 1153 (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
duke@1 1154 (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
duke@1 1155 exc.tag == BOT;
duke@1 1156 }
duke@1 1157
duke@1 1158 /** Same, but handling completion failures.
duke@1 1159 */
duke@1 1160 boolean isUnchecked(DiagnosticPosition pos, Type exc) {
duke@1 1161 try {
duke@1 1162 return isUnchecked(exc);
duke@1 1163 } catch (CompletionFailure ex) {
duke@1 1164 completionError(pos, ex);
duke@1 1165 return true;
duke@1 1166 }
duke@1 1167 }
duke@1 1168
duke@1 1169 /** Is exc handled by given exception list?
duke@1 1170 */
duke@1 1171 boolean isHandled(Type exc, List<Type> handled) {
duke@1 1172 return isUnchecked(exc) || subset(exc, handled);
duke@1 1173 }
duke@1 1174
duke@1 1175 /** Return all exceptions in thrown list that are not in handled list.
duke@1 1176 * @param thrown The list of thrown exceptions.
duke@1 1177 * @param handled The list of handled exceptions.
duke@1 1178 */
mcimadamore@362 1179 List<Type> unhandled(List<Type> thrown, List<Type> handled) {
duke@1 1180 List<Type> unhandled = List.nil();
duke@1 1181 for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
duke@1 1182 if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
duke@1 1183 return unhandled;
duke@1 1184 }
duke@1 1185
duke@1 1186 /* *************************************************************************
duke@1 1187 * Overriding/Implementation checking
duke@1 1188 **************************************************************************/
duke@1 1189
duke@1 1190 /** The level of access protection given by a flag set,
duke@1 1191 * where PRIVATE is highest and PUBLIC is lowest.
duke@1 1192 */
duke@1 1193 static int protection(long flags) {
duke@1 1194 switch ((short)(flags & AccessFlags)) {
duke@1 1195 case PRIVATE: return 3;
duke@1 1196 case PROTECTED: return 1;
duke@1 1197 default:
duke@1 1198 case PUBLIC: return 0;
duke@1 1199 case 0: return 2;
duke@1 1200 }
duke@1 1201 }
duke@1 1202
duke@1 1203 /** A customized "cannot override" error message.
duke@1 1204 * @param m The overriding method.
duke@1 1205 * @param other The overridden method.
duke@1 1206 * @return An internationalized string.
duke@1 1207 */
mcimadamore@89 1208 Object cannotOverride(MethodSymbol m, MethodSymbol other) {
duke@1 1209 String key;
duke@1 1210 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1211 key = "cant.override";
duke@1 1212 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1213 key = "cant.implement";
duke@1 1214 else
duke@1 1215 key = "clashes.with";
mcimadamore@89 1216 return diags.fragment(key, m, m.location(), other, other.location());
duke@1 1217 }
duke@1 1218
duke@1 1219 /** A customized "override" warning message.
duke@1 1220 * @param m The overriding method.
duke@1 1221 * @param other The overridden method.
duke@1 1222 * @return An internationalized string.
duke@1 1223 */
mcimadamore@89 1224 Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
duke@1 1225 String key;
duke@1 1226 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1227 key = "unchecked.override";
duke@1 1228 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1229 key = "unchecked.implement";
duke@1 1230 else
duke@1 1231 key = "unchecked.clash.with";
mcimadamore@89 1232 return diags.fragment(key, m, m.location(), other, other.location());
duke@1 1233 }
duke@1 1234
duke@1 1235 /** A customized "override" warning message.
duke@1 1236 * @param m The overriding method.
duke@1 1237 * @param other The overridden method.
duke@1 1238 * @return An internationalized string.
duke@1 1239 */
mcimadamore@89 1240 Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
duke@1 1241 String key;
duke@1 1242 if ((other.owner.flags() & INTERFACE) == 0)
duke@1 1243 key = "varargs.override";
duke@1 1244 else if ((m.owner.flags() & INTERFACE) == 0)
duke@1 1245 key = "varargs.implement";
duke@1 1246 else
duke@1 1247 key = "varargs.clash.with";
mcimadamore@89 1248 return diags.fragment(key, m, m.location(), other, other.location());
duke@1 1249 }
duke@1 1250
duke@1 1251 /** Check that this method conforms with overridden method 'other'.
duke@1 1252 * where `origin' is the class where checking started.
duke@1 1253 * Complications:
duke@1 1254 * (1) Do not check overriding of synthetic methods
duke@1 1255 * (reason: they might be final).
duke@1 1256 * todo: check whether this is still necessary.
duke@1 1257 * (2) Admit the case where an interface proxy throws fewer exceptions
duke@1 1258 * than the method it implements. Augment the proxy methods with the
duke@1 1259 * undeclared exceptions in this case.
duke@1 1260 * (3) When generics are enabled, admit the case where an interface proxy
duke@1 1261 * has a result type
duke@1 1262 * extended by the result type of the method it implements.
duke@1 1263 * Change the proxies result type to the smaller type in this case.
duke@1 1264 *
duke@1 1265 * @param tree The tree from which positions
duke@1 1266 * are extracted for errors.
duke@1 1267 * @param m The overriding method.
duke@1 1268 * @param other The overridden method.
duke@1 1269 * @param origin The class of which the overriding method
duke@1 1270 * is a member.
duke@1 1271 */
duke@1 1272 void checkOverride(JCTree tree,
duke@1 1273 MethodSymbol m,
duke@1 1274 MethodSymbol other,
duke@1 1275 ClassSymbol origin) {
duke@1 1276 // Don't check overriding of synthetic methods or by bridge methods.
duke@1 1277 if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
duke@1 1278 return;
duke@1 1279 }
duke@1 1280
duke@1 1281 // Error if static method overrides instance method (JLS 8.4.6.2).
duke@1 1282 if ((m.flags() & STATIC) != 0 &&
duke@1 1283 (other.flags() & STATIC) == 0) {
duke@1 1284 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
duke@1 1285 cannotOverride(m, other));
duke@1 1286 return;
duke@1 1287 }
duke@1 1288
duke@1 1289 // Error if instance method overrides static or final
duke@1 1290 // method (JLS 8.4.6.1).
duke@1 1291 if ((other.flags() & FINAL) != 0 ||
duke@1 1292 (m.flags() & STATIC) == 0 &&
duke@1 1293 (other.flags() & STATIC) != 0) {
duke@1 1294 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
duke@1 1295 cannotOverride(m, other),
mcimadamore@80 1296 asFlagSet(other.flags() & (FINAL | STATIC)));
duke@1 1297 return;
duke@1 1298 }
duke@1 1299
duke@1 1300 if ((m.owner.flags() & ANNOTATION) != 0) {
duke@1 1301 // handled in validateAnnotationMethod
duke@1 1302 return;
duke@1 1303 }
duke@1 1304
duke@1 1305 // Error if overriding method has weaker access (JLS 8.4.6.3).
duke@1 1306 if ((origin.flags() & INTERFACE) == 0 &&
duke@1 1307 protection(m.flags()) > protection(other.flags())) {
duke@1 1308 log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
duke@1 1309 cannotOverride(m, other),
mcimadamore@80 1310 other.flags() == 0 ?
mcimadamore@80 1311 Flag.PACKAGE :
mcimadamore@80 1312 asFlagSet(other.flags() & AccessFlags));
duke@1 1313 return;
duke@1 1314 }
duke@1 1315
duke@1 1316 Type mt = types.memberType(origin.type, m);
duke@1 1317 Type ot = types.memberType(origin.type, other);
duke@1 1318 // Error if overriding result type is different
duke@1 1319 // (or, in the case of generics mode, not a subtype) of
duke@1 1320 // overridden result type. We have to rename any type parameters
duke@1 1321 // before comparing types.
duke@1 1322 List<Type> mtvars = mt.getTypeArguments();
duke@1 1323 List<Type> otvars = ot.getTypeArguments();
duke@1 1324 Type mtres = mt.getReturnType();
duke@1 1325 Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
duke@1 1326
duke@1 1327 overrideWarner.warned = false;
duke@1 1328 boolean resultTypesOK =
tbell@202 1329 types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
duke@1 1330 if (!resultTypesOK) {
jjg@398 1331 if (!allowCovariantReturns &&
duke@1 1332 m.owner != origin &&
duke@1 1333 m.owner.isSubClass(other.owner, types)) {
duke@1 1334 // allow limited interoperability with covariant returns
duke@1 1335 } else {
mcimadamore@362 1336 log.error(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@362 1337 "override.incompatible.ret",
mcimadamore@362 1338 cannotOverride(m, other),
duke@1 1339 mtres, otres);
duke@1 1340 return;
duke@1 1341 }
duke@1 1342 } else if (overrideWarner.warned) {
duke@1 1343 warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@362 1344 "override.unchecked.ret",
mcimadamore@362 1345 uncheckedOverrides(m, other),
mcimadamore@362 1346 mtres, otres);
duke@1 1347 }
duke@1 1348
duke@1 1349 // Error if overriding method throws an exception not reported
duke@1 1350 // by overridden method.
duke@1 1351 List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
mcimadamore@362 1352 List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
mcimadamore@362 1353 List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
mcimadamore@362 1354 if (unhandledErased.nonEmpty()) {
duke@1 1355 log.error(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1356 "override.meth.doesnt.throw",
duke@1 1357 cannotOverride(m, other),
mcimadamore@362 1358 unhandledUnerased.head);
mcimadamore@362 1359 return;
mcimadamore@362 1360 }
mcimadamore@362 1361 else if (unhandledUnerased.nonEmpty()) {
mcimadamore@362 1362 warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@362 1363 "override.unchecked.thrown",
mcimadamore@362 1364 cannotOverride(m, other),
mcimadamore@362 1365 unhandledUnerased.head);
duke@1 1366 return;
duke@1 1367 }
duke@1 1368
duke@1 1369 // Optional warning if varargs don't agree
duke@1 1370 if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
duke@1 1371 && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
duke@1 1372 log.warning(TreeInfo.diagnosticPositionFor(m, tree),
duke@1 1373 ((m.flags() & Flags.VARARGS) != 0)
duke@1 1374 ? "override.varargs.missing"
duke@1 1375 : "override.varargs.extra",
duke@1 1376 varargsOverrides(m, other));
duke@1 1377 }
duke@1 1378
duke@1 1379 // Warn if instance method overrides bridge method (compiler spec ??)
duke@1 1380 if ((other.flags() & BRIDGE) != 0) {
duke@1 1381 log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
duke@1 1382 uncheckedOverrides(m, other));
duke@1 1383 }
duke@1 1384
duke@1 1385 // Warn if a deprecated method overridden by a non-deprecated one.
duke@1 1386 if ((other.flags() & DEPRECATED) != 0
duke@1 1387 && (m.flags() & DEPRECATED) == 0
duke@1 1388 && m.outermostClass() != other.outermostClass()
duke@1 1389 && !isDeprecatedOverrideIgnorable(other, origin)) {
duke@1 1390 warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
duke@1 1391 }
duke@1 1392 }
duke@1 1393 // where
duke@1 1394 private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
duke@1 1395 // If the method, m, is defined in an interface, then ignore the issue if the method
duke@1 1396 // is only inherited via a supertype and also implemented in the supertype,
duke@1 1397 // because in that case, we will rediscover the issue when examining the method
duke@1 1398 // in the supertype.
duke@1 1399 // If the method, m, is not defined in an interface, then the only time we need to
duke@1 1400 // address the issue is when the method is the supertype implemementation: any other
duke@1 1401 // case, we will have dealt with when examining the supertype classes
duke@1 1402 ClassSymbol mc = m.enclClass();
duke@1 1403 Type st = types.supertype(origin.type);
duke@1 1404 if (st.tag != CLASS)
duke@1 1405 return true;
duke@1 1406 MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
duke@1 1407
duke@1 1408 if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
duke@1 1409 List<Type> intfs = types.interfaces(origin.type);
duke@1 1410 return (intfs.contains(mc.type) ? false : (stimpl != null));
duke@1 1411 }
duke@1 1412 else
duke@1 1413 return (stimpl != m);
duke@1 1414 }
duke@1 1415
duke@1 1416
duke@1 1417 // used to check if there were any unchecked conversions
duke@1 1418 Warner overrideWarner = new Warner();
duke@1 1419
duke@1 1420 /** Check that a class does not inherit two concrete methods
duke@1 1421 * with the same signature.
duke@1 1422 * @param pos Position to be used for error reporting.
duke@1 1423 * @param site The class type to be checked.
duke@1 1424 */
duke@1 1425 public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
duke@1 1426 Type sup = types.supertype(site);
duke@1 1427 if (sup.tag != CLASS) return;
duke@1 1428
duke@1 1429 for (Type t1 = sup;
duke@1 1430 t1.tsym.type.isParameterized();
duke@1 1431 t1 = types.supertype(t1)) {
duke@1 1432 for (Scope.Entry e1 = t1.tsym.members().elems;
duke@1 1433 e1 != null;
duke@1 1434 e1 = e1.sibling) {
duke@1 1435 Symbol s1 = e1.sym;
duke@1 1436 if (s1.kind != MTH ||
duke@1 1437 (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
duke@1 1438 !s1.isInheritedIn(site.tsym, types) ||
duke@1 1439 ((MethodSymbol)s1).implementation(site.tsym,
duke@1 1440 types,
duke@1 1441 true) != s1)
duke@1 1442 continue;
duke@1 1443 Type st1 = types.memberType(t1, s1);
duke@1 1444 int s1ArgsLength = st1.getParameterTypes().length();
duke@1 1445 if (st1 == s1.type) continue;
duke@1 1446
duke@1 1447 for (Type t2 = sup;
duke@1 1448 t2.tag == CLASS;
duke@1 1449 t2 = types.supertype(t2)) {
mcimadamore@24 1450 for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
duke@1 1451 e2.scope != null;
duke@1 1452 e2 = e2.next()) {
duke@1 1453 Symbol s2 = e2.sym;
duke@1 1454 if (s2 == s1 ||
duke@1 1455 s2.kind != MTH ||
duke@1 1456 (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
duke@1 1457 s2.type.getParameterTypes().length() != s1ArgsLength ||
duke@1 1458 !s2.isInheritedIn(site.tsym, types) ||
duke@1 1459 ((MethodSymbol)s2).implementation(site.tsym,
duke@1 1460 types,
duke@1 1461 true) != s2)
duke@1 1462 continue;
duke@1 1463 Type st2 = types.memberType(t2, s2);
duke@1 1464 if (types.overrideEquivalent(st1, st2))
duke@1 1465 log.error(pos, "concrete.inheritance.conflict",
duke@1 1466 s1, t1, s2, t2, sup);
duke@1 1467 }
duke@1 1468 }
duke@1 1469 }
duke@1 1470 }
duke@1 1471 }
duke@1 1472
duke@1 1473 /** Check that classes (or interfaces) do not each define an abstract
duke@1 1474 * method with same name and arguments but incompatible return types.
duke@1 1475 * @param pos Position to be used for error reporting.
duke@1 1476 * @param t1 The first argument type.
duke@1 1477 * @param t2 The second argument type.
duke@1 1478 */
duke@1 1479 public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
duke@1 1480 Type t1,
duke@1 1481 Type t2) {
duke@1 1482 return checkCompatibleAbstracts(pos, t1, t2,
duke@1 1483 types.makeCompoundType(t1, t2));
duke@1 1484 }
duke@1 1485
duke@1 1486 public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
duke@1 1487 Type t1,
duke@1 1488 Type t2,
duke@1 1489 Type site) {
duke@1 1490 Symbol sym = firstIncompatibility(t1, t2, site);
duke@1 1491 if (sym != null) {
duke@1 1492 log.error(pos, "types.incompatible.diff.ret",
duke@1 1493 t1, t2, sym.name +
duke@1 1494 "(" + types.memberType(t2, sym).getParameterTypes() + ")");
duke@1 1495 return false;
duke@1 1496 }
duke@1 1497 return true;
duke@1 1498 }
duke@1 1499
duke@1 1500 /** Return the first method which is defined with same args
duke@1 1501 * but different return types in two given interfaces, or null if none
duke@1 1502 * exists.
duke@1 1503 * @param t1 The first type.
duke@1 1504 * @param t2 The second type.
duke@1 1505 * @param site The most derived type.
duke@1 1506 * @returns symbol from t2 that conflicts with one in t1.
duke@1 1507 */
duke@1 1508 private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
duke@1 1509 Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
duke@1 1510 closure(t1, interfaces1);
duke@1 1511 Map<TypeSymbol,Type> interfaces2;
duke@1 1512 if (t1 == t2)
duke@1 1513 interfaces2 = interfaces1;
duke@1 1514 else
duke@1 1515 closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
duke@1 1516
duke@1 1517 for (Type t3 : interfaces1.values()) {
duke@1 1518 for (Type t4 : interfaces2.values()) {
duke@1 1519 Symbol s = firstDirectIncompatibility(t3, t4, site);
duke@1 1520 if (s != null) return s;
duke@1 1521 }
duke@1 1522 }
duke@1 1523 return null;
duke@1 1524 }
duke@1 1525
duke@1 1526 /** Compute all the supertypes of t, indexed by type symbol. */
duke@1 1527 private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
duke@1 1528 if (t.tag != CLASS) return;
duke@1 1529 if (typeMap.put(t.tsym, t) == null) {
duke@1 1530 closure(types.supertype(t), typeMap);
duke@1 1531 for (Type i : types.interfaces(t))
duke@1 1532 closure(i, typeMap);
duke@1 1533 }
duke@1 1534 }
duke@1 1535
duke@1 1536 /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
duke@1 1537 private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
duke@1 1538 if (t.tag != CLASS) return;
duke@1 1539 if (typesSkip.get(t.tsym) != null) return;
duke@1 1540 if (typeMap.put(t.tsym, t) == null) {
duke@1 1541 closure(types.supertype(t), typesSkip, typeMap);
duke@1 1542 for (Type i : types.interfaces(t))
duke@1 1543 closure(i, typesSkip, typeMap);
duke@1 1544 }
duke@1 1545 }
duke@1 1546
duke@1 1547 /** Return the first method in t2 that conflicts with a method from t1. */
duke@1 1548 private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
duke@1 1549 for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
duke@1 1550 Symbol s1 = e1.sym;
duke@1 1551 Type st1 = null;
duke@1 1552 if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
duke@1 1553 Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
duke@1 1554 if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
duke@1 1555 for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
duke@1 1556 Symbol s2 = e2.sym;
duke@1 1557 if (s1 == s2) continue;
duke@1 1558 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
duke@1 1559 if (st1 == null) st1 = types.memberType(t1, s1);
duke@1 1560 Type st2 = types.memberType(t2, s2);
duke@1 1561 if (types.overrideEquivalent(st1, st2)) {
duke@1 1562 List<Type> tvars1 = st1.getTypeArguments();
duke@1 1563 List<Type> tvars2 = st2.getTypeArguments();
duke@1 1564 Type rt1 = st1.getReturnType();
duke@1 1565 Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
duke@1 1566 boolean compat =
duke@1 1567 types.isSameType(rt1, rt2) ||
duke@1 1568 rt1.tag >= CLASS && rt2.tag >= CLASS &&
duke@1 1569 (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
mcimadamore@59 1570 types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
mcimadamore@59 1571 checkCommonOverriderIn(s1,s2,site);
duke@1 1572 if (!compat) return s2;
duke@1 1573 }
duke@1 1574 }
duke@1 1575 }
duke@1 1576 return null;
duke@1 1577 }
mcimadamore@59 1578 //WHERE
mcimadamore@59 1579 boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
mcimadamore@59 1580 Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
mcimadamore@59 1581 Type st1 = types.memberType(site, s1);
mcimadamore@59 1582 Type st2 = types.memberType(site, s2);
mcimadamore@59 1583 closure(site, supertypes);
mcimadamore@59 1584 for (Type t : supertypes.values()) {
mcimadamore@59 1585 for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
mcimadamore@59 1586 Symbol s3 = e.sym;
mcimadamore@59 1587 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
mcimadamore@59 1588 Type st3 = types.memberType(site,s3);
mcimadamore@59 1589 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
mcimadamore@59 1590 if (s3.owner == site.tsym) {
mcimadamore@59 1591 return true;
mcimadamore@59 1592 }
mcimadamore@59 1593 List<Type> tvars1 = st1.getTypeArguments();
mcimadamore@59 1594 List<Type> tvars2 = st2.getTypeArguments();
mcimadamore@59 1595 List<Type> tvars3 = st3.getTypeArguments();
mcimadamore@59 1596 Type rt1 = st1.getReturnType();
mcimadamore@59 1597 Type rt2 = st2.getReturnType();
mcimadamore@59 1598 Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
mcimadamore@59 1599 Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
mcimadamore@59 1600 boolean compat =
mcimadamore@59 1601 rt13.tag >= CLASS && rt23.tag >= CLASS &&
mcimadamore@59 1602 (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
mcimadamore@59 1603 types.covariantReturnType(rt23, rt2, Warner.noWarnings));
mcimadamore@59 1604 if (compat)
mcimadamore@59 1605 return true;
mcimadamore@59 1606 }
mcimadamore@59 1607 }
mcimadamore@59 1608 }
mcimadamore@59 1609 return false;
mcimadamore@59 1610 }
duke@1 1611
duke@1 1612 /** Check that a given method conforms with any method it overrides.
duke@1 1613 * @param tree The tree from which positions are extracted
duke@1 1614 * for errors.
duke@1 1615 * @param m The overriding method.
duke@1 1616 */
duke@1 1617 void checkOverride(JCTree tree, MethodSymbol m) {
duke@1 1618 ClassSymbol origin = (ClassSymbol)m.owner;
duke@1 1619 if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
duke@1 1620 if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
duke@1 1621 log.error(tree.pos(), "enum.no.finalize");
duke@1 1622 return;
duke@1 1623 }
duke@1 1624 for (Type t = types.supertype(origin.type); t.tag == CLASS;
duke@1 1625 t = types.supertype(t)) {
duke@1 1626 TypeSymbol c = t.tsym;
duke@1 1627 Scope.Entry e = c.members().lookup(m.name);
duke@1 1628 while (e.scope != null) {
duke@1 1629 if (m.overrides(e.sym, origin, types, false))
duke@1 1630 checkOverride(tree, m, (MethodSymbol)e.sym, origin);
mcimadamore@252 1631 else if (e.sym.kind == MTH &&
mcimadamore@252 1632 e.sym.isInheritedIn(origin, types) &&
mcimadamore@252 1633 (e.sym.flags() & SYNTHETIC) == 0 &&
mcimadamore@252 1634 !m.isConstructor()) {
mcimadamore@24 1635 Type er1 = m.erasure(types);
mcimadamore@24 1636 Type er2 = e.sym.erasure(types);
mcimadamore@252 1637 if (types.isSameTypes(er1.getParameterTypes(),
mcimadamore@252 1638 er2.getParameterTypes())) {
mcimadamore@24 1639 log.error(TreeInfo.diagnosticPositionFor(m, tree),
mcimadamore@24 1640 "name.clash.same.erasure.no.override",
mcimadamore@24 1641 m, m.location(),
mcimadamore@24 1642 e.sym, e.sym.location());
mcimadamore@24 1643 }
mcimadamore@24 1644 }
duke@1 1645 e = e.next();
duke@1 1646 }
duke@1 1647 }
duke@1 1648 }
duke@1 1649
duke@1 1650 /** Check that all abstract members of given class have definitions.
duke@1 1651 * @param pos Position to be used for error reporting.
duke@1 1652 * @param c The class.
duke@1 1653 */
duke@1 1654 void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
duke@1 1655 try {
duke@1 1656 MethodSymbol undef = firstUndef(c, c);
duke@1 1657 if (undef != null) {
duke@1 1658 if ((c.flags() & ENUM) != 0 &&
duke@1 1659 types.supertype(c.type).tsym == syms.enumSym &&
duke@1 1660 (c.flags() & FINAL) == 0) {
duke@1 1661 // add the ABSTRACT flag to an enum
duke@1 1662 c.flags_field |= ABSTRACT;
duke@1 1663 } else {
duke@1 1664 MethodSymbol undef1 =
duke@1 1665 new MethodSymbol(undef.flags(), undef.name,
duke@1 1666 types.memberType(c.type, undef), undef.owner);
duke@1 1667 log.error(pos, "does.not.override.abstract",
duke@1 1668 c, undef1, undef1.location());
duke@1 1669 }
duke@1 1670 }
duke@1 1671 } catch (CompletionFailure ex) {
duke@1 1672 completionError(pos, ex);
duke@1 1673 }
duke@1 1674 }
duke@1 1675 //where
duke@1 1676 /** Return first abstract member of class `c' that is not defined
duke@1 1677 * in `impl', null if there is none.
duke@1 1678 */
duke@1 1679 private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
duke@1 1680 MethodSymbol undef = null;
duke@1 1681 // Do not bother to search in classes that are not abstract,
duke@1 1682 // since they cannot have abstract members.
duke@1 1683 if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
duke@1 1684 Scope s = c.members();
duke@1 1685 for (Scope.Entry e = s.elems;
duke@1 1686 undef == null && e != null;
duke@1 1687 e = e.sibling) {
duke@1 1688 if (e.sym.kind == MTH &&
duke@1 1689 (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
duke@1 1690 MethodSymbol absmeth = (MethodSymbol)e.sym;
duke@1 1691 MethodSymbol implmeth = absmeth.implementation(impl, types, true);
duke@1 1692 if (implmeth == null || implmeth == absmeth)
duke@1 1693 undef = absmeth;
duke@1 1694 }
duke@1 1695 }
duke@1 1696 if (undef == null) {
duke@1 1697 Type st = types.supertype(c.type);
duke@1 1698 if (st.tag == CLASS)
duke@1 1699 undef = firstUndef(impl, (ClassSymbol)st.tsym);
duke@1 1700 }
duke@1 1701 for (List<Type> l = types.interfaces(c.type);
duke@1 1702 undef == null && l.nonEmpty();
duke@1 1703 l = l.tail) {
duke@1 1704 undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
duke@1 1705 }
duke@1 1706 }
duke@1 1707 return undef;
duke@1 1708 }
duke@1 1709
duke@1 1710 /** Check for cyclic references. Issue an error if the
duke@1 1711 * symbol of the type referred to has a LOCKED flag set.
duke@1 1712 *
duke@1 1713 * @param pos Position to be used for error reporting.
duke@1 1714 * @param t The type referred to.
duke@1 1715 */
duke@1 1716 void checkNonCyclic(DiagnosticPosition pos, Type t) {
duke@1 1717 checkNonCyclicInternal(pos, t);
duke@1 1718 }
duke@1 1719
duke@1 1720
duke@1 1721 void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
mcimadamore@236 1722 checkNonCyclic1(pos, t, List.<TypeVar>nil());
duke@1 1723 }
duke@1 1724
mcimadamore@236 1725 private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
duke@1 1726 final TypeVar tv;
mcimadamore@42 1727 if (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
mcimadamore@42 1728 return;
duke@1 1729 if (seen.contains(t)) {
duke@1 1730 tv = (TypeVar)t;
jjg@110 1731 tv.bound = types.createErrorType(t);
duke@1 1732 log.error(pos, "cyclic.inheritance", t);
duke@1 1733 } else if (t.tag == TYPEVAR) {
duke@1 1734 tv = (TypeVar)t;
mcimadamore@236 1735 seen = seen.prepend(tv);
duke@1 1736 for (Type b : types.getBounds(tv))
duke@1 1737 checkNonCyclic1(pos, b, seen);
duke@1 1738 }
duke@1 1739 }
duke@1 1740
duke@1 1741 /** Check for cyclic references. Issue an error if the
duke@1 1742 * symbol of the type referred to has a LOCKED flag set.
duke@1 1743 *
duke@1 1744 * @param pos Position to be used for error reporting.
duke@1 1745 * @param t The type referred to.
duke@1 1746 * @returns True if the check completed on all attributed classes
duke@1 1747 */
duke@1 1748 private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
duke@1 1749 boolean complete = true; // was the check complete?
duke@1 1750 //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
duke@1 1751 Symbol c = t.tsym;
duke@1 1752 if ((c.flags_field & ACYCLIC) != 0) return true;
duke@1 1753
duke@1 1754 if ((c.flags_field & LOCKED) != 0) {
duke@1 1755 noteCyclic(pos, (ClassSymbol)c);
duke@1 1756 } else if (!c.type.isErroneous()) {
duke@1 1757 try {
duke@1 1758 c.flags_field |= LOCKED;
duke@1 1759 if (c.type.tag == CLASS) {
duke@1 1760 ClassType clazz = (ClassType)c.type;
duke@1 1761 if (clazz.interfaces_field != null)
duke@1 1762 for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
duke@1 1763 complete &= checkNonCyclicInternal(pos, l.head);
duke@1 1764 if (clazz.supertype_field != null) {
duke@1 1765 Type st = clazz.supertype_field;
duke@1 1766 if (st != null && st.tag == CLASS)
duke@1 1767 complete &= checkNonCyclicInternal(pos, st);
duke@1 1768 }
duke@1 1769 if (c.owner.kind == TYP)
duke@1 1770 complete &= checkNonCyclicInternal(pos, c.owner.type);
duke@1 1771 }
duke@1 1772 } finally {
duke@1 1773 c.flags_field &= ~LOCKED;
duke@1 1774 }
duke@1 1775 }
duke@1 1776 if (complete)
duke@1 1777 complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
duke@1 1778 if (complete) c.flags_field |= ACYCLIC;
duke@1 1779 return complete;
duke@1 1780 }
duke@1 1781
duke@1 1782 /** Note that we found an inheritance cycle. */
duke@1 1783 private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
duke@1 1784 log.error(pos, "cyclic.inheritance", c);
duke@1 1785 for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
jjg@110 1786 l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
duke@1 1787 Type st = types.supertype(c.type);
duke@1 1788 if (st.tag == CLASS)
jjg@110 1789 ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
jjg@110 1790 c.type = types.createErrorType(c, c.type);
duke@1 1791 c.flags_field |= ACYCLIC;
duke@1 1792 }
duke@1 1793
duke@1 1794 /** Check that all methods which implement some
duke@1 1795 * method conform to the method they implement.
duke@1 1796 * @param tree The class definition whose members are checked.
duke@1 1797 */
duke@1 1798 void checkImplementations(JCClassDecl tree) {
duke@1 1799 checkImplementations(tree, tree.sym);
duke@1 1800 }
duke@1 1801 //where
duke@1 1802 /** Check that all methods which implement some
duke@1 1803 * method in `ic' conform to the method they implement.
duke@1 1804 */
duke@1 1805 void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
duke@1 1806 ClassSymbol origin = tree.sym;
duke@1 1807 for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
duke@1 1808 ClassSymbol lc = (ClassSymbol)l.head.tsym;
duke@1 1809 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
duke@1 1810 for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
duke@1 1811 if (e.sym.kind == MTH &&
duke@1 1812 (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
duke@1 1813 MethodSymbol absmeth = (MethodSymbol)e.sym;
duke@1 1814 MethodSymbol implmeth = absmeth.implementation(origin, types, false);
duke@1 1815 if (implmeth != null && implmeth != absmeth &&
duke@1 1816 (implmeth.owner.flags() & INTERFACE) ==
duke@1 1817 (origin.flags() & INTERFACE)) {
duke@1 1818 // don't check if implmeth is in a class, yet
duke@1 1819 // origin is an interface. This case arises only
duke@1 1820 // if implmeth is declared in Object. The reason is
duke@1 1821 // that interfaces really don't inherit from
duke@1 1822 // Object it's just that the compiler represents
duke@1 1823 // things that way.
duke@1 1824 checkOverride(tree, implmeth, absmeth, origin);
duke@1 1825 }
duke@1 1826 }
duke@1 1827 }
duke@1 1828 }
duke@1 1829 }
duke@1 1830 }
duke@1 1831
duke@1 1832 /** Check that all abstract methods implemented by a class are
duke@1 1833 * mutually compatible.
duke@1 1834 * @param pos Position to be used for error reporting.
duke@1 1835 * @param c The class whose interfaces are checked.
duke@1 1836 */
duke@1 1837 void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
duke@1 1838 List<Type> supertypes = types.interfaces(c);
duke@1 1839 Type supertype = types.supertype(c);
duke@1 1840 if (supertype.tag == CLASS &&
duke@1 1841 (supertype.tsym.flags() & ABSTRACT) != 0)
duke@1 1842 supertypes = supertypes.prepend(supertype);
duke@1 1843 for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
duke@1 1844 if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
duke@1 1845 !checkCompatibleAbstracts(pos, l.head, l.head, c))
duke@1 1846 return;
duke@1 1847 for (List<Type> m = supertypes; m != l; m = m.tail)
duke@1 1848 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
duke@1 1849 return;
duke@1 1850 }
duke@1 1851 checkCompatibleConcretes(pos, c);
duke@1 1852 }
duke@1 1853
mcimadamore@359 1854 void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
mcimadamore@359 1855 for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
mcimadamore@359 1856 for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
mcimadamore@359 1857 // VM allows methods and variables with differing types
mcimadamore@359 1858 if (sym.kind == e.sym.kind &&
mcimadamore@359 1859 types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
mcimadamore@359 1860 sym != e.sym &&
mcimadamore@359 1861 (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
mcimadamore@608 1862 (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
mcimadamore@359 1863 (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
mcimadamore@359 1864 syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
mcimadamore@359 1865 return;
mcimadamore@359 1866 }
mcimadamore@359 1867 }
mcimadamore@359 1868 }
mcimadamore@359 1869 }
mcimadamore@359 1870
mcimadamore@359 1871 /** Report a conflict between a user symbol and a synthetic symbol.
mcimadamore@359 1872 */
mcimadamore@359 1873 private void syntheticError(DiagnosticPosition pos, Symbol sym) {
mcimadamore@359 1874 if (!sym.type.isErroneous()) {
mcimadamore@359 1875 if (warnOnSyntheticConflicts) {
mcimadamore@359 1876 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
mcimadamore@359 1877 }
mcimadamore@359 1878 else {
mcimadamore@359 1879 log.error(pos, "synthetic.name.conflict", sym, sym.location());
mcimadamore@359 1880 }
mcimadamore@359 1881 }
mcimadamore@359 1882 }
mcimadamore@359 1883
duke@1 1884 /** Check that class c does not implement directly or indirectly
duke@1 1885 * the same parameterized interface with two different argument lists.
duke@1 1886 * @param pos Position to be used for error reporting.
duke@1 1887 * @param type The type whose interfaces are checked.
duke@1 1888 */
duke@1 1889 void checkClassBounds(DiagnosticPosition pos, Type type) {
duke@1 1890 checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
duke@1 1891 }
duke@1 1892 //where
duke@1 1893 /** Enter all interfaces of type `type' into the hash table `seensofar'
duke@1 1894 * with their class symbol as key and their type as value. Make
duke@1 1895 * sure no class is entered with two different types.
duke@1 1896 */
duke@1 1897 void checkClassBounds(DiagnosticPosition pos,
duke@1 1898 Map<TypeSymbol,Type> seensofar,
duke@1 1899 Type type) {
duke@1 1900 if (type.isErroneous()) return;
duke@1 1901 for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
duke@1 1902 Type it = l.head;
duke@1 1903 Type oldit = seensofar.put(it.tsym, it);
duke@1 1904 if (oldit != null) {
duke@1 1905 List<Type> oldparams = oldit.allparams();
duke@1 1906 List<Type> newparams = it.allparams();
duke@1 1907 if (!types.containsTypeEquivalent(oldparams, newparams))
duke@1 1908 log.error(pos, "cant.inherit.diff.arg",
duke@1 1909 it.tsym, Type.toString(oldparams),
duke@1 1910 Type.toString(newparams));
duke@1 1911 }
duke@1 1912 checkClassBounds(pos, seensofar, it);
duke@1 1913 }
duke@1 1914 Type st = types.supertype(type);
duke@1 1915 if (st != null) checkClassBounds(pos, seensofar, st);
duke@1 1916 }
duke@1 1917
duke@1 1918 /** Enter interface into into set.
duke@1 1919 * If it existed already, issue a "repeated interface" error.
duke@1 1920 */
duke@1 1921 void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
duke@1 1922 if (its.contains(it))
duke@1 1923 log.error(pos, "repeated.interface");
duke@1 1924 else {
duke@1 1925 its.add(it);
duke@1 1926 }
duke@1 1927 }
duke@1 1928
duke@1 1929 /* *************************************************************************
duke@1 1930 * Check annotations
duke@1 1931 **************************************************************************/
duke@1 1932
mcimadamore@629 1933 /**
mcimadamore@634 1934 * Recursively validate annotations values
mcimadamore@629 1935 */
mcimadamore@634 1936 void validateAnnotationTree(JCTree tree) {
mcimadamore@634 1937 class AnnotationValidator extends TreeScanner {
mcimadamore@629 1938 @Override
mcimadamore@629 1939 public void visitAnnotation(JCAnnotation tree) {
mcimadamore@629 1940 super.visitAnnotation(tree);
mcimadamore@629 1941 validateAnnotation(tree);
mcimadamore@629 1942 }
mcimadamore@629 1943 }
mcimadamore@634 1944 tree.accept(new AnnotationValidator());
mcimadamore@629 1945 }
mcimadamore@629 1946
duke@1 1947 /** Annotation types are restricted to primitives, String, an
duke@1 1948 * enum, an annotation, Class, Class<?>, Class<? extends
duke@1 1949 * Anything>, arrays of the preceding.
duke@1 1950 */
duke@1 1951 void validateAnnotationType(JCTree restype) {
duke@1 1952 // restype may be null if an error occurred, so don't bother validating it
duke@1 1953 if (restype != null) {
duke@1 1954 validateAnnotationType(restype.pos(), restype.type);
duke@1 1955 }
duke@1 1956 }
duke@1 1957
duke@1 1958 void validateAnnotationType(DiagnosticPosition pos, Type type) {
duke@1 1959 if (type.isPrimitive()) return;
duke@1 1960 if (types.isSameType(type, syms.stringType)) return;
duke@1 1961 if ((type.tsym.flags() & Flags.ENUM) != 0) return;
duke@1 1962 if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
duke@1 1963 if (types.lowerBound(type).tsym == syms.classType.tsym) return;
duke@1 1964 if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
duke@1 1965 validateAnnotationType(pos, types.elemtype(type));
duke@1 1966 return;
duke@1 1967 }
duke@1 1968 log.error(pos, "invalid.annotation.member.type");
duke@1 1969 }
duke@1 1970
duke@1 1971 /**
duke@1 1972 * "It is also a compile-time error if any method declared in an
duke@1 1973 * annotation type has a signature that is override-equivalent to
duke@1 1974 * that of any public or protected method declared in class Object
duke@1 1975 * or in the interface annotation.Annotation."
duke@1 1976 *
duke@1 1977 * @jls3 9.6 Annotation Types
duke@1 1978 */
duke@1 1979 void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
duke@1 1980 for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
duke@1 1981 Scope s = sup.tsym.members();
duke@1 1982 for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
duke@1 1983 if (e.sym.kind == MTH &&
duke@1 1984 (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
duke@1 1985 types.overrideEquivalent(m.type, e.sym.type))
duke@1 1986 log.error(pos, "intf.annotation.member.clash", e.sym, sup);
duke@1 1987 }
duke@1 1988 }
duke@1 1989 }
duke@1 1990
duke@1 1991 /** Check the annotations of a symbol.
duke@1 1992 */
duke@1 1993 public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
duke@1 1994 if (skipAnnotations) return;
duke@1 1995 for (JCAnnotation a : annotations)
duke@1 1996 validateAnnotation(a, s);
duke@1 1997 }
duke@1 1998
jjg@308 1999 /** Check the type annotations
jjg@308 2000 */
jjg@308 2001 public void validateTypeAnnotations(List<JCTypeAnnotation> annotations, boolean isTypeParameter) {
jjg@308 2002 if (skipAnnotations) return;
jjg@308 2003 for (JCTypeAnnotation a : annotations)
jjg@308 2004 validateTypeAnnotation(a, isTypeParameter);
jjg@308 2005 }
jjg@308 2006
duke@1 2007 /** Check an annotation of a symbol.
duke@1 2008 */
duke@1 2009 public void validateAnnotation(JCAnnotation a, Symbol s) {
mcimadamore@634 2010 validateAnnotationTree(a);
duke@1 2011
duke@1 2012 if (!annotationApplicable(a, s))
duke@1 2013 log.error(a.pos(), "annotation.type.not.applicable");
duke@1 2014
duke@1 2015 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
duke@1 2016 if (!isOverrider(s))
duke@1 2017 log.error(a.pos(), "method.does.not.override.superclass");
duke@1 2018 }
duke@1 2019 }
duke@1 2020
jjg@308 2021 public void validateTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
jjg@308 2022 if (a.type == null)
jjg@308 2023 throw new AssertionError("annotation tree hasn't been attributed yet: " + a);
mcimadamore@634 2024 validateAnnotationTree(a);
jjg@308 2025
jjg@308 2026 if (!isTypeAnnotation(a, isTypeParameter))
jjg@308 2027 log.error(a.pos(), "annotation.type.not.applicable");
jjg@308 2028 }
jjg@308 2029
duke@1 2030 /** Is s a method symbol that overrides a method in a superclass? */
duke@1 2031 boolean isOverrider(Symbol s) {
duke@1 2032 if (s.kind != MTH || s.isStatic())
duke@1 2033 return false;
duke@1 2034 MethodSymbol m = (MethodSymbol)s;
duke@1 2035 TypeSymbol owner = (TypeSymbol)m.owner;
duke@1 2036 for (Type sup : types.closure(owner.type)) {
duke@1 2037 if (sup == owner.type)
duke@1 2038 continue; // skip "this"
duke@1 2039 Scope scope = sup.tsym.members();
duke@1 2040 for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
duke@1 2041 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
duke@1 2042 return true;
duke@1 2043 }
duke@1 2044 }
duke@1 2045 return false;
duke@1 2046 }
duke@1 2047
jjg@308 2048 /** Is the annotation applicable to type annotations */
jjg@308 2049 boolean isTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
jjg@308 2050 Attribute.Compound atTarget =
jjg@308 2051 a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
jjg@308 2052 if (atTarget == null) return true;
jjg@308 2053 Attribute atValue = atTarget.member(names.value);
jjg@308 2054 if (!(atValue instanceof Attribute.Array)) return true; // error recovery
jjg@308 2055 Attribute.Array arr = (Attribute.Array) atValue;
jjg@308 2056 for (Attribute app : arr.values) {
jjg@308 2057 if (!(app instanceof Attribute.Enum)) return true; // recovery
jjg@308 2058 Attribute.Enum e = (Attribute.Enum) app;
jjg@308 2059 if (!isTypeParameter && e.value.name == names.TYPE_USE)
jjg@308 2060 return true;
jjg@308 2061 else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
jjg@308 2062 return true;
jjg@308 2063 }
jjg@308 2064 return false;
jjg@308 2065 }
jjg@308 2066
duke@1 2067 /** Is the annotation applicable to the symbol? */
duke@1 2068 boolean annotationApplicable(JCAnnotation a, Symbol s) {
duke@1 2069 Attribute.Compound atTarget =
duke@1 2070 a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
duke@1 2071 if (atTarget == null) return true;
duke@1 2072 Attribute atValue = atTarget.member(names.value);
duke@1 2073 if (!(atValue instanceof Attribute.Array)) return true; // error recovery
duke@1 2074 Attribute.Array arr = (Attribute.Array) atValue;
duke@1 2075 for (Attribute app : arr.values) {
duke@1 2076 if (!(app instanceof Attribute.Enum)) return true; // recovery
duke@1 2077 Attribute.Enum e = (Attribute.Enum) app;
duke@1 2078 if (e.value.name == names.TYPE)
duke@1 2079 { if (s.kind == TYP) return true; }
duke@1 2080 else if (e.value.name == names.FIELD)
duke@1 2081 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
duke@1 2082 else if (e.value.name == names.METHOD)
duke@1 2083 { if (s.kind == MTH && !s.isConstructor()) return true; }
duke@1 2084 else if (e.value.name == names.PARAMETER)
duke@1 2085 { if (s.kind == VAR &&
duke@1 2086 s.owner.kind == MTH &&
duke@1 2087 (s.flags() & PARAMETER) != 0)
duke@1 2088 return true;
duke@1 2089 }
duke@1 2090 else if (e.value.name == names.CONSTRUCTOR)
duke@1 2091 { if (s.kind == MTH && s.isConstructor()) return true; }
duke@1 2092 else if (e.value.name == names.LOCAL_VARIABLE)
duke@1 2093 { if (s.kind == VAR && s.owner.kind == MTH &&
duke@1 2094 (s.flags() & PARAMETER) == 0)
duke@1 2095 return true;
duke@1 2096 }
duke@1 2097 else if (e.value.name == names.ANNOTATION_TYPE)
duke@1 2098 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
duke@1 2099 return true;
duke@1 2100 }
duke@1 2101 else if (e.value.name == names.PACKAGE)
duke@1 2102 { if (s.kind == PCK) return true; }
jjg@308 2103 else if (e.value.name == names.TYPE_USE)
jjg@308 2104 { if (s.kind == TYP ||
jjg@308 2105 s.kind == VAR ||
jjg@308 2106 (s.kind == MTH && !s.isConstructor() &&
jjg@308 2107 s.type.getReturnType().tag != VOID))
jjg@308 2108 return true;
jjg@308 2109 }
duke@1 2110 else
duke@1 2111 return true; // recovery
duke@1 2112 }
duke@1 2113 return false;
duke@1 2114 }
duke@1 2115
duke@1 2116 /** Check an annotation value.
duke@1 2117 */
duke@1 2118 public void validateAnnotation(JCAnnotation a) {
duke@1 2119 if (a.type.isErroneous()) return;
duke@1 2120
mcimadamore@632 2121 // collect an inventory of the members (sorted alphabetically)
mcimadamore@632 2122 Set<MethodSymbol> members = new TreeSet<MethodSymbol>(new Comparator<Symbol>() {
mcimadamore@632 2123 public int compare(Symbol t, Symbol t1) {
mcimadamore@632 2124 return t.name.compareTo(t1.name);
mcimadamore@632 2125 }
mcimadamore@632 2126 });
duke@1 2127 for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
duke@1 2128 e != null;
duke@1 2129 e = e.sibling)
duke@1 2130 if (e.sym.kind == MTH)
duke@1 2131 members.add((MethodSymbol) e.sym);
duke@1 2132
duke@1 2133 // count them off as they're annotated
duke@1 2134 for (JCTree arg : a.args) {
duke@1 2135 if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
duke@1 2136 JCAssign assign = (JCAssign) arg;
duke@1 2137 Symbol m = TreeInfo.symbol(assign.lhs);
duke@1 2138 if (m == null || m.type.isErroneous()) continue;
duke@1 2139 if (!members.remove(m))
jjg@479 2140 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
duke@1 2141 m.name, a.type);
duke@1 2142 }
duke@1 2143
duke@1 2144 // all the remaining ones better have default values
mcimadamore@632 2145 ListBuffer<Name> missingDefaults = ListBuffer.lb();
mcimadamore@632 2146 for (MethodSymbol m : members) {
mcimadamore@632 2147 if (m.defaultValue == null && !m.type.isErroneous()) {
mcimadamore@632 2148 missingDefaults.append(m.name);
mcimadamore@632 2149 }
mcimadamore@632 2150 }
mcimadamore@632 2151 if (missingDefaults.nonEmpty()) {
mcimadamore@632 2152 String key = (missingDefaults.size() > 1)
mcimadamore@632 2153 ? "annotation.missing.default.value.1"
mcimadamore@632 2154 : "annotation.missing.default.value";
mcimadamore@632 2155 log.error(a.pos(), key, a.type, missingDefaults);
mcimadamore@632 2156 }
duke@1 2157
duke@1 2158 // special case: java.lang.annotation.Target must not have
duke@1 2159 // repeated values in its value member
duke@1 2160 if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
duke@1 2161 a.args.tail == null)
duke@1 2162 return;
duke@1 2163
duke@1 2164 if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
duke@1 2165 JCAssign assign = (JCAssign) a.args.head;
duke@1 2166 Symbol m = TreeInfo.symbol(assign.lhs);
duke@1 2167 if (m.name != names.value) return;
duke@1 2168 JCTree rhs = assign.rhs;
duke@1 2169 if (rhs.getTag() != JCTree.NEWARRAY) return;
duke@1 2170 JCNewArray na = (JCNewArray) rhs;
duke@1 2171 Set<Symbol> targets = new HashSet<Symbol>();
duke@1 2172 for (JCTree elem : na.elems) {
duke@1 2173 if (!targets.add(TreeInfo.symbol(elem))) {
duke@1 2174 log.error(elem.pos(), "repeated.annotation.target");
duke@1 2175 }
duke@1 2176 }
duke@1 2177 }
duke@1 2178
duke@1 2179 void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
duke@1 2180 if (allowAnnotations &&
duke@1 2181 lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
duke@1 2182 (s.flags() & DEPRECATED) != 0 &&
duke@1 2183 !syms.deprecatedType.isErroneous() &&
duke@1 2184 s.attribute(syms.deprecatedType.tsym) == null) {
jjg@612 2185 log.warning(Lint.LintCategory.DEP_ANN,
jjg@612 2186 pos, "missing.deprecated.annotation");
duke@1 2187 }
duke@1 2188 }
duke@1 2189
duke@1 2190 /* *************************************************************************
duke@1 2191 * Check for recursive annotation elements.
duke@1 2192 **************************************************************************/
duke@1 2193
duke@1 2194 /** Check for cycles in the graph of annotation elements.
duke@1 2195 */
duke@1 2196 void checkNonCyclicElements(JCClassDecl tree) {
duke@1 2197 if ((tree.sym.flags_field & ANNOTATION) == 0) return;
duke@1 2198 assert (tree.sym.flags_field & LOCKED) == 0;
duke@1 2199 try {
duke@1 2200 tree.sym.flags_field |= LOCKED;
duke@1 2201 for (JCTree def : tree.defs) {
duke@1 2202 if (def.getTag() != JCTree.METHODDEF) continue;
duke@1 2203 JCMethodDecl meth = (JCMethodDecl)def;
duke@1 2204 checkAnnotationResType(meth.pos(), meth.restype.type);
duke@1 2205 }
duke@1 2206 } finally {
duke@1 2207 tree.sym.flags_field &= ~LOCKED;
duke@1 2208 tree.sym.flags_field |= ACYCLIC_ANN;
duke@1 2209 }
duke@1 2210 }
duke@1 2211
duke@1 2212 void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
duke@1 2213 if ((tsym.flags_field & ACYCLIC_ANN) != 0)
duke@1 2214 return;
duke@1 2215 if ((tsym.flags_field & LOCKED) != 0) {
duke@1 2216 log.error(pos, "cyclic.annotation.element");
duke@1 2217 return;
duke@1 2218 }
duke@1 2219 try {
duke@1 2220 tsym.flags_field |= LOCKED;
duke@1 2221 for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
duke@1 2222 Symbol s = e.sym;
duke@1 2223 if (s.kind != Kinds.MTH)
duke@1 2224 continue;
duke@1 2225 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
duke@1 2226 }
duke@1 2227 } finally {
duke@1 2228 tsym.flags_field &= ~LOCKED;
duke@1 2229 tsym.flags_field |= ACYCLIC_ANN;
duke@1 2230 }
duke@1 2231 }
duke@1 2232
duke@1 2233 void checkAnnotationResType(DiagnosticPosition pos, Type type) {
duke@1 2234 switch (type.tag) {
duke@1 2235 case TypeTags.CLASS:
duke@1 2236 if ((type.tsym.flags() & ANNOTATION) != 0)
duke@1 2237 checkNonCyclicElementsInternal(pos, type.tsym);
duke@1 2238 break;
duke@1 2239 case TypeTags.ARRAY:
duke@1 2240 checkAnnotationResType(pos, types.elemtype(type));
duke@1 2241 break;
duke@1 2242 default:
duke@1 2243 break; // int etc
duke@1 2244 }
duke@1 2245 }
duke@1 2246
duke@1 2247 /* *************************************************************************
duke@1 2248 * Check for cycles in the constructor call graph.
duke@1 2249 **************************************************************************/
duke@1 2250
duke@1 2251 /** Check for cycles in the graph of constructors calling other
duke@1 2252 * constructors.
duke@1 2253 */
duke@1 2254 void checkCyclicConstructors(JCClassDecl tree) {
duke@1 2255 Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
duke@1 2256
duke@1 2257 // enter each constructor this-call into the map
duke@1 2258 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 2259 JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
duke@1 2260 if (app == null) continue;
duke@1 2261 JCMethodDecl meth = (JCMethodDecl) l.head;
duke@1 2262 if (TreeInfo.name(app.meth) == names._this) {
duke@1 2263 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
duke@1 2264 } else {
duke@1 2265 meth.sym.flags_field |= ACYCLIC;
duke@1 2266 }
duke@1 2267 }
duke@1 2268
duke@1 2269 // Check for cycles in the map
duke@1 2270 Symbol[] ctors = new Symbol[0];
duke@1 2271 ctors = callMap.keySet().toArray(ctors);
duke@1 2272 for (Symbol caller : ctors) {
duke@1 2273 checkCyclicConstructor(tree, caller, callMap);
duke@1 2274 }
duke@1 2275 }
duke@1 2276
duke@1 2277 /** Look in the map to see if the given constructor is part of a
duke@1 2278 * call cycle.
duke@1 2279 */
duke@1 2280 private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
duke@1 2281 Map<Symbol,Symbol> callMap) {
duke@1 2282 if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
duke@1 2283 if ((ctor.flags_field & LOCKED) != 0) {
duke@1 2284 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
duke@1 2285 "recursive.ctor.invocation");
duke@1 2286 } else {
duke@1 2287 ctor.flags_field |= LOCKED;
duke@1 2288 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
duke@1 2289 ctor.flags_field &= ~LOCKED;
duke@1 2290 }
duke@1 2291 ctor.flags_field |= ACYCLIC;
duke@1 2292 }
duke@1 2293 }
duke@1 2294
duke@1 2295 /* *************************************************************************
duke@1 2296 * Miscellaneous
duke@1 2297 **************************************************************************/
duke@1 2298
duke@1 2299 /**
duke@1 2300 * Return the opcode of the operator but emit an error if it is an
duke@1 2301 * error.
duke@1 2302 * @param pos position for error reporting.
duke@1 2303 * @param operator an operator
duke@1 2304 * @param tag a tree tag
duke@1 2305 * @param left type of left hand side
duke@1 2306 * @param right type of right hand side
duke@1 2307 */
duke@1 2308 int checkOperator(DiagnosticPosition pos,
duke@1 2309 OperatorSymbol operator,
duke@1 2310 int tag,
duke@1 2311 Type left,
duke@1 2312 Type right) {
duke@1 2313 if (operator.opcode == ByteCodes.error) {
duke@1 2314 log.error(pos,
duke@1 2315 "operator.cant.be.applied",
duke@1 2316 treeinfo.operatorName(tag),
mcimadamore@80 2317 List.of(left, right));
duke@1 2318 }
duke@1 2319 return operator.opcode;
duke@1 2320 }
duke@1 2321
duke@1 2322
duke@1 2323 /**
duke@1 2324 * Check for division by integer constant zero
duke@1 2325 * @param pos Position for error reporting.
duke@1 2326 * @param operator The operator for the expression
duke@1 2327 * @param operand The right hand operand for the expression
duke@1 2328 */
duke@1 2329 void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
duke@1 2330 if (operand.constValue() != null
duke@1 2331 && lint.isEnabled(Lint.LintCategory.DIVZERO)
duke@1 2332 && operand.tag <= LONG
duke@1 2333 && ((Number) (operand.constValue())).longValue() == 0) {
duke@1 2334 int opc = ((OperatorSymbol)operator).opcode;
duke@1 2335 if (opc == ByteCodes.idiv || opc == ByteCodes.imod
duke@1 2336 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
jjg@612 2337 log.warning(Lint.LintCategory.DIVZERO, pos, "div.zero");
duke@1 2338 }
duke@1 2339 }
duke@1 2340 }
duke@1 2341
duke@1 2342 /**
duke@1 2343 * Check for empty statements after if
duke@1 2344 */
duke@1 2345 void checkEmptyIf(JCIf tree) {
duke@1 2346 if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
jjg@612 2347 log.warning(Lint.LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
duke@1 2348 }
duke@1 2349
duke@1 2350 /** Check that symbol is unique in given scope.
duke@1 2351 * @param pos Position for error reporting.
duke@1 2352 * @param sym The symbol.
duke@1 2353 * @param s The scope.
duke@1 2354 */
duke@1 2355 boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2356 if (sym.type.isErroneous())
duke@1 2357 return true;
duke@1 2358 if (sym.owner.name == names.any) return false;
duke@1 2359 for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
duke@1 2360 if (sym != e.sym &&
duke@1 2361 sym.kind == e.sym.kind &&
duke@1 2362 sym.name != names.error &&
mcimadamore@252 2363 (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
duke@1 2364 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
duke@1 2365 varargsDuplicateError(pos, sym, e.sym);
mcimadamore@252 2366 else if (sym.kind == MTH && !types.overrideEquivalent(sym.type, e.sym.type))
mcimadamore@252 2367 duplicateErasureError(pos, sym, e.sym);
duke@1 2368 else
duke@1 2369 duplicateError(pos, e.sym);
duke@1 2370 return false;
duke@1 2371 }
duke@1 2372 }
duke@1 2373 return true;
duke@1 2374 }
mcimadamore@252 2375 //where
mcimadamore@252 2376 /** Report duplicate declaration error.
mcimadamore@252 2377 */
mcimadamore@252 2378 void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
mcimadamore@252 2379 if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
mcimadamore@252 2380 log.error(pos, "name.clash.same.erasure", sym1, sym2);
mcimadamore@252 2381 }
mcimadamore@252 2382 }
duke@1 2383
duke@1 2384 /** Check that single-type import is not already imported or top-level defined,
duke@1 2385 * but make an exception for two single-type imports which denote the same type.
duke@1 2386 * @param pos Position for error reporting.
duke@1 2387 * @param sym The symbol.
duke@1 2388 * @param s The scope
duke@1 2389 */
duke@1 2390 boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2391 return checkUniqueImport(pos, sym, s, false);
duke@1 2392 }
duke@1 2393
duke@1 2394 /** Check that static single-type import is not already imported or top-level defined,
duke@1 2395 * but make an exception for two single-type imports which denote the same type.
duke@1 2396 * @param pos Position for error reporting.
duke@1 2397 * @param sym The symbol.
duke@1 2398 * @param s The scope
duke@1 2399 * @param staticImport Whether or not this was a static import
duke@1 2400 */
duke@1 2401 boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
duke@1 2402 return checkUniqueImport(pos, sym, s, true);
duke@1 2403 }
duke@1 2404
duke@1 2405 /** Check that single-type import is not already imported or top-level defined,
duke@1 2406 * but make an exception for two single-type imports which denote the same type.
duke@1 2407 * @param pos Position for error reporting.
duke@1 2408 * @param sym The symbol.
duke@1 2409 * @param s The scope.
duke@1 2410 * @param staticImport Whether or not this was a static import
duke@1 2411 */
duke@1 2412 private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
duke@1 2413 for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
duke@1 2414 // is encountered class entered via a class declaration?
duke@1 2415 boolean isClassDecl = e.scope == s;
duke@1 2416 if ((isClassDecl || sym != e.sym) &&
duke@1 2417 sym.kind == e.sym.kind &&
duke@1 2418 sym.name != names.error) {
duke@1 2419 if (!e.sym.type.isErroneous()) {
duke@1 2420 String what = e.sym.toString();
duke@1 2421 if (!isClassDecl) {
duke@1 2422 if (staticImport)
duke@1 2423 log.error(pos, "already.defined.static.single.import", what);
duke@1 2424 else
duke@1 2425 log.error(pos, "already.defined.single.import", what);
duke@1 2426 }
duke@1 2427 else if (sym != e.sym)
duke@1 2428 log.error(pos, "already.defined.this.unit", what);
duke@1 2429 }
duke@1 2430 return false;
duke@1 2431 }
duke@1 2432 }
duke@1 2433 return true;
duke@1 2434 }
duke@1 2435
duke@1 2436 /** Check that a qualified name is in canonical form (for import decls).
duke@1 2437 */
duke@1 2438 public void checkCanonical(JCTree tree) {
duke@1 2439 if (!isCanonical(tree))
duke@1 2440 log.error(tree.pos(), "import.requires.canonical",
duke@1 2441 TreeInfo.symbol(tree));
duke@1 2442 }
duke@1 2443 // where
duke@1 2444 private boolean isCanonical(JCTree tree) {
duke@1 2445 while (tree.getTag() == JCTree.SELECT) {
duke@1 2446 JCFieldAccess s = (JCFieldAccess) tree;
duke@1 2447 if (s.sym.owner != TreeInfo.symbol(s.selected))
duke@1 2448 return false;
duke@1 2449 tree = s.selected;
duke@1 2450 }
duke@1 2451 return true;
duke@1 2452 }
duke@1 2453
duke@1 2454 private class ConversionWarner extends Warner {
duke@1 2455 final String key;
duke@1 2456 final Type found;
duke@1 2457 final Type expected;
duke@1 2458 public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
duke@1 2459 super(pos);
duke@1 2460 this.key = key;
duke@1 2461 this.found = found;
duke@1 2462 this.expected = expected;
duke@1 2463 }
duke@1 2464
jjg@398 2465 @Override
duke@1 2466 public void warnUnchecked() {
duke@1 2467 boolean warned = this.warned;
duke@1 2468 super.warnUnchecked();
duke@1 2469 if (warned) return; // suppress redundant diagnostics
mcimadamore@89 2470 Object problem = diags.fragment(key);
duke@1 2471 Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
duke@1 2472 }
duke@1 2473 }
duke@1 2474
duke@1 2475 public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
duke@1 2476 return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
duke@1 2477 }
duke@1 2478
duke@1 2479 public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
duke@1 2480 return new ConversionWarner(pos, "unchecked.assign", found, expected);
duke@1 2481 }
duke@1 2482 }

mercurial