src/share/classes/com/sun/tools/javac/comp/Check.java

Mon, 16 Aug 2010 14:56:23 +0100

author
mcimadamore
date
Mon, 16 Aug 2010 14:56:23 +0100
changeset 634
27bae58329d5
parent 632
ea1930f4b789
child 638
d6fe0ea070aa
permissions
-rw-r--r--

6976649: javac does not enforce required annotation elements in arrays
Summary: type annotation should take advantage of recursive annotation checking
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import com.sun.source.tree.AssignmentTree;
    29 import java.util.*;
    30 import java.util.Set;
    32 import com.sun.tools.javac.code.*;
    33 import com.sun.tools.javac.jvm.*;
    34 import com.sun.tools.javac.tree.*;
    35 import com.sun.tools.javac.util.*;
    36 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    37 import com.sun.tools.javac.util.List;
    39 import com.sun.tools.javac.tree.JCTree.*;
    40 import com.sun.tools.javac.code.Lint;
    41 import com.sun.tools.javac.code.Lint.LintCategory;
    42 import com.sun.tools.javac.code.Type.*;
    43 import com.sun.tools.javac.code.Symbol.*;
    45 import static com.sun.tools.javac.code.Flags.*;
    46 import static com.sun.tools.javac.code.Kinds.*;
    47 import static com.sun.tools.javac.code.TypeTags.*;
    49 /** Type checking helper class for the attribution phase.
    50  *
    51  *  <p><b>This is NOT part of any supported API.
    52  *  If you write code that depends on this, you do so at your own risk.
    53  *  This code and its internal interfaces are subject to change or
    54  *  deletion without notice.</b>
    55  */
    56 public class Check {
    57     protected static final Context.Key<Check> checkKey =
    58         new Context.Key<Check>();
    60     private final Names names;
    61     private final Log log;
    62     private final Symtab syms;
    63     private final Infer infer;
    64     private final Types types;
    65     private final JCDiagnostic.Factory diags;
    66     private final boolean skipAnnotations;
    67     private boolean warnOnSyntheticConflicts;
    68     private boolean suppressAbortOnBadClassFile;
    69     private final TreeInfo treeinfo;
    71     // The set of lint options currently in effect. It is initialized
    72     // from the context, and then is set/reset as needed by Attr as it
    73     // visits all the various parts of the trees during attribution.
    74     private Lint lint;
    76     public static Check instance(Context context) {
    77         Check instance = context.get(checkKey);
    78         if (instance == null)
    79             instance = new Check(context);
    80         return instance;
    81     }
    83     protected Check(Context context) {
    84         context.put(checkKey, this);
    86         names = Names.instance(context);
    87         log = Log.instance(context);
    88         syms = Symtab.instance(context);
    89         infer = Infer.instance(context);
    90         this.types = Types.instance(context);
    91         diags = JCDiagnostic.Factory.instance(context);
    92         Options options = Options.instance(context);
    93         lint = Lint.instance(context);
    94         treeinfo = TreeInfo.instance(context);
    96         Source source = Source.instance(context);
    97         allowGenerics = source.allowGenerics();
    98         allowAnnotations = source.allowAnnotations();
    99         allowCovariantReturns = source.allowCovariantReturns();
   100         complexInference = options.get("-complexinference") != null;
   101         skipAnnotations = options.get("skipAnnotations") != null;
   102         warnOnSyntheticConflicts = options.get("warnOnSyntheticConflicts") != null;
   103         suppressAbortOnBadClassFile = options.get("suppressAbortOnBadClassFile") != null;
   105         Target target = Target.instance(context);
   106         syntheticNameChar = target.syntheticNameChar();
   108         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   109         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   110         boolean verboseVarargs = lint.isEnabled(LintCategory.VARARGS);
   111         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   112         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   114         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   115                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   116         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   117                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   118         unsafeVarargsHandler = new MandatoryWarningHandler(log, verboseVarargs,
   119                 enforceMandatoryWarnings, "varargs", LintCategory.VARARGS);
   120         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   121                 enforceMandatoryWarnings, "sunapi", null);
   122     }
   124     /** Switch: generics enabled?
   125      */
   126     boolean allowGenerics;
   128     /** Switch: annotations enabled?
   129      */
   130     boolean allowAnnotations;
   132     /** Switch: covariant returns enabled?
   133      */
   134     boolean allowCovariantReturns;
   136     /** Switch: -complexinference option set?
   137      */
   138     boolean complexInference;
   140     /** Character for synthetic names
   141      */
   142     char syntheticNameChar;
   144     /** A table mapping flat names of all compiled classes in this run to their
   145      *  symbols; maintained from outside.
   146      */
   147     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   149     /** A handler for messages about deprecated usage.
   150      */
   151     private MandatoryWarningHandler deprecationHandler;
   153     /** A handler for messages about unchecked or unsafe usage.
   154      */
   155     private MandatoryWarningHandler uncheckedHandler;
   157     /** A handler for messages about unchecked or unsafe vararg method decl.
   158      */
   159     private MandatoryWarningHandler unsafeVarargsHandler;
   161     /** A handler for messages about using proprietary API.
   162      */
   163     private MandatoryWarningHandler sunApiHandler;
   165 /* *************************************************************************
   166  * Errors and Warnings
   167  **************************************************************************/
   169     Lint setLint(Lint newLint) {
   170         Lint prev = lint;
   171         lint = newLint;
   172         return prev;
   173     }
   175     /** Warn about deprecated symbol.
   176      *  @param pos        Position to be used for error reporting.
   177      *  @param sym        The deprecated symbol.
   178      */
   179     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   180         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   181             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   182     }
   184     /** Warn about unchecked operation.
   185      *  @param pos        Position to be used for error reporting.
   186      *  @param msg        A string describing the problem.
   187      */
   188     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   189         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   190             uncheckedHandler.report(pos, msg, args);
   191     }
   193     /** Warn about unsafe vararg method decl.
   194      *  @param pos        Position to be used for error reporting.
   195      *  @param sym        The deprecated symbol.
   196      */
   197     void warnUnsafeVararg(DiagnosticPosition pos, Type elemType) {
   198         if (!lint.isSuppressed(LintCategory.VARARGS))
   199             unsafeVarargsHandler.report(pos, "varargs.non.reifiable.type", elemType);
   200     }
   202     /** Warn about using proprietary API.
   203      *  @param pos        Position to be used for error reporting.
   204      *  @param msg        A string describing the problem.
   205      */
   206     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   207         if (!lint.isSuppressed(LintCategory.SUNAPI))
   208             sunApiHandler.report(pos, msg, args);
   209     }
   211     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   212         if (lint.isEnabled(LintCategory.STATIC))
   213             log.warning(LintCategory.STATIC, pos, msg, args);
   214     }
   216     /**
   217      * Report any deferred diagnostics.
   218      */
   219     public void reportDeferredDiagnostics() {
   220         deprecationHandler.reportDeferredDiagnostic();
   221         uncheckedHandler.reportDeferredDiagnostic();
   222         unsafeVarargsHandler.reportDeferredDiagnostic();
   223         sunApiHandler.reportDeferredDiagnostic();
   224     }
   227     /** Report a failure to complete a class.
   228      *  @param pos        Position to be used for error reporting.
   229      *  @param ex         The failure to report.
   230      */
   231     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   232         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   233         if (ex instanceof ClassReader.BadClassFile
   234                 && !suppressAbortOnBadClassFile) throw new Abort();
   235         else return syms.errType;
   236     }
   238     /** Report a type error.
   239      *  @param pos        Position to be used for error reporting.
   240      *  @param problem    A string describing the error.
   241      *  @param found      The type that was found.
   242      *  @param req        The type that was required.
   243      */
   244     Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
   245         log.error(pos, "prob.found.req",
   246                   problem, found, req);
   247         return types.createErrorType(found);
   248     }
   250     Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
   251         log.error(pos, "prob.found.req.1", problem, found, req, explanation);
   252         return types.createErrorType(found);
   253     }
   255     /** Report an error that wrong type tag was found.
   256      *  @param pos        Position to be used for error reporting.
   257      *  @param required   An internationalized string describing the type tag
   258      *                    required.
   259      *  @param found      The type that was found.
   260      */
   261     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   262         // this error used to be raised by the parser,
   263         // but has been delayed to this point:
   264         if (found instanceof Type && ((Type)found).tag == VOID) {
   265             log.error(pos, "illegal.start.of.type");
   266             return syms.errType;
   267         }
   268         log.error(pos, "type.found.req", found, required);
   269         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   270     }
   272     /** Report an error that symbol cannot be referenced before super
   273      *  has been called.
   274      *  @param pos        Position to be used for error reporting.
   275      *  @param sym        The referenced symbol.
   276      */
   277     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   278         log.error(pos, "cant.ref.before.ctor.called", sym);
   279     }
   281     /** Report duplicate declaration error.
   282      */
   283     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   284         if (!sym.type.isErroneous()) {
   285             log.error(pos, "already.defined", sym, sym.location());
   286         }
   287     }
   289     /** Report array/varargs duplicate declaration
   290      */
   291     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   292         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   293             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   294         }
   295     }
   297 /* ************************************************************************
   298  * duplicate declaration checking
   299  *************************************************************************/
   301     /** Check that variable does not hide variable with same name in
   302      *  immediately enclosing local scope.
   303      *  @param pos           Position for error reporting.
   304      *  @param v             The symbol.
   305      *  @param s             The scope.
   306      */
   307     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   308         if (s.next != null) {
   309             for (Scope.Entry e = s.next.lookup(v.name);
   310                  e.scope != null && e.sym.owner == v.owner;
   311                  e = e.next()) {
   312                 if (e.sym.kind == VAR &&
   313                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   314                     v.name != names.error) {
   315                     duplicateError(pos, e.sym);
   316                     return;
   317                 }
   318             }
   319         }
   320     }
   322     /** Check that a class or interface does not hide a class or
   323      *  interface with same name in immediately enclosing local scope.
   324      *  @param pos           Position for error reporting.
   325      *  @param c             The symbol.
   326      *  @param s             The scope.
   327      */
   328     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   329         if (s.next != null) {
   330             for (Scope.Entry e = s.next.lookup(c.name);
   331                  e.scope != null && e.sym.owner == c.owner;
   332                  e = e.next()) {
   333                 if (e.sym.kind == TYP &&
   334                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   335                     c.name != names.error) {
   336                     duplicateError(pos, e.sym);
   337                     return;
   338                 }
   339             }
   340         }
   341     }
   343     /** Check that class does not have the same name as one of
   344      *  its enclosing classes, or as a class defined in its enclosing scope.
   345      *  return true if class is unique in its enclosing scope.
   346      *  @param pos           Position for error reporting.
   347      *  @param name          The class name.
   348      *  @param s             The enclosing scope.
   349      */
   350     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   351         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   352             if (e.sym.kind == TYP && e.sym.name != names.error) {
   353                 duplicateError(pos, e.sym);
   354                 return false;
   355             }
   356         }
   357         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   358             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   359                 duplicateError(pos, sym);
   360                 return true;
   361             }
   362         }
   363         return true;
   364     }
   366 /* *************************************************************************
   367  * Class name generation
   368  **************************************************************************/
   370     /** Return name of local class.
   371      *  This is of the form    <enclClass> $ n <classname>
   372      *  where
   373      *    enclClass is the flat name of the enclosing class,
   374      *    classname is the simple name of the local class
   375      */
   376     Name localClassName(ClassSymbol c) {
   377         for (int i=1; ; i++) {
   378             Name flatname = names.
   379                 fromString("" + c.owner.enclClass().flatname +
   380                            syntheticNameChar + i +
   381                            c.name);
   382             if (compiled.get(flatname) == null) return flatname;
   383         }
   384     }
   386 /* *************************************************************************
   387  * Type Checking
   388  **************************************************************************/
   390     /** Check that a given type is assignable to a given proto-type.
   391      *  If it is, return the type, otherwise return errType.
   392      *  @param pos        Position to be used for error reporting.
   393      *  @param found      The type that was found.
   394      *  @param req        The type that was required.
   395      */
   396     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   397         return checkType(pos, found, req, "incompatible.types");
   398     }
   400     Type checkType(DiagnosticPosition pos, Type found, Type req, String errKey) {
   401         if (req.tag == ERROR)
   402             return req;
   403         if (found.tag == FORALL)
   404             return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
   405         if (req.tag == NONE)
   406             return found;
   407         if (types.isAssignable(found, req, convertWarner(pos, found, req)))
   408             return found;
   409         if (found.tag <= DOUBLE && req.tag <= DOUBLE)
   410             return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
   411         if (found.isSuperBound()) {
   412             log.error(pos, "assignment.from.super-bound", found);
   413             return types.createErrorType(found);
   414         }
   415         if (req.isExtendsBound()) {
   416             log.error(pos, "assignment.to.extends-bound", req);
   417             return types.createErrorType(found);
   418         }
   419         return typeError(pos, diags.fragment(errKey), found, req);
   420     }
   422     /** Instantiate polymorphic type to some prototype, unless
   423      *  prototype is `anyPoly' in which case polymorphic type
   424      *  is returned unchanged.
   425      */
   426     Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) throws Infer.NoInstanceException {
   427         if (pt == Infer.anyPoly && complexInference) {
   428             return t;
   429         } else if (pt == Infer.anyPoly || pt.tag == NONE) {
   430             Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
   431             return instantiatePoly(pos, t, newpt, warn);
   432         } else if (pt.tag == ERROR) {
   433             return pt;
   434         } else {
   435             try {
   436                 return infer.instantiateExpr(t, pt, warn);
   437             } catch (Infer.NoInstanceException ex) {
   438                 if (ex.isAmbiguous) {
   439                     JCDiagnostic d = ex.getDiagnostic();
   440                     log.error(pos,
   441                               "undetermined.type" + (d!=null ? ".1" : ""),
   442                               t, d);
   443                     return types.createErrorType(pt);
   444                 } else {
   445                     JCDiagnostic d = ex.getDiagnostic();
   446                     return typeError(pos,
   447                                      diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
   448                                      t, pt);
   449                 }
   450             } catch (Infer.InvalidInstanceException ex) {
   451                 JCDiagnostic d = ex.getDiagnostic();
   452                 log.error(pos, "invalid.inferred.types", t.tvars, d);
   453                 return types.createErrorType(pt);
   454             }
   455         }
   456     }
   458     /** Check that a given type can be cast to a given target type.
   459      *  Return the result of the cast.
   460      *  @param pos        Position to be used for error reporting.
   461      *  @param found      The type that is being cast.
   462      *  @param req        The target type of the cast.
   463      */
   464     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   465         if (found.tag == FORALL) {
   466             instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
   467             return req;
   468         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
   469             return req;
   470         } else {
   471             return typeError(pos,
   472                              diags.fragment("inconvertible.types"),
   473                              found, req);
   474         }
   475     }
   476 //where
   477         /** Is type a type variable, or a (possibly multi-dimensional) array of
   478          *  type variables?
   479          */
   480         boolean isTypeVar(Type t) {
   481             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   482         }
   484     /** Check that a type is within some bounds.
   485      *
   486      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   487      *  type argument.
   488      *  @param pos           Position to be used for error reporting.
   489      *  @param a             The type that should be bounded by bs.
   490      *  @param bs            The bound.
   491      */
   492     private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
   493          if (a.isUnbound()) {
   494              return;
   495          } else if (a.tag != WILDCARD) {
   496              a = types.upperBound(a);
   497              for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
   498                  if (!types.isSubtype(a, l.head)) {
   499                      log.error(pos, "not.within.bounds", a);
   500                      return;
   501                  }
   502              }
   503          } else if (a.isExtendsBound()) {
   504              if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
   505                  log.error(pos, "not.within.bounds", a);
   506          } else if (a.isSuperBound()) {
   507              if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
   508                  log.error(pos, "not.within.bounds", a);
   509          }
   510      }
   512     /** Check that a type is within some bounds.
   513      *
   514      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   515      *  type argument.
   516      *  @param pos           Position to be used for error reporting.
   517      *  @param a             The type that should be bounded by bs.
   518      *  @param bs            The bound.
   519      */
   520     private void checkCapture(JCTypeApply tree) {
   521         List<JCExpression> args = tree.getTypeArguments();
   522         for (Type arg : types.capture(tree.type).getTypeArguments()) {
   523             if (arg.tag == TYPEVAR && arg.getUpperBound().isErroneous()) {
   524                 log.error(args.head.pos, "not.within.bounds", args.head.type);
   525                 break;
   526             }
   527             args = args.tail;
   528         }
   529      }
   531     /** Check that type is different from 'void'.
   532      *  @param pos           Position to be used for error reporting.
   533      *  @param t             The type to be checked.
   534      */
   535     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   536         if (t.tag == VOID) {
   537             log.error(pos, "void.not.allowed.here");
   538             return types.createErrorType(t);
   539         } else {
   540             return t;
   541         }
   542     }
   544     /** Check that type is a class or interface type.
   545      *  @param pos           Position to be used for error reporting.
   546      *  @param t             The type to be checked.
   547      */
   548     Type checkClassType(DiagnosticPosition pos, Type t) {
   549         if (t.tag != CLASS && t.tag != ERROR)
   550             return typeTagError(pos,
   551                                 diags.fragment("type.req.class"),
   552                                 (t.tag == TYPEVAR)
   553                                 ? diags.fragment("type.parameter", t)
   554                                 : t);
   555         else
   556             return t;
   557     }
   559     /** Check that type is a class or interface type.
   560      *  @param pos           Position to be used for error reporting.
   561      *  @param t             The type to be checked.
   562      *  @param noBounds    True if type bounds are illegal here.
   563      */
   564     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   565         t = checkClassType(pos, t);
   566         if (noBounds && t.isParameterized()) {
   567             List<Type> args = t.getTypeArguments();
   568             while (args.nonEmpty()) {
   569                 if (args.head.tag == WILDCARD)
   570                     return typeTagError(pos,
   571                                         diags.fragment("type.req.exact"),
   572                                         args.head);
   573                 args = args.tail;
   574             }
   575         }
   576         return t;
   577     }
   579     /** Check that type is a reifiable class, interface or array type.
   580      *  @param pos           Position to be used for error reporting.
   581      *  @param t             The type to be checked.
   582      */
   583     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   584         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   585             return typeTagError(pos,
   586                                 diags.fragment("type.req.class.array"),
   587                                 t);
   588         } else if (!types.isReifiable(t)) {
   589             log.error(pos, "illegal.generic.type.for.instof");
   590             return types.createErrorType(t);
   591         } else {
   592             return t;
   593         }
   594     }
   596     /** Check that type is a reference type, i.e. a class, interface or array type
   597      *  or a type variable.
   598      *  @param pos           Position to be used for error reporting.
   599      *  @param t             The type to be checked.
   600      */
   601     Type checkRefType(DiagnosticPosition pos, Type t) {
   602         switch (t.tag) {
   603         case CLASS:
   604         case ARRAY:
   605         case TYPEVAR:
   606         case WILDCARD:
   607         case ERROR:
   608             return t;
   609         default:
   610             return typeTagError(pos,
   611                                 diags.fragment("type.req.ref"),
   612                                 t);
   613         }
   614     }
   616     /** Check that each type is a reference type, i.e. a class, interface or array type
   617      *  or a type variable.
   618      *  @param trees         Original trees, used for error reporting.
   619      *  @param types         The types to be checked.
   620      */
   621     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   622         List<JCExpression> tl = trees;
   623         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   624             l.head = checkRefType(tl.head.pos(), l.head);
   625             tl = tl.tail;
   626         }
   627         return types;
   628     }
   630     /** Check that type is a null or reference type.
   631      *  @param pos           Position to be used for error reporting.
   632      *  @param t             The type to be checked.
   633      */
   634     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   635         switch (t.tag) {
   636         case CLASS:
   637         case ARRAY:
   638         case TYPEVAR:
   639         case WILDCARD:
   640         case BOT:
   641         case ERROR:
   642             return t;
   643         default:
   644             return typeTagError(pos,
   645                                 diags.fragment("type.req.ref"),
   646                                 t);
   647         }
   648     }
   650     /** Check that flag set does not contain elements of two conflicting sets. s
   651      *  Return true if it doesn't.
   652      *  @param pos           Position to be used for error reporting.
   653      *  @param flags         The set of flags to be checked.
   654      *  @param set1          Conflicting flags set #1.
   655      *  @param set2          Conflicting flags set #2.
   656      */
   657     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   658         if ((flags & set1) != 0 && (flags & set2) != 0) {
   659             log.error(pos,
   660                       "illegal.combination.of.modifiers",
   661                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   662                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   663             return false;
   664         } else
   665             return true;
   666     }
   668     /** Check that the type inferred using the diamond operator does not contain
   669      *  non-denotable types such as captured types or intersection types.
   670      *  @param t the type inferred using the diamond operator
   671      */
   672     List<Type> checkDiamond(ClassType t) {
   673         DiamondTypeChecker dtc = new DiamondTypeChecker();
   674         ListBuffer<Type> buf = ListBuffer.lb();
   675         for (Type arg : t.getTypeArguments()) {
   676             if (!dtc.visit(arg, null)) {
   677                 buf.append(arg);
   678             }
   679         }
   680         return buf.toList();
   681     }
   683     static class DiamondTypeChecker extends Types.SimpleVisitor<Boolean, Void> {
   684         public Boolean visitType(Type t, Void s) {
   685             return true;
   686         }
   687         @Override
   688         public Boolean visitClassType(ClassType t, Void s) {
   689             if (t.isCompound()) {
   690                 return false;
   691             }
   692             for (Type targ : t.getTypeArguments()) {
   693                 if (!visit(targ, s)) {
   694                     return false;
   695                 }
   696             }
   697             return true;
   698         }
   699         @Override
   700         public Boolean visitCapturedType(CapturedType t, Void s) {
   701             return false;
   702         }
   703     }
   705     void checkVarargMethodDecl(JCMethodDecl tree) {
   706         MethodSymbol m = tree.sym;
   707         //check the element type of the vararg
   708         if (m.isVarArgs()) {
   709             Type varargElemType = types.elemtype(tree.params.last().type);
   710             if (!types.isReifiable(varargElemType)) {
   711                 warnUnsafeVararg(tree.params.head.pos(), varargElemType);
   712             }
   713         }
   714     }
   716     /**
   717      * Check that vararg method call is sound
   718      * @param pos Position to be used for error reporting.
   719      * @param argtypes Actual arguments supplied to vararg method.
   720      */
   721     void checkVararg(DiagnosticPosition pos, List<Type> argtypes, Symbol msym, Env<AttrContext> env) {
   722         Env<AttrContext> calleeLintEnv = env;
   723         while (calleeLintEnv.info.lint == null)
   724             calleeLintEnv = calleeLintEnv.next;
   725         Lint calleeLint = calleeLintEnv.info.lint.augment(msym.attributes_field, msym.flags());
   726         Type argtype = argtypes.last();
   727         if (!types.isReifiable(argtype) && !calleeLint.isSuppressed(Lint.LintCategory.VARARGS)) {
   728             warnUnchecked(pos,
   729                               "unchecked.generic.array.creation",
   730                               argtype);
   731         }
   732     }
   734     /** Check that given modifiers are legal for given symbol and
   735      *  return modifiers together with any implicit modififiers for that symbol.
   736      *  Warning: we can't use flags() here since this method
   737      *  is called during class enter, when flags() would cause a premature
   738      *  completion.
   739      *  @param pos           Position to be used for error reporting.
   740      *  @param flags         The set of modifiers given in a definition.
   741      *  @param sym           The defined symbol.
   742      */
   743     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   744         long mask;
   745         long implicit = 0;
   746         switch (sym.kind) {
   747         case VAR:
   748             if (sym.owner.kind != TYP)
   749                 mask = LocalVarFlags;
   750             else if ((sym.owner.flags_field & INTERFACE) != 0)
   751                 mask = implicit = InterfaceVarFlags;
   752             else
   753                 mask = VarFlags;
   754             break;
   755         case MTH:
   756             if (sym.name == names.init) {
   757                 if ((sym.owner.flags_field & ENUM) != 0) {
   758                     // enum constructors cannot be declared public or
   759                     // protected and must be implicitly or explicitly
   760                     // private
   761                     implicit = PRIVATE;
   762                     mask = PRIVATE;
   763                 } else
   764                     mask = ConstructorFlags;
   765             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
   766                 mask = implicit = InterfaceMethodFlags;
   767             else {
   768                 mask = MethodFlags;
   769             }
   770             // Imply STRICTFP if owner has STRICTFP set.
   771             if (((flags|implicit) & Flags.ABSTRACT) == 0)
   772               implicit |= sym.owner.flags_field & STRICTFP;
   773             break;
   774         case TYP:
   775             if (sym.isLocal()) {
   776                 mask = LocalClassFlags;
   777                 if (sym.name.isEmpty()) { // Anonymous class
   778                     // Anonymous classes in static methods are themselves static;
   779                     // that's why we admit STATIC here.
   780                     mask |= STATIC;
   781                     // JLS: Anonymous classes are final.
   782                     implicit |= FINAL;
   783                 }
   784                 if ((sym.owner.flags_field & STATIC) == 0 &&
   785                     (flags & ENUM) != 0)
   786                     log.error(pos, "enums.must.be.static");
   787             } else if (sym.owner.kind == TYP) {
   788                 mask = MemberClassFlags;
   789                 if (sym.owner.owner.kind == PCK ||
   790                     (sym.owner.flags_field & STATIC) != 0)
   791                     mask |= STATIC;
   792                 else if ((flags & ENUM) != 0)
   793                     log.error(pos, "enums.must.be.static");
   794                 // Nested interfaces and enums are always STATIC (Spec ???)
   795                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
   796             } else {
   797                 mask = ClassFlags;
   798             }
   799             // Interfaces are always ABSTRACT
   800             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
   802             if ((flags & ENUM) != 0) {
   803                 // enums can't be declared abstract or final
   804                 mask &= ~(ABSTRACT | FINAL);
   805                 implicit |= implicitEnumFinalFlag(tree);
   806             }
   807             // Imply STRICTFP if owner has STRICTFP set.
   808             implicit |= sym.owner.flags_field & STRICTFP;
   809             break;
   810         default:
   811             throw new AssertionError();
   812         }
   813         long illegal = flags & StandardFlags & ~mask;
   814         if (illegal != 0) {
   815             if ((illegal & INTERFACE) != 0) {
   816                 log.error(pos, "intf.not.allowed.here");
   817                 mask |= INTERFACE;
   818             }
   819             else {
   820                 log.error(pos,
   821                           "mod.not.allowed.here", asFlagSet(illegal));
   822             }
   823         }
   824         else if ((sym.kind == TYP ||
   825                   // ISSUE: Disallowing abstract&private is no longer appropriate
   826                   // in the presence of inner classes. Should it be deleted here?
   827                   checkDisjoint(pos, flags,
   828                                 ABSTRACT,
   829                                 PRIVATE | STATIC))
   830                  &&
   831                  checkDisjoint(pos, flags,
   832                                ABSTRACT | INTERFACE,
   833                                FINAL | NATIVE | SYNCHRONIZED)
   834                  &&
   835                  checkDisjoint(pos, flags,
   836                                PUBLIC,
   837                                PRIVATE | PROTECTED)
   838                  &&
   839                  checkDisjoint(pos, flags,
   840                                PRIVATE,
   841                                PUBLIC | PROTECTED)
   842                  &&
   843                  checkDisjoint(pos, flags,
   844                                FINAL,
   845                                VOLATILE)
   846                  &&
   847                  (sym.kind == TYP ||
   848                   checkDisjoint(pos, flags,
   849                                 ABSTRACT | NATIVE,
   850                                 STRICTFP))) {
   851             // skip
   852         }
   853         return flags & (mask | ~StandardFlags) | implicit;
   854     }
   857     /** Determine if this enum should be implicitly final.
   858      *
   859      *  If the enum has no specialized enum contants, it is final.
   860      *
   861      *  If the enum does have specialized enum contants, it is
   862      *  <i>not</i> final.
   863      */
   864     private long implicitEnumFinalFlag(JCTree tree) {
   865         if (tree.getTag() != JCTree.CLASSDEF) return 0;
   866         class SpecialTreeVisitor extends JCTree.Visitor {
   867             boolean specialized;
   868             SpecialTreeVisitor() {
   869                 this.specialized = false;
   870             };
   872             @Override
   873             public void visitTree(JCTree tree) { /* no-op */ }
   875             @Override
   876             public void visitVarDef(JCVariableDecl tree) {
   877                 if ((tree.mods.flags & ENUM) != 0) {
   878                     if (tree.init instanceof JCNewClass &&
   879                         ((JCNewClass) tree.init).def != null) {
   880                         specialized = true;
   881                     }
   882                 }
   883             }
   884         }
   886         SpecialTreeVisitor sts = new SpecialTreeVisitor();
   887         JCClassDecl cdef = (JCClassDecl) tree;
   888         for (JCTree defs: cdef.defs) {
   889             defs.accept(sts);
   890             if (sts.specialized) return 0;
   891         }
   892         return FINAL;
   893     }
   895 /* *************************************************************************
   896  * Type Validation
   897  **************************************************************************/
   899     /** Validate a type expression. That is,
   900      *  check that all type arguments of a parametric type are within
   901      *  their bounds. This must be done in a second phase after type attributon
   902      *  since a class might have a subclass as type parameter bound. E.g:
   903      *
   904      *  class B<A extends C> { ... }
   905      *  class C extends B<C> { ... }
   906      *
   907      *  and we can't make sure that the bound is already attributed because
   908      *  of possible cycles.
   909      */
   910     private Validator validator = new Validator();
   912     /** Visitor method: Validate a type expression, if it is not null, catching
   913      *  and reporting any completion failures.
   914      */
   915     void validate(JCTree tree, Env<AttrContext> env) {
   916         try {
   917             if (tree != null) {
   918                 validator.env = env;
   919                 tree.accept(validator);
   920                 checkRaw(tree, env);
   921             }
   922         } catch (CompletionFailure ex) {
   923             completionError(tree.pos(), ex);
   924         }
   925     }
   926     //where
   927     void checkRaw(JCTree tree, Env<AttrContext> env) {
   928         if (lint.isEnabled(Lint.LintCategory.RAW) &&
   929             tree.type.tag == CLASS &&
   930             !TreeInfo.isDiamond(tree) &&
   931             !env.enclClass.name.isEmpty() &&  //anonymous or intersection
   932             tree.type.isRaw()) {
   933             log.warning(Lint.LintCategory.RAW,
   934                     tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
   935         }
   936     }
   938     /** Visitor method: Validate a list of type expressions.
   939      */
   940     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
   941         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
   942             validate(l.head, env);
   943     }
   945     /** A visitor class for type validation.
   946      */
   947     class Validator extends JCTree.Visitor {
   949         @Override
   950         public void visitTypeArray(JCArrayTypeTree tree) {
   951             validate(tree.elemtype, env);
   952         }
   954         @Override
   955         public void visitTypeApply(JCTypeApply tree) {
   956             if (tree.type.tag == CLASS) {
   957                 List<Type> formals = tree.type.tsym.type.allparams();
   958                 List<Type> actuals = tree.type.allparams();
   959                 List<JCExpression> args = tree.arguments;
   960                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
   961                 ListBuffer<Type> tvars_buf = new ListBuffer<Type>();
   963                 // For matching pairs of actual argument types `a' and
   964                 // formal type parameters with declared bound `b' ...
   965                 while (args.nonEmpty() && forms.nonEmpty()) {
   966                     validate(args.head, env);
   968                     // exact type arguments needs to know their
   969                     // bounds (for upper and lower bound
   970                     // calculations).  So we create new TypeVars with
   971                     // bounds substed with actuals.
   972                     tvars_buf.append(types.substBound(((TypeVar)forms.head),
   973                                                       formals,
   974                                                       actuals));
   976                     args = args.tail;
   977                     forms = forms.tail;
   978                 }
   980                 args = tree.arguments;
   981                 List<Type> tvars_cap = types.substBounds(formals,
   982                                           formals,
   983                                           types.capture(tree.type).allparams());
   984                 while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   985                     // Let the actual arguments know their bound
   986                     args.head.type.withTypeVar((TypeVar)tvars_cap.head);
   987                     args = args.tail;
   988                     tvars_cap = tvars_cap.tail;
   989                 }
   991                 args = tree.arguments;
   992                 List<Type> tvars = tvars_buf.toList();
   994                 while (args.nonEmpty() && tvars.nonEmpty()) {
   995                     Type actual = types.subst(args.head.type,
   996                         tree.type.tsym.type.getTypeArguments(),
   997                         tvars_buf.toList());
   998                     checkExtends(args.head.pos(),
   999                                  actual,
  1000                                  (TypeVar)tvars.head);
  1001                     args = args.tail;
  1002                     tvars = tvars.tail;
  1005                 checkCapture(tree);
  1007                 // Check that this type is either fully parameterized, or
  1008                 // not parameterized at all.
  1009                 if (tree.type.getEnclosingType().isRaw())
  1010                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1011                 if (tree.clazz.getTag() == JCTree.SELECT)
  1012                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1016         @Override
  1017         public void visitTypeParameter(JCTypeParameter tree) {
  1018             validate(tree.bounds, env);
  1019             checkClassBounds(tree.pos(), tree.type);
  1022         @Override
  1023         public void visitWildcard(JCWildcard tree) {
  1024             if (tree.inner != null)
  1025                 validate(tree.inner, env);
  1028         @Override
  1029         public void visitSelect(JCFieldAccess tree) {
  1030             if (tree.type.tag == CLASS) {
  1031                 visitSelectInternal(tree);
  1033                 // Check that this type is either fully parameterized, or
  1034                 // not parameterized at all.
  1035                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1036                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1039         public void visitSelectInternal(JCFieldAccess tree) {
  1040             if (tree.type.tsym.isStatic() &&
  1041                 tree.selected.type.isParameterized()) {
  1042                 // The enclosing type is not a class, so we are
  1043                 // looking at a static member type.  However, the
  1044                 // qualifying expression is parameterized.
  1045                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1046             } else {
  1047                 // otherwise validate the rest of the expression
  1048                 tree.selected.accept(this);
  1052         @Override
  1053         public void visitAnnotatedType(JCAnnotatedType tree) {
  1054             tree.underlyingType.accept(this);
  1057         /** Default visitor method: do nothing.
  1058          */
  1059         @Override
  1060         public void visitTree(JCTree tree) {
  1063         Env<AttrContext> env;
  1066 /* *************************************************************************
  1067  * Exception checking
  1068  **************************************************************************/
  1070     /* The following methods treat classes as sets that contain
  1071      * the class itself and all their subclasses
  1072      */
  1074     /** Is given type a subtype of some of the types in given list?
  1075      */
  1076     boolean subset(Type t, List<Type> ts) {
  1077         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1078             if (types.isSubtype(t, l.head)) return true;
  1079         return false;
  1082     /** Is given type a subtype or supertype of
  1083      *  some of the types in given list?
  1084      */
  1085     boolean intersects(Type t, List<Type> ts) {
  1086         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1087             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1088         return false;
  1091     /** Add type set to given type list, unless it is a subclass of some class
  1092      *  in the list.
  1093      */
  1094     List<Type> incl(Type t, List<Type> ts) {
  1095         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1098     /** Remove type set from type set list.
  1099      */
  1100     List<Type> excl(Type t, List<Type> ts) {
  1101         if (ts.isEmpty()) {
  1102             return ts;
  1103         } else {
  1104             List<Type> ts1 = excl(t, ts.tail);
  1105             if (types.isSubtype(ts.head, t)) return ts1;
  1106             else if (ts1 == ts.tail) return ts;
  1107             else return ts1.prepend(ts.head);
  1111     /** Form the union of two type set lists.
  1112      */
  1113     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1114         List<Type> ts = ts1;
  1115         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1116             ts = incl(l.head, ts);
  1117         return ts;
  1120     /** Form the difference of two type lists.
  1121      */
  1122     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1123         List<Type> ts = ts1;
  1124         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1125             ts = excl(l.head, ts);
  1126         return ts;
  1129     /** Form the intersection of two type lists.
  1130      */
  1131     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1132         List<Type> ts = List.nil();
  1133         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1134             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1135         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1136             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1137         return ts;
  1140     /** Is exc an exception symbol that need not be declared?
  1141      */
  1142     boolean isUnchecked(ClassSymbol exc) {
  1143         return
  1144             exc.kind == ERR ||
  1145             exc.isSubClass(syms.errorType.tsym, types) ||
  1146             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1149     /** Is exc an exception type that need not be declared?
  1150      */
  1151     boolean isUnchecked(Type exc) {
  1152         return
  1153             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
  1154             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
  1155             exc.tag == BOT;
  1158     /** Same, but handling completion failures.
  1159      */
  1160     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1161         try {
  1162             return isUnchecked(exc);
  1163         } catch (CompletionFailure ex) {
  1164             completionError(pos, ex);
  1165             return true;
  1169     /** Is exc handled by given exception list?
  1170      */
  1171     boolean isHandled(Type exc, List<Type> handled) {
  1172         return isUnchecked(exc) || subset(exc, handled);
  1175     /** Return all exceptions in thrown list that are not in handled list.
  1176      *  @param thrown     The list of thrown exceptions.
  1177      *  @param handled    The list of handled exceptions.
  1178      */
  1179     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1180         List<Type> unhandled = List.nil();
  1181         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1182             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1183         return unhandled;
  1186 /* *************************************************************************
  1187  * Overriding/Implementation checking
  1188  **************************************************************************/
  1190     /** The level of access protection given by a flag set,
  1191      *  where PRIVATE is highest and PUBLIC is lowest.
  1192      */
  1193     static int protection(long flags) {
  1194         switch ((short)(flags & AccessFlags)) {
  1195         case PRIVATE: return 3;
  1196         case PROTECTED: return 1;
  1197         default:
  1198         case PUBLIC: return 0;
  1199         case 0: return 2;
  1203     /** A customized "cannot override" error message.
  1204      *  @param m      The overriding method.
  1205      *  @param other  The overridden method.
  1206      *  @return       An internationalized string.
  1207      */
  1208     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1209         String key;
  1210         if ((other.owner.flags() & INTERFACE) == 0)
  1211             key = "cant.override";
  1212         else if ((m.owner.flags() & INTERFACE) == 0)
  1213             key = "cant.implement";
  1214         else
  1215             key = "clashes.with";
  1216         return diags.fragment(key, m, m.location(), other, other.location());
  1219     /** A customized "override" warning message.
  1220      *  @param m      The overriding method.
  1221      *  @param other  The overridden method.
  1222      *  @return       An internationalized string.
  1223      */
  1224     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1225         String key;
  1226         if ((other.owner.flags() & INTERFACE) == 0)
  1227             key = "unchecked.override";
  1228         else if ((m.owner.flags() & INTERFACE) == 0)
  1229             key = "unchecked.implement";
  1230         else
  1231             key = "unchecked.clash.with";
  1232         return diags.fragment(key, m, m.location(), other, other.location());
  1235     /** A customized "override" warning message.
  1236      *  @param m      The overriding method.
  1237      *  @param other  The overridden method.
  1238      *  @return       An internationalized string.
  1239      */
  1240     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1241         String key;
  1242         if ((other.owner.flags() & INTERFACE) == 0)
  1243             key = "varargs.override";
  1244         else  if ((m.owner.flags() & INTERFACE) == 0)
  1245             key = "varargs.implement";
  1246         else
  1247             key = "varargs.clash.with";
  1248         return diags.fragment(key, m, m.location(), other, other.location());
  1251     /** Check that this method conforms with overridden method 'other'.
  1252      *  where `origin' is the class where checking started.
  1253      *  Complications:
  1254      *  (1) Do not check overriding of synthetic methods
  1255      *      (reason: they might be final).
  1256      *      todo: check whether this is still necessary.
  1257      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1258      *      than the method it implements. Augment the proxy methods with the
  1259      *      undeclared exceptions in this case.
  1260      *  (3) When generics are enabled, admit the case where an interface proxy
  1261      *      has a result type
  1262      *      extended by the result type of the method it implements.
  1263      *      Change the proxies result type to the smaller type in this case.
  1265      *  @param tree         The tree from which positions
  1266      *                      are extracted for errors.
  1267      *  @param m            The overriding method.
  1268      *  @param other        The overridden method.
  1269      *  @param origin       The class of which the overriding method
  1270      *                      is a member.
  1271      */
  1272     void checkOverride(JCTree tree,
  1273                        MethodSymbol m,
  1274                        MethodSymbol other,
  1275                        ClassSymbol origin) {
  1276         // Don't check overriding of synthetic methods or by bridge methods.
  1277         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1278             return;
  1281         // Error if static method overrides instance method (JLS 8.4.6.2).
  1282         if ((m.flags() & STATIC) != 0 &&
  1283                    (other.flags() & STATIC) == 0) {
  1284             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1285                       cannotOverride(m, other));
  1286             return;
  1289         // Error if instance method overrides static or final
  1290         // method (JLS 8.4.6.1).
  1291         if ((other.flags() & FINAL) != 0 ||
  1292                  (m.flags() & STATIC) == 0 &&
  1293                  (other.flags() & STATIC) != 0) {
  1294             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1295                       cannotOverride(m, other),
  1296                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1297             return;
  1300         if ((m.owner.flags() & ANNOTATION) != 0) {
  1301             // handled in validateAnnotationMethod
  1302             return;
  1305         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1306         if ((origin.flags() & INTERFACE) == 0 &&
  1307                  protection(m.flags()) > protection(other.flags())) {
  1308             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1309                       cannotOverride(m, other),
  1310                       other.flags() == 0 ?
  1311                           Flag.PACKAGE :
  1312                           asFlagSet(other.flags() & AccessFlags));
  1313             return;
  1316         Type mt = types.memberType(origin.type, m);
  1317         Type ot = types.memberType(origin.type, other);
  1318         // Error if overriding result type is different
  1319         // (or, in the case of generics mode, not a subtype) of
  1320         // overridden result type. We have to rename any type parameters
  1321         // before comparing types.
  1322         List<Type> mtvars = mt.getTypeArguments();
  1323         List<Type> otvars = ot.getTypeArguments();
  1324         Type mtres = mt.getReturnType();
  1325         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1327         overrideWarner.warned = false;
  1328         boolean resultTypesOK =
  1329             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1330         if (!resultTypesOK) {
  1331             if (!allowCovariantReturns &&
  1332                 m.owner != origin &&
  1333                 m.owner.isSubClass(other.owner, types)) {
  1334                 // allow limited interoperability with covariant returns
  1335             } else {
  1336                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1337                           "override.incompatible.ret",
  1338                           cannotOverride(m, other),
  1339                           mtres, otres);
  1340                 return;
  1342         } else if (overrideWarner.warned) {
  1343             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1344                     "override.unchecked.ret",
  1345                     uncheckedOverrides(m, other),
  1346                     mtres, otres);
  1349         // Error if overriding method throws an exception not reported
  1350         // by overridden method.
  1351         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1352         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1353         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1354         if (unhandledErased.nonEmpty()) {
  1355             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1356                       "override.meth.doesnt.throw",
  1357                       cannotOverride(m, other),
  1358                       unhandledUnerased.head);
  1359             return;
  1361         else if (unhandledUnerased.nonEmpty()) {
  1362             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1363                           "override.unchecked.thrown",
  1364                          cannotOverride(m, other),
  1365                          unhandledUnerased.head);
  1366             return;
  1369         // Optional warning if varargs don't agree
  1370         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1371             && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
  1372             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1373                         ((m.flags() & Flags.VARARGS) != 0)
  1374                         ? "override.varargs.missing"
  1375                         : "override.varargs.extra",
  1376                         varargsOverrides(m, other));
  1379         // Warn if instance method overrides bridge method (compiler spec ??)
  1380         if ((other.flags() & BRIDGE) != 0) {
  1381             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1382                         uncheckedOverrides(m, other));
  1385         // Warn if a deprecated method overridden by a non-deprecated one.
  1386         if ((other.flags() & DEPRECATED) != 0
  1387             && (m.flags() & DEPRECATED) == 0
  1388             && m.outermostClass() != other.outermostClass()
  1389             && !isDeprecatedOverrideIgnorable(other, origin)) {
  1390             warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
  1393     // where
  1394         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1395             // If the method, m, is defined in an interface, then ignore the issue if the method
  1396             // is only inherited via a supertype and also implemented in the supertype,
  1397             // because in that case, we will rediscover the issue when examining the method
  1398             // in the supertype.
  1399             // If the method, m, is not defined in an interface, then the only time we need to
  1400             // address the issue is when the method is the supertype implemementation: any other
  1401             // case, we will have dealt with when examining the supertype classes
  1402             ClassSymbol mc = m.enclClass();
  1403             Type st = types.supertype(origin.type);
  1404             if (st.tag != CLASS)
  1405                 return true;
  1406             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1408             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1409                 List<Type> intfs = types.interfaces(origin.type);
  1410                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1412             else
  1413                 return (stimpl != m);
  1417     // used to check if there were any unchecked conversions
  1418     Warner overrideWarner = new Warner();
  1420     /** Check that a class does not inherit two concrete methods
  1421      *  with the same signature.
  1422      *  @param pos          Position to be used for error reporting.
  1423      *  @param site         The class type to be checked.
  1424      */
  1425     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1426         Type sup = types.supertype(site);
  1427         if (sup.tag != CLASS) return;
  1429         for (Type t1 = sup;
  1430              t1.tsym.type.isParameterized();
  1431              t1 = types.supertype(t1)) {
  1432             for (Scope.Entry e1 = t1.tsym.members().elems;
  1433                  e1 != null;
  1434                  e1 = e1.sibling) {
  1435                 Symbol s1 = e1.sym;
  1436                 if (s1.kind != MTH ||
  1437                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1438                     !s1.isInheritedIn(site.tsym, types) ||
  1439                     ((MethodSymbol)s1).implementation(site.tsym,
  1440                                                       types,
  1441                                                       true) != s1)
  1442                     continue;
  1443                 Type st1 = types.memberType(t1, s1);
  1444                 int s1ArgsLength = st1.getParameterTypes().length();
  1445                 if (st1 == s1.type) continue;
  1447                 for (Type t2 = sup;
  1448                      t2.tag == CLASS;
  1449                      t2 = types.supertype(t2)) {
  1450                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1451                          e2.scope != null;
  1452                          e2 = e2.next()) {
  1453                         Symbol s2 = e2.sym;
  1454                         if (s2 == s1 ||
  1455                             s2.kind != MTH ||
  1456                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1457                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1458                             !s2.isInheritedIn(site.tsym, types) ||
  1459                             ((MethodSymbol)s2).implementation(site.tsym,
  1460                                                               types,
  1461                                                               true) != s2)
  1462                             continue;
  1463                         Type st2 = types.memberType(t2, s2);
  1464                         if (types.overrideEquivalent(st1, st2))
  1465                             log.error(pos, "concrete.inheritance.conflict",
  1466                                       s1, t1, s2, t2, sup);
  1473     /** Check that classes (or interfaces) do not each define an abstract
  1474      *  method with same name and arguments but incompatible return types.
  1475      *  @param pos          Position to be used for error reporting.
  1476      *  @param t1           The first argument type.
  1477      *  @param t2           The second argument type.
  1478      */
  1479     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1480                                             Type t1,
  1481                                             Type t2) {
  1482         return checkCompatibleAbstracts(pos, t1, t2,
  1483                                         types.makeCompoundType(t1, t2));
  1486     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1487                                             Type t1,
  1488                                             Type t2,
  1489                                             Type site) {
  1490         Symbol sym = firstIncompatibility(t1, t2, site);
  1491         if (sym != null) {
  1492             log.error(pos, "types.incompatible.diff.ret",
  1493                       t1, t2, sym.name +
  1494                       "(" + types.memberType(t2, sym).getParameterTypes() + ")");
  1495             return false;
  1497         return true;
  1500     /** Return the first method which is defined with same args
  1501      *  but different return types in two given interfaces, or null if none
  1502      *  exists.
  1503      *  @param t1     The first type.
  1504      *  @param t2     The second type.
  1505      *  @param site   The most derived type.
  1506      *  @returns symbol from t2 that conflicts with one in t1.
  1507      */
  1508     private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
  1509         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1510         closure(t1, interfaces1);
  1511         Map<TypeSymbol,Type> interfaces2;
  1512         if (t1 == t2)
  1513             interfaces2 = interfaces1;
  1514         else
  1515             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1517         for (Type t3 : interfaces1.values()) {
  1518             for (Type t4 : interfaces2.values()) {
  1519                 Symbol s = firstDirectIncompatibility(t3, t4, site);
  1520                 if (s != null) return s;
  1523         return null;
  1526     /** Compute all the supertypes of t, indexed by type symbol. */
  1527     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1528         if (t.tag != CLASS) return;
  1529         if (typeMap.put(t.tsym, t) == null) {
  1530             closure(types.supertype(t), typeMap);
  1531             for (Type i : types.interfaces(t))
  1532                 closure(i, typeMap);
  1536     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1537     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1538         if (t.tag != CLASS) return;
  1539         if (typesSkip.get(t.tsym) != null) return;
  1540         if (typeMap.put(t.tsym, t) == null) {
  1541             closure(types.supertype(t), typesSkip, typeMap);
  1542             for (Type i : types.interfaces(t))
  1543                 closure(i, typesSkip, typeMap);
  1547     /** Return the first method in t2 that conflicts with a method from t1. */
  1548     private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
  1549         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1550             Symbol s1 = e1.sym;
  1551             Type st1 = null;
  1552             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1553             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1554             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1555             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1556                 Symbol s2 = e2.sym;
  1557                 if (s1 == s2) continue;
  1558                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1559                 if (st1 == null) st1 = types.memberType(t1, s1);
  1560                 Type st2 = types.memberType(t2, s2);
  1561                 if (types.overrideEquivalent(st1, st2)) {
  1562                     List<Type> tvars1 = st1.getTypeArguments();
  1563                     List<Type> tvars2 = st2.getTypeArguments();
  1564                     Type rt1 = st1.getReturnType();
  1565                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1566                     boolean compat =
  1567                         types.isSameType(rt1, rt2) ||
  1568                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1569                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1570                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1571                          checkCommonOverriderIn(s1,s2,site);
  1572                     if (!compat) return s2;
  1576         return null;
  1578     //WHERE
  1579     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1580         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1581         Type st1 = types.memberType(site, s1);
  1582         Type st2 = types.memberType(site, s2);
  1583         closure(site, supertypes);
  1584         for (Type t : supertypes.values()) {
  1585             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1586                 Symbol s3 = e.sym;
  1587                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1588                 Type st3 = types.memberType(site,s3);
  1589                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1590                     if (s3.owner == site.tsym) {
  1591                         return true;
  1593                     List<Type> tvars1 = st1.getTypeArguments();
  1594                     List<Type> tvars2 = st2.getTypeArguments();
  1595                     List<Type> tvars3 = st3.getTypeArguments();
  1596                     Type rt1 = st1.getReturnType();
  1597                     Type rt2 = st2.getReturnType();
  1598                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1599                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1600                     boolean compat =
  1601                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1602                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1603                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1604                     if (compat)
  1605                         return true;
  1609         return false;
  1612     /** Check that a given method conforms with any method it overrides.
  1613      *  @param tree         The tree from which positions are extracted
  1614      *                      for errors.
  1615      *  @param m            The overriding method.
  1616      */
  1617     void checkOverride(JCTree tree, MethodSymbol m) {
  1618         ClassSymbol origin = (ClassSymbol)m.owner;
  1619         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1620             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1621                 log.error(tree.pos(), "enum.no.finalize");
  1622                 return;
  1624         for (Type t = types.supertype(origin.type); t.tag == CLASS;
  1625              t = types.supertype(t)) {
  1626             TypeSymbol c = t.tsym;
  1627             Scope.Entry e = c.members().lookup(m.name);
  1628             while (e.scope != null) {
  1629                 if (m.overrides(e.sym, origin, types, false))
  1630                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1631                 else if (e.sym.kind == MTH &&
  1632                         e.sym.isInheritedIn(origin, types) &&
  1633                         (e.sym.flags() & SYNTHETIC) == 0 &&
  1634                         !m.isConstructor()) {
  1635                     Type er1 = m.erasure(types);
  1636                     Type er2 = e.sym.erasure(types);
  1637                     if (types.isSameTypes(er1.getParameterTypes(),
  1638                             er2.getParameterTypes())) {
  1639                             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1640                                     "name.clash.same.erasure.no.override",
  1641                                     m, m.location(),
  1642                                     e.sym, e.sym.location());
  1645                 e = e.next();
  1650     /** Check that all abstract members of given class have definitions.
  1651      *  @param pos          Position to be used for error reporting.
  1652      *  @param c            The class.
  1653      */
  1654     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1655         try {
  1656             MethodSymbol undef = firstUndef(c, c);
  1657             if (undef != null) {
  1658                 if ((c.flags() & ENUM) != 0 &&
  1659                     types.supertype(c.type).tsym == syms.enumSym &&
  1660                     (c.flags() & FINAL) == 0) {
  1661                     // add the ABSTRACT flag to an enum
  1662                     c.flags_field |= ABSTRACT;
  1663                 } else {
  1664                     MethodSymbol undef1 =
  1665                         new MethodSymbol(undef.flags(), undef.name,
  1666                                          types.memberType(c.type, undef), undef.owner);
  1667                     log.error(pos, "does.not.override.abstract",
  1668                               c, undef1, undef1.location());
  1671         } catch (CompletionFailure ex) {
  1672             completionError(pos, ex);
  1675 //where
  1676         /** Return first abstract member of class `c' that is not defined
  1677          *  in `impl', null if there is none.
  1678          */
  1679         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1680             MethodSymbol undef = null;
  1681             // Do not bother to search in classes that are not abstract,
  1682             // since they cannot have abstract members.
  1683             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1684                 Scope s = c.members();
  1685                 for (Scope.Entry e = s.elems;
  1686                      undef == null && e != null;
  1687                      e = e.sibling) {
  1688                     if (e.sym.kind == MTH &&
  1689                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1690                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1691                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1692                         if (implmeth == null || implmeth == absmeth)
  1693                             undef = absmeth;
  1696                 if (undef == null) {
  1697                     Type st = types.supertype(c.type);
  1698                     if (st.tag == CLASS)
  1699                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1701                 for (List<Type> l = types.interfaces(c.type);
  1702                      undef == null && l.nonEmpty();
  1703                      l = l.tail) {
  1704                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1707             return undef;
  1710     /** Check for cyclic references. Issue an error if the
  1711      *  symbol of the type referred to has a LOCKED flag set.
  1713      *  @param pos      Position to be used for error reporting.
  1714      *  @param t        The type referred to.
  1715      */
  1716     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  1717         checkNonCyclicInternal(pos, t);
  1721     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  1722         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  1725     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  1726         final TypeVar tv;
  1727         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  1728             return;
  1729         if (seen.contains(t)) {
  1730             tv = (TypeVar)t;
  1731             tv.bound = types.createErrorType(t);
  1732             log.error(pos, "cyclic.inheritance", t);
  1733         } else if (t.tag == TYPEVAR) {
  1734             tv = (TypeVar)t;
  1735             seen = seen.prepend(tv);
  1736             for (Type b : types.getBounds(tv))
  1737                 checkNonCyclic1(pos, b, seen);
  1741     /** Check for cyclic references. Issue an error if the
  1742      *  symbol of the type referred to has a LOCKED flag set.
  1744      *  @param pos      Position to be used for error reporting.
  1745      *  @param t        The type referred to.
  1746      *  @returns        True if the check completed on all attributed classes
  1747      */
  1748     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  1749         boolean complete = true; // was the check complete?
  1750         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  1751         Symbol c = t.tsym;
  1752         if ((c.flags_field & ACYCLIC) != 0) return true;
  1754         if ((c.flags_field & LOCKED) != 0) {
  1755             noteCyclic(pos, (ClassSymbol)c);
  1756         } else if (!c.type.isErroneous()) {
  1757             try {
  1758                 c.flags_field |= LOCKED;
  1759                 if (c.type.tag == CLASS) {
  1760                     ClassType clazz = (ClassType)c.type;
  1761                     if (clazz.interfaces_field != null)
  1762                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  1763                             complete &= checkNonCyclicInternal(pos, l.head);
  1764                     if (clazz.supertype_field != null) {
  1765                         Type st = clazz.supertype_field;
  1766                         if (st != null && st.tag == CLASS)
  1767                             complete &= checkNonCyclicInternal(pos, st);
  1769                     if (c.owner.kind == TYP)
  1770                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  1772             } finally {
  1773                 c.flags_field &= ~LOCKED;
  1776         if (complete)
  1777             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  1778         if (complete) c.flags_field |= ACYCLIC;
  1779         return complete;
  1782     /** Note that we found an inheritance cycle. */
  1783     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  1784         log.error(pos, "cyclic.inheritance", c);
  1785         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  1786             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  1787         Type st = types.supertype(c.type);
  1788         if (st.tag == CLASS)
  1789             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  1790         c.type = types.createErrorType(c, c.type);
  1791         c.flags_field |= ACYCLIC;
  1794     /** Check that all methods which implement some
  1795      *  method conform to the method they implement.
  1796      *  @param tree         The class definition whose members are checked.
  1797      */
  1798     void checkImplementations(JCClassDecl tree) {
  1799         checkImplementations(tree, tree.sym);
  1801 //where
  1802         /** Check that all methods which implement some
  1803          *  method in `ic' conform to the method they implement.
  1804          */
  1805         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  1806             ClassSymbol origin = tree.sym;
  1807             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  1808                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  1809                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  1810                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  1811                         if (e.sym.kind == MTH &&
  1812                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  1813                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  1814                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  1815                             if (implmeth != null && implmeth != absmeth &&
  1816                                 (implmeth.owner.flags() & INTERFACE) ==
  1817                                 (origin.flags() & INTERFACE)) {
  1818                                 // don't check if implmeth is in a class, yet
  1819                                 // origin is an interface. This case arises only
  1820                                 // if implmeth is declared in Object. The reason is
  1821                                 // that interfaces really don't inherit from
  1822                                 // Object it's just that the compiler represents
  1823                                 // things that way.
  1824                                 checkOverride(tree, implmeth, absmeth, origin);
  1832     /** Check that all abstract methods implemented by a class are
  1833      *  mutually compatible.
  1834      *  @param pos          Position to be used for error reporting.
  1835      *  @param c            The class whose interfaces are checked.
  1836      */
  1837     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  1838         List<Type> supertypes = types.interfaces(c);
  1839         Type supertype = types.supertype(c);
  1840         if (supertype.tag == CLASS &&
  1841             (supertype.tsym.flags() & ABSTRACT) != 0)
  1842             supertypes = supertypes.prepend(supertype);
  1843         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  1844             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  1845                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  1846                 return;
  1847             for (List<Type> m = supertypes; m != l; m = m.tail)
  1848                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  1849                     return;
  1851         checkCompatibleConcretes(pos, c);
  1854     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  1855         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  1856             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  1857                 // VM allows methods and variables with differing types
  1858                 if (sym.kind == e.sym.kind &&
  1859                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  1860                     sym != e.sym &&
  1861                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  1862                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  1863                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  1864                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  1865                     return;
  1871     /** Report a conflict between a user symbol and a synthetic symbol.
  1872      */
  1873     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  1874         if (!sym.type.isErroneous()) {
  1875             if (warnOnSyntheticConflicts) {
  1876                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  1878             else {
  1879                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  1884     /** Check that class c does not implement directly or indirectly
  1885      *  the same parameterized interface with two different argument lists.
  1886      *  @param pos          Position to be used for error reporting.
  1887      *  @param type         The type whose interfaces are checked.
  1888      */
  1889     void checkClassBounds(DiagnosticPosition pos, Type type) {
  1890         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  1892 //where
  1893         /** Enter all interfaces of type `type' into the hash table `seensofar'
  1894          *  with their class symbol as key and their type as value. Make
  1895          *  sure no class is entered with two different types.
  1896          */
  1897         void checkClassBounds(DiagnosticPosition pos,
  1898                               Map<TypeSymbol,Type> seensofar,
  1899                               Type type) {
  1900             if (type.isErroneous()) return;
  1901             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  1902                 Type it = l.head;
  1903                 Type oldit = seensofar.put(it.tsym, it);
  1904                 if (oldit != null) {
  1905                     List<Type> oldparams = oldit.allparams();
  1906                     List<Type> newparams = it.allparams();
  1907                     if (!types.containsTypeEquivalent(oldparams, newparams))
  1908                         log.error(pos, "cant.inherit.diff.arg",
  1909                                   it.tsym, Type.toString(oldparams),
  1910                                   Type.toString(newparams));
  1912                 checkClassBounds(pos, seensofar, it);
  1914             Type st = types.supertype(type);
  1915             if (st != null) checkClassBounds(pos, seensofar, st);
  1918     /** Enter interface into into set.
  1919      *  If it existed already, issue a "repeated interface" error.
  1920      */
  1921     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  1922         if (its.contains(it))
  1923             log.error(pos, "repeated.interface");
  1924         else {
  1925             its.add(it);
  1929 /* *************************************************************************
  1930  * Check annotations
  1931  **************************************************************************/
  1933     /**
  1934      * Recursively validate annotations values
  1935      */
  1936     void validateAnnotationTree(JCTree tree) {
  1937         class AnnotationValidator extends TreeScanner {
  1938             @Override
  1939             public void visitAnnotation(JCAnnotation tree) {
  1940                 super.visitAnnotation(tree);
  1941                 validateAnnotation(tree);
  1944         tree.accept(new AnnotationValidator());
  1947     /** Annotation types are restricted to primitives, String, an
  1948      *  enum, an annotation, Class, Class<?>, Class<? extends
  1949      *  Anything>, arrays of the preceding.
  1950      */
  1951     void validateAnnotationType(JCTree restype) {
  1952         // restype may be null if an error occurred, so don't bother validating it
  1953         if (restype != null) {
  1954             validateAnnotationType(restype.pos(), restype.type);
  1958     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  1959         if (type.isPrimitive()) return;
  1960         if (types.isSameType(type, syms.stringType)) return;
  1961         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  1962         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  1963         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  1964         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  1965             validateAnnotationType(pos, types.elemtype(type));
  1966             return;
  1968         log.error(pos, "invalid.annotation.member.type");
  1971     /**
  1972      * "It is also a compile-time error if any method declared in an
  1973      * annotation type has a signature that is override-equivalent to
  1974      * that of any public or protected method declared in class Object
  1975      * or in the interface annotation.Annotation."
  1977      * @jls3 9.6 Annotation Types
  1978      */
  1979     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  1980         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  1981             Scope s = sup.tsym.members();
  1982             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  1983                 if (e.sym.kind == MTH &&
  1984                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  1985                     types.overrideEquivalent(m.type, e.sym.type))
  1986                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  1991     /** Check the annotations of a symbol.
  1992      */
  1993     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  1994         if (skipAnnotations) return;
  1995         for (JCAnnotation a : annotations)
  1996             validateAnnotation(a, s);
  1999     /** Check the type annotations
  2000      */
  2001     public void validateTypeAnnotations(List<JCTypeAnnotation> annotations, boolean isTypeParameter) {
  2002         if (skipAnnotations) return;
  2003         for (JCTypeAnnotation a : annotations)
  2004             validateTypeAnnotation(a, isTypeParameter);
  2007     /** Check an annotation of a symbol.
  2008      */
  2009     public void validateAnnotation(JCAnnotation a, Symbol s) {
  2010         validateAnnotationTree(a);
  2012         if (!annotationApplicable(a, s))
  2013             log.error(a.pos(), "annotation.type.not.applicable");
  2015         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  2016             if (!isOverrider(s))
  2017                 log.error(a.pos(), "method.does.not.override.superclass");
  2021     public void validateTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
  2022         if (a.type == null)
  2023             throw new AssertionError("annotation tree hasn't been attributed yet: " + a);
  2024         validateAnnotationTree(a);
  2026         if (!isTypeAnnotation(a, isTypeParameter))
  2027             log.error(a.pos(), "annotation.type.not.applicable");
  2030     /** Is s a method symbol that overrides a method in a superclass? */
  2031     boolean isOverrider(Symbol s) {
  2032         if (s.kind != MTH || s.isStatic())
  2033             return false;
  2034         MethodSymbol m = (MethodSymbol)s;
  2035         TypeSymbol owner = (TypeSymbol)m.owner;
  2036         for (Type sup : types.closure(owner.type)) {
  2037             if (sup == owner.type)
  2038                 continue; // skip "this"
  2039             Scope scope = sup.tsym.members();
  2040             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2041                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2042                     return true;
  2045         return false;
  2048     /** Is the annotation applicable to type annotations */
  2049     boolean isTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
  2050         Attribute.Compound atTarget =
  2051             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2052         if (atTarget == null) return true;
  2053         Attribute atValue = atTarget.member(names.value);
  2054         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  2055         Attribute.Array arr = (Attribute.Array) atValue;
  2056         for (Attribute app : arr.values) {
  2057             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2058             Attribute.Enum e = (Attribute.Enum) app;
  2059             if (!isTypeParameter && e.value.name == names.TYPE_USE)
  2060                 return true;
  2061             else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
  2062                 return true;
  2064         return false;
  2067     /** Is the annotation applicable to the symbol? */
  2068     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2069         Attribute.Compound atTarget =
  2070             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2071         if (atTarget == null) return true;
  2072         Attribute atValue = atTarget.member(names.value);
  2073         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  2074         Attribute.Array arr = (Attribute.Array) atValue;
  2075         for (Attribute app : arr.values) {
  2076             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2077             Attribute.Enum e = (Attribute.Enum) app;
  2078             if (e.value.name == names.TYPE)
  2079                 { if (s.kind == TYP) return true; }
  2080             else if (e.value.name == names.FIELD)
  2081                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2082             else if (e.value.name == names.METHOD)
  2083                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2084             else if (e.value.name == names.PARAMETER)
  2085                 { if (s.kind == VAR &&
  2086                       s.owner.kind == MTH &&
  2087                       (s.flags() & PARAMETER) != 0)
  2088                     return true;
  2090             else if (e.value.name == names.CONSTRUCTOR)
  2091                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2092             else if (e.value.name == names.LOCAL_VARIABLE)
  2093                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2094                       (s.flags() & PARAMETER) == 0)
  2095                     return true;
  2097             else if (e.value.name == names.ANNOTATION_TYPE)
  2098                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2099                     return true;
  2101             else if (e.value.name == names.PACKAGE)
  2102                 { if (s.kind == PCK) return true; }
  2103             else if (e.value.name == names.TYPE_USE)
  2104                 { if (s.kind == TYP ||
  2105                       s.kind == VAR ||
  2106                       (s.kind == MTH && !s.isConstructor() &&
  2107                        s.type.getReturnType().tag != VOID))
  2108                     return true;
  2110             else
  2111                 return true; // recovery
  2113         return false;
  2116     /** Check an annotation value.
  2117      */
  2118     public void validateAnnotation(JCAnnotation a) {
  2119         if (a.type.isErroneous()) return;
  2121         // collect an inventory of the members (sorted alphabetically)
  2122         Set<MethodSymbol> members = new TreeSet<MethodSymbol>(new Comparator<Symbol>() {
  2123             public int compare(Symbol t, Symbol t1) {
  2124                 return t.name.compareTo(t1.name);
  2126         });
  2127         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2128              e != null;
  2129              e = e.sibling)
  2130             if (e.sym.kind == MTH)
  2131                 members.add((MethodSymbol) e.sym);
  2133         // count them off as they're annotated
  2134         for (JCTree arg : a.args) {
  2135             if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
  2136             JCAssign assign = (JCAssign) arg;
  2137             Symbol m = TreeInfo.symbol(assign.lhs);
  2138             if (m == null || m.type.isErroneous()) continue;
  2139             if (!members.remove(m))
  2140                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2141                           m.name, a.type);
  2144         // all the remaining ones better have default values
  2145         ListBuffer<Name> missingDefaults = ListBuffer.lb();
  2146         for (MethodSymbol m : members) {
  2147             if (m.defaultValue == null && !m.type.isErroneous()) {
  2148                 missingDefaults.append(m.name);
  2151         if (missingDefaults.nonEmpty()) {
  2152             String key = (missingDefaults.size() > 1)
  2153                     ? "annotation.missing.default.value.1"
  2154                     : "annotation.missing.default.value";
  2155             log.error(a.pos(), key, a.type, missingDefaults);
  2158         // special case: java.lang.annotation.Target must not have
  2159         // repeated values in its value member
  2160         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2161             a.args.tail == null)
  2162             return;
  2164         if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
  2165         JCAssign assign = (JCAssign) a.args.head;
  2166         Symbol m = TreeInfo.symbol(assign.lhs);
  2167         if (m.name != names.value) return;
  2168         JCTree rhs = assign.rhs;
  2169         if (rhs.getTag() != JCTree.NEWARRAY) return;
  2170         JCNewArray na = (JCNewArray) rhs;
  2171         Set<Symbol> targets = new HashSet<Symbol>();
  2172         for (JCTree elem : na.elems) {
  2173             if (!targets.add(TreeInfo.symbol(elem))) {
  2174                 log.error(elem.pos(), "repeated.annotation.target");
  2179     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2180         if (allowAnnotations &&
  2181             lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
  2182             (s.flags() & DEPRECATED) != 0 &&
  2183             !syms.deprecatedType.isErroneous() &&
  2184             s.attribute(syms.deprecatedType.tsym) == null) {
  2185             log.warning(Lint.LintCategory.DEP_ANN,
  2186                     pos, "missing.deprecated.annotation");
  2190 /* *************************************************************************
  2191  * Check for recursive annotation elements.
  2192  **************************************************************************/
  2194     /** Check for cycles in the graph of annotation elements.
  2195      */
  2196     void checkNonCyclicElements(JCClassDecl tree) {
  2197         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2198         assert (tree.sym.flags_field & LOCKED) == 0;
  2199         try {
  2200             tree.sym.flags_field |= LOCKED;
  2201             for (JCTree def : tree.defs) {
  2202                 if (def.getTag() != JCTree.METHODDEF) continue;
  2203                 JCMethodDecl meth = (JCMethodDecl)def;
  2204                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2206         } finally {
  2207             tree.sym.flags_field &= ~LOCKED;
  2208             tree.sym.flags_field |= ACYCLIC_ANN;
  2212     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2213         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2214             return;
  2215         if ((tsym.flags_field & LOCKED) != 0) {
  2216             log.error(pos, "cyclic.annotation.element");
  2217             return;
  2219         try {
  2220             tsym.flags_field |= LOCKED;
  2221             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  2222                 Symbol s = e.sym;
  2223                 if (s.kind != Kinds.MTH)
  2224                     continue;
  2225                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  2227         } finally {
  2228             tsym.flags_field &= ~LOCKED;
  2229             tsym.flags_field |= ACYCLIC_ANN;
  2233     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  2234         switch (type.tag) {
  2235         case TypeTags.CLASS:
  2236             if ((type.tsym.flags() & ANNOTATION) != 0)
  2237                 checkNonCyclicElementsInternal(pos, type.tsym);
  2238             break;
  2239         case TypeTags.ARRAY:
  2240             checkAnnotationResType(pos, types.elemtype(type));
  2241             break;
  2242         default:
  2243             break; // int etc
  2247 /* *************************************************************************
  2248  * Check for cycles in the constructor call graph.
  2249  **************************************************************************/
  2251     /** Check for cycles in the graph of constructors calling other
  2252      *  constructors.
  2253      */
  2254     void checkCyclicConstructors(JCClassDecl tree) {
  2255         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  2257         // enter each constructor this-call into the map
  2258         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  2259             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  2260             if (app == null) continue;
  2261             JCMethodDecl meth = (JCMethodDecl) l.head;
  2262             if (TreeInfo.name(app.meth) == names._this) {
  2263                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  2264             } else {
  2265                 meth.sym.flags_field |= ACYCLIC;
  2269         // Check for cycles in the map
  2270         Symbol[] ctors = new Symbol[0];
  2271         ctors = callMap.keySet().toArray(ctors);
  2272         for (Symbol caller : ctors) {
  2273             checkCyclicConstructor(tree, caller, callMap);
  2277     /** Look in the map to see if the given constructor is part of a
  2278      *  call cycle.
  2279      */
  2280     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  2281                                         Map<Symbol,Symbol> callMap) {
  2282         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  2283             if ((ctor.flags_field & LOCKED) != 0) {
  2284                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  2285                           "recursive.ctor.invocation");
  2286             } else {
  2287                 ctor.flags_field |= LOCKED;
  2288                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  2289                 ctor.flags_field &= ~LOCKED;
  2291             ctor.flags_field |= ACYCLIC;
  2295 /* *************************************************************************
  2296  * Miscellaneous
  2297  **************************************************************************/
  2299     /**
  2300      * Return the opcode of the operator but emit an error if it is an
  2301      * error.
  2302      * @param pos        position for error reporting.
  2303      * @param operator   an operator
  2304      * @param tag        a tree tag
  2305      * @param left       type of left hand side
  2306      * @param right      type of right hand side
  2307      */
  2308     int checkOperator(DiagnosticPosition pos,
  2309                        OperatorSymbol operator,
  2310                        int tag,
  2311                        Type left,
  2312                        Type right) {
  2313         if (operator.opcode == ByteCodes.error) {
  2314             log.error(pos,
  2315                       "operator.cant.be.applied",
  2316                       treeinfo.operatorName(tag),
  2317                       List.of(left, right));
  2319         return operator.opcode;
  2323     /**
  2324      *  Check for division by integer constant zero
  2325      *  @param pos           Position for error reporting.
  2326      *  @param operator      The operator for the expression
  2327      *  @param operand       The right hand operand for the expression
  2328      */
  2329     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  2330         if (operand.constValue() != null
  2331             && lint.isEnabled(Lint.LintCategory.DIVZERO)
  2332             && operand.tag <= LONG
  2333             && ((Number) (operand.constValue())).longValue() == 0) {
  2334             int opc = ((OperatorSymbol)operator).opcode;
  2335             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  2336                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  2337                 log.warning(Lint.LintCategory.DIVZERO, pos, "div.zero");
  2342     /**
  2343      * Check for empty statements after if
  2344      */
  2345     void checkEmptyIf(JCIf tree) {
  2346         if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
  2347             log.warning(Lint.LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  2350     /** Check that symbol is unique in given scope.
  2351      *  @param pos           Position for error reporting.
  2352      *  @param sym           The symbol.
  2353      *  @param s             The scope.
  2354      */
  2355     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  2356         if (sym.type.isErroneous())
  2357             return true;
  2358         if (sym.owner.name == names.any) return false;
  2359         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  2360             if (sym != e.sym &&
  2361                 sym.kind == e.sym.kind &&
  2362                 sym.name != names.error &&
  2363                 (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  2364                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
  2365                     varargsDuplicateError(pos, sym, e.sym);
  2366                 else if (sym.kind == MTH && !types.overrideEquivalent(sym.type, e.sym.type))
  2367                     duplicateErasureError(pos, sym, e.sym);
  2368                 else
  2369                     duplicateError(pos, e.sym);
  2370                 return false;
  2373         return true;
  2375     //where
  2376     /** Report duplicate declaration error.
  2377      */
  2378     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  2379         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  2380             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  2384     /** Check that single-type import is not already imported or top-level defined,
  2385      *  but make an exception for two single-type imports which denote the same type.
  2386      *  @param pos           Position for error reporting.
  2387      *  @param sym           The symbol.
  2388      *  @param s             The scope
  2389      */
  2390     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2391         return checkUniqueImport(pos, sym, s, false);
  2394     /** Check that static single-type import is not already imported or top-level defined,
  2395      *  but make an exception for two single-type imports which denote the same type.
  2396      *  @param pos           Position for error reporting.
  2397      *  @param sym           The symbol.
  2398      *  @param s             The scope
  2399      *  @param staticImport  Whether or not this was a static import
  2400      */
  2401     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2402         return checkUniqueImport(pos, sym, s, true);
  2405     /** Check that single-type import is not already imported or top-level defined,
  2406      *  but make an exception for two single-type imports which denote the same type.
  2407      *  @param pos           Position for error reporting.
  2408      *  @param sym           The symbol.
  2409      *  @param s             The scope.
  2410      *  @param staticImport  Whether or not this was a static import
  2411      */
  2412     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  2413         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  2414             // is encountered class entered via a class declaration?
  2415             boolean isClassDecl = e.scope == s;
  2416             if ((isClassDecl || sym != e.sym) &&
  2417                 sym.kind == e.sym.kind &&
  2418                 sym.name != names.error) {
  2419                 if (!e.sym.type.isErroneous()) {
  2420                     String what = e.sym.toString();
  2421                     if (!isClassDecl) {
  2422                         if (staticImport)
  2423                             log.error(pos, "already.defined.static.single.import", what);
  2424                         else
  2425                             log.error(pos, "already.defined.single.import", what);
  2427                     else if (sym != e.sym)
  2428                         log.error(pos, "already.defined.this.unit", what);
  2430                 return false;
  2433         return true;
  2436     /** Check that a qualified name is in canonical form (for import decls).
  2437      */
  2438     public void checkCanonical(JCTree tree) {
  2439         if (!isCanonical(tree))
  2440             log.error(tree.pos(), "import.requires.canonical",
  2441                       TreeInfo.symbol(tree));
  2443         // where
  2444         private boolean isCanonical(JCTree tree) {
  2445             while (tree.getTag() == JCTree.SELECT) {
  2446                 JCFieldAccess s = (JCFieldAccess) tree;
  2447                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  2448                     return false;
  2449                 tree = s.selected;
  2451             return true;
  2454     private class ConversionWarner extends Warner {
  2455         final String key;
  2456         final Type found;
  2457         final Type expected;
  2458         public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
  2459             super(pos);
  2460             this.key = key;
  2461             this.found = found;
  2462             this.expected = expected;
  2465         @Override
  2466         public void warnUnchecked() {
  2467             boolean warned = this.warned;
  2468             super.warnUnchecked();
  2469             if (warned) return; // suppress redundant diagnostics
  2470             Object problem = diags.fragment(key);
  2471             Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
  2475     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  2476         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  2479     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  2480         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial